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ABSTRACT

A "single-element" method is described for the experimental

determination of the parameters P, n and A which characterize the
neutronic properties of a fuel element in heterogeneous reactor
theory. This method requires the use of only one fuel element
located at the center of a tank of moderator in an exponential

facility. The measurements are made outside this single fuel ele-

ment and include the following quantities to which the hetero-

geneous fuel parameters are related: the radial distance to the
thermal neutron flux peak, the inverse relaxation length of the

axial flux, the cadmium ratio of gold at a given radial distance,

and the ratio of the epicadmium activities (per unit isotopic

weight) of gold-197 and molybdenum-98 irradiated on the fuel surface.

The single-element method was applied to 19 and 31 rod clusters

of plutonium containing fuel. The reactor physics parameters of

uniform lattices composed of these clusters, calculated from the

measured values of P, n and A, show good agreement with the results
of full-lattice studies of the same fuel at the Savannah River
Laboratory.

It is concluded that the proposed method should increase the

efficacy of heterogeneous reactor theory and make possible the
evaluation of new, promising and scarce nuclear reactor fuels at

very low cost.
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Chapter 1

INTRODUCTION

1.1 FOREWORD

Heterogeneous nuclear reactors moderated by heavy water or

graphite have been important since the early days of nuclear tech-

nology. These are, in general, well-thermalized neutron multiplying

systems operating with natural or slightly enriched uranium fuel.

The fuel gesenmblies in the reactors designed more recently are usually

subdiirided into clusters or annular arrays to provide for adequate

cooling. The inter-array lattice spacings are large, consonant with

the large migration areas of the moderators. The excellent neutron

economy of these systems permits the construction of power plants that

have very low fuel costs and high conversion ratios.

Although the conceptual physics problems of heterogeneous reactor

lattices are generally well understood, there is still a considerable

effort required to answer questions of feasibility regarding new core

materials and designs, and to provide adequate and economic tools for

detailed optimization. Experiments and calculations on heavy water

moderated lattices have given a clear picture of the reactivity and

buckling effects for the simplest case of uniform lattices of single

fuel rods in D20 (H8). This work, however, does not extend far into

the range of present-day reactors. Very little work has been done,

for instance, on plutonium, uranium-233, thorium, or partly burned

fuels. Very few calibration experiments have been made for fuel

assemblies of complex geometry with different coolants (e.g. organic,
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light water, gas). Experiments with high temperature coolants are

even more restricted. A deficiency in the present-day design calcula-

tions is the difficulty with which they treat complex fuel clusters;

and the use of approximate methods for the calculations on fuel clus-

ters has resulted in important errors (C2) in the calculations.

Indeed, most reactoTcalculations contain enough approximations so

that normalization by experiment is needed; and additional experimental

studies are needed for each new reactor type considered.

1.2 M.I.T. REACTOR PHYSICS PROJECT

The Reactor Physics Project of the Massachusetts Institute of

Technology was initiated January 1, 1968, with the objective of

developing and applying single and few-rod methods for the determina-

tion of reactor physics parameters. Development of these methods

should increase the ability to evaluate the reactor physics character-

istics of new and promising types oft reactor fuel at very low cost.

Work is divided into two tasks.

Tast 1 is concerned with the development of new techniques in

y-ray spectroscopy for the measurement of fuel parameters. In the

first phase of this task, these techniques are applied to simulated

partially burned fuel; the second phase will involve the use of actual

spent fuel.

Task 2 of the project, to which this thesis is devoted, deals

with the development of single-element methods and their application

to fuel clusters. The first phase of this task is concerned mainly

with a theoretical demonstration of the applicability of such methods,
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while the later phase deals with the experimental investigation of

selected plutonium fuelled single-clusters.

The annual technical reports (D6, D7) published by the project.

present a detailed summary of the work completed under both tasks.

1.3 THE HETEROGENEOUS REACTOR METHOD

1.3.1 A Review

Reactor calculations usually follow one of two different

procedures. The more conventional one is to use multigroup multi-

region diffusion theory, as applied in such computer codes as PDQ and

and WHIRLAWAY. In such calculations, the heterogeneous lattice is

replaced by a homogeneous multiplying medium possessing the same

neutronic parameters as an infinite heterogeneous lattice. Studies

(C2) have indicated, however, that this method can lead to serious

errors in the reactivity of heavy water moderated lattices owing to

the strongly heterogeneous nature of' such lattices. The problem of

calculating the critical mass and power distributions can be

complicated by the use of irregular arrangements of fuel elements,

control rods, dummy elements and other components for the production

of isotopes. The fuel itself may consist of different types of

elements, as for example, superheat and boiler elements. As irradia-

tion proceeds, the relocation and replacement of fuel can further

increase the diversity and complexity to such an extent as to make

homogenized calculations highly questionable.

The second procedure based on the heterogeneous reactor theory,

seems to provide a more direct treatment, which may be especially

-- l- I -11MM I I I _ __
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suitable for heavy water (or graphite) moderated power reactors.

The heterogeneous reactor method was first reported by Galanin (G1,

G2) and Feinberg (Fl) in the U.S.S.R., and by Horning (H9) in the

U.S. Since then, several improvements have been made. Heterogeneous

computations, as currently used, may be subdivided into "mesh methods"

(finite difference methods) and "kernel methods" (source-sink

methods).

The mesh method solves the differential equations of multigroup

theory (usually for two groups) written as finite-difference equations,

within the moderator region. Each fuel element is described by a

"surface matrix" connecting the surface fluxes and their normal

derivatives. The computer code HET-B2 (Al) is representative of this

method.

The better known source-sink method is the more direct and

convenient formulation of the heterogeneous theory. Since it has

been used in the present work, this method will be described in some

detail.

1.3.2 The Source-sink Method

In its kernel form, the heterogeneous reactor' theory represents

nuclear fuel assemblies by neutron sources and sinks, and the

contribution to the neutron density at any point is expressed by

means of a suitable propagation kernel and superposition. Following

the notation of Feinberg (Fl) and Klahr (K4), a two-dimensional

assembly containing N infinitely long fuel elements may be represented

by the equation:
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N {M *
P i = X - f ) i , = 1,2,...N, (1.1)n=n n nm nm mn=1 K

where i is the number of thermal neutrons absorbed per cm-sec in

the nth element,

r sn
rn is - , with $n the asymptotic (moderator) flux at the

thradius of the n element,

TM is the number of fast neutrons produced per thermal

neutron absorbed in the mth element,

K is the eigen-value (unity for a critical assembly),

fnm is the thermal source kernel which gives the thermal

flux at the nth element due to a source of thermal

neutrons of strength 1 neutron/(cm-sec) at the mth

element; the f-distribution is generally evaluated by

means of simple diffusion theory.

The parameter F* is the "fission-to-thermal source kernel"nm

(with resonance absorption included) which gives the thermal neutron

flux at the nth element due to a source of fast fission neutrons of

strength 1 neutron/(cm-sec) at the mth element. This factor includes

moderator absorption and accounts for resonance absorption by sub-

tracting (Eq. 1.2) a neutron sink at the resonance energy from the

"fission-to-thermal source kernel",Fnm, which does not include

resonance absorption. Thus

N
F = F - r A Fr (1.2)
nmn nm t Atg ntt=l

where At is the ratio of resonance absorption per cm-sec in the

tth element at single equivalent resonance energy to the

................
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asymptotic slowing-down density at this resonance

energy,

gtm is the "fission-to-resonance slowing-down kernel"

giving the density of neutrons slowing down to the

equivalent resonance energy per second at the tth

element due to a source of strength 1 neutron/(cm-sec)

at the mth element; a slowing-down distribution is

generally taken as the weighted sum of two or three

Gaussian functions, either as a convenient method of

presenting the results of detailed calculations (B6)

or as a purely empirical fit to experimental data (G6,

G7),

Fr is the thermal neutron flux at the nth element due tont eeetdet

a source of strength 1 neutron/(cm-sec) at the tth

element emitting neutrons of the equivalent resonance

energy.

This formulation thus involves the use of three parameters n, r

and A to describe a nuclear fuel element. These parameters character-

ize, respectively, the fast neutron source and the thermal and

epithermal neutron sinks in the fuel. The formulation also involves

kernel functions which describe the epithermal and thermal coupling

between individual fuel elements. The resulting set of N homogeneous

algebraic equations can be reduced in number to as many as the number

of fuel element types by using the symmetry properties of the lattice

components. The eigenvalue and eigenvector can then be obtained by

the usual matrix methods.

04
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A better understanding of the heterogeneous theory has now

widened its range of validity. Klahr et al. have clarified and

removed some basic restrictions, such as those on the source size

and the looseness of fuel packing, which were thought to exist on

the applicability of the model. Their work provides the basis for

the digital computer codes HERESY I and II (K4, F2). Other codes

based on the heterogeneous principle are: HETERO, of AB Atomenergi,

Sweden (Nl); MICRETE, of Chalk River, Canada (S2); and TATJANA and

TRIHET, of Euratom (B4).

1.3.3 Advantages

Owing to their realistic treatment of the core assembly and of

the discrete characteristics of the fuel and control elements, the

heterogeneous calculations permit a relatively simple and accurate

analysis of cores with multi-component lattices, such as seeded cores,

spiked cores, lattices with fuel and control rods, and nonuniform burn-

up effects. Significant results (K3, K4) include the calculation of

relative absorption in the individual fuel elements, and differences in

reactivity and absorption patterns among various configurations. Other

applications include buildup, of a lattice to criticality, power patterns

for finite lattices, power flatting in spiked cores and comparison of

alternative control rod patterns.

A further potential advantage of the heterogeneous method is its

use of the heterogeneous fuel parameters, which if directly measured,

could significantly decrease the dependence of the calculations on the

cross section data.



17

The scope, usefulness and improved accuracy of the hetero-

geneous technique thus provide a strong motivation to develop this

method further.

1.3.4 A Major Limitation

A major condition for the success and accuracy of the hetero-

geneous method is a careful determination of the three heterogeneous

parameters r, n and A. The calculation of these parameters was, in

fact, a major difficulty in the early work with the method, and much

effort has been expended on the problem. Klahr et al. (K4) and

Graves et al. (G7) have reported success with heterogeneous calcula-

tions based on the use of the "asymptotic" flux and a "self-consistent"

procedure for evaluating the fuel parameters.

In the self-consistent procedure a set of kernel functions is used

to back-calculate the fuel element parameters r and A from known values

of the thermal utilization (f) and the resonance escape probability (p)

for a uniform lattice composed of the fuel element in question. The

parameters thus obtained are then used together with the original

kernel functions to calculate reactivity and power distributions for

configurations of interest. Values of the parameters f and p have

usually been obtained in either of two ways: experimentally, from

thermal and resonance flux measurements in a unit cell; analytically,

from multigroup cell calculations, or in the case of p, from resonance

integral formulas involving the effective surface area. The fast

neutron yield factor n used in these studies is normalized so that the

product (nf) is the same as would be obtained from cell calculations.
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The expressions (K4, G7) which relate P and A to f and p,

respectively, require that (1-f)and (1-p) be known with high accuracy.

In the case of D20 moderated lattices these values are very close to

zero. Hence f and p must be determined to say, one percent to ensure

that the parameters r and A have uncertainties smaller than, say 10%.

For this reason, earlier workers have found it difficult to evalute

the fuel parameters in D20 moderated assemblies. Klahr et al. have

pointed out that attempts to use the measured thermal flux distribu-

tions to determine f gave poor results. On the other hand, disagree-

ments between calculated and experimental values of buckling in some

work (G7) have been ascribed primarily to errors in the cell codes

used to generate the set of heterogeneous parameters for use in

heterogeneous reactor calculations. The studies cited refer mainly

to the relatively simple single rod lattices.

It appears, then, that in many practical lattices which would

contain complex fuel clusters with nonuniform burn-up and consequent

uncertain composition, reliable calculations are difficult, if not

impossible. While a two-dimensional cell code is considered too

unwieldy for production purposes, a code which solves an "equivalent"

one-dimensional problem loses accuracy in its results. For elements

consisting of 19-rod uranium-oxide clusters in heavy water, calculated

and measured values of f differ by as much as 3% (H4). The high

accuracy invariably associated with transport theory calculations is

generally unattainable in many practical applications, either because

of computational limitations, geometric complexity, or the lack of

adequate nuclear data. The theoretical analysis would therefore have
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to be supplemented by lattice experiments. Thus for example, in work

reported on 19-rod uranium-metal clusters (Tl), the value of the

buckling measured in a lattice of this fuel was used to calculate the

infinite-medium multiplication constant and the resonance escape

probability. These in turn were used as input to the calculations

with the heterogeneous reactor computer codes MICRETE and HERESY.

Furthermore, this extensive experimental and calculational effort on

lattices must be repeated in order to obtain the heterogeneous param-

eters for each different fuel type in a practical, multi-component

reactor lattice.

The self-consistent procedure therefore, requires extensive

experiments and calculations on uniform lattices to determine certain

cell parameters (e.g. f and p); the latter, rather than the fuel

parameters (P, n and A) themselves constitute, in effect, the input

parameters to the heterogeneous calculation.

The main objective of the single-element method is the direct

experimental determination of the three fuel parameters r, n and A.

This will eliminate the indirect, uneconomical procedures currently

used for their evaluation.

1.4 THE SINGLE-ELEMENT METHOD

1.4.1 Outline

The single-element method for the determination of the hetero-

geneous fuel parameters is developed in the present work for a

cylindrical exponential facility with a single fuel element located

at the center of a tank of moderator. The term "single fuel element"

I W
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is used in the present work to include all materials, i.e., fuel,

cladding, coolant, etc., within the outermost boundary of a single rod

or a "tight" cluster of rods. Thus in the case of the fuel clusters

(Fig. 1.1), the single fuel element comprises all the individual fuel

rods with their cladding and the surrounding air-gaps, and the coolant

within the encompassing cluster-tubing which separates the fuel from

the moderator.

The analytic formalism developed in this work makes it possible

to evaluate the heterogeneous parameters - the thermal constant (r),

the fast neutron yield (n) and the epithermal absorption parameter

(A) by relating them to quantities which are measured in the moderator

surrounding the single fuel element. Specifically, these measured

quantities are: the radial position of the thermal neutron flux peak

(X cm), the inverse relaxation length (y cm~) of the axial flux, the

cadmium ratio of gold (R) at a known radial distance (Y) from the fuel

element, and the ratio (F) of theractivities (per unit.isotopic weight)

of Au-197 and Mo-98 measured in cadmium-covered gold;and molybdenum

foils irradiated on the fuel surface.

These quantities are measured for tight clusters (Fig. 1.1) of

19 and 31 fuel rods typical of the clusters considered in designs of

pressure-tube, D20 moderated and cooled power reactors. The fuel

composition of the elements, described in Table 1.1, simulates that

of natural uranium partially burned to 5000 MWD/ton; the elements

therefore contain the various isotopes of plutonium. Uniform lattices

of these clusters arranged on 9.33 in. and 12.12 in. spacings in heavy

water have been studied at the Savannah River Laboratory (USA).

............ .......
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Table 1.1

ISOTOPIC COMPOSITION* OF SIMULATED BURNED FUEL**

USED IN 19 AND 31 ROD CLUSTERS

Isotope Wt.% of
Total U + Pu

U-238 99.431

U-235 0.30

Pu-239 0.20

Pu-240 0.016

Pu-241 0.002

Pu-242 0.001

* Break-down of nuclide concentration in the
clusters: Appendix G

** Type B (color code: gold),
USAEC-AECL Cooperative Program (Bl)
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The experimental and calculational results of these studies have been

reported (B1) by the Savannah River Laboratory (SRL). Work (4) on

the same fuel has also been carried out by the Atomic Energy of

Canada Limited (AECL).

The set of values of r, n and A, thus measured, serves to

characterize the neutronic properties of the 19 and 31 rod clusters.

Such a set of heterogeneous parameters for each fuel-type present in

a particular multi-component lattice can thus be used in a suitable

heterogeneous reactor code, such as HERESY, to give nuclear properties

of the lattice in question. To provide a simple test of the methods

developed, attention is restricted to the case of uniform lattices

composed of the clusters described above. The measured single-element

parameters are used in an expression equivalent to the four-factor

formulation; values of the material buckling are then determined with

the aid of age-diffusion theory. The use of this convenient procedure

to test the proposed methods should give good results for the uniform

lattices considered and save the cost and effort needed to apply a

computer code such as HERESY. The physics characteristics of com-

plete, uniform, D20 moderated and cooled lattices of 19 and 31-rod

clusters in 9.33 in. and 12.12 in. spacings calculated from the single-

element parameters are finally compared with results of the Savannah

River Laboratory.

1.4.2 Highlights

The single-element method proposed in this study to directly

measure the heterogeneous fuel element parameters, has features which

offer valuable advantages.
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1. The method requires only one fuel element. Knowledge of the

physics characteristics of complete, uniform lattices made up of

this fuel element can thus be obtained at greatly reduced material

requirements and cost. In particular, this method can be applied

to scarce, new and promising fuel-types.

2. A single rod or a single tight cluster of rods is treated as a

"black-box". The method therefore seeks no information about the

internal structure or composition of the fuel element. Thus, for

example, a composite single fuel element could contain partially

burnt, dissimilar fuel rods of uncertain isotopic composition or

control rods, all arranged in any configuration with the associated

structural material, "poison", fission products and coolant. In

the applications of the method presented in this work, the single

element is a tight cluster of 19 or 31 fuel rods with a composition

simulating that of natural uranium rods partially burnt to 5000

MWD/ton; the individual rods and the cluster as a whole are con-

tained in aluminum, and there is D20 coolant inside the clusters.

3. The measurements are made outside the fuel: all experiments aimed

at measuring quantities related to the fuel parameters are made in

the moderator surrounding the single-element. There is no need to

cut into the fuel cluster or otherwise perturb it. The problems

of contamination and hazards from the fission products or plutonium

within the fuel are thus circumvented.

4. The measurements do not depend on the microscopic nuclear data of

the fuel material. Since the integral fuel parameters of the

heterogeneous theory are related to certain directly measurable
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quantities, which involve relative magnitudes, the method

eliminates any reliance on the basic nuclear cross-sections of

various isotopes in the fuel element.

5. The single-element method yields parameters which can be directly

fed into an established heterogeneous formalism. The measured

parameters- considered in the present work have, therefore, been

defined and determined so as to conform to the heterogeneous

methods developed by Klahr et al. and adopted in the computer code

HERESY.

1.5 ORGANIZATION OF THE REPORT

Chapter 2, which follows, describes in detail the theoretical

basis underlying the measurements from which the three fuel parameters

are derived. The actual experimental procedures, methods of analysis

and results are presented in Chapter 3. The application of the

single-element methods to uniform latlices, and subsequent comparisons

with other theoretical and experimental results are given in Chapter 4.

The concluding Chapter 5 is a summary of the work done. It contains

several suggestions for future work. Appendix I contains a biblio-

graphy of literature on heterogeneous reactor methods.
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Chapter 2

THEORY

2.1 HETEROGENEOUS FUEL ELEMENT PARAMETERS

The three fuel element parameters r, n and A first introduced

in Chapter 1 are now defined and explained in greater detail. The

term "fuel" used in the present work has the same generic definition

explained earlier in Section 1.4.

A basic concept of heterogeneous reactor theory is that these

parameters are independent of the inter-fuel spacing in a lattice.

Data and comparisons to justify this assumption have been given in

other works (D4, K3, K4, P2). Small corrections to the heterogeneous

parameters are, however, necessary to take into account fuel inter-

action and spectral effects in a lattice. Of the three fuel

parameters, n varies most with lattice spacing primarily because it

has been defined here to include the fast fission factor. The other

two parameters, r and A, vary much less with lattice spacing. The

correction factors necessary to account for the above variations in

the fuel parameters are discussed further in Chapter 4.

2.1.1 Thermal Constant, r

The thermal constant P is defined as the average value of the

"asymptotic" thermal neutron flux in the moderator, evaluated at the

fuel surface, per thermal neutron/(cm-sec) absorbed in the fuel

element; it has the dimension of inverse length.

The concept of the asymptotic flux in the above definition was

first introduced and explained by Klahr et al. (K3). The asymptotic
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thermal neutron flux in the moderator is defined as that thermal

neutron flux which would result in the moderator if the fuel element

were shrunk in size to a line with its sink intensity remaining

unchanged. The value of the asymptotic flux that enters the defini-

tion is obtained by extrapolating back to the surface of the fuel,

the thermal diffusion theory flux in the moderator at distances of a

few mean free paths or more from the fuel (Fig. 2.1). In this way,

the fuel-moderator boundary transport effects do not affect the

definition.

In terms of symbols, the definition of r is:

$ (a) $ (a)
r r ( (2.1)

2ira(-J r)a 2waD(V$r4 a

where a is the radius of the smallest circle that completely

encompasses the geometric fuel cross-section,

$r(a) is the radial component of the asymptotic 
thermal

neutron flux in the moderator evaluated at r = a,

(Vor)a is the spatial gradient of $r(r) at r = a,

D is the thermal neutron diffusion coefficient of the

moderator,

(-J r) is the thermal neutron current into the fuel.

The diagram in Fig. 2.1 explains the notation in relation to a

single element placed in the center of a cylindrical tank of

moderator.

It can readily be seen from the above definition that for a

given value of the asymptotic flux, the smaller the r, the larger

is the thermal neutron current into the fuel. In this respect, P
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could be termed a "diffusional impedance" (S2).

The thermal constant r is related (D4) to the extrapolation

distance (d) in the fuel element,

r (a)
d = Or ; (2.2)

(V4 )a

d 3 d
so that r = - - -- (2.3)

27naD 2wra XtJ

since D = - where X is the transport mean free path in the3' tr

moderator.

The thermal constant r has been defined variously by previous

workers, notably Galanin and Pilat. The relationship among these

definitions and their demerits have been pointed out by Donovan (D4).

2.1.2 Fast Neutron Yield, a

The fast neutron yield n is defined as the net number of fast

neutrons emerging from the fuel element per thermal neutron absorbed.

The fast neutrons are a result of all the fissions: thermal, epi-

thermal and fast, in all the fissionable nuclides in the fuel.

This definition thus differs from that of the usual fast neutron

yield (n') in that it includes the epithermal and fast fission

contributions to n', and the reactions which could prevent the escape

of the fast neutrons from the fuel. Thus for uranium fuel containing

U-235 and U-238, the relationship between n and n' is:

(V28sf - 1-a 28,f)
O= n'( + 625){1 + *28sf 6281 (2.4)

V2 5 ,th

where 6 is the measured ratio of the epicadmium to the subcadmium

fission rate in U-235,



30

628 is the measured ratio of total fission in U-238 to that in

U-235

and other constants are defined in Appendix H.

Equation 2.4 will be used in deriving tlge "reference" value of n

for a 1.01-in. diameter natural uranium rod (Appendix E).

For the case of an isolated single fuel element in a thermal

neutron environment, the net thermal absorption per cm.-sec. of the
$r (a)

fuel is given by r (Eq. 2.1). Hence it follows from the definition
r

of n that:

total fast neutron yield Or(a)
per cm.-sec. from the fuel r - T1 (2.5)

2.1.3 Epithermal absorption parameter, A

Under the assumption that all the epithermal absorption occurs

at a single effective resonance energy, the epithermal absorption

parameter A is defined as the total epithermal absorption per cm.-sec.

of the fuel element at the effective resonance energy per unit

averaged asymptotic slowing down density at that effective resonance

energy. A has the dimension of area. The epithermal absorption

referred to includes the resonance and 1/v-absorption in all the

nuclides present in the fuel. Following Klahr et al., this definition

can be extended to resonance absorption at different energies (i).

The definition of A then corresponds to the resonance absorption and

the slowing down density at the i th resonance.

The above definition can be applied to a unit cell of a reactor

lattice in which the volume of the moderator per unit height of the

fuel is Vm. If it is assumed that the asymptotic epithermal flux
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* (u) is constant radially throughout the cell as well as constant

over all lethargies (1/E energy dependence) the asymptotic slowing

down density per unit lethargy, q (u) = E p(u) is constant. The
epi s epi.

epithermal absorption parameter A is then:

epithermal I
absorption V N RI (6

A ____ f f f ei(2.6. 1)

epi(u) s ;epi

V N RI1
so that A = (2.6.2)

s

where V is the volume of fuel element per unit length,

N is the concentration of the ith nuclide in the fuel,f

RI is the resonance integral (including 1/v-absorption)

of the ith nuclide,

. is the average asymptotic epithermal neutron flux per
epi

unit lethargy,

EEs is the slowing down power of the moderator.

If only one neutron is slowing down in the moderator volume of

the unit cell of unit height, the slowing down density is 1/V m. Hence

the total epithermal absorption per cm.-sec. in the unit cell per unit

source neutron is: A/V m; (2.7.1)

and the probability that a source neutron escapes epithermal

absorption (resonance escape probability) is:

p = 1 - . (2.7.2)
m

............................. ....................
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2.2 EXPERIMENTAL PARAMETERS

This section presents the set of quantities to be directly measured.

These will be related to the three heterogeneous parameters in subsequent

sections. The sketch in Fig. 2.2 should aid in understanding the experi-

mental arrangement and the basis for the theoretical model.

The single elempent in question is located at the center of a

cylindrical tank of moderator. A J0-shaped source of thermal neutrons

at the lower end of the tank sets up an axial exponential flux gradient

in the moderator. The single element, playing the dual role of a source

of fast neutrons and a sink of thermal and resonance neutrons, super-

imposes its neutronic proprties upon the unperturbed thermal neutron

distribution.

A set of four quantities is measured:

1. X(cms): position of the peak of the thermal neutron flux

distribution in the moderator.

2. y(cm ): inverse relaxation length of the axial flux.

3. R: cadmium ratio in gold at a measured radial distance

Y(cms).

4. F: ratio of the activities r(per Unit isotopic weight) of

Au-197 andMo-J98 measured in; cadmium-coveted geld and

molybdenunm foils irradiated on the fuel surface.

It is shown in what follows that whereas the measurement of F

alone suffices to determine A, all of the other three experimental

quantities: X, y and R are directly or indirectly involved in the

determination of the other two parameters r and n.
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2.'3 DETERMINATION OF r

In the "self-consistent" procedure (K3) the value of r is

obtained rather indirectly from a previously known value of the thermal

utilization. A method for a direct evaluation of r is presented in

this section. A new method (B2) which also employs only a single fuel

assembly, makes use of neutron-wave propagation methods to measure r

(actually, Galanin's thermal constant, y); the stated uncertainty in

the result, however, is 8% and its deviation from the calculated value

is about 25%.

The proposed procedure for obtaining a theoretical expression

for r consists of first deriving the shape of the thermal neutron flux

distribution, and then using the condition that the flux passes through

a maximum at the measured distance X. To evaluate r completely, how-

ever, values of both n and A are necessary (Eq. 2.36). Final comments

regarding the determination of T are made in Section 2 j4 .3.

2.3.1 Thermal Neutron Flux Distribution

Consider a unit volume of the moderator located around a point

(r,z) with respect to coordinate axes located at the base of the

fuel element in the center of the moderator tank. The r and z

components are measured, respectively, along the radius and the axis

of the tank. The system has azimuthal symmetry. The balance of

thermal neutrons in this unit volume of the moderator (Fig. 2.2), may

be described by the following diffusion equation:
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DV2 (r,z) - Eam (r,z) + Q(r,z,Tth) = 0, (2.8)

1 3 3
where V2  ----- (r-) + -, (2.8.1)

r ar ar az

$(r,z) is the thermal neutron flux at the point (r,z),

E ,D are the macroscopic absorption cross-section and

the diffusion coefficient, respectively, for thermal

neutrons in the moderator,

Q(r,z,Tth) is Sqr r, th), (2.8.2)

the contribution of fast neutrons slowing down from

the single-element to thermal energies at the point

(r,z);

S is r the single element fast neutron source

(Eq. 2.5) at age T = 0; and

qr ' th) is the slowing-down density of thermal neutrons

(T = Tth) at the pdint (r,z) arising from a

uniform cylindrical fast neutron source (T = 0)

of unit intensity and of radius, a, located at

(O,z) in the presence of resonance absorption in

the source element at a single effective energy

Er rT = r ). This slowing-down density is

derived in Section 2.3.4.

The flux and neutron densities are now separated into their radial

and axial components (written with subscripts, r and z, respectively).

Assuming that the z-components decay exponentially with an inverse

relaxation length, y, it follows that:
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$(rz) = r(r) - $z(O)eYZ , (2.8.3)

Q(r,z,th) = rr (a'o z (t))YZ (2.8.4)thr r t

Substitution for $(r,z) and Q(r,z,Tth) from Eqs. 2.8.3 and 2.8.4 into

2.8 and dividing throughout by $(O)eYZ gives:

1 2 Q (r,T h)
- r -4 r (r) + y2 r) r r(r) + = 0 (2.8.5)

This equation may be written:

{$r(r)} + Qr (rth)r = 0 (2.9)
D

where ! , the linear differential operator

a a 2
Er(r Fr) + a r, (2.9.1)

12 2 am 2 (2.10)a -- =y 72'(.0
D L0

and L is the thermal neutron diffusion length in the moderators

Qr (r ,Tth) is Srqr ' th), with

$ (a)n
S= r ,and (2.11)
r r

gr (r,Tth) the radial component of r(rz,Tth) is evaluated

in Section 2.3.4.
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Equation 2.9 is an inhomogeneous differential equation with

the following homogeneous mixed boundary conditions at the fuel

surface (r = a) and at the "extrapolated" outer moderator boundary

(r = R):

r =a, Or (a) - 2waD(V)r a r = o (Eq. 2.1); (2.12)

r =R, r (R) =0. (2.13)

The use of the Green's function technique (H6) to solve Eq. 2.9

gives a closed functional representation of the solution. Physically,

the method consists of obtaining the thermal neutron field caused by

the distributed source by first calculating the effects of each

elementary portion of the source and then adding them all up.

The Green's function G(r,E) is the field at the point, r, caused

by a unit point source at E. G(r,E) is symmetric under the inter-

change of r and E. It is continuous at r = E, but has a discontinuity

there in its derivative, of magnitude, - , in the present case. It

satisfies the equation,

, {GI = 0 (2.14)

within the intervals of definition, r<( and r>E, with the prescribed

homogeneous conditions (Eqs. 2.12 and 2.13) at the end points of the

intervals, r = a and r = R. Under the assumption that the function

G(r,E) exists, the original formulation (Eq. 2.9) can be transformed

to an equivalent integral equation:
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R Qr * th
r= G(r,) . th(d

a D

S IR
r -- G(r,) qr ( th) 2 nE dE (2.15)

2 iD a

which is the solution to the problem.

To obtain the Green's function in question, let u(r) and v(r) be

nontrivial solutions of Eq. (2.14) which respectively satisfy the

boundary conditions at r = a and r = R. Then,

c u(r), r
G = { u(2.15.1)

c2v(r), r>E

where c1 and c2 are constants. The general solution of the

associated equation, y = 0, with / defined by Eqs. 2.10 and 2..9.1, is:

y = a J0 (ar) + a2 Y0(ar). (2.15.2)

Substitution of the condition (Eq. 2.12) at r = a gives u(r), and

that at r = R (Eq. 2.13) gives v(r). The results are:

u(r) = {Y0 (ar) - eIJ0 (ar)}, r< (2.16.1)

v(r) = {J0 (ar) - e2 Y0(ar)}, r>E (2.16.2)

YO(caa) + 2wD P aa Y1(ta
where e1 = 0 (2.17.1)

J (aa) + 27TD P aa J, (a)

J0(aR)
J0e2= . (2.17.2)
Y0(aR)

The constants c1 and c2 appearing in Eqs. 2.15.1 are determined with

the use of the conditions of the continuity of G and of
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the discontinuity in its derivative at r = (, Thus,

c2v() - clu(E) = 0,

2 1c2 h n s 21 u'( ) = - .

Then substituting Eqs. 2.16 in the above gives:

1 0 L

where

c 2 = - u , (2.18)

(2.19)L = {1 - e e2 }

e1 , e2 being defined in Eqs. 2.17.

function is completely determined.

G(r,()

With these relations, the Green's

Substitution in Eqs. 2.15.1 gives:

1
v(E) u(r),

uu(E) v(r),
(2.20)

where the constant L and the functions u, v are described by

Eqs. 2.19 and 2.16 respectively.

With G(r,) evaluated, the thermal neutron flux distribution

is determined by Eq. 2.15. The range of integration is broken into

two parts: a to r, and r to R, with appropriate values of the

Green's function taken from Eqs. 2.20. This substitution gives:

S r
(r) = - { v(r) I u(E) qr (,th ) 2wC dC

27rDL a
(2.21)

R
+ u (r) rv (E) g r (C'Tth ) 21TE dE
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Since u() and v() are known through Eq. 2.16,

S L {J 0 (ar) - e2 r0 ){IY(a,r)
2rDL

+ {Y0((ar) - e J J0(r)I{I (rR)

- e I (a,r)l

(2.22)

- e2I1 Y(r,R)

where the integrals I and I are:

I(XVy, 2 2 10 (4)qr 'C, th ) 27rE dC ,

1

IY(1, 212=f2 2 Y0  qr '( th) 27rE d.

1

The integrals I and I are evaluated in Section 2.3.5.

At the fuel surface, Eq. 2.22 gives:

S
$r(a) = 2D 0(aa) - e1J0(caa)}{I (a,R) - e2IY(a,R)}

r 2wrDL

With the Bessel relation:

J (aa)YO(aa) - JO(aa)Y((aa) = ,a

Eq. 2.24 simplifies to:

S r 4r {I (a,R) - e2 Y(a,R)}
$r(a) =-

27DL {J0 (aa) + 27rD r aa J1 (aa)}

Denoting by $r (r) the value of the radial component of the thermal

neutron flux relative to its magnitude at r = a, it follows thqt:

(2.23.1)

(2.23.2)

(2.24)

(2.25)

(2.26)
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4D' {I (a,R) - e2 Y(a,I)}

S (J(aa) + 211D P aa J1 (aa)}

( J0 (ar) - e2 Y0 ( Yr)}{I(a,r) - e1I (ar)l

+ Yo(ar) - e1J0 ( Jr)I{I (r,R) - e2Iy(rR)}] , (2.27)

This radial flux shape may be distorted through two effects: presence

of higher harmonics and a "reflector" effect due to the back-scattering

of epithermal neutrons. These effects have been investigated previously

(P1) for the M.I.T. subcritical facility and shown to leave the "purity"

of the flux distributions unaffected, at least in the limiting case

where uniform lattices or a tank of pure moderator are involved.

2.3.2 Expression for P

One relation which expresses P in terms of the known quantities

is clearly given by Eq. 2.26. Thus, substitution for S and L fromr

Eqs. 2.11 and 2.19 respectively, and solving Eq. 2.26 for r gives:

nI {I (a,R) - e2 I(aR)} - {JO(aa) - e2 Y0 (aa)}
r * ,0 1-_ _ . , (2.28)

2rD aa {J 1 (aa) - e2 Y1 (aa)}

where e2  1 0 (aR) / Y '0 ).

The above equation affords a method for the evaluation of P, without

the knowledge of X, from the measurement of y (or a) alone. The

determination of P by this equation is, however, inaccurate and

sensitive to errors in the measurement of y.

Other expressions for P are based upon the measurement of both

y and X. The analytic expression for r (r) in Eq. 2.27 can be
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differentiated to meet the condition that:

at r X, d { rr) } =0 . (2.29)

Differentiation of the integrals I and I in Eq. 2.27 can be

accomplished by using the Leibnitz rule. Thus for example,

d
- [ I (a,r) ] = JO(ar) q(r,Tt) 2wr . (2.30)

Then, substitution for r (r) from 2.27 into 2.29, and simplification,

shows that:

{J (X) - e2 Y1(aX)}{Iy(a,X) - eIj(aX)}

+ {Y1 (aX) - e J1 (1(aX) I((XR) - e2 IY(XR)} = 0 (2.31)

The only unknown in the above equation, contained in e1 , is r,

which can therefore be explicitly expressed in terms of the other

known or measurable quantities. OmittiAg the algebra, the final

expression is:

r {J0 (a) - e3e4 Y0 (aa)} (2.32)

2irD aa {Y1 (aa) e3e4 ~ 1(aa)}

re2
I (a,X) + e2 Y (X,R) - I (a,R)

where e3 = (2.33)

(e2 IY(a,R) - e4 I(aX) - I (XR)

e = x) (2.34)
4 Y (ax

e1 , e2 are as defined in Eqs. 2.17.and
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The above relation for r is cumbersome to use and gives inaccurate

results because of its sensitivity to small errors in y. An expression

for r which is more convenient to use, can be obtained by returning to

Eq. 2.31 to eliminate the integrals which range to the moderator tank

boundary R. Splitting the range of integration in the integrals of

Eq. 2.26, substituting for Sr, and rearranging gives:

{I i (X, 9R) - e2 1Y 0(aa) + 2WD r aa J1 (aa)}

- {I (a,X) - e2IY(a,X)} . (2.35)

Substitution-of the left-hand side of this equation into Eq. 2.31

and solving for r gives:

__1____ J(ctX)
i (aX) - Iy(aX) - JO(aa) - (2aX 36(aa)

r (2. 36)

27rD aa J(a) - Y 1(aa)

The physical understanding of this relation is sought in the next

section. Except for the presence of the unknown fuel parameter -n, the

above expression involves geometric and neutronic constants which are

well known; and the quantities X and y whichi are directly measured.

Section 2.3.6 attempts to show that any transport correction which may

be applied to the measured value of X is negligible. The slowing-

down density of fast neutrons from the fuel element, g (r,T) which

occurs in the integrals I and I is discussed in Section(2.3.4).

This discussion is followed by the evaluation of these integrals.
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Solving Eq. 2.36 simultaneously with the expression for n

(Eq. 2.75) developed in Section 2.4.2 gives the two fuel parameters

r .and n (further comments in Section 2.4.3).

2.3.3 Physical Basis of. the Expression for r

If Eq. 2.36 for r is simplified with the use of a line-source,

infinite-medium age kernel for r(r,T) (Eq. 2.56) and several approxima-

tions for the Bessel functions and for the evaluation of integrals I

and IY, the expression for r may be written as:

2

1 n e th
r = 2 2 ~ 2 (2.37)

7rX Dct 47TTDa

Noting that a2 2 - - , further rearrangement shows:
D

2
ra(a) 2 2 2 r(a)n eY Tth 2+ E $ (a) TX =Dy Or (a) 7X + - X (2.38)

r r 47rr

where Eq. 2.37 has been multiplied throughout by r (a). When each

term in this equation is "spelled out",

Thermal Thermal Axial 1 Thermal contribu-
absorption + absorption - thermal + tion of fast 3
in single in in-leakage neutrons from the '
element moderator single-element

Thus, Eq. 2.38 is a simple statement of the thermal neutron balance

in a pill-box of radius X cms surrounding the single fuel element.

2.3.4 The Slowing-down Density q(r,zT)

It is important to obtain a sufficiently accurate slowing-down

age kernel, which is to be used to evaluate the contribution of fast
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neutrons in the expression for r (Section 2.3.1), and to relate the

measured cadmium-ratio to.rn (Section 2.4).

The slowing-down density of neutrons of age T at a point (r,z),

in the moderator, arising from a uniform, cylindrical source of unit

untensity and of radius a in a moderator tank of finite radius R in

the absence of any resonance absorption is denoted by q 0 (r,z,T).

First an expression for q0 (r,z,T) is developed with the use of age

theory. The effect on q0 of the resonance absorption in the source

element at an effective age Tr is evaluated later, in Section 2.3.4.1.

The function q0 (r,z,T) must satisfy the basic age equation,

V2 (r, z, T) = q(rZT) (2. 40)
3T

where V = r r + 2

_r r az2

Under the assumption that the z-component, q0,z of the slowing-down

density "dies away" exponentially and that it can be separated from

its radial component q0,r, it follows that:

q.0 (rz,T) = q 0, r (r,) q0,ze-Yz. (2.41)

Substituting this expression in Eq. 2.40 and simplifying gives:

32 1a2a

42 q0  (r,T) + - -- q0 ,r(r,T) + yq 0,r ' ) q r(r,T).

r rr a rDT
(2.42)

This equation must be solved with the boundary conditions that

q0 ,r(r,T) be finite at the 
source and vanish at the moderator tank

boundary (r = R).
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The effect of a cylindrical shell element of the source located

at r = r' is considered first. Following the general methods outlined

in Ref. Cl, the solution q0 may be expressed as:

q0 ,r(r',r,T) = u + w (2.43)

where u is the solution for a unit "instantaneous" source 'T = 0)

on the cylindrical surface at r = r' in an infinite medium; and w

satisfies:

aw+ - - - - + y w = 0, (2.44)
3r r Dr aT

and is to be such that q0 ,r(= u + w) satisfies the boundary conditions.

The solution for u is (Cl);

2 2 2
U -(r+r' )/4TY eT. (2.45)

4T 0 ( 2T

Denoting the Laplace transforms of u(r,T), w(r,T) by u(r,s), w(r,s)

respectively, and /s by p,

U = 10 (ir') K0 (pr), when r>r'; (2.46)

and w satisfies:

2-
dw 1 dw 2-

2+ w = 0., (2.47)
dr r dr

The solution of Eq. 2.47 which is finite at the origin is:

w = A I0 ).
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The value of the arbitrary constant A is obtained from the condition

that:

q,= lu + w = 0, at r = R, (2.49)

so that

A = - 0Gir')K 0 PiR)
w 2IW2n 2r1(iR)

Equation 2.49 then gives:

10 (pr')-I 'K R >'(.0
q40,r (r',r,s) = =1 {I0 (IA)K0(iur) - 1I(r)Kj r>r (2.50)

27rI0CiiR)

The transformation go,r in Eq. 2.50 to q0 r is accomplished by the

use of the Inversion Theorem for the Laplace transformation, which

states that:

't+ico

q0,(r',r,T).= e q0 ,(r',r,X) dX, (2.51)

where y' is large enough that all singularities of q lie to the left

2
of -the line (y-ico, y'+ioo); X is written in place of s(=y2) to signify that

q is to be regarded as a function of a complex variable.

The integral in Eq. 2.51 can be evaluated by the usual methods

of complex variable theory. The zeros of 10 (PR) are at y = ±ian'

where ±a n, (n = 1,2...) are the roots of the equation:

JO(aR) = 0. (2.52)

Thus the integrand in Eq. 2.51 is a single valued function of X

with a row of poles along the negative real axis. The range of

integration in the instegral of Eq. 2,51 is completed into a contour
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not passing through any pole, by a large circle of radius R'. The

integral over this contour vanishes in the limit at R' tends to C.

Thus in the limit, the integral is equal, by Cauchy's theorem,.to

(2wi) times the sum of the residues at the poles of the integrand.

The final result of these standard manipulations is:

1 J 0Cn9r) (2-a2

q0,rr',r,T) = 2 2 0( nr) e n . (2.53)
wR n=1 J (anR)

For a uniform unit source, extending from r = 0 to r = a,

q0,r(r,T) 1 q (r',r,T) 21Tr' dr'; (2.54)
rwa2  o r

so that

2 G J (ana) J (a r) 2 2
q r(r,T) e n , (2.55)

TR n=l aa J (aR)

±an, (n = 1,2...) being the roots of:

J0((aR) = 0. (2.52)

Equation 2.55 when substituted into Eq. 2.41 then gives the complete

slowing down density q0 (r,z,T), in the basence of any resonance

absorption.

The age-kernel developed above for a source of finite size in a

finite moderator is a substitute for the simple line source, infinite-

medium age kernel:
2

-r /4T
q0,(r,T) = e (2.56)
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Less than five terms of the series in Eq. 2.55 are usually sufficient

for satisfactory convergence. The graph in Fig. 2.3 is a comparison

of Eq. 2.56 with Eq. 2.55 evaluated for the 31-rod fuel cluster. The

study shows that the slowing-down densities and their cumulative

contribution (for example, in the integrals of Eq. 2.63) for large

size elements in a finite tank could deviate significantly from

predictions of Eq. 2.56. As will be seen, this error could be

important owing to the sensitivity of the final results to small

errors in the fuel parameter n.

2.3.4.1 Effect of Epithermal Absorption on q0 ,r(r,T)

All epithermal absorption in the single element is assumed to

occur at an age Tr, corresponding to an effective resonance energy

E r. The slowing-down density of neutrons of this energy at the fuel

element surface from a unit intensity fast neutron source (T = 0)

located within the same element, is q0 ,r(a,Tr). Hence, according to

the definition of the epithermal absorption parameter A, the net

epithermal absorption in the fuel element is equal to A q0(a,Tr)'

The negative contribution, Aq(r,T), to neutrons of age T at a distance

r from the element, due to this epithermal sink, is

Aq(r,T) = A q0 ,r(a,Tr) q0 ,r(r,T-Tr), (2.57)

so that

(2.58)qr(r,T) = q0,r(r,T) - Aq(r,T),
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or

q (r,T) = q 0 ,r(r,T) - A q 0,r (a,Tr) qr (rT-Tr)a T>Tr (2.59)

Substitution for q0,r s from Eq. 2.55 into the last equation gives:

C0

Sr(r,T) Cn (T)0 (a nr), (2.60)
n=1

where 2 22J (a a) e n -( 2 21

C 2 a 2  ~ 1 - A q0 ,(a,Tr) e n r (2.61)
7rR ana Ji n aR)

As pointed out earlier, n is less than 5. The epithermal absorption

parameter A, which occurs in the definition of Cn, is determined

independently (Section 2.5).

This prescription for r (r, ) will be used in all the subsequent

work.

2.3.5 The Integrals I and I Y

With the expression for r(r,T) at hand, the evaluation of the

integrals I and I defined in Eq. 2.23 presents no difficulty. Thus

from Eqs. 2.23 and 2.60,

eo 12
= C (Tt) 0(c) J0 (anC) 2w d(, (2.62.1)

n=1 10 0

IY = C n.( th 2 0(4 0( n ) 27rE dC, (2.62.2)
n=l f1

where k1 and 2,2 are the limits of integration: kl = a, and

12 = X or R. With the use of standard Bessel function identities,
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co 2,rC" (-tt2

I = Inn th - C JO(an2) nl E)nn 1 2,2 (2.63.1)
n=1 (an2-a ) 1. aJ (C

co 27rC (T )
IC nthF {a i a)Y Wc.) - 4 a ( y a £2 (2. 63,r2)

IY = n2t n 1 n 0 0 n 1 2Z2632
nelC(a ) 1

The above relations complement Eqs. 2.27 and 2.36 which describe,

respectively, the thermal neutron flux distribution and the basis

for the measurement of r.

2.3.6 Transport Correction to X

The measured radial distance of the thermal neutron flux peak

(XT) corresponds to the actual flux, which includes the contribution

of transport effects at the fuel-moderator interface. The expression

for t in Eq. 2.36, however, requires the radial distance X to

correspond to the maximum of the asymptotic thermal flux in the

moderator. The difference (XT - X) can be investigated, (D4) with

the use of a simplified model which approximates the transport

kernel by a sum of the diffusion and the first-flight kernels

(Appendix B). The actual flux T (r) may then be written
r

$T(r) =$r(r) - L e (2.64)
4r

where r (r) is the asymptotic diffusion flux (Eq. 2.27), SL is the ther-

mal neutronsink, and X is the mean free path of thermal neutrons

in D20. Since $ r (r) passes through a maximum at r = XT'
d r TL( + - -+7- e = 0. (2.65)

dr ..r=X 4XT 2A
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If the transport effects are considered, then

(r = 0, (2.66)
dr ,r=X

which, of course, is the same as Eq. 2.29. Together, Eqs. 2.65 and

2.66 provide a way to express X in terms of XT. A simple computer

program FLIC uses this procedure to calculate the magnitude of the

error involved. An approximate relation (D4) between X and XT is:

X 2X2 TD 1 -
T2 = - -+ e (2.67)
X 2 X T 2X

For the cases of interest in the present study, in which XT>10 cms,

the error is less than about 0.25%, and may therefore be neglected in

comparison with the experimental error.

2.4 DETERMINATION OF n

In most of the previous work on heterogeneous reactor methods,

the fast neutron yield n is never measured directly. In the self-

consistent procedure (G7), for example, its value is taken to be

such that (nf) agrees with the results of cell calculations. In

previous work at M.I.T. (D4), n has been obtained directly from

integral parameter measurements which require the irradiation of

uranium foils within the fuel. But this procedure violates one of

the basic premises of the single element model, namely that measure-

ments be made outside the fuel element to avoid the problems of

contamination and radiation hazard due to plutonium and fission

products.
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A recent effort at M.I.T. undertook to evaluate the use of the

pulsed-neutron technique to obtain n from the change AX in the

fundamental mode time decay constant due to insertion of a single

fuel element into the moderator tank. This method (Ll) appears not

to be feasible because of the lack of sufficiently precise methods

to determine AX. A second attempt was based upon the underlying

correspondence (01) between the pulsed-neutron approach and axial

buckling measurements which yields a relation between n and the

perturbation in axial buckling due to the presence of the single-

element. This method, however, gave grossly inaccurate results.

Another approach similar to the above in respect to its reliance

on axial buckling measurements to determine n, is discussed briefly

in the next section. The cadmium-ratio technique actually used in

the present study will be discussed thereafter.

2.4.1 The Determination of n from the Axial Buckling

The possibility of obtaining r and n from measurements of X and

y alone can be seen from equations already derived in Section 2.3.

Observation of Eqs. 2.28 and 2.36 shows that the right hand

sides of both equations, each being equal to r, can be equated. This

results in an expression which gives n in terms only of the measured

quantities y (or a) and X. Thus,

2 J (X) Jo(aR)

waa- Y 1(MX) YO0(a (268Y(a) (2.68)

J ( a a ) ( I 2 1 ( a ) I ~ 11 ~

Y (ax) YO(aR)

.......... ....... I'll
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where

I I(a,x) - I(x) I(a,x), (2.69.1)

and
JO0(aR)

I2 = IJ(a,R) - 0 I (a,R). (2.69.2)

Y0 (aR)

An approximate version of this equation and further deductions from

it which may be used to calculate the perturbation in radial buckling

are given in Appendix A.

Values of n calculated for the clusters,using the above exact

equation, are about 5% higher than those obtained with the cadmium

ratio technique (Section 2.4.2). Though the method is generally very

sensitive to errors in y, it does show that in principle, r and n can

be inferred from two measurements of X and y (or a), or as is pointed

out in Section 2.4.3, in measurements of any two of the three experi-

mental parameters X, y and R.

2.4.2 The Determination of n from the Gold Cadmium Ratio,R

Since the epithermal neutron field around the single fuel

element results entirely from the slowing-down of fast neutrons

produced in the element, the measurement of the epithermal neutron

flux at a certain radial distance Y should provide a way to estimate

its source strength, which is proportional to n.

The epithermal flux is estimated by measuring the cadmium-ratio

in gold foils irradiated at a radial distance Y from the single

element. Gold is chosen because it has a large absorption resonance

at 4.9 ev., which makes it ideal for cadmium-ratio measurements in a
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weak epithermal flux field such as in the present application. Under

the assumption that most of the epithermal absorption in gold occurs

at its single large resonance at 4.9 ev. (TAu = 95cm2 , the slowing-

down density Qepi (Y,TAu) at a distance Y, (large enough to neglect any

source effects) is conveniently given by age theory. The applicability

of age theory in the region of the moderator where the experiments may

be conducted has been verified (Li) with multigroup diffusion theory

calculations.

The number of neutrons of age TAu slowing down to the point (Y,z)

is then (Eq. 2.8.2):

Qepi (Y,z, TAu) _ (a z)nr 'Au. (2.70)

If the z-component of the neutron densities is accounted for as before

(Section 2.3.1),

r (a)n

Qepi,r (Y.' Au) r q r '(Y1 Au), (2.71)

where qr YTAu) is given by Eq. 2.60. It follows that

= epi,r * Au) r(a)n qr Au))
epi~r

Ezs r Es

The measured cadmium-ratio R is the ratio of the total neutron

activity in a "bare" gold foil to its epithermal component measured

in a cadmium-covered gold foil. The ratio is measured at a position

whose radial distance from the fuel element is Y. Hence,

1 $ (Y,TA ) a
. ep,r Au e K (2.73)

R-1 Or ( th
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where a . is the effective absorption cross section of gold

integrated over all epithermal energies;

ath is the effective absorption cross section of gold

integrated over all thermal energies;
(R-1)

0K is (- the ratio for an infinitely thin foil to that

for the foils of finite thickness actually used in the

experiment; this is the self-shielding correction

necessary to account for the effect of the foil

thickness.

Substitution for #epir from Eq. 2.72 gives a direct relation between

n and the gold cadmium ratio R:

ath Us rc) 1
n = U(2.74)

epi K qYTAu) (R-1)

A

where r(Y) is given by Eq. 2.27,.

The above equation, which could in principle permit an absolute

determination of n, involves several parameters, each with its

attendant experimental uncertainty. The use of a comparison method,

which is based upon n st for some "reference" fuel element (1.01 in

diameter natural uranium rod in this work), eliminates this problem.

Denoting the luantities corresponding to the reference fuel

element- by the subscript "st", and dividing Eq. 2.74 by the same

equation written for nst

rC = H 1 (2.75)

q (YT T) (R -1)
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where

H st qrSt * Au) (R-1) st (2.76)

st r,st

Except for the factor {r$ r(Y)} which requires the knowledge of r,

the quantities in Eq. 2.75 are known. The value of qr (Y Au)

supplied by Eq. 2.60 is known for a predetermined value of A, and

(r-1) is, of course, one of the direct measurements of the single-

element model. The quantity H may be called the "Single Element Con-

stant", since it involves all the three heterogeneous fuel parameters

r, n and A. Its value, defined in Eq. 2.76 is determined by the

reference value of n st (1.375, Appendix E), and by measurements and

calculations made on the reference fuel element.

2.4.3 Comments Regarding the Determination of r and n

A simple way to obtain r and n is to solve Eq. 2.36 and 2.75

simultaneously. Equation 2.36 involves n explicitly, and a substi-

tution for it from Eq. 2.75 gives a relation between r and the

measured quantities X, y and R:

[JO0(aa) - 1 (aX) Y0C(ta))

r 1 (ax) ,(2.77)

1 1 r - 2'TrD aa (1i1cza) - 11(czX)Y 1 (ca)

r Au)R-)

where

= I (ax) - I (aX). (2.69.1)

Y 1(ax)

This value of r when substituted into Eq. 2.75 gives n.
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The quantity r (Y), which is the thermal neutron flux at Y

relative to its value on the fuel surface, can be calculated from

Eq. 2.27. The calculation, however, involves the unknown parameter r.

This problem is met by carrying out a few iterations on Eq. 2.77. The

steps of the iteration involve calculating a value of r from an initial

value of r (Y); then using this value of r to improve r (Y) from

Eq. 2.27. This procedure is repeated until r, n and or (Y) converge

to their final values. In the present work, or (Y)=l, and only four

iterations are sufficient for the convergence of these parameters

separately to within 0.5% of their final values.

The simple coupling between r and n also involves the third

parameter A through the presence of the factor qr YTAu) and the

integrals I and I Y. However, the determination of A, discussed in

the following section, is independent of r and n; and A can be

evaluated before proceeding to obtain r, and n from the experimental

measurements.

The method of obtaining the fuel parameters r and n thus involves

the use of three experimental quantities X, y and R. In theory, two

of these are sufficient. Thus if n is obtained from Eq. 2.68 and this

value substituted into 2.36 to determine r, a measurement of R is

unnecessary. Again, if y (or a) is not known, iterations among

Eq. 2.68, 2.75 and 2.77 can determine a value for a, which can then

be used to calculate P and n. Similarly, the use of Eqs. 2.28 and

2.75 for a known value of y obviates the need to know X. However, the

additional third measurement helps to relax the severe conditions on

the degree of accuracy required for single-element experiments. On the
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other hand it appears that there is incentive to increase the accuracy

of measurements and thereby decrease the number of experimental

parameters.

A computer code THINK has been written to carry out all the

manipulations described in the previous sect-ions and to arrive at the

final values of the single-element parameters I and n.

2.5 DETERMINATION OP A

Contemporary methods of evaluating A involve a back calculation

from a known value of the resonance escape probability for uniform

lattice cells made up of the fuel element in question. At M.I.T.

Donovan (D4) has shown how A could be inferred from in-rod foil

activation. This method is, however, incompatible with a major

objective of the present work - namely, of performing experiments

outside the fuel element. IAecently, McFarland (Ml) has carried out

experiments and numerical computations in support of a new method

for the determination of A. This method will be developed in the

following sections.

2.5.1 Motivation for the Method

Several assumptions are now made for developing a simple basis

for the proposed method of evaluating A. The single element in the

center of the moderator tank is treated as a line source of fast

neutrons of unit intensity. The slowing-down of these neutrons in

the surrounding moderator is described by age-theory. All epithermal

absorption in the fuel occurs at a single effective resonance energy

Er (age Tr ).
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If q1 (0,T1 ), qr(O,Tr) and q2 (0,T2 ) are the slowing-down densities

of neutrons at ages TV Tr and T2 respectively (T 1<r<T 2), which arrive

at the fuel element, it follows that:

(0',1) = er 2/4t 1 = 1 (2.78)
1T1  r=0 1

1
and q (0,Tr) = s above, (2.79)

r

By definition of A (eq. 2.7), the epithermal absorption in the fuel

is A
41T ,

r
therefore,

1 A 1
q2(0,T2) = 4T 4nT 47T T )(2.80)

2 r ~ 2 -tr

as in Eq. 2.59. Consequently,

q2 (0,T2) T1  1 1
= A -- . (2.81)

q1 (OT) T2 Tr 47T(T 2 -T r)

Or, since the ratio (q2 /q1 ) is proportional to the ratio (fc) of the

corresponding fluxes,

fc = K1 - A K2 (2.82)

where K1 and K2 are constants which involve the values of T1 , T2

and Tr

The last equation shows that the flux ratio f is a linearly

decreasing function of the parameter A, and its measurement could

provide a way to infer the value of A. This simple model, however,

does not account for the finite size of the fuel element and the

complexities in neutron resonance cross-sections. Consequently,

-- i-111 ' -- - - ' ' - 'a' - , '- - - - I "W k
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Eq. 2.82 can go no further than merely supplying a physical basis to

the proposed method.

2.5.2 Exact Relationship between fc and A

The computer code ANISN (El, E2, BS) is used to study the devia-

tions from the simple Eq. 2.82, and to establish a better correspond-

ence between the flux ratio f and the epithermal absorption parameter A.C

(A superior method, purely experimental, which does not involve the use

of ANISN is suggested in Chapter 5.)

ANISN is a one-dimensional, 16 group, SN transport program. Its

use to simulate the single-element experiment has been discussed in

adequate detail by Donohew (D3) and by McFarland (Ml). Neutron energy

groups 12 (3<E<10ev.), and 9 (100<E<550 ev.) of the ANISN program span

an energy range which accounts for about 90% of the epithermal

absorption in U-238 (Fig. 2.6). The ratio of the ANISN computed neutron

fluxes in these two groups can therefore be chosen to correspond to the

ratio fc of Eq. 2.82.

A series of ANISN "runs" are made for each fuel element tested:

namely, the natural uranium rod, the 19-rod cluster and the 31-rod

cluster. For each fuel-type, different values of the ratio f arec

obtained by varying the epithermal absorption parameter A. The

different A's corresponding to a certain fuel element are generated

by varying the absorption cross-section in each epithermal group by

a multiplicative shielding factor X. The size and geometry of the fuel

are maintained. To be sure that the X-factors provide A's in the range

of interest, the central value, XM, for each fuel element is estimated
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from the relation:

ERI238

XM " 238 (2.83)

238
where RI2 is the infinite-dilution resonance integral of U-238; and

ERI 238, the effective resonance integral of the cylindrical fuel

element (Appendix F) is obtained with the use of Hellstrand's correla-

tion (H3). The value of A for each case is then given by Eq. 2.6:

238 238

A X + A (2.84)
CE s i,i/U-238

The plots in Fig. 2. 4 show the variation of the epithermal flux ratio

f at the fuel surface as a function of the epithermal absorptionc

parameter for each of the three fuel elements. These curves follow

approximately, the behavior predicted by Eq. 2.82. However, the

curves differ among themselves with respect to their slopes and

intercepts. As will be seen, these differences are probably due to

geometric (i.e., finite size) effects rather than to differences in

neutron spectra.

The curves of Fig. 2.4 indicate that if fc, or an experimental

quantity proportional to it, can be determined to within 1% (a typical

standard derivation for foil activations), the value of A can be

predicted to within 4%. This result should be compared with the

knowledge (from Eq. 2.7.2) that for the lattices of interest where the

resonance escape probability (p) is quite large an error of 10% in A

causes an uncertainty in p which is only about 1%. Thus an experi-

mental evaluation of the epithermal flux ratio on the surface of a
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given fuel element could be related to the required parameter A with

adequate accuracy, provided a characteristic curve such as that

depicted in Fig. 2.4 is generated for the fuel-type in question.

It may be noted that a computer-aided study (D6), such as that

discussed above, has also been carried out to relate A to a value of

f which is calculated at a relatively large radial distance into theC

moderator (20 cms). The relationship thus obtained can be readily

interpreted theoretically. It cannot, however, be used to advantage

since this ratio fc, calculated at a large distance from the fuel, is

extremely insensitive to fuel changes.

2.5.3 Normalization of fc

The discussion in the previous section points to the feasibility

of obtaining A from the ratio, fc, of two fluxes corresponding to

energies which span the major epithermal absorption region,

In the experimental work of McFarland (M2), molybdenum-98,

which has an absorption resonance at 470 ev., and gold-197, which has

one at 4.9 ev., were used to detect (Table 3.3) the relative flux

levels of group-9 and group-12 which are used to calculate f from

the ANISN code. Figure 2.6 shows the cumulative absorption in U-238

versus the neutron energy. These calculations used the partial

ERI(E) data (G4) for a 1 in. diameter natural uranium rod and

corresponding ANISN-fluxes. The graph shows that the choice of

gold-197 with its resonance below the lowest lying and the largest

U-238 resonance (at 6.7 ev.), and of molybdenum-98, with its

resonance above the four major U-238 resonances, should account
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satisfactorily for most epithermal absorption. This range would,

however, be inadequate for fuels with a large concentration of

Pu-240 which has a large resonance cross-section at 1 ev. The use

of a detector with resonance energy much higher than that of

molybdenum-98 would have to include the effect of first-flight

captures in the fuel, which (D6) can be a large fraction of the

epithermal captures for an isolated single fuel element. The two

detector materials Mp-98 and Au-197 have the further advantage that

they have nearly identical half lives (67 hours), which simplifies

measured-activity corrections, and both are relatively strong

resonance absorbers as compared to their 1/v-absorption.

The measured ratio, F, of the epithermal activities of Mo-98 and

Au-197.foils, irradiated on the fuel surface can be related to the

ratio (f ) of the corresponding epithermal fluxes. This ratio fee

however, is not equal to the ANISN-computed flux ratio fc. There

are several reasons to account for the inequality of f and f . Thus,

for example, the method of obtaining f from the measured ratio Fe

involves the use of foil parameters, such as self-shielded resonance

absorption cross sections, whose values are uncertain. Further, the

ANISN-computations for f are inexact; firstly, the fuel clusters arec

cylindricized and homogenized; and secondly, the energy group

structure in ANISN is so coarse that the resonance absorption in each

group is considerably smeared out. The constant shielding factor X

introduced to account for the overall effect, provides only a rough

approximation, and should really be different for the various energy

groups because resonance self-shielding varies with energy (lower



67

resonances shielded more). There is thus considerable scope for

improving the procedures for the determination of fc and fe.

A suitable way to account for the different between f and f c

and to minimize uncertainties such as those described above, is

first to normalize fc for a "reference" fuel, and then to determine

the f 's of unknown fuels relative to this reference value. This is
C

effectively done as follows. A standardization factor, c, is defined

so that:

f
c = c , (2.85)

e

which is assumed independent of the fuel type. The value of c can

then be found by measuring fst for a reference fuel element, whosee

epithermal absorption parameter, Ast, and consequently the ratio f st
c

obtained from its characteristic curve (Fig. 2.4), are known. The

"reference" fuel chosen is again, as in, the case for n, the 1.01 in.

diameter natural uranium rod. From Eq. 2.84 and the standard

Hellstrand correlation for the resonance integral of metallic uranium

rods (H3), the value of Ast for the natural uranium rod is found to

be 20.39 cm2 (Appendix F). Corresponding to this value of A st, the

ANISN-generated characteristic curve (Fig. 2.4) gives the value of fstc

as 0.3872. The measured value of fst (0.9510, Appendix D) then
e

determines the standardization factor c (equal to 0.4072).

The ratio fc, and correspondingly, the parameter A for the fuel

element in question, can then be obtained by measuring the ratio f,

on the rod surface and relating it to fc with Eq. 2.85. In summary,

this standardization method for the calculation of f and A insuresc
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that if the same step-by-step procedure is carried out for the standard

1.01 in. diameter natural uranium fuel, the value of A so obtained in

the "accepted" one (A st).

2.5.4 Summary Procedure to Evaluate A

The steps to evalute the epithermal absorption parameter A may be

briefly outlined as follows:

1. The epithermal activity ratio, F, is first measured on the surface

of the unknown fuel element. The experimental procedure for

measuring F, and the method for deducing from it the experimental

epithermal flux ratio fe, is discussed in Section 3.7.

2. The ratio f is then normalized with the use of Eq. 2.85. This

gives the related epithermal flux ratio fc corresponding to the

ANISN-computations (step 3).

3. In parallel with the above experimental investigation, numerical

studies are carried out to obtain the characteristic fc vs. A

curve for the fuel element in question. This is done by varying

the epithermal absorption in the manner described in Section 2.5.2

and computing the corresponding value of fc with the ANISN

computer program. This results in a curve such as in Fig. 2.4.

4. The final step is to refer to the curve obtained in step 3, and

to look up the value of the epithermal absorption parameter A

which corresponds to the normalized ratio fc of step 2.

2.5.5 Effects of Spectral Differences

The definition of A involves the incident epithermal neutron

flux and the epithermal neutron slowing down density at the fuel
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surface (Eq. 2.6). Since these are characteristic of the particular

neutron energy distribution, a question arises whether the epithermal

absorption parameter A for the fuel element would be different if the

incident neutron spectrum were altered.

According to a simple model, which assumes that all epithermal

absorption occurs at a single, effective, narrow resonance (width:

Aur) at lethary ur (age Tr), A may be written as:

V N a (u ) (u ) Au
f f a r r r

A=

Es $(ur)

V .
= ---- N' a(ur) Aur, (2.86)

.L f a r

where the notation conforms to Eq. 2.6. This would imply that if

the resonance absorption can be shown to occur at the same effective

lethargy ur so that a (u ) is the same, then the parameter A shouldr a r

be independent of the neutron spectrum $(ur). However owing to ther

serious assumptions made, the above conclusion cannot be generally

accepted and a deeper investigation is needed.

In the present work, the above conclusion is tested only for

the spectral difference between the case of the single-element

experiment, where the fuel element is isolated in the moderator, and

the case of a uniform lattice.. Figure 2.5 shows the difference in

neutron spectra between the two cases for the 1-inch diameter natural

uranium fuel. The single-element and lattice results shown in the

figure are obtained from the multigroup computer programs SRA (D3)

and LASER (P3) respectively. It can be seen that, whereas the

- 'pmffl- " r. '. . , "' " . -WIM"WOOM, wmmpw _ __-111_1_111- __. __'' . ........ M I ' -A-V
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lattice flux is constant over lethargy (1/E neutron energy dependence),

the lethargy dependence of the flux which the fuel "sees" in a single-

element experiment varies as 1/T(u) - a result which would follow from

age theory.

The implication of Eq. 2.86 for the two cases described above is

checked by computing the effective age (T r) of U-238 absorptions. In

general,

T= r ERI(u) $(u) T(u) du (2.87)

f ERI(u) $(u) du

The values of T(u) used in the above equation are calculated from the

LASL group cross-section set (R1). The partial ERI(u) data for the

natural uranium rod is obtained from Gosnell (G4). The effective age,

T r, for the single-element is obtained in two ways: in one, $(u)

varies as l/T(u); in the other, it is taken from 16-group ANISN-

2 2
calculations. The two results for Tr are: 79.6 cm and 77.3 cm

respectively. The effective age Tr for the lattice is obtained by

2
treating $(u) as a constant; the result is 81.2 cm2. The agreement

among all these results shows that the effective age (or lethargy)

of epithermal capture in the fuel element is very nearly the same if

the single element is isolated in a moderator tank, or if it is

placed in a uniform lattice. This result then leads to the conclusion

(from Eq. 2.86) that the A-value is not perturbed, at least for this

particular spectral difference.

Other pertinent evidence bearing on this point may be obtained

from the comparison of the fractional U-238 epithermal absorption in
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the uranium rod as a function of energy for the two cases of interest,

namely, the single-element experiment for which 4(u)=l/T(u), and the

uniform lattice for which $(u)= constant. Again, the calculations use

the partial ERI(u) data of Gosnell. Figure 2.6 shows that about 90%

of the U-238 epithermal absorption occurs between about 5 ev. and 500 ev.

in both cases. This fact, and the similar shape of the two curves, again

indicates that the differences between the single element and lattice

experiments may not be substantial.

The above study to determine any effect on A due to change in the

neutron energy spectrum has been done mainly with the natural uranium

fuel rod. The work needs to be generalized to fuels of difference sizes

and composition. Both types of evidence presented do, however, strongly

support the notion that the parameter A measured in single element

experiments could be used for lattice-cell calculations.

2.6 SUMMARY

The analytic formalism developed in this chapter provides the

means to determine the heterogeneous fuel parameters r, n and A from

single-element experiments. The epithermal absorption parameter, A,

is obtained from the epithermal activity ratio, F, measured on the

fuel surface. The other two parameters, P and n can then be calculated

from Eqs. 2.77 and 2.75 with the knowledge of the values of A, the

moderator properties, D, T, TAu and T r, and the experimental parameters,

X, y and R. The measurement of the four experimental parameters X, y, R

and F is described in the next chapter. The subject methods are applied

.1. -- M"W -P-1 .5 11 -_ - I I I
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to the plutonium containing single-clusters of 19 and 31 rods. The

results of the study to determine the sensitivity of the fuel param-

eters r, ri and A to the uncertainties in experimental measurements

are given in Section 3.10.
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Chapter 3

EXPERIMENTS, ANALYSIS AND RESULTS

3.1 INTRODUCTION

The experimental determination of the four quantities X, y, R

and F introduced in Section 2.1 is discussed in this chapter. The

results of the measurements for the natural uranium rod, and 19 and

31-rod UO2-PuO2 clusters, are then used with the theoretical formalism

developed in the previous chapter to calculate the heterogeneous

parameters r, n and A for the three fuel elements. The sensitivity of

these fuel parameters to the uncertainties in the experimental measure-

ments is discussed in the final section of this chapter.

3.2 M.I.T. EXPONENTIAL FACILITY

All single element experiments are performed in the D 20-moderated

exponential tank at the M.I.T. Reactor.' A detailed description of the

facility is given in a report (T2) of the M.I.T. Heavy Water Lattice

Research Project.

The source neutrons for the exponential facility originate in the

M.I.T. Reactor, pass through a thermal column to the graphite lined

cavity ("hohlraum") where they are reflected upwards into the D20-

filled exponential tank (Fig. 3.1). The entering neutron flux is so

shaped that its radial intensity varies as J0. With the reactor

operating at 5MW., the thermal neutron flux at the bottom of the tank

9 2_
is approximately 6 x 10 neutrons/(cm -sec). It is highly thermalized,

with a gold cadmium-ratio of about 3500.
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The exponential tank, which is 36 inches in diameter, is lined

on the radial periphery with 0.020 in. thick cadmium so that it

approximates a bare (unreflected) system. The tank is filled with

D20 (purity:99.7%) to a depth of approximately 52 inches. The mean

temperature of the moderator for most of the single element experi-

ments is close to 80*F.

The test fuel element is located at the center of the tank. The

foil holders essential to the experiments are suspended from a sturdy

aluminum girder which rests horizontally along a diameter on top of

the exponential tank. A dry nitrogen atmosphere maintained above the

moderator level prevents D20-contamination by H20. Access to the tank

is achieved through a glove box located on the smaller of the two

eccentrically rotating circular lids on top of the facility.

The "equilibrium" region of the exponential assembly, where the

epithermal and thermal fluxes are propQrtional to each other (constant

cadmium ratio), begins approximately 14 inches from the bottom of the

tank. All experiments are made in this region.

3.3 SINGLE ELEMENTS

The three fuel elements tested in this work are: a 1.01-in.

diameter natural uranium metal rod (reference element), a 19-rod

UO2-PuO2 cluster and a 31-rod UO 2-PuO2 cluster. The fuel within these

clusters simulates natural uranium partially burned to 5000 MWD/ton.

The geometric characteristics and the fuel composition of the clusters

are described in Fig. 1.1 and Table 1.1. Details regarding the fuel

rods within the clusters appear in Table 3.1. The concentration of all

-Mmn I 1P pfmm-



Table 3.1

DESCRIPTION OF FUEL AND CLADDING

FUEL* CLADDING

Material Wt.% Fuel column3  Diameter Material Outer Thickness
Fissile density (g/cm ) (in.) diameter (in.) (in.)

U-Metal 0.71(U-235) 18.9 1.01 100 At 1.01 0.014

UO2-Puo2  0.30(U-235) 10.25 0.5 6063-T At 0.547 0.02

(pellets) 0.25(Pu-239)

*Isotopic composition: Table 1.1 and Appendix G.
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isotopes in the homogenized clusters are given in Appendix G. The

fuel rods of the clusters(classification: type B) are on loan from

the Savannah River Laboratory, and have been previously investigated

(Bl, F4) under the USAEC/AECL Cooperative Program. Further details,

such as the results of chemical analysis on the fuel and the fuel

design features, may be found in Ref. Bl. All three investigators,

SRL, AECL, and M.I.T., have used the same fuel arrangement of Fig. 1.1

within the simulated calandria/pressure tube.

3.3.1 Some Features of the Cluster Design

The aluminum structural parts of the 19 and 31-rod clusters and

the arrangement for central vertical suspension of the single ele-

ments in the D20 tank have been designed and built at the M.I.T.

Reactor Machine Shop. Schematic sideviews of the individual fuel

rod and the cluster assembly are shown in Fig. 3.2. The fuel rods

and the aluminum housing-tube are kept in position by two aluminum

plates at the top and bottom of the fuel. The weight of the fuel

assembly is borne mainly by the top plate, which supports the steel-

pins threading the top adapters of the fuel rods. Holes at the

lower end of the housing-tube give a free passage for the surrounding

D20 moderator to enter the cluster. The top plate is connected to a

support plate with four screws, and the weight of the whole assembly

hangs vertically from a universal joint bolted at one end to the

support plate and welded at the other to a steel knob. In the

vertically suspended position of the cluster, this knob rests on a

steel-cross which is centered on the central rectangular (7 in. x
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6.5 in.) gap of the support girder. By lifting and turning the steel

knob, the cluster can be rotated without disturbing its own central

position.

3.3.2 S.R.L. and M.I.T. Cluster Differences

The design and construction of the M.I.T. clusters is similar to

that of the S.R.L. clusters. The only dissimilarity between the M.I.T.

and S.R.L. clusters is related to the slight differences in the outer

aluminum tubings. These are tabulated in Table 3.2.

Table 3.2

HOUSING TUBE DIFFERENCES BETWEEN
S.R.L. AND M.I.T. CLUSTERS

At Housing Tube

Cluster Outer Diameter Thickness
(in.) (in.)

M.I.T. 3.125 0.065
19-rod {

S.R.L. 3.080 0.030

M.I.T. 4.000 0.065
31-rod {

S.R.L. 4.000 0.050

3.4 DETERMINATION OF X

The distance X to the thermal neutron flux peak is obtained by

activating gold foils along a horizontal radial traverse with the

fuel element placed vertically along the central axis. The y-ray

activities of the gold foils are counted, corrected and curve-fitted.

The position of the maximum of this measured activity distribution
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corresponds to the radial distance X of the peak of the thermal

neutron flux. A sample data set obtained with each fuel element is

presented in Appendix D.

3.4.1 Foil Irradiation

Gold foils of high purity, each 1/16 in. in diameter and .01 in.

thick, are punched, cleaned, weighed and catalogued. The variation

in weights among the foils is less than 1%. Such uniformity of foil

weights is desirable because it makes certain corrections such as

gamma-ray self-shielding negligible. Several of these foils (about

14 in number) are mounted, 1/4 in. apart along a long, thin aluminum

holder, and positioned to straddle the flux peak. The holder is

suspended along a radial direction with aluminum chains which hang

from the girder. During the irradiation, the holder rests horizontally

against the single fuel element. Figure 3.3 is a sketch of a set of

two such aluminum holders suspended on opposite sides of the fuel.

Typically, the irradiation lasts for about 4 hours. The gold

foils are then demounted and counted for their y-ray activities. Four

such independent "runs" are made for each single element. The cluster

orientation is altered and the two holders are interchanged for differ-

ent "runs".

3.4.2 Activity Measurement

The activation product Au-198 in the irradiated gold foils emits,

primarilygamma rays of energy 411 key., with a convenient 2.7 day

half-life. Figure 3.4 is a block diagram of the standard NaI-detector

counting set up. The gold foils mounted on circular planchets are

No Iq '" , " _1-111 .-- _-__.-_-_I_"".."q"".. . " N - -- - , - -- -- - -_, 10'", W, I , "I , -n .r.,
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stacked in an automatic sample changer coupled to the electronic

system. The single channel analyzer settings, calibrated with an

irradiated sample foil, are set to admit the desired 411 key. y-ray

photopeak.

Approximately 400,000 counts are accumulated per foil to insure

very good statistics. The raw data as printed out by the counting

apparatus are corrected for foil weight, dead time, counting time,

background activity and decay during counting. This is accomplished

by the computer program ACTVTY whose output lists the corrected

counts per minute per milligram for each foil.

3.4.3 Curve-fitting for X

When the fast neutron source effect of the fuel element on the

thermal neutron distribution is neglected, the radial variation of the

thermal flux, or of the activity induced by it, is given by:

O(r) = B1J0 (ar) - B2 Y0 (ar). (3.1)

For small values of the argument (ar) the above equation may be

written in the form:

$(r) = cI + c2 nr + c3r . (3.2)

The corrected activities of gold foils obtained from ACTVTY

are fitted to Eq. 3.2 by means of the computer code THERMAX using

the least-square technique (H7). The distance X to the position of

zero gradient of $(r) is obtained from Eq. 3.2. Thus:

X = (-c2/2c3)1/2 (3.3)
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The program also computes the standard error in X from the root-

mean-square of the curve-fit. At larger radial distances, the

approximations used to derive Eq. 3.2 fail; while in the proximity

of the fuel, the transport effects affect the accuracy of the curve.

The values of X obtained for different angular orientation of

the clusters show no systematic trend. The final X-values for the

three single-elements are given in Table 3.4.

3.5 DETERMINATION OF y

The inverse relaxation length, y, also termed as the die-away

constant, determines the variation of the vertical component of the

flux. It is measured by irradiating gold foils along a vertical

traverse. The induced activities are counted, corrected and fit to

a sinh-distribution to give y corresponding to the best-fit of the

experimental data.

3.5.1 Foil Irradiation

Gold foils (about 14 in number), 1/8 in. in diameter and .01 in.

thick, are spaced 2 in. apart and positioned on vertical foil holders

made of aluminum. Each of these foil holders has a flexible joint at

the top. This keeps it vertically straight when suspended from the

support girder. Two such holders are placed on opposite sides of the

fuel rod (Fig. 3.5), about 8.5 in, from the center, and irradiated

simultaneously with the radial holders for X-measurement. The

procedures for irradiating the foils and counting and correcting the

induced activities are the same as those described earlier in Section

3.4,

-OWN."



PINNED-
JOINT

MODERATOR
LEVEL

FOIL -
- POSITIONS

s777-77

U.j

7-
SINGLE FUEL
ELEMENT

FIG. 3.5 POSITION OF
FOIL HOLDERS

Al CAN
DIA. 1/4"

VERTICAL

CADMIUM BOX
DIA. 1/4"

FIG. 3.6 MOUNTING OF
MEASUREMENT

FOILS FOR
OF R

87

FOIL
HOLDER

MYLAR
TAPE ~

I , I liqloomom I I I I

I



88

3.5.2 Curve-fitting for y

The corrected activities of the gold foils, irradiated along

axial traverses in the "equilibrium" region of the tank, are expected

to follow the axial flux distribution

$(z) = A' sinh y(h'-z), (3.4)

where h' is the extrapolated height at which the neutron fluxes of

all energies are assumed to vanish.

The computer code AXFIT, used to analyze and curve-fit the axial

distributions, has been studied and reported in great detail by

Palmedo (P1). The code least-square fits the experimental activities

to a function of the form of Eq. 3.4 for various values of h', each

time dropping a specified number of end points. The "best" value of

y is deduced by comparing the probable errors of y and by considering

the axial distribution of the residuals of the experimental and fitted

fluxes. The fitting process weights the experimental activities

inversely as the square of the values of corresponding fluxes.

The details of the theoretical basis and of the operation of

AXFIT are described in Ref. Pl. A typical set of data is given in

Appendix D, and the final results appear in Table 3.4

3.6 DETERMINATION OF R

The gold cadmium-ratio, R, at a radial distance,Y, from the single

element is directly measured by irradiating at that distance, two

similar gold foils, one of which is covered with cadmium. R is then

the ratio of the corrected activities of, respectively, the bare and

_91"R -0", ".OR 'r " _- w 11
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the cadmium-covered foils. The cadmium ratio experiments were made

by Leung (Li).

3.6.1 Foil Irradiation

Each irradiation for the R-measurement (Fig. 3.6) involves two

pairs of similar gold foils irradiated on each of the two vertical

foil holders placed at a predetermined radial distance Y on opposite

sides of the fuel element. The distance Y is equal to 21 cms. for

the natural uranium rod, and to 23 cms. for the two clusters. The

foils are spaced 2 in. apart and mounted alternately in aluminum cans

and cadmium boxes. The aluminum cans insure local displacement of

the moderator equivalent to that by the cadmium boxes. The irradiation

procedure, and the methods for counting and correcting the gold foil

activities are the same as those used for the measurement of y.

To insure that sufficient activity is accumulated on the cadmium

covered foils, the foils are irradiated for about 10 hours. The

activities of the bare foils are too high to be counted immediately

after irradiation. They are therefore allowed to "cool" for two to

three days to minimize counter dead-time corrections.

Two experimental runs, which result in eight sets of R values,

are made for each single element. Again, the sample data are shown

in Appendix D, and the final results are tabulated in Table 3.4.

3.6.2 Height Correction

Each bare foil is at a distance Az (2 in.) above its paired

cadmium covered foil. Since the flux has an exponential distribution

in an axial direction, a multiplicative correction factor,

is applied to the activity of each bare foil.

.............
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Note that other corrections such as those due to the finite

thickness of the foils and the presence of cadmium covers, are

eliminated in the comparison method (Eq. 2.75).

3.7 DETERMINATION OF F AND fe

Cadmium-covered pairs of natural molybdenum and dilute gold

foils (Table 3.3) are simultaneously activated in the neutron flux

on the surface of each single-element. These foils are later counted

for the induced activities in Au-197 and Mo-98. The measured ratio F

of the correct activities per unit weight of the two isotopes thus

obtained is then related to the epithermal flux ratio, f . Experi-

ments and calculations related to f are due to McFarland (Ml).

3.7.1 Foil-packet Irradiation

The molybdenum used for the foils is natural molybdenum metal

which contains 23.78% by weight of the desired isotope Mo-98. The

diluted gold foil is 1.24% by weight of Au-197 in aluminum. Both

foils are 1/4 in. in diameter, the Mo-foil being 0.025 in. thick and

and Au-foil, 0.003 in. The use of dilute gold reduces resonance self-

shielding and lowers the gold activity so that the total counts and

the counting times for both foil-types are comparable.

Three packets, each consisting of an Mo-foil and an Au-foil

placed "back-to-back", are enclosed in a cadmium can of walls at

least 0.030 in. thick. These packets are taped directly to the fuel

surface. The packets are spaced about 4 in. apart, the lowest one

being located about 20 in. from the bottom of the tank. The

configuration and order of the foils within a cadmium can and the

_- -r, .0jPP
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manner in which this can is taped to the fuel is the same for all the

packets in the various irradiation runs. The duration of the irradia-

tion of the foils is about 36 hours.

3.7.2 Activity Measurement

All the foils are "counted" with standard NaI gamma counting

equipment, the same as that shown schematically in Fig. 3.4. Because

of their relatively smaller activation cross section and gamma-yield

(Table 3.3), the molybdenum activities are low; consequently, a well-

type NaI crystal is used which provides a much larger solid angle for

counting. The crystal is surrounded with approximately 12 inches of

lead shielding to maintain a very low background.

All the foils are integral counted with the baseline just below

the gold gamma-ray photopeak of 412 key. The electronic set-up is

checked periodically for drift with a standard Cs-137 gamma source.

The low activity of the Mo-foils is the controlling factor in the

determination of the length of the counting intervals. A statistically

good value of about 50,000 is obtained for the total counts collected

per foil during counting times of approximately 60 minutes. The

measured activities are corrected for weight and background and

residual activities according to standard prescriptions. The half-

lives of the gold and molybdenum foils have been measured experimentally,

and found to be nearly identical, thus alleviating the need for half-

life corrections. Further details on the activity measurement are to be

found in Ref. Ml. Values of the ratio F of the corrected activities per

unit isotopic weight of Au-197 and Mo-98 measured for the three single

........ .... 1-.1 1-1-111- 1-11-11 1 "1 - ....... . wwd" , - AM.".-OMMMiL
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Table 3.3

PROPERTIES OF Au-197 AND Mo-98.

Property Au-197 Mo-98

Isotopic abundance, wt % 100 23,87

Resonance neutron energy, ev. 4.9 480

Effective resonance integral, barns 1490 8.9

2200 (m/s) cross section 94 0.13

Gamma energy, key 412 740, 780

Gamma yield, % 100 15

Half-life, hrs. 65 67

Awk-U&.4- 401dw I I "1 1"... 1 1 11
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elements are given in Appendix D. Average values are shown in

Table 3.4.

3.7.3 Relating F to fe

The epithermal flux ratio f is related to the measured activity

ratio F:

Au MAu RIMo Au
f = = YM RI~o u u Y F, (3.5)
e $Mo MM RIAu uMo

where MAu, MMo are, respectively, the molecular weights of infinite-

Au-197 and Mo-98,

RIAu, RI are the infinite-dilution resonance integrals of Au

and Mo in barns,

uAu/Mo is the ratio of lethargies at Au and Mo resonances; this

factor corrects the resonance integrals for the 1/t(u)

neutron energy spectrum on the single element surface

(Appendix C),

Y is the ratio of the yields of y rays of energies above 412 key.
Y

(gold photopeak) from Mo-98 and Au-197 respectively.

The procedure for the calculation of fc and A requires a value of

f relative to that for the "reference" element (natural uranium rod).

Consequently the uncertainties in the constants which appear in Eq. 3.5

are eliminated provided that the experimental methods for the test and

reference fuel elements are the same. Values of f are given in

Appendix D.
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Table 3.4

VALUES OF THE EXPERIMENTAL PARAMETERS

Single Element X 2 -2 R
Type cm

Nat. U rod 9.70 2488.5 122.18 361.6
("reference") ±0.08 ±9.2 ±2.2 ±0.5

19-rod 13.16 2417.6 77.69 397*15
Puo2-UO2  ±0.14 ±6.7 ±0.44 ±10.6

cluster

31-rod 14.77 2388.2 58.41 389.9
PuO2-U0 2  ±0.21 ±11.6 ±0.56 ±5.0

cluster

.W"WA.6 - -1- - .1 - - .- .. I ............ ...... W"bmu
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3.8 MODERATOR PARAMETERS

The theoretical methods (Chapter II) developed to interpret the

singleaelement experiments require the knowledge of thermal neutron

2
properties of the moderator, namely, the diffusion area, LO, and the

diffusion coefficient, D.

2 2 2
L is related to a and y (Eq. 2.10):

1 2 2
LOa

2
The determination of L2 consists, therefore, in measuring the radial

2 2
buckling, a , and the (square, y , of the) inverse relaxation length y,

in the tank filled with the D20 moderator alone. The determination of

a and y consists in the measurement of the radial and axial fluxes in

the moderator and fitting them, respectively, to J and sinh-

distributions.

The radial flux measurement for the determination of a is made by

irradiating gold foils, 1/8 in. in diameter and 0.010 in. thick, spaced

1.5 in. apart on an aluminum holder suspended horizontally along a tank

diameter. The methods for irradiating, and for counting and correcting

the induced activities are the same as those used for measuring X. The

measured activities are fitted, according to the least-square criterion,

to the theoretical flux distribution given by

$r(r) = A J 0 ( a(r-c) 3, (3.6)

where the "best" values of A and a are determined in the fitting

process. The analysis is repeated for different preset values of c,

the center of the distribution, and of the number of experimental
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points to be used in the fit. The analytical methods and the computer

code RADFIT used for obtaining a have been described by Palmedo (P1).

The method for the determination of y is the same as that used in

the single-element experiments (Section 3.4).

The results of two independent measurements for a and of four

for y, in D20 moderator of 99.7 mole-% purity, are:

a2 = (2516.8 ± 12.5) x 10-6 cm-2

y2 = (2628.4 ± 10.5) x 10-6 cm-2

2
The moderator properties L2 and D deduced from these results are given

in Table 3.5. The effect on these results of the variations in modera-

tor temperature has not been taken into account.

3.9 CALCULATION OF r, TI, A

The first step in the evaluation of the heterogeneous fuel param-

eters is to obtain the epithermal absorption parameter A. The measured

value of f for the single element is multiplied by the standarization

factor c (equal to 0.4073; Section 2.5.3) to give the corresponding

ANISN computed ratio f . This ratio is then related (Section 2.5.3) to

the desired value of A, from the f versus A curves (Fig. 2.4).

The knowledge of A permits the calculation of the coefficients

Cn (Eq. 2.61) and the integrals I and I Y which occur in the expressions

for r (Eq. 2.36) and the thermal neutron flux distribution r (r)

(Eq. 2.27). Given the experimental parameters X, y (or a; Eq. 2.10)

and R, and the moderator data (Table 3.5), Eqs. 2.36 and 2.75 can be

solved simultaneously (Section 2.5.4) to calculate P and n. The values



97

Table 3.5

MODERATOR PROPERTIES*

2
L 2

D

Tth

TAu

= 8958.2

= 0.84

= 118.8

= 95.0

Tr = 80.0

2
cm

cm

2
cm

2
cm

2
cm

*Notation according to Appendix H
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Table 3.6

HETEROGENEOUS FUEL PARAMETERS

Fuel Type r TI A

Nat. U rod 2.9
("reference") 0.9546 1.375* 20,39*

19-rod
UO2-PuO 2  0.4707 1.3643 52.5

cluster

31-rod

UO2- Pu2 0.3313 1.4017 81.50

cluster

* "Reference" values (Appendices E and F)
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of r(Y), arrived at after iterations between Eqs. 2.27 and 2.77, for

the three fuel elements: Nat. U metal rod, and 19 and 31-rod UO2PuO2

clusters, are respectively, 1.097, 1.134 and 1.238.

The final values of r, n and A are tabulated in Table 3.6.

3.10 SENSITIVITY OF THE HETEROGENEOUS PARAMETERS

Figures 3.7, 3.8 and 3.9 illustrate the dependence of the hetero-

geneous fuel parameters r, n and A on the experimentally measured

quantities X, y, R and F.

The typical experimental error in measuring F (Table 3.4) leads to

an uncertainty of about 8% in the determination of A. The other two

heterogeneous parameters P and n depend upon all four measured quanti-

ties. The order of the gross error associated with r and n can be

established by compounding the separate effects on them of the

uncertainties in X, y, R and F. The effects on P and n due to the

typical errors (Table 3.4) in the measured values of the four experi-

mental parameters are readily seen from the linear plots of Figs. 3.7

and 3.8. Combining these effects separately for P and n shows that

the uncertainties associated with their determination are about 5%

and 3% respectively. These composite errors are, of course, not

independent of each other and cannot themselves be directly compounded

to give gross error in a quantity, such as the multiplication constant

or the buckling of a reactor lattice, which depends upon both the

parameters r and n.

Observation of the sensitivity curves shows that the uncertainty

in X-measurement is important to the accuracy with which P and n can
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be determined. Improvements shquld, therefore, be made in the tech-

niques for measuring X. The largest percentage of error, however, is

associated with the value of F measured for the 19-rod cluster. It

is shown in Fig. 4.4 that the value of the material buckling calculated

from the four experimental parameters is most sensitive to the ratio F.

Hence, it is also important to increase the accuracy in the measurement

of F. Increasing the number of independent determinations of F can

considerably reduce the error.

The significance of the errors in experimental measurements becomes

clearer in the next chapter where the heterogeneous fuel parameters r,

ri and A are used in a calculation for the material bucklings of uniform

lattices. Some suggestions for improving the experimental methods are

included in the final chapter.
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Chapter 4

APPLICATION TO UNIFORM LATTICES

4.1 INTRODUCTION

The previous chapters show how the characteristic heterogeneous

parameters r, n and A of a fuel element can be determined by inter-

preting simple experiments which directly measure the four quantities

X, y, R and F. The three fuel parameters are thus determined for the

19 and 31-rod PuO2-UO2 clusters typical of those heavy water reactor

designs which use the pressure tube concept. These parameters

completely "define" the particular fuel cluster in question. Such a

set of heterogeneous parameters for each different fuel (or control)

element in a multi-component lattice can then be used with the hetero-

geneous source-sink formalism (Section 1.3) to carry out overall

reactor calculations for a given non-uniform core configuration.

The purpose of this part of the work, however, is not to perform

a detailed core calculation such as that indicated above; but only to

provide a simple test for the measured values of r, n and A. Attention

is therefore restricted to the case of uniform D20-moderated lattices

composed of a single fuel-type which in the present case is the 19 or

the 31-rod PuO2-U02 fuel cluster. The lattices have a triangular

arrangement; the spacing between fuel elements is 9.33 in. for the

19-rod clusters and 9.33 in. and 12.12 in. for the 31-rod clusters.

These particular lattices have been extensively investigated at the

Savannah River Laboratory (SRL).

_*, ,, - r ., , , _, - - "I I.. . , . ...... ..... .............

AMR
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For the sake of simplicity, the three heterogeneous fuel param-

eters are directly related to the conventional reactor physics

parameters: the thermal utilization, the neutron reproduction factor

and the resonance escape probability; and the material buckling then

calculated from the age-diffusion equation. For uniform lattices,

this convenient procedure should give satisfactory results and save

the cost and effort involved in the use of a heterogeneous reactor

code such as HERESY. The lattice results obtained from the single

element parameters r, n and A are compared with the corresponding

theoretical and experimental values obtained with conventional methods

at SRL.

4.2 THERMAL UTILIZATION, fr

The thermal utilization can be derived by using the Poisson

summation (P2) to determine the thermal flux at the surface of a fuel

element from the contributions of the other fuel elements, and then

relating these surface fluxes to the fuel absorptions through the

thermal constant r. In the case of a uniform lattice, this can also

be derived by using the Wigner-Seitz formalism of a unit cell centered

about a fuel element.

fuel absorption
r fuel absorption + moderator absorption '

- 1 + moderator absorption (4.2)
fy rfuel absorption

The fuel absorption in the above expression includes absorption in

cladding, coolant and air-gaps associated with a composite fuel

element; in this sense, fr differs from the conventional definition
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of the thermal utilization. The fuel absorption in a unit lattice

cell follows from the definition (Eq. 2.1) of r and is equal to r (a)
r

The moderator absorption to be substituted into Eq. 4.2 may

be considered to be made up of two parts: (1) moderator absorption

calculated on the assumption of a flat flux in the moderator whose

value equals that at the fuel surface $r (a). This component of the

moderator absorption is equal to Vm E r(a), Vm being the moderator

volume in the unit cell, (2) "excess" moderator absorption due to the

moderator thermal flux in excess of $r(a).

Then from Eq. 4.2,

= 1 + rE Vm + (E-1) (4.3)

where (E-1) denotes the "excess" moderator absorption per fuel

absorption. Diffusion theory gives the following result (W2) for (E-1):

KEl m (b -a 1 I1(K mb)K0 (K ma) + 1 0 (Kma) K1 (K m b)44

2(K 2a) I(K b)K (K a) - I (K a)K (K b)](-)= m 1lm l0m 1 m 1 m44

where Km is the inverse diffusion length in the moderator, and "a",

"b" refer to the fuel and unit cell radii, respectively. The above

relation may be usefully approximated (W2) and expressed in terms of

the volume fraction of fuel in the unit cell, Vf/Vc, denoted by v:

V v 3 Rn v
(E-1) m - - - - (4.5)

4nL 2 2 (1-v)

Table 4.1 lists the values used for the constants in the above

equations and the results for f . The derivation of Eq. 4.3

disregards the slight variation in r due to changes in the lattice



Table 4.1

RESULTS FOR THERMAL UTILIZATION, fr

Lattice b, cms a, cms v Vm' cm 2 , cm 1  (E-1) fr

19-rod cluster 12.44 3.97 0.102 436.7 0.4707 0.00416 0.9793

9,33 in. pitch

31-rod cluster 12.44 5.08 0.167 405.1 0.3313 0.00279 0.9863

9.33 in, pitch

31-rod cluster 16.16 5.08 0.099 739.3 0.3313 0.00717 0.9733

12.12 in. pitch

D20 purity: 99.75 mole %

Z =0.825 x 10"4 cm-
am

2 2
LO 2 10178 cm

0
-4

w w w l l ' " " sim 11 1 l 1 renuwii lll pil l' lillll IN ill illillllilllillllllINI M
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spacing and the attendant spectral changes. Frech (F3) has shown

experimentally that the change in effective neutron temperature is

directly proportional to the volume fraction of fuel; hence it is

conceivable that a correction could be developed to account for

spectral hardening. However, because of the experimental uncertainty

of about 5% in the determination of r, it is questionable whether

such an effort is warranted.

4.3 FAST NEUTRON YIELD, n

The single element heterogeneous fuel parameter n, which is

measured in the present work, gives the total number of fast neutrons

produced in all the fissions occuring within the fuel element per

thermal neutron absorbed. It does not, however, include the effect

of those fast and epithermal neutrons which arrive at this fuel

element from other fuel elements. Hence the expression for nL, which

includes the effect of lattice interaction, is obtained by adding to

n for the single (subscript: "0") element, the number of fast neutrons

born in the element ("0") due to fissions by fast and epithermal

neutrons produced per thermal neutron absorption in other (subscript:

"j") elements. Thus,

nL n + V (v N RI ) * epi
Lj0 Oj (4.6)

+ V (v N af)fast 4fast

j,jf0 Oj

In the above equation, Vf is the fuel volume, and the products

(N v RI )ePi,(N v G)fast are, respectively, the number of neutrons
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produced per unit volume, per unit flux, in all the epithermal and

fast fissions in all the uranium and plutonium isotopes present in

the fuel assembly; $4e and $fast are, respectively, the contributions

th Oj Oj
of the j element to the epithermal and fast neutron fluxes at the

zero-th ("0") element. The age kernel and the uncollided flux kernel

(Appendix B) are used for the respective propagation of the epithermal

and fast neutrons over the distance r0j, from the jth fuel element to

the 0th. Thus, the flux contributions in Eq. 4.6 are:
2

-r 2j/4Te
epi n e ef (4.7)
Oj s e f

where (EE ) is the slowing down power of the moderator, Tef is the

age of fission neutrons to the effective energy of epithermal fissions,

and i r .

fast e f (4.8)
Oj Oj

where A is the mean free path of the fast neutrons in the moderator.

Substituting Eqs. 4.7 and 4.8 into Eq. 4.6,

-r /4T

= + (v N RI f ) e _ _ _ _ _ _

Es j,i/0 4 rTef

- fast f

+ V f (4.9)
4 jJf0 r

If the corrections to n due to epithermal and fast interactions are

denoted by An epi and Anffast respectively, then it follows that:

(4.10)
eL = n + + An fast

1 '00, 14 -1-111-- , - . 1. 11 1 1 .
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The summations of the age and uncollided flux kernels in

Eq. 4.9 are carried out by the methods of Ref. HS. These are

discussed briefly in the next two subsections. The numerical values

used in the present work for all the nuclear constants appearing in

Eq. 4.9 are tabulated in Table 4.2. Calculated values of An ,epi

Anfast and nL for the three lattices of present interest are given

in Table 4.3 In the calculations for the material buckling of the

lattices (Section 4 .6),An ep and An fast are to be corrected,

respectively, for epithermal and fast neutron leakage. These terms

-B 2T -B2 X2 /3
are thus multiplied (W2) by e m ef and e m respectively. The

effect of these further corrections in the present cases is to decrease

IL only by a small fraction of 6ne percent.

4.3.1 Summation of the Age Kernel

The infinite array of identical fuel elements, arranged in a

triangular lattice with fuel spacing, p0 , is depicted in Fig. 4.1.

The origin of the coordinates x and y, offset at 60*, is located at

the center of the "zero-th" fuel element. The radial distance, r0 j'

of the j th fuel element from the origin is then given by:

2 2 2
r = x + y + xy, (4.11)Oj y xy

Since the fuel elements are located at a constant spacing p along the

coordinate axes,

x = mp0 ; y = np, (4.12)

where m and n are integers. Thus,
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Y = npo

FIG. 4.1 LATTICE ARRAY FOR AGE
KERNEL SUMMATION

|| |.,.1.1.1......
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2 2 2 2 2 2
roj = m p0 + n p0 + mnp0

(4.13)

Denoting the required summation of the age kernel which appears in

the second term of Eq. 4.9 by S :

S e = I
e .J.0

-r/ 4 Te

4T
ef

4 7T ef
(4.14)

It is convenient first to sum the kernel with the contribution of the

2
center fuel element included. Substituting for r0j, this summation

(S0) is:

S 
[4wT M= -co

efL

2 4 2
m p0 (n p0+mnp0)

4 Tf
e. (4.15)

n= -c

Use of the Euler-McLaurin sum formula (Dl) yields
2 2 2 2

(n +mn)p2 (n +mn)p 0

4ef 2 Tefe f = 21 e 4 t

n= -o 2 2
m p 0

ef e
p0

dn

, Ref. B3. (4.16)

Substitution of this result in Eq. 4.15 gives:
2 2

3m p

1 e ~16 1

S=p At m=_-n
o ef

e er

On again applying the Euler-McLaurin sum formula to evaluate the

summation over the index, m, it follows that:

(4.17)

- 1, -11-- ... . IMI 01, N, W", I
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22 2 2
3mp 0  3m p 0

Go ~16T ~16%f /16"Teef e 6 16r
e1 = 2 e f 1 ef (4.18)
e= -0 POe

Thus,
2 1 1

S = - - = - (4.19)
0 2

where V is the area of the unit cell in the lattice.
C

The required sum S is then obtained by subtracting from S the

1
contribution of the center rod, which is: 4 ; hence

S = (40'20)
e (Vc 47JT .. 0

4.3.2 Summation of the Uncollided Flux Kernel

The desired summation in Eq. 4.9 is denoted by S :

f
S f (4.21)

j'Wjf0 Oj

and is to be evaluated over a triangular lattice array. It is

convenient to bracket the desired value of Sf between the results

which would be obtained by summing the kernel over circumscribed

and inscribed rings (Fig. 4.2).

Each of the successive pairs (index: n) of circumscribed and

inscribed rings has 6n elements. The radius of a circumscribed ring

is (np0) and the kernel summation carried out over all the successive

circumscribed rings provides a lower limit for the value of S . On

the other hand, the summation over the successive inscribed rings,

each of whose radius is (- np0 ) gives the corresponding upper limit

for the required result.

............. ............. .....
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Substituting for r in Eq. 4.21 and adding up the contribution

of the 6n fuel elements in each circumscribed ring,

7r np0

n= n f

If npo

Inp
0

f - (4.22)6n = 6 l
0P n=1

Then the Eujer-McLaurin sum formula (Dl) gives:

7TPO

6 ~ 27 2X
S >- e { +f p0 'Imp

1 2fp07 + + ... } (4.23)

Since the volume fraction of fuel, vc in this case is:

67a
2

n 3a2

Lim n-lVc n-+eo 2 2 2iTp0n p0

S > .f > 2c + ---- +
, Ta a

(4.24)

7 e 2Xf v
-- e c

4XAf

(4.25)

The use of the same procedure for the case of inscribed rings yields

S f< - e
. .P

+

7T rnp
0

4O4

---- e
n=2 P0

(4.26)

where the first ring is treated correctly as a circumscribed circle.

The application of the Euler-McLaurin formula gives

rpo0 irlpo
0

6 ~27~~ 4 3 ~2f f
S <-- e

p0

+ - e

p0

A 1 T/p
wp +-+ 4

0j/~p 2 48Xf

(4.27)
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Table 4.2

VALUES OF THE FAST AND EPITHERMAL NUCLEAR CONSTANTS

(Is = 0.18 cm

Tf

x f

RI2 3 5 = 280 bf

RI2 3 9 = 288 bf

RI2 4 1 = 573 b
f

-23 =~as 0.306 b

-1

= 84.0 cm 2

= 11.36 cm

= 2.42

= 2.90

= 2.98

= 2.87

239

v241

v238



117

Table 4.3

RESULTS FOR THE FAST NEUTRON YIELD, L

Lattice p An Anfast nL

19-rod cluster 1.3645 0.0191 0.0014 1.385
9.33 in. pitch

31-rod cluster 1.4032 0.0320 0.0023 1.438
9.33 in. pitch

31-rod cluster 1.4032 0.0081 0.0006 1.412
12.12 in. pitch

WON - - - a",-- - . - - - - 1.1-- 1 11 - I - 1.
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In terms of the volume fraction of, fuel, v which in this case is:

61ra 2  n 4a2.

V.=Lim n=1lo(.8
V = n- 322 -- , (4.28)

4"pon p0

the result for the inscribed case is:

nrSa 7ra

4Av. 4iv~ 1 ~ A /V. 3~~ /v ~.1 i
S f 2 + I + - e +-e . (4.29)

ra a 4A f a

The numerical results obtainable from Eqs. 4.25 and 4.29 give

the necessary bounds for the value of Sf . Actually the two expressions

derived above would be identical in terms of the volume fraction fuel,

if the first ring in the "inscribed" case were not treated separately.

Thus the value of S to be used in Eq. 4.9 may be obtained by using the

actual volume fraction of fuel v (=2 a2  p2) in Eq. 4.25.

4.4 RESONANCE ESCAPE PROBABILITY

A simple equation can be derived to relate the resonance escape

probability, p, to the epithermal absorption parameter, AL, for an

infinite uniform lattice.

Equation 2.6 for the epithermal absorption parameter A corresponds

to the case of an isolated single fuel element in an epithermal neutron

flux which is constant in lethargy and space. To obtain a corresponding

parameter, AL, for a reactor cell, it is necessary, strictly speaking, to

consider the energy depletion of the slowing-down neutrons at

successive resonances, the spatial non-uniformity of the epithermal flux

across the cell, and the Dancoff effect which results from the shadowing
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of a fuel element by its neighbor. A discussion of the relation

between A L and the measured fuel parameter A is taken up in the

following subsection.

For one neutron slowing down in the moderator volume V of a
m

unit cell of unit height, the averaged slowing-down density in the

moderator is 1/V . The total epithermal absorption at the singlem

effective resonance energy per cm-sec in the lattice cell is AL /Vm

Consequently, the probability that a source neutron es-capes epithermal

absorption is:

AL

p = 1 - V (4.30)
m

A more rigorous derivation of the above expression is given by

Klahr (K4). Equation 4.37 may be generalized to the case of many

resonance levels; in that case, the simple derivation of Eq. 4.31 with

a single equivalent resonance is correct to at least second order

terms in a Taylor's expansion.

Table 4.5 shows the results of the calculation of the resonance

escape probability, p, for the cluster-fuelled lattices considered in

this study.

4.4.1 Relation between AL and A

The epithermal absorption parameter, AL, in a lattice cell may be

deduced from the measured value of A by correcting the latter to

account for the following effects:

1. flux depletion of the slowing-down neutrons in energy space,

2. Dancoff effect,

.............
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3. spatial non-uniformity of the neutron slowing-down density

across the cell.

The effect of the changes in the energy spectrum of the epi-

thermal neutrons on A has been discussed to some extent in Section

2.5.5. An approximate estimate of the decrease in ERI, and the corre-

sponding decrease in A, due to epithermal flux depletion can be made

on the basis of an approximate expression derived in an earlier work

by the author (51).

The effect of adding fuel in a lattice cell is to deplete the

epithermal flux. This in turn decreases the ERI for the lattice. It

has been shown (Sl), under certain assumptions, that the lattice ERI

decreases linearly with increasing volume fraction of fuel (Vf/Vm)*

The correction term (AERI) which must be subtracted from the ERISE of

a single fuel element is given by the recipe:

AERI (NR=sm (ERISE)2 V~ (4.31)
m

where N R is the concentration in fuel of the resonance absorbing

atoms, X is the scattering mean free path of epithermal neutronssm

in the moderator (3.73 cm), and the index n, whose value depends on

the ratio "S/M" of the fuel element, is about 0.3 in the present

case of 19 and 31 rod cluster (S/M=0.1). Further sinceA is directly

proportional to ERI (Eq. 2.6), the correction (AA) in A to account

for the flux depletion is:

AA nX

2Vsm (NR fERISE), (4.32)
m

_1'1___.__1____ _ 1 'W1W
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or on simplifying with the use of Eq. 2.6,

AA nE A (4.33)
A 2V4 m

Application of either of the above equations to the lattices of the

present study shows that the non-l/E effect on A is 0.75% for the

19-rod cluster lattice of 9.33 in. pitch and the 31-rod cluster

lattice of 12.12 in. pitch, and 1.5% for the 31-rod cluster lattice

of 9.33 in. spacing. The effect is thus small compared to the

uncertainty in the experimental determination of A, and can therefore

be neglected.

The Dancoff effect also tends to decrease the ERI and consequently

the value of A. It depends among other factors, upon the fuel size

and the fuel spacing (a/Xsm, P0 sm). An estimate of the Dancoff

shadowing on a fuel element is provided by looking up tables (R1) for

the Dancoff-Ginsberg factors for the effect of neighboring fuel

elements; tabulated values may be used to correct the surface area (S)

of the fuel element. The reduced effective surface area causes the

values of the single-element ERI and A to decrease. For the lattices

of the present study, these calculations confirm the well known fact

that the Dancoff shadowing effect is very small in widely spaced,

D20-moderated lattices. Thus the maximum shadowing occurs in the case

of the 9.33 in. spacing, 19-rod cluster lattice, the effect on the ERI

or A being about 2.5%. For the 31-rod cluster lattices of 9.33 in.

and 12.12 in. spacings, this result is 1.25% and 0.5% respectively.

These corrections are also smaller than the error in A measurements

and these have not been included in calculations of the buckling

(Section 4.6).
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The spatial non-uniformity of the epithermal neutron slowing-

down density q . (r,T r) becomes important in those lattices for which

the condition:

42547r 2T

V r >>l 
(4.34)

C

is not met. Thus in lattices with large cell areas, particularly the

12.12 in. spacing lattice in the present study, the density of epi-

thermal neutrons at the fuel may be significantly greater than that at

the boundary of the cell. Denoting the ratio of the average epithermal

flux in the fuel to that in the moderator by S, it follows that:

AL = A * , (4.35)

The excess of 0 over unity then measures the nonuniformity of the

spatial flux (G3).

A method for calculating the advantage factor S is presented

in the following subsection.

4.4.2 Calculation of S

The advantage factor 6 is determined by solving the age equation:

V 2q (rT) = (r,T), (4.36)
epi 3TF'Iepi

for the epithermal neutron distribution in the lattice cell (radius =

b), produced by a uniform cylindrical source (radius = a,a<b) of fast

neutrons. Since there is no net current of epithermal neutrons across

the boundary of the cell,

-plIpm- -low



123

qpi(rT) Irb . 0 (4.37)

The manner of solving Eq. 4.36 is similar to that in Section 2.3.4,

except that now the cell boundary (rub) replaces the tank boundary (r=R)

and the boundary condition is different.

The slowing down density at position r due to a unit source of

unit height distributed on a cylindrical surface at r = r' is denoted

by q .(r',r,T). Then, as in Section 2.3.4,

q = i + w, (4.38)

and the arbitrary constant of Eq. 2.48 is obtained from the condition

that:

rub = 0. 
(4.39)

As a result:

I(sr')
r',r,s) = 2I {K1(sb)I0 (sr) + 1 1(sb)K 0 (sr)} , (4.40)

Using the Inversion Theorem (Eq. 2.51) and applying methods of

Ref. Ci, it follows that:

1 r J0Cnr')JO(anr) -a2
q (r'r,T) = + 2 n n (4.41)
epi b n=2 J 2nb)

where an (n=2,3...) are the positive roots of

(4.42)1 (ab) = 0 ,P
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Since the source extends from r = 0 to r = a, Eq. 4.41 is integrated

between these limited to give:

1 J(a na)J0 (a nr) -a T
q ep(r,T) = 1 + 2 n 2  ne (4.43)

epi Tb n=2 a a J 0 (a b) A

If q (xT)denotes the average of q .(r,T) over the cylinder
epi epi

of radius x, the definition of S is:

q ei(a,T)
(T) = Pi 4.44)

q e (bT)
epi

In this expression for a, the fuel has been replaced by the moderator

for the sake of convenience and for taking into partial account the

inelastic scattering in the fuel. When Eq., 4.43 is integrated over

the limits: r = 0 to r = a, and r = 0 to r = b, the result is

2 2-
1 0 J (a a) -a T

q (a,T) = 1 + 4 2 n n (4.45)
epi 7b n=2 (a a) J (a b)

n 0 n-

and,
1

q (bjT) =-- (4.46)
epi rb2

hence 2 20 J (a a) -anT
1(T) 1 + 4 .2 n2 n 447)

n=2 (a a) J (a b)

The spatial distribution of slowing down neutrons is taken to be

the weighted sum of two Gaussians (characterized by Tl, T2 ). Thus

the final value of a is evaluated from S3(T ) and a2 ( 2 ), and

0 = B 101+ B(202

............ ....

WRW

(4.48)
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The values (G7) used for the fission-to-resonance ages T1 and T2

2 2
are 126.5 cm and 40.5 cm , and those for the corresponding weighting

factors B and B2 are 0.56 and 0.44. These factors are based upon

measurements of slowing-down distributions at the indium resonance

(G6), and the assumption that the single effective resonance energy

(D2) is 30 ev.

The summation which appears in Eq. 4.47 converges very rapidly;

only the first three terms are significant for the cases considered.

The values of calculated and used in the present study are shown in

Table 4.4. These are compared with results, to be denoted by 8G

obtained by using the same values for B's and T's in a method given

by Graves et al. (G7). This latter method does not take into

consideration the effect of source size. Thus $G compare very well

with l. calculated from Eqs. 4.48 and 4.49 in the limit of zerolie'

source size (a = 0).

4.5 INFINITE MEDIUM MULTIPLICATION FACTOR

The neutron balance in the thermal reactor lattices is described

in terms of the conventional neutron cycle and the familiar four-

factor formula for the neutron multiplication factor. However, the

manner in which the heterogeneous fuel parameters F, n and A are

defined, necessitates slight adjustments in the interpretation of the

conventional four factors to which these parameters are directly

related. Thus, f differs from the conventional definition of the

thermal utilization in using the term "fuel" to include cladding,

coolant and all other materials within the outermost boundary of the

..................

" 10 ,, I I
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Table 4.4

VALUES OF THE ADVANTAGE FACTOR S

Lattice aline aG

19-rod cluster 1.040 1.058 1.06

9.33 in. pitch

31-rod cluster 1.031 1.058 1.06

9.33 in. pitch

31-rod cluster 1.193 1.284 1.285

12.12 in. pitch



Table 4.5

RESULTS FOR RESONANCE ESCAPE PROBABILITY, p

Lattice VM, cm A, cm 2 AL, cm p

19-rod cluster 436..7 58.0 1.040 60.32 0.8750

9.33 in. pitch

31-rod cluster 405.1 81.5 1.031 84.03 0.7926

9,33 in. pitch

31-rod cluster 739.3 81.5 1.193 97.,25 0.8684

12,12 in. pitch

-.4
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cluster. The factor nL also differs from -its conventional counter-

part n': it accounts for the net fast neutron yield in the lattice

due to all fissions - thermal, epithermal and fast, in all the

fissionable isotopes per thermal neutron absorbed in the composite

cluster fuel element. Thus,

f nL = (f n e) conventional. (4.49)

The expression for the infinite medium ifultiplication factor k. may

then be written as:

ke = fr TL P' (4.50)

4.6 MATERIAL BUCKLING B2
m

The material buckling of the uniform lattices considered in this

work is obtained from the infinite medium multiplication factor (k.),

2
and the diffusion and slowing down areas (L ,TL),of the lattice. The

following modified one-group, two-group and age-diffusion equations

have been used:

2 (kW-1) + Zn k
Bm 2 (modified one-group) (4.51)

m 2(L2+TL)

2 022 1 1 1 1 k-
B + + - -+ + (Two-group) (4.52)
m 2 .)L

2 TL L .4 TL L L T

2
-B T

k e m L - (L 2B + 1) = 0. (Age-diffusion) (4.53)00 m



129

In the above equations, the value of L2 for the lattices is

calculated from:

L L (1-f). (4.54)

which is a good approximation for loosely packed lattices. The

neutron age, TLis also obtained, from a simple recipe (D2):

[ V E V -2
TL = ( V c -- 2 1 (4.55)

where Vf is the volume of the fuel element, VAL is the volume of the

cladding material (aluminum) within the fuel, and en is the ratio of

the concentration of fuel atoms (U, Pu) in the fuel element to that

in natural uranium. The value of T for the moderator (119 cm2 ) is

based on studies by Wade (Wl) which indicate that the age decreases

linearly by 4 cm2 as the H20 contamination in the moderator increases

to 1 mole %. Values of L2 and TL for the three cluster lattices are

given in Table 4.6.

The determination of various reactor physics parameters and the

calculation of the material bucklings therefrom are carried out by a

computer routine, HECKLE. All three expressions, Eq. 4.51 through

Eq. 4.53, give values of material bucklings which agree with one

another to within 2%. This report therefore presents only the age-

diffusion results (Eq. 4.53).

The first application of the single-element method is made to

the case of uniform lattices of 1.01 inch diameter natural uranium

rods. This is important since the natural uranium single-rod has been

used as a "reference element" for r and A measurements on the clusters.
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Table 4.6

DIFFUSION AND SLOWING DOWN AREAS

2 2 2
Lattice L2 cm 2T Lcm

19-rod cluster 208.10 124.1
9.33 in. pitch

31-rod cluster 137.92 128.5
9.33 in. pitch

31-rod cluster 269.05 124.8
12.12 in. pitch

1- 11- 1- 1- "I'll, ........ .......
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The curve of Fig. 4.3 shows the values of the buckling of 1.01 in.

diameter natural uranium rod lattices calculated over a range of

lattice spacings on the basis of the simple model outlined in this

chapter, and taking for the values for the heterogeneous parameters

2
Ti and A their "reference" values, 1.375 and 20.39 cm (Appendices E, F)

respectively. This result from the single-element parameters is com-

pared with the extensive experimental studies on the same fuel rod in

critical and exponential lattices. The experimental results presented

in the graph of Fig. 4.3 are drawn (P1) from experiments at several

laboratories: North American Aviation (exponential), Savannah River

(critical and exponential), M.I.T. (exponential), Zebra (Swedish,

exponential), and Aquilon (French, critical). The agreement evident

in this figure provides an excellent check on the use of the 1.01 in.

diameter natural uranium rod as a "reference" fuel, and on the single-

element model.

The more important test of the pethods proposed in this work

lies in their application to the lattices composed of the tight

clusters of 19 and 31-rods (Fig. 1.1) investigated as "single-elements",

in the present study. As is pointed out earlier, the plutonium

containing fuel within these clusters simulates natural UO2 burned to

5000 MWD/ton. The clusters are typical of fuel designs for the

pressure-tube type of D 20-moderated power reactors. Table 4.7 gives

2
values of the reactor lattice parameters f r L' p and Bm calculated

for 9.33 in. spacing lattice of the 19-rod clusters and 9.33 in. and

12.12 in. spacing lattices of the 31-rod clusters. The values taken

for the heterogeneous fuel parameters r, n and A of these clusters
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are those measured in single-element experiments described in the

previous chapter. Also tabulated for comparison are results of the

stu dies (Bl) at Savannah River Laboratory (SRL) carried out as a

part of the USAEC-AECL Cooperative Program. Each experimental

result of SRL is the weighted average of substitution buckling

measurements analyzed by: two-group, two region diffusion theory

calculation; the successive substitution method; and by the hetero-

geneous reactor code HERESY-I. The SRL-calculations are made with

the HAMMER code (S3) - a one-dimensional, multigroup (54 fast, 30

thermal), integral-transport, lattice-cell calculation.

The comparison of results obtained in the SRL and the M.I.T.

single element studies is to be made in the light of slight differ-

ences in the definition of lattice parameters. These are referred to

in Section 4.2. The slight differences in the cluster cladding have

been noted earlier in Table 3.2. The effect of including epithermal

neutron absorptions in the definition of neutron age causes the SRL

values for TL to be lower by about 10 cm2 than those used in the

present study (Table 4.6). This use of somewhat higher values of TL

in the single-element calculations is however almost exactly counter-

2
balanced by the somewhat lower values (Kl, K4) of L resulting from

the use of the approximate Eq. 4.54.

The accuracy of the single-element results and the general "state-

of-the-art" of buckling calculations are discussed in the next section.



COMPARISON OF SINGLE
TABLE 4.7

ELEMENT AND LATTICE RESULTS

FOR D2 0 MODERATED AND COOLED, PLUTONIUM CONTAINING FUEL CLUSTERS

TYPE OF RESULT 'L p f koo B ,cm 2

X 106

A. 19-ROD CLUSTER
9.33 in. Lattice Spacing

(1) MIT Single Element 1.385 0.8750 0.9793 1.1868 540 ± 45
(2) SRL Colculation 1.407 0.8556 0.961 1.1566 484
(3) SRL Lattice Expt. - - - - 524± 15

B. 31-ROD CLUSTER
9.33in. Lattice Spacing

(1) MIT Single Element 1.438 0.7926 0.9863 1.1241 458 ±43
(2)SRL Calculation 1.451 0.79 0.9621 1.1028 425
(3)SRL Lattice Expt. - - - - 50 1 15

C. 31-ROD CWSTER
12.12 in. Lattice Spacing

(1) MIT Single Element 1.412 0.8684 0.9733 1.1937 472 44
(2) SRL Calculation 1.419 0.8486 0.9513 1.1458 416
(3) SRL Lattice Expt. - - - - 429 t 20
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4.7 ACCURACY OF VALUES OF MATERIAL BUCKLING

The values of the buckling obtained in this study are a result

of a combination of the single-element experiments, the heterogeneous

theory, and the simple lattice calculations. The uncertainty

associated with values of the material buckling calculated by the

single element method is best obtained from the direct evaluation of

the effect which the experimental errors have on the final buckling

results. Figure 4.4 shows the sensitivity of the calculated values

to the variation in the measured experimental parameters X, y, R and F.

2
These studies have been made through repeated calculations of B form

systematic variations in each of the experimental parameters. The

2
figure aids in estimating the uncertainty in B due to typical valuesm

of experimental errors (Table 3.4): that is, approximately, 1.5% in

X, 0.5% in y, 1% in R, and 2% in F. The result of compounding the

separate uncertainties is a net error in the neighborhood of 8% for the

values of buckling from the single-element method.

The extensive studies (Bl, F4) of the Savannah River Laboratory

(SRL) and the Atomic Energy of Canada Ltd. (AECL), done under the

USAEC-AECL Cooperative Program, provide .a good grou'd to assess the

accuracy of the best present-day methods to determine the values of

heterogeneous lattice buckling. The two studies cited above, put

together, deal with 19 and 31-rod cluster fuelled lattices which

involve five fuel rod-types, four coolants (D2, H 20, HB-40 and air)

and three lattice spacings. However, the work reported by AECL does

not include theoretical cell calculations such as those done at SRL.

Furthermore, there is very limited overlap between works of the two
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laboratories. Thus, most of the AECL study pertains only to the 31-rod

clusters with H20 and air as coolants. On the other hand, the SRL

study does not include H20-coolant. There are twelve lattices for

which the SRL experiments and calculations, and the AECL experiments

can all be compared.

In general, the experimental results have a good accuracy, the

error being less than 5% in most cases. The quoted errors on AECL

buckling results (~1%) tend to be unrealistically small; thus the

corresponding SRL results for several of the twelve "common" cases fall

far out of the uncertainty bounds shown by AECL. As for the accuracy

of calculations, Baumann et al. (SRL) report the magnitude by which

each measurement differs from the HAMMER-calculated value. Though the

agreement between experiment and the calculations appears to be good

for some of the 31-rod cluster fuelled lattices, errors on the order of

10% and more are quite common. It is interesting to note that when the

experimental and calculated results of SRL are compared with the experi-

mental results of AECL for the "common" lattices, only three out of

these twelve cases show an agreement within 10%. In the case of the

9.33 in. spacing 31-rod cluster SRL lattice, which is also of direct

interest to the present study, the discrepancy between the calculated

and experimental values of buckling (Table 4.7) is in excess of 15%.

The comparable accuracy of the single element method in predicting

the material buckling of lattices is seen from the comparison in

Table 4.7. Thus the single-element results show excellent agreement

with results of SRL experiments: the difference in the values of

buckling being in the neighborhood of 5% for two of the lattices.
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For the 12.12 in. spacing 31-rod cluster lattice, this discrepancy

is about 10%.

I
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Chapter 5

CONCLUSION

5.1 SUMMARY

The purpose of the present study has been the development of

methods for the direct experimental determination of the heterogeneous

fuel parameters r, n and A, based on the use of a single fuel element.

This objective appears to have been accomplished satisfactorily.

Three single-fuel assemblies have been investigated: a 1.01 in.

diameter natural uranium fuel rod for use as a "reference element",

and tight-clusters of 19 and 31-rods of UO2-PuO2 fuel which simulate

natural uranium "burned" to 5000 MWD/ton. The cluster design is

typical of those used in pressure-tube designs for D20 moderated power

reactors.

The test fuel assembly is placed at the center of a subcritical

tank of heavy water moderator fed by thermal neutrons from the bottom

of the tank. The theoretical formulation developed in Chapter 2

related the heterogeneous fuel parameters to four experimental

quantities X, y, R and F which are measured in the moderator surrounding

the single fuel element. The experimental setup is very simple. All

the necessary measurements are made outside the fuel element, thus

obviating the need to cut into the radioactive fuel assembly. These

single-element measurements were discussed in Chapter 3. The uncer-

tainty associated with the measured heterogeneous parameters r, n and

A is in the neighborhood of 5%, 3% and 4% respectively. Some suggested

improvements in the experimental techniques are discussed in the

following section.
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Values of the heterogeneous fuel parameters r, n, A obtained

from the experiments on the UO2-PuO2 fuel clusters and the natural

uranium rod were tested in Chapter 4. Simple expressions relate r, n

and A for a fuel element to the thermal utilization, fast neutron

yield, resonance escape probability and multiplication constant of an

infinite uniform lattice composed of the fuel element in question.

Values of the material buckling of the lattices were derived from

these reactor physics parameters through the use of age-diffusion

theory. The accuracy of the values of the buckling obtained in this

manner is estimated to be about 8%. The values of the buckling for

uniform lattices of the natural uranium reference rod were compared

(Fig. 4.4) with a compilation of experimental values for lattices of

the same fuel rod obtained at several laboratories. The corresponding

results for the 19 and 31-rod cluster-fuelled lattices were compared

(Table 4.7) with numerical and experimental results obtained at the

Savannah River Laboratory. The agreement between the results obtained

in the present study and those obtained from conventional experimental

and theoretical techniques demonstrates the feasibility and adequacy

of the single-element method.

5.2 SUGGESTIONS FOR FUTURE WORK

The single-element method has been tested in this study by its

application to uniform lattices. Future work should involve the

determination of heterogeneous parameters for different fuel clusters

and control elements which might be present in practical core

configurations. These parameters should then be used with a "proven"
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computer code based on the heterogeneous reactor theory, such as

HERESY, to calculate reactor physics characteristics of nonuniform

lattices. Problems like the absorption patterns in spiked lattices

and control rod placement effects could also be investigated. The

solutions to such problems are difficult or impossible by other

methods.

In addition, an attempt should be made to find out how the single-

element method could best be applied to study the change in physics

characteristics of a reactor core due to fuel burn-up. Towards this

end, it may be possible to obtain theoretical curves describing the

change in heterogeneous fuel parameters due to fuel burn-up. These

could then be normalized by experimental studies on "reference" fuel

assemblies which simulate different degrees of burn-up.

Another interesting problem is the optimization of the cluster

with respect to its internal arrangement. The single-element method

should make it easier to obtain the heterogeneous parameters for

different cluster-types at a very low cost. These single-element

parameters can then be used to evaluate the physics characteristics

of lattices made up of the particular fuel cluster. It would also be

useful to find out the spacing of rods in a cluster ("looseness") at

which the single-element model begins to break down.

There is evidence (H2) that the single-element method could be

extended to H 20-moderated reactor lattices. Experimental data on

integral parameters of these lattices have been found to be interpret-

able in terms of heterogeneous reactor theory. The behavior of r, r

and A calculated from these data does not appear to be any more
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complex than that which has already been treated successfully in D20

lattices. Therefore, if the single-element parameters can be measured

in H20 moderator, the necessary analytic formalism to characterize

complete lattices of the subject fuel, can be developed. Numerical

experiments to study the feasibility of single-element experiments in

this case, show that measurements of n and A in H20 should be no

harder than in D20; but, owing to the greater importance of transport

effects, additional theoretical work is needed to obtain r.

In parallel with the above efforts to widen the applicability of

the single-element method, effort could also be directed towards

improving the experimental techniques involved. Some specific sugges-

tions to this effect have been discussed in earlier chapters.

The measurement of X could be accomplished by the use of short

lengths of gold wire instead of foils as detectors. With the axis

of the wires oriented parallel to the fuel axis, these will approxi-

mate point detectors. The number of flux detectors could also be

increased simply by staggering the foil centers along different radii.

Alternatively, a radial gold wire could be used. A remotely maneuver-

able fission-chamber was developed at the start of this experimental

study to be used as a flux scanner. Though the effort was dropped

owing to trouble with the fission-chamber, this technique could be

applied successfully to the determination of X. It enables an on-the-

spot evaluation of X, which would be more convenient than the tedious

foil-irradiation and counting procedures.

Considerable additional work may be done to improve the measure-

ment of A. The difficulties in the use of the ANISN computer code



143

for the present application have been indicated in Section 2.5.3. A

good alternative procedure would be to generate the curves of fc versus

A experimentally: the epithernal flux ratio would then be measured

for "reference" fuel elements with different known values of A, and

which have the same diameter as the test fuel assembly. No normali-

zation of data would then be necessary. A convenient reference fuel

element could be an aluminum tube of the desired diameter packed

with a dilute mixture of the fine UO2-powder in lead oxide. The

uniformity of packing could be verified by irradiating U-238 foils

along a traverse through the tube and checking for the uniformnipy of

the epithermal flux across the cross-section of the reference fuel.

Since the concentration UO2 in the tube is accurately known, the

reference value of A can be easily calculated from the standard empiri-

cal equation for resonance intetral (H3). The different values of

A in the range of interest could then be obtained by varying the con-

centration of UO2 within this tube. The use of such a reference fuel

element with its diameter equal to that of the test element should

also lead to improved accuracy of the n-measurements.

The use in the lattice calculations of the value of A measured

in a single-element experiment assumes that A is insensitive to

spectral differences (Section 2.5.5). Ideally this should be true

only in the case of a single narrow resonance for epithermal neutron

absorption. Evidence to support the assumption has been offered only

for the case of the 1.01 in. diameter natural uranium rod. The

general -effect of spectral differences on A should be examined in

greater detail. In the event that this effect turns out to be
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important, measurement of A may have to be carried out in a l/E-flux.

One way to accomplish this in the framework of the single-element

model would be to surround the test-fuel by a fuel ring of suitable

diameter which would create a 1/E spectrum in the central region

where the test element is placed. Cadmium rods clad in aluminum

placed inside the ring (at a distance from the test element) can serve

to deplete thermal neutrons and reduce the thermal U-238 capture in

the fuel element. The resonance absorption parameter A is then directly

related to the ratio of the neptunium-239 activity (in the case of

U-238) of the test fuel assembly to that of an infintely dilute U-238

foil irradiated in place of the test fuel. The neptunium activities

could be measured by Ge(li)-y ray spectroscopy. A slight modification

of this experimental set up can also lead to the direct measurement

of the fast neutrons emitted per cm-sec by the test fuel assembly

per epithermal neutron absorbed. This is related to An * of Eq. (4.10)

which accounts for most of the correction to n required to calculatefl L'

It was pointed out in Chapter 2 that, theoretically, only two of

the three measurements X, y and R are necessary for the determination

of r and n. .Since the composite uncertainty in determining r or 11 is

smaller with fewer experimental parameters to measure, it would be

advantageous, as well as conlvenient, to eliminate any extra measure-

ment. The theoretical bases for the different ways of achieVing this

goal have been indicated in Section 2.4.3.

The heterogeneous fuel parameters r, n and A can also be obtained

by more variations of the foil activation technique. These techniques

also require only a single fuel element and involve measurements which



145

can be made outside the fuel. Thus, r of a test element could be

obtained by measuring the ratio ($ 12) of the thermal neutron acti-

vities at two radial positions in the moderator surrounding the fuel;

the value of r is then given by a suitably normalized curve which

describes the variation of $ /2 with r. The parameter ri could be

evaluated by irradiating a pair of indium foils, with cadmium between

them, on the fuel surface; the fast neutron yield parameter is then

related to the ratio of the fast neutron induced activity of In-115

(isomeric state) to the difference of the thermal neutron activities

of In-113 in the two foils. Likewise, A could be measured by

irradiating a sandwich of cadmium covered depleted U-238 foils on the

fuel surface; A is then proportional to the ratio of the difference

of the neptunium-239 activities in the two foils to the sum of these

activities. All these methods make use of an activity ratio which is

normalized by the use of a "reference" fuel assembly. The above methods

may not necessarily be more accurate than those discussed in this

report, but are indicated here because they have not been investigated

previously.
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Appendix A

PERTURBATION IN RADIAL BUCKLING

The thermal neutron flux distribution in the cylindrical tank

containing only the moderator has a J0 -shape. The unperturbed radial

2
buckling, a0 , of the moderator tank is obtained from the condition

that the flux (fundamental mode) vanishes at the outer boundary (r = R)

of the tank. Thus,

V 0

a0 , 
(A.1)

R

where v0 (= 2.405) is the argument of J0 corresponding to its first

zero. Insertion of a fuel element in the center of the moderator

increases the radial buckling to a (increased radial leakage). Useful

approximate expressions are now derived for the perturbation, Aa, in

radial buckling;

Aa = - a0' (A.2)

One such expression is obtained by simplifying Eq. 2.68. For

elements of small size,

J0 (aa) = 1, J1 (aa)
(A.3)

2 Y1 a) 2
Y (aa) = . (aa), - .a

~-~- -~
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Equation 2.68 then reduces to:

YO(aIR) Y1 (iX)
TI= (A.4)

J0 (aR) J0 (aX)

I1- -
YO0(aR) Y 1ax

where I is given by Eq. 2.69.1. Expanding J0((aR) in a Taylor Series

and making the following substitution:

Aci
J0 W) =-RAa J1 (v0) = - '. v0 1(v0), (A.5)

Equation A.4 yields:

Aa Y0(W) J1 (aX) (n+l)
....--. ~ (A.6)

a 0 1 1 V0 Y1() nl 1)

The right hand side of the above expression involves a, which is here

an unknown quantity unless it is measured (Section 3.5). Only a few

iterations are, however, necessary to calculate Aa.

Another useful approximation for Aa which does not involve X is-

obtained more directly. Simplifying Eq. 2.26 with the value of Sr

from Eq. 2.11, and that of L from Eq. 2.19, it follows that

{1 ) Y0 (aa) + 27rD r aa Y1 i(aa)

YO(aR) J0((aa) + 2wD F aa J1 (aa)

I (a,R) - , I (a, )

YO0(aR)
n .(A.7)

(J0(aa) + 27rD P aa Jl1(a)
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Again, making the substitution from Eq. A.5 in the left-hand side

of Eq. A.7, the result is

da Y (gR) nI2 {J 0 (aa) + 2wD r aa J1 (aa)}
(A. 8)

a0 1 (v0) v0 {Y0(aa) + 27rD -r aa Y (aa)}

where
JO0(aR)

I2 J(a, -) - (a,R) (2.69.2)
Y 0 (aR)

Equation A.8 can be simplified by making several assumptions. First,

it can be shown that when the line-source, infinite-medium age kernel

(Eq. 2.56) is used for r(r,T) in the integral Ii, and the integration

(GS) approximated to range from 0 to co, the value of I is very close

to unity. Further, if the contribution of the second term in 12 is

neglected, 12 = 1. Then for elements of small size (Eqs. A.3), it

follows that:

Aa YO(aR) (n-1)
....- (A. 9)
a 0  J1 (v0) v0 Y0(ta) - 4Dr}

Again, only a few iterations on a are necessary to obtain Aa.

In the case of the perturbation due to the 1.01 in. diameter

natural uranium rod, the calculated value for Aa agrees with the

experimental results to within 5%.
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Appendix B

UNCOLLIDED FLUX KERNEL

The uncollided flux, *f (r), at a point P which is a distance r

from an infinitely long line source of fast neutrons of unit intensity

is approximately given by

Of(r) = 0(r) e , (B.1)

where $0 (r) is the value of 0,(r) in a fully transparent medium

( f= o), and

I is the mean chord length of uncollided fast neutrons inside

a transparent cylinder of radius r.

00(r) is obtained by summing the contribution from infinitesimal

source elements of length dt. If the direction of the normal to the

element dt subtends an angle e with the line joining the element to

the point P, then it follows that

2
dt = rsec'6 d0 (B.2)

and the contribution of the element dk to the uncollided flux at

point P is given by

dk de

$0 2 (B~~~'.3)
4n(rsec8) 4wr

Hence, 'i 2

0(r)= I 1 (B.4)

-7r/2
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The mean chord length, T, is obtained by expressing the flux,

0(r) as the total number of chord lengths per cm
3 -sec. If dt is the

differential chord length of fast neutrons in a cylindrical shell of

thickness dr at the point P, then $0 (r) may be written as

0(r) = dr (B.5)
- Zrrdr

Then from Eqs. B.4 and B.5, it follows that

di = dr, (B.6)

and integrating the last equation gives

i r (B.7)

The required flux of uncollided neutrons is then given by the

substitution of Eqs. B.4 and B.7 in Eq. B.1. This result is

i r

= e 
(B.8)

The last equation has been compared with experimental and nunierical

data by Higgins (HS).
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Appendix C

CORRECTION OF DETECTOR RESONANCE INTEGRALS

In the derivation of the epithermal flux at a certain neutron

energy from the activity of a resonance foil detector irradiated on

the fuel surface (Section 3.7.3), it is necessary to correct the

infinite-dilution resonance integral of the detector for the 1/T(u)

flux spectrum at the fuel element. The necessary correction factor

is obtained in this appendix.

Under the assumptions stated in Section 2.5.1, the slowing-down

density of neutrons of age T at the fuel surface is

1 '1 ( 1
q(T) = - - - (C.1)

4wT 47r D u

Since the age (T1) of neutrons after one collision is approximately

given by

T D (C.2)
t t

it follows that

g1(T ) t (C.3)
47r D

Hence the probability that a neutron will slow down to age T at the

fuel surface is equal to:

= ET (C.4)
ql(T ) u

The resonance integral of the foil-detector irradiated on the fuel

surface should be weighted with the probability derived in the last

equation. Thus

-----
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Ucd

RI = au) C du, (C. 5)
l/T a U

where ucd is the lethargy of neutrons at the cadmium resonance energy

(0.4 ev). The resonance integral is the sum of the contributions of

1/v-absorption and resonance absorption in the detector material. The

1/v-part of the absorption in the present case may be estimated with

the following substitution for a a(u):

a = E0  0 e u/2, (C.6)
a 0E 0E0

where 00 and E0 correspond to the absorption cross-section and

neutron energy at 2200 m/s, and

E is such that u = Ln(E /E).

Substitution for aa in Eq. C.5 gives

RI (1/v-part) = 00 1 - E , (C.7)

where
Iv t

E1(x) = J dt (C.8)

The numerical value of the right-hand side of Eq. C.7 is obtained by

substituting for the values of the constants (ucd v 17, = 0.51).

The result is

RI l (1/v-part) = 2 x 10~4a0. (C.9)

The 1/v-contribution calculated above is negligible compared to the

contribution of the resonance absorption; consequently,
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RI a (u) du, (C. 10)
r resonance

where ur is the lethargy of neutrons at the resonance energy of the

detector. For a large value of resonance cross-section of the detector

(RI/a 0 , large),

RI RI (C.11)
l/T ur

The above equation explains why the resonance integrals of gold-197

and molybdenum-98 are weighted with the value of their inverse resonance

lethargy (1/ur) in Section 3.7.3.

.. .................. ....
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Appendix D

SAMPLE DATA

Table D.1 shows the radial distribution of corrected gold foil

activities measured in a typical experiment on each of the three fuel

elements investigated in this study. The value of X for each radial

traverse is obtained by curve-fitting the measured activities to

Eq. 3.2. Values of X are tabulated in Table D.2.

Typical values of the corrected gold foil activities along axial

traverses and the value of y2 corresponding to the best curve-fit of

each set of data, are given, respectively, in Tables D.3 and D.4.

Tables D.5 and D.6 list the results, respectively, of measurements

for R and F. Further details regarding these are to be found in Refs.

L9 and M2.

"~-" -~--~



Table D.1

TYPICAL GOLD FOIL ACTIVITIES FOR

RADIAL TRAVERSES

Nat, Uranium Rod 19-Rod Cluster 31-Rod Cluster

Radial Corrected Radial Corrected Radial Corrected
Distace Activity per mgm Distace Activity per mgm Distace Activity per mgm

6,41 3320 9.24 2967 10.15 2836

7,05 3340 9.87 2980 10.79 2855

7,68 3369 10,51 3029 11.42 2881

8~,32 3368 11.14 3030 12.06 2881

8,95 3371 11.78 3074 12.69 2883

9,59 3432 12.41 3088 13.32 2917

10,22 3435 13.05 3073 13.96 2981

10,86 3389 13,68 3081 14.59 2885

11,49 3380 14.31 3104 15.23 2919

12,13 3385 14.95 3073 15.86 2953

12,76 3326 15.59 3030 16.50 2919

13,40 3304 16,22 3047 17,13 2903

14,03 3322 16,86 3075 17.77 2896

14,67 3293 17,49 3027 18.40 2816

U,
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Table D.2

VALUES OF X (CM)

Nat. Uranium 19-Rod 31-Rod
Rod Cluster Cluster

9.574 13.396 14.411

9.557 12.482 15.366

9.542 13.282 14.192

9.84 12.967 14.587

10.05 13.337* 15.263*

9.673 13.08* 15.666*

13.03* 13.895*

* Cluster rotated through 30*

. ..........- - - .11 - 1 --- 1 1". - - " , .,-- - _
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Table D.3

TYPICAL CORRECTED GOLD FOIL

ACTIVITIES(') FOR AXIAL TRAVERSES

Axial Nat. Uranium 19-Rod 31-Rod
(2) Rod Cluster Cluster

Distance (cm)Ro

46.51 4716 4295 4762

51.59 3634 3332 3723

56.67 2822 2570 2895

61.75 2198 1986 2257

66.83 1693 1574 1767

71.91 1331 1228 1397

76.99 1022 953 1077

82.07 797 744 848

87.15 626 583 661

92.23 488 447 512

97.31 373 344 402

102.39 287 272 310

107.47 222 209 239

(1) per milligram

(2) measured from the bottom of the tank
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Table D.4

VALUES OF y2 (x10-6 CM-2

Nat. Uranium 19-Rod 31-Rod
Rod Cluster Cluster

2510 2442 2433

2501 2413 2371

2460 2410 2356

2478 2401 2372

2513 2432* 2434*

2469 2400* 2401*

2395* 2348*

2444* 2388*

* Cluster rotated through 30*
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Table D.5

VALUES OF R

Nat. Uranium 19-Rod 31-Rod
Rod Cluster Cluster

97.11 78.25 57.08

130.06 76.88 59.82

120.53 79.89 57.60

128.32 76.62 60.56

121.76 78.53 55.86

133.24 77.9 59.08

117.42 75.92 57.77

126.68 77.52 59.52
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Table D.6

VALUES OF F AND fe

Fuel Average
Type e fe

Natural 361.8 0.9516 0.9510
Uranium 361.4 0.9505
Rod

19-Rod 407.8 1.072 1.044
Cluster 386.5 1.016

31-Rod 394.75 1.038 1.025
Cluster 385.04 1.013
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Appendix E

n OF NATURAL URANIUM ROD

The natural uranium rod has been used as a "reference element"

in the experimental determination of heterogeneous fuel parameters of

single clusters. The reference value of n is calculated from the

"accepted" value of n' of a 1.0 in. diameter natural uranium rod. n'

is defined as the number of neutrons due to thermal fission in U-235

per thermal neutron absorbed in the fuel. It is necessary to correct

n' for the effects of epithermal and fast fissions in the fuel rod in

order to obtain n. The correction is based upon the values of

625 and 628 measured (Sl) for a single 1.01 in. diameter natural

uranium rod in D20. Equation 2.4 gives the necessary relation for

the calculation of n from n'. Values used for the constants appearing

in Eq. 2.4 are as follows:

n' = 1.315 (K2) V28,f = 2.7 (Kl)

625 = 0.008 (Sl) a28 ,f = 0.107,(Kl)

628 = 0.058 (Sl) V25,th = 2.47 (Kl)

The resulting reference value of n obtained for the natural uranium

rod is 1.375.
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Appendix F

ERI238 AND A OF SINGLE ELEMENTS

The values of the ERI238 are calculated from Hellstrand's

empirical correlations (H3):

ERI238 = 4.25 + 26.8 (metal),

and

ERI238 = 5.6 + 26.3 [ (oxide), (F.2)

Equation F.1 is used for the natural uranium rod, and Eq. 4.2 is used

for the UO2 -PuO2 clusters. All the data necessary for this calculation

are given in Fig. 1.1 and Table 3.1. In the case of cluster, the

values of ERI have been calculated by two methods. In one of the

methods, S is taken as the effective surface area (Hl) of the fuel rods

within the cluster. In the other, the cluster is homogenized and M

taken to be the mass of all U-238 atoms. Both procedures given approxi-

mately the same results (for example, 14,25b'versus 14.06b for the 19-rod

cluster).

The epithermal absorption parameter, A, of the fuel elements is

evaluated by substituting the calculated values of ERI238 in the

following equation.

A N ER238 + N RI . (F.3)
f [N23 i,i/U-238

The summation in the section term of Eq. F.3 extends over all

uraniusm and plutonium isotopes with the exception of U-238. Their

low concentration in the fuel permits the use of infinite dilution
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values for their resonance integrals (D5). The concentration of

various isotopes in the fuel and the epithermal nuclear data used in

the calculation of A are given in Appendix G and Table 4.2.

The values of ERI 238, and A calculated for the natural uranium

rod ("reference element") and the two UO2-PuO2 clusters are tabulated

in Table F.l. Also shown in the table is the contribution to A of

the epithermal absorption in U-238 (A 238) In the present work, the

calculated values of A of the fuel clusters have been used only to

estimate the range over which the values of A should be varied in

order to generate the curves of fc versus A (Fig. 2.4). They are,

however, in good agreement with the experimentally determined values

(Table 3.6).

Table F.1

CALCULATED VALUES OF ERI238 AND A

Fuel Type $79~ ERI 2 3 8  A2 3 8  A

Nat. U rod 0.28 11.95 16.3 20.4

19-rod 0.32 14.06 42.2 54.2
cluster

31-rod 0.28 12.95 64.1 83.2
cluster
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Appendix G

CONCENTRATION OF NUCLIDES IN THE

UO2-PuO2 FUEL CLUSTERS*
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Appendix H

NOMENCLATURE

Superscripts

238

epi

fast

i

st

uranium-238

epithermal neutrons

fast neutrons

nuclide type

standard value; refers to the "reference" fuel element

Subscripts

25 uranium-235

28 uranium-238

OD infinite dilution

Au resonance energy of gold-197

a absorption (cross-section)

c unit cell

cd cadmium cut-off energy (0.4 ev)

ef effective resonance energy for epithermal fission

epi epithermal neutrons

f fuel (includes cladding and coolant)

f fission (cross-section)

f fast neutrons

L lattice

Mo resonance energy of molybdenum-98

m moderator

r effective resonance energy for epithermal absorption

r radial component

SE single element

s scattering (cross-section)

st standard value; refers to the "reference" fuel element

t total (cross-section)

K
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th thermal neutrons

tr transport of thermal neutrons

z axial component

Arabic

A epithermal absorption parameter, cm2

a radius of the smallest circle which completely encloses the
single fuel assembly, cm

2 -2
B material buckling, cmm
b radius of unit cell, cm

D diffusion coefficient of thermal neutrons in the moderator,
cm

E energy of neutron, ev

ERI effective resonance integral of the fuel element, barns

ERI(u) partial ERI evaluated from lethargy, u, barns

F ratio of the epicadmium activities of unit isotopic weights
of Au-197 and Mo-98 irradiated on the fuel surface; obtained
experimentally

f thermal utilization (conventional)

f thermal utilization (derived from r; cladding and coolant
r included in the fuel)

f C ratio of the neutron flux in group-12 (3<E<10ev) to that in
group-9 (100<E<550ev); obtained from the ANISN computer
program

f ratio of the neutron flux at Au-197 resonance to that at Mo-98
e resonance, obtained from F; obtained experimentally

10' 1l modified Bessel functions of the first kind, zero and first
order respectively

JO' J1 Bessel functions of the first kind, zero and first order
respectively

K0 , K1 modified Bessel functions of the second kind, zero and first
order respectively

L diffusion length of thermal neutrons int a lattice, cm

L 0value of L in the moderator, cm
0 -3

N number density of nuclide, cm~

p resonance escape probability

p0 spacing between neighboring fuel elements in a lattice, cm

....... .. .
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q(r,z,T) asymptotic slowing-down density of neutrons of age T at a
point (r,z), cm- 3 sec-1

R cadmium ratio (ratio of the bare to the cadmium-covered
activity) of gold at r = Y; obtained experimentally

R extrapolated radius of the moderator tank at which neutron
fluxes of all energies vanish, cm

RI resonance integral, barns

r radial distance from the axis of the moderator tank, cm

S/M surface-to-mass ratio of the fuel element, cm2/ m

u lethargy of neutron

V volume, cm3

v volume fraction of fuel

v velocity of neutron, cm/sec

X radial distance of the peak of the asymptotic thermal neutron
flux in the moderator, cm; obtained experimentally

Y radial distance at which R is measured, cm

YO' Y1  Bessel functions of the first kind, zero and first order
respectively

z axial distance from the bottom of the tank cm

Greek

a related to y (Eq. 2.10), cm~

a capture-to-fission ratio

ratio of the average epithermal flux in the fuel to that
in the moderator

r thermal constant, cm

y inverse relaxation length of the axial flux, cm~; obtained
experimentally

fast neutron yield factor

T' conventional n

X mean-free-path of thermal neutrons in the moderator (1/E), cm

X fmean-free-path of fast neutrons in the moderator, cm

V average number of neutrons produced per fission

average loss in lethargy per collision

dummy variable

E macroscopic nuclear cross-section, cm

............
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a microscopic nuclear cross-section, barns

T age of neutron, cm2

* total neutron flux, cm sec

$(r,z) asymptotic thermal neutron flux at a point (r,z) in the
moderator, cm-2 sec-1

, (r,z) asymptotic epithermal flux at a point (r,z) in the moderator,epi cm-2 sec-

r(r) relative value of the radial component of $(r,z) with respect
to its value on the fuel surface
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Appendix I

BIBLIOGRAPHY OF PUBLICATIONS ON

HETEROGENEOUS REACTOR THEORY

This bibliography contains a selection of references which deal

with various aspects of heterogeneous reactor theory and single fuel

element neutronics. A brief comment is included on each.

1. Barden, S. E. et al., "Some Methods of Calculating Nuclear

Parameters for Heterogeneous Systems," Proc. Intern. Conf.
Peaceful Uses At. Energy, Geneva, P/272 (1958). Application

of heterogeneous method to finite arrays of rectangular
shape.

2. Bernard, E. A. and R. B. Perez, "Determination of Heterogeneous
Parameters by the Neutron Wave Technique," Trans. Am. Nucl.
Soc., 12, No. 1, 663 (1969). Measurement of the thermal
constant in a single element experiment; analysis by age-
diffusion theory.

3. Blaesser, G., "An Application of Heterogeneous Reactor Theory to
Substitution Experiments,'" P/42/52, IAEA Symposium,
Amsterdam (1963). The method avoids many difficulties which
are typical of homogenized treatment as, for example,
determination of coupling constants.

4. Corno, S. E., "Interpretazione Teorica delle Esperienze di
Moltiplicazione Neutronica su un Solo Elemento di
Combustible," Energia Nucleare, 10, 11 (1963). A highly
theoretical application of small source theory to the
problem of a single rod in an exponential pile. (Series of
three articles.)

5. Corno, S. E., "Theory of Pulsed Neutron Experiments in Highly
Heterogeneous Multiplying Media," in Pulsed Neutron Research,
Vol. II, IAEA, Vienna (1965). A theory of pulsed neutron
experiments applicable to a single fuel element.

6. Donovan, R. "Measurement of Heterogeneous Parameters,"
MIT-2344-12 (1967). Calculations based on measurements on
a single element using foil techniques.
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7. Durrani, S., E. Etherington and J. Ford, "Determinations of
Reactor Lattice Parameters from Measurements on a Single
Fuel Element Channel," APC/TN 1054. Another application
of the method in (30) below.

8. Estabrook, F. B., "Single Rod Exponential Experiments,"
NAA-SR-925, P13. Reports other data on some experiments
as in (14).

9. Feinberg, S. M., "Heterogeneous Methods for Calculating Reactors,"
Proc. Intern. Conf. Peaceful Uses At. Energy, Geneva, P/669
(1955). One of the original and basic theoretical papers on
heterogeneous methods.

10. Galanin, A. D. "The Thermal Coefficient in a Heterogeneous Reactor,"

and, "Critical Size of Heterogeneous Reactors with Small Number
of Rods," loc. cit. 8, P/666 and P/663. Two of the original and
basic theoretical papers on heterogeneous methods.

11. Graves, W. E. et al., "A Comparison of Heterogeneous Nuclear-Reactor
Lattice Theory with Experiment," Nucl. Sci. Eng., 31, 57 (1968).
Comparison is made for thermal neutron densities and critical
geometric bucklings.

12. Hamilton, G. T., "Application of the Single Element Method to Light
Water Lattices," MIT-3944-4 (1969). Data on H20-moderated

lattices shown to be interpretable in terms of heterogeneous
reactor theory.

13. Hassit, A., "Methods of Calculation of Heterogeneous Reactors,"
Progress in Nuclear Energy, Series I, Vol. II, P271 (1958).
Describes the "mesh method" of solving the two group diffusion
theory equations within the moderator region of the hetero-
geneous system using finite difference equations.

14. Heinzman, 0. W. and S. W. Kash, "Intracell Flux Distributions for
an Extensive Series of Heavy Water, Uranium Rod Lattices,"
NAA-SR-1548 (1956). Reports radial flux traverses about
1-inch diameter single rods.

15. Higgins, M. J., "Fuel Rod Interaction Kernels," MIT-2344-12 (1967).
Describes experimental determination of the rod interaction
kernels and methods that can use these kernels to predict
integral parameters for entire lattices.

16. Horning, W. A., "Small Source Model of a Thermal Pile." HW-24282
(1952). An early attempt at an analysis that could be used

to relate theory and experiment.
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17. Jonsson, A., "Heterogeneous Calculation of Fast Fission," AE-42

(1961). An exact calculation of the collision probabilities

is included.

18. Jonsson, A. and G. Naslund, "Heterogeneous Two Group Diffusion
Theory for a Finite Cylindrical Reactor," AE-57 (1961).
Describes the basis for the computer code HETERO.

19. Jonsson, A., G. Naslund et al., "Theory of Application of Hetero-

geneous Methods for D 0 Reactor Calculations," Proc. Intern.

Conf. Peaceful Uses Ai. Energy, Geneva, P/683 (1964).
Extension of heterogeneous methods to finite cylindrical systems.

20. Klahr, C. N. et al., "Heterogeneous Calculation Methods," NYO-2680

(1961). A final report on small source reactor physics calcula-
tions using the HERESY code.

21. Lanning, D. D. "Heterogeneous Reactor Critical Conditions Using

Small Source Theory," TID-7532, Part I (1957). The application

of heterogeneous analysis using age theory, to reactors
containing control rods.

22. Meetz, K., "Exact Treatment of Heterogeneous Core Structures,"
loc. cit. 1, P/968. A theoretical paper which develops a

mathematical formalism for such problems.

23. Papay, L. T., "Fast Neutron Fission Effect for Single Slightly
Enriched Uranium Rods in Air and Heavy Water," MIT-2344-4

(1965). Describes the determination of 628 for small diameter
single rods.

24. Pershagen, B., G. Anderson and I. Carlvik, "Calculation of Lattice

Parameters for Uranium Rod Clusters in Heavy Water and

Correlation with Experiments," loc. cit. 1, P/151. An example
of the application of the Poisson summation in heterogeneous
lattices.

25. Pilat , E. E. et al., "The Use of Experiments on Single Fuel

Elements to Determine the Nuclear Parameters of Reactor
Lattices," MIT-2344-10 (1967). Combines experiments on a

single element with a theory which describes a lattice of

such elements.

26. Rodeback, G. W., C. H. Skeen and J. W. Zink, "Single Element

Measurements," Trans. Amer. Nucl. Soc., 2, 1 (1959). A

preliminary report on (30).

27. Saji, G. and A. Axford, "Space-Time Kinetics for Heterogeneous

Reactor Models," Nucl. Sci. Eng., 35, 319 (1969). A new

theoretical formalism of the space-time kinetics is developed

for heterogeneous reactor models.
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28. Seth, S. S., "Measurement of Integral Parameters," MIT-2344-9
(1966) and MIT-2344-12 (1967). Reports include techniques to
obtain single element integral parameters.

29. Stewart, J. D. et al., "MICRETE: A G-20 Program for Calculating
Finite Lattices by the Microscopic Discrete Theory," AECL 2547
(1966). Description of the program MICRETE for solving 2D
reactor lattice problem using heterogeneous theory.

30. Zink, J. and G. Rodeback, "The Determination of Lattice Parameters
by Means of Measurements on a Single Fuel Element,"
NAA-SR-5392 (1960). Actual experiments on a single fuel rod
are used to infer parameters of graphite uranium lattices,
with best results in the thermal energy region. Also reported
in Nucl. Sci. Eng., 9, 16 (1961).
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