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ABSTRACT

The primary objective of this research was the development of a
comprehensive, rapid and conceptually simple methodology for PWR core
reload pattern and fuel composition optimization, capable of system-
atic incorporation of constraints, in which cycle burnup is defined
as the optimality criterion.

A coarse mesh nodal method for PWR core analysis was formulated
by coupling the one-and-one-half-group diffusion theory model for
spatial power calculations with the linear reactivity versus burnup
model (LRM) for depletion calculations. The accuracy and suitability
of this model was determined through comparisons of its results with
those of state-of-the-art core analysis methods.

The simplicity of the LRM-based core model allowed the direct
analytical computation of the derivatives necessary in the steepest-
gradient type optimization methods applied in the present work, and
its versatility permitted use of the analytical and computational
methods for a variety of aoplications, ranging from core reload pat-
tern searches to burnable poison (BP) and composition optimization.
Algorithms for identification of unconstrained maximum-burnup core
reload patterns and for optimal BP allocation were successfully imple-
mented and tested, and the basis for systematic incorporation of con-
straints on power peaking was developed. The potential application
of the methodology to fuel composition optimization was also examined.

Most of the methodological developments have been embodied in
the LRM-NODAL code which was progranined in the course of this research.
From the numerical and analytical results it was found that the opti-
mal core configurations are arranged such as to produce power his-
tories and profiles in which the most reactive assemblies are at their
highest allowable power at EOC (thus maximizing their importance) and
where the converse applies to the least reactive; these preferred
profiles also produce relatively higher leakage at BOC, evolving to
the lowest possible leakage at EOC, but always consistent with the
maximization of the core reactivity importance.
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CHAPTER 1

INTRODUCTION

1.1 Foreword

Currently, Light Water Reactors (LWRs) account for more than

three-quarters of the nuclear power plants operable, under construction

or on order worldwide, with the Pressurized Water Reactor (PWR) comprising

over two-thirds of all LWRs. The operation of these reactors over

their useful lifetime will, in the next several decades, make an

impressive contribution to energy production. Moreover, if the

efforts currently underway on an international basis to implement the

changes and innovations necessary to improve the viability of nuclear

fission as a major energy source are successful, PWR-based technology

is likely to retain a significant role well into the next century (M-1).

Thus, under any plausible circumstances regarding expansion of nuclear

generating capacity, the efficient operation and fuel management of

PWRs is of utmost importance.

The effort undertaken in the present research addresses a central

question in in-core fuel management, namely the optimization of PWR

core reload pattern and fuel composition. While the applications here

are restricted to state-of-the-art low-enriched uranium fueled PWRs over

a single burnup cycle, most of the methodology should be readily

extendable to several cycles in sequence and to other reactor types.
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1.2 Background

The core reload design process encompasses a complex set of

decisions, spread over a period of time, with the final goal of

specifying a core capable of producing a demand-imposed target cycle

energy, at the minimum cost, with appropriate margins to assure that

given acceptable fuel design limits are not exceeded during any condition

of normal operation, including the effects of anticipated operational

occurrences. These margins are detailed in a reactor's final safety

analysis report (FSAR).

Usually, based on an energy demand forecast and consistent with

the system optimization goals, the plant's target cycle burnup is

defined in advance (--1.5 years) such as to allow time for the

necessary fuel cycle transactions: ore procurement, UF6 conversion,

enrichment, and fabrication. Assembly design, material/service

purchase transactions and their optimization, as may be seen in

Table 1.1, proceed interactively. Based on target burnup and the

expected state of the old fuel, the characteristics of the core are

specified: enrichment of the fresh fuel, reload pattern, and, if

required, burnable poison (BP) loading. In general, optimization of

system energy costs leads to a preference for long cycles (to maximize

the capacity factor), which, in turn, normally requires the use of

BPs to suppress excessive power peaking and to ensure an acceptable

(slightly negative) moderator temperature coefficient of reactivity

at the beginning of cycle (BOC). Once the cycle length (and anticipated
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TABLE 1.1

Typical Core Reload Planning and Scheduling:
Time Frame Prior to BOC

1) Specification

Basis:

2) Specification

Basis:

Months

of Energy Requirements: ................... 17

Expected demand for the unit according

to system optimization

of

a)

b)

3) Specification of

Uranium Ore and Enrichment: ............ 14

Energy requirements

Expected state of old batches

Fabrication (hence, BP loading): ........ 8

4) Fuel Cycle Design Analysis:

a) Select Reload Pattern

b) Perform Transient and Safety Analysis (FSAR):

b.1) If design conforms with FSAR's "core exposure

window": keep analysis for regulatory agency

inspection.

b.2) If not: Submit analysis for regulatory agency

review (at least)...........................3

5) Flexibility for Contingencies (e.g. new or old fuel damage)

Re-evaluation of design and safety analysis.........2
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capacity factor) has been fixed the only component of the energy

cost left to optimize is the fuel cycle cost. Fuel cycle cost optimiza-

tion essentially corresponds to definition of the fuel composition and

core arrangement such as to minimize the sum of ore, enrichment and

fabrication costs. After the enrichment has been irrevocably specified,

fuel cycle cost optimization becomes equivalent to finding a reload

pattern that maximizes the cycle burnup capability.

However, an overriding concern at any stage of the design, is the

assurance that it meets safety limits and margins. For steady state

operation design margins may be translated into limits on the core's

enthalpy rise hot channel factor, which in a two-dimensional model

corresponds to the radial power peaking factor. State-of-the-art core

analysis methods, in the form of sophisticated computer codes, are

available and used industry-wide for detailed reload licensing

calculations, to evaluate and ensure realization of the required margins.

However, due to the cost and complexity of these analyses, it is highly

desirable that a candidate reload core, before being submitted to

these full scope licensing calculations, meet optimal or near-optimal

conditions regarding the assembly arrangement pattern and composition.

In addition to the need in the normal core reload design process, the

capability to generate acceptable candidate reload patterns becomes

even more important under circumstances requiring fast evaluation of

alternative designs, such as forced outage due to fuel failures,

accidental assembly damage during reload handling, or.unplanned

extended coastdown.
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1.2.1 Previous Reload Optimization Work

In spite of significant efforts devoted to the problem, no

standard methods, with industry-wide acceptance and an adequate

compromise between simplicity and accuracy, are in general use to

generate acceptable candidate core reload patterns meeting realistic

optimality criteria. The most widespread approach is trial and error,

aided by "rules of thumb" derived from experience and insight.

Table 1.2 provides a succinct review of some of the most relevant

work dedicated to optimization and automation of the reload design

process. Approaches explored include heuristic methods, direct searches,

mathematical programming (linear, dynamic, quadratic and integer),

variational methods, optimal control theory, perturbation methods,

and combinations thereof. Optimization goals also vary: maximization

of burnup or excess reactivity; minimization of power peaking, ore

consumption, cycle costs, etc.

1.2.2 Linear Reactivity Model Work at MIT

The Advanced Linear Reactivity Model (ALRM), (where the well known

linearity of assembly reactivity as a function of burnup is combined

with prescriptions relating power density to reactivity, and these, in

turn, used to compute the system reactivity) has been developed and

used at MIT to perform batch-size multi-cycle analyses of fuel manage-

ment strategies, with substantial success. A full account
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TABLE 1.2

Summary of Relevant Core Reload Optimization Work

Approach Objective

U))-

E S

.M- or- U -

Author(s) r- -CD -4-3
and E O - . -4 N

Reference . ' - - ;- a)

0-E S- ( - S-E Ur-E E E- -

Rieck [R-1] x x
Izenson [I-l x x
Downar [D-2] x x
Goertzel [G-1] x x
Wall and Fenech [W-1] x x
Melice [M-2] x x
Fagan and Sesonske [F-1] x x
Naft and Sesonske [N-1] x x
Suzuki and Kiyose [S-2] x x
Sauar [S-3] x x
Wade and Terney [W-2] x x x
Hoshino [H-1] x x
Goldschmidt [G-2] x x
Motoda, Herczeg, Sesonske [M-3] x x x
Ciechanowiecz [C-1] x x
Stout and Robinson [S-4] x x
Chitkara and Weisman [C-2] x x
Mingle [M-4] x x x
Motoda and Yokomizo [M-5] x x x
Terney and Williamson [T-1] x x
Lin, Zolotar, Weisman [L-1] x x
Ho and Sesonske [H-2] x x
Ho and Rohach [H-3] x x
Huang and Levine [H-4] x x
Colletti, Levine, Lewis [C-3] x x
Chang and Levine fC-4] x x
Ahn and Levine [A-3] x x
Suzuki and Kiyose [S-8] x x
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of the methodology, and application to fuel management is in preparation

[D-1]. Hence, here only the most relevant aspects of this work, where

it provides important background to the methodology being used and

extended in this research, will be reviewed.

Sefcik [S-1],on purely empirical grounds, concluded, by analyzing

core power mapsthat the power of a group of assemblies (usually a

batch), fg, and its reactivity pi, could be related by

where

e is an empirical constant.

Loh [L-2], using a modified one group theory, showed that a better

relation would be

T (1-7)
f= _ e p. f (1 + e p.) (1.2)

-1

where

f is the average power for an aggregation of surrounding

assemblies,

f is the core-average assembly power, and

Pi is the average reactivity of the aggregation.

Furthermore, Loh pointed out the similarities between his prescription

and FLARE-type nodal expressions.
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Kamal [K-1], extended Loh's approach to a cylindricized represen-

tation of an assembly and its surroundings, and developed another

similar prescription:

f. (1 - 0. ~.)
f ' T i(1.3)

1 - p.

where

6. and 6 are constants, depending on the ratio of the

assembly cross sectional area to the neutron migration area.

All the authors just cited used the same relation to compute the

system reactivity, ps

n -m m

Ps i;i pi + (p - a) (1.4)

where

n is the number of assemblies,

m is the number of peripheral assemblies, and

at is an empirical constant relating the core radial leakage

and peripheral power fraction (leakage reactivity decrement).

Subsequent work built upon the results of these initial investiga-

tions. Izenson [I-1] used Kamal's prescription in an automated PWR

reload design optimization method, where the optimality goal was the

minimization of the radial power peaking factor. Downar [D-2] used

Loh's prescriptions, in work performed concurrently with the present

research, to develop an integrated method for mid-range in-core PWR
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core design. Montaldo-Volachec [M-6] correlated linear reactivity

model parameters for a wide range of PWR lattices and uranium enrichments.

Malik [M-1] extended these correlations to plutonium-based fuels.

Kamal [K-2] and Malik et al. [M-7] worked on PWR axial power

shape optimization.

1.3 Research Objectives and Organization of the Report

The primary objective of the research reported here has been the

development of a methodology for PWR core reload pattern and fuel

composition optimization. Cycle burnup is defined as the optimality

criterion, and efforts are concentrated on developing an ALRM-based

methodology, having an adequate compromise between simplicity and

accuracy, able to identify and generate core configurations and

compositions meeting this condition under restrictions on power peaking,

assembly placement and burnable poison loading.

Ease of computation and transparency of approach are highly

desirable features in iterative design optimization models; and

simplification, whenever possible without altering the essential nature

of the problem, has often been the key to success in complex optimization

tasks. Consistent with these arguments, the evaluation and extension

of the Advanced Linear Reactivity Model of PWR core behavior constituted

an important subsidiary goal in this work.
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The research efforts are reported as follows:

* In Chapter Two a succinct review of state-of-the-art methods

for core analysis and the foundations of the core physics

methods and models used throughout this work are presented.

* In Chapter Three, an ALRM-based coarse-mesh nodal method

is developed by analytical means. Beneficial empirical

adjustments and corrections are discussed, and the accuracy

of the method tested against state-of-the-art results.

* The optimization methodology is presented in Chapter Four,

in conjunction with some applications.

* In Chapter Five, the research is summarized and the main

conclusions and recommendations for future work are discussed.

e Finally, subsidiary derivations and analyses in support of

developments in the main text, along with a listing of

the computer code embodying most of the methodology, are

presented in appendices.
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CHAPTER 2

REACTOR PHYSICS METHODS AND MODELS

2.1 Introduction

Reactor physics calculations provide the basic information for

in-core fuel management analysis. The major objective of these

neutronic calculations is the prediction of core parameters such as

reactivity, reaction rates (hence, power densities and burnup) and

isotopic compositions. The level of accuracy required and thus the

sophistication of the analysis methods to be used is problem specific.

Well developed and very accurate neutronic computer codes are available

to perform detailed analysis of LWR cores. One such example is EPRI's

Advanced Recycle Methodology Program (ARMP) package of core analysis

codes. However, the high cost and complexity associated with the

use of these programs for multi-variable optimization studies, particularly

when the general degree of uncertainty inherent to the problem being

modeled (e.g. scoping or preliminary optimization studies) is much

larger than the accuracy provided, clearly points to the need to develop

simpler and more cost efficient models based on analytical and empirical

methods.

In this chapter, a general overview of state-of-the-art licensing-

level methods is provided, with emphasis on the codes used to to

generate supporting results for the present research. Then, analytical
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models and approximations, constituting the foundations for a PWR core

analysis method, compatible with the requirements of the optimization

procedures developed in this research, are discussed.

2.2 State-of-the-Art Nuclear Analysis Methods

The Boltzman neutron transport equation is the fundamental relation

for nuclear reactor analysis [H-5]. It is a conservation equation for

the angular neutron density as a function of position, direction of motion

and neutron energy, describing the interaction of neutrons with their

environment. However, for real-life situations, its solution is either

too costly or impractical, and lower order approximations, with degree

of accuracy compatible with the requirements of each specific situation,

are used in reactor analysis. For most applications the main workhorse

is the neutron diffusion approximation. In general, a further

assumption of separability of space, time and spectrum effects is also

necessary. Under this assumption, the core is divided into regions

having similar characteristics, for which few-group constants are

generated in independent spatially-simplified computations, and then

used in few-group spatial calculations. In addition, continuous core

depletion effects are evaluated in discrete steps.

Analysis procedures, described in standard fuel management and

reactor physics texts (e.g. [S-5], [H-5], [G-3]) are problem dependent,

and their details are, for the most part, beyond the scope of this

report. Nevertheless, a succinct description of some state-of-the-art
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computer codes is relevant due to their use in current core licensing

analyses, and especially where they were used to provide supporting

results and calculations for the present work. Figure 2.1 shows a

typical sequence of calculations for PWR licensing analyses, identifying

several such programs.

2.2.1 Spectrum Calculations

The LEOPARD code [B-1] has been extensively used ([G-4], [C-5],

[S-1], [L-2], [K-1], [M-6]) and benchmarked ([C-5], [G-4]) at MIT by

previous researchers, and its methodology is well documented. Despite

having been superseded in rigor and complexity by newer programs, it is

still one of the most widely used neutronic codes in the nuclear

industry. In an evaluation against newer codes (LASER and EPRI-CELL)

it was shown to be in better agreement with experimental results, albeit

for rather simple lattice configurations [L-3].

LEOPARD is a zero-dimensional spectrum dependent depletion program

used to compute neutron multiplication factors and few-group cross-sections

as a function of burnup for square or hexagonal lattices, represented

by unit fuel cells or supercells (cell plus extra region). The unit

cell consists of fuel, gap, cladding and moderator, and the extra-region

represents fuel assembly water holes, control rod sheaths, spacer grids

and inter-assembly water gaps. The microscopic cross-section library

for the MIT version (EPRI-LEOPARD) is derived from the ENDF/B-IV data

set. The calculation at epithermal energies is done using the
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2.1 Representative Sequence of Calculations for PWR
Licensing Analysis

Fig.
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MUFT [B-21 sub-program while SOFOCATE, using the Wigner-Wilkins

treatment, handles the thermal calculations [A-2]. Thermal disadvantage

and fast advantage factors, and an iteratively adjusted resonance

self-shielding factor, are used to correct for cell heterogeneity.

CASMO [E-1] has also been used and described at MIT [D-2]. It is

a recent multigroup two-dimensional transport theory code for burnup

calculations of BWR and PWR assemblies or cells. The program handles

a geometry consisting of cylindrical fuel rods of varying composition

in a square array, and is capable of treating fuel rods loaded with

gadolinium, burnable absorber rods, cluster control rods, water gaps

and other realistic assembly features. CASMO generates few-group cross-

sections and reaction rates for any region of the assembly, as a function

of burnup.

DIT [J-1] is a Combustion Engineering code, with similar capabilities

to those of CASMO, also employing transport and collision probability

methods. CASMO and DIT, in turn have much in common with their precursor

WIMS; reference [S-5] describes their common methodology in considerable

detail.

2.2.2 Spatial Calculations

Spatial calculations are performed, for the most part, using

fine-mesh finite difference schemes or by coarse-mesh finite-element or

nodal techniques.
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PDQ-7 [C-6] is a widely used production code that has been

previously used for PWR core analysis at MIT ([S-1], [L-2], [K-1]).

It solves diffusion-depletion problems in up to three spatial dimensions,

with a maximum of five neutron energy groups, in rectangular, spherical,

cylindrical or hexagonal geometries. The program discretizes the

energy variable and finite-differences (central) the spatial part of

the diffusion equation, and can perform eigenvalue, boundary-value,

adjoint and fixed-source calculations.

The so-called coarse mesh computational methods are efficient

techniques to perform two or three dimensional reactor calculations.

The reactor is represented by large (typically quarter or full assembly)

homogenized regions. Representative of this category are: the two-group

analytical nodal method QUANDRY [S-6], developed at MIT; and the

modified one group theory (sometimes empirically-adjusted) schemes,

such as FLARE [D-71, TRILUX and SIMULATE [V-1], much in use currently

for fuel management purposes.

2.3 Foundations for an Optimization-Oriented Core Analysis Method

As has already been stressed, depending on the problem at hand, an

adequate compromise between solution accuracy and efficiency has to be

established. Speed and ease of computation are extremely important in

iterative optimization schemes. Furthermore, uncertainties inherent to

the overall system modeling and decision process do not warrant the
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complexity and cost associated with using licensing-level codes for

optimization and screening purposes. In this section, key components

of the nuclear analysis method developed and used in the present

research are introduced. Then, some intrinsic assumptions and limitations,

as well as simplifications and approximations are discussed.

2.3.1 A Modified One Group Model

A modified one group theory method, known as the "one-and-one-half"

group model, can be derived from the two-group diffusion equations

([H-5], [G-3], [S-5]):

fast group:

-- v + al 1 + 212 *1 - I(vZf1~ + Vf 2 2 ) = 0 (2.1)

thermal group:

-V - D2 2 + Za2D2 - E12D1 = 0 (2.2)

where X is the neutron multiplication factor (eigenvalue), v the

average number of neutrons released per fission, 212 the macroscopic

downscattering cross section, and with 1 and 2 standing for fast and

thermal groups, respectively, the remaining constants are:

D = diffusion coefficient;

Z = macroscopic absorption cross section;

E = macroscopic fission cross section.
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The essential approximation of the one-and-one-half group model

is that thermal neutrons are absorbed at the point of removal from the

fast group, or, equivalently, that thermal leakage is neglected

(i.e.: V22 = 0). Thermal leakage is an order of magnitude smaller than

fast leakage in LWRs (and, furthermore, the approximation may be later

partially relaxed, as discussed in section 3.2.5.1). Then Eq. (2.2)

becomes:

Ea2  2 =1 2  1 (2.3)

Substituting 2 from this expression in Eq. (2.1), and assuming D1
constant over the reactor, gives

-DV2 + Ea 1 + 1 + 2 1 = 0 (2.4)
1 X V f1 f a2)

Defining the migration area (also referred to as Fermi age, T, in the

literature), as:

M2 - D1/(Eal + E12 ) (2.5)

and recalling that the local two-group infinite medium neutron

multiplication factor is:

k = Zv2 + )a + (2.6)CO v El +\)Z2 _ (al + 12)5

Eq. (2.4) may be re-arranged as:

V2  +( - 1) 1 = 0 (2.7)

Furthermore, defining the local reactivity,

p = 1 - 1/km , (2.8)
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and a modified eigenvalue, called here the "system (static) reactivity"

(in a similar fashion to the "adiabatic" approximation),

ps = 1 - 1/X

an equivalent expression for Eq. (2.7) is obtained, namely:

2 ~__ s_

2 + (P )

For a critical reactor (i.e.: X = 1, ps = 0) Eqs. (2.7) and (2.10) become

V20 +
1 (1 -p

or, equivalently,

V2 + (km- 1

Recognizing that the local thermal power density can be written as:

q'' ' = K Efi (D1 + K Zf 2 42
(2.13)

where K is the energy released per fission, and, with the aid of

Eqs. (2.3), (2.6) and (2.5), Eq. (2.13) can be re-written as:

(2.14)

The fast flux and local thermal power density, using Eq. (2.8), may be

related by:

4)1 = q' M 2

1
(1 - p) (2.15)

An equivalent relation holds after integration over the volume of

the node:

I
V

dv = ' __

KDl
(1 - p). f1 . Q /n (2.16)

(2.9)

1
= 0 (2.10)

1 = 0

) -I

M

(2.11)

= 0 (2.12)

= D
q' ' ' = k ct 1
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where fi is the normalized nodal power fraction:

f q'''dv = q''' n (2.17)

in which Q is the core thermal power, v is the volume of the node

(in this work taken to be an assembly), and n is the number of nodes in

the core.

2.3.2 System Reactivity Balance and Eigenvalue

It is important to emphasize that, according to Eq. (2.9), the

system reactivity is a modified eigenvalue determining the core

criticality and thus the null reactivity limited end of cycle (EGC).

Furthermore, the calculational procedures developedin the next

chapter to solve the one-and-one-half group model, are based on

Eq. (2.11), which requires ps to be always zero. This condition is

satisfied by performing a reactivity balance, and determining a

reduction in the local reactivities (simulating the soluble boron

poisoning process in real life core operation).

Equation (2.10) may be re-arranged and integrated over the

core volume, V, to yield

fV - dv + JV V -D1 W1 dv

p= d (2.18)
s dv

Since there are no internal flux discontinuities, application of

the Divergence Theorem to the last term in the numerator leads to the

following equivalence:
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v- D 1vI1 dv =

fV LsdA- D I W1 (2.19)

where S is the cuter surface of the core. This term corresponds to the

loss of neutrons due to leakage out of the core. For a core with

n nodes, of which m are on the periphery, defining J i as the leakage

rate out of peripheral node i, and with the help of Eq. (2.16),

PS becomes: n n

p .f i - J .
i=1 K 1=1

PS n

i=1 1

Defining a normalized neutron source as

f.

i =1

V

V
K.

1

V

and a "leakage reactivity",
m

pL JPL=i=1 i - -

n

i=1

PS may be written as,

IS dA D1 V 1

D1 - 1 dV

n
PS= Si P-

i =1

(2.20)

(2.21)

(2.22)

(2.23)
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From this reactivity balance, the requirement of setting Ps=O may

be fulfilled by reducing the local nodal reactivities by ps. Or, in an

even closer approximation to reality, the quantity p spcorresponding to

the dissolved boron reactivity required for criticality, may be calculated

with the aid of the local-spectrum-dependent relative boron worth factors,

-1 = i 1 14 L ( 2 .2 4 )

. s W

and the necessary local reactivity reduction,Api, in each node is

given by:

APi = SP . Wi (2.25)

The leakage calculation is detailed in the next chapter, as part

of the coarse mesh nodal method. However, in view of the results of

this section, it is important to stress that pS represents a modified

eigenvalue, which is set to zero in an iterative numerical solution

scheme. Therefore the perturbation approach (which implies what amounts

to source square weighting), proposed in ref. (D-2) to perform a

steady-state reactivity balance, is not conceptually appropriate.

Otherwise, it is interesting to note that Eq. (2.11) is self-adjoint,

and the flux can be also interpreted as the local importance.

2.3.3 The Linear Reactivity Model (LRM)

The linearity as a function of burnup of both the unpoisoned

reactivity and the reactivity attributable to "well designed" burnable

poisons for PWR fuel assemblies has been exploited to develop simple
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and surprisingly accurate models to perform various fuel management

tasks [L-2]. In the core model being developed in the present research

this feature will be fully used and play a key role due to the

simplicity it allows in the description of the otherwise rather

complex phenomena of fuel and burnable poison depletion.

2.3.3.1 LRM for Unpoisoned Fuel Assemblies

It is a well established fact that the unpoisoned reactivity of

an assembly, p, defined by Eq. (2.8), varies linearly with burnup

[K-2], [S-1], [L-2], [M-6), [M-7], even though all of the reasons

and compensatory mechanisms that cause this behavior have not yet been

fully explained. This variation may be represented mathematically as:

p= pO - A B (2.26)

where

p0 = extrapolated Beginning-of-Life (BOL) reactivity

B = assembly burnup, MWD/kg

A = slope of the linear curve-fit of p versus B, kg/MWD.

The intercept P0 , determined by extrapolation, corresponds to

the value after saturating fission products (xenon, samarium) have

come to equilibrium. (Therefore, at BOC, the LRM may not provide an

accurate description of the core state).

A remarkable fact is that the linearity holds for the entire

burnup span of practical interest for LWR uranium fuel, over a wide

range of enrichments and all fuel-to-moderator volume ratios (VF /VM).
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Figure 2.2 displays plots of reactivity as a function of burnup for

a representative PWR lattice and enrichments from 2.0 w/o to 5 w/o.

Furthermore, besides enriched uranium, the linearity holds for other

fertile/fissile combinations, with the exception of Th/Pu.

Montaldo-Volachec [M-6], using LEOPARD results, developed

correlations for the parameters p0 , po/A and A for uranium LWR fuels

with enrichments spanning the range from 2.5 w/o to 4.5 w/o and

VF/VM from 0.5 to 1.0. Malik [M-1] subsequently extended this

methodology to plutonium/uranium lattices. Montaldo-Volachec's

results for the standard Maine Yankee lattice (VF /VM::0.60393) are:

p0 = 0.357936 - 0.404919/X (2.27)

A = 13.7304 - 1.52734.Xp, 10-3 kg/MWD (2.28)

where X is the U-235 enrichment, w/o.

It should be noted that LEOPARD results are sensitive to the

length of the burnup steps employed. For example, for runs using

steps of 1 and 5 MWD/kg, after 35 MWD/kg the computed reactivity in

the latter case exceeded that of the former by 0.01. Reference [R-2]

indicates that steps of 2 MWD/kg are adequate for most purposes.

2.3.3.2 Burnable Poison Modeling

Following the lead of Loh [L-2], here an idealized model for

burnable poisons will be adopted: that is, a poison material is

postulated which provides a required initial negative reactivity at BOC
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Fig. 2.2 Reactivity as a Function of Burnup for a Representative PWR Lattice
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and then burns out at a uniform rate over the cycle, leaving a small

residual at EOC. Besides the ease of modeling, such burnable poison

behavior is desirable for other reasons. Uniformity of depletion and

EOC burn-out are, in general required to avoid excessive power peaking;

and usually the maximum cycle burnup, an optimization goal, is

associated with power histories that require the burn-out point to

coincide with the EOC. Furthermore, this modeling is not physically

unrealistic, since actual burnable poisons can be designed that

approximate very well this ideal behavior: in fact, a black cylindrical

absorber depleting in "ash-layer" fashion can be shown to exhibit

linearity in a formally exact manner [H-6].

Figure 2.3 displays a generic p versus burnup trace for an

assembly with "ideal" burnable poison. Figure 2.4 is the plot of

CASMO-computed reactivity traces as a function of burnup for two

Maine Yankee, 3 w/o U-235 enriched, assemblies; one of which contains

eight B4C shims. The boron-based burnable poisons' characteristic

non-linear "tail" is evident close to the burn-out point. In the

neutronically blacker gadolinia burnable poisons, linearity persists

until burn-out, even though higher residual reactivity results,

mostly due to transmutation of the even-A gadolinium isotopes present.

The (somewhat over simplified) ash-layer model [H-6] may be used

to demonstrate the feasibility of matching any desired initial hold-

down reactivity and depletion (linear) slope combination, by

appropriately choosing the number and the loading of poison pins

in the assembly [D-1]. Roughly speaking, the initial hold-down
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is related to the number of poison pins and the slope is related to

the poison loading in each pin.

2.3.4 Evaluation of Simplifications, Approximations and Assumptions

The basic relations for PWR core modeling, consisting of

Eqs. (2.11), (2.15), (2.23), and the linear reactivity model equation,

Eq. (2.26), have now been derived or justified. Consistent with

the goal of developing a methodology with an adequate compromise

between accuracy and simplicity, some simplifications in the solution

of the equations will next be evaluated. Aspects regarding the

adequacy of the linear reactivity model will also be discussed. Then

the basis will exist for proceeding to solve the equations, and further

develop the model in the next chapter.

2.3.4.1 Power and Flux Relationship

A detailed parametric analysis of the factor [ ,which

according to Eqs. (2.15) and (2.16) relates thermal power and flux,

is presented in Appendix A. As a result of several compensatory

effects, LEOPARD predicts that this factor remains quasi-invariant as

a function of burnup and local reactivity for typical PWR lattices and

compositions, at around 0.50 neutron - cm/MeV. CASMO predicts a

slight dependence on local reactivity (or burnup state), which can

be linearized to yield:

M C (1 - C2 p), neut.cm/MeV (2.29)
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where, for example, for the Maine Yankee lattice, at 3% U-235, with

R2 = 0.9335,

CI = 0.4919

C2 = 0.1450

Since p varies between roughly ±0.2, the corresponding variation in

[ P-] can be seen to be rather small. Moreover, if the degree of

realism is increased to include power/temperature feedback effects and

a more detailed (nuclide-by-nuclide) computation of capture gamma

energy, the variation of [V M] with burnup (hence reactivity)

would be decreased and more linear in the CASMO results.

This parametric invariance (or linear dependence on local

reactivity) is a fortunate finding, which can be taken advantage of

in the core modeling. By solving Eq. (2.11) and incorporating this

simple flux versus power relationship, expressions may be developed

to yield directly the nodal power.

2.3.4.2 Power Weighting of Reactivity

Power, instead of source-weighting of local reactivities to

perform the system reactivity balance (i.e., eigenvalue calculation),

has been used previously [S-1, [L-2], [K-1], under the assumption that

the variation of K/V with burnup was negligible. Here, in view of the

results of Appendix A, the numerical error of this approximation is

evaluated for selected, extreme, but simplified, cases of leakage-

free cores composed of three uniform batches, having hypothetical
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power fractions of 1.4, 1.0 and 0.6. Results and data are shown in

Table 2.1. These results indicate that the consequences of the

approximation are not severe. Since the power weighting consistently

slightly over estimates the system reactivity, it should contribute

to a bias on the high side in cycle length (burnup) calculations.

The errors in nodal power fraction calculations, due to the

approximation are completely negligible.

Hence, Eq. (2.24) may be approximated by:

PS f i - L (2.30)

2.3.4.3 Spectral Ambiguity

The LEOPARD program, when computing the few-group cross sections

and the reactivity as a function of burnup, uses an infinite medium

spectrum and enforces criticality by adjusting the buckling. In a

reactor, where local criticality is maintained by a combination of

buckling (i.e.: leakage to and from neighboring assemblies) and by

addition of control absorber, the LEOPARD-convention is not reproduced

exactly, and consequently the actual local reactivity may differ from

that predicted by the linear reactivity model. Another situation where

spectral changes may induce significant local effects, arises at the

interface of nodes with differing compositions. These effects are

especially pronounced at the core periphery (reflector) where

corrective measures are required.



TABLE 2.1

Power* Versus Source Weighting: Eigenvalue Difference for Selected Cases

Batch
Burnup 0 10 15 20 30 40 Results
(MWD/kg)

p 0.223 0.131 0.084 0.038 -0.055 -0.147 _

( ai. 0. 0.00093

cii 4-i
(~) *S.- *4-

sCr a)~ r- S-

KV79.6 77.5 76.7 76.1 75.0 74.4 0'(MeV/neutron) C, C)

x x x 0.15406 0.15533 0.00127

(Pinsased x x x 0.06187 0.06280 0.00093

x x x 0.11850 0.12106 0.00256

x x x 0.08341 0.08733 0.00392

*For assumed power fractions of 1.4, 1.0 and 0.6

-r~b

0~~
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These "spectral ambiguity" effects are most severe at the BOC,

when more soluble poison is required. Because boron suppresses

preferentially the thermal flux, whereas in adjusting the buckling

fast leakage dominates, the spectral mismatch becomes most pronounced

when more boron is present. In the poison-free condition, at EOC,

reactivities should be well predicted by the LEOPARD-based linear

reactivity model.

One way to reduce these spectral effects is to use the cycle-average

boron concentration in the LEOPARD calculation, thus hardening the

spectrum for which the cross sections are computed, and then later

excluding the boron cross-sections from the reactivities. Moreover,

the spectral ambiguity effects arising from changes in the ambient

spectrum due to the presence of soluble poison can be mitigated

by applying properly defined weighting factors to the local poison-

related reactivity reduction (W1 of Eq. (2.25)), such as to incorporate

only the net effects. The mismatch at interfaces of differing media

may be partially included in differential thermal leakage corrections

such as that proposed by Becker [B-3].

More detailed discussions of this subject are documented in

references [D-1] and [S-5]. In general (except where noted),

refinements related to these fine points will not be justified in

the present work: the resulting errors are generally inconsequential.
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2.3.4.4 Superposition of Reactivity

In addition to spectral ambiguity, another aspect associated

with modeling of soluble boron as a control poison is the validity of

the superposition of local reactivities.

The local reactivity, defined by Eq. (2.8) may be written as:

(V9f1 )1 + VEf 2 D2 ) - (z1 )1 + Ea2 2) (2.31)
Vfl41 + Vsf2 D2)

which suggests the representation of absorber addition, such as

soluble boron, as a reduction, Ap, in the local reactivity. However,

due to the spatial variation of the spectrum throughout the core,

the same amount of absorber will yield different local Ap.. This

additional effect may be corrected for by associating local relative

weighting factors, WI, as shown in Eq. (2.25), which correspond to

normalized relative boron worths.

It should be pointed out that in the case of burnable poison

modeling, as described in section 2.3.3.2, the spectral effects are

accounted for implicitly. The local BP reactivity decrement, as a

function of burnup, is given by the difference between the unpoisoned

and poisoned traces, each of which incorporates the appropriate

spectral effects.
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2.4 Chapter Summary

In this chapter the state-of-the-art computer codes used to

provide results and supporting data for the present research, namely

LEOPARD, CASMO, DIT and PDQ-7, have been briefly described. Then,

the basic relations providing the foundation for an optimization-

oriented core analysis method have been derived or justified.

Inherent assumptions and approximations, as well as possible

simplification have been discussed and evaluated.
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CHAPTER 3

A COARSE MESH NODAL METHOD

3.1 Introduction

Nodal methods [H-5] [G-3] [S-5] provide an efficient and accurate

means of analysis whenever a reactor may be represented by regularly

repeating, internally-homogenized regions - nodes - as is the case

for PWRs, whose array of geometrically similar assemblies normally

constitute such a configuration. In the previous chapter, a

consistent set of relations capable of describing core behavior, on

an assembly level, have been derived, along with suitable approximations

and simplifications. Specifically, Eq. (2.11) constitutes the basis

for spatial diffusion calculations, coupled with the use of Eq. (2.24)

for eigenvalue determination (or equivalently, system reactivity

balance computation); and the linear reactivity model has been shown

to provide a simplified and accurate description of the local

reactivity as a function of burnup. Although approximate, as

pointed out previously, those prescriptions provide the basis for

the coarse mesh nodal method to be formulated in this chapter. In

PWR fuel management, the axial behavior is, normally, rather

predictable, hence a two-dimensional representation of the core

suffices for most applications, as, for instance, in the present research.
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In what follows it is assumed that methods are available to the

user (e.g. LEOPARD) to determine average node (assembly) characteristics

(local reactivity as a function of burnup). Refer to Appendix B

for supplementary details in support of the analysis in this chapter;

in particular Fig. B.1 is a one-quarter core representation of

the Maine Yankee Reactor, showing the nodal coordinate system used

in Appendix B and in this chapter.

3.2 Derivation of the Nodal Equations

In Appendix B a detailed analytical solution of the "one-and-one-

half" group theory equation has been developed. The main assumptions

made were: the continuity of fluxes and currents at the nodal inter-

faces; the invariance of the fast group diffusion coefficient throughout

the fueled nodes; and furthermore, the criticality of the core

(i.e., ps=O), as required to validate Eq. (2.11). Starting with

these analytical solutions, the nodal flux and power expressions will

be obtained in the subsections which follow.

3.2.1 Interior Nodes

For an interior node, the solutions for the flux integrated

over the node, in the X- and Y-directions are reproduced in Table 3.1,



TABLE 3.1

Analytical Solution for Interior Node Integrated Flux

X-direction:

2
(ijai

2 (3.1)

. csch(a . h) tanh(atij h/2) tanh(ai+ 1,j h/2 + . a csch(a . h) tanh(ax1j h/2) tanh(ai_.1  h/2)
1-1,j i-1,j Ii-,3 - OLil~ i+1,jai+1,j i+1,3 ti O -l -
coth(a th h/2) tanh(a h/2) tanh(a h coth(a h/2) tanh(xi+,j/2 aa tanha h/2I[o h/2) I[12) an 1 +-I nhcx+1~ h/2). h/ i+1~ tah~~ h/2- ii3 1,'

i - + i i+1, j ai +1 j 3
Ocx cxiil ij a cx ic IL 1X 1+1,3 J a ii .. ~

Y-direction:

ijl

2 (3.2)

. csch(6.. h) tanh(6 h/2) tanh(6 h/2) + t. csch(6 h) tanh(6 h/2) tanh(Bij+1 h/2)
+ 1 6. . + h ) -i 'd' +. . + 6( j+h

1 33, i1[ctj-1. /2l13nv. i___j+1__
coth(6j h/2) tanh(B i +1 h/2) ~tanh(6i h/2) tanh(6 j- h/2) + coth(6i h/2) tanh(6 _ h/2) "tanh(r8i h/2 tah(6ij+1 h/2

2 ij 6 6 6 6 6 + i,j+1 ]Lcoh(l I [ . . J L 13 iij4 JL i i+

Subject to: B2 = aL2 + 62
13 13 13

(3.3)
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as Eqs. (3.1) and (3.2), respectively. Both equations are

subject to the condition expressed by Eq. (3.3)

2 2 2 p..
B =t a + 6 i = - 2 7 (3.3)

(1-p.) M.

Expansion of the hyperbolic functions provides the approximation

necessary to the derivation of the simplified nodal expressions. For

a generic Xh variable the following expansions hold within the

limits stated [D-3]:

csch (Xh) -- + -- (Xh) 3  X h +.-.., [(Xh)2  2

(3.4)

+ Xh- (Xh)3 + . 1 + 2 ~'' ) 2< 2]

(3.5)

tanh T) - (Xh)3 + Xh
122

Any degree of accuracy (within the limits stated) is possible,

depending on the number of terms of the expansions that are retained.

Here the objective is to obtain an approximation appropriate for

h <20 cm; M 2 50-55 cm2 ; and a broad range of reactivities, i.e.:

101 < 0.25. Several approximations have been tested against

full-scope one-dimensional analytical benchmarks (using the corresponding

trigonometric functions instead of their hyperbolic counterparts,

< 2]
(3.6)

h 2
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where appropriate). The approximation judged to have the best

compromise between simplicity and accuracy was to neglect terms of

third and higher orders in the expansions. The relative error in

nodal power was always less than 3% for realistic cases; and higher

only for clusters of assemblies all of which have very high or very

low reactivity. As expected, a reduction in h (e.g. using quarter-

assembly nodes) produced very good accuracy, even for those extreme

cases.

Neglecting all terms that are of third and higher order in the

expansions (hence, retaining second order accuracy), Eqs. (3.1)

and (3.2) yield respectively:

2 2

. 1  - a~-, h2)i-1, 6

2 (1

2 h2)

~ij-1 - ~ij-1 6

IJ2 
(1

and

2 

h 2+ . i+1,jh
1+1,3 6

2 h 2

ij+1 2

69. h2
+ 13)

(3.7)

(3.8)
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Equations (3.7), (3.8) and (3.3) may be solved for , to give:

)kj (1 - a2  2)+ -11 - 6 h2

k=1-1 6 6
kfi Vi (3.9)

1 4 + 6 /

Note that estimates for the directional apportionment of the nodal
2 2

bucklings, a and 6, could also be obtained by the addition of an extra

loop in the Gauss-Seidel iterative solution process. Due to Eq. (3.3)
2 2.

only the ratio between a2 and 63 is needed, and this relation may be
*2 *

computed by estimating a. and 6 from Eqs. (3.7) and (3.8) as follows:

kj1 1 - a2 h 2

k=i-1 \ 6 /
3 3 k1iUk (1 h5) j (3.10)

h

and

2 (..

L 1 2 h 2

ik k h2
k=j-1 6

I

* 3 kj -1 (3
h 2 L..

k~ by *2 *2 (
At each iteration the ratios provided by a /g, together with Eq.

(3.3) could allow the computation of the directional apportionments

of the nodal bucklings. However, due to the small numerical impact

of the as and 3s in the numerator of Eq. (3.9), and to avoid the

extra calculational requirements, another simplification, called here

.11)
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the "isobuckling" approximation was used in the present work: it

consists simply in using:

B .
2 _ ii
-ij 2

and,
2

= ii
ii = 2

(3.12)

(3.13)

The power and flux relationship, provided by Eq. (2.16), may be used

in Eq. (3.9) to obtain, with the aid of Eqs. (3.12) and (3.13), and

after simplification:

S[V M2ij K Di

fki[ M2'
kj Di 1

h2

12 M kJ

+ p
M2 P) j

Using Eq. (2.29) for the factor
V
K

, and defining,

62
6 = 1 + + C26 M

and

e =1 h 2 - C2
12 M

where, for LEOPARD results, in Eq. (2.29), C2 5 0, the nodal

expression becomes:

(3.15)

(3.16)

power

1

k=i-1
k/1

+
j+1

1 3j

v M
il K D 1

h2
hT Pi1

12M i

(3.14)

kj

4 1 - 1



57

i+1 j+1

Ei f kj (1-esPkj) + z f%1 (1-eslp1 )k=-1-1 1=j-1
1/j

4 (1 - e. )
(3.17)k/i

The slight dependence of M2 on local reactivity is assumed to be

incorporated in e, to first order.

3.3.2 Radial Leakage Calculation

Knowledge of the radial leakage simplifies the derivation of the

expressions for the powers of the peripheral nodes. Therefore, the

prescription for its computation will be derived first.

Equations (B.40) and (B.41), giving the net currents out of a

peripheral node, in the X- and Y-directions, after minor re-arrangements,

become:

_ D 1 2
2ii 2
2

D 2

2

K
K

coth(cx. h/2) E D. .
13 + DB tanh(B h )

rr r
tanh(a.. h/2) E D. .

C~i -+ D -B' tn(rhr

13 + OB tanh(B h )

rr

r rr
tanh(. . h/2) E D. .

1. + DrB tanh(Brh r

7 (3.18)

(3.19)

f.. =

Sxij

and

ij ..
y13
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or, defining the terms in brackets as complementary non-leakage

probabilities (1-NLPX) and (1-NLPY):

D.. .. 2
j - 13 13 Nx~~j 2N1LPX]

and

Dyj jii - ii2

(where NLPX and NLPY are of interest

expression derivations).

NLPY,

in the peripheral nodal power

Making use of the "infinite reflector" approximation (since tanh

(Brhr) ; 1, for Brhr > 2, as for PWRs), using the expansions for

hyperbolic functions given by Eqs. (3.5) and (3.6), neglecting the

terms of third and higher orders, and after simplification, Eqs. (3.18)

and (3.19) become: %

2D. .#..

i 13 13 (3.22)

and

2D.I
ylijY' h

Defining the ratio

to production rate

reactivities" pLXij

[ 2h2

1 -.#.. 6
2 1 ~ 2 E D j ( 3

rr +

of neutron leakage rate in the X- and Y-directions

of the the peripheral assemblies as "leakage

and pLYij, these expressions become,

(3.20)

(3.21)

.23)



PLXij

PLYij \ Yij
(K)f

and, using Eq. (2.16) for o , and Eqs. (3.22) and (3.23) for JX i

and J ,

2 M . (1 - p.)

PLXij - h 2

and

2 M (1 - p.)
PLYij h 2

- a2. h2  _1 -11 6
+2ED.. j1+ 13a

- DrB h -r r

2- h 2

13
6

2ED..

DrBr h

For an assembly with only one reflector interface, either Eq. (2.26)

or (2.27) is applicable. For an assembly with two reflector inter-

faces, p Lij= pLXij + pLYij , becomes

4 M (1 - p.)

h 2

1- 2Eh.

+2 E D i
- DBrh ...

or, equivalently, after using Eq. (3.3) and simplifying:

13 F-42M h .,
Lij 2 12 M1.h .
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and

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

(3.29)
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For the cases of interest here, with h - 20 cm, M 2 50 cm 2, the slight

dependence of pL on p may be neglected (or included in the nodal

coupling coefficient ep: note that (1-h 2/12 M 2)=es)); then an

approximation for PL becomes:

PU 1
Lij ~ 2 2 E D 1 (3.30)

h1 + D ED B h

A similar result is obtained, by applying this same approximation, for

assemblies having one reflector interface:

2 M.

PLXij =LYij hy2 + 2 1 E D. . (3.32)

_ DrB rh

Note that, in any event, the factor 2 E D i/DrBrh is empirically

adjustable, and thus able to account for required corrections and, as

shown in Eq. (B-36), has a direct relation with conventional albedo-

type boundary conditions.

As noted by Khalil [K-5], the albedos are functions of the soluble

boron content of the reflector. A linear dependence is appropriate,

and may be included in the expression for pL without causing undue

additional complexity. Hence, pL may be written as:

2 M .

pLij = Nr 2 2 E D (1 + kL PSP) (3.32)

h 1 + DB h
Drrh
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where,

p = soluble poison reactivity penalty, and

kL = coefficient accounting for the dependence of PL on

soluble boron reactivity.

As an illustration, considering typical Maine Yankee core albedos of

0.582 at EOC (0 ppm boron), 0.538 at MOC ('-400 ppm boron) and

0.495 at BOC (-800 ppm boron), a value of kL 1.5 would result.

Hence, due to this and other effects (e.g. thermal back-leakage,

etc.) the empirical adjustment of the leakage constant, if possible on

an individual peripheral node basis (as in the case of albedos),

is clearly necessary, and this fact has been implicitly acknowledged

through the inclusion of the parameter E in its formulation.

3.2.3 Peripheral Nodes

First the quantities NLPX and NLPY will be derived as a function

of the "leakage reactivities". Re-arrangement of Eqs. (3.20) and

(3.21), with the aid of Eqs. (3.24), (3.25) and (2.16) yields, after

some algebra:

NL = 2 PLXij + 1 (3.29)
LPX M .(1 - P..) .

and

2 pL i.
NLPY LY 2 + 1 (3.30)

M (1 - p.) 6 2
13 13 1
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Equations (B.33) and (B.34), re-written in Table 3.2, as Eqs. (3.31)

and (3.32), are the solutions in the X- and Y-directions for the

integrated flux of a peripheral node, under the restriction expressed

by Eq. (3.3).

The first factor of the second term in the denominators of Eqs.

(3.31) and (3.32) may be identified, respectively, as NLPX and NLPY'

defined by Eqs. (3.29) and (3.30). Using this fact and, again,

expanding the hyperbolic functions in series, as given by Eqs. (3.4),

(3.5) and (3.6), and neglecting all terms of third and higher orders,

after some simplifications, the following expressions result:

i-1,j ~1 6
i ̂  2 h2 ' (3.31)

+ h + 2 hLXij
M.. (1 - p.)

and

Bij+1 h 2

2 2 2 ) , (3.32)

+6 ij +M 2 (1 - p i) PLYij

subject to Eq. (3.3) (i.e.: a 2 2+ B 2

For assemblies with two reflector interfaces, Eqs. (3.31), (3.32)

and (3.3) may be solved for (as well as for the directional

apportionment of the buckling, if desired as in Eqs. (3.10) and (3.11)),

in the same fashion as for the interior nodes. The result for

becomes:



TABLE 3.2

Analytical Solution for Peripheral Node Integrated Flux

X-direction:

2

coth(ai h/2) tanh(at h/2) tanh(a h/2)F 13 +l - j-1,
-1 ,j

(3.31)

C.)

Y-direction:

2
[coth(6i h/2) tanh( +1 h/2)

+ a iW+1

h)

(3.32)
tanh(6 h/2) tanh(Sjy h/2)

+ i+1

Subject to: B2 =2 + ( .
13 13 13

Di-ij at e-l sch(a,_ , h)

-33)
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.%~ ( - a ~i1 h2 . - ij+1 h2

.2-= 11 a 2  6 1+ 6 (3.33)
Ba 5 2Y h + h 22 1 + J 2 M

The corresponding nodal power equation, using the isobuckling

approximation and Eq. (2.29) for the factor V. 2 , becomes
K1

f.. =

-1,j L 1 h 2  - C2  pi-1,j + f ij+1 1 2 M 2 C 2 Pij+1
2 M.. . ij+1

2 1 -1 + 5 h2+ C2 ij 2h 2 PL

(3.34)

For the cases of one and one-half reflector interfaces, expressions

with similar functional form may be obtained by recognizing the fact

that the denominators in Eqs. (3.31), (3.32), (3.7) and (3.8) are

numerically similar for the range of interest in the present work.

The results for these cases are included in Table 3.3, which summarizes

the nodal power equations for all cases, as well as the expressions

for leakage calculation. However, for simplicity, since the nodes of

interest are always coupled only to the interfacing nodes regardless

of the order of the coordinates, the double subscript "ij" has been

dropped. From now on, in general, the subscripts "i" and "j" or "s"

will be used to designate the node of interest and its interfacing

nodes, respectively. The coupling coefficients, other constants and

data of interest, as well as numerical estimates are summarized
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TABLE 3.3

Summary of the Nodal Power and Leakage Equations

Interior Nodes:

4

= ( .P3)
4(1 - ep )

Peripheral Nodes: N

j~ f ( - sP.)
f i =i 3 (3.36)

1 N (1 -ep +6eENp0 e pPi LPLjO

Leakage Reactivity:

2 M2

PLi = N r h2 1 + 2 E Di (1 + k L Psp) (3.37)

= h2(i DrBrh)

where:

N = number of fuel/fuel interfaces on assembly i;

Nr 4-N = number of fuel/reflector interfaces on assembly i;

and, the coupling coefficients, other constants and numerical

estimates are summarized in Table 3.4.

(Note change in notation from double (ij) to single (i) subscripts.)



66

in Table 3.4. It should be noted, as a point of interest, that the

coupling coefficients are inter-related; hence eG, eL and the eP s

may all be written as a function of 0.

3.2.4 Relation to Previous Results

The results derived for interior nodes are in good agreement with

those obtained by Kamal [K-1] using a cylindricized representation of

an assembly and its surroundings; differences exist however for the

peripheral nodes. Also, with appropriate choice of terms in the

expansion of the hyperbolic functions of Eqs. (3.1) and (3.2), a

lower order approximation, similar to that proposed by Loh [L-2] and

employed by Downar [D-2], may be obtained; after solving for oP,

with the aid of Eq. (3.3) one obtains:

4

-j=1 
(338

S r B. h2 (3.38)

4 1 +I

The corresponding nodal power equation can be derived using Eqs. (2.16)

and (2.29). After simplification the result becomes:

4
f. = = (3.39)

+ 8 h 21

The numerator is merely an arithmetic average over the surroundings,

hence the result is similar to that of Loh [L-2], reproduced in Eq. (1.2).
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TABLE 3.4

Summary of Coupling Coefficients, Leakage Constants and
Numerical Estimates

INTERIOR:

e =1+ 2 + yS
6 M

= 2.234

h2
e = 1 2- 2 + y =2 0.383
sE12PM2R2

PERIPHERY:

ASSUMPTIONS:

1) Empirical corrections: y = ... = 0.

2) M 54 cm2 ; h = 20 cm; psp 0 (EOC).

3) pLi was computed using: D. = 1.4 cm; Dr = 2.25 cm; 1/Br = 8 cm

and E t'' 2.2 (Appendix C).

4) pLi was computed using: Eq. (B.36) to calculate E/DrBr = 0.1321

(for Maine Yankee's EOC albedo, 6* = 0.583); and Di = 1.4.
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An interesting point is the good agreement between the value predicted

by Eq. (3.39) for the coupling coefficient (1 + h2/8 M2 :e 1.9, for

h = 20 cm M2 -z 55 cm2) and that obtained empirically by prior

investigators [L-2], [K-1] from empirical fits to state-of-the-art

core maps (1.42 to 1.81).

3.2.5 Incorporation'of Corrections and Empirical Adjustments

Besides providing a simple and reasonably accurate core model (as

will be shown later in this chapter), a major merit of the relations

derived so far is the capability of their functional form to incorporate

corrections due to inherent analytical deficiencies as well as to

accommodate empirical adjustments. In fact, empirically adjustable

parameters have been the key to the successful use of the FLARE/TRILUX-

type of fuel management codes.

In the previous sections, two adjustments, both related to the

conventional albedo, namely the factors E (for peripheral thermal

back-leakage, baffle transmission, etc.) and kL (to account for the

dependence of the leakage on the soluble boron content of the reflector)

have been introduced. In this section other corrections will be

suggested and possible compensatory adjustments indicated.
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3.2.5.1 Differential Thermal Leakage

One of the assumptions in deriving the one-and-one-half group

model, was the inconsequential magnitude of thermal leakage, implemented

by setting V2 D2 = 0 (or alternatively D2 = 0) in Eq. (2.2). For

peripheral nodes the factor E, to account for thermal back-leakage of

neutrons from the reflectors, has already been discussed in the

preceeding sections and in appendices B and C. Appendix C presents a

derivation along the lines proposed by Becker [B-3], to account partially

for the differential thermal leakage [D-1]. It was shown that the

readjustment of the coupling coefficient e (or e p) is sufficient to

incorporate first order effects between adjacent assemblies. Then,

generically, a new coefficient e may be defined as:

6= e + 2 L + ... (3.40)

where, y = 1/6 for interior nodes, 5/12 for twice-reflected nodes, etc.,

and Li, Ls = thermal diffusion lengths for assembly "i" and

surroundings "j" (-- 2 cm).

3.2.5.2 Power Related Feedback

In Appendix A power feedback effects on the fast group parameter

D/M2 have been examined. Here the objective is to evaluate the effects

on the assembly reactivity status, which is also affected by the power

level. An increase in power leads to increases in moderator and fuel
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temperature, both of which slightly reduce the local reactivity due to

the negative moderator temperature coefficient and the Doppler

reactivity coefficient of the fuel. Higher power density also

corresponds to higher concentrations of saturating fission products

leading to a further slight reduction in local reactivity. The

first order incorporation of these feedback effects, as demonstrated

in Appendix C, will not necessarily affect the power level ;

core-average power level is fixed by demand: it is differential

local changes in power shape that are of concern here. In any

event, a first order correction for feedback can be incorporated

if the coupling coefficient is adjusted to match results of more

sophisticated calculations that explicitly consider the coupling

between neutronic and thermal hydraulic effects. Hence, as shown

in Appendix C, the new coupling coefficient, 6*, would satisfy

the relation
14 af.

6* = e + (3.41)

3.2.5.3 Axial Leakage

For PWR assemblies, with initially uniform axial enrichment,

the axial power shape (hence, local burnup) behavior usually follows

a characteristic pattern as burnup progresses, starting with a close-to-

cosine shape at BOL and ending almost flat at EOL. Leakage, as in the

radial case already derived, depends strongly on local power (thus
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also local reactivity) close to the reflector interfaces (as well as

on the soluble poison content of the core and its reflector).

Knowledge of the evolution of an equivalent axial (2-dimensional)

buckling as a function of burnup allows one to account for the

related leakage effects in a two-dimensional (X,Y) model as a

decrement, pLZ, in the assembly's reactivity. Numerical results show

a close-to-directly-proportional dependence (increase) of pLZ as a

function of assembly burnup. Typical values of the reactivity

decrement, pLZ, for the Maine Yankee core are: 0.0048 at BOL;

0.0105 at 20 MWD/kg, and 0.0157 at 40 MWD/kg. The error incurred by

neglecting the change in axial leakage (or indeed the leakage itself)

is inconsequential for present purposes, since it has an only minor

effect on the radial power distribution, and consistently biases the

absolute value of the cycle burnup towards the high side.

In general, however, the incorporation of this correction is

readily feasible given the availability of an appropriate correlation

for PLZ as a function of burnup. One simple scheme to account for the

axial leakage is to include a BOL reactivity decrement and slightly

increase the reactivity versus burnup slope, A, to allow for the

differential increase in axial leakage with burnup.

3.2.5.4 Differential Boron Worth

As discussed in section 2.3.4.4, the net local reactivity

decrement due to the control poison (soluble boron) is dependent on
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the local spectrum. An illustration of the effect is provided in

Fig. (2.4), by the differing slopes of p as a function of burnup for

the cases of different soluble boron content in the assemblies

(0, 400 and 800 ppm). As suggested in Eqs. (2.24) and (2.25) the

effect may be accounted for by using weighting factors which are

functions of local burnup and burnable poison content, for any given

initial enrichment. Even though provision is made in the computer

program developed in the course of the present research to allow for

such weighting factors, normally they have been set to unity, since

the resulting error is minor, given the objectives of this work.

3.3 The Solution Strategy

The equations and relations of Tables (3.3) and (3.4), together

with the system reactivity balance equation and the applicable

corrections as discussed in section 3.2.5, constitute the basis for

the spatial power distribution calculation. In the present work a

standard Gauss-Seidel iterative procedure has been used to solve these

equations simultaneously. It may be noted that, in Table 3.3 the

equations are cast in a form suitable for such an iterative scheme

(instead of the conventional matrix formalism).

Figure 3.1 shows the calculational procedure used in the method,

which is embodied in a microcomputer program, as documented in
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Fig. 3.1 Flowchart of Power Distribution Calculation



74

Appendix D. The power distribution calculation process is initialized

by setting all nodal power fractions to unity. If better estimates

are available (from a previous burnup step, for example) then these

are used. Then, p is calculated using Eq. (2.30), and the
sp

iteration loops are started. Normally the process converges

monotonically, and a simple relaxation method has been implemented

to take advantage of this characteristic and accelerate the convergence.

k *At each inner iteration, k, the power fraction, fk is recomputed as f* k.
1 1

k
*k=f.-=k *k- 1 (3.42)

1 - A (f. - f. ici I

where A is an empirical factor, found to lie between 0.4 and 0.66 for
c

best results. This simple artifice allowed a reduction in the number

of iterations required to achieve a given accuracy by a factor close

to 2. The local reactivity, pi, to be used in the appropriate equations

of Table 3.3 is given by:

= p - A. B. - pb. + Sbi B.- W .  (3.43)

where:

pboi = initial BP reactivity decrement

Sbi = slope of BP reactivity decrement as a function of burnup.

The outer loop recomputes the critical boron reactivity, psp, each

time after all nodal powers have been updated. Convergence for psp is

very fast and a value close to the final one is achieved in the first

few iterations. Power-, instead of source-weighting is used to compute
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psp .consistent with the approximation evaluated in section 2.3.4.3.

Hence, using Eqs. (2.22), (2.24), (3.24) and (3.25), psp is given by:

n m

Zi i Z i Li
i=1 i=1

sp W (3.44)

where:

A* B*-A.BB+
P1 = Poi - A + pBoi + SbiB

For the EOC nodal power calculation the process is the same, except

that the soluble boron reactivity, p sp,. is zero. Instead of Psp
computation, as will be seen later, the local reactivities are recomputed

according to the nodal and cycle burnups, such as to maintain the

core s criticality.

A rigorous convergence criterion would require that all computed

nodal power values in a given iteration be close to those of the

previous iteration by less than some small margin 6. Experience,

however, has shown that this condition can, for problems of present

interest, be translated into specification of the number of iterations

to be carried out (approximately 20, when the initial power fractions

are set to unity); hence this option has been adopted in the computer

program.
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3.4 Burnup Calculation

Reactivity (as formulated in the LRM), may be regarded as a local

state function, in the sense that it is able to provide, in a very

simple fashion, an accurate description of the assembly status as a

function of burnup. In this section, computational methods to describe

the core state as a function of its burnup, will be formulated using

the LRM. Three methods, here demoninated "synthesis", "integrated" and

"step-wise depletion", have been developed and incorporated in the

computer program.

3.4.1 Synthesis Method

For normal operational circumstances the end of cycle, and thus

the cycle burnup, is determined by the null reactivity limit. The LRM

may be used to evaluate this condition and compute the cycle burnup.

The reactivity balance is provided by Eq. (3.44). At EOC, p = 0

and, as postulated in section 2.3.3.2, defining r as the residual BP

reactivity fraction,

Pboi -Sbi B = rpboi (3.45)

Then Eq. (3.43) becomes, using the superscript e to denote EOC:

n f P A .- rn fe

p oi B - r -boi Li
i=1 1=1 = 0 (3.46)

eI W
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Recognizing that the B , the assembly burnups, may be written as a

function of cycle-average power fraction, f ai as:

B. = B f. , (3.47)1 c al

the expression for the cycle burnup becomes:

n ermfe

(fi (pi - pboi) i Li

B = n (3.48)

i =1

The only unknowns in this equation are the cycle-average power fractions,

fai . In analogy to the conventional flux synthesis method, a means

may be devised to compute these quantities from the BOC and EQE power

fractions (f , f ) by the appropriate choice of mixing coefficients; i.e.:

f =f - V + fe V (3.49)

If the required weighting coefficients (importances) were known (e.g.

from experience, or variational methods, etc.) this technique would

yield the exact answer. Experience gained in the course of the present

work shows that for "well-behaved" (i.e. realistic) cores composed of

assemblies having linear BP and reactivity traces as functions of

burnup, the power fraction, f., to a good approximation, also varies

linearly with burnup. Hence 0.5 is a natural choice for the mixing

coefficients.

Figure 3.2 displays the flowchart of the computational process

using this approximation. A standard BOC power distribution calculation
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Fig. 3.2 Flowchart for Synthesis Method
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is performed, and then EOC power distribution, cycle and assembly

burnup calculations are carried out in tandem until convergence is

achieved (usually, about 20 iterations are required at BOC and EOC).

Non-negligible errors can be associated with the method, due to

nonlinearities in the power fraction as a function of burnup, as can

arise when there is a significant power difference between the various

regions of the core, or when exceptionally reactive assemblies are

present. In the latter case the usual consequence is that an over-

prediction of burnup of the highly reactive assemblies results (with

a corresponding underprediction for the least reactive ones). In

general the results were fairly accurate for realistic core loading

patterns (that is, core maps not having excessive power tilting or

local assembly overpower). The real usefulness of this method in the

present research is related to its compatibility with the optimization

scheme formulated in the next chapter.

3.4.2 Integrated Method

Integration of the nodal power equations over the cycle yields a

set of relations that permits the computation of the nodal burnups

in a fashion similar to the way power is calculated at a fixed point

in time. As in the synthesis method, however, an assumption is also

required: this time regarding the computation of the nodal integrated

soluble boron reactivity decrement, as will be shown later.



80

The interior nodal equation may be re-written as an integral

over the cycle as:

BZ

JL
0

1

c f1 - e(po0  - A1Bi - p + SbiB - W p) dBc =

n B
n c f 1 - A B - pb + SbjBj - Wjps dBc

(3.50)

where i indicates the reference node of concern, and j designates

the nodes which share interfaces with the reference node. Recognizing

that f. dBc = dBi, all the integrations are well defined, except

that of the local reactivity decrement due to the soluble control

poison, which may be written out as:

Bc

0

Wg psp (Bc f dBc

Assumptions regarding the behavior of the integrand with respect

to cycle burnup are required. Linearity of both p sp W. and f. as

functions of cycle burnup appears to be the simplest choice, one which

is also not too unrealistic, considering that burnable poison and

assembly reactivities are approximately linear with burnup and that

core-average soluble poison concentrations, as actually measured on

operating PWRs, decrease very nearly linearly with core average burnup.

Under this assumption, a quadratic equation for the local burnup

results after integration and re-arrangement. Realizing that only

(3.51)
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positive values are physically acceptable, the solution for the local

burnup becomes:

D -1t - e [po - P 'boi (1+r)/2 -
-6 - Pboi(l+r)/2 -

fIt
pspo j +

eA.

1 -e [p - Pboi(1+r)/2 -

e A.

pspo/3 2 + Z

(3.52)

where pspo is the BOC p , and

Ne 
B A

Z = 2eAs + 1SNp ,3=1 2Np
N

+ ' fb+ I E efb -
6 i N j=1

p

An entirely analogous result may

B = 1- o [oi - Pboi(1
B1 e A.

N
p

E
j=1 t1 - ebs [o Pboj(1+r)/2 - Pspo/3j1

(3.53)

be obtained for the peripheral nodes:

+r)/2 - pspo/31 + eLPLi

p1

+ - 6 poi - Pboi(l+r)/2 - p LLi/3] + eLpi Z
e A.

(3.54)

where p i has been assumed constant, and Z is obtained by substituting

6P for e in Eq. (3.53).
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The core cycle average burnup is given by:

Bc = B (3.55)

i=1

The flowchart for the computations is shown in Fig. 3.3.

The results in this case, as opposed to the synthesis method,

have been found to underpredict the burnup of very reactive assemblies

(and overpredict that of those with low reactivity). This is due to

the error introduced by linearizing the power fractions as a function

of burnup in Eq. (3.51). Better results would probably be obtained

if the control poison reactivity were calculated by integrating the

system reactivity balance equation over the cycle, and if the linearity

of the power fractions with burnup was related explicitly to the EOC

power fractions (in Eq. (3.53)), instead of those at BOC, and also

if the null reactivity condition were explicitly verified.

3.4.3 Step-wise Depletion Method

In principle, step-wise depletion can be made as accurate as

desired, by appropriately choosing the burnup step length, AB.

Figure 3.4 displays the computational flowchart formulated for this

method. After AB has been specified, the process begins with a

BOC power calculation. Equation (3.48) is used to test if enough

reactivity is available for a full burnup step. Depletion step s is

executed using an average power fraction, computed as:

f . = (fs-1 + f.) / 2 (3.56)ai 1 1
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START

Compute BOC Powers,

f b, i=1, ... n; and

pspo [Fig. 3.1]

Compute Burnups:

Next B. , i=1, ... n;

Nexatio [E s.(3.52) or (3.54)]

Iteration B [Eq. 3.551]

NOU urnups
Converged

YES

Compute EOC Powers,

f 9, i = 1, . n

[Fig. 3.1]

C STOP

Fig. 3.3 Computational Flowchart for Integrated Burnup Method
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Fig. 3.4 Computational Flowchart for Step-wise Depletion Method
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and the local burnup is calculated as

AB. = AB -f (3.57)

after the power calculation has converged for that step. At each

inner iteration for power calculation, the local reactivities are

updated. When not enough reactivity is available for a full step,

the final step length is computed using Eq. (3.48), in the same way

as in the synthesis method (with the previous step considered as the

BOC calculation in the flowchart of Fig. 3.2).

The step-wise depletion method was preferred in this research

for core burnup calculations due to its accuracy, flexibility and

relatively high speed. Its speed results from the fact that the

power fractions from one step are used as initial estimates for the

next step, and therefore fewer iterations are required until

convergence. Typically 15 iterations are used at BOC and 5 to 8

for the remaining steps prior to EOC. The use of several intermediate

steps between BOC and EOC makes it only a little slower than the

other methods (which cover the interval in a single step), but this is

compensated by the flexibility and accuracy gained. Its accuracy, as

compared to state-of-the-art results is discussed in the next section.
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3.5 Accuracy: A Comparison with State-of-the-art Results

The accuracy of the three methods* just described has been tested

against licensing-quality calculations for the Maine Yankee reactor

core. Here selected results from the step-wise depletion method are

compared to LEOPARD/PDQ-7 calculations for the Maine Yankee cycle 6

core [H-8]. The core loading and BOC fuel characteristics are shown

in Fig. 3.5. From this information the input data for the LRM-Nodal

program have been computed and are reproduced in Table 3.5. It should

be noted that these data are independent best estimate values generated

by the author using EPRI-LEOPARD (MIT's version) correlations (and

CASMO results for BP related information). The analytically estimated

coupling coefficients and leakage constants, displayed in Table 3.4,

without empirical adjustments to optimize the match between MIT and

Yankee results, have been used in the calculations.

Before comparing the results, the different definitions used for

assembly average power have to be clarified: Yankee's LEOPARD/PDQ-7

results represent power per unit of fuel mass (or equivalently, average

pin powers in the assembly). The LRM-Nodal results are power per

unit of volume. Hence an inconsistency exists (consistent underprediction

by LRM-Nodal), since the burnable-poisoned assemblies have fewer fuel

pins (and consequently less mass, in kg, as follows: E-16: 353.4;

1-0: 388.7; 1-4: 379.9; J-0 and K-0: 381.1; J-4 and K-4: 372.5;

J-8 and K-8: 363.8). As shown in- Figs. 3.6 through 3.10, the

(*) For relative merits of each method, see sections 3.4.1, 3.4.2 and 3.4.3



87

1 2 3 4 5 6 7 8 9

E16 4 JO 5 14 6 00 7 10 8 J8 9 10 10 K8 3

17,697 7,612 25,332 7,612 22,223 13,913 22,223 - KO

JO 5 10 11 JO 12 14 13 JO 14 14 15 K8 3 10 16

7,612 19,936 10,193 25,830 8,743 24,432 - 23,980 KO

J4 6 JO 12 14 17 J0 18 10 19 JO 20 08 21 KO 1

25,332 10,193 23,552 12,394 19,337 7,343 12,098 -

J0 7 14 13 J0 18 J4 22 00 23 10 24 10 250 1

7,612 25,830 12,394 13,411 9,930 20,678 20,364 -

10 8 J0 14 10 19 30 23 10 26 J8 27 K8 3 0 1

2,223 8,743 19,337 9,930 18,920 14,488 - -

3

5

7

JO 20

7,343

[0 24

!0,678

08 27

14,488
.1 1 1 1

K8

I0

23

3

16

,980

08 21

12,098

KO 1

[0 25

0,364

KO

KO 1 KO 1 Note:
9 - - --

1

K8 3

KO 1

K4 2

KO 1

KO 1

..... Fuel/Shim Type (see Note)
and Fuel Type Number (Table 3.5)

....... Burnup at BOC KWD/kg

a) Initial Enrichments:

E = 2.52 w/o; I = 3.03 w/o;
J = 3.0 w/o; K = 3.0 w/o;

b) Number of B4C shim rods:

given by number in alphanumeric code (e.g.
K-8 indicates 8 shim rods).

Fig. 3.5 Maine Yankee Cycle 6 Core Loading and Fuel
Characteristics at BOC

14 15

24,432

8

38 9

13,913

:0 10

!2,223

K8 3
I



TABLE 3.5

Quarter-Core BOC Estimated Data for Maine Yankee Cycle 6

Assembly Number of BOC Reactivity, Slope, A (kg/KWD) BP Reactivity BP Slope,
Type Number Assemblies PO Decrement, Pbo Sb (kg/KWD)

1 12 0.221973 9.0538E-06 0 0
2 1 0.221973 9.0538E-06 0.045 2.8125E-06
3 5 0.221973 9.0538E-06 0.080 5.OE-06

20 2 0.155491 9.0538E-06 0 0
5 1 0.153055 9.0538E-06 0 0
7 1 0.153055 9.0538E-06 0 0

14 2 0.142816 9.0538E-06 0 0
23 2 0.132068 9.0538E-06 0 0
12 2 0.129688 9.0538E-06 0 0
21 2 0.11244 9.0538E-06 0 0
18 2 0.10976 9.0538E-06 0 0
22 1 0.100552 9.0538E-06 0 0
9 1 0.0960075 9.0538E-06 0 0
27 2 0.0908015 9.0538E-06 0 0
26 1 0.0520786 9.10256E-06 0 0
19 2 0.0482828 9.10226E-06 0 0
11 1 0.0428304 9.10256E-06 0 0
25 2 0.0389345 9.10256E-06 0 0
24 2 0.0360762 9.10256E-06 0 0
4 1 0.0223811 9.8815E-06 0 0
8 1 0.0220128 9.10256E-06 0 0

10 1 0.0220128 9.10256E-06 0 0
17 1 0.0099155 9.10256E-06 0 0
15 2 0.00190525 9.0538E-06 0 0
16 2 -0.0061966 9.10256E-06 0 0
6 1 -0.0062870 9.10256E-06 0 0
13 2 -0.0108201 9.10256E-06 0 0

00
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2 3 14 5 6 7

E16 4 J0 5 14 6 J0 7 10 8 J8 9 10 10 K8 3
1.0431 1.1882 0.9530 1.1329 0.9698 1.0391 0.9169 1.0124
1.050 1.230 0.9311 1.137 0.9606 1.000 0.9293 1.007
0.6 3.5 -2.3 0.36 -0.9 -3.7 1.3 -0.5 0

JO 5 10 11 J0 12 14 13 JO 14 14 15 K8 3  6
1.1819 1.0248 1.0986 0.9424 1.1584 0.9863 1.1512 .8316
1.230 1.042 1.098 0.9123 1.151 0.9415 1.144 0.8124
4.1 1.6 -0.05 -3.2 -0.6 -4.0 -0.6 -2.3

14 6 JO 12 14 17 JO 18 10 19 JO 20 J8 21'KO 1 U
0.9479 1.0950 0.9683 1.1300 1.132 1.2575* 1.1554 1.0385
0.9313 1.098 0.9394 1.111 1.078 1.253 * 1.163 1.159
-1.7 0.3 -3.0 -1.7 -4.7 -0.3 0.6 11.6

0 7 14 13 00 18 J4 22 30 23 10 24 10 25 KO 1
1.1320 0.9428 1.1303 1.2226 1.2518 1.0439 0.9429 0.8663
1.138 0.9122 1.112 1.186 1.211 0.9869 0.9116 0.9607
0.5 -3.2 -1.6 3.0 -3.2 -5.4 -3.3 10.9

10 8 J0 14 10 19 JO 23 10 26 J8 27 (8 3 KO 1
0.9712 1.1607 1.1157 1.2550 1.0953 1.0854 0.9845 0.6015
0.9618 1.151 1.078 1.210 1.030 1.017 0.9506 0.6707
-1.0 -0.8 -3.4 -3.6 -5.9 -6.3 -3.4 11.5

J8 9
1.0413
1.003
-3.7
10 10
0.9190
0.9315

1.4
K8 3
1.0146
1.009
-0.5

14 15
0.9891
0.9468
-4.2
K8
1.1544
1.146
-0.7

31

30 16
0.8334
0.8138
-2.3

0 20
1.2619*
1.256*
-0.5
J8 21
1.1596
1.165
0.5

KO
1.0415
1.163

11.6

1

KG 1 KO 1
g.7469 ).58731
D.8409 D.6422

12.6 9.3

10 24
1.0483
0.9870
-5.8

10 25
0.9467
0.9109
-3.8

KO 1
0.8690
0.9615

10.6

38 27
1.0883
1.022
-6.1

K8 3
0.9871
0.9544
-3.3
KG 1
0.6031
0.6747

11.8

K4 2
1.1017
1.075
-2.4

KO 1
0.7102
0.7168

0.9

K0
0.7093
0.7184

1.3

1

(0 1
.7454
.8396
12.6

70 1
.5860
.6440
9.9

.......... Fuel Type: Maine Yankee/Table 3.5

.......... LEOPARD/PDQ-7 (F1 ).......... LRM-NDAL (F2 ).......... % Error = 100 (F2 - F1 )/F1

* Indicates Peakers

Fig. 3.6 Assembly Power Comparison at 1 MWD/kg

1 8 9

1

2

3,

5

6

7

8



90

1 2 3 4 5 6 7 8

E16 4 J0 5 14 6 00 7 10 8 38 9 10 10 K8 3
0.9698 1.1053 0.8981 1.0796 0.9454 1.0464 0.9606 1.0792
0.9989 1.164 0.894 1.097 0.9447 0.9967 0.9516 1.049
3.0 5.3 -. 5 1.6 -0.1 -4.7 -0.9 -2.8

JO 5 10 11 J0 12 14 13 JO 14 14 15 K8 3 10 16
1.0998 0.9887 1.0352 0.9014 1.1238 0.9864 1.1975 0.8740
1.165 0.991 1.052 0.8903 1.125 0.9518 1.175 0.8449
3.8 1.0 1.6 -1.2 0.1 -3.5 -1.9 -3.3

14 6 JO 12 14 17 JO 18 10 19 J0 20 J8 21 KO 1
0.8936 1.0320 0.9200 1.0801 1.0792 1.2453* 1.1833 1.0786
0.8976 1.052 0.9101 1.075 1.055 1.236* 1.172 1.178
0.4 1.9 -1.1 -0.5 -2.2 -0.7 -0.9 9.2

0 7 14 13 J0 18 J4 22 J0 23 10 24 10 25 K0 1
1.0785 0.9012 1.0802 1.1758 1.2167 1.0407 3.9648 J.8994
1.098 0.8897 1.076 1.158 1.187 0.9895 ).9227 ).9847
1.8 -1.3 -0.4 -2.3 -2.5 -4.9 -4.3 9.4

10 8 0 14 10 19 JO 23 10 26 38 27 8 3 KO 1
0.9462 1.1255 1.0811 1.2194 1.0840 1.1011 .0258 ).6298
0.9461 1.124 1.056 1.184 1.026 1.029 .9849 ).6924
-0.001 -0.13 -2.3 -2.9 -5.3 -6.5 -4.0 9.9

J8 9
1.0478
0.993
-4.6

10 10
0.9518
0.9542

0.2
K8 3
1.0810
1.051
-2.7

14 15
0.9883
0.9505
-3.8

K8 3
1.1996
1.174
-2.1
J0 16
0.8750
0.8451
-3.4

J0 20
1.2487*
1.238*
-0.8

J8 21
1.1866
1 .174

S-1.1
KO
1.0816
1.177
8.8

1

KO 1 KO 1
0.7971 0.6234
0.8786 0.6695
10.2 7.4

10 24
1.0444
0.9895
-5.2

10 25
).9679
).9239
-. 5
KO 1
3.9013
3.9868
9.5

38 27
1.1035
1.031
-6.5

K8 3
1.0279
0.9878
-3.9
KO 1
0.6311
0.6938
9.9

K4
1.1378
1.113
-2.2

KO
0.7402
0.7428
0.3

2

1

KO
.7395
.7428
0.4

1

9

P7963 1
0.8764

10.1

062261
0.6637
6.6

.......... Fuel Type: Maine Yankee/Table 3.5

.......... LEOPARD/PDQ-7 (F 1)

.......... LRM-NODAL (F )

.......... % Error = 106 (F2 - F1)/F1

*Indicates Peakers

Fig. 3.7 Assembly Power Comparison at 2 MWD/kg

1

2

3

5

6

7

8
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2 3 4 5 6 7

E16 4 J0 5 14 6 JO 7 10 8 J8 9 10 10 K8 3
0.9149 1.0396 0.8565 1.0333 0.9254 1.0591 0.9934 1.1646
0.9286 1.086 0.8502 1.049 0.9180 0.9965 0.9851 1.126

1.5 4.4 -0.7 1.5 -0.8 -5.9 -0.8 -3.3
J0 5 10 11 JO 12 14 13 JO 14 14 15 K8 3 10 16
1.0348 0.9082 0.9834 0.8672 1.0878 0.9875 1.2546* 0.9213
1.086 0.9380 0.9975 0.8531 1.089 0.9469 1.223* 0.8835
4.9 3.3 1.4 -1.6 0.1 -4.1 -2.5 -4.1

14 6 00 12 14 17 JO 18 10 19 JO 20 J8 21 KO 1
0.8526 0.9807 0.8793 1.0287 1.0383 1.2201 1.2032 1.1105
0.8502 0.9974 0.8671 1.028 1.017 1.210 1.176 1.195
-0.2 1.7 -1.4 -0.07 -2.0 -0.8 -2.3 7.6

JO 7 14 13 00 18 34 22 JO 23 10 24 10 25 KO 1
1.0322 0.8672 1.0286 1.1185 1.1665 1.0285 .9811 0.9249
1.049 0.8524 1.028 1.105 1.147 0.9820 .9424 1.007
1.6 -1.7 -0.06 -1.2 -1.7 -4.5 3.9 _ 8.8

10 8 JO 14 10 19 J0 23 10 26 J8 27 8 3 KO 1
>.9256 1.0886 1.0394 1.1684 1.0614 1.1080 .0701 .6599
.9190 1.087 1.018 1.145 1.014 1.048 .044 .7320
0.7 -0.1 -2.0 -2.0 -4.4 -5.4 -2.4 10.9

14 15
0.9885
0.9450
-4.4

K8 3
1.2554*
1.221*
-2.7

JO 16
0.9213
0.8829
-4.1

JO 20
1.2222
1.211
-0.9

J8 21
1.2054
1.177
-2.3
KO 1
1.1112
1.193
7.4

KG 1 KG 1
0.8545 0.6641

9 0.9340 0.7097
9.3 6.8

10 24
1.0312
0.9815
-4.8

10 25
0.9830
0.9426
-4.1
KO 1
0.9258
1.008
8.8

J8 27
1.1098
1.050
-5.4

K8 3
1.0713
1.047
-2.3
KO 1
0.6605
0.7332

11.0

K4
1.1691
1.162
-0.6

2
).7698
).7898
2.6

1

KO 1
0.7702
0.7888

2.4
.......... Fuel Type: Maine
.......... LEOPARD/PDQ-7 (F1
.......... LRM-NGDAL (F2)
.......... % Error = 100 (F2

KO 1
0.8542
0.9326
9.1

KG 1
0.6642
0.7058
6.2

Yankee/Table 3.5

-Fl)/Fl

*Indicates Peakers

Fig. 3.8 Assembly Power Comparison at 4 MWD/kg

1 8 9

1

3

5

6

7

8

J8 9
1.0594
).9984
-5.7

10 10
0.9936
0.9868
-0.7

K8 3
1.1645
1.127
-3.2
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2 3 4 5 6 7

E16 4 JO 5 14 6 J0 7 10 8 J8 9 10 10 K8 3
0.9232 1.0422 0.8625 1.0298 0.9253 1.0672 1.0156 1.2086
0.8900 1.042 0.8249 1.018 0.9006 0.9951 1.009 1.186
-3.6 -0.01 -4.4 -1.1 -2.6 -6.7 -0.6 -1.9

00 5 10 11 00 12 14 13 J0 14 14 15 K8 3 10 16'
1.0380 0.9139 0.9842 0.8670 1.0755 0.9885 1.2836* 0.9379
1.042 0.9052 0.9663 0.8315 1.062 0.9429 1.262* 0.9103
0.4 -0.9 -1.8 -4.1 -1.3 -4.6 -1.7 -2.9

14 6 JO 12 14 17 00 18 10 19 JO 20 J8 21 KO 1
0.8590 0.9817 0.8788 1.0137 1.0187 1.1958 1.1941 1.1030
0.8248 0.9662 0.8419 0.9958 0.9890 1.183 1.170 1.1955
-4.0 -1.1 -4.2 -1.7 -2.9 -1.1 -2.0 8.4

JO 7 14 13 00 18 J4 22 00 23 10 24 10 25 KO 1
1.0288 0.8670 1.0135 1.0909 1.1349 1.0148 0.9785 0.9222
1.019 0.8307 0.9962 1.066 1.115 0.9731 0.9527 1.017
-0.9 _-4.2 -1.7 -2.3 -1.7 ....1 -... 10.
10 8 00 14 10 19 JO 23 10 26 J8 27 K8 3 KO 1
J.9253 1.0761 1.0195 1.1364 1.0432 1.1016 1.0917 3.6716
D.915 1.061 0.9897 1.113 1.002 1.059 1.094 0.7612
1.1 -1.4 -2.9 -2.1 -3.9 -3.8 0.2 13.3

J8
.0672

).9966
-6.6

9

10 10
L.0155
1.011
-0.4
K8 3
1.2081
1.187
-1.7

14 15
0.9891
0.9408
-4.8

K8 3
1.2840*
1.259*
-1.9

JO 16
0.9376
0.9091
-3.0

00 20
1.1972
1.184
-1.1

08 21
1.1959
1.171
-2.1
KO 1
1.1033
1.193
8.1

KO 1 KO 1
0.8741 0.6777
0.9705 0.7372

11.0 8.7

10 24
1.0170
0.9725
-4.4

10 25
0.9799
0.9524
-2.8
KO 1
0.9226
1.018

10.3

08 27
1.1030
1.061
-3.8

K8 3
1.0926
1.096
n.3

KO 1
0.6719
0.7621

13.4

K4
1.1776
1.200

1.9

KO
0.7820
0.8250
15.5

2

1I

(0
).7818
).8265
5.7

1

KO 1
0.8746
0.9696

10.8

0.67791
0.7340
8.2

.......... Fuel Type: Maine Yankee/Table 3.5

.......... LEOPARD/PDQ-7 (F 1)

.......... LRM-NODAL (F2)

.......... % Error = 100 (F2 - F1)/FI

*Indicates Peakers

Fig. 3.9 Assembly Power Comparisons at 6 MWD/kg

1 8 9

I I

I
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1 2 3 4 5 6 7

E16 4 00 5 14 6 JO 7 10 8 J8 9 10 10 K8 3
0.9076 1.0223 0.8530 1.0146 0.9196 1.0714 1.0425 1.2645
0.8677 1.016 0.8112 0.9992 0.8886 0.9931 1.028 1.236
-4.4 -0.6 -4.5 -1.5 -3.3 -7.3 -1.4 -2,?
JO 5 10 11 JO 12 14 13 J0 14 14 15 K8 3 10 16
1.0186 0.9014 0.9894 0.8576 1.0592 0.9894 1.3207* 0.9604
1.016 0.8869 0.9481 0.8183 1.043 0.9395 1.294* .9292
-.3 -1.6 -4.1 -4.6 -1.5 -5.0 -2.0 -3.2

14 6 JO 12 14 17 00 18 10 19 J0 20 J8 21 K0 1
0.8499 0.9672 0.8675 0.9930 . 0.9989 1.175 1.1865 1.1006
0.8112 0.9481 0.8269 0.9728 0.9663 1.159 1.161 1.187
-4.5 -2.0 -4.6 -2.0 -3.3 -1.4 -2.1 7.8
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LRM-Nodal program has generated core power maps having the following

general characteristics when compared to Yankee's reference licensing

calculations:

* For interior assemblies there is good agreement; only in a few

assemblies is the error in excess of 5%. Moreover, most of the

larger "errors" are due to the aforementioned difference in

computational conventions: if the corrections for the mass

differences (about 4% for J-8 assemblies and 2% for J-4

assemblies) are considered, the agreement is even better,

and the maximum real error is well below 5%;

* For the periphery, the LRM-Nodal program always overpredicts

the power, thus confirming the expectation that empirical

adjustment of the peripheral constants is advisable, as is

common practice for nodal codes of this kind;

e The program consistently identified the assemblies having

the highest power (i.e. "peakers"), an important feature for

its intended applications.

In addition to the inherent simplicity of the model and the

already stressed fact that no empirical adjustment of coefficients has

been made, the major sources of inaccuracy (hence, potential improvements)

may be related to:

* the absence of a correction for differential boron worth;

* the omission of residual BP reactivity for the old fuel

assemblies;



95

* the omission of a differential thermal leakage correction;

* neither axial leakage nor its variation with burnup have

been taken into consideration;

e the isobuckling approximation has been used;

* and, most importantly, the LRM parameters used to represent the

core have been generated independently, and are therefore not

necessarily completely compatible with those used to generate

the reference PDQ-7 core maps.

The value for the cycle burnup predicted by the LRM-Nodal program

of 9,539.14 KWD/kg is lower than the full-power EOC burnup (without

coastdown) actually achieved during Maine Yankee's cycle 6, of about

10,700 KWD/kg. Factors that explain this discrepancy are:

* the parameters of Fig. 3.5 and Table 3.5 were computed

assuming a core exposure of 11,000 KWD/MT for cycle 5, but

the actual cycle 5 length was 10,796 KWD/kg [D-4];

e the high residual BP reactivity still present at the EOC

predicted by the LRM-Nodal program;

* and, most importantly, apart from the use of unadjusted leakage

constants, the computation of the reactivity versus burnup

slopes, A (kg/KWD),at MIT using slightly different input data

(cell parameters) and burnup steps than at Yankee, with

different LEOPARD program and cross-section library versions;

(A test computation using an arbitrary reduction of about 10%

in the values of A yielded a cycle burnup matching almost

exactly the reference value logged by Maine Yankee).
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The results shown (average absolute error in interior assembly

powers of approximately 3%) may be regarded as well within the range

of acceptability for iterative core reload optimization and preliminary

scoping studies, for which the present methodology is intended. The

discrepancy between the absolute values of the cycle burnups is

irrelevant, since only relative differences between core arrangements

are of interest here. Moreover, a slight adjustment in the slopes, A,

of the reactivity versus burnup curves introduces an adequate

correction, if required. (It is noteworthy that a state-of-the-art

core analysis system (CASMO/SIMULATE) incurs an uncertainty in cycle

length prediction of + 200 KW/kg [D-4].)

Even though, as will be seen in the next chapter, the larger than

average discrepancies between the peripheral powers (average absolute

error of approximately 8%) does not affect the usefulness of the program

for core loading pattern optimization purposes, as an illustration

of the improvements available to future users, empirical adjustments

have been used to generate the results shown in Fig. 3.11. These results

correspond to a cycle burnup of 1 MWD/Kg, hence they should be compared

to those of Fig. 3.6. As can be seen a significant reduction in the

discrepancies is possible through empirical adjustment of the leakage

constants (pL, which is equivalent to adjusting albedo in other nodal

methods). The average absolute error in the peripheral assembly powers

is reduced to approximately 5% (from: the unadjusted value of -8%);

furthermore, no attempt has been made to continue with systematic

adjustment to minimize some measure of the error. Further improvement
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may also be achieved by adjusting the peripheral coupling coefficients,

o . It s.hould also be noted that the interior assembly errors remain
p

about the same as before.

The power fraction comparisons of Figs. 3.6 through 3.10 cover

virtually the entire cycle length. No comparison has been shown at

precisely zero burnup, since the LRM does not account for transient

xenon and samarium, as discussed in section 2.3.3.
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3.6 Chapter Summary

In this chapter nodal power equations have been derived from

the firm foundation provided by a two-dimensional analytical solution

of the one-and-one-half group equation (as documented in Appendix B).

Possible corrections to make up for analytical and modeling deficiencies

have been discussed. Finally, a core burnup calculation capability

has been developed from the nodal power equations and the linear

reactivity model (as embodied in the microcomputer code LRM-NODAL

- see Appendix D), and evaluated against state-of-the-art results.

The overall suitability of the model for its intended use, loading

pattern and reload composition optimization - the subject of the

next chapter, is inferred on the basis of this comparison (which

was preceded by numerous other test runs on these and other core

maps in the course of method and program development).
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CHAPTER 4

OPTIMIZATION METHODOLOGY

4.1 Introduction

The theory and practice of optimization have experienced a

rapid development over the last several decades, particularly

after the advent of electronic computers, which allowed the combination

of the well-established methods of differential calculus and the

calculus of variations with mathematical programming techniques.

Linear Programming techniques (e.g. the simplex method, introduced

in the 1940s [D-5], [G-7]), have been, and still continue to be, widely

used in almost all fields. Nonlinear optimization methods came into

prominence with the extension of the classical Lagrange multiplier

method to problems with inequality constraints by Kuhn and Tucker in

1951. Techniques to solve the problem of the optimal control of

dynamical systems became available with the advent of dynamic

programming (Bellman, 1957) and the introduction of the maximum

principle by Pontryagin (1958). Despite being formally different,

both are closely related to the calculus of variations and to each

other. Direct search methods, involving evaluation and comparison
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of functions, and gradient methods, requiring the evaluation of the

function and its derivatives, have both been used, and are still

undergoing development, to solve general (constrained) nonlinear

optimization problems. Significant progress has also been achieved

in discrete optimization, for example through integer programming

techniques and graph theory. Table 1.2 surveys the variety of

approaches employed in core reload optimization work: as can be

seen almost all methods referred to in this paragraph have been

applied to this problem.

The choice of the best optimization technique is not obvious.

One fundamental consideration is the nature of the mathematical

model describing the problem; but, even so, for any case alternative

methods may be formulated, with varying degrees of accuracy and

efficiency. The objective, in general, is the development of

efficient, reliable and accurate algorithms. In this chapter an

optimization methodology is pursued, exploiting the potentials of

analytical simplicity and transparency provided by the core model

formulated in this research. Evaluations and applications will be

carried out as allowed by the computational facility used in the

research: a TRS-8, Model III, 48 K bytes microcomputer. Far from

being exhaustive, the developments and, especially, the applications

described here should be regarded as the first step toward formulation

of a systematic and consistent methodology for automated optimization

of core reload patterns and compositions, taking advantage of the
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inherently favorable features, for optimization purposes, of the

LRM-based core model and the auxiliary routines developed in this

chapter.

In the next section the optimality criterion will be discussed.

Then, in the remainder of the chapter, the approaches explored in

this research, along with some applications, will be presented.

4.2 Optimality Criterion

Usually the optimality criterion is expressed as an objective

function or functional, and-, in the case of a generalized (constrained)

problem, the constraints are expressed as equality or/and inequality

functions.

In this work, for all applications, the objective is the

maximization of the cycle burnup, and the ability to incorporate

constraints an overriding concern. In the algorithms that will be

formulated, only restrictions on power peaking have been explicitly

considered, even though extensions to intra-assembly power peaking

limits and assembly burnup restrictions, as well as others, are

feasible.
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The mathematical representation of the objective function and

the constraints will be formulated in the following sections, during

the development of the theoretical basis, and the routines and

algorithms supporting and embodying the optimization method.

4.3 The Optimization Method

As will be illustrated later, the optimal solution (for the

core configuration, BP loading and composition) is essentially

determined by the EOC core condition, thus depending on the BOC

configuration and the power history leading from BOC to EOC, which

in turn is dependent on the criticality control strategy. Hence,

strictly speaking, this constitutes a problem of the optimal control

of a dynamical system, suitable for the application of optimal control

theory (Pontryagin's maximum principle) or dynamic programming

formalisms. However, due to the BP model (as well as soluble boron

control system characteristics) adopted in this research, once the

BOC configuration (assembly arrangement) and composition (fuel

enrichment and BP loading) are determined a unique burnup history,

hence EOC condition is also defined. For this reason, the entire

optimization problem reduces to the search for the maximum cycle

burnup as a function of BOC configuration and composition.

According to the classical theory for unconstrained optima

(e.g. refs. [B-4]and [W-3]) given a function f(x), where x = (x **x n)
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for which all the first partial derivatives, -s-, i=1,... ,n, exist

at all points, a necessary condition for a maximum of f(x) is that,

=f ... = 0 (4.1)

A sufficient condition for a point satisfying these equations to

be a maximum is that all of the second partial derivatives,

x f (j, k=1, ... , n) exist at all points and that D. < 0 for

i=1, ... , n, where

D f2 2f..a 2f

a3 2 Dx 1x 2 ax 1 a i

D = (4.2)

a32_f 3 2f
ax 3 x a3 2

i.e. all the principal minors of the matrix of second partial

derivatives must be negative.

For constrained optima the classical theoretical approach is

the method of Lagrangian multipliers, which states that, with certain

qualifications, the maximum of a function f(x), subject to equality

cons traints ,

c (x ... xn) = b for j = 1, 2, ... , s (4.3)

is found to be the stationary points of the Lagrangian form

5

D(x,A) = f(x) + Z x. c. (x) (4.4)
j=1 2

where x = (x1, ... , 5 s) are the Lagrange multipliers.
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Inequality constraints may be transformed into equalities by introducing

appropriate slack variables. The solution, when the first partial

derivatives of f(x) and c(x) exist, is equivalent to finding an

unconstrained solution for x and A of the set of equations:

c x1, ... , x - b= 0 for j 1, 2, ... , s (4.5)

and

s c
+ , = 0 for i - 1, 2, ... , n (4.6)

1 j=1 3

The important contribution of Kuhn-Tucker [K-6] was to extend

this classical method to incorporate inequality constraints in a

direct manner, deriving the necessary conditions for local optima

(and, for certain special cases, necessary and sufficient conditions

for a global optimum) for the general constrained nonlinear problem.

In essence, when suitable conditions are placed on the function f(x)

and the m inequality constraints g (x) > 0 of the Lagrangian form
m

(xX) = f(x) + A. (x) , (4.7)

the constrained extremum of f(x) corresponds to a saddle point of

o(x,X). In this formulation, equality constraints may be treated

as a pair of inequalities.

With few exceptions (as for example, the quadratic programming

schemes), nonlinear methods are accessible only to numerical solution

approaches. A wide range of general schemes, with varying degrees

of efficiency, are available (as described, for example in references
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[W-3], [W-4], [B-4], [A-1]) to perform such tasks. Usually, however,

the goals of efficiency and accuracy are better served with the

development of methods tailored to the specific features of the

particular nonlinear problem at hand. The demonstration or verification

of the fulfilment of the necessary and sufficient conditions for the

existence of the global optimum for complex problems (such as the

one at hand) is normally either impractical or too costly. In such

cases usually one attempts to demonstrate the satisfaction.(or

quasi-satisfaction) of the necessary condition (that the first

derivatives are zero) and, when local optima may occur, tries to

distinguish these from the global optimum by carrying out searches

starting at different initial conditions.

In the following sections the basis for the optimizing

algorithms will be developed, exploring the features of the core

model, in which similar equations and routines, with minor modifica-

tions, may be used to represent changes in local reactivity,

corresponding to assembly shuffles, to changes in enrichment or to

the addition of BPs. Furthermore, the partial derivatives computed

by such routines, beyond indicating closeness to optimality, are a

fundamental constituent of the gradient method which will be formulated,

as well as other approaches such as the sensitivity theory approach,

which is also explored here.



107

4.3.1 A Gradient Method

The basic reason for using the gradient direction in an

iterative search for optima may be explained using the classical

Lagrange multiplier method. At any point x the direction of the

gradient is the direction whose components are proportional to the

first partial derivatives of the objective function at the point

in question. To first order approximation, the change in the

objective function due to small perturbations in the components

(6xis ... , 6x n), will be given by
n

df = 6x. (4.8)
j=1 axj J

where the derivatives are evaluated at the current point x=(x , ... ,x n)

The greatest change in the objective function due to a perturbation

A = 6xj 1 from the current point x may be evaluated using

the Lagrangian form n

=(x,x) df + 6xj A (4.9)

or n n

S(x,X) = 3 6x. + 6x! - A2 (4.10)
j=1 ax a i X a

Differentiating with respect to 6xj, and requiring it to vanish,

Eq. (4.10) yields:

+ 2 x 6x. = 0, j=1, 2, ... , n (4.11)ax .

Equation (4.11) may be re-arranged to become:



108

6x 62 6x
f .. (4.12)

3x 1x2 3xn

Hence, the greatest change in the function f(x) occurs when the 6x.
1

are chosen to be proportional to the corresponding .

The derivatives can be obtained either analytically or numerically

(using some finite difference scheme). Experience, however, has

shown that, with few exceptions, numerical differentiation leads to

inferior results [B-4]. Therefore, in the following sections, a

direct analytical approach to compute the derivatives, taking into

account the specific features of the core model and of the optimization

problem, will be formulated.

4.3.2 The Computation of the Derivatives

Two methods to compute the conventional partial derivative of

the objective function (and of the constraints), based on the synthesis

and integrated schemes for burnup calculations, described in Chapter 3,

have been developed. The derivatives of the nodal powers and of the

system reactivity will be formulated first, because they are constituents

of the objective function derivative. Moreover, they will play an

important role in the development of the algorithms to incorporate

power peaking restrictions and to optimize compositions.
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As a point of interest it is noted that an alternative method

to compute the derivatives, similar to that developed to compute

sensitivity coefficients, (e.g. at ORNL by Oblow, Williams, Weisbin,

[0-1], [0-2], [W-5], [W-6], [L-4]) is worth pursuing. In this approach

through an appropriate adjoint formulation, which is independent of

the "forward" problem solution, the partial derivatives may be computed

directly from the adjoint results and from the "forward" solution.

Hence, for each parameter in a given configuration, only one adjoint

solution has to be computed and may be stored for future use. This

approach has not been fully pursued in the present work, in part

because of limited data storage capacity of the computer system used.

However in section 4.3.3 another aspect of the sensitivity theory

approach, namely, the use of the logarithmic derivatives will be

explored.

4.3.2.1 Nodal Power Derivative Calculations

The nodal power equations of Table 3.3 may be re-written as

follows:

for interior nodes:
N

1 -

N f i [1-s b - A B + pboj ~ Sbj Bj - psp Wj)]
P j=1

i.

1 - e(poi - A B - boi + Sbi B - ps i.
1 1 1 bi+Si i-PpW

(4.13)
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and for peripheral nodes:

1 f [1-s (p -A. B. + pbo bj B -. Wps ]
N J 5 103 .j bo bj ji P

1 1 - 6 (p0  - A B - boi Sboi B - psp i) + epLi
p 1i 1 1 o o pi L~

where, according to Eq. (3.44) (4.14)

n m

Z . i i - A. B - pboi + S B ) -p
=1 =1 (4.15)

sp n
f i W

i=1

and subject to the normalization condition adopted in this work:

n

f = n (4.16)

i=1

where n is the number of assemblies.

Even though the derivatives could be taken generically in the

prescriptions above, the cases of interest in this work are only the

BOC and the EOC conditions.

4.3.2.1.1 BOC Nodal Power Derivative Calculation

At BOC the nodal burnups (B ) are zero. Then, assuming that all

W. are equal to 1.0, taking the derivative of f. with respect to a

generic p (which may represent either poi or pboi), after defining the

"source terms" (origins of the change or first order perturbation, rk'

dbo + (4.17)k p x Pbo k + bk Bk
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the results become:

for interior nodes:

TP 
px

af f.i .+ -

N
p

[1-

N
p

-sf. (F.N0 i1 \J

s Poi ~ oi

1 - t(p9o - pboi -

x

Psp

and, for peripheral nodes, ignoring the negligible value of dPLi /dP :
N
p

3f p x Np
/ pf .fi'. -SD_

7 \j1,
1 - 6p(p -oi pboi sp eLLi

N
p 9f.

[ 1 e (p-p pI
[1- -spoi~boi sp

p 9 0 pboi sp) + e LLi

subject to the normalization condition

n af

j=1 x
0

and where,

sp
Dp x

1
n

j f w
j=1

I

n

7T
j=1

n f
where the term p 7\W J+f

m

(o -pboj x j=1

dpj) has been ignored

(Lj .p

(4.21)

due to the

normalization condition of Eq. (4.20) and the negligible variation of

the W s.

(4.18)

px

+ (4.19)

(4.20)
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The terms Fk constitute the source of the "perturbation" (or

change) being evaluated, and have to be specified according to the case

being analyzed. In the case of only one assembly being "perturbed"

(or equivalently, for computation of the power derivatives due to a

change in the reactivity of only one assembly), designated assembly k,

the term exists only when x=k, and becomes:

1 for a change in pok

F k =(4.22)

1-1 for a change in pbok'

Hence, for the assembly k, for example, the terms involving ef ir

in Eqs. (4.18) or (4.19) would become,

ef k for a change in pok
efk kF (4.23)

-efk for a change in pbok'

and would be zero for all other assemblies.

N
e p

Similarly, the terms involving f-T' would become, for
p j=1 J

the assemblies having interfaces with assembly k:

N f for a change in pok

j { 1  f a c (4.24)
p j=1

- f. for a change in pbkN j bok'
p

and would be zero for all other assemblies (those lacking interfaces

with the assembly k). The case above is appropriate for describing

the first order effect of the addition or subtraction of reactivity
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(po or pbo) in a node. Physically, a change in p0 may correspond to a

change in the assembly's enrichment or to the replacement of an

assembly by another; a change in pbo corresponds to the addition (or

subtraction) of burnable poison in the assembly. For example, the

first order effects of the exchange of fuel assemblies may be evaluated

by computing the corresponding derivatives.

The preceding mathematical development has been applied in the

LRM-NODAL program; what follows in this section is a generalization of

these ideas which provides valuable further insight into the nature of the

optimization process, and may prove useful in extension of the the

present work.

A more general case results when constraints on the reactivities

are considered, as for example, the conservation of the reactivities

over a certain number of assemblies or over the entire core. This

more general case may be used as an artifice to evaluate, for example,

the differential effects (or marginal effects) on cycle burnup, power

peaking or assembly burnup distribution, of the relocation of one

differential unit (or appropriately weighted differential unit) of

reactivity within a given pool of assemblies. The resulting array of

derivatives can be translated into changes in design variables such

as enrichment or burnable poison content, by resorting to equations

relating reactivity to these variables. This evaluation may be carried

out by appropriately defining the source terms r, to be used in
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Eqs. (4.18), (4.19) and (4.21). Weighting may be introduced to impose

the conservation of costs, natural uranium or even particular isotopes

(e.g. U-235) associated with the redistribution of the reactivities

over the pool of assemblies considered. To compute these weights it

should be noted that assembly reactivity is related to enrichment, as

given, for example, by Eq. (2.27), and that the ratio of natural uranium

to enriched fuel F/P is given by

F _P W (4.25)
- XF W

where X is the fuel enrichment, XF is the natural uranium enrichment and

XW is the enrichment plant tails assay. Hence, natural uranium

requirements are related to enrichment and to reactivity via Eqs. (4.25)

and (2.27), andfuel costs, in turn, are directly related to enrichment

and natural uranium requirements. (As shown by Malik [M-1], separative

work requirements are also, to a very good approximation, a linear

function of enrichment, hence, reactivity). Once the appropriate

weighting functions are selected, the Lagrange multiplier method can be

used to determine the optimal source terms for the problem being

analyzed. Here only the case of conservation of volume-weighted

reactivity with uniform relocation (i.e. equal increments transferred

from each member of the pool), will be detailed. It is required that
N

dp ox , (4.26)dpx _dD x 7. ~0.

where N is the number of assemblies from which reactivity is to be

relocated. Since one differential unit of reactivity is being relocated,



115

Eq. (4.26) becomes:

X j d p .
Aj dp

j=1

Hence, for uniform relocation, the source terms become:

rN = 1
x

F. = 1 ,

,j = 1, ... , N , (4.28)

(4.29)

for the assembly to which the marginal unit is being transferred.

The discussion on how to incorporate the source terms in Eq. (4.18)

and (4.19), previously presented and illustrated through Eqs. (4.22),

(4.23) and (4.24) applies individually to each new source term r.

(of course, with appropriate values considered for each case).

These new source terms will affect the system reactivity derivative,

which will become:

9psp 1 n
x xWn

J=1

' N n n
x f.3f

j Z ri + Z- Lj (4.30)
j=1 j=1 j=1

For the special case where N =n (i.e.: the whole core is the pool),

Eq. (4.30) becomes:

n m
9 p f .7 af.

p 1 - 1 + oi - pbojI - Z PLj 9 Ixf. W. j=1 x j=1 J
j=1 1

(4.31)

and

(4.27)
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Once the appropriate source terms have been defined, the solution

of the system of equations is straightforward, paralleling that of the

standard power distribution calculation, as shown in the flowchart

of Fig. 4.1. To accelerate convergence, the node-to-node sweeping in

the Gauss-Seidel iterative procedure is in a spiral pattern so as to

update successively the values at the nodes equidistant from the

perturbed node. As in the power calculation, since convergence proceeds

monotonically, a relaxation scheme has been implemented. At each

iteration, k, the value ik, is recomputed as:

af*k afk6 k f*k-1

3Px x x1 + A -3px(4.32)

where Ap is an empirical factor, found to lie between 0.3 and 0.5 for

best results.

4.3.2.1.2 EOC Nodal Power Derivative Calculation

The major difference between EOC and BOC power derivative computations

arises from the fact that at EOC Psp is zero, and the burnups B., are

not (as opposed to BOC, where psp is finite and assembly cycle burnup

increments are zero). Additionally, as postulated in section 2.3.2.2,

at EOC, pboi - Sbi B. becomes rPboi,where r represents the residual

BP reactivity fraction. The burnup derivatives, B1, have to be

computed independently or iteratively, in tandem with the power

derivatives (as will be shown later).
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Fig. 4.1 Flowchart for Nodal Power Derivative Calculation
at BOC
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Assuming, for the moment, that the burnup derivatives are available,

Eqs. (4.13) and (4.14) may be differentiated directly to yield:

for interior nodes: N

ef f [r - A B - - F .- (A B )N pf
x p= 1  x

-1 e1 i ( B )
1 N ~ - L rp - ..

N 1 I @f .

+ j=1 (433)

1 - (p - rpboi - A B )

and for the peripheral nodes, again neglecting dp Li/d :
-e N Li x A

ef f [. - -- (A B ) - f  [r - (AB.)]
i x P=1

x 1 - e (poi - rpboi - A B ) + eL PLi

p @f

N Z 41 - es [rj - D (A B )]
+ j=1 (.4
1 - p(pi - rpboi - A B ) + 6L PLi (434)

the above being subject to the normalization condition:

n af.

{ = 0 (4.35)

j=1

The criticality condition at EOC is assured through the burnup derivatives,

as will be seen later. The discussion regarding the source terms at

BOC remains valid for EOC, except that for evaluation of BP changes

the term:

d
"i = dp-(Poi -r Pboi) =-r (4.36)

instead of -1, which applies at the BOC.
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The solution strategy is analogous to that at BOC. The flowchart

of Fig. 4.2 shows the computational sequence to evaluate the EOC power

derivatives together with the cycle and assembly burnup derivatives

in the synthesis approach (see section 4.3.1.2.1). The sweeping

sequence in the iterative procedure and the relaxation artifice are

the same as applied at BOC.

4.3.2.2 Burnup Derivatives

Two methods to compute the burnup derivatives, based respectively on

the synthesis and integrated approaches developed in the previous chapter,

have been explored. The synthesis approach has been implemented in

the optimization routines of the LRM-Nodal program since it is faster

and requires less computer memory. However the integrated approach

appears to be potentially more accurate, and hence may deserve further

consideration.

4.3.2.2.1 Synthesis Approach

The synthesis method to compute cycle and assembly burnups, described

in section 3.4.1, may be extended to calculate the burnup derivatives.

The equation for cycle burnup, Bc, derived for the null EOC reactivity

conditions, was shown to be:
n m

( fie(p - rpboi fi e PLi

B = n, (4.37)c n
ZA. f.e fa.

i=1 1 1 a
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where, using the mixing coefficients, V.:

f = f b V b + e Vi (4.38)

and assembly burnup is given by:

B. = B cf . (4.39)1 c ai

Since the cycle burnup, Bc, and the assembly burnups, B i, are provided

by the core depletion computation (in this work, by the step-wise

method formulated in section 3.4.3), the fai s may be calculated,

exactly, as:
B.

f i (4.40)

and the synthesis approximation of Eq. (4.38) is only partially

needed to compute the assembly burnup derivatives:

3B. 3 B fb 9fea
1= fa + B( 1p ib + 9 i e (4.41)
x x x x

It may be shown under the assumption that the fractional change of
af.

power, DP I f., varies linearly with burnup from BOC to EOC, that the
x

mixing coefficients, Vi, are both equal to 0.5. With this assumption,

taking the derivative of Eq. (4.37), and after some simplifications,
9B 9B.

the expressions for and ap become:

n n B 3f.e m af.e
F+ p - rpboj - A.(B + 2f e) -j PLj pj

c _j=1 j=1 j=1

j=1

n A.i f. i f-b +f fedAj
Bc - 2 P dx- ~ ( (4.42)

n n
x A f." f . a

j=1
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and

3B. 3 B f b 9f.e
.= f + ( + (4.43)

DPx ai X 2 Px D

where the superscripts b and e denote BOC and EOC, respectively.

According to Eq. (2.28), for a fixed lattice design the value of

A. varies only slightly with the initial enrichment (thus with po), and

hence this variation has been neglected in the present work, because the

initial assembly enrichments are all similar. With this consideration

the last term in Eq. (4.42) may be neglected. Recalling the discussion

presented previously regarding the source terms Tk, and with Eq. (4.43)

providing the assembly burnup derivatives to be used in Eqs. (4.33)

and (4.34), a consistent set of relations to compute the necessary
DB

partial derivatives of the objective function c, of the assembly
x

burnups, and of the BOC and EOC nodal power derivatives are now

available.

The computational flowchart to solve this set of equations is

displayed in Fig. 4.2. The computational sequence is very similar to

that described for BOC power derivative computation. The spiral-pattern

order for updating the nodal derivatives as well as the relaxation

artifice used to accelerate convergence are the same as applied at BOC.
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Fig. 4.2 Flowchart to Compute the Derivatives of Cycle and
Assembly Burnups and of EOC Nodal Powers, using the
Synthesis Method
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4.3.2.2.2 Integrated Approach

In a similar fashion as in the synthesis method, the integrated

approach may be extended to obtain a set of equations to compute the

cycle and assembly burnup derivatives. In fact, Eqs. (3.52), (3.54)

and (3.55) may be differentiated directly to yield expressions for the

assembly and cycle burnup derivatives. The approach has not been

implemented in the optimization procedures of the LRM-NODAL program,

due to excessive memory requirements and increased running times for

the microcomputer used. However the method may be worth further

consideration, in future work, due to its potential for improved

accuracy, when compared to the synthesis approach, especially if the

improvements described in section 3.4.2 are included. Furthermore,

correction factors to partially compensate for the main approximation

of the method (i.e. the assumptions of linearity of the nodal power

fractions and the soluble boron reactivity with core average burnup)

may be computed from a numerical integration of Eq. (3.51) during the

step-wise depletion procedures.

4.3.3 Sensitivity Theory Approach

The sensitivity-based methodology has been developed to estimate

reactor performance parameters and associated uncertainties, using

differential and integral information (e.g. Weisbin et al. in [L-4]).

The methodology has been successful in several applications, such as
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radiation transport, reactor thermal-hydraulics, reactor physics and

fuel cycle analyses [0-1], [0-2], [W-5], [W-6]. One essential and

powerful part of the approach, regarding the computation of partial

derivatives, has been briefly referred to in section 4.3.2. For the

present interest, another aspect will be explored, namely the use of

the logarithmic derivative d, Which represents thed ln a d a hihrprsnt h

sensitivity of the response P to the parameter a, and constitutes the

fractional change in the response due to a fractional change in

parameter a. Use of the logarithmic derivative, instead of the

conventional partial derivative allows one to account for the fact

that the partial derivative at a given point is dependent on the amount

of reactivity already allocated at the point in question. In other

words, a common normalization scale is sought for the derivatives.

This is important to partially overcome the limitation of the conventional

partial derivative in the gradient method, which inherently is only

able to account for the effects of small perturbations around the

current point (or to the extent that linearity is valid). This con-

sideration is especially relevant in assembly shuffling routines, where

the perturbations are not always small.

Then, specializing to the case of cycle burnup, which is the

objective function, the sensitivity coefficient becomes:

d ln B 9B c/Bc
SBC d ln p _ p/P
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Since p may assume the value of zero, to avoid singularities a

change in variable is in order. The natural choice appears to be the

neutron multiplication factor k = 1/(1 - p) (which is also obtained

mathematically as k x 0 px). Then SBC becomes:
x=O

d ln B 3B DB
d n kc c 'k c p k(.5SBC B c Dp A (4.4)

or,

SB (4.46)B kB c 9p B (1 (.6c c

The fractional change ABc/B c, due to a change 6p* in the local

reactivity may be evaluated:

AB c S6P* (4 .7
B SBC 1 - (p +6*)
c

or, after some simplification, ABc becomes:

AB 3 pc 1 - p) 0 6P* (4.48)

Defining p* = p + 6p*, Eq. (4.48) becomes:

AB c (1 - (4.49)c 5-( *

or,

ABc -( p) 1 (4.50)

The main purpose of using the sensitivity approach (with the

logarithmic derivative) is to provide an improved method to predict
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the best set of shuffles, or in other words, an improved gradient

direction that maximizes the gain in the cycle burnup. For a given

core configuration, with n assemblies, according to Eq. (4.50) the

change in B c will be given by:
n

3B (1 - p )
ABc = I (1 - p*) - 1 (4.51)

c j=1 .j *

where pj is the current reactivity at position j, and the pj are

to be chosen from among the n assemblies making up the core. The

maximum gain in ABc will be obtained by matching the rankings of the
I 3B 2

P and -P.(1 - p.) , as may be seen by inspection.

This approach has been tested in the reload pattern algorithms

described in section 4.4.1, and it has been successful in improving the

objective function at a faster rate (i.e., in less iterations) than

where using the conventional partial derivative. However, one disadvantage

associated with its use is that it sometimes leads to an overprediction

of the gain in the objective function, which ultimately results in an

instability in convergence.

A remedy to this situation may be obtained by recognizing that

Eq. (4.51) may be approximated by:
n

9~ B 
*

AB ~ B (1 - p.) (p. - p.) (4.52)
c j=1 3 c j J

As before, the maximum gain in Bc is obtained by matching the rankings
3-B

of p and the coefficient 3 (1 - pj). Equation (4.52) provides an
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intermediate option between use of the full sensitivity coefficient

and the conventional partial derivative in the gradient method. In

the computer program LRM-NODAL, all three options are available to the

user by appropriate specification of the exponent g (as 0, 1, or 2)
3aB

in the coefficient -- (1 - p)g. Further evaluations need to be carried

out to determine the best option for the various applications to which

the present work can be put. It is also noteworthy that the logarithmic

derivative approach, applied here to the cycle burnup, may also be

extended to the nodal power and assembly burnup derivatives.

4.3.4 A Direct Search Method

An analysis of the objective function, Bc, as expressed by

Eq. (4.37), and of its derivative, given by Eq. (4.42), indicates the

important role of the EOC power fraction distribution in the determination

of the optimality condition. Numerical examples have confirmed the
B

strong correlation between the partial derivative and f for a

given node j. This was to be expected because of the power weighting

of reactivity, and the fact that Bc is determined by the system null

reactivity limit. This situation may be exploited in a direct search

method, where the EOC power fractions are to be used to determine the

best changes in the core configuration, playing a role similar to

that of the cycle burnup derivative in the gradient method.

The denominator in Eq. (4.42) usually does not vary much in

magnitude for different assembly arrangements of the core. Then,
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the aim becomes to maximize the numerator of Eq. (4.42). Defining,

n m

Nb . je (Poi - rpboi )e -Lj ,(4.53)
3 o j=1

a scheme may be devised to maximize Nb by recognizing that this may be

accomplished by matching the rankings of the f.e (1 - p ) and p ..

Hence, an "importance factor" may be defined as:

P. = fe (1 - P (1 - po) , (4.54)

expressing the EOC "importance" f e(1 - p j) per unit of initial

(BOC) reactivity. Then an iterative search may be carried out to

maximize Nb: in successive depletions shuffle the assemblies such as to

match the ranking of P. and of the reactivity of the assembly to be

placed in position j. Convergence will be achieved when no further

shuffles meeting this criterion are possible.

This method is available in the LRM-NODAL program as an optional

preliminary search technique in the shuffling routine used to maximize

the cycle burnup. The main advantage of the method is its speed, when

compared to the full-fledged gradient method (requiring about a factor

of 20 less time per iteration). The main shortcoming, besides being

less rigorous, is the difficulty of systematically incorporating

constraints. This, however may be overcome with programming techniques

that take advantage of practical restrictions derived from experience,

such as those used by Izenson [I-1].
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4.4 Applications and Optimization Algorithms

In this section the use and application of the methods and their

embodying routines in the algorithms formulated to perform specific

optimization tasks will be described and discussed. For reload pattern

optimization, first the algorithm to search for the assembly arrange-

ment yielding the unconstrained maximum cycle burnup will be presented;

then the optimization of burnable poison loading will be dealt with;

following which the incorporation of constraints will be examined.

For composition optimization two cases will be discussed. To demonstrate

the capability and adequacy of the methodology the results of the

application of various algorithms to the Maine Yankee Cycle 6 core

are presented and discussed.

4.4.1 Unconstrained Reload Pattern Optimization Algorithm

For a typical PWR core, with around 200 fuel assemblies, even

using quarter- or eighth-core symmetry, the number of possible core

configurations becomes astronomical (200!k 10 375, 25! == 1025) so that

an exhaustive search is impractical, and efficient programming

techniques have to be used to search for the optimal or near optimal

arrangement(s). Moreover, strictly speaking, the optimal arrangement

of fuel assemblies in the core constitutes a discrete optimization

problem, suitable for integer programming methods. The fundamental

problem in the iterative optimization process is to define which



130

transformations in the core configuration should be performed such as

to yield the maximum gain in the objective function. The gradient

method as discussed in section 4.3.1 (or its extensions examined in

section 4.33) is able to provide this answer, as long as the discrete-

ness of the variables may be successively relaxed and the linearization

around each current point remains valid. (Such successive linearization

schemes for nonlinear optimization problems have been also referred

to as the Method of Approximation Programming [G-6].) With this

assumption stated, the algorithm may be formulated. Convergence of

the steepest ascent methods, with certain qualifications, is assured

by theorems available in the literature [W-3].

First the flowchart for the direct search method, discussed in

section 4.3.4 will be presented, since it is available as a preliminary

search option in the gradient based method. Figure 4.3 shows the

sequence of computations. Successive depletions are carried out in

tandem with shuffles, until the rankings of reactivities and of the Pi,

given by Eq. (4.54) match. The flowchart for the gradient method(s)

is shown in Fig. 4.4. The most important aspects of the algorithm,

as incorporated in the LRM-NODAL program are:

* the initial pattern may be defined by the user or from a library;

* assemblies may be restricted to remain in defined positions

in the core;

* an option is available to use either the conventional partial

derivative or the modified logarithmic derivative, as discussed

in section 4.3.3;
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Fig. 4.3 Flowchart for Direct Search Method



132

Update
Core

Configuration

Fig. 4.4 Unconstrained Maximum Burnup Search Algorithm
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e a preliminary optimization using the direct search method

(Flowchart of Fig. (4.3)), is optional;

9 convergence is achieved when no improvement may be found; i.e.,

the rankings of all assembly reactivities and corresponding

derivatives of the objective function match. This criterion, as

will be discussed later, may be replaced by another, based on

the objective function improvement in a series of successive

iterations.

One of the more controversial aspects of this method, even though

consistent with the steepest gradient approach theory developed in

section 4.3.1, is the over-relaxation resulting from the fact that all

unrestricted assemblies may be moved at each iteration. The derivatives

of the objective function that determine the assembly moves depend

on the surroundings; so that if these are modified, the derivatives

will also change. Even though this has not caused any convergence

problems in the cases studied in the present effort, improvements may

be achieved if only selective changes are permitted - for example,

limiting the number of transformations in a given region or by requiring

a certain minimum improvement in the objective function. The stability

observed in the convergence process in the current method may be

associated with the fact that the peripheral assemblies (typically

one-fourth of the entire assemblies in a large PWR) are correctly

assigned in the initial iterationsthus confining further maps to an

option space bound by a successively smaller range of options in core

configurations and changes in the objective function.
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As an example, the algorithm just described is next applied to

search for improvements in the Maine Yankee Cycle 6 core burnup. The

fuel assembly data are the same as presented in Table 3.5, except that

BPs have been removed (to avoid the bias that would arise from the

associated extraneous power history effects). The initial core

configuration is the same as in Fig. 3.5. The function of this

example is merely to demonstrate the capability of the method to

converge to optimal or near-optimal configurations, when all assemblies

are unrestricted (i.e., they are completely free to be moved at each

and every iteration).

Figure 4.5 summarizes the iterative process, giving the cycle

burnup and the number of assemblies moved at each iteration. As can

be seen the preliminary direct search converged after 11 iterations

yielding a cycle burnup of 12,813.3 KWD/kg, and generating the assembly

arrangement shown in Fig. 4.6. Then, the gradient method using the

conventional (partial derivative) iterative process was started,

requiring 12 iterations to achieve a configuration in which it could

no longer identify possible improvements, and yielding a cycle burnup of

12,743.9 KWD/kg. An explanation is required for the reduction in

the nominal B c of 87.40 KWD/kg in the final values for the direct and

gradient searches. Since no restrictions have been placed on any

assembly, the odd, low-reactivity assembly in the center of the core has

been changed. Exchange of this assembly is equivalent to replacing three

assemblies of the type being moved into the center by three of the

type being taken out, due to the fact that quarter-core symmetry was
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imposed upon the analysis. Hence, moving the original assembly

elsewhere represents a net loss of reactivity in three other assemblies

of (V.221973 - 0.129688) = 0.092285, which corresponds to a loss of

about 130 KWD/kg of cycle burnup. Figure 4.7 shows the final core

configuration. It may be noted that the configurations of Figs. 4.6

and 4.7 are consistent with the results reported in ref. [A-3], for

optimal core reload arrangements.

The use of the logarithmic derivative in the gradient method

(sensitivity approach) led to similar values for the objective function,

but with slightly larger oscillations between iterations.

A notable observation is that both the direct search method and

the gradient method lead to similar cycle burnups, with values differing

by less than the uncertainty range in the calculational method. This

indicates that, in principle, all the approaches examined are able,

for practical situations, to answer the fundamental question in reload

pattern optimization: that is, to indicate which are the best exchanges

to be pursued. Another important aspect regards oscillations in

the value of the objective function during the process. This behavior

was to be expected due to inherent approximations made in the course of

the gradient approach (i.e., the successive linearizations around the

current configuration). Furthermore, the small oscillations in BC

encompass a wide variety of configurations, indicating that a great number

of near-optimal configurations exist, and it may not be worthwhile, even



138

2 3 4 5 6 7 8 9

J.221973 0.221973 0.221973 0.14281 0.129688 0.221973 0.221973 0.048282
1 1 1 4 6 1 1 13 -0 00619

3067.6 2854.6 2586.9 1989.3 1863.6 2400.6 2503.0 1125.8 '21
0.221973 0.221973 0.155491 0.12968E 0.11244 0.221973 0.155491 0.04283C 271.8

1 1 2 6 7 1 2 14
2854.6 2639.8 2179.4 1864.3 1820.8 2471.9 2155.3 958.4 -0.01082(

23
181.8

).221973 0.221973 0.153055 0.13068 0.221973 0.221973 0.090801 0.022381
1 1 3 5 1 1 11 17

2586.9 2472.6 2061.6 1894.8 2308.0 2533.5 1632.7 659.3

).142816 0.11244 0.132068 0.142816 0.221972 0.22197: 0.05207 0.022128
4 7 5 4 1 1 12 18

1989.3 1831.0 1894.3 1985.0 2463.2 2549.1 1239.1 434.8

.129688 0.10926 0.153055 0.221973 0.221972 0.09600 0.03607 -0.00628
6 8 3 1 1 10 16 22

1863.6 1791.0 2061.8 2496.1 2588.8 1683.4 792.3 209.2

0.221971
1

2400.5

0.221973
1

2603.0

0.048282
13

1125.8

0.221971
1

2440.7

0.22197
1

2526.3

0.221973
1

2536.0

0.100552
9

1761.8

0.221973
1

2616.0

0.090815
11

1458.6

0.10976
8

1777.8

0.389345
15
846.3

).038934
15

900.3

0.00190
20

289.0
1 4 4-i. 4

0.42828
13

1043.2

0.360762
16

748.4

0.022012
18

479.4

-0.00699
21

224.8

0.001905
20

280.9

...... p .

...... . Ranking
0 c

apo'
0.009915 -0.01082

9 19 23
311.6 199.0

Fig. 4.7 Final Assembly Arrangement Generated by the Conventional
Gradient Method

1

8

5



139

if adequate methods were available, to search for the absolute maximum

burnup achievable. As a consequence, attainment of the region of

small oscillations in Bc may be used as a criterion to stop the search.

Another important conclusion from the analysis of these results is

that all optimal and near-optimal assembly configurations violate

acceptable power peaking constraints for practical cores. The optimal

configuration yields a core where the most reactive assemblies are

located in regions having the highest power at EOC. This confirms the

expectations drawn from a qualitative analysis of Eq. (4.37), in

which the reactivity is power weighted, and the EOC is determined by

the null reactivity limit. In other words, high reactivity assemblies

should be at their highest power and low reactivity assemblies at their

lowest power. This general observation also conforms with the well-known

burnup benefits and power peaking detriments of low-leakage fuel

management schemes - which are generally described in terms similar to

these above: i.e., putting low reactivity assemblies in (inherently low

power) peripheral positions. Furthermore, these results are consistent

with those reported in ref. [H-4], as well as with those of Suzuki and

Kiyose [S-2], [S-8], who state that: "At an optimal EOC state it is

necessary to have all control rods withdrawn from the entire core and

have the worst power distribution within thermal design limits."

In view of these results the need to incorporate power limit

constraints cannot be overstated. This will be discussed in section
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4.4.3. In as much as it relates to convergence of the algorithm, the

incorporation of constraints on power limits (upper, and even lower)

or on assembly position, will be beneficial by reducing the degrees

of freedom of the system. It is also anticipated that satisfaction

of the constraints will dominate the final states of the optimizing

process, thus rendering unimportant the slight oscillations in the value

of the objective function noted here. Another observation is that, for

well-behaved cores, the peripheral assemblies may be placed by

inspection: i.e., as can be seen from the results, to each peripheral

assembly location a ranking may be assigned which would allow direct

placement of the assemblies according to their reactivities. Further

experience may allow similar assignments for the core interior. Such

information would, at the very least, be useful in the generation of

the initial loading patterns to be submitted to the optimization.

4.4.2 Burnable Poison Optimization Algorithm

The primary objective of the use of BPs is to suppress excessive

power peaking and to ensure an overall negative moderator temperature

coefficient of reactivity at BOC. In addition, depending on the

residual reactivity, the BPs may be used to optimize cycle burnup by

shaping the assemblies' power histories such as to yield an optimal EOC

core configuration. Both objectives, that of supressing excessive

power peaking and power history shaping to optimize the core average

burnup, are combined in the algorithm described here, which is
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diagrammed in the computational flowchart of Fig. 4.8, and incorporated

in the LRM-NODAL program.

The main features of the algorithm may be summarized as follows:

* Restrictions on BP concentration in each assembly may be

input - these will never be exceeded;

* Absolute priority is given to poisoning the assemblies that

exceed the allowable power peaking limits according to the

following criteria:

a) if power fractions at BOC and EOC exceed the limits, the

assemblies in question are poisoned such that both exceed

the limits by the same increment (hence, if the limits are

the same, the BOC and EOC power fractions will be equal);

b) otherwise, poisoning is carried out such as to suppress the

excess power fraction (i.e., reduce it to a specified limit)

and. if possible, in addition, such as to maximize Bc;

* Except for the cases above (peakers

), the burnable poison is allocated according to the steepest

gradient method; i.e., in proportion to the local derivative, up

to the maximum allowed. The total amount to be allocated at
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Qm*4

Fig. 4.8 Search Algorithm for Optimal Burnable Poison
Allocation
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Fig. 4.8 (Continued) Search Algorithm for Optimal Burnable
Poison Allocation
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each iteration may be user defined, or be defined as a fraction

of the estimated total BP loading required to keep the overall

core critical at BOC;

e Convergence is achieved when:
3B

a) all c < E, where E is a tolerance limit; or,
9bi

b) all assemblies have achieved: the BP concentrations required

to depress their power to the specified limits; or their

maximum allowed BP concentration; or, otherwise, when the

maximum core BP loading has been allocated.

As an illustration, this algorithm has been applied to the Maine

Yankee Cycle 6 core. Fig. 4.9 displays the results for the BP-free core

depletion. Only seven assemblies have been allowed to be poisoned and

their BP concentration limits are shown also on Fig. 4.9. An assembly

power peaking constraint of 1.3 at EOC and BOC was imposed. The resi-

dual BP reactivity fraction, r, was specified as 0.0025. Figure 4.10

shows the BOC and EOC power distributions, as well as the BP concentra-

tions allocated. Additionally, the computed slopes, Sb, and the deri-

3B
vatives, c , for the assemblies in question are shown.

pbo

As can be seen, all assemblies are within the convergence range of

the 1.3 power peaking limit, and as required by the algorithm, the powers

of assembly (7,2) at BOC and EOC have been equalized, and nearly the same

happened with assembly (2,7). The important conclusions from these results

are:

(a) After poisoning, the cycle burnup increased to 9,858.11 KWD/Kg
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(from 9,815.74 KWD/Kg); (b) The EOC powers for the poisoned assem-

blies are close to their maximum allowable value (within the fairly

loose convergence tolerance); (c) For these assemblies all the deri-
DB

vatives of the objective function, -boi , are positive, indicating

that more BP allocation in these assemblies would further increase

the cycle burnup. These results are consistent with the basic prin-

ciple of maximization of EOC reactivity importance (in a sense,

"saving" reactivity for the EOC when its importance is higher).

Moreover, these results are consistent with those reported by Suzuki

and Kiyose [S-8], and, along with those of the previous algorithm,

contradict the assumption made in Ref. [D-2], that a constant power

shape held over the duration of the burnup cycle results in the

highest achievable energy production from the core.

Regarding the methodology, it is appropriate to note that the

successive linearizations intrinsic to the gradient approach and to

the projection of derivatives may result in convergence problems

when BP reactivity allocation steps are too large. Specifically,

when only a few assemblies are to be poisoned, the procedure of allo-

cating BP fractions such as to achieve core criticality by BP control

only should not be used. This inconvenience is easily avoided by

specifying appropriate ABP allocation fractions in the iterative

optimization process.
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4.4.3 Incorporation of Constraints

The results from the application of the previous algorithms show

that their optimal patterns clearly violate normally acceptable power

peaking constraints. Hence, these algorithms, in spite of providing

valuable insight into the nature of optimal core configurations, are

of little practical use without a concurrent ability to account for

power (or other, such as assembly burnup) constraints. The master

algorithm described in this section uses the same routines and methods

previously developed to search for configurations satisfying power

peaking constraints, as shown in Fig. 4.11

The main innovation consists of the use of the computed derivatives

to evaluate, through projection, the effects of assembly moves

(prioritized to improve the objective function) and thus avoid potential

violations of constraints. Furthermore, when, due to inaccuracies

inherent in the linearization of the projections, violations do occur,

the derivatives may be used in a backwards search for a feasible

configuration having a minimum loss in the objective function.

The priorities in core transformations (i.e. assembly moves)

are to be defined based on the potential gains (or losses), projected

by the derivatives of the objective function with respect to variables

of assembly reactivity (p o) and burnable poison reactivity decrement (pbo

but without potential violation of constraints. Thus two arrays of
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derivatives are required at each iteration. A possible simplification

may arise if the effects of BP loading can be decoupled from those of

assembly arrangement in the search for optimality; i.e., if the

unpoisoned optimal core arrangements still remain optimal after being

burnable-poisoned to the optimal limits (or are poisoned only to

suppress excessive power peaking).

If, as expected, the decoupling of both effects is possible, the

derivatives with respect to pbo will be required only to assess if

potential power peaking violations may be overcome (or dealt with)

through burnable poisoning. After the priorities have been defined,

the transformations are executed, i.e., the assemblies are shuffled

and the BP allocated. Then the core is depleted and checked for

satisfaction of all constraints. If constraints are violated,

optimal changes are searched for (i.e., additional poisoning or if

necessary, assembly exchanges) and executed in tandem with core

depletions, until a feasible configuration is found.

The optimization process is considered to converged when no worth-

while transformations (i.e., those resulting in a minimum threshold

gain in Bc) can be found, and all constraints are met.

The algorithm has not been fully implemented and evaluated in the

present work for two main reasons: insufficient memory (by a factor

of about 10) in the particular microcomputer for which the necessary
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routines were written (TRS-80 Model III, 48K); and, an impractically long

running time (days) that would be required to perform the calculations.

The additional efforts necessary to transport the software embodying

the routines to a larger and faster computer were not judged warranted,

since the major research objectives, development and demonstration of

an adequate core model and a systematic optimization methodology have

been satisfactorily achieved. Moreover, confidence in the accuracy and

reliability of the algorithm described herein is based on the fact

that the individual constituent routines have been tested (as demonstrated

by the examples previously presented), and, also because similar methods

(i.e., the "Hemstitching" method of Roberts and Lyers [R-3] and the

Gradient Projection Method [R-4]) have been successfully used for

complex nonlinear problems [B-4] [W-3]. In particular, it should be

noted that the Gradient Projection Method appears to be well suited

for problems such as the one at hand, where the active constraints play

an important role in the optimal condition. In this method the

current solution is assumed to lie on one or more constraint boundaries,

and the basic idea is to search in a direction in which the objective

function improves, but which is tangential to the boundaries of the

active constraints.

It is recommended, however, that transfer of the software to a

larger computer and full implementation of the algorithm be undertaken

as the starting point for future work. (Projections are that within

two years megabyte capacity minicomputers an order of magnitude faster

than the one used here will become available).
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4.4.4 Application to Composition Optimization

In this section the application of the gradient methods and routines

to tailor design compositions of assemblies (and cores) will be

briefly discussed. Two simple approaches will be considered, called

here "forward" and "backward" methods.

4.4.4.1 Forward Method

Suppose that the positions to be occupied by the assemblies to

be designed, as well as the compositions and arrangement of the remainder

of the assemblies are given. The objective then is to design assemblies

such that the marginal benefit (the partial derivative of the objective

function) for an incremental unit to be allocated (cost, ore commitment,

etc., represented by the appropriately weighted "reactivity units") is

the same in all locations. Thus, starting with an initial guess, the

incremental "reactivity units" may be allocated at each iteration

strictly proportional to the derivatives at each location, as prescribed

by the steepest gradient theory. If the total amount of resources

(represented in "reactivity units") is constrained, then the source terms

discussed in the latter part of section 4.3.2.1.1 should be used,

and the process will converge when all derivatives are zero. The

approach just described could be coupled to a reload pattern algorithm

to form an iterative method to tailor-design optimal reload batches.
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4.4.4.2 Backward Method

The LRM provides another possible approach to optimization of

compositions. The average cycle burnup may be written as:
n n

B 1 Poi Pi (455)c=1 1=1 1A

where, p. e is the assembly reactivity at EOC. Since, for a given core,

the poi/Ai are fixed, the optimization goal is equivalent to minimizing

the sum:
n n

Y i e (4.56)
i=1 i

The Bellman Optimality Principle* [D-5] may be invoked to argue that, if

expression (4.56) is minimized at EOC, the core obtained by a

"backwards depletion" will be optimal.

A steepest descent approach may be used to minimize Eq. (4.56),

subject to the condition that the core be just critical. The algorithm

of Fig. 4.1 provides the derivatives necessary at each iteration,

through P. A simple iterative procedure may be used (assuming

*The Bellman Optimality Principle is as follows: "An optimal sequence

of decisions in a multistage decision process problem has the property

that whatever the initial stage, state and decisions are, the remaining

decisions must constitute an optimal sequence of decisions for the

remaining problem, with the stage and the state resulting from the first

decision considered as initial conditions."
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that the slopes of the reactivity versus burnup curves, A s, do not

vary substantially):

1) Guess an initial composition;

2) Perform a power calculation [Fig. 3.1];

3) Make p = - pS, for i = 1, ... , n;

~p.

4) Compute p, for i = 1, ... , n [Fig. 4.1];

5) Make p = p. + A - , for i = 1, ... , n;

6) Repeat steps 2 to 5 until

3psp -_ sp

In step 5, A is an arbitrarily chosen increment, which should be reduced

as the process converges.

It is anticipated that the optimal configuration(s) resulting

from this process will not meet practical power peaking limitations.

Hence the practical use of its results may be as a "yardstick for

optimality", and beyond this, the method may be useful as part of

a comprehensive iterative algorithm for core reload batch optimization.

4.5 Chapter Summary and Conclusions

In the present chapter, after a brief survey of optimization methods,

the theoretical basis for the gradient approach used in this work has
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been presented. The relations and routines required by this method

have been developed and implemented. Improvements of the conventional

gradient method, for shuffling purposes, by using the logarithmic

derivative, as well as possible simplifications through direct search

methods, have been analyzed and implemented.

The gradient approach has been shown to be successful when used to

search for core configurations having improved cycle burnup, and to

optimize the burnable poison loading. The basis for incorporating

power peaking constraints in the methodology has also been developed,

along with possible applications for composition optimization.

From the numerical and analytical results obtained it is concluded

that optimal reload patterns for PWR cores depend essentially on

the EOC configuration resulting from an appropriate BOC arrangement of

the assemblies and their power history. For realistic cores this

condition always implies that the most reactive assemblies will be at

their maximum allowable power at EOC, and vice-versa for the least

reactive ones; in achieving this, the reactivity of the most reactive

assemblies is, in a certain measure, saved, thus maximizing their

importance at EOC.
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CHAPTER 5

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

5.1 Introduction

Pressurized Water Reactors (PWRs) account, currently, for more than

half of the nuclear power plants operable, under construction or on or-

der worldwide; and, moreover, PWR-based technology is likely to retain a

significant role well into the next century. Thus the efficient opera-

tion and fuel management of PWRs is of substantial importance, a factor

which motivated dedication of the present research to developing a metho-

dology for PWR core reload pattern and composition optimization.

The core reload design process encompasses a complex set of decisions,

having the goal of specifying a core capable of producing a demand-imposed

target cycle energy, at the minimum cost, with appropriate margins to

assure that design limits (detailed in the reactor's FSAR), are not ex-

ceeded. For steady state operation these design limits may be translated

into constraints on the radial power peaking factor in a two-dimensional

analysis. The goal of minimizing overall system costs, after the cycle

length has been approximately fixed, corresponds to minimizing the fuel

cycle costs; and this, in turn, after the reload assembly enrichment(s)

have been specified, to finding an acceptable reload pattern that maximizes
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the core average cycle burnup, Bc. Thus accurate computation of global

and local power histories and burnup have long been the goal of reactor

core designers.

Standard, sophisticated LWR core analysis methods having the above

capability (such as EPRI's ARMP package) are available to perform licen-

sing calculations, and are in use industry-wide. However, due to the

complexity and the high cost of such analysis it is desirable that can-

didate core reload configurations be as close to optimal as possible be-

fore they are submitted to full-scope analysis. Significant prior efforts,

resorting to a variety of methodologies and optimality goals, as summar-

ized in table 5.1, have been dedicated to optimization and automation of

the core reload preliminary design process. However, no standard methods,

having industry-wide acceptance and an adequate compromise between sim-

plicity and accuracy are in general use. The most widespread approach is

still trial and error aided by "rules of thumb" derived from experience

and insight.

In view of the above circumstances the primary objective of the re-

search summarized here has been the development of a methodology for PWR

core reload pattern and fuel composition optimization, where cycle burnup,

Bc, is defined as the optimality criterion, and where the capability for

a systematic incorporation of restrictions on power peaking, assembly

placement and burnable poison (BP) concentration, constituted a central

concern. Furthermore, ease of computation, transparency of approach, and

simplification, whenever possible (without distortion of the essential

features of the problem) have often been the key to success in complex

optimization tasks. Therefore, due to the previous success, and the po-
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TABLE 5.1

Summary of Relevant Core Reload Optimization Work

Approach

Author(s)
and

Reference

Rieck R-1]
Izenson [I-1
Downar [D-2]
Goertzel [G-1]
Wall and Fenech [W-1]
Mel ice [M-2]
Fagan and Sesonske [F-1]
Naft and Sesonske [N-1]
Suzuki and Kiyose [S-2]
Sauar [S-3]
Wade and Terney [W-2]
Hoshino [H-1]
Goldschmidt [G-2]
Motoda, Herczeg, Sesonske [M-3]
Ciechanowiecz [C-1]
Stout and Robinson [S-4]
Chitkara and Weisman [C-2]
Mingle [M-4]
Motoda and Yokomizo [M-5]
Terney and Williamson [T-1]
Lin, Zolotar, Weisman [L-1]
Ho and Sesonske [H-2]
Ho and Rohach [H-3]
Huang and Levine [H-4]
Colletti, Levine, Lewis [C-3]
Chang and Levine [C-4]
Ahn and Levine [A-3J
Suzuki and Kiyose [S-8]
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tential for improvement, of MIT's Advanced Linear Reactivity Model of PWR

core behavior [S-1], [L-2], [K-1], [D-1], its evaluation for, and extension

to the tasks at hand, constituted an important subsidiary goal in the pre-

sent work.

5.2 Methodology Development

The use of sophisticated state-of-the-art licensing-level methods

for preliminary scoping studies and optimization procedures is not war-

ranted, if not due to their high complexity and computational costs, then

because the degree of accuracy provided is much greater than the inherent

uncertainties in the problem being modeled. Hence more cost-efficient and

simpler methods, based on analytical and empirical models are called for.

In this section, the methodology development efforts to fulfill this need

for speed and simplicity will be summarized. First, the main features of

the PWR core model which has been formulated will be described. Then, its

extension to the optimization process will be summarized.

5.2.1 A Coarse'Mesh Nodal Method

The basis for the PWR core model developed in the present work was

provided by the modified one group diffusion theory model (also known as

the one-and-one-half-group model) applied to spatial calculations, coupled

with the empirically-well-established fact of the linearity of PWR assembly

reactivity [S-1], [K-1], [L-2], [M-6] and burnable poison (BP) reactivity

decrement [L-2] as a function of burnup, for core depletion calculations.
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Each assembly was assumed to be represented by one square node of

width h. Throughout this work, even though a compact matrix formalism

could have been used, a formulation of the equations suitable for direct

use in the Gauss-Seidel type iteration process was preferred.

5.2.1.1. Nodal Power Calculation

The one-and-one-half group equation is derived from the two-group

diffusion equations [H-5], by neglecting the thermal leakage, which is an

order of magnitude smaller than the fast leakage:

-VDV) + + E ) - 1( \ z E12 )(- 1 al + 12  1  Xvfl + vf 2  1 = 01a2
(5.1)

After defining the migration area, M 2 as:

M 12 = D1 al + E12)

the local

(5.2)

reactivity as:

p = 1 - 1/kCO (5.3)

where:

(5.4)k = ( i f2  a + E1 2 a2



161

and the system reactivity,or the modified eigenvalue

PS = 1 - 1/A, (5.5)

Eq. (5.1) may be written as:

(p - p ) D
V-D1V~ + = 0 (5.6)

The local thermal power density is given by

D
q'' = -v 2 Ki 1

V M (5.7)

After defining the normalized nodal power fraction, f , and after

integration over the nodal volume, Eq. (5.7) yields, for the integrated

nodal flux, :

(5.8)1 M (1-p) f Q

where Q is the core thermal power.

Integration of Eq. (5.6) over the core, and use of Eq. (5.8), yields

a system reactivity balance, which enables the computation of the modified

eigenvalue pS:
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n

P - P , (5.9)

1=1

where the "system leakage reactivity" PL, is given by:
m

S dA- D J (5.10)
PL n n

fZf 1
i=1 i=1

and, S designates the core outer surface, n is the number of total assemblies,

and J. is the net current out of each of the m peripheral assemblies.

Evaluation of the paramatric behavior of K/v as a function of burnup, and

the numerical analysis of its impact on Eq. (5.9) validated the approxi-

mation, used by previous researchers, of power-instead of source-weighting

the reactivity in Eq. (5.9); hence:
n
I i Pi

PS - PL (5.12)

i=1
Furthermore, use of local normalized relative soluble boron worth weighting

factors, accounting for spatially-varying spectral effects, allows the

direct computation of the soluble boron reactivity, psp, required for core

criticality (i.e.: pS = o or x = 1):
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n

p iP i f - p (5.12)

i=1

For a critical core, Eq. (5.6) becomes:

2 1 + p 1 1 - B2  = 0 (5.13)i -p M2  1 1 1

This equation, Eq. (5.13), was solved analytically in two dimensions, to

provide a firm basis for the nodal equations. The main assumptions made

were: continuity of fluxes and net neutron currents at nodal interfaces

(on an integrated basis for the orthogonal direction) and constant fast

group diffusion coefficient over the core interior. For the peripheral

nodes a correction factor, E, was incorporated to account for thermal

back-leakage from the reflector region, and other effects requiring em-

pirical adjustment to achieve adequately accurate results. The analy-

tical solutions for the integrated nodal fluxes are shown in tables 5.2

and 5.3 for interior and peripheral nodes, respectively, whereas table

5.4 shows the equations for the net currents out of peripheral nodes.

Expansion of the hyperbolic functions in the analytical solutions,

and the neglect of third and higher order terms in these expansions, was

shown to provide adequate approximations for the integrated nodal fluxes

and leakages. A further important simplification resulted from the para-



TABLE 5.2

Analytical Solution for Interior Node Integrated Flux

h/2) tanh

+

Subject to: B = 2 + 62
B.. ci.. ii.

+. a . csch(a i+.~ h)

(5.16)

X-direction:

2
ijij

2

Y-direction:

13j 13-ij
2

(5.14)

h/2) tanh

a1.
+

(5.15)

(. a .jlii~ csch(ai_ ., h)



TABLE 5.3

Analytical Solution for Peripheral Node Integrated Flux

X-direction:

o a2 . i-1,j a- j csch(a i l h)
13 13=
2 coth(t h/2) ED..[ h h/2) a + 13 tanh(B tanh(a. h/2) tanh(a h

coth(a..h + [tanh(at1 h/2) ED.. . )B h/2)

13 B + 13 tanh(h B ri ,j (5.17)
C. . +F DrBr IU**Ir r
13

Y-direction:

2ijD ij+i + i,+1 csch(r3U6 h)

2 ~ coth(. . h/2) ED.. 

coth(6 h/2) tanh(ij+1 h/2) r + tanh (Brh tanh(6 h/2) tanh(ij+1 h/2)
iij+1 tanh(6$. h/2) +ED thh 3 i+ (518)

+ tanh(B h 1rr8)
aD rB r r r

Subject to: B 2 = aL2 + 2
13 13 13

(5.16)
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TABLE 5.4

Analytical Solutions for the Net Neutron Currents Out of
the Peripheral Nodes

2D 1 2

xij 2

and

D -2

yij ~ ~ 2

-K
~K

coth(a. . h/2) E D. .
+ DBI tanh(B h )

D rBr r r
tanh(a.. h/2) E D..

+ D B tanh(Bh r
laj r rr

coth (S. . h/2) E D..
j + DB tanh(B h )

Bij Drr rr
tanh(s. . h/2) E D. .

13 + D 'B tanh(B h )
Sij Drr rr

(5.19)

(5.20)
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metric analysis, as a function of assembly burnup, of the factor

[ >±2] relating integrated nodal fluxes and nodal powers. This factor
K

was shown to be essentially invariant for LEOPARD results and only slightly

(and nearly linearly) dependent on local reactivity for CASMO and DIT

results; both dependencies are amenable to direct incorporation in the

nodal equations. The resulting nodal power equations are summarized in

Table 5.5, along with the prescription for leakage reactivity calculation,

and the corresponding coupling coefficients and leakage constants are

given in Table 5.6

5.2.1.2 Burnup Calculation

The linearity as a function of burnup of both the unpoisoned reacti-

vity and reactivity decrement attributable to BPs has been used because

of its accuracy and simplicity, to describe the otherwise complex pheno-

mena of assembly fuel and burnable poison depletion. Thus the fuel assembly

reactivity is represented simply by:

p = pi - AiB . (5.25)

Following ref. [L-2], the BP was modelled as an ideal material providing

a required negative reactivity at BOC, burning out uniformly over the cycle,

and then leaving a small residual fraction, r, at EOC. Such BP behavior,

besides being desirable for power suppression and for attainment of optima-

lity goals, is not unrealistic, as shown in Fig. 5.1, which illustrates



168

TABLE 5.5

Summary of the Nodal Power and Leakage Equations

Interior Nodes:

4
Z f.( - S.)

14(1 _ e (5.21)

Peripheral Nodes: N

f (1 - esj)
- (5.22)

p(1- p eLPL

Leakage Reactivity:
Peripheral Assembly:

2 M
PLi = Nr h 2 E D ) (1 + kL spI (5.23)

DrBrh

System:

m n

L fPLi i (5.24)

where:

N = number of fuel/fuel interfaces on assembly i;

Nr 4-N= number of fuel/reflector interfaces on assembly i;

and, the coupling coefficients, other constants and numerical

estimates are summarized in Table 3.4.
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TABLE 5.6

Summary of Coupling Coefficients, Leakage Constants and
Numerical Estimates

INTERIOR:

2

6 M
= 2.234

h2e = 1 - 2 + y = 0.383
sERPE12M2

PERIPHERY:

ASSUMPTIONS:

1) Empirical corrections: yj =

2) M2 = 54 cm2; h = 20 cm; p

... = Y5 = 0.

= 0 (EOC).

3) pLi was computed using: Di = 1.4 cm; Dr = 2.25 cm; 1/Br = 8 cm

and E ~-2.2 (Appendix C).

4) pLj was computed using: Eq. (B.36) to calculate E/Dr B = 0.1321

(for Maine Yankee's EOC albedo, a* = 0.583); and Di = 1.4.
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both the poisoned and unpoisoned reactivity traces for B4C BP in a Maine

Yankee assembly, generated by the CASMO program. Furthermore, gadolinia -

based poisons maintain linearity up to the burnout point, and, roughly

speaking, any BOC BP reactivity decrement and slope may be obtained by

appropriately selecting the number of shim pins per assembly and their

poison loading. Hence, the BP model is represented by:

pboi - Sbi Bi , O Bi!6: Bi (EOC)

bbi B
rp . , Bi Bi(EOC) (5.26)

Three core depletion computation methods - synthesis, integrated and

step-wise - have been developed and evaluated. The stepwise approach was

preferred in this work (due to its flexibility and adequate compromise be-

tween speed and accuracy); it essentially consists in performing successive

nodal power calculations and core depletions in steps of length AB, until

achieving the EOC null reactivity condition. A general computational flow-

chart of the power and burnup calculation method is diagrammed in Fig.

5.2 The same general logical structure is embodied in the LRM-NODAL pro-

gram written to permit application and evaluation of the analytic methods

developed in the course of this research.

5.2.1.3 Accuracy: A Comparison with LEOPARD/PDQ-7 Results

The suitability of the LRM-NODAL core model for its intended applica-

tions was determined by comparison of its results with state-of-the-art

LEOPARD/PDQ-7 licensing-level calculations for the Maine-Yankee Reactor
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Fig. 5.2 Flowchart for the LRM-NODAL Core Model Computation
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core. Figures 5.3 and 5.4 show typical comparisons for the assembly

average power fractions, for Maine Yankee cycle 6 core at a cycle burnup

of 1 MWD/kg. For the LRM-NODAL code two results are shown: one using

unadjusted, analytically estimated coupling and leakage coefficients

(Fig. 5.3); and the other using empirically-adjusted peripheral con-

stants (Fig. 5.4), thus mimicking the procedure commonly followed with

albedos in other nodal codes, to which these constants are related. In

evaluating these comparisons, a difference in conventions should be noted:

Maine Yankee PDQ-7 results are average assembly pin powers whereas the

LRM-NODAL results are average assembly powers; hence due to the replace-

ment of fuel pins by BP rods (whose number is given in the alphanumeric

assembly code, e.g. 8 in J8, 4 in 14, etc.) the LRM nodal powers should

be about 4% and 2% lower for assemblies containing 8 and 4 BP pins,

respectively.

* good agreement exists for interior assemblies: maximum real errors

typically less than 5% and an average error of about 3%;

@ for the periphery, the LRM-NODAL program always overpredicted the

assembly powers when using unadjusted constants, but a considerable

improvement was achieved (maximum errors less than 9 %) when empiri-

cally adjusted constants were used;

& the program consistently identified assemblies having the highest

powers (the "peakers");

# for the cycle burnup, disagreements existed, mainly due to differ-

ences in the data used to independently estimate the parameters to
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2 3 4 5 6 7
4 2O 5 14 6 J0 7 10 8 J8 9 10 10 K8 3

1.0431 1.1882 0.9530 1.1329 0.9698 1.0391 0.9169 1.0124
1.050 1.230 0.9311 1.137 0.9606 1.000 0.9293 1.007 KO
0.6 3.5 -2.3 0.36 -0.9 -3.7 1.3 -0.5 0.7454

J0 5 10 11 J0 12 14 1'3 J0 14 14 15K8 3 00 6 3.8396
1.1819 1.0248 1.0986 0.9424 1.1584 0.9863 1.1512 .831V 12.6
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2 3 4 5 6 7
6 4 30 5 I4 6 J0 7 10 8 J8 9 10 10 K8 3

1.0-31 1.1802 0.9530 1.1329 0.9698 1.0391 0.9169 1.0124
1.076 1.250 0.9516 1.158 0.9716 1.006 0.9207 0.9837 K
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describe the Maine Yankee core in the LRM-NODAL program, a feature

that may be easily overcome through consistent computation of the

LRM parameters, especially the slopes, A, and the BP related data.

In view of the errors reported above, it is worth noting that the

state-of-the-art licensing-level core analysis systems LEOPARD/PDQ-7 and

CASMO/SIMULATE exhibit disagreements of up to 4.3% in assembly average

powers,and uncertainties of ±200 KWD/Kg in cycle length predictions [D-4].

Finally, several corrections to overcome analytical and modeling de-

ficiencies in the LRM-NODAL methodology, such as the incorporation of axial

leakage, differential thermal leakage and power related feedback effects,

through simple adjustment of coupling coefficients or LRM parameters, or

the use of differential soluble boron worth weighting factors, provided by

appropriate correlations, have been shown to be possible, thus indicating

that even better accuracy may be achieved.

5.2.2 Optimization Methodology

It was an important concern in the formulation of the optimization

method to take advantage of the simplicity and versatility of the LRM-

based core model, i.e. the fact that a change in the basicvariable,

assembly "reactivity", may be used to represent changes in enrichment,

BP concentration or exchange of the assembly itself, which allows the mul-

tiple use of the model's analytical developments and computational routines

for diverse objectives, such as optimal core reload pattern searches and

BP loading and composition optimization.
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The optimal core configuration (i.e. assembly arrangement and compo-

sition), is essentially determined by the EOC core condition (assembly

power and reactivity distributions). As a result of the characteristics

of the burnable and soluble poison models adopted in this work, the EOC

condition is uniquely defined once the BOC core configuration is determined.

Hence, the otherwise complex problems of optimal control of a dynamical

system and discrete optimization of core pattern selection, are trans-

formed into a search for the BOC loading pattern and composition (BP loading,

when the assembly reactivitiesare given), that yields the maximum cycle

burnup, Bc.

5.2.2.1 Optimization Approaches

The main theoretical foundation for the optimization technique used

in the present work relies on the well known steepest gradient approach.

Using the Lagrange multiplier method it may be shown that the greatest

change in a multivariable function f(x), due to a perturbation A =

n 2 .
[ 6xi ]I around its current position X = (xlx 2 '''''xn) is given by
i=1

choosing the individual perturbations 6xi, i=1,..., n, proportional to the

first partial derivatives, (i.e. the change should follow the gradient

direction). Hence the maximum improvement is given by making:

6x. 6x. 6x
= - (5.27)

3x. 3x. 31 1 n
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In order to partially overcome the limitation that the conventional gra-

dient direction search strictly holds for small perturbations only, or as

long as linearization around the current position remains valid, the use

of the logarithmic derivative (as is done in the sensitivity theory

approach [0-1], [0-2])instead of the conventional partial derivative was

investigated and made available as an option in the optimization routines;

which was especially useful for the assembly shuffling procedures, where

the perturbations are not always small.

The necessary partial derivatives were computed by direct analytic

differentiation of the objective function, BC, of the nodal power equations

(at the BOC and EOC conditions) and of the assembly burnup equations, with

respect to a generic px (representing either p0 or pbo). The cycle average

burnup, Bc, given by application of the EOC null reactivity limit is:

n n

Z f (P rp Z fPL
B=j=1 noj boj j1 jLj (5.28)
c n

Z A. f.e fa.
j=1 j

The equations used to compute the partial derivatives are reproduced in

Table 5.7, and the solution scheme is similar to the conventional power

and burnup calculation process.

Recognition of the important role of the EOC power fractions in Eqs.

(5.28) and (5.36) in the determination of the optimal EOC core condition, as

confirmed by the numerical results, led to the formulation of a direct

search method for the maximum BC configuration. In this method, the EOC

power fractions are used essentially in the same



TABLE 5.7

Equations for the Calculation of Derivatives Used in Core Reload Optimization Routines

Nodal Power Derivatives:

BOC:

Interior Nodes:

if af r
"PX

N

Peripheral Nodes:

pf 1(i -ax

where,

10P n
j= f W1
j= 1

Ix x +

and,

Fk = ok - 1bok + sbk B k)
gpx

subject to the normalization condition:

j=1 x

N

10 - 0 ,(Po -oboi - Psp l (5.29)

(5.30)

n-

(pi - Pboj p x

U

-
j=1 '~i a

kI

(5.31)

(5.32)

(5.33)



TABLE 5.7 (Continued)

Equations for the Calculation of Derivatives Used in Core Reload Optimization Routines

EOC:

Interior Nodes:

af f [r - (A B N-

N
P

f
N

[r - (A B)]+
xj=1

S- 0 (Po - roboi - A B ) + 0 L 

[1- r.s j - (A B )]j-I
x a x Iax

(5.34)

Peripheral Nodes:

0
Of [r - (A B )] -

af x NP

1 - O(Po. - rbi

N

Ef[r -

j=1
B1 )

N

(A B )] + - Os j - (A B1)]
" P j=1 x J

Burnup Derivatives:

Cycle Burnup:

n e
1:fe r.i

n -
+ :Pj - rpboj - A ( + 

f e in
-~Pu

x

n
4.1=

J-L JAL - .1 - - -

( e af b

+ f f e /

n A. f ef
E j a

j=1 (5.36)

Assembly Burnup:

BC (fb + fiiJp ap

where the superscripts b and e denote BOC and EOC, respectively.

af

(5.35) CO

(5.37)

--x

ap x

aB
C

apx

B
f C

a i ( :
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way as are derivatives of the objective function in the gradient method;

i.e., the maximum gain in the objective function is obtained by performing

assembly shuffles such that the changes in reactivities are proportional

to the derivatives (in the gradient method) or to P= fge (1 - Poi)

(1 - p ) (in the direct search method ). This procedure ultimately
3BC

corresponds to matching the rankings of reactivities and -j-, or P.1, at

each iteration of the optimization process.

5.2.2 Optimization Algorithms and Applications

Algorithms for the unconstrained maximum cycle burnup and optimal BP

allocation have been fully developed and implemented in the LRM-NODAL pro-

gram. The basis for the systematic incorporation of constraints on power

peaking, as well as other limits such as assembly burnup, has also been

developed, but not fully implemented and tested, due to speed and memory

limitations of the microcomputer (TRS-80 Model III, 48K) with which the

computations were carried out. The potential application of the methodo-

logy to tailor-design assembly or batch compositions has been examined and

described within the framework of the steepest gradient approach.

The essential features of the maximum cycle burnup algorithm in

LRM-NODAL are:

* the initial pattern may be defined by the user or input from

a library of prototypic patterns;

a assemblies may be restricted to certain fixed positions in

the core;
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* options are available to use the direct search method for a pre-

liminary optimization, and to select either the conventional or

the logarithmic derivative in the steepest ascent search.

Figure 5.5 summarizes the step-by-step convergence of the algorithms

when applied to the Maine Yankee Cycle 6 Core, and Figs. 5.6 and 5.7 show

the configurations generated by the direct search and gradient methods,

respectively.

The main features of the BP allocation algorithm are:

& the maximum allowable BP concentration limit in each assembly

may be user defined;

@ absolute priority is given to depression of excessive power

fractions to within specified limits;

* the steepest gradient approach is used to allocate BP such as to

optimize the burnup histories (that is, maximizing Bc) whenever

possible without conflicting with the objectives above.

The results of this algorithm as applied to the Maine Yankee Cycle

6 core are shown in Fig. 5.8. Only the seven indicated assemblies have

been allowed to be poisoned, and a power peaking constraint of 1.3 was

imposed at BOC and EOC. As can be seen, consistent with the basic prin-

ciple of maximization of EOC reactivity importance, the EOC powers of

these assemblies are within the convergence tolerance of the maximum

allowed; and, moreover, the derivatives, BBc/ Pboi, are all positive,

indicating that more BP allocation in these assemblies would further

increase the cycle burnup (which for the BP-free core was 9815.74

KWD/Kq).



PRELIMINARY OPTIMIZATION
(DIRECT SEARCH)

FINAL OPTIMIZATION (GRADIENT METHOD)

I

28 4(+)
7(+)

18 10

1 (+

Notes: 1) Total Assemblies
2) Changes in Odd CE

(-) = Loss in Coy
(+) = Gain in Coy

3) First Iteration (

4) Relative CPU TimE

-34=Number of Assemblies Moved

15(-)

12(-)
9(-)

9

6
9

IL
6

4-) C:

0

0~ 0

F(A

12,840

12,820

12,800

12,780

12,760

12,740

12,720

12,700

12,680

12,660

12,640

12,620

12,600

12,580

12,560 A a a ...

1 2 3 4 5 6 7 8 9 10 11 1 2 3 4 5 6 7 8 9 10 11 12
Iteration Number

Fig. 5.5 Road Map of Convergence Progress for Burnup Maximization Algorithm

in Core Available for Shuffling: 55
ntral Assembly (see text):

re Reactivity
re Reactivity
not shown): B c=9.815.74 KWD/kg; 50 Assemblies Moved (-)
per Iteration: Direct/Gradient Search = 1/20

co

U)

ca~

Is I
I V

i

- - - * - -



184

1 2 3 4 5 6 7 8 9

0.129688D.132068 0.142816 0.153055 0.221973).02219710.11244 0.048282

6 5 4 3 1 1 7 13

0.132068).132068 0.153055 0.221973 0.221973).221973 0.10976 0.389345

5 5 3 1 1 1 8 15

0.143816).142816 0.155491 0.221973 0.221973).221973 0.090801 0.223811

4 4 2 1 1 1 11 17

0.153055).15491 0.221973 0.221973 0.221973 .129688 0.530786 0.220128

3 2 1 1 1 6 12 18

0.221973 ).221973 0.221973 0.221973 0.221973 0.096007).036076 -0.00628

1 1 1 1 1 10 16 22

.2219731 0.2219731 0.2219710.221973 10.10976

I 1 8

0.048282

13

-0.0061V

211
4. 1. 4. I

0.11244

7

).908015|0.03893410.001905

11 15

).100552

9
_________ I

042828

13

0 .022012E

18

-0.00619

21

042834D.036762 K)

14 16
_I _

0.001905

20

0.208

23

20

...... p .

...... Ranking of p

9 ).009915 -0.01082

19 23

Fig. 5.6 Assembly Arrangement Generated by the Preliminary Direct
Search Method

1

2

3

4

5

6

7

8

0

1

0.11244

7

0.



185

2 3 4 5 6 7 8 91

0.221973 0.221973 0.221973 0.14281 0.129688 0.221973 0.221973 0.048282
1 1 1 4 6 1 1 13

3067.6 2854.6 2586.9 1989.3 1863.6 2400.6 2603.0 1125.8 21
0.221973 0.221973 0.155491 0.12968E 0.11244 0.221973 0.155491 0.04283C 271.8

1 1 2 6 7 1 2 14
2854.6 2639.8 2179.4 1864.3 1820.8 2471.9 2155.3 958.4 -0.01082(

23
181.8

3.221973 0.221973 0.153055 0.13068 3.221973 0.221973 0.090801 0.022381
1 1 3 5 1 1 11 17

2586.9 2472.6 2061.6 1894.8 2308.0 2533.5 1632.7 659.3

).142816 0.11244 0.132068 0.142816 0.221971 0.22197 0.05207 0.022128
4 7 5 4 1 1 12 18

1989.3 1831.0 1894.3 1985.0 2463.2 2549.1 1239.1 434.8

).129688 0.10926 0.153055 0.221973 0.221972 0.09600 0.03607.-0.00628
6 8 3 1 1 10 16 22

1863.6 1791.0 2061.8 2496.1 2588.8 1683.4 792.3 209.2

0.22197'
1

2440.7

0.221973
1

2536.0

0 .221973
16

2616.0

0.10976 0
8

1777.8

.038934
15

900.3

0 .001905
20

280.9
I 4 t t I t

0.22197T
1

2526.3

0.42828

0.100552 10.09081510

0

9
1761.8

.36076210
13 16
1043.2 748.4

I-

11
1458.6

.022012
18

479.4

.38934E
15
846.3

-0.0069S
21

224.8

0.009915 -0.01082'

9 19 23
311.6 199.0

0.00190!
20

289.0

...... p .

...... p01 Ranking

oio
..........3B c

;po'

Fig. 5.7 Final Assembly Arrangement Generated by the Conventional
Gradient Method

1

3

4

5

6

7

8

0.221972
1

2400.5

0.221973
1

2603.0

0.048282
13

1125.8



186

I 2 3 4 5 6 7 8 9

E16 4 J0 5 14 6JO 7 10 8 J8 9 10 10 K8 3
n.961 1.125 0.858 1.072 0.936 1.029 1.017 .1
0.852 1.000 0.797 0.975 0.863 0.973 1.032 1.()

. I - n-n~nn
JO 5 10 11 JO 12 '4 13 JO 14 [4 158C 3 10 16c
1.125 '0.956 1.015 0.862 1.126 0.975 1.318 0.873
1.000 0.870 0.930 0.794 1.006 0.912 1.323 0.923

- - - - - - 0.0420 -

14 6Jo 12 14 17 J0 18 10 19 J0 20 J8 21KO 1
0.858 1.015 0.875 1.057 1.050 1.267 1.214 1.193
0.796 .931 0.811 0.948 0.938 1.126 1.135 1.147

Jo 7 14 13 00 18 J4 22JO 23 10 2410 25 KO 1
1.071 0.862 1.057 1.143 1.183 0.980 0.909 0.955
0.974 0.794 0.946 1.001 1.059 .953 .975 1.016

10 8 Jo 14 10 19 J023 10 26 J8 27 3 KO 1
0.935 1.125 1.048 1.182 1.020 1.033 .925 0.645
0.864 1.006 0.939 1.060 0.994 1.104 1.294 0.834

. - - - - 0.0836 -

J8
1.027
0.973

9

10 10
1.015
1.033

P 10 7
1.307
0.6000

14
0.974
0.911

KS
1.315
1.323

3

JO
1.266
1.125

J8
1.212
1.136

20

21

10 24
0.980
0.951

10 25
0.907
0.972

Js
1.032
1.104

27

KS 3
).922

.294
0.0842.

K4 2
1.200
L.299
0.0103

KO
0.729
0.911

11

- 4-, - Y -. V - I -
JO 16
0.871
0.921

KO
1.190
1.149

1 KO
0.953
1.013

1 KU 1
).643
).835

1K0 11K0 II
g I0.873 0.6561-- BOC Power Fraction

0.977 0.745 -- EOC Power Fraction

- -- oboi (BP reactivity)

(a
J.730
J.914

1

KO 1
0.875
.979

O
0.658

Assembly Slope S 3B /3p .bi c bol
(kg/KWD)

1,8 4.95E-06 234.90

2,7 3.19E-06 337.17

5,7 7.73E-06 153.88

6,6 8.27E-07 310.30

7,2 3.21E-06 328.38

7,5 7.76E-06 153.37

8,1 4.95E-06 234.90

Bc = 9858.11 KWD/Kg

F i g . 5.8 Maine Yankee Cycle 6 Core Results after Optimal BP
Allocation

1

2

3

5

6

7

8
-- L

L-



187

5.3 Conclusions

The main conclusions arrived at in the course of the present re-

search may be summarized as follows:

A) Regarding the Methodology:

s The LRM based nodal model provides an adequate description of

PWR cores for optimization-oriented applications:

* The gradient methods and the direct search approach have been

shown to be successful in yielding substantially improved core

burnup configurations, and are thus able to answer the funda-

mental question as to which assembly exchanges to pursue to

maximize the gain in the objective function, Bc;

* The gradient approach, as formulated here, is able to success-

fully determine optimal loading assignments of an idealized

burnable poison (as defined by Loh [L-2]);

B) Regarding the Results:

From the analytical and the numerical results obtained using

the LRM-NODAL code, the optimal core configuration (i.e. yielding

the maximum Bc) may be described as having the following

characteristics:

* The most reactive assemblies are at their highest powers at

the EOC (thus maxi.mizing their importance), and the converse

applies to the least reactive;

@ The power histories and profiles are such as, usually, to produce

relatively higher leakage at BOC, evolving to a lower leakage
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at EOC (the lowest possible for typical state-of-the-art PWRs)

but always consistent with the maximization of EOC core react-

i.vity importance;

These results are consistent with the characteristics of the well-

known low-leakage core loading schemes now gaining favor as PWR reload

patterns, as well as with the results-reported by other researchers,

especially, Suzuki and Kiyose [S-8], [S-2], and Huang and Levine [H-4].

It may also be concluded that for typical state-of-the-art PWRs, a

large number of core configurations yielding burnups close to the maxi-

mum achievable (or having burnups oscillating well within the range of

the calculational uncertainty of the model used) do exist, and it is ex-

pected that the satisfaction of acceptable power peaking constraints will

dominate the last stages of the optimization process.

5.4 Recommendations for Future Work

Based on the results obtained in the work just reported, several pro-

ductive areas for its extension appear worthwhile:

# The computational routines and software should be transferred

to a faster and larger (RAM) computer, to permit the full

implementation and testing of the incorporation of constraints.

* The Gradient Projection Method deserves to be evaluated for use

in the optimization procedures especially due to its efficiency

in dealing with constrained optima;

* Improved (faster) methods to compute the derivatives required
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in the algorithms , B b, and should be
(3 px DPx X

investigated and implemented.

* Review and improvements of the computer programming techniques

should also prove beneficial in terms of computing efficiency

and speed;

* For maximum utility the nodal subroutine in LRM-NODAL needs to

be expanded to: allow quarter-assembly analysis, handle three-

dimensional problems, relax the isobuckling approximation, and

incorporate reconstruction of intra-assembly power shapes (using

the analytical solutions of Appendix B);

* The addition of a three-dimensional analysis capability will

allow the explicit incorporation of axial constraints, which in

the present two-dimensional method can only be partially and

indirectly considered (via specification of different BOC and

EOC power peaking limits that account for the variation of the

axial power shape with burnup);

* Relaxation of the linearity of fuel and BP reactivity traces

as a function of burnup should also be considered. Specifically,

with little additional effort, the capability to analyze poison

burn-out before EOC may be incorporated. Such BP traces, despite

not being preferred (since they do not maximize cycle burnup and

tend to yield higher intra-cycle peak power) are of interest

because they correspond to the behavior of some burnable poison

designs in contemporary use;
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0 Generalized Perturbation Theory, as developed by Williams [W-5],

[W-6] and others, to compute sensitivity coefficients for

neutron/nuclide coupled fields, should be examined because of

its potential to allow the use of state-of-the-art methods

(such as QUANDRY) in optimization methods similar to the one

developed in the present research;

* Use of Optimal Control Theory within the framework of the LRM-

based core model should be investigated;

* The coupling of the direct search method for maximum burnup, as

developed here, with dynamic programming techniques to account

for power peaking and other constraints should be examined;

* And, finally, extensive applications of the methodology developed

in the present work to core reload pattern and composition

optimization should be carried out, to obtain valuable further

insight into the nature of the optimality condition. It may even

be possible, in the long run, to develop a set of purely pres-

criptive rules which would permit realization of a near optimum

assembly array without the need to exercise a full-capability

optimization program.
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APPENDIX A

Analysis of the Power Versus Flux Normalization

Factor [Y M and Related Parameters

Previous researchers [S-1], [L-2], [K-1], relying upon LEOPARD

calculations, assumed D, and M2 constant and the K/V variation a

negligible function of burnup in the Advanced Linear Reactivity

Model. However, correlations reported earlier by Rieck [R-1], also

based on LEOPARD, appeared to contradict these assumptions. Therefore

the investigation summarized here was carried out to clarify these

issues and to guide possible simplification regarding the incorporation

of the normalization factor in the nodal power expression.

A parametric analysis of the factor [ ] was performed using

results from the LEOPARD, CASMO and DIT codes, for typical (state-of-

the-art) low-enriched uranium-fueled PWR lattices. As a representative

base case, a 3 w/o enriched uranium, standard Maine Yankee lattice,

was considered, and minor variations about this configuration

were examined. (Hence, the extrapolation of the conclusions to

substantially different configurations and compositions is not

warranted without further analysis.)
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Figure A.1 shows the behavior predicted by LEOPARD and CASMO

for the factor KY D2 as a function of burnup and local reactivity,

for the base case. The LEOPARD result may be well represented by a

constant, and for CASMO a good representation is provided by a

linear correlation (with coefficient of determination R2=0.9335):

0.4919 (1 - 0.145p), neut.cm/MeV (A.1)

LEOPARD has also been used to examine several other cases, and the

virtual invariance of [ 21 with burnup (ranging from 0 to 40 MWD/kg)

was consistently maintained. For example: for a 3 w/o enrichment,

standard Maine Yankee lattice, the factor ranged from 0.498785

(at 1 MWD/kg) to 0.502152 (at 18 MWD/kg); for a very dry lattice

having a cell fuel-to-moderator volume ratio of 0.75 and 4.5 w/o

U-235 enrichment, the variation was only from 0.525582 (at 1 MWD/kg)

to 0.521759 (at 39 MWD/kg).

The fortunate cancellation of factors, resulting in the

parametric invariance predicted by LEOPARD or in the possible

linearization with local reactivity as suggested by CASMO, is

a welcome feature, allowing for an easy incorporation of the factor

in the functional form of the nodal power expression (derived in

Chapter 3). The discrepancy between LEOPARD and CASMO, however,

deserves further analysis. Table A.1 indicates that the relative

source of discrepancy originates almost equally from K and D1/M2

(= E12 + al), with v having negligible influence. Thus separate

evaluation of each constituent parameter will be performed.
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TABLE A.1

CASMO/LEOPARD Ratio for Parameters v, K, D1/M2

BURNUP v (CASMO) K (CASMO) D 1/M2 (CASMO)
(MWD/kg) v (LEOPARD) K (LEOPARD) D 2/M (LEOPARD)

1 1.0088 1.0296 1.0259

10 1.0079 1.0212 1.0161

20 1.0062 1.0139 1.0081

35 1.0031 1.0033 0.9994
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A.1 K/V Variation with Burnup and Reactivity

In addition to being part of the power versus flux normalization

the K/V variation is important in the system reactivity balance

(modified eigenvalue) calculation, of Eq. (2.20). Figure A.2 shows

the results of CASMO, LEOPARD and DIT computations (the DIT results

are for 2.9 w/o U-235). Since v is consistently calculated by

LEOPARD and CASMO, as shown in Table A.1, the difference should be

explained by the computation of the energy released per fission.

CASMO and DIT are in good agreement, but between these two codes

and LEOPARD two differences are evident: first, the absolute value

of K/V is always lower for LEOPARD; second, the behavior (slope)

with burnup is markedly different. The explanation resides on

computational methodologies and data differences, as will be discussed.

LEOPARD computes separately the energy contributions from

fission and radiative captures. The energy released by capture of

neutrons in the reactor materials is calculated from a detailed

neutron balance, considering individually the number of neutrons

captured in each material and the subsequent energy release

characteristic of each material. The energy from fissions is

calculated from two components: direct fission energy, and kinetic

energy of the non-leaking neutrons. CASMO's simplified approach

attributes to each fissioning nuclide a global amount of energy

released per fission, which includes a fixed fraction due to



196

radiative capture. CASMO does, however, smear throughout the

assembly an energy fraction due to gammas.

The different approaches regarding the radiative capture

energy treatment explain the main difference in the shapes of the

curves shown in Fig. A.2. To a lesser extent, the neutron kinetic

energy treatment may also contribute. This conclusion is substantiated

by the curve "LEOPARD without capture gammas", in the same figure.

This curve, which is almost parallel to those of CASMO and DIT was

calculated from LEOPARD data as follows: using the material

transmutation and neutron balances, as well as the power fractions

shared by each material, given by LEOPARD at each burnup step, and

the data of energy released per neutron capture provided by the

LEOPARD manual [B-1], the energy due to capture gammas in all

materials was computed and subtracted from the original LEOPARD K/V

curve (also plotted in Fig. A.2). The radiative capture energy

fraction increases from about 2% (at BOL) to about 5% (at EOL'-40 MWD/kg)

of the total energy released per fission. The increase is mainly

attributable to incremental captures in heavy isotopes (due to the

buildup of plutonium isotopes and spectral changes affecting U-238

captures), as well as in the growing fission product inventory.

The observed difference in K/v is also due to the outdated data

used in LEOPARD for energy released from fission, as well as for
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some radiative captures. The program's manual [B-1] recognizes that

the mean energy per fission is too low "by about 5 out of 200".

Detailed compilation of state-of-the-art data is beyond the scope

of the present research. References [U-1] and [S-7] provide a

critical review of the energy released in nuclear fission.

References [H-7], [K-3] and [K-4] report data and measurements of

gamma energy released in neutron captures carried out at MIT. Table

A.2 displays the values used in CASMO (for total energy released

per fission event), in LEOPARD (for direct fission energy only), and

the values given by reference [U-1] for the lowest estimate of

direct fission energy effectively recoverable, and for the total

recoverable energy from a fission event. These total energy values

are the direct energy plus the energy resulting from capture of

the excess (v - 1) neutrons released per fission, computed for the

EBR-II fast reactor spectrum and composition. The actual amount of

effectively recoverable energy depends on the irradiation history.

Typically, however, less than 0.25% of the total energy is recovered

after 30 days of the originating events. The good agreement existing

between CASMO and the values of Ref. [U-1] for total energy seems

to indicate that in CASMO all energy from capture of excess neutrons

is assigned to the assembly of origin. In a reactor the excess

local neutrons leak to the periphery, into adjoining assemblies,

thereby exporting some of their associated capture and kinetic energy.

Table A.3 shows the energy released in radiative captures for selected

elements, as given in the LEOPARD manual [B-1], and references [U-1]
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TABLE A.2

Energy Released per Fission (MeV)

Nuclide CASMO LEOPARD Unik and Gindler [U-1]
(TOTAL) (DIRECT) (DIRECT) (TOTAL)

U-235 202.2 189.0 192.4 201.7

U-236 202.2 189.0 - -

U-238 199.7 186.7 191.2 203.0

Pu-239 209.1 196.0 198.4 210.6

Pu-240 209.7 196.0 196.3 210.5

Pu-241 211.0 198.0 199.4 212.0

Pu-242 211.0 198.0 197.9 212.1
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TABLE A.3

Energy (MeV) Released in Radiative
Captures for Selected Elements

LEOPARD KALRA UNIK andElement [B-1] [K-1] GINDLER [U-1]

0 4.140 4.140 4.140

Fe 7.790 7.770 -

B-10 2.880 - -

U-235 6.430 6.540 5.670

U-238 4.062 4.800 5.670

Pu-240 5.710 5.240 -

Pu-241 6.060 - -

Pu-242 5.500 - -

Xe-135 4.000 - -

Sm-149 7.980 - -

Other
Fission 4.000 - -
Products
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and [K-4], the last two for fast neutron spectra. The numbers for

U-238 indicate that a non-negligible difference may exist and

contribute to the overall deficiency in LEOPARD's predicted value.

From this data and analysis some conclusions, not all related

directly to the main focus of this research, may be drawn:

* The K/v results from LEOPARD appear to represent in a better

fashion the physical phenomena (on a relative basis, at

least), even though giving absolute values which are too low;

e These lower values may cause an underprediction of the

achievable burnup from a given amount of transmutations;

* The incorporation of a method, similar to that of LEOPARD,

to calculate in detail the contributions of radiative

neutron captures in the advanced codes CASMO and DIT, may

result in a small power peaking margin gain, due to the

relative shifting of gamma energy to older (less reactive)

fuel. It appears that gamma smearing (transport) would

not affect this expectation, since, despite increasing

fractionally with burnup the total gamma energy would still

be lower in the old fuel because of the reduced power fraction.

Accurate analysis of the gamma energy transport, deposition

and heating is beyond the scope of the present research.

Such a study, for fast reactors, has been carried out at

MIT by Kalra [K-4].
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A.2 D /M2., D1 and M2 Variation with Burnup

The parameter D1/M2 is actually the sum of Eal + E12, as may be

seen from Eq. (2.5). Figure A.3 shows the variation of this parameter

with burnup, for the base case. As can be seen from the plot of the

individual constituents, Z12 in Fig. A.4 and al in Fig. A.5, the

discrepancy is mainly due to the higher values given by CASMO for

E12 at BOL.

The diffusion coefficient, Di, is another quantity of interest,

since according to Eq. (2.5), M2 = D/(Zal + E12). In Fig. A.6,

the undoubtedly unphysical peaking of D, given by LEOPARD (at- 25 MWD/kg,

for this case), is noticeable. Similar deflections normally appear

in LEOPARD results (e.g., in Rieck's [R-1] correlations for M 2),

but seem to be the result of numerical convergence problems rather than

actual phenomenological behavior. For CASMO two diffusion coefficients

are depicted: a) D, calculated from the transport cross section

(D1c- 1/3 Etr); b) fundamental mode Di, which for epithermal energy

groups reproduces the fundamental mode solution when used in homogeneous

diffusion theory calculations. A typical plot of M2, as predicted by

LEOPARD, is given in Fig. A.7. The influence of the peak in Di may be

noted, causing a "bumpy" variation of M 2 with burnup.
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A.3 Power Feedback Effect on D1/M2

Considering the discrepancy in D /M2 between LEOPARD and CASMO,

and assuming that CASMO produces more accurate values, a slight

net variation in the parameter with burnup would result. However,

in a reactor, fresher and older fuel usually operate at different

power levels, hence feedback effects may affect the parametric

behavior. LEOPARD was used to explore this effect by comparing the

variation of the parameter as a consequence of an increase in power

(relative to an average assembly) from 1 to 1.3, and a decrease

to 0.7, representing the typical range in an actual reactor. Since

cross-flow is negligible in PWRs [T-2], temperature changes are

proportional to the power fraction changes. Table A.4 shows the

resulting input data.

Figure A.8 shows that, as expected, power feedback will reduce

the actual variation of D1/M2 in a beneficial way, i.e., such

as to mitigate the net variation of - predicted by CASMO. The

flattening is the net result of two opposed effects: a) due to

the hardened spectrum, E al increases with power; b) due to higher

temperatures E12 decreases with an increase in power, dominating

the net effect.
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TABLE A.4

Power Feedback Analysis Data

Power Fraction 1.0 0.7 1.3

Power Density

(w/cm3  80.85 56.60 105.10

Pellet 1,232 1,028 1,435

Cladding 630 607 653

Moderator 576 569 583
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A.4 Conclusions

The analysis and data presented in this appendix support the

conclusion that the actual dependence of the normalization factor

-Y M] with burnup and local reactivity, is mild and may well be

represented in a linear relation, if not as a constant. This

relationship is amenable for inclusion in the formalism of the

nodal power expressions developed in Chapter 3. LEOPARD predicts

that the parameter is quasi-invariant with burnup (and local reactivity).

For CASMO a linear relation with local reactivity (Eq. (A.1)) provides

a good representation. Two possible effects - a) the detailed

computation of radiative neutron captures, smoothing the power deposition

throughout the reactor; and b) power feedback effects on the D1/M2

parameter - would cause the parametric variation predicted by

CASMO to be even less steep and more linear. The influence of

soluble boron is not expected to affect the conclusions of this

appendix, but one aspect that remains to be investigated is the

influence of burnable poisons on the normalization factor [K .
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APPENDIX B

Two Dimensional Solution of the One-and-One-Half Group Model

In this appendix the two-dimensional version of the "one-and-one-

half" group equation is solved. Each assembly is assumed to be a

square node, having sides of width h. D1 is assumed constant through-

out the core. Figure B.1 shows a quarter-core representation of the

Maine Yankee Reactor. Basically three different configurations of

nodes and surroundings are present: a) interior nodes, surrounded

by four other fueled nodes; b) peripheral nodes with two reflector

interfaces; and, c) peripheral nodes with one reflector interface.

Still another case, peripheral nodes with a half reflector interface

are present, but here this case will be treated, approximately, by

a combination of reflected and unreflected nodes. A detailed solution

will be exhibited only for the first two cases, since the solution

for the third configuration may then be postulated by inference.

Equation (2.12) written out for two-dimensions (for a critical

reactor) becomes:

2 (k. (x,y) - 1)
v2@(x,y) + M2 (x,y) = 0 (B.1)

where the subscript 1 on (D has been dropped. This is an elliptic

differential equation having a unique solution within a closed
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boundary, under conditions of the Dirichlet-Neumann type, i.e.,

peripheral value or slope of 4 specified. Defining

2 (k. .- 1) p _ .B.2)
B.. = j = _ __ __- (B.2)

M (1 13p) M

and

B. =a + (B.3)

where i and j refer to the cartesian coordinates of the homogenized

nodes (see Fig. B.1), and where a and . refer to the apportionment

of the buckling in the X-direction and Y-direction, respectively, the

solution to Eq. (B.1) is

±i(a.. x + 6.. y)
D(x,y) = C e 13 13

where C is a constant to be determined from the boundary conditions,

and i is the imaginary parameter, v1~ .

Depending on the value of B (hence a 2 and fB 2) under conventional

strict procedures, the solution (B.4) would involve either trigonometric

or hyperbolic functions. Since mathematical equivalence exists

between both types of functions, here the hyperbolic will be

arbitrarily preferred. Then, generically,

D. .(x,y) = [A.. cosh(a. . x) + G. . sinh(a. . x)] -

-[ C cosh(3j y) + D sinh(3 1 y)] (B.5)
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The solution of the problem may be simplified (under the assumption

of spatial separability), by integrating the function over the

orthogonal direction, and defining:

h/2
(x) =

13 -h/2
(B.6')1.(x,y) dy

2 Cij sinh(. . h/2) A cosh(a.t x) + G sinh(a x)]

(B.6)

and,

h/2

).(y) =
13 -h/2

4. .(x,y)dx
13

2 A..
a. sinh(a 1 h/2) C cosh(B3. y) + D.. sinh(6.
13iii

(B.7')

x)]

(B.7)

Similarly, the integrated flux

h/2 h/2

-h/2 -h/2

sinh(a

13 [au

of the node may be defined:

..(x,y)dy dx

2C..
h/2) - ' sinh(B h/2)

Now the solution may be carried out for each direction X and Y,

once the boundary conditions are specified. The solution could be

otained and written out in matrix formalism, where each node would be

formally coupled to the surrounding ones. Here, the solution will be

obtained for individual nodes under the assemption that the necessary

(B.8')

(B.8)
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quantities from the surrounding nodes (,. and the directional

apportionments of B2 =a + 3 ) are known (as would be the case

in an iterative solution procedure). The objective is to solve for

, as a function of the characteristics of the node ij itself and

its surroundings.

B.1 Interior Nodes

Defining, generically, the quantity,

2C.
b = 2 sinh(3.. h/2) (B.9)

proceeding in the X-direction, and requiring continuity of fluxes

and net neutron currents at the interfaces of the nodes, the following

equations result:

for the fluxes:

b. . [A.. cosh(a. . h/2) - G.. sinh(a.. h/2)]13 13 1J 13 13 (B.10)

= b i- [A i 1 cosh (a -j h/2) + G i- sinh(a i h/2)]

and

b. . [A.. cosh(a. . h/2) + G. . sinh(a.. h/2)]
13 13 13 13 13 (B.11)

= bi+, [Ai+, cosh(ai+1, h/2) - Gi+, sinh(ai+1, h/2)]
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for the currents:

D il b [G~~ cosh(a. h/2)-A. .sinh(a h/2)

= D~ ~ b G cosh(a h/2)+A. sinh(a

(B.12)

and

cosh(a ii h/2)+A

LG 1 1 4 cosh(a x 1 j
h/2)-A. sinh(a 1 1

(B.13)

Assuming as known the integrated fluxes:

2A..

i-1,j = bsinh(a. h/2) (B.14)

and

i+1,j i=-b L sinh(ai+1j

then the constants A. and Ai+1j may be

A._ =

written as:

i-1,j -1

b - 2 sinh(a

A - 'i+1j
i+1d b+1j

i+lj
2 sinh(ai+

h/2)

h/2)

Since the diffusion coefficient is assumed constant, the following

relations hold:

h/2 3

D aji b i [G~~

= Di+ 10ai+1,jbi+1,j h/2)]

h/2) (B.15)

and

(B.16)

(B.17)
. . - I

1,j

sinh (at h/2 )



(B.10) and (B.16):

b G sinh(a h/2) = b .

from Eqs.

[A1i cosh(aj h/2) - G . sinh(a

1- U-
2 tanh a L 3, h/2)

(B.11) and (B.17):

b i+lj Gi+1 j sinh(ai+lj h/2) = -b A cosh(a. h/2) + G sinh(a ii h/2)]

i+Lj ai+1
+ 2 tanh(a h/2)

(B.12) and (B.16):

b i-G i-Jj cosh(ai _ h/2) =

2

b. l
[G i cosh(a ii h/2)-A sinh(a ii h/2

(B.20)

from Eqs. (B.13) and (B.17):

b G
b. a..

cosh(a i+1 j h/2)= aL
i+W~

[G i cosh(a.j h/2)+Aii sinh(a

+ i+}j2 i+1j

from Eqs.
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h/2)]

(B. 18)

from Eqs.

(B.19)

h/2)J

(B.21)
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Equations (B.18) and (B.20) may be manipulated to yield:

A1i b1i [cosh(a ii h/2) + 13

- Gi bi sinh(a. h/2) + -13

S - tanh(a h/2)2It ii

tanh(a h/2) - sinh(a ii h/2)

tanh(a c 1 h/2) - cosh(a ii

- coth(a . h/2)]

h/2

=ch)S i -1 1-1,3sinhcc.i - h

(B.22)

Similarly Eqs. (B.19) and (B.21) may be combined to obtain:

h/2) + I3 tanh(a h/2)
ai+1,j i+1 A

h/2) +

S +1,j anh(x

tanh(a: h/2)

h/2) - coth(a+ j h/2

- sinh(a..j h/2)

cosh(a ii h/2)

)= sinhca h)

(B.23)

The objective is to solve for the integrated flux

1 = b.. A..J sinh(cc..
13 13 1 cc. 1

where the only unknown is b A , which can be obtained from Eqs. (B.22)

and (B.23). The result for , obtained after some algebra, is

reproduced in Table B.1, as Eq. (B.24).

In the Y-direction, an entirely similar development yields an

analogous result for D , which is also presented in Table B.1, as

Eq. (B.25).

A. b.. [cosh(a..

Gi bi Isinh(a i

h/2)



TABLE B.1

Analytical Solution for Interior Node Integrated Flux

X-direction:

2

2

i-,j csch(axl1 h) tanh(aij h/2) +

c i. -1 ,j

+ 4Di+l,jCi+l,j csch(ai+ 1 ,j h)

'3 Oc ..

Y-direction:

2

Subject to: B 2 + 2 (8.3)

(B.24)

h/2) tanh(a_y

OL ..

N)
C)

(B.25)

(B.3)



221

Equations (B.24) and (B.25) together with Eq. (B.3) constitute

the solution for an interior node, the integrated fluxes of whose

surroundings (, -1, ij+1' Ni-1j and Gi+1j) as well as the bucklings

and respective directional apportionments (i.e., relative values of

a2 and 2), are known.

B.2 Peripheral Nodes

Again solving for the X-direction, the boundary conditions at

the interior (fueled) interfaces are the same as for the previous case.

At the interface with the reflector, additional conditions are imposed:

the flux in addition to satisfying the continuity requirement at the

interface, is assumed to vanish at a distance hr into the reflector;

for the current an empirically adjustable "discontinuity" factor, E,

is incorporated to account for corrections due to baffle transmission,

thermal back-leakage, and other node-specific features. Furthermore,

the diffusion coefficient for the reflector, Dr, may be substantially

different from that of the fuel assembly. Accordingly, the equations

become:

for the fluxes:

b [A cosh(a i h/2) - G sinh(a i h/2)]
(B.26)

=b A cosh(a i h/2) + G sinh(a h/2)]
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and

b IA i cosh(ax i h/2) + G iisinh(a iih/2)]

= -Arr sinh(Brhr)

for the currents:

D1jb..c i [G i cosh(aj h/2) - A

= D1 i b I G 1, cosh

D b a G cosh(a ii h/2) + A..

cosh(a h/2)] (B.28)

(ai h/2)-A inh (a_ h/2)]

sinh(a h/2)]

=Ar Dr Br (B.29)

E

where:

B 2= buckling in the reflector:::::(ZEal+Z12)r/Dr

Ar = normalization constant (to be determined from the absolute

value of the flux (or power);

and, the solution for the flux in the reflector is given by

r (x) = Ar sinh[Br (x-hr '

The integrated flux for node i-1, is:

2Ai sinh(a

a1i-1,

(B.30)I~Jlj b i1

(B.27)

and

h/2)
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Manipulation of Eqs. (B.27) and (B.29) yields:

E D..a. .
b Aij cosh(a h/2) + 1 r tanh(Brhr) - sinh(a h/2) =

[ ~E D...

-b..G [sinh(a h/2) + ij j tanh(Brhr) - cosh(o h/2)13 J L 13r Br rr 1

(B.31)

Using Eqs. (B.26), (B.28) and (B.30) in a similar way as was done before

to obtain Eq. (B.22), a formally equivalent equation results:

b A cosh(aij h/2) + a tanh(a h/2) - sinh(a h/2)

b. G. Isinh(a i h/2) + a tanh(a h/2) - cosh(a. h/2)

-lj i-rj (B.32)
sinh (a h)

Again the objective is to solve for <D , and the unknown is b. A

which may be obtained by combining Eqs. (B.31) and (B.32). The

result is presented in Table B.2, as Eq. (B.33).

An analogous result also shown in Table B.2, as Eq. (B.34), may

be obtained by similar procedures in the Y-direction.

The solution for an assembly with two reflector interfaces will

be given by Eqs. (B.33), (B.34) and (B.3). For the case of one

reflector interface the appropriate combination of Eq. (B.3), one

out of Eqs. (B.33) or (B.34) and one out of Eqs. (B.24) or (B.25) will

provide the solution, as can be seen by inspection.



TABLE B.2

Analytical Solution for Peripheral Node Integrated Flux

X-direction:

2 [coth(a h/2) tanh(a h/2)
________ a i- +

-1,j a csch(a h)

coth(axi h/2)

a.

tanh(a.i h/2)

a.

ED.. 1
+ 1D tanh(Br h r)

Urr
ED 1

+ 1r tanh(h BrDrB r r rl

tanh(a. h/2) tanh(a h/2)

ro
Y-direction: -

h)
ij6 i
2

[coth(sij h/2) + tanh(iA+1 h/2J

6i Si4j+1

tanh(6 h/2) tanh(6i +1 h/2)

6 i,j+1 ] (B.34)

Subject to: B2 = a + B2
13 13 13

(B.33)

(B.3)
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E D..
The term D tanh(Br h r) resulted from the boundary conditions

Drr r r
at the reflector-node interface, requiring the flux to vanish at a

distance hr into the reflector (away from the interface). However,

for values of Br hr > 2, which is normally the case for PWRs,

tanh(Br hr)* 1, and, hence, this "infinite reflector" approximation

could have been used instead, without negative consequences.

The albedo is usually defined as the ratio of partial currents

in and out of the reflector, and may be given, in terms of the

reflector's properties by:

_ 1 - 2 DrB coth Brhr 1 - 2 BrDr
J+ 1 + 2 DrBr coth B rh r1 + 2 Brr (B.35)

Then, once the empirically determined value for B* is available for a

given reflector, its properties, Dr B r, may be inferred from Eq. (B.35):

2 Dr Bro 2 D B coth(B H (B.36)rr r r r r +*(36

(It should be noted that this value already includes the empirical

adjustment factor E, hence it actually is E/2 Dr B .

It should be mentioned, at this point, that the intra-assembly

flux shape (hence power) may be estimated from the analytical develop-

ments of this appendix. Once the solutions for the o s are available,

the constants Ai, G , C and D will have been determined, and

consequently, in Eq. (B.5), the flux 4 (x,y). Eq. (B.5) could be

used to obtain an estimate of the intra-assembly peaking factor, i.e.:

for reconstruction of the global intra-assembly flux shape given the set

of total nodal fluxes afforded by a numerical solution.
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B.3 Net Leakage Out of Peripheral Nodes

As shown in Eqs. (2.20) and (2.22), the net current out of the

peripheral assemblies is an important quantity, necessary to compute

the "leakage reactivity" 1L, used in the system reactivity balance

performed in lieu of the eigenvalue calculation.

From Eq. (B.27), Jx, the net current out of the node ij, in

the X-direction, is given by:

xii = -D a b G cosh(a i h/2)+Aii sinh(a ii h/2)] (B.37)

From Eq. (B.8), an expression for b A.. is:

b A = 2 sn 1 2 (B.38)
ij ii 2sinh(a ii h/2)

and Eqs. (B.38) and (B.31) may be manipulated to yield for b.. G..:

b. G = 2 1
i i 2 sinh(aj h/2)

[E D..a..

cosh(o h/2) + D I tanh(B hr) - sinh(a h/2)

sinh(aj h/2) + ED B tanh(Drhr) - cosh(a h/2)] (B.39)
IS D r Br rr
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After some simplification Jx.. becomes:

E D.. ae..
2 coth(a h/2) + 3D ij tanh(Bhr

Jx =j - 1- 13 D r
la. 2 FE D.. a..1 tanh(a h/2) + 1D i tanh(Brhr

D 13r B tanh(B

(B.40)

In the orthogonal Y-direction an analogous result may be

obtained for Jy..:

E D..B..
2 coth(. h/2) + i 3 tanh(Bh

Jy1 = - 3 3 13 1- E r r
la2 E D 6..

. tanh2 h/2) + r 13 tanh(B h -13 DB r rr

(B.41)

In this appendix some detailed analytic material has been summarized

in support of the condensed presentation in the main text. The major

contribution here is the establishment of a firm analytic foundation

for what has been, in some applications, a more empirical approach.
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APPENDIX C

Differential Thermal Leakage and Power Feedback Corrections

C.1 Introduction

It may appear remarkable that as simple a method as the

modified one-group model can be as accurate as it has proven to be.

Considerable work has been dedicated to improving the capabilities

of nodal methods, and much of the success has come through fine tuning

of the nodal model's adjustable parameters against more sophisticated

computations, analytical or experimental data. In this appendix,

the analyses that follow suggest how and why this can be accomplished,

regarding the power-related feedback and differential thermal

leakage corrections. More detailed discussion of the subject is

forthcoming in Ref. [D-1].

C.2 Power-related Feedback

The reactivity status of an assembly is affected by its power

level. Through the negative moderator temperature coefficient of

reactivity and the Doppler reactivity coefficient of the fuel, an

increase in fuel and moderator temperatures, due to an increase in
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power level, leads to a slight reduction in reactivity. In addition,

higher power density corresponds to a higher concentration of

saturating fission products (xenon and samarium), which also reduces

reactivity.

It may be shown that to first order these feedbacks will not

affect the power level, as the following reasoning suggests. The

perturbed and original power are related by:

f. = f+ + ... (C.1)

However, Ap1 is proportional to the change in power level:

Ap = -y - f (C.2)

then,

f as f + [-y(f - f.)] + ... (C.3)

which may be re-arranged to give:

f 1 +y - f 1 +y ) (C.4)

*

or, to first order,f .

Furthermore, neglecting the power coefficient feedback and

measuring the reactivity perturbation relative to a core-average

assembly which is just critical the perturbed power becomes:
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1 1 +f. 1f =f [1 + (P - 0) +.... (C.5)

or,

f
f1 (C.6)

It is possible to show that, by multiplying Eq. (C.6) by the nodal

power expressions of Table 3.1, to first order, the results will give

the original nodal power expressions with modified coupling

coefficients 6 (or ep):

1 Df.
6* = e + (C.7)

Hence a first order correction can be incorporated by adjusting

6 to match the results of more sophisticated calculations which

explicitly consider the coupling between thermal-hydraulic and

neutronic effects.

C.3 Thermal Neutron Effects

The modified one-group model and the nodal power expression of

Table 3.1 have been derived under the approximation that thermal

neutrons are absorbed immediately at the spot of their thermalization.

However, their diffusion length, L, can be of the order of 2 cm, and as
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a consequence, a non-negligible net current may result between

assemblies having substantially different properties (e.g. burnups).

Corrections, such as that proposed in Ref. [B-3] have been introduced

into many state-of-the-art codes.

This effect will be evaluated here in the somewhat simplified slab

geometry, representing two adjacent assemblies, i and j, as depicted

betlow:

"i"

Si

"il

Sj, source to thermal

Asymptotic value
Thermal flux, D

0 x

The equation for the thermal flux is:

-D V2D + a =

or

d2 D 1 S
dx2 L2 D

(C.8a)

(C.8b)

I 
Ili 

11
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where

S = E12 )1 (thermal source)

GD = fast flux

L2 D/ (thermal group constants)

Equation (C.8) has the solutions:

region "i":
S. +X/L.
S9 + C. e 1 (C.9)
al

region "j":
S. -X/L.

. -S j C. e- X/(C.10)

Requiring continuity of flux, 0, and current, J, at X=O, where

J=-Dc , the results for C. and C. become, after some algebra:dx' 1

Si L 2 _i L 2

C D j D i i(.1
C. 3 1C.11 L. D. (.1

1 + D

and
L. D.

C. = C L J .1(C.12)
a i L

The net leakage into "i" is given by

J .D-j D - (C .13 )1 L. L.+L.

ID D
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Assuming that the thermal diffusion coefficient is the same in both

regions, Eq. (C.13) reduces to:

(C.14')
S.i L S. L

Ji. = -
_L + L*11

L (

i L + L 12j lj

L .
+ (L + L 12i 4)1 i (C. 14)

Using Eqs. (2.11), (2.15) and (2.16), the following approximations

may be established:

(C.15)4 f(1 -p)

and

v2 [f(1 -p)] + i =
M i

0 (C.16)

Then the leakage term V2[f(1-p)] may be written as:

v [f(1-p)] = f (1-P)
Yh

fh(1-P

Yh 2
(C.17)

where s refers to surroundings and y is a constant.

Using Eqs. (C.15) and (C.14), considering "j" as the surroundings,

i becomes:

2 L 12
i = - L f(1-P) + 12+L f(1-p1 ) (C.1

Define

L2
12s Ls (C.1

s L. + Ls

8)

9)
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and 2z12 i L
i L. + Ls (C.20)

Then the neutron balance equation, Eq. (C.16), can be modified to

account for the thermal leakage:

f (1-P ) (1-E -f.(1-P) (1-c) yh 2  f 0 (C.21)s s s + i) + p =
M

The solution for f. is:

f5(1-p5) (1-C )
f. = s-s s (C.22)

( 1 - ) - 1

If <<1 (as it is normally for PWRs),

f s s s
fi +-Y2-

1

11- M p (C.23)

Redefining

* = e+ + ... (C.24)

and note that s Esi, then, again it can be seen that mere adjustment

of the coupling coefficient may provide a partial correction - this

time for the differential thermal leakage between adjacent assemblies.

As already pointed out in Chapter 3, at the core periphery empirical

corrections (in a fashion similar to the conventional albedo adjustments)

are necessary to account for thermal back-leakage, core baffle transmission

and other specific local details. In the peripheral nodal power
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expression, provision to consider this correction was made by including

the E factor. A very crude estimate of the thermal neutron return

from the reflector may be obtained using an infinite medium kernel (i.e.

assuming the same L in core and reflector).

The fast flux in the reflector may be approximated by:

eD (x) = o1 (0) e-X/M (C.25)

in which case the source to thermal is E 124 1. Then the total net

thermal leakage, Jth, into the core from the reflector may be

estimated by:

-XM1 -X/L
ith 12D1 (o) eX/M -XL dx (C.26)

0

E12 (D1 (o) 
(C.27)

2 (1+

The total net fast leakage out of the core may be approximated by:

C0

12 1  X/M 1 X/M dx (C.28)

0

Z12 (D1 (0)

2 ((C.29)

And the ratio of total net thermal back-leakage to the total net

fast leakage out of the core may be estimated as:

Sth- 4/M
Jf2/M + 2/L (.30)
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Hence, for L=3, M-8, E=Jf/(Jf-Jth) : 2.2

Note that this estimate does not consider the compensatory term

accounting for leakage of thermalized neutrons out of the peripheral

assembly into the reflector (as was done in the adjacent assemblies

considered earlier). Despite the quite approximate nature of this

estimate, the results presented in Table 3.4, in which the factor

E/D B was computed using an empirically adjusted albedo to match Maine
r r

Yankee core maps, required that E:= 2.2 (for D r 2.25 cm, M=1/B r=8 cm,

since E/DrBr = 0.1321).
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APPENDIX D

The LRM-NODAL Program

D.1 Introduction

The LRM-NODAL code has been programmed in BASIC for the TRS-80 Model

III, 48 K, microcomputer, for the purpose of testing and verifying most

of the methodology developed during the course of the present research.

The code, in its present status, requires about 34 K of memory (when the

integrated depletion method subroutine is deleted) and an additional

14 K for data storage.

The main variables are described in table D.1, and are specified

either in lines 0 - 100, or in the interactive initialization of the

program. Interspersed remarks indicate the function of the main sub-

routines. The general structure of the program corresponds to the lines

allocated for the following functions and subroutines:

0000 - 2000:Specification of variables;

2000 -12000:Data input and specification of core data and

configuration (idealized Maine Yankee PWR);

12000-14800:Main control routine;

14800-15000 :Ouput subroutine;

15000-16000:Preliminary calculations;

16000-30000:Optimization subroutines;

30000-32000:EOC power and burnup derivative calculation subroutine;
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36000-37000:Step-wise depletion subroutine;

38000-39000:.Synthesis depletion subroutine;

40000-45000:Power di.stribution calculation, with critical boron

reactivity search;

45000-50000:Integrated depletion subroutine

50000-51000:EOC power distribution calculation;

51000-55000:Power calculation iteration subroutine;

55000-59000:BOC power derivative calculation subroutine;

61000-63000:Derivative calcularion iteration subroutine;

During the calculations, intermediate results are displayed on the

computer screen. Hard copies are provided only for final results. Table

D.2 shows a typical initialization interactive session, as (partially)

hard-copied from the computer screen, and table D.3 displays a typical

printout (partial) of final results.

Refinement of programming techniques will certainly improve the

computational efficiency of LRM-NODAL (which is at present a research

tool rather than a production program) and is therefore strongly

suggested, along with transfer to a larger (RAM) and faster computer.
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TABLE D.1

Main Variables Used in the LRM-NODAL Program

Variable(s) Function Typical Numerical
Value

BS

NB, NO

ND

AC, AB, AQ, AP

NV, NU

TH,T1,T2,T5,TS

1,J

PR(I)

CF(I,J)

Y(I,J)

RQ(I ,J)

W(I,J)

R(I,J)

A(I,J)J

BP(I,J)

F1(I,J),

MB, ME

B(I,)

BC

Pl(1,J),

BB(I,J),

F2(I,J)

P2(IIJ)

FU(I,J)

G(I,3)

Burnup step length

Number of iterations for power

calculation at BOC

Number of iterations at each

burnup step

Relaxation factor (iterative

processes)

Number of iterations in

derivative calculations

Coupling coefficients

Nodal coordinate indices

I coordinate of reflector

Assembly configuration type

Fraction of node corresponding

to 1/4-core

Leakage constant (PLi
Relative boron worth
BOC assembly reactivity

Reactivity vs burnup slope

Burnable poison reactivity

BOC and EOC power fractions

Power peaking limits at BOC and

Assembly burnup

Cycle burnup

BOC and EOC power derivatives

Cycle and assembly burnup

derivatives

BP reactivity limit

2000

15

7

0.5

10

(see Table 3.4)

1, 0.5, 0.25

(see Table 3.4)

1.0

0, 0.10, 0.20

1.OE-. 05

0, 0.08, 0.04

1.0, 1.3, 0.7

EOC 1.3

10,000

10,000

5.0

2000, 10,000

0.25
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TABLE D.1 (continued)

Main Variables Used in the LRM-NODAL Program

Variable(s) Function Typical Numerical
Value

SR(I,J) Restriction on assembly shuffling 0 or 1

NT Number of types of assemblies 25

H Nodal width

M Migration length 7.2

SB(I,J) BP reactivity vs. burnup slope 5.OE-06
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TABLE D.2

Typical Interactive Initialization Session for the LRM-NODAL Program

* *** ** *** * ** ******* * ** *** ** ** * *** ***-** * * **** *

SELECT OPTIONS FOR THIS CASE I

.* * ** *** * **** ** *** ** **** ** **** * * **

DATA ENTRY FORM - ENTER: I - FOR 1/4 CORE, WITH PRE-DEF

INED PATTERN INPUT; 2 - FOR FULL CORE DATA 1 3- FOR 1/4 CORE?

WITH AUTOMATIC PATTERN GENERATION

?1

** ******************** *************-****-** *****

SELECT PROBLEM OBJECTIVE : ENTER : 1) MAXIMUM BURNUP CONFIGURA

TION AND OPT. BURNABLE POISON; 2) MAXIMUM BURNUP CONFIGURAGTION

3) OPTIMAL BURNABLE POISON ; 4) DEPLETION (STEP-WISE) i 5)

DEPLETION (SYNTHESIS); 6) DEPLETION (INTEGRATED METHOD);

74

DATA ENTRY FOR RESTRICTED ASSEMBLIES

ENTER NUMBER OF TYPES OF FUEL TO BE PLACED DIRECTLY AND RE
STRIC
TED? 0

DATA ENTRY FOR QUARTER CORE

ENTER DATA FOR A TOTAL OF 55 ASSEMBLIES.

ENTER NUMBER OF TYPES OF ASSEMBLIES - ENTER 0 TO READ DATA
FROM
TAPE? 27

ENTER DATA FOR FUEL TYPE: 1

REACTIVITY AND NUMBER OF ASSEMBLIES? .221973912

ENTER SLOPE (A) AND INITIAL BP REACTIVITY? 9.0538E-6,0

ENTER DATA FOR FUEL TYPE: 2

REACTIVITY AND NUMBER OF ASSEMBLIES? .221973,1

ENTER SLOPE (A) AND INITIAL BP REACTIVITY? 9.0538E-6,.045

BP SLOPE - PRESS ENTER FOR ADJUSTABLE BP SLOPE? 2.8125E-
6
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TABLE D.2 (continued)

Typical Interactive Initialization Session for the LRM-NODAL Program

ENTER DATA FOR FUEL TYPE: 3

REACTIVITY AND NUMBER OF ASSEMBLIES? .22197395

ENTER SLOPE (A) AND INITIAL BP REACTIVITY? 9.0538E-69.08

BP SLOPE - PRESS ENTER FOR ADJUSTABLE BP SLOPE? 5.0E-6

ENTER DATA FOR FUEL TYPE: 4

... etc.

ENTER 1 TO STORE DATA IN TAPE? 0

ENTER 1 TO READ DATA FROM TAPE? 0

ENTER I TO STORE PATTERN DATA ON TAPE? 0

ENTER TYPE OF ASSEMBLY AT : 1 I 1

?4

ENTER TYPE OF ASSEMBLY AT :1 ,2

'? 5

ENTER TYPE OF ASSEMBLY AT : 1 I3

ENTER TYPE OF ASSEMBLY AT : 1 ,4

... etc.

RESTRICTIONS ON BP LOADING PER LOCATION

ENTER RESTRICTED POSITION: I,J - ENTER 0 TWICE TO EXIT? 0
?? 0
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TABLE D.3

Typical Printout of the Final Results of the LRM-NODAL Code

2 3 4 5 6 7 8

0 0 0 0 0 0 0

-6.28707E-03 .153055 .0220128 .0960075 .0220128 .221973 .221973
.910256

0
1.10764
.680106
8529.39
0
0

0

0

0

. 129688
.90538
0

0
1.28672
.795628
9997.07
0

0
0

0

.90538
0
0
1. 29e53
.864717
10499.5
0
0

0

0

0

-.0108201
.910256
0

0
1.04519
.708073

8542.87
0

0

0

0

.910256
0
0

1.0573
.812388
9190.6
0
0

0

0

0

.142816

.90538
0

0
1.25444
.943803

10873.7
0

0
0

0

.90538 .910256 .90538
0 0 .08

0 0 -5E-06
1.02751 .891232 .869739
.978177 1.10367 1.43987

9992.51 9910.46 11346.4

0 0 0
0 0 a

0
0

0
0

0
0

0 0 0 0
1.90525E-03 .221973 -6.1966E-03

.90538
0
0

984294
.912965
9475.08
0
0
0

0

SR

R
AE-5
BP
SB
F1
F2
e
Be.
P1

P2
FU

2

SR

R

AE-5
BP

SB
F1
F2

S

P1

P2

FU

3

SR

R
AE-5
eP

Ft
F2

B
BBe
P1

P2
FU

4

SR
R
AE-5

BP
SB

F1
F2

B

BB.
P1

P2

FU

0 0
.153055 -. 0108201
.90538 , .910256

0
10976

.90538
0
0
1.24162
.857643

10270.9
0
0
0
0

0
100552

.90538
0
0
1.31526
.924806

10995.8
0
0
0
0

0
.132068
.90538
0
0

1.28141
1.01829
11403.6
0
0
0
0

0
. 0360762
.910256
0
0
.999391
.955859
9764.44
0
0
0
0

0

.0223811

.98815
0
0
1.29312
.700241
9299.1
0
0

0

0

0

. 153055

.905538
0

0
1.4888
.826291
10877
0

0

0

0

0

. 153055

.905538
0
0
1.4897
.826134
10878.2
0
0

0

0

0

. 0428304

.910256
0

0
1.26261
.725133

9400.88

0

0

0

0

.90538
0
0
.660967
1.07187
9011.93
0
0
0
0

.221973
.90538

0
0
.483805

.814121
6738.77
0

0
0
0

.90538

.08
5E-06
1.09043
1.40666
12362.1
0
0
0

0

0
.11244

.90538
0
0
1.12158
1.18091
11626.7
0
0
0
0

0
.0389345
.910256
0
0
.842215
1.01124
9331.32
0
0
0
0

.910256
0
0

729084
.993079
8755.56
0
0
0
0

0
.221973
.90538
0
0

1.01957

1.20973
11s5.6
0

0
0

0
.221973
.90538
0
0
.821689
1.07111
9703.39
0
0

0

0

0 0 0 0 0 0
-6.28707E-03 .129688 9.9155E-03 .10976 .0482828 .155491

.910256 .90538 .910256 .90538 .910226 .90538

0 0 0 0 0 0
0 0 0 0 0 0
1.10716 1.28784 1.08646 1.24208 1.16495 1.28339

.680218 .795483 .713132 .857905 .891725 1.12152

8528.89 9997.46 8687.09 10267.1 10139.2 12009.9

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0
0
1.29774
.865192
10502.5
0
0
0
0

0
0
1.0446
.707358

8537.03
0
0
0

0
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TABLE D.3 (continued)
, Typical Printout of the Final Results of the LRM-NODAL Code

0

132068
.90538
0
0
1.2823

1.01468
11397.4
0
0
0

0

0

.0520786

.910256

01
0
1.05911

.991888

10103.8

0
0
0
0

0

.0908015
.90538
0
0
.97945
1.14142
10447.8
0
0

0
a

0

.221973
.90538
.08
5E-06
.842855

1.37204
10477.6
0
0

0

0

.221973

.90538
0

.523666

.882931
7033.62
a
0

0
0

SR

R
AE-5
BP
SB
Fl

F2

BB
P1
P2

FU

6

SR

R
AE-5
BP
SB

F I
F2

B
BB
P1

P2
FU

7

SR

R
AE-5
BP
se.
F1
F2
B
BB
P1
P2

FU

8

SR
R

AE- 5
BP
sBe
F1

F2

22

P1
P2

F"f

9

SR

R
AE-5
BP
SB

F1
F2

B
eBB

P2
FU

0
. 0220128
.910256

0
1.05696
.813253
9200.59
0
0

0

0

0

.0960075

.90538

0
0
1.02705
. 979452
10012.1

0
0

0
0

0

.0220128

.910256

0
0
.890993
1.10397

9930.41
0

0
0

0

0
.221973

.90539

.08

5E-06
.869688

1.43651

11359
0

0
0

0

0
.221973

.90538

0
0

.661522

1.06462

9018.67
0

0
0

.910256
0
0
.998824
.951983

9755.33
0
0

0

0

0
.0389345
.910256

0
0
.844021

1.0048

9327.59
0

0
0

0

.90538
0

.977091
1. 14648
10472.1
0
0

0

0

0
.221973
.90538
.08
SE-06
.841431
1.37734
10504
0
0

0

0

.90538 .90538

.045 0
2.8125E-06 0

.99358 .583393
1.37899 .969554

11576 7680.39

0 0
0 0

0

0

0

0

0
.221973
.90538
0
0
.5837
.966326

7671.83
0

0
0

0

0 0
.221973 .221973

.90538 .90538

0 0
0
.822083

1.06377
9708.1
0
0
0

0

0
.521124
.8876

7050.42
0
0
0

0

CYCLE BURNUP: 9916.53

0

142816
.90538
0
0
1.25372
.942677

10860.7
0
0
0

0

0

.0482626

.910226

0
0
1.16547

.891543

10146.8

0
0

0
0

90536

0
0

.981526

.911793

9456.9e
0
0

0

0

0
.221973
.90538
.08
SE-06
1.08809
1.406

12344.5
0

0
0

0

90538
0
0

1.28163
1. 12257
12025.6
0
0
0

0

0
11244

.90536
0
0

1.1196
1.18357
11642.6
0
0
0

0

0 0 0 0 0 0
1.90525E-03 .155491 .0360762 .0908015 .221973 .221973

0 0
-6.1966E-03 .221973

.910256 .90536

0
0
1.01215
1.21579
11581.6
0

0
0

0

72626
992323

8749.2
0

0
0

0

0

.221973
90538

0
0

494503

.601024
6767.94
0

0
0
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D.2 Code Listing

The LRM-NODAL Program

9 BS=2000
10 NB:=10
11 NU=10

12 NE=1
13 ND=5
14 NM=1
15 NO=15

16 AC=.666

17 NV=10

20 NP=10
25 AQ=.5 : AP=.5

26 AB?:=.5
35 KR=0
40 ME=1.30 : MB:=1.30

50 GP=1 : GS=0 : 05=1
80 H=20:M=SQR(54) RP=.0025 : MF=1
90 KL=0

100 DIM PR(10)iCF(10,10),Y(10, 10),R(9,9),W(10,10)

150 DIM R(9,9),A(999),BP(9v9),F(9,9),F1(9,9)
200 DIM F2(9,9), RX(9,9) ,FU(9,9) ,FA(9,9) ,FX(9,9)

250 DIM P1(9,9),P2(9,9),SB(9,9),B(9,9),S1(9,9),G(9,9)
300 DIM FB(9,9),BB(9,9),FE(9,9),SR(9,9),RW(9i9),FW(9,9)
350 DIM FJ(2),FI(2),SI(2),SJ(2),BJ(2),BI(2)

400 'PR=REF. POS; CF=CONF IG ; Y=FRACT ION 1/4; RQ=LEAKAGE; W=BO RON

WORTH;R=REACT.;A=SLOPE;BP=BP;F=AUX;Fl=BOC POWER;F2=EOC;RX,
FUFAvFX=AUX

405 'Pl=PERT BOC;P2=EOC; SB=SLOPE BP;B=BUPS1=PERT SP;FB=PE

RT BOC;BB=PERT BC;FE=PERT.EOC;SR=RESTRICTIONS
410 NT=27:DIM OQ(NT) ,RI (NT ) AI (NT), RB(NT) , ZI (NT)v RA(NT) ,TP(N

T) vT (55) ,TR (55)
520 TS=1-HC2/(12*MC2)
530 TH=1+HC2/(6*MC 2)

540 T1=1+HC2/(4wMC2)

550 T2=1+5*HE 2/ (12*MC 2)
560 TL=HC2/(2*MC2)

570 T5=1-+17*HC2/(84*MC2)
2000 CLS: PR INT "*

2010 PRINT " SELECT OPTIONS FOR THIS CASE :"

2020 PR INT " *** ******** ***********************"
2030 PRINT "DATA ENTRY FORM - ENTER: 1 - FOR 1/4 C

ORE, WITH PRE-DEFINED PATTERN INPUT; 2 - FOR FULL CORE DAT
A ; 3- FOR 1/4 CORE, WITH AUTOMATIC PATTERN GENERATION"

2035 INPUT 01

204 0 PR INT "************************************************
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2050 IF 01=2 OR 01=3 THEN PRINT "SELECT INITIAL PATTERN GEN
ERATION OPTION (note:l ibraries for options 1,2,3 have to be

specified at 6100,6300,6500): 1 - FOR LOW-LEAKAGE; 2- FOR
OUT-IN; 3- FOR IN-*OUT-IN! OR 4- FOR RANDOM PLACEMENT OF A

SSEMBLIES" : INPUT 2
2070 PR INT "**********************************************"
2080 PRINT "SELECT PROBLEM OBJECTIVE : ENTER : 1) MAXIMUM

BURNUP CONFIGURATION AND OPT. BURNABLE POISON; 2) MAXIMUM
BURNUP CONFIGURAGTION; "

2085 PRINT " 3) OPTIMAL BURNABLE POISON ; 4) DEPLETION (
STEP-WISE) ; 5) DEPLETION (SYNTHESIS); 6) DEPLETION (IN

TEGRATED METHOD);"
2090 INPUT 03

3000 REM DEFAULT REFLECTORS PLACEMENT - MAINE YANKEE REACTO
R
3020 PR(1)=10 PR(2)=10 PR(3)=9 : PR(4)=9 : PR(
5)=9
3040 PR(6)=8 PR(7)=7 PR(8)=6 : PR(9)=3 PR(10)=0
3045 REM DEFINE CONFIGURATION OF ASSEMBLIES IN CORE
3050 FOR I=0 TO 10:CF(0,I)=12:CF(I,0)=12 : NEXT I
3120 FOR I=1 TO 8: FOR J=1 TO PR(I)-1: CF(I,tJ)=1: NEXT J: N
EXT I

3220 CF(892)=2 : CF(2%8)=3 : CF(8,3)=4 : CF(3,8)=
5
3240 CF(9,1)=6 CF(1,9)=7 : CF(8,4)=8 CF(4,8)=
8
3260 CF(9,2)=9 : CF(2,9)=10 : CF(8,5)=11 : CF(5,8)=
11

3280 CF(7,6)=11: CF(697)=11

3320 FOR I=1 TO 10: FOR J=:PR(I) TO 10: CF(IJ)=0 Y(IJ)=0
: NEXT J: NEXT I

3510 FOR I=2 TO 8:Y(1,I)=.5 : Y(Ii1)=.5 : NEXT I
3550 Y(1i1)=.25 : Y(911)=1 : Y(199)=1
3560 FOR I=2 TO 9: FOR J=2 TO PR(I)-1: Y(IJ)=1 : NEXT J: N
EXT I
3700 REM DEFINE LEAKAGE FRACTIONS FOR PERIPHERAL ASSEMBLIES
3720 FOR I=1: TO 9 f
3740 FOR J=1 TO PR(I)-1

3760 ON CF( I, J) GOTO 3800w 3800 , 3800 3840 ,3840 , 3880,3880 , 388
0,392093920,3920
3780 GOTO 3940

3800 RQ(IvJ)=0: GOTo 3940
3840 R( I , J ) = .0650*MF: GOTO 3940

3880 RQ ( I, J) =.130*MF: GOTO 3940
3920 R3 ( I , J) =. 26*MF
3940 NEXT JI

4000 REM DEFINE BORON WORTH FRACTIONS FOR LOCATIONS
4020 FOR I=0 TO PR(1)-1
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41-040 FOR J=0 TO PR(I)-l

4060 W(IJ)=1
4080 NEXT J

4100 FOR K= PR(I) TO 10
4120 W(IiJ)=0

4140 NEXT K
4160 NEXT I

4500 N4=0:FOR I=1 TO 9: FOR J=1 TO PR(I)-1: N4=N4+Y(I,J):NE
XT JI
4700 PRINT "DATA ENTRY FOR RESTRICTED ASSEMBLIES"

4710 INPUT" ENTER NUMBER OF TYPES OF FUEL TO BE PLACED DIRE
CTLY AND RESTRICTED" ;NT
4720 IF NT=0 THEN GOTO 4900
4730 FOR I=1 TO NT
4740 PRINT "ENTER DATA FOR FUEL TYPE: ";I
4750 INPUT "REACTIVITY AND NUMBER OF ASSEMBLIES"; RI(I),Q(I

4760 IF G(I)=0 THEN Q.(I)=1
4770 INPUT "ENTER SLOPE (A) AND INITIAL BP REACTIVITY"! AI(
I) RB (I)
4780 IF RB(I) ><0 THEN "INPUT BP SLOPE - PRESS ENTER FOR ADJ
USTABLE SLOPE";ZI(I)
4790 NEXT I
4800 NK=0
4810 INPUT "ENTER POSITION IJ TO BE FUELED - ENTER 0 TW
ICE TO EXIT";I,J
4820 IF I=0 THEN GOTO 4900

4825 IF I=1 AND(J>1 AND J<9) THEN PRINT "PLACE FUEL IN OTHE

R DIAGONAL, CHOOSE POSI-TION ";J, I : GOTO 4810

4830 PRINT "ENTER TYPE OF FUEL IN:"IJ
4840 INPUT K

4850 NK=NK+1
4860 SR(IJ)=1: R(IJ)=RI(K): A(IJ)=AI(K): BP(IJ)=RB(K):
SB( IJ)= ZI0(K

4870 GOTO 4810

4900 ON 01 GOTO 5010,5000,5010
5000 PRINT " DATA ENTRY FOR FULL CORE ": N9=4*N4-NK*4 +SR(1
S1)*3 : GOTO 5020
5010 PRINT " DATA ENTRY FOR QUARTER CORE" : N9=INT(N4+1)-NK
5020 PRINT " ENTER DATA FOR A TOTAL OF "; N9," ASSEMBLIES."

5030 INPUT" ENTER NUMBER OF TYPES OF ASSEMBLIES - ENTER 0 T
0 READ DATA FROM TAPE";TN
5035 IF TN=0 THEN INPUT#-1,NT : ELSE NT=TN

5040 IF TN=0 THEN GOTO 5130

5050 FOR I=1 TO NT
5060 PRINT "ENTER DATA FOR FUEL TYPE:";I

5070 INPUT "REACTIVITY AND NUMBER OF ASSEMBLIES";RI(I)qGQ(I)
5080 IF Q (I)=0 THEN O(I)=1
5090 INPUT " ENTER SLOPE (A) AND INITIAL BP REACTIVITY"; A

I (I) tRB(I)



248

5100 IF RB(I)<>0 THEN INPUT "BP SLOPE -- PRESS ENTER FOR
ADJUSTABLE BP SLOPE"; ZI(I)

5120 NEXT I
5130 IF TN=0 THEN FOR I=1 TO NT: INPUT4#-1,RI(I),Q(I),AI(I)i
RB(I),ZI(I):NEXT I

5135 NA=0: FOR I=1 TO NT:NA=NA+Q(I):NEXT I

5140 IF NA>-: N9 THEN PRINT " NUMBER OF ASSEMBLIES INPUT DOE
S NOT MATCH CORE CONFIGURATION - START oVER AGAIN": STOP

5150 FOR I=1 TO NT

5155 RA(I)=0
5160 FOR J=1 TO NT

5170 IF (RI(I)<RI(J)) OR (RI(I)=RI(J) AND J<=I) THEN RA(I)=
RA(I)+1

5180 NEXT J
5190 TP(RA(I))=I
5195 NEXT I

5200 ON 01 GOTO 5500, 5210v 5500
5205 PRINT "ERROR ON INPUT OPTION": STOP
5209 IF SR(1,1)=1 THEN GOTO 5250

5210 I=TP(NT)

5215 T(INT(N4+1))=I

5220 LT=NT-1
5230 Q (I )=()11

5240 IF (CI)>0 THEN LT=NT
5250 J=0 : NF=0 : RF=0 : NR=0 : RR=0
5260 FOR K=1 TO LT

5270 I=TP(K)

5280 FOR L=1 TO Q(I)

5290 IF (NF<INT(NR/3)) OR (RF<=RR/3 AND NF*3<(NR+3)) THEN N

F=NF+1: RF=RF+RI(I) : T(NF)=I TR(NF)=I ELSE NR=NR+1:RR=
RR+RI(I)
5300 NEXT L

5310 NEXT K
5320 GOTO 5565

5500 K=0

5510 FOR L=1 TO NT
5515 I=TP(L)

5520 FOR J=1 TO Q(I)

5530 K=K+1
5540 T(K)=I*:TR(K)=I
5550 NEXT J
5560 NEXT L

5565 LPRINT " RANK TYPE # ASSY
REACTIVITY SLOPE BP BP SLOPE

5570 FOR L=1 TO NT I:TP(L)

5580 LPRINT L7 TP(L)v Q(I)v RICI)v AI(I)i RB(I)v ZICI)

5590 NEXT L

5600 INPUT"ENTER 1 TO STORE DATA IN TAPE";ZT
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5620 IF ZT=1 THEN PRINT#--1,NT: FOR I=1 TO NT: PRINT#-1, RI
(I),Q(I),AI(I),RB(I),ZI(I) :NEXT I

6000 REM INITIAL PATTERN GENERATION
6005 IF 01=1 THEN GOTO 10000

6010 ON 02 GOTO 6100, 63001 65001 7000
6100 PRINT " LOW-LEAKAGE PATTERN LIBRARY not available (TO

BE SPECIFIED) - SELECT OTHER OPrION " :GOTO 2010

6300 PRINT "OUT-IN PATTERN LIBRARY not available (TO BE SPE
CIFIED) -- SELECT OTHER OPTION": GOTO 2010
6500 PRINT " IN-OUT-IN PATTERN LIBRARY not available - SEL
ECT OTHER OPTION" :GOTO 2010
7000 REM ROUTINE FOR RANDOM PLACEMENT OF ASSEMBLIES
7010 NA=INT(N4+1)-NK

7020 FOR I=1 TO 9

7030 FOR J=1 TO PR(I)-1
7035 IF SR(IJ)=1 THEN GOTO 7110
7040 IF I=1 AND J>1 AND J<9 THEN GOTO 7110
7050 X=RND(NA)
7055 K=T(X)

7060 R(IJ)=RI(K<) :A(IJ)=AI (K) :BP(IJ)=RB,(K) :SB(IJ)=ZI(K)

7070 NA=NA-1
7080 FOR L=X TO NA
7090 T(L)=T(L+1)
7095 NEXT L
7100 T(NA+1)=0

7110 NEXT J
7120 NEXT I

7130 FOR K=2 TO 8
7140 R(1,K):=R(K, 1) :A(1,K)=A(K, 1) :BP(1,K)=BP(K, 1) :SB(1,K)=SB
(K 1)
7150 NEXT K
7490 CLS
7500 FOR I=1 TO 9:PRINT @((I-0)*6+64*2),I!:NEXT I
7510 FOR I=1 TO 9:PRINT @((I+2)*64),I;:NEXT I

7520 FOR I=1 TO 9:FOR J=1 TO PR(I)-1:PRINT a((I+2)*64+J*6),

R(IJ);:NEXT J:NEXT I
7600 GOTO 10700
10000 INPUT" ENTER 1 TO READ DATA FROM TAPE" TA

10020 IF TA=1 THEN GOTO 10500
10030 INPUT "ENTER 1 TO STORE PATTERN DATA ON TAPE";ZT
10040 FOR I=1 TO 9

10060 FOR J=1 TO PR(I)-1

10070 IF SR(1,J)=1 THEN PRINT"POSITION";IJ-"IS RESTRICTED"

:GOTO 10200
10080 IF CF(IvJ)=0 THEN GOTO 10200

10100 PRINT " ENTER TYPE OF ASSEMBLY AT :"; I,",";J

10120 INPUT K
10130 IF K=0 THEN K=1
10135 IF ZT=1 THEN PRINT#-1,K

10140 R(IJ)=RI(K) : A(IJ):=AI(K) : BP(IJ)=RB(K) : SB(IiJ)
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:=ZI (K)
10200 NEXT J,I

10490 GOTO 10700
10500 FOR I=1 TO PR(1)-1

10510 FOR J=1 TO PR(I)-1

10520 IF SR(IvJ)=1 THEN 10550
10530 INPUT#-1, K

10540 R(IJ)=RICK-) : A(IJ)=AI(K<) : BP(IvJ)=RB(K\) :SB,(IJ)
= ZI(K)

10550 NEXT JI
10700 PRINT:PRINT "RESTRICTIONS ON BP LOADING PER LOCATION"

10710 FOR I=1 TO PR(1)-l:FOR J=1 TO PR(I)-1: G(I,J)=.0: NEX

T J,I
10720 INPUT "ENTER RESTRICTED POSITION: I- J - ENTER 0 TWICE

TO EXIT";IIJ

10730 IF I=0 THEN GOTO 10800
10740 PRINT "ENTER LIMIT OF BP IN:1";IJ: INPUT G(IJ)

10750 GOTO 10720
10800 GOTO 12000

12000 GOSUB 15000

12100 ON 03 GOTO 12200o12200, 13000, 14500, 14700, 14600

12200 IF 05=1 THEN GOSUB 12600
12210 GOSUB 16000

12300 GOSUB 14800

12500 IF 03 =3 THEN GOTO 13000: ELSE STOP
12600 GOSUB 36000

12603 LPRINT "BC: "BC
12605 IF 05><1 THEN GOTO 12660

12610 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1:BB(IvJ)=(F2(IJ

)*(1-RQ(IJ))*((1-R(IJ))EGP)): :NEXT J:NEXT I
12630 GOSUB 16500
12640 IF XY=1 THEN GOTO 12600

12650 IF XY=0 THEN LPRINT "PRELIMINARY RESULT CONVERGED"
12660 GOSUB 14800
12670 RETURN
13000 PRINT "CHANGE IN BP LIMITS
13010 INPUT "ENTER 0 FOR NO CHANGE, ELSE POSITION IJ TO BE

CHANGED" ; I , J
13020 IF I=0 THEN GOTO 13100
13030 PRINT" ENTER NEW LIMIT IN:";IJ : INPUT G(IvJ)
13040 GOTO 13010
13100 IF 03=3 THEN GOSUB 36000
13490 UF=0:GOSUB 14800
13500 GOSUB 20000
13600 GOSUB 14600
13900 STOP
14500 GOSUB 36000
14550 GOSUB 14800
14590 STOP
14600 GOSUB 40000



GOSUB 45000

GOSUB 50000
GOSUB 14800

14690 STOP
14700 GOSUB 38000
14750 GOSUB 14800
14790 STOP
14800 FOR I=1 TO PR(
14810 FOR I=1 TO PR(
14820 LPRINT:LPRINT

0) SR(IJ);:NEXT J
14830 LPRINT:LPRINT

) R(IiJ)I:NEXT J
14840 LPRINT:LPRINT
*10) A(I,J)/1E-5;o:NE

14850 LPRINT:LPRINT"I
) BP(IJ);:NEXT J
14860 LPRINT:LPRINT

0) SB(IJ);:NEXT J
14870 LPRINT:LPRINT

0) F1(IvJ);:NEXT J

14880 LPRINT:LPRINT
0) F2(IJ);:NEXT J

14890 LPRINT: LPRINT

) B(IJ);: NEXT J
14900 LPRINT:LPRINT

0) eB(I,J);: NEXT J

1I904 LPRINT:LPRINT "P1"

J) P1(IJ);:NEXT J
14906 LPRINT:LPRINT "P2"

0) P2(IJ);:NEXT J

1 )-1
1 )-1

:LPRINT TAB(I*10) I;:NEXT I

:LPRINT:LPRINT:LPRINT I

"SR";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

"R";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*10

"AE-5";:FOR J=1 TO PR(I)-1:LPRINT TAB(J

XT J
BP";:FOR J:=1 TO PR(I)-1:LPRINT TAB(J*10

"SB";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

"F1";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

"F2";:FOR-J=1 TO PR(I)-1:LPRINT TAB(J*1

"B"*,I;:FOR J=1 TO PR(I)-1:LPRINT TAB(J*10

"BB";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

,:FOR J=1 TO PR(I)-1:LPRINT TAB(10*

;:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

14907 'LPRINT:LPRINT "FB";:FOR J=1 TO PR(

10) FB(IJ);:NEXT J

14908 'LPRINT:LPRINT "FE";:FOR J=1 TO PR(

10) FE(IJ)I:NEXT J

I)-1:LPRINT TAB(J*

I)-1:LPRINT TAB(J*

14909 LPRINT:LPRINT "FU";:FOR J=1 TO PR(I)-1:LPRINT TAB(J*1

0) FU(IJ)I:NEXT J
14910 NEXT I

14920 LPRINT:LPRINT:LPRINT "CYCLE BURNUP:";BC

14930 LPRINT "LIMITS ON PEAKS: BOC";MB,"EOC"1ME:LPRINT
14950 RETURN

15000 REM PREPARE FOR POWER ITERATION AT BOC

15020 AA=0 :CR=0 RL=0

15040 FOR I=1 TO 9
15060 FOR J:=1 TO PR(I)-1

15100 AA=AA+A(I,J)*Y(IJ):CR=CR+(R(IJ)-BP(I,J))*Y(IJ) :RL

=RL+RQ(IJ)*Y(IJ)
15110 NEXT JI

15120 AA=AA/N4 : CR=CR/N4 RL=RL/N4 : SP=CR-RL

15250 FOR I=1: TO PR(1)-1

251

14610
14620
14650
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15255 FOR J=1

15260 ON CF(I

280 -
15265

15270
15273
15275

15277
15280
15283
15285
15290
15300

16000
16010
16012

16015
16020
16025
16028
16030
16040
16050
16060
16070
16080
16090
16100
16110
16115
16120
16125
B*FUC

16130

16140

16150
16160

16170
16160
16190
16200
16210
16220

16230
16235
16240

16250
16260
16290
16300

TO PR(I)-1

,J)GOTO 15270,15270,15270,15275,15275,15280,l5
15280, 15285, 15285,i15285

GOTO
F(IJ

GOTO
F(IJ

GOTO
F(IJ
GOTO
F(IJ

15290
)=1/(1-TH*(R(IJ)-BP(IJ)-SP))

15290
)=1/(1-T5*(R(IJ)-BP(IJ)-SP)+

15290
)=1/(1-T1*(R(IJ)-BP(IvJ)-SP)+
15290

)=1/(1-T2*(R(IPJ)-BP(IPJ)-SP)+

2*TL*RQ(IJ)/3.5)

2*TL*R( (IJ)/3)

TL*R( (IJ))

NEXT Jv I
RETURN

REM SHUFFLING TO MAXIMIZE CYCLE BURNUP

GOSUB 36000
LPRINT "BC=";BC

GOTO 16160
V=-1 : VE=-RP ' LIMITS
FOR NI=1 TO 2

TT=0 : DB=0
FOR I=1 TO PR(1)-1

FOR J=1 TO PR(I)-1
IF (I=1 AND J>1 AND J<9) OR G(IJ)=0 THEN GOTO
IF F1(IJ):=MB AND F2(l,J)<=ME THEN GOTO 16130
GOSUB 55000

GOSUB 30000
IF F1(IJ)>=MB AND F2(IvJ)>=ME THEN GOSUB 17700
IF F1(I7J)>'=MB AND F2(IJ)<ME THEN GOSUB 17600
IF F1(IiJ)-<MB AND F2(IJ)>=ME THEN GOSUB 17650
IF DB+BP(I,J)>G(IJ) THEN DB=G(IJ)-BP(IvJ)
IF DB><0 THEN TT=1

BP(IJ)=BP(IJ)+DB : SB(IJ)=BP(IJ)*(1-RP)/(B(
IJ))

NEXT JI
IF TT=1 THEN GOSUB 17750

NEXT NI
V=1 : VB=1 :VE=: DZ=0 ' COEFFICIENTS

FOR I=1 TO PR(1)-1

FOR J=1 TO PR(I)-1
IF SR(IiJ)=1 OR (I=1 AND J>1 AND J<9) THEN GOTO
GOSUB 55000
GOSUB 30000
NEXT JI
GOSUB 14600

FOR K=1 TO PR(1)-1
FOR L=1 TO PR(K)-1
IF SR(KL)=1 OR (K=1 AND L<1 AND L<9) THEN GOTO
BB(KvL)=BB(KvL)*((1-R(KL) )CGS)
NEXT LvK

FOR K=1 TO 8:BB(K, 1)n=BB(K, 1)/Y(Kv 1) :NEXT K

16130

I pJ)+D

16220

16290



253

16400 GOSUB 16500

16450 IF XY=1 THEN GOT) 16000

16470 IF XY=0 THEN LPRINT " CONVERGED "

16480 RETURN
16500 REM RANKINGS OF BC COEFFICIENTS
16510 FOR I=1 TO PR(1)-1
16320 FOR J=1 TO PR(I)-1
16530 IF SR(IiJ)=1 THEN GOTO 16700

16540 IF I=1 AND J>1 AND J<9 THEN GOTO 16700
16550 RX(IJ)=1

16560 FOR K=1 TO PR(1)-1

16570 FOR L=1 TO PR(K)-1

16580 IF SR(K ,L)=1 OR (Kl AND L>1 AND L<9) THEN GOTO 16680
16590 IF BB(IJ)< BB(KfL) THEN RX(I9J)=RX(IvJ)+1
16600 IF BB(IiJ):=BB(K7L) AND (ICK OR (I=1 AND J<K))) THEN R

X(IJ)=RX(IJ)+1
16660 NEXT LiK

16700 NEXT JiI

17000 REM SHUFFLING
17010 BD=0 : XY=0

17030 FOR I=1 TO PR(1)-1

17040 FOR J=1 TO PR(I)-1
17050 IF SR(IJ)=1 OR (I=1 AND J>1 AND J<9) THEN GOTO 17100

17060 K=TR(RX(IJ)) : Z= RI(K)- R(IJ)

17080 IF R(IJ)><:RI(K) THEN LPRINT "CHANGE";I,J ": FROM ";R
(I J), "TO" ,RI (K), "TYPE";K :.R(IJ)=RI(K): A(IiJ)=AI(K) BFP

(IJ)=RB.(K) : SB(I-J)=ZI(K) XY=1
17100 F(I1J)=F1(IJ)

17300 NEXT JvI

17350 FOR K=2 TO 8: R(1,K)=R(K,1) A(1vK)=A(K,1 ): BP(1,K)=

BP(K,1) : SB(1,K)=SB(K,1): NEXT K
17500 RETURN

17600 DB=(MB-F1(IJ))/P1(I9J)
17610 IF DB*P2(IJ)+F2(I,J)>ME THEN 17700

17620 RETURN

17650 DB=(ME-F2(IvJ))/P2(IvJ)

17660 IF DBeP1(I,J)+F1(IvJ)>MB THEN 17700
17670 RETURN

17700 DB=(F1(IJ)-F2(IJ)-MB+ME)/(P2(IwJ)-P1(IJ))
17710 RETURN

17750 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1:F(IJ)=Fl(IJ)+

BP(IJ)*P1(IJ):NEXT JI
17760 GOSUB 36000
17770 RETURN

20000 REM BURNABLE POISON DISTRIBUTION
20010 V=-1 : VE=-RP : VB=(1-RP)/2: HS=.95

20020 FOR I=1 TO PR(1)-1

20030 FOR J=1 TO PR(I)-1

20035 IF I=1 AND J>1 AND J<9 THEN GOTO 20100
20040 IF G(IJ)=0 OR R(IJ)<0 THEN GOTO 20100
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20050 GOSUB 55000
20060 GOSUB 30000

20100 NEXT JI
20105 FOR K=1 TO 8:BB(K,1)=BB(K,1)/Y(K,1):NEXT K
20110 XR=.01: ZU=0 : ZB=O : ZN=0
20300 FOR 1=1 TO PR(1)-1
20310 FOR J=1 TO PR(I)-1
20315 IF 1=1 AND J>1 AND J<1 THEN GOTO 20400
20320 IF G(IiJ)=0 OR R(IJ)<0 THEN GOTO2O400
20340 IF BP(IgJ)=G(IgJ) THEN GOTO 20400
20350 ZU=ZU+BB(IJ) : ZB=ZB+S1(I,J)*BB(IJ) ' ZN=ZN+ 1
20400 NEXT JI
20500 X=XR*ZN/ZU : IF 06 =1 THEN X=-SC*N4/ZB
20510 FOR I=1 TO PR(1)-1

20520 FOR J=1 TO PR(I)-1

20530 IF 6(IJ)=0 OR R(IgJ)<0 OR (I=1 AND J>1 AND J<9) THEN

20630

20540 DP=X*BB(IvJ)
20550 IF F1(IqJ)(=MB AND F2(IJ)<=ME AND (BP(IgJ)+DP)<=G(IJ

) THEN 20630

20560 PB=P1(IJ)*DP'*(1+DP/(1-R(IJ)+BP(IJ)))
20570 PE=P2(IJ)*DP'*(1+DP/(1-R(I,J)+BP(IJ)))

20580 IF F1(IJ)>=MB AND F2(IJ)>=ME THEN GOSUB 21700

20590 IF F1(1 9 J)>=MB AND F2(IJ)<ME THEN GOSUB 21500
20600 IF F1(IJ)<MB AND F2(IJ)>=ME THEN GOSUB 21600

20610 IF DB+BP(IvJ)>G(IJ) THEN DB=G(IvJ)-BP(IvJ)
20620 BP(I-J)=BP(IPJ)+DB SB(IJ)=BP(I,J)*(1-RP)/(B(IJ)+D
B*FU(IJ))

20625 IF BP(IJ)<0 THEN BP(IJ)=0: SB(I,J)=0
20630 NEXT JI
21010 FOR I=1 TO PR(1)-1

21020 FOR J=1 TO PR(I)-1
21030 IF G(IJ)=0 OR BP(IPJ)=G(IJ) OR R(IJ)<0 OR F1(IJ)>M
B OR F2(IJ)>ME OR (I=1 AND J>1 AND JC9) THEN 21200

21040 DP=X*BB(IJ): IF BP(IJ)+DP > G(IJ) THEN DP=G(IJ)-BP
(IiJ)
21050 BP(IJ)=BP(IJ)+DP : SB(IvJ)=BP(I,J)*(1-RP)/(B(IJ)+DP
*FU(IJ))

21080 IF BP(IJ)<0 THEN BP(IJ)=0: SB(I,J)=0
21200 NEXT Jil
21250 FOR K=2 TO 8: BP(1,K)=BP(K,1):SB(1,K)=SB(K,1):NEXT K
21260 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1:F(IJ)=F1(IJ):N
EXT JI

21270 GOSUB 36000
21280 GOSUB 14800
21300 O'7=0 : 08=0

21310 FOR I=1 TO PR(1)-1
21320 FOR J=1 TO PR(I)-1
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21330 IF G(IJ)=0 OR BP(IJ)>=G(I,J) OR R(IJ)(O OR (I=1 AND
J>1 AND J:9) THEN 21400

21340 IF ((F1(IJ)>MOB+.005 AND F2(I,J)' ME+.005) AND (ABS(F1
(IJ)-F2(IJ))>(ABS(MB-ME)4.005))) oR(F2(IJ)>ME+.005 AND Fl
(IvJ)<MB)OR (F1(IJ)>MB+.005 AND F2(IJ)<ME) THEN 08=1:GOTO

21400

21350 IF BB(IvJ)>10 THEN 07=1

21400 NEXT JI
21410 IF HG/(SC+HG)>=HS THEN LPRINT:LPRINT "BP CONTROL LIMIT

ACHIEVED=" u HG/ (SC+HG) : RETURN
21420 IF 07>0 OR 08>0 THEN GOTO 20000: ELSE LPRINT "BP ALLO

CATION FINISHED": RETURN

21500 DB=(-Fl(IJ)+MB)/P1(IJ)

21510 IF DB*P2(IJ)+F2(IJ)>ME THEN GOTO 21700
21520 IF DBCDP AND PE+F2(I,J)>ME THEN DB=(-F2(IJ)+ME)/P2(I,

IF DB<DP AND PE+F2(I,J)<:=ME THEN DB=DP
RETURN

DB=(-F2(IJ)+ME)/P2(IiJ)

IF F1(IJ) +DB*P1(IJ)>MB THEN GOTO 21700

IF DB>DP AND PB+F1(IJ)<=MB THEN DB=DP

'IF DB>DP AND PB+F1(IJ)>MB THEN DB=(F1(IJ)-MB) /P1 (Iv

RETURN
DB=(F1(IJ)-F2(ItJ)-MB+ME)/C-Pl1IJ)+P2(IsJ))

IF DB+BP(I,J)> G(I,J) THEN DB=G(IJ)-BP(IJ)
RETURN

REM EOC & BUP SENSITIVITY / SYNTHESIS DEPLETION

FOR K=1 TO (PR(1)-1)

FOR L=1 TO (PR(K)-1)

RX(K,L)=R(KL)-A(K,L)*(B(KL)+BC*F2(KL)/2)-BP(KL)*RP

NEXT LK

FOR K=1 TO 8
Fl (K, 0)=F1 (K,

RX (Ki 0) =RX (K,
FB (K, 0):=FB(K,
B(K, 0) =B(K, 2)
A(K, 0) =A(K, 2)

2)

2)

2)

J)
21530
21550
21600
21610
21620
21630
J)
21650

21700
21710
2 1720
30000
30010
30020
30030
+KR
30040
30050
30060
30070
30080
30090
30100
30110
30120
30130
30140
30150
30160
30170
30100

30200

30210
30220

Fl (0,K)=F1 (2,K)

RX (0, K) =RX (29 K)

FB(0,K)=FB(2vK)
B(0, K)=B(29 K)

A(0,K)=A(2,K)

F2(0, K)=-F2(2 9K)

Fl(0,9)=F1(1,9)

RX(0,9)=RX(1,9)
FB(0,9)=FB(119)

B(0,9)=B(1,9)

F2(0,9)=F2(1,9)
A(0,9)=A(1,9)

(K,L)=12 THEN GOT() 30850

30230 GOSUB 31300

F2 (K, 0) =F2 (K, 2)
NEXT K
Fl(9,0)=F1(9,1)

RX(9,0)=RX(9,1)
FB(9,0)=FB(9, 1)

B(9,0)=B(9,1)
F2(9,0)=F2(9,1)
A(910)=A(9,1)

FOR K=1 TO PR(1)-1
FOR L=1 TO PR(K)-1
IF CF(K,L)=0 OR CF
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30240 ON CF(K L) )*GOTO 30350,w 30260,30310, 30400, 30450930550,3
0600 130650 130700 v30750 30800
30260 X=K+1 : Z=L-1
30280 FJ(2)=(FJ(2)+A(XZ)*F2(XZ)*FB3(XZ) )/2
230290 SJ(2)=(SJ(2)+A(X,Z)*F2(XZ)*B(XZ))/2

30300 GOTO 30350
30310 X=K-1 : Z=L+1

30330 FI(2)=(FI(2)+A(XZ)*F2(X,Z)*FB(XZ))/2

30340 SI(2)=(SI(2)+A(X,Z)*F2(X,Z)*B(XZ))/2
30350 GOSUB 31500

30360 SF=SF/4 : SS=SS/4
30370 FX (Kv L )=(-TH*A (K, L) *F2(K, L)*FB (K, L) +SF)*BC/2
-30380 FA(KvL)=(-TH*)A(KL)*F2(KL)*B (KvL) +SS)/BC

,30390 F(K9L)=FX(KL)/(1-TH*RX(KL))
30400 X=K+1 : Z=L-1
30420 FJ(2)=A(XZ)*F2(X,Z)*FB(X,Z)/2

30430 SJ (2)=A(XZ)*F2(XZ)*B(XZ)/2

30440 GOTO 30500
30450 X=K-1 : Z=L+1
30460 FI(2):::A(X, Z)*F2(XZ)*FB(XZ)/2
30470 SI(2)=A(XZ)*F2(XvZ)*B(XZ)/2
-30500 GOSUB 31500
30510 SF=SF/3.5 : SS=SS/3.5
30520 FX(Kw L)=(-T5*A(KtL)*F2(K, L)*FB(K, L)+SF)*BC/2
30530 FA(KL)=(-TS*A(KL)*F2(KvL)*B(KL) + SS)/BC
30540 F(K 9L)=FX(KL) /(1-T5*RX(KL)+2*TL*RG(KL)/3.5)
30545 GOTO 30850
30550 X=K-1 : Z=L+1
30560 FJ(1)=(FJ(1)+A(XZ)*F2(XZ)*FB(XZ))/2
30570 SJ(1)=(SJ(1)+A(XZ)*F2(XZ)*B(XZ) )/2
30590 GOTO 30650
30600 X=K+1 : Z=:L-1
30610 FI(1)=(FI(1)-A(XZ)*F2(XZ)*FB(XZ))/2
30620 SI(1)=(SI(1)+A(XZ)*F2(XZ)*B(XZ))/2

30650 GOSUB 31500

30660 SF:=SF/3 : SS=SS/3
30670 FX (KL)=(-T1*A(KvL)*F2(KvL)*FB(Kv L)+SF)*BC/2
30680 FA(KvL)=(-T1*A(KL)*F2(K, L)*B(KvL) +SS)/BC
30690 F(KwL)=FX(KL)/(1-T1*RX(KL)+2*TL*RQ(KvL)/3)
30695 GOTO 30850
30700 X=K-1 : Z=L+1

30710 FJ(1)=(FJ(1)+A(XZ)*F2(XZ)*FB(X,Z))/2

30720 SJ(1)=(SJ(1)+A(XZ)*F2(XZ)*B(XZ))/2
30740 GOTO 30800

30750 X=K+1 : Z=L-1

30770 FI(1)=(FI(1)+A(XZ)*F2(XZ)*FB(XZ))/2
30780 SI(1)=(SI(1)+A(XZ)*F2(XZ)*B(XZ))/2

30800 GOSUB 31500

30810 SF=SF/2 : SS=SS/2
30820 FX(KvL)=(-T2*A(KL)*F~2(KvL)*FB(KL)+SF)*BC/2
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30830 FA(K L )(-T2*A Kv L ) 2F2 (K) L )*B (K, L )4)SS /BC

30840 F(KL)=FX(KL)/(1-T2*RX(K L)+TL*RQ(KL))
30850 NEXT L
30860 NEX T K

30670 GOSUB 30900
30880 GOTO 31600 ' ITERATION BRANCH

30900 L=J

30910 FOR K=I-1 TO I+1 STEP 2
30920 GOSUB 31100

30930 NEXT K

30940 K=I
30950 FOR L=J-1 TO J+1 STEP 2
30960 GOSUB 31100
30970 NEXT L
30980 FOR K=I-1 TO I+1 STEP 2
30990 FOR L=J-1 TO J+1 STEP 2
31000 GOSUB 31200
31010 NEXT L

31020 NEX T K
31030 ON CF(IvJ) GOTo 31040,31040,3104/0,31050,31050,31060,3

1060,31060w31070,31070,31070,31080

31040 T=TH:GOTO 31080

31050 T=T5:GOTO 31080
31060 T=:T1 :GOTO 31080
31070 T=:T2:GOTO 31080
31080 DY=FX(IvJ)/F(IvJ)
31084 FX( IJ)=FX( IvJ)+T*F2( IwJ)+VE
31086 F(IwJ)=FX(IwJ)/DY

31090 RETURN
31100 IF CF(KiL)=0 OR CF(KL)=12 THEN RETURN

31110 GOSUB 58000
31120 ON CF(KL) GOTO 31130,31130,31130w31140,31140,31150w3
1150,31150,31160,31160,31160

31130 NS=4:GOTO 31170
31140 NS=3.5:GOTO 31170
31150 NS=3:GOTO 31170

31160 NS=2:GOTO 31170
31170 DY=FX(KtL)/F(Kw L)

31174 FX (K, L) =FX (K, L) -TS*F2(K, L) *FC*VE/NS
31176 F(KvL)=FX(Kw L)/DY
31180 RETURN

31200 IF CF(KwL)=0 OR CF(KL)=12 THEN RETURN
31210 GOSUB 58200
31220 ON CF(KL) GOTO 31230,31230w31230,31240w31240w31250,3
1250,31250v31260v31260i31260

31230 NS=4:GOTO 31270

31240 NS=3.5:GoTO31270

31250 NS=3:GOTO 31270

31260 NS=2:GOTO 31270
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31270 DY=FX(KvL)/F(KL)

31200 FX (K 7L) =FX (KL)-TSi*F2 (KL) *FC*VE/NS

31285 F(Kv L ) =FX (K vL) /DY
31290 RETURN
31300 FOR X=1 TO 2

31310 FJ(X)=0:FI(X):=0:SJ(X)=0:SI(X)=0

31320 NEXT X
31330 U=0

31340 FOR X=K-1 TO K+1 STEP 2
31350 U=U+1
31360 IF CF(XL)=0 THEN GOTO 31400

31370 FJ(U)=A(X7L) *F2(XL)*FB(XL)

31380 SJ(U)=A(X,L)*F2( XvL)*B(XL)
31400 NEXT X

31410 U=0

31420 FOR Z=L-1 TO L+1 STEP 2
31430 U=U+1

31440 IF CF(KZ)=0 THEN GOTO 314-80

31450 FI(U)=A(KZ)*F2(KZ)*FB(KZ)
31460 SI(U)=A(KZ)*F2(KZ)*B(KZ)

31480 NEXT Z

31490 RETURN
31500 SF=0 : SS=0

31510 FOR U=1 TO 2
31520 SF=SF+FI(U)+FJ(U)
31530 SS=SS+SI(U)+SJ(U)

31540 NEXT U
31550 SS=SS*TS : SF=SF*TS
31560 RETURN

31600 CI=0: CA=0

31610 FOR X=1 TO PR(1)--1
31620 FOR Z=1 TO PR(X)-1

31630 CI=CI+A(XZ)*F2(XZ)*B(XZ)*Y(XZ)

31640 CA=CA+A(XZ)4F2(XZ)*FB(XZ)*Y(XZ)
31650 NEXT ZX

31660 CA=-CA*BC/2+(F2(IJ)--ZD)*Y(IJ)*VE CI=CI/BC

31670 FOR NI=1 TO NU
31680 CR=0 : FT=0

31690 FOR X=1 TO PR(1)-1

31700 FOR Z=1 TO PR(X)-1
31720 CR=CR+(RX(X.,Z)-RG(X, Z) )*F(X, Z)*YCX, Z)

31725 FT=FT+F(XZ)*Y(XZ)

31730 NEXT ZX
31750 DC=(CA+CR)/CI

31760 GOSUB 61000

31765 NN=FT/N4:FOR X=1 TO PR(1)-1:FOR Z=1 TO PR(X)-1:F(XZ)
=-F(X,Z)-NN:NEXT Z,X

31768 PRINT "NORMALIZATION";NN
31770 NEXT NI

31780 CR=0
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31790 FOR X=1 TO PR(1)-1
31800 FOR Z=1 TO PR(X)-1

31C20 CR=CR+(RX(XZ)-RQ(XZ) ).F(XZ)*Y(XZ)

31830 NEXT ZX
31850 DC=(CA+CR)/CI

31860 FOR X=1 TO PR(1)-1

31370 FOR Z=1 TO PR(X)-1
31880 FE(XZ)=F(X,Z)

31890 F(XZ)=((Fl(XZ )+F2(XZ))*DC+BC*(FB(XZ)+FE(XZ)))/2

31895 'FU(XvZ)=F(XZ)
31900 NEXT ZvX
31940 CLS:PRINT "EOC BUP SENSITIVITY";DC
31960 GOSUB 65400
31970 BB(IJ)=DC : P2(IJ)=FE(IJ) FU(IiJ)=F(IJ)

32000 RETURN
36000 REM STEP-WISE DEPLETION

36010 BC=0:NB=NO
36020 FOR I=1 TO 9

36030 FOR J=1 TO PR(I)-1
36040 B(I,J)=0:RX(IJ)=R(IJ)-BP(IJ)': G(IJ)=0

36050 NEXT Jil
36070 GOSUB 40000

36100 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1:F1(IJ)=F(IJ):

FA(IiJ)=F(IJ):NEXT JI

36110 SC=SP: SX=SP : NB=NM : HG=RB
36130 FOR IT=1 TO ND
36140 FOR I=1 TO 9
36150 FOR J=1 TO PR(I)-1
36155 DZ=1: IF (B(IJ)+BS*(FA(IJ)+F(IJ))/2)*SB(IJ) >=BP(

IJ)*(1-RP) THEN DZ=0
36160 RX(IJ)=R(IJ)-(A(IJ)-DZ*SB(IJ))*(B(IJ)+BS*(FA(IJ

)+F(I,J))/2)-BP(IJ)*(DZ*(1-RP)+RP)

36170 NEXT J
36160 NEXT I
36190 GOSUB 40400

36195 PRINT "UPDATE #"!IT
36200 NEXT IT

36240 FOR I=1 TO 9
36250 FOR J=1 TO PR(I)-1
36260 B(IJ)=B(IJ)+BS*(FA(IJ)+F(IJ))/2

36265 'G(IJ)=G(IJ)+(SX*FA(I,J)+SP*F(IJ))*BS/2
36270 FA(IJ):=F(IJ)

36275 SX=SP
36280 NEXT J
36290 NEXT I
36295 BC=BC+BS
3629G CLS
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36300 FOR
36303 FOR

I=.1 TO 9:PRINT ((I--0)*6+64/*2),I;:NEXT
I=1 TO 9:PRINT ((I+2)*64),I;:NEXT I

36306 FOR I=1 TO 9:FOR J:=1 TO PR(I)-1:PRINT a((I+2)*64+J*6)

,B(I,J);:NEXT J:NEXT I
36308 PRINT:PRINT 'BC";BC,"STEP #";INT(BC/BS)

36310 IF(SP+RB)/AA>2*BS THEN GOTO 36130

36315 DN=0 : DD=0
36320 FOR I=1 TO 9
36330 FOR J=1l TO PR(I)-1
36340 DN=DN+(R(IJ)-A(IJ)*B (IJ) -RP*BP(IJ) )*F(IJ)*Y(IIJ)

36350 DD=DD+(A(I,J)*Y(IJ)*F(IJ)[2)

36360 NEXT J
36370 NEXT I

BR=(DN/N4-RL)/(DD/N4)

IF BR>BS THEN GOTO 36130
FOR I=1 TO 9
FOR J=1 TO PR(I)-1

RX(IJ)=R(IJ)-A(IJ)*(B(

(IIJ)

NEXT J

NEXT I
NE7=NM
FOR IT=1 TO ND

I, J) +BR*(F ( IvJ) +FA( IvJ) ) /2)-

36470 GOSUB 50400

36473 PRINT "UPDATE #1";IT
36475 DN=0 : DD=0

36480 FOR I=:1 TO 9

36490 FOR J=1 TO PR(I)-1
36500 RX(IiJ)=R(IJ)-(B(IJ)+BR*(F(IJ)+FA(

BP(IiJ)*RP+KR
36510 DN=DN+F( IJ)*Y( IJ)*(R( IwJ)-A( IJ)*B( IJ)-RP*BP( IJ)+
KR)
36520 DD=DD+A(IJ)*Y(IJ)*F(IJ)*(FA(IJ)+F(IJ) )/2
36530 NEXT J
36540 NEXT I

36550 BR=(DN/N4-RL)/(DD/N4)

36560 NEXT IT
36570 FOR 1=1 TO PR(1)-1
36580 FOR J=1 TO PR(I)-1

36590 B(IJ)=B(IJ)+BR*(F(IJ)+FA(IJ))/2
36595 'G(IJ)=G(IJ)+(FA(I,J)*SX+SP*F(IJ))*BR/2

366001
366101
366301
36660
36670
366801
.B( IJ

36690
36700

F2(IJ) -=F(IJ)

NEXT JqI
BC=BC+BR

CLS:FOR I=1 TO 9:PRINT @((I-0)*6+64*2),I;:NEXT
FOR I=1 TO 9:PRINT @((I+2)*64),I;:NEXT I
FOR I=1 TO 9:FOR J=1 TO PR(I)-1:PRINT Q((I+2)*
r);:NEXT J;NEXT I

PRINT :PRINT "BC";BC
PRINT "LAST STEP OF DEPLETION IS OVERv #"; INT

I

64+J*6)

(BC/BS+

I

36380
36390
36400

36410
36420
RP*B P
36430

36440
36450
36460
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1)

36730 7 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1:G(IJ)=-G(IJ)/
(SC*(B(IJ)/3+F1(IJ)*BC/6)):NEXT JI

36760 RETURN

30000 REM ONE-STEP DEPLETION
38020 NB=NM: GOSUB 40000

38030 BO= ( RC-RL) /AA
38035 SC:=SP
38040 FOR I=1 TO 9
38050 FOR J=1 TO PR(I)-1
38060 RX(IJ)=R(IJ)-- BO -A(IJ)*F(I J)-BP(I, J )*RP+KR:F1(I, J
).=F(IJ)

38080 NEXT JI
38100 FOR NY=1 TO NO

38110 GOSUB 50400
33120 RC=0 : CO=0
36130 FOR I=1 TO 9

36140 FOR J=1 TO PR(I)-1

38150 RC=RC+F( IJ)*(R(IJ)-RP*BP( IJ)+KR)*Y(IJ)
38160 CO=CO+Y (IJ)*A ( I, J)*F ( IvJ)*(F1(IJ)+F(IJ) )/2
38170 NEXT JvI

38190 CO=CO/N4:RC=RC/N4:BO=(RC-RL)/CO

38220 FOR I=1 TO 9
38230 FOR J:= TO PR(I)--1
30240 B(IvJ)=BO*A(F(IJ)+F1(IJ))/2
38250 RX(IJ):=R(I,J)-RP*BP( I, J)-A(IJ)*B(I, J)+KR

38260 NEXT J1 I

38360 CLS:FOR I=1 TO 9:PRINT @((I-0)*6-+-64*2),I;:NEXT I
38370 FOR I=1 TO 9: PRINT @((I+2)*64),I;:NEXT I

38380 FOR I=l TO 9: FOR J=l TO PR(I)-1:PRINT @((I+2)*64+J*6

),B(I,J)*:NEXT J:NEXT I

38390 PRINT:PRINT "ITERATION # ";NY " BURNUP ";BO, "RC ";

RC, " RL ";iRL

38400 NEXT NY

38450 FOR X=1 TO PR(1)-1:FOR Z=1 TO PR(X)-1:F2(X,Z)=F(XZ):
F(XZ)=0:NEXT ZX ' G(XZ)=1
38500 RETURN
40000 REM BOC POWER SUBROUTINE
40010 CR=0 : RL=:0 WS=0 : RC=0
40020 FOR I=1 TO 9
40030 FOR J=1 TO PR(I)-1

40040 IF CF(IJ)=0 THEN GOTO 40140
40050 RX(IvJ)=R(IvJ)-BP(IvJ)
40060 CR::CR+F(IJ)*RX(IJ)*Y(IJ)
40070 WS=WS*F(IJ)*W(IJ)*Y(IYJ)

40080 RL=RL+F( IJ)*Y( IJ)*Rl( IvJ)
40140 NEXT JuI

40160 SP=:(CR--RL)/WS
40400 REM PLACE MIRRORS
40410 FOR K=1 TO 0
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40420 R(0,K)=R(2,K)

'40430 BP(0iK)=BP(2,iK
40440 RX(0,K)=RX(2,IK
40450 NEXT K
40460 R(0,0)=R(2,2)

40470 R(0,9):=R(1,9)

40460 R(9,0)=R(9,1)

R(K,0)=R(K,2)

BP (K70) =UP ( K2)
RX(K, 0)=RX(K ,2)

: BP(0,0)=tBP(2, 2)

: BP(0,9)=BP(1,9)

: BP(9,0):=BP(9,1)

RX(0,0)=RX(2,2

: RX(0,9)=RX(1,9

: RX(9,0)=RX(9q1

40490 REM POWER ITERATIONS

40500 FOR NI=1: TO NS
40510 FOR I=1 TO PR(1)-1:FOR J=1 TO PR(I)-1: RX(IvJ)=RX(IiJ

)-SP*W(IJ):NEXT JI

40520 FT=0 : CR=0 : WS=0 : RL=0 : RB:0
40530 FOR K=1 TO 8
40540 F(0 K)=F(2 K) F(K, 0):=F(K, 2)
40545 RX(0,K)=RX(2,K) RX(K,0)=RX(K,2)
40550 NEXT K
40560 F(0,0)=F(2,2) F(0,9)=F(1,9) F(9,0)=F(9,1)
40570 RX(0,9)=RX(1,9) RX(9,0)=RX(9,1)
40580 'FOR I=1 TO 9
40581 FOR I=:9 TO 1 STEP -1
40590 'FOR J=1 TO PR(I)-1
40591 FOR J=PR(I)-1 TO I STEP -1

40600 IF CF(IJ)=0 THEN GOTO 44600
40650 GOSUB 51000
44500 CR=CR+RX(IJ)*F(IJ)*Y(IJ)

44510 FT=FT+F(IJ)*Y( IiJ)

44515 RC=RC+F(IJ)*Y(IJ)*(R(IJ)-RP*BP(IJ))
44520 WS=WS+W(IJ)*F(IJ)*Y(IJ)

44530 RB=RB+F(IJ)*(BP(IJ)-SB(IJ)*B(IJ))*Y(IJ)

44600 NEXT J
44610 NEXT I

44620 NF=FT/N4
44630 CR=CR+WS*SP

44640 WS=WS/FT : RL=RL/FT : CR=CR/FT RB=RB/FT
44700 REM NORMALIZATION OF POWERS
44710 FOR I=1 TO PR(1)-1

44720 FOR J=1 TO PR(I)-1

44730 IF CF(IvJ)=0 THEN GOTO 44810
44740 F(IJ)=:F(IJ)/NF

44800 RX(IvJ)=RX(IJ)+SP*W(IJ)

44810 NEXT J, I
44820 SP=(CR-RL)/WS

44900 RC=RC/FT

44910 CLS: IF SP<0 THEN PRINT "OUT OF REACTIVITY"
44920 GOSUB 65400
44935 PRINT : PRINT "ITERATION NUMBER" ;NI, "RL" ,;RL, "CR"';CR,"
SP";SP,"NORMALIZATION";NF

44937 PRINT "POWER CALCULATION"
44940 NEXT NI

44950 RETURN
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REM BURNUP/DEPLETION CALCULATIONS

CR=-0 :RL=0

FOR I=1 TO 9

FOR J=1 TO PR(I)-1

IF CF(IJ)=0 THEN GOTO 45100

RX(IvJ)= R(IJ)- BP(IJ)*(1+RP)/2 -W(IJ)*SP/3

CR=CR+(R(IJ)-RP*BP(IJ))*Y(IJ)
AA=AA + A(IJ)*Y(IJ)
RL=RL-(RG(IJ)*(1+KL*SP/2))*Y(IJ)
REM
NEXT J

NEXT I
BC=(CR-RL)/AA

FOR I=1 TO 9

FOR J=1 TO PR(I)-1

45000
45010
45020
45030
45040

45050
45060
45070
45080
45090
45100
45110
45120
45130

45140
45150
45160
45170
45180

45400
45410
45420
45430

45440
45450
45455
45460
'5 4570

45480
45490
45500
45505
45510
45520

45530
45540
45550
45560
45570
45580

45590
45600
45601

45610
45611

45620

46000
4-6010
46020
46030

BP(0,9)=BP(
Fl(0,9)=F1(

RX(0,9)=RX(

A(0,9)=A(1,

REM BEGIN
FOR NI=1 TO

BT=0 : CR=O

1,9)
1,9)
1,9)

9)

GOTO 45170

R(K, 0)=R(K,2)
BP(K, 0)=BP(K, 2)
Fl(K,0)=F1(K,2)
RX(K,0)=RX(K,2)

A(Kv0)=A(Kv2)

(9,0)=R(9-)1)
; BP(9,0)=LBP(9,
: F1(9,0)=F1(9i
: RX(9,0)=RX(9,
A(9,0)=A(9,1)

1
1
1

)
)

)

ITERATIONS
NU
: RL=0

REM UPDATE MIRRORS
FOR K=1 TO 8

B(0,7K)=B(2,K) : B(K,0)=:B(K,2)
NEXT K
B(0,9)=B(1,9) : B(9,0)=B(9,1)
REM TARGET ASSEMBLY CALCULATIONS
'FOR I=1 TO 9

FOR I=9 TO 1 STEP -1
'FOR J=1 TO PR(I)-1
FOR J=PR(I)-1 TO 1 STEP -1
IF CF(IvJ)=0 THEN GOTO 49600

REM CALCULATE SURROUNDING'S CONTRIBUITION
BJ(1)=0 BJ(2)=0 :'L=0

FOR K=I-1 TO I+1 STEP 2
L=L+1

IF CF(IJ)=0 THEN

B(I,J)= BC

NEXT J
NEXT I

REM PLACE MIRRORS

FOR K=1 TO 8
R (0,K):= RC(2vK)

BP(0,K)=BP(2,K)
Fl(0,)K)=F1(2,K)
RX (0,9K) =RX (2,vK)
A(0,K)=A(2,K)
NEXT K
R(099)=R(1,9) :R

:
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46040 IF CF(K9J)=0 THEN GOTO 46090
46050 BJ (L)=B(K, J)*(1-TS*(RX (K, J) -A (K, J)*B(K, J) /2) )+TS*BC*S
P*F1 (Ki J) /6
46090 NEX T K

46100 BI(1)=0 BI(2)=0 L=0

46110 FOR K::J-1 TO J+1 STEP 2
46120 L=L+1

46130 IF CF(IK)=0 THEN GOTO 46160
46140 BI(L)=B(IK)*(1-TS*(RX(IK)-A(IK)*B(IK)/2) )+TS*BC*S
P*F1(IK)/6

46160 NEXT K
47000 REM - CORRECT SURROUNDINGS' FOR ODD ASSEMBLIES, POWER
47010 ON CF(IJ) GOTO 47500,47100,47300,47700,47800,48000,4
8200,48400,48600,48800,49000
47020 GOTO 49600
47100 REM CF=2
47110 K=I+1 L=J-1
47120 SS= B(KL)*(1-TS*(RX(KwL)-ACKwL)*BCKwL)/2))+TS*BC*SP*
Fl(Kw L)/6

47130 BJ(2)=(BJ(2)+SS)/2

47140 GOTO 47500
47300 REM CF=3

47310 K=I-1 : L=J+1

47320 SS=B(KL)*(1-TS*(RX(KL)-A(K,L)*B(KL)/2) )+TS*BC*SP*F
1 (Kv L) /6
47330 BI(2)=(BI(2)+SS)/2

47340 GOTO 47500
47500 REM CF=1,2,3
47510 SY=TH*SP*BC*F1 (IvJ)/6
47520 CS=0
47530 FOR K=1 TO 2

47540 CS=CS+BI (K)+BJ(K)
47550 NEXT K
47560 CY=SY-CS/4

47570 BY=1-TH*RX(IJ)

47580 AY=TH*A(IJ)/2
47590 B(IwJ)=(-BY+SQaR(BYC2-4*AY*CY))/(2*AY)

47600 GOTO 49500
47700 REM CF=4
47710 K=I+1 : L=J-1

47720 GOTO 47820
47800 REM CF=5
47810 K=I-1 : L=J+1

47820 SS=B(K,L)*(1-TS*(RX(KL)-A(KwL)*B(KL)/2))+TS*BC*SP*F
1 (KL)/6

47830 LR=R( (I9J)*(1+KL*SP/2)
47840 CS=0
47850 FOR K=1 TO 2

47860 CS::CS+BJ(K)+BI (K)

47870 NEXT K
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47880 CS=CS+ S/2
47890 SY=T5*SP*BC*F1(IvJ)/6
47900 CY=SY-CS/3.5

47910 BY=1-T5*RX(IvJ)+TL*LR*

47920 AY=TS*A (IJ)/2
47930 B(IvJ)=(-BY+SQR(BY[2-4

47940 RL=RL+B( IJ)*LR*Y(IvJ)

47950 GOTO 49500
48000 REM CF=6
48010 KI-1: L=J+1

48020 SS=B(KL)*(1-TS*(RX(K
1(KwL)/6

48030 BJ(1)=(BJ(1)+SS)/2
48040 GOTO 48400

48200 REM CF=7

48210 K=I+1 : L:=J-1

48220 SS=B(KL)*(1-TS*(RX(K,
1(KiL)/6

48230 BI(1)=(BI(1)+SS)/2
48240 GOT* 48400
48400 REM CF=6v7,8
48410 LR=RQ(IJ)*(1+KL*SP/2)

48420 SY=T1*SP*BC*F1(IJ)/6
48430 CS=0
48440 FOR K=1 TO 2
48450 CS=CS+BI (K)+BJ(K)
48460 NEXT K

48470 CY=SY-CS/3
48480 BY=1-T1*RX(IvJ)+TL*LR*
48490 AY=T1*A(IvJ)/2
48500 B(IJ)=(-BY+SQR(BYE2-4

48510 RL=RL+B(IJ)x*LR*Y(IJ)
48520 GOTO 49500

48600 REM CF=9
48610 K=I-1 : L=J+1
48620 SS=B(KqL)*(1-TS*(RX(K,

1 (Kv L) /6

48630 BJ(1)=(BJ(1)+SS)/2
48640 GOTO 49000
48800 REM CF=10
48810 K=I+1 : L=J-1
48820 SS=B(K7L)*(1-TS*(RX(Kv
1 (Kv L) /6
48830 BI(1)=(BI(1)+SS)/2

48840 GOTO 49000
49000 REM CF=9v10,11
49010 LR=Rc(IJ)*(1+KL*SP/2)
49020 SY=T2*SP*BC*F1(IvJ)/6

49030 CS=0
49040 FOR K=1 TO 2

2/3.5

*AY*CY))/(2*AY)

L)-A(KiL)*B(KL

L)-A(Ks L)*BC0KL

2/3

*AY*CY))/(2*AY)

L)-A(Kw L)*B(KL

)/2))+TS*BC*SP*F

)/2))+TS*BC*SP*F

)/2) )+TS*BC*SP*F

L)-A(KL)*B(KL)/2))+TS*BC*SP*F
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49050 CS=CS+BJ (K) +BI (K)
49060 NEXT K

49070 CY=SY-CS/2
49080 BY=1-T2*RX(IYJ)+TL*LR

49090 AY=T2*AC( I ,J)/2
49100 B(IJ)=(-BY+SQR(BYC2.-4*AY*CY))/(2*AY)

49110 RL=RL+B(IJ)*LR*Y(I,J)

49120 GOTO 49500
49500 CR=CR+ ( (RX( IJ)-A( IJ)*B( IJ)/2)*B( I',J)-SP*BC*F1 (IJ)
/6)*Y(IvJ)

49510 BT=BT+B(IvJ)*Y(IJ)

49600 NEXT J
49610 NEXT I

49620 BC=BT/N4
49640 CR=CR/BT RL=RL/BT :PP=CR-RL

49900 CLS

49910 FOR I=1 TO 9: PRINT @((I-0)*6+64*2),I ;:NEXT I
49920 FOR 1=1 TO 9: PRINT @((I+2)*64),I;:NEXT I
49930 FOR I=1 TO 9: FOR J=1 TO PR(I)-1 PRINT a((I+2)*64+J
*6),B(IJ)7:NEXT J: NEXT I
49940 PRINT

49950 PRINT "ITERATION NUMBER" ;NI:PRINT"BC" ;BC-"CR";CR,"RL"
;RL, "PP" %PP
49960 NEXT NI

49970 RETURN
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REM EOC SUBROUTINE
FOR I=1 TO 9
FOR J=1 TO PR(I)-1

IF CF(IvJ)=0 THE GOTO 50100
RX(IiJ)=R(IJ)-A(IJ)*YB(IJ)-BP(IJ)*RP+KR
NEXT J
NEXT I
REM PLACE MIRROS

50000
50010
50020

50030
50040
50100
50120
50400
50410

50420
50430

50440

50450

50470
50480
50500
50510
50520
50530
50535
50540
50550
50560
50580

TO 8
R(0,K)-:R(2,K) :
BP(0, K)=BP(2, K)
RX (0, K) =RX (2, K)

NEXT K
R(0,9)=R(1,9)
R(9,0)=R(9, 1)

FOR NI=1 TO NE
FT=0 : CR=0
FOR K=1 TO 8

R (K,0)=R(K,2)
BP(K,0)=BP(K,2)

RX (K, 0) :=RX (K, 2)

:RX(0,9)=RX(1,9)
:RX(9,0)=RX(9,1)

BP(0,9)=BP(1,9)
:BP(9,0)=8-P(9, 1)

WJS:0 RL=0

F(0,tK)=-FC2,K) :. F(Kv
RX(0,K)=RX(2vK) RX

NEXT K
F(0,9)=F(119) F(9,
RX(0,9)=:RX(1,9) RX

'FOR I=1 TO 9

0 ) =F (K, 2)
(K, 0) =RX (K, 2)

0)=F(9, 1)
(9,0)=RX(9, 1)

I=9 TO 1 STEP -1
J=1 TO PR(I)-1

J=PR(I)-1 TO 1 STEP -1

F(IvJ)=0 THEN GOTO 50700
3 51000
R+RX(IJ)*F(IJ)*Y(I, J)

T+F ( I J) *Y ( I vJ)
J, I

NF=FT/N4 : CR=CR/FT : RL=RL/F'

FOR I=1 TO PR(1)-1

FOR J=1 TO PR(I)--1
IF CF(IJ)=0 THEN GOTO 50880

F(IJ)=F(IiJ)/NF
NEXT JI

CLS:GOSUB 65400

PRINT:PRINT "ITERATION #";NI,

L";RL

"NORMALIZATION";NF,"CR";

50940 PRINT "EOC POWER CALCULATION"

50950 NEXT NI

50960 RETURN
51000 REM POWER ITERATION ROUTINE

51500 BJ(1)=0 BJ(2)=0 : L=0

51510 FOR K=I-1 TO I+1 STEP 2

51520 L=L+1

51530 IF CF(KJ)=0 THEN GOTO 51550

51540 BJ(L)=F(KJ)*(1-TS*RX(KJ))

FOR K=1

50581
50590

50591
50600
50650
50670
50680
50700
50800

50810
50820
50830
50840
50880

50900
50930
CR, "R

FOR
'FOR
FOR
IF C
GOSU

CR=C

FT=F
NEXT
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51550 NEXT K
51560 BIC1)=-0:
51570 FOR K:=J-1
51580 L=L+1

B I(2) =0 : L=0
TO J--1 STEP 2

51590 IF CF(IK):0 THEN GOTO 51610
51600 BI(L)=FCIK)*(1-TS*RX(IK)
51610 NEXT K
51650 DX=F(IvJ)
52000 REM CALCULATE SURROUNGING'S INFLUENCE FOR ODD ASSEMBL
IESvTHEN CALCULATE POWER
52010 ON CF(IvJ) GOTO 52500,52100,52300,52700,5280053OOO5
3200v53400v53600,53800,354000

52020 GOTO 54500

52100 K=I+1 L=J-1
52110 BJ(2)=(BJ(2) + F(K-L)*(1-TS*RX(K)L)))/2
52130 GOTO 52500

52300 K=I-1 L=J+1

52320 B1(2)=(BI(2)+F(KvL)*--(1-TS*RX(KL)))/2
52340 GOTO 52500
52500 GOSUB 54800
52550 F(IvJ)=CS/(4*(1-TH*RX(IvJ)))
52565 F (I, J)=F (It J)/( 1+AC* (DX-F (Iv J) )/F( I J))
52580 GOTO 54500

52700 K=I+1 : L=J-1
52720 BJ(2)=F(KL)*(1-TS*RX(KvL) )/2

52730 GOTO 52850
52800 K=I-1 : L=J+1
52020 BI(2)=F(KL)*(1-TS*RX(K L) )/2
52850 LR=RQ (I,J)*(1+KL*SP)
52860 GOSUB 54600
52930 F(IvJ)=CS/( (1-T5*RX(IJ)+2*TL*LR/3.5)*3.5)
52945 F(IJ)=F(IvJ)/(1+AC*(DX-F(IvJ))/F(IvJ))
52950 RL.:=RL+F(IvJ)*Y(I,J)*LR

52960 GOTO 54500
53000 K=I-1 L=J+1
53020 BJ(1)= (BJ(1)+F(KL)*(1-TS*RX(KL)))/2
53030 GOTO 53400
53200 K=I+1 : L=J-1
53220 BI(1)=(BI(1)+F(KvL)*(1-TS*RX(KvL)))/2
53230 GOTO 53400

53400 LR=RQ(IJ)*(1+KL*SP)
53410 GOSUB 54800
53420 F(IvJ)=CS/(3*(1-T*RX(IvJ)+2*TL*LR/3))

53475 F(IvJ)=:F(IPJ)/(1-+AC*(DX(-F(IvJ) )/FCIvJ))
53480 RL=RL+F(IvJ)*LR*Y(IvJ)
53500 GOTO 54500
53600 K=I-1 : L=J+1

53620 BJ(1)=(BJ(1)+F(K L);*(1-TS*RX(K,L) ))/2
53630 GOTO 54000
53800 K=I+1 : L=J-1
53820 BI(1)=(BI(1)+F(K7L)*(1-TS*RX(K-L)))/2
53830 GOTO 54000
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GOSUB 54800

LR=RG ( I , J) * ( 1+KL*GP)
F(IJ)=CS/(2*(1-T2*RX(IvJ)+TL*LR))
F( IJ)=:F( I, J)/( 1+AC*( DX--F( I, J) )/F(IiJ)

RL=RL+F (IJ)*LR*Y(I, J)
RETURN

CS:0

FOR X=1 To 2
CS:=CS+BI (X )+BJ(X)
NEXT X
RETURN

5 4000

54020
54030
54045
54050
54500
54800

5 4810
54820
54830
54840
55000

BP
55010
55020
55030
55035
55040
55050
55060
55070

FOR L=1 TO PR(K)-1
F(KiL)=0

RX(K9L)=R(KL)-.P(Kv

NEXT L
NEXT K
FOR K=1 TO 8

55080 F1(Kv0)=F1(Kw2)
55090 RX(Ki0)=RX(K,2)
55100 NEXT K

F1(9,0)=F1(9,1) :
RX(9v0)=RX(9,1) :
DS=F1(IqJ)*V*(1+TH-m(

FOR REACT. V=1P FOR

L)-SC*W(KL)

Fl(0vK)=F1(2vK)

RX(0vK)=RX(21K)

Fl(0v9)=F1(1,9)

RX(0w9)=RX(1,9)
RX(IvJ)-ROCIJ)))/N4

FOR NI=1 TO NP

IF NI=1 THEN AP=0:ELSE AP=AQ
FOR K=1 TO 8

F(KvO)=F(Ki2)
NEXT K
F(9,0)=F(9,1)

REM START COMPUTING
K=I L=J
GOSUB 56000
REM
REM
FOR N=I-1 TO

IF CF(NJ)=0
K=N : L=J '

GOSUB 56100
NEXT N
FOR N=J-1 TO
IF CF(IvN)=0

F(0K)=F(2vK)

F(O,9)=F(1i9)

I+1 STEP 2
OR CF(NYJ)=12 GOTO 55340

J+1 STEP 2
OR CF(IvN)=12 GOTO 55390

55370 K=I : L=N

55380 GOSUB 56100
55390 NEXT N
55400 FOR K=I-1 TO I+1 STEP 2
55410 FOR L=J-1 TO J+1 STEP 2
55420 IF CF(KvL)=0 OR CF(KvL.)-'12 THEN GOTO 55440

REM - BOC SENSITIVITY - USE V=1

FT=0: RC=0: RL=0: DS=*0

FOR K=1 TO 9

55110
55120
55170
55200

55205
55210
55220
55230
55240

55250
55260
55270
55280

55290
55300
55310
55320
55330
55340
55350
55360
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55430 GOSUB 56300
55440 NEXT L
55450 NEXT K
55500 REM SWEEP REST OF CORE
55510 FOR D=2 TO 8
55520 FOR SN=-1 TO 1 STEP 2
55530 K=I+D*SN
55540 IF K.<1 OR K>9 THEN GOTO 55640
55550 L=J
55560 IF CF (K L><0 THEN GOSUB 56550
55570 FOR SM=-- 1 TO 1 STEP 2
55580 FOR D1=1 TO D-1

55590 L=J+D1*SM
55600 1F L:1 OR L>9 GOTO 55630

55610 IF CF(KvL)> ><0 THEN GOSUB 56550
55620 NEXT Dl

55630 NEXT SM
55640 NEXT SN

55650 FOR SN=-1 TO 1 STEP 2
55660 L=J+D*SN

55670 IF LC 1 OR L>9 THEN GOTO 55770
55680 K=I
55690 IF CF(KL)><0 THEN GOSUB 56550
55700 FOR SM=-1 TO +1 STEP 2
55710 FOR D1=1 TO D
55720 K=I-SM*D1

55730 IF K<1 OR K>9 THEN GOTO 55760
55740 IF CF(KL)><0 THEN GOSUB 56550
55750 NEXT Dl
55760 NEXT SM
55770 NEXT SN
55780 NEXT D
55790 'FOR U=1 TO 9:FOR P=1 TO PR(U)-1:F(UvP)=(N4*F(UvP)-F1
(UP)*FT)/(N4+FT):NEXT P:NEXT U
55800 NN=FT/N4: RL=0 : RC=(F1(IvJ)-ZD)*V*Y(IJ)
55810 FOR X=1 TO PR(1)-1

55820 FOR Z=1 TO PR(X)-1
55830 F(XZ)=F(XZ)--NN

55840 RC=RC+F(X,Z)*Y(X,Z)*(RX(XZ)+SC) RL=RL+F(XZ)*Y(XZ
)*RQ(XiZ)*(1+KL*SC)
55850 NEXT ZvX

55855 DS=(RC-RL)/N4
55860 CLS:FOR U=1 TO 9:PRINT @((U-0)*6+64*2),U;:NEXT U
55870 FOR U=1 TO 9:PRINT @((U+2)*64),U;:NEXT U
55880 FOR U=1 TO 9:FOR P=1 TO PR(U)-1:PRINT @((U+2)*64+P*6)
,F(UP);:NEXT P:NEXT U
55890 PRINT : PRINT "NORMALIZATION";NN, "FT";FTv"DS";DS,"RL
M;RL, "RC" ;RC, "ITERATION#" ;NI
55900 FT=0 : RL=0 :RC=-0
55910 NEXT NI
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55920 FOR U=1 TO PR(1)-1 :FOR P- TO PR(U).-1:FB(UP)=F(UvP
): F(UP)=0:NEXT P:NEXT U
55930 S1(IvJ)=DS : P1(IvJ)=:FB(IJ)
55970 RETURN

56000 REM SUB TARGET ASSEMBLY
56010 ON CF(KL) GOSUB 56900,56700,56800,57000,57050,57200,
57250, 57300v 57400, 57450, 57500
56030 F(Kv L)=:( (SF*TS--T*F1 (Ki L) ) *DS+SD+T*F1 (K, L) *V) /DN
56035 F(KL)=F(K, L)+AP*(F(Kv L)-DX)
56040 FT=FT+F(KL)*Y(KL)

56090 RETURN

56100 REM SUB SURROUNDINGS
56110 ON CF(KvL) GOSUB 56900,56700,56800,57000,57050,57200,

572501 5-73001 57400, 574501 57500
56120 GOSUB 58000

56250 F(KL)=((SF*TS-T*F1(KL))*DS+SD-FCmF1(IvJ)*TS*V/NS)/D

N
56255 F (K, L) =F (Kv L) +AP*(F (Kv L)-DX)
56260 FT=FT+F(KL)*Y(KL)

56290 RETURN
56300 REM SUB CORNERS
56310 ON CF(KvL) GOSUB 56900,56700,56800,57000,57050,57200,
57250v 57300, 57400, 57450,57500
56320 GOSUB 58200
56500 F(KvL)=(CSF*TS-T*F1(KL))*DS+SD-FC*F1(IvJ)*TS*V/NS)/D
N

56505 F(KvL)=F(KL)+AP+ (F(KiL)-DX)
56510 FT=FT+F(K-L)*Y(KL)
56545 RETURN

56550 REM SUB ALL REMANINING CORE

56560 ON CF(KiL) GOSUB 56900i56700,56800,57000,57050,57200,
57250v57300,57400,57450v57500

56580 F(KL)=((SF*TS-T*F1(KvL))*DS+SD)/DN
56585 F(KL)=F(KL)+AP*(F(KL)-DX)

56590 FT=FT+F(KL)*Y(K vL)
56650 RETURN

56700 GOSUB 57600
56710 K1=K+1 : L1=L-1
56720 FJ(2)=(FJ(2)+F1(K1,L1))/2

56730 BJ(2)=(BJ(2)+F(K1,L1)*(1-TS*RX(K1,L1)))/2
56740 GOTO 56910

56800 GOSUB 57600
56610 K1:=K-1 L1=L+1

5 6 820 FI(2)=(FI(2)+F1(K1,tL1))/2
56830 BI (2)=(BI (2)-F(K 1vL )*( 1-TS*RX (K i ,L))) /2
56840 GOTO 56910

56900 GOSUB 57600

56910 NS=4
56920 T=-TH
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56930
56940
56950
56960
56980
57000
57010
57020
57030
57040
57050
57060
57070
57080
57100
57110
57120
57130
57140

57150
57160
57200
57210
57220

57230
57240
57250

57260
57270
57280

57290
57300
57310
57320
57330
57340
57350
57360
57370
57400
574 10

57420
574A30

57440
57450
57460
57470
57460

57490

57500

SF=(FI(1)+FI(2)+FJ(1)+FJ(2) )/NS
SD=:(BI (1 )+BI (2)+eJ( 1 )+BJ(2) ) /NS
DN= 1-TH*RX (KL)
LR=0
RETURN
GOSUB 57600

K1=K+1 :L1=L-1
BJ(2)=(F(K1I,L1)*(1-TS*;(RX(KlvL1))/
FJC2)=F1(K1lvL1)/2

GOTO 57100

GOSUB 57600
K1=K-1 : L1=L+1

BI(2)=(F(K~lvL1)*N(1-TS*IRX(KlvL1)))/2

FI(2)=F1(KiL1)/2

T=T5

NS=3.5

SF=(FI(1)+FI(2)4-FJ(1)+FJ(2))/3.5
SD=(BI(1)+BI(2)+BJ(1)+BJ(2))/3.5

LR=RQ (Kv L)*( 1+KL*SC)
DN=1-TS*RX(K<,L) +TL*2*LR/3.5
RETURN

GOSUB 57600

K1=K-1 : L1=L+1
BJ(1)=(BJ(1)+F(K1,L1)N(1-TS*RX(K1,L1)))/2

FJC1)=(FJC1)+F1(KlvL1))/2

GOTO 57310
GOSUB 57600

K1=--K+1 : L1=L-1
BI(1)=(BI(1)+F(K1,L1)*(1-TS*RX(K1,L1)))/2
FI(1)=(FI(1)+F1(K1vL1))/2

GOTO 57310

GOSUB 57600
T=T1

NS=3
SF=(FI(1)+FI(2)+FJ(1 )+FJ(2))/3
SD=(BI(1)+BI(2)+BJ(1)+BJ(2))/3

LR=RQ (K 9 L) * ( 1+KL*SC)
DN=1-T1*RX(KvL)+TL*LR*2/3

RETURN

GOSUB 57600
K1=K-1 : L1=L+1

BJ(1)=(BJ(1)+F(K1,L1)*(1-TS*RXCK1,L1)))/2

FJ(1)=(FJ(1)+F1(K1L1 ))/2

GOTO 57510
GOSUB 57600

K1=K+1 : L1=L-1
BI(1)=(BI(1)+F(KivL1)*%(1-TS*RX(K~lvL1)))/2

FI(1)=(FIC1)+F1(KivL1))/2

GOTO 57510

GOSUB 57600
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57510 T=T2
57520 SF=(FI(1)+FJ(1))/2
57530 SD=(BI(1)+BJ(1))/2
57540 LR=:RQ (K, L)*(1+KL*SC)
57550 DN=1-T2* RX (K9 L ) +TL*LR
57570 RETURN
57600 DX:=F(KL) 'REM SUBROUTINE SUM
57610 FJ(1)=0 FJ(2)=:0 BJ(1)=0 BJ(2)=0 f::K1
0

57620 FOR I1=K-1 TO K+1 STEP 2
57630 K1=K1+1
57640 IF CF(I1,L)=0 THEN GOTO 57670

57650 BJ(K1)=F(I1lL)*(1--TS*RX(I1,L))

57660 FJ(K1)=Fl(I1,L)
57670 NEXT 11
57660 FI(1)=0 FI(2)=0 BI(1)=0 BI(2)=0 K1=0

57690 FOR I1=L-1 TO L+1 STEP 2
57700 K1=K1+1
57710 IF CF(K,11)=0 THEN GOTO 57740
57720 BI(K1) =F(KI1)*(1--TS*RX(KI1))
57730 FI (K1 )=F1 (K I1)

57740 NEXT I1

57750 RETURN
58000 REM SUB FC SURR/NEIGHBOUR

58020 FC=1
58030 ON CF(KL) GOT(:) 58150,58050,58070,58150,58150580905
8090,58150758110,58130,58150
58040 RETURN

58050 IF CF(IJ)=9 THEN FC=.5 : RETURN
58070 IF CF(IJ)=10 THEN FC=.5 : RETURN

58090 IF CF(IJ)=1 THEN FC=.5:RETURN

58110 IF CF(IJ)=2 THEN FC=.5:RETURN

58130 IF CF(IJ):=3 THEN FC=.5
58150 RETURN

58200 REM SUB FC SURR/CORNERS

58210 FC:0
58230 ON CF(KL) GOTO 58400,58250,58270,58290,58310,58330,5

835058400,58370,58390,58400

58240 RETURN
58250 IF CF(IgJ)=6 THEN FC=.5 : RETURN

58270 IF CF(IvJ)=7 THEN FC=.5 : RETURN

58290 IF CF(IJ)=9 THEN FC=.5 : RETURN
58310 IF CF(IJ)=10 THEN FC=.5 : RETURN

58330 IF CF(1,J)=2 THEN FC=.5 : RETURN

58350 IF CF(IJ)=3 THEN FC=.5 : RETURN
58370 IF CF(IJ):=4 THEN FC=.5:RETURN

58390 IF CF(IvJ)=5 THEN FC=.5

58400 RETURN
61000 REM ITERATION PROCESS

61030 IF NI>1 THEN GOTO 61110
61040 FOR X==1 TO 8
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61050
61060
61065
61070
61080

61110
61120
61130
61140

61170
61180
61200
61210
61220
61230
61240
61250
61260
61270
61280
61290
61300
61310
61320
61330
61340
61350
61360
61370
61380
61390
61 4-00
61410
61420
614i30

61440
61450
61460
61470
61480

61510
61520
61530
v F(U-i
61540
TION"

61550
61600

~2)

~1)
ii)

FX(0,X)=FX(2,X) : FX(X,0)=FX(X

FA(0,X)=FA(2,X) : FA(X,0)=FA(X
NEXT X

FX(0,9)=FX(1,9) : FX(9,0)=FX(9
FA(0v9)=FA(1v9) : FA(9,0)=FA(9

FOR X=1 TO 8
F(0vX)=:F(2vX):F(Xv 0)=F(X,2)
NEXT X
F(0,9)=F(1,9):F(9,0)=F(9,1)
K=I : L=J
GOSUB 61700
FOR D:=1 TO 8

FOR SN=--1 TO 1 STEP 2
K=I+D*SN
IF K< 1 OR K>9 THEN GOTO 61340
L=J
IF CF(KL)><0 THEN GOSUB 61700
IF D=-.1 THEN GOTO 61340
FOR SM=-1 TO 1 STEP 2
FOR D1=1 TO D-1
L=J+D1NSM
IF L< 1 OR L>9 THEN GOTO 61330
IF CF(KL)><0 THEN GOSUB 61700
NEXT D1
NEXT SM
NEXT SN
FOR SN=-1 TO 1 STEP 2
L=J+D-SN
IF L<1 OR L>9 THEN GOTO 61470
K= I

IF CF(KL)><:o THEN GOSUB 61700
FOR SM=-1 TO 1 STEP 2
FOR D1=1 TO D

K=I+SM*D1

IF K<1 OR K>9 THEN GOTO 61460
IF CF(K L) ><0 THEN GOSUB 61700
NEXT Dl

NEXT SM
NEXT SN

NEXT D

CLS:FOR U=1 TO 9:PRINT @((U-0)

FOR U=1 TO 9:PRINT a((U+2)*64)
FOR U=1 TO 9:FOR P=1 TO PR(U)-

P);:NEXT P:NEXT U
PRINT . PRINT "BUP SENSITIVITY

INI

PRINT "FT";FT
RETURN

m6+64*2),U;:NEXT U
,U!:NEXT U

1:PRINT a((U+2)*64+P*6)

AT";I,Js"IS";DC,"ITERA
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61700 REM POWER SUB FOR BUP SENSITIVITY ITERATION

61705 DX=F(K,L)

61710 GOSUB 62150
61720 ON CF(KL) GOTO 61800961750v6178061850,6180,61950,6

190v62000,62050v62080v62100
61750 X=K+1 : Z=L-1
61760 FJ(2)=(FJ(2)+F(XZ)*(1-TS*RX(XZ)))/2

61770 GOTO 61800
61760 X=K-1 : Z=L+1
61790 FI(2)=(FI(2)+F(XZ)*(i-TSNRX(XZ)))/2
61800 SF=(FI(1)+FI(2)+FJ(1)+FJ(2))/4
61810 DN=1-TH*RX(KL)
61820 F(KL)=(FX(KL)+FA(KL)*DC+SF) /DN
61825 F(KL)=F(KL)+AB*(F(KL)-DX)
61840 RETURN

61850 X=K+1 :Z:=L-1

61860 FJ(2)=F(XZ)*4(1-TS*RX(XZ))/2
61870 GOTO 61900

61830 X=K-1 : Z=L+1
61890 FI(2)=F(XZ)*(1-TS*RX(XZ))/2

61900 SF=(FI(1)+FI(2)+FJ(1)+FJ(2))/3.5
61910 DN=1-T5*RX(KL)+2*TL*RQ(KL)/3.5

61920 F(K ,L)=(FX(KL)+FA(KL)*DC+SF)/DN
61925 F( KL)=F(K, L)+AB*(F(K, L)-DX)
61940 RETURN

61950 X=K-1:Z=L+1

61960 FJ(1)=(FJ(1)+F(XZ)*(1-TS*RX(XZ)))/2
61970 GOTO 62000

61980 X=K+1 : Z=L-1
61990 FI(1)=(FI(1)+F(XZ)*(1-TS*RX(X,Z)))/2
62000 SF=(FI(1)+FI(2)+FJ(1)+FJ(2))/3

62010 DN=:1-T1*RX(K, L)+2*TL*RQ(KL)/3
62020 F(K,L)=(FX(KL)+FA( KL)*DC+SF)/DN
62025 F(KL)=F(KL)+AB*(F(K,L)-DX)

62040 RETURN
62050 X=K-1 :Z=L+1

62060 FJ(1)=(FJ(1)+F(XZ)*(1-TS*RX(X,Z)))/2

62070 GOTO 62100
62080 X=K+1 : Z=L-1

62090 FI(1)=(FI(1)+F(XZ)*(1-TS*RX(XZ)))/2

62100 SF=(FI(1)+FJ(1))/2
62110 DN=1-T2*RX(KiL)+TL*RQ(KL)

62120 F(KL)=(FX(KL)+FA(K, L)*DC+SF)/DN

62125 F(KiL)=F(K 7L)+AB*(F(K,L)-DX)

62140 RETURN
62150 FI(1)=0:FI(2)=0:FJ(1)=0:FJ(2)=0

62160 U=0
62165 Z=L
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62170 FOR X=K-1 TO K+1 STEP 2
62180
62190

U.=U+1
IF CF(X-,Z)=0 THEN GO TO 62210

62200 FJ(U)-=F(XZ)*(1-TS*RX(XZ))
62210 NEXT X

62220
62225 X=K

62230 FOR Z=L-1
62240 U=U+1

TO L+1 STEP 2

62250 IF CF(XZ):=0 THEN GOTO 62270
62260 FI(U)=F(XZ)*(1-TS*RX(XZ))
62270 NEXT Z
62280 RETURN
65400 CLS:FOR X=1
X

65410 FOR

TO PR(1)-1:PRIN

X=1 TO PR(1)-1:PRINT &

T @ ((X-0)*6+64*2),X;:NEXT

((X+2)*64),X;: NEXT X

65420 FOR X=1 TO PR(1)-1:FOR
4+Z*6),F(XZ);:NEXT Z:NEXT X

65430 RETURN

Z=1 TO PR(X)-1:PRINT a((X+2)*6
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