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Abstract

Understanding how the human brain works, in both health and disease, requires data
with both high spatial and temporal resolution. This thesis develops and applies a
spatiotemporal neuroimaging method. | describe a linear estimation inverse approach, which is
a method for the combination of functional magnetic resonance imaging (fMRI) with
electroencephalography (EEG) and magnetoencephalography (MEG). fMRI provides millimeter
spatial resolution, while EEG and MEG provide millisecond temporal resolution. The thesis is
divided into two broad sections: Monte Carlo modeling studies and experimental studies.
Improvements to both the bioelectromagnetic forward and inverse solutions are demonstrated.

Through modeling studies, | characterize the accuracy of the method with and without
functional and anatomic constraints, the effects of various model mis-specifications, and as a
function of EEG/MEG sensor configuration. | describe a noise sensitivity normalization to the
traditional linear estimation operator that improves the point spread function (a measure of
spatial resolution), increases the spatial homogeneity of the point spread, and allows
interpretation of the localization in terms of a statistical measure (F-statistic).

Using experimentally generated current dipoles implanted an epilepsy patient, | examine
the accuracy of both a realistic and spherical EEG head model. This experimental data
demonstrates the improved accuracy of the realistic head model, and gives us confidence in
using this realistic head model for EEG source localization. The optimized and validated
forward and inverse methods are then applied to a variety of empirical measurements.

First, the combined multimodality imaging approach is used to simultaneous EEG/fMRI
measurements of a visual stimulus, demonstrating the feasibility of measuring and localizing
simultaneously acquired electric potential and hemodynamic measurements. Second,
combined MEG/fMRI measurements are used to analyze the spatiotemporal characteristics of a
cortical network that is responsive to visual motion coherency. Finally, in epilepsy patients, |
compare the non-invasive MEG localization of interictal spikes with verification from invasive
recordings and surgical results.

These studies, in both normal volunteers and patients, clearly demonstrate the utility,
accuracy, and power of the combined use of fMRI, EEG and MEG. The tools demonstrated
here provide “real time movies” of the human brain at work during a given task or behavior.
This information is required to develop computational models of how the human brain/mind
works.

Thesis Supervisor: John W. Belliveau, Ph. D.
Title: Associate Professor of Radiology, Harvard Medical School
Director of Cognitive Neuroimaging, MGH NMR Center
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1. Introduction

One of the greatest challenges of the 21st century is to understand how the
human brain works in health and disease. According to our general model and
hypothesis, "complex behavior is mapped at the level of multifocal neural systems
rather than specific anatomical sites, giving rise to brain-behavior relationships that are
both localized and distributed" (1-3). Understanding how the human brain works
requires knowledge of this functional neuroanatomy; namely, "what" type of processing
is performed, "where" different processing areas are, and "when" temporal processing is
organized between distributed areas. Despite the rapid development of our ability to
map "where" in the brain activity is taking place, our ability to map the timing of cortical
activity within and between distributed neural networks (i.e., "when") remains a great
challenge.

Detection and characterization of large-scale neural interactions requires
neuroimaging techniques that can simultaneously sample the entire brain. Prior studies
indicate that noninvasive spatiotemporal maps of cerebral activity can be produced by
combining the high spatial resolution (millimeters) of functional magnetic resonance
imaging (fMRI) (4-7) with the high temporal resolution (milliseconds) of
electroencephalography (EEG) (8) and magnetoencephalography (MEG) (9). This
multimodal imaging approach is based upon the premise that there exists a coupling
between hemodynamics and neuronal activity. Evidence for this neuro-vascular
coupling is reviewed in Section 1.3.

1.1 Inverse Approaches

One promising approach to satisfy these spatial and temproal neuroimaging
requirements integrates data from multiple techniques. Various authors has proposed
techniques for combining electromagnetic measurements (EEG/MEG) with anatomic
and functional data (10-17). Localization of neuronal electrical activity within the brain,
based upon external electromagnetic measurements (which is known as the
electric/magnetic “inverse problem”) is fundamentally ill-posed (18). That is, for any set
of instantaneous EEG and/or MEG measurements, there are infinitely many electrical
source distributions within the head that are consistent with those external recordings.
Thus, in order to solve the inverse problem one must place some constraints on the
otherwise infinite set of solutions. There are three general classes of inverse solutions
used to estimate the location, orientation, and strength of electrical sources within the
brain: 1) single/multiple dipole fitting, 2) subspace scanning, and 3) linear estimation.

Historically, the most common approach to the inverse problem has been the
single/multiple dipole fitting. In this approach, one assumes that the electric and
magnetic measurements are generated by a small number of focal sources, each of
which can be modeled as a single fixed or moving dipole. The locations, orientations
and strengths of these “equivalent current dipoles” (ECDs) can then be estimated by
fitting these parameters using the electric and/or magnetic measurements (19). The
dipole fitting involves a multi-dimensional, non-linear optimization. A disadvantage of
this approach is that the time required to solve this optimization problem grows



exponentially with the number of ECDs, and thus the global optimum can be found only
for models involving a small number of ECDs. For models involving larger numbers of
ECDs, approximate techniques have to be used, where the solution found depends on
the operator’s initial estimate of the locations and orientations of the dipoles. A potential
problem with all ECD-based methods is that the solution depends strongly upon the
number of assumed dipoles. Although techniques have been proposed for estimating
the model order (20-22), the actual number of dipoles cannot generally be determined.

The second type of inverse solution is the subspace scanning approach (20, 23).
This method bases the source localization on the signal space, or conversely the noise
space, from the actual EEG and/or MEG measurements from a given time window. The
scanning procedure calculates the projection for each possible dipole into the signal
space. That projection specifies how well a given dipole is able to explain the signal.
One drawback to this method is that it is assumed that, for any given time window, only
one single dipole is activated. In other words, the subspace scanning approaches will
do poorly for extended sources or multiple sources that are temporally correlated, as is
likely to be the case with actual human brain activity experiments.

The third general class of inverse approaches is the linear estimation procedure
(12, 24-26). The linear estimation approach computes an optimal linear inverse
operator which maps the external electromagnetic field measurements into estimated
source activities within the brain. This inverse operator explicitly minimizes the
expected error between the estimated and actual activity distribution. Unlike the two
other general methods, in which activity is modeled as a small number of dipoles, a
distributed source model is used by the linear estimation method. The main limitation of
this type of inverse method is that the estimated localizations for focal sources are
distributed (i.e. non-focal) in nature. For typical brain activation experiments, these
assumptions are probably most appropriate. However, in special cases, such as the
initial portion of an epileptic spike or for very focal activations (e.g. median nerve
stimulation), the ECD approach may better model the focal sources.

1.2 Forward model - Anatomy

In order to solve the inverse problem, one must first solve the forward problem.
That is, given the volume conduction properties of the head and the location and
orientation of a source, one must calculate the corresponding external electric potentials
and magnetic fields generate by that source. A more accurate respresentation of the
head will improve any inverse approach used. Fortunately, today a great deal is known
about the physiological properties and anatomy of the brain. The primary generators of
EEG and MEG are synaptic currents, where the current flows crossing neuronal
membranes act as tiny current sources or sinks, for current outflow and inflow,
respectively. Note that for each neuron, the net current inflow and outflow through its
membrane has to be zero (for conservation of charge). Thus, in order for these fields
not to cancel out at the non-invasive sensors, there has to be some net spatial
separation between the current sources and sinks within the neurons. Of course, the
fields produced by individual neurons are far too weak to be externally observed non-
invasively by EEG or MEG. Thus, to generate externally detectable signals, the neurons
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within a volume of tissue must be aligned, and their synaptic current flows correlated in
time. The scalp-recorded EEG and MEG reflect the linear superposition of the fields
generated by all such synaptic currents, across all neurons (typically on the order of
10,000 — 100,000 (27)).

Of all the neurons in the human brain, the cortical pyramidal cells are particularly
well suited to generate externally observable electric and magnetic fields, due to their
elongated apical dendrites, systematically aligned in a columnar fashion perpendicular
to the cortical sheet (27, 28). Inhibitory and excitatory synaptic inputs from different cell
populations have characteristic laminar distributions, resulting in characteristic spatial
and temporal patterns of net synaptic current flows at different depths through the
cortical sheet (29-32). These current flows are typically strongly correlated laterally
along the cortical sheet (33). Since the thickness of the cortical sheet is much smaller
than the distance to the EEG and MEG sensors, the current source/sink distribution
within a small slab of cortex can be represented by a current dipole oriented
perpendicularly to the local cortical surface (12, 34), whose strength (moment) varies
with time. It is possible to create an accurate representation of the cortical surface from
a T1-weighted MRI dataset (12, 35, 36). Not only does this provide anatomic
information for the inverse problem, the cortical surface representation is also a useful
visualization tool. One can display cortical activity across the entire cortical
hemisphere, providing significantly more topographic information than traditional slice
data.

Another type of anatomic constraint is the anatomy of the head itself. When
modelling the source generators, a model of the conductivity boundaries in the head is
required. The simplest model of the head uses spherical surfaces. More realistic
boundaries have been shown to provide more accurate source localizations ((37-40). In
this thesis, | use realistic conductivity boundaries estimated from T1-weighted MRI to
compute a boundary element method (BEM) head model for both EEG and MEG.

Both the cortical surface and the realistic conductivity boundaries can be used
with any inverse approach. This type of anatomic data is used to generate a head
model that relates source location and orientation to the external electromagnetic
measurements. Any improvements in this head model should improve the inverse
localization regardless of the method used (see Chapter 6).

1.3 Inverse Constraints - fMRI

So the question remains, which inverse approach should one use? We have
chosen to pursue the linear estimation approach as the foundation of a multimodality
imaging technique that provides high spatiotemporal resolution. There are three
significant advantages with respect to the dipole fitting and subspace scanning
methods. First, the linear estimation approach is less sensitive than the other two
techniques to multiple, temporally correlated sources. Secondly, the continuous current
source model is more biologically plausible and easier to relate to functional imaging
data, which is itself distributed in nature, rather than discrete current dipoles. Finally,
and more importantly, this approach provides a framework to incorporate spatial
information from fMRI.



While numerous groups have combined fMRI with the dipole fitting approach
(e.g. (41-43)), the fMRI was used to “guide” the manual placement of dipoles. The
presence of manual intervention creates undesirable variations in source localizations
that are operator dependent.

Our central hypothesis for incorporating fMRI with EEG/MEG is that the spatial
localization of hemodynamic changes using fMRI corresponds to the region of cortical
activity as measured by EEG/MEG. A variety of experimental data support this
hypothesis.

1.3.1 Neuro-vascular coupling

One can examine this assumption of fMRI/EEG/MEG correlation as two separate
questions. First, what is the coupling between neuronal activity and hemodynamic
changes? Second, what aspects of the hemodynamic changes are measured using
fMRI?

The issue of neuro-vascular coupling has been directly examined using optical
imaging. Comparison of optical imaging of “intrinsic signals” (i.e. signals generated by
the brain without exogenous contrast agents) with voltage sensitive dyes (44),
electrophysiological measurements (44, 45), and cytochrome oxidase staining (45, 46)
has demonstrated good correspondence between the different methods in the
localization of cortical activity. Optical imaging uses light in or near the visible spectrum
to illuminate exposed cortex. The reflected optical signal is then recorded as a function
of space and time. These optical measurements reflects changes in 1) light scattering ,
2) intrinsic chromophores, such as hemoglobin, cytochromes or NADH , and 3) blood
volume (for reviews see (47-49)).

The current optical imaging data support the following model of the temporal
orchestration of hemodynamic events following stimulation (46, 50-53). There is an
initial increase in the metabolic demands for oxygen of the activated neurons. This
increased consumption of oxygen results in an increase of deoxygenated hemoglobin
(HbR), starting ~ 100 ms post-stimulus. Within 300 — 500 ms, there is an increase in
blood volume due to capillary dilatation. The final hemodynamic event is an increase in
blood flow, after 500 — 1500 ms, with the resulting increase in oxygenated hemoglobin
(HbO) and decrease in HbR (52).

In addition to these optical studies, direct measurements of oxygen tension using
an oxygen sensitive phosphorescent probe (54) provided an independent
characterization of oxygen dynamics. Using a special probe with a phosphorescence
lifetime that was inversely related to the oxygen tension (i.e. an increase in
phosphorescence lifetime corresponded to a decrease in oxygen tension), they found
an initial decrease, followed by a larger increase in oxygen tension with stimulation with
a similar timecourse to the previous optical data.

The second aspect of neuro-vascular coupling is the spatial correlation between
neuronal activity and the resulting hemodynamic changes. Clearly, the temporal
changes in blood oxygenation (which takes seconds) are much slower than the
underlying neuronal activity (which occurs over milliseconds). However, this difference
in temporal dynamics does not necessarily restrict the use of hemodynamic



measurements as spatial constraints in the EEG/MEG inverse solution. The more
relevant issue for use of fMRI to constrain the EEG/MEG inverse is the spatial
correlation between neuronal activity and hemodynamic changes. Optical imaging
localizations correlated well with electrophysiologic measurements (45), cytochrome
oxidase staining (45, 46, 55), and lesion studies (45). It has also been demonstrated
that different components of the hemodynamic signal measured optically varied in the
spatial correlation. Using the early signal from HbR, it was possible to generate high
resolution maps of cortical ocular dominance (50) and orientation columns (51).
However, the later optical signals that arise from increased blood volume and flow were
not able to represent this columnar architecture.

1.3.2 fMRI and neuro-vascular coupling

The current model of neuro-vascular coupling has significant implications for the
collection and interpretation of fMRI (or any functional imaging technique that measures
changes in hemodynamics). At this time, the majority of fMRI experiments use the
positive blood oxygenation dependent (BOLD) signal (6, 7). BOLD contrast is based on
changes in the oxygenation state of hemoglobin (56). Since HbR is paramagnetic, a
decrease in HbR will result in a decrease of magnetic susceptibility and a corresponding
increase in T2* weighted signal intensity.

The temporal dynamics of HbR determined optically predict that the BOLD fMRI
signal should initially be negative (called the “initial dip”) and then followed by a larger
positive signal in activated regions. Also, the current optical data show that the early
decrease in HbR is more spatially localized than the later changes in blood volume and
flow that result in a decrease in HbR. This suggests that the initial dip should provide a
more accurate representation of activated cortex.

The presence of an initial dip in BOLD fMRI has been shown in cats (57),
monkeys (58) and humans (59-63). The initial dip was well localized to activated cortex,
encompassing a smaller region than the delayed positive BOLD response (58-60, 63).
Also, the initial dip was not found in large draining veins, where a large positive
response was still seen (58, 60). This difference in spatial resolution between the initial
dip and positive signal was put to use in (57). They used orientation gratings of different
orientations to generate functional maps based on 1) the initial dip and 2) the delayed
positive response. Only the initial dip functional map was able to represented the
complementary nature of orthogonal orientation sensitivity. Also, the fMRI spatial
mapping of orientation selectivity displayed similar pinwheel density and ratio of
clockwise to counter-clockwise pinwheels as was found in electrophysiology and optical
studies (44). These results suggest that spatially more accurate neuronal localization
can be achieved by using the initial dip in fMRI.

Unfortunately, there is some controversy over the presence of the initial dip in
BOLD fMRI. The initial dip was not seen in studies at 4.7 T in anesthetized cats (64), at
2 T in humans (65), and at 2 T and 4.7 T in anesthetized rats (66). Fransson et al.
attributed the initial dip to overlap of the undershoot response when the inter-stimulus
interval is too short. However, another study did detect the initial dip independent of the
inter-stimulus interval (62). Some possible explanations offered for the absence of the
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initial dip in these studies include low temporal resolution (64), low signal to noise (64),
and insufficient resolution which would result in partial voluming effects that might
obscure the initial dip (66).

While the controversy of the initial dip in fMRI has yet to be resolved, the final
outcome may not have significant implications for the general use of fMRI as a spatial
constraint for the EEG/MEG inverse problem. It is still likely that the spatial resolution of
fMRI is, in many cases, still much higher that is reasonable achievable for EEG/MEG
localization. The cortical point spread function based on optical measurements has
been estimated in primary visual cortex of the macaque to be 1.5 mm (antero-posterior)
by 2.7 mm (medio-lateral) (67). The fMRI resolution in human visual cortex, which
would be expected to be larger than the optical cortical point spread function (since it
would incorporate the cortical point spread function, hemodynamic spread and
additional fMRI measurement error), has been estimated to be 3.5 mm(68). We
typically tessellate the cortical surface with one dipole per 10 mm along the cortical
surface, and thus, spread on the order of 5 mm is relatively insignificant.

1.4 Summary

| am pursuing a multimodality imaging approach that combines hemodynamic
measurements from fMRI with electromagnetic measurements from EEG and MEG.
This approach provides both high spatial resolution and high temporal resolution. By
incorporating anatomic and functional information (as opposed to just mathematical
constraints), | hope to further refine and improve the non-invasive localization of human
brain activity.

My thesis consists of three general parts. The first is an overview of the forward
and inverse problem. The second part consists of various modelling work to
characterize the accuracy of the linear estimation approach with and without fMRI and
with various combinations of EEG and MEG sensors. Within the second part, | also
present a noise sensitivity normalization for the linear estimation approach that provides
significant gains in spatial resolution. Finally, the last section consists of various
experimental studies: 1) experimental verification of the EEG forward solution, 2)
combined EEG/fMRI studies of a simple visual stimulus (flashing checkerboards), 3)
combined MEG/fMRI studies of coherent and incoherent visual motion, and 4) MEG
studies of interictal activity in epilepsy patients.
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2. Forward/Inverse Background

2.1 Forward Solution

In the typical frequency range of neural activity of 1000 Hz, the electric and
magnetic fields of the brain can be accounted for by the quasi-static limit of Maxwell’s
equations -- that is, magnetic induction and capacitive effects are negligible (1, 2). For
a linear isotropic material where the polarization is linearly related to the electric field,
Ampére’s Law can be written as:

V xH= J+% [2.1.1]
where the constitutive equations relating D (electric displacement flux density) and J
(current density) to E (electric field intensity) are D=¢E and J=cE. (For these
equations, bold denotes a vector field.) Rewriting in the time-harmonic form gives:

VxH=J+jwD [2.1.2]
Replacing J and D with their constitutive equations:
V xH= (6 +j 0e)E [2.1.3]
In the quasistatic limit, the electric and magnetic fields are uncoupled:
VxH=J=0cE [2.1.4]
Therefore the conduction term of Ampeére’s Law must dominate the right hand side, i.e.:
c . [2.1.5]
—>>1
e
For typical values of 6 =0.32, e =10°¢,=8.85x107 £, and o = 27(1000)rad (3)
2 ~53.98 >> 1 [2.1.6]
we

and thus the quasistatic approximation is reasonable.
The quasistatic equations governing the magnetic field are:
VxH=J [2.1.7]
V-yH=V.-B=0 [2.1.8]
where B is the magnetic flux density. Since a vector field is uniquely specified by its
curl and divergence, these two equations uniquely specify H. Since V- (VxA)=0
identically, one can define A, the vector potential, to be the solution to Equation 2.1.8:
B=V xA [2.1.9]
To uniquely specify the vector potential also requires the divergence of A. As a matter
of convenience,

V-A=0 [2.1.10]
Substituting Equation 2.1.9 into Equation 2.1.7:
Vx(VxA)=V(V-A)- VA=-V’A=pJ [2.1.11]

The integral of this equation, known as the superposition integral for the vector
potential, is:
—I J(r") dv’ [2.1.12]
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where r is the coordinate where A is being evaluated and r” is the coordinate of the
current density source. Evaluating Equation 2.1.9:
B=V xA = V x [ =L J() [2.1.13]
vlr- rI
Since the curl operation is taken wnth respect to the observer (at r) and the integration is
taken with respect to the source (at r”), the order of the curl and the integration can be
reversed:

B uo IV xJ(r ')dv, [2.1.14]

Using the vector identity V x(wJ) =y V xJ+ VyxJ, where y is a scalar, and noting

that the first term of the identity is O since the curl operation has no dependence on the
source at coordinates r’, the above expressuon can be rewritten as:

N R

Defining a unit vector i, pomtlng from the source to the observer,

P 2.1.1
vl Vo e g 1 [2.1.16]
) T A

This gives the Biot-Savart Law for magnetic flux density:
Y ELALITY [2.1.17]
4n g, |r-rf

This results in a simple linear relationship between the electric and magnetic
recordings, and the components of dipole moment at any location in the brain. This
allows us to express the forward solution in a simple matrix form:

X =As+n [2.1.18]
where X is the vector of instantaneous electric and/or magnetic recordings, A is the so-
called gain matrix (with each column specifying the electric and/or magnetic forward
solution for a given dipole component), s is a vector of dipole component strengths, and
n is a vector specifying the noise at each electrode/sensor. The elements of A are
complicated non-linear functions of the sensor locations, and the geometry and
conductive properties of the head.

Historically, the gain matrix has been calculated assuming an idealized head-
shape, typically multiple concentric spheres of different conductivities, e.g. (4).
However, recent advances in numerical techniques and computer technology have
made it practical to compute the forward solution for a more realistic non-spherical
head. Furthermore, the advent of high-resolution 3-D MRI scans has made it possible to
customize such realistic models to each individual subject’s anatomy (5). The details of
the generation of the conductivity boundaries are presented in the 4.1 Surface Studies
Methods.

[2.1.15]

2.2 Inverse operator
In the anatomically constrained linear estimation approach, a linear estimator
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s = Wx [2.2.1]
is sought which minimizes the expected error, Err,, (in a least-squares sense), of the
dipole strength over the cortical surface defined as:

Erry, =<|§ -f ) [2.2.2]

where W is a linear operator that maps a recording vector x into an estimated solution
vector 8. Assuming additive Gaussian noise and the forward model specified in
Equation 2.1.18, the optimal linear inverse estimator is given by (see 2.3 Inverse
Operator Derivations):

W=RA"(ARA"+C)" [2.2.3]
where C is the covariance matrix of n, and R is the a priori covariance matrix estimate
for s. Note that if both C and R are set to a scalar multiple of the identity matrix then
this approach reduces to the well-known minimum-norm solution (3). In practice, the

noise covariance matrix, C, can be estimated from the actual recording data [see, e.g.,
(3)]. Various derivations of the inverse operator follow in the next section.

This approach provides a convenient framework for incorporating information
from fMRI into the inverse problem. A reasonable hypothesis is that there is a positive
correlation between local electric/magnetic activity and local hemodynamic response
over time. Since the diagonal elements of the matrix R encode the prior estimates of

dipole strength variance (power) over time at each location i (R, =c’ = (s,.z)), this
assumption can be incorporated by making each diagonal element R; a function of the
corresponding fMRI activation. Large values indicate those locations that are more
likely to be active and small values indicate that are less likely to be active. Setting R; to
zero effectively precludes any activity at location i.

If one had knowledge of the correlation of activity between different sources, say
locations i and j, such information could be incorporated through the off-diagonal

elements of the R matrix, by setting R, ={s;s;}=00,corr(i,j). Although not

considered in these study, this would impose a smoothness constraint on the inverse
solution, as suggested by the LORETA approach (6).

The two different categories of mis-specifications will typically affect two different
components of the inverse operator. Fundamental mis-specifications affect the R
matrix, while experimental mis-specifications affect the A matrix.

Once the optimal linear inverse estimator W is calculated for a given anatomy
(cortical surface), sensor placement, and fMRI activation, the estimated spatiotemporal
pattern of electric/magnetic activity (dipole strength) can be calculated using the simple
expression

s(t) = Wx(t) [2.2.4]
where s(t) and x(t) are the estimated dipole strength and recording vectors as a
function of time.
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2.3 Inverse Operator Derivations

Shown here are four different derivations of the linear inverse operator: 1)
minimization of expected error (5, 7-9), 2) Bayesian formulation (10-13), 3) Tichonov
regularization (14), and 4) generalized Wiener filtering (15-18). All derivations arrive at
equivalent inverse operators.

The minimization of expected error begins with a set of measurements
X = As+n [2.3.1]
where x is the measurement vector, A is the gain matrix, s is the strength of each dipole
component, and n is the noise vector. One would like to calculate a linear inverse
operator W that minimizes the expected difference between the estimated and the
correct source solution. The expected error can be defined as:

Erry ={IW x - E) [2.3.2]

Assuming both n and s are normally distributed with zero mean and covariance
matrices C and R, respectively, the expected error can be rewritten as:

Erry, = {IW(As+n)-sf) [2.3.3]
={l(WA-Ds+Wn)|*) [2.3.4]
= (Ms + an) [2.3.5]

where M = WA - |
= {IMsf )+(|Wn|2) [2.3.6]
= tr(MRM" )+ tr(WCW") [2.3.7]

where tr(A) is the trace of
A and is defined as the
sum of the diagonal
entries

Re-expanding the expression gives
= t(WARA'W'™ —-RATW' ~WAR+R)+trWwcw") [2.3.8]
The second and third terms can be shown to be equivalent:

RATWT =RA"(RAT(ARAT+C]" ]T [2.3.9]

- |aAT((A|a'AT+c)‘1 )T AR [2.3.10]

One can show that the term inside the parentheses is also symmetric (given that the
noise covariance matrix, C, is symmetric):

)
(ARAT+C) =ARTAT+CT = ARAT+C [2.3.11]

Since the inverse of a symmetric matrix is also symmetric, one can further simplify Eq.
2.3.10:

-1
=RAT(ARAT +C) AR =WAR [2.3.12]
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Substituting into Eq. 2.3.8:

= tr(WARATW' - 2RATWT +R)+triwCcw") [2.3.13]
This last expression can be explicitly minimized by taking the gradient with respect to
W, setting it to zero and solving for W.

0=2WARA" -2RA" +2WC [2.3.14]
WARA' + WC =RA’ [2.3.15]
W(ARAT +C)=RA" [2.3.16]
This yields the expression for the linear inverse operator:
W=RA"(ARA"+C)" [2.3.17]

The Bayesian linear inverse operator derivation begins with the expression for
conditional probability:

Pr(x|s)Pr(s 2.3.18
Pr(s|x) = (xs)Pr(s) [ ]
Pr(x)
which one would like to maximize. Beginning with a measurement vector x:
X =As+n [2.3.19]

where A is the gain matrix, s is the strength of each dipole component, and n is the
noise vector. Assuming both n and s are normally distributed with zero mean and
covariance matrices C and R, respectively, rewrite Pr(xls) and Pr(s):

Pr(x|s) = g (A" ¢ (as-0) [2.3.20]
Pr(s)=e=™"® [2.3.21]
This gives a simplified Bayesian expression:
r(e—(As—x)TC“ (As—x))(e-sTn"s)] [2.3.22]
max|Pr(s|x )] = max| |
[ Pr(x) J
= max[—(As -x)' C'(As-x)- sTR‘1s] [2.3.23]
= min[(As—x)T C'(As -x)+sTR'1s] [2.3.24]
Taking the derivative with respect to s and setting it to zero:
2AC'As - 2ATC‘1x1+ 2R's=0 [2.3.25]
s=(A"C"'A+R"") ATC'x = Wx [2.3.26]
which yields the expression for the Bayesian linear operator
W=(A"C"'A+R") ATC" [2.3.27]

This Bayesian linear operator is also very similar to the regularization method.
Again, begin with a measurement vector x:

As =x [2.3.28]
A smoothing functional F is defined as:
F =|As-x|f + AM|s-s,|° [2.3.29]

where AM is added for regularization and s is normally taken to be zero. To calculate
the operator, the smoothing functional is explicitly minimized (taking its derivative and
setting it to zero). Solving for s:
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0=2A"As-2A"x+2\Ms [2.3.30]

(ATA+ AM)s = ATx [2.3.31]
s=(ATA+ M) ATx = Wx [2.3.32]
W=(ATA+ M) AT [2.3.33]

This is equivalent to the Bayesian linear operator when C=1 and AM=R™". These
particular inverse derivations are very general and allows us to express many different
kinds of inverse methods. For example, LORETA (6), which imposes a smoothness
constraint on the inverse solution, can be expressed in this framework if M is the vector
laplacian.

Wiener filtering (also known as the Kalman-Bucy method) , uses an optimal
linear filter to minimize the expected error between the actual source and the estimated
source:

Erry = {IW x - B) [2.3.34]
The operator must satisfy the Wiener-Hopf equation:
Y, =WY¥, [2.3.35]

where ¥, ={sx"} and ¥, ={xx"}.
Expanding the covariance terms gives:

{s[As +n]') = W([As +n][As +n]") [2.3.36]
{ssTA+sn" )= W{Ass"A" +ns"A" +Asn+nn") [2.3.37]
( ssTA) + (snT ) = W((AssTAT) +(nsTAT> +{Asn)+ (nnT )) [2.3.38]

Since the noise and signal are independent, the signal-noise covariance terms (e.g.
(sn’)) equal zero, leaving:

(ss"A) = W((AssT AT)+ (nn’)) [2.3.39]
RAT =W(ARA" +C) [2.3.40]

Again, the inverse operator is:
W=RA"(ARA"+C)" [2.3.41]

One additional note regarding the Wiener filter:

A suggested improvement to Wiener estimation is to use an estimate of the
signal covariance matrix and incorporate that estimate into the Wiener inverse operator
(16, 17, 19). The "new" operator is:

W=A(D-C)D” [2.3.42]
where A =AT(AAT)" (pseudoinverse of A) and
D={xx")= ([As +n][As +n]T> =ARA" +C.

Expanding:
W= AT(AAT)'(ARAT +C-C)(ARAT +C)" [2.3.43]
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=(a"(aA")"a)RAT(ARAT +C)" [2.3.44]
The first term is equal to the identity matrix, by definition of the pseudoinverse.
Therefore, one again has the equivalent inverse operator:
W=RA"(ARA" +C)" [2.3.45]
Finally, it is possible to show that these various linear operators are equivalent
(assuming that both (ARAT +C) and (ATC'A+R™) are invertible).

RAT(ARAT+C)" =(A"C'A+R™")(A"C"A+R')RAT(ARA" +C)” [2.3.46]
=(A"C'A+R")"(ATC"'ARA+AT)(ARA" +C)” [2.3.47]
=(A"C'A+R")'(ATC")(ARAT +C)(ARAT+C)"  [2:3.48]
=(A"c"'A+R7)"ATC" [2.3.49]

Although these two expressions are equivalent, it is computationally more
efficient to use the first expression (based on the minimization of expected error) since it
only requires the inversion of a matrix that is square in the number of sensors,
compared to square in the number of dipoles. Typically, the number of sensors is on
the order of 200, whereas the number of dipoles can easily be in the thousands.

2.4 Crosstalk Metric

The estimated source strength (S5;) at each location i can be written as a

weighted sum of the actual source strengths at all locations, plus a noise contribution.
This is due to the linearity of both the forward solution and this inverse operator. More
formally,

= wx [2.4.1]

=w, As+n) [2.4.2]

=w, Zéjsj+n] [2.4.3]
J

=2 (w,.éj)sj+ wn [2.4.4]

where w; is the ™ row of W, and a, is the j" column of A (i.e. the “true” lead field
including orientation information at location j). Depending on the particular type of mis-
specification being examined through model studies, A (used in the calculation of W)
and A may or may not be equivalent. When determining the crosstalk metric for
experimental data, A and A will be the same. Note that the first term in Equation 2.4.4
is the sum of the activity (s;) at every location j, weighted by the scalar wa,. The

second term reflects the noise contribution to the estimated activity at location i.
An explicit expression for the relative sensitivity of the estimate for a given
location to activity coming from other locations is desired. A “crosstalk” metric (§;),

similar to the averaging kernel of the Backus-Gilbert method (20), is defined as follows:
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) ) 245
2 |(WA)'lr _ IW@.IZ With Orie[ntatiog

= | (W A )ii|2 - |W|é||2 Constraint

where WA is the resolution matrix (21-25).
By comparing Equations 2.4.4 and 2.4.5, one can see that the crosstalk metric §;
describes the sensitivity (or weighting) of the estimate at location i to activity at location j

relative to activity at location i . If no orientation constraint is used, the crosstalk metric
is given by:

3 3
- [2.4.6]
2 2 |(WA)(3I +p)(3j+q) |2 Without Orientation
g; = ";1 ";‘ - Constraint
> 3| WA)ypyaal
p=1q=1

where (3i+p) and (3j+g) are indices for particular orthogonal components at the
locations being examined, and p and g are used to sum over the orthogonal
components at a given location. A crosstalk value of 0% means that the estimated
activity at location i is completely insensitive to activity at location j. A crosstalk value of
100% means that the estimated activity at location i is equally sensitive to activity at
locations i and j. For a particular location, the crosstalk from all other locations can be
calculated.

2.5 Point Spread Metric

Closely related to the crosstalk metric is the point spread metric. The point
spread for a location i describes the sensitivity of the estimates at other locations j to
activity at location i. A location with lower point spread has a smaller spatial extent.
The point spread metric (p) is defined as:

?=|( wA),[ =|wja?|,.|2 [2.5.1]
" wA)[ Iwal

where WA is the resolution matrix. The point spread map, more commonly known as
the point spread function (PSF), for a given location i corresponds to the ith column of
the crosstalk matrix (WA). Similar to the average crosstalk map, | define the average
PSF maps (APSF) . For each location | average the point spread between the specified
location (i) location and all other locations (j) on the surface:

3 p? [2.5.2]
APSF, = -
J

One can see that crosstalk and point spread are closely related. The crosstalk
map and the point spread map correspond to the rows and columns, respectively, of the
resolution matrix WA. In the linear estimation framework examined up to this point, one
can show that the resolution matrix is symmetric, and therefore the crosstalk map and
the PSF for a given location are equivalent. The resolution matrix is given by:

-1
WA =RA' (ARAT + c) A [2.5.3]
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The transpose of the resolution matrix is:

(WA)" =(RAT(ARAT + c)“A)T [2.5.4]

_ AT((ARAT +c)’ )T AR' [2.5.5]

The term inside the parentheses is also symmetric (since the noise covariance matrix,
C, is symmetric):

T
(ARAT+C) =ARTAT+C" = ARAT +C [2.5.6]

The source covariance matrix (R) is also symmetric, so one can rewrite Equation 2.5.6:
= A"(ARA" + c)" AR [2.5.7]

Since the term, AT(ARAT + C)JA, and R are both symmetric:

AT(ARA" +C)'AR" =RAT(ARA" +C)"A [2.5.8]

Similar to the average crosstalk map, | define a average point spread function
map. The average PSF map represents the average of the PSF at each location on the
cortical surface.

The relationship between the crosstalk metric and the point spread metric can be
more easily seen graphically (Figure 1). The location of interest (i.e. location i) is
marked in green. The arrows indicate the “direction” of mis-specification, or where
activity is mis-localized. The crosstalk metric describes the activity from other locations
that is mis-localized onto the location of interest (arrows point towards location i).
Conversely, the point spread metric describes activity that is mis-localized from location
i (arrows point away from location i). In the example below, the crosstalk map and the
point spread function are the same. This is due to the symmetry of the resolution
matrix. In Chapter 5, | describe a noise sensitivity normalized inverse operator where
the resolution matrix is no longer symmetric. Therefore, the crosstalk and point spread
maps will no longer be equiv.
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Figure 1: Mis-localized activity specified by the Crosstalk and the Point Spread metrics.
The arrows indicate the “direction” of mis-specification.

Given that the crosstalk map and the point spread function are equivalent for the

linear estimation operator, our discussion applies equally to both. However, various
suggested improvements to the linear estimation technique will result in a non-
symmetric resolution matrix. For example, the Backus-Gilbert method (20, 22, 26),
which explicitly minimizes the crosstalk will result in some sort of tradeoff with the point
spread function.
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3. Volumetric Model Studies

3.1. Volumetric Methods

These first model studies used a spherical head model and did not make any
additional assumptions beyond the fMRI spatial constraint. Specifically, no anatomic
constraint was used. These results provided an initial estimate of the potential distortion
measured by the fMRI constrained linear estimation approach due to various errors in
the a priori fMRI spatial assumptions. Although the use of a spherical head model
clearly is not optimal, the goal of these particular studies is to verify the approach, not
determine the accuracy of the forward computation.

A spherical head model with a radius of 10 cm and a 122 channel MEG sensor
description was used (Neuromag, Helsinki, Finland). Noise was assumed to be spatially
uncorrelated and white with a SNR of 10.

The three different mis-specifications were examined:

1) mis-registration - the number of areas of activation on fMRI correspond to the number
of generators of magnetic fields, but the two were offset by some distance (which
corresponds to a mis-registration between the MRI and MEG coordinate systems)

2) extra fMRI source - an area of fMRI activation did not generate magnetic fields

3) missing fMRI source - a generator of magnetic fields was not measured as an area of
fMRI activation.

The fMRI weighting was systematically varied from no weighting (i.e. minimum
norm) to complete fMRI weighting (all locations not specified by fMRI were set to 0). A
depth-weighted minimum norm was also computed for comparison (1, 2). The depth-
weighted minimum norm weighted each location by the inverse of the power at the
detectors given a unit activation at that location.

Either 5 or 10 sources were located at random within a single octant or a single
hemisphere of the head model. The single octant placement was chosen to be
representative of visual studies where activity is typically concentrated in the posterior
portion of the brain, whereas the single hemisphere placement was chosen to represent
activity in occurring over most of the brain, as might be seen with more complex
cognitive studies. Then the average crosstalk per dipole pair was computed for each
type of spatial weighting (minimum norm, depth-weighted minimum norm, and fMRI
constrained) and mis-specification between fMRI and actual electromagnetic source.
This random placement was first repeated 100 times in the octant placement. Given
the long computation time and the expectation that the octant placement would show
more distortion than in the hemispheric placement (given the closer proximity of
sources), thus providing a more pessimistic estimate of the expected distortion, the
hemispheric studies were only repeated 10 times. The average * standard error of the
mean of the crosstalk was computed from both octant and hemispheric placements.

3.2 Volumetric Results

Shown below is the crosstalk for each of the spatial weightings (Minimum Norm,
Depth-Weighted Minimum Norm, and fMRI Constrained) due to the following mis-
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specifications: 1) no mis-specification between fMRI and the actual sources, 2) an extra
fMRI source that is not an electromagnetic generator, 3) a missing fMRI source that is
generating electromagnetic fields, and 4) a spatial mis-registration between fMRI and
the actual sources. The crosstalk + the standard error of the mean for 5 and 10 dipoles
placed in a single octant are shown in Tables 3.2.1 and 3.2.2. The crosstalk _ the
standard error of the mean for 5 dipoles and 10 dipoles placed in a single hemisphere
are shown separately in Tables 3.2.3 and 3.2.4.

Although all values are the crosstalk metric, each column within the table describes
slightly different values:

None: percentage of power that is mis-localized among locations that are correctly
specified by fMRI. :

Extra fMRI source: percentage of power from the correct locations that is placed on
the extra fMRI source.

Missing fMRI source: percentage of power from the missing fMRI source that is
placed on the locations correctly specified by fMRI.

Spatial: percentage of power that is mis-localized when there is a 1 cm spatial
discrepancy

Spatial None Extra fMRI Missing fMRI | Spatial (1cm)
Weighings Source Source

Minimum 30+05 30+1.3 29+1.3 30+0.5
Norm

Depth 26 +0.6 19+1.0 26+1.5 27 +0.6
Weighted

fMRI 9+05 8+05 29+14 19+0.4
Constrained ‘

Table 3.2.1: 5 Dipoles in an Octant.

100.

Crosstalk (mean =+ standard error of the mean). n =
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Spatial None Extra fMRI Missing fMRI | Spatial (1cm)
Weighings Source Source

Minimum 31+0.3 30+1.1 30+ 1.1 31+0.3
Norm

Depth 27 +0.4 21+0.9 27 1.1 28+04
Weighted

fMRI 11 +0.3 11+£0.5 27 + 1.1 20+0.2

Constrained

Table 3.2.2: 10 Dipoles in an Octant. Crosstalk (mean + standard error of the mean). n

=100.

Spatial None Extra fMRI Missing fMRI | Spatial (1cm)
Weighings Source Source

Minimum 25+25 28+5.0 28+5.3 26 +2.5
Norm

Depth 20+ 2.3 14+1.4 2157 2123
Weighted

fMRI 6+1.6 6+1.3 28+4.8 15+1.6

Constrained

Table 3.2.3: 5 Dipoles in an Hemisphere. Crosstalk (mean = standard error of the

mean). n = 100.

Spatial None Extra fMRI Missing fMRI | Spatial (1cm)
Weighings Source Source

Minimum 28+1.5 28+29 31+1.8 28+1.5
Norm

Depth 19+1.7 17+ 3.8 21+1.9 20+1.7
Weighted

fMRI 9+14 9+14 27 +2A1 16+1.2

Constrained

Table 3.2.4: 10 Dipoles in an Hemisphere. Crosstalk (mean = standard error of the

mean). n = 100.

3.3 Volumetric Discussion

There is only a slight difference between 5 and 10 sources in the amount of
crosstalk, suggesting that the number of sources will not be problematic. Also, when
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the sources are placed in closer proximity (i.e. placement in one octant versus
placement in a hemisphere), there is a small increase in crosstalk. More sources
andsources that are closer together will both increase the crosstalk. However, the
increase due to the number of sources and the proximity of sources would, on average,
be small.

Regarding the various spatial constraints, minimum norm was the least
successful at dealing with the various types of mis-specifications examined. The
- addition of a depth-dependent weighting on the minimum norm produces very little
improvement (< 5% for the various metrics). However, the addition of the fMRI
weighting to the minimum norm correctly localizes more of the activation, produces less
crosstalk, and also places less activation on an extra fMRI source. Unfortunately, none
of these various weighted minimum norm schemes handles a source that is missing
from fMRI. Although the inclusion of fMRI weighting does not worsen the situation, in
even the best cases a hemodynamically undetected source would still perturb the other
sources by approximately 28%, on average.
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4. fMRI-Constrained Inverse: Surface Model Studies

4.1 Surface Methods

4.1.1 Head Model

The boundary element method (BEM) was adapted for calculating both the EEG
and MEG forward solutions (1-3). Both forward solution computation requires the
locations of all possible sources and the detector locations. All locations are
constrained to be within the cortical surface for all model studies. Each possible source
location is represented either by three orthogonal current dipoles placed at that location
(without cortical orientation constraint) or a single current dipole oriented normal to the
cortical surface (with cortical orientation constraint).

The computation of the MEG forward solution computation has been shown to
only require the inner skull boundary to achieve an accurate solution (4-6). The EEG
forward solution computation requires the specification of boundaries between brain and
skull, skull and scalp, and scalp and air, and the relative conductivities of each of those
regions. Given the greater difficulty in computing the EEG forward solution, these initial
surface model studies only use the MEG forward solution.

The surfaces required for computation of the forward solution (cortical surface
and other boundaries within the head) are automatically reconstructed from high-
resolution T1-weighted 3D MR images using the technique described by (7-9). The
skull is first automatically stripped off the 3D anatomical data set by inflating a stiff
deformable spherical template from a starting position in the white matter. The surface
expands outward until it settles exactly at the outer edge of the brain. Since bone
appears dark on MR images, this outer brain surface is used to estimate the inner skull
surface. The outer brain surface is also used to strip the skull from a set of slices, which
would otherwise be achieved by hand-tracing each slice.

The gray/white matter boundary for each cortical hemisphere is then estimated
with a region-growing method, starting from a seed point in the white matter. The
gray/white matter boundary was targeted because that surface approaches itself less
closely than does the pial surface. The end result is a solid block of voxels without any
voids with the topology of the cortical surface. The boundary between filled and unfilled
1 x 1 x 1 mm voxels is tessellated to generate a surface that typically consists of about
150,000 vertices for each hemisphere.

The resulting surface is smoothed using a deformable template algorithm. Each
vertex is moved according to the vector sum of a curvature-minimizing force and an MRI
force that works to prevent each vertex from penetrating the white matter. The resulting
refined surface settles near layer 4, which gives it a somewhat atrophied appearance.
The cortical orientation at each location on the surface is based on this smoothed
surface.

The actual surfaces determined from the MR images of a volunteer (SA) were
used. The MEG detector locations used were a whole head 122 channel MEG sensor
description (Neuromag, Helsinki, Finland).
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4.1.2 Monte Carlo Model

To simulate fMRI areas of activation, either 5, 10, or 20 sources were randomly
located on the cortical surface, each with varying volumetric extent (point source, 1 cm
diameter, or 2 cm diameter). The random selection ensures no systemic location bias
in these model studies. The numbers and extents of sources chosen represent
experimentally realistic fMRI results. Although point sources are not physiologically
realistic, they were included in our simulations in order to allow comparison with
standard ECD models. The diagonal elements of R (the a priori source variance
estimates R, = 6°) corresponding to fMRI visible areas of activation were set to 1. The

a priori variance estimates, or “weighting”, at other locations not visible by fMRI
(“missing” locations) were varied between ;= 0, 0.01, 0.1, or 1. This corresponds to
100, 99, 90, and 0% relative fMRI weighting, respectively. The classical minimum norm
solution is equivalent to a relative fMRI weighting of 0%. | made no a priori
assumptions about source correlation. Therefore, the off-diagonal elements of R were
set to zero, i.e. R; =0 for &j. It should be noted that this does not force the sources to

be uncorrelated or orthogonal in time. Noise was assumed to be additive, Gaussian,
tr(ARAT) /n
SNR?
identity matrix, tr is the trace of a square matrix, SNR is the assumed rms signal-to-
noise ratio, and n is the number of sensors. Here, | assumed a conservative SNR of 10,
which is typically observed in MEG experiments. In actual experiments, the noise is
usually spatially correlated, and thus the off-diagonal elements of C are typically non-
zero. In practice, the entire C matrix can be estimated from the experimental data (e.g.
(10)).

In these simulations, the crosstalk metric §; was always calculated between fMRI
visible locations i, and either other fMRI visible locations or fMRI invisible (“missing”)
locations j.

The random source placement was repeated 10 times and the crosstalk metrics
was averaged, depending on the conditions being examined. For each random source
placement, 100 missing locations were randomly selected. For comparison with our
standard solution, | also calculated a lead field weighted solution (10). This is
accomplished by inversely weighting each location by the sensor power generated by

uniform, and spatially uncorrelated. More precisely, C =1 , where | is the

unit activity at that location, i.e. replacing R; with B, in Equation 2.2.3.

la.]

4.2 Surface Results

Several studies have used fMRI or PET activation data as a prior constraint on
the inverse solution. In one such approach, single equivalent current dipoles (ECDs)
are placed at the center-of-mass of fMRI (11-14) or PET (15, 16) defined regions of
cortical activation. A refinement of this approach uses a continuous source model (17).
In the linear estimation framework presented here, these cases correspond to: setting
the fMRI weighting to 100%, assuming an infinite signal-to-noise ratio, and either point
or extended source models. Here, cortical areas of fMRI activation are tiled uniformly
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with dipoles. By either fixing the dipole orientation (e.g., using anatomical information),
or allowing the ECDs to freely rotate over time, the estimated time courses of these
fMRI defined sources can then be determined using a standard pseudo inverse
technique.
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Figure 4.2.1: Crosstalk versus Noise Regularization. Crosstalk is shown for 10 sources
(point and 2 cm in diameter), with and without orientation constraint. The assumed SNR
was either 1, 10, 100 or infinite. A relative fMRI weighting of 100% was used. The light
bars are crosstalk from fMRI invisible sources. The dark bars are crosstalk from fMRI
visible sources.

The results indicate that allowing for finite signal-to-noise greatly reduces the
predicted distortion from fMRI invisible sources. The extremely large amount of
distortion from fMRI invisible sources when assuming infinite SNR demonstrates a
potential problem with an fMRI-constrained pseudoinverse solution, which implicitly
assumes infinite SNR.

Simulation studies were performed to examine the sensitivity of these proposed
methods, to the potential presence of fMRI invisible (missing) sources. Figure 4.2.1
shows that the crosstalk from fMRI visible sources is quite small (< 21%), but the
crosstalk from fMRI invisible sources is quite large, particularly for the extended source
description. It should be noted that assuming infinite SNR is equivalent to using the
Moore-Penrose pseudoinverse as the inverse operator. Importantly, the data further
indicates that allowing for finite signal-to-noise greatly reduces the predicted distortion
from fMRI invisible sources. However, the crosstalk remains high, and thus the
presence of fMRI invisible sources could still be quite problematic.
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Figure 4.2.2: Crosstalk versus Relative f/MRI Weighting. Crosstalk is shown for 10
sources (point and 2 cm in diameter), with and without orientation constraint. The relative
fMRI weighting was either 0%, 90%, 99%, or 100%. The light bars are crosstalk from
fMRI invisible sources. The dark bars are crosstalk from fMRI visible sources.

The optimal fMRI weighting requires a compromise between resolving fMRI
visible sources (i.e., higher fMRI weighting) and minimizing distortion from fMRI invisible
sources (i.e., lower fMRI weighting). The results indicate that a 90% fMRI weighting
greatly reduces the crosstalk from fMRI visible sources, while only slightly increasing
the crosstalk from fMRI invisible sources.

Based on the above results, | explored the effect of varying the degree of fMRI
weighting. The crosstalk was calculated from both fMRI visible and invisible locations
for varying source extent. The potential benefits of including an orientation constraint
(in addition to the fMRI weighting) were also evaluated in these simulations. Figure
4.2.2 shows the results for two different source sizes - point sources (zero extent), and
extended sources of 2 cm diameter. The point source (although physiologically
unrealistic) is typically used in equivalent current dipole (ECD) modeling, while the 2 cm
extended source is representative of the extent of contiguous activation typically
observed with fMRI.

For a given fMRI visible source, Figure 4.2.2 shows that with increasing relative
fMRI weighting, the crosstalk from other fMRI visible locations decreases, while the
crosstalk from fMRI invisible locations increases. The use of the cortical orientation
constraint reduces crosstalk from both fMRI visible and invisible sources. With no fMRI
weighting (0%), crosstalk from both fMRI visible and invisible sources is identical, as
would be expected. This corresponds to the well-known minimum norm solution. At
this limit, a substantial crosstalk of 28% and 15% is predicted for the anatomically
unconstrained and anatomically constrained cases respectively. At the other limit of
100% fMRI weighting, the crosstalk from fMRI visible sources is minimized (<8%);
however, the crosstalk from fMRI invisible sources is greatly increased (>40%). Thus,
unless the coupling between neuronal and hemodynamic activity is perfect, the use of
100% fMRI weighting is not optimal.

One would like to select a weighting that results in acceptably low distortion
between the fMRI visible locations while achieving reasonable levels of distortion from
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the fMRI invisible locations. Inspection of the results in Figure 4.2.2B and 4.2.2D (for
the realistic extended source case) indicates that most of the benefit of fMRI weighting
is achieved at a level of 90%. Although this weighting does not minimize the crosstalk
from other visible sources, the improvement of going to 99% or even 100% fMRI
weighting is small. More importantly, the data indicate that 90% fMRI weighting does
not significantly increase crosstalk from invisible sources. In other words, 90% fMRI
weighting is a reasonable compromise for typically-sized extended source distributions.
Therefore, the remaining simulation results use 90% fMRI weighting. The general
pattern of results is similar for other fMRI weightings.

Crosstalk

Crosstalk

Specified Unspecified Specified Unspecified
Without Orientation Constraint With Orientation Constraint

Figure 4.2.3: Crosstalk versus Extent and Number of Sources. The extent of sources was
either 0 cm (point), 1 cm or 2 cm in diameter. The number of sources was 5, 10 or 20. The
same colored bars all represent the same number of sources, although the extent varies for
any given color. A relative fMRI weighting of 90% was used.

The results indicate that the crosstalk is relatively independent of source extent
and number. This demonstrates that the proposed linear estimation method is
appropriate for modelling multiple, extended areas of activation, as typically
encountered in functional neuroimaging studies.

In a typical fMRI experiment, a number of discrete regions of activation are
observed. Any inverse procedure that is applied to this type of data will have to handie
multiple, extended source configurations. Figure 4.2.3 shows that the crosstalk from
both fMRI visible and invisible sources is relatively independent of the number and the
spatial extent of the sources, within the realistic range plotted. Importantly, utilizing the
orientation constraint consistently results in very small crosstalk (< 10%) from the fMRI
visible sources, while the crosstalk from potential fMRI invisible sources remains
moderate (< 21%). This demonstrates the ability of this linear approach to cope with
physiologically realistic source distributions, even in the presence of fMRI invisible
(missing) sources. Obviously, since the crosstalk is substantially higher for fMRI
invisible sources than for fMRI visible sources, the accuracy of the source activity
estimates deteriorates with increasing neuronal activity from fMRI invisible locations.
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Figure 4.2.4: Crosstalk versus Extent and Number of Sources with Lead Field Weighting.
The extent of sources was either 0 cm (point), 1 cm or 2 cm in diameter. The number of
sources was 5, 10 or 20. The same colored bars all represent the same number of sources,
although the extent varies. A relative fMRI weighting of 90% was used. These results are
very similar to the non-lead field weighted inverse solution (within 2%).

Previous studies from other laboratories have suggested that lead field weighting
can be used to improve the accuracy of source estimates (10, 18). The potential utility
of lead field weighting in the linear estimation procedure was evaluated (Figure 4.2.4).
Comparison of Figure 4.2.3 to Figure 4.2.4 shows a very similar result, although there is
a small decrease (~2%) in crosstalk from fMRI visible locations and a small increase
(~2%) in crosstalk from fMRI invisible locations. Given that the changes are so small
and that the lead field weighting has no fundamental physiologic basis, it does not
appear to be a particularly useful constraint.

Crosstalk

Crosstalk

fMRI Visible fMRI Invisible fMRI Visible fMRI Invisible
Without Orientation Constraint With Orientation Constraint

Figure 4.2.5: Crosstalk with Orientation Error versus Extent and Number of Sources.
Extent of sources was either point, 1 cm or 2 cm in diameter. Number of sources was 5, 10

or 20. An orientation error of +300 was used. A relative fMRI weighting of 90% was used.
A small increase in distortion (approximately 2%) is seen in the presence of
errors in assumed source orientation. The above simulation results demonstrate that
constraining activity to the cortical surface greatly reduces the predicted crosstalk from
both fMRI visible and invisible sources. Obviously, the usefulness of this anatomic
constraint depends upon the accuracy of the anatomic information. In general, both
errors in the cortical location and its orientation will affect the solution, with orientation
errors the more problematic of the two. A small change in source location will only
result in small differences in the measured fields, whereas a change in orientation can
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result in variations from maximally measured amplitudes to zero measured external
fields. Therefore, the effect of cortical orientation errors on the accuracy of these
inverse solutions was examined. Orientation errors were simulated by randomly

perturbing the assumed cortical orientation or each source by £30° about the correct
orientation, a range presumably exceeding our true measurement error. Angle errors
were drawn from a uniform distribution. The crosstalk metric was computed to provide
a quantitative measure of our sensitivity to orientation error (Figure 4.2.5). Comparison
of the crosstalk values in Figure 4.2.6 to those in Figure 4.2.3, reveals very little
difference, with only a slight increase in distortion (= 2%). Thus, orientation errors within
this range would not significantly affect the accuracy of localization.

Superticial Location Deep Location
(Top of Gyrus) (Battom of Sutcus)

Figure 4.2.6: Crosstalk maps of deep and superficial sources. Maps of the crosstalk metric
(?;,-j) for two different locations i (see arrows) were computed for all locations j, shown in
folded (top) and inflated (bottom) cortical surface views. Surface curvature is represented
in grayscale (light and dark gray corresponding to gyri and sulci, respectively).

The crosstalk represents the relative sensitivity of the dipole strength estimate at
a given location to activity at other locations (shown in color, ranging from 0 (gray), to 10
(yellow)). Note the greater spread of the crosstalk for the deep location (right) relative
to the superficial location (left), reflecting different intrinsic spatial resolution for these
locations, when only anatomical constraints are used.

All cortical locations may potentially contribute to the estimated activity at any
given location (see Equation 2.4.4). The maps shown in Figure 4.2.6 indicate the
relative weighting of activity of each and every location in the estimated activity at the
indicated locations (white arrow). These crosstalk maps were calculated using the
cortical location constraint and no fMRI constraint (equivalent to 0% relative fMRI
weighting). The superficial location on top of the gyrus (left figures) clearly shows much
less sensitivity to activity at other locations, and consequently intrinsically higher spatial
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resolution, than the deeper location at the bottom of the nearby sulcus (right figures).
The example further suggests that deep sources potentially benefit most from the
additional inclusion of the fMRI constraint.

This type of spatial crosstalk information can show which regions of the brain are
intrinsically less sensitive to localization error. In addition, such crosstalk maps can
directly address the issue of mis-localized activity between two or more areas of fMRI
activation. If there is little overlap between the crosstalk maps of those areas, one can
be confident that the localization at one area is unaffected by activity at the other area.
Conversely, if the spatial crosstalk map of one region of fMRI activity encompasses
another region of fMRI activity, this particular method would not be able to accurately
separate the activity from those two areas. Individual crosstalk maps can potentially be
used to place some confidence limits on the interpretation of the estimated time-
courses.

4.3 Surface Discussion

These simulation results demonstrate that the use of anatomic and functional
MRI information can significantly improve the accuracy of our temporal estimates of
dynamic human brain activity. In the ideal case, where all neuronal source activity is
accurately detected by fMRI (no “missing” or “fMRI invisible” sources), the properly fMRI
weighted and noise regularized linear inverse produces source timecourse estimates
that should accurately reflect the true neuronal activity within the cortex. Happily, this
holds true even for multiple and extended sources, as is typically encountered in human
fMRI data. Additionally, the simulations demonstrate that the use of an orientation
constraint consistently improves the accuracy of our source estimates. Perhaps
surprisingly, errors in the specified cortical orientation, over a rather large range
(encompassing any realistic error), produce very little distortion in our estimates.

These data indicate that a fMRI weighting of approximately 90% is a reasonable
compromise between sensitivity to crosstalk from fMRI visible and invisible sources.
The optimal fMRI weighting depends on the confidence in the hypothesis that neuronal
and hemodynamic activity are tightly coupled. However, even if this hypothesis is
strictly correct, the hemodynamic response caused by a given neuronal source may be
too small to be detected, given finite fMRI signal-to-noise. Therefore, some
intermediate level of fMRI weighting is required to properly account for potential fMRI
invisible sources.

In addition, EEG/MEG averaged data always contain some finite residual noise
due to spontaneous brain activity (i.e., activity not time-locked to the stimulus). ltis
therefore essential to allow for a finite amount of additive noise. Sensitivity to such
noise can be minimized by its proper estimation and inclusion within the noise
covariance matrix C in the linear inverse operator. As shown above in Figure 4.2.1,
decreasing the assumed EEG/MEG SNR (in the C matrix) also has the effect of
reducing the effect of missing sources. However, such modelling errors are more
properly accounted for by judicious fMRI weighting (in the R matrix). Experimentally,
the C matrix can and should be computed from the actual EEG/MEG measurement
data.
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Given proper fMRI weighting and noise regularization, the distortion between

fMRI visible locations is quite small, and is further reduced by incorporating an
orientation constraint. Extra fMRI sources do not result in additional crosstalk at other
fMRI visible locations, since the crosstalk from fMRI visible sources has little
dependence on the number of sources. In comparison, fMRI invisible sources
(electromagnetic generators which do not appear by fMRI) are still problematic.
However, it may be possible to detect the presence of such missing sources and other
mis-specifications in the model.
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5. Model Studies of EEG/MEG Sensor Number

5.1 Abstract

Both electroencephalography (EEG) and magnetoencephalography (MEG) are
now used to localize brain activity. But, there has been some controversy regarding the
relative accuracy of those two techniques. This paper theoretically compares the use of
EEG, MEG, and combined EEG/MEG data sets for source localization. In general, the
accuracy of localization depends on the accuracy of the particular inverse procedure
utilized, which implicitly incorporates the forward solution as well. In this case, |
continue the use of a linear estimation approach with distributed source model and
evaluate its accuracy using the concepts of a crosstalk and point spread metrics. The
crosstalk metric for a specified location on the cortex describes the amount of activity
incorrectly localized onto that location from other locations. The point spread metric
provides the complementary measure: for that same location, the point spread
describes the mis-localization of activity from that specified location to other locations in
the brain. | also examine the concept of a “noise sensitivity normalized” inverse
operator. Our results show that 1) surprisingly, EEG localization is more accurate than
MEG localization for the same number of sensors averaged over many source locations
and orientations, 2) as expected, combining EEG with MEG produces the best accuracy
for the same total number of sensors, and 3) the noise sensitivity operator improves the
spatial resolution relative to the standard linear estimation operator.

5.2 Introduction

The electromagnetic inverse problem for the human brain is to determine the
neural source distribution that gives rise to external electromagnetic measurements, ie.,
electroencephalography (EEG) and magnetoencephalography (MEG). But, there has
been some debate over the relative accuracy of EEG or MEG based source localization.
The controversy began with early experimental EEG studies using phantoms (1) and
implanted electrodes in epilepsy patients (2, 3). Those studies reported localization
accuracy of 10 mm for the phantoms to 20 mm in the patients. In comparison, MEG
studies reported localization accuracy of 3 mm in spherical phantoms (4-7) and 4 — 8
mm for skull phantoms (4, 5, 7, 8). Based on these results, it was commonly assumed
that MEG localization accuracy was far superior to EEG.

However, there were theoretical reason to believe that the MEG and EEG
accuracy should be comparable. In an attempt to directly address this controversy, both
MEG and EEG measurements were made while generating current dipoles from
implanted electrodes in an epilepsy patient (9). A sinusoidal stimulus waveform was
used to remove the spike artifacts that likely contributed to the poor EEG localization
performance of the previous EEG measurements (2, 3). The average MEG and EEG
localization errors for dipoles with sufficiently good signal to noise were found to be 8
mm and 10 mm, respectively. These results suggested that MEG and EEG provide
comparable accuracy.
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Unfortunately, more recent experimental data have not necessarily clarified this
issue of relative accuracy. Phantom studies have reported localization accuracy for
EEG of 7 — 8 mm (10) and for MEG of 2 — 4 mm (10-12). The localization superiority of
MEG over EEG is less obvious in data from measurements made in patients. Using
data generated from artificial current dipoles implanted in epilepsy patients the
localization accuracy of EEG was 10 - 17 mm (13-15) with the best EEG accuracy in
one patient of 1 —4 mm (14). This is compared to a localization accuracy of 17 mm for
MEG measurements of artificial dipoles generated from implanted subdural strips (16).
Other studies have estimated accuracy by comparing lesion data (e.g. tumor,
epileptogenic focus) in epileptic patients with the non-invasive location estimates from
EEG (17-21) or MEG (19-27). Similar to the results of the artificial current dipoles, the
EEG and MEG accuracy were comparable (ranging from 10 — 20 mm).

Generally, in these experimental studies, it is difficult to separate the effect of
errors in the head model from localization errors due to differences between EEG and
MEG. Specifically, there are fundamental differences between the forward solution
accuracy required by EEG and MEG, with MEG requiring a simpler model (28-30).
Therefore, one would expect better accuracy for the more accurate MEG head model.
It is possible to use modelling studies to examine the relative accuracy of EEG and
MEG by using the same forward solution to generate both the synthetic external
EEG/MEG measurements and the resulting inverse solution. In other words, modelling
studies can examine EEG and MEG localization accuracy unbiased by possible
inaccuracies in the forward model that may differentially affect localization of
experimental EEG or MEG measurements. However, even the modelling studies have
been equivocal. Some modelling work found MEG to be more accurate than EEG (31,
32), while others found EEG and MEG accuracy to be comparable (33) or EEG
accuracy better than MEG (34, 35).

Clearly, the data from phantoms, patients and theoretical studies gives conflicting
evidence for the relative accuracy of EEG and MEG. However, there are numerous
confounding factors in the interpretation of all this data. For example, experimental
measurements in phantoms and living human heads may reflect the higher accuracy of
the MEG forward solution, measurement errors, or differences in signal to noise. Also,
the modelling studies used spherical head models with differences between EEG and
MEG sensor sampling. Here | attempt to address these limitations using a linear
estimation technique with a distributed source model. | used a realistic head model and
similar EEG and MEG sensor placement. In addition, | present a noise sensitivity
normalized inverse operator that is based on the linear estimation approach. Monte
Carlo modelling studies (sampling over numerous source locations and orientations)
were used to determine the theoretical limits (i.e. assuming the no errors in the head
model) of EEG and MEG localization. Localization estimates were computed using
MEG or EEG data, both separately and combined. The effect of sensor sampling
density (i.e., number of sensors) was examined.

It is difficult to characterize spatial accuracy in terms of a distance error for the
linear estimation approach because of the extended nature of the localization estimates.
Therefore, | quantified localization accuracy using a crosstalk metric (36)and a point
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spread metric that are specified by the resolution matrix (37-41). These two metrics
provide complementary accuracy information. The crosstalk metric for a specified
location on the cortex describes the amount of activity incorrectly localized onto that
location from other locations. The point spread metric provides the complementary
measure: for that same location, the point spread describes the mis-localization of
activity from that specified location to other locations in the brain. Lower crosstalk and
point spread values indicate higher localization accuracy. As pointed out by numerous
authors (e.g. (31, 36, 42-44)), localization accuracy is highly dependent on the location
of the source. Therefore, to better approximate realistic data which can occur anywhere
in the brain, our simulations use a large random sampling of source locations to provide
an average estimate of localization accuracy.

5.3 Methods

5.3.1 Forward solution

The realistic boundary element method (BEM) was adapted for calculating both
the EEG and MEG forward solutions (45, 46). Both forward solution computations
require the locations of all possible sources, the sensor locations, and the sensor
orientations (for MEG only). Each possible source location is represented by a current
dipole oriented normal to the cortical surface.

The computation of the MEG forward solution has been shown to only require the
inner skull boundary to achieve an accurate solution (28-30) . The EEG forward
solution computation requires the specification of boundaries between brain and skull,
skull and scalp, scalp and air, and the relative conductivities of each of those regions.
Here | assumed conductivity ratios of 1:0.0125:1 for brain:skull:scalp (47).

The surfaces required for computation of the forward solution (cortical surface
and other boundaries within the head) are automatically reconstructed from high-
resolution T1-weighted 3D MRI using our previously described technique (48-50).

The various surfaces used in our calculations are shown in Figure 1. Each of the
conductivity boundaries is represented by 642 vertices. Typically the cortical surface is
initially tessellated with about 150,000 vertices per hemisphere. For the inverse
computation, the cortical surface is decimated to approximately 3000 dipoles per
hemisphere, which is roughly equivalent to 1 dipole every 10 mm along the cortical
surface.
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Figure 1: EEG/MEG forward solution surfaces. The top figures show the three head
surfaces used in the calculation of the forward solutions. The bottom figures are the left
and right cortical surfaces used to determine the locations and orientations of the sources.
The MEG forward solution was computed using only the inner skull surface, whereas the
EEG forward solution requires all three boundaries.

The computation of the forward solution also requires specification of the EEG
electrode and/or MEG sensor locations. | began with a realistic sensor description of
122 MEG sensors (51), which is the same configuration that was used in (36). The 122
MEG sensors are placed at 61 discrete locations with two orthogonal planar
gradiometers at each location. The 61 locations were subsampled to 30 locations.

Both the 61 and 30 locations were distributed over the entire head. For the two sets of
locations, | created three types of sensor configurations: magnetometer, radial
gradiometer, and two orthogonal planar gradiometers. To minimize effects from
sampling differences, the EEG sensor configurations were determined by projecting the
61 and 30 MEG locations onto the outer skin. | also examined the various combinations
of MEG and EEG sensor configurations. The MEG sensor locations are shown in
Figure 2, overlaid on an axial maximum intensity projection of the T1-weighted MRI.
The EEG sensor locations are shown similarly in Figure 3.

Figure 2: MEG Sensor Locations. Two different sets of locations.

30 Locations
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Figure 3: EEG Sensor Locations. Two different sets of locations.

For the combined EEG/MEG sensor configurations, the gain matrix (A) contains
both the EEG and MEG forward solutions that were calculated separately. The
dimensions of the combined gain matrix are [(number of EEG sensors plus number of
MEG sensors) x (number of dipoles)].

5.3.2 Inverse Operator Derivations

See Chapter 2.2 “Inverse Operator”’ and Chapter 2.3 “Inverse Operator
Derivations.”

5.3.3 Crosstalk Metric
See Chapter 2.4 “Crosstalk Metric.”

5.3.4 Point Spread Metric
See Chapter 2.5 “Point Spread Metric.”

5.3.5 Noise sensitivity normalization

Similar to the statistical analysis of functional MRI, | am primarily interested in
locations whose activity (i.e., “signal’) is significantly larger than the noise. Therefore, |
propose to normalize each row of the inverse operator based on the noise sensitivity of
the inverse operator at that location. Locations that have low noise sensitivity are given
a larger weighting that those locations with high noise sensitivity. | can estimate the
noise sensitivity by projecting the noise covariance estimate into the inverse operator.
The new inverse operator will be pre-multiplied by a diagonal noise sensitivity matrix
(D), square in the number of dipoles, where each diagonal element is:

D, = 1 1
' diag,/(WCWT)
The noise sensitivity normalized inverse is now:
wns_nonn =Dw 2

The resulting activity estimates will now resemble an f-statistic, instead of an
activation power. Our new activity estimates, g™-"™ ,at each location i, which | refer to

as “noise sensitivity normalized estimates”, are:
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él?s_norm — (Wns_norm x),— - (DWX)' —

For these model studies, | have assumed Gaussian, white noise, so the noise
covariance matrix (C) is a multiple of the identity matrix. In this particular case, this
noise sensitivity normalization corresponds to normalizing the rows of the inverse
operator by the norm of the row:

wns_norm - Wiorfg 4
i ||Wiong||
| note that since | am scaling each row of W by a single value, the rows of the resolution
matrix are simply scaled by that same value. Therefore the crosstalk metric remains
unchanged with this noise sensitivity normalization. However, the PSF will be affected
since the scaling of each column of W is not uniform.

5.3.6 Monte Carlo Simulations

Either 5, 10, or 20 sources were randomly located on the cortical surface, each
with varying volumetric extent (1 cm or 2 cm diameter). The random selection ensures
no systemic location bias in these model studies. The numbers and extents of sources
were chosen to represent experimentally realistic regions of brain activity that might be
seen with some cognitive task. The diagonal elements of R (the a priori source
covariance estimates R, = 6°) were set to 1 or 0.01. These values correspond to fMRI
weightings of 0% (equivalent to minimum norm) and 90%, respectively. | have
previously shown that an fMRI weighting of 90% represents a reasonable compromise
between separation of activity from correctly localized sources (by fMRI) and
minimization of error due to missing fMRI sources (36).

I made no a priori assumptions about source correlation. Therefore, the off-
diagonal elements of R were set to zero, i.e. R; =0 for /). It should be noted that this

does not force the sources to be uncorrelated or orthogonal in time. Noise was
assumed to be additive, Gaussian, uniform, and spatially uncorrelated. More precisely,
tr(ARAT)/n
SNR®

the assumed rms signal-to-noise ratio, and n is the number of sensors. Here, a
conservative SNR of 10 was assumed.

In these model studies, the number of MEG sensors was assumed to be either
30, 60 (30 locations with two orthogonal planar gradiometers), 61 or 122 (61 locations
with two orthogonal planar gradiometers), with the smaller numbers of sensors
subsampled from the complete 122 channel description to still give full head coverage
at a sparser sampling. For the EEG sensors, 30 or 61 sensors were distributed over the
entire head. To minimize any sampling differences between MEG and EEG, the
locations of the EEG sensors were based on the corresponding MEG sensor
configuration projected down onto the outer skin surface. In addition, all combinations
of MEG and EEG sensors were studied. For each of the sensor configurations, the
crosstalk was averaged over the different number and extent of sources.

, where | is the identity matrix, tr is the trace of a square matrix, SNR is
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For comparison of the noise sensitivity normalized inverse, the average crosstalk
map and the average PSF were computed at each source location. No fMRI weighting
was used, thus removing the need for Monte Carlo simulations.

One additional set of modelling studies was performed here. In computing the
EEG forward solution, conductivity ratios, not exact conductivities, of the different head
regions were used. If the actual conductivities differ from the assumed conductivities,
even though the conductivity ratios are correctly estimated, then the computed source
activities using EEG will not be in the same units as the computed source activities
using MEG. This effectively introduces a scaling factor between the EEG and MEG
forward solutions (44). | modeled the effect of mis-estimating the scaling factor between
EEG and MEG forward solutions (corresponding to the mis-estimate of the actual
conductivities) from 0.2 to 5. The scaling factor was incorporated into the combined
EEG/MEG forward solution by multiplying those rows corresponding to EEG sensors by
the factor. This scaled gain matrix was used in the computation of the inverse operator.
The correct gain matrix, i.e., a scaling factor of 1, was used for the crosstalk metric
computation. More explicitly, if one represents the scaled forward solution by A, and

the true forward solution by A, the crosstalk matrix is given by:

W,A=RAT(ARA] +C) A 5
For this portion of the model studies, | assumed 30 EEG electrodes and 30 MEG radial
gradiometers, and an fMRI weighting of 90%.

5.4 Results

Figures 4 and 7 show the average crosstalk versus sensor configuration. No fMRI
weighting (equivalent to minimum norm) was used in Figure 4. An fMRI weighting of
90% was used in Figure 7.
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Figure 4: Average crosstalk versus sensor number - No fMRI weighting. The sensor
configuration consisted of 30 magnetometers (30m), 30 radial gradiometers (30r), 60
orthogonal planar gradiometers (30p), 61 magnetometers (61m), 61 radial gradiometers
(61r), 122 orthogonal planar gradiometers (61p) sensors, 30 EEG sensors , 61 EEG sensors,
and all possible combinations of MEG and EEG sensors. The crosstalk values were
averaged over a range of source number (5,10, or 20 sources) and extent (1 cm or 2cm in
diameter).

Increasing the number of sensors for both MEG and EEG decreases the average
crosstalk (i.e. improves average localization accuracy). There is little difference
between equal numbers of magnetometers, radial gradiometers or planar gradiometers.
The average crosstalk for the EEG configurations is better than the same number of
MEG sensors. Additionally, there is a large decrease in crosstalk with the combined
sensor configurations.
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Average Crosstalk Maps

EEGH1 EEG61MEG30p

Average PSF Maps

Figure 5: Average crosstalk map and average point spread function map at each location
for three different sensor configurations. Below each map is the histogram of values. No
fMRI weighting was used.

The average crosstalk map and average PSF map for three different sensor
configurations (60 MEG planar gradiometers, 61 EEG sensors and the combined 61
EEG/ 60 MEG sensors) are shown in Figure 5. As expected, the crosstalk and PSF
maps are equivalent. For the same number of sensors, EEG (7.7% =+ 6.1%) has lower
average crosstalk than MEG (17.3% + 37.0%), . This difference is largely due to the
very large crosstalk for MEG measurements of the deep or radial sources. The
combined EEG/MEG sensor configuration provides the lowest average crosstalk. There
is large spatial variability in the crosstalk map, especially for the MEG sensors. For both
MEG and EEG, the crosstalk is larger in the depths of the sulci than on the gyri, with the
largest crosstalks in the insula, inferior frontal and superior temporal cortex. The MEG
average crosstalk maps also show the orientation dependence MEG. The locations on
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the crowns of gyri that are largely radial in orientation have very high average crosstalk
(e.g. see white arrow).

Average Crosstalk Maps - Normalized Inverse
MEG30p EEG61 EEG61MEG30p

=

Figure 6: Average crosstalk and average PSF maps for the noise sensitivity normalized
inverse operator. Below each map is the histogram of values. No fMRI weighting was
used.

The average crosstalk and average PSF maps for three different sensor
configurations (60 MEG planar gradiometers, 61 EEG sensors and the combined 61
EEG/ 60 MEG sensors) using the noise sensitivity normalized inverse operator are
shown in Figure 6. The crosstalk maps are unchanged from Figure 5. However, the
PSF maps are greatly different, especially for 60 MEG planar gradiometers only. There
is greater spatial uniformity and no PSFs are greater than 20% with the noise sensitivity
normalized inverse. The average PSF over all locations is lower for the normalized
inverse, with the largest gain occurring for MEG sensors only (70% lower).
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Figure 7: Average crosstalk versus sensor number - 90% fMRI weighting. The sensor
configuration consisted of 30 magnetometers (30m), 30 radial gradiometers (30r), 60
orthogonal planar gradiometers (30p), 61 magnetometers (61m), 61 radial gradiometers
(61r), 122 orthogonal planar gradiometers (61p) sensors, 30 EEG sensors , 61 EEG sensors,
and all possible combinations of MEG and EEG sensors. The crosstalk values were
averaged over a range of source number (5,10, or 20 sources) and extent (1 cm or 2cm in
diameter).

The general trend of the results using fMRI weighting (Figure 7) is similar to that
without fMRI weighting (Figure 4). The addition of fMRI information results in lower
crosstalk for all sensor configurations. However, it should be noted that this
improvement is for those sources that are correctly specified by fMRI. In cases where
fMRI has mis-specified the source, crosstalk increases relative to the fMRI unweighted
solution shown in Figure 4 (for a more in depth discussion, see (36). Increasing the
number of sensors, regardless of the type, improves localization accuracy. The
localization accuracy for the same number of sensors is only slightly better with EEG.
The average crosstalk for the combined EEG and MEG sensors is lower than either
EEG or MEG alone, with 61 EEG and 122 MEG (61p) sensors providing the lowest
crosstalk of the different sensor configurations studied.

The observed improvement in localization accuracy obtained by combining EEG
and MEG data is predicated by the assumption that one knows the proper scaling factor
between the two forward solutions. If this scaling factor is unknown, additional errors
can arise. Figure 8 demonstrates the effect of mis-specifying the EEG/MEG scaling
factor.
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Figure 8: Average crosstalk versus EEG/MEG forward solution scaling. A sensor
configuration of 30 EEG sensors and 30 MEG radial gradiometers was used. An fMRI
weighting of 90% was used. The scaling factor between the EEG and MEG forward
solutions was varied from 0.2 to 5. A scaling factor of 1 assumes no error in the scaling
between EEG and MEG forward solutions. The crosstalk values were averaged over a
range of source number (5,10, or 20 sources) and extent (1 cm or 2cm in diameter).

An increasing discrepancy between the EEG and MEG forward solution
(modeled by a deviation of the EEG/MEG scaling factor from unity) results in
increasingly larger average crosstalk.

5.5 Discussion

Changes in the sensor configuration produce similar results independent of the
use of fMRI weighting. Not surprisingly, increasing sensor number, regardiess of the
type of MEG sensor, results in improved localization accuracy. Comparing MEG to
EEG for the same number of sensors, one sees that, on average, EEG is superior to
MEG. In fact, when using no fMRI weighting, 30 EEG sensors (16.1%) have lower
average crosstalk than even 61 MEG magnetometers (17.6%) or radial gradiometers
(17.4%). The superiority of EEG over MEG results from the greater depth and
orientation sensitivity of MEG. For EEG sensors alone, there are no average crosstalk
values greater than 40%. In comparison, for 60 MEG planar gradiometers, 12% of the
average crosstalk values are greater than 40%. While, the fMRI weighting constraint
reduces crosstalk for properly detected sources in all cases, the relative difference
between EEG and MEG are less pronounced with fMRI weighting. When including the
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fMRI constraint, the crosstalk is largely defined by the spatial priors provided by the
fMRI. Subsequently, the inverse operator is less sensitive to depth and orientation.

The lowest crosstalk is achieved by combining EEG and MEG sensors. Using 61
EEG sensors and 122 MEG planar gradiometers together results in 1/3 of the average
crosstalk of 30 MEG sensors alone. The largest improvements in crosstalk (a decrease
of > 50% in crosstalk) are seen when going from 0 to 30 EEG sensors in addition to any
number of MEG sensors. The next largest decreases in crosstalk occur with the
addition of 30 MEG sensors (magnetometers or radial gradiometers) to any number of
EEG sensors. Once both EEG and MEG sensors are included, there are only small
decreases in crosstalk. This last result suggests an important experimental
consideration. Increasing MEG sensors does not increase the setup time for the
experiment, whereas the placement of numerous EEG sensors can be extremely time
consuming. However, significant gains in localization accuracy can be achieved simply
by placing a small number of EEG channels to be recorded simultaneously with a large
number of MEG channels. Clearly a combined EEG/MEG approach is superior to using
either technique independently, regardless of whether fMRI information is included.
Although the forward solutions for MEG and for EEG were computed using two different
models, | assumed that there were no errors in the head models. Therefore, these
results are not affected by any discrepancy between the two head models.

Our results compared the average crosstalk to the average PSF over all
locations. Using the standard linear estimation inverse operator, the crosstalk map and
the PSF are equivalent (i.e. the resolution matrix is symmetric). In general, this
equivalence will not necessarily be true. In fact, the crosstalk map and PSF reflect two
different aspects of localization accuracy. The crosstalk metric for a specified location
on the cortex describes the amount of activity incorrectly localized onto that location
from other locations, where the point spread metric provides the complementary
measure: for that same location, the point spread describes the mis-localization of
activity from that specified location to other locations in the brain. If the crosstalk map
for a location was a delta function, the estimate at that location would completely reflect
activity at that location. If the PSF for a location was a delta function, a point source at
that location would be spatially localized as a point source.

Typically, neither the crosstalk map nor the PSF would be a delta function.
However, the spatial extent of these two maps can be used to determine the confidence
of the estimates. If there are other active areas that overlap with the crosstalk map for a
given location, the activity at that location is affected by those other areas. In that
situation, the estimate for that location will not only reflect activity from that location, but
will reflect a weighted sum of all the activity within the region defined by the crosstalk
map. If, on the other hand, there are no other active areas within a crosstalk map, one
can be confident that the estimated activity reflects the true activity. The PSF is easier
to interpret than the crosstalk map. The PSF for a location defines the spatial extent of
activity that would be localized for a point source at that location. Any activity in the
region defined by the PSF cannot be separated from activity at the given location.

While the noise sensitivity normalized inverse has no effect on the crosstalk map,
there is significant improvement in the point spread function, especially at deep and
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radial sources for MEG sensors only. Therefore, one would expect to have more focal
sources with similar temporal accuracy as the unnormalized inverse operator.

However, there is a disadvantage to using the noise sensitivity normalized inverse
operator. Since each location has a different normalization factor, direct amplitude
comparisons between the timecourses of different locations cannot be made. Although,
one can still make comparisons for a given location across different conditions.

Many empirical experiments are now collecting EEG and MEG data
simultaneously. Both types of data are acquired in the hope of producing more
accurate source localization estimates. To maximally use this combined information,
the scaling factor between the two different types of data must be known. Since the
EEG forward solution is calculated using conductivity ratios instead of actual
conductivities, there can be a discrepancy between EEG and MEG with respect to the
units of the estimated source strengths. Thus, when combining the two techniques,
error is introduced when the EEG/MEG forward solution scaling factor is mis-estimated.
One finds that even if the conductivity ratios are known, the actual scaling factor
between EEG and MEG needs to be known within a factor of 2. If the scaling factor is
mis-estimated by a factor of 0.2 (or 5), the average crosstalk is over twice as large as
when the scaling factor is correctly determined.

Certain caveats apply to these results. First, to specifically evaluate the inverse
procedure, | assumed that there were no errors in the EEG and MEG forward solutions.
Currently, the MEG forward solution is more accurate than the EEG forward solution,
owing to the fact that the MEG forward solution requires only the inner skull surface and
does not depend on the conductivities of the various tissue types in the brain (28-30). If
errors in the head model are included, which is likely to be the case with the currently
available head models, the EEG accuracy will worsen relative to the MEG accuracy.
Second, | also assumed equal signal-to-noise ratios for all sensor types measurements.
In cases where the SNR differs (such as magnetometers versus radial gradiometers),
localization using the modality with the best SNR will result in greater accuracy than is
shown here. Finally, | did not constrain the source orientations. As discussed above,
since MEG poorly localizes radial versus tangential sources, some of the measured
superiority of EEG is due to this orientation dependence of MEG.

Recently, other simulations examining the combination of EEG and MEG
measurements were presented (44). Fuchs et al. used a single equivalent current
dipole (ECD) inverse approach to localize test dipoles in a spherical three-shell head
model. Because these authors used both a different forward model and inverse
method, our results are not directly comparable. However, similar results were obtained
with respect to two findings: 1) increasing sensor number decreases localization errors
and 2) a combination of EEG and MEG is better than either modality alone.

Overall, these results demonstrate that both EEG and MEG are useful
technologies for the localization of brain activity. The lowest crosstalk, and hence the
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