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MODELING OF CORIUM/CONCRETE INTERACTION

ABSTRACT

In the highly unlikely event of a loss of cooling accident in a LWR followed by failure
of certain engineered safety features of the reactor system., the core may eventually
melt due to the generation of decay heat. If the safety features of the reactor system
fail to arrest the accident within the vessel, the molten core debris (corium) will fall
into the reactor cavity and attack the concrete walls and floor.

The heat transferred from the core mel't to concrete can lead to concrete decompo-
sition accompanied by gas generation, which along with direct heating of the atmo-
sphere will lead to a pressure rise in the containment. The cooling rate of the core
melt and the amount of gas generated by concrete decomposition will also affect the
degree to which fission products may be released from the melt.

In this work some of the uncertainties in estimating the heat transfer resistances sur-
rounding the melt and the freezing phenomena involved in the pool are investigated.
A semiempirical correlation for calculating the downward heat transfer coefficient is
derived based on periodic contact between the liquid pool and the underlying solid in
simulant experiments of water or benzene on dry ice. The correlation predicts that
the downward heat transfer coefficient across the corium, concrete interface increases
with superficial gas velocity. The experimental data on interfacial heat transfer be-
tween bubble agitated immiscible layers are reviewed and a.new model based on the
surface renewal concept is proposed. The hydrodynamic instability of a liquid jet
is used to determine the onset of bubble induced entrainment at low gas velocity.
It is concluded that the bubble induced liquid entrainment will not occur in the
Corium /Concrete Interaction at low gas velocity, unlike the observed behavior in
oil water simulant experiments.

The proposed downward and interfacial heat transfer models have been incorporated
into an integral analysis code. CORCON Modi, developed by Sandia laboratories.
The proposed models are qualified by comparison to the results of the German BETA
experiments of several hundred kg steel melt internally heated by induction.

Based on these comparisons, the following approach is proposed to calculate the
downward heat transfer coefficient of a corium pool. If the temperature of the melt
is initially very high, the heat flux will be high enough to stabilize a gas film, and the
interaction can be modeled with the CORCON gas film model until the gas velocity
decreases below a minimum stable gas film limit. After the film collapses, the heat
transfer can be described by the periodic contact model. If the initial temperature
is not high enough to generate a film the heat transfer will be via periodic contact
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throughout the time until freezing takes place. CORCON 'Modi has been modified
accordingly. and the 'results of BETA high melt temperature tests can be reproduced.
However. the calculated results are sensitive to the assumed minimum gas velocity
limit for a stable gas film.

A simplified containment model based on thermal equilibrium among all materials
within the containment is developed, and is integrated with the modified
CORCON'Mod.l The combined model. called CORCELL. is used to study the
impact of Corium /Concrete Interaction on containment pressurization. It is found
that the downward heat transfer model is very important in determining the con-
crete erosion rate. For the cases studied, the containment pressurization rate is less
sensitive to the amount of gas generated. Should combustion of H 2 and CO occur,
the containment pressure would be larger for higher downward heat transfer. For
containment pressurization, the interfacial and upward convective heat transfer co-
efficients are relatively unimportant. However, the temperature profile of the corium
pool will be affected by these parameters. It is also found that by considering the
heat conducted into the containment concrete wall, the containment pressure can be
significantly reduced.

The stability of a horizontal crust layer under the impact of gas injection is studied
by a simulant experiment.. A test apparatus is built with heat. removal via Freon-12
cooling of a porous plate at the bottom. Water freezing with air injection is observed
in the experiments. For the cases studied, a stable solidified layer is formed across
the bubble agitated horizontal liquid /solid interface. Hence. such a layer should be
considered in the integral analysis codes of reactor accident.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Motivation for This Work

A potential risk to the public of operating a commerical Light Water Reactor

(LWR) is due to an uncontrolled release of a large amount of radioactivity. The

only way that a large amount of radioactivity could be released is by melting the

fuel in the reactor core. All accidents involving some fuel melting are beyond the

design basis and termed "Degraded Core Accidents". In the current design of nuclear

power plants, an essentially leaktight containment building is provided to prevent the

initial dispersion of the airborn radioactivity into the environment. Although several

features are able to ensure the integrity of the containment for some time after a

nuclear core meltdown, the containment may ultimately fail causing a release of

radioactivity if the engineered features do not function properly.

The failure potential of the containment is accident sequence dependent. The

time delay to the release of radioactivity is important in evaluating the consequence

of the core meltdown accidents because of the presence of many short half life fission

products, and the increase probability for fission products deposition and retention

on the available surface.

In the highly unlikely event of a LWR degraded core accident with complete

failure of normal and emergency coolant flow, the decay heat would cause fuel rods

to heat up to temperatures above the design limit. If the cooling failure presisted

for extended time periods, the combination of decay heat and the exothermic zir-

conium/water reaction would cause melting of the reactor core. This could lead to

slumping of the molten core material (corium) down into the vessel lower plenum,
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followed by vessel failure and deposition of these materials into the concrete reac-

tor cavity. Corium could then attack the concrete of the cavity floor, releasing gas

and vapor (CO 2 and H20) and ablating the solid concrete, a phenomenon known as

Molten Core/Concrete Interaction (MCCI).

The potential hazard of a MCCI is the threat to the integrity of the containment

building due to any of the following:

1. The possibility of a basemat meltthrough.

2. Containment over-pressurization due to the generation of noncondensible gases.

3. Oxidation of combustible gases generated from the chemical reactions between

water vapor, carbon dioxide and the metallic elements in the corium pool.

4. Meltthrough of the containment steel liner and subsequent loss of containment

leak-tightness.

Another important implication for reactor safety assessment is the MCCI effect

on releasing fission products from the corium pool; the generation of aerosols which

may escape the containment building if leaktightness is lost.

WASH-1400 is the first work which attempted to quantify the physical process

involved in MCCI. The calculations in WASH-1400 were approximation given the

crude state of knowledge then. Since these early calculations the phenomena of

MCCI have been the subject of both experimental and analytical research.

1.2 Scope of This Work

One of the major concerns of modeling the debris pool is the partition of heat

from the radioactivity decay and chemical reactions between the containment at-

mosphere and surrounding concrete. This depends on the heat transfer resistance

through each path and also on the freezing phenomena involved in the pool. In this

work, the downward heat transfer across the horizontal corium/concrete interface

and the interfacial heat transfer between the bubble agitated immiscible liquid lay-
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ers are investigated. An understanding of the freezing phenomena will be obtained

through a simulant experiment.

The proposed models are validated by comparsion to the results of the Ger-

man BETA experiments of several hundred kg steel melt internally heated by in-

duction. A simplified containment model based on thermal equilibrium among all

the materials within the containment is developed and used to study the impact of

Corium/ Concrete Interaction on containment pressurization.

1.3 BACKGROUND

1.3.1 General

There are three types of concrete: (1) basaltic aggregate, (2) limestone aggre-

gate/common sand and (3) limestone aggregate. The first two of these concrete types

are representative of concrete in a large number of LWRs. The major constitueni of

basaltic aggregate concrete is SiO2, hence sometimes referred to as siliceous concrete.

The major constituent of the other two types concrete is CaC03. hence sometimes

referred to as calcareous concrete. The compositions of these concrete types are

summarized in Table 1.1.

In the event of a melt through. the MCCI begins while the temperature of corium

lies between 2400 -K and 3100 'K (depending upon its composition). The concrete

would heat up and melt. A number of events occur as concrete is heated from room

temperature to the melting point (P5]. First. the evaporable water amounting to

2.3 - 3 weight percent of concrete is lost over the temperature range of 300 'K

to 520 'K . Then. chemically constituted water which makes up 1.5 ~ 2.0 weight

percent of concrete is lost between 650 'K to 700 K. Both loss of evaporable

water and chemically constituted water are the results of decomposing species in the

cementituous phase of the concrete. The final decomposition reaction of concrete is

decarboxlation of both cementituous species and concrete aggregate. This reaction,
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Table 1.1

Specifications of Concrete [M3]

Species Basaltic Limestone/ Limestone

Commmon Sand

Weight % Weight % Weight %

SiO2  54.84 35.80 3.60

TiO2  1.05 0.18 0.12

MnO 0.00 0.03 0.01

MgO 6.16 0.48 5.67

CaCO3  10.32 52.45 81.10

Na 2O 1.80 0.082 0.078

K20 5.39 1.22 0.68

Fe20 3  6.26 1.44 1.20

A120 3  8.32 3.60 1.60

Cr20 3  0.00 0.014 0.004

(H2O)evap 3.86 2.70 3.94

(H20)bound 2.00 2.00 2.00

Total Gas Content 7.26 . 25.85 41.64

17



which becomes significant at temperature as low as 820 'K . involves a loss of about

23 ~ 35 weight percent in the case of calcareous concrete but only 1 weight percent

in the case of basaltic concrete. Finally the concrete melts in the range 1350 'K to

1875 cK.

In WASH-1400 (R1], it was assumed that the mechanism for erosion of concrete

by corium was rapid spallation of the first 0.5 m of concrete followed by decompo-

sition and dissolution of the remaining concrete. It was estimated that the corium

penetrates the 3 m thick concrete basemat in approximately 18(- 10, -5) hours. The

calculations in WASH-1400 were approximations given the crude state of knowledge

then. Several experimental observations made after 1974, as described in the follow-

ing section, provide a better assessment of the MCCI events.These experiments are

summarized in Table 1.2.

1.3.2 Melt/Concrete Interaction Experiments

1.3.2.1 Sandia National Laboratory (USA)

A research program to investigate Corium/Concrete Interaction was initiated at

Sandia Laboratories in July 1975. Based on the characteristics of the experiments,

their experimental works can be divided into the following categories:

(1)Concrete Surface Heating Experiments

The objective of this phase of study was to investigate the response of concrete

exposed to a high heat flux on one surface in the absence of chemical interactions with

corium. In those experiments, cylindrical test samples (d = 145.6 mm') were exposed

either to a 2-Megawatt plasma jet [M2,P5] or to a radiant heat facility(C4,P51. The

surface heat flux varied from 0.3 ~ 3.0 MW/rm2.

Those experiments led to the following conclusions [M1]:

- The dominant erosion mechanism for both calcareous and basaltic concrete
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Table 1.2

Melt/Concrete Interaction Experiment,

Concrete

Type

Melt

Material

Initial

Temp.(*K)

Amount of

Melt kg

Generated

by

200 Induction

Furnace

12 Thermite

Reaction

-200 Induction

Furnace

Vrried Thermite/

Induction

no MI,S1

no MI,P7

Induction

Heating

Induction

Heating/no

Basaltic/

Steel

Basaltic/

Basaltic/

Calcareous

Basaltic/

Calcareous

Limestone

Limestone

Limestone

Mild

Steel

Steel

Corium/

Steel

Steel

U0 2

U0 2

Corium

Iron,Steel

9.1

-10

max.

P6

S2,S3

BI

B1

F2.S5

no P2

Thermite Induction R4.AS

600 Heating

Investigater Experiment

Sandia

Sandia

Sandia

Sandia

Internal

Heating

Ref

Large Scale

Calcareous

Small Scale

Calcareous

Coil 1 &

CC1,CC2

Burn Series
V

1 Induction Induction

heating Heating

1 Thermite Resistance

Heating

6.5 Thermite Resistance

Heating

Basaltic/

Calcareous

Basaltic

ANL

ANL

ANL

Thermite

-1970

-3300

-1970

Varied

Varied

-3100

-3100

Varied

2173

KfK

KfK BETA

A1203, SiO2 ~2473



appears to be melting of the cementituous material in the matrix accompanied

by dehydration and decomposition of the underlying concrete.

- Erosion is a quiescent process with negligible spallation that becomes a steady

processes with an essentially constant erosion rate 30 to 60 sec after initiation

of heating.

- From the post-test examinations of concrete samples, a dehydration layer was

found under the melt front.

- The effect of exposed reinforcing rods on concrete erosion is negligible.

(2) Melt! Concrete Experiments without Internal Heating

in Large Scale IM1,P7) and Small Scale [M1.S1l experiments of Sandia, melt steel

was poured on the basaltic or calcareous concrete crucibles. The melt was generated

either by thermite reaction or inside an induction furnace. The erosion rate was

traced by the response of thermocouples embedded in the concrete crucibles. The

conditions of these experiments are summarized in Table 1.2.

From these experiments, the following general conclusions were made:

- Basaltic concrete and calcareous concrete behave in qualitatively similar ways

when exposed to high temperature melts.

- Contact between the melt and concrete is marked by the vigorous evolution of

gas. This evolution is sufficient to levitate and disrupt the molten pool.

- Evolved gases burn brilliantly in air and are self-limited. Chemical analysis

shows the compositions of the gases to be predominantly a mixture of CO, CO 2,

H 2 , and H 20. Carbon dioxide and water are from the thermal decomposition

of concrete. H 2 and CO are formed as H 2 0 and CO 2 percolate through, and

are chemically reduced by the metallic melt.

- The decomposition products (slag) of concrete are largely immiscible with steel

melt. Density driven stratification of the melt into slag and metal phases oc-

cures quickly and is not greatly disrupted by the gas evolution process.
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- The erosion rates at radial and axial directions are approximately the same

and are proportional to the temperature of the melt. The rates in the Large

Scale tests were 0.25 ± 0.15 m/hr for both types of concrete. Results of the

Small Scale, high temperature tests, indicated penetration rates as high as

1.3 ± 0.50 m/hr.

(3) Melt/Concrete Experiment with Sustained Internal Heating

Several attempts have been made at Sandia Laboratories to provide internal

heating within the melt to simulate the decay heat generation of corium. The condi-

tions of these experiments are also summarized in Table 1.2.

In COIL1 P6], a coaxial induction coil was embedded in the calcareous concrete

crucible to maintain sustained heating of steel melt by induction. It was found that

the erosion was predominantly downward and radial erosion of the cavity was fairly

insignificant. Quantiative results for this test are not available. Tests CC1 and CC2

:S4] are designated for the purpose of code comparison. They had the same set up

as that of COIL1 test. The results of those test have not been published.

The series of BURN [P8,S1,S2,S3] experiments at Sandia contain 10 small scale

tests. In this series the attack on concrete by hot solidified prototypic core material

was studied. In BURN2 IS1], a 5 kg cylindrical steel slug was centered in the cavity

of calcareous concrete crucible. Then, the crucible was located in a helical induction

coil. The temperature of the steel rose rapidly (0.3 - 1.2 CK/min) until it reached

near 1650 = 20 'K. When the steel reached a temperature of 470 'K, steam began

to condense about the test apparatus. At a steel temperature of 1170 'K, more

vigorous gas evolution occured. At 1610r 10 'K liquid oxide were spewed out of the

crucible through the gaps. The erosion rates were 31.75 mm/hr and 22.10 mm/hr

in axial and radial directions respectively.

An X - Ray imaging technique was employed P81 to directly observe the
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melt 'concrete interaction in real time in some of the BURN tests. However, the

resolution of the X - Ray (-30 mm) was too large to tell what was happening at

the melt/concrete interface. From the frames of the X - Ray, it was seen that the

pool level swelling due to the gas flow could be as much as 250% of the gas-free pool

depth for a pool with 0.8 kg melt. Again, most results of the BURN tests have not

been published.

1.3.2.2 Argonne National Laboratory (USA)

At ANL, the dehydration of concrete was studied by placing the concrete sample

on top of an induction heated plate [Bi. A temperature of 1070 'K could be reached

at the concrete surface. In another experiment, a disc of stainless steel, ~ 20 mm

thick, was placed on top of the concrete and heated rapidly to melting by induction

[B1]. In some of the tests, small scale spalling of concrete was observed. In the molten

U0 2 /concrete experiment of ANL, the U0 2 powder was packed into the concrete

cavity and then heated up by a combination of thermite reaction and electric current

[B1]. It was found that the molten oxide from the concrete was mutually soluble with

U0 2 . This solution process could proceed even if the UO 2 was not molten [F2,S51.
In these experiments, a single large cavity was formed within the solidified U0 2 /slag

mixture configuration. The top surface of the mixture was displaced upward and

solidified into a mountain-like protrusion, bearing a vent in its apex [F2).

1.3.2.3 Kernforschungszentrum Karlsruhe (FRG)

A complete summary of the early German experimental work on melt con-

crete interaction was given in Reference [P2]. The results were consistent with those

mentioned above.

BETA (A5,R4], a key experimental program of melt concrete interaction is cur-

rently undertaken at KfK. The BETA facility is unique with regard to size and

experimental capability. The results of BETA experiments will be used to verify
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the existing melt/concrete interaction analysis codes. Maximum amounts of 300 kg

metallic and 300 kg oxidic melt can be generated by a thermite reaction and then

poured into a concrete crucible. The melt can be heated by induction to maintain

the characteristic temperature of a certain test. The maximum heating power that

can be generated is 1.7 MW.

The test matrix of BETA experiments is divided into high and low tempera-

ture phases. In the high temperature phase. the highest temperature will be above

2270 'K and the lowest about 1770 'K just before solidification. The main objec-

tives are to determine the heat transfer rate from the melt, the penetration velocity

of the melt in the axial and radial directions, the released composition of the gaseous

products, as well as the aerosol release and the general behavior of all materials.

The main interest in the low temperature phase is focused on the behavior of the

solidifying melt and the long term behavior of the whole system with respect to heat

transfer and the material behavior during the crust formation.

The completed tests at the time of this writing are in the high temperature

phase. The main results are [A5]:

- Downward propagation of the melt dominated for all high temperature exper-

iments. This differs from the various transient experiments without sustained

heating which gave similar axial and radial erosions. However, this is consistent

with the results of COIL1 test of Sandia.

- Entrainment of the metallic phase into the oxidic phase occurs mainly at high

temperature levels of the melt and seems to be controlled by the gas release

rate.

- Relatively insignficant amount of aerosols were observed.

In all the tests that have been made the concrete crucible were from the basaltic

concrete typical for German nuclear power plants. Some tests with calcareous con-

crete crucible are scheduled to be made in the summer of 1985.
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1.3.2.4 Miscellaneous

Due to the extremely high temperature involved in the melt/concrete interaction

experiments, the physical details of the interaction process have been difficult to in-

terpret. Some simulant experiments have been performed [A2,F1,P3). Among those,

the one by M. Plys P31 preserved most of the major phenomena of melt/concrete

interaction. In his experiment, the melt pool was simulated with adipic acid, the

concrete was simulated with azelcai acid, sodium bicarbonate plus polythylene gly-

col as binder. On decomposition, gas was generated and the remainder of the melt

substrate became miscible with the pool material. The decay heat generation of the

corium was simulated with an immersed heater. From the experiment, it was ob-

served that after a few minutes of interaction a crust (solidified pool material) was

formed around the entire periphery (except the top) and the gas flow rate decreased

and finally ceased after about 5 min. Typical overall erosion distances are 1 - 3 mm

downward and 4 - 8 mm sideward. This trend is different from that of BETA high

temperature experiments.

1.3.3 Physical Phemonena of Corium/Concrete Interaction

From the phenomena observed in the above experiments, the following physical

picture can be developed for Corium/Concrete Interaction.

The MCCI is a long term endothermic erosion of concrete by high temperature

corium. The erosion of concrete is a quasi-static process with negligible spallation

and accompanied by the generation of large amount of gases.

The experimental evidence shows that the various oxide in the corium are highly

miscible. as are the metallic species, but that the two groups are mutually immiscible.

Buoyancy forces may be sufficient to separatc the molten debris into two layers,

even in the presence of vigorous mixing by the decomposition gases. The concrete

decomposition gases, initally CO2 and H 2 0. may percolate through the pool unless
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they can escape at the pool periphery. e.g. the gases generated from the sideward

erosion. The presence of the gases in the pool will elevate the pool surface and

increase the layer thickness. therefore changing the geometry of the corium pool.

The bubbling of gases through the pool tends to enhance the heat transfer between

layers and create mixing within the layer. The heat transfer process between corium

and concrete is also complicated by this gas percolation.

The gases which pass through the pool may encounter some metallic elememts,

e.g. Zr, Fe, Ni etc, and be reduced as the metal is oxidized. These chemical

reactions will change the composition of the pool, add energy to the pool and generate

flammable gases H2 and CO. The composition of the pool is also changed by the

addition of slag to the oxidic phase of corium. The slag will dilute the oxidic layer,

decrease its power density and reduce the freezing point.

As time progriesses, the pool grows, its surface area increases and decay heating

decreases. Therefore, pool temperature and interface heat flux decrease, and the

possibility of freezing arises. Because the corium freezing temperature is above the

concrete decomposition temperature, the erosion of concrete will proceed. From then

on the attack on the concrete shifts from the molten pool to partially solidified debris.

It is believed that the attack on concrete by solidified or partially solidified debris

will presist for few days.

1.3.4 Analysis of Corium/Concrete Interaction

The analytical studies of MCCI Interaction can be divided into two parts. The

modeling of the corium pool and or partially solidified debris and the modeling of

concrete response. The two parts are coupled together by the heat transfer rate

between the corium and concrete. Knowing the heat flux, the concrete response

model calculates the gas generation and erosion rates which serve as input to the

debris behavior model for the determination of the heat transfer rate.
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1.3.4.1 Behavior of the Corium Pool

The behavior of the corium pool is governed by a simple energy balance. Decay

heat (and some heat from chemical reactions) is generated in the pool and may be

lost either through its top surface or to concrete. The partition of energy between

concrete and the top surface is determined by the ratio of thermal resistances of the

corresponding paths.

Many efforts have been focused on the prediction of these heat transfer coeffi-

cients. The heat transfer phenomena invovled are: convective heat transfer within

internally heated pool, heat transfer between immiscible liquid layers with gas agita-

tion, erosion of miscible and immiscible substrates, heat transfer at erosion interface

with gas injection. M.Plys [P4] presented an excellent review of these effort. Some

of those works will also be mentioned in the following Chapters.

Several computer codes have been developed for an integral analysis of Corium/

Concrete Interaction. Those are INTER1 [M4], CORCON [M3,C6], GROWS II [B2I,

DECOMP [H4]. EROS [P4], WECHSL [R2] and KAVERN. The first of such pro-

grams, INTERI, was developed by W.B.Murfin at Sandia in 1977. This model was a

preliminary one and intended as a qualitative tool for sensitivity analysis. INTER1

has been incorporated into the MARCH [W3] code which is an integral analysis code

to calculate the containment response. CORCON, a successor of INTERI, was also

developed at Sandia. GROWS II was developed by ANL for the Fast Breeder Reac-

tor safety. DECOMP (a proprietary code) was developed for the IDCOR (Industrial

Degraded Core Rulemaking) program integrated analysis package known as MAAP.

WECHSL was developed by KfK and KAVERN was developed by KWU of West

Germany. General features of these codes are summarized in Table 1.3 and will be

discussed here.

Significant efforts were also devoted to the calculations of the thermophysical

properties of the corium e.g. thermal conductivity. viscosity, solidus and liquidus
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Table 1.3

Features of MCCI Analysis Code

MCCI Model Developed

by

Freezing

Model

Downward Heat

Transfer Coef.

Interfacial Heat

Transfer Coef.

INTER

CORCON/Modi

CORCON/Mod2

WECHSL

DECOMP

Sandia

Sandia

Sandia

KfK

IDCOR

Program

No User

No Film Model

iA4.D2i

Yes Film Model

!A4.D2';

Yes FilmjA4,D21

Discrete Bubble

User

Specified

Konsetov's Bulk

Convection(K3]

Sezekely's Surface

Renewal Model

Modified by Greene[C6

Werle's Model

(W21

Yes

Hemispherical Segment

Intersected by a Cylinder

Two-dimensional

Axisymmetric

Two-dimensional

Axisymmetric

Two-dimensional

Axisymmetric

Cylindrical
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temperatures etc. These efforts are numerous and do not impact crux of this work.

therefore. the details will not be covered here.

(1)CORCON

In CORCON, the molten pool is divided into several layers, the interafce with

concrete is divided into several regions and various processes are mechanistically

modeled. Figures 1.1 and 1.2 illustrate its fundamental regions.

CORCON assumes immediate separation of the immiscible phases of corium

into metallic and oxidic layers, as shown in Fig.1.1 , it allows a three-layer structure

for corium pool. Each layer is considered as a control volume for mass and energy

balance. However, this configuration. oxide/metal /oxide, does not last long if it

occurs at all. The heavy oxide (principally fuel) is diluted by concrete oxide until the

mixture is less dense than the metal and the pool 'rolls over' into a configuration with

all oxides in a single layer above the metal. CORCON calculations [M31 suggested

that the three-layer configuration can not last more than about one hour.

In CORCON, it is assumed that each layer is essentially isothermal due to the

agitation of concrete decomposition gases. The temperature drop from the layer bulk

to the periphery, across the thermal boundary layer bt in Fig.1.2. is characterized by

natural convection with thermal and bubble buoyancy terms [B6]. The weighting

factors for thermal and bubble buoyancy terms are different for different regions in

Fig.1.2. Based on the observations of a water/dry ice experiment [D2], a layer of gas

film is assumed to exist at the corium/concrete interface. On a horizontal surface,

the gases are allowed to bubble up into the pool. On vertical surfaces the gases are

assumed to collect as a flowing boundary layer film. The heat transfer between corium

and concrete is controlled by radiative and convective processes across the film. The

drift flux model 'W1 of two phase flow is employed in CORCON to calculate the

void fraction and the swelling level of pool layers.

28



SURROUNDINGS

COOLANT/
CONCRETE
!NTERFACE
REGION

MELT ATMOSPHERE
(REACTING GAS MIXTURE)

-COOLANT LAYER I
UGHT OXIDIC LAYER

METALLIC LAYER

HEAVY OXIDIC LAYER
(PRINCIPALLY U02 )

MEALT/CORETE CONCRETE

VENT TO
CONTAINMENT

CONCRETE

INTERFACE REGION

Figure 1.1 Schematic of CORCON System
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The first version of CORCON (Mod1) was completed in 1982 and was intended to

calculate the initial high temperature molten pool attack on the concrete. The second

version (Mod2) was released in 1984 C6. The major improvements of Mod2 include:

a simple quasi-steady-state crust formation model developed by R.K.Cole C5] to

calculate the long term attack on the concrete of a partially solidified debris pool.

A full representation of the boiling curve was also included to model the interaction

between the corium pool and the overlying coolant layer. Some modifications of the

interfacial heat transfer between layers were also made.

CORCON/Modl has been modified by different organizations. At U. of Wiscon-

sin. a simple heat transfer model was included to calculate the heat transfer between

the corium and an overlying coolant layer and an aerosol source model was incor-

porated to account for aerosol production and subsequent transport to containment

VI. At MIT, a simplified one cell containment pressure model was incorporated to

study the impact of different heat transfer correlations on containment pressurization

K1.

(2)WECHSL

The WECHSL code developed by M.Reimann and W.B.Murfin (R2] at KfK

uses the same basic structure as that of CORCON. However, it only allows two

layers. The metallic layer is always at the bottom. WECHSL employs a completely

different. model to calculate the pool heat transfer. The ratio of the thickness of

the hydrodynamic boundary layers in the gas film and liquid is calculated following

a proposal of Lock's 11. This is converted into a ratio of thermal boundary-layer

thickness using a standard method. For interlaver heat transfer. a natural convection

correlation with an extra multiplier to account for the effect of gas agitation is used

W2.

Figure 1.3 shows the possible combinations of heat transfer situations at the

corium concrete interface of WECHSL. Again. a gas film (Fig.1.3a) is assumed at
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the concrete surface. However. a discrete bubble model. Fig.1.3b, was also included

to calculate the heat transfer rate when a stable gas film can no longer exist. The

transition between the film model and the discrete bubble model is based on Beren-

son's minimum stable gas film criterion [B51. Models in Fig.1.3c and 1.3d are for

the attack on concrete of partially solidified debris. The transitions between models

depend on the thickness of the solidified layer. These criteria are somewhat arbitrary

and need further justifications.

(3)DECOMP and EROS

DECOMP attacks the problem from a rather simplified point of view. Detailed

modeling of the heat transfer mechanismes involved in the Corium /Concrete Inter-

action is not considered. The heat fluxes from the upper surface by radiation and

through the corium/concrete interface are assumed large enough to quickly cool the

corium pool to its solidus temperature. From then on, the corium pool temperature

remains at its solidus point and the concrete attack is a self-limiting process. The

amount of heat conducted through the crust to the concrete is equal to the total

decay and chemical reactions heat minus the heat radiated from the upper surface.

In DECOMP, the thickness of the crust is determined by the conduction limit, i.e.

if the crust is too thick to transfer the energy out it becomes thinner and vise versa.

The thicknesses of the crust at the bottom and the sides are assumed to be equal.

Based on the same approach as that of DECOMP, M.Plys [P4] developed EROS.

The model consists of six coupled, ordinary differential equations, derived from the

energy balance equation for four control volumes (pool, downward crust, sideward

crust and upward crust) and two interface balance conditions (sideward and down-

ward erosion). In EROS, the thickness of the crust at different locations can be varied

dynanically. With EROS, Plys was able to predict the results of his own simulant

experiment.
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1.3.4.2 Modeling of Concrete Response

On the assumption that the concrete erosion is a quasi-static process. the sim-

plest way to calculate the concrete response is to lump all the sensible heat, reactions

heat and latent heat into an effective decomposition enthalpy. Then. the concrete

ablation rate is determined by the energy balance at the decomposition interface.

This is equivalent to assuming that all the decomposition processes i.e.. dehydration.

decarboxylation etc. occur at the same temperature. This approach neglects the heat

conducted into the concrete. The CORCON series and DECOMP use this approach

to calculate the concrete response. However, in DECOMP the gas generation rate

is calculated by a simple rate equation with a prespecified exponential temperature

profile in the solid concrete.

For WECHSL. Alsmeyer and Reimann [A4] formulated the decomposition pro-

cesses into different layers and heat is absorbed by chemical or physical reactions at

the boundaries of the layers. For each layer. separate energy equations are written

for the solid and flowing gaseous component. The two equations of each layer were

coupled together by the conservation of mass. By assuming that the system coordi-

nate is moving with a constant ablation velocity, a second order spatial differential

equation for each layer is obtained. With a prespecified boundary temperature i.e.

the transition temperature of certain chemical or physical reaction. the differential

equations can be solved. This led to an effective decomposition enthalpy which is

different from the one mentioned above. Although this approach considers the de-

composition process in depth and removes the assumption that all the decomposition

processes occur at the same temperature. it is still a quasi-static one. The heat con-

ducted into the concrete is still not included in th-e calculation. This transient effect

is only important if the debris temperature and therefore the heat flux is low, or the

heat flux is strongly time dependent R2

Corradini C8 proposed a simplified one-dimensional transient ablation model.

He solved the conduction equation which included the convective term from ablation
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integrally with a predetermined quadratic temperature profile. By this way. a thermal

penetration depth was defined. Conceptually. one can imagine that there is a thermal

front moving ahead of the decomposition front. and the concrete beyond the thermal

front is unaltered. The distance between the thermal front and melt front is the

thermal penetration depth. The model can predict the erosion history of Sandia

Surface Heating Experiment 'C4 . This approach considered the heat conducted

into concrete in an integral way. However. it perserved the assumption that all the

decomposition processes occured at the same temperature.

A finite-difference conduction program. USINT B3 . was developed at Sandia

for detailed modeling of the temperature profile, dehydration and decomposition

phenomena of concrete erosion. It has provided reasonable results for concrete dehy-

dration tests. However, this kind of calculation is both time and storage consuming

for a computer. Hence it is difficult to incorporate it into an integral analysis code

of MCCI.

To track the shape of the concrete cavity is another important part in modeling

the concrete response. In CORCON and WECHSL. a series of 'body points' is defined

along the concrete surface (as shown in Fig.1.4) and cavity shape is considered to

be axially symmetric. As the ablation proceeds. the 'body points' recede to a new

position and define a new concrete surface. The recession rate of each body point

depends oin the local heat transfer rate. This model has the flexibility of allowing

the cavity shape to change freely in a two-dimensional sense. In DECOMP, the

cavity is in cylindrical form and the penetration rates in the dow.nward and sideward

directions are assumed to be equal. In EROS the cavity is also in cylindrical form.

however, the downward and sideward erosions are calculated separately.

1.3.5 Comparsions between the Experiments and Codes Predictions

The predictions of CORCON and WECHSL compare reasonably well with the

transient experiments (without sustained heating) of Sandia and KfK. In those
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Figure 1.4 Cavity Shape Change Procedure for CORCON and/or WECHSL
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experiments. the melt froze within several minutes and the erosion rates in the side-

ward and downward directions are about equal. In both codes. the gas film is assumed

to exist on the side and the bottom of the corium pool. Therefore, it is expected

that both codes predict approximately the same amount of axial and radial erosion.

However, the agreement between the code predictions and experiments is violated by

the recent results of the BETA experiments.

In the BETA experiment. the long term attack on concrete by the high temper-

ature melt is achieved by induction heating in the metallic melt. The results show

that the erosion of concrete is dominant in the axial direction. Neither of the codes

can reproduce this trend. This means that the gas film model in both codes is not

always valid for calculating the downward heat transfer. By changing the transition

criterion for the gas flow rate needed to change the gas film model to the discrete

bubble model in WECHSL. Reimann R3 can improve the prediction of the results

of the BETA experiments. However. the criterion is not unique for every test, it has

to be adjusted from test to test in order to fit the experimental results.

The DECOMP code can predict IH2] the experimental results for concrete attack

by the solidified melt for one of the Sandia's BURN series test. However. it can

not simulate the BETA experiments. It inherently assumes that, the downward and

sideward erosion are equal. Direct comparsion between the EROS code and real

material experiments has not been made. Its application to the Corium/Concrete

Interaction reveals that the predicted downward and sideward erosion are about

equal.

1.4 Structure of This Work

First. a simplified model is developed in Chapter 2 to quantify the impact of

heat transfer from core melt to concrete on the pressure rise in the containment.

The primary purpose is to determine the extent to which the partition of heat trans-

fer between the two paths may affect the containment pressure under very severe
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conditions. A secondary objective is to identify the sensitivity of the potential for

containment overpressure to some areas of uncertainty concerning chemical reactions

among the various materials involved.

In Chapters 3 to 5, the heat transfer phenomena involved in the corium pool

are studied. This includes a heat transfer model for horizontal corium/concrete

interface based on a periodic contact mechanism, an interfacial heat transfer model

between bubbles agitated immiscible liquid layers and a simulant experiment to study

the stability of a solidified layer across the horizontal bubbles agitated liquid/solid

interface.

For real materials, a gas film has not actually been observed, but only inferred

from the simulant tests of water or benzene on dry ice. The results of BETA

experiment indicate that there is a possibility that the gas film at the horizontal

corium/concrete interface is not stable. An alternative view is proposed in Chapter 3

to interpret the water or benzene/dry ice experimental data of Dhir et al.[D21. A

semiempirical heat transfer correlation for calculating the downward heat transfer co-

efficient is derived. The correlation predicts that the heat transfer coefficient across

the corium/concrete interface increases with superficial gas velocity as well as with

corium temperature.

In Chapter 4, the experimental data on interfacial heat transfer between bubble

agitated immiscible layers are reviewed and a new mechanistic model is proposed.

The proposed model is based on Szekely's (S6] surface renewal concepts. A simple

model based on the hydrodynamic stability of a liquid jet is proposed to model the

bubble induced entrainment. It is concluded that the bubble induced entrainment

would not occur in Corium/Concrete Interaction if the concrete erosion rate is low

and therefore the superficial gas velocity is low.

The stability of horizontal crust layer under the impact of gas injection is studied

by a simulant experiment. A test apparatus was designed, with heat removal from
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the cell via pourous plates at the boundaries. Water and air are used in the exper-

iment. The detailed design of apparatus and experimental results will be presented

in Chapter 5.

In Chapter 6, the integral effects of the proposed downward and interfacial heat

transfer correlations on the analysis of melt/concrete interaction are investigated.

The proposed correlations are incorporated into CORCON/Mod1. A comparison

of the concrete erosion rate between the code predictions and the results of BETA

experiment is made.

The CORCELL code which combines the simplified containment model devel-

oped in Chapter 2 with modified CORCON1 'Modl is used in Chapter 7 to study the

impact of the Corium/Concrete Interaction on containment pressurization.

Finally, conclusions are drawn in Chapter 8 and recommendations for future

work are made.

39



CHAPTER 2

IMPACT OF CORIUM HEAT TRANSFER TO CONCRETE

ON CONTAINMENT PRESSURE

2.1 Objective

In Corium/ Concrete Interaction, the decay heat, the chemical reactions heat

generated within the corium pool as well as the sensible heat of the pool would be

transferred either directly to containment atmosphere or to the concrete surrounding

the pool.. The partition of energy between the two paths can not be exactly defined at

present, given the limited amount of experimental data and the uncertainties about

the effect of gas bubbling on the heat transfer at the corium pool interface. The two

heat transfer paths tend to pressurize the containment in different ways. Direct heat

transfer to containment will increase the internal energy of the constituents of the

containment atmosphere. Heat transferred to concrete will increase the amount of

noncondensible gases in the containment.

The primary purpose of this chapter is to determine the extent to which the

partition of heat transfer between the two paths may affect the containment pressure

under very severe conditions. A secondary objective is to identify the sensitivity of

the potential for containment overpressure to some areas of uncertainty concerning

chemical reactions between various materials involved.

2.2 Model Formulation

2.2.1 Basic Equations

The approach taken here involves a large degree of simplification by concen-

trating on- the pressure in the containment a few hours following the accidents thus
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deleting the sequential natural of the events. By considering the significant energy

sources and heat dissipation paths, the pressure of the containment can be deter-

mined by the first law of thermodynamics, applied to the containment atmosphere

as a control volume (see Fig.2.1). Thus, the first law of thermodynamics may be

written as:

d~- >3 Miull h, 4-+Z (2.1)

where

Mi = mass of material 'i' in the containment

A5 = mass flow rate of material 'j' out of the containment

ni = specific internal energy of material 'i'

h= specific enthalpy of material 'j'

Qk rate of heat addition by process '

The containment mass constituents are taken to be: (1) primary water initially in

the reactor coolant system, M.,, (2) emergency cooling water from the accumulator,

Mwa, and the spray system, M,,, (3) metallic structures within the containment e.g.

steel liner, RCS pumps, steam generators, pressurizer and refueling machines etc, M1,

(4) containment air, M,, water vapor. Me,, and the noncondensible gases generated

from MCCI , Mg.

The decay heat is assumed to be released to containment via two routes (Fig.2.1):

1. By direct heating of the gaseous atmosphere

2. By transferring to the concrete, which leads to its endothermic decomposition

and the release of gases. The gases may in turn react with the metallic elements

producing H 2 and CO 2 which can also burn with the oxygen in the containment.

The amount of decay transferred to concrete is taken as a parameter which can be

varied as a fraction. f, of decay heat and heat generated in the corium due to the

metallic reactions with the decomposition gases.
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Concrete

Figure 2.1 Control Volume for Calculation of the Pressure Rise of Containment
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Integrating Eq.2.1 over time. and assuming that the enthalpies of the influent

materials, h, , are independent of time, which is a reasonable assumption for this

case, we get:

U2 - U1 = Mwshwe + Mwahwa + Mghg + Q (2.2)

where

U2 = (E MinU)2

= (Mwp -- Mwa + Mw± + Mwc)Uw2

+ Mana2 + MgUg2 + MU 2

U1 = ( MiUn)I

(2.3)

(2.4)

= MwpUwp1 + MwcUwc1 + MaUa1 + Meus1

Q (1 - f)(Qdecay + Qmetallic) + Qcombustion - Qremoved

Mg f (Qdecay Q QmetaiIc)Cg
hdecom

Qdecay

Qmetallic

Qcombustion

Qremoved

hdecom

Cg

decay heat

= chemical energy from metallic reactions

= chemical energy from the gas combustion

heat transferred out of the containment via the

engineered safety features e.g. fan coolers

= decomposition enthalpy of concrete

= initial gas weight fraction in concrete

the subscripts refer to :

wa : accumulator water
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wc water vapor in the containment atmosphere

wp: primary water

ws spray water

a air (N2 + 02)

g gases generated from the decomposed concrete

g noncondensible gases depleted in the combustion

and metallic reactions.

s structural material

2 end state

1 initial state

For a reactor that has been operating at a constant power P (MWt) for a period

of one year, the total decay heat generated at t seconds after reactor shutdown can

be expressed as [G3]:

Qdecay(MJ) = ((± 10)0.' - 0.87(t + 2.0 x 107)0.8 - (t + 3.15 x 107)0' (
8 (2.5)

+ 0.87(t - 5.15 x 107)0-8 + 3.1475 x 105) Po (MW)

2.2.2 Model Assumptions

In the real situation, the determination of the amount of the chemical energy

is quite complicated. It depends on the kinetics of the chemical reactions. In this

simplified calculation, only the chemical reactions listed in Table 2.1 are considered

H3]. It is further assumed that a reaction that has a higher reaction heat will have a

higher priority to react. Also it is assumed that the chemical reactions will proceed

to completion, i.e. reactions will stop only if one of the reactants is exhausted. With

this assumption, the calculated chemical energy is the maximum possible energy that

can be extracted from the chemical reactions.

It is also assumed that thermal equilibrium exists among all the constituents in
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Table 2.1

Chemical Reactions Considered in This Analysis

Reactions

Metallic

Reactions

Combustion

Reactions

Zr + 2H 20 -ZrO 2 + 2H 2 +1

Zr + 2CO 2 - Zr02+ 2CO

Fe+4H20-> Fe3 04 +4H 2 T
Fe + 4CO2 -+ Fe 3 04 +4COT

2CO+0 2 -+ 2CO21

2H 2 + 0 2 - 2H 2 0 T

Reaction Heat [H31

6.53 M J/kg (Zr)

5.83 MJ/kg (Zr)

0.74MJ/kg (Fe)

-0.38'MJ/kg (Fe)

17.68 MJ/kg (02)

15.10 MJ/kg (02)

endothermic
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the containment. atmosphere which is an acceptable approximation for the conditions

prevailing several hours after the accidents. Then the internal energy in Eq.2.2 are

only functions of P2 and T . Using the steam table and the assumption of ideal gas

behavior in the fixed containment volume, Eq.2.2 can be solved iteratively. Therefore.

for a known initial state and a given time, t, we can determine the pressure of the

containment as a summation of partial pressure of water. air and noncondensible

gases.

2.3 Cases Analyzed

Several calculations have been performed for a 2440 MWt PWR with a large dry

containment. The initial state is assumed to be that of normal operation of 2000 psia

primary water and atmospheric containment pressure. The change in the internal

energy of fuel is not considered. All the heat generated is assumed to be ultimately

deposited either to containment atmosphere or concrete. The corresponding values

of parameters in Eq.2.2 are summarized in Table 2.2. The assumptions for each case

analyzed are summarized in Table 2.3.

The accident conditions were varied over a wide range of parameters. The

amount of spray water is arbitrarily assumed to be 3 times to that of the primary

water. This amount of water is approximately 50% of the usual inventory in the

refueling water storage tank.

It is further assumed that the fan coolers are partially available and when avail-

able they operate at a reduced efficiency so that the net effective rate of fan cooling

is roughly 10% of the rated capacity (-7 MW). The amount of structural materials

that. can act as a passive heat sink is assumed to be equivalent to 1000 tons of steel.

The heat conducted into the concrete wall of containment buliding is not considered

in the present calculations but will be examined in Chapter 6. The amount of Zr

available for metallic reactions is assumed to be equal to that of the fuel cladding

(approximately 19 tons). The amount of iron in the corium depends on the accident
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Table 2.2

Parameters Used in the Analysis of the

Reference PWR Large Dry Containment

Mass Internal Energy at

(kg) Initial State kJ/kg

Primary Water

Accumulator Water

2.34 x 105

1.10 x 105

1327

398.1

Water in the Containment

Atmosphere

Spray Water

Containment Air

Amount of Zr in the

Corium pool

1.05 x 103

7.03 x 105

6.00 x 104

1.91 x 104

47

2405

157.5

Ideal Gas



Table 2.3

PWR Cases Analyzed'

Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8

aIbIc aIbIc a a a a aIbIc aIb c

Time After Accident (hrs)

ConcreteTypeb

Accumulator Water

Spray water

Fan Cooler (% eff.)

Structure (1000 tons)

Chemical Energy

6 6 6 6 6 6 Varied Varied

AIBIC AIBIC A A A A AfBIC AIBIC

Yes

Yes

10%

Yes

Yes

Yes

Yes

10%

Yes

Yes Yes

Yes Yes

10%

Yes

Yes

- 20%

No Yes

No Yes Yes

Yes

Yes

Yes Yes

No Yes

- 10%

Yes

Yes

Yes

Yes

* Large Dry Containment

IA: Limestone/Common Sand, B: Basaltic, C: Limiestone.

Case I

Yes

10%

Yes

No



sequence. In the present calculations, it is assumed that there are equal amounts of

Zr and Fe in the corium pool.

Three kinds of concrete were used in the analyses in order to identify the impact

of the concrete types on containment pressurization. Those are basaltic concrete,

limestone/ common sand concrete and limestone concrete. The heat necessary to

raise the concrete from room temperature and convert it to melt is estimated by the

following equation iP7]:

TD3

hdecom = Cydt + &i L (2.6)

where

Tc = initial temperature of concrete

TD = decomposition temperature of concrete

C, = specific heat capacity of concrete
I

d1 = heat of decomposition associated with

(1) loss of free water

(2) loss of bound water

(3) decarboxylation of the concrete

L = latent heat of concrete melting

The decomposition enthalpy and the initial concentration of gases of various kinds

of concrete are listed in Table 2.4. In those estimations, the heat of decomposition

is based on the data in Ref. (P7] and the temperature dependency of heat capac-

ity is obtained from Ref. [S3]. All values and equations used are summarized in

Appendix A.

The impact of corium heat transfer on different types of containments are also
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Table 2.4

Decomposition Enthalpy and Gas

Concentration of Concrete

Limestone/

Common Sand

Concrete

Basaltic

Concrete

Limestone

Concrete

Free Water

(Weight%)

Bound Water

(Weight%)

Carbon Dioxide

(Weight%)

Fractional Gas

Content C.

Melting Temp.

Range (*C)

Decomposition

Enthalpy MJ/1 kg

2.7

2.0

22.0

0.267

1150-1400

3.58

2.9

2.0

1.5

0.064

2.3

1.8

35.7

0.418

1080-1360 1450-1650

2.89 4.14
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studied. Three types of containment are considered. These are PWR large dry

containment, PWR ice condenser containment, BWR supression pool Mark I con-

tainment. The important parameters for each type of containment are summarized

in Table 2.5 for comparison.

2.4 Results

2.4.1 Impact of Fraction of Heat to Concrete

It is clear from the assumption of limited heat removal away from the contain-

ment that the containment pressure will rise above the initial pressure. For a PWR

large dry containment, the pressure of the containment generally decreases as the

fraction of decay heat, f, transferred to concrete increases above 30% (Fig.2.2).

The total pressure is due to three constituents: water steam, air and noncondensible

gases. Among those, the water steam makes the major contribution to the total pres-

sure. For the concrete with higher gas content, however, the noncondensible gases

can make significant contribution (- 30%) to containment pressure if a large fraction

of heat is assumed to be transferred to concrete (Fig.2.2).

For basaltic concrete (Fig.2.3) the total pressure is found to decrease as f in-

creases. As the fraction exceeds 60%, the pressure remains below 0.69 MPa (100 psi)

all the time. However, this is not true for a concrete that contains greater than 20%

by weight of gases. From Fig.2.4, it can be seen that for limestone/common sand

concrete the total pressure increase slightly as f is increased from 10 to 30% and then

decreases at higher value. This is because, for concrete with a high gas concentration,

as f increases the amount of chemical energy increases significantaly. However, the

generation of chemical energy will reach a saturation value due to the limited amount

of metallic substances (Zr, Fe) and oxygen available in the containment.

2.4.2 Effect of Concrete Types

Figure 2.5 shows a comparison between the pressure responses of containment to
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Table 2.5

Containment Characteristics

PWR PWR BWR

Large Dry Ice Condensor

Thermal Power MWt

Operating Pressure of

NSSS (psia)

Containment Free

Volume (m?)

Ice (tons)

Water in Supression

Pool (tons)

Structure Heat Sink

Assumed (tons of Steel)

Mark I

2440

2250

525000

3250

2250

35000

3293

1020

11700

1000

3800

1000 - 1000 1000
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different kinds of concrete at t = 6 hr. In general. for low values of f, for the concretes

with high gas concentration the pressure will reach a maximum and then decrease

as f increases. The results are different. however, if we exclude the chemical energy

from the calculations (Fig. 2.6). The maximum difference (-15 psia) between

the pressure responses of the containment with basaltic and limestone/common sand

concrete occurs at high value of f due to the large amount of noncondensible gas

generation.

2.4.3 Comparisons among Different Types of Containment

The pressure responses of different containment types at 6 hr. after the accidents

are shown in Fig.2.7. From Fig.2.7, it can be seen that, for a PWR ice condenser

containment the pressure in the containment is relatively insensitive to the fraction

of heat transferred to concrete. For a BWR supression pool containment, as the

fraction of heat transferred to concrete increases the pressure increases. The primary

reason for that is the BWR containment is relatively small, and has a large amount

of water to quench the steam. Thus, the pressure of concrete gases becomes the

dominant one and this component will increase as the fraction of heat to concrete

increases.

2.4.4 Sensitivity Studies

A sensitivity study has been performed for a PWR large dry containment with

limestone/common sand concrete. The assumptions for each case are summarized in

Table 2.3 and the results are shown in Fig.2.8.

(1) Chemical Energy

By comparing Case l a an d Case 2a in Fig.2.8, it can be seen that the chemical

energy liberated from the ietallic and combustion reactions can increase containment

pressure significantly. especially for low value of f. The amount of chemical energy

increases significantly as f increases from 10 to 30%c and then begins to level off. In
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the calculation of chemical energy. an assumption of the amount of iron in the corium

pool is needed. However. the results are indifferent to the assumed amount of iron

even this value is changed by six folds, i.e. from 20 to 120 tons. This is because the

reaction heats between Fe and H 2 0, CO 2 are relatively small and Fe - CO 2 reaction

is endothermic. In this calculation the maximum chemical energy calculated is 40%

of the 6 hours decay heat.

(2) Passive Heat Sink

From Fig.2.8 (Case la and Case 3a) it can be seen that even if only 1000 tons

of structure material are available as passive heat sink, the containment pressure can

be reduced by 9 to 10%.

(3) Active Heat Sinks

The availability of a fan cooler or other engineered safety features to remove

the heat out of the containment is crucial to the determination of the containment

integrity. A partially operable fan cooler (10% or 20%) can reduce the containment

pressure by significant amount (Case la, 4a, and 5a in Fig.2.8) especially for low value

of f. If we assume that there is no spray (Case 6a), the pressure in the containment

reaches an unreasonable value when f is small.

It is interesting to point out here, that no matter what assumptions are used

in the calculations, the containment pressure always depends on the fraction of heat

transferred to concrete. especially for values of f between 40% and 90%.

2.5 Discussion

In the Reactor Safety Study (Ri. ir some cases it was assumed that all the heat

was transferred into the concrete. However. for PWR large dry containment when

the heat removal away from the containment is much less than the design capacity of
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engineered safety features. more heat transfer to concrete leads to a lower pressure

rise. Therefore. based on the consideration of pressurization rate. the assumption in

the Reactor Safety Study is not always conservative.

The extent of chemical reactions between the gases generated by concrete decom-

position and core melt will be very important in determining the pressurization rate

of the containment. In Fig.2.9 the time required to pressurize the PWR large dry

containment to 0.69 MPa is shown. In the presence of complete chemical reactions

of those gases. the fraction of heat transferred to concrete does not significantly im-

pact the pressurization rate if the value of that fraction is between 10 and 40%. The

results of molten steel/concrete experiment (P7) at Sandia showed that the fraction

of heat to concrete depends on the rate of gas evolution and range from 20 to 45%;.

The more recent BETA experiments at KfK showed that this fraction is more than

8097. In the absence of chemical reactions, more heat transfer to concrete leads to a

much lower pressurization rate and much longer time to reach 0.69 MPa pressure.

2.6 Conclusion

1. The fraction of heat transferred to concrete is important in determining the

pressurization rate of containments. In a PWR large dry containment, for lim-

ited chemical reactions and heat removal away from the containment. a higher

heat transfer rate to concrete reduces the pressure rise in the containment.

2. The extent of chemical reactions between the concrete gases and core melt

will be a major factor in determining the pressurization rate of containment.

especially for a concrete type with high gases content.

3. The components and structures within the containment act as a valuable pas-

sive heat sink during the accidents. This sink is especially important for a

PWR large dry containment.
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4. Based on thelthermal equilibrium model used in this approach, it is desirable

to have as -large an amount of water as possible. to act as a heat sink.
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CHAPTER 3

A HEAT TRANSFER MODEL FOR HORIZONTAL

CORIUM/CONCRETE INTERFACE

3.1 Heat Transfer at An Erosion Interface

The problem of melting of a horizontal solid by an overlying hot liquid pool has

been extensively studied by many investigators. Their works can be classified into

the following categories: erosion of a miscible substrate, erosion of an immiscible

substrate and erosion with gas injection.

3.1.1 Erosion of A Miscible Substrate

Farhadieh and Baker [F3] used carbowax 1500 (density is 1150 kg/rM3 ) as the

solid substrate and aqueous NaBr or KI solution as the liquid pool. The melted solid

and liquid pool are mutually soluble. A plane heater was used as the heat source. The

initial liquid density ranged between 1068 and 1750 kg/m , which was obtained by

variation of the solute concentration. It was found that the melting system is highly

sensitive to density differences. As the density ratio, density of pool to that of melted

solid, increases the heat transfer rate to substrates increases. When the density ratio

is less than unity, the system is gravitationally as well as thermally stable. When the

density ratio is greater than unity, the system. although thermally stable, becomes

gravitationally unstable, and convective processes are initiated. If the density ratio

is less than 1.09, the flow regime appears to be laminar and is characterized by

needle-like streams of low density which penetrate the overlying liquid. When the

density ratio is equal to 1.09. there is a sharp transition to a turbulent region and is

characterized by the presence of vortices which results in considerable increase in heat

transfer and melting rates. As the density ratio is greater than 1.25, the turbulence
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becomes even more vigorous and the increase of the heat transfer coefficient with the

density ratio is faster than before.

Catton. et al. ;C9] performed miscible erosion experiments in different ranges

of density ratios (1.72 2.38). They placed frozen benzene underneath the carbon

tetrachloride (CCl4 ) or diiodomethane (CH 21 2 ). It was found that, at high density

ratios. the heat flux to an eroded substrate was independent of the temperature dif-

ference between the pool and substrate. It only depended on the density difference.

This is consistent with their theoretical derivation based on the Rayleigh- Taylor in-

stability theory. Werle and coworkers studied erosion of miscible substrate of frozen

polyethylene glycol 1500 (PEG, p = 1100 kg/rM 3 ) and ZnBr 2 , NaBr solutions "E1.

F6]. Both plane heating and internal joule heating were used in their experiments.

The results of the test with plane heating agreed with those of Farhadieh and Baker

qualitively. But in contrast to the tests with plane heating where the melt layer dis-

appeared by a dissolving process, with internal heating it was destroyed by the action

of large scale thermal convection in the bulk of the liquid. This was accompanied by

a remarkable increase in heat transfer.

3.1.2 Erosion of An Immiscible Substrate

Several investigations have been made of the melting of solid by an overlying hot

liquid pool immiscible with the molten phase of the solid. A qualitative experimental

studies of the melting of frozen benzene and frozen o-xylen under warm water were

made by Alsmeyer and Reimann (A4]. Tafreshi et al. 'T11 studied the phenomena

by placing frozen olive oil beneath a pool of water. Their careful studies of the

structure of the melt film indicated that the melting process is best described as a

Taylor instability. The postexperiment examination of the substrate also supports

this arguement. A model, based on the Berenson's film boiling theory, was developed

which showed that the melting rate or transport of heat across the melt film depends
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on the 1/4 power of a modified melt-layer Rayleigh number i.e.:

Nu = C Ra 1/4

where C is a constant and Ra, Nu are defined as:

(hf +0.5CpAT)ms g(pp - Pis)
(vK)msAT (g(pp- S)

Nu = hA/K

A = (a/g(pp - pm s))0*5 (Laplace Constant)

h = heat transfer coefficient

hsf = fusion heat of substrate

C, = specific heat

K = thermal conductivity

p = density

v = kinematic viscosity

a = surface tension

AT temperature difference between pool and substrate melting

point

and subscripts are referred to:

ms = melted solid

p = pool
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The above conclusions have been checked by Farhadieh and Epstein experimen-

tally 'F4 . In their experiments. many pool - solid material pairs were used, covering

wide ranges of density differences between the material. melt-layer viscosity and the

heat of fusion. Materials selected for the solid phase were pentadecane, p-xylene.

paraffin wax. frozen olive oil and polyethylene glycol 6000. The overlying liquids

were water. KI and ZnBr 2 solutions. With their choice of frozen substrate - liquid

pool combinations, melting heat transfer observations with the modified melt-layer

Rayleigh numbers ranging from approximately 104 to 10~ were possible. Their re-

sults showed that almost all the data lay between two Nu - Ra" 4 relations with

C equaled to 0.20 and 0.43. The former was derived by Tafreshi 'T1 and the latter

was based on Berenson's film boiling model B5:. They also pointed out that the

experimental data could be better represented by a Nu ~ Ra"' relation with a pro-

portionality constant equaled to 0.63. This relation was obtained from the problem

of laminar film condensation (G6.

3.1.3 Erosion Heat Transfer with Gas Injection

In Corium/Concrete Interaction, the decomposition of concrete is accompanied

by large amounts of gas generation. Several simulant experiments have been per-

formed for studying this phenomenon, i.e. the heat transfer at an eroded interface

with gas injection. At UCLA and KfK, the phenomenon was studied by placing the

dry ice underneath the hot water or benzene. In these experiments, a continuous

gas film (CO2) was observed separating the pool and substrate. At U. of Wiscon-

sin. the same phenomenon was studied by injecting gas through a porous plate into

a volumetrically heated pool. In these tests no continuous gas film was observed.

These different results lead to different models for calculating the interfacial heat

transfer between the pool and melting substrates. The details of those experiments

and models will be described in the following subsections
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3.1.3.1 Gas Film Model

It has been observed :A5.D2' that after placing a horizontal slab of dry ice

beneath a pool of warm water. the solid surface was immediately covered with a gas

blanket from which CO 2 bubbles started to leave in a very regular fashion. The

interface wavey pattern oscillated initially, but soon the surface becomes uneven and

a standing wave pattern is estabilished. During each cycle., the interface was found

to grow. collapse and regrow at, the same location rather than alternate nodes and

antinodes as observed in film boiling on flat plates and cylindrical heaters. Based

on this observation. and using the same kind of analysis as that of Berenson's film

boiling, Dhir et al. D2, and Alsmeyer et al. A5 arrived at the following correlation

independently:

-Kah,5pg(p, - Pg)g ,25
h =P CO (3.2)

\pgATgau/g(p, - pg)

where the subscripts g and p denote gas and pool respectively and Co is 0.43 and

0.36 for Alsmeyer and Dhir respectively. This correlation is exactly of the same form

as that of Eq.3.1. The proposed correlation can predict part of Dhir's data. as shown

in Fig.3.1.

Equation 3.2 can be rearranged into the following form:

h = C' K9 ) (3.3)
c A pgJ 9

where J. is the superficial gas velocity. A is Laplace's constant defined by Eq.3.1c

and C' is 0.326 and 0.256 for Alsmeyer and Dhir respectively. This model is used in

the CORCON and WECHSL codes.

It was also found by Dhir D2- that as the liquid pool temperature is increased

beyond a certain limit. the heat transfer coefficient begins to increase with the
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temperature difference. This is contrary to the predictions of Eq.3.2. Dhir D2

argued that the increase of the heat transfer coefficient is due to the ripply or turbu-

lent nature of film. Be proposed that in turbulent film regime. for constant Prandtl

number of 0.7. the heat transfer coefficients should be correlated with the Reynold

numbers i.e.:
K

h = 11.37 g Re0 A for Re > 3.68 (3.4)
A

where

Re- pJgA

p~g

Again A is the Laplace constant. The corresponding superficial gas velocity of this

transition for water/dry ice system is about 7.8 mm,:sec. for corium/concrete system

is about 380 mm/sec. Equation 3.4 has not been used in any MCCI code.

According to the Kelvin-Helmhotlz H5 t,heory, a stable gas film will exist only

if the superficial gas velocity exceeds a certain limiting value. The minimum required

superficial gas velocity, based on the model proposed by Kutateladze and Malenkov

,K5 at 1978. is given as:

(Jg),j = K9 pgA (3.5)

where

30. M 2 , 3  Ar > 10 4

6.3 M 2 /3 Ar/C Ar < 104 j
M2= pggA P

Ar = gM3 /v 2

A = (o g(pe - Pg))"

where P is the system pressure and subscripts f and g refer to liquid and gas respec-

tively.
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The values of the minimum required supericial gas velocity and the correspond-

ing ablation rate, Y, for different types of concrete-beneath oxidic corium are sum-

marized in Table 3.1. The corresponding values for those thermophysical properties

used in this calculation are summarized in Appendix B. Table 3.1 also shows the

corresponding values for forming a slag layer across the interface if it were governed

by the same mechanism as described above. From Table 3.1, it can be seen that both

a stable gas film and a stable slag layer exist only under considerably high ablation

rates. Up to now, the existence of a gas film across the corium/concrete interface has

not been proven in any real material experiments.

The Kutateladze criterion was also used to analyze the dry ice experiment of Dhir

et al. [D2]. It was found that the superficial gas velocity required (- 800 mm/sec) for

forming a stable gas film is far beyond the data range of the experiments (as shown

in Fig.3.2). Nevertheless, it can be argued that the gas film in the erosion process

of dry ice is controlled by Taylor instability. Therefore, the minimum superficial gas

velocity required to form a stable gas film is determined by Berenson's (B5] minimum

stable film criterion.

(Jg)min - 0.09 ( ).25 (3.6)

where t and g denote liquid pool and gas respectively. A calculation based on the

Eq.3.6 shows that the required superficial gas velocity is -15 mm/sec. This is within

the data range of the dry ice experiment.

The experimental data of Dhir et al. [D2] were plotted based on the superficial

gas velocity of carbon dioxide and the results are shown in Fig.3.2. The solid lines in

Fig.3.2 correspond to the value predicted by Eq.3.3. From Fig.3.2, it can be seen that

the heat transfer coefficient increases with the superficial gas velocity. This is not

the characteristic of film boiling. For film boiling the heat transfer coefficient should

decrease as the superficial gas velocity increases, as predicted by Eq.3.3, because the
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Table 3.1

The Minimum Superficial Velocity Required to

Form a Film Across the Interface

Gas Film Slag Layer

Cg (Jg) fam

m/sec

Basaltic

Limestone/

0.065 3.442

0.267 3.160

Common sand

Limestone 0.416 3.109

Concrete

mm/sec

(Jg ) film
m/sec

Z 6gas/6 slag

mm/sec

3.361

1.255

0.0309

0.0309

35.92

45.82

0.4903

0.7188

0.862 0.0309 55.79 0.8482
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film will then be thicker.

According to the data trend shown in Fig.3.2, the process is more like that

of nucleate boiling. A comparison between the experimental results and the values

calculated from a nucleate boiling correlation of Kutateladze (K4] is shown in Fig.3.3.

The correlation is:

Ki P_ x10-~4 0.7
h = 0.44 PPr0.35 ReO.7 ( ) (3.7)

A e R (-g(pi - pg))0-5)

where P is system pressure. From Fig.3.3, it can be seen that although the trend

predicted is correct. The calculated values are an order of magnitude higher than the

experimental results. Hence, a typical nucleate boiling correlation can not predict

the results of dry ice experiment.

3.1.3.2 Model of U. of Wisconsin

At U. of Wisconsin, a volumetrically-heated pool with gas injection at boundaries

was used to simulate the heat transfer process taking place at an eroding surface with

gas injection [F5]. In their apparatus, the electrically heat fluid (0.05 molar CuSO 4

solution) is bound from the bottom and two sides by water-cooled porous brass plates.

Measurements of the upward, downward and sideward heat transfer rate at the pool

boundaries were made over wide ranges of power density. superficial gas velocity

(between 0.0 ~ 20 mm/sec [A1] which is above the Berenson's stable gas film limit,

14.6 mm/sec) and aspect ratios (ratio of width and depth of the pool). In their tests,

the continuous film was not observed. Based on the results of the experiment, purely

empirical correlations for the downward and sideward heat transfer were proposed.

The one for the downward heat transfer is of the following form Al:

h = 5. 6 9  ( ) 3(3.8)
A gye

Note that the thermal conductivity in the above correlation is that of the liquid
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pool. This correlation has been compared with the data, of water or benzene/ dry ice. A

The result is shown in Fig.3.3. It can be seen that the correlation predicts that the

heat transfer coefficient will increase with the superficial gas velocity. However, the

calculated values are approximately five times higher than the experimental results.

The direct application of Eq.3.8 to the analysis of Corium/Concrete Interaction

is questionable. The correlation was obtained by empirical curve fitting based on the

data of an experiment without involving the melting phenomenon - the major physical

process of MCCI. Nevertheless, their experiment suggested that proposed another

possible physical picture might occur at the horizontal corium/concrete interface - a

process like that of the nucleate boiling.

The heat transfer coefficient in the nucleate boiling regime could be as much as

ten to twenty times larger than the film boiling regime. Paik et al. [P1] examined

the effect of these heat transfer uncertainties on the behavior of Corium/ Concrete

Interaction. The CORCON/Modi code was modified so that one could selectively

alter individual heat transfer coefficient by a constant value. In their studies. the

convective heat transfer coefficients at the interface were taken to be an order of

magnitude above or below nominal CORCON value. It was found that this causes

the gas generated and the concrete eroded to be altered by 20-30% from the base

case calculation after about two hours of Corium /Concrete Interaction.

From the above, it is concluded that the pseudo film boiling heat transfer model

can only predict a small portion of water or benzene/dry ice experimental results. If

the data are analyzed based on the superficial gas velocity, the data trend is more

like that of nucleate boiling. A simple calculation based on the flooding limit of

Kutateladze's shows that the assumption of a stable film boiling process across the

corium/concrete interface might be unrealistic for the potentially realizable ablation

rate. The other problem associated with the film assumption in the analysis of MCCI

is it neglects the presence of slag.
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U. of Wisconsin's experiment pointed out that the heat transfer process across

the eroded interface with gas injection might be nucleate boiling. Different assump-

tions on the flow regimes can result in different predictions on the behavior of MCCI.

To account for this, a new model was proposed to interpret the results of water or

benzene/dry ice experiments ID2) and a new semiempirical correlation was derived.

3.2 Model Formulation

3.2.1 Physical Picture

If the gas film does not exist, or the gas film is dramatically thinned in each

bubbling cycle, the fundamental heat transfer mechanism across the corium/concrete

interface can be considered as a transient heat conduction process between the hot

pool and the relatively cold concrete surface. As this transient heat conduction

proceeds, the decomposition gas bubbles will rise up and away from the surface due

to the buoyancy force. The interface will be stirred and some hot liquid will be

brought into contact with the cold surface as shown in Fig.3.4a. This phenomenon,

similar to nucleate boiling, leads to periodic contact between the hot pool material

and the concrete.

In the present model, the interface is divided into a number of square regions

and bubbles are assumed to be released from the center of each square region. This is

consistent with what has been observed in water/dry ice experiment. The following

derivations are focused on this square region, where it is assumed that the mechanism

of periodic contact is the dominant mode for heat transfer across the interface.

3.2.2 Transient Heat Conduction

As a hot pool at temperature T, is brought into contact with a relatively cold

solid, at temperature T, , the temperature at, the interface immediately assumes a

value TI . The temperature history of a semi-infinite medium with a step change in

surface temperatute from T, to T, is [CI):
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T(x, t) = T - (Ty - TI) er f c(x/ 2 / ) (3.9)

where a. is the thermal diffusivity of the pool.

The amount of heat transfer out of the pool per unit area within a certain time

period td can be obtained by the following integration:

q = J pCp(Tp - T(xtd)) dx

That is:

q =2ppCP -V'a7 (Ty - T1 ) (3.10)

3.2.3 Bubble Dynamics

Assuming that the bubble growth rate is proportional to the gas (rising fluid)

generation rate, Jf , then the rate of bubble growth is given by

SRpdR
S(R)p5 dt = L 2 pfJf (3.11)

where S(R) is the surface area of the bubble whose radius is R, and L is the

dimension of the square region under consideration. The surface area of the bubble

can be approximated by that of a spherical bubble times a correction factor C 1 (O).

where 0 is the contact angle between the bubble and the solid surface. Then we have:

47rR 2 C1 (0) dR = L 2Jf dt (3.12)

where Rd and td are the bubble departure radius and bubble contact time respectively.

For constant C1(0) and an average Jf , integration of Eq.3.12 results in:
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4 R I?
td - C 1 (0d) d (3.13)

3 L2(Pf)ave

It is further assumed that the bubbles will depart from the solid surface when the

surface tension can no longer hold the bubbles on the surface against the buoyancy

force. Then at the point of departure:

4
(-47rR)g(p, - Pf)4(Od) = 27rRdaO (3.14)

3

This leads to

3 a os
Rd = - (6d)( ) (3.15)

2 g(p, - Pf)

where 6d is the departure angle and 4(Od) is a correction factor to take into account

the non-spherical part of the bubbles.

As the bubble moves away from the surface, it will strip some liquid along with

it. Assume that the region influenced by the bubble is proportional to the square of

the bubble departure radius [H2), the total amount of heat, Q, transferred out of the

pool in each square region within the time period td is:

Q = C2 qR (3.16)

where C2 is a proportionality constant.

The bubble population density is assumed to be proportional to the inverse of

the square of Taylor instability wavelength. Thus, the dimension of the square region.

L. is proportional to the Taylor wavelength:

L oc. ( o (3.17)
27r (p -pf)
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Combining Eqs. (3.10), (3.13), (3.15). (3.16) and (3.17) and defining the heat

transfer coefficient, h. as follows:

h = (3.18)
L2 (T, - TD)td

we get:

h -- Cc(pKC) (J) 0 .5 T, - T, 1
h-=CeT/(K4C,0J5). (3.19)aeT, - TD AO-

where the constant C, is the combination of several other constants. After some

manipulation, Eq.3.19 can be cast into the following form:

Nu5 = TOT (Ref Pr!)"- (3.20)
N( Tp- TD

where

Nuf = hAKf (3.21)

Pr5 = Cfy5 K5f (3.22)

Ref pfJf A/pf (3.23)

3 x/pKC

A = O-|g(p f - p5)

In these equstions p , C. K are the density. specific heat and thermal conductivity

respectively. The subscripts f and P stand for the rising fluid and pool respectively.

3.2.3 Interface Temperature

The interface temperature T . when two materials with different temperature

are brought together. depends on the physical process involved at the interface regions

C1.
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If there is no phase change. the interface temperature can be calculated by the

follwing equation:

T 1,-T, (pKC), (3.24)
T, - T, (pKC) ,

where subscripts p and s denote the hot and cold materials respectively. However.

if one of the materials undergoes phase change. as in the dry ice experiment, the

interface temperature can be determined by a three region approach as shown in

Fig.3.4b. The interface equation is [C1':

T,- TpKpaf TD Kfap (3.25)
Kpa. 5erf A + Kf a .5

where TD is the decomposition temperature of solid and parameter A is determined

by the following equation written based on the energy balance at the melt front.

K 0. 5 (T-TD) _Ka%(TD-T 8 ) 

K c.eerfA -- -f e() Cf Kf 5 erf c(A ) (3.26)

Cr

where f denotes the melt phase of the cold solid. Under the limiting condition of

A = 0. from Eq.3.25 T, = TD , and Eq.3.26 reduces to Eq.3.24.

he two region approach. Eq.3.24. will be used in the following derivation. It is

also believed that after few bubbling cycles., the temperature at the solid surface will

be fixed at its decomposition temperature TD . Therefore. the T, in Eq.3.24 will be

replaced by TD -
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3.3 Periodic Contact Model for Erosion Heat Transfer with Gas Injection

3.3.1 Proposed Correlation

Substituting Eq.3.24 into Eq.3.20 and assuming T, = TD we have:

Nuf = Co( )(Re Prf)0.5 (3.27)

The average superficial velocity, (Jf)av. in Ref can be calculated from a simple heat

balance:

(Jf)ave - h(T - TD) (3.28)
Pf h~f

In the above equation an effective heat of fusion, h'If, is used in order to consider the

sensible heat absorbed by the rising fluid and the solid.

h'f= hf±Cf (TI - TD) + Cs(TD - Ts) (3.29)S f 2

The experimental data of Dhir et al. [D2) were analyzed with the dimensionless

group in Eq.3.27. The results are shown in Fig.3.5. Combining Eqs. 3.27 and 3.28

we have:

Nuf C2 2 ( T -TD) (3.30)
01 + Of /O, h'g

The experimental data of Dhir et al. (D2) were analyzed with the dimensionless

group in Eq.3.30. The results are shown in Fig.3.6. It can be seen that the exper-

imental data for each fluid fall on a nearly straight line except few data points at

low temperature. Those are believed to be induced by the freezing process at the

interface which could happen if the pool temperature is low. This phenomenon was

not considered in the above derivations. An actual calculation based on Eqs.3.25
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and 3.26 showed that the interface temperature. T, , for those data points indeed fell

below the freezing point of pool material.

Accordingly, a correlation may be based on the following modification to the

form of Eq.3.30:

)(Cf (TT, - Td)n(Km (3.31)
1+Of /0, h', f K,

In Eq.3.31 a correction factor (K,/K,) has been applied in order to bring the ex-

perimental data of water and benzene closer. A correction factor of this form is not

unreasonable because in the above derivations we neglected any direct contact be-

tween the pool and solid (Fig.3.4a), which is unrealistic. The constant C' , n and m

are to be determined by a least squared curve fitting of the experimental data. By

the help of the definition of Ref and Eq.3.28 , Eq.3.31 can be rearranged into the

following form:

Nuf = (C'( 1 3 )2(RefPrf)n(K )' (3.32)
01 + Of /3, K,

The following constants are arrived at by a least square curve fitting of exper-

imental data of Dhir et al., n = 1.528, m = 0.32, C'= 767.13. Two data points of

water and three data points of benzene were discarded during the curve fitting due

to the reason stated above.

The heat transfer coefficients calculated by Eqs.3.31 and 3.32 are compared with

experimental data in Fig.3.7 and 3.8 respectively. It can be seen that, except those

with small T. the proposed correlation, based on either the superficial gas velocity or

on the temperature difference, fit the experimental results very well. The discrepancy

is believed to be induced by the freezing at the interface, which was not accounted

for in the proposed model.
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3.3.2 Application of the Proposed Correlation to MCCI

Based on the observations [P8] of BURN1 test the melt/concrete contact was

greatest midway between the localized gas emission site (-70% of the time) and the

lowest contact occured at localized generation site (20% to 30% of the time). As

assumed in the proposed model, the separation of the bubble sites can be predicted

by the Taylor instability model. For the conditions of the BURN1, the calculated

bubble separation is 53 mm. The observed separation in the test was 40 ± 7 mm.

In Sandia's Large Scale tests P7), the concrete crucibles were exposed to steel

melt several times. Gas evolution rate in repeat crucibles were markedly less than

that observed in tests with virigin concrete. The molten steel pools in the repeat

tests apparently cooled more slowly than the pool in tests with virigin material. This

is consistent with the trend of the proposed correlation i.e. the heat transfer rate

will increase with the gas generation rate.

In the application of the proposed correlation to analysis of MCCI, several prob-

lems are encountered due to the fact that the concrete is a heterogenous mixture of

several different substances. These problems are:

1. The decomposition temperature is not precisely defined but is known to lie

between the solidus and liquidus temperatures. The situation is even more

complicated by the fact that concrete loses its gas constituents continuously as

temperature increases. Most of the decomposition gases of concrete are formed

directly at the corium/concrete interface, and part of the gases will be released

through the cracks in the concrete.

2. The decomposition enthalpy of concrete is not also well defined.

3. As concrete decomposes, two 'rising fluids' exist, i.e. gases and slag. This

makes the determination of thermophysical properties of effective rising fluid

very difficult.
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The following approximations were made here:

1. The decomposition temperature TD is chosen as the average of the solidus and

liquidus temperature of concrete.

2. The decomposition enthalpy is calculated by Eq.2.6.

3. It is assumed that the slag and gases will move away from the interface with a

slip ratio S. From this slip ratio and the gas weight fraction, x, of the concrete we

can determine the void fraction of the rising fluid with the following equation:

1
a = I /P (3.33)

1 + ((1 - x) /x)(pf/p

Then, the density and thermal conductivity of the rising fluid are determined by this

void fraction. The specific heat of the rising fluid is, however, determined by weight

fraction.

Based on the above approximations, several calculations have been made for the

metallic corium attack of basaltic and limestone/common sand concrete. In those

calculations the thermophysical properties of metallic corium and slag are taken

from Reference B6 and those of gases are from CORCON code (see Appendix B). As

shown in Fig.3.9. the predicted heat transfer coefficients are different for different

assumption on the calculation method of slip ratio. The slip ratio can be set equal

to either the square root or cubic root of the density ratio of slag to gas. The

former corresponds to minimizing the two phase specific momentum under critical

flow condition and the latter corresponds to minimizing the specific kinetic energy

of the two phase mixture C7]. The first one gives higher slip ratio and lower void

fraction and therefore higher thermal conductivity for the rising fluid and results in

higher heat transfer coefficient. The calculated heat transfer coefficients differ by

40%, for the two cases for metallic corium on top of basaltic concrete. The proposed

correlation also gives different heat transfer coefficients for different system pressures

(Fig.3.9). As the system pressure increases, the density of the gas increases leading
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to lower void fraction and therefore higher thermal conductivity of the rising fluid.

For metallic corium on top of basaltic concrete with system pressure equal to 3 and

1 atm, the calculated heat transfer coefficients differ by approximately 18%.

A comparison between the predicted heat transfer coefficients for metallic corium

on top of basaltic and limestone/common sand concrete is shown in Fig.3.10. For a

slip ratio equal to the cubic root of the density ratio of slag to gases, the heat transfer

coefficients of limestone/ common sand concrete are higher by approximately 17%.

For metallic corium on top of limestone/common sand concrete, different assumptions

on the slip ratio can only result in about 7% difference in heat transfer coefficient.

This is because the limestone/common sand concrete has higher gas content and the

void fraction of its rising fluid is relatively insenitive to the slip ratio.

3.4 Discussion and Conclusions

In CORCON/Mod1, the calculation of downward heat transfer from corium

pool to underlying concrete can be divided into three parts. Figure 3.11 shows the

equivalent circuit of those heat transfer processes. The corresponding heat transfer

correlations used in CORCON/Mod1 are also shown in Fig.3.11. In general, hp,,, is

so large and makes insignificant contribution to the overall heat transfer resistance.

Figure 3.12 shows the heat transfer coefficients for metallic corium/concrete system

predicted by CORCON model. From Fig.3.12. it can be seen that if the temperature

difference is small the heat transfer process is convectively controlled. Therefore

the overall heat transfer coefficient decreases with temperature difference. If the

temperature difference is large, the heat transfer process is radiatively controlled,

the overall heat transfer coefficient increases with temperature difference. Figure

3.12 also shows the heat transfer coefficients calculated with the proposed model.

The heat transfer coefficient predicted by the proposed model is 2 to 10 times higher

than that of CORCON model in the temperature range of interest.

In Fig.3.13, the proposed model is compared with the discrete bubble model of
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WECHSL. model of U. of Wisconsin and CORCON model. The comparison is based

on the superficial gas velocity. The discrete bubble model of WECHSL code has the

following form [R21:

h 1.65 K ±e.Sr. (Pwater )0.5(34h = ReO.5PrO'( "'05 (3.34)
60.25 A4 g P Pg

where

Re = (pg JgAAyp)

A = (o-/g(pp - pg)) 0 -5

and Pwater is the density of water. Based on some hydrodynamic considerations, the

following limitation is imposed on Eq.3.34 i.e. the calculated heat transfer coefficient

can not be higher than the value calculated by the following equation 'R6):

h = 3.43 ! Pr 38 (3.35)
A

From Fig.3.13, it can be seen that the model of U. of Wisconsin gives a very high

heat transfer coefficient. The results of the discrete bubble model, the CORCON

model and the proposed MIT model are comparable, the differences are within a

factor of 3 over the gas velocity range above 10-2 m/sec. Both MIT and CORCON

models predicted lower heat transfer coefficient than WECHSL, but with varying

trends.

The dotted lines in Fig.3.13 are lines of constant temperature difference (T, -

TD). The interactions of the dotted lines and solid curves are the operating points of

the corresponding model, e.g. for AT = 200 'K, CORCON model predictes that h

1550 W/m 2 'K and J9 = 55 mm/sec, MIT model predicts that h = 2500 W/m 2 0 K

and Jg = 95 mm/sec. From Fig3.13. it can be seen that the predicted values at low

superficial gas velocity for certain models are of no physical meaning because the

heat transfer coefficient is so high that the temperature difference becomes so small

and the pool temperature drops below the freezing point.
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The intergal effect of proposed model on the analysis of Corium/ Concrete Inter- 4

action and the containment pressurization rate will be described in Chapter 5 and

Chapter 6 respectively.

99



CHAPTER 4

INTERFACIAL HEAT TRANSFER BETWEEN BUBBLE

AGITATED IMMISCIBLE LIQUID LAYERS

4.1 Introduction and Literature Review

4.1.1 Introduction

In MCCI, the immiscible metallic and oxidic phases will be separated into two

layers due to the large density difference, provided that the intermixing due to gas

agitation is limited. The interfacial heat tranefer between these immiscible layers

is important in characterizing MCCI process. As the inter-layer heat transfer rate

increases, the heat transferred downward into the concrete from the initially heavy

oxidic layer is reduced and the upward heat flux into the overlaying metallic layer

is increased. The situation might be reversed as the oxidic phase is diluted by the

decomposed concrete and becomes less dense than the metallic phase. As shown in

Chapter 2, how the decay heat and stored heat of corium are distributed between

the concrete basemat and atmosphere of containment is important in determination

of the containment pressurization rate.

The heat redistribution also affects the generation rate of noncondensible con-

crete gases. One of the important implications of gas generation rate is its effect on

aerosol generation which is directly related to the source term analysis of the acci-

dents. It has been suggested that increasing the magnitude of the interfacial heat

transfer by factors of 10 and 100 in CORCON model reduces the gas generation rate

by factors from 2 to 5 [G2].

In this Chapter the information about heat transfer between bubble agitated

liquid layers will be examined and modified so as to select the correlation that should
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be applied to analyze the MCCI conditions.

4.1.2 Literature Review

The interfacial heat transfer between the immiscible layers is complicated by the

agitation of gas flow. Several correlations have been proposed to characterize this

complicated heat transfer phenomena.

Konsetov 1K3] considered that the bubble agitated system has the same flow

configuration as that of the natural convection. Based on the similarity to natural

convection, with the characteristic parameters evaluated for a bubbling liquid layer,

he proposed a correlation in terms of the void fraction of the liquid layer. The void

fraction can be expressed as a function of the superficial gas velocity. By Konsetov's

correlation the heat transfer coefficient will be zero when the superficial gas velocity

is zero. This is unrealistic for two liquid layers with different temperatures. There-

fore, Blottner [B6] suggested that the interfacial heat transfer coefficient would be

better calculated by a combination of Konsetov's correlation with a natural convec-

tion correlation. In the correlation proposed by Blottner, the constants in Konsetov's

correlation were modified in order to fit limited experimental data. However, when

this correlation was used to predict the oil/water experimental data of KfK [W2]

considerable discrepancy resulted. The correlation underpredicted the experimental

data. This correlation is used in CORCON/Mod1.

Grief [G4] developed a correlation similar in form to that of Konsetov's except

for the dependency on void fraction. His correlation also underpredicted the experi-

mental data of KfK [W2,F6].

Werle [W2] proposed that the heat transfer between two horizontal liquids with

gas injection can be modeled as a natural convection process with an extra multiplier

to account for the effect of gas agitation. Based on the results of oil/water and

oil/wood's metal experiments [W2] Werle correlated the multiplier as a function of
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superficial gas velocity and density difference between liquids. In his correlation, the

natural convection correlation proposed by Haberstroh and Reinders [HI] was used.

The proposed model can well predict the experimental results of oil/wood's metal

system. But it underpredicts the data of oil/water system. This model is used in

WECHSL.

Based on the assumption of transient heat conduction between the arrival of

successive bubbles, Szekely [S6] derived an overall heat transfer coefficient for bubble

stirred interface of two immiscible liquids. His correlation was later modified by

Blottner [B6] to a more general form. These models will be described in following

section.

Greene [G5] classified the interfacial heat transfer into two categories: those

with entrainment and those without entrainment. A typical fluid pair for the latter

is oil/wood's metal [W2] and that of the former is oil/water [G5,W2]. The interfacial

heat transfer coefficients for these with entrainment are approximately an order of

magnitude higher despite the fact that the thermal conductivity of wood's metal

is higher than that of oil. From Fig.4.1 it can be seen that without entrainment

the surface renewal model of Szekely [S6] modified by Blottner [B61 represents a

lower bound on both the water/mercury and oil/wood's metal data. For those with

entrainment, Greene [G5] suggested that an extra term should be added to the surface

renewal model to account for the contribution of liquid entrainment. He proposed

a purely empirical formula for this extra term, in which the heat transfer coefficient

from entrainment is proportional to the product of density, specific heat of the bottom

liquid and the superficial gas velocity. He also found that with the proportionality

constant between 0.3 and 1.0 all the data points can be enclosed. Since the density

ratio of metallic and heavy oxidic layers (around 0.86) is similar to that of oil/water

(around 0.9) system, Greene jG6] suggested that the bubble induced entrainment

should be taken into consideration in modeling the Corium/Concrete Interaction.

It can be concluded that, when a temperature difference exists between two im-

102



I j I I I I I II II I I I I 1 1

Werie[W 11
Greene [GS]
Greene[G 51

~I

oil/wood's metal
water/mercury (series 300)
water/mercury (series 400)

9
0
0

0
0

Wat er/Mer cury (Eq, 4,7)

Oil/Woodt Metal (Eq,4,7)

x

1 I I I 11,11

2 3 4 5 7 -310 2 3 4 5 7 -210 2 3 4 5 7 -110
Superficiat Gas Vetocity (M/Sec.)

Figure 4.1 Heat Transfer Coefficient at Water/Mercury and

Oil/Wood's Metal Interface with Bubble Agitation

10.

10S
7

S
4
3

x

0

4
0
7

51-
41-
3 r

0

C-

0

GJ

-

3
10

7
5
4
3

21-

10
II a I I I IA L- L I I I I I I 1 0 1 1 1 1 1 # a I

i



miscible liquid layers, the heat transfer coefficient between these layers should be

characterized by natural convection. As bubble agitation is imposed on the layers

by a transverse gas flow, a second mechanism - surface renewal - should be included.

For certain liquid pairs, the consideration of third mechanism - entrainment - is nec-

essary. The following section summarizes the studies performed on each mechanism.

However, it should be pointed out that all the experiments mentioned above were

conducted with a relatively low superficial gas velocity. The following relation has

been proposed by Kataoka and Ishii [K2] to characterize the transition between the

ideal bubbly flow and the churn-turbulent flow:

J9 = 0. 3 2 5 ( Or(Pt Pg) )0.25 (4.1)
P1

where

Jg = superficial gas velocity

p = density

a = surface tension

and subscripts refer to:

f = liquid

g = gas

Accordingly, only the regime of ideal bubbly flow has been studied to date by all the

aforementioned studies.

4.2 Fundamental Mechanisms

4.2.1 Natural Convection

For a horizontal heated plate facing upward, the Nusselt number was found to

be proportional to the cubic root of the Rayleigh number. Coefficients were variously

given between 0.13 and 0.31. More recent work, since the mid-1970's, has focused

upon the internally heated pool. Blottner summarized these works in Reference [B6].
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Haberstroh and Reinders |H1] examined the heat transfer between two fluid lay-

ers with fixed bottom and top temperatures. The heat transferred through each

liquid layer is modeled as turbulent convection between parallel flat plates with heat-

ing from below. The total heat transfer coefficient is then considered as two thermal

conductances in series. Greene [G5] found that, in the limit of zero gas flow rate, his

data converged asymptotically to a lower limit calculated by the conducting sheet

model of Haberstroh and Reinders. The correlation is:

hNC = 0.0535 (R .26RL)"TU R TLo. / 3  (4.2)
(R72 + R2 25 )4 /3

where the Rayleigh number is given by:

R = K 3  Pr'.25 2

and

K = thermal conductivity

= volumetric thermal expansion coefficient

v = kinematic viscosity

Pr = Prandtl number

and U and L refer to upper and lower liquid respectively.After substituting for the

thermal-physical properties into Eq.4.2, the heat transfer coefficient is equal to a

constant times the cubic root of the temperature difference, i.e.:

hNC = const ITu - TL 1/3  (4.3)

The constants for different liquid pairs are summarized in Table 4.1. The

physical properties of liquids are based on the values listed in References [B6] and

[W2].

Comparing the values of hNC with the experimental results in Fig.4.1, it can
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Table 4.1

Contribution of Natural Convection

Liquid Pairs Constant in Eq.(4.3)

Oil/water

Oil/Wood's Metal

Water/Mercury

Metallic/oxidic
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be found that hNC is very small, sometimes even within the uncertainty of the

experimental data. Therefore, in the following analysis the contribution of natural

convection will be neglected.

4.2.2 Surface Renewal

As the bubble moves across the liquid/liquid interface,

ature gradients at the interface. Transient conduction acts

until the arrival of the subsequent bubble. This phenomenon

renewal.

A heat transfer correlation based on this transient heat

was developed by Szekely [S6]. It has the following form:

2 K Kra- 1/ 2  1
hsR = ---

1JKua 1/ 2 1/2

it disrupts the temper-

to renew the gradients

is referred to as surface

conduction mechanism

(4.4)

where a is the thermal diffusivity and t, is the time interval between the arrival of

consecutive bubbles. Szekely suggested that te can be calculated as :

A
te = AbN (4.5)

where

A = total cross section of interface

Ab = surface area swept by one bubble

No = number of bubbles produced per unit time

This equation was later modified by Blottner (B6) as:

AVb _Vb r
te 0 AVb - Ab = 0 .4 4 5 -

AbNoVb AbJg jg
(4.6)
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where Vb is the volume of the bubbles and r is the equivalent bubble radius. Com-

bining Eq.4.4 and Eq.4.6 together, we get:

1/2 KLa-1/2 jo.5

hsR = 1.69 -U "2 ~ L g (4.7)
-1/2 .- 1/2 r0.5

Ktraq + ALgat b

A comparsion of this correlation with the experimental data is shown in Fig.4.1.

It can be seen that the correlation predicts part of the oil/wood's metal data but

underpredicts the water/mercury data. From Fig.4.1 it can also be seen that the

dependency of heat transfer coefficient on the superficial gas velocity is incorrect, it

is underpredicted.

In the above derivation, it is assumed that the time interval between the arrival

of consecutive bubbles is inversely proportional to the square root of the superficial

gas velocity, J,. However, this is not necessarily true. If the pool is in an ideal

bubbly flow regime, the time interval should be approximately equal to the inverse

of the bubble generation frequency, f. Another factor to be considered is that as the

bubble moves up in the liquid pool some liquid will be carried along with it. When

the bubble reaches the interface, the carried liquid also reaches the interface and thus

contributes to the heat transfer process. If the bubble is spherical with diameter Db,

then this influential area will be irDi [R5]. Assuming n/A is the bubble population

density we have:

hsR = 2 Kua K1/2LL 1/ 2  x7rD 2 (4.8)
V= Kua-1/ 2 + KLaL1/2 A

This equation can be rearranged as:

12 Kua 1/2 Ka-1/2
hSR = K- a K 7 LaL 12Jg (4.9)

S R Kua-1/2 + KL a-1/2 V9 D 7

For this hydrodynamically controlled bubble growth process, Dbf in the above

equation can be correlated as [I1,Z1]:
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Df = 1 .18 (g(pe P ) 0.25 (4.10)

where t and g refer to liquid and gas respectively.

A assumption about the bubble diameter is still necessary. Fortunately, the bub-

ble diameter in various liquid pools of interest are all of the same order of magnitude.

For Db = 2 mm, it is found that a factor of two is needed in the new correlation in

order to fit both the water/mercury and oil/wood's metal data (Fig.4.2). Therefore

the following equation, with Db = 2 mm, is suggested as the heat transfer coefficient

from the surface renewal mechanism.

K1i- 1/2 -~L1/2 (P- g)CL 0.15J
hSR = 12.5 Ku KL 1 g(p.-p) -0125 (4.11)-1/2 KLZ-1/ 2  P 2 g Do-5

The empirical factor of two is not surprising. The bubbles will not be spherical

in the liquid pool; and are more likely to be spheroidal or bell shaped with the longer

axis parallel to the interface [ZI]. This means the influential area will be larger than

7rD 2

From Fig.4.2 it can be seen that the newly proposed model tends to overpredict

the dependency of heat transfer coefficient on the superficial gas velocity. Based

on the experimental results, the correct power should lie between 0.5 (Eq.4.7) and

1.0 (Eq.4.11). This power can be determined by empirical curve fitting. However,

because of the limited amount of experimental data, it may not be productive to

improve the fit anymore.

A comparsion between the predictions of this correlation and the oil/water ex-

periment is shown in Fig.4.3. It can be' seen that the oil/wood's metal data is

well predicted but the data of oil/water tests are not predicted by the correlation.

The discrepancy is due to the presence of bubble induced entrainment. As men-

tioned above, the correlation can only be applied in the ideal bubbly flow regime.
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In the churn-turbulent flow regime, the agglomeration becomes significant and the

flow pattern becomes agitated and unsteady. Probably the interface between the two

immiscible liquid layers is no longer well defined.

4.2.3 Bubble Induced Entrainment

Liquid entrainment can be cauased by two mechanisms [G1): splashing and

bursting of bubbles at the interface. Splashing occurs in any system containing both

liquid and gas where there are localized areas of high velocity. A typical example of

splashing is the entrainment of liquid in the annular flow regime of two phase flow. A

simple calculation based on the criterion for the onset of entrainment in annular flow

[C7] shows that the required superficial gas velocity is orders of magnitude higher

than the ranges of the above experiments. Therefore, the entrainment observed in

oil/water experiment is not caused by splashing.

The physical phenomena involved in bubble bursting at the interface are shown

in Fig.4.4 [Ni]. In an ideal bubbly flow regime, as the bubble reaches the surface

of the liquid it usually rebounds back and forth with decreasing amplitude until

it comes to rest with its upper part projecting above the surface in the form of a

hemispherical dome (Fig.4.4b). Liquid drains from the dome until the upper part

is so weakened that the internal pressure causes the formation of a secondary cap

(Fig.4.4c). This cap subsequently disintegrates, giving rise to droplets of few microns

in diameter (Fig.4.4d). After the bubble disintegrates, a well defined crater is left

behind at the interface (Fig.4.4e). As the liquid fills in, the momentum of the inflow-

ing liquid produces a jet which rises at high velocity (Fig.4.4f, 4.4g). Under certain

circumstances, the liquid jet will break up due to capillary instability [C2] and create

some liquid droplets with diameters on the order of hundreds of microns (Fig.4.4h).

It is those droplets which contribute to entrainment. The lifetime of the bubble at

the interface is of the order of ten milliseconds, the actual bubble burst will last a few

microseconds, while events subsequent to the burst extend over a few milliseconds

[N1]. The same phenomena were observed in the oil/water experiment at BNL [G6].
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As mentioned above, a hydrodynamic instability mechanism - capillary insta-

bility - is responsible for the disintegration process. The stability criterion of the

capillary instability is that the liquid will break into droplets if the length of the jet

is larger than the circumference of the jet [C2}. For certain liquids, the jets generated

by bubble bursting will not be long enough to disintegrate and cause entrainment.

Therefore, we can use the ratio of jet length to circumference as a criterion to deter-

mine the onset of this entrainment mechanism.

As the bubble bursts through the interface, a surface of circular section is elim-

inated and its associated surface energy is released. At the instant of bursting, the

bubble gas escapes, leaving a partial vacuum behind [NI], which provides an impulse

force thus setting the liquid in motion. The associated kinetic energy together with

the released surface energy is used to raise the liquid jet and create the new surface

of the jet (see Fig.4.5). Hence, the following energy balance equation can be written:

7rrbO + rrb{U2) = x-7rrpeH' + Ajet (4.12)
3 2 ~ 3

where

rb = radius of the bubble

H' = height of gravitation center of jet

A3 ei = surface area of jet

In the above equation it has been assumed that the amount of liquid set in motion is

equal to that of a hemisphere with the radius of the gas bubble and the same amount

of liquid is used to form the liquid jet. From a momentum balance, the velocity of

the liquid jet can be expressed as:

UO - fcI (t) dt (.3
2 7rrpe

where I(t) is the impulse. It can be related to the absolute pressure, P , by (N1):
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I(t) = 7rT(Po + ) e-/T (4.14)Tb

In Eq.4.14, it has been assumed that the major portion of the impulse comes

from the atmospheric pressure. Although it is unclear whether there is an instan-

taneous partial vacuum immediately after the bubble breaks. This arguement has

been strongly supported by some evidence from entrainment experiments with water

[A3,N1]. Here it is also assumed that the impulse force decays exponentially with

time. According to Davies ID1), for air flow through water at low pressures the burst-

ing process is completed within 30 pts. Therefore, it is reasonable to assume that the

time constant, r, is about 6 ps.

It is further assumed that the liquid jet can be represented by a Gaussian curve,

as shown in Fig.4.5.

H(r) = Hmaze-o .693r /r..t (4.15)

By performing some integrations, the volume, the surface area and the gravitation

center of the jet can be expressed as:

Viet = Hmarei (4.15)
0.693' a e

Ajet = Hmazxrje (4.17)

H' = Hma2/4 (4.18)

The jet radius can be related to the bubble radius, re, in the following way:

Tjet (2 0.693 (4.19)
3 Hmax
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Combining all the above equations, a second order equation in terms of ,/Hta

is arrived at. For a specified bubble radius, Hmu, can be found, and by Eq.4.19, rcet

can be found. Then whether the liquid jet is stable or not can be found by the ratio

of Hmax and 2 lrret. If the ratio is greater than unity the jet is unstable. Several

liquids have been analyzed by this method, the results are shown in Fig.4.6.

From Fig.4.6, it can be seen that for all liquids the instability increases as the

bubble diameter decreases. This is consistent with the experimental results of Newitt

et al. [Ni]. They measured the size and the number of droplets by bubbling air

through a pool of water with different bubble diameters. They found that the number

of droplets formed increases as the bubble diameter decreases. They also found that

the diameter of droplets becomes larger as the bubble diameter increases. This is

also consistent with the prediction i.e. the jet becomes thicker and ryet increses as

the bubble diameter increases. According to the prediction of this simple model, for

water, as the bubble diameter is larger than 5 mm the jet can no longer generate

droplets. This had been verified by Garner et al. [GI] experimentally. The analysis

also indicates that for gas bubbling through mercury the jet will be stable so that

there is no droplet formation and hence no entrainment.

In the above analysis, the effects of the upper liquid layer were not considered.

However, according to the observation of Greene [G6], the liquid jet rises in the wake

of the bubble. Therefore, there is little contact bteween the upper layer and the jet

before the jet breaks. It is believed that the effects of the upper liquid layer are only

of secondary importance.

Figure 4.6 also shows that the jets from metallic and oxidic corium are stable

even when the bubble diameter is as small as 1 mm. In Corium/Concrete Interaction,

the bubble diameter will definitely be greater than this value [B6]. One of the very

important implication of this analysis is that in Corium/Concrete Interaction we need

not consider the liquid entrainment due to bubble burst in calculating the upward or

interfacial heat transfer.
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The above analysis only yields a method to determine whether this entrainment,

mechanism should be considered in calculation of the interfacial heat transfer coef-

ficient of certain liquid pairs. The entrainment process is too complicated to treat

analytically, and more experiments are needed to build up the empirical evidence to

quantify the entrainment.

In recent high power tests of BETA experiment of KfK considerable amount of

iron was entrained into the upper Al 203 layer. In one particular run, the ablation

rate of concrete was ~ 0.20 mm/sec. The corresponding superficial gas velocity is

~ 0.25 m/sec, therefore the flow regime was either churn-turbulent or patch flow. In

those flow regimes the entrainment mechanism is changed from bubble bursting to

momentum exchange [K2). Also under such high superficial gas velocity both layers

are highly agitated, there is a possibility that a mixing layer is formed between the

two liquid layers.

In the low power test of BETA experiments which has lower concrete ablation

rate, the entrainment was not observed. This is consistent with the above analytical

model.

4.3 Conclusions

In ideal bubbly flow there are three mechanismes responsible for the interfacial

heat transfer between the bubble agitated immiscible layers. Those are: natural con-

vection, surface renewal and bubble induced entrainment. A new method is proposed

to modify the surface renewal model proposed by Szekely. The new correlation com-

pares favorably with the results of water/mercury and oil/wood's metal experiments.

A simple analytical medel was developed to decide whether the bubble will in-

duce entrainment. The model explains the observed difference between the oil/water

and oil/wood's metal pairs. From this analytical model, it is concluded that the

bubble induced liquid entrainment resulted from bubble bursting will not occur in

Corium/Concrete Interaction at low velocity of the penetrating gases.

The newly modified Szekely's correlation is suggested to calculate the interfacial
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heat transfer coefficient. A comparsion of this correlation with others is shown in

Fig.4.7.

The impact of the proposed correlation on integral analysis of Corium/Concrete

Interaction and the containment pressurization rate will be described in Chapter 5

and Chapter 6 respectively.
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CHAPTER 5

CRUST STABILITY EXPERIMENTS

5.1 Introduction

After some period of Corium/Concrete Interaction. the temperature of the

corium will fall below the liquidus temperature and solidification will begin. There

are two possible situations for melt freezing: (1) solid and liquid corium will mix

together and form a slurry pool. (2) solid will exist as a crust layer on the periphery

of the pool.

The freezing characteristics of a debris pool are important in determining the

heat transfer rate between the corium pool and concrete. If a slurry pool forms, the

heat transfer between the corium pool and concrete will be convectivelly controlled. If

the solid exists as a crust layer, for a given liquid temperature. it will limit convective

heat transfer because the boundary temperature of the liquid can not fall below the

solidification temperature. In addition, the crust provides an additional thermal

resistance between the interior of the pool and its boundary. Therefore. for the

situation with a solid crust layer. the heat transfer rate between the corium pool and

the concrete is conductivelly controlled which is ordinarily far less effective than a

convectivelly controlled process.

In Chapter 3. the periodic contact model was proposed to calculate the downward

heat transfer coefficient. The analyses in Chapters 5 and 6 showed that the downward

heat transfer rate is always governed by the periodic contact model when corium

starts to freeze. If a crust layer is formed upon freezing, the solidified layer across

the corium/ concrete interface will impede the contact between the corium and the

concrete. This will limit the applicability of the proposed model. In order to know
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the applicable temperature ranges of the proposed model, it is important to know

the freezing characteristics of the corium pool.

Another very important implication of crust formation is its effects on the aerosol

generation. If a stable crust is formed around the periphery of the pool the amount

of concrete decomposed gas passing through the pool could be significantly reduced.

This reduces the potential of generating volatile and nonvolatile aerosols.

5.2 Literature Review

The decomposition of concrete is accompanied by generation of concrete gas.

As the gas attempts to move through the debris pool, it will tend to break up the

crust formed around the periphery of a molten region. Bascially, the motion of a

frozen crust between two different fluids under the buoyancy induced excitation is

similar to that at the plane interface between two fluids. An approach similar to

that of Taylor instability has been proposed by Epstein iE2) to study the problem.

With the formulation of a classical Taylor instability theory, by adding an extra term

to account for the elastic forces within the crust, Epstein could estimate the time

constant. r. for the crust breakup which depends on the crust thickness and the depth

of the lower fluid layer. The crust growth time, Tf is obtained independently from

heat conduction and is set equal to r to obtain both the frozen crust thickness at the

onset of instability and the breakup criterion.

Several simulant experiments were performed by Epstein 'E2 to validate his

analytical approach. In these experiments. a relatively hot. heavy liquid was suddenly

poured over a column of lighter cold material (liquid or solid). The lower liquid was

placed in a glass test vessel (diameters varied from 30 to 300 mm). If the lower

material is in solid form. the liquid was frozen in place at the bottom of the vessel.

The material pairs used in the experiments were Freon - 122A/1H2 0, lead/gallium,

H2O Liquid CSH 1 . and H 2 0 solid CFH 1 . The density ratios of these material

pairs ranged between 1.95 and 1.43. The results of these simulant experiments showed
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that the stability of a crust between two liquid layers could be predicted by Epstein's

model. However. for the cases of crusts under a molten pool but over a melting

substrate, Epstein's analysis failed to reproduce the experimental results.

Epstein's analysis predicted that the crusts in a H 2 0/'solid CsHis system would

be unstable if the diameter of the glass test vessel was greater than 160 mm. In the

simulant experiments of H 2 0 'solid CsHis within a 300 mm diameter glass test

vessel. a stable crust was observed.

In Epstein's derivations, the depth of the lower fluid layer was considered as

a constant which is not the case when the lower fluid layer is generated by melt-

ing a solid substrate. In the Corium/Concrete Interaction simulant experiments of

M.Plys (P4. it was observed that after some period of interaction. few minutes. the

height of the pool collapsed and the gas flow rate decreased and finally ceased after

about five minutes. Plys explained this transition as resulting from crust formation

around the periphery of the molten pool.

In the current modeling of Corium/Concrete Interaction, all the integral anal-

ysis codes reviewed in Chapter 1 assume that the solidified portion of corium will

precipitate out and form a crust layer on the periphery of the corium pool. Due to

the limitations of the experimental techniques the crust layer has never been actually

observed in any integral real material or simulant experiments. Therefore. the fol-

lowing experiment was designed to study the freezing characteristics at the bottom

of a bubble agitated liquid pool.

5.3 Experimental Apparatus

5.3.1 General Features

The design of the experimental apparatus is determined by two fundamental

modeling requirements, namely, gas evolution at the pool boundary, the capability of

cooling the pool material below its freezing point. Simulation of gas evolution from
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the pool boundary is accomplished by forcing a noncondensible gas (air) through

porous plates which are used to construct the walls of the test cell. The cooling

capability of the test cell is provided by a Freon - 12 refrigeration cycle.

In the design of the experimental apparatus. both sideward and downward in-

jections were made possible. This allows the experimental apparatus to be used to

investigate the crust stability at horizontal and vertical interfaces. In the present

stage of experiments, only the stability of the crust on a horizontal interface will be

studied.

The other principal feature of Corium/Concrete Interaction, the volumetric heat

generation within the corium pool. will not be simulated in this experiment. Accord-

ing to the calculations of CORCON/Modi in Chapter 7, by the time the corium

starts to freeze, metallic corium would have settled on the bottom. Since the metal-

lic phase does not contain a lot of fission products, the internal heat generation will

be of low magnitude.

5.3.2 Apparatus

A schematic diagram of the experimental apparatus is shown in Fig.5.1. It con-

tains three major parts, a test cell. a cooling unit to remove heat from the test cell

and an air supply unit to simulate the gas evolution.

5.3.2.1 Cooling Unit

A schematic diagram of the cooling unit is shown in Fig.5.1. The major part of

the cooling unit is a Tecumseh AH7514AC condensing unit. The maximum capacity

is 16800 BTU, hr (4.92 kW). The cooling unit contains three independent cooling

loops and can be controlled by refrigeration shut off valves. A back pressure regulator

is installed between the suction and discharge lines of freon compressor to control

the operating pressure and temperature of the condensing unit.
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5.3.2.2 Air Supply Unit

The air supply unit is connected to the air compressor of the laboratory building.

The volumetric gas flow rate is measured by a Fisher & Porter 10A3557 series (tube

size 12.7 mm) rotameter. The maximum gas flow rate of the rotameter is 6.43

standard cubic feet per min (3.03 xK 10- m 3 'sec). A pressure gauge is installed at

the upstream of rotameter to measure the system pressure.

5.3.2.3 Test Cell

The dimensions of the test cell used in this investigation are shown in Fig.5.2.

The pool is bounded from the bottom and two sides by freon cooled bronze porous

plates mounted on 12.7 mm thick stainless steel structure. Air can be injected into

the pool through these three porous plates simultaneously or independently. The

front and back walls of the test cell are made of 6.35 mm thick transparent plexiglass

plates from which the behavior of the pool can be observed.

A detailed diagram of the porous bronze cooling assembly is shown in Fig.5.3. A

9.525 mm diameter copper cooling coil is soldered to a copper cooling plate to serve

as the flow channel of refrigerant - freon 12. Figure 5.4 shows the flow direction

of freon 12. The double spiral pattern of the flow channel results in nearly uniform

cooling of the porous plate. On the other side of the copper cooling plate (as shown

in Fig.5.5). 11 - 11 holes. 3.175 mm in depth. are drilled to serve as holders of

the cooling fins. The diameters of these holes are slightly less than these of the

cooling fins (9.525 mm). The cooling fins are squeezed into the fin holders. Then.

the entire copper cooling plate with cooling fins in place is mounted on the structure

ring. which is a part of the main structure of the test cell. and then tightened to the

porous plate with screws and bolts. After assembly. these cooling fins are directly

in contact with the porous plate to enhance the heat transfer between the porous

and copper cooling plates. During the experiment. the temperature distribution of

the cooling fins at some specific locations (as shown in Fig.5.5) are measured with
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embedded type E thermocouple wires. Totally. the temperature distributions of 7

cooling fins are measured. These fins are uniformally distributed over the porous

plate. The locations of thermocouples within the cooling fins are shown in Fig.5.6.

The copper cooling plate also contains 52 holes. 6.35 mm in diameter, to allow

the injected gas to move into the open space between the porous and copper cooling

plates. These holes can also serve as the penetrations of thermocouple wires used in

measuring the temperature distributions of cooling fins.

The porous plates are made of sintered bronze (89.5 ~ 90.5% copper and 10.5 -

9.5% tin). The maximum pore size is around 5 pm and the porosity is about 40%.

The size of the porous plate is 244.5 x 244.5 x 9.525 mm. This is the maximum size

that can be made by the manufacturer. This limits the size of the test cell.

5.3.2.4 Characteristics of Downward Heat Flux

In the design of the experiment. the heat is removed from the pool by evaporating

freon 12 in the cooling coil. The two phase nature of the cooling system prohibits a

direct measurement of the heat removal rate.

The downward heat flux will be inferred from the measured temperature distri-

bution of the cooling fins. The HEATING3 (T2 computer code was used to analyze

the three dimensional heat conduction problem of the cooling fin. HEATING3 is a

three dimensional finite difference heat conduction code. With specified boundary

conditions. the code can calculate the temperature distribution within a three dimen-

sional body. In the present calculation, the porous plate was divided into 121 regions.

each region has an attached cooling fin. The dimensions and boundary conditions

used in this analysis are shown in Fig.5.6.

In Fig.5.6, Boundary A corresponds to the part of the cooling fin that is em-

bedded in the copper cooling plate. Constant temperature was assumed for this

boundary. Boundary B corresponds to the parts of the cooling fin and the porous
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plate that are in contact with air. and were assumed to be insulated. Boundary C is

the upper surface of the porous plate which is directly in contact with the pool. A

constant heat transfer coefficient was specified for this boundary. Boundary D are the

interfaces with other regions. In this calculation, the heat transfers into the porous

plate through Boundary C and then transfers out of cooling fin through Boundary

A. The calculations of HEATING3 provided the temperature distributions along the

Boundary C and within the cooling fin. Based on the calculated temperature distri-

bution along the Boundary C. the rate of heat transferred into the porous plate can

be determined. Dividing this rate by the cross section of the cooling fin we obtained

q'2D. Based on the temperature distribution within the cooling fin. another heat flux,

q 'D can be obtained by applying the one dimensioal heat conduction equation i.e.

io - K oro A T (5.1)

where K, 0 ,0r 5 is the thermal conductivity of the porous plate and AT is the temper-

ature drop with respect to Ax. The calculated values of q'i1 ,q'2D along the cooling

fin are shown in Fig.5.7. The horizontal axis is the length fraction of the cooling fin

from the top of the fin, the end that in contact with the porous plate. The curve

shown in Fig.5.7 is used as a calibration curve in analyzing the experimental data.

During the experiments. the temperature distribution along the centerline of the

cooling fin is measured. Based on the measured AT. the q'O can be determined by

Eq.5.1. By applying the correction factor shown in Fig.5.7. q'%. the actual heat flux

within the cooling fin can be obtained. From q'2p. the downward heat flux from the

pool can be obtained.

In making the above HEATING3 calculation. the numerical values of the bound-

ary conditions shown in Fig.5.6 have to be specified. These values are not available

before the experiments. A sensitivity study was performed on these uncertainties.

The heat transfer coefficient at boundary C. the temperature of boundary A and
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the thermal conductivity of the porous plate have been changed within reasonable

ranges to check their effects on the calibration curve shown in Fig.5.7. It turned out

that the calibration curve is relatively independent of these values. This conclusion

is important in analyzing the temperature data from the thermocouples embeded in

the cooling fins. As we can calculate the actual heat flux by a simple one-dimensional

heat conduction equation and then use the calibration curve to make corrections.

5.3.3 Selection of the Pool Material

In Corium /Concrete Interaction, neither the metallic nor the oxidic phase is a

pure substance. Their solidification points are not uniquely defined. For the metal-

lic phase, iron plus some impurities, the liquidus and solidus temperatures differ by

10 3K. For oxidic phase, a mixture of U02, ZrO2. A12 0 3 . CaO etc.. the difference

between the liquidus and solidus temperatures is around 300 'K initally. This differ-

ence is even greater. around 700 '.K, as more decomposed concrete is added to the

oxidic phase. Since it is difficult to find comparable materials. this characteristic of

Corium/Concrete Interaction was not simulated in the present stage of experiment.

The pool material has to meet the following requirements:

1. The solidification point and evaporation point should be within a reasonable

range to avoid a more complicated experimental set up.

2. The material should not react with bronze and oxygen at the operating tem-

perature of the experiments.

3. The material should be transparent so that the phenomena occurring in the

pool can be observed.

4. The material should have a high surface tension and large liquid-solid contact

angle so that it can be confined by the porous boundaries.

5. The materials should be common, inexpensive. nontoxic, noncorrosive and have

known properties.
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In practice. the hardest requirement to satisfy was #3. After some searching. it

was decided that water will be used in this experiment for it is easy to handle and

has well known properties.

A calculation based on Epstein's model showed that with a reasonable crust

thickness. 1 mm. the most critical wave length for water/air system is around

100 mm. This value is smaller than the size of the test cell in this experiment.

5.4 Experimental Results

5.4.1 General Description

Experiments have been conducted with different amounts of water. different

volumetric gas flow rates and different opertaing temperatures of the condensing

unit. The conditions of the different experiments are summarized in Table 5.1.

During the experiments. the temperature of the pool. the air flow and the tem-

perature distributions of the cooling fins were continuously measured with Type E

thermocouples. Data were recorded by a KAYE ramp processor and scanner system

at a prespecified time interval.

In the experiment, the air passes around the cooling coil before it moves to

the open area between the cooling and porous plates. The temperature of the air

was significantly reduced by the cooling coil. The measurements showed that the

temperature of the air between the porous and copper cooling plates was inversely

proportional to the volumetric air flow rate. These values are also shown in Table 5.1.

The superficial gas velocity of the experiment ranges between 6.46 and

132 mm/sec. The flooding limit based on Kutateladze's criterion is 950 mm sec for

water,, air system. The minimum stable gas film limit based on Benerson's criterion

is 14.8 mm/sec. No continuous film was observed across the horizontal liquid/solid

interface.
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Table 5.1

Conditions for Crust Stability Experiment

Run Anount of

No. of Water (kg)

1

2

3

4

5

6

7

8

9

11

11

12

13

14

15

16

17

18

% Volunetric

Air Flow

10%

20%

20%,

20%

20%

30%

40%

40%

50%

50%

60%

70%

90%

100%

30%

50%

50%

50%

Superficial Gas

Velocity (mm/sec)

6.46

13.5

13.5

13.5

13.5

21.3

29.8

29.8

39.2

39.2

52.4

67.7

106.5

132.0

21.3

39.2

39.0

38.7

Inlet Gas

Temp. (0C)

:12.2

-11.8

-11.8

-11.8

-11.8

-11.1

-10.4

-10.4

-9.8

-9.8

-8.8

-8.5

-7.0

-5.9

-11.1

-9.8

-6.4

-2.5

Pressure

(psig)

~1

-3.5

~3.5

~3.5

~3.5

~-5.5

-7.5

-7.5

-10.

-10.

-16.

~23

-42

~56

~..10.

~-10.

~-10.

Freon Sat.

Temp. (*C)

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-20.6

-17.8

-20.6

Water

Supercooling(*C)

0

0

3.39

0

2.94

2.89

2.72

2.94

0

1.67

2.17

1.72

1.83

1.44

2.61

1.56

1.67

2.44

r,:



The pressure needed to force the air through the porous plate increases signif-

icantly with volumetric air the flow rate, especially as the flow rate exceeds 50% of

the rotameter rating. When the volumetric air flow rate is 100% of the rating., the

pressure head was 56 psig. The high pressure will cause some leakage at the seals of

the penetrations of thermocouple wires on the main structure. This prevented fur-

ther increase of the volumetric air flow rate. The equivalent superficial gas velocity

in the pool at 100% rating is 132 mm sec which is 0.1 to 0.5 times the gas velocity

in the BETA experiment.

The measurements of the temperature distribution within the pool showed that

a nearly isothermal condition was achieved within the pool due to bubble agitation.

The temperature of the upper surface of the porous plate was measured with a

thermocouple put in contact, with the surface. Results from similar experiments

showed that the temperature difference between the pool and the surface was around

0.3 'C for all the runs K6,. This measurement probably involves some uncertainty

because it is difficult to quantify the contact resistance between the thermocouple

and the surface.

5.4.2 Observed Phenomena

At the moment of first freezing of the pool. two different phenemona were ob-

served. In both cases, a stable crust was observed on the horizontal bubble agitated

liquid ,solid interface.

In 14 out of 18 runs. the pool could be cooled below the freezing point of water

without any major change in the behavior of the water pool. Then freezing occurred

suddenly. the liquid, solid interface was covered by a thin layer of ice crust and the

bulk temperature of the pool jumped up to the freezing point of water. The thickness

of the crust was on the order of a fraction of mm. It was also observed that on top

of the crust there were some slices of ice crystal attached vertically to the crust.

These ice crystals were fixed in the pool, not floating around with water. A post-test

139



examination of the crust showed that the crust was not directly in contact with the

porous plate. The crust could be removed from the porous surface very easily.

Upon freezing of the pool. the flow pattern of the pool changed drastically. The

uniformly distributed bubble sites pattern was destroyed and bubbles were only gen-

erated from some preferred locations. Meanwhile the pressure in the main structure

built up. Sometimes. this pressure increase was large enough to break the seals of

the thermocouple wires' penetrations.

In the other 4 out of 18 runs, freezing occurred gradually. There was no su-

percooling in the pool. As the pool bulk temperature reached the freezing point, a

very thin slice of ice layer was observed on the porous surface at a preferred position.

The thickness and the surface area of the ice layer increased gradually. The bubble

generating sites under the crust layer were completely blocked by the ice. Some air

bubbles were trapped by the ice layer. The post-test examination 6f the ice layer

showed that the ice layer was in close contact with the porous plate.

The reasons causing the differences in these two cases are still unclear. No

meaningful conclusion can be withdrawn from the limited runs of the experiments.

For these runs that have supercoolings. it seems that the amount of supercooling

achieved decreases as the superficial gas velocity increases, as shown in Fig.5.8.

5.4.3 Heat Transfer Analysis

The pool temperature histories of Runs 3, 11 and 14 are shown in Fig.5.9. The

superficial gas velocities of these runs are 13.5. 52.4 and 132 mm/.sec respectively.

As shown in Fig.5.9, the pool cooling down rate is proportional to the superficial

gas velocity. The drastic temperature rise upon freezing can be easily seen in this

figure. This rise could be releated to heat release due to phase transition or due to

the slowing down of the heat removal rate from the pool.

The downward heat flux of Runs 3. 11 and 14 are estimated based on the method
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proposed in Section 5.3.2.4 and the results are shown in Fig.5.10. The values shown

in Fig.5.10 are the average values of all the cooling fins (totally 7 fins) with embedded

thermocouples. As shown in Fig.5.10, the calculated heat flux fluctuated during the

experiments., An average over these transient values shows that the downward heat

flux increases with the gas superficial velocity. The average downward heat flux of

Runs 3. 11 and 14 are 380. 396 and 510 W/m 2 respectively. Based on the assumed

temperature difference. 0.3 "'C, between the pool and porous surface. the downward

heat. transfer coefficients of these runs are comparable with the values predicted

by the correlation of U. of Wisconsin (Eq.3.8). The differences are within 20%. A

comparison with the proposed periodic contact model, shows that the downward heat

transfer coefficients in this experiment are 3.5 to 10 times higher than the calculated

values of Eq.3.32. The difference is larger as the gas superficial velocity is higher.

In the derivation of the periodic contact model, several constants were deter-

mined by curve fitting of the UCLA dry ice experimental data. The fundamental

phenomena involved in dry ice experiment and this experiment are different. In

the dry ice experiment, the gas was generated by melting a solid substrate. The

decomposition process was not involved in this experiment.

In all the runs. the experiments did not last long enough to study the impact of

crust formation on the downward heat transfer rate. It is difficult to ascertain these

effects with this experimental apparatus. The experimental results showed that the

temperature drop from the pool to cooling coil was around 17 to 18 'C and that

from the pool to porous surface was only around I "C. The structure of the cooling

assembly. Fig.5.3. constitutes the major heat transfer resistance. If the effects of

crust formation on the downward heat transfer rate are not large enough, they can

not be detected.

The overall energy balance of Run 11 is analyzed and the results are shown

in Fig.5.11. Figure 5.11 shows the internal energy change of the pool. Qp00 the

downward heat transfer rate, Qdown. and the heat addition from the atmosphere by
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natural convection, Qadd. The heat addition from the atmosphere is estimated by

assuming that the heat transfer coefficient at the pool upper surface is 10 Wr m 2 0K

and the driving force is the temperature difference between the envieorment and the

pool. Since the air inlet temperature is lower than that of the pool bulk, about 5 ~

20 'C. some heat will be carried away by the air flow. This part of heat loss is very

difficult to estimate because the air temperature at the pool upper surface was not

measured. An assumption of thermal equilibrium between the gas and the pool will

not be correct. It is quite doubtful that a thermal equilibrium can be reached within

a pool of 37.3 mm depth.

From Fig.5.11. it can be seen that the difference between Qpoo + Qadd and

Qdown decreases as time proceeds. This is because the pool cools down gradually

and the temperature difference between the pool and gas decreases. It is also possible

that some heat was transferred into the pool through the side walls of the pool. This

term is also very difficult to estimate because of the complicated structure of the side

walls.

Figure 5.12 provides the pool temperature histories of Runs 9. 10 and 16. Run

9 is one of the four runs that showed gradual pool freezing. As shown in Fig.11, for

Run 9 the temperature of the pool did not change much upon freezing, only around

0.1 OC, upon freezing. I
Figure 5.13 shows the pool temperature histories of Runs 10, 17 and 18 which

correspond to different operating temperatures of the condensing unit. as summarized

in Table 5.1. The operating temperature of the condensing unit controls the driving

force of downward heat transfer. A decrease in this temperature can increase the

driving force and cool down the pool faster. For Run 18. the condensing unit was

initially operated at -14.4 'C. after 145 minutes the pool temperature reached a

steady value and freezing could not be achieved. Freezing was then achieved by

adjusting the dial on the back pressure regulator, Fig.5.1, to decrease the operating

temperature of the condensing unit to -18.9 C.
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5.4.4 Possible Improvements of Apparatus for Future Experiments

Based on the experience gained from previous runs. the following suggestions

are made:

1. Insulation materials can be placed aroundthe test cell to cut down both the

sideward and upward heat addition to the pool.

2. A more elaborate set up is needed for measuring the surface temperature of the

porous plate.

3. The heat transfer resistance within the cooling assembly should be reduced

to increase the capability of the apparatus in quantifying the impact of crust

fromation on downward heat transfer rate. This can be done by improving the

thermal contact between the cooling fins and copper plate. also the contact

between the cooling fins and the porous plate.

4. A more elaborate technique is needed for sealing the penetrations of thermo-

couple wires on the main structure to prevent the leakage at higher superficial

gas velocity. By doing this, the experiments can be conducted at higher gas

velocity to respresent a more realistc case.

5.5 Conclusion

In the cases studied. a stable solidified layer is formed across the bubble agitated

horizontal liquid/soil d interface.

Two different phenomena were observed. In some of the cases, the pool was

cooled below its freezing point. Then freezing occured suddenly, the liquid ,solid

interface was covered by a thin layer of ice and the bulk temperature of the pool

jumped up to the freezing point of water. In other cases. the freezing occurred

gradually. There is no supercooling in the pool. The causes of these differences

remain unclear.

The experiments conducted here are of scoping nature. Several features of MCCI
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were not included in the experiment. namely. the internal heat generating and the

difference in liquidus and solidus temperature of corium. The direct application of

the results of this experiment to MCCI analysis needs further justification. However.

in this experiment it was observed that a crust layer could be formed even in the

presence of bubble agitation. This validates the concepts used in the current MCCI

integral analysis code, such as CORCON/Mod2. WECHSL and DECOMP.
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CHAPTER 6

INTEGRAL ANALYSIS OF

MELT/CONCRETE INTERACTION

6.1 Melt/Concrete Interaction with Sustained Heating

- BETA Experiment

6.1.1 Description of BETA Facility

The BETA project. a key experimental program of Melt'Concrete Interaction

is currently undertaken at KfK. The BETA facility is unique with regard to size

and experimental capability. A schematic diagram of the BETA facility is shown in

Fig.6.1.

The hot melt is contained in a concrete crucible. The initial inner diameter of

the crucible is 380 mm. This diameter guarantees that gas release and heat transfer

at the bottom of crucible is not affected by the vertical walls. The effects of the

crucible inner diameter will be observed in a future test with a crucible of 600 mm

inner diameter. The dimensions of the concrete crucible are shown in Fig.6.2. The

dots in the figure are the locations of thermocouples. Failure of a thermocouple

indicates the position of the melt front.

The concrete crucible is enclosed by an induction coil. A maximum electric power

of 8400 kW can be fed to the induction coil. However. the large outer diameter of

the crucible. needed to allow for radial melt penetration. limits the efficiency of the

induction heating. Therefore, a maximum power of 1700 kW may be induced in the

melt.

Up to 300 kg metallic and 300 kg oxidic melt can be generated outside the
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crucible by a thermite reaction and then poured into the crucible. The amount of

melt poured into the concrete crucible can be controlled. The initial temperature of

the melt depends on the composition of thermite. There is no direct measurement of

the initial melt temperature. A ratio pyrometer is installed in the pouring channel

to measure the surface temperature of the melt.

On top of the crucible, there is a container with a dip-in material sampling

and temperature measurement system for melt analysis. The temperature of the

melt is measured at predefined time intervals by ' - Re thermocouples which are

dipped simultaneously into the metallic and oxidic phases. Also. the lances of dip-in

thermocouple may collect samples from the melt for chemical analysis. The surface

temperature of the melt is measured continuously by a ratio pyrometer installed on

top of the crucible.

The hood and offgas pipe collect all gaseous products generated during melt

concrete interaction for physical and chemical analysis. The composition and the

release rate of the gases are analyzed by on-line and off-line mass spectrometry.

where an Argon cover gas flow acts as tracer gas. Aerosol concentration in the offgas

is analyzed by an on-line scattering device and by probe analysis.

Throughout the experiments, the behavior of the melt surface is observed by a

TV camera. This provides valuable information on gas flow through the melt. surface

crust formation and aerosol production.

6.1.2 BETA Test Matrix and Results

The test matrix of the BETA experiments contains two major parts; the high

power or high temperature tests and the low power or low temperature tests. The

principal idea is to investigate the different regimes which occur in the process of

Corium. Concrete Interaction with a sequence of experiments at different tempera-

ture levels at approximately quasi-steady-state conditions. This approach has the
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advantage that the complex physical and chemical reactions can be observed in more

detail.

Operation of the BETA facility began in February 1984. By February. 1985

six high power tests and one low power test had been performed successfully. All

experiments used a basaltic concrete crucible. Some experiments with calcareous

concrete will be made at a later stage. The experimental conditions for these high

power tests are summarized in Table 6.1. The initial temperatures of the melt shown

in Table 6.1 are estimated based on the energy balance of the thermite reaction and

the heat loss before the melt was poured into the crucible. In general, the melt was

poured into the crucible 2 minutes after igniting the thermite to have a complete

separation of the oxidic and metallic melts.

For tests VO.1 through V1.2, the thermite mixture is identical, pure thermite

plus metallic iron. For the V1.3 to V1.6, Cr and Ni were added to produce stainless

steel melt and, quartz sand was added to reduce the oxide melting point. The

amount of quartz sand was greater in V1.3 than in the other experiments. The

uncertainty involved in the temperature is probably around 100 to 200 cK. The

initial temperature shown in Table 6.1 are the standard values selected by a working

group at KfK for the purpose of code comparison.

In each test before the melt was poured into the crucible the inductor was oper-

ated at a predetermined power level for at least 45 minutes. The actual power coupled

to the melt was calculated as the difference of the inductor power with and without

the melt in the crucible. The recorded power histories have some samll scale fluc-

tuations. The records of tests V1.3 and V1.5 are extremely noisy. For the purposes

of input to computer codes, those records have been reduced to numerical form. In

Appendix C. the smoothed power history and numerical values of all the high power

tests are summarized. Again, those values are the standard values decided by the

working group.
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Table 6.1

Test Matrix of BETA Experiment

Initial Planned Average Erosion

Metallic Oxidic

( kg)

Temperature

(cK)

Power

(kW )

Power Rate

(kW4,) (mm/sec)

V'0.1 Fe (300) -

VO.2 Fe (300) -

V70.3 Fe (300) Al 2 O3 (150)

V1.1 Fe (20) -

V1.2 Fe (190) A12 0 3 (190)

V1.3 Fe (246) A12 0 3 (105)

Cr (30) SiO 2 (45)

Ni (24)

V1.4 Fe (328) -

Cr (40)

Ni (32)-

V1.5 Fe (246) -

Cr (30)

Ni (24)

V1.6 Fe (246) A1 2 0 3 (45)

Cr (30) SiO 2 (5)

2473

2473

2473

2473

2473

2173

2273

2273

2273

- over first five hundred seconds

] 56

Test Mass

no

200- 400

1700

Pulse

Pulse

1000

370.3

827.1

Failed

374.4

788.8'

0.18

1.00

~ 0.25

0.76

Failed

450

1000

195.8

523.0

0.23

0.67



In all the high power tests it was found that the downward penetration of the

metallic melt dominates, which is quite different from the results of the previous ex-

periments without internal heating. The downward erosion rate varies from 0.18 to

1.00 mm/sec and is roughly proportional to the power input. The influence of mag-

netic Lorentz-forces. resulting from induction heating, on the melt front proporgation

was investigated both experimentally and theoretically when the BETA facility was

planned. Compared with that of gas agitation of the melt, the influence was found

to be negligible !R3 . However, because of the unexpected melt front shape, the

test V1.2 was carried out to validate the influence of magnetic Lorentz-froces. With

pulsed heating. at maximum input power, the melt was repeatedly heated in the

crucible to high temperatures and then allowed to interact with the crucible with

zero induction field. After a series of ten power cycles, comparison of the post-test

crucible shape with that of VO.2 shows no significant difference. and it was concluded

that the radial and axial penetrations are not affected by the heating method. The

cross sections of post-test crucibles of all power tests are shown in Appendix C.

Another important phenomenon observed in the BETA experiments, especially

at high power level, is the dispersal of the metallic phase into the oxidic phase. Test

VO.3, with a rather high sustained heating power of 1700 kW, began with oxidic and

metallic melts in the crucible, with the metallic phase initally at the bottom. With the

high gas release from the concrete the steel melt was entrained into the oxidic phase

in fine droplets. After 5 to 6 minutes of interaction. an almost complete dispersion

of the metallic phase into oxidic phase was noted. and consequently no continuous

steel phase existed to be heated by the induction field. Therefore. the heating power

dropped to a low value. ending the experiment. From the post-test examinations of

concrete crucibles, it was found that. for all the high power tests except VO.2 and

V1.2. a complete dispersal of the metallic phase occured. For V1.2, an estimated

106 kg of metallic phase remained at the end of the experiment. This phenonemon

was not observed in other melt/concrete interaction test, primarily because BETA

experiments have been the first large scale steady-state experiments ever attempted.
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This phenomenon is presently not modeled in any code. The dispersion was not

observed in the first low power test. test V2.1.

From the post-test examinations of the concrete crucibles it was found that,

in all the high power tests with dispersion. the shape of the crucibles became very

irregular at the later stage of the experiment. In Tests V1.2 and V1.5, the shape was

not symmetric with respect to the center line of crucible. In tests V0.3 and V1.6. the

metallic melt penetrated into the concrete from the corners, with a chunk of concrete

remaining in the center of the bottom surface. Test V1.3 also had the tendancy to

form this configuration. It seems that the unentrained metallic melt separated into

two parts and eroded the concrete independently. Due to the limited number of

thermocouples being located in specific positions the time dependent cavity shapes

is difficult to generate.

One of the important findings of the BETA experiment with respect to the

source term evaluation is that the aerosol concentration in the off-gas is relatively

low, on the order of one mg/m. These results differ from those of Sandia's small

scale experiments. The difference is probably due to the different concretes used in

the experiments.

The detailed analysis of typical samples of actual BETA concrete has not been

reported. Until such results become available, it was decided that the composition

of KWU type (H6] concrete will be used for all code calculations. The composi-

tion. together with some other properties of KWU type concrete are summarized in

Table 6.2.

6.2 Analysis of BETA Experiments

6.2.1 Computer Code

A modified version of the CORCON /Modl is used in the following analysis. The

major assumptions and limitations of CORCON Modi are:
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Table 6.2

Specification of KWU Type Concrete

Compositions Weight Fraction(%)

SiO2

A1203

CaCW

Ca(OH)2

(H 20)evap

Total Gas Content

Tab! (*K)

T.01 (*K)

Tiq (0 K)

Decomposition

Enthalpy (MJ'kg)

1.59

76.7

5.4

6.6

7.3

4.0

8.7

1570

1350

1650

2.00



- Isothermal pool layers are well stirred by concrete decomposition gases and

steady ablation of concrete. As a consequence of this. CORCON/Mod1 is ap-

plicable only to the early, high temperature phase of melt concrete interaction

when the melt is hot enough. Once the melt temperature decreases to the

point below the metallic- or oxidic-phase liquidus temperature. or the concrete

erosion is low so that transient and two dimensional conduction effects become

important. the code is no longer valid.

- The atmosphere and surroundings are included only as thermal reservoirs to

facilitate heat transfer from the pool surface. The convective heat transfer

coefficient in the atmosphere at the pool surface was assumed to be constant. A

simplified form factor is used in calculating the radiative heat transfer between

the pool surface and surroundings. Neither the atmosphere temperature nor

pressure is coupled to the system.

- The metallic and oxidic melt stratify into separated layers. No dispersion is

considered. Heterogenous mixtures of the melt are not permitted.

- The gas properties for heat transfer calculations are assumed to be constant.

- The oxidation reactions between the metallic elements and concrete decomposi-

tion gases only occur when the gases bubble through the melt pool. Oxidation

of metallic elements by gases at the interface with a gas film is not included.

Due to the limitations of the code, only the high power tests of BETA have been

analyzed.

6.2.2 Modeling of Melt/Concrete Interaction

In CORCON, it is assumed that both the downward and sideward heat trans-

fer to concrete are governed by the gas film model. It gives the results that the

downward and sideward erosion are about equal. This is contradictory to the BETA

experimental results. It could be argued that the film at the horizontal interface
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collapses (quench) when the superficial gas velocity at meltl concrete interface is not

high enough to support the film. After the film collapses. the downward heat transfer

is governed by either a pseudo transition boiling or pseudo nucleate boiling which

has a higher heat transfer coefficient. Therefore. the downward erosion is enhanced.

However, to reproduce the results of different BETA tests by the WECHSL code, the

quench limit had to be varied from test to test R3.

Based on hydrodynamic considerations. the formation of a very stable gas film

requires that the superficial gas velocity exceeds a certain critical value i.e. the

flooding limit. As the superficial gas velocity decreases, the film may collapse due to

Taylor hydrodynamic instability, which provides a limit of minimum gas velocity for

supporting an existing film. For the case of melt/concrete interaction, those limits

differ by two orders of magnitude. Figure 6.3 shows the heat fluxes corresponding

to these decomposition gas limits for basaltic concrete in contact with the metallic

corium. Those limits are calculated based on Kutateladze's flooding limit (Eq.3.5)

and Berenson's minimum stable gas film criterion (Eq.3.6) respectively.

Figure 6.3 also shows the heat flux predicted by the pseudo nucleate boiling

downward heat transfer correlation derived in Chapter 3 (Eq.3.32). with a slip ratio

equal to the cubic root of the density ratio of slag and concrete gases. and the heat

flux predicted by the original CORCON film model (Fig.3.11). The intersections

of solid and dotted curves are the corresponding limits. As shown in Fig.6.3. the

temperature difference needed to form a stable film (Taylor limit) is smaller than that

of the flooding limit. This is different from the traditional boiling curve i.e. there

is no transition boiling regime. Therefore, the heat transfer mechanism will either

be pseudo nucleate boiling or pseudo film boiling. The actual heat transfer mode

depends on the initial temperature of the melt. If the temperature is initially very

high, the heat flux will be high enough to generate a film. and the interaction starts

with a film at the interface and follows the gas film model to the minimum stable

gas film limit. After the film collapses, the heat transfer mode switchs to pseudo
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nucleate boiling. If the temperature is not high enough to generate the film the heat

transfer mechanism will be pseudo nucleate boiling all the time until freezing takes

place. Obviously. the gas film may also be disturbed prior to reaching the minimum

flux, and the periodic contact mode may be initiated at, higher heat flux than the

Taylor limit.

6.2.3 Modifications of CORCON/Modi

The CORCON 'Modi has been modified based on preceeding argument. The

MIT periodic contact model was incorporated to calculate the downward heat trans-

fer coefficient in the pseudo nucleate boiling regime. The interfacial heat transfer

correlation derived in Chapter 4 was also incorporated into CORCON/Modi.

Another major change of CORCON/Mod1 concerning the heat transfer calcu-

lation is to make the properties of gas mixture dependent on the temperature and

composition of the decomposed concrete gases. The specific heat of the gas mixture

is calculated based on the weight fraction of each species. The viscosity and thermal

conductivity of the gas mixture (carbon dioxide and water vapor) are determined by

Wilke's formula [B7]:

X?/1f (6.1)

where

o _= (1+ )- 1 / 2 (l ()

8 . pY M

X = either thermal conductivity or viscosity

X mole fraction

M = molecular weight

P= viscosity

n = number of species in the mixture

i= the index of species
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Based on the above equation, for basaltic concrete. the calculated thermal conductiv-

ity of gases mixture varies from 0.32 W m 'K at 2000 'K to 0.21 W m 'K at 1700

OK. For limestone I common sand concrete. it varies from 0.21 W1 m 'K at 2000 'K

to 0.15 W/m 0 K at 1700 'K. In the original CORCON. the thermal conductivity of

the gas mixture is assumed to be 0.1973 W/m K.

The simplified containment response model in Chapter 2 has also been incorpo-

rated into CORCON,"Modl KI to calculate the containment pressure and its effects

on Corium /Concrete Interaction. The details of this modification will be described

in section 6.1. The BETA facility is an open system. the system pressure is nearly

constant. Therefore. this modification was not used in the following analysis of BETA

experiments.

The details of all the above modifications on CORCON,/Modl and the changes

of input data are summarized in Appendix D.

6.3 Comparison of the Analytical Predictions and Experimental

Results of BETA

6.3.1 Post-test Calculation of Tests VO.2 - V1.3

After some preliminary calculations. it was decided that the best fit to the re-

sults of the BETA tests VO.2 - V1.3 can be obtained if a set of correction factors

(multipliers) is applied to the correlations mentioned above. The correction factors

used in the following analysis are summarized in Table 6.3. A sensitivity study of

these correction factors will be described in Section 6.3.2.

Among these correction factors, the interfacial heat transfer correlation has the

highest uncertainty. For the situations of the BETA experiments, the superficial

gas velocity at the layers' interafce could be as high as 0.5 m/sec. Based on the

MIT model. the interfacial heat transfer coefficient would be around 106 W/m 2 0 K.

This value is unreasonably high for the oxidic phase with a viscosity as high as 7
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Table 6.3

Modification Factors of Correlation

Correlation Nultiplier

MIT Downward Heat Transfer

Coefficient

Interfacial Heat Transfer

Coefficient

Flooding Limit (Heat Flux)

Minimum Stable Gas Film

(Heat Flux)

1 65

0.6

0.1

0.85

6.0



kg/rm sec. The MIT model was derived based on the experimental data at relatively

low superficial gas velocity, around 0.01 m/ sec. Besides that. the real oxidic materials

are of high viscosity. The effect of the viscosity was not included in the proposed

model.

(a) Test VO.2

The calculated radial and axial erosions of test VO.2 are compared with the

experimental results in Fig.6.4. In Fig.6.4. for certain elevations there is more than

one data point. These correspond to the failure time of thermocouples located at

different radial positions. From Fig.6.4 it can be seen that, for test VO.2 the gas film

collapsed at 620 sec. from then on the axial erosion rate increased from 0.13 mm/sec

to 0.26 mm/sec while the radial erosion rate is still the same as before. around

0.08 mm sec.

Figure 6.5 shows the predicted temperature history of the metallic melt of

test VO.2. As shown in Fig.6.5, after the film quench limit was reached, around

1900 'K, the downward heat transfer mechanism switched from the stable film model

to periodic contact model and the temperature of the melt dropped quickly. The

calculation of VO.2 stopped when the temperature of the metallic phase reached

(Tzqg - 0. 2 5(Tq - Tsol)) . The temperatures of metallic phase measured by the

dip-in thermocouples were around 1780 'K which are below the theoretical solidus

temperature calculated by the code. It is believed that there are some systematic

errors in the temperature measurements of both VO.2 and VO.3 tests. Besides that,

a small amount of impurity e.g. Al. Si, or C in the pure iron can decrease its

solidius temperature. It is possible that the analysis did not account for the impurity

correctly.

Figure 6.5 also shows the predicted temperature history of the oxidic phase.

After the first 100 sec. a temperature difference of 40 - 60 'K are established between

the oxidic and metallic phases. The temperature difference becomes smaller when
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the film quench limit is reached. This resulted from rapid cooling of the metallic -

phase. After that. another almost steady temperature difference is established with

smaller magnitude compared with previous one.

The predicted cavity shape of test VO.2 is shown in Fig.6.6. The enhancement

of downward erosion after the film collapse can also be seen in this figure.

(b)Test VO.3 -

For test VO.3. with F factor (multiplier for quench heat flux limit) equals to

6.0. the film does not collapse; therefore the axial erosion rate is underpredicted

(Fig.6.7a). However, if we assume that the initial temperature of VO.3 is 100 'K

lower than the standard input value. The interaction starts with nucleate boiling

and stays in this regime until freezing takes place which gives a better fit with the

experimental results (Fig.6.7b). The calculated axial ablation rate is as high as

2.0 mm/sec initially then decreases gradually to 0.16 mm sec at 600 sec.

The calculated temperature histories of the metallic and oxidic phases are shown

in Fig.6.8. Again the calculation stopped when the temperature of the metallic melt

dropped below its liquids temperature. The temperature difference between the

oxidic and metallic phases is around 30 - 40 'K. This temperature difference is

smaller than that of VO.2. This is because in test VO.3 the superficial gas velocity is

higher and therefore results in higher interfacial heat transfer coefficient.

The predicted cavity shape of VO.3 is shown in Fig.6.9. The cavity shape is

different from that of test V0.2. This is because the amount of melt poured into the

concrete crucible in test VO.3 is greater. It contains 300 kg of iron and 150 kg of

Als0 3 .

(c)Test V1.2

For test V1.2 (pulsed power test) some freezing occurred between power pulses.
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which is beyond the capability of CORCON/Mod1. Therefore, as shown in Fig.6.10

the prediction is not in good agreement with the experimental results.

From Fig.6.11. it can be seen that the predicted temperature history of the

metallic phase follows closely the power input. The predicted temperature history

of the oxidic phase is also shown in Fig.6.11. The temperature difference between

the metallic and oxidic phases is larger when there is internal heating in the metallic

phase. The temperature measurements of dual dip-in thermocouples at 140 sec and

300 sec showed that the temperature differences between the metallic and oxidic

phase are around 80 - 100 'K. These are consistent with the calculated results.

From the cavity shape plot of V1.2 (Fig.6.12), the effect of internal heating on

downward erosion can be easily seen i.e. the downward erosion rate is higher when

the induction power is switch on and is lower when the induction power is off.

(d) Test V1.3

Figure 6.13 shows that the predicted radial and axial erosions of test V1.3 are

in good agreement with experimental results. However, as shown in Fig.6.14 the

initial rapid cooling of the melt can not be reproduced in the calculation. In test

V1.3. some oxidic phase was splashed out of the melt pool and became attached to

the concrete wall at the upper part of the crucible which is an effective way to cool

down the melt. This mechanism is not included in CORCON/Modl.

In test V1.3. 10% (30 kg) of Cr and 8% (24 kg) of Ni were added to the

melt to simulate stainless steel. The Cr and Ni can be oxidized by the concrete

decomposition gases. These reactions can make some contribution to the total heat

input to the melt. As shown in Fig.6.15, the calculated chemical heat accumulated

to 18 MJ at 600 sec which is about 4% of the total heat input. It is important

to point out here, that the amount of chemical energy generated in the melt pool

can not be measured in the experiments. It can only be calculated by the chemical
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reaction package in the integral analysis code which is different for different computer

codes.

Figure 6.15 also shows the magnitudes of various heat sources and heat sinks of

test V1.3. The sensible heat of the melt and the heat carried out by the decomposed

concrete gases are not shown in this figure. From Fig.6.15 it can be seen that most of

the heat was consumed in ablating the concrete. A more detailed calculation shows

that. in test V1.3. 77.2% of the heat went into the concrete and 12.2% was transferred

to the atmosphere. The rest of the heat was carried to the atmosphere by concrete

decomposed gases. For test VO.2. the one with smaller axial erosion rate, 75.3% of

the heat was transferred to concrete.

The oxidation of Cr and Ni is accompanied by generation of CO and H2 gases.

Fig.6.16 shows the relative concentration of gases exiting from the melt pool. Dur-

ing the BETA experiments, the relative gas concentration in the off-gas line were

measured by a mass spectrometer. A comparison between the experimental and cal-

culated results can serve as a validation of the chemical reaction package used in the

integral anslysis code. The reduction of these experimental data is still unreported

by KfK.

6.3.2 Sensitivity Analysis

Among the correction factors shown in Table 6.3, the one for the minimum stable

gas film (F factor) has the highest impact on predicted results. As shown in Fig.6.17.

an increase or decrease in the F factor by 25% can result in quite different erosion

rates for test VO.2. With F = 7.5 the film collapses earlier than the Base Case at

140 sec with melt temperature around 1975 0 K. thus leading to overpredicted the

erosion in axial direction. With F = 4.5, the quench limit is never reached within

the time duration of the experiment, leading to underpredicted axial erosion. The

value of F also has some effect on the radial erosion. From Fig.6.18, it can be seen

that as F increases the radial erosion decreases.
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A sensitivity study was performed on test V1.3 to determine the importance of

the multipliers on the downward and interfacial heat transfer correlations. The cases

analyzed are summarized in Table 6.4. and the results are shown in Fig.6.19.

From Fig.6.19 (Base Case and Case 1). it can be seen that the multiplier for

the downward heat transfer correlation is important in fitting the experimental re-

sults of BETA. The sensivity study also shows that (Fig.6.19, Case 2 and Case 3)

the predicted axial erosions become indifferent as the interfacial heat transfer coef-

ficient becomes high enough. Under the condition of high interfacial heat transfer

coefficients. the temperatures of the metallic and oxidic phases are almost equal and

therefore have no further effects on the integral results.

The choice of 0.1 as the multiplier of the interfacial heat transfer correlation is

based on the calculation of V1.2. The predicted temperature difference between the

metallic and oxidic phases is comparable with the measured value by the dual dip-in

thermocouples.

Figure 6.20 shows the predicted axial erosion of test V1.3 under different ini-

tial melt temperatures. A 100 'K difference in the initial temperature of the melt

can result in approximately 10% difference in overall axial erosion. As shown in

Fig.6.20. with the initial temperature 100 'K lower than the standard input value.

the predicted results at the first 300 sec are in better agreement with experimental

data.

6.4 Blind Post-test calculations of Test V1.5 and V1.6

Tests V1.5 and V1.6 were used for a blind post-test calculation in order to

validate the integral anslysis code. For BETA experiments the pre-test calculation is

almost impossible to make, especially for the high power test. The primary reason

is that the power coupled to the melt is difficult to quantify before the experiments.

The dispersal of the metallic phase into the oxidic phase can change the coupling
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Table 6.4

Cases Analyzed of Test V1.3

Multiplier for

MIT Downward

Multiplier for

MIT Interfacial

Initial Temperature

of Melt (*K)

Base Case

Case 1

Case 2

Case 3

Case 4

Case 5

Case No.

0.6

0.6

0.6

1.0

0.6

0.6

0.1

0.5

1.0

0.1

0.1

0.1

2173

2173

2173

2173

2073

2273
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coefficient between the inductor and metallic phase, therefore. also changing the

power induced to the melt. This kind of calculation may be possible if the dispersion

phenomenon is correctly modeled.

As shown in Fig.6.21, the blind post-test calculation of modified CORCON

Mod1 overpredicts the axial erosion of test V1.5 at early times and then converges

to experimental results. The radial erosion is slightly underpredicted. From the

trends of the experimental results of V1.5, it looks like that the interaction started

with a film and then the film collapsed. A new calculation was made based on this

new information. It is assumed that the initial temperature of the melt was 200 'K

higher than the standard input value to allow for forming a film at the horizontal

melt/concrete interface. The results of this calculation are shown in Fig.6.22.

The results of the new calculation shows that the gas film collapsed at 615

see with the melt temperature around 1900 cK. As shown in Fig.6.22, the new

calculation gives a better prediction of radial erosion. For the first 350 sec, the

predicted axial erosion fits well with the experimental data. It seems that the film

collapsed earlier (around 400 sec) than that calculated by the code. This means that

the melt cooled faster than that predicted by the code. This could be due to the

splashing of the melt out of melt pool.

For test V1.6, as shown in Fig.6.23 the overall erosion in the axial direction is

overpredicted. However, the predicted results follow the trends of the experimental

data. Lowering the initial temperature of melt by 100 'K gives a slightly better fit

with the experimental results (Fig.6.24).

The post-test examination of the V1.6 crucible showed that (see Fig.6.25) the

cavity shape was quite irregular. The maximum erosion was not in the center of the

crucible where the thermocouples were located. As shown in Fig.6.25, the maximum

erosion was around 500 mm. However. all the embedded thermocouples beyond 250

mm did not fail during the experiment.
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6.5 Conclusions

With the modified CORCON/Modi. the trends of the high power tests of the

BETA experiments can be predicted. Accurate prediction of the collapse of the stable

gas film is very important in calculating the experimental results. There is a need

for predicting the entrainment phenomena at high gas velocity.
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CHAPTER 7

LWR CONTAINMENT RESPONSE: THE CORCELL MODEL

7.1 Containment Model

7.1.1 Pressure Calculation

The simplified one cell containment model derived in Chapter 2 was incorporated

into CORCON/Mod1 (K1). The combined model. from here on called CORCELL,

considers the containment atmosphere as a single control volume. It assumes thermal

equilibrium and homogenous mixture of containment water. air and gases evolved

from the decomposed concrete. The ideal gas law is assumed to apply to all gases,

except water vapor. The containment atmosphere is coupled to the corium pool by

the heat transfer processes and the mass transfer of concrete gases. The calculations

of CORCON IModl provide the time dependent heat transfer and gas generation

rates to the containment response model. The results of containment response model

provide the temperature and pressure of containment atmosphere which are then

coupled to the MCC] analysis. In CORCELL the heat can be removed from the

containment atmosphere by fan coolers and by conduction into the concrete wall

of the containment building. CORCELL also considers the heat capacity of the

structure materials in the containment.

The status of the containment at the begining of Corium/Concrete Interaction

is determined by conserving the energy between the time of scram and the start of

core-concrete attack. All the Zr is assumed to have reacted prior to the start of

MCCI. The heat of radioactive decay and water-Zr reaction are either stored in the

corium pool or distributed among the constituents of the containment atmosphere.

Knowing the containment status before shutdown. the amount of heat stored in
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the primary cooling water and the amount of heat removed by fan coolers, along

with the assumptions about the starting time of core-concrete attack and the initial

corium temperature. the containment pressure and temperature at the begining of

Corium /Concrete Interaction can be determined.

In this calculation, the integal decay power before the core-concrete attack is

estimated by the correlations in RETRANO2 (R7).

7.1.2 Heat Conducted into the Containment Concrete Wall

The inner surface area of the containment wall is large (about 6800 m2 for a

PWR large dry containment). Therefore; over time. a significant amount of heat can

be transferred through this area into the massive concrete structure. which would

reduce the threat of overpressurization.

A transient heat conduction model is employed to characterize the heat flow

into the concrete wall of the containment building. The analytical solution of the

transient heat conduction for a semi-infinite plate. whose surface temperature is

suddenly raised. can be given as:

T(x.t) -T
S 1 - er f ' (7.1)

where

x x/Vat, normalized distance into the wall

T= initial temperature of containment concrete wall

T, = containment atmosphere temperature. assumed equal to sur-

face temperature of wall

a thermal diffusivity of concrete

The total heat absorbed in the containment wall can be witten as:
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L

Q=pCA f T(x.t ) - T dx (7.2)

where

p = density of concrete

C heat capacity of concrete

A heat transfer area of containment inner wall

L = thickness of containment concrete wall

Substituting Eq.7.1 into Eq.7.2 gives:

Q = pCA(Too - To)(2v'at)I(t) (7.3)

where the integral factor 1(t) is given by:

L/2V at

(t) = 1(1 - erf Y)dY (7.4)

and can be approximately evaluated from tabular values of the error function. The

value of error function approachs unity very quickly. As Y = 3.5. the erf Y is 0.9995.

Therefore. for L / 2 v at greater than 3.5. the limits in the above integration can be

replaced by 0 to oc. For L = 1.2 m. it takes 15 hr for L /2V'/it to be reduced to 3.5.

In the following calculations, I(t) is assumed to be constant and equals to 0.5632

which corresponds to integration between Y = 0 and Y = oc.

In a discretized manner, the transient behavior of the containment atmosphere

temperature may be used to obtain the total heat absorbed after n time steps as:

Q(n) = pC A (T() - T - )(2,va(n - mnt) (7.5)
m=1
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where
(m

T'c' =containment atmosphere temperature at time step m

T. = initial temperature of containment

At = time interval of each calculational time step

7.2 Cases Analyzed

The heat transfer model described in section 5.2 was used to analyze the MCCI

process in a typical plant and to characterize the impact of MCCI on containment

pressure. The cases analyzed covered different types of containments, different types

of concrete, the uncertainties in the modeling of MCCI and the effects of various heat

sources and sinks.

A 3411 MWt PWR with large dry containment was chosen as the Base Case for

this study. The assumptions and parameters used in the Base Case are summarized

in Table 7.1. The shape of the reactor cavity was assumed to be cylindrical with

3.125 m radius. The initial temperature of corium and the time of first contact of

corium with concrete after scram are accident sequence dependent. These parameters

involve a lot of uncertainties, which can be important, therefore sensitivity studies

will be performed on these parameters. The cases of sensitivity studies with different

parameters from the Base Case are listed in Table 7.2.

Three different types of containments are analyzed. These are PWR large dry

containment. PWR ice condenser containment and BWR supression pool contain-

ment. The principal features together with the major parameters of these contain-

ment types used in the analysis are summarized in Table 7.3. In these calculations. it

is assumed that the fan coolers are partially available at a reduced efficiency so that

the net effective rate of cooling is roughly 10% of the rated capacity. For the compo-

sition of different types of concrete, the default values of the physical properties in

CORCON/Mod1 are used. These compositions have been summarized in Table 1.1.
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Table 7.1

Parameters Used in the Base Case

of Containment Pressure Calculation

Containment Type

Concrete

Initial Temperature of Corium

Initiation Time of MCCI

Heat Transfer Correlations:

Downward Heat Transfer

Gas Film

Periodic Contact

Film Quench Limit

Flooding Limit

Interfacial Heat Transfer

Convective H.T.C. at Upper Pool Surface

Chemical Reaction Heat in Corium Pool

Chemical Reaction Heat in Atmosphere

Heat Conducted into the Concrete

Wall of Containment Building

PWR large dry

limestone/common sand

3100 *K

2 hr

CORCON/Modi

MIT model with a multiplier of 0.6

Eq.3.6 with a multiplier of 6.0

Eq.3.5 with a multiplier of 0.85

MIT model with a multiplier of 0.1

10 W/m 2 0K

Yes

No

Yes
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Table 7.2

Cases Analyzed in the Containment

Pressure Calculation

Case No. Difference from Base Case

1 Base case

2 Film quench limit with F = 1.0

3 Flooding limit is infinite

4 Interfacial heat transfer uses

MIT model without multiplier

5 Convective H.T.C. at upper pool

surface is 100 W/m 2 oK

6 Initial temperature of corium is 2800 'K

7 Initation time of MCCI is 4 hr after Scram

8 Without heat conducted into concrete

wall of containment building

9a Base Case with combustion reactions heat

9b Case 2 with combustion reactions heat

.9c Case 3 with combustion reactions heat

10 Basaltic concrete -

11 PWR ice condensor containment

12 BWR supression pool containment
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Table 7.3

Characteristics of Containments

Containment Types PWR

Large Dry

PWR

Ice Condenser

BWR

Supression Pool

Power (MWt)

Core Size (Metric tons of Uranium)

Free Volume (m3
)

Primary Water (kg)

Accumulator Water (kg)

Spray Water (ag)

Ice (kg)

Water in Supression Pool (kg)

Amount of Structure Acts

as Passive Heat Sink (tons)

Composition of Corium (tons)

U0 2

ZrO2

FcO

Fe

Ni

Cr

Fan Cooler

Containment Wall Heat

Transfer Area (m 2 )

10% of 70 MW

8.8 X 103 5.58 x 103

10% of 80 MW

2.49 x 104

203

3411

86.3

5.25 x 104

2.3386 x 105

1.0925 x 105

7.0i17 x 10

1800

97.89

25.73

5.0

119.0

9.74

17.45

3411

86.3

3.52 x 104

2.3386 x 10"

1.0925 x loll

7.0157 x 10

1.0 x 10

1800

97.89

25.73

5.0

119.0

9.74

17.45

3411

120.0

1.17 x 104

2.6058 x 105

7.8i73 x 10'

3.8220 x 104'

1800

137.00

44.10

5.0

119.0

9.74

17.45



7.3 Results and Discussion

7.3.1 Base Case

For a PWR large dry containment with limestone; common sand concrete the

calculation shows (Fig.7.1) that the containment pressure increases monotonically

from 0.302 MPa (43.9 psi) to 0.381 MPa (55.3 psi) before the corium pool has

significant solidification at 1.4 hr after the initation of MCCl. Within this 1.4 hr. the

temperature of the containment atmosphere increases from 389 OK to 395 OK.

The calculation shows that the three layers structure assumed in the

CORCON 'Modl does not last for a long time. The layer flips. i.e. the heavy oxidic

layer floats up and is combined with the light oxidic layer and the metallic phase

becomes the bottom layer. at 220 see after starting the MCCI. Note that. the time

of layer flipping depends on the initial density of the oxidic phase. If a large amount

of ZrO2 were in the oxidic phase initially, the density of the oxide phase would be

smaller and layer flipping would occur earlier.

The temperature histories of the corium are shown in Fig. 7.2. In the case of

corium. the temperature of the oxidic phase is higher because the decay heat is gen-

erated within the oxidic phase. The calculation stopped when the temperature of the

metallic phase reached Tq - 0.25(Tizq - T,,I). Figure 7.3 shows the calculated tem-

perature difference between the metallic and oxidic phases. In the first 3 minutes.

the temperature of the oxidic phase is lower. This is because the oxidic phase is on

the bottom at first (3-4 min) and cools down faster than the metallic phase. The

sharp peak in Fig.7.3 results from the collapse of the gas film. This enhances the

downward heat transfer. cools down the metallic phase faster and enlarges the tem-

perature difference between the metallic and oxidic phases. After that, a temperature

difference around 40 to 50 cK is established between these two phases. The tem-

perature difference between these two phases becomes smaller as the temperature of

the metallic phase reaches its liquidus point. From this point on, the metallic phase
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begins to liberate its latent heat of fusion. This occurs at about 1 hr after MCCI

begins.

The calculation predicts that until solidification starts the overall concrete ero-

sion in the axial direction is about 0.5 times higher than that in the radial direction.

As shown in Fig.7.4, the initial ablation is higher in the radial direction. After gas

film collapses. the axial erosion exceeds the radial erosion. The calculated cavity

shape is shown in Fig.7.5.

In this calculation. the film collapses at 730 sec after the start of MCC1 with

the temperature of the metallic phase around 2230 'K. This is higher than that of

BETA experiments. This is because the system pressure in this calculation is 1-2

times higher than that in BETA experiments. In the present modeling, the stability

of the film depends on the superficial velocity of the concrete decomposed gas. With

a specified type of concrete and fixed erosion rate. the superficial velocity of concrete

gas is inversely proportional to the gas density.

Figure 7.6 shows the various accumulated energies involved in the containment

pressure calculation of the Base Case. It can be seen that: (1) Most (62.8%) of the

heat generated in the corium pool is consumed by the concrete ablation. (2) The

heat transferred directly into the containment from the corium pool has the same

order of magnitude as that conducted into the containment concrete wall (24.5%).

(3) A significant amount of heat (12.6%) is brought up by the concrete decomposed

gas into the containment atmosphere. (4) At the beginning of the MCCI. the gener-

ation rate of chemical reaction heat (between H 2 0,. CO 2 and metal) has the same

magnitude as that of decay heat. However, the chemical reaction heat decreases as

time proceeds. This is because of the decreasing concrete erosion rate and therefore

the gas generation rate.

In the base case. it is assumed that the fan coolers are operated at 10% effi-

ciency. Over the 1.4 hr of MCCI. 10.8%i of the heat transferred into the containment
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atmosphere is removed by the fan coolers and 47.6% of these heat is conducted into

the concrete wall of the containment building.

7.3.2 Sensitivity Studies

The following summarizes the results of the sensitivity studies.

7.3.2.1 The Downward Heat Transfer Model

One of the major findings of BETA experiments is that the heat generated in a

high temperature melt is transferred out of pool dominantly in the axial downward

direction. In the present modeling. the same effect is achieved by allowing the gas

film at the horizontal interface to collapse at relatively high superficial gas velocity

of concrete decomposed gas. As stated in Section 5.3.3 the film quench limit is

important in reproducing the BETA experimental results. The impact of the film

quench limit on containment pressurization will be studied here.

Three cases are analyzed. In the Base Case the film is assumed to quench at

a superficial velocity 6 times that predicted by Berenson's minimum stable gas film

criterion. In Case 2, the film is not allowed to collapse, the downward heat transfer

mechanism is pseudo film boiling all the time. In Case 3 the film is not even allowed

to form. the downward heat transfer is governed by the periodic contact between the

corium and concrete (pseudo nucleate boiling, MIT model) from the beginning of

MCC1.

The results of containment pressure response. corium temperature and overall

concrete erosions of these results are shown in Figs.7.1. 7.2 and 7.4 respectively. As

shown in Fig.7.1. there is no significant difference in containment pressure among

these three cases. Among these. Case 2 is the highest one and Case 3 is the lowest

one. the difference between these two is less than 2.5%. The total pressure for Case

3 is higher initially due to the large amount. of heat carried into the containment

atmosphere by the concrete decomposed gas.
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From Fig.7.2. it can be seen that the corium of Case 3 cools down significantly

faster than the other two cases initially. However. they all approach the solidification

point approximately about the same time. The liquidus and solidus temperatures

of metallic phase for these three cases are slightly different because of the degree of

chemical reactions involved in each case.

As shown in Fig.7.4. for Case 3 the erosion is predominantly downward due to

the more effective downward heat transfer mechanism. For Case 2. the radial and

axial erosions are about equal. Compared with that of Base Case. the amount of

heat consumed in ablating the concrete is 12.8% higher in Case 3 and 7.1% lower in

Case 2. It is important to point out that the total amount of heat generated in the

corium pool of these three cases are different. Among these, Case 3 has the largest

amount of gas generation and. therefore, has the highest amount of chemical reaction

heat.

The numerical values of some major variables in these calculations at 1 hr after

MCCI begins are summarized in Table 7.4 for comparison.

7.3.2.2 Interfacial and Upawrd Heat Transfer

In Case 4. the interfacial heat transfer coefficient of the Base Case is raised by

one order of magnitude. However, the predicted pressure is not significantly different

from that of the Base Case. (Fig.6.7, Case 1 and Case 4). Compared with that of

Base Case. the overall concrete erosions in the axial direction is decreased by 5.2%.

In Case 5. the convective heat transfer coefficient at the pool upper surface is

raised by one order of magnitude. This situation is like having a coolant layer on top

of the corium pool. Again. the difference in the total pressure from the Base Case

is insignificant: less than 3%. Compared with the Base Case. the overall concrete

erosions in the axial and radial directions are decreased by 2.7% and 3.7% respectively.

The magnitude of the interfacial and upward heat transfer coefficients may not

213



Table 7.4

Summarization of Results of

Case 1, Case 2 and Case 3*

CaseI Case2

Pressure, MPa (psi)
Gas

Water Vapor

Total

Energy Distribution, MJ

Carried out by gases

Transferred out of Pool

Concrete Ablation

Chemical in the Pool

0.166(24.12)

0.210(30.48)

0.376(54.60)

5.526 x 104

9.057 x 104

2.653 x 10-'

2.626 x 104

0.162(23.54)

0.213(30.97)

0.376(54.52)

5.225 x 104

9.873 x 10 4

2.410 x 105

2.049 x 104

0.172(25.00)

0.197(28.54)

0.369(53.54)

5.789 x 104

6.669x 104

2.987 x 105

3.591 x 104

Temperature, *K

Metallic

Oxidic

Liquidus of Metallic

Solidus of Metallic

Accumulated Gases (moles)

H2

Co

CO 2

H20

total

* 1 hr after initiation of MCCI

Case 3

1777.3

1826.4

1777.3

1767.3

1807.9

1861.7

1776.2

1766.2

1781.7

1818.8

1783.3

1772.3

1.153

2.214

2.380

1.330

7.075

x 10-1

x 105

x 105

x 101

x 10-1

9.116

1.765

2.414

1.346

6.437

x

x

x

x

x

104

10.1

105

101

105

10i

10-

10.5

105

105

i.610 x

3.187 x

1.940 x

1.132 x

7.869 x
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have a major effect on the containment pressure response. But different values of

the heat transfer coefficients can change the temperature profile of the corium pool

(as shown in Fig.7.3) and might have some effect on the freezing characteristics of

the debris pool and on the behavior of aerosol release. As shown in Fig.7.3. the

calculated temperature difference between the metallic and oxidic phases in Case 4

is only few degrees.

7.3.2.3 Initial Temperature of Corium and the Initiation Time of MCCI

The impact of initial temperature of corium on containment pressure is inves-

tigated in Case 6. In this case. the initial temperature of corium is assumed to be

300 'K lower than that of the Base Case.

The calculation of Case 6 shows that the film collapses at 540 sec after MCCI

begins, with the metallic temperature around 2252 'K which is not significantly

different from the Base Case. It is also found that the temperature of metallic phase

reachs the liquidus temperature at about the same time as that of the Base Case.

For the results of concrete erosion, the axial erosion in Case 6 is 4.4% lower than that

of Base Case. However, the erosion in the radial direction in Case 6 is decreased by

26.8%. The total amount of concrete ablated is decreased by 14.6%.

The predicted pressure response of Case 6 is shown in Fig. 7.8. The initial pres-

sure of this case is higher than that of the Base Case. This is because the stored heat

of corium is less and. therefore. the internal energy of the constituents of the contain-

ment atmosphere is higher in Case 6. As shown in Fig.7.8. the pressure responses of

Case 6 and the Base Case approaching each other. The pressure difference at 1.4 hr

after the initation of MCCI is around 0.017 'IPa (2.5 psi). For the Base Case, the

total pressure increase over the first 1.4 hr of MCCI is 0.079 MPa (11.47 psi). For

that of Case 6, the total pressure increase is 0.057 MPa (8.33 psi).

In Case 7, the starting time of MCCI is assumed to be 2 hr later than that of
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the Base Case i.e. 4 hr after the scram. The pressure response of Case 7 is compared

with that of the Base Case in Fig. 7.9. The pressure in Case 7 is higher due to the

larger amount of decay heat accumulated in the containment. The total pressure

increase of Case 7 over the first 1.4 hr of MCCI is 0.087 MPa (12.61 psi) which is

not significantly different from the Base Case. Because the system pressure of Case

7 is always approximately 0.175 MPa (25 psi) higher than that of the Base Case.

The results of Case 7 can be used to study the effect of 'the system pressure on the

MCC1.

In this calculation. the film collapses at 420 sec after the initiation of MCCI

with the metallic temperature around 2369 "K which is higher than the Base Case.

This resulted from the density of concrete gas being larger as the system pressure

is higher. Compared with the Base Case. the downward erosion is increased by

7.4% and sideward erosion is decreased by 13.5%. It seems that the corium has

the tendency to move more downward as the system pressure is higher. However.

the overall energy distribution is not greatly affected by the system pressure: 64.3%

consumed by concrete ablation, 12.7% carried out by concrete decomposed gas and

23.0% transferred to the containment atmosphere.

7.3.2.4 Effect of Conducted Heat into the Containment Concrete Wall

As Fig.7.9 indicates, the heat conducted into the containment concrete wall is

an important passive heat sink. By considering this, the containment pressure can

be reduced by a significant amount (compared the Case 1 and Case 8 in Fig.7.9)

After 1.4 hr of MCCI. the amount of heat transferred into the concrete wall of the

containment building is around 8.08 x 104 MJ in Base Case. With x- = 3.5 in Eq.7.1,

the penetration distance at 1.4 hr is 0.185 m which is about 15% of the concrete wall

thickness. The average temperature rise of concrete within this penetration distance

is around 30.5 -K.
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In the present calculation, it is assumed that the heat conduction to the concrete

wall starts from the begining of MCCI. A more realistic assumption is to consider

this heat conduction effect from the begining of the accident. However. with this

simplified containment model. it is difficult to obtain the transient behavior of the

containment atmosphere before MCCL The heat conducted into the containment

concrete wall before the MCCI will not be considered here. Neglecting this effect will

keep more energy within the containment atmosphere and have conservative results.

7.3.2.5 Effect of Heat Generated from Combustion Reaction

In MCCI. large amount of C02 and H 20 generated from the decomposed con-

crete is reduced to CO and H2 by the metallic elements in the corium. These gases

can react with 02 in the containment atmosphere and generate large amounts of

heat. A study was performed to investigate the effect of this potential heat source

on containment pressurization. The reaction heats of combustion reactions are based

on the values summarized in Table 2.1. It is also assumed that reactions proceed to

completion i.e. one of the reactants is exhausted.

As shown in Fig.7.9, by considering this potential heat source, the containment

pressure can increase significantly amount (Case 9a). 34% over the Base Case. 1.4 hr

after the initation of MCCI, the heat generation due to combustion can accumulate

up to 1.03 x 10 MJ which is almost 20% of the decay heat generated within 3.4 hr

after shutdown.

By considering the combustion reactions heat of CO and H 2 with 02, the con-

tainment pressure is more sensitive to the downward heat transfer model used in the

MCCI anslysis. For the case that the amount of gas generation is higher. the contain-

ment pressure is higher. This trend is opposite to that described in Section 7.3.2.1.

As shown in Fig.7.10. the pressure of Case 9b is 0.015 Mpa (2.19 psi) higher

than that of Case 9a at 1.4 h.r after MCCI. This is because that in Case 9b the
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downward heat transfer model is pseudo gas film model all the time and this results

in less gas generation and therefore. less amount of combustion reactions heat. The

amount of combustion reactions heat is Case 9b is 18.9% less than that. in Case 9a.

In Case 9c. the downward heat transfer model is periodic contact model of MIT

all the time. the 02 in the containment atmosphere is exhausted at 1.2 hr after

MCCI. The amount of combustion reaction heat generated is 1.34 x 105 MJ. The

containment pressure of Case 9c is 0.017 Mpa (3.21 psi) higher than that of Case 9a.

7.3.2.6 Effect of Concrete Types

The pressure responses of the PWR large dry containment with limestone/ com-

mon sand and basaltic concrete are compared in Fig.7.9. At 42 min after the initi-

ation of MCCI. the pressure of the containment with basaltic concrete is about 129%

lower than that of a containment with limestone! common sand concrete. The cal-

culation for the basaltic concrete case stops at 42 min due to significant (more than

20%) metallic phase solidification. Compared with the limestone/ common sand case.

this is much eralier. This is because the decomposition enthalpy of basaltic concrete

is 23.7% lower than that of the limestone/common sand concrete.

Based on the MIT downward heat transfer correlation of Chapter 2, the down-

ward heat transfer coefficient is inversely proportional to the effective decomposition

enthalpy. Lower decomposition enthalpy results in higher heat transfer coefficient.

For the same amount of heat transferred to the concrete. lower decomposition en-

thalpy can result in higher ablation rate. The decomposed concrete (slag) will be

brought into the oxidic phase at the concrete decomposition temperature and then

reach an equilibrium temperature with the oxidic melt. This mechanism can also

cool down the corium. The calculation show that. at 42 mins after the initation of

MCCI. 121 tons of the basaltic concrete is eroded. 39% more than that of the Base

Case.
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For the case of basaltic concrete. the film collapses at 450 sec after the initation

of MCCI with metallic temperature around 2329 3K.

7.3.2.7 Effect of Containment Types

Two types of containment, besides that of the PWR large dry containment were

analyzed. The results are shown in Fig.7.11. For a PWR ice condenser containment

(Case 11). the total system pressure is considerably lower than that of large dry

containment. This is because of the large amount of heat absorbed by the ice. The

pressure increase of the ice condenser containment over the first 1.4 hr of MCCI

is 0.064 MPa (9 psi) which is comparable with that of a large dry containment.

Compared with that of a PWR large dry containment. the atmosphere temperature

of the ice condenser containment is also lower. The temperature of the containment

atmosphere changes from 317.7 to 332.7 OK over the first 1.4 hr of MCCl.

For a BWR supression pool containment (Case 12). as shown in Fig.7.11, the

pressure lies between the other two containment types. In this case the pressure

increase over the first 1.4 hr of MCCI is 0.168 MPa (23.92 psi) which is almost

double that of the PWR large dry containment. This is because the BWR supression

pool containment has relatively smaller free volume. It can be easily pressurized

by the noncondensible gases generated from the MCCI. Compared with that of a

PWR large dry containment, the atmosphere temperature of the BWR supression

pool containment is also lower. The atmosphere temperature changes from 320.0 to

323.8 K over the 1.6 kr of MCCI.

7.4 Conclusions

1. The downward heat transfer model is very important in determining the con-

crete erosion rates. For the cases studied. the containment pressurization rate

is less sensitive to the amount of gas generation. Should combustion of H2 and

CO occur, the pressure would be larger for the higher downward heat transfer.
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2. For consideration of containment pressurization. the interfacial and upward

convective heat transfer coefficients are relatively unimportant. However. the

temperature profile of the corium pool will be significantly different for different

assumptions on these parameters. This might have some effect in characterizing

the freezing phenomena of debris pool and the generation of aerosol.

3. The heat conducted into the containment concrete wall is a very important heat

sink. The heat generated from the combustion reactions in the containment

atmosphere is a large heat source for containment pressurization.

4. The temperature of corium at the beginning of MCCI is important in determin-

ing the concrete erosion but has a small effect on containment pressurization.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

8.1 Summary of This Work

Concern about the potential for containment failure following core meltdown due

to high pressure and temperature casued by Molten Corium/ Concrete Interaction

(MCCI) has motivated this work. A simplified model was used to quantify the

impact of heat transfer from the core melt to concrete on the pressure rise in the

containment. Limited heat removal from the the containment, by fan coolers. and

thermal equilibrium among all components were assumed. It was found that the

fraction of heat transferred to concrete is important in determining the pressurization

rate of containment. For a PWR large dry containment as the fraction is larger (above

30%) the pressurization rate is smaller. The extent of chemical reactions between the

concrete gases and core melt will be a major factor in determining the containment

pressure. especially for a concrete type with high gas content.

One of the major uncertainties in modeling the corium pool heat transfer is the

partition of the heat generated from the radioactive decay and chemical reactions

between the containment atmosphere and the surrounding concrete. This depends

on the heat transfer resistance through each path and also on the freezing phenomena

involved in the corium pool. In the first generation of MCCI integral analysis codes,

it was assumed that the downward heat transfer of the corium pool is governed by a

stable gas film across the corium concrete interface. However, a stable gas film has

not actually been observed in real materials experiments, but only inferred from the

simulant tests of water or benzene on dry ice.

A calcualtion based on the Kutateladze's flooding criterion showed that the su-

perficial gas velocity required for forming a stable gas film is far beyond the data
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ranges of dry ice experiments (approximately 30 times higher). Therefore. it is possi-

ble that the gas film observed in the dry ice experiment was not stable. An alternative

view was proposed to interpret the water or benzene/dry ice experimental data. It

was assumed that the heat transfer between the hot pool and a melting substrate

is governed by the periodic contact between the hot pool and the relatively cold

substrate. Based on this assumption. a semiempirical heat transfer correlation for

calculating the downward heat transfer rate was derived. The correlation predicted

that the heat transfer coefficient across the interface between a hot pool and a melt-

ing substrate increases with the superficial velocity of melted substrate. This trend

is consistent with the dry ice experimental results.

In MCCI, the oxidic melt may separate from the metallic melt due to the density

difference. The interfacial heat transfer between the immiscible oxidic and metallic

layers is complicated by the agitation of gas flow. The interfacial heat transfer be-

tween the bubble agitated immiscible liquid layers is governed by three mechanisms.

These are: natural convection, bubble agitation and bubble induced entrainment.

Among these three mechanisms, the contribution of the natural convection to the

total heat transfer rate is relatively small. The heat transfer rate resulting from bub-

ble agitation can be modeled by the surface renewal concepts. A new method was

proposed to modify the surface renewal model originally proposed by Szekely. The

new correlation compared favorably with the results of water, mercury and oil, wood's

metal experiments.

Based on the observations of the simulant experiments, the bubble induced en-

trainment only occured in certain liquid pairs. The liquid entrainment can be caused

by two mechanisms: splashing and bursting of bubbles at the interface. Splashing

is due to interfacial shear and only occurs in systems containing localized areas of

high gas velocity. A simple calculation based on the criterion for the onset of en-

trainment in annular flow showed that the required superficial gas velocity is orders

of magnitude higher than the ranges of the existing simulant experiments. A simple
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analytical model was proposed to model the liquid jet resulting from the bursting

of bubbles at the interface. Based on consideration of hydrodynamic instability of

the liquid jet. it can be determined whether for certain liquid pairs the bubble will

induce entrainment. The model explained the observed behavior of different liquid

pairs. From this analytical model, it was concluded that the bubble induced liquid

entrainment resulting from bubble bursting will not occur in MCCI. The model is

pertinent to low gas velocity areas. This is consisent with the results of low power

test of BETA experiments. At high gas velocity, entrainment is due to interfacial

shear.

The proposed downward and interfacial heat transfer models have been incorpo-

rated into CORCON/ModI - an integral analysis code of MCCI. The qualification

of the proposed models was achieved by comparing the code predictions to the re-

sults of BETA experiments. The BETA project. a key experimental program of

Melt/Concrete Interaction is currently undertaken at KfK. Up to 300 kg metallic

and 300 kg oxidic melt can be generated outside the concrete crucible by a thermite

reaction and then poured into the crucible. The concrete crucible is enclosed by an

induction coil. A maximum power of 1700 kW may be induced to the melt.

Based on hydrodyamic considerations. the formation of a very stable gas film

requires that the superficial gas velocity exceeds certain critical value i.e. the flooding

limit. As the superficial gas velocity decreases, the film may collapse due to Taylor

instability which provides a limit of minimum superficial gas velocity for supporting

an existing film. For the case of MCCI. these limits differ by two orders of magnitude.

In MCCI. the actual downward heat transfer mode depends on the initial tem-

perature of the melt. If the temperature of the melt is initially very high, the heat

flux will be high enough to generate a film. and the interaction starts with a film

at the interface and then follows the gas film model to the minimum stable gas film

limit. After the film collapses. the heat transfer mode switchs to pseudo nucleate

boiling (i.e. periodic contact between the melt and the concrete). If the initial
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temperature is not high enough to generate the film the heat transfer mechanism will

be pseudo nucleate boiling all the time until the freezing takes place.

The downward heat transfer in CORCON /Mod1 was modified based on the

preceeding arguement. The heat transfer coefficient in pseudo nucleate boiling regime

is calculated by the proposed periodic contact model and that in pseudo film boiling

regime is calculated by original CORCON gas film model. The criterion for forming

a gas film is determined by Kutateladze's flooding limit. The transition between the

pseudo film boiling and pseudo nucleate boiling is determined by Berenson's minimum

stable gas film criterion. With a set of correction factors (multipliers) applied to the

gas velocity determined from the correlations above. the results of BETA tests VO.2

- V1.6 can be reproduced by the modified CORCON /Mod1. However, the calculated

results are very sensitive to the multiplier used for Berenson's minimum stable film

criterion.

The CORCELL code which combined the simplified containment model with

the modified CORCON/Mod1 is used to study the impact of MCCI on containment

pressurization. It was found that the downward heat transfer medel is very important

in determining the concrete erosion rates. However, for the cases studied, the con-

tainment pressurization rate is less sensitive to the amount of gas generation. Should

combustion of H 2 and CO occur. the containment pressure would be higher for higher

concrete erosion. For containment pressurization. the interfacial and upward convec-

tive heat transfer coefficients are relatively unimportant. However. the temperature

profile of the corium pool will be significantly different for different assumptions of

these parameters, and may affect fission products release.

The stability of a horizontal crust layer under the impact of gas injection was

studied by a simulant experiment. A test apparatus was designed, with heat removal

from the cell via porous plates at the boundaries. Water and air were used in the

experiment. In the cases studied a stable solidified layer was formed across the bubble

agitated horizontal liquid 'solid interface.
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Two different phenomena were observed upon freezing of the pool. In some of

the cases. the pool can be cooled below its freezing point. Then the freezing occured

suddenly. the liquid/solid interface was covered by a thin layer of ice and the bulk

temperature of the pool jumped up to the freezing point of water. In other cases. the

freezing occured grauually and there was no supercooling in the pool. The causes of

these differences remain unclear.

8.2 Future Work

In some of the high power tests of BETA experiments. considerable amount of

metallic phase was entrained into the oxidic phase. This phenomenon is presently not

modeled in any MCCI integral analysis code. The dispersion of the metallic phase is

important in characterizing the MCCI. The importance is not because its effect on

the interfacial heat transfer rate, but because of its implication for the possibility of

forming a metallic and oxidic mixed layer. If a mixed layer were formed. the freezing

characteristic of the corium pool would be different. Therefore. it is recommended

that some experiments be performed to study the phenomena and. if necessary. an

appropriate model be developed to characterize the phenomena.

Entrainment of metallic phase into the oxidic phase observed in the BETA tests

occured mainly at high temperature levels of the melt and seems to be controlled by

the gas release rate. A question remains to be answered whether the separation of

these two phases is possible when the gas release rate decreases as the interaction

proceeds.

The experimental apparatus of crust stability experiments can be improved so

that the impact of crust formation on downward heat transfer rate can be quantified.

The crust stability experiment should be conducted at higher gas velocity to represent

the more realist case.

The heat generated from the oxidation reactions between the metallic elements
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in the corium pool and the concrete decomposed gases is an important heat source

in MCCI. There are some differences in the chemical reaction packages among differ-

ent integral MCCI analysis codes. Further justifications of these chemical reaction

packages are necessary. This question is further important for source term charac-

terization.

The major impact of MCCI on the reactor safety assessment is the generation

of aerosols. In BETA experiments, relatively insignificant. amount of aerosol was

observed. These results differ from those of Sandia's real materials experiments.

Further experiment on MCCI should focus upon this subject more closely. The types

of concrete used. the core melt as well as the temperature level of the pool should be

varied to ascertain their effects.
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Appendix A

The heat necessary to raise the concrete from room temperature and convert it
to melt is calculated by following equation:

TD

hdecom ] Cdt + L (A.1)

where

To = initial temperature of concrete

TD = decomposition temperature of concrete

C, = specific heat capacity of concrete

O>. = heat of decomposition associated with
(1) loss of free water
(2) loss of bound water
(3) decarboxylation of the concrete

L = latent heat of concrete melting

The heats of decomposition associated with loss of free water, loss of bound
water and decarboxylation of concrete together with the latent heat of concrete melt
for different types of concrete are summarized in Table A.1. The temperature de-
pendency of heat capacity (J/kg 'K) of different types of concrete is obtained from
following equations:

(a). Basaltic Concrete

1.9669 x10
C,(T) = 939.75 + 0.55758T - (A.2a)

(b). Limestone, Common Sand Concrete

1.3715 x 10'
C,(T) = 710.36 + 0.43158T - T2 (A.2b)

(c). Limestone Concrete
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5.9995 x 10 (.c
C,(T) = 454.18 -+ 0.20804T - 2. X (A.2c)

where T is absolute temperature (OK).

To correct for the volatile species, the following correction factors should be

added:

1. 0 < T < 373 cK

1. 0 <

1. 0 <

where

Cp1 We (26.045 + 0.019716T)

T < 658 0 K

CP2 = Wch(21.951 0- .016786T)

T < 873 K

CP3 = Wco(7.3255 + 0.005023T - 7.9115 x 10-7 T 2 )

We = weight fraction of evaporable water
Weh = weight fraction of chemically bound water
Wee = weight fraction of carbon dioxide

(A.3a)

(A.3b)

(A.3c)

A formula for the heat capacity of concrete that takes into account the mass loss
may be written as:

C,(T) = C,(res) -,- CT,1 G(T,393) + C, 2 G (T, 693) + C, 3 G(T, 993)

where C,(res) is calculated by Eq.(A.2) and G(T,T) is:

G(T, To) = erfc 5(T - ToT /Tj

(A.4)

(A.5)
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Table A.1

Thermal Events in the Decomposition of Concrete

Basaltic Limestone/Common Sand Limestone

loss of free

water (kJ/kg)

loss of bound

water (kJ/kg)

decarboxy-

lation (kJ/kg)

enthalpy of

melting (kJ/kg)

84.3±9.0

120±20

69.5±21

550±80

66.8±7.0

120±20

965.1±51

560±75

81.6±9.0

109±15

1560±100

760±140
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Appendix B

Table B.1 and Table B.2 summarize the thermal-physical properties of materials

used in this report.
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Table B.1

Properties of Corium and Slag[B8)

- Oxidic

Density

(kg/m 3) 7000

Metallic

5750

Viscosity

(kg/m sec)

Specific Beat

(kJ/kg *K)

Thermal Conduc-

tivity (W/m see)

4.0x10- 3 4.0x10-3

0.6

3.0

0.74

40.0

Volumetric Thermal

Expansion Coef. (1/ 0K) 1.0x10- 4 6.0 x10- 5

Surface

Tension (N/m) 0.45 1.5

1.0

1.04

1.3

5.0x 10-

0.3
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Table B.2

Thermal-Physical Properties of

Silicone Oil, Mercury and Wood's Metal

Silicone

Oil

Density

(kg/m) 910-

Mercury

13500

Viscosity

(kg/m sec)

Specific Heat

(kJ/kg *K)

Thermal Conduc-

tivity (W/m sec)

4.186x10- 3 1.15x10- 3 1.40x40-3

1.42

0.117

0.157

8.39

0.175

10.7

Volumetric Thermal

Expansion Coef. (1/*K) 1.05x10- 3 1.82x10-4

Surface

Tension (N/m) 0.020 0.484
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Appendix C

Following 13 pages show the power histories and post-test concrete crucible

shapes of BETA tests VO.2 to V1.6.
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Appendix D

I Modifications of CORCON/Mod1:

Main Program:

1. Before the calculation proceeds., determine the time step size and print interval

according to a user specified table. The corresponding data are read in routine

DATAIN and stored in Common Block /MLEE1

2. Call subroutine INITLO to process the input data for containment pressure cal-

culation if the option is specified.

3. Call subroutine CPRESS to calculate the containment pressure if the option is

specified.

Routine GFLMPR:

1. GFLMPR calculates the gas properties for heat transfer calculation. It calls

routines STH20 and STCO2 to determine the physical properties of water vapor

and carbon dioxide. The tabulated values in those routines were copied from

WECHSL code. The properties of mixture are calculated based on the equation

on p.24 of 'Transport Phenomena, Bird et al.'.

Routine MASRAT:

1. The downward heat transfer coefficient for original CORCON film model and

MIT model is calculated in routines BOTFIM and BOTMIT respectively.

2. The Flooding and Minimum Stable Film Boiling limits are calculated based on

Kutateladze and Berenson criteria respectively. These limits are adjusted by user

specified multipliers. The multipliers are read in routine DATAIN and stored in

Common Block 'MLEE/.

3. The actual heat transfer mode in the calculation of downward heat transfer is
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determined by the heat transfer mode of previous time step (variable MOHD)

and current calculated superficial gas velocity. The initial value of MOHD is

specified by user.

4. A new subroutine BSNFT was written for calculating the transition of heat

transfer coefficient from horizontal to vertical interface if the downward heat

transfer mode is in pseudo nucleate boiling regime. In BSNFT. it is assumed

that heat flux decreases linearly from 15' to 90'.

5. For DO loop 'DO 610 J=1.NRAYS'. the erosion rate at body point J is deter-

mined by an average of the integrating points between body points J-1 and J-1.

The purpose of doing this is to get a better cavity shape.

Routine HPOOL:

1. The MIT interfacial heat transfer correlation has been incorporated as an option.

There are also some minor changes in the rest of coding for doing some sensitivity

studies.

Routine DATAIN

1. The necessary changes for processing new input data described above.

Routine EDIT

1. The necessary changes for processing new input data described above.

Following subroutines are incorporated to calculate the containment pressure.

Routine INITLO

1. Process the corresponding input data and then calls subroutines QDECAY,

MELTDO, ATMGAS and BALANS to calculate the status of the containment

at the beginning of Corium/Concrete Interaction.
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ROUTINE CPRESS

1. Main routine for containment pressure calculation. called by the main program.

It updates the energy equation and calls ATMGAS. CONDUT and BALANS to

determine the containment pressure.

Routine ATMGAS

1. Update the gas concentration of containment atmosphere. The changes resulting

from the generation of concrete decomposition gases and depletion of oxygen by

combustion reactions are calculated. The reaction heat of combustion reactions

are also calculated in this routine. It is assumed that the reactions will preceed

to complete i.e.. one of the reactant depleted.

Routine BALANS

1. Solve the energy equation iteratively to determine the containment pressure.

Routine QUALITY

Calculate the vapor quality of containment atmosphere, called by BALANS. It

is part of the iteration loop in BALANS.

Routine CONDUT

1. Calculate the heat conducted into the containement concrete wall.

Routine QDECAY

1. Calcualte the total decay heat generated before the the Crium Concrete Interac-

tion begins. The calculation is based on the correlation used in code RETRAN-

02.

Routine STATE

1. Equation of states of water., the correlations are from RETRAN-02.
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II. Changes of Input Data

Followings are the modifications to the original CORCON/Mod1 input. The

preparation of input data should follow the manual of CORCON/Modi and incor-

porate the following changes.

Card 1

46 - 50

Card 2

1 - 10

21 - 30

Card 2a

1 - 10

1] - 20

21 - 30

31 - 35

15 IPINC Number of cards for time step control

E10.0

E10.0

Totally

E10.0

E10.0

E10.0

15

DPTIN

TPRIN

Original CORCON input

Original CORCON input

IPINC cards

DELT Time step size

TIME] Starting time of above time step size

TIMEF Ending time of above time step size

IPINE Print interval

Card 13

31 - 40 E10.0 CONCH Thermal conductivity of concrete

Card 35

1 - 10

11 - 20

21 - 30

31 - 40

41 - 50

51 - 60

61 - 70

E10.0

E10.0

E10.0

E10.0

E10.0

E10.0

E10.0

CCPB

CCPT

CCPS

CCAB

CCB1

CCB2

CCB3

Multiplier for downward heat transfer

Multiplier for interficial heat transfer

Multiplier for sideward heat transfer

Upward convective heat transfer coefficient

Some multipliers for the transition between

the bottom and sideward heat transfer.

(by U. of Wisconsin)
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71 - 75 1.5 NCCF

0:

1:

4:

Downward Heat Transfer Model

original CORCON

WV isconsin

MIT

hybrid

MIT and CORCON combined

Aerosol gerneration input (by U. of Wisconsin)

1 - 5 15 IQULT

0:

1:

6 - 10 15 ITHKD

0:

1:

11 - 15 15 ISIGN

0:

1:

16 - 20 15 IVIS2P

1:

2.

21 - 25 15 KOND

1:

26 - 33 E10.0 SPOWER

solidify fraction use temperature ratio

solidify fraction use enthalpy ratio

thermal conductivity based on molar fraction

thermal conductivity based on weight fraction

surface tension based on molar fraction

surface tension based on weight fraction

2 - phase multiplier of viscosity

Kunitv model

Hawkesly model

Jaki model

Thermal conductivity of uranium as function of tem-

perature

C.E. correlation

Westinghouse correlation

Power for slip ratio of MIT correlation
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Card

Card

36

37

38

Card 39



Weight fraction for viscosity calculation

Card 40 only if NCCF equals to 3 or 4

15 MODHDO Downward heat transfer mode

2: MIT

3: Wisconsin

other: original CORCON

(not important if NCCF equals 4)

15 MODHSD Sideward heat transfer mode

1: Wisconsin

other: original CORCON

11 - 16 15 MODHIN Interficial heat transfer model

2: MIT

other: original CORCON

Card 41 only if NCCF equals 4

I - 10 E10.0 FLM

11 - 20 E10.0 SFM

Multiplier for flooding limit

MNultiplier for minimun stable film boiling limit

21 - 25 15 MOHD Initial mode for downward heat transfer

1: film boiling

0: nucleate boiling

Card 42

1 - 5 15 IPRESS Flag for containment pressure calculation

1: Yes

0: No

6 - 78 18A4 PTITLE Problem title of pressure calculation
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Following 12 cards are input for containment pressure calculation. only needed if

IPRESS equals to 1.

Card 46

1 - 10 E10.0 WPRM Amount of primary water (kg)

11 - 20 E10.0 HPRM Specific enthalpy of primary water (J/kg)

Card 47

1 - 10 E10.0 WSPR Amount of spray water (kg)

11 - 20 E10.0 HSPR Specific enthalpy of spray water (Jl/kg)

Card 48

I - 10 E10.0 WACU Amount of water in accumulatot (kg)

11 - 20 E10.0 HACU Specific enthalpy of accumulator water(J/kg)

Card 49

1- 10 E10.0 WHUM

11 - 20 E10.0 UHUM

Amount of water vapor in atmosphere (kg)

Internal energy of water vapor (J/kg)

Card 50

1 - 10 E10.0 VICE Amount of ice in the containment (kg)

11 - 20 E10.0 UICE Internal energy of ice (J,/kg)

Card 51

I - 10 E10.0 WSPP Amount of water in supressiori pool (kg)

11 - 20 E10.0 USPP

Card 52

1 - 10 E10.0 TOXYNM

11 - 20 E10.0 TMETNM

Internal energy of water in supression pool (J,"kg)

Temperature of oxidic phase at normal operation

(C K)
Temperature of metallic phase at normal operation

('.K)
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Card 53

I - 10 E10.0 HTZRWA Zr - Water reaction heat before the Corium/ Con-

crete Interaction (J)

Card 54

1 - 10 E10.0 QFAN Heat removal capacity of fan coolers(W)

11 - 20 E10.0 FNEFF

Card 55

1 - 10 E10.0 STRUCM

11 - 20 E10.0 STRUCC

21 - 30 E10.0 STRUCT

Operating efficiency of fan coolers

Amount of structural can act as passive heat sinks

(kg)

Specific heat of structure material (J/kg cK)

Initial temperature of structure material (OK)

Card 56

I - 10 E10.0 AIRO2 Amount of 02 in the containment (kg)

11 - 20 E10.0 AIRN2 Amount of N2 in the containment(kg)

Card 57

I - 10 E10.0 CONHTA Heat transfer area of containment Wall (m 2 )

Card 58

I - 10 E10.0 PLOW Lower bound of pressure for iteration (Pa)

11 - 20 E10.0 PHIGH Upper bound of pressure for iteration(Pa)

(only for first time step)
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III. CORCON/Modi Input for BETA Test VO.2

BETA Test VO.2
1 0 4 0 0 2 1 0 0 2 0 o e e o
30.0 10000.0
5.0 0.6 1000.0 10e
10.0 100.0 1600.0 50

61 e.o 0.25
25 0.14 0.05 2.8

0.0 1.5
0.147452 1.499441
0.161694 1.495048
0.174009 1.486652
0.183301 1.474999
0.188746 1.461125
0.19eO 1.450000
0.190000 1.390908
a.190000 1.331818
0.190000 1.272727
0.190000 1.213635
0.190000 1.154545
0.190000 1.095454
0.190000 1.036363
0.190000 0.977273
0.190000 0.918182
0.190000 0.859091
0.190000 0.800000
0.190000 0.750000
0.203099 0.690910
0.216198 0.631820
0.229296 0.572730
0.242395 0.513640
0.255494 0.454550
0.268593 0.395460
0.281691 0.336370
0.294790 0.277280
0.307889 0.218190
0.320988 0.159100
0.334086 0.100010
0.347185 0.040920
0.360284 -4.01817
0.373383 -0.07726
0.386482 -0.13635
0.399580 -0.19544
0.415000 -0.26500

298.0 1573.0 *.8 0.0
5-
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CACO3
CA(OH) 2
AL203
S 102
H2OEVAP

2200.0
0 1

FE
1eee.0

H2
2 18

0.0
0.0

600.0
181.e
1948.e
253e.0
2

0.0
TIMETIMETIME

2 2
e.e
0.0
0.0
1.0

0.01
1000

0.066
0.073
0.054
0.767
0.040

1350 .0
2473.0
300.0

1.05E5
1.0

31oe
3MW00
2400i

1650.0
2473.0

380.0 1

0.0 10000.0
0.0 100.0
0.0 620.0
e. 1820.0
e.e 195e.e
0e.0 2540.0

1.59

0.0
0.0
0.0

1600000.0
2300000.0

0.0

110.0
650.0

1835.0
1960.0

300.0 3000.0 1000.0

2
0.8
0.8
0.8

- 1.0
i.e
3.0

10000.0
10000.0
10000.0

I.e
0.003
0.073

0
0 0 0 1 10.33333333
0 0

0.50
0

2

0.8
0.8
0.8

10.0
0.4

4184.

1.0

6.00 S
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370000.0
510000.0

160eeeo.0
2300000.0

590.0
1400 .0
1845.0
1970.0

430000.0
360000.0
310000.0
300000.0

1.0
400.0
e.001

1.0
200000.0
0.00036

1.0
2250000.0

0.7

4

- 0.1



IV. CORCELL Input for PWR Large Dry Containment

LARGE DRY PWR; LIMESTONE CCMM N
0 0 2 2 0 0

60. 30000.0
10.0 7200.0 900.0
20.0 900e.0 10800.0
30.0 10800.0 14400.0

50 0.0 5.0
0.0 3.125 1e.o
298. 1550. 0.8

3 3 3100. 3100.
U02 97890.0
ZRO2 25738.
FEO 5000.0
FE 119000.
NI 9744.
CR 17450.0

86.3
5.2528E4

H20
2

TIMETIMETIM
2 2

0.0
0.0
0.0
1.0

0.01
1000.

0
0 0
0 0

.85

2.3386E5
1.0925E5
7.0157E5
1.0505E3

0.0
0.0

1033.0
1.SE11
7.0E7
3.0E6

1.3328E4
6.777E3

1.8E5

E

3411.
101325.

1.

0

SAM [Boas Coase]
1 S 0 3 S 0 0 S 0

30
38
30

0.1
0.125

4.625 1.5 20 2

300. 1

330. ,300t0.

2
-0.8

0.8
0.8
1.0
1.0
3.0

0 1
2

1.0

1.32943E6
3.89929E5
1.57856E5
2.41014E6

0.0
0.0

620.0

0.1
460.0

4.6672E4

6.8E5

100000.

100000.
1.0

O.003
0.073

39'.

0.8
0.8
0.8

10.0
0.4

4184.

1 0.33333

1.0
400.

0.001

1.0 1.0
200000. 2250000.

0.000036 0.7

0.0

0

450.0

268

-4-

0.1


