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Abstract

Various service vehicles are being developed to resupply the International Space Station
(ISS). These service vehicles and the ISS will perform automated space rendezvous. The
performance of a relative GPS navigation filter for this application is presented. Specifi-
cally, the effects of four different techniques for propagating the filter state are demon-
strated and evaluated. These techniques include, (1) integration of the equations of motion
accounting for J,, J3, J, and aerodynamic drag, (2) first-order equations of relative motion

that account for the effects of J, and include a second-order conic approximation, (3) the

Universal Keplerian state transition matrix, and (4) the use of the Clohessy-Wiltshire
equations of relative motion. GPS measurements were simulated and included errors due
to Selective Availability, clock bias, clock drift, and receiver noise. The relative navigation
filter used pseudorange and delta-range measurements to estimate the filter state which
included the relative position and relative velocity between the vehicles conducting the
space rendezvous.

The results demonstrated that all four techniques surpassed the performance requirements
on relative position and velocity errors. However, integrating the equations of motion,
technique (1), resulted in the best performance. The filter state errors for this technique
were the smallest and remained within the 30 covariance bounds for all the cases studied.
Effects due to eccentricity were observed in the remaining propagation techniques with
the worst noted in technique (4). The most significant perturbation was shown to be I,

producing significant propagation and filter errors when the state was being propagated by
methods (3) and (4), which did not account for it.
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Chapter 1

Introduction

The purpose of this thesis is to analyze a navigation scheme for space rendezvous using
Relative GPS (RGPS). Specifically, the effects of filter state propagation techniques will
be explored. This chapter provides the background and motivation for the problem fol-
lowed by the prior research done on the topic. An overview of the thesis contents con-

cludes the chapter.

1.1 Problem Background and Motivation

The Global Positioning System (GPS) has proven to be an accurate navigation system
for many applications including the navigation of aircraft, ships, and automobiles. How-
ever, more demanding applications have called for even higher accuracy in GPS-based
navigation systems. GPS range errors due to satellite clock bias, satellite ephemeris errors,
Selective Availability (SA), and atmospheric delays are unacceptable in applications such
as the navigation of robotic vehicles in a caravan. This has led to the use and development
of RGPS. RGPS increases the accuracy of GPS in applications requiring only relative

position and velocity knowledge, otherwise known as relative navigation.

RGPS is applicable when two separate GPS receivers, each on its own vehicle, track
the same GPS satellites at the same time. When this occurs, the common errors to both

receivers, such as SA, satellite ephemeris errors, satellite clock errors, and atmospheric
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delays due to the ionosphere, will cancel. This cancellation increases the accuracy of the

relative navigation solution. RGPS will be discussed in further detail in Chapter 2.

With the current construction of the International Space Station (ISS) and the need for
vehicles to service and maintain it, a new application for relative GPS has been proposed:
navigation for space rendezvous. The Japanese H-II Transfer Vehicle (HTV) and the Euro-
pean Automated Transfer Vehicles (ATV) will rendezvous with the ISS in order to provide
logistic support, such as re-supply and required servicing. These vehicles will use RGPS
for navigation during the long-range operations (20 km to 500 m) of the rendezvous. For
the last 500 meters the navigation scheme will switch to a laser radar to obtain the even

higher level of accuracy required for docking and/or berthing.

Until now, space rendezvous performed by the National Aeronautics and Space
Administration (NASA) has used human control throughout the operation including both
operators in space vehicles and ground control. This method is both costly and inefficient.
Through the use of RGPS and the laser radar, the whole operation can be automated which
would reduce the cost and allow astronauts and ground personnel to focus on other impor-

tant tasks.

The objective of this thesis is to analyze a RGPS system that can be used for relative
navigation and rendezvous. The main component of this RGPS system is a Kalman filter,
or a GPS Relative Navigation Filter. This navigation filter uses GPS pseudoranges and
delta-ranges to estimate the relative position and relative velocity between the two GPS ,
receivers located on the two vehicles performing rendezvous and docking (RVD).

Throughout this thesis these vehicles will be referred to as the chaser and target vehicles.

20



The main effort of this thesis is focused on determining the best method of propagating the

filter state in order to obtain the best estimates.

The first step is the development of a model for the needed GPS data. The orbits of the
vehicles performing rendezvous are used as input for a GPS software simulation which
produces pseudoranges, delta-ranges, and other safel]ite information. Several important
issues must be considered. One is that the receivers of both the chaser and target vehicles
must track the same satellites at the same time. Consequently, the visibility of the GPS sat-
ellites is a concern. Another concern is selecting the optimal geometry when more than

four satellites are in view. The GPS software simulator accounts for all these issues.

The next step, and primary focus of this thesis, is the analysis of the relative navigation
filter that will use the GPS observables (pseudoranges and delta-ranges) to estimate the
states. The main objective is to safely navigate the chaser vehicle to its target by meeting

or surpassing the following performance requirements(®:
position error <10m (3o)
velocity error <0.05m/s (30)

One method of improving the accuracy will be to use higher order analytic solutions in the
propagation of the state and covariance. Nonetheless, the greatest effort is focused on
improving the method of state propagation in order to improve the overall performance of

the navigation filter.

The results of this thesis will be a relative navigation scheme that improves upon cur-

rent ones and, with minor adjustments, one that can be used for any RGPS application in
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space. RPGS has tremendous potential for automated rendezvous. As long as the main
concern is the relative position and relative velocity between two vehicles, and not their
absolute positions and velocities, the applications of relative GPS in space navigation are

limitless.

1.2 Prior Research

RGPS has not been used for space navigation thus far. However, a significant amount
of rcseérch was conducted in the 1990s. This research can be divided into three general
areas: experiments and research done by and for NASA, the European Space Agency
(ESA), and the NAtional Space Development Agency (NASDA) of Japan. Much of the

research resulted from cooperative efforts between these agencies.

NASA has shown interest in using RGPS for space rendezvous for the shuttle. Several
shuttle missions, including STS-69, 77, 80, 87, and 91 each had experiments to test vari-
ous aspects of the concept. Some of the conclusions are: RGPS provides sufficiently accu-
rate relative navigation to allow control of the orbiter’s trajectory until very close to the
space station. However, it is not sufficient for docking and/or berthing.m Having the
chaser and target view the same satellites is not easily achieved.?”] In one study focusing
on chaser-to-target separations of 2 km and less, a relative navigation filter eliminated the
effects of SA and the ionosphere with relative position and velocity accuracies of 2 m and
8 cm/sec (1-0), respectively. This study also showed that no degradation in the estimates
were observed when the number of common GPS satellites is intentionally reduced pro-

vided that measurements from four common GPS satellites are available.[!®) Another
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study, on the other hand, expected improvements in performance when using a 6 channel

or even an all-in-view receiver as opposed to a 4 channel receiver.[3¢]

ESA is conducting its own research and development of a relative navigation filter to
use on the ATV that will rendezvous with the ESA module of the ISS. Rendezvous tech-
niques studies are being conducted under ESA’s ATV Rendezvous Pre-development
(ARP) contract. These studies have focused on minimizing the needed software and have
obtained satisfactory performance. Position errors of 2.5 m and velocity errors of 5 mm/
sec (3-0) were obtained using a high-fidelity functional (i.e. software) simulator while
keeping the state vector at a reasonable size (8 states).””) Another study focused on the
issues of GPS visibility for a Shuttle rendezvous with MIR. At certain shuttle attitudes,
this study showed that there were times when less than four GPS satellites were visible.[1?]
Yet another study illustrated the need for the largest possible commonality of GPS antenna
coverage between both spacecraft.m] Lastly, one lesson learned was that developing com-
plex and high accuracy RGPS software packages required special attention in adapting the

algorithm to the specific receiver design.“al

Finally, NASDA has also conducted research in the area of RGPS. Traditionally,
NASDA has tested their concepts in space with the Engineering Test Satellites (ETS)
before implementing them on actual space vehicles. The 7th satellite in the series is
devoted to relative GPS navigation. ETS-VII is the first automated test of relative GPS in
space with experiments being conducted at the time this thesis was being written. The test
satellite consists of two satellites, a “Chaser” and a “Target,” as illustrated in Figure 1.1.
The Chaser releases the Target and performs a Rendezvous and Docking (RVD) experi-

ment. Prior to launch, the ETS-VII relative navigation system was tested and verified in
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four steps: software-level test, component-level test, RVD subsystem test, and satellite
system integration test. Within the RVD subsystem test the subsystem was evaluated with
the Dynamic Open Loop Test (DOLT) methodology. NASDA executed DOLT in a ground
test with a GPS simulator with results in accuracy of the relative position to as low as ten

meters.[m

Teacking and Comrend via CETS aPs

Program lead and verify
VIED DATA relay @

TRACKING STATIONS CONTROL

Figure 1.1: Total ETS-VII Rendezvous and Docking Experiment System(!>]

Recently, the ETS-VII conducted a series of RGPS performance tests and successfully
conducted a rendezvous and docking experiment. Using RGPS for rendezvous with the

ISS and other space vehicles is promising.
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1.3 Thesis Overview

Chapter 2 provides the general background on the theory and applications associated
with this thesis. Specifically, it outlines the Global Positioning System and its use in navi-
gation, with emphasis on the application of Relative GPS. The chapter concludes with a

brief overview of Kalman filtering.

Chapter 3 describes how the orbits for the chaser and target vehicles are created and
what perturbation effects are modeled. It also describes the models used to obtain the GPS
measurements required by the Kalman filter: the pseudorange and delta-range. The mod-
eled GPS errors include SA, clock bias, clock drift, and receiver white noise. Chapter 3
also provides a description of all the coordinate frames used throughout this thesis, as well

as the method by which GDOP is computed.

The design of the Kalman filter is given in Chapter 4. A description of the state, the
dynamics of the filter, and the techniques used to propagate the state are presented. These
techniques propagate the state with: (1) integration of the equations of motion accounting
for J 9 J 3> J 4, and aerodynamic drag, (2) first-order equations of relative motion that
account for the effects of J 2 and include a second-order conic approximation, (3) the
Universal Keplerian state transition matrix, and (4) a state transition matrix derived from
the Clohessy-Wiltshire equations of relative motion. This chapter also describes how the
measurement matrix and the initial covariance matrix are obtained, as well as how the

covariance matrix is propagated.
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Chapter 5 includes all the results of the analysis. First, it presents the parameters asso-
ciated with the cases tested. This is followed by a comparison of the propagation tech-
niques with the state just being propagated and then being estimated by the filter. The
effects of eccentricity, GDOP, and number of satellites on the performance of the filter are
evaluated. Finally, a summary of the associated computation costs of each propagation

technique as well as a general summary on each technique is provided.

Chapter 6 closes the thesis with conclusions and recommendations for future
work. Note that each chapter ends with a summary of what was presented, as well as a

lead into the following chapter.

Several appendices are also attached to supplement the thesis. Appendix A describes
the conversion between two coordinate frames used throughout the study. Appendix B
provides equations which supplement one of the propagation techniques used. Finally,

Appendix C presents errata found in two of the references.

1.4 Chapter Summary

This chapter presented a brief background of the use of RGPS navigation for auto-
mated space rendezvous. It motivated the reason for using RGPS and for evaluating the
techniques used to propagate the filter state. That is, to obtain the best estimates of the rel-
ative position and velocity of the vehicles conducting the rendezvous. This was followed
by a summary of the prior research conducted on the topic by space agencies around the

world. Finally, a general overview of the thesis contents was presented. The following
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chapter presents the theoretical background required for this study which includes GPS,

RGPS, and Kalman filtering.
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Chapter 2

Background

The intent of this chapter is to provide a brief overview of the theory and applications
associated with this thesis. Specifically, general background of the Global Positioning
System and its use in navigation will be provided. This is followed by a description of the
specific application of GPS known as RGPS. Finally, an overview of Kalman filtering is

presented.

2.1 Global Positioning System

In the early 1960s, the U.S. military, NASA, and the Department of Transportation
(DoT) showed interest in developing satellite systems for position determination.'3! This
led to the development of several systems, each improving upon the one before and finally
to today’s NAVSTAR Global Positioning Satellite System, most frequently referred to as
GPS. This section provides a brief system summary, an overview of the GPS measure-

ments, and concludes with a discussion of the errors found in these measurements.

2.1.1 System Summary

Three segments comprise the Global Positioning System. They are the Control Seg-

ment, the Space Segment, and the User Segment and are illustrated in Figure 2.1

29



Usaer Equipment Sets

USER SEGMENT

Figure 2.1: The Space, Control, and User Segments of GPS (28, p. 30]

The Control Segment is responsible for keeping track of all the GPS Satellite Vehicles
(SV’s) and updating the information required in the navigation message that the SV’s
transmit, such as satellite ephemeris and satellite clock corrections. The Space Segment
consists of 24 SV’s divided up equally into 6 orbits, with each orbital plane inclined 55
degrees to the equator as shown in Figure 2.2. Each SV continuously transmits a signal
containing the navigation message. The User Segment includes anyone who is capable of
receiving this signal. A combination of signals from selected satellites are used to compute

a three-dimensional position and local time.[28: PP- 32-33]
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[25, p. 1-3, 28, p. 39]

Figure 2.2: GPS satellite constellation with 6 orbital planes

2.1.2 Measurements

The navigation message that each satellite broadcasts consists of the satellite’s orbital

ephemeris, an almanac of all the other GPS satellites, system status indicators, and the
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time of transmission along with a model of its accuracy degradation to account for the sat-
ellite’s clock drift.l!l GPS receivers take in this information and generate two measure-

ments: pseudoranges and delta-ranges.

Since receiver clocks are not as accurate as the atomic clocks on GPS satellites, the
received measurement will be offset by the time difference between the receiver clock and
GPS time. Though very accurate, the SV clocks will also have errors. However, models of
the SV clock errors are included in the navigation message So that the receiver can com-
pensate. Due to the differences between the two clocks, the measured range will be differ-
ent from the true range. This measurement is called the pseudorange and mathematicaliy

is expressed as:

p = c(At+At, . —Atgy) @2.1)

where p = pseudorange

m

¢ = speed of light = 2.99792458x10° "

At = signal transit time

— : ]
Atu ey = USEL’s clqck error

At gy =SV c;lock error

Since the error in the user’s clock, or the receiver clock, is unknown, pseudoranges
from four SV’s are used to solve for the three components of the user’s position and the

error in its clock, or clock bias.[!]
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Pseudorange can also be thought of as the sum of the true range, r, with a small extra

distance, Ar, due to the clock errors, or bias, b . This can be written as

p=r+Ar =r+cbh 2.2)

The delta-range measurement, p , is obtained by differencing two subsequent pseudo-
range measurements.['!] This results in the range error term, Ar, canceling out. Even
though the range error term cancels out, a term related to the clock errors, specifically, the
rate of change in clock bias, remains. This term is referred to as clock drift and is anno-
tated as d. Delta-range can be thought of as the change in range to the SV over the rﬁea-
surement interval. Just as pseudoranges can be used to determine position and clock bias,
delta-ranges can be used to determine the three components of the user’s velocity and the

clock drift, since it represents the average velocity over the interval.

2.1.3 Measurement Errors

Aside from the errors due to the clocks in both the GPS satellites and the receivers dis-
cussed in the previous section, there are many other significant errors associated with
GPS. These errors can be categorized according to the segment in which they are formed

or found.

The main errors in the Control Segment are associated with differences between the
satellite ephemeris that is uploaded to the SV’s and the truth. An incorrect representation
of the SV ephemeris in the navigation message causes a slowly varying error, or bias, in
the user’s solution. Another source of error is introduced by a program called Selective

Availability (SA) under the auspices of the Department of Defense (DoD). SA is accom-
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plished by intentionally “dithering” the satellite clock frequency which introduces a time
varying bias in the navigation signal.[“] The purpose of SA is to limit GPS accuracy from

unauthorized users.

The Space Segment errors include the instability of the SV clocks resulting in clock
errors that may not be corrected by the Control Segment and errors in the SV navigation
system. Unpredictable SV perturbations may be also be a source of error in this seg-

ment.[25:P-3-3]

The User Segment introduces a noise error associated with the receiver that results
from noise produced in the code and carrier tracking loops, and mechanization errors.[2?]
Depending on the user’s location, errors due to the atmosphere may be introduced. The
GPS signal is delayed as it passes through the ionosphere (50 to 500 km) and the tropo-
sphere (ground to 13 km). In the application of this thesis these errors will_ be negligible
since for Low Earth Orbit (LEO) users, atmospheric delays of measurements that are
taken from overhead satellites will be fairly small. However, if measurements are taken to
SV’s near or below the local horizontal, ionospheric delays may be significant.[?3]
Another source of error in this segment is termed multipath. Multipath errors result from
signals arriving to the receiver in other than direct paths from the SV, such as a reflection
from the spacecraft’s surface. Multipath errors are obviously more significant for ground
users since there are more objects near the receiver that may cause a signal reflection.
Nonetheless, satellites may also be subject to significant multipath error due to solar pan-

els. These errors, however, can be minimized by proper antenna design and placement.!]
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It should also be noted in this section that the geometry of the selected four or more
SV’s plays a significant role in the accuracy of the navigation sblution. The Geometric
Dilution of Precision, or GDOP, is a parameter that represents this geometry. The values of
GDOP is inversely proportional to the volume of a body formed by the top of unit vectors
between the user and the SV’s.[11] Generally, SV’s that are clustered overhead or to one
side of the user represent a poor geometry, or a relatively high GDOP; whereas, one SV
directly overhead with three SV’s 120 degrees apart on the horizon is an ideal geometry, or

low GDOP. This concept is illustrated in Figure 2.3.

%
#\ [/

Ellipsoid
Elongated

GOOD GDOP POOR GDOP
(ideal case) satellites bunched
* one satellite overhead together
* 3 on horizon,
120° apart in azimuth

Figure 2.3: Illustration of Good and Poor GDOP!26!
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For this study, a GPS software simulation was used to obtain the required measure-
ments of pseudoranges and delta-ranges needed to perform RGPS navigation. The simula-
tor modeled the errors discussed above which are the most prevalent in orbital rendezvous
to include clock bias, clock drift, receiver noise, and SA. A more detailed explanation of

this simulation is presented in Chapter 3.

2.2 Relative GPS

In RGPS, as in Differential GPS (DGPS), fwo separate GPS receivers are used. The
distinction between RGPS and DGPS is that in the latter the location of one of the receiv-
ers is precisely known, whereas in RGPS this is not the case. RGPS is ideal in applications
where the main concern is the relative position of two vehicles and not necessarily their
absolute positions. The key to both applications is that both receivers must be tracking the

same GPS satellites at the same time as illustrated in Figure 2.4.

Figure 2.4: Relative Navigation with Gpst!
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If they are, the common errors associated with the common SV’s, such as Selective Avail-
ability (SA), satellite ephemeris errors, satellite clock errors, and atmospheric delays due
to the ionosphere, will cancel when obtaining the navigation solution. These GPS “bias-
like” range errors tend to be the significant ones while the remaining GPS “noise-like”
range errors, such as multipath and receiver noise, are usually much smaller in magni-
tude.!?®) Multipath can be a source of large error. However, based on the discussion of the
previous section, multipath errors will be relatively insignificant in space, assuming the
antenna is properly designed and placed. Since both receivers must be tracking the same
GPS satellites, these applications are limited by the distance between the receivers. If the
receivers are too far, there will not be enough common SV’s to obtain an accurate relative
navigation solution. In some instances, if they are relatively close, the line of sight of one
vehicle to a SV may be blocked by the other vehicle. Nonetheless, in applications where

RGPS is feasible, significant improvements in accuracy of navigation is possible.

2.3 Kalman Filtering

One method of estimating a desired signal, or state, from noisy measurements, such as
pseudoranges and delta-ranges, is to use a filtering technique. In 1960, R. E. Kalman intro-
duced the Kalman filter, an algorithm which took advantage of a new tool - the digital
computer. Though over 30 years old, this technique remains widely used by engineers
who have adapted the filter for use in many applications. These applications include navi-
gation, surveying, vehicle tracking, geology, oceanography, fluid dynamics, steel/paper/

power industries, and demographic estimation.[2]
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Immediately following is a summary of the equations for a discrete Kalman filter taken

from Brown.[6! Figure 2.5 also illustrates the Kalman filter for quick reference.

The basic assumption for the Kalman filter is that the random process to be estimated

is modeled as both linear and first order and is expressed as

X.

iv1 = Px+w, 2.3)

The measurements are assumed to be taken at discrete points of time according to the lin-

ear relationship

where x; = (nX1) state vector at time ? i
®; = (nXn) matrix relating x; to X, 1 in the absence of
a forcing function (if x i 1s a sample of a continuous
process, P i is the State Transition Matrix (STM))
w; = (nX 1) vector - assumed to be a white sequence with
known covariance structure
Z; = (m X 1) vector measurement at time # i

l

H, = (m X n) matrix giving the ideal (noiseless) relation-

ship between the measurement and the state vector at # i
v, = (m X 1) measurement error - assumed to be a white

sequence with known covariance structure and having

zero correlation with the w ; sequence
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ENTER INITIAL ESTIMATE, J_CO , and its

ERROR COVARIANCE, P,

73 COMPUTE KALMAN GAIN
] -1
- T .. = . T
COMPUTED K, = P;H, (HP;H +R))

ACTUAL
MEASUREMENTS

20 5 2] 4een

RESET LOOP
X = X4

STATE UPDATE

ESTIMATED
STATES

R 2%y reee

PROPAGATE AHEAD
X .1 = DX COVARIANCE UPDATE
- T -

Figure 2.5: The Discrete Kalman Filter
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The covariance matrices for the w; and v; vectors are given by

T Q; -
Elww,] = { b k=1 2.5)
0, k#1i
R. .
T =
Elvy,] = { b k ’ (2.6)
0, k#1i
T
E[wivk] =0 @2.7)
where E[ ] is the expected value function.

An initial estimate of the process at time ¢ ; based on all knowledge about the process
prior to f; is known. This prior, or a priori, estimate will be denoted as J_C,- . Mathemati-

cally, X ; is defined as

X; = E[xilyi—l] (2.8)

where x; = the unknown, true state
Y; _ 1 = asequence of measurement data with the last
measurement taken at £, _ 4

X|y,_1= xi‘ conditioned on Yi_q
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The difference between the a priori estimate and the true state is defined as the a priori

estimate error, € i

e. = X.—X. (2.9)

The estimate error is assumed to be unbiased, that is, the expected value is zero. The error

covariance matrix associated with X;, P; , is defined by

P; = E[é,-é,-T Y;_1l 2.10)

The Kalman filter updates the state by optimally “blending” the prior estimate with the

noisy measurements according to

where X; = updated and best estimate of the true state, X;

K ;= blending factor[6], or Kalman gain

Similarly, the updated estimate, X ; » 1s defined as

X = E[xilyi] (2.12)

In this case the measurement sequence ends at t; due to the knowledge of the “current”

measurement.
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The difference between the updated estimate and the true state is defined as the

updated estimate error33], e;:
e. = X.—Xx. (2.13)
As before, the estimate error is assumed to be unbiased,. The error covariance matrix asso-
ciated with 5‘,- , Pi , 1s defined by[33]
= T '

P, = Ele;e; |y;] (2.14)
with the sequence, once again, ending at t; because of the current measurement. This
matrix is computed from

Pi = (I—KiHi)Pl- (2.15)

The Kalman gain, or the optimal blending factor, K j » required in Equation (2.11) is

found by minimizing the mean-square estimate error which leads to
_paTiupaT+R -1
K, =PH;, (HPP;H; +R)) (2.16)

In order to continue the loop, an a priori estimate of the state and an associated covari-
ance will be needed. This is done by projecting or propagating the state and covariance

forward with

X, = O.%. 217

and
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- T
Pii1=9,PD;, +0, (2.18)

Equation (2.17) ignores the additional contribution of w k given in Equation (2.3) since
wy has zero mean and is not correlated with any of the previous w ‘s. This propagation
step is the focus of this thesis. Note that the state need not be propagated with a state tran-
sition matrix. Certain dynamics may be assumed and used to propagate forward in time by
various methods such as integration. The pfopagation techniques used in this study are

presented in Chapter 4.

The loop for the Kalman filter is now complete and can be repeated as many times as
there are measurements for updating the state. In summary, the recursive equations associ-
ated with the Kalman filter constitute an algorithm that processes discrete measurements,

Z;, into optimal estimates, x i to]

2.4 Chapter Summary

This chapter provided the background in the theory and applications used in this study.
Specifically, a system summary of GPS, the measurements it provides, and the associated
measurementu ;errors were presented. This was followed by a description of RGPS and Kal-
man filtering. The following chapter describes how the orbit and the GPS measurements

presented in this chapter are modeled.
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Chapter 3

Orbit and GPS Models

This chapter describes the models used to determine the orbits of the chaser and target
vehicles and the pseudorange and delta-range measurements they obtain from the GPS sat-
ellites. Specifically, the models for generating SA, clock bias, clock drift, and white noise
are presented. Prior to the model descriptions, the coordinate frames used throughout this
thesis are presented. A summary of the models and a description of how GDOP is calcu-

lated conclude the chapter.

3.1 Reference Frames

Several frames are used for this study and conversions from one to another are done
frequently. Figure 3.1 depicts a summary of the fré.mes used. The inertial frame, denoted
with the letter I, is centered at the Earth’s center and is non-rotating. The I frame’s x-axis
is aligned with the vernal equinox direction, the z-axis is aligned with the north pole, and
the y-axis is perpendicular to the other two axes. The Earth-Centered, Earth-Fixed (ECEF)
coordinate frame is also centered at the Earth’s center. This frame, however, rotates with
the Earth and its x-axis is in the equatorial plane always pointing towards the Greenwich
Meridian.[?8 PP- 31-321 gince the intent of this filter is to predict relative position and veloc-
ity a third frame is used called the Hill frame, denoted in Figure 3.1 with the letter H. The
origin of this frame is centered at the target vehicle, with the x-axis along the direction of
motion, the z-axis directed radially inward along the local vertical, and the y-axis normal

to the target orbit plane to complete the right-hand system. Note that the Hill frame is a
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rotating, curvilinear frame; rotating because the origin is fixed on the target and curvilin-
ear because the distance measured along the x-axis is the distance along and on the trajec-

tory of the target vehicle.

Zy, ZgcEr

Target Vehicle Orbit

Hill Frame,

Q E = Earth rotation rate

Figure 3.1: Summary of Reference Frames
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3.2 Orbit Model

The first step in this study is to determine the trajectories of both the chaser and target
vehicles which are simulated as non-maneuvering and in LEO. This begins with the deter-

mination of the initial position and velocity of each vehicle.

3.2.1 Determination of Initial Position and Velocity Values

The initial position and velocity of each orbit are determined by choosing the classical
orbital elements at epoch of each orbit. These elements are given in Table 3.1 and shown

graphically in Figure 3.2.

Term Symbol
Semimajor Axis a
Eccentricity e
Angle of Inclination i
Longitude of Ascending Node Q
Argument of Periapse ®
True Anomaly f

Table 3.1: Terminology and Symbols of Orbital Elements

The frame used in Figure 3.2 is the inertial frame defined in the previous section. The
longitude of the ascending node is the angle along the equatorial plane between the x-axis
of the inertial frame and the intersecting line between the orbital plane and the equatorial
plane. The argument of periapse is along the orbital plane from this intersecting line to the

line of periapse. The angle from the line of periapse to the position vector of the vehicle is
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the true anomaly. The angular momentum vector, 7; , is perpendicular to the orbital plane
and the angle between this vector and the z-axis is the angle of inclination. The semimajor

axis and eccentricity are shown in the top view of the orbit at the bottom of the figure.

f Spacecraft
Orbit

Equator

ac

Figure 3.2: Orbit Geometry
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Once the initial orbital elements and true anomaly are chosen, the corresponding

initial position and velocity are obtained from [*]

P = r(cosQcos6 - sianinOcosi)i_; (3.1)
+ r(sinQcos0 + costinGcosi)i—y\

. N

+ rsinBsinii,
b= - %[cosQ(sinO + esin®) + sin€2(cosO + ecosco)cosi]i_; (3.2)
- l'El[sinQ( sin@ + esin®) — cosQ(cosO + ecos®) cosi]i_;

—
.

+ %(cose + ecosm) sinilz

where 0 = ®+ f = the argument of latitude
' 2.~
R=pxd= pa(l-e )i;, = angular momentum \%ector
14 ’
I = Earth gravitational parameter = 3.986005x10 m_2
S

3.2.2 Orbit Propagation

The chaser and target vehicle orbits are modeled as nominally elliptical with perturba-
tions due to the Earth’s oblateness. The initial values of the position and velocity of each
vehicle define the vehicle’s orbit. These values are propagated forward by integrating the

equations of motion described in the following paragraphs.

Assuming a two-body problem and a perfectly spherical earth with constant density,
the trajectory of an orbiting vehicle can be determined using Newton’s equations of

motion:
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r+ %i‘ =0 (3.3)
r

However, since the earth is actually oblate and asymmetric, perturbations exist which
would result in significant errors in the solution to Equation (3.3). These perturbations are
accounted for through the use of a potential function, ¢ . If a potential function can ade-

quately describe the perturbations, the resulting acceleration can be determined from

_ 9Q; , 90~ | 09~
a=Vo = 8xlx+8yy+azz (3.4)

and one such potential function, according to Vinti is?!
m "E .
o = - 1- Z‘In —~ PnsmL (3.5)

where J, = coefficients determined from experimental observation
6
r; = equatorial radius of the earth = 6.378136Xx10 " m
P, = Legendre polynomials

. Z .
L = asin- = geocentric latitude.
r

The first four terms of Equation (3.5) are

J g 2 J2 /73
o = %[1 —32(—) (3sin L— 1)——3(715) (SSin3L—3sinL) (3.6)
J
_{(715) (35sinL - 30sin L+3):|
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where for the Earth
J o = second zonal harmonic = 1.082628x10—3
J 3 = third zonal harmonic = —2.538X10_6

J4 = fourth zonal harmonic = —1.593)(10_6

To obtain the acceleration, the partial derivative of ¢ is taken which yields

2( 2 Fon3 3
oo x| §’_E) z §(_E) Z_ 2
i= 3[1 JZz(r (5r2 1]+J32 =] |3 7r3

r
2 4
5(TEN* Z z

r r

.
2( 2 3
_ Mz §(r_E) <2 §( E) z_ 352 r
Z 3[1+J22 r k3 5r2 +J32 " 10r 33 ;
2 4
5(@)4( z zﬂ
~72(E) [15-70% + 632
4
8\ r L r2 r4

3.7

(3.8)

3.9)

Note that sinL was replaced by 'E. Also note that if J,, J 5, andJ, are set to zero, or if

only the first terms in Equations (3.7), (3.8), and (3.9) are considered, the resulting equa-

tions are the same as Newton’s two-body equation, Equation (3.3), in component form, as
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expected.

Finally, since both vehicles are in LEO, acceleration due to drag is also modeled. Since
drag is opposite to the velocity of the vehicle relative to the atmosphere,m the first step is

to determine the velocity of the atmosphere. This is taken to be

Vom = (bExi’ | (3.19)
0
where Q) g = | 0 | =Earth angular velocity
Qp

The relative velocity of the vehicle with respect to the atmosphere can than be calculated

from

ifrel = ﬁ—batm (3.11)

where P = vehicle velocity

The acceleration due to drag is determined by

dd = _ad‘l}rel (3.12)

_1Pg 2 N -8m
where ad = i;vrelSCd=5X10 '—2
S

1. D’Souza, C.N., personal communication, The Charles Stark Draper Laboratory, Inc.,
December 1997.
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P, = atmospheric density at vehicle’s altitude

m = mass of vehicle

S = cross-sectional area of vehicle perpendicular to P rel
Cyq= coefficient of drag

Drl

e : . .

V, e = — =unit vector of relative velocity
%

rel

A

Each component of the acceleration due to drag, a d a4 and a 4 are added to
x y 4 )
Equations (3.7), (3.8), and (3.9), respectively. This yields the total perturbations which

are accounted for in the modeling of the orbits. For completeness, these equations are:

roa2f 2 PN 3 '
X = ux[l —-J g( E) (52—2— 1]+J3;( E) [3——7 J (3.13)
r r r

2 4
-J 3_42% + 63 +a
49 d
8 r r x

r

2 73
s o Wy 3(TEN 52 5(TEY"( 52 _ 42
y = — r3[1—122(r) (5r2—1]+l32(r) (3r—7r3] (3.14)

r r
2 2 ¥ \3
;- _Hz §’_E) _sZ 3(15) 2 352 _r
Z= 3[1+122(r [3 5 2]+J32 r 10 33 ; (3.15)
r r r
2 4 ‘
5(Te* z z
-2 15-m05 005 ],
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Now, given initial conditions in position and velocity, Equations (3.13), (3.14), and
(3.15) can be integrated to obtain the position and velocity for future times. The method of

integration used in this study is the Fourth Order Runge-Kutta technique. (34]

3.3 GPS Simulation

Once the trajectories have been created the pseudorange and delta-range measure-

on a GPS software simulator created by Paul J. Lawrence, Jr., of the C.S. Draper Labor-
tory.[mAn outline of how the components of the simulation are organized is given in Fig-

ure 3.3.
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VEHICLE TRAJECTORY

SELECT SV’s

DETERMINE
TRUE RANGE & TRUE DELTA RANGE

MODEL RECEIVER:
- NOISE
- CLOCK BIAS

- CLOCK DRIFT

MODEL SA

PSEUDORANGE, p

&
DELTA-RANGE, P

Figure 3.3: Outline of GPS Simulation

The following subsections describe the modeling of these components.
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3.3.1 SV Selection and True Range and True Delta-range Determination

The SV trajectories can be determined given their ephemeris data. The ephemeris data
transmitted by GPS is updated weekly and data from previous weeks, called almanac data,
can be found from various sources. The almanac data from week 889 (third week of Janu-

ary 1997) was used for this study.[35] A list of the ephemeris data included in this particu-

lar almanac is given in Table 3.2.

Symbol

Definition

ID

SV identification number

Health

Health status indicator

Reference time of ephemeris

Eccentricity

Square root of semimajor axis

Inclination angle

Longitude of the ascending node

Rate of change of longitude of ascending node

M,

Mean anomaly at epoch

AfOQ

Zero'! order clock correction

Af1

First order clock correction

Table 3.2: GPS Ephemeris Data Definitions!1% 351

Given this information the SV’s ECEF position vector may be computed using the equa-

tions listed in Table 3.3.
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Equation Description

Semimajor axis

Mean motion

- f_ Time from ephemeris epoch
tk =1t tO e P P

M, = My+ n(tk) Mean anomaly

Mk — Ek — esin Ek Eccentric anomaly (solved iteratively)

5 True anomaly
N1-e sinE k

l—ecosEk

sinf, =

cosE, —e True anomaly

coSs =z —_—
fk l—ecosEk

gk = fk + @ | Argument of latitude

r, = a(l—ecosE,) Radius

Q, = Qy+ (Q- Qe)(tk) _Q, fos Corrected longitude of node
xp = r,COs ek In-plane x position
yp =r, sin® X In-plane y position
XECEF = XpCOS Q -y pCosi sinQ, | ECEF x-coordinate
YECEF = *p sinQ); +y pCOS isinQ, ECEF y-coordinate

ZECEF = yp sini | ECEF z-coordinate

Table 3.3: Computation of a Satellite’s ECEF Position Vector!!3)
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The user’s and SV’s trajectories are used to select which SV’s, from the ones visible,
should be used by the user. Many algorithms exist for this purpose including algorithms
that choose the SV’s based on minimum GDOP and those that base their selection on max-
imum time of visibility. The SV selection algorithm[32] used for this study selects the sat-
ellites that closely approximate the minimum GDOP selection, which would be the
optimum choice as discussed in Chapter 2. The algorithm assumes that the receiver
antennas are oriented towards the nadir direction and requires the position and velocity of
the usef, time of measurements; SV ephemeris, number of channels in the receiver, ID’s of
unhealthy satellites, and mask angle of the i'eceivér. The mask angle is the angle measured
from the horizon through which the receiver ignores the SV signal. For this study, this
angle was set to 15 degrees which is representative of GPS space-based receivers. The
number of channels for the receiver wﬁs set to six, which is representative of GPS receiv-
ers chosen for the ISS. The algorithm avoids costly and computationally burdensome
searches by closely approximating the minimum GDOP selection. A comparison was
made between this routine and an algorithm that bases its choice of satellites on minimum
GDOP éxactly and it was found that the two methods produce similar results despite the

approximation.

The SV selcctioh élgorithm determines the satellites that the receivers on both the
chaser and target vehicles would choose independently. The next step combines the results
of the satellites chosen by the target vehicle with those chosen by the chaser vehicle‘and
determines the common SV’s which, as discussed in Section 2.2, are required for RGPS.

It is these common SV’s that are finally chosen for use in the relative navigation scheme.
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Determining the true range between the vehicles and the selected SV’s is done by dif-
ferencing their respective positions at each time step. The true delta-range is then deter-

mined by differencing the successive ranges.

The remaining subsections describe the models of the errors that are added to the true

range and true delta-range in order to obtain the simulated pseudoranges and delta-ranges.

3.3.2 SA Model

The technique used to simulate SA in the GPS simulator is an eleventh order model,
referred to as the AutoRegressive (AR) model.”! In a study of the existing models,

Lawrencell”]

showed the AR mode appears to be the most statistically accurate represen-
tation of SA. SA is generated in each SV and is uncorrelated between SV’s. The amplitude
of SA error ranges from 40 to 70 meters maximum with oscillations of periods between 5
to 20 minutes. SA errors result from intentionally producing orbit errors by adding epsilon

errors into the broadcast ephemeris and clock errors and by intentionally dithering the sat-

ellite clock. The AR model obeys the following equation:

p
Y(®) = =) a(k)y(t-k) + ag, (1) (3.16)
k=1

where y(t) = model output
P = model order, or number of poles = 11
a(k) = k" filter coefficient, each given in Table 3.4

Og A(t) = white Gaussian noise (variance given in Table 3.4)
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Note that throughout this study, white noise is generated by multiplying the standard devi-

ation (square root of the variance) by the output of a random number generator.

Term Value Term Value
a(01) - 1.36192741558063 | a(07) +0.10063573000351
a(02) -0.15866710938728 | a(08) +0.02694677520401
a(03) +0.13545921610672 | a(09) - 0.12898590228866
a(04) +0.21501267664869 | a(10) +0.05083106570666
a(05) +0.30061078095966 | a(11) - 0.05600186282898
a(06) - 0.12390183286070 | variance, 63 1.6993x10 > m>

Table 3.4: Coefficients for AR Model

In his study, Lawrence demonstrated that the AR model was an accurate, robust, and
statistically equivalent model of smooth SA collected data. An example of the model out-

put and its standard deviation (10’ is given in Figure 3.4.
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Figure 3.4: Sample Plot of SA Error Contribution to the Pseudorange Measurements

3.3.3 Receiver Clock Errors and White Noise Models

Receiver clock errors include the clock bias, b, and clock drift, d, both of which are
required states in any GPS-based navigation estimator.?% P- 4171 I, this study the clock
drift is modeled as a random walk, while the clock bias is the integral of this random

walk (1728, PP- 417-419] Nathematically, this is expressed as:

d(t) = d(t-1)+a (1) (3.17)

b(t) = b(t-1)+d(t)At (3.18)
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2 -4 2
where Otd(t) = white noise with variance, 6, = 2.32x10 4m

At =time increment= 1§

The variance given above corresponds to the 10 strength, or standard deviation, of the
1 .
random walk driving noise of 20 fps 7 Examples of the generated clock drift and clock

bias are given in Figures 3.5 and 3.6, respectively.

05 ' ' ! i ! ' T T !

GPS Clock Drift, Random Walk [m/s]
L

-2

I 1 1 3 1 1 I L ]
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [s] =~

Figure 3.5: GPS Clock Drift, Random Walk
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~ Figure 3.6: GPS Clock Bias, the Integral of Random Walk

The final measurement error modeled is the receiver noise affecting both the pseudor-

ange and delta-range. This was modeled as white Gaussian noise with the variances given

in Table 3.5

Variance Value
o§ 32 m?
2
2 -Sm

Table 3.5: Pseudorange and Delta-range White Noise Variances
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Since the dominant error in pseudorange is that associated with the clock bias, the total
noise contribution looks mostly like Figure 3.6. The receiver noise is added to the SA
only error, Figure 3.4, to demonstrate the effects of this white noise. This is depicted in

Figure 3.7.
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Time [s]

Figure 3.7: GPS Pseudorange Measurement Error Less GPS Clock Bias

3.4 Summary of Models

A summary of the models presented in this chapter is depicted in Table 3.6.



Model of Inputs Techniques
Vehicle Trajectory | Initial Orbital Elements 4" Order Runge-Kutta
SV Vehicle Trajectory Minimum
Selection Time of Measurements GDOP Approximation

SV Ephemeris
Number of Receiver Channels = 6
Unhealthy SV ID’s
Mask Angle= 15°
True Range Vehicle Orbits Difference
and .
True Delta-range SV Orbits
SA model order, p = 11 AR model
a(k) filter coefficients (Table 3.4)
2 -5 2
white noise, 6, = 1.6993x10 “m
_ 2 -4 2 .
Receiver G, = 232x10 m Numeric Integral of
Clock 1 Random Walk
Errors O, = —=Jps
i 2 2 : . .
Receiver o, = 32m White Gaussian Noise
White 2 _sm?
Noise . = 5x10 "—
p 2
S
Pseudorange True Range and True Delta-range Summation
and SA
Delta-range

Receiver Clock Errors and White Noise

Table 3.6: Summary of Models
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3.5 GDOP Considerations

Receiving GPS navigation messages from a minimum of four SV’s does not ensure an
accurate prediction of the relative position and relative velocity. As discussed in Chapter
2, the geometry of the selected satellites has a significant effect on the accuracy of the nav-
igation solution. Specifically, GDOP values of greater than six can result in an inaccurate
solution.[12] Therefore, once the common satellites are determined, the corresponding val-

‘ues of GDOP are computed with respect to both the chaser and target vehicles. The

method by which GDOP is calculated is summarized below.

The first step is to create a matrix:

r 1]
Ax1 %91 921

Laxs Qys Gzs 1

where S = number of selected satellites

and @ i = (a ) are the unit vectors pointing from the user to the location of the

xi’ayi’azi

i'h satellite, otherwise known as the line of sight vectors. The next step creates another

matrix
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§ T
Dy Dy Dy3 Dy

Dy Dyy Dyy Doy
D3y D3y D33 Dy
D41 Dyp Dyz Dy

- wv'wy!

and finally the value for GDOP is obtained from

GDOP = [D;;+Dyy+Dy3+ Dy,

(3.20)

3.21)

An algorithm using the above equations was used to compute the GDOP for all the

cases. An example case is presented in Figure 3.8.

[ 1 A 1

2 1
0 500 1000 1500 2000 2500 3000 3500
Time [s]

Figure 3.8: Sample Plot of GDOP
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Note that the values of GDOP for approximately the first hundred seconds of the sam-
ple plot are greater than six. The effects of poor GDOP on the relative navigation filter can

be observed during that time period.

3.6 Chapter Summary

The reference frames used throughout this study were presented. This was followed by
a description of how the chaser and target orbits were modeled. Specifically, this chapter
described the method by which the initial position and velocity of each vehicle were deter-
mined. It also described the technique used to propagate these initial values to obtain the
vehicle’s orbit. Then, the models used to simulate GPS, which included models of SA,
receiver clock errors, and white noise were depicted. A summary of all the ntlode\ls was
given in Table 3.6. Finally, GDOP considerations were addressed and the equations used
to determine GDOP were presented. The next chapter presents the design of the relative
navigation filter which uses the measurements and orbits modeled in this chapter to esti-

mate the relative position and velocity between the vehicles.
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Chapter 4

Filter Design

This chapter delves into the design of the relative navigation (Kalman) filter. Specifically,
it describes the state and dynamics of the filter, focusing on the various propagation tech-
niques studied. It also describes how the measurement matrix, H, and the initial covari-

ance matrix, I—’O , are obtained, arid finally how the covariance is propagated.

4.1 Filter State

Since the intent of relative GPS navigation is to predict the relative position and rela-
tive velocity of the chaser vehicle with respect to the target vehicle, the Hill frame
depicted in Figure 3.1 was chosen for describing the relative state. The state, therefore,
includes the relative position and velocity in the Hill frame. Since knowledge of the clock
bias and clock drift improves the accuracy of position and velocity, these quantities are

also included in the state. Mathematically, the state is expressed as

x = |*H (4.1)
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where Xpr» Y » Zpy = Chaser-Target relative position
components in Target centered Hill frame
U Vg Wy= Chaser-Target relative velocity
components in Target centered Hill frame
Ab = difference of Chaser/Target GPS receiver clock bias

Ad = difference of Chaser/Target GPS receiver clock drift.

4.2 State Dynamics

The theme of this thesis is to explare the effects of various propagation techniques on
RGPS navigation. Therefore, four methods are used to propagate the state. These tech-

niques propagate the state through the use of the following:

* STM based on the Clohessy-Wiltshire (C-W) equations
* Universal Keplerian State Transition Matrix

* First-order equations of relative motion which include J o effects and are combined
with a second-order conic approximation

* Integration of the equations of motion

These four techniques are described in detail in the following subsections.

Note that the first technique is the oﬁly one in which the state is propagatéd by being
pre-multiplied with the STM as described in Chapter 2. The remaining techniques require
the state to be converted to two independent orbits in the inertial frame, each propagated

forward in time, and then converted back to the relative Hill frame of the filter state.
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The target vehicle will navigate using absolute GPS; therefore, an estimate of its iner-
tial position and velocity will be known. Combining that knowledge with the estimated
state, the inertial position and velocity of the chaser vehicle can be obtained. The conver-

sions between the Hill frame and the inertial frame are presented in Appendix A.

4.2.1 The Clohessy and Wiltshire (C-W) Equations of Relative Motion

In 1960, Clohessy and Wiltshire published an article containing the equations of rela-
tive motion of two orbiting vehicles.[¥] The C-W equations are also referred to as the Hill
equations because of work Hill performed on the Moon’s relative motion in 1878. These
differential equations describe the motion of small state deviations from a circular orbit,
which is assumed to be the target orbit, in a rotating local-vertical coordinate system, the

Hill frame. 4] For the Hill frame described in Section 3.1, the C-W equations are

X¥+2nz =0 4.2)

g 2.,

y+2ny =0 (4.3)
. 2 ,
7-3n"z+2wx =0 (4.4)

where n = % = mean motion of the target vehicle orbit
r
T

The system is modeled as

X =Ax+w 4.5)

where A = system matrix
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The last two elements of the filter state, Ab and Ad, obey the following equations:
Ab = Ad @56)

Ad =0 @.7)

Therefore, Equations (4.2 - 4), (4.6) and (4.7) form the system matrix, A :

0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0o 0 0 0 0 1 0 0
4_|0 0 0 0 0 200 0 )
0 -n 0 0 0 0 0 0
0 03n°21 0 0 0 0
©o 0 0 0 0 0 0 1
00 0 0 0 0 0 0]

The system matrix, A, is converted to the state transition matrix,® , of Equation (2.3)

by using the definition of the state transition matrix(24 - 421;

At

D =c | 4.9)
which can be expanded into
At 2,2
e =I1+AAt+ %A At + ... (4.10)
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An approximation may be made to the second order, for instance, to simplify calculations.

However, for the purpose of this study the transition matrix is obtained exactly using!?* P-

42]
-1 -1
® =[L [(sI-A) ]lr=as @.11)
which yields
1 0 6(sinnAt — nAt) 4sinnAt - 3At 0 %(1 —cosnAt) 0 0
0 cosnAt 0 0 }lsinnAt 0 00
0 0 4 —3cosnAt g(cosnAt— 1) 0 1sinnAt 00
0 0 6n(1 - cosnAt) 4cosnAt-3 0 2sinnAt 0 0
0 —nsinnAt 0 0 cosnAt 0 00
0 0 3nsinnAt -2sinnAt 0 cosnAt 00
0 0 0 0 0 0 1 At
|0 0 0 0 0 0 0 1]

4.2.2 Universal Keplerian State Transition Matrix

In 1984 Stanley W. Shepperd published a paper that presented a completely general
method for computing the Keplerian STM (KSTM).! It included a new scheme for solv-
ing Kepler’s problem which is required to compute the KSTM. The equations used to

obtain the matrix are presented here. For more detail see [31].

The KSTM linearly propagates state deviations in inertial position and velocity in the

following way:
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AP '
liAr] = <I>K 0 4.13)

where
EINER
—F ——F
D, D,y [dF, 9P,
<I>K = =KSTM (4.14)
Dy @y iﬁ iﬁ
_afo a7, i
and where
(M, M|
D, =1+ [,\. ;):I 2177221170 (4.15)
M31 M) [Pg
M,, M | _i’-
@, =gl+ |} b:l 227723170 (4.16)
M3y M33) [P
Mll M12- fO
<IJ21 = FI—I} g] (4.17)
| Ma1 Moy |
[ NN
M., M .| |P
D,y = GI—[; ,)] 1277131170 (4.18)
M P
M2 Y23 Yol

I isa (3 X 3) identity matrix and the state extrapolation coefficients f, g, F, G are defined

below:
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nU,
F=——_1
rrO
wu
G=1-_2
"

(4.19)

(4.20)

(4.21)

(4.22)

The four (2 X 2) M coefficient matrices are overlapping sub-matrices of the (3 X 3)

M matrix defined by

U FU G-1HU
0,1 1l KRy 1,61 ( ) I_By
rrg 2 2 33 r 2 r 3
rO r r rO r r
FU
1 f-1
0 o
-=W (f—l)U2 gU2—W
r 3
0 o
where W =gU,+uU

B 3

(4.23)

Even though the M matrix has no obvious physical interpretation it assists in organizing
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the coefficients in a compact matrix form. Also note that all the parameters, except for the
universal functions, U n(w’ B), are obtained from the solution of Kepler’s problem. For

an explanation of the universal functions refer to [3] or [31].

The KSTM is obtained from the trajectory of the target vehicle. In order to propagate
forward, deviations are obtained by differencing the target inertial position and velocity
from the respective components of the chaser vehicle. Then Equation (4.13) is used to
propagate the deviation forward. Since the Kepler problem was already solved for in order
to obtain the KSTM, the propagated position and velocity of the target vehicle is known.
The propagated deviations are then added to these values to obtain the propagated position
and velocity of the chaser vehicle. Finally, these propagated values are converted back to

the relative Hill frame of the filter state.

4.2.3 First-order Equations of Relative Motion including J 5 Effects, Combined with a
Second-order Conic Approximation '

In 1991, Jean A. Kechichian published a paper describing techniques for accurate ana-
lytic terminal rendezvous for vehicles in near-circular orbits.'*) In this paper, Kechichian
expanded on the C-W equations by accounting for the perturbation due to the second
zonal harmonic, J 5 - He also included a second-order approximation to account for large
displacements from the reference orbit. Note that the coordinate frame Kechichian uses is

slightly different than the one used in this thesis, such that

Xg = -2y (4.24)
Yk =Xy
g =Yy
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where the subscript, K, annotates Kechichian’s frame. Also note that the target position is
not assumed to be the center of the relative frame as it was in the Hill frame. Instead, the
rotating relative frame is attached to an imaginary, circular orbit, or reference orbit, for
each orbiting vehicle. Neither of these differences will pose a problem since the orbits of
the vehicles will be propagated separately and the input and output positions and velocities
are in the inertial frame. This, of course, means that conversions between the Hill and iner-

tial frame will once again be necessary.

The equations and solutions for the second-order and J 2 corrections are presented
below. However, since the equations for the coefficients required in these solutions are
lengthy and many, they are included in Appendix B. The equations used to obtain the ini-
tial conditions and the equations that convert the relative solution to the inertial frame are

also included in this appendix.

The second-order corrections to the C-W, or first order, solution are

2
.. ) 2 3n, 2 2 2
Xy —2ny,-3n"x, = Er—(yl +27—2xy) (4.25)
r
2
Vo + 20X, = 3Lx (4.26)
Y2 277 171 :
2
Zn + n2z = 3lx z 427
2 2 r, 1#1 .
where r, = radius of the reference of the reference orbit

Note that the forcing terms in the right hand side involve the first-order solution (indicated
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with a number “1” in subscript). Also note that in this subsection # refers to the mean
motion of the reference orbit, not that of the target. The solution to these differential equa-

tions representing the second-order approximation are given by

‘ 22
Xy = Bo+ Bynt+Pynt +B3s,,+Byc,, (4.28)

+Bss,,, + BeCon:s + Bnts,, + Bgntc,,

Xy = nP; +2nB,nr + n(Bg+By)c,, + n(B;-Bys,, (4.29)
+ 2n[3502nt - 2nB6s2m + nB7ntcm - nBSntsnt

—0l5Cy,  — Olenits, - o,ntc,,

— 2noc4c2m + 2noc5s2nt —nogntc,, +no,nts,

2 = Yot VS ¥ Y2Cn ¥ Y3500, + Y400 @3
+ 'ysntsnt + 'YGntcnt

z'2 = n(')(1 + yG)cm + n(y5 - Yz)sm + 2n'y3c2m (4.33)
—2nY,8,,, + nysntc,, —nYents,,

where S = sinm

c_= cosm

These equations are combined linearly with the first-order solution to improve the accu-
racy of the solution for eccentric orbits; that is, orbits that wander great distances from the
origin of the rotating frame. The O i B ;j-and Y ; coefficients are presented in Appendix B

and are given in terms of the initial relative position and velocity components.

78



In order to take the second zonal harmonic into account, the relative motion will be

given by the solution of

3T
J'c'—2ny—3n2x = —J(1—3s.sg)
4 i
2r
3].LJ r
y+2nx = #szsece
r
2
L2 3UJ,rg
Z+nz = ———s,ccq
o

(4.34)

(4.35)

(4.36)

Retaining only the first-order terms in Equations (4.34 - 36), the analytic solutions in rel-

ative position and velocity component forms are

_ %o L 2nK)(1
x=— St X0Cn; ——2(c0+ nkK)(l1-c,,)
n
+ —2(nt—snt) + —2(2b'1 + cl)sm

n 2n

1 \ 1 ;
- 2-71(2b 1+ cl)tcnt - —(2b1 -c l)tsnt

2n
. z (Fre) g
3o
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) ‘ 1
% = xocn;‘"xosnt+;,(CO+2nK)Snt

2b 1
+—(1- Cup) ¥ 5(2}"1 +C)1Sy,
n

1 . l '
— 2_,'1(21)1 —-C l)sm— i(zbl -C 1)tcnt

2
- Cnt—szsnt—-_Z(cO +2nK)(nt - snt)
n

3b 4bp
0 2 0 2 '
B 2 B n2 C +n_i(2b1+c1)cnt

1 . 1 '
+ ;I(Zb 1+ Cl)tsnt + —Q(Zbl —C 1)(Snt - ntcnt)
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: . 2
y = =2Xy8,,— Zrzxocm—’—l(c0 +2nK)(1-c,,) (4.40)

4b, 1
- T(nt —8,.)— r—l(2b'l +¢1)s,,;

+(2b' +c))te,, +(2b - ¢ ts, |

5 ' .
T eIy
J J 2
j=2 n(j -1)
5
+ 2 2(zij_c' .)—(C’"_cj’")
. j n(2—1)
j= 2 J
5 5 b
J J
+b0t— j—nCJnt Z j—nS]nt+K
Jj= j=1
Z d1 dO
z = - St 206, t —2(sm - ntcm) + —2(1 - cnt) (4.41)
n n
d d (]s sjm)

n snt+ 2

oo ntGt-
+Z

d (c ]nt)
= nG-D

. . dl dO
Z = Zy¢,,— Nz, + Ets’” t—Snt (4.42)
d d (]c

1
+2 (nt+ntcm)+z 3
J 2 n(] _1)

nt - chnt)

4
dj(—s +Jsjm)

+
oo nGt-1
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......

where Xy Yo 2o xo, yo, z'O = initial conditions

Once again, the equations for the coefficients associated with the Equations (4.37 - 42)

are presented in Appendix B.

The second-order approximations are now added to the perturbed first-order solution
to provide a more accurate representation of the motion of the spacecraft relative to the

reference frame which is perturbed by the J ~ harmonic

Xp = X+ X, (4.43)
xf=x+x2
}’f=)’+)’2
}"f=}3+}"2
zf=z+22
z'f=z'+z'2

Once the final relative positions and velocities are determined, they are converted to the
inertial frame with equations given in Appendix B. This process is done independently for
each vehicle. The results are then converted to the Hill frame to obtain the propagated fil-

ter state.

4.2.4 Integration of the Equations of Motion

The inertial positions and velocities obtained from the filter state can be considered as
initial conditions of two separate orbits and propagated forward by integrating the equa-

tions of motion described in Subsection 3.2.2. Once the orbits are propagated indepen-
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dently, the results are converted back to the relative Hill frame to become the propagated

state.

4.3 Measurement Matrix

The measurement matrix, H , as described in Chapter 2, relates the states to the mea-
surements. For a set of pseudorange and delta-range measurements from each SV, an

(8 X 2) measurement matrix can be formed

dp dp Jdp Ip
dF,; Ov, 0Ab 9JAd

9 3 9 33, 3
oF," 33, 3Ab" 3Ad"

(4.44)

S|
[
Q|
218
I

Since the measurements are in the inertial frame and the filter states are in the Hill
frame a conversion must be made. However, to simplify calculations, an approximation is
made such that the inertial frame is converted to a target local (L) frame, rather than the
Hill frame. The main difference between the L frame, depicted in Figure 4.1, and the Hill

frame is that the former is not a curvilinear frame.
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Center of Earth

Figure 4.1: Target Local Frame

Given this frame, a transformation matrix from the target local frame to the inertial frame

can be defined as

1
¢y =[x, v, 2] @45
Y, xXZ
L L
where X, =
L
IYLxZL|
%tx?t
Y, =
L
Ibtx?t|
P
]

P ; = target vehicle position

17 ; = target vehicle velocity
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Note that the transformation matrix for a transformation from the inertial frame to the

local frame is simply the transpose of Equation (4.45)
L I
C; = (Cp) (4.46)

Now that the transformation matrix has been defined, the measurement matrix can be

obtained from

H (0] 1 0
H = 1 1x3 @47
H, H, 0 1
| P —P
where H{ = Cllq ! GPSEC? t GPS
P, P,
i" -
T L Gps Pr L LT
H2=C1—p —Ecl(t Peps) —QH
t
00 —-n
L
QIL =100 0
n0 0
01«3 = I:OOO:I
Py = lfx‘fGPsl
5 = (P, - Pepg) (P, Ppg)
, =

P

Note that for this study, GPS measurements are taken at 1 second intervals.
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4.4 Covariance Matrix

This section focuses on the covariance matrix. Specifically, it presents the means by

which the initial covariance, I—’O , 1s obtained and concludes with a description of how the

covariance matrix is propagated.

4.4.1 Initial Covariance

Stanley W. Shepperd also published a paper on the topic of covariance matrices for

near-circular orbits.!3% This paper included solutions that are useful for initializing a filter

simulation. Shepperd’s solution was adapted for the Hill frame defined in this thesis and

follows

-n(§z§+b2) 0 0

Z2+ sz n2(92(2,+ 2b2) 0 0

Xo+2b° 0 0 0
Cz )
0 3 0 0
2
0 0 Zy+ 5
3
Po = 0 O _n(i Z-
0 0 0 0
nb> 0 0 0
0 0 0 0
0 0 0 0
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S
o

0

0 0
0 0
0 O
0 0
0 0
0 O
o5, 0
0 Glzsd

(4.48)



2.
where XO = Xo— =%

bsing = -3z, - %xo

bcosd = %0
csiny = )%)
ccosy =y,
b = A/b(sin(b)z + b(cos<I>)2

o = atan(lfcs(i)r;(g)

c = Jc( sinw)2 + c(cosw)2

v = atan(csi_W)

ccosy

The parameter b is the semi-minor axis of the ellipse, the parameter ¢ is the magnitude of
the simple oscillator out-of-plane motion, and the parameters ¢ and Y are the phase
angles for the in-plane and out-of-plane motions, respectively. The elements Gi p and
o i 4 ©f the matrix represent the standard deviations of the clock bias and clock drift dif-

ferences, respectively.
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4.4.2 Covariance Propagation

In Chapter 2, Equation (2.18) was given as the method of propagating the covariance
matrix. For completeness, this equation is given again here

= T
Piy1= 9P +0; 49

4

A more rigorous form of obtaining the covariance matrix js24 p- 165]

P,,i = OPO + f o1, NGMEMWG (M (1, T)dr @)
7

where G(T) = noise input matrix

QO(7) = spectral density matrix

Since position is obtained exactly from integrating the velocity, there is no modeling error
in position. However, since there are other perturbations that are not accounted for in
acceleration, integrating the acceleration introduces errors in the system modeling. There-

fore, the Q(T) matrix is given by

g, 00 0 0
j 0g, 0 0 0
: y
Q(t)=({0 0¢g, 0 O @51)
0 0 0g, 0
00 0 0 g,
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where g; =1s the strength, or spectral, of i

The corresponding G(T) matrix is

00000
00000
00000
G(t) = 10000 4.52)
01000
00100
00010
0000 1
The integral portion of Equation (4.50) is redefined as
' i T T
0 = JJ D(t, 1)G(1)Q(T)G ()P (2, T)dn (4.53)
Loy
and yields the following elements of an (8 X 8) matrix:
' 8 24 4 24
0'(1,1) = ( At+3At + = 2 nAtAt__352nAt__3snAt)qvx (4.54)
n n n
6 1 8
+ (—ZN T 352nA1~ _3snAt)qu
n n n
2 2 3,2 42 6
0'(1,3) = (— 3nart 3—,—1At — 35t 2nAtAt) (4.55)
n n

1 2 2 2
T 3%art 3%Ar 3 )1,
n n
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, 8§ 2 12 9. 2
0'(1, 4) = (—ZSnAt - gsnAtAt + EAI )qvx
n

2 2 4 4
- _2snAt+_2ant__2 qu
n n n

, 4 2 6 6
0'(1,6) = (;At = 3%nAt ™ %At ,;CnAtAt)qvx
n n

lA 1 2
+ n L+ —2%2nAt ™ 3%nAt 9y,
2n n

1 1

02,2) = (580- 5555, )a,,

2n 4n

| 1 2
02.5) = (<5542,
2n ¢

: 6 8 21
0'(3,3) = (—ZA’ —3 nAt ¥ 3s2nAt)qvx
n
1
+ (__ZAt SZnAt)qv
2n
, 14 10, 2
2'(3,4) = (—zsnAt—;A’—_zsznAt)q ;
n n
1A 1
T80 352041 9,
, 4 4 2 2
Q'(3,6) = (— At 3 _EsnAt)qvx
n n n
, 1 2
T T 35Ae 1y,
2n

' 4 24
0'(4,4) = (17At+ ~S3Ar = 5, At)qvx

1
+ (2At - ﬁSznAt)qu

90

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

(4.61)

(4.62)

(4.63)



4 2 6 6 .
0'(4,6) = (— aAtt o ~Cnat ™ n)qvx (4.64)

12
+ —,;SnAt qu

Ar 1
0'(5,5) = (2 I sZnAt)q v, (4.65)
(6,6) = (241
0'(6,6) = = SonAt )y, (4.66)
At 1
+ ?+4_171S2nAt qu
At3
0'(7,7) = Athb+Tqu (4.67)
2
At
Q'(7,8) = —-dpq (4.68)
0'(8,8) = Atq,, (4.69)
where At =t |-t

Since the covariance matrix is symmetric, all the off-diagonal elements from the equa-
tions above will have the same value at its corresponding transpose. All the remaining ele-

ments are zero.

The results were validated by comparing them to the corresponding results obtained

by numerically integrating Equation (4.50) with Fourth Order Runge Kutta method.
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4.5 Chapter Summary

This chapter presented the design of the relative navigation filter used for this study. It
began with a description of the filter state. Then, the four techniques used to propagate the
filter state were presented. These techniques included propagation by (1) integration of the
equations of motion, (2) first-order equations of relative motion which include effects of
J » combined with a second-order conic approximation, (3) the Universal Keplerian state
transition matrix, and finally, (4) the state transition matrix based on the Clohessy-Wilt-
shire equations. This was followed by a description of the how the measurement matrix
and initial covariance matrix were obtained, as well as how the covariance matrix was
propagated. The following chapter presents the results of propagating and estimating the

state with the four techniques described in this chapter.
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Chapter 5

Results

This chapter sﬁmmarizes the results of the modeling and filter estimation described in the
previous chapters. Three cases are studied in which the eccentricity of the chaser orbit is
varied. The parameters used for these cases are presented first, along with a sample of the
true state for the first case. This is followed by a comparison of the different propagation
techniques as well as the effects these techniques have when used as methods of propagat-
ing the state in a relative navigation filter. Effects of eccentricity, the number of common
satellites, and GDOP. A brief summary on the computation costs associated with each

propagation technique and a general summary of each technique concludes the chapter.

5.1 Description of Cases

The initial orbital parameters of the target vehicle are the same for all the cases tested.

Orbital parameters similar to those of the ISS where chosen and are given in Table 5.1.

Parameter Value

a 6785136 m

e 0.001
i 51.6°
Q 57.4°
W 247.6°

Table 5.1: Orbital Parameters of Target Vehicle
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Note that the semimajor axis, a, corresponds to an altitude of 407 km, which is representa-

tive of the ISS orbit.

The chaser vehicle orbit is designed such that initially it is approximately 25 km away
from the target vehicle, midway through the run it is within a few meters of the target, and
at the end it is approximately 25 km away. This choice of design was made because RGPS
navigation will only be used within approximately 20 km of the target. The orbits are illus-

trated in Figure 5.1.

Chaser Orbit

Final Positions /\"

Target Orbit

Periapse

Initial Positions

—F
\

Figure 5.1: Orbit Design of Cases Studied

The initial inclination, argument of ascending node, and argument of periapse of the
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chaser vehicle are the same as those of the target. The semimajor axis, however, depends
on the choice of eccentricity. That is, for a choice of eccentricity, the sernimajor axis is
chosen such that the periapsis altitude of both orbits are equal. Therefore, without pertur-
bations the target and chaser vehicles would “meet” at the periapse. The initial true anom-
alies of both vehicles also vary with each case to adjust for the initial 25 km separation.

These values are summarized in Table 5.2.

Parameter | Case 1 Values | Case 2 Values | Case 3 Values
€chaser 0.015 0.010 0.005
Achaser 6881574.5m | 6846819.1m | 68124129 m

fochmr 327.32° 311.17° 275.74°
fomget 327.50° 311.29° 275.67°

Table 5.2: Remaining Orbital Parameters

These cases were chosen in order to study the effects of eccentricity on each of the state
propagation techniques. The highest value of eccentricity, Case 1, was limited by the peri-

apsis altitude of the chaser (300 km).

These orbital elements are used to obtain the initial vehicle position and velocity
wﬁich are integrated to bbtain the vehicle’s trajectory. The GPS software simulator is then4
used to obtain the pseudorange and delta-range measurements. The true relative position
and velocity states are determined by converting the inertial position and velocities into
the Hill frame. Since the clock bias and clock drift of each vehicle are obtained from the
GPS simulator, the true states of the clock bias and clock drift diffcrenccs are obtained by

simply differencing the target clock bias and clock drift from the corresponding values of
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the chaser. The true states, or the truth, for Case 1 are presented in Figures 5.2, 5.3 and
5.4, corresponding to the relative position, relative velocity, and clock bias and clock drift
differences, respectively. Notice that the vehicles are closest to each other at approxi-

mately 500 seconds into the run.

x10°
4 1 T 1 I ] 1 T 1 1
i
_20 1 1 1 1 1 1 1 1 1 i
0 100 200 300 400 500 600 700 800 900 1000
5000 T T 1 T T T 1) T 1 T
0 o e e e e e e e e e s -
E 5 5 5 z : : 5 : ; :
::-:_5000_, ....... .......... ........ .......... .......... ......... ........ ......... ......... _
_10000_ ....... o .......... .......... .......... .. ......... ......... N _
15000 : ; ! ! ; ; A i i
0 100 200 300 400 500 600 700 800 900 1000
Figure 5.2: Relative Position Truth (Case 1)
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Figure 5.3: Relative Velocity Truth (Case 1)
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Figure 5.4: GPS Clock Error Differences Truth (Case 1)
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5.2 Effects of Propagation Techniques

For Case 1, one run is made in which the states are propagated and not estimated. This
is done by taking the true state at each time step and using each technique to propagate the
state forward one time step (1 second). This process‘is repeated for each time step and the
results are differenced from the truth to obtain the propagation errors over an integration
step. These errors are given in Figures 5.5 - 5.6, and magnified in Figures 5.7 - 5.8 to

show more detail. Table 5.3 summarizes the notation used to depict the propagation tech-

niques in this chapter.

Notation Propagation with:

CW-STM | State Transition Matrix based on the C-W equations -
KSTM Universal Keplerian State Transition Matrix

KECH Kechichian’s Equations of Relative Motion accounting for J 2
INT Integration of Equations of Motion

Table 5.3: Notation for Propagation Techniques
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Figure 5.5: Relative Position Propagation Errors
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Overall, the CW-STM method has the worst performance. The solution to the C-W
equations are an approximation to srﬁall deviations from a circular orbit. This method
breaks down with increasing eccentricity and larger separation between vehicles, which is
further explored in the next section. It does not account for any of the perturbations nor for
the eccentricity of the target orbit. Note that the largest error occurs in the y-component of

the position. This is primarily due to the effects of J 2' at the inclination of the orbits.

The KSTM method improves upon the CW-STM as it accounts for the eccentricity of
the orbits. However, it does not account for J 2 and, therefore, has the same errors in the
y-components, in both position and velocity, as the CW-STM method. Significant
improvements are made in the corresponding x-components; however, the KECH and INT
methods are better. In the z-components, the KSTM method appears to be better than the
KECH method. This is attributed to the fact that the KECH method includes only a second
approximation to correct for eccentricity, whereas the KSTM accounts for it fully. As the
separation increases, as noted in the last 50 seconds of the run, the KSTM errors become
greater than that of the KECH method. This is due to the increase in separation between
the vehicles. Another reason is that in the early portions of the propagated orbits, the
effects of the perturbations, such as J 5, have not significantly deviated the orbits from
two-body orbits. With time, the precessions from the initial orbital elements, will have a

greater effect, which begins to appear during the last 50 seconds of the run.

Aside from the anomaly just discussed, the KECH method improves upon the CW-
STM and KSTM techniques. The KECH method compensates for the J o effects which
are especially apparent in the y-components. The significant decrease in these errors rela-

tive to the aforementioned methods indicates that the J 5 perturbation has the greatest
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effect of all the perturbations, since of these three methods, KECH is the only method that

takes J 2 into account.

The INT method obviously has negligible errors since the models were based on inte-

grating the equations of motion.

To see the effects of the propagation techniques in RGPS navigation, Case 1 is imple-
mented in the Kalman filter, varying only the propagation technique. Note that the filter
was tuned using the INT method for propagation. The corresponding strengths, or spectral

values, of the process noise are given in Table 5.4.

Strength Value Units
2
4| m
q v, 5%10 —3
S
2
-9 m
x —
g, | 510 -
S
| ‘ ‘ 2
: : : -14 m
: ‘ q v, 1x10 —3
S
m
dAb o1 3
S
2
-4 m
S

Table 5.4: Spectral Values of the Process Noise

The results from the each filter run is illustrated with three figures: the position filter
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errors, velocity filter errors, and clock state filter errors, respectively. The following figures

correspond to the indicated propagation techniques:

* CW-STM: Figures 5.9 -11

* KSTM: Figures 5.12 - 14
* KECH: Figures 5.15 - 17
« INT: Figures 5.18 - 20

Note that the figures include plots of the 30 covariance bounds.

The filter performance using each propagation technique parallels the same observa-
tions that are made when the techniques were used to just propagate the state. Overall the
CW-STM method has the worst performance with the filter state errors exceeding the
covariance bounds in all eight states. The KSTM method showed significant improvement
in all states except for the y-components, once again due to the effects of J 5 - The KECH
technique improves the results even further with the exception of the z-component in
velocity due to the limit of the second-order approximation. Finally, as expected, the filter
errors associated with the INT method of propagation give the best results, with all state

errors remaining within the covariance bounds.

An interesting effect is observed in the velocity filter errors of the CW-STM method,
Figure 5.10. The velocity errors seem to follow a cyclic pattern, while the position errors
do not. This can be accounted for by the propagation errors for the CW-STM method,
where a similar cyclic pattern occurs in the position errors. Since the propagation occurs
over a one second time step, position propagation errors are directly reflected in the delta-
range. The delta-range, in turn, is directly correlated to filter velocity errors. Therefore,

position propagation errors are reflected in the filter velocity errors.
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Figure 5.9: Position Filter Errors when Propagating with the Clohessy-Wiltshire State
Transition Matrix (Case 1)
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Figure 5.13: Velocity Filter Errors when Propagating with the Keplerian State Transition
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Figure 5.16: Velocity Filter Errors when Propagating with Kechichian’s Analytic Method
(Case 1)
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Flgure 5.18: Position Filter Errors when Propagating by Integrating the Equations of
Motion (Case 1)
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Figure 5.19: Velocity Filter Errors when Propagating by Integrating the Equations of
Motion (Case 1)
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Figure 5.20: Clock Filter Errors when Propagating by Integrating the Equatlons of
Motion (Case 1)

The filter, as stated in the previous section, was tuned using the INT method of propa-
gation. If the filter were to be re-tuned using the other methods, the filter state errors of
these methods could be méde to fall within the covariance bounds, which would be larger.
However, this re-tuning would also have the effect of making the filter errors more noise-

like since the filter would weight the measurements more than the propagation.
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5.3 Effects of Eccentricity on Propagation with the Clohessy-Wiltshire
State Transition Matrix

Filter results for Cases 2 and 3, in which the eccentricity of the chaser orbit was varied,
are illustrated in this section to show the effects of eccentricity on the C-W STM propaga-
tion method. For comparison, the same cases are run using integration as the propagation

technique. The results are given in Figures 5.21 - 32.

These figures along with the figures in the first section that correspond to the CW-STM
method indicate that as the eccentricity of the chasér orbit decreases, the filter state errors
for propagation done with the CW-STM method improve. This most significant improve-
ments are in the x and z-components; whereas, the y-components are dominated by errors
due to the effects of J 5 - No noticeable effects due to eccentricity are observed with the

INT method.
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Figure 5.21: Position Filter Errors when Propagating with the Clohessy-Wiltshire State
Transition Matrix (Case 2)
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Figure 5.22: Velocity Filter Errors when Propagating with the Clohessy-Wiltshire State
Transition Matrix (Case 2)
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Figure 5.23: Clock Filter Errors when Propagating with the Clohessy-Wiltshire State
Transition Matrix (Case 2)
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Motion (Case 2)
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Figure 5.27: Position Filter Errors when Propagating with the Clohessy-Wiltshire State
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Figure 5.29: Clock Filter Errors when Propagating with the Clohessy-Wiltshire State
Transition Matrix (Case 3)
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The effects of eccentricity and the separation between the vehicles on the CW-STM
propagation are studied further with additional cases. For these cases the chaser and target
vehicles are placed in the same orbit and at the same initial separation (approximately 15
km) for each case. The eccentricity of the orbit is varied and the maximum filter state error
for the u; error is recorded. Note that the receiver noise and SA are not included in the

measurement errors for this study. The results are depicted in Figure 5.33.
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Figure 5.33: Relationship between Filter State Error and Eccentricity when Propagating
with the Clohessy-Wiltshire State Transition Matrix
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There appears to be a linear relationship between the errors and eccentricity. This lin-
earity begins to deteriorate as eccentricity increases which is noticed in the value of the

error corresponding to the eccentricity of 0.1.

In a study on the effects of separation, the eccentricity is held constant (e = 0.002),

while the initial separation between the vehicles is varied. The results are illustrated in

Figure 5.34.
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Figure 5.34: Relationship between Filter State Error and Separation when Propagating
with the Clohessy-Wiltshire State Transition Matrix

Once again, a linearity is observed between the separation of the vehicles and the filter

state error.
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Similar relationships are observed with the z-component of the velocity, though the
magnitude of the errors are significantly less than those observed in the x-component

shown in Figures 5.33 - 34.

5.4 Effects of GDOP and Number of Common Satellites

To show the effects that the number of common satellites between the vehicles and
GDOP have on the filter performance, plots of both are presented in Figures 5.35 and

5.36, respectively, for Case 3.
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Figure 5.35: Number of Common GPS Satellites between the Chaser Vehicle and the
Target Vehicle (Case 3)
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Note that though there were six common satellites for most of the run, at two different
instances there were only four. The effect these drops have can be easily identified in the
filter results with peaks in the covariance bounds. For instance, the drop to four satellites
which occurs at time, t = 1214 s, corresponds to the peaks in the covariance bounds of the
x-component in velocity, clock bias difference, and clock drift differences in Figures 5.31

- 32.
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Figure 5.36: GDOP Values with respect to the Target (Case 3)

The effects of GDOP are also important. Notice that one of the drops in the number of
common satellites (at t = 1214 s) corresponds to an excessively high value of GDOP

(22.7). This also explains why the covariance peaks associated with this drop were higher
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than the other ones. In comparing the plot of GDOP to the filter state errors of Figures
5.30 - 32, it appears that the size of the covariance bounds is directly related to the values
of GDOP. For instance, the values of GDOP are highest on average within the 1700 to
1900 second time range. This directly corresponds to the growth in covariance bounds in

all the states during the same time range.

5.5 Computation Costs

The number of computations each propagation technique requires is important since it
1s directly related to the time required to complete the task as well as the required software
and hardware. All coding related to this thesis was done on MATLAB™ which has the
ability to estimate the number of computations with a function called FLOPS (FLOating
Point OPerationS count). FLOPS provides an estimate because it is not feasible to count
absolutely all operations in MATLAB™. However, it provides a relative scale in which to
compare the propagation techniques used. The number of computations each technique

required for each propagation step are given in Table 5.5.

Propagation Technique | Computations
CW-STM 128
KSTM 1834

KECH 4883

INT 1788

Table 5.5: Computations Required for Each Propagation Technique
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Notice that the number of computations of each method is not directly related to the

performance.

5.6 Summary of Propagation Methods

Propagating the state with the state transition matrix based on the Clohessy-Wiltshire
relative equations of motion was the simplest method in that conversions between frames
were not required. This is supported by the fact that the C-W STM technique was, by a
significant margin, the lowest computationally intensive method. The CW-STM method is
limited by the separation of the vehicles and the eccentricity of their orbits. Despite this,
the performance of the filter, when propagating with this technique, still met the perfor-
mance requirements set in Chapter 1. Nonetheless, use of the C-W equations are mostly
useful when the orbit of the target is nearly circular, the chaser vehicle is near the target,

and the chaser is on a low eccentric orbit.

The Universal Keplerian State Transition Matrix is an excellent analytic method in that
it accounts for eccentric orbits. Though frame conversions were required, it was easily
adapted to the requirements of this situation and relatively fast in computation. This was

(31]

primarily due to Shepperd’s'”*! new scheme for solving Kepler’s problem, which is a

required step in computing the transition matrix.

Kechichian’s technique[14] was the only method found that analytically accounted for
the J o perturbation. As shown in the propagation and filter results, the effects of J o were

significant, especially in the y-component of the Hill frame. In his paper, Kechichian dem-
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onstrates that his technique used in this study, combined with the Newton-Raphson itera-

tion, can be used as a highly accurate analytic two-impulse rendezvous predictor.

Finally, even though integrating the equations of motion was more computationally
intensive than using the Clohessy-Wiltshire equations, this method accounted for all the
perturbations. Integrating the equations of motiond also provides more flexibility since

additional models, such as higher gravitational harmonics, can be added if desired.

5.7 Chapter Summary

The results of the study were presented in this chapter. The first section, described the
three cases tested and gave a sample of the true states. The following section summarized
the effects of propagating and estimating the states with the four techniques described in
the previous chapter. The method in which the state is propagated by integrating the equa-
tions of motion had the best performance with the smallest propagation and filter state
errors. The next section showed the effects of eccentricity on propagating with the Clo-
hessy-Wiltshire State Transition Matrix. A linearity between the x-component velocity
error and eccentricity, as well as separation, was observed. The integration method proved
to be robust with varying eccentricity. The following section demonstrated the effects of
GDOP and number of common satellite on the covariance bounds of the filter state errors.
This was followed by an analysis of the computation costs, which showed that the Clo-
hessy-Wiltshire method was the least computationally intensive. Finally, a summary of all

the propagation methods was presented.
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The following chapter presents the conclusions based on these results, as well as rec-

ommendations for future work.
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Chapter 6

Conclusions and Recommendations

The goal of this thesis was to analyze a relative GPS navigation filter through the study of
various state propagation techniques. The conclusion of this study and recommendations

for future work are presented in this chapter.

6.1 Conclusions

The main objective of this thesis was to ensure that the chaser vehicle could efficiently
navigate to the target. The performance requirements were taken from current studies per-
formed by the ESA® and were presented in Chapter 1. For completeness, they are given
again here:

position error <10m (30)
velocity error < 0.05 m/s (3o)

The results indicate that all four propagation techniques studied surpassed these perfor-

mance requirements.

Results also indicate that if performance is solely based on overall propagation and fil-
ter state errors, the following priority could be assigned with the first indicating the best

performance:

1. Integration of the equations of motion

2. Kechichian’s analytic method accounting for J )

3. Universal Keplerian State Transition Matrix

4. State Transition Matrix based on the Clohessy-Wiltshire equations
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Note that the numbered rank of this list is used to identify the propagation method for the

remainder of this chapter

The factors that affected the performance and, therefore, had a direct role in this prior-
itization included effects due to perturbations, the eccentricity of the orbits, and the sepa-

ration between the vehicles.

It was determined that of all the modeled perturbations, which included, J 9 J 3 J 4
and aerodynamic drag, J o had the greatest effect. Propagation methods (3) and (4) did not
account for J » and displayed significant errors in propagating and estimating the y-com-
ponent position and velocities in the Hill frame. Methods (1) and (2), which did take J )

into account had the overall best perforinance.

The effects of eccentricity and separation were observed in propagation methods (2),
(3), and (4). Method (2) performed slightly worse than (3) in the z-components because it
only included a second-order approximation in eccentricity. This, however, changed as
separation between the vehicles increased in which case method (3) began to break down.
Further study of method (4) indicated that the maximum errors in the x-component of
velocity were linearly related to the eccentricity of the orbits and the separation of the

vehicles.

The best performance was observed in propagation method (1), which was expected

since the same technique was used to create the orbits. Nonetheless, in a real situation, this
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would remain the best propagation technique as it accounts for more perturbations than

the other three techniques.

It was determined that GDOP and the number of common satellites had a direct effect

on the covariance bounds of the filter state errors.

A study of the computation cost was also performed and if the number of computa-
tions were the sole basis in prioritizing the methods, with the first being the least computa-
tionally expensive, the priority would be

» State Transition Matrix based on the Clohessy-Wiltshire equations (128)
* Integration of the equations of motion (1788)

* Universal Keplerian State Transition Matrix (1834)

* Kechichian’s analytic method accounting for J ) (4883)

Note that the amount of relative computations per propagation are given in parenthesis in

order to depict how each method compares relative to the others.

In conclusion, even though all the propagation techniques met the performance
requirements and despite the fact that the C-W technique had the lowest amount of com-
putations, the recommended propagation method is to integrate the equations of motion.
In all the cases run, this method was the most robust with the filter errors always remain-
ing within the 30 covariance bounds. With today’s technology, the almost 14-fold
increase in computations over the C-W method should not be a significant software or
hardware hindrance. Also note that despite the high number of computations, integration

required fewer computations than methods (2) and (3).
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This study has demonstrated that RGPS navigation can be efficiently used as a method
for space rendezvous for long-range operations (20 km to 500 m). In combination with a
laser radar, a navigation scheme can be developed to automate a docking and/or berthing
operation in space. Current work is being done and tested to implement such systems for

service vehicles that will dock with the International Space Station.

6.2 Recommendations for Future Work

Several issues were raised during the course of this study which would be appropriate

for future work.

One area of future work could include a study on the effects of chaser vehicle maneu-
vers on the techniques. Future study could also look into the effects of having less than
four GPS satellites in view. This could occur due to view bblockage by either vehicle when
they are close to each other, unhealthy or loss of SV’s, and large vehicle separation.
Finally, since propagation method (2) was overall the second best performer in filter state
errors, but the worst in number of computations, further study could be conducted to
determine if the computations can be decreased. One possibility would be to allow the
propagation within the algorithm to go beyond the one second time-step and re-initialize

when the state errors reach a pre-defined bound.

More flight experiments, like the ones currently being conducted by NASDA, are also
strongly recommended to ensure proper operations when this technology is used for dock-

ing and/or berthing with the International Space Station.
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6.3 Chapter Summary

The final chapter presented the conclusions of this study. The main one was that
although all the propagation techniques met the performance requirements, the technique
which integrates the equations of motion had the overall best performance. This was
shown by the fact that it had the smallest propagation and filter state errors, which
remained within the covariance bounds for all the cases tested. The thesis concluded with

recommendations for future work.
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Appendix A

Converting between the Hill Frame and the Inertial
Frame

Throughout this study, conversions between the relative Hill frame and the inertial frame
are required. The purpose of this appendix is to outline how these conversions are made.

The method used was developed by J. Arnold Soltz, the author of reference [32].

The conversion from the inertial position and velocities to the Hill frame are presented

first. The appendix concludes with the inverse.

A.1 Converting from the Inertial Frame to the Hill Frame

One way to think about the Hill frame, first defined in Chapter 3, is as a Forward-
Right-Down (FRD) frame. “Down” represents the direction of a vector pointing from the
target vehicle to the center of mass of the Earth, “forward” represents the direction of the
horizontal component of the target vehicle’s velocity, and “right” represents the direction
to the right, perpendicular to down and forward. Figure A.1 depicts example orbits with

this frame.
The first step is to determine the unit vectors of the FRD frame

d=_1 (A1)
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d X v,
F = ——= (A.2)
d ><vtl
_ —_ - . yH =~ ~ -
- I S ~ - .
~ S - Chaser Orbit
- - id <
r . ~
c | S
~ l : N
r [
l ' N N

Target Orbit

Figure A.1: The Hill Frame Redefined as the FRD Frame

(A.3)

~

F =#xd

A
where rg,v,= position and velocity of the target vehicle in the

inertial frame

f. #,d = forward, right, down unit vectors, respectively

9
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Note that the }' and d vectors are in the orbital plane of the target.

Given these unit vectors, a matrix, C J2FRD: €an be constructed which converts vec-

tors in the inertial frame to vectors in the FRD frame

CrarrD = [f 7 Zl:l a4

_ A A —_—

The inertial positions and velocities of the target and chaser, e, Ve o and v o are

required to make the transformation to the Hill frame. Each of these vectors is first con-

verted to the FRD frame by

®; = Croprp®; (A-5)

where W represents either the position or velocity vector, and

I represents the corresponding target or chaser vehicle

Note that because of the definition of the FRD frame

0

f ¢ = (0 (A.6)
FRD
T't
and

v 1
= A7
btFRD O ( )

_th_
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The components of the chaser position and velocity in the target plane can now be eas-

ily formed by

- -

N (rCFRD) f

r, = 0 (A.8)
_(rcFRD) d]

N (VCFRD) f

v, = 0 (A.9)
_(chRD)d_

Since the Hill frame is curvilinear, the length of the arc from the target, along the tar-
get orbit, to r_'; will be the magnitude of X g - In order to obtain that arc-length, the angle
between I_'; and r'Ac , shown as O in Figure A.1 must be obtained. This angle must be pos-
itive if the chaser is “ahead” of the target and negative if it is “behind.” MATLAB™ has a
function called ATAN2 which is the four quadrant inverse tangent. It ensures that the

proper sign, according to the numerator and denominator of the argument, is assigned.

This angle, 0, is obtained by

(r. )
0 = atanZ[ﬂJ (A.10)

Note the negative sign in the denominator of the argument to ensure the proper sign of 0.

The x-component of the position can now be easily obtained from
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Xy = rte (A.11)

The y and z-components of position are obtained with

yy = (t,_ ) (A.12)
and

g =r,-r (A.13)

Both of these equations can be confirmed with Figure A.1.

Kepler’s Second Law is helpful in obtaining the x-component of the velocity in the

Hill frame
: h
06 = > (A.14)
r
where h = magnitude of angular momentum

The time derivative of Equation (A.11) is

ug = rte + fte (A.15)

where 0 = ch—et
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The last term in Equation (A.15) is zero since the HIll frame assumes that the target is in

a circular orbit. That is, T is constant with time and, therefore, its derivative is zero.

The target’s velocity along the x direction is already known

v, )

v =rb
IrRD 1t

f

Therefore, the only remaining element to find is 6 ¢' - Using Equation (A.14)

P

X
0. = CFRD CFRD
o=

r2
CerD

Finally, the x-component of velocity in the Hill frame is

since there is no y-component term from the target

(A.16)

(A.17)

(A.18)

(A.19)

Finally, the z-component of velocity is obtained by differencing the z-components
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r'c -
Wy =V, -V, = vcz— ,T"’c (A20)

A.2 Converting from the Hill Frame to the Inertial Frame

In order to convert from the Hill frame to the inertial frame, the inertial position and
—_ -
velocity of the target, r, and v P and the relative position and velocity of the chaser, x H
Y2y Uy Vg and Wiy, are required.
. - N . A ~ A
Since r, and v are known, the unit vectors of the FRD frame, f, #*, and d , can once

again be obtained, which yields C J2FRD - To obtain the matrix that converts vectors in

the FRD frame to vectors in the inertial frame, the transform is taken

T
Crrp21 = CrarrD (A.21)

First, however, P and are obtained from Equation (A.5), or Equations (A.6)
Lrrp Lerp

and (A.7).

Solving for 7' . in Equation (A.13) yields

r.o= -2y (A22)

and solving for O in Equation (A.11) yields
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0 = — (A23)

From the geometry of Figure A.1 and Equation (A.12) the FRD position coordinates

of the chaser can be constructed by

CFRD) s =r csine (A24)
(r CFRD)r = Yy (A.25)
(r cFRD) J= ~r' .cos6 (A.26)

Note that since the magnitude of position vectors do not change in frame transformations

¥y =r A27
c CFRD ( )

In order to obtain the FRD velocity coordinates of the chaser, Equations (A.15 - 20)

are used to determine the values for v, and @ with

(rcFRD)rvH - C(WH N (vtFRD)d)
Vv .COSQ = (A.28)
r
C
. rC
v singQ = r—t(uH+(vtFRD)f) (A29)
2 2 2
v, = (v cosQ) + (v,sinQ) (A.30)
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and

_— /2 2
V.= V.~ Vy (A.31)

. (WH + (vtFRD)d)
siny = , (A.32)
v
Cc
¢ = 0+ asin(siny) (A33)
Now, the FRD velocity coordinates of the chaser can be constructed
1% = V' _cos A34
( CFRD) f cCos® (B39
=v A.35
(VCFRD)I‘ H (A35)
(v CFRD) g=V  SInQ (A.36)

Finally, In order to obtain the inertial coordinates, the C FRD>] transformation

matrix is used

re = Cprparte, ., (A37)
v, d
Ve = Crrp21V¢pnp (A38)
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Appendix B

Equations for Constants in Kechichian’s Algorithm

Chapter 4 outlined the equations of relative motion obtained by Jean Kechichian.['4] The
intent of this appendix is to describe the algorithm in more detail. The routine includes a
basic solution which accounts for J 5 effects, as well as a second approximation which
accounts for eccentricity. This appendix supplements the equations presented in Subsec-
tion 4.2.3. It includes the equations used to obtain the initial conditions, all the required
coefficients, and the equations which are used to convert the solution from the local frame

to the inertial frame.

B.1 Initial Conditions

The initial conditions are based on the classical orbital elements (a, e, i, £, @, fO)
and the argument of latitude (90) at the initial time, or epoch. The reference circular orbit
is defined to have an eccentricity of zero and a semimajor axis, a »» equal to that of the
orbit’s at epoch. Recall that the orbital elements of the vehicle orbit will not be constant

because of the effects of J 9

The relative initial position components are obtained from

Yo =0 (B.2)
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Zg = 0 (B.3)

a(l- ez)

where rn = = radia