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ABSTRACT

Analytical methods are developed to simulate on a large digital
computer the production and use of reactor neutron beams f or boron
capture therapy of brain tumors. The simulation accounts for radiaticn
dose distributions in tissue produced by fast neutrons and by neutron
capture reaction products such as gamma rays, C -particles, protons,
and heavy particles. These techniques are applied to optimize the
effectiveness of the M.I.T. Reactor Medical Therapy Facility through
a survey of the effects of neutron filters and of modifications to the
beam collimation system. Neutron beams reflected from thin slabs of
hydrogenous materials are shown to have an improved ability to effec-
tively irradiate a deep tumor without destroying normal tissue above
it because relatively few fast neutrons are reflected. Considerable
improvements in thermal neutron distribution in tissue are shown to
result from surrounding the head with a neutron-reflecting annulus to
reduce lateral neutron leakage.

A new numerical solution is obtained for the problem of neutron
transport in finite thickness slabs with isotropic scattering. Gaus-
sian quadratures are used to evaluate the neutron transport integral
equations, yielding transmjission, absorption, and reflection probab-
ilities, and fluxes, as a function of collision number. Collision
history correlations are devised which use only five paraeters to
predict the fate of neutrons incident on an infinite slab having
arbitrary thickness and neutron cross sections. A very fast multi-
group neutron spectrum calculation is developed by combining collision
history correlations with single-collision group transfer probabilities
to directly obtain transmission and mflection matrices for multi-slab
shielding problems.

Thesis Supervisor: Gordon L. Brownell
Title: Associate Professor of Nuclear Engineering
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CHAPTER I

INTRODUCTION

The purpose of this thesis is twofold: to develop

analytical methods for simulating, via computer, the

production and use of reactor neutron beams for boron

capture therapy of brain tumors, and to apply these

techniques to survey and optimize the effectiveness of

the M.I.T. Reactor Medical Therapy Facility.
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1.1 The M.I.T.R. MEDICAL FACILITY

The M.I.T.R. is an enriched uranium, heavy water

moderated research reactor which normally operates at

a power level of 5MW (thermal). The Medical Therapy

Facility is a fully equipped surgical operating room

located directly beneath the reactor core, as is shown

in Figure 1.1. The room has thick concrete walls, a

motor-driven sliding shielded door, and an oil-filled

viewing window to allow operating personnel to control,

observe, and monitor the irradiation from outside the

room with negligible radiation hazard.

The operating table can be elevated hydraulically

to position, the patient under the neutron beam port

in the ceiling. Sheets of lithium fluoride-loaded

plastic serve as a collimator to channel neutrons directly

to the tissue to be irradiated, and lead sheets serve as a

gamma-ray shield to protect the rest of the body.

The neutron beam passes through a collimator con-

taining three shutters which are opened during irradi-

ations. Radiation levels, with shutters closed, are low

enough to permit working inside the room for limited

periods of time during full power operation of the reactor.

The primary shield, nearest the reactor core, is a

drainable tapered aluminum tank containing a thickness of

about three feet of light water. Lead and boral plates

located in the ceiling of the medical room comprise the
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other two shutters. They shield gamma rays and thermal

neutrons, respectively.

With all shutters open, neutrons leaving the core travel

through 21.0 inches of heavy water, 9.81 inches of bismuth,

0.625 inches of aluminum, and 56.75 inches of air. Bismuth is

used because it combines low neutron absorption with strong

gamma ray attenuation. The heavy water, forming the lower

reflector for the core, is a strong moderator of fast

neutrons. Hence the emergent beam is well thermalized.
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1.1.1 NEUTRON CAPTURE THERAPY

The medical use of thermal neutron beams for

capture therapy to destroy tumor tissue was first

proposed in 1936 by Locher.1  If a suitable neutron

capturing isotope could be preferentially concentrated

in tumor tissue, neutron irradiation will produce a

large local radiation dose to the tumor with minimal

damage to normal cells. This technique is known as

neutron capture therapy. In common with all forms of

radiation therapy, it uses the fact that the survival

probability of irradiated cells has a marked dose

threshold. In order to minimize the damage to normal

cells, one must first select an isotope whose neutron

absorption reaction products have a short range in

tissue. Then a non-toxic compound must be synthesized

which strongly concentrates in tumor tissue. Finally, a

neutron beam is required which is able to deliver a

large thermal neutron flux to the tumor.

Sweet and Javid 2 demonstrated that boron could

be preferentially concentrated in human brain tumor

tissue to a sufficient degree to warrant attempts at

therapy. Clinical trials were carried out at Brookhaven 3

and at the M.I.T.R. and the Massachusetts General

Hospital. The disappointing results led to termin-

ation of patient irradiations in 1961 although basic

chemical, biological, and physical studies have continued

to the present time. The clinical trials demonstrated
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10
the need for reduced B concentration in blood and blood

vessels, improved dosimetry to monitor the irradiations,

and improved neutron beam characteristics to maximize

its effectiveness for neutron capture therapy.
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The present status of boron capture therapy has

recently been reviewed with particular attention to

the properties of boron compoundsA 5  Many com-

pounds have recently been made and tested for toxicity

and pharmacology. Both concentration and localization

in tumor have been of particular interest. Three main

classes of compounds have been considered:

I Boron-containing Antimetabolites

A. Amino Acids

B. Pyrimidines

C. Purines

II Borono Proteins

A. Tumor Antibodies

III Alkylating Agents Containing Boron

Group I compounds may interfere with tumor meta-

bolism and replication, thereby inhibiting growth.

They may also be capable of mimicking normal biologi-

cal constituents and become readily incorporated into

the tumor cell. Boron-labeled proteins of Group II

have been synthesized with 1-3% boron by weight. It

has been found that I131-labeledantifibrin antibodies

localize in tissues such as brain tumors. Attempts

have been made to incorporate boron in such compounds.

Group III compounds are known tumor growth inhibitors

which have been altered by introducing a boron atom
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within the molecule. Alkylating agents interact with

tumor nucleic acids. The strategic location of a

boron atom at the interaction site followed by neutron

irradiation would have a profound effect on tumor

growth by destroying its ability to replicate.

Two compounds have recently been synthesized 6

which look very promising.

Compound Boron Concentration Ratio

Tumor/Blood Tumor/Brain

CS2 B12HjjSH 6:1 16:1

Na2 B12HllSH 8:1 25:1

They will be tested in humans within six months for

toxicity and pharmacology. Irradiations will probably

take place within a year at the M.I.T. reactor.
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1.1.2 COMPUTER SIMULATION OF NEUTRON CAPTURE THERAPY

The need for improvements in neutron beam character-

istics for neutron capture therapy has been clearly shown by

the results of the clinical trials of several years ago. The

enormity and cost of modifying the existing reactor collimator

structure and experimentally analyzing the beam characteristics

obviously precludes this approach. If, on the other hand, a

reasonable physical model of this system could be coded for

a large digital computer, the effects of hypothetical modi-

fications to materials and geometrical arrangements could

rapidly be surveyed. In addition, the computer studies

would be of value both to analyze practical experiments and

to suggest new experiments. These ideas form the rationale

for this thesis.
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1.2 CONTENTS

The physical model for neutron capture therapy involves

describing the passage of polyenergetic neutrons from the

reactor core through numerous and varied layers until finally

the neutrons penetrate tissue - or a tissue-equivalent phan-

tom head. Chapter II begins with a consideration of neutron

transmission through infinite slabs in Section 2.1.1.

Section 2.1.2 examines a new numerical integration solution

to the transport equations based on solving for spatial

distributions of neutrons suffering the same number of

collisions. Collision history correlations are discussed

in Section 2.1.3 to show how the solution for monoenergetic

neutrons in a non-absorbing, non-multiplying slab yields

solutions for all slabs of the same thickness but different

absorption or multiplication. An approach to the problem

of polyenergetic neutron transmission through slabs is pre-

sented in Section 2.1.4. Simpler approximations which have

been used to obtain spectral shapes are discussed in

Section 2.1.5.

One-dimensional spatial distributions of thermal neutron

flux are obtained by replacing the second-order diffusion

equation by a system of three coupled, linear, first-order

differential equations, which can be numerically integrated.

The derivation of this equation is presented in Section 2.2,

along with a discussion of boundary conditions and the

method of numerical integration.
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Section 2.3 is concerned with the calculation of radi-

ation dose rates from all sources in a tissue-equivalent

phantom head of cylindrical shape, when bombarded by a beam

of neutrons.

The use of scattered neutrons, rather than a direct

beam, for neutron capture therapy, has many promising

aspects. Methods used to attack this problem are discussed

in Section 2.4.

Test Problem results are given in Chapter 3, Section 3.1,

dealing with monoenergetic neutrons incident on thin infinite

slabs which scatter neutrons isotropically in the lab. system.

Comparisons are made with two other solutions to this problem

which are referred to as the Markov Matrix Method and the

Invariant Imbedding Method.

Fast Neutron transmission through 30 cm of polyethylene

is a more practical, and difficult, test of the methods used

to calculate neutron transmission. Section 3.2 deals with this

problem, and draws comparisons with Invariant Imbedding

results. Section 3.3 gives results for neutron transmission

through a 40 cm thick slab of D20.

A rather extensive set of experiments was performed

by R. G. Fairchild, using the Brookhaven Medical Research

Reactor to evaluate the production and use of "epithermal"

neutron beams for neutron capture therapy. Chapter IV is

devoted to comparisons of this work and results obtained

by computer.
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Chapter V gives results for the M.I.T.R. Medical

Facility, and deals successively with heavy water removal

effects, thermal neutron filter effects, fast neutron

filter effects, and the use of scattered neutrons.

Conclusions are given in Chapter VI, while Appendix

A describes all computer codes used. Appendix B contains

the bibliography.
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CHAPTER II

MATHEMATICAL AND COMPUTATIONAL METHODS

2.1 EPITHERMAL AND FAST NEUTRON SPECTRA

Many shielding codes and methods have been developed

for routine problems in reactor design. Highly accurate

results are obtainable if the need justifies the cost in

computer time and man-hours. However, for calculations

involving numerous variations from a reference condition,

such as a parametric survey, it is often easier to perform

a few "bench-mark" calculations using the best possible

methods, and to explore around the "bench-marks" by less

accurate methods. For example, prediction of absolute

neutron fluxes transmitted through a complicated shield is

extremely difficult, whereas small departures from a given

geometry can be predicted, relatively, with much less effort.

It is the purpose of this chapter to present a very

fast method for performing polyenergetic neutron trans-

mission and reflection problems, suitable for survey calcu-

lations, which has been used in conjunction with a few

bench-mark calculations obtained by the method of Invariant

Imbedding.
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2.1.1 REFLECTION AND TRANSMISSION OF NEUTRONS FROM SLABS

The general problem to be considered is that of neutron

reflection, absorption and transmission through a homogeneous

plane infinite slab or series of slabs of arbitrary neutron

cross sections. For simplicity, the single slab will be

considered first.

The Transmission Matrix Method described by Aronson and

Yarmush 7 offers a unified approach to the solution of a

large variety of neutron transport problems in plane geometry.

The formulation in terms of transfer matrices can be thought

of as an alternative to the formulation in terms of the differ-

ential or integral linearized Boltzmann equations. A brief

summary of the mathematical formulation of the Transmission

Matrix Method is presented below, because its concepts

carry over directly to the simplified treatment developed and

used in this thesis.
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Let Xi and X2' be neutron fluxes incident from the

left and right, respectively. They are functions of incident

angle and neutron energy for a source-free slab. X1' is
the emergent flux on the right and X2 on the left. Assuming

the problem is linear

x1 =TX + R*X2 1

(2.1)

X2 = RX 1 + T*X 2

where T and R are transmission and reflection operators

for neutrons incident from the left, and T* and R* for neu-

trons incident from the right. If the slab is symmetric,

T = T*, and R = R*. Equations (2.1) may be solved for Xil'

and X2' to give in matrix form

- 1 - -

- H X(2.2)

-X 2 - _X2 -

where H is a 2 x 2 matrix of operators:

T *U*R R*U
H (2.3)

with

U= T u (T*) (2.4)
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Equation (2.2) yields a composition law for H matrices:

H = Hn ''' E2!!1 (2.5)

for n layers, with Hi associated with the i-th layer. For

a two-layer problem one obtains total transmission T and

total reflection R as follows:

-l
T T2 1 R2) 1

2 (T+ R 2 1 + (E* R 2 -T + (2.6)

2 (* 2 n 1n_- o

R ( -T2 -l 2 11 -21 -1

R1+ T 1 E .* R 2)1-T (2.7)

-l -1-2 \IR7

-1+ - -2 1, -l
n o

The series expansions (2.6) and (2-7) have a simple

physical interpretation. For instance, T,* R2 (Rl )n T
represents transmission through slabs 1, n pairs of reflec-

tions back and forth at the interface, a final reflection

from slab 2, and transmission back through slab 1.
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The problem is to obtain the H-matrix in terms of

physical properties of the slab. A new matrix W depending

only on the neutron cross sections can be formulated. For

a slab of thickness t:

H = exp (-Wt)

is the formal relationship required. Up to this point,

everything is exact. But to deal with a real problem, a

discrete representation of neutron energy and angle must

be chosen. This converts integral operators to matrices,

and one obtains a mathematical system which can be solved

on a large digital computer.

The particular concepts taken from the Transmission

Matrix Method and used in this thesis are expressed by

Equations (2.6) and (2.7). A method has been developed which

directly yields the transmission and reflection matrices

T1 ' 12' Tl' R2, from which T and R are obtained by use of

(2.6) and (2.7).

The original concept for the calculation of the reflec-

tion and transmission operators R , Ti (for slab i) stemmed

largely from the work of Eaton and Huddleston8 on a Markov

Matrix Method for slab problems. They consider a homogen-

eous, infinite slab of thickness L with macroscopic absorption,

scattering, and total cross sections of Za' zs, and

t = zAa + s The probabilities for scatter and absorption

at a collision are c = Zs t, and 1 - c = Za / t
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respectively. Scattering is assumed to be isotropic in

the laboratory system.

In order to apply the Markov chain concept, the slab

must be conceptually divided into n discrete layers each of

thickness s = L/n, where s(( 1/t Upon including the

semi-infinite voids on either side of the slab, one obtains

n + 2 Markov states. The probability that a neutron

incident at polar angle 9 has its first collision in the

i-th state (layer) is

P(i) = sec 9 Z exp (-Zt sec 90 t ) dt
(i-l)s

= exp [-t sec 9 (i-1)s - exp (-zt sec 90 is),

i=1, 2, -e-n (2.8)

and

P(O) = 0 (no impacts in a void)

P(n+l) = L t sec 90 exp(-Zt sec 9 t) dt (2.9

= exp (-Zt sec 99 L)

= uncollided transmission probability.

These probabilities are the ordered elements of the

Markov initial state vector V .
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V1 = LP(O), P(l), .- P(n), P(n+l) (2.10)

Now a transition matrix M is required such that

V J = V M,0 j 1,2,.. (2.11)

where the 1-th element in any V approximates the probability

that the neutron will experience a J-th impact in the i-th

layer.

Now define the element M ek of M as approximately

the probability that if the last impact was in layer /?,

the next impact will be in layer k. We need to know the

probability distribution of collisions, h(x), as a function

of distance, x, measured from a given impact depth (perpen-

dicular to the slab face) to the next impact depth. This

problem is identical to finding the neutron flux from an

infinite plane isotropic source of unit strength at a

perpendicular distance, x, in a medium with total macro-

scopic cross section t
The flux # is given by

exp (-Zt 2xI sec 9) dA
47rr

exp du x u) (2.12)

E ( X )
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where

r = x tan 9

2 3
dA = 27rrdr 27rx sin ede/cos a

du
E = (g) = exp (- g u) du

n u

(2.13)

then

t 2t Ei Zt xi)

(6 )s - ks

M ek -c h(x) dx, 1,k 1,2, - n

1 - (k-1)s

(2.14)

(2.15)

For transitions outside the slab (k = 0 or n + 1), one o

the integration limits becomes infinity.

It is assumed that collisions in a layer occur at its

midpoint. Repeating the problem for smaller s and extra-
2

polating to the limit as s -+ o removes this inaccuracy.

However, this limits the method to thin slabs with

leL 6 1.ztL

What one has obtained in this manner is really an

approximation to the flux of j-th collision neutrons, as

one could write

V - Z' (2.1

f

6)
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with elements of being approximate fluxes in each state

or layer. The method amounts to tabulation of reflection,

transmission, and absorption as a function of collision

number.

In terms of the j-th collision fluxes, we have

j+ L s ( t ox) dx (2.17)

If the integral is approximated as a sum, assuming some

average flux jk (Xk) in each state or layer k, then

j jk k xk zs 2 t )x-x1  dx

x k-s/2 (2.18)

Xk+s/2

k k t I
k xk- S/2

(2.19)

or

Ax

j+1,jk (xk) MIk,
k

(2.20)

using the definition of Mk. Now forming a vector j+1
whose e-th element is I jk(xk) Mlk, we find that

k

El -e )d
t 2 t
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Sj+=* j~ -M(2.21)

and

Vj+1 V j M, as zt v (2.22)

This analysis indicates that the Markov Matrix Method

amounts to numerically integrating the transport equation

(2.17), assuming some average flux in each layer. As the

sub-layer thickness approaches 0, one obtains the flux at

that point. If one numerically integrated the right hand

side of (2.17) without assuming some average flux in a

sub-layer, then the need for going to many sub-layers could

be sidestepped. One then would have a method of solution

usable on slabs of several mean free paths thickness.

It will be useful to obtain another distribution

function, g(Ix-x I), similar to h(x) of Equation (2.14),

but which gives the uncollided current for a neutron

arriving at x having last collided at x.

exp (-zt j xj sec 9 cos GdA

g 0  47rr 2  (2.23)

2 E2 t i x-xoJ

using Equations (2.13).



Now assume that the flux incident on the slab is

S(4), with 4i=cos 9, and 8 the polar angle. The uncol-

lided flux at depth x in the slab is

0(x) - 1S(4) exp (-It x/4) d4 (2.24)

0

For a beam at angle 9, S(p ) M S' 6(± - 40), and

0(x) S S' e"k/4o . If the source emits neutrons such that

S( Sm m., then defining u 1/,

0(x) = Sm Im exp (-Z x/4) d4

0

SS exp (-z x u ) du (2.25)
1 u

SSm EMl t x)

Taking S = m implies a unit forward-directed current inci-

dent on the slab.

At this point, the equations describing the flux of 1st

collision neutrons, and transmission and reflection of 1st

collision neutrons are;

1 (x0) = c' 0 (x) h(lx-x 0) dx,

R (0) = c 0g (x) g (x) dx (2.26)

L
T1 (L) c. cf 0 (x) g (IL-xI ) dx

0
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-1
c' = c/4., for an incident beam at angle 9 = cos p.

= c, otherwise

Changing variables to w = zt x, and writing equations (2.26)

for n-th collision fluxes:

1c ( ztwO 
ztL

n 0 2 n-1(w) E 1 (w0 -w) dw + OtLn-1(w)1(w-w0)dw

0 EtWO

ZtL

Rn(0) = On-1(w) E2 (w) dw (2.27)

0

T ItL

Th(L) n-1 (w) E2 (ztL -w) dw
0

The P-equation may be written

t w0 Yt(L-w0)

n(W) * jn-(w -z) E (z) dz + fn-1(w0+z)El(z)dz

0 0
(2.28)

For a beam incident at poJar angle 9, with 4 = cos 9, only

the calculation of first collision flux requires the factor of

1/4. It arises because the probability of first collision in

dx around x is tdx/.
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2.1.2 NUMERICAL SOLUTION OF TRANSPORT EQUATIONS

It can be seen from Equations (2.27) and (2.28), that

the integrals are all of the following form:

v f(z) E (z) dz,
0

p= 1 or 2

One may approximate this integral to arbitrary accuracy, by

the method of Gaussian quadratures. That is,

M

(2.30)I j f(z) E (z) dze X a f(z )

j- l

where m is the order, a are the weights, and z are the

nodes of the quadrature formula. For the usual Gaussian

quadratures, the method is exact for f(z) a polynomial of

degree less than or equal to 2m - 1.

It remains to show how to obtain the a and z,

which are functions of the upper limit of integration v.

First the moments of E (z) are found:

a e(V) = zi E p(z) dz,
P 0

m
= a zI,

j=l

e = 0, 1, 2, '- - 2m - 1

/' 0 , 1, 2, ''- 2m - 1

p IV (2.29)

(2.31)

(2.32)
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Equations (2.32) are a non-linear system of 2m equations in

2m unknowns, whose solution yields the desired a and z .

It can be shown9 that the extremely difficult numerical

solution of Equations (2.32) is not necessary, since the

problem is -equivalent to solving two sets of m linear

equations in m unknowns. One writes

i+ e m i+2
a aj z , ' .= 0, 1 ... M; O6 i m-1 (2.33)

j=j

Then
m-1

i+m /
+ c a + , i 0, 1, ... m-1 (2.34)

(=0

and the new unknowns c introduced here are easily obtained

from this linear system. One then has a polynomial

m-1
F(z) = zm + I cz (2.35)

e=0

whose m roots occur at the nodes z . Extracting the roots

numerically and substituting them into any m of Equations

(2.32), gives a new set of m linear equations in the m

weights a . For simplicity, the first m of equations

(2.32) are used.



The analytical results for the moments

Equations (2.32) are:

a (v) of
P

a't (v) =ve+1 E I(v) - e -v [vC+?v 1

+1 2-v

a2 +1 2() + (v) -(/+1l)(6+2 )

x ve+1 + (e+l)v +. . .+(e+l) ! + !

(2.36)

However, it was found that for slabs of a few mean free paths

thickness, moments above le 6 gave highly erroneous results.

This was because the moment was a small difference between

two large numbers. Consequently Gaussian integration was used.

Kronrod10 has tabulated 16 place tables of nodes and

weights for an improved Gaussian Quadrature which is claimed

to be exact for functions of order 3m - 1 or less. His

formula is

b m+ 1
f(x)dx (b-a) [f(a+(b-a) xi) + f(b-(b-a)x ) w

(2-.37)

where x are the nodes and wi are the weights. The increased

accuracy is partly due to the fact that his m-th order formula

42

+. . .+ 'e/ I + /.'!1 (/ +1i),P
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uses 2m+1 points. In any case, for m=10, his formula yields

a relative error of 10 for a=-1, b=1, for f(x) a 36-th

degree polynomial. Many of the calculations have been done

using this order quadrature. Table 2.1 lists nodes and

weights for m=l0. For slabs several mean free paths thick,

some gains in accuracy were obtained by doing the integration

over sub-intervals of a mean free path and going to m=20.

The limiting factor appeared to be the accuracy of obtaining

the exponential integral functions E and E2 not the

quadrature formula.

Series expansions and rational approximations were both

used to obtain the functions E and E2 , but only about 6

figure accuracy was attained. Ultimately, a Share Library

Subroutine 11 was obtained which evaluated

E.(x) = - Jet dt/t (2.38)
-x

from which is found

E1(x) = -Ei (-x); E2(X) = e xxE 1 (x) (2.39)

Accuracy was 7 to 8 decimal places, sufficient to handle

slabs five mean free paths thick. Thicker slabs can, of

course, be made up with several thin slabs, and the Trans-

mission Matrix Method applied.



TABLE 2.1.

I x

1 .0021

2 .0130

3 .0349

4 .0674

5 .1095

6 .1602

7 .2186

8 .2833

9 .3528

10 .4255

11 .5000

10-th Order Improved Gaussian Quadrature Nodes

and Weights

7141

4673

2125

6831

9113

9521

2143

0230

0356

6283

0000

8487

5741

4322

6655

6706

5850

2665

2935

8649

0509

0000

0960

4141

1459

5077

7916

4878

6977

3764

2699

1844

0000

wi

.0058

.0162

.0273

.0375

.0465

.0546

.0617

.0673

.0713

.0738

.0373

4731

7908

7794

1983

6272

9357

4598

5460

8796

6955

6138

9433

1153

8287

7405

7291

9401

8131

8655

9288

2450

8500

6859

9824

1760

4600

8488

1488

0329

7367

5300

6692

7292

44
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The various systems of linear equations were solved by

the Gauss elimination method, using Share Library Subroutine

LEQ. Two methods were tried for extracting roots of a poly-

nomial. Share Subroutine RTSCH 1 3 was very slow, and was

abandoned in favor of Share Subroutine MULLER14 which used

a straight-forward Newton's method.

It is necessary to know On-l(w) for all w in order

to evaluate the integrals of Equations (2.27). Assume an

m-th order Gaussian quadrature. It is convenient to eval-

uate pn(wO) at w0 j and ItL - w0j given by the nodes

used for the calculation of the reflection and transmission.

Then

Rn (0) = O n-1 (woj) a
j=l (2.40)

Tn tL) = On-1 tL - w j ) a
j=1

Fluxes are also calculated at each surface of the slab.

In effect, 2m + 2 fluxes are calculated, from which fluxes

at all other points are obtained by Lagrangian interpolation 15

(usually of order 2mw2). The fluxes are quite smooth,



46

changing from exponential behaviour to a symmetrical

cosine shape, as the number of collisions increases.

Hence, errors in numerical interpolation are not large,

even for small m.

Althoughconsiderable computing time is involved in

obtaining quadrature weights and nodes for each slab

thickness desired, once obtained they need not be recal-

culated in order to deal with the same thickness (mean

free paths, tL) but for a different neutron source or

different ratio of z to t'
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2.1.3 COLLISION HISTORY CORRElATIONS

Solving equations (2.27) for c = 1 gives solutions for

all other values of c. Such a happy result can only occur

in a method which follows the neutrons, one collision at a

time. Evidently, from (2.27)

Tnc (tL) = cn Tn (ZtL)

R n(0) . cn R 1 (0)n n

(2.41)

Now if one defines a quantity TOTk as the flux of k-th

collision neutrons which have neither been absorbed, trans-

mitted, or reflected out of the slab, then

TOT0cQ= 1 - T0; T0 = transmitted uncollided flux;

TOT 1 =c (TOTO - R1 - T 1 )

(2.42)

n
= cn LTOTO - (R1 + T 1e r)

and the absorption of the n-th collision neutrons

n-l1

Y ;+T

is

Anc = (1 - c) cn-l { TOT 
(

TOTncn

(2.43)
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Therefore a tabulation of transmission and reflection

probabilities, obtained for c=1 as a function of number

of collisions, can be simply used to solve the same slab

problem for arbitrary values of c. Empirical correlations

are given in Section 3.1.1 from which only three parameters

are required in order to find, for example, the probability

of transmission through any slab with any value of c, having

undergone any number of collisions.
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2.1.4 MULTIGROUP SPECTRA

Generally, shielding problems involve only one source

of neutrons. Some simplification results in Equations (2.1)

and (2.2) if X' = 0. We want to find the transfer matrix

T. The matrix product of T with thae neutron source X1

gives the output flux vector X"'. Contributions to T come

from neutrons suffering any number of collisions. Section

2.1.3 has shown how to obtain monoenergetic neutron trans-

mission (and reflection) probabilities through slabs, as a

function of collision number. If one could combine these

probabilities with multigroup transition probabilities,

then T ( or R ) could be found.

The uncollided flux is best handled separately from

the collided flux as its attenuation is known analytically.

It cannot transfer from group to group. Now define:

a 4 - Microscopic cross section for transfer of

a neutron from group i to group j as a

result of a single collision.

a = Total microscopic cross section for group i.
ti

f = a /a. Probability of a neutron in group i trans-
ij i-j ti

ferring to group j as a result of a single

collision.

The transfer probability f depends only on the details

of the kinematics of scattering, not on the spatial or
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angular distribution of neutron flux. Let matrix F have

elements f . Assuming no upscattering in energy, f

vanishes for j < i, if the lowest numbered neutron group

has the highest energy. F then is a square upper-triangular

matrix of order NG, the number of energy groups. Let

diagonal matrix P-n have diagonal elements Pnii which are

the probability of transmission of group i neutrons after

n collisions. Then

X T X  - [ + 2 F + P F3 +..1 X (2.44)

and the transfer matrix is

= [PF + PF2+ P 3 + .. ](2.45)

where

F3 = F F F, etc. (2.46)

Given matrices P and F, T can be obtained to

arbitrary precision by summing terms EnF n to sufficiently

high n. The decision as to how high n must be is simply

made by ensuring that the diagonal elements of T satisfy

IT i(n)- T (n-1) Tj(n) < e, i = 1, 2, ...NG

(2.47)
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Epsilon is an arbitrarily small number usually taken to

be about 10 ~3 to 10~4. Numerical results indicate that

the accuracy of Xl' is of about the same order as e.

Neutron total cross sections as a function of energy

need not be flat, as the transmitted neutron flux of k-th

collision neutrons is based on transmission probabilities

for the groups that the neutrons occupy after k collisions.

A more subtle assumption is that the k-th collision flux

shapes across the slab are the same for all groups. Trans-

mission (and reflection) probabilities depend mainly on

the flux shape near the slab surface. After many collisions,

the neutron flux shape becomes symmetrical across the slab,

independent of the location of the incident neutron beam.

In effect, the neutrons have undergone enough collisions

to "forget" where they came from. Section 3.1.1 will

present flux shapes for a wide range of total cross sections

and a given slab thickness, in order to assess the impor-

tance of this effect. Intuitively, one would expect best

results for materials with slowly varying total cross sections.
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2.1.5 SIMPLER APPROXIMATIONS

Prior to the development of the simplified Transmission

Matrix Method described in preceding sections of Chapter II,

some success was obtained in predicting spectrum shapes

using a more approximate calculation of the Transfer Matrix T.

Experimental information such as fast neutron dose rates

was used to normalize the absolute magnitude of the spectrum.

Consider, for example, an infinite, plane isotropic

source emitting one neutron/second in the forward direction

through a homogeneous, plane, infinite slab with macro-

scopic total cross section Zt. The forward-directed uncol-

lided current fraction is E2 (Ztx) at a distance x perpen-

dicular to the slab face. The collided fraction is

1 - E2 (Ztx), which is made up of neutrons suffering any

number of collisions. However, the probability for survival

of a 1st-collision neutron is c(l - E2 (Ztx)). If one assumes

that the probability forsurviving k collisions is

c - E2 tx) k then matrix Pk of Equation (2.44) becomes

(P1 )k. This amounts to assuming that the flux shape of

k-th collision neutrons is the same as for 1st collision

neutrons. The error in this assumption increases with slab

thickness, because the flux shapes change more.

Group transfer probabilities fij can be obtained

directly from tabulated neutron cross section sets such as
16

given by Bondarenko . Slowing down cross sections not

available in the literature can be approximated in the
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following manner. Take the same width, Au, in lethargy

units, for all neutron groups. Let ', be the average

lethargy decrement per scattering collision. Microscopic

elastic scattering and total cross sections are a and
se

at, respectively. The average number of collisions required

to transfer to another group is &Au/4. Then the probability

of transfering to the next lethargy group is approximately

{a~ 1 - E2 (ZtL) A for a slab of thickness L. The
t

Bondarenko set gives the elastic slowing-down cross section

ade, obtained by averaging over a flat flux per unit lethargy

within the groups for energies less than 1 MeV, and over a

fission spectrum for E> 1 MeV. Then the more accurate

result is

i -4 i + 1 de' ~t (2.48)

for elastic scattering. Inelastic scattering contributes

to f. as well:
ij

fi - j a in (i-)/a (2.49)

Transport-corrected cross sections can be obtained

which yield improved results. They are

atr = at ~e(ae - ad)
(2.50)

adtr = ad( 4e)
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The average cosine of the elastic scattering angle is

given by 4e. Transport-correcting the inelastic

scattering cross sections (or elastic group transfer

cross sections for light elements) is also possible,

but requires considerable elaboration in order to

account for the small-angle scattered neutrons which

appear to be uncollided, but in fact have changed

energy groups. Inclusion of this effect would

undoubtedly lead to further improvements in accuracy.
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2.1.6 THE INVARIANT IMBEDDING METHOD

In addition to utilizing experimental data as

checks on calculations, a few highly accurate "bench

mark" results have been obtained by the Invariant

17
Imbedding Method with the "STAR" code written by Mathews.

Bellman et all8 have described it as a perturbation

method, the system size being perturbed. The calculaticn

of reflection and transmission of neutrons through

slabs is obtained by a detailed study of particle

processes in a differential layer of material added

between the source and the slab, from which a first-

order coupled set of nonlinear differential equations

may be derived and numerically integrated.

Calculations were made using four energy groups

in the range of 0.1 to 10 MeV, and two angular groups

(equivalent to a P -calculation by the Spherical

Harmonics Method). Group widths in MeV and unit cosine

of the polar angle are selected via Gaussian quadra-

tures, which limits the code to at most a two-decade

energy range.

A four-stage process is involved in making best

use of STAR. First, angular cross section data must

be reduced to Legendre polynomial form. A special code,

LPF-LEGENDRE POLYNOMIAL FITS, was written for this task.

Appendix A.3 describes it. Second, the companion code

to STAR known as CSDP-CROSS SECTION DATA PREPARATION,
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takes the angular and energy dependent cross sections

from LPF and calculates transfer probabilities between

states (a state is defined as any angular and energy

group). Appendix A.5 describes modifications made to

CSDP, and A.6 describes modifications made to STAR.

Third, the output from CSDP is supplies to STAR, and

reflection and transmission matrices computed and

punched on cards for use by stage four. The final

operation of generating reflected and transmitted

fluxes for a neutron source of arbitrary energy and

angle dependence is performed by another special code

called STAR DATA REDUCTION, in Appendix A.4. It com-

bines source information with the transmission and

reflection matrices to compute angular fluxes, differ-

ential fluxes per unit energy and lethargy and fast

neutron dose rates. Similar output comes from STAR,

but for a unit, isotropic fission source.



57

2.2 THERMAL NEUTRON FLUX

Diffusion theory yields the neutron balance equation

in a non-multiplying medium with diffusion length L:

L
(2.54)

In circular cylindrical geometry this becomes

+ (r ) + -
A s i 2 r r , r ) - y ) L- r

Assuming (r, ey (~ e) ti(r)

r 6r r) r dr )dr x

(2.55) becomes, after dividing by #:

--- d(r dr - L2
rdr d

1-7 o =0
L

9), etc., and

+

Equation (2.56) now separates into

__x 1 & x 2
+ - a a x

1 (r ) (a 2 1
r r dr L2c ~)

(2.55)

-0

(2.56)

(2.57)
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Here it is seen that the separation constant a2 repre-

sents lateral neutron leakage in the one dimensional

diffusion equation for *(r). If a source is present

of strength S neutrons/cm3-sec., then the result (2.57)

can be expressed in slab, cylindrical, or spherical

geometry by taking p = 0, 1, or 2:

+ (a 2 + 1 + = 0 (2.58)
-r 2 r dr -( + ) * D

Here D is the diffusion coefficient.

Now consider the equation

( + w(r) (D + u(r) ) + S 0 (2.59)dr dr

i.e.,

D + +Dw +#- + uw + S=-0
d2 dr dr dr ( .odr (2.60o)

Dx(2.58)

2 p2 1D 2  + dr- D(a2 + -!) 0 + S = 0
dr L

Comparing coefficients of , and of 0:dr



= u + Dw; :. w(r) =
r r

du + uw = -D(a
dr

u r)

1

Substitute for w to get

UP
r

2

D -D(a2 +-
L

Now define v(r) so- dr
= Ddr

do
dr

dv
dr

2
- -D 2

dr

v+u
D

From (2.60),

vw- - (D +

dv
dr

dv
dr

uv
D

r + S
r

and (2.64) comprise a set of
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(2.61)

du
du 2
);--.D - -D(a2+D

(2.62)

du
dr*Wdr

(2.63)

+D
du

u d S

(2.64)

(2.62), (2.63)Equations
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3 non-linear first-order coupled differential equations,

which can be solved numerically. A standard library
'9

subroutine named RKS3 is used, which employs the Runge-

Kutta method.

Boundary conditions needed at the core-reflector

interface and at the vacuum boundary of the last slab are:

Core-reflector Last slab

a, D + a2 A + a 0
dr 2 3

(2.65) ag + a5 A + a6 = 0

Three different boundary conditions can be obtained:

1. 0 - -a /a2, if a = 0

d ~a 22. - ,d. a 1

3. ( a 2

10 ?d 0a 1D

if a2
= 0

, if a = 0.

We select the following values:

a1 =

a2 =

0 a = 2.13

-1 a5 = 1.

a6 3 0'a3 = 0o

(2.66)



61

Here A = thermal flux at core-reflector interface.

The values of a a and a are such that - ( # 9 ) =
The4- vauso5~ 6 dr 0

0.71-htr 2.13D = extrapolation length at the vacuum

boundary.

In order to start integrating equations (2.62) and

(2.64), initial values U0 and V0 are required. From

the a-values,

U0 = a2/a V0 a /a if a 1 0 (2.67)

If the flux is specified, a, = 0,

expand 0 about

#0 = 1

From (2.57)P

and it is necessary to

r = ro + h:

- h d +

2

dr 2

h2  d2 p0
2 dr 2

- do

- -.A = 01 - (h +
h2  do, (a 2 + h)M -

21 r212 D

By (2.63),

pIhP v1 + u 1 01  h2  2 1 S1
01+ h(l + 2r) ( D )+ (

S 1+ +2 (a2 + 1) + h2 p ul, + (h + P)

DJ h2  SD
D D

(2.68)

+(a2 + i
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Now let u1 = - 1 +[i (a + ) +
2D L

h2 (2.69)

1 hS
V 0 + 2~ +

One gets

f+ h (1 + )p( + 2)( a2 + )2 )+ r 1 2D 2

hh S

2r, 2r,

Setting both sides to zero gives X and 4:

21
A=- + (a +

2D

h2 S1
1+- a 3 /a2 + 2D (2.70)

2r
1

Equations (2.70) contain terms whose values are known

which yield u1  and v, (instead of uo and v0 ) by (2.69).

What is done is to set h = DX = 0.1 cm in MEDIPORT. The

integration routine RKS3 automatically selects the larg-

est possible step size consistent with numerical errors

involved, and fills up a table of (u, v, Ar) triplets
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as it goes. Finally the outer boundary condition is applied

giving a starting value for 0:

a v-a6

a5-a u (2.71)

This follows directly from (2.63) and (2.66). The #

equation, (2.63), is now integrated back to the core-

reflector interface, interpolating for u and v from the

values stored on the forward integration. The non-

linearity of this equation has been found to require

tables of j and v to prevent divergence of u and v if

the equations are simply integrated together in the

backward direction. Single-precision arithmetic suf-

fices if this scheme is used, whereas otherwise, diver-

gence was observed, even for double-precision arithmetic.

References (20 ) and ( 21 ) give additional information

about this general method.

Numerous criteria are used to select the integration

step size h from:

0. 1
1. Recommended step hR = 2.

V(a2 + 1)
L2

2. Distance DX to region boundary.

3. h* = 0.1 (u/ )

If h> DX, h = DX. If h < DX, h = DX/(l + I integer).
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Now set h = h*, if | h*I< h. The value hR is good far

from region boundaries and large flux gradients. A smaller

interval is used, given by h*, in regions having large flux

gradients.
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2.3 DOSIMETRY IN TISSUE

2.3.1 Fast Neutron Dose Rates

Monte Carlo calculations following the history of

monoenergetic neutrons incident normally on a 30 cm

thick infinite slab of tissue, performed by Snyder and

Neufeld2 2 , give the relationship between neutron flux

and total fast neutron dose rate shown in Table 2.2. The

effect of multiple collisions is included. All dose

calculations are obtained by averaging over an assumed

flat flux per unit lethargy within a given neutron

energy group. Mathematically, with D(u) the dose rate

conversion factor at lethargy u and f(u) the flux per
unit lethargy, the group i contribution to dose rate

is

R. u. 0(u) D(u) du: 0(u) (u. u - ui) .
I . i+ 1 i 3.

u. (2.72)

where

i+1 
u+

u. U
I1

Tables 2.3 and 2.4 give energy groups and dose conver-

sion factors that have been used by STAR DATA REDUCTION

and MEDIPORT for total fast neutron dose rate measured

at the surface of a 30 cm thick infinite slab of tissue.
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Total dose rate includes recoils from H, N, C, and 0

nuclei, gamma rays from H(n, Y )D, and heavy particles

from N(n, p)C and N(n, a)B.

Tables 2.3 and 2.4 do not give fast neutron dose

rates at depth in tissue. The gamma ray contribution

depends on the shape of the tissue, and is calculated

separately as described in Section 2.3.3. The heavy

particle reactions such as B10 (n, a)Li7 and N'4 (n,p)Cl4

depend mainly on the thermal neutron flux distribution,

which again depends on the shape of the tissue. Section

2.3.2 gives the method used for this dose contribution.

The only other factor left is the first collision dose

from the recoil energy of nuclei undergoing elastic

scattering neutrons. If Ai is the atomic number of

nuclide i, then si . [(Ai - 1)/(Ai +1)]2 is the max-

imum fraction of the neutron energy remaining after an

elastic collision with the nuclide. The maximum

fraction of the neutron energy going into recoil is

1 - Di, and (1 - 1i)/2 is the average fraction. The

differential first collision dose Di(E) is

(l-p ) 8 2A
Di(E) = 2 E Zi (E) = 1.6 X 10 (A +1)2 E Z (E) rads

i n/cm2

(2.74)

Here Z (E) is the macroscopic elastic scattering cross

section for nuclide i at neutron energy E in MeV.



67

Contributions to the first collision dose for H, 0,

C, and N as a function of neutron energy have been calcu-

lated?3 Two sets of neutron cross sections have been

used for MEDIPORT calculations. A uniform lethargy

width set was first used which had three groups per

energy decade in MeV, starting at 10 MeV. Later, the

original Bondarenko groups of non-uniform width have

been used. Table 2.5 gives groups and conversion

factors for these sets.



TABLE 2.2 Conversion Between Neutron Flux and Dose Rate

10-9 Rad per n/cm 102

0.32

o.69

0.~57

0.57

1.10

2.4

2.8

4.3

5.8

7.1

7.0

Millirad/hr per
n/cm2 -sec

0.115

0.28

0.205

0.205

0.396

0.86

1.37

1.55

2.10

2 -56

2 .52

68

E, MeV

Thermal

0.0001

0.005

0,02

0.1

0.5

1.

2.5

5.

7.5

10.
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TABLE 2..3 Dose Conversion Factors for STAR

Group Energy, MeV

1

2

3

4

0.7874

3.367
6.733

9.313

Limits, MeV

0.1 -1.822

1.822-5.050

5.050-8.278

8.278-lo.oo

Width, MeV

1.722

3.228

3.228

1.722

Rad/min per
n/cm2 - sec

0. 145x10-6

0.283

0.404

0.430

TABLE 2.4 Dose Conversion Factors for MEDIPORT

Limits, MeV

6.5 - 10.5

4.0 - 6.5

2.5 - 4.0

1.4 - 2.5

o.8 - 1.4

o.4 - o.8

0.2 - 0.4

0.1 - 0.2

.o465- o.1

.0215- .0465

.01 - .0215

.00465- .01

10 210 x Rad/n/cm

70.4

59.3
46.5

41.0

38.3
27.4

17.8

12.8

9.5

7.0

5.7

5.7

Group

1

2

3

4

5

6

7

8

9

10

11

12



70

TABLE 2.5 First collision Dose Conversion Factors

Uniform Lethargy Widths Non-unif orm Lethargy Widths

Limits, MeV lO X

rad/n/cm2
Limits, MeV ll0 x

rad/n/cm2

4.64 -lo.o

2.15 - 4.64

1.00 - 2.15

.464 - 1.oo

.215

.100

.0465

.0215

.464

.215

.100

.0465

.0100 - .0215

.00465- .0100

50.3

37.5
27.3

19.6

12.8

7.1

3.4

1.3

0.9

0.6

6.5

4.0

2.5

1.4

o.8

0.4

0.2

0.1

.0465

.0215

-10.5

- 6.5

- 4.0

- 2.5

- 1.4

- o.8

- 0.4
- 0.2

- .100

- .0465

.0100 - .0215

.00465- .0100

53.0

46.0

37.4

30.0

24.2

17.8

11.6

6.7

3.4

1.3
0.9

0.6

Group Limits, MeV

STAR

1010 xrad/n/cm2 Rad/min per n/cm 2 - sec

- 1.822

2 1.822 - 5.050

3 5.050 - 8.278

4 8.278 - 10.00

0.0846 x 10-614.1

36.8
49.8

0.221

0.299

54.1 0.324

Group

1

2

3
4

5

6

7

8

9

10

11

12

1 0.1
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2.3.2 Heavy Particle Dose Rates

Parameters used for the B10 (n, a) Li7 and N14(n, p)C1 4

reactions are:

Da (b)

P (wt. fraction)

E(MeV)

M(AMU)

B1'0

3837
N14

1.88

50 x 10-6

2.34

10.016

0,041

0.624

14.008

Since the range of the reaction products is of the order of

10 microns in tissue, these reactions produce a very

localized dose, R, which can be obtained from

aaPE 
_7R(x, r) = OZaE = f(x)$(r) M X 5.79 x 10 rad/min

Cylindrical coordinates (x, r) refer to depth, x, and

radius, r, inside a cylindrical tissue phantom.
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2.3.3 Neutron Capture Gamma-Ray Dose Rates

Of most importance is the neutron capture gamma

dose-rate along the axis of the phantom. However, to

obtain this numerically, radial and angular distributions

of neutron flux (and hence capture gamma production rates)

within the phantom are required. R. Rydin's2 4 results

of Figs. 4.1 and 4.2 indicate that the fast flux emer-

gent from the MITR medical beam port is flat to with-.

in a few percent, while the thermal flux is asymmetric

and varies up to 15%. It is believed to be a good

approximation to assume that angular non-uniformities in

the thermal flux within the phantom die out within a few,

centimeters, and that its distribution becomes

f(x, r, E) E f(x)#(r) a O(x) Cos (} ,)r 1/

where~~~~ R''R+0.1?

where R' = R0 + 0.71 Atr = extrapolated radius, and A(x)

is known. This variation for 0(r) reasonably represents

the experimental shape. The gamma dose rate off the

axis is obtainable just as easily as on the axis.

Account is taken of neutron capture of epithermal and

fast neutrons as follows:



Total capture rate R NJ aa(E)P(E)dE
0

NG

oa +1

Assuming
a ao f and

-1 inside the group,

fa a(E)O(E)dE

f O(E)dE
=

dE

E3/2
ao / dE

fEj

I Ea/0 [ 1 E in

ao Eo

UE =
L E 1]

Note that

ug =n 0
E.
.3

R e Naao

ao aa(E0), and E 0 =0.0253 eV. Using

, the reaction rate may be written

{ fo + 1.006 x 107 I- 1 /E

Hence, one may replace 00 with A, where 0 is term in

73

a.aj

then

a aj

Ej
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curly brackets in the preceding equation.

It is assumed that both 0 and f0 vary in the same way
radially inside the phantom. Also, it is assumed that the

2200 m/s flux represents all the neutrons with energies

less than 0.215 eV (the lower bound of the group fluxes).

A Taylor kernel is used which gives the photon current

at r. for a unit source at r:

-( 1+al) L |r-rFo| -(1+a 2 )4L Ir-1 2
K(i, ro) [ Ae +(-A)e 4 rl 2-ol

where r - (x,r,G) is the source position, r0 - (xo,r0 ,90 )

is the observation point position, and r -2 -

(x-xO) 2 + r2 + ro2 - 2rro cos (9 - 00).

The gaumma-ray dose at Vo due to a neutron capturing

nuclide of atomic weight M and absorption cross section

aa which emits n photons of E MeV per capture is:

R(r0) = (9.61 x 10-7 gaEN aaPn/pM) f2dE f(r)rdr-
0 0

Ho

f0 f(x)K(riP0 )dx rad/min

where 4a and . are photon absorption and total attenu-

ation coefficients in a phantom of density p, length

HO and radius Ro. N is Avogadro's number, P is the

weight fraction, and A, a,., and a2 are tabulated? 5
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The triple integration must be performed numerically.

To do this, a special set of subroutines (see Appendix A.1)

were coded using the Gaussian quadrature method, as given

for, double integration by Okazaki and Fowler.2 6 These sub-

routines are:

1. G3: perform outer integration over 9

2. G24: perform middle integration over r

3. CENTR: perform inner integration over a

Change variable from r to Y - r/R' - R/RPRIM, with 9 TH

and x - X. The integral in Fortran notation is

Q-r B=R0 /R'
I - f ANGLE(TH)d(TH) - . G(Y)d(Y)-

P=o A=o

D=Ho
f F(X,R,TH)d(X)
C-o

Auxiliary subroutines needed are:

1. ANGLE(TH) computes angular thermal f lux distri-

bution. Taking P = o, 0 = r, ANGLE(TH) = 2 (equivalent

to P = o, O = 2 7r, ANGLE(TH) . 1) one has azimuthal

symmetry. This does not mean a double integral will suffice

because the kernel K(r,rO) is a function of x, r, and 9.

rY 1/42. G(Y) - Y(cos -) , the Y coming from dV : rdrdedx,
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since Y = r/R'.

3. F(x, R, TH... ) computes K(rrO) and multiplies

by O(x) obtained from SPINT.

4. SPINT is a table interpolation subroutine which

finds O(x) given a f-table at uniform intervals in x,
described in Appendix A.l. The main program sets up the

O(x) table before calling DOSE.

Input parameters NO and NI, which control the order

of the Gaussian approximation, for the r and x integrations,

may be taken to be 4, 6, or 8. Hence greater accuracy is

attainable if required at the expense of additional

computer time. The 9-integration is always performed over

(o, r) in the 8-point approximation. Actually, the r and x

integrations have been found to be too inaccurate if taken

over the full range of the limits. The pole in K(rpro)
1

from .-# 0 leads to curve-fitting difficulties if
Ir-ro'

one tries to fit both sides with 4, 6, or 8 points. Do-

ing the r and x integrations in two parts each, with the

cutoff point at the pole, has been found to be reasonable.

The limits are:

0.25B, if ro0

r: (A,T), and (T,B), with T - ro/R', 0 < ro< Ro

0.75B, ro=Ro

C+0.25(D-C), if xo=C

x: (C,Z), and (Z,D), with Z - x, if C<xo<D

C+0.75(D-C), if xo=D
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In effect, the order of integration becomes

Coordinate

e)
r

x

Order

16

8, 12, or 16 (NO = 4, 6, or 8)

8, 12, or 16 (NI = 4, 6, or 8)



TABLE 2.6

Energy
MeV

.5
1.

1.5

2.5

2.5

3.5

3.5

4.5

4.5

5

5.5

6.

6.5

7.

7.5

8.

8.5

9.

9.5
10.

Attenuation Kernel Parameters

A

23

11

7.85

6.4

5.7

5.2

4.8

4.5

4.2

3.96

3.74

3.55

3.41

3.28

3.16

3.05

2.95

2.86

2.78

2.70

a
2

.136

.104

.087

.076

.0685

.0627

.058

.055

.0534

.0520

.0506

.0495

.0480

.0470

.046

.045

.0443

.0436

.0428

.042

-. 05

.028

.074

.092

.102

.108

.113

.1165

.1192

.1215

.1228

.124

.1253

.1264

.1273

.128

.1285

.129

.1295

.13

-
4., cm

.0936

.0683

.0556

.0478

.0423

.0384

.0352

.0329

.0308

.0292

.0278

.0267

.0254

.0244

.0237

.0233

.0227

.0222

.0217

.0212

-l
±a, cm

.0320

.0300

.0276

.0256

.0238

.0220

.0213

.0206

.0199

.0192

.0187

.0182

.0178

.0174

.0171

.0168

.0166

.0163

.0161

.0160

78
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Shown in Table 2.7 are errors in dose-rates relative

to the highest order (NI = NO = 8, 163 effective points)

for three traverses in the phantom for the normal config-

uration of the M.I.T. Medical Beam.

TABLE 2.7 Accuracy of Gamma Dose Rates

Depth Radius Relative Errors,%

cm cm 16x4x4 Points 16x8x8 Points 16x12x12 Points

o 0 15.3

o 2.075 15.8

0 4.15 12.9

0 6.225 27.2

0 8.3 o.8

0 0 1.28

2.5 0 6.1 1.76

5.0 0 5.6 1.46

7.5 0 3.7

10 0 2.9

0 0 6.1 1.76

0 2.075 6.4 1.75

0 4.15 5.4 1.83

0 6.225 4.9

0 8.3 0.4

Avg. Error,% 14.4 4.6 1.64
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Judging from the trend of error reduction with total

points used, the most accurate approximation can be

expected to have an error of about 1.64 x 122/162 = 0.9%.

For survey purposes, all cases run have used NI = NO = 6,

giving of l.6% error.

To save computing time, all gamma rays can be lumped

into one effective gamma ray because the tissue phantom

is only about a mean free path long. Table 2.8 gives the

ratio of total dose-rate from H, Cl, C and B10 (50 ppm)

to that from H alone for various locations in a phantom

15 cm long and 16.6 cm in diameter. The range of the

data is 1.283 + 0.007 or + 0.55%. This error is less

than that of the numerical integration, justifying the

use of an effective gamma ray to reduce the computing

time to one-quarter. What is done is to raise n for H

(the principal contributor) from 1.000 to 1.283, and to

delete the calculation for Cl, C and Bl. The B10 con-

tribution is about 5% of the total Y-dose for a uniform

distribution of 50 X 10-6 weight fraction B10 in the

phantom.
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TABLE 2.8 Ratio of Total W -Dose to II-Dose from H

Depth, cm

0.0

2.5

5.0

7.5

10.0

0.0

0.0

10.0

10.0

Radius, cm

0.0

0.0

0.0

0.0

0.0

4.35

8.3

4.35

8.3

Total Y -Dose/
H X-Dose

1.276

1.276

1.277

1.281

1.284

1.278

1.289

1.286

1.290
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2.4 NEUTRON SCATTERERS

One of the major problems which has contributed

to the lack of success of neutron capture therapy

is that of delivering a lethal radiation dose to a

deep brain tumor without in the process destroying

normal tissue above the tumor. When tissue is irradi-

ated by fast neutrons, the neutrons lose their energy

primarily by elastic collisions with the atoms compos-

ing the tissue. The kinetic energy of the struck atom

is dissipated by ionization, excitation and elastic

collisions with other atoms. The "fast neutron dose"

is largely responsible for damage to normal tissue

near the surface. At depths beyond three or four

centimeters, the rapid attenuation of fast neutrons

in tissue makes the neutron capture gamma ray dose

more important.

In a neutron beam such as is available at the

M.I.T.R. Medical Beam Port, most of the fast neutron

dose comes from neutrons having energies in excess

of 0.1 MeV. Significant improvements to neutron

dose distribution with depth in tissue could well

result if a way were found to selectively deplete the

fast neutrons in the beam. As most materials have

cross sections which go down as the neutron energy

goes up, it is not likely that any material would

be capable of "filtering out" fast neutrons by

passing a beam through it. However, the probability

of a neutron being reflected from an optically thin
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slab depends almost linearly on the scattering cross

section being small for a small cross section.

Hydrogen has a scattering cross section which

varies exceptionally with energy. It is about 20 b

for neutron energies less than 1 key, falling to 11.0 b

at 0.1 MeV, and about 1.2b averaged over 6.5 to 10.5 MeV.

In addition, the average energy loss per collision is

higher for hydrogen than any other element. For these

reasons, hydrogenous materials such as lucite, poly-

ethylene, and water would seem to be well suited to

use as neutron reflectors, or "scatterers". Computer

studies using these materials are reported in

Section 5.4.
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2.4.1 Geometrical and Angular Considerations

Having decided to place a neutron scatterer in the

path of a neutron beam, one must decide a reasonable

geometrical arrangement. Figure 2.1 shows the arrange-

ment which has been investigated

Figure 2.1 Geometry of Neutron Scatterer

Direct
Beam

Reflected
Beam Seen
Phantom

Scatterer
Transmitted Beam

The angular and energy distribution of the direct

beam was obtained from the STAR code. Two angular groups

were used, the first spanning 600 4 9 ; 900 , and the

second, 00 < 4 600. The energy groups are given in

Table 2.3. At 450 rotation must be performed on the

direct beam in order to give the neutron source as seen

be the scatterer. Similarly, the beam reflected from the

Tissue
Equivalent
Phantom
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scatterer must be rotated to give the neutron source as seen

by the phantom. Assuming a flat distribution within each

angular group, the relationship between direct and rota-

ted beams is easily obtained. From Figure 2.2 it can be

seen that if

S = direct beam flux in angular group

S ' = flux in rotated angular group ,

then

1S - S2'

S 1 S'

21+ 4S2'

S2 1 + 8S2'

11 1
Sl + S

SS2' S2 2 1 22'

S +-S2

2 l1 2 12 for3 0

1 + S2 -s 1 - 2 1

for 450

1~'+ s 2 s1 -

for 600
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Figure 2.2 45 Rotation of Angular Groups

S(9)

S1 S
-900 -600 0 e-0 600 900

S(9 )

-450 -150 00 600 900

The quantity S + S2 ~ ~' - is that flux which

cannot strike the scatterer. If the phantom is close to

the direct beam (as in Figure 2.1) then the direct flux

could enter the phantom. Its effect has not been calculated,

because it depends on relative sizes and locations of beam

portal, scatterer, and phantom. The fast flux in the

direct beam predominantly lies rather close to the beam

axis. The fast flux becomes more isotropic as the neutron

energy decreases, where it becomes less important in terms

of fast neutron dose rates.

The scatterer problem has been investigated in a

simpler way, using a single angular group, but 25 energy

groups from 0.215 ev to 10.5 MeV, via the MEDIPORT code.

Total reflection probabilities for a beam of neutrons

incident at 450 to slabs were obtained from the TAR(N) code

(Section 2.12 and Appendix A.2). No corrections were
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applied to account for neutrons reflected away from the

scatterer, because absolute overall incensities depend

mainly on details of geometrical arrangements.

Section 5.4 discusses calculations obtained for

scatterers placed in the M.I.T.R. Medical Facility beam.
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CHAPTER III

TEST PROBLEM RESULTS

3.1 MONOENERGETIC NEUTRONS IN A THIN SLAB (ISOTROPIC

SCATTERING IN LAB. )

The transport equations describing the fate of

neutrons incident on infinite, plane, homogeneous

slabs have been solved numerically by the methods

given in Chapter II. The computer code written for

this purpose is known as TAR(N) (for Transmission,

Absorption and Reflection for N collisions), and is

described in Appendix A.2. Results have been obtained

for uniform beams at a variety of incident angles, as

well as for neutron sources with angular distributions

proportional to (cos 8)0, (cos 8), and (cos 9) 2 . The

angular leakage flux from an optically

thick volume-distributed source having a

linear variation of source strength p(x) with

distance x into the source volume can be approximated 25

as:

p pl
(9) 'o c Cos 9 + Ac Cos2 9 (3.1)4r 47r

where

p(x) p0 + plx (N/cm3 - sec) (3.2)
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and 9 and xe are the polar angle and mean free path

in the source, respectively.

The total leakage is

ir/2 1 1 2
L = J e(e) 2r sin dO - poXc + I pl  c

0 
6

(3.3)

For two angular groups, with 0 4 cos 9 , 0.5, and

.5 4 cos E)2 1 '0.

1 1 2
L -=16 ko C'c 8 l Ac

(3.4)
3 7 2

L2 3 P"c + 7pl Xc

Slabs with optional thicknesses in the range

0.125 4 ZtL 4 5.0 were investigated, generally for

c . zs/t = 1. Results for c ll may be obtained

from these results as described in Section 2.1.3.
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3.1.1 Collision History Correlations

One of the first cases considered was that of a

slab for which ztL = 0.5, c = 0.8, and the neutron

source was either isotropic or a beam at right angles

to the slab (E - 00, L cos 9 - 1). The regular

variation of transmission and reflection with

collision number, k, together with the constant

factor of c/2 in Equations (2.27) and (2.28), lead

to consideration of two ratios:

RT(k) 2.Tk
- T(k+1)/ T(k)

c (3.5)
2

RR(k) =- R(k+1)/R(k)

Figure 3.1 illustrates the smooth convergence of these

ratios to an asymptotic value RT(w) = RR(w) 0.8945.

Replotting the difference RT(k) - RT(w) in Figure 3.2,

a very good exponential behaviour is observed. Some

of the scatter is due to errors resulting from obtaining

fluxes at only six points.

The basic reason for the trends shown in Figures

3.1 and 3.2 is the smooth variation of flux shape and

magnitude with collision number. Several flux gener-

ations are plotted in Figure 3.3. Here fA is the

uncollided flux, and Ptotal = Z k After many col-
lpo

lisions, the flux shape becomes symmetrical, of
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approximately cosine shape, but with a faster drop-off

near the slab surfaces.

Figures 3.4 and 3.5 give graphical correlations found

for a range of slab thicknesses using a neutron source

whose angular distribution varied as cos 9. Deviations

from straight line behaviour may be the result of insuf-

ficient points in the flux calculations, and/or of round

off errors inherent with single precision calculations,

particularly for the thinnest slab. In any event, the

magnitude of RT(k) - RT(co) and RR(O) - RR(k) is so

small as to be negligible with respect to RT(k) or RR(k).

The deviations for the thickest slabs are real effects

due to the greater change in flux shape in thick slabs

during the first few collisions, It was found that the

difference between the points and the straight line fit

fell off exponentially with collision number. More points

would be required in the flux calculations in order to

pin down this effect accurately.

Figure 3.6 gives the neutron reflection correlation

for a parallel neutron beam incident at 450 to the slab.

Deviations from the linear: fits tend to be somewhat

reduced compared to Figure 3.5.

Probabilities and empirical parameters are given in

Figures 3.7 to 3.10 and Tables 3.1 and 3.2, which are

required to correlate all the transmission and reflection

probabilities for any slab thickness and any collision
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number. The relationships fitted are:

RT(k; tL) RT(w; tL) + A( tL) exp(-ka(z L))

(3.6)

RR(k; ZtL) - RR (co; ItL) - B(ZtL) exp(-kb(ZtL))

The five parameters needed are RT(; Z tL) - RC; ,tL),

A, B, a, and b. First collision reflection and transmission

probabilities (R1 and T1 ) can then be put into equations

(3.5) for all other Rk and Tk T1 and R can be expressed

as

c tL
T 2 2E2 (w)E2 (ItL - w) dw

0

R - 2 E2 (w) dw
0

but no reasonable analytical equation can be given for

these integrals. Similarly, the variation of RT(o; ZtL)

with slab thickness cannot be exactly expressed analyti-

cally. Figure 11 indicates that

RT(c; TtL) 2 1 - E2 2 tL) (3.8)
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contains most of its dependence. This equation is exact

only at the end points ztL = 0 or e, where flux shape

is unimportant. The difference between RT(w) and equation

(3.8) is caused by differences between real flux shape and

assumed flat shape.

Table 3.1 and 3.2 present numerical values used in

the MEDIPORT calculation. Note that the input data to

MEDIPORT differs by a factor of two in the definitions of

RE(m), RR(a), and the empirical parameters A and B. Denoting

MEDIPORT quantities by primes:

RT'(*) -RT(*)

RR'(w) 1 RR(oo)

A' - B2

1
B2



TABLE 3.1 Empir:cal Parameters and Probabilities for a

Cosine Source

Slab Thickness
(MFP)

0.

.125

.25

.375

.5

.75

1.

1.25

1.5

2.

2.5

3.

3.5

4.

4.5

5.

0.0000

0812

1192

1380

1411

1370

1159

0969

07867

0500

03102

01880

01157

00682

004094

002435

a

1.40

1.25

1.10

.985

.910

.775

.675

.594

.535

.444

.380

.331

.289

.253

.222

.192

A'

0.000

0.000

0.010

. 035

.0575

.100

-135

-153

.205

.270

.332

.390

.430

.458

.475

.485

94

RT'(*)

0.0000

- 1906

.300

. 386

.4468

.547

.618

.674

.7175

.783

.8273

.859

.8841

.904

.9178

.9288
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TABLE 3.2 Empirical Parameters and Probabilities

for a 450 Incident Beam

Slab Thickness R b B' RR'(co)
M.F.P.

0. 0.000 1.32 0.000 0.000

.125 0.068 1.20 0.000 .1906

.25 o.1064 1.09 0.015 .300

.375 0.130 0.99 .033 .386

.5 0.149 0.92 .050 .4468

.75 0.170 o.80 .o86 .547

1. 0.1793 0.70 .121 .618

1.25 0.185 0.62 .157 .674

1.5 o.1861 0.555 .191 .7175
2. o.1875 0.45 .253 .783

2.5 0.1881 0.368 .305 .8273

3. o.1882 0.311 .312 .859

3.5 0.1883 0.266 .310 .8841

4. 0.1883 0.227 .30 .904

4.5 0.1884 0.197 .29 .9178

5. 0.1884 0.171 .28 .9288
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The data fits were performed analytically, first

evaluating slope parameters a and b, from which the

intercepts A and B are easily found. They are not "best"

fits, as for example least squares fits in some sense

are. That the errors are in fact very small can be

seen from a sample calculation of RT(k) given in

Table 3.3.

The fitting equation is

RT(k) ce 1.566 + 0.56 exp (-.446 k) (3.10)

TABLE 3.3 Accuracy of Correlation for EtL-2., Cosine Source

RT(fitted)

1.9244

1.7955

1.7129

1.6600

1.6262

1.6045

1.5907

1.5817

1.5760

1.5724

RT-RT(fitted)

0.0034

0.0087

-.0012

-.0026

-.0020

-.0015

-. 0008

-.0003

-.0001

-.0001

Relative
Error, %

0.18

0.48

-. 07

-.16

-.12

-.09

-. 05

-. 02

-.006

-. 006

k RT

1

2

3

4

5

6

7

8

9

10

1.9278

1.8042

1.7117

1.6574

1.6242

1.6033

1.5899

1.5814

1.5759

1.5723
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It has been remarked in Section 2.1.4 that the

k-th collision flux shapes are assumed to be of the

same form for different energy groups, with regard to

predicting multigroup downscattered transmission and

reflection. The flux shape within a mean free path

of the surface is of most importance, due to the E2
factors in the leakage integrals of Equation (2.27).

The greatest change in flux shape occurs for inci-

dent beams at large angles to the slab normal. First,

second, and fifth collision fluxes are shown in

Figures 3.11, 3.12, and 3.13, for a 450 incident paral-

lel beam. These cases were used to obtain reflection

correlations only. It is difficult to estimate how

much of a change can be tolerated in Mt-values for a

neutron transfering to another group as a result of a

single collision. A 50% change would seem to be reason-

able. As most materials have slowly varying cross

sections, errors here should be small.

Hydrogenous materials are most difficult tests of

reflection and transmission calculations for numerous

reasons. Results for transmission through polyethylene

are discussed in Section 3.2.
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FIGURE 3.11
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3.1.2 Comparison With Markov Matrix Method

The Markov Matrix Method of Eaton and Huddleston 8

has been discussed in Section 2.1.1 with regard to its

relationship to methods developed in this work. At

this point several comparisons can be made with their

calculations.

The first problem to consider is that of a

parallel single-velocity neutron beam incident perpen-

dicular to an infinite plane slab for which ZtL = 0.5 and

c = zs/t = 0.8. The exact number of Markov states used

is not given, although the comment is made that several

values of s = L/n (n = No. of Markov states inside the

slab) were used, and results quoted obtained by extrapo-

lating to s2 - 0. For a similar problem, s = T/30 was

used indicating about 15 interior points for ktL=0.5.

The present work used the TAR(N) code, with just three-

point Gaussian quadratures to evaluate all integrals in

Equations (2.27) and (2.28). Interior fluxes were calcu-

lated at six interior points plus both surfaces. Table 3.4

compares numerical results. The agreement is excellent,

differing at most by a few digits in the fifth decimal

place.
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Table 3.4

Quantity

T
5

Tk

k.6

Total Transmission

R
5

Rk

k=6

k6
k=6

Total Reflection

A1

A
2

A 3
A4

A
5

Ak

Total Absorption

Markov Matrix Method Versus TAR(N) for ztL=0.5, c=o.8

Markov Matrix Method TAR(N)

0.60653 0.06053

0.08383 0.08383

0.03036 0.03040

o.01094 0.01093

0.00393 0.00392

0.00141 0.00140

0.00078

0.73778

0.09154

0.03137

0.01108

0.00395

0.0014 1

0.00078

0.14013

0.07869

0.02788

o.00996

0.00356

0.00128

0.00072

0.12209

0.00078

0.73779

0.09155

0.03145

0.01107

0.00394

0.00141

0.00078

0.14020

0.07869

0.02788

0.00993

0.00355

0.00127

0.00070

0.12202

T 1



Total albedos were also obtained for ZtL = 1,

zszt = 0.9, for a parallel beam incident at a = 400

and 600 (cos 8 = 0.7547 and 0.5). The results com-

pare as follows;

Markov Matrix Method TAR(N)

Total reflection, 400 0.3185 0.31863

Total reflection, 600 0.3935 0.39355

The Markov Matrix Method results are for 30 sublayers

while 3-point Gauss quadratures were used in TAR(N) to

find fluxes at just 8 points.

Computing time on the IBM 7094 at the M.I.T.

Computation Center required for these TAR(N) results

is about 9.6 seconds to obtain the Gauss quadrature

weights and abscissas, plus 4.4 seconds for each case

having a different source incident angle or angular

distribution.
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3.1.3 Comparison with the Invariant Imbedding Method

Bellman and Kalaba2 7 have applied the Invariant

Imbedding Method to the calculation of monoenergetic

reflection from plane, infinite slabs. Seven incident

angles chosen by Gaussian quadratures are used to ob-

tain differential neutron reflection, from which may

be obtained total reflection by summing contributions

(Gaussian weighted) at all angles. That is, let

, e, x) Specific intensity of reflected radi-

ation in direction e per unit area on

the face of a slab of thickness x due

to a unit intensity beam at angle * ,

the area taken perpendicular to the

slab;

a (1 x) = Total reflection due to a unit inten-

sity beam at angle t, incident on a

slab of thickness x;

wi Gaussian quadrature weight for exit

angle e).

Then:

r/2 7
a x) p(* ,e,x) sin ed9 w p(.,5 ei, x)

0i=1

(3.12)
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Table 3.5 summarizeS the comparisons with TAR(N).

TABLE 3.5 Total Albedo for ZtL = 1.0, 0 Z t = 0.9

Beam Angle, C, Total Albedo

Degrees os * Invariant TAR(N)
Imbedding

13.0 0.97455395 0.27159 0.27199

29.4 o.87076559 0.29230 0.29231

45.3 0.70292258 0.33175 0.33179

60.0 0.50000000 0.39365 0.39355

72.7 0.29707742 0.47471 0.47507

The point of the comparisons in this and the

previous section is that TAR(N) gets accurate results

using many fewer points than are required by the Mar-

kov Matrix Method, due to the built-in superiority

of Gaussian quadratures for numerical evaluation of

integrals. No extrapolations to s2 -, 0 are needed,

and the method is applicable to slabs at least five

mean free paths thick (the Markov Matrix Method can-

not go beyond about one mean free path thickness).

While the Invariant Imbedding method is ideal for

much thicker slabs, it cannot analyze the fate of

neutrons as a function of collision number.
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3.1.4 Accuracy of the Calculations

A measure of the numerical accuracy of a given

problem can be taken as

Error = z= l - (Tk + Rk + Ak) = 1 - T - R - A

k=o 
(3.13)

The error depends upon both the average point spacing

in mean free paths, and the distribution of points. It

has been observed that results tend to be much poorer

if the points at which fluxes are calculated are not

evenly distributed. Their distribution is fixed by the

order of the quadrature formula and the slab thickness.

Figure 3.14 illustrates the variation of a with average

point spacing. It can be seen that A varies by a fac-

tor of as much as 103 depending on distribution. Sev-

eral cases had A e10~4 for average point spacings

between 0.1 and 0.3 mean free paths. Round-off errors

will not likely be important except for A<10-5. The

upper bound shown in Figure 3.14 indicates the maximum

error likely to be found for a given average point

spacing.
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3.2 TRANSMISSION OF FISSION NEUTRONS BY POLYETHYLENE

Reference results for total fast neutron dose trans-

mitted through a polyethylene slab have been obtained in

three ways. Monte Carlo calculations by Allen et a128

give a dose transmission factor of 0.0014 for 30.5 cm

of polyethylene of p = 0.97 density. For comparison

with other results at r = 0.907, this thickness can be

scaled by the density ratio 0.97/0.907 to give 32.6 cm.

Invariant Imbedding results for 32.6 cm of r = 0.907

polyethylene have been obtained by Mathews1 7 and by the

author using the STAR code. Mathews used two angular

groups and four and five energy groups over 0.1 to

10.0 MeV to obtain factors of 0.0018 and 0.0015,

respectively. The author used two angular groups and

four energy energy groups over 0.1 to 10.0 MeV to

obtain a fast neutron dose transmission factor of 0.0026.

The neutron cross sections used in all the STAR calcu-

lations came from the GoldsteinC9 set. However, the

energy points selected by Mathews are unknown, and are

not likely to be the same as used by the author. This

must be the reason for the four-energy-group results not

agreeing closely.

The MEDIPORT code was used to calculate the trans-

mission matrix T for a 5 cm thick slab of polyethylene,

using the transmission probability method as described

in Chapter II. Then the transmission matrix for two
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5 cm thick slabs was obtained from Equation (2.6):

T T2 (11 + R1* R2 T1 + ( * 2 11+ (2.6)

2
which simplifies somewhat as T 2' 1 E2 = R1 R 1 E2

-1 (.1 R+ , 2 + R4 + .) (3.14)

Neutron cross sections were taken from the Bondarenkol6

set. Eight groups spanned 0.1 to 10.5 MeV. Transport

corrections were applied for scattering collisions

leaving a neutron in the same energy group, but not

for transfering to another group. This is equivalent

to assuming isotropic scattering between groups - not a

good assumption for hydrogenous materials. However, none

of the materials in the beam ports of the M.I.T.R. or

the Brookhaven M.R.R. contain hydrogen. For the purposes

intended for MEDIPORT, the additional complication of

transport-correcting group transfers was not deemed

necessary.

The transmission matrix T for 10 cm of polyethylene

was obtained in three orders of approximation.

T (0) +T + T (2); (3-15)
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(1 2
T T R 2, (3.16)

T () T, R14 T.2

Table 3.6 gives the transmitted fluxes given by the

individual terms of T. The fast neutron dose transmission

factor at 10 cm thickness changed from 0.0552 to 0.0558,

up to about 1%, by including fluxes coming from T(l) and

T(2). It is apparent that multiple reflections at the

interface between the slabs are not important in terms

of transmitted fast neutron dose. This makes physical

sense in that most of these scattering collisions take

place with hydrogen, which seriously degrades the neutron

energy at each collision. Table 3.6 bears this out.

The fluxes from T(l) and T(2) are greatly depleted in

the highest energy groups, and are largest in the lowest

energy groups.



TABLE 3.6 Contributions to Fluxes Transmitted by 10

cm Polyethylene

Group Range, MeV Flux per Unit

6.5 -

4.0 -

2.5 -

1.4 -

o.8 -

0.4 -

0.2 -

0.1 -

10.5

6.5

4.0

2.5

1.4

0.8

0.4

0.2

382

1460

2070

2100

1460

1010

752

572

Lethargy, lo- 5 n/cm2 -sec

0.062

1.35

7.06

14.6

20.7

22.8

22.5

20.0

0.00001

0.0010

0.016

0.059

0.141

0.235

0.296

0.298
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The flux and dose transmitted through k slabs of

polyethylene each 5 cm thick have been obtained using

the zeroth approximation to the transmission matrix:

(0) k
T (k slabs) T . (3.17)

-l (.7

The results are shown in Figure 3.15. The error of this

approximation is believed to be very small, a few per-

cent at most. The reason is that the highest five energy

groups contribute about 85% and 95% of the dose trans-

mitted through 10 cm and 30 cm respectively. Hence pile-

up of multiply-reflected neutrons in the lowest energy

groups will have little effect on transmitted dose.

Better agreement with the Monte Carlo result can be expec-

ted if transport corrections are applied to group trans-

fer cross sections. Even so, the present result is very

little worse than the 4-group STAR calculation, as com-

pared to the Monte Carlo dose transmission factor through

32.6 cm of polyethylene.

The IBM - 7094 computer time used by MEDIPORT was

about 0.06 minute for eight energy groups. STAR used

1.37 minutes for a four group calculation not counting

2.44 minutes required to generate input with CSDP on the

same computer. In view of the speed of the MEDIPORT cal-

culations, the accuracy attained looks very encouraging.
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3.3 TRANSMISSION OF FISSION NEUTRONS BY D20

The M.I.T.R. Medical Beam Port contains 53.34 cm

of D2 0, while as much as 18.0 cm of D20 may be used in

the treatment ports at the Brookhaven M.R.R. Heavy

water is also an excellent moderator, which makes its

contribution to fast neutron attenuation a major portion

of the total attenuation through these beam facilities.

In view of this, calculations have been performed for an

idealized D2 0 shielding problem in order to assess the

accuracy of the methods used by MEDIPORT.

Neutrons from an isotropic fission source are inci-

dent upon a plane, infinite slab of )20. The slab thick-

ness is variable up to 40 cm. The shielding effective-

ness of the slab is to be given in terms of the total

fast neutron dose transmitted through the slab as

measured at the surface of a 30 cm thick infinite slab

of tissue (see Section 2.3).

Neutron cross sections for oxygen, used by STAR and

MEDIPORT, and for deuterium used by MEDIPORT, have the

same sources and corrections as given in Section 3.2 for

the polyethylene problem. For STAR, deuterium angular

cross sections a(9) barns/steradian were picked off

from the curves given in BNL-40030 and converted to

Legendre polynomial form with LPF (Appendix A.3). Table

3.7 gives the coefficients F,(E) of the expansion in

Legendre polynomials P (cos E):
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a (E) 7

a(e) 1 1 + (2e + 1) Fe (E) Pe (cos 9) (3.18)

e-1

Also shown are the total elastic scattering cross sections

as(E) derived from the angular cross sections, and the

31
corresponding values taken from BNL-325. It is believed

that the BNL-325 values for as(E) are more accurate.

They were used in preparing input for STAR.

A large gap exists in experimental angular cross

section data between 5.5 and 14.1 MeV. Upon plotting

the first few Fe (E), one finds a reasonable variation

with neutron energy E from which values at intermediate

energies may be linearly interpolated. These values are

also given in Table 3.7.



TABLE 3.7 Angular Scattering
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Cross Section for Deuterium (.100(-5)0.100x10-5)

E,MeV BNL-325/Derived F1 (E)

0.100

0.200

0.500

0.750

1.000

1.95

2.45

3.27

4.50

5.50

5.98

7.32

8.09

8.94

9.89

10.93

14.10

3.35/3.34

3.3/3.23

3.2/3.01

3.07/2.75

2.95/2.86

2.60/2.52

2.40/2.39

2.12/2.13

1.772/1.57+.2

1.55/1.63+.2

1.45

1.232

1.126

1.031

0.936

0.852

F 2(F) F3 (E)

.530(-2) .187(-3)

.123(-1) .535(-3)

.788(-1)-4*382(-1)

-. 494(-1)

-. 142

-. 278

-. 189

-. 257

-. 139

.151(-2)

.419(-1)

.. 169

.232

.243

.264

.270

.275

.279

.280

-1)-.132(-2)

-. 430(-1)

-. 576(-1)

-. 334(-1)

-. 463(-1)

-. 487(-1)

'-.359(-1)

-. 373(-1)

-. 430(-1)

-. 460(-1)

-. 494(-1)

-. 532(-1)

-. 576(-1)

F5 (E) F6(H)

-. 778(-4)

-. 942( -4)

.151(-1)

-. 190(-2)

.181(-1)

.280( -1)

.131( -1)

.141( -1)

.122( -1)

.863(-2)

.105(-1)

.160(-1)

.187(-1)

.22(-1)

.257(-1)

.297(-1)

.530(-3)

.434(-3)

-. 425(-2)

-. 687(-3)

-. 752(-2)

-. 126(-1)

-. 458(-2)

-. 108(-2)

".153(-2)

-. 851(-3)

-. 107(-7)

-. 128(-3)

.844(-3)

.242(-3)

.305(-2)

.556(-2)

-. 111(-2)

-. 247(-2)

.134(-2)

.712(-3)

-. 703(-1) .425(-1) .238(-1) .113(-1)

.294(

.117

.159

.171

.186

.221

.223

.222

.220

.218

.216

.214

.212

.278 .208
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The MEDIPORT code was used to calculate the trans-

mission matrix T for a 10 cm thick slab of D2 0, using the

transmission probability method described in Chapter II.

Then the transmission matrix for two 10 cm thick D2 0

slabs was obtained in zeroth and first approximation in

the same way as for polyethylene (Section 3.2).

Table 3.8 gives the fluxes transmitted through two

10 cm thick slabs using these approximations. The first

approximation contribution to dose attenuation through

20 cm of D2 0 amounts to only a 1.9% increase over the

zeroth order term. As with polyethylene, the multiply-

reflected neutrons have lost much of their energy.

Relatively more reflected neutrons "pile up" in the lower

energy groups because D2 0 is not as good a moderator as

polyethylene.

Figure 3.16 gives the fast neutron dose attenuation

factor through D2 0 given by the zeroth zpproximation to

the transmission matrix, and compares this with Invariant

Imbedding results from program STAR.
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TABLE 3.8 Contributions to Fluxes Transmitted by

20 cm D2 0

Group Range, MeV Flux per Unit Lethargy,

T(O)

10-5 n/cm2-sec

T(O)

6.5 - 10.5

4.0

2.5

1.4

o.8

0.4

0.2

6.5

4.0

2.5

1.4

o.8

0.4

0.1 - 0.2

144

562

786

706

533

585

594

596

0.133

2.35

7.24

10.5

12.9

20.1

30.0
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CHAPTER IV

COMPARISON WITH EXPERIMENT AT THE BROOKHAVEN

MEDICAL RESEARCH REACTOR

4.1 THE MRR MEDICAL FACILITY

The Medical Research Reactor 3 2 is aheterogeneous,

tank-type reactor designed exclusively for medical and

biological studies. It is water cooled and moderated,

with a graphite reflector. Seventeen plate-type fuel

elements with an active length of 23 5/8" fit inside a

23 1/2 inch I.D. reactor vessel. Power levels up to

5 MW are available. Two shielded rooms at opposite sides

of the core are equipped with special treatment ports

and shutters. A broad beam experimental area located at

the end of a thermal column is used for whole-body irradi-

ation studies. Three 4-inch horizontal thimbles traverse

the core.

The treatment ports have provision for changing the

thickness and type of materials in the neutron flight

path, in order to adjust relative strengths of fast,

epithermal, and thermal neutrons, and gamma rays. Drain-

able D2 0 tanks permit adjusting the D20 moderator

thickness from 0 to 18 cm. At all times there is a

minimum of 21.6 cm of graphite and 34.3 cm of bismuth

between the core and the point of irradiation.
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"Epithermal" beams can be produced by filtering out the

thermal neutrons with a cadmium or lithium filter.
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4.2 EXPERIMENTAL MEASUREMENTS

A rather extensive survey of the production and use

of epithermal neutrons for neutron capture therapy has

been reported by Fairchild. His experiments consisted

mainly in measuring (by Au and Na foil activation) thermal

neutron flux along the axis of a cylindrical, tissue-

equivalent phantom. The phantom was 16.6 cm dia., 23 cm

high, with 0.5 cm thick polyethylene walls. It was

suspended directly in. front of the beam port, with the

cylindrical axis on the beam port axis.

The relationship used for obtaining the thermal

neutron flux was Oth = Abare - 1.02 OCd cov.' where the

1.02 factor corrects for resonance absorption in the

0.76 mm thick cadmium covers.

Epithermal neutron flux per energy decade was

derived from cadmium ratio data as follows:

9th Red C
(0 -(Rc - 1) a(E)dE/E/(2.3 a (th)

# per energy decade 1.02 3a a

0.5 ev
(4.1)

Red - bare foil activation / 0.76 mm Cd-covered foil

activation.
32 2138 237 239

Threshold detectors S , U , Np , and Pu were

used to measure integrated fast flux above 3, 1.5, 0.6 and

0.01 MeV, respectively. Fast neutron dose for tissue

in air was obtained from the threshold detector activ-

ations with the formula (US NBS 1957):



Dose = L0 .63 (fPu - ANp) + 2.23 (PNp - OU) + 3.07(U - 0 )s

(4.2)+ 4.04 0 X 10 ERGS/GM,

assuming a 1/E neutron energy distribution.
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4.3 COMPUTER SIMULATION

The reactor core can be approximately replaced by

an infinite, plane source of angular distribution and

strength given by Equations (3.1) and 3.3). To obtain

po, pl, and X, the core was homogenized as an equivalent

cylinder, 24.4 cm radius by 60.0 cm height. Assuming

3.1 x 1016 fission/sec. per Mw, and v . 2.43 fast neutrons/

fission, then at a power of 5 Mw the average source strength of

fission neutrons in the core is

16
- 3.10 x 10 fiss/sec/Mw x 2.43 fast neut./fiss X 5 Mw

q r(24.4)2 60.0 cm3
(4.3)

3.35 x 1012 n/cm3-sec.

and

q -1.68q = 5.63 x 1012 n/cm3 -sec (1.68 is measured

peak/ avg. flux ratio).

Assuming that the fast neutron source follows the thermal

neutron flux, which is 7 x 1013 at r 0 0, and 5.40 x 1013

at r = 31.8 cm, then the radial buckling, B2 , is

approximately given by

$(r) ~0a cos Br (4.4)

B - cos - (5.40 x 1ol3/7.0 x 1013)/31.8 . 0.0210 cm-

(4-5)
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p0 -5.63 1012x cos (.0210 x 24.4) x 0.68 -

8.31 x 10 n/cm 3-sec
(4.6)

p1 4 (.0210) tan (.0210 x 24.4)p 0 - 0.065 x lo4n/cm -sec

The neutron flight path from the reactor core edge

to the phantom passes through numerous cylindrical layers

of materials. Some grouping together of layers can be

made in order to simplify the calculations. Negligible

error is incurred (an example is discussed in Chapter V)

The regions are:

Table 4.1 MRR Geometry, all 18.0 cm D20 in place

Actual Simplified
Material Thickness, cm. Material Thickness, cm.

C 21.37 C 21.37

Air 2.54 Bi 19.05

Bi 19.05 Air 6.54

Air 4.0 D20 18.0

D2 0 12.0 Air 20.4

Air 6.4 Bi 10.5

D2 0 6.0 Air 48.0

Air 14.4

Bi 7.5

Air 48.0

Bi 3.0
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Multigroup core cross sections and mean free paths

X = 1/Zt were obtained using homogenized atom densities

and volume fractions of

= 0.00172

- 0.00523

= 0.00709

- 0.0557

U-235 - 0.036

fAl

fH2 0

f C

= 0.087

= 0.212

- 0.665

1.000

Basic cross section data come from the Bondarenko16

set. The macroscopic thermal neutron absorption and

scattering cross sections for tissue-equivalent fluid

were calculated as Za - 0.023 cm~1 and Ys - 3.06 cm-1

for the following composition:

Weight Fraction, %

70.9

15.6

9.73

3.54

0.15
0.10

134Schermer and Brownell have measured total cross

sections for tissue, from 0.01 to 1 ev. They find

N U-2 35

N
Al

NH20

NC

Element

0

C

H

N

Cl

Na
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zt (tissue) - 1.1 x zt(H2 0). That is, Zt(tissue at

0.0253 ev) - 3.45 cm. However, the diffusion coefficient

D and the diffusion length L have not been measured for

tissue. In order to obtain D and L from neutron cross

sections, the average cosine of the scattering angle

is needed. The equations are:

--2- 3ta(- )1- [4/ 5 - I(1 - )
L t

2
D Z La

The structural details of atoms in tissue determine ,

which has not been measured. Hence a reasonable solution

adopted was to use the diffusion parameters for pure water -

D=0.17 cm and L = 2.76 cm - because Z a(tissue) is within

4% of 7a(water) and Z (tissue) is within about 10% of

zs(water).



138

The computed fast neutron spectrum in the Reference

Case (18 cm D2 0 in place) was normalized to match the

fast neutron dose rate of 182 rad/min given by Equation

(4.2). The lateral leakage of thermal neutrons diffus-

ing through the many regions from the core to the phantom

was adjusted to match the measured thermal neutron flux

at the surface of the phantom. This flux is

0 0 =4.06 x lo11 n/cm2 -sec. Section 2.2 discusses the

lateral leakage leakage parameter =:2 .

Figure 4.1 indicates the effect of D2 0 removal

on the relative thermal neutron flux in the phantom

(fluxes are normalized to f0). The measured fluxes

have relaxation lengths which are quite close to those

of the computed curves. In general, the measured

fluxes attenuate slightly slower than predicted. This

may be due to epithermal and fast neutrons penetrating

the cadmium-wrapped sides of the phantom. Fairchild

found that the relaxation length of thermal neutrons

in a phantom totally wrapped in 1.5 mm of cadmium

dropped from 6.7 cm to 4.7 cm when an additional 7.6 cm

of lithiated paraffin was added at the sides and end of

the phantom. The experimental results shown in Figure 4.1

were obtained using 1.5 mm cadmium on the sides and end

of the phantom, with the front surface bare. Due to the

relatively large thermal neutron flux penetrating the

bare front surface of the phantom, the effect of epi-

thermal and fast neutrons entering the sides of the

phantom would not be expected to be very large.
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But for the cases using lithium filters placed on the

front surface of the phantom, very few thermal neutrons

get into the phantom. The shape of the thermal neutron

flux curve is then determined mainly by the epithermal

and fast neutrons which thermalize inside the phantom.

A significant contribution is made by neutrons pene-

trating the sides of the phantom.

Figure 4.2 compares predicted and measured relative

thermal neutron fluxes in the phantom for the reference case

and for filters of 2 mm Li (7.52 atom % Li6 ),
1 mm Li (95.6 atom % Li6), and 3 mm Li(95.6 atom % Li6 ).
The deviation from exponential behaviour at depths great-

er than about 4 cm is caused by neutrons penetrating the

sides of the phantom. The predicted fluxes for 1 and

3 mm Li (95.6 atom % Li6 ) are somewhat low near the front

surface of the phantom. Part of this discrepancy is due

to using exactly 1 and 3 mm of Li, whereas in fact these

dimensions turned out to be nominal only. The lithium

sheets used in the experiments averaged about 10% thin-

ner than nominal rating.

An idea of the magnitude of the thermal neutron

flux created by epithermal and fast neutrons penetrating

the sides of the phantom can be obtained from the

difference between the computed and measured flx. This

difference is also shown in Figure 4.2, for the 3 mm Li 6

filter cases. It turns out to be very large, greater

at most depths than the thermal neutron flux generated

by neutrons entering the face of the phantom.

The effect of D2 0 removal on fast neutron dose
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rate in tissue at the front surface of the phantom is shown

in Figure 4.3, relative to the dose rate with all 18 cm

D2 0 removed. The agreement between simulation and exper-

iment is excellent. Section 2.1.5 discusses the approx-

imations involved in the simplified calculation of

neutron spectra used for these results. Experience with

the latest spectrum calculation used by MEDIPORT indicates

that the simplified spectra were slightly over-attenuated.

Somewhat better agreement with dose attenuation for 18 cm

D2 0 may be possible using the latest neutron spectrum

calculation.

In conclusion, these studies indicated that the

methods used in MEDIPORT gave reasonable results as to

the effect of changes from a reference condition. Consider-

ing the differences between the experimental measurements

and "clean" calculations, overall agreement between

simulation and experiment was quite satisfactory.
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CHAPTER V

RESULTS FOR THE M.I.T.R. MEDICAL FACILITY

5.1 INTRODUCTION

The M.I.T.R. Medical Beam Port is shown in Figure

5.1. A brief description of the entire Medical Facility

shown in Figure 1.1 has been given in Section 1.1.

Neutrons emerging from the portal have traversed slabs

of heavy water, bismuth, and aluminum, plus a few air

gaps. The dimensions and composition of these regions

are given in Table 5.1 starting at the core-reflector

interface (i.e., at the bottom of the fuel). Also given

are simplified structures obtained by grouping nearby

layers together. An example will be given later in this

chapter to confirm that the error resulting from regroup-

ing layers is only a few percent. In slab geometry, the

air gaps may be omitted in epithermal and fast neutron

transmission calculations. The gaps must be accounted

for in thermal neutron flux calculations, due to the

lateral loss of thermal neutrons absorbed by the beam

port walls.
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5.2 COMPUTER SIMULATION

The reactor core can be approximately replaced by

an infinite plane source with strength and angular dis-

tribution given by Equations (3.1) and (3.3). The

equivalent homogenized core is a cylinder with radius

and height of 41.9 cm and 60.0 cm, respectively.

Assuming 3.10 x 1016 fission/sec per MW, and

1d = 2.43 fast neutrons/fission, then at a power of

5 Mw the average source strength of fission neutrons

in the core is

- 3.10 x 1016 fiss./sec/Mw x 2.43 fast neut./fiss. x 5Mw
q= 2

7r(41.9) 60

(5.1)

= 1.136 x 1012 fast neutrons/cm3 - sec

The radial and axial flux distributions in the core

are given by Mathews35 . Averaging the Cu and Co foil

activation data for each fuel ring gives a radial aver-

age to maximum flux ratio of 0.966. The axial average

to maximum flux ratio is 0.899 assuming a cosine

axial flux distribution and using the measured axial

buckling of 0.000710 cm . The maximum fast neutron
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source strength is then

- q/(O.966 x o.899) = 1.308 x 10 2 fast neut./cm3-sec

(5.2)
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The magnitude of q at the core-reflector interface

(30 cm below the axial midplane of. the core) is

q30 = qmax
cos [Baxial(30)] = 0.912 x 10 12fast neutrons/cm3-sec

(5.3)

The neutron source for the Medical Beam is very wide at

the core-reflector interface. Because of this, the

effective source strength is radially averaged:

p = 0.966 (0.912)10 12
12 3-0.880 x 10 fast neutrons/cm -sec

(5.4)

and

p1 - (B tan [30B] )p = 0.0241 X 1012 fast neutrons/cm3-sec

(5.5)

The volume fractions of core materials are: 4

fD2 
=

fAl

f U

0.9085

- 0.088o

= 0.0035

1.0000

Combining these volume fractions with group-averaged

neutron cross sections gives
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1/t (E) - fD20 7 (D 2 0) + f It(Al) + fU t

The neutron source in each energy group and angular group

is given by Equations (3.1) and (3.4) except for a multi-

plicative factor Xk which is the fraction of fission

spectrum neutrons emitted within the group. For example,

the four energy group, two angular group neutron source

used with STAR is:

Energy
Group, k

1

2

3

4

Boundaries
MeV

0.1 - 1.822

1.822- 5.05

5.05 - 8.278

8.278-10.0

Xk Ll(k)

10 1n/cm2 -sec

0.5654

0.3701

0.04469

0.003579

9.15

10-37

2.010

0.1930

L2(k)

010n/cm2-sec

28.4

32.9

6.55

0.639
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TABLE 5.1 Medical Beam Port Geometry for Shutters Open

Actual Geometry

Material Thickness
(cm)

D2 0 33.02

A1 0.317

Bi 3.17

Al 0.3.17

D 2 0 1.27

Al 0.317

Bi 3.17

Al 0.317

D2 0 1.27

Al 0.317

Bi 3.17

Al 0.317

D2 0 17.78

Al 0.953

Void 11.60

Al 0.317

Void 98.5

Al 0.317

void 34.6

Bi 3.33

Bi 13.49

Simplified for MEDIPORT Simplified for STAR

Material Thickness Material Thickness
(cm)

D2 0 34.29 D2 0 34.29

Bi 11.43 Bi 11.43

D2 0 19.05 D2 0 19-05

Al 1.588 Al 1.588

Void 144.7 Bi 16.82

Bi 16.82
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MEDIPORT spectrum calculations were obtained using

the neutron cross section set tabulated by Bondarenko.

It consists of a thermal group plus 25 epithermal and

fast neutron groups from 0.215 ev to 10.5 MeV. The

groups have uniform lethargy widths up to 0.1 MeV

(3 per energy decade). For simplicity, uniform lethargy

width cross sections from 0.1 MeV to 10 MeV at three

per decade were derived from the given group cross

sections using flux-weighting to preserve the total

reaction rate. The intra-group flux per unit lethargy

f(u) was assumed to be a constant below 2.15 MeV, and
a fission spectrum at higher energies. The "overlap"

or fraction of the new group flux coming from each

old group flux is:

Fraction of old group k in new group j -

4 uj+1

f(u) du/ ujf(u) du (5.6)

where

= uk if u ( uk j u+1; uk+1 if u < uk+1 <j+1

U u if uk < U +l; - uj+1 , if uk < uj+1 uk+1

Suk+, otherwise. = uk+, otherwise.

The conversion to uniform lethargy group cross

sections a is:
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= 0.232 a + 0.768 a2

a2 = 0.122 2 + 0.636 a + 0. 242 a

a = 0.556 a4 + 0.444 a

(5.8)
a = 0.288 a5 + 0.712 a645

a5 0 193 a6 + 0.807 a7

A

a 6 = 0.0964 a7 + 0.9036 a8

More recent results have used the non-uniform groups

as given by Bondarenko.

Neutron cross sections used by STAR have come from

two sources. Data for H, C, and 0 came from a tabu-

lation by Goldsteir.2. Angular elastic scattering

cross sections for D, Al, and Bi were taken from

the curves in BNL-400 and fitted to eight-term

Legendre polynomial expansions using LPF(Appendix A.3)

Equation (3.18) gives the expansion formula. Table 3.7

lists the coefficients in the expansion of the angular

scattering cross section for deuterium. The total

scattering cross section given in BNL-325 31 for D,

Al and Bi was used rather than the values derived

from the integral of the angular cross sections. Total

and inela tic scattering cross sections were taken from

BNL-325 also. For Al and Bi, the energy spectrum of
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inelastically scattered neutrons was also required at

discrete energies Eie In Mathews' 17 notation:

g , (Ek, Em) t he probability that an

inelastically scattered neutron with incident

energy Ek is left with exit energy Em. (5.9)

The normalization on gin is:

Sgini (EkEm)dEm = 1 (5-10)

The Bondarenko cross section set gives the inelas-

tic scattering cross section ain(k - m) for scatter-

ing from group k to group m and the total inelastic

scattering cross section ain. The relationship to

the g-function is

f$ (Ek) dEk fgini(Ek? Em) dEm " in (k - m)/on
group group m

(5.11)

A reasonable approximation to the g-function was

obtained by graphical differentiation of a smooth

curve passing through the ratios ain(k - m)/aGi. The

normalization condition

10MeV

gini (Ek, Em) dEm - 1 (5.12)
0. 10MeV
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was satisfied automatically by modifying the CSDP

code (Appendix A-5). Equation (5.12) implies oin

is the total inelastic cross section for a neutron

with energy Ek going to Em, for Em > 0.10 MeV.
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5.3 EPITHERMAL NEUTRON BEAMS

A reduction in thickness of moderating material

in the beam flight path is the simplest method by

which the beam intensity in the epithermal region can

be increased. Similarly, filtering out a large pro-

portion of the thermal neutrons by means of a thin layer

of Li6 or Cd is a simple device to raise the average

neutron energy, and hence the penetrating power of the

beam. These two effects have been examined by two

series of five cases (without, and with, a 1m thick

layer of L6 preceding the phantom), for 0, 5, 10, 15,

and 19.04 cm of D2 0 removed out of the total of 53.34 cm

presently in the M.I.T.R. Medical Beam flight path.

The phantom is a tissue-equivalent cylinder of 16.6 cm

diameter by 15 cm long. From Figures 5.1 and 5.2 it

can be seen that removing D2 0 yields relatively large

increases in thermal neutron flux at depths greater

than 2 cm for modest changes in incident flux. Adding

a Imm thick Li6 filter lowers markedly the incident2
thermal neutron flux, and greatly improves the pene-

trating power and depth distribution of the beam at

the cost of a small reduction in thermal neutron flux

at moderate depths.

Figs. 5.3 and 5.4 compare the same cases in terms

of the ratio of therapeutic dose from B10 (weight

fraction 50 x 10-6) to total background dose from

fast neutrons, capture gamma rays, and protons from
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14 14
N (n,p)C . From this point of view, removing D2 0

is not as beneficial as it appears to be from Figs. 5.1

and 5.2 since the fast neutron dose component of the

background dose increases very rapidly. However, the

Li6 filter yields a very flat dose ratio curve over

a wide range of depths, in contrast to the rapid fall-

off of the existing beam (Case 1). Should it be possi-

ble to raise the B10 concentration in tumor tissue

above a weight fraction of 50 X 10-6, the filter

arrangement looks very promising.

Dose ratios given in Figures 5.2 and 5.4 are

somewhat pessimistic. The first collision dose for

Case 1 was calculated to be 92.7 rad/min at the sur-

face of the phantom. Gamma rays contribute 41.8 rad/min

and 34.0 rad/min come from N14(n,p)Cl4 reactions, for

a total background dose rate of 168.5 rad/min. Calcula-

tions using STAR will be discussed later in this

chapter which indicate a smaller first collision dose

rate. In addition, a revised first collision dose

calculation gives reduced dose rates. However, rela-

tive results for the various cases will not be affected

by a change in total background dose rate.

First collision dose rates were calculated similarly

to the method given in Section 2.3.1. The only differ-

ence was in the calculation of the average energy loss

per collision. The method used assumed that all neutrons

in group J(u 4 u 4 uj+ 1 ) had an energy corresponding
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-1
to a lethargy u - (u + u That is,

E= - 10 exp(-ugj). Then assuming the average lethargy

loss per scattering collision to be constant for all

groups, and given by 5 , then the average energy

after collision is E 10 exp(-ug+) The aver-ex i W ex
age energy lost becomes E - E ' - exp

The main difficulties with this method are that i

depends on energy in most materials (except hydrogen),

and that the neutron groups are too wide for this

averaging to be accurate.
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5.4 THE USE OF NEUTRON FILTERS

Some of the cases included in this section are

similar to those reported in Section 5.3. The differ-

ences are mainly due to improvements in the calcula-

tional methods. First collision dose rates are cal-

culated as described in Section 2.3.1. Inelastic

scattering processes are accounted for in an improved

manner, but the entire spectrum calculation is some-

what simpler than the method ultimately developed

(Section 2.1). The radial variation of neutron flux

in the phantom is assumed to be flatter than a cosine

distribution because experimental measurements have

shown this. A reasonable approximation is the

following:

f(r) # cos ( )/4 (5.13)

R' is the extrapolated radius (8.6 cm) and r is the

radial coordinate. The neutron spectrum was normalized

to the measured24 flux per unit energy of 3.88

X 1012 n/cm2 - sec - MeV at 4.90 ev and 5 Mw. The

measurement was derived from the cadmium ratio for

gold foils.

The cases listed in Table 5.2 cover a wide

variation in beam port materials. Neutron "filters"

of Li, Li6 , Cr,V, Al, and C are included. Case 10 is

included for completeness. It represents the effect
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of replacing all hydrogen in tissue with deuterium.

It can be seen from Figure 5.5 that the thermal

neutron flux down the axis of the Medical Beam varies

considerably in magnitude. The rapid drop at about

62 cm from the core followed by a nearly flat flux

out to over 200 cm results from matching boundary

conditions on flux and current at the interface be-

tween a thin aluminum slab and a large air gap.

Results obtained for epithermal beams created by

removing D2 0 and by absorbing the thermal neutron

flux incident on the phantom with various lithium fil-

ters are shown in Figures 5.6 to 5.9. The ratio of

tumor dose/maximum normal tissue dose is for a boron-10

weight fraction of 50 x 10-6 in a differential volume

at any depth (weight fractions above 60 x 10-6 are

lethal in humans). Invariably, the maximum normal

tissue dose occurs at the surface of the phantom.

Figure 5.10 is for 5.0 cm D2 0 removed to increase

the proportion of epithermal neutrons in the beam.

Neutron filters of Al and C replace the D2 0 removed in

order to keep down the fast neutron dose rate. However,

the thermal neutron flux and boron capture dose rate

decrease faster than the fast neutron dose rate,

resulting in a decrease in beam effectiveness.
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TABLE 5.2 M.I.T.R. CASES STUDIED

Case
Number Description

1 Normal beam

2 Normal beam plus 2 mm Li filter

3 Normal beam plus 1 mm Li
6 filter

4 Normal beam plus 3 mm Li6 filter

5 2.5 cm D2 0 removed

6 5.0 cm D20 removed

6a 5.0 cm D2 0 removed plus 0.5 mm Li
6 filter

6b 5.0 cm D2 0 replaced by 5.0 cm Al+1 mm Li 6 filter

6c 5.0 cm D2 0 replaced by 5.0 cm void + 1 mm Li 6

filter

6d 5.0 cm D2 0 replaced by 5.0 cm C + 1 mm Li6 filter

7 10. 0 cm D2 removed

8 5.0 cm D2 0 removed plus 5.0 cm Cr filter

9 5.0 cm D2 0 removed plus 5.0 cm V filter

10 Normal beam plus D2 0 tissue-equivalent phantom
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The same effect is shown in Figure 5.11 for Cr

and V filters. These materials have scattering cross

sections which peak in the region from 2 to 50 key.

Increased scattering in this region of the neutron

spectrum tends to diminish the total fast neutron

dose rate, but the rather large thermal neutron

absorption cross sections (Ga(V) 5.Ob, aa(Cr)=3.1 6 b)

reduce the boron capture dose rate at a much faster rate.

No other isotopes have scattering cross sections which

have broad peaks in the key region.

It if were possible to replace all hydrogen in

tissue with deuterium, then much more favorable

conditions would exist for neutron capture therapy.

Figure 5.12 compares this hypothetical situation

(Case 10) with the corresponding result for hydrogenous

tissue. The improvement is considerable. Benefits

arise from a much reduced first collision dose rate,

better penetration of the beam, and considerably

reduced neutron capture gamma ray dose rate.

The best configuration out of all these possibilities

is still the normal beam as it exists at the M.I.T.R.

(Case 1). The background dose rate from gamma rays,

N14 (n,p)C14 , and recoils as a function of depth in

tissue are given in Figure 5.13. Gamma rays from the

reactor core and from neutron capture in the walls of

the beam port contribute about 25 rad/min at the surface

of the phantom (at 5 Mw). This effect is not included

in any of the results because both the magnitude and
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distribution of these gamma rays inside the phantom

are not well known. However, the dose rate from

these gamma rays may be important in some cases.

Figure 5.14 shows the first collision dose rate

at the surface of the phantom as a function of the

thickness of D2 0 removed from the lower portion of

the reflector of the M.I.T.R. (Case 1). Cases 6b, 6d,

8 and 9 study replacement of D2 0 by an equal thickness

of Al, C, Cr, and V, respectively. None of these

materials is as good as D20 in moderating fast neutrons,

but their effects on epithermal neutrons and thermal

neutrons are also of great importance. Figure 5.14

gives a simple correlation of relative effectiveness of

these materials in moderating fast neutrons. The net

worth of these filters for neutron capture therapy is

best shown in Figures 5.8 to 5.11.

The relative fast neutron dose rate at the portal

as a function of D2 0 and Bi thickness removed is shown

in Figure 5.15. It can be seen that the latest

neutron spectrum calculation in MEDIPORT as described

in Chapter II gives relative fast neutron dose rates

which agree with STAR results to within a few percent.

The new spectrum calculations significantly improves

the accuracy of the MEDIPORT results.
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5.5 THE USE OF SCATTERED NEUTRONS

Introductory justification for the use of scattered

neutrons has been given in Section 2.4. Now results are

to be presented for a range of neutron scatterers made

in various thicknesses from lucite, polyethylene, and

water. Computer studies with STAR are primarily for

accurate fast neutron spectra from 0.1 to 10.0 MeV, but

also serve as "benchmark" calculations to normalize

MEDIPORT results. The MEDIPORT code handles the entire

neutron spectrum from thermal to 10.5 MeV. Accurate

results are obtained with MEDIPORT for variations from

a reference or benchmark condition whose normalization

has been established by more accurate methods. The

calculations are also compared with experimental

results whenever possible.

Many of the MEDIPORT results given in previous

sections were obtained with a simplified geometrical

simulation. The total thickness of materials in the

neutron beam flight path was conserved, but some

combining and re-ordering of thin layers of material was

utilized to speed the calculations. -Justification for

this procedure comes from a pair of STAR calculations

for neutron transmission through the M.I.T.R. Medical

Beam Port. One calculation included all materials

and thicknesses exactly as they exist in the Medical

Beam, while the other simplified the geometry. Table 5.1

gives the materials and thicknesses used for each
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calculation. The results for a unit, isotropic

fission spectrum source are as follows:

TABLE 5.3 Neutron Spectra Through Exact and Simplified

Geometry

2 Flux Ratio:
Neutron Group Differential Flux, n/cm -sec-MeV Exact/Simplified

Exact Simplified

1 8.625 x 10-6 8.149 x 1O-6 1.057

2 1.562 x 10-6 1.495 x 10-6 1.070

3 8.123 x 10-7 7.490 x 10-7 1.085

4 1.521 x 10-7 1.440 x 10-7 1.057

The total fast neutron dose ratio is 1.06. The flux

ratios indicate that the spectrum has mainly been shif-

ted about six percent, with quite small deviations for

each group from the average behaviour. The differences

between the two results are well within the uncertainties

in normalization of the neutron source at the core-

reflector interface.

The transmission matrix obtained in exact geometry

by STAR for neutron transmission through the Medical Beam,

combined with the neutron source in each energy and

angular group, gives the neutron spectrum at the portal.

Section 5.2 gives the neutron source, and Appendix A.4

describes the STAR DATA REDUCTION code which performs the

necessary calculations. Tables 5.4 and 5.5 summarize the

results.
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TABLE 5.4 Angular Fast Neutron Spectrum at Portal

Differential Flux, 107 n/cm2-sec/Mey'unit 4

Energy Group

Angular Group 1

Angular Group 2

1 2

2.882

4.679

0.3572

0.7432

3

0.1090

0.5033

4

0.01991

0.1226

TABLE 5.5 Scalar Flux and Dose at

Scalar Flux Flux per unit
Group 10 7 n/cm2  lethargy lo7 n/cm2

-sec/MeV -sec/unit leth.

1

2

3

4

3.781

0.5502

0.3061

0.07123

2.977

1.852

2.061

0.6634

Portal

1st. Coll Total Fast
Dose Ratio,Neutron Dose
Rad/Min Rate Rad/Min

5.51 9.44

3.93 5.03

2.96 3.99

0.40 0.527

11.80 Ibtal 19.00

The first collision dose rate at the surface of tissue

placed at the portal is 11.80 rad/min.

All STAR calculations for phantoms placed in the

Medical Beam have been obtained using the angular flux

given in Table 5.4 as the neutron source. Figure 5.16

shows the Table 5.4 results as integral flux above

energy E(MeV) emerging through the portal. The MEDIPORT

result is normalized to give the same fast neutron

dose rate as predicted by STAR. Also shown are the foil

activation data points obtained by Rydin2 4
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(from Fig. 4.15), scaled to 5 Mw. Other than at about

1 to 2 MeV, the measured and predicted curves do not

agree very well. The two computed integral flux curves

agree very well in shape, indicating that perhaps the

measured integral fluxes have rather large errors

other than the statistical errors shown by the bars.

The entire spectrum above thermal energies is

shown in Figure 5.17. Rydin's spectrum above 3 MeV

lies below his threshold foil data points, which in

turn are rather below the curves obtained from STAR

and MEDIPORT. Also, an arbitrary "bump" at 1 MeV

was added by Rydin which does not show up in the

computed spectra. The first collision dose rate

at the surface of the tissue phantom from Rydin's

spectrum is 32.0 rad/min at 5 Mw. This compares with

11.80 rad/min for the, STAR result, which is a factor

of 2.7 smaller. Experiments by Drs. Reddy and

Ayyangar (Physics Res. Lab., M.G.H.) are in progress

to resolve this discrepancy. Preliminary results

tend to confirmthe STAR calculation of first collision

dose rate.

STAR calculations of transmission matrices have

been made for infinite slab phantoms 3, 6, 9, 12 and

15 cm thick composed of tissue, lucite, polyethylene,

and light water. Using the known angle-dependent and

energy-dependent flux at the portal as the source

incident on the phantoms, calculations have been made
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giving the transmitted flux per unit lethargy and

total fast neutron dose rate at the surface of a

30 cm thick infinite slab of tissue. The recoil

(or 1st collision) dose rate has been obtained also

for tissue. Table 5.6 presents the transmitted

neutron flux and Table 5.7 gives the 1st collision

dose rate. Table 5.8 gives the total fast neutron

dose rate transmitted through these phantoms as

measured at the surface of a 30 cm thick infinite

slab of tissue. Figure 5.18 shows the dose rate

distributions from Tables 5.7 and 5.8. It can be

seen that phantoms of lucite, tissue, and H2 0 are

very nearly identical with regard to transmitted

fast neutron dose rate. The atom number densities

used are:

24
Material NH NC No (10 atoms/cm3 )

Tissue .0592 .00673 .02635

Lucite .0418 .0418 .01046

Polyethylene .0768 .0392 ---

Water .0670 --- .0335

Neutron cross sections for tissue do not include the

contributions from N, Cl or other trace elements as

they will not appreciably influence fast neutron

transmission.
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TABLE 5.6 Fast Neutron Spectra in Various Phantoms

Transmitted flux per unit lethargy
(n/cm2 -sec/unit leth. )

uk

Ek,MeV

Depth
cm

2.5416

0.7874

1.0886

3.367

0.3956
6.733

0.0712

9.313

Tissue

.2977

.1486
.8570
.5138
.3177
.2021

E8
E8
E7
E7
E7
E7

.1852

.1183

.8149

.5715

.4045

.2884

E8
E8
E7
E7
E7
E7

.2061

.1587
.1220

.9358

.7171

.5490

E8
E8
E8
E7
E7
E7

.6634

.4489

.3156

.2254
.1620
.1167

E7
E7
E7
E7
E7
E7

Lucite

.1574

.9636

.6112
.3958
.2605

E8
E7
E7
E7
E7

.1198

.8315

.5857

.4158

.2970

E8
E7
E7
E7
E7

.1626

.1269

.9827

.7587
.5849

E8
E8
E7
E7
E7

.4326

.2944

.2035

.1415

.9859

E7
E7
E7
E7
E6

Light Water

.1585

.9644

.6051
.3867
.2506

E8
E7
E7
E7
E7

.1148

.7699
.5242
.3595
.2478

E8
E7
E7
E7
E7

.1468

.1055

.7592

.5467

.3938

E8
E8
E7
E7
E7

.4780

.3515

.2594

.1919

.1421

E7
E7
E7
E7
E7

Polyethylene

.1005
.6069
.3758
.2364
.1509

E8
E7
E7
E7
E7

0

3
6
9
12

15

3
6
9
12
15

3
6
9
12

15

3
6
9
12

15

.1309

.6714

.3597

.1999

.1151

E8
E7
E7
E7
E7

.1454

.1025

.7217

.5073

.3562

E8
E8
E7
E7
E7

.3828

.2351

.1471

.9249

.5823

E7
E7
E7
E6
E6
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TABLE 5.7 First Collision Dose at Depth in Tissue

Contribution to First Collision
Dose Rate in Tissue Rad/Min.

EmaxMeV

Emin,MeV

Depth, cm

1.822

0.10

5.51

2.75

1.585

0.95

0.588

5.05
1.822

3.93

2.51

1.21

.858

8.278

5.05

2.96

2.28

1.75

1.34

1.030

10.00

8.278

0.40

0.27

0.19

0.14

0.097

Total Dose
Rate

Rad/Min

11.80

7.81

5.26

3.64

2.573

.612 .789

0

3

6

9

12

15 0.374 0.070 1.845



TABLE 5.8 Neutron Energy Dependence of Fast Neutron

Dose Rate Transmitted by Infinite Slabs of

Tissue, Lucite, H2 0 and Polyethylene

Contribution to Fast Neutron
Rad/Min

Dose Rate Total Dose
Rate

EmaxMeV

Emin, MeV

cm

9.440
4.712
2.718
1.629
1.007
o.641

Light Water

5.028
3.058
1.919
1.226
0.795

Rad/Min

Polyethylene

2.726
1.647
1.020
0.642
0.409

2.816
1.986
1.398
0.983
o.69o

187

1.822

0.10

5.05

1.822

8.278

5.05

10.0

8.278

TissueDepth,

0
3
6
9
12

15

5.026
3.210
2.211
1.551
1.098
0.783

3.992
3.073
2.363
1.813
1.389
1.063

0.527
0.357
0.251
0.179
0. 129
0.093

18.99
11.35
7.542
5.172
3.622
2.579

Lucite

3
6
9
12

15

4.991
3.056
1.938
1.255
0.826

3.251
2.256
1.589
1.128
o.806

3.150
2.457
1.903
1.470
1.133

0.344
0.234
o.162
0.113
0.078

11-74
8.003
5.592
3.966
2.843

3
6
9

12
15

3.115
2.089
1.422
0.975
o.672

2.844
2.043
1.470
1.059
0,.763

0.381
0.279
0.206
0.153
0.113

11.37
7.470
5.018
3.413
2.343

3
6
9

12
15

4.151
2.129
1.141
0.634
0.365

0.304
0.187
0.117
0.074
o.o46

9.997
5.949
3.675
2.332
1.511
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TABLE 5.9 Flux and Dose in Tiss e: 450 Lucite Scatterers
(.100 E6 = .100 x 10 )

Depth in
Tissue
Phantom, cm

A(u), n/cm2 -sec/unit lethargy

Dose Contribution, Rad/Min
0.25 cm Lucite

1st Collis-
ion Dose We

Rad/Min

.2695 E6

.0572

.1995 E6

.0423

.1359 E6

.0288

.9105 E5

.0193

.6100 E5

.0129

.4102 E5

.0087

.1189 E6

.0171

.9673 E5

.0140

.7550 E5

.0109

.5798 E5

.0084

.4423 E5

.oo64

.3366 E5

.0049

0.50 cm Lucite

.2261 E6

.0326

.1836 E6
.0265

.1432 E6

.0206

.1100 E6

.0159

.8388 E5

.0121

.6383 E5

.0092

Lethargy,u 2.5416

0

3

6

9

0.278
.1097
.203

.7020

.1300

.3737

.0691

.2022

.0374

.1112
.0206

.6213
.0115

E7

E6

E6

E6

E6

E5

12

15

.2893

.0002

.2140

.0001

.1559

.0001

.1129

.0001

.8155

.0000

.5887

.0000

E4

E4

E4

E3

E3

.1864

.1089

.0652

.0399

.0251

0

3

.1984

.367

.1260

.233

.6721

.1244

.3646

.0675

.2010

.0372

.1126
.0208

E4

E4

E7

E7

E6

E6

E6

E6

6

9

12

15

.5061

.117

.3735

.0782

.2544

.0540

.1705
.0361

.1143

.0242

.7689

.0163

E6

E6

E6

E6

E6

E5

.5216

.0003

.3858

.0002

.2810
.0002

.2035

.0001

.1470

.0001

.1061

.0001

.0712

.517

. 338

.1992

.1196

.0736

.0464

1.0886 .3956
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TABLE 5.9 (Cont.)

0.75 cm Lucite

.2720

.503

.1716

.318

.9161

.169

.4979

.0905

E7

E7

E6

E6

.2751 E6

.0509

.1546

.0286
E6

.7151 E6

.1516

.5263 E6

.1116

.3583 E6

.0759

.2402 E6
-0508

.1611 E6

.0342

.1084 E6

.0230

.3230 E6

.o465

.2619 E6

.0378

.2042 E6
-0294

.1567 E6

.0226

.1195 E6

.0172

.9093 E5
.0131

.7084
00004

E4

.5240 E4

.0003

.3816

.0002

.2763

.o0002

E4

E4

. 1996 E4

.0001

.1441

.0001

1.00 cm Lucite

.3342

.618

.2094

.388

E7

E7

.1120 E7

.207

.6095
-113

E6

.3374 E6

.0624

.19oo

.0352

2.5416

E6

.9006 E6

.191

.6610 E6
. 140

.4499 E6

.0954

.3017 E6

.o64o

.2024 E6

.0429

.1362 E6

.0289

.4107 E6

.0591

.3325 E6

.0479

.2591 E6

.0373

.1988 E6

.0286

.1516 E6

.0218

.1153 E6
.0166

1.0886 .3956

.8588 E4

.0005

.6351 E4

.O0004

.4625 E4

.0003

.3349

.0002
E4

.2420 E4
.0001

.1746

.0001

.0712

E4

0

3

6

9

12

15

.702

.468

.275

.1641

.1024

.0648

0

6

9

12

15

.869

.576

.340

.206

.1272

.o8o8
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TABLE 5.9 (Cont.)

1.25 cm Lucite

.3875 E7

.717

.2415 E7

.447

.1292 E7

.239

.7045 E6

.130

.3906 E6

.0723

.2204 E6

.0408

. 1066 E7

.226

.7804 E6

.166

.5310 E6

.113

.3561 E6

.0755

.2389 E6

.0507

.1609 E6

.0341

.4904 E6
.0707

.3964 E6

.0570

.3087 E6

.0445

.2368 E6

.0341

.1806 E6

.0260

.1374 E6

.0198

.9801 E4

.0006

.7247 E4

.0004

.5277 E4

.0003

.3821 E4

.0002

.2761 E4

.0002

.1993 E4

.0001

1.50 cm Lucite

.4339 E7

.802

.2690 E7

.498

.1441 E7

.267

.7865 E6

.145

.4367 E6

.0809

.2468 E6

.0457

.1214 E7

.258

.8868 E6

.188

.6032 E6

.128

.4046 E6

.0858

.2715 E6

.0575

.1829 E6

.0388

.5630 E6

.0812

.4543 E6

.0655

.3536 E6

.0509

.2712 E6

.0392

.2068 E6

.0298

.1573 E6

.0227

1.0886 .3956

0

3

6

9

12

15

1.014

.670

.397

.240

.149

.0948

0

3

6

9

12

15

.1078

.0006

.7970

.0005

.5804

.0004

.4202

.0003

.3036

.0002

.2191

.0001

.0712

E5
1.142

-752

E4

E4
.270

.168

E4
.1073

2.5416
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TABLE 5.9 (Cont.)

3.00 cm Lucite

.1849 E7
0392

.1333 E7

.283

.9054 E6

.192

.6076 E6

.129

.4082 E6

.0865

.2754 E6

.0583

.8856 E6

.128

.7088 E6

.102

.5500 E6
.0792

.4213 E6

.0606

.3211 E6

.o463

.2442 E6

.0352

6.00 cm Lucite

.2457 E7

.521

.1745 E7

.370

.1182 E7

.251

.7938 E6

.168

.5337 E6

.113

.3605 E6

.0763

.1214 E7

.175

.9598 E6

.1383

.7415 E6
-1067

.5670 E6

.0817

.4318 E6

.0622

.3283 E6

.0473

.1493 E5

.0009

.1103 E5

.0007

.8027 E4

.0005

.5811 E4

.0003

.4197 E4

.0003

.3030 E4

.0002

1.0886 .3956

0

3

.6223
1.152

.3781

.699

.2032

.376

-1114
.206

.6214

.1148

.3531

.0653

E7

E7

E7

E7

E6

E6

6

9

12

15

.1378

.ooo8

.1018

.0006

.7412
.0005

.5366

.0003

.3877

.0002

.2798

.0002

E5

E5

E4

E4

E4

1.673

1.085

.648

.396

.248

.1590

0

3

6

9

12

15

.7871
1.457

.4722

.874

.2543

.470

-1398
.269

.7827

.145

.4465

.0837

2.5416

E7

E7

E7

E6

E6

2.154

1.383

.828

.519

.321

.208

.0712
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TABLE 5.10 Flux in Tissue: 45 0 H20 Scatterers

(.100 E6 = .100 x 106

0.25 cm H20

.1074

.6866

.3621

.1937

.1050

.5775

E7

E6

E6

E6

E6

E5

.2036

.1528

.1042

.6968

.4658

.3124

E6

E6

E6

E5

E5

E5

.8042 E5

.6645. E5

.5224 E5

.4029 E5

.3084 E5

.2353 E5

.9863

.7185

.5203

.3759

.2713

.1958

E4

E4

E4

E4

E4

E4

0.50 cm H20

.3766 E6

.2817 E6

.1920 E6

.1284 E6

.8587 E5

.5762 E5

1.0886

.1501 E6

.1238 E6

.9728 E5

.7501 E5

.5741 E5

.4381 E5

.3956

0

3
6

9

12

15

0

3
6

9
12

15

E7

E7

E6

E6

E6

E6

.1930

.1223

.6455

.3458

.1879

.1035

2.5416

E5

E5

E4

E4

E4

E4

.1837

.1337

.9677

.6991

.5046

.3641

.0712
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TABLE 5.10 (Cont.)

0.75 cm H20

.2633

.1653

.8732

.4684

.2548

.1406

E7

E7

E6

E6

E6

E6

.5246

.3912

.2664

.1783

.1192

.8002

E6

E6

E6

E6

E6

E5

.2108

.1736

.1363

.1051

48040

.6135

E6

E6

E6

E6

E5

E5

.2572 E5

. 1870 E5

.1353 E5

.9776 E4

.7056 E4

.5091 E4

1.00 cm H20

.3221

.2006

.o1060

.5693

.3100

.1713

2.5416

E7

E7

E7

E6

E6

E6

.6521

.4847

.3300

.2208

.1477

.9917

E6

E6

E6

E6

E6

E5

.2638

.2168

.1702

.1312

.1004

.7657

E6

E6

E6

E6

E6

E5

1.0886 .3956

.3209

.2332

.1687

.1218

.8792

.6344

.0712

E5

E5

E5

E5

E4

E4

0

3

6

9

12

15

0

3

6

9

12

15
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TABLE 5.10 (Cont.)

1.25 cm H2 0

.3722 E7

.2301 E7

.1217 E7

.6540 E6

.3565 E6

.1972 E6

.7625 E6

.5650 E6

.3846 E6

.2574 E6

.1722 E6

.1156 E6

.3103 E6

.2546 E6

.1997 E6

.1539 E6

.1177 E6

.8984 E5

.3762 E5

.2731 E5

.1975 E5

.1426 E5

.1029 E5

.7428 E4

1.50 cm H2 0

.4157 E7

.2554 E7

.1351 E7

.7265 E6

.3962 E6

.2194 E6

.8588 E6

.6345 E6

.4317 E6

.2889 E6

.1933 E6

.1298 E6

.3513 E6

.2878 E6

.2256 E6

.1738 E6

.1330 E6

.1014 E6

.4244 E5

.3079 E5

.2226 E5

.1607 E5

.1160 E5

.8369 E4

1.0886 .3956

0

3

6

9

12

15

0

3

6

9

12

15

2.5416 .0712
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TABLE 5.10 (cont. )

3.00 cm H2 0

.5908

.3544

.1876

-1010

.5516

.3058

E7

E7

E7

E7

E6

E6

.1240 E7

.9029 E6

.6129 E6

.4102 E6

.2746 E6

.1846 E6

.5168

.4197

.3280

.2524

. 1930

.1472

E6

E6

E6

E6

E6

E6

.6109

.4413

.3185

.2298

. 1658

.1196

E5

E5

E5

E5

E5

E5

6.00 cm H20

.7392

.4369

.2312

.1244

.6797

.3769

2.5416

E7

E7

E7

E7

E6

E6

.1556

.1115

.7544

.5047

.3380

.2273

E7

E7

E6

E6

E6

E6

.6555

.5262

.4095

.3146

.2404

.1833

E6

E6

E6

E6

E6

E6

1.0886 .3956

.7466

.5359

.3859

.2782

42007

.1447

.0712

E5

E5

E5

E5

E5

E5

0

3

6

9

12

15

0

3
6

9

12

15
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TABLE 5.11 Flux in Tissue: 450 Polyethylene Scatterers

(.loo E6 = .100 x 106)

0.25 cm Polyethylene

.1168 E7

.7511 E6

.3979 E6

.2140 E6

.1168 E6

.6475 E5

.2539 E6

. 1890 E6

.1288 E6

.8626 E5

.5774 E5

.3879 E5

.1093 E6

.8913 E5

.6962 E5

.5347 E5

.4079 E5

.3104 E5

.2051 E4

.1518 E4

.1106 E4

.8012 E3

.5789 E3

.4179 E3

0.50 cm Polyethylene

.2046 E7

.1301 E7

.6906 E6

.3724 E6

.2039 E6

.1134 E6

.4638 E6

.3440 E6

.2344 E6

.1570 E6

.1052 E6

.7072 E5

.2038 E6

.1659 E6

.1295 E6

.9939 E5

.7582 E5

.5769 E5

.3578 E4

.2650 E4

.1931 E4

.1398 E4

.1010 E4

.7292 E3

1.0886 .3956

0

3
6

9
12

15

0

3
6

9
12

15

2.5416 .0712
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TABIE 5.11(Cont.)

0.75 cm Polyethylene

.2731

.1720

.9142

.4939

.2711

o1511

E7

E7

E6

E6

E6

E6

.6389 E6

.4723 E6

.3217 E6

.2157 E6

.1445 E6

.9724 E5

.2859

.2322

.1811

.1390

.1060

.8o66

E6

E6

E6

E6

E6

E5

.4716

.3492

.2544

.1843

.1331

.9610

E4

E4

E4

E4

E4

E3

1.00 cm Polyethylene

.3282 E7

.2050 E7

.1091 E7

.5901 E6

.3244 E6

.1813 E6

.7864 E6

.5794 E6

.3946 E6

.2646 E6

-1774 E6

.1194 E6

.3575 E6

.2898 E6

.2259 E6

.1733 E6

.1322 E6

.1005 E6

1.0886 .3956

0

3

6

9

12

15

0

3
6

9

12

15

E4

E4

E4

E4

E4

E4

.5563

.4120

.3002

.2174

.1571

.1134

.07122.5416
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TABLE 5.11 (Cont.)

1.25 cm Polyethylene

.3735

.2316

.1233

.6682

.3679

.2059

E7

E7

E7

E6

E6

E6

.9114

.6695

.4559

.3058

.2051

.1382

E6

E6

E6

E6

E6

E6

.4201 E6

.3399 E6

.2648 E6

.2031 E6

.1549 E6

.1178 E6

.6195

.4587

.3342

.2420

.1749

.1262

E4

E4

E4

E4

E4

E4

1.50 cm Polyethylene

.1018 E7

.7460 E6

.5078 E6

.3407 E6

.2286 E6

.1541 E6

1.0886

.4752 E6

.3838 E6

.2988 E6

.2291 E6

.1747 E6

.1329 E6

.3956

0

3
6

9

12

15

0

3

6

9

12

15

E7

E7

E7

E6

E6

E6

.4116

.2537

-1352

.7331

.4041

.2265

2.5416

E4

E4

E4

E4

E4

E4

.6665

.4935

.3596

.2604

.1882

.1358

.0712
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TABLE 5.11 (Cont.)

3.00 cm Polyethylene

0

3

6

9

12

15

.5522 E7

.3334 E7

.1780 E7

.9679 E6

.5353 E6

.3011 E6

.1421

.1027

.6982

.4689

.3152

.2128

E7

E7

E6

E6

E6

E6

.6969

.5577

.4327

.3314

.2525

.1920

E6

E6

E6

E6

E6

E6

.7804

.5779

.4210

.3049

.2203

.1590

E4

E4

E4

E4

E4

E4

6.00 cm Polyethylene

.6466 E7

.3866 E7

.2067 E7

.1126 E7

.6240 E6

.3520 E6

2.5416

.1721

o1228

.8335

.5602

.3771

.2550

E7

E7

E6

E6

E6

E6

.8814 E6

.6971 E6

.5385 E6

.4118 E6

.3136 E6

.2384 E6

1.0886 .3956

0

3
6

9

12

15

u

E4

E4

E4

E4

E4

E4

.8031

.5947

.4333

.3138

.2267

.1637

.0712
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The STAR code has been used to obtain the reflection

matrix for infinite slabs of lucite, H20, and polyethylene

having thicknesses of 0.25, 0.50, 0.75, 1.00, 1.25, 1.50,

3.00, and 6.00 cm. The STAR DATA REDUCTION (SDR) code

rotated by 450 the angular fast neutron spectrum at the

portal (Table 5.4) using the method given in Section 2.4.1.

This rotation gave the source as seen by the scatterer.

Succeeding operations by SDR computed the flux reflected

from the scatterer, then rotated the reflected flux by

450 to give the source incident on an infinite slab tis-

sue phantom, followed by a calculation of flux trans-

mitted by the tissue phantom. Tables 5.9, 5.10 and 5.11

give the results of these manipulations for lucite,

H20, and polyethylene scatterers, respectively. The

fast neutron flux and dose rate down the axis of a

cylindrical phantom comparable in size to a human head

should agree quite well with the infinite slab calcula-

tions. One would expect lateral leakage to diminish

the flux near the edge of the phantom, and to decrease

the deeply penetrating flux even on the axis.

It is of interest to examine some of the data in

Table 5.9 in terms of the effect of a lucite scatterer

on both fast and thermal neutrons. For thermal

neutrons Zst - 1.831/1.845 - 0.9924, very nearly

unity. The total reflection, R, for a beam incident

at 450 on a slab for which zs/Zt - 1.0 has been

obtained from TAR(N). It is given in Table 5.12.

Assuming that the thermal neutrons can be treated as a
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beam incident at 450 one can obtain the probability of

reflection as a function of lucite thickness from

plotting R (Table 5.12). This calculation is given in

Table 5.13, together with the ratio of first collision

dose at the surface of a tissue phantom using reflected

neutrons to using the direct beam. The advantage

factor given is the ratio of thermal neutron reflection

probability to the first collision dose ratio. For ex-

ample, a 1.0 cm thick lucite scatterer has an advantage

factor of 7.9. This means that whereas the first col-

lision dose rate has fallen to 0.0736 of that for the

direct beam, the thermal neutron flux (and B10 dose rate)

has only dropped to 0.579, which is 7.9 times higher.

Geometrical attenuation between the portal and the phan-

tom has not been accounted for in these calculations.

In general, one would expect little reduction in fast

neutron flux because it is strongly peaked in the

forward direction (Table 5.4). A greater reduction can

be expected for thermal neutrons, which will depend

somewhat on the scatterer thickness. With no reflecting,

material near the portal, Rydin has measured the thermal

neutron flux to be 7.10 x 109 n/cm2 -sec at 5 Mw and

2.5 inches below the portal. With a phantom in place,

the reflection from the phantom increases the thermal

flux at the portal by a factor of 2.5 to 3.0. A 1 cm

thick lucite scatterer at 450 will also increase the

thermal neutron flux about 0.58 times as much as for the

optically thick phantom. Shielding will be required

nearby, which will also reflect some neutrons. The

estimation of all these effects is not very reliable.
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Experiments are being set up by Drs. Reddy and Ayyangar

(M.G.H.) to measure thermal neutron flux and fast neutron

dose rates in a phantom irradiated by neutrons reflected

from lucite. The theoretical advantages in using scat-

tered neutrons are most encouraging. Reduced fluxes and

dose rates are inherent to this method. The increased

irradiation time required for the same dose could be a

disadvantage.

TABLE 5.12 Perfectly Reflecting Slab: 450 Incident Beam

Slab Thickness, ZtL Total Reflection Probability, R

Mean Free Paths

0.00 0.000

.25 .151

.50 .263

.75 .348

1.00 .420

1.50 .523

2.00 .600

2.50 .651

3.50 .724

4.50 .760
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TABLE 5.13

Thickness, cm

0000

0.25

0.50

0.75

1.00

1.25

1.50

3.00

6.oo

Lucite Scatterer: Reflection Probabilities

1st Coll. Dose Ratio:.
Reflected/Direct

0.0000

0.0235

o.0438

0. 0595.

0.0736

o.0859

o.0967

0.1417

Thermal Neutron Advantage
Reflection Prob. Factor

0.000 --

0.248

0.400

0.505

0.579

o.635

0.675

~0.79

10.6

9.1

8.5

7.9

7.4

7.0

5.6

o.1826 ~8.94 ~3.8
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Final calculations have been made with MEDIPORT of

the flux and dose distributions inside a tissue cylinder

irradiated by neutrons from the direct beam at the M.I.T.R.

(Table 5.14), and irradiated by neutrons scattered from

an 0.5 cm thick lucite slab mounted at 450 to the direct

beam (Table 5.15). The surface first collision dose

rates obtained with STAR have been used to normalize the

neutron spectra computed by MEDIPORT. The thermal neutron

flux incident on the tissue phantom was assumed to be

2.0 x 1010 and 3.0 x 109 n/cm2 -sec, respectively. These

fluxes are conservative compared to experiment. Tables

5.14 and 5.15 are reproduced directly from the MEDIPORT

printout. Radius and depth are in cm, and dose rates are

in units of 0.1 and 0.01 rad/min, respectively. The

quantity labelled "ratio" in the key is the ratio of B10

dose to total background dose, multiplied by 1000. The
-6

dose rates shown are for a B10 weight fraction of 50 x 10

and are calculated assuming no perturbation to the thermal

neutron flux by B10 capture. In a patient irradiation the

fluxes and dose rates would be reduced near the tumor.

"Fast" is the recoil dose rate from fast neutrons, "Heavy"

is heavy particle dose rate from N1 4 (n,p)Cl 4  "Gamma"

is the dose rate from gamma rays produced by neutron

capture in tissue (principally in H, C, Cl, and B1 0 ).

"Total" is the sum of "Fast", "Heavy", and "Gamma". The

quantity labelled "B-10" is the local heavy particle dose

rate from B1 0(n,a)Li 7 .

Out of all the cases discussed in this chapter deal-

ing with epithermal beams, D2 0 removal, neutron filters,

and combinations of these changes, the optimum configuration
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is the one with the most D2 0 in the neutron flight

path. In other words, the configuration as it exists

at the M.I.T.R. Medical Facility is best in the sense

that it produces the largest ratio of B10 dose to

tumor/maximum normal tissue dose. However, even the

normal beam cannot provide a tumor/max. normal tissue

dose ration in excess of unity at depths greater than

4.5 cm.

Additional optimization is possible by extending

the number of variables to include neutron scatterers.

Table 5.13 has shown that the best scatterer is one of

zero thickness - but dose rates vanish too. A compro-

mise between reasonable dose rates and diminishing

effectiveness of the scatterer is required. Such an

example is given in Table 5.15 for an 0.5 cm thick

lucite scatterer. It can be seen that the fast neutron

dose contribution to the total background dose at the

surface is cut from about 13% with the direct beam

(Table 5.15) to 3.4% using scattered neutrons. At

depth greater than 2 cm about 80% of the background dose

to normal tissue comes from thermal neutron capture gamma

rays. An "epithermal" beam produced by absorbing

thermal neutrons at the surface of the phantom, combined

with the scatterer, would produce a lower normal tissue

dose rate at the surface as well as shift the gamma ray

dose peak to a greater depth. In this way it may be

possible to improve on the dose ratio of B10/max. normal

tissue.



TABLE 5.14 FLUX AND DOSE RATES IN PHANTOM, DIRECT BEAM, MITR

KEY TO TABLE
THERMAL FLUX(N/CM2-SEC)
FAST HEAVY
GAMMA TOTAL
RATIO B-10

DEPTH, CM

0.

1.

2.

3.

4.

5.

6.

7.

0.
.199E 11
135 396
509 1040

4968 5167

.126E 11
97 251

606 954
3430 3273

.798E 10
71 159

547 777
2666 2072

.506E 10
54 101

458 613
2140 1312

.320E 10
42 64

374 480
1731 831

.203E 10
34 40

300 375
1402 526

.128E 10
28 26

2tO 294
1132 333

.812E 09
23 16

192 231
913 211

2.075
.195E 11
135 389
497 1021

4967 5072

.124E 11
97 246

585 928
3463 3214

.784E 10
71 156

529 756
2690 2C34

.497E 10
54 99

445 598
2155 1289

.314E 10
42 63
363 468

1743 816

.199E 10
34 40

292 366
1409 516

.126E 10
28 25

234 286
1143 327

.798E C9
23 16
187 225
919 207

RADIUS, CM
4.150

.184E 11
135 365
448 949

5025 4769

.116E 11
97 231

533 861
3509 3022

.737E 10
71 147

481 699
2735 1912

.467E 10
54 93

403 550
2203 1212

.296E 10
42 59
329 430

1783 767

.187E IC
34 37

264 335
1447 485

.119E 10
28 24

211 263
1171 308

.750E 09
23 15
169 207
942 195

6.225
.160E 11
135 319
359 813

5116 4160

.102E 11
97 202

435 734
3591 2636

.643E 10
71 128

390 589
2831 1668

.407E 10
54 81

326 461
2292 1057

.258E 10
42 51

266 359
1863 669

.163E 10
34 32

214 281
1505 423

.103E 10
28 21

173 221
1212 268

.654E 09
23 13

140 175
971 170

8.300
.963E 10
135 191
199 525

4759 2499

.610E 10
97 121
232 450

3517 1583

.386E 10
71 77

217 365
2745 1002

.245E 10
54 49

190 293
2167 635

.155E 10
42 31
163 236

1703 402

.980E 09
34 19
137 191

1329 254

.621E 09
28 12
116 156

1032 161

.393E 09
23 8
97 128

796 102

DOSE IN UNITS OF 0.10 RAD/MIN.
B-10 WEIGHT FRACTION 50.0 PARTS PER MILLION
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TABLE 5.15 FLUX AND DOSE RATES IN PHANTOM, 0.5 CM LUCITE
SCATTERER AT 45 DEGREES

KEY TO TABLE
THERMAL FLUX(N/CM2-SEC)
FAST HEAVY
GAMMA TOTAL
RATIO B-10

DEPTH, CM

0.

1.

2.

3.

4.

5.

6.

7.

0.
.299E 10
47 594

764 1405
5516 7750

.189E 10
29 376

909 1315
3734 4911

.120E 10
19 238

820 1077
2385 3108

.759E 09
13 151

688 851
2313 1969

.481E 09
9 96

560 665
1875 1247

.304E 09
7 60

451 518
1523 789

.193E 09
5 38

360 404
1237 500

.122E 09
4 24

288 316
999 316

DOSE IN UNITS OF 0.01

2.075
.293E 10
47 583

746 1376
5529 7609

.186E 10
29 369

877 1276
3778 4821

.118E 10
19 234

794 1046
2917 3052

.745E 09
13 148

668 829
2332 1934

.472E C9
9 94

545 648
1890 1225

.299E 09
7 59

438 504
1537 775

.189E 09
5 38

350 393
1249 491

.120E 09
4 24

280 308
L009 311

RAD/MIN.

RADIUS, CM
4.150

.276E 10
47 548

673 1268
5641 7154

.175E 10
29 347

800 1176
3854 4533

.111E 10
19 220

721 960
2989 2870

.701E 09
13 139

605 757
2401 1818

.444E 09
9 88

493 590
1952 1152

.281E 09
7 56

396 459
1586 728

.178E 09
5 35

317 358
1290 462

.113E 09
4 22

254 280
1042 292

6.225
.240E 10
47 478

539 1064
5864 6240

.152E 10
29 303

653 985
4014 3954

.964E 09
19 192

586 796
3144 2503

.611E 09
13 121

489 624
2541 1586

.387E 09
9 77

399 485
2070 1004

.245E 09
7 49

322 377
1684 635

.155E 09
5 31

259 295
1366 403

.982E 08
4 20

210 233
1094 255

8.300
.144E 10
47 287

298 633
5922 3749

.915E 09
29 182

348 559
4250 2376

.579E 09
19 115

325 459
3276 1504

.367E 09
13 73

285 371
2568 953

.233E 09
9 46

244 299
2016 603

.147E 09
7 29

206 242
1578 382

.932E 08
5 19

174 197
1228 242

.590E 08
4 12

146 162
944 153

B-10 WEIGHT FRACTION 50.0 PARTS PER MILLION

207
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5.6 THE USE OF A REFLECTING ANNULUS

In all of the cases considered previously, the thermal

neutron flux inside a tissue-equivalent cylindrical phantom

falls off asymptotically with depth at distances beyond

a few centimeters from the surface. In some cases, the

thermal neutron flux incident at the surface completely

overwhelms the thermal neutron flux produced by epither-

mal neutrons slowing down. For these cases the thermal

neutron flux behaves asymptotically right from the surface

as

f0(x) ~ f00 exp - + 2.405 ) 2 )1/2 x (5-14)

where R' is the extrapolated radius of the phantom (8.6

cm).

It is of considerable interest to examine the effect

of varying R' to reduce lateral leakage and to increase

the thermal neutron flux and boron capture dose rate at

large depths. Table 5.16 gives the relative thermal

neutron flux down the axis of a tissue-equivalent phantom

cylinder 8.3 cm in radius surrounded by an annulus of

material with the same thermal neutron diffusion coeffic-

ient D and diffusion length L as assumed for tissue

(D - 0.170 cm, L = 2.76 cm). It is assumed that the flux

varies with depth, x, as in Equation (5.14). Defining

the ratio of flux with the annulus to flux without the
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annulus as the thermal neutron flux enhancement factor,

one obtains the results given in Table 5.17. Even a

5 cm thick annulus gives a sizeable enhancement factor

of 1.31 to 1.46 at depths from 5 to 7 cm. One can

combine this result with the normal beam parameters

given in Table 5.14. It can be shown that the depth

at which the tumor dose is the same as the maximum

normal tissue dose increases from about 4.5 cm to about

5.5 cm. The ultimate depth is 6.2 cm, using an effec-

tively infinite reflecting annulus. If instead a

reflected neutron beam is used such as given in Table

5.15, the corresponding depths increase from 4.8 cm to

6.0 cm and 6.5 cm respectively. Another benefit is a

flatter radial distribution of thermal neutron flux and

boron capture dose.

Theoretically, the reflecting annulus offers very

worthwhile improvements in dose distribution. The

capture gamma ray dose from the annulus should be as

small as possible. Neutron absorption in the reflector

should probably be as small as possible, although one

can also visualize an "epithermal" neutron reflector.

Heavy water, with or-"without a thermal neutron absorber

such as Li6, would be an excellent choice. A lucite vessel

with thin walls could be used to contain the D2 0.

Reactor-grade graphite is another possibility.

The use of a reflecting annulus would also be bene-

ficial for irradiations using "epithermal" beams. It is

reasonable to expect improvements in thermal neutron flux at

depth of the same order of magnitude as presented in

Table 5.17.
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TABLE 5.16 Relative Thermal Neutron Flux in Phantom with

Reflecting Annulus (Phantom Radius 8.3 cm).

Annulus Thickness, cm.

0 5 10 15
Depth in
Phantom, cm

0 1.000 1.000 1.000 1.000 1.000

1 .633 .669 .681 .687 .697

2 .401 .447 .464 .472 .485

3 .254 .299 .316 .324 .338

4 .1607 .1999 .2153 .2226 .2355

5 .1017 .1337 .1467 .1529 .1640

6 .0644 .0894 .0999 .1049 .1143

7 .0408 .0598 .0681 .0721 .0796
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TABLE 5.17 Thermal Neutron Flux Enhancement in Phantom

with Reflecting Annulus (Phantom Radius 8.3 cm).

5

Annulus Thickness, cm.

10 15

Depth in
Phantom, cm.

0

1

2

3

4

5

6

7

1.000

1.056

1.115

1.178

1.244

1.314

1.387

1.465

1.000

1.076

1.157

1.245

1.340

1.441

1.551

1.668

1.000

1.085

1.177

1.277

1.385

1.503

1.630

1.768

1.000

1. 100

1.211

1.332

1.465

1.612

1,774

1.952
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 COMPUTATIONAL METHODS

A new numerical solution has been obtained for the

problem of neutron transport in finite-thickness slabs

with isotropic scattering in the laboratory system. The

method uses Gaussian quadratures to numerically evaluate

neutron transport integrals containing the exponential

integral functions as weighting functions. It has been

shown that low-order quadratures yield neutron trans-

mission, absorption, and reflection probabilities with

accuracy comparable to results obtained at greater cost in

computing time by the Markov Matrix and Invariant Imbedding

methods. The Gaussian quadrature method developed in this

work has several advantages over the Markov Matrix

Method:

1. Many fewer flux-points required (fewer machine

operations);

2. Applicable to thicker slabs;

3. No extrapolations of sub-slab thickness to zero.

The Invariant Imbedding Method is ideal for much thicker

slabs, but it cannot analyze the neutron collision

histories. It is very accurate, but rather costly in

computer time, which restricts its application to few-

group calculations.
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Collision history correlations have been devised

analytically and empirically, guided by physical insight,

which express in simple analytical form the probability

of neutron transmission, reflection and absorption as a

function of slab thickness and collision number. Using

only five parameters it is possible to predict the fate

of neutrons incident on an infinite slab of arbitrary

thickness (less than about five mean free paths) having

arbitrary macroscopic neutron absorption and scattering

crpss sections.

Multigroup transfer matrices and neutron spectra

can be calculated by combining the collision history

correlations with single-collision group-to-group transi-

tion probabilities. The transfer matrix for two adjacent

slabs is easily found to as high an order of approximation

as necessary. It has been shown that the lowest order

approximation given by the product of the individual

transfer matrices is quite accurate for fast neutron

dose attenuation calculations through polyethylene

and D2 0. Some examples of multiply-reflected fluxes have

been calculated to illustrate their unimportance compared

to the directly transmitted flux. Excellent results

have been obtained for the effects on neutron spectra of

changes in complicated neutron shields, compared with

experimental results and more accurate and costly

theoretical calculations.

Thermal neutron flux distributions down the axis of

a beam port facility and inside a tissue phantom have been

calculated by numerical integration of a set of three
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coupled, non-linear, first-order differential equations

equivalent to the diffusion equation. This method has

been employed because its automatic adjustment of step-

size in the numerical integration frees the user from

specifying anything other than neutron cross sections,

region boundaries, and two-point boundary conditions. It

also relates easily to the slowing-down source of thermal

neutrons given by the neutron spectrum calculations and

gives a flux distribution inside a tissue phantom from

which dosimetry calculations are readily obtained. Methods

have been devised to calculate radiation dose rates in

tissue from recoil nuclei struck by fast neutrons, and

from heavy particles and gamma rays emitted as a result

of neutron capture.

The resulting computer code, MEDIPORT, performs all

flux and dosimetry calculations required to survey the

effects of changes to multiple-slab shields on neutron

beam characteristics for use in neutron capture therapy.

The computational methods used in MEDIPORT have been shown

to give results sufficiently accurate to be extremely

useful for comparisons with experiment, for surveys of

modifications to existing beam facilities too difficult

to perform experimentally, to suggest new experiments,

and to optimize a neutron beam for maximum usefulness

for neutron capture therapy. A typical ten region shield

problem plus a tissue phantom takes about three minutes

on an IBM-7O94 to obtain a 25-group epithermal and fast

neutron spectrum, thermal neutron flux, and all dosimetry
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calculations. Half of this time is consumed by the gamma

ray dose rate calculption at forty locations inside the

phantom, and about a quarter of the time each by the

calculations of neutron spectra and thermal neutron flux.

Such economy of computer time is highly advantageous to

extensive parametric surveys.

Future work is recommended to improve and develop

the neutron spectrum calculation. The first step would

be to write the TAR(N) code in FORTRAN-IV, using double

precision arithmetic throughout. The Gaussian quadratures

method has no fundamental restriction on the maximum slab

thickness which can be solved. However, numerical accuracy

greater than single precision (eight decimals) is needed

for thicknesses in excess of five mean free paths. More

accurate fits to the ratios RT(k) and RR(k) of Equation

(3.6) could be obtained by adding another term with a

different decay constant, as follows:

RT(k) ~ RT(*) ItL + A(ItL) exp (-ka(ztL)) + D(ItL)exp(-kd(4L))

Preliminary calculations indicate that equations of this

form would significantly increase the accuracy of the

empirical correlations for small k and large ztL.

Empirical correlations such as these may have wider

application. For example, Monte Carlo calculations of

neutron penetration through slabs follow neutrons, col-

lision by collision, generating the probability of

transmission as a function of collision number. The effects
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of neutrons suffering many collisions could be accurately

extrapolated using collision history correlations.

It would not be too difficult to transport-correct

the group-transfer cross sections a(i - j). If

4(i -4j) is the average cosine of the scattering angle,

the transport corrected group-transfer cross section

is a(i - j) 1 - s(i - J) I. The remainder,

a(i - j) wL(i - j), represents small-angle scattering
which is best treated like the uncollided flux. A

development of this type would be of particular value

for neutron transmission through D2 0 and hydrogeneous

materials, because 4(i - j) is fairly large.
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6.2 RESULTS

The primary goal of this work has been to develop

fast accurate computational methods for simulating

production and use of neutron beams for neutron capture

therapy, and to apply these methods to an optimization

of the M.I.T.R. Medical Beam Facility. A secondary

result of this work has been additional light thrown

on a fundamental problem in neutron transport theory:

the fate of neutrons incident on a finite-thickness,

infinite slab or series of slabs. Numerous results

of transmission, absorption, and reflection probabil-

ities have been tabulated and compared to results

obtained by the Markov Matrix and Invariant Imbedding

methods. These results speak for themselves, and

need not be tabulated again. Excellent agreement has

been obtained in all comparisons.

Computer simulatibn of neutron capture therapy

experiments at the Brookhaven M.R.R. has verified the

ability of MEDIPORT to predict the effect of D2 0

removal on fluxes and dose rates in a tissue phantom.

Predicted thermal neutron flux distributions in the

phantom when bombarded by neutrons "filtered" by

lithium tend to be low, compared with experiment.

However, rather large fluxes penetrated the sides of the

phantom in the actual experiments, which accounts for

much of the differences. Also, the thickness of lith-

ium assumed in the calculations was significantly

greater than actually used.

Optimization of the M.I.T.R. Medical Facility for

neutron capture therapy has been performed in three
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stages. The first stage is characterized by irradiating

tissue with neutrons coming directly from the portal.

"Epithermal" neutron beams have been studied because

their increased penetration into tissue offered the

possibility of better depth-dose distribution in

tissue. The "epithermal" beams produced by removing

D2 0 and/or by adding lithium to absorb thermal neutrons

do give considerable improvements in penetration of

thermal neutrons, and in addition have low surface

thermal fluxes. This latter feature is desirable to

minimize damage to normal tissue above the tumor. Unfor-

tunately, the recoil dose rate from fast neutrons

increases very rapidly with D2 0 removal. The magnitude of

the thermal neutron flux at tumor depths also falls

significantly when a lithium filter is used, making the

recoil dose rate from fast neutrons the most important

component of background radiation. The result is that

losses caused by increased background radiation from

fast neutrons exceed gains from better penetration or

distribution of thermal neutrons. The important para-

meter here is the depth at which a tumor can be given

the same dose as the maximum received by normal tissue.

The normal beam (all D2 0 in place) without a filter is

able to reach a tumor at greater depth in normal tissue

than any of the "epithermal" beams produced by D2 0

removal or lithium filters.

Another series of calculations was performed incor-

porating several refinements to the calculational
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methods. Other filter materials besides Li and Li6

studies were: Cr, V, Al, and C. The motivation was

to control the recoil dose rate from fast neutrons

by replacing D2 0 with these materials. Invariably,

the thermal neutron flux and boron capture dose rate

decreased faster than the recoil dose rate. The

conclusion is that D2 0 is the best material to use

to moderate fast neutrons. Consequently the existing

configuration of shielding in the Medical Beam is the

optimum of the cases studied. The trends certainly

show that even more D2 0 would produce a better

beam. It is recommended that provision be made to

insert known thicknesses of D2 0 into the light water

shutter.

The second stage in the optimization consisted

in studying the use of neutron beams scattered from

hydrogeneous materials, to selectively attenuate fast

neutrons in the scattered beam. Lucite, polyethylene,

and water were investigated. No other materials

exhibit as large a reduction in scattering cross

section with increasing neutron energy in the region

above 0.01 MeV. Lucite was selected for additional

calculations because of its convenient physical

properties for experimental use. The neutron

reflecting properties of polyethylene, water and lu-

cite are rather similar. In all cases, the scattering

slab was assumed to be at 450 to the direct beam

from the portal, and the phantom was irradiated by

neutrons deflected on the average through 900.
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Studies of the effect of slab thickness show an optimum

for a zero-thickness slab - but the dose rates also

go to zero. A compromise is required between neutron

reflecting characteristics and irradiation times

(dose-rates). Fortunately, reasonable dose rates

are obtainable without much loss in efficiency of

the scatterer. Results have been given for an 0.5 cm

thick lucite scatterer which show a factor of about

four in diminishing the fraction of background

radiation dose at the tissue surface coming from

fast neutrons. The fractions are 13% and 3.4%,

respectively. Experimental verification of the pre-

dictions for lucite scatterers is recommended.

The effectiveness of the lucite scatterer in

selectively removing fast neutrons is sufficiently

good that little further improvements are possible

without recourse to other techniques, or combinations

of techniques. Another parameter, stage three in the

optimization, investigates a new approach. A reflec-

ting annulus surrounding the phantom would reduce

lateral leakage of neutrons, and would significantly

increase the axial thermal neutron penetration. The

optimum annulus thickness is that thickness for which

it becomes an effectively infinite reflector. Calcu-

lations have shown that even a 5 cm thick annulus of

tissue-equivalent material leads to 31% and 46%

increases in thermal neutron flux at depths of 5 and
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7 cm. The depth at which the tumor dose equals the

maximum normal tissue dose increases from 4.5 cm to

5.5 cm (normal beam), and from 4.8 cm to 6.0 cm

(0.5 cm lucite scatterer).

The material and exact details of the reflect-

ing annulus have not been investigated because an

experimental study is required and recommended.

A lucite-walled vessel containing D2 0 would be a

good choice because of the excellent thermal neutron

penetration and negligible capture gamma ray dose

rate. Similarly, reactor-grade graphite could be

used. In effect a "bath" of thermal neutrons

could be obtained having a relatively flat axial

and radial distribution inside the phantom. A

broad source, rather than a well-collime ted source,

would probably give best results. Experimental

checks on the performance of a reflecting annulus

are recommended because they promise large gains

in depth at which tumors can be fatally irradiated

without destroying normal tissue, and because it

would be fairly easily performed.

It seems possible that D20 addition or removal

could be combined with a neutron scatterer to control

fast neutron dose and a lithium filter to produce a

better thermal flux shape axially in tissue. Studies

of this type could be done on the computer with

MEDIPORT.
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Extensive surveys of neutron beam characteristics

for use in neutron capture therapy have been performed

by computer simulation. Many promising ideas have

emerged, of which all but a few failed to fulfill

expectations. In this regard, what not to do exper-

imentally is as important as what to do. It is con-

fidently expected that experimental studies of the

use of a reflecting annulus around a tissue phantom

and of a neutron beam reflected from a thin layer of

lucite will give new hope for the ultimate success of

neutron capture therapy.
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APPENDIX A

COMPUTER CODES

A.1 MEDIPORT

The purpose of the MEDIPORT code is to combine in

a unit all calculations necessary to simulate patient

irradiations for neutron capture therapy. For conven-

ience in development it is partitioned into a main

program plus about twenty subroutines. It is written

largely in FORTRAN-II for the Fortran Monitor System

as used by the IBM-7094 computer at the M.I.T. Compu-

tation Center. The code is machine-independent in

that any digital computer with 32K memory and a

FORTRAN-II compiler could be used. Input/output

magnetic tape unit numbers would have to be changed

to conform to the requirements of another computer

system. The only other possible change would be in

some FAP-coded mathematical subroutines from the Share

Library.

Restrictions on the size of problem are:

1. 4 26 energy groups above thermal energies;

1 thermal group.

2.4 11 regions. Each region may be subdivided

into arbitrarily many sub-regions all of the

same thickness, the total number of sub-groups

not greater than 100. More regions can be

handled by several cases, back-to-back.
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Succeeding calculations use output of previous

cases and continue on.

3. No up-scatter from a lower energy group to a

higher energy group.

4. Down scatter from a given group to a maximum of

10 lower energy groups.

5. Thermal neutron flux must be found in less than

500 integration steps.

6.4 5 neutron-capture gamma sources in tissue

phantom.

7.. 5 neutron-capture heavy particle sources in

tissue phantom.

8.4 24 uniformly spaced points axially in tissue

phantom at which dose rates are to be calculated.

9.4 10 uniformly spaced points radially in tissue

phantom at which dose rates are to be calculated.

The next Section, A.l.1, gives a description of

input data used by MEDIPORT. The entire code except

the Share Library Subroutines is listed in Section A.l.2.

Numerous comments have been added to clarify the code.

Sample input for two fairly complicated problems is

given in Section A.l.3. The first problem is a 26-group

calculation of neutron reflection from a scatterer

composed of an 0.5 cm thick lucite slab at 450, followed

by a calculation of flux and dose rates inside a cylin-

drical phantom bombarded by the reflected beam. The
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result of this problem is given in Table 5.15. First

collision transmission probabilities have been arbitrar-

ily increased by 10%, in order to correct approximately

for anisotropic group transfer cross sections. Little

change in neutron spectrum occurs above 0.1 MeV, but

a somewhat larger epithermal flux is obtained which

agrees better with experimental measurements by Rydin.

The second problem attenuates a fission source

through 10 cm of D2 0, followed by double reflection

at the interface between two 10 cm thick D2 0 slabs,

and finally transmission through 30 cm of D2 0 from the

interface (i.e., a total of 40 cm D20). The result

of this problem is given in Table 3.3.2. The first

problem uses a special version of the SINT subroutine

to read the neutron source from data cards, while the

second problem uses the normal SINT subroutine together

with SPECT and GAS4 to compute the fission neutron source

strength in each energy group. Also given are 26 group

cross sections for Al and Bi.

Special subroutines for three-dimensional numerical

integration by Gaussian quadratures and for numerical

interpolation are described in Sections A.l.4 and

A. 1.5, respectively.
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A. 1. INPUT DATA FOR MEDIPORT

Set 1. Cross Section Library

Card 1: Format (2l2,6x,llA6,A4)

1. NNEW = number of cross section sets in library.

If NNEW = 0, it is assumed that the library and

Set 2 are in memory already.

2. IQ = number of abscissas in tables of parameters

Ti, a(ZtL), RT'(co), A'(ZtL). Required only if

NNEW> 0. IQ 25.

3. Alphanumeric title for tables, in columns 11-80.

Card 2: Format (15,4E10.3,I2)

1. NENG = 1 + number of energy groups above the

thermal group.

2. po = neutron source strength, fast neutrons/cm 3 -sec.

3. p1 = derivative of neutron source strength, fast

neutrons/cm -sec, inward (toward the source), at

the surface.

4. CN = atom number density inside the distributed

volume source, atoms/cm3 .

5. ZTAC = control parameter. If / 0, call SINT

subroutine for new neutron source. If < 0, use

last flux of previous case as source.

6. NVAL = source angular distribution parameter.

S(E) (cos 9)NVAL-1 Uncollided transmission

~ ENVAL(Y-tx). Must be consistent with Set 2.
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Card 3: Format (8E10 3)

J. E(J) = upper bound of energy group J, MeV.

J = 1...NENG. Highest energy group is J = 1. E(J)

must decrease monatonically with increasing J.

Use more cards if NENG > 8.

For each of NNEW cross section sets, the following is

required:

Card

For E

requi

Card

1: Format (15, 5x, A5, FlO.5, 15, 2F10.5)

1. NCODE - identification number of this set (4 11).

The code assumes that cross sections for the

volume source have NCODE - 1.

2. AMAT = Alphanumeric label for the set, e.g.,

D20, POLY.

3. BARMU M 40, the average cosine of the thermal

neutron scattering angle in the laboratory

system.

4. NDS = number of downscatter transfer cross sections

of form a(i - i + j); 0 j, NDS.

5. SAT = microscopic thermal neutron absorption

cross section (b).

6. SST = microscopic thermal neutron scattering

cross section (b).

ach energy group J(1 <J NENG -1), the following is

red:

1: Format (6Flo.5)

1. atr = transport cross section for group J(b).

2. atr(J - J) - single-collision cross section for
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remaining in group J (b).

6. a(J-J+ 4)

Card 2:

1. T(J J + 5)

6. a(J J + 10) = single-collision cross section for

transfer from group J to group J + 10.

Set 2. Collision History Correlation Tables

At each abscissa, arbitrarily spaced, the following is

required:

Card 1: Format (8E10.3)

1. XPL = abscissa, ItL.

2. Ti = first collision transmission probability

(or Rl for reflection).

3. a(ItL) = correlation decay constant (or b(ItL)

for reflection).

Set 3. Case Data

Card 1: Format (12, 8x, 11A6, A4)

1. NREG = number of regions (4 11). If zero, job

terminates.

2. ITITLE = alphanumeric title for the case, in

columns 11-80.

For each region, the following is required:

Format (215, 7F10-5)

1. NNCODE = identification number of library cross

section set.
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2. INT = number of sub-regions in this region.

1 <INT. Purpose is to provide sub-slabs with

optional thickness less than the maximum tabu-

lated in Set 2, and to provide a reasonable

thickness to linearly approximate the slowing-

down source of thermal neutrons.

3. A = atomic weight, AMU.

4. RHO = density, gm/cm

5. T = region thickness, cm. Sub-region thickness

is T/INT.

6. Spare

7. Spare

8. Spare

9. ALP2= a 2 = lateral buckling, cm~2 . Taken to be

(2.405/Rv)2  for phantom having extrapolated

radius R'.

Card NREG + 1: Format (7(A5, 5x), F7.3., 13)

1. ALPH(l) = abbbb

2. ALPH(2) = babbb

3. ALPH(3) = bbabb

4. ALPH(4) = bbbab

5. ALPH(5) = bbbba

6. ALPH(6) = cbbbb

7. ALPH(7) bbbbb

8. e = tolerance in calculation of transfer matrix,

T (Section 2.1.4). Normally, set e = 0.0001.

9. NCOLL = maximum number of collisions allowed to

find T (Section 2.1.4). Normally, set NCOLL = 40.



230

Symbols a and c denote any desired alphanumeric charac-

ters; a is used to mark a data point, while c forms the

grid marks on a computer plot of log(f(u)) vs u. A

blank is denoted by b. Symbols a and c have usually

been "+'" and "." respectively.

Card NREG + 2: Format (F3.0, 7E11.4)

1. p = 0,1, or 2 to denote slab, cylindrical, or

spherical geometry.

2. XO = axial location of front surface of first

region, cm. In slab geometry, XO is arbitrary.

In cylindrical and shperical geometry, XO

must be the radius of the front surface of the

first region.

3. AA(l) Thermal neutron flux boundary condition

4. AA(2) parameters at x = XO:

5. AA(3) AA(1)D d + AA(2)# + AA(3) = 0 at x = XO.dx
6. AA(4) AA(4)D dx + AA(5)# + AA(6) = 0 at outer

7. AA(5) dx
face of last region.

8. AA(6)

Card NREG + 3: Format (9F4.1, I4, 5F8.3)

1. DIG(l) = output control parameter. If > 0, get

Ztr for each region and energy group.

2. DIG(2) = output control parameter. If "0, out-

put PHI1, the uncollided flux transmission proba-

bility for each energy group and region.

3. DIG(3) = spare

4. DIG(4) = output control parameter. If > 0, sub-

routine GRAPH is called to print out plot of
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log(f(u)) versus u, for flux transmitted through

each region.

5. DIG(5) = slowing-down source control parameter.

If DIG(5) 0 0, a flat slowing-down source dis-

tribution of thermal neutrons is assumed within

a sub-region. If 0, then a linear approxi-

mation is used if the next sub-region is in the

same region. If not, a flat approximation

applies.

6. DIG(6) = sequence switch. If 4 0, subroutine

DOSE is called to perform all dose rate calcu-

lations. Omit DOSE call if > 0.

7. DIG(7) = scatterer switch. If > 0, the second-

last region is assumed to be a scatterer, and the

last a phantom. If NREG = 1, then the only

region in the problem is the scatterer. As

currently coded, the treatment of a scatterer

requires three successive cases:

1. preceding shield - transmission tables;

2. scatterer - reflection tables;

3. phantom - transmission tables.

Cases 2.and 3. are one-region problems, with input of

Sets 1 and 2 required to change to reflection tables

and beck again. Section A.13 lists input for a problem

of this type. The output of case 1 is the source used

by 2, and similarly for case 3. If both reflection and

transmission tables were loaded at the same time, DIG(7)

could be used to handle a scatterer in one case. This

modification would be fairly simple to incorporate into
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MEDIPORT. As it is, the result is obtained using a few

more input cards.

8. DIG(8) - output control parameter for intermediate

values of x, dx, u, du/dx, v, dv/dx,o, and df/dx.

Print if > 0.

9. DIG(9) = output control parameter. If ' 0, print

the transfer matrix TFN(J,K) for transfer from

input group J to output group K (J is row number,

K is column number). Below the diagonal appears

the highest power of the F-matrix used to obtain

TFN (T, in Chapter II), in reverse order for

both rows and columns.

10. ITHRM = sequence switch. If 7 0, delete calcu-

lation of thermal neutron flux. This is useful

for fast neutron dose transmission problems and

for scatterer problems.

11. Spare

12. Spare

13. Spare

14. Spare

15. ATTEN1 m fraction of uncollided flux that is to

be added to collided flux for scatterer region

only. If a scatterer problem, i.e., DIG(7) 2 0,

ATTEN1 = 0 may be used as no uncollided flux is

reflected from the scatterer. ATTEN1 is auto-

matically set to unity regardless of its input

value, if DIG(7) - 0.
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The following set is only required if the special SINT

subroutine is used to read the multigroup neutron source

from data cards e

Set 4. Multigroup Neutron Source

Card 1: Format (5E15.8)

1. S(l) forward-directed neutron source strength
2

in group 1, n/cm -sec

2. S(2)

3. S(3)

4. S(4)

5. S(5)

Cards 2, 3,...: As Card 1, with enough cards to contain

NENG source strengths. Set S(NENG) = 0.

The following sets are required only if DIG(6) 4 0.

Case 5:

Card

Card

Case Data for DOSE

1: Format (Ii)

1. IGAM \ 0, omit all dose input, but perform dosimetry

calculations. > 0, read all DOSE input and perform

dosimetry calculations. After the first case,

succeeding cases using the same DOSE data need

not re-read it.

2: Format (4I5)

1. II = number of neutron capture gamma-emitting

nuclides. II 4 5.

2. MX = number of points down cylindrical axis.

MX 4 24.
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3. MR = number of points across radius of cylinder.

MR 10.

4. JJ = number of neutron capture heavy particle

emitting nuclides. JJ 4 5.

Card 3: Format (10A5)

J. ISO(J) E alphanumeric label for J-th neutron

capture gamma-emitting nuclide. 14 J 4 II.

J+5. ISO(J+5) = alphanumeric label for J-th heavy

particle emitting nuclide. 1 ( J 4 JJ.

Set 6. Gamma source data. Format (5F16.8). Five cards,

each containing II words.

Card 1:

J. a = (n, Y) cross section of J-th f-emitter,

barns.

Card 2:

J. P = weight fraction of element J in cylinder.

Card 3:

J. A = atomic weight of J-th Y-emitter, MeV.

Card 4:

J. E = characteristic Y-ray energy of f-emitter

J, MeV.

Card 5:

J. n = number of Y-rays emitted by J per neutron

capture.

Set 7 Heavy particle (H.P.) source data. format (5F'16.8).

Four cards, each containing JJ words. By H.P. is meant

p, D, T, He, Li, etc.
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Card 1:

J. a (J+5) = (n, H.P.) cross section of J-th H.P.

emitter, barns.

Card 2:

J. P(J+5) = weight fraction of J-th H.P. emitter.

Card 3:

J. A(J+5) = atomic weight of J-th H.P. emitter.

Card 4:

J. E(J+5) - characteristic energy release (Q value

in physics per (n, H.P.) reaction, for J-th H.P.

emitter.

Set 8 Gamma-ray attenuation tables. Five tables,

Format (8F10.5), each preceded by a marker card in the

following sequence.

1. AA(I) - build-up factor in attenuation kernel

K(r,ro).

2. ALFl(I) build-up factor in attenuation kernel

K(r,ro).

3. ALF2(I) = build-up factor in attenuation kernel

K(r 0 ).

4. GMU(I) - total -attenuation coefficient.

5. GMUA(I) = -ray energy absorption coefficient.

These tables are functions of -ray energy; entries must be

uniformly spaced in energy. The maximum number of entries

per table is 25. Each table is preceded by a marker card,

containing in Format (2F10-5, 15) the following:
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1. Energy of first tabular entry, MeV (XOA, XOALFI,

XOALF2, XOGMU, or XOGMUA).

2. Energy interval between all entries, MeV, (HA,

HALFI, HALF2, HGMU, or HGMUA).

3. Number of tabular entries (425), (NA, NALFI, NALF2,

NGMU, or NGMUA).

Set 9

Card 1:

1. NI = order of Gaussian quadrature numerical inte-

gration for radial co-ordinate. NI = 4, 6, or 8.

?. NO = order of Gaussian quadrature numerical

integration for axial co-ordinate. NO = 4,6, or 8.

3. NX = unused parameter.

4. RZERO = radius of cylinder, cm.

5. R' = extrapolated radius of cylinder, cmn(for thermal

neutron flux distribution of Form # =

f ()[os2RPRIM
6. RHO = density of material composing cylinder,

gm/cm 3 .

7. HH : axial length of cylinder, cm.

8. GC = conversion factor to give dose in desired

units. If GC = 9.613 x 10~7, get dose in

rad/min.

Card 2

1. DX = axial dose mesh spacing, cm.

2. DY = radial dose mesh spacing, cm.

Set 10 First collision dose table, containing (NENG-1)

group-averaged values of 1010 x dose (rad)/neutron, in

Format (8F10.5).
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C MEDIPORT JULY 1967 MIT VERSION A P OLSON

DIMENSION AMAT(11),A(11),RHO(11),T(11),E(26),EN(11),ETA(11),BSIGA(
111,26),ESIGA(11,26),BSIGS(11,26),ESIGS( 11,26),TEMPA(11,26),TEMPS(1
21,26),THETA(11,26),PHIl(11,26),PH12(11,26),
3PHI(80), F(27,26), THETAN(11),TEMP(26),S(26),FISS(26),
4FLUX(11,26),XI(1l),DU(26), PLOT( 51,21), ALPH(7),U(26),GEOM(11),
5DIG(9),ITYPE(12),NCODE(11),ITITLE(12),NNCODE(11),INT(11),NVECT(11)
6,Q(10),QQ (103),QQQ(100),PSII100),FLUXU(11,26),oAREG(11),Y(3),DY(3)
7,DD(100),ALP1(11),ALP2(11),AA(6),ATABL(3),RTABL(3),WORK(33),DDD(10
8),BARMU(11),W(1500),SNN(12,25,11)
DIMENSION NCS(11),XPL(25),TTAB(25),ATAB(25),RTINF(25),CAPA(25),
1TFN(27,26),SAT(11),SST{11),FF(11,26),SAVE(26)
COMMON AMAT,A,RHO,T,E,EN,ETABSIGAESIGABSIGSESIGSTEMPATEMPS,
ITHETAPHI1,PHI2,PHI,FTHETANTEMP,S,FISSFLUX,XIDU, PLOT, ALPH,
2UGEOM,DIG,ITYPENCODEITITLENNCODEINTNVECT,Q,QQ,CQQPSI,FLUXU,
3AREG ,Y,DY,DALP1,ALP2,AAATABLERTABLWORKDD, BARMUD,P,SIGMA,
4S1,X,XX,SLOPEXMAXNTRY,M,IFVD,IBKP,IERRDXDDXtWL,IQNTHXSDXS,
5NDSXPLTTABATABRTINFCAPATFNSAT,SSTNGSNN

F TAINT
C AMAT=MATERIAL IDENTIFICATION
C A=ATOMIC WEIGHT,RHO=DENSITY IN GM/CM3,NREG=NO. OF REGIONS
C NENG=NO.OF ENERGIEST=THICKNESS OF MATERIALS IN CM,E=ENERGY
1000 READ INPUT TAPE 4,400,NNEW, IQ,(ITYPE(I),I=1,12)
400 FORMAT( 212,6X,11A6,A4)
499 FORMAT(1HO,212,6X,11A6,A4)

WRITE OUTPUT TAPE 2,9991
WRITE OUTPUT TAPE 2,499,NNEW, IQ,(ITYPE(I),l=1,12)
IF( NNEW)401,401,402

402 READ INPUT TAPE 4,450, NENG,PO,P1,CNZTACNVAL
WRITE OUTPUT TAPE 2,9994
READ INPUT TAPE 4,403,(E(J),J=1,NENG)
WRITE OUTPUT TAPE 2,9995
NONEW=NNEW
NTAB=IQ

9995 FORMAT(51H NENG Po P1 CN ZTAC NVAL)
403 FORMAT(8E10.3)

9991 FORMAT(1H1)
9994 FORMAT(1H4)

WRITE OUTPUT TAPE 2,450, NENG,POP1,CNZTAC,NVAL
450 FORMAT(I5,4E10.3,12)

NG=NENG-1
DO 404 J=1,NG
U(J)=LOGF(10./E(J))

404 DUtJ)=LOGF(E(J)/E(J+1))
DO 405 N=1,NONEW
READ INPUT TAPE 4,406,NCODE(N),AMAT(N),BARMU(N),NDS(N),SATIN),.SST(

1N)
406 FORMAT(15,5XA5,F1O.5,15,2F10.5)

WRITE OUTPUT TAPE 2,406,NCODE(N),AMAT(N),BARMUIN),NDS(N),SATIN),
ISST(N)
READ INPUT TAPE 4,498,t(SNNIM,KN),M=1,12),K=1,NG)

498 FORMAT(6F10.5)
405 CONTINUE

DO 250 N=1,NONEW
WRITE OUTPUT TAPE 2,251,AMAT(N),((SNNfM,K,N),Ms1,12),K=1,NG)

250 CONTINUE
251 FORMAT(1HO,A5,/,(IH ,12F10.5))

DO 240 K=1,NTAB
READ INPUT TAPE 4,403, XPL(K),TTAB(K),ATAB(K),RTINF(K),CAPA(K)
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WRITE OUTPUT TAPE 2,403, XPL(K),TTAB(K),ATAB(K),RTINFIK),CAPA(K

240 CONTINUE
401 READ INPUT TAPE 4,400,NREGIQ,(ITITLE(I),I1,12)

C IQ IS AN UNUSED DUMMY
IF( NREG)1001,1001,1002

1001 CALL EXIT
1002 WRITE OUTPUT TAPE 2,9991

WRITE OUTPUT TAPE 2,499,NREG,IQ,(ITITLE(I),I=1d12)
DO 407 I=1,NREG

407 READ INPUT TAPE 4,408,NNCODE(I),INT(I),A(I),RHO(I),T(I),ETA(I)I
1THETAN(I),GEOM(I),ALP2(I)

488 FORMAT(lHO,215,7F10.5)
408 FORMAT(215,7F10.5)

WRITE OUTPUT TAPE 2,417
417 FORMAT(80H NNCODE INT A(I) RHO(I) T(I) ETA(I) TH

1N(I) GEOM(I) ALP2(I))
DO 416 I=1,NREG

416 WRITE OUTPUT TAPE 2,488,NNCODE(I),INT(I),A(I),RHO(I),T(I),ETA(I
1THETAN(I),GEOM(I),ALP2(I)

)

ETA

DO 470 I=lNREG
DO 410 N=1,NONEW
IF(NCODE(N)-NNCODE(I))410,409,410

410 CONTINUE
409 NVECT(I)=N
470 AREG(I)=AMAT(N)

READ INPUT TAPE 4,204,( ALPH(I),1=1,7),CRITNCOLL
204 FORMAT(7(A5,5X),F7.3,13)

READ INPUT TAPE 4,290,P,X0,(AA(I),1=1,6)
290 FORMAT(F3.0,7E11.4)

READ INPUT TAPE 4,2002,(DIGII),I=1,9),ITHRMCAPR,CAPD,CAPLCAPTH,
1 ATTENI

2002 FORMAT(9F4.1,14,5F8.3)
WRITE OUTPUT TAPE 2,2040,( ALPH(I),I=1,7),CRITtNCOLL

2040 FORMAT(1HO,8H ALPH(I),/,7(A5,5X),F7.3,I3)
WRITE OUTPUT TAPE 2,291,P,X0,(AA(I),Iz1,6)

291 FORMAT(LHO,8H P X0,25X,5HAA(I),/,F3.0, 7E11.4)
WRITE OUTPUT TAPE 2,2003

2003 FORMAT(lHO,13H CONTROL CARD)
WRITE OUTPUT TAPE 2,2002,(DIG(I),1=1,9),ITHRMCAPRCAPDCAPL,
1 CAPTHATTEN1

C
C ITHRM GREATER THAN ZERO DELETES THERMAL FLUX CALCULATION

C CALCULATE N ANC XI FOR EACH MATERIAL
WRITE OUTPUT TAPE 2,33

33 FORMAT(lHO,54H MATERIAL N XI 1/L**2

1 D)
IF(DIG(7))1555,1555,1557

1555 ATTEN1=1.
1557 DO 1 I=1,NREG

XI(I)=ETA(I)
EN(I)=~0.6025*RHO(I)/A(I)
IF(XI(I))1,777,1

777 XI(I)=1.-((((A(I)-1.)**2.)/(2.*A(I)))*LOGF((A(I)+1.)/(A(I)-1.)))

1 CONTINUE
X=o.
-Z=EXN(NVALX)

C TEMPS CONTAINS OPTICAL PATH FOR GROUP J PRECEDING REGION I

DO 2 J=1,NG
TEMPS( 1, J) =0.
S(J)=Z

2 CONTINUE

)I
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C

DO 351 1=1,NREG
N=NVECT(I)
C=INT(I)
X=T(I)/C
DO 35 J=1,NG
BSIGA(IJ)AEN(I)*

C BSIGA IS TOTAL
FLUXU(IJ)=0.
XX=BSIGA( 1,J)*X
Z=XX+TEMPS( I ,J)
EX2=EXN(NVAL ,Z)
FLUX(I,J)=EX2/S(J
FLUXU(IJ)=XX
IF(I-NREG)3,4,4

3 Z=TEMPS(IJ)+C*XX
TEMPS(I+1,J)=Z
S(J)=EXN(NVALZ)

4 PHI1(IJ)=1.-FLUX
PLOT(J, I )=EX2
IFfTHETAN(I))363,

363 THETA(I,J)=THETAN
GO TO 35

336 THETA(IJ)=200./1
35 CONTINUE

J=NENG
BSIGAII,J)=EN(I)*
Z=EN(I)*(SATCN)+S
XX=BARMU(N)
ALP1(I)=3.*Z*BSIG
DDD(I)=BSIGA(I,J)
WRITE OUTPUT TAPE

SNN( 1,J,N)
MACRO X-SECTION

)

(I ,J)

336,363
(I)/(E(J)**(0.5))

(A(I)**(1./3.))*(E(J)**(0.5)))

SAT(N)
ST(N))

A(IJ)*(1.-XX)*(1.-BSIGA(I,J)*(0.8-XX/(l.-XX))/Z)
/ALP1(I)
2,31,AREG(I),EN(I),XI(I),ALP1(I),DCD(I)

31 FORMAT(lH0,3XA5,4X,4E12.5)
351 CONTINUE

IFIDIG 1))3C01,3001,3000
3000 WRITE OUTPUT TAPE 2,36,(AREG(

36 FORMAT(LH1,21HCAPITAL SIGMA C
WRITE OUTPUT TAPE 2,360
DO 38 J=1,NENG
WRITE OUTPUT TAPE 2,41,E(J),(

38 CONTINUE
360 FORMAT(1H ,6HENERGY)

I),I=1,NREG)
TOTAL), //,9H MATERIAL,11(6XA5))

BSIGA(IJ),I=lNREG)

3001 X=I.
WRITE OUTPUT TAPE 2,1103

1103 FORMAT41H4,55H E(J) U(J)
1BDA)

IF(ZTAC) 1150,790, 790
790 CALL SINT(NENG,E, S,X)

C ZTAC LESS C ALLOWS USING LAST FLUX OF A
IF( ZTAC) 115C, 1120,1121

1150 00 1151 J=1,NG
S(J)=SAVE(J)

1151 CONTINUE
S(NENG)=0.
GO TO 1121

1120 X=0.
DO 1100 J=1,NG
S(J)=X+S(J)

1100 X=S(J)
1121 DO 1102 J=1,NG

IF(ZTAC)1102,1122,1132

DU(J)

PREVIOUS CASE

S(J) LAM

AS SOURCE
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C XX=CORE MEAN FREE PATH (CM)
1122 XX=1./(SNN(1,J,1)*CN)

S(J)=S(J)*PC*XX*(1.+P1*XX/P3)
1102 WRITE OUTPUT TAPE 2,1104,E(J),
1104 FORMAT(5E12.4)

S(NENG)=0.
C
C CALCULATE FRACTION REMAINING AFTER ABS. AND SCATT.

DO 47 J=1,NG
00 49 I=1,NREG
N=NVECT(I)
IF(THETA(IJ)-90.)51,53,53

51 C=90./THETA(I,J)
GO TO 55

53 C=1.
C C=NO. OF COLLISIONS REQUIRED TO LOSE A NEUTRON BY SCATTER
C Pt=PROBABILITY OF LOSING A NEUTRON BY SCATTER

55 PL=PLCALC(I,J,N,GEOMSNN)
PHI2(IJ)=PH11(tJ)*PL
FLUX(I,J)=FLUX(I,J)*PL
TEMPA(I,J)zPL

49 CONTINUE
47 CONTINUE

IF(DIG(2))3003,003,3002
3002 WRITE OUTPUT TAPE 2,39,(AREG(I),I=1,NREG)

39 FORMAT(1H1,10H PHI1(I,J),//9H MATERIAL,
1/,7H ENERGY,11(6XA5))
00 37 J=1,NG

37 WRITE OUTPUT TAPE 2,41,E(J),(PHIl(I,J),I=1,NREG)
41 FORMAT(IH ,E10.3,llEll.3)

WRITE OUTPUT TAPE 2,45,(AREG(I),I=1,NREG)
45 FORMAT(1HOlOH PHI2(I,J),//,9H MATERIAL,

1/,7H ENERGY,11(6XA5))
DO 58 J=1,NG
WRITE OUTPUT TAPE 2,41,E(J),(PHI2(I,J),Il=,NREG)

58 CONTINUE
WRITE OUTPUT TAPE 2,272,(AREG(I),[=1,NREG)

272 FORMAT(1H1,25H NON-INTERACTING FRACTION,//,9H MATERIAL,/,7H ENERGY
1,11(6XA5))

DO 271 J=1,NG
PHIl(1,J)=S(J)
WRITE OUTPUT TAPE

271 CONTINUE
WRITE OUTPUT TAPE
DO 7 J=1,NG
WRITE OUTPUT TAPE
WRITE OUTPUT TAPE

7 CONTINUE

2,41,E(J),(FLUX(I,J),I=1,NREG)

2,9994

2,41,E(J),(TEMPS(I
2,41,U(J),(PLOT(J

,J),I=1,NREG)
,I),I=1,NREG)

C
3003 Z=XU

NN=O
NMAX=0
DO 430 I=1,NREG
ATTEN2=1.
IN=NVECT(I)
CALL FCALC(SNNNENGIN,F,NDS)
CALL SCALC(NENGCRIT,I,TAINTNCOLL)
TI=INT(I)
TI=T(I)/TI
II=INT(I)
IF(DIG(6))1523,1523,1520

U(J)VDU(J)ts(j)*XX



X=0.
DO 15 Jal,K

15 X=X+F(JK)
SIK)=FLUX(IK)*S(K)*ATTEN2 + X
PHI1(N+1,K)=S(K)
SAVE(K)=S(K)

C PHIL STORES SPECTRUM FOR FAST NEU
TEMP(K) =S(K)/DU(K)
FF( I,K)=TEMP(K)

14 CONTINUE
C NOW FOR SOME FLUX OUTPUTS

WRITE OUTPUT TAPE 2,104,I,( S(J)
WRITE OUTPUT TAPE 2,104,I,(TEMP(J)

104 FORMAT(1H0,12,2X,(l2E10.3))
NN=NN+1
Q(NN)=S(NENG)*PPP/TI
QQQ(NN)=CDD(I)*(ALP1(I)+ALP2(I))
DD(NN)=DDD(I)
Z=Z+TI
QQ(NN)=Z

C UPDATE VALUES IF INT(I) GRTR 1
IF(11-1)431,431,5

5 DO 6 J=1,NG
TEMPS(I,J)=TEMPS(IJ)+FLUXU(IJ)
XX=TEMPS(I,J)+FLUXU(IJ)
X=EXN(NVALXX)
C=X/PLOT(JI)
FLUX(I,J)=TEMPA(I,J)*C
PHI2(IJ)=TEMPA(I,J)*(1.-C)

C OMIT IF NO PHANTOM IE DIG(6) GRTR 0.
1523 IF(I-NREG)1520,1521,1521
1521 IF(NMAX)1522,1522,1520
1522 NMAX=NN

PPRIM=P
C NMAX IS VALUE OF NN FOR LAST REGION BEFORE PHANTOM
C WE WANT P=0. FOR PHANTOM REGARDLESS
1520 IF(DIG(7))1550,1550,1551
1551 IF(NREG-I-1)1552,1552,1550
1552 ATTEN2=ATTENI
1550 DO 431 N=1,II

PPP=1.
PP=1.
IF(P-1.)1514,1513,1512

1512 PP=PP*Z/(Z+TI)
PPP=PPP*(Z+TI)/(Z+0.5*TI)

1513 PP=PP*Z/(Z+TI)
PPP=PPP*(Z+TI)/(Z+0.5*TI)

1514 DO 432 J=1,NENG
ATTEN=l.
IF(DIG(7))1566,1566,1565

1565 IF(NREG-I-1)1566,1567,1566
1567 ATTEN=1.+(CAPR/CAPD)**2.

ATTEN=LOGF(ATTEN)*0.5
1566 ATTEN=ATTEN*PP

ATTEN2=ATTEN2*PP
PHIO=PHI2(I,J)*S(J)*ATTEN
DO 432 K=J,NENG
F(J,K)=TFN(J,K)*PHIO

432 CONTINUE
DO 14 K=1,NENG

C THIS FLUX UNDERGOES NO INTERACTIONS TRAVERSING

TRON DOSE CALCULATION

,J=1,NG)
,J=1,NG)

241

THE REGION
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PLOT(J,I)=X

6 CONTINUE
ATTEN2=1.
IF(DIG(7))431,431,1651

1651 IF(NREG-1-1)1652,1652,431
1652 ATTEN2=ATTEN1
431 CONTINUE
430 CONTINUE

C NOW DO WE WANT TO CALC. THERMAL FLUX
IF(ITHRM)70C70,701

700 WRITE OUTPUT TAPE 2,433,(QQ(N),Q(N),N=1,NN)
433 FORMAT(lHl,40H AXIAL POSITION THERMAL SOURCE DENSITY,/,

1(F12.3,1OXEl1.4)
XS=X0
00 850 l=1,NREG

850 XS=XS+T(I)
GSO=XS-T(NREG)
NGS=79
HGS=T(NREG)/79.
NTH=80
DXS=T(NREG)/79.
CALL THERM(XONREGNMAXNNPPRIM)
WRITE OUTPUT TAPE 2,699,(CQ(N),PSItN),N=1,NN)

699 FORMAT(1H4,26H DISTANCE THERMAL FLUX,/,(2E12.4))
701 DO 860 1=1,NREG

DO 861 J=1,NG
FLUXU(IJ)=FF(I,J)

861 CONTINUE
860 CONTINUE

IF(DIG(4))301D,3010,3006
C BEGIN PLOT OF SPECTRUM
3006 CALL GRAPH(NREGNG)
3010 I=NREG

NNREG=INT(NREG)+1
XXI=XI(NREG)
II=INT(NREG)+1
DO 870 1=1, II
WRIT

870 CONT
IF(D

C OM
3600 CALL

1FLUX
C NGS=
C PHI
C FOR

E OUTPUT TAPE 2,104,1,
INUE
IG(6))3600,3600,1000
IT DOSE CALL IF DIG(6)
DOSE(PHINGSHGSGSO,
,F,TFN)
NO. INTERVALS,
CONTAINS TABLE
LAST REGION

GRTR THAN 0.
PHIlNNREGXXI,S,DUNGPH12,TEMPA,TBMPS,

GSO=STARTING VALUE OF X, HGS=INTERVAL
OF THERMAL FLUXES AT EQUAL INTERVALS IN

GO TO 1000
END
LABEL
SUBROUTINE DOSE A P OLSON
SUBROUTINE O0SE(GSX,NGS,HGS,GSO,PHIlNNREGXI,SDU,
1SP4,RRR)
DIMENSION GSX(80),PHI1(11,26),GG(10,5),AA(25),ALF1(
1 R(27,26),AH(18),GMU(25),GMUA(25),S(26),DU(26),RR(
2GH(5,5),TF(25,l0),SPi(11,26),SP2(11,26),SP3(11,

2 6 ),
310),MASK(60),PSI(20),FAST(20),W(26)
CALCULATION OF GAMMA RADIATION DOSE INSIDE A CYLIN

A SPACE-DEPENDENT VOLUME-DISTRIBUTED SOURCE OF GAMM
AS MANY AS 5 DISCRETE RADIOISOTOPES. ALSO CALCULAT

NEUTRON DOSE DOWN AXIS OF CYLINDER(X AXIS).
GSX CONTAINS THERMAL FLUX TABLE, FOR NGS INTERVALS

NGSP1,SP2,SP34

25),ALF2(25)3
27,26),
SP4(11,26),ISO

DER
A RA
I ON

SUBJECT
YS, FOR
OF FAST

TO

OF WIDTH HGS

*

C
C
C
C
C

(PHI1(IJ),J=1,NG)



C
F

CALL
CALL
CALL
CALL
CALL
READ
READ
READ

DATA(
DATA(
DATA(
DATA(
DATA(
INPUT
INPUT
INPUT

XOA, HA,
XCALF1, HALF1,
XCALF2, HALF2,
XCGMU , HGMU ,
XCGMUA, HGMUA,
TAPE 4,102,NI,
TAPE 4,100,DX,
TAPE 4,100,(W(

NA, AA)
NALF1, ALF1)
NALF2, ALF2)
NGMU , GMU )
NGMUA, GMUA)
N0,NXRZERORPRIM,
DY
J),J=1,NG)

102 FORMAT(3I5,5X,4F10.5,E12.4)
AH( 1)=.86113631
AH( 2)=.33998104
AH( 3)=.34785485
AH( 4)=.65214515
AH( 5)=.93246951
AH( 6)=.66120939
AH( 7)=.23861919
AH( 8)=.17132449
AH( 9)=.36076157
AH(10)=.46791393
AH 11l)=.96028986
AH(12)=.79666648
AH(13)=.52553241
AH(14)=.18343464
AH 115)=.10122854
AH(16)=.22238103
AH( 17)=.31370665
AH(18)=.36268378
WRITE OUTPUT TAPE 2,110,II,MX,MRJJ
WRITE OUTPUT TAPE 2,130,ISO

130 FORMAT( lHO,10A5)
109 FORMAT(1HO,5F16.8)
110 FORMAT(24H NO. GAMMA PRODUCERS=II=,

12)
WRITE OUTPUT TAPE 2,107,NI,NONXRZ

107 FORMAT(66F NI NO NX RZE
1 GC,/,315,5X,4F10.5,

WRITE OUTPUT TAPE 2,133,DX,
133 FORMAT(4H DX=,F10.5,4H DY=,

WRITE OUTPUT TAPE 2,160,(W(
160 FORMAT(lHO,5H W(J),/,(10F10
141 XXAGSO-DX

DO 12 J=1,MX
XX=XX+DX
YY=-DY
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FAST FLUX WITHIN LAST REGION.

RHOHH,GC

12,4H MX=,12,4H MR=,I2,4H

ERORPRIMRHO ,HHGC
RO RPRIM RHO

JJ=, 4

HH

,NG)

AND STARTING VALUE GSO. PHIl CONTAINS
F,GANGLE
READ INPUT TAPE 4,142,IGAM

WRITE CUTPUT TAPE 2,108,IGAM
142 FORMAT(I1)
108 FORMAT(1HI,6H IGAM=,I1)

IF(IGAM)141,141,140
140 READ INPUT TAPE 4,119,IIMXMRJJ

READ INPUT TAPE 4,129,ISO
129 FORMAT(10A5)

DO 1 J=1 9 5
1 READ INPUT TAPE 4,137,(GG(JI),I=1rII)
DO 19 J=1,4

19 READ INPUT TAPE 4,137,(GH(J,1),I=1,JJ)
137 FORMAT(5F16.8)
100 FORMAT(8F10.5)
119 FORMAT(415)

Th
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DO 13 K=1,MR
YY=YY+DY

C STORE THERMAL FLUX IN TF(JK), FOR OBSERV
TF(JK)=SPINT(XXGSXNGS,GSOHGS)*(COSF(1

C NOTE REVERSED INDICES IN SP ARRAYS
13 CONTINUE
12 CONTINUE

C CALC. OF FAST NEUTRON DOSE DOWN BEAM AXIS
A=60.E-10
WRITE OUTPUT TAPE 2,117

117 FORMAT(1H4,33H FAST NEUTRON DOSE DOWN BEA
lRAD/MIN,8X,9HFAST FLUX)
X=GSO
XX=NGS
YY=NNREG-1

C AS NNREG=INT(NREG)+1
H=XX*HGS/YY
00 9 I=1,NNREG
FUDGE=O.
XX=0.
SUM=0.
SUMU=0.
00 10 J=1,NG
YY=1.006E-4*(EXPF(D.5*DU(J)) -1.)/DU(J)

PSI1=SQRTF(10.)*EXPF(-SUMU/2.)
FUDGE=FUDGE+PHIL(I,J)*YY/PSII
XX=XX+PH11(1,J)
SUMU=SUMU+DU(J)

10 SUM=SUM+PHI1(IJ)*W(J)
SUM=SUM*A
FAST(I)=LOGF(SUM)
PSI(I)=LOGF(YY*FUDGE)
WRITE OUTPUT TAPE 2,116,X,SUMXX
X=X+H

9 CONTINUE
WRITE OUTPUT TAPE 2,149,(PSI(I),I=1,NNREG

149 FORMAT(1H4,7H PSI(I),(10E12.4))
IF(NNREG-1)21,21,22

21 H=H/2.
NNREG=3
FAST(3)=FAST(2)
FAST(2)=0.5*(FAST(1)+FAST(2))
PSI(3)=PSI(2)
PSI(2)=0.5*(PSI(1)+PSI(2))

22 L=NNREG-1
C L=NO. OF INTERVALS IN LAST SLAB, INT(NR

XX=GSO-DX
C FAST FLUX FALLS OFF EXPONENTIALLY TAKI
C INTERPOLATION

DO 23 J=1,MX
XX=XX+DX
YY=EXPF(SPINT(XX,FAST, L,GSOH))
DO 24 K=1,MR
RR(J,K)=YY

24 SP3(KJ)=YY
WRITE OUTPUT TAPE 2,200,(SP3(KJ),K=1,MR)

23 CONTINUE
XX=GSO-HGS
L=NGS+1
M=NNREG-1
DO 42 K=1,L

ATION POINT (XX,YY)
.570796*YY/RPRIM)**0.25)

M AXIS,/,20H X

)

FUDGED TO 2 OR MORE

NG LOGS GIVES BETTER

EG),
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XX=XX+HGS
YY=EXPF(SPINT(XXPSI, M,GSOH))
GSX(K)=GSX(K) + YY

42 CONTINUE
WRITE OUTPUT TAPE 2,200,(GSX(K),K=1,L)

200 FORMAT(lH4,( 10E12.4))
N1=NALF1-1
N2=NALF2-1
N3=NA-1
N4=NGMU-1
N5=NGMUA-1
A=O.
B=RZERO/RPR IM
P=0.
Q=3.1415927
C=NGS
D=C*HGS+GSO
C=GSO
DO 3 J=l,MX
DO 3 K=1,MR
SP2(KJ)=0.

3 SPI(KJ)=0.
C SP CONTAINS TOTAL GAMMA DOSE RATE

DO 4 1=1,11
XXmGSO-OX
E=GG(4, I)
GG(6,I)=SPINT(E, GMUN4, XOGMU, HGMU)
GG(7,1)=SPINT(E,GMUAN5,XOGMUAHGMUA)
GG(8,I)=SPINT(EALF1,N1,XOALFHALF1)
GG(9,1)=SPINT(E,ALF2,N2,XOALF2,HALF2)
GG(10,I)=SPINT(E,AAN3,XOA,HA)
WRITE OUTPUT TAPE 2,109,(GG(JI),J=6,l0)
V6=GG(6, I)
V7=GG(7, 1)
V8=GG(8, I)
V9=GG(9, I)
VIO=GG(10 1)
GGC=GC*V7*E/RHO
CK=0.6024*GG( 1,1) *GG( 2,1 )*GG(5,1)/GG( 3,I)
GK=GGC*CK
DO 5 J=1,MX
XX=XX+DX
IF(XX-0)35,36,36

36 Z=0.75*(D-C) + C
GO TO 37

35 Z=XX
IF(XX-C)38,38,37

38 Z=0.25*(D-C) + C
37 YY=-DY

DO 6 K=1,MR
YY4YY+DY
IF( YY-RZERO) 33,34,34

34 T=0.75*B
GO TO 32

33 T=YY/RPRIM
IF(T)31,31,32

31 T=0.25*B
32 Rl=GK*G3( ATC,Z,F,G,NINOAHV6,V7,V8,V9,V10,GSXNGSHGSGSO,
1XXYYANGLE,P,.Q,RPRIM)

R2=GK*G3(T,B,C,Z,F,G,NI,NO,AH,V6,V7,V8,V9,V10,GSXNGSHGS,GSO
1XXYYANGLEP,0,RPRIM)
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R3=GK*G3(AT,Z,D,F,G,NI,NOAHV6,V7,V8,V9,V10 ,GSX,NGSHGSGSO,

1XXYYANGLE,P,Q,RPRIM)
R4=GK*G3(T,B,Z,D,F,G,NINOAHV6,V7,V8,V9,V10,GSXNGSHGSGSO,

1XX, YY, ANGLE, P, Q, RPR IM)
R(J,K)=R1+R2+R3+R4
RR(J,K)=RR(J,K)+R(J,K)
SP1(K,J)=SP1(K,J)+R( J,K)
WRITE OUTPUT TAPE 2,134,XXYY,RlR2,R3,R4

134 FORMAT(lH ,2F10.5,4E12.3)
6 CONTINUE
5 CONTINUE

WRITE OUTPUT TAPE 2,131,0ISO()
131 FORMAT(lH1,16H GAMMA DOSE FOR ,A5)

DO 7 J=1,MX
7 WRITE OUTPUT TAPE 2,114,(R(JK),K=1,MR)

114 FORMAT(IHO,10E12.4
4 CONTINUE

WRITE OUTPUT TAPE 2,132
DO 2 J=1,10

2 WRITE OUTPUT TAPE 2,109,(GG(J,I),=1,II)
C CALCULATION OF HEAVY PARTICLE DOSE

00 11 J=1,JJ
GH(5,J)= (GH(1,J)*GH(2,J)*GH(4,J)/GH(3,J) )*5.79E-7

11 CONTINUE
WRITE OUTPUT TAPE 2,132

132 FORMAT(1H4)
DO 20 J=1,4

20 WRITE OUTPUT TAPE 2,109,(GH(J,I)Il=1,JJ)
DO 14 L=1,JJ
WRITE OUTPUT TAPE 2,120,ISO(L+5)

120 FORMAT(lHl,25H HEAVY PARTICLE DOSE FOR ,A5)
XX=-DX+GSO
DO 15 J=lMX
XX=XX+DX
FUDGE=SPINT(XXGSX,NGSGSOHGS)
YY=-DY
DO 16 K=1,MR
YY=YY+DY
R (JK)=GH(5,L)*FUDGE* (COSF (1.570796*YY/RPRIM) **0.25)
IF(L-1)41,41,40

41 SP4(KJ)=R(J,K)
GO TO 16

C SAVE DOSE FROM FIRST HEAVY PARTICLE EMITTER EG B-10
C AND LEAVE IT OUT OF THE TOTAL FOR BACKGROUND DOSE

40 SP2(KJ)=SP2(K,J)+R(JK)
RRA JK)=RR CJK)+R (JK)

16 CONTINUE
WRITE OUTPUT TAPE 2,114,(R(J,K),K=1,MR)

15 CON TINUE
14 CON TINUE

C MAKE R-VALUE TABLE FOR OUTPUT TABLE
YY=-DY
DO 25 K=1,MR
YY=YY+DY
GSX(K)=YY

25 CONTINUE
FUDGE=0.
DO 26 J=1,MX
DO 26 K=1,MR
IF(RR(J,K)-FUDGE)26,26,27

27 FUDGE=RR(JK)
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26 CONTINUE
FUDGE=LOGF(FUDGE)/LOGF(10.)
I=FUDGE-4.
FUDGE=I
FUDGE=10.**FUDGE
00 28 J=1,MX
DO 28 K=1,MR
I=RR(J,K)/FUDGE+0.5
RR(J,K)=1
I=SPL(KJ)/FUDGE+0.5
SP1(K,J)=I
I=SP2(KJ)/FUDGE+0.5
SP2(KJ)=I
I=SP3(K,J)/FUDGE+0.5
SP3(KJ)=1
I=SP4(K,J)/FUDGE+0.5
SP4(KJ)=1

28 CONTINUE
WRITE OUTPUT TAPE 2,124,ISO(6),(GSX(K),K=1,MR)

124 FORMAT(lH1,13H KEY TO TABLE,27X,13HSUMMARY TABLE,/,24H THERMAL FLU
1X(N/CM2-SEC),/,13H FAST HEAVY,/,13H GAMMA TOTAL,/,8H RATIO ,A5

2,//,6H DEPTH,14X,13H R-COORDINATE,/,1OX,(10(F1O.3,2X)))
XX=-DX
DO 29 J=1,MX
XX=XX+DX
DO 30 K=1,MR
MASK(K)=SP3(KJ)
MASK(K+10)=SP2(KJ)
MASK(K+20)=SP1(KJ)
MASK(K+30)=RR( J,K)
MASK(K+40)=1000.*SP4(KJ)/RR(J,K)
MASK(K+50)=SP4(K,J)

30 CONTINUE
WRITE OUTPUT TAPE 2,125,XX,(TFIJ,K),K=1,MR)
WRITE OUTPUT TAPE 2,126,(MASK(K),MASK(K+10), K=1,MR)
WRITE OUTPUT TAPE 2,126,(MASK(K+20),MASK(K+30),K=1,MR)
WRITE OUTPUT TAPE 2,126,(MASK(K+40),MASK(K+50),K=1,MR)
WRITE OUTPUT TAPE 2,127

29 CONTINUE
WRITE OUTPUT TAPE 2,128,FUDGE
FUDGE=GH(2,1)*1E6
WRITE OUTPUT TAPE 2,136,ISO(6),FUDGE

116 FORMAT(1H ,F1.5,2El4.4)
125 FORMAT(1H ,F8.3,2X,(10(El0.3,2X)))
126 FORMAT(1H ,10X,(10(215,2X)))
127 FORMAT(1HO)
128 FORMAT(1HO,17H DOSE IN UNITS OFF10.5,8H RAD/MIN)
136 FORMAT(lHO,A5,12H WT FRACTIONF8.2,4H PPM)

RETURN
END

* SUBROUTINE CERIV
SUBROUTINE DERIV
DIMENSION ANAT(11),A(11),RHO(11),T(11),E(26),EN(11),ETA(11),ISIGA(
111,26),ESIGA(11,26),BSIGS(11,26),ESIGS(11,26),TEMPA(11,26) ,TEMPS(1

21,26),THETA(11,26),PHI1(11,26),PHI2(11,26),
3PHI(80), F(27,26), THETAN(11),TEMP(26),9(26),FISS(26),
4FLUX(11,26),XI(11),DU(26), PLOT( 51,21), ALPH17),U(26),GE0Mt11)f,

5DIG(9),ITYPE(12),NCODE(11),ITITLE(12),NNCODE(11),INT(11),NVECT(11)
6,Q(100),QQ(103),000(100),PSI(100),FLUXU(11,26),.AREG(11),Y(3),D- (3)

7,DD(100),ALP1(11),ALP2(11),AA(6),ATABL(3),RTABL(3),WORK(33),DDD( 10

8),BARMU(11),W(1500),SNN(12,25,11)
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DIMENSION NCS 111) vXPL (25) 9TTA8125) *ATAB(25) I RTINF(25 )9,CAPA125)
1TFN(27v26),SAT111)*SST(11)
COMMON AMAT#ARHOTPEENPETAIBSIGAtESIGA#BSIGS#ESIGSTEMPATEMPSIP

1THETA#PH11#PH129PHI#F#THETAN#TEMPvSiFISStFLUXtXltDU9 PLOT# ALPH9.
2UGEOMiDIGilTYPENCODEITITLENNCODEINT#NVECTtQQQtQQQIPSIFLAJXUI
3AREGY*DYtDCALP19ALP2,AAtATABLE#RTABL#WORKIDDDBARMUIDPSIGMA9,
4SltXtXXgSLOPEXMAXtNTRYMtIFVDIIBKP91ERRtDX90DX#W#LPIQPNTHiPXSt DXSt
5NDStXPLiTTARtATA89RTINFtCAPAtTFNiSAT#SST*NGvSNN
DY11)=(Y(1)**2.)/D-SIGMA-P*Y(1)/X
DY(2)=Y(1)*Y(2)/D+Sl+(X-0.5*(XMAX+XX))*SLOPE-P*Y(2)/X
DY(3)=-(Y(2)+Y(1)*Y(3))/D
RETURN
END
LABEL
SUBROUTINE CNTRL(NTRY)
SUBROUTINE CNTRLINTRY)
DIMENSION APAT(11)tA(11)vRHO(11)tT(11)vE(26)tEN(11),PETA(11),PBSIGA.(
111#26)tESICA(11#26)tBSIGS(11926),ESIGS(11,26)9 TEMPA(11926),PTEMPS11

2lt26),THETA(11926),PH11(11926)IPH12(llt26)9
3PHI(80)9 F(27926), THETAN(11)tTEMP(26)#S(26)ioFISS(26)9

4FLUX(11,26),XI(ll)9DU(26)v PLOT( 51t2l)t ALPH(7),U(26),GEOM(11)9,
5DIG(9)*ITYPE(12)iPNCODE(11)91TITLE(12)tNNCDDE(11)tlNT(11)iNVECT(11)
6tQ(100),QQ(100)*QQQ(100),PSI(100)tFLUXU(11926)tAREG(11)PY(3)9DY(3)
79DD(100),ALP1(11),ALP2111)tAA(6),ATABL(3)*RTABL(3),WORKt33),DDD(IO
8)98ARMU(ll)tW(1500),SNN(12925,11)
DIMENSION NCS(11)*XPL(25)tTTAB(25),ATAB(25),RTINF(25),CAPA(25)t
ITFN(27,26)tSAT(11),SST(ll)
COMMON AMATtAtRHOiTtEvEN#ETABSIGAtESIGAtBSIGSvESIGStTEMPA*TEMPSt
1THETAPPH11*PH12tPHl*FITHETANITEMPSIFISS#FLUXtXltDUt PLOTv ALPHt,

2U9GEOMIDIG91TYPENCODEITITLENNCODE*INTNVECTI,,Q,,QQQQQtPSliFL-*.UX.Ut.
3AREGvYIDY90DtALP11ALP2,AAgATABLEtRTABL,.WORKvDDDtBARMUlDiPtSIGMAt
4Sl9XtXXtSLOPEIXMAXtNTRYtMtIFVDtIBKPtIERR#DXvDDX*W#LtlQtNTH#XSIDXSV
5NDSvXPLtTTABIATABIRTINFtCAPA TFNtSATISSTNGiSNN
IF(M-2)39617

6 YDY=Y(1)/DY(l)
OLTAI=O. 15*ABSF(YDY)
IFtDLTAl-,0ClD)18,18j19

18 DLTAl=l.
19 DLTA2=XMAX-X

OLTA2=ABSF(CLTA2)
DLTA3=ABSF(CDX)
DLTA1=MlNlF(DLTA19DLTA29DLTA3)
DX=S IGNF (DLTA1,DX
W(L)=Y(l)
W(L+I)=DX
WIL+2)=Y(2)
WIL+3)=Y(l)
L=L+3
GO TO 8

7 lFfIQ)9,9vl0
10 IQ=O

GO TO 8
9 L=L-3
Y(1)=W(L+3)
Y(2)=W(L+5)
DX=-W(L+l)
NTRY=4
IQ=l
GO TO 2

8 IF(DIG(8))8C,80v8l
81 WRITE OUTPUT TAPE 2v20,XvDXv(Y(l)jDY(I)vI=lM)
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20 FORMAT(1H ,8E13.5)
80 IF(M-2)l2,12,16
16 IF(NTH)12,12,11
11 PHI(1)=Y(3)

IF(X-XS)13,13,14
13 PHI (NTH)=Y(3)+((XS-X)/(XP-X) )*(PHIP-Yt3))

WRITE OUTPUT TAPE 2,1,XS,PHI(NTH)
1 FORMAT(1H ,F12.5,E15.4)
NTH=NTH-1
XSwXS-DXS
GO TO 16

14 PHIP=YI3)
XP=X

12 W1=XMAX-X
IF(DDX)4,3,5

4 W1=-W1
5 IF(WI-.0001)3,3,2
3 NTRY=2
2 RETURN

END
* LABEL

FUNCTION PLCALC(I,J,N,GEOMSNN)
DIMENSION GEOM(11),SNN(12,25,11)
PLCALC=1.-GEOM(I)
RETURN
END

* LABEL
* SUBROUT INE SINT( NENG, EFLUXPHIMIT)

SUBROUTINE SINT(NENG,E,FLUX,PHIMIT)
F SPECT

DIMENSION E(26),FLUX(26)
M=8
N=NENG-1
FLUX(NENG)=0.
DO 1 I=1,N
IF(E(I)-.001)2,2,3

C ASSUMES NO FISSION NEUTRONS BELOW .001 MEV
2 FLUX(I)=G.

GO TO 1
3 A= E(I+1)

C= E(I)
B=( A+C)*0.5

C GAS4 USES 4TH ORDER GAUSSIAN FIT OVER 2 SUB-INTERVALS
F1=GAS4( SPECTA,B)
F2=GAS4( SPECTB,C )
FLUX(I) =PHIN IT*(F1+F2)

1 CONTINUE
WRITE OUTPUT TAPE 2,4,(E(I),FLUX(I),I=1,N)

4 FORMAT(1H1,7H ENERGY,5X,15HSOURCE STRENGTH,/,(F7.3,F14
RETURN
END

* SUBROUTINE DATA
SUBROUTINE CATA(X,H,NA)
DIMENSION A(25)
READ INPUT TAPE 4,3,X,H,N
READ INPUT TAPE 4,4,(A(I),I=1,N)
WRITE OUTPUT TAPE 2,5,X,H,N,(AtI),1,N)
RETURN

3 FORMAT(2F10.5,15)
4 FORMAT(8F10.5)
5 FORMAT(lHO,2F10.5,15/(8F10.5))

LB

PER GROUP

.8) )



END
* LABEL

FUNCTION SPECT(X)
Y=SQRTF(2.29*X)
SPECT=0.4527*EXPF(-X/0.965
RETURN
END

* LABEL
FUNCTION SPINT(X,A,N,XO,H)
DIMENSION A(8)

C 4-TH DIFFERENCE=FOURF(J)
C 2-ND DIFFERENCE=TWOF(J)
C MODIFIED EVERETT FORMULA I
C TO FCURF(J)

6
3

XX*X-XO
M=XX/H
M=M+1
T=MODF(XXH)/H
11=1
12=2
13=3
IFtM-2)4,3t6
IF(M-N+1)2,3,5
D4=-.
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)*TANHF(Y)/SQRTF(1.-(TANHF(Y))**2.)

NTERPOLATIONt WITH ERROR PROPORTIONAL

D41=0.
GO TO 8

2 D4=FOUR(A,M-2)
D41=FOUR(A,#-1)

8 D2=TWO(A,M-1)
D21=TWO(A,M)
TB=1.-T
G=0.184
C=1./6.
FX=TB*(A(M)
I G*D41))
SPINT=FX
RETURN

5 I11N-1
I2=N
13=N+1
B=M-N+1
T=T*+B
GO TO 7

4 B=M-1

+C*(TB*TB-1.)*(D2-G*D4))+T*(A(M+1)+C*(T*T-1.)*(D21-

* T=T+B
7 FX=0.5*(T-2.)*(T-1.)*A(Il)-T*(T-2.)*A(12)+0.5*T*(T-1.)*A(13)

SPINT=FX
RETURN
END

* LABEL
FUNCTION FOUR(Ai)
DIMENSION A(80)
FOUR=A(I)-4.*(A(I+1)+A(1+3))+6.*A(1+2)+AI1+4)
RETURN
END

* LABEL
FUNCTION TWC(Ai)
DIMENSION A(80)
TWO=A(I)-2.*A(1+1)+A(1+2)
RETURN
END



251
4LABEL

FUNCTION G3( ABC ,DFG,NINOAHV6,V7,VBV9,V1OGSXNGSHGSGSOX
I X YY tANGLE iPtQ01RPR IM)
DIMENSION AHi(18)#GSX( 80)

F FGiANGLE
SUM=o.
AVG=(Q+P )/2.
O IF= I Q- P) /2.
J=10
K=14
DO 4 1=1,4
L=I+J
TH=AVG-A-fL ) *0IF
Fl=ANGLE(TH)*G24(A,8,CDFGNINOAHV6,V7,V8,V9,VlOGSXNGSHGS,
1GSO,XX*YY,TtRPRI M)

TH=AVG-AHI I) *0IF
F2=ANGLE(TH)*G24IAB,C,DF,GNINOAHV6,V7,V8,i V9,Vl0,GSXNGS,.HGS,
1GSOXXIYYTIRPRI M)
M=I+K

4 SUM=SUM+AHIPM)*(Fl+F2)
G3=SUM*DIF*RPR IM*RPRIM
RETURN
END

* LABEL
FUNCTION G241ABC,DFGNINO, AHV6,V7,V8,V9,V1OGSXNGSHGSGSO,
1XXYY#TH#RPR IM)
DIMENSION AHI18),GSX(80)

F F
SUM=Q.
NL=NO+l
N2=NO/2
AVG=(B+A )/2.
DIF= 18-A )12.
J =0
IF(NO-6) 1,2,3

2 J=4
GO TO 1

3 J=1CD
1 K=J+N2
00 4 I=1,N2
L=I+J
Y=AVG+AH (L)*DIF
R=Y*RPRIM
FI=GIY)*CENTR(F,C,D,NIR,AHtV6,V7,V8,V9,VlOGSX,NGSHGS,GSO,XXifYY,
iTH)
Y=AVG-AHI I) *01F
R=Y*RPRI M
F2=G(Y)*CENTR(FCDNIRAHV6,V7,V8,v9,vl0,GSX-NGSHGSGSOXx.-Y~Y,
ITH)
M=I -K

4 SUM=SUM+AH(PM)*(F1+F2)
G24=SUM*DIF
RETURN
END

* LABEL
FUNCTION CENTR(FCD,NI ,RAHV6,V7,V8,V9,VlOGSXNGSHGSGSOXX.
IY, TH)
DIMENSION AHL18),GSX(8O)
SUM=(.
Nl=NI+l
N2=N1/2
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AVG= (D+C ) /2.
DIF=(D-C )/2.
J=0
IF (NI-6) 1,2,3

2 J=4
GO TO 1
J=10
K=J+N2
DO 4 I=1,N2
L=I+J
X=AVG+AH(L)*DIF
F1=F(X,RV6,V7,V8
X=AVG-AH(L)*DIF
F2=F(X,R,V6,V7,V8
M=I+K

,V9,V1lGSX,NGSHGSGSO,XXYYTH)

,V9,V1OGSXNGSHGS,GSO,XXYYTH)

4 SUM=SUM+AH(P)*(F1+F2)
CENTR=SUM*DIF
RETURN
END

* LABEL
FUNCTION F(X,R,GMUV7,AL1,AL2,A,GSX,NGSHGSGS,.XXYYTH)
DIMENSION GSX(83)
EL2=(X-XX)**2.+R*R+YY*YY-2.*R*YY*COSF(TH)
EL=SQRTF (EL2)
S=SP INT( X,GSX ,NGS ,GSOHGS)
F=S*(A*EXPF(-1.-AL1)*GMU*EL) + (l.-A)*EXPF(-(1.+AL2)*GMU*EL))/I
1 EL2*12.566371)
RETURN
END

* LABEL
FUNCTION GIY)
G=Y*(COSF(1.570796*Y)**0.25)
RETURN
END

* LABEL
FUNCTION ANGLE(TH)

C THERE IS NC ANGULAR DEPENDENCE IN THIS
ANGLE=2.
RETURN
END

* LABEL
* SUBROUTINE SCALC

SUBROUTINE SCALC(NENGCRIT,I,TAINTNCOLL)
DIMENSION AMAT(11),A(11),RHO(11),T(11),E(26),EN(11),ETA(11),BSIGA(
111,26),ESIGA(11,26),BSIGS(11,26),ESIGS(11,26) ,TEMPA(11,26),TEMPS(i

21,26),THETA(11,26),PHI1(11,26),PHI2(11,26),
3PHI(80), F(27,26), THETAN(11),TEMP(26),S(26),FISS(26),
4FLUX(11,26),XI(1l),DU(26), PLOT( 51,21), ALPH(7),U(26),GEOM(11),

5DIG(9),ITYPE(12),NCODE(11),ITITLE(12),NNCODE(11),INT(11),NVECT(11)
6,Q(100),QQ(100),QQQ(100),PSI(100),FLUXU(11,26),AREG(11),Y(3),DY0i3)
7,DD(100),ALPI(11),ALP2(11),AA(6),ATABL(3),RTABL(3),WORK(33),DDD(10
8),BARMU(11),W(1500),SNN(12,25,11)
DIMENSION NCS(11) ,XPL(25),TTAB(25),ATAB(25),RTINF(25),CAPA(25)9
1TFN(27,26),SAT(11),SST(11)
COMMON AMAT,A,RHO,T,E,ENETA,BSIGAESIGABSIGS,ESIGSTEMPATEMPS,
1THETAPHILPHI2,PHI ,FTHETANTEMPS,FISSFLUXXI ,DU, PLOT, ALPH,.

2 U,GEOMDIGITYPENCODE,ITITLENNCODEINT,NVECTtQQQCQQPSIFLAXUI,
3AREG,Y,DY,DD,ALP1,ALP2,AAATABLERTABLWORKDDD,BARMU,0, P,SIGMA,

451, X, XX, SLOPE, XMAX, NTRY ,M, IF VD, IBKP, IERR, DX, DDX, W,L, IQ, NTHXS,.DXS,

5NDS,XPLTTABATABRTINF,CAPATFN,SAT,SST,NG,SNN
NTAB=16

3
1
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M=NENG+1
L=0
DO 30 J=1,NG
TEMP(J)=0.
JJ=NENG+2-J
00 30 K=JNENG
KK=M-K
TFN(J,K)=0.
TFN(JJKK)=F(J,K)

30 CONTINUE
20 L=L+l

ITEST=0
NOW GET TRANSMISSION PROBABILITIES FOR ALL GROUPS
FISS(J) CONTAINS PREVIOUS TRANSMISSIONS, IF L GRTR 1, FOR C=1.
FLUXU CONTAINS THICKNESS IN MFP
IQ=4
DMON=0.
DO 1 J=1,NG
IF(L-1)2,2,5

2 X=FLUXU(I,J)
CALL TAINT(XPLTTAB,X,XX,NTAB,IQ,NERRDMONATAB,XSRTINF,XMAX,

1 CAPA,DXS)
4 FISS(J)=XX
PLOT(J+26,1)=XMAX
PLOT(J+26,2)=DXS
PLOT(J+26,3)=XS
WRITE OUTPUT TAPE 2,19,X,XXXMAXDXSXS
GO TO 1

5 Sl=L
FISS(J)=(PLCT(J+26,1)+PLOT(J+26,2

1 CONTINUE
)*EXPF(-PLOT(J+26,3)*S1))*FISS(J)

C
DO 7 J=1,NG
JJ=NENG+2-J
XX=FISS(J)
DO 8 K=JNENG
KK=M-K
TFN(JK)=TFN(JJKK)*XX + TFNIJ,K)

8 CONTINUE
R=TFNfJ,J)
IF(R)9,1,9

9 R=(TEMP(J)-R)/R
R=ABSF(R)-CRIT
TEMP(J)=TFN(JJ)
IF(R)7,7,10

10 ITEST=l
7 CONTINUE

IF(ITEST)11,11,12
11 WRITE OUTPUT TAPE 2,100,L,I,R
100 FORMAT(IH ,13,27H COLLISIONS USED FOR REGION,13,3H R=,E10.3)

IF(DIG(9) )16,16,1T
17 WRITE OUTPUT TAPE 2,25
25 FORMAT(1H1,9H TFN(J,K))

DO 18 J=1,M
WRITE OUTPUT TAPE 2,19,(TFN(J,K),K=1,NENG)

18 CONTINUE
19 FORMAT(IHO,(13F9.6))
16 RETURN
12 IF(L-NCOLL)13,11,11

C NOW RAISE F ANOTHER POWER, FOR NEXT COLLISION
13 DO 14 J=1,NG

C
C
C
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JJ=NENG+2-J
DO 14 K=J,NENG
KK=M-K
F(JJKK)=0.
DO 14 MM=J,K
JK=M-MM
F(JJ,KK)=F(JJKK)+TFN(JJJK)*F(PM,K)

14 CONTINUE
DO 15 J=1,NENG
JJ=NENG+2-J
DO 15 K=JNENG
KK=M-K
TFN(JJKK)=F(JJKK)

15 CONTINUE
GO TO 20
END
SUBROUTINE FCALC(SNN,NENGilN,F,NDS)
DIMENSION SNN(12,25,11),F(27,26),NDS(11)
DO 1 J=1,NENG
IFIJ-NENG)9,2,2

9 IF(SNN(1,J,IN))2,2,4
2 DO 3 K=1,NENG
F(J,K)=0.

3 CONTINUE
GO TO 1

4 X=1./SNN(1,J,IN)
DO 5 K=1,NENG
L=K-J
IFfL)6,7,7

6 F(J,K)=0.
GO TO 5

7 IF(NDS(IN)-L)6,8,8
8 F(JK)=X*SNN(L+2,JIN)
5 CONTINUE
1 CONTINUE

10 RETURN
END

* LABFL
* SUBROUTINE SINT

SUBROUTINE SINT(NENG,E,FLUX,PHIMIT)
DIMENSION E(26),FLUX(26)
READ INPUT TAPE 4,1,(FLUX(I),I=1,NENG)

1 FORMAT(5E15.8)
WRITE OUTPUT TAPE 2,4,(E(I),FLUX(I),I=1,NENG)

4 FORMAT(F 10.3,E15.8)
RETURN
END

* SUBROUTINE THERM
SUBROUTINE THERM(XO,NREGNMAX,NNPPRIM)
DIMENSION AMAT(11),A(11),RHO(11),T(11),E(26),EN(11),ETA(11),BSIGAE
1l1,26),ESIGA(11,26),BSIGS(11,26),ESIGS(11,26),TEMPA(11,26),TEMPS(1
21,26),THETA(11,26),PHI1(11,26),PHI2(11,26),
3PHI(80), F(27,26), THETAN(11),TEMP(26),S(26),FISS(26),
4FLUX(11,26),XI(11),DU(26), PLOT( 51,21), ALPH(7),U(26),GEOM(l1),
5DIG(9),ITYPE(12),NCODE(11),ITITLE(12),NNCODE(11),INT(11),NVECTII)
6,Q(100),QQ(100),QQQ(100),PSI(100),FLUXU(11,26)t AREG(11),Y(3),PDY(.3)

7,DD(100),ALPL(11),ALP2(11),AA(6),ATABL(3),RTABL(3),WORK(33),DDD(10
8),BARMU(11),W(150O),SNN(12,25,11)
DIMENSION NOS(11),XPL(25),TTAB(25),ATAB(25),RTINF(25),CAPA(25)I
1TFN(27,26),SAT(11),SST(11)
COMMON AMAT,ARHO,T,E,ENETABSIGA,ESIGA,BSIGSESIGSTEMPATEMPS,
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1THETAPHI1,PH[2,PHI,F,THETANTEMPS,FISSFLUX,XIDU, PLOT, ALPH,
2U,GEOM,DIG,ITYPENCODEITITLENNCODEINTNVECTQ,QQ,QQQ,PSIFLUXU,
3AREG,Y,DYDCALP1,ALP2,AAATABLERTABLWORKODDIBARMU,DP,SIGMA,
4S1,X,XX,SLOPEXMAX,NTRY,M,IFVD,IBKP,IERRDXDDX,W,L,IQNTHXSDXS,
5NDS,XPLTTABATABRTINFCAPATFNSATSSTNGSNN

F DERIVCNTRL
Y(3)=0.
DY(3)=0.
X=XD
I Q=()
DX=QQ(1)-XO
N0=1
IF(AA(1) )600,602,600

600 Y(1)=AA(2)/AA(I)
Y12)=AA(3)/AA(1)
N0=

602 IFVD=1
M=2
L=1
IBKP=0
NNN=1
IF(DIG(T))1553,1553,1554

1554 NNN=NN-INT(NREG)+1
N1=NREG-1
00 1 I=1,N1
X=X+T(I)
PSI(I)=0.

1 CONTINUE
1553 DO 603 N=NNNNN

IF(DIG(6))1530,1530,1531
1530 IF(N-NMAX)1531,1531,1533
1533 P=0.
1531 SIGMA=QQQ(N)

DX=QQ(N)-X
DDX=DX
XMAX=QQ(N)
XX=X
D=DD(N)
IF(NN-N)605,605,604

605 SLOPE=0.
Nl=NN
GO TO 606

604 SLOPE=2.*(Q(N+1)-QIN))/(QQ(N+1)-XX)
N1=N+1
IF(D-DD(N+1))686,606,686

686 SLOPE=0.
606 IF(DIG(5))640,641,640
641 SLOPE=O.
640 Sl=Q(N)

H=0.1/SQRTF(SIGMA/D)
C H IS RECOMMENDED SUB-INTERVAL

IF(DX-H) 688,688,662
662 KK=1.+DX/H

H=KK
DX=DX/H
DDX=DX

688 IFINO)663,663,685
685 NO=0

DX=0.01
SS=S1+(X-0.5*(XMAX+XX))*SLOPE
FLAM=0.5*DX*P/X
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FLAM=-FLAM/( 1.+FLAM)
FMU=FLAM*(-AA(3)/AA(2)+0.5*DX*SS*DX/D)
FFLAM=FLAM*(l.+0.5*DX*DX*CQQ(1)/0)
Y(1)=-D/DX-0.5*DX*QQQ(1)-D*FFLAM/DX
Y(2)=-D*AAt3)/(AA(2)*DX)+0.5*DX*SS+D*FMU/DX

C D GRTR 5. MEANS IT MUST BE AN AIR GAP. PP=GAP ATTENUATION FACTOR
663 IF(D-1000.)651,650,650
650 PP=1.

IF(P-1.)654,653,652
652 PP=PP*XMAX/X
653 PP=PP*XMAX/X
654 Y(1)=Y(1)/PP

Y(2)=Y(2)/PP
DY(3)=DY(3)*PP*DD(N)/DD(N1)
X=XMAX

651 CALL RKS3(DERIV,CNTRLY,DYATABLRTABLWORK,X,DX,MIFVDIBKPMTRY,
IIERR)

603 CONTINUE
PSI(NN)=(AA(4)*Y(2)-AA(6))/(AA(5)-AA(4)*Y(1))
Y(3)=PSI(NN)
M=3
L=L-3
DO 607 I=NNNNN
N=NN+NNN-1
IF(DIG(6))1504D,1540,1541

1540 IF(N-NMAX)1542,1542,1541
1542 P=PPRIM
1541 J=N-1

N1*J
IF(J-NNN)612,611,611

611 DX=QQ(J)-X
GO TO 610

612 DX=XQ-X
N1=NNN

610 SIGMA=QQQ(N)
XMAX=X+DX
XX=X
DDX=DX
D=DD(N)
IF(NN-N)608,6D8,609

608 SLOPE=O.
GO TO 613

609 SLOPE=2.*(Q(N)-Q(N+1))/(XMAX-QQ(N+1))
IF(D-DD(N+1))687,613,687

687 SLOPE=0.
613 IF(DIG(5))680,681,680
681 SLOPE=0.
680 Sl=Q(N)

IF(D-1000.)655,656,656
656 PP=1.

IFtP-1.)659,658,657
657 PP=PP*XMAX/X
658 PP=PP*XMAX/X
659 Y(1)=Yl1)/PP

Y(2)=Y(2)/PP
DY(3)=DY(3)*PP*DDIN)/DD(N1)
X=XMAX

655 H=0.1/SQRTF(SIGMA/D)
IF(-DX-H)665,665,664

664 KK=1.-DX/H
H=KK
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DX=DX/H
DDX=0X

665 CALL RKS3(DERIVCNTRL,Y,DY,ATABLRTABLWORK,X,DX,M,IFVDIBKP,NTRY
IIERR)

IF( J)607,607,661
661 PSI(J)=Y(3)
607 CONTINUE

RETURN
END

* LABEL
* SUBROUTINE GRAPH

SUBROUTINE GRAPH(NREGNG)
DIMENSION ANAT(11),A(11),RHO(11),T(11),E(26),EN(11),ETAfl),BSIGAI
111,26),ESIGA(11,26),BSIGS(11,26),ESIGS(1l,26),TEMPA(11,26),TEMPSi1
21,26),THETA(11,26),PHl(11, 26),PHI2(11,26)t
3PHI(80), F(27,26), THETAN(11),TEMP(26),S{26),FISS26),
4FLUX(11,26),XI(1l),DU(26), PLOT( 51,21), ALPH(7),U(26),GEOM(11),.
501G(9),ITYPE(12),NCODE(11),ITITLE(12),NNCODE(11),INT11),NVECT411)
6,Q(100),QQ(100),QQQ(100),PSI(100),FLUXU(11,26),AREG(11),Y(3),DY(3)
7,DD(100),ALP1(11),ALP2(11),AA(6),ATABL(3),RTABL(3),WORK(33),DDD( 10
8),BARMU(11),W(1500),SNN(12,25,11)
DIMENSION NCS(11),XPL(25),TTAB(25),ATAB(25),RTINF(25),CAPA(25),
1TFN(27,26),SAT(11),SST(11)
COMMON AMAT,A,RHDT,E,EN,ETABSIGAESIGABSIGS,.ESIGSTEMPATEMPS,
lTHETAPHI1,PHI2,PHI,F,THETANTEMP,S,FISSFLUXXIDU, PLOT, ALPH,
2UGEOM,DIG.ITYPENCODE,ITITLENNCODEINTNVECTQQQCQQPSIFLUXU,
3AREG,Y, DY,0C ,ALP1,ALP2,AAATABLERTABLWORKDDDBARMUD,P,SIGMA,
4S1,X,XX,SLOPEXMAXNTRY,M,IFVDIBKP,IERRDXDDX,W,L,IQNTHXS,DXS,
5NDS,XPL,TTABATABRTINFCAPA,TFNSATSSTNGSNN

00 200 L=3,50
DO 200 M=1,21

200 PLOT(L,M)= ALPH(7)
DO 207 L=1,41,10
DO 207 M=1,21

PLOT(L,M)= ALPH(6)
PLOT(L+1,M)= ALPH(6)
PLOT(L+4,M)= ALPH(6)

207 PLOT(L+7,P)= ALPH(6)
DO 208 M=1,21

208 PLOTI 51,M)= ALPH(6)

DO 1 J=1,NG
IF(XX-FLUXU(1,J))2,1,1

2 XX=FLUXU(1,J)
1 CONTINUE

IF(XX)3,3,4
4 XX=LOGF(XX)/LOGF(10.)+1.

IQ=XX
DO 3333 N=1,NREG
DO 201 J=1,NG
UPRM=20.-DU(J)
X=IQ
X=-X+LOGF(FLUXU(N,J))/LOGF(10.)+10.
NC=UPRM+1.1
CC=NC
MC=5.*(UPRM+1.1-CC)
MC=MC+1
NR=10.*(X+0.05)
NR= 51-NR
IF(NR)201,2C1,209

209 IF(NR- 51)210,210,201



IF(NC)201,201,211
IF(NC-21)212,212,201
PLOT(NR,NC)=ALPH(MC)
CONTINUE
CONTINUE
X=IQ
X=1 .**X
WRITE OUTPUT TAPE 2,205

205 FORMAT(lHl,16X,4(1H*,10X,1H*,11X),1H*,12H PH1(U)
DO 222 K=1,41,10
WRITE OUTPUT TAPE 2,223,X,(

223 FORMAT(lH ,E8.2,21A5)
00 224 LL=1,9
L=LL+K
WRITE OUTPUT TAPE 2,225,( P

224 CONTINUE
225 FORMAT(1H ,8X,21A5)

X=X/10.
222 CONTINUE

WRITE OUTPUT TAPE 2,223,X,(
WRITE OUTPUT TAPE 2,220

220 FORMAT(H ,7X,102H20
1 10
2GY)

3 RETURN
END

ENC OF FILE

VS U)

PLOT(KM),M=1,21)

LOT(LM),M=1,21)

PLOT ( 51,M),M=1,21)

15
5 0,/,9H LETHAR

Subroutine E.XN, listed on page 286, is also used by MEDIPORT.

210
211
212
201

3333

258
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A.1.3 SAMPLE PRCELEM FOR MEDIPCRT
* DATA
116 SONDARENKiO GROUP X-SECTIONS

26

259

TRANSPORT APPROX.
1.000E4o0 2

1.050E+01 6.500E 00 4.000E 00 2.500E 00 1.400E 00 0.800E 00

0.100E 00 04465E-01 0.215E-01 0.100E-01 0.465E-02 0.215E-02

0.215E-03 0.100E-03 0.465E-04 0.215E-04 0.100E-04 04465E-05

0.400E 00 0
.200f1 00

0.l00E-02 0
.4658-03

0.215E-05 0
*1006-05

0.465E-06 0.215E-06i
6 LUC

2.36
.092

3.06
.078

4.17
.070

4.56
*087

6.75
.097

8.58
.119

11.20
.157

13.98
.199

17 34
.243

18.55
.*288

20.16
.321

20.77
.335

21.2
.342

21*4
*347

21.4
.349

21.5
.351

21.5
+351

21.6
A352

21.6
.352

21-6
.352

21.6
.658

21.6

21.6

21.7

.455

.02s

.967

.034
1.594
.031

1.725
.04C

2.767
.04 5

3.59
.055

4.24
.0 73

3.85
.092

5.49
.113

5.84
.134

6.12
.14S

6.19
.156

6 .;24
.15s

6.27
.161

6.30
.162

6.30
.163

6.30
.163

6.31
.164

6.31
.164

6.31
.30 6

6.31

6.31

6.31

6 .31

.814
.016

1.150
.018

1597
.018

1*530
.019

2.428
.021

2.924
.026

4.059
034

5.394
.043

6.299
.052

7. 294
.062

8.028
.069

8.33
.072

&.49
.074

8.60
.075

8.64
.075

8.68
.0 76

8. 68
.076

8.71
.076

8.71
.142

8.71

8.71

8. 71

8. 71
4

8.*71

10 .01
.315
.009
.375
.008
.418
.009
.650
.009
.779
.010

1.033
.012

1.572
.016

1.984
.020

2.43
.024

2.882
.029

3.212
.032

3.35
.033

3.42
.034

3.472
.035

3.489
.035

3.506
.035

3.506
.035

3.524
.066

3.524

3.524

3. 524

3. 524

3. 524

6.577

10.
1 388
.004
4255
,004
.279
4004

4325
.004
.389
.004
.553
;006
.732
*007
.919
1 009

1.128
.011

1 3 38
.013

1 491
.015

1.556
.016

1 588
.016

1.612
.016

1 62
.016

1.628
.016

1.628
4030

1.636

1.636

14 636

11636

14636

3.053

.158

.003

.156

.003
.139
.002
.163
.003
.209
.004
.257
.004
.338
.004
.427
.008
.524
.010
.621
.011
.692
.013
.722
.013
.737
.014
.748
.014
.752
.014
.756
.014
.756

.759

.759

.759

.759

1.417



21.7

0.000E 00
0.125E 00
0.250E 00
0.375E 00
0.500E 00
0.750E 00
1.000E 00
1.250E 00
1.500E 00
2.000E 00
2.500E 00
3.OOOE 00
3.500E 00
4.000E 00
4.500E 00
5.000E 00
1

260
6.31 15.29

O.OOOE 00
0.068E 00
1.064E-01
0130E 00
0.149E 00
0.170E 00
10793E-01
0.185E 00
1.861E-01
I .875E-01.
1 881:E-0.
1. 882E-01
10883E-01
1.883E-01
1.884E-01
14884E-01

1.320E 00 0.000E 00 0.OOOE 00
1.200E 00 1.906E-01 . E
1.090E 00 0.300E 00-0.015E 00
0.990E 00 0.386E 00-0.033E 00
0.920E 00 4.468E-01-0.050E 00
0.800E 00 0.547E 00-0.086E 00
.700E 00 0.618E 00-0.121E 00

0.620E 00 0.674E 00- .157E 00
0.555E 00 7.175E-01- .191
0.450E 00 0.783E 00- .253E 00
0.368E 00 8.273E-01- .305E 00
.311E 00 0.859E 00-0.312E 00

0.266E 00 8.841E-01-0.310E 00
.227E 0.904E 00-0.300E 00
.197E 00 9.178E-01- .290E 00
.171E 00 9.288E-01- .280E 00

LUCITE SCATTERER
6 1 1.

+

0 +0.0000E+00+
1. 1. i. 0. . .
0.184

0.281

0.438

0.937

0.706

0.000
116

26

E 08 .280

6 08 0.169

E 07 0.980

8 07 0.855

E 07 0.675

.0695
+

0.50

0

0

1.

.0001
-0.1000E 01 0.1000E 11 0.2130E 01 0.1000E 01
1. 1. 1.
E 08 .219

E 08 0.106

E 07 0.336

E 07 0.813

E 07 0.643

E 00
BONDARENKIO GROUP X-SECTLONS

1
E 08 .335

E 08 0.867

E 07 0.967

E 07 0.775

E 07 0.606

E 08 0.303
08

E 07 0.618
07

E 07 0.181
07

E 07 0.738
07

E 07 0.568
07

50

E

E

E

TRANSPORT APPROX.
-1.000E+00 2

1.050E+01 6.500E 00 4.000E 00 2.500E 00 1.400E 00 04800E 00

0.100E 00 0.465E-01 0.215E-01 0.100E-01 0.465E-02 0.215E-02

0.215E-03 0.100E-03 0.465E-04 0.215E-04 0.100E-04 04465E-05

0.465E-06
5
1.64

.081
2 * 24

.069
2.78

070
3 49

.087
5 50
.097

6.97
.119

8.54
.157

11.
.199

0.215E-06
TISS *324

.23

.03e

.52

.034

.77

.03i

.92

.040
1.92
.0 4 5

2.41
.0 55

2.22
.073

2.45
.092

.552
.016
.741
.018

1.036
.018

1.173
.019

2.018
.021

2.487
.026

3.39
.034

4.65
.043

10 .376
.257
.009
.375
.008
.418
.009
.650
.009
.779
.010

1.033
.012

1.572
.016

1.984
.320

48i7
t221
.004
.211
.004
.279
.004
#325
i004
4389
.004
4553

006
4732
v007
.919
.009

0.400E 00 0
.2005 00

0.lOOE-02 0
*465E-03

0.215E-05 0
.1008-05

.124

.003

.138

.003

.139

.002

.163

.003

.209

.004

.257

.004

.338

.004

.427

.008



13.2
.243

15.3
.288

15.9
.321

17.5
.335

17.9
.342

18.1
.347

18.1
.349

18.2
.351

18.2
.351

18.3
.352

18.3
.352

18.3
.352

18.3
.658

18.3

18.3

18.5

18.5

3.07
.113

3.36
.134

3.58
.149q

3.66
.156

3.72
.159

3.75
.161

3.78
.162

3.78
.163

3.78
.163

3.79
.164

3.79
.164

3.79
.306

3.79

3.79

3.79

3.79

3.79

0.00E 0)
8.820E-02
1.310E-01
0.152E DO
1.550E-01
0.147E 00
1.276E-01
0.16E 00
8.660E-02
0.055E 00
3.410E-02
0.207E-01
1.276E-02
0.750E-02
4.500E-03
2.670E-03

14.54

1 400E
1.250E
1. EOOE
0. 985E
3.910E
3. 775E
0. 675E
D.594E
3.535E
0.444E
0. 380E
0. 331E
0. 289E
0. 253E
0. 222E
0. 192E

TISSUE PHANTOM
5 5 1.

+ 4.

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

5.59
.052

6.57
.062

7.28
.069

7.58
.072

7.74
.074

7.85
.075

7.89
.075

7.93
.076

7.93
.076

7.96
.076

7.96
.142

7.96

7.96

7.96

7.96

7.96

0.00)E 00
1.906E-01
0.300E 00
0.386E 00
4.468E-01
0.547E 00
0.618E 00
0.674E 00
7. 175E-01
0.783E 00
8.273E-01
0.859E 00
8.841E-01
0.904E 00
9. 178E-01
9.288E-01

2.43
.024

2.882
.029

3.212
.032

3.35
.033

3.42
.034

3.472
.035

3.489
.035

3.506
.035

3.506
.035

3.524
.066

3.524

3. 524

3.524

3.524

3.524

6.577

0.000E 00
. E

0.010E 00
0.035E 00
0. 575E-01
D.100E 00
0.135E 00
0.153E 00
0.205E 00
0.270E 00
0.332E 00
0.390E 00
0.430E 00
0.458E 00
0.475E 00
0.485E 00

MITR 45 DEGREE SCATTERER
.0982 15.

4.

1.

+

.0001 50
0 +0.3000E+00+0.0000E 00-0.1000E 01 0.3000E 10 0.2130E 01 0.1000E 01

1.m i. 1. o. 1. 0. 0. 1. 1.
1

1 8 5 2
ALL 8-10 N-14

261
1.128
.011

1.338
.013

1.491
.015

1.556
.016

1.588
.016

1.612
.016
1.62

.016
1.628
.016
1.628
.030

1.636

1.636

1.636

1.636

1.636

3.053

.

.524

.010

.621

.011

.692
.013
.722
.013
.737
.014
.748
.014
.752
.014
.756
.014
.756

.759

.

.759

.759

.759

1.417

0

0
0 0
0

00
02

00

0 (

000

00
00 

0.-000E
J.125E
0 .250E
C .375E
U .500E
J.750E
1 .OOOE
1.250E
1 .501E
2 .OOOE
2 .500E
3.OOOE
3.500E
4.OOOE
4.500E
5 .OOOE
1

+

.0783

3837.31.6 .0032.333



.099
1. 0C8
2.23
1.283

3837.
.000050

10.016
2.34

0.5
23-

4.2

2.95
0.5

.136

.0534

.05

.1192

.1285
0.5

.0936

.0308

.0227
0.5

.0320

.0199

.0166
6

1.
53.0

3.4

).5
11.

3.96

2.86
).5

.104

.0520

.028

.1215

.129
0.5

.0683

.0292

.0222
0.5

.0300

.0192

.0163
1

2.075
46.0

1.3

.0013
35.457
8.57
1 .
1.88

.041
14.008

.624
20
7.85

3.74

2.78
20

.087

.0506

.074

.1228

.1295
20

.0556

.0278

.0217
20

.0276

.0187

.0161
8.3

37.4

.134
12.011
4.95
1.

6.4

3.55

2.70

.076

.0495

.092

. 1240

262
.000050

10.016
.48
.936

5.7

3.41

.0685

.0480

.102

.1253

5.2

3.28

.0627

.0470

.08

.1264

.13

.0478

.0267

.0212

.0256

.0182

.0160
8.6

30.0

0.9

.0423

.0254

.0238

.0178

1.

24.2

.0384

.0244

.0220

.0174

15.

17.8

0O

4.8

4.5
3.16

3.05

.058

.055
.0460

.0450
.113

.1165
.1273

.1280

.0352
.0329

.0237
.0233

.0213
.0206

.0171
.0168

9.6126E-07

11.6
6.7

0.

0.

lit

JL1o BONUAE4KD GROUP X-SECTIONS TRANSPORT APPROX.
26 1.OOOE+00 2

1.050E+01 6.500E 03 4.OOOE 00 2.500E 00 1.400E 00 0.800E 00 0.400E 00 0
.200E 00

0.103E 00 0.465E-01 0.215E-01 0.100E-01 0.465E-02 0.215E-02 0.1OOE-02 0
.465E-03

0.215E-03 0.1JOE-03 0.465E-04 0.215E-04 0.1OOE-04 0.465E-05 0.215E-05 0
.100E-05

5 TISS
1.64

.081
2.24
.369

2.78

.23
.038
.52
.034
.77

6
.324

.552

.016
.741
.018

1.036

10 .376
.257
.009
.375
.008
.418

48.7
.221
.004
.211
.004
.279

.124

.003

.138

.003

.139



.070
3.49

.087
5.50

.097
6.97

.119
8.54

.157
11.

.199
13.2

.243
15.3

.288
15.9

.321
17.5

. 335
17.9

.342
18.1

.347
18.1

.349
18.2

.351
18.2

.351
18.3

.352
18.3

.352
18.3

.352
18.3

.658
18.3

18.3

.037

.92

.040
1.92

.045
2.41

.055
2.22

.073
2.45

.092
3.07

.113
3.36

.134
3.58

.149
3.66

.156
3.72

.159
3.75

.161
3.78

.162
3.78

.163
3.78

.163
3.79

.164
3.79

.164
3.79

.3C6
3.79

3.79

3.79

3.79

3.79

0.000E 00
8. 820E-02
1.310E-01
0.152E 00
1.550E-01
0.147E 00
1.276E-01
0.106E 00
8. 660E-02
0.055E 00
3.410E-02
0.207E-01
1.2 76E-02
0. 750E-02
4.500E-03
2.670E-03

14.54

1.400E
1.250E
1. 100E
3. 985E
). 910E
J. 775E
D. 675E
0. 594E
D. 535E
0. 444E
D. 380E
0. 331E
0. 289E
D. 253E
D. 222E
0. 192E

.018
1.173

.019
2.018

.021
2.487

.026
3.39

.034
4.65

.043
5.59

.052
6.57

.062
7.28

.069
7.58

.372
7.74

.074
7.85

.075
7.89

.075
7.93

.076
7.93

.076
7.96

.076
7.96

.142
7.96

7.96

7.96

7.96

7.96

00
00
00
00
00
0 )
00
00
00
00
00
00
00
00
00
00

0.000E 00
1.906E-01
0.300E 00
0.386E 00
4.468E-01
0.547E 00
0.618E 00
0.674E 00
7. 175E-01
0.783E 00
8.273E-01
0.859E 00
8.841E-01
0.904E 00
9. 178E-01
9.288E-01

.009
.650
.009
.779
.010

1.033
.012

1.572
.016

1.984
.020

2.43
.024

2.882
.029

3.212
.032

3.35
.033

3.42
.034

3.472
.035

3.489
.335

3.506
.035

3.506
.035

3.524
.066

3.524

3.524

3.524

3.524

3.524

6.577

0.OOOE 00
. E

0.010E 00
0.035E 00
0.575E-01
0.100E 00
0.135E 00
0.153E 00
0.205E 00
0.270E 00
0.332E 00
0.390E 00
0 . 430E 00
0.458E 00
0.475E 00
0.485E 00

263
.004
.325
.004
.389
.004
.553
.006
.732
.007
.919
.009

1.128
.011

1.338
.013

1.491
.015

1.556
.016

1.588
.016

1.612
.016

1.62
.016

1.628
.016

1.628
.030

1.636
0

1.636

1.636

1.636

1.636

3.053

.

.002

.163
.003
.209
.004
.257
.004
.338
.004
.427
.008
.524
.010
.621
.011
.692
.013
.722
.013
.737
.014
.748
.014
.752
.014
.756
.014
.756

.759

.759

.759

.759

1.417

18.5

0.000E
0.125E
0.250E
U .375E
0 .500E
0.750E
1.OOOE
1 .250E
1 .500E
2 .000E
2.500E
3.000E
3 .500E
4.EOOE
4.500E
5.OOOE

00

00
00
0%"

0 4
0 400
00

00
00
00
0000

.



r
+ +

25 GROUPS
1.

++

0 +0.000E+00+0.000E 00-0.1000E 01

.737 E 7 1.12 E 7 .875

1.122 E 7 .675 E 7 .422

.175 E 07 .392 E 07 1.344

.375 E 07 .342 E 07 .325

.282 E 07 .270 E 07 .257

ALL

0.2000E 11 0.2130E

E 7 1.337

E 7 .347

E 06 .387

E 07 .310

E 07 .242

E

.0001
01 0.100E 01

E 7 1.212

7E 7 .247

7E 07 .725

6
E 07 .295

7E 07 .227
7

50

E

E

E

E
E

1 8 5 2

. 330

.099
1 .00 8
2.23
1.283

3837.
.000050

10.016
2.34

23.

4.2

2.95
0.5

.136

.0534

.05

.1192

.1285
0.5

.0936

.0308

.0227
0.5

.0320

.0199

.0166
6 6

3 . 5
11.

3.96

2.86
0.5

.104

.0520

.028

.1215

.129
0.5

.0683

.0292

.0222
J.5

.0300

.0192

.0163
1

2.075

B-10 N-14
31.6

.0013
35.457
8.57
1.
1.88
.041

14.008
.624
20
7.85

3.74

2.78
20

.087

.0506

-074

.1228

,1295
20

.0556

.0278

.0217
20

.0276

.0187

.0161
8.3

.0032

.134
12.011
4.95
1-

6.4

3.55

2.70

.076

.0495

.092

.1240

.13

.0478

.0267

.0212

.0256

.0182

.0160
8.6

3837.
.000050

10.016
-48
.936

5.7

3.41

.0685

.0480

.102

.1253

.0423

.0254

.0238

.0178

1.

5.2

3.28

.0627

.0470

.08

.1264

.0384

.0244

.0220

.0174

15.

4.8

4.5
3.16

3,*05

.058

.055
.0460

.0450.113

.1165.1273
.1280

.0352

.0329.0237

.0233

.0213

.0206
.0 171

.0168

9.6126E-07
53.0 46.0 37.4 30.0 24.2

MITR SIMPLIFIED GEOMETRY
5 5 1. .0982 15.

1

+

264

.0763
0

17.8 11.6



265
6.7

3.4 1.3 0.9 0.6 0O

O.

0.

116
9

1.050E+01

0.100E
1

3.19
.06

4.11
.02

5.37

6.30

9.49

10.31

9.36

9.52

BONDARENKO GROUP X-SECTIONS

6.500E 03 4.OOOE 0

00
020

.73

.02
1.44

1.95

2.27

4.16

4.87

3.76

4.03

00 00E 0o 0.00OE 33
3.125E 09 8.112E-92
0.250E 00 1.192E-01
0.375E 00 0.138E 00
0.500E 09 1.411E-01
0.750E 00 1.134E 0D
1.OOOE 00 1.159E-01
1.250E 0u 0.096E 00
1.500E 0j 7.867E-02
2.OOOE 00 0.350E 00
2.500E 00 3.101E-02
3.OOOE 00 0.188E-01
3.500E 00 1.157E-02
4.000E 00 0.682E-02
4.500E 00 4.094E-03
5.OOOE 09 2.435E-03
1 020

1 1 23.03
4.

0.116
1.192

1.485

1.719

1.765

2.968

3.219

3.36

3.469

1.400E
1.250E
1. 100E
3.985E
3.910E
3.775E
0. 675E
3. 594E
3. 535E
0.444E
0. 380E
0. 331E
D. 289E
3. 253E
). 222E
3.192E

+

TRAN
1.000E+00 2

0 2.50DE 00 1.400E

6 .0026 13.6
.32 .34

.38

.66

1.240

1. 54

1.56

00
03
00
03
00
00
00
00
00
00
00
00
00
00
0 3
00

1.60

1.62

0.000E 00
1.906E-01
0.300E 00
0.386E 00
4.468E-01
0.547E 00
0.618E 00
0.674E 00
7. 175E-01
0.783E 00
8.273E-01
0.859E 00
8.841E-01
0.904E 00
9.178E-01
9.288E-01

.50

.88

.96

SPORT APPROX.

00 0.800E 00

T-TAaLES

0.400E 00 0
.200E 00

.36

.36

.16

.06

.02

.66

.54

.40

0.OOOE 00
. E

0.010E 00
0.035E 03
0.575E-01
0.100E 00
D.135E 00
0.153E 00
0.205E 00
0.270E 00
0.332E 00
0.390E 00
0.430E 00
0.458E 00
0.475E 00
0.485E 00

FIRST ORDER CORRECTION TO
1.1017 13.

+ +

TRANSMISSION

.0001. 50
0 +0.00JE+00+2.1300E+00-1.0)OOE+00+0.OOOOE+00+2.1300E+00+1.OOOOE+00+.O.

0000E 00
1. 1. 1. 0. 1. 1. 3. 1. 1. 1
116 BONDARENKD GROUP X-SECTIONS TRANSPORT APPROX. R-TABLES

9 -1.000E+00 2
1.050E+01 6.500E 03 4.OOOE 00 2.500E 0) 1.400E 00 0.800E 00 0.400E 00 0

.200E 00

4.

.

.



0.100E
1

3.19
.06

4.11
.02

5.37

6.30

9.49

10.31

9.36

0.116 6 .0026 13.6
1.192 .32 .34

00
D20

.73

.02
1.44

1.95

2.27

4.16

4.87

3.76

.38

.66

1.240

1.54

1.56

1.60

1.62

.50

.88

.96

.80

.66

.54

.40

0.000E 00 0.000E 00
0.125E 00 0.068E 00
0.250E 0' 1.064E-01
0.375E 00 0.130E 00
0.500E 00 0.149E 00
0.750E 00 0.170E 0
1.OOOE 00 1.793E-01
1.250E 00 0.185E 00
1.500E 00 1.861E-01
2.OOOE 00 1.875E-31
2.500E 0( 1.881E-01
3.OOOE 0Z 1.882E-01
3.500E 00 1.883E-01
4.OOOE 00 1.883E-01
4.500E 010 1.884E-01
5.OOOE 00 1.884E-01
1 D20

1 2 20.03
+

1.320E
1.200E
1.090E
0. 990E
0. 920E
0. 800E

. 700E
0.620E
0. 555E
0. 450E
D. 368E

. 311E
3. 266E

. 227E

. 197E
.171E

+

00
00
00
00
00
00
00
00
02
00
00
00
00

00
003

0.000E 00 0.OOOE
1.906E-01 . E
0.300E 00-0.015E
0.386E 00-0.033E
4.468E-01-0.050E
0.547E 00-0.086E
0.618E 00-0.121E
0.674E 00- .157E
7.175E-01- .191
0.783E 00- .253E
8.273E-01- .305E
0.859E 00-0.312E
8.841E-01-0.310E
0.904E 00-0.300E
9.178E-01- .290E
9.288E-01- .280E

00

00
00
00
00
00
00

00
00
00
00
00
00
00

FIRST ORDER CORRECTION TO
1.1017 23.

+

TRANSMISSION

+

.0001 50
0 +0.0000E+00+2.1300E+00-1.0000E+00+0.OOOOE+00+2.1300E+00+1.OOOOE+00+0.

OOOOE 00
1. 1. 1. ). 1. 1. 1. 1. 1. 1
116 80NDARE'JK3 GROUP X-SECTIONS

9
1.050E+01 6.500E 00 4.030E 00

0.100E 00
1 D20

3.19
.06

4.11
.02

5.37

6.30

9.49

10.31

.73

.02

3.116
1.192

1.44

1.95

2.27

4.16

1.485

1.719

1.765

2.968

3.219

-1.000E+00 2
2.503E 00 1.400E

13.6
.34

.50

.88

.96

.80

.66

6 .0026
.32

.38

.66

1.240

1.54

1.56

TRANSPORT APPROX. T-TASLES

00 0.800E 00 0.400E 00 0
.200E 00

.36

.36

.16

.06

.02

.

3.36 1.60 .54

1.485

1.719

1.765

2.968

3.219

3.36

3.469

266

.36

.36

.16

.06

.02

.

9.52

4-

9.36 3.76



9.52 4.03

0.000E 0' 0.30E 0 3
0.125E 0l 8.112E-02
0.250E 00 1.192E-01
0.375E 0, 0.138E 00
0.50aE 30 1.411E-31
0.750E 00 0.134E 30
1.OOOE 0: 1.159E-01
1.250E 0I 0.096E 00
1.501E 0: 7.867E-02
2.000E 00 0.350E 00
2.500E 06 3.101E-02
3.OOOE 01 0.188E-01
3.500E 0J 1.157E-02
4.OOOE 0 0.682E-02
4.500E 00 4.094E-03
5.003E 0) 2.435E-03
1 D20

1 3 2).03

3.469 1.62

1.400E 0) 0.300E 00 .OOOE 00
1.250E 00 1.906E-01 . E
1.100E 00 0.303E 01 0.010E 00
D.985E 00 0.386E 03 0.035E 00
2.913E OJ 4.468E-01 0.575E-01
0.775E 00 0.547E 00 0.100E 00
1.675E 00 0.618E 0) 1.135E 00
).594E 00 0.674E 00 0.153E 00
3.535E 00 7.175E-01 0.205E 00
0.444E 03 0.783E 03 0.270E 00
0.380E 00 8.273E-01 0.332E 00
3.331E 00 0.859E 00 0.390E 00
1.289E 00 8.841E-01 0.430E 00
3.253E 00 0.904E 00 3.458E 03
0.222E 00 9.178E-01 3.475E 00
).192E 00 9.288E-01 ).485E 00

FIRST ORDER CORRECTION TO
1.1017 30.

4. + +

.0001 50
U +0.0000E+03+2.1300E+00-1.000E+00+0.3000E+00+2.1300E+00+1.OOOOE+00+0.

0000E 00
1

BONDARENK) GROUP X-SECTIONS
1.00

.500E 03 4.000E 00 2.5D0E 00

0.100E 01 0.465E-01 D.215E-01 0.100E-01

0.215E-03 0.100E-03 0.465E-04 0.215E-04

0.465E-06 0.215E-06
2 AL 0.02467 7 .241

1.34 .323 .187 .15
.10 .04 .01 .

1.47 .60 .174 .22
.13 .01

1.83 1.04 .506 .13
.01 . .

2.17 1.50 .477 .19

2.39 1.98 .312 .06

3.27 2.93 .342

3.51

4.92

4.82

7.20

.98

3.14

4.40

6.50

.89

.371

.523

.46

.687

.094

TRANSPORT APPROX.
0E+00 2
1.400E 00 0.800E 00 0.400E 00 0

.200E 00
0.465E-02 0.215E-02 0.100E-02 0

.465E-03
1.100E-04 0.465E-05 0.215E-05 0

*1OOE-05

1.40
.25

.11

.10

.03

.18

.07

.

.04

.01

0
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TRANSMISSION

0

316
26

1.050E+01 6

1. 1. 1. 1). 1. 1. 0. 1. 1.

.

0



2.55

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

1.38

3
3.02

.66
3.60

.18
4.36

.02
4.32

3.98

5.17

6.76

8.38

9.75

11.27

16.

9.5

17.5

9.5

22.

8.8

2.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25

1.25
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.238

.131

.131

.131

.131

.131

.131

.131

.131

.131

.131

.131

.131

.131

0.03319
.074
.10
.07
.01
.813

.303

.124

.071

.093

.115

.117

.139

.197

.117

.216

.117

.271

.109

7 .034
.25
.03
.60

.18

.17

.03

81
.50
.26

1.44
.05

3.14
.01

3.81

3.82

5.10

6.67

8.26

9.63

11.13

15.8

9.383

17.294

9.383

21.729

8.691

9.03
.75

.60

.14

.03

.01

.84

.43

.06

.01

0

.*

0.

0

.

.

.

. -

0

.

.
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9. 8.889 .111 .

9. 8.889 .111 .

9. 8.889 .111 .

9. 8.889 .111 .

9. 8.889 .111 .

9. 8.889 .111 .

9. 8.889 .111 .

9.01 8.889 .111 .

9.01 8.889 .111 .

ENC OF F ILE
* END TAPE
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A.1.4 GAUSSIAN INTEGRATION

The method used to evaluate a 1-dimensional integral

is as follows:

B B-A N/2
I = F(x)dx 2ZJIl H [f(xj) + f(xN+1 -j)] (A.1)

where

x+ a( )B-A
j - 22

(A.2)

B+A a B-As
N+l-j 2- a '2

The coefficients H, a1  come from "Numerical Analysis",

by Z. Copal, on p. 523. The order of integration is

N(4, 6, or 8). For a two-dimensional integration,

B D B D
I f f(x)dx J g(x,y)dy = f f(x) f g(x,y) dy dx

A C A C

Bf f(x)dx (A.3)
A

Consequently, what is done is to evaluate fl(x) for the

appropriate x-values, as before; the only difference is

that an inner integration over "y" takes place for each

evaluation of f l(x). The extension to a triple integral

is straightforward.

Table A.l contains a1, Hg for N = 4, 6, and 8, in one

array AH(J) as used by MEDIPORT to evaluate gamma ray dose

rates.
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TABLE A.1 Gaussian Quadrature Weights

N ENTRY - AH(j)

a1  86113631

2 a2  .33998103

4 3 H1  .34785485

4 H2  .65214515

5 a .93246951

6 a2  .66120939

7 a .23861919
63

8 H1  .17132448

9 H2 .36076157

10 H3  .46791393

11 a1  .96028986

12 a2  .79666647

13 a .52553241

14 a4  . 18343464

8 15 Hi .10122854

16 H2  .22238103

17 H3  .31370664

18 H4 .36268377
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A. 15 NUMERICAL INTERPOLATION

A special subroutine known as SPINT was Fortran-coded

to perform numerous tasks, such as the evaluation of the

axial thermal flux f(x) in a phantom, to obtain gamma-

ray attenuation parameters w a1 , a 2 , and A for

an arbitrary energy gamma-ray, to interpolate fast

neutron dose with depth, etc. The numerical method

used follows Okazaki and Fowler. Given a table of

entries f 0 ' l''' N evaluated at x = x0 ' x0 + h,...

x0 + Nh (N equally spaced intervals), this routine will

find f(x) for any given x. Extrapolation off the ends

of the table is used if necessary.

1. Calculate (x-x0 )/h = n+9, where n is the integer

and 9 is the fraction.

2. If 2 4 n 4 N - 3, the modified Everett formula

is used:

+ 1 -2 2 4~
f(x) - (fn + (9 -1)(6 f - 4 fn

+ G f + 9 2 -1)(8 2f. - 54 f (A.4)
n+1 6 ni+1 n+1

S= 1 -9; wo.184 (A-5)

2f = f - 2f + f  (A.6)

8 f = f - 4F + 6f - 4f + f (A.7)n n-2 n-1 n n+1 n+2

3. If n = 1 or n = N-2, the fourth differences

6 fn lie outside the table; .'. . is set to 0.
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4. If n 4 0, 9 is replaced by 91 = n + 9 and f(x) =

(912 )9 ~1) - 91(9 -2 + ( -1)

2 0 2) 1 + 22

5. If n >, N-1, 9 is replaced by 9 2+9-(N-2) and

f(x) =

(9 2)(E1)
2 - N-2 (A.9)- 9 -2)fN + 2 f

(A.8)



274

A.2 TAR(N)

The name TAR(N) derives from Transmission, Absorption,

and Reflection for N collisions. It solves the neutron

transport equation in infinite slab geometry using a

Gaussian quadrature method of numerical integration.

Scattering is assumed to be isotropic in the laboratory

system. It is coded largely in FORTRAN-II for the

Fortran Monitor System as used by the IBM-7094 computer

at the M.I.T. Computation Center. FAP-coded subroutines

from the Share Library are:

1. SDA-3044, TAINT - Table Look Up and Interpol-

ation,

2. SDA-3079, EXPI - Exponential Integrals,

3. SDA-12o6, LEO - Linear Equations Solution,

4. SDA-1124, MULLER - Polynomial Root Finder Sub-

routine.

Subroutines of TAR(N) perform the following functions:

1. QQQ: computes moments a (v) (Section 2.1.2),

2. WTS: computes Gaussian quadrature weights and

abscissas which satisfy Equations (2.32),

3. EXN: evaluates the exponential integral

functions En(X)'

4. TALLY: computes RT(k), RR(k), and tabulates

all probabilities as a function of collision

number, k,

5. QINT: selects number of steps to use in

numerically evaluating the moments a (v).

Provision is made for using Gaussian quadratures of all
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orders less than 40. Low order quadratures (3, 4, or 5)

work satisfactorily for optical thicknesses less than

about 5 mean free paths. Higher orders have not been

tried. It is expected that the eight-figure accuracy of

the code will limit its usefulness to low orders.

Input data to TAR(N) is given in the next section.

The code is listed in Section A.2.2. Sample problem

input/output is given in Section A.2.3 for a parallel

neutron beam incident perpendicular to a slab for

which itL = 0.5, Zs t = 0.8. This problem was dis-

cussed in Section 3.1.2.
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A.2.1 INPUT DATA FOR TAR(N)

Card 1: Format (4F10.5, 2F5.0, 415)

1. c = zs /t = mean number of secondaries per

collision. Job terminates if c 4 0.

2. SIGTT - ItL = optical thickness, mean free paths,

3. GMU = p - cos 9, where 9 is the angle measured

from the normal to the slab, for a parallel

beam incident at angles 9. If SW1> 0 set

GMU = 1.0. n-l

4. ERROR = convergence criterion. If ITn Ti 4ERROR

then stop calculations and tabulate

output. Otherwise, increment n and repeat

for the next collision fluxes and probabilities.

Usually, ERROR = .00010.

5. SWl = switch describing neutron source. If Swl=0,

the source is a parallel beam at angle cos~ 1 (GMU).

The uncollided current inside the slab falls off

as exp (-It x/4). If SW1> 0, then the source

angular distribution varies as (GMU)SWl-l and

the uncollided current inside the slab as

ESw1( t x).

6. SW2 = switch for flux interpolation. If 4 0,

interpolate in flux table directly. If > 0,

interpolate in table of logarithms of fluxes

and exponentiate the result. Generally, direct

interpolation is more accurate.

7. JJ - spare.
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8. M = order of Gaussian quadrature.

9. N = Maximum number of collisions. Output is

tabulated if n = N.

10. KK = Lagrangian interpolation order, used to

find the k-th collision flux at an arbitrary

point. If KK > 2M + 2, KK is automatically

set to 2M + 2.

Card 2: Format- (215,F10.5)

1. NSW control switch. It operates as follows:

(0, assume Gaussian quadrature weights and

abscissas are in memory from a previous case,

= 0, calculate new Gaussian quadrature weights

and abscissas,

>0, read from cards a previously calculated set

of Gaussian quadrature weights and abscissas of

order M = NSW.

2. MN - M + 1, if NSW >0, for previously calculated

set.

3. P = ZtL, if NSW >0, for previously calculated

set. The following set of Gaussian quadrature

weights and abscissas are required only if

NSW> 0. This set is punched automatically

by TAR(N) upon completion of its calculation.

Once obtained, it need not be recomputed. The

first 3(M + 1)/5 cards contain:

1. A(K)=quadrature weight for integrand E2(Ztx),

2. X(K) = quadrature abscissa for integrand

E2 (Ztx),

3. XX(K) = ItL - X(K), K - 1...M+ 1.
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The next 4M/5 cards contain:

1. Y(K,J) = abscissa for calculation of flux at

point X(J),

2. B(K,J) = quadrature weight for Y.

3. Z(K,J) = abscissa for calculation of flux at

point XX(J),

4. G(K,J) = quadrature weight for Z.

For these parameters, K = 1.. .M and J - 1.. .M + 1.
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A.2.2 LISTING OF TAR(N)

C TAR(N) TRANSMISSION ABSORPTION AND REFLECTION FOR N COLLISIONS
DIMENSION X(40),A(40),Y(40,40),B(40,40),Z(40,40),G(40,40),XX(40),
1PHIT(40), T(80), A8180), R(80),PHI(40),PHIL(40),RT(40),RR(40),RA
28(40),NX(40),NXX(40),FB(80),XBAR(80),NLOC(80),PHB(40)

F EXN
C A P OLSON AUGUST 1967
1000 READ INPUT TAPE 4,130,CSIGTTGMUERRORSW1,SW2,JJ,M,N,KK
100 FORMAT(4F10.5,2F5.0,415)

IF(C)1001,1001,1002
1001 CALL EXIT
1002 WRITE OUTPUT TAPE 2,101,C,SIGTTGMUERRORSW1,SW2,JJ,M,N,KK
101 FORMAT(1Hl,15H PROGRAM TAR(N),//,3H C=,F10.5,2X,6HSIGTT=,F10.5,2X,

1 4HGMU=,FlC.5,2X,6HERROR=,F10.5,2X,4HSW1,F5.0,2X,4HSW2=,F5.0,2X,
2 3HJJ=,15,2X,2HM=,12,2X,2HN=,12,2X,3HKK=,12)
NK=KK
L=2*M+2
IF(NK-L)41,41,40

40 NK=L
C THESE ARE M MM SIGTT IF CARDS TO BE READ

41 READ INPUT TAPE 4,104,NSW,MN,P
104 FORMAT(215,F10.5)

C LESS 0 MEANS REPEAT WITH NEW PARAMETERS USING MEMORY VALUES
C =0 MEANS NE% CASE--CALCULATE WEIGHTS AND LOCATIONS
C GREATER 0 MEANS INPUT PREVIOUSLY CALCULATED SET

IF(NSW)1003,45,42
C NOW READ WEIGHTS AND LOCATIONS

42 M=NSW
MM=MN
SIGTT=P
READ INPUT TAPE 4,105,(A(K),X(K),XX(K),K=1,MM)

105 FORMAT(5E15.8)
DO 43 K=1,M
READ INPUT TAPE 4,105,(Y(KJ),B(KJ) ,Z( K,J),G(KJ),J=1,MM)

43 CONTINUE
WRITE OUTPUT TAPE 2,106,M,MM,SIGTT

106 FORMAT(IHO,3H M=,12,2X,3HMM=,12,2X,6HSIGTT=,F1O.5)
GO TO 1003

C CALC. MOMENTS T(I) FOR INTEGRAND E2(X) FROM 0 TO SIGTT
45 M2=2*M

K=2
DO 20 I=1,M2
L=t-1
T(I)=QQQ(LK,SIGTTEXN)

20 CONTINUE
CALL WTS(T,2,A,X,JJ)

C WTS PROVIDES GAUSSIAN WEIGHTS A AND LOCATIONS X
MM=M+1
X(MM)=SIGTT
DO 59 J=1,PM

59 XX(J)=SIGTT-X(J)
C NOW DO FOR INTEGRAND E1(W) OVER 0 TO TH AND 0 TO TH1

DO 21 J=1,VP
TH=X(J)
TH1=XX(J)
K=l
DO 22 I=1,M2
L=I-1
T(I)=QQQ(LK,TH,EXN)
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IF(J-MM)61,22,22
61 R(I)=QQQ(L,KTH1,EXN)
22 CONTINUE

CALL WTS(TM2,RTRR ,JJ)
IF(J-MM) 91,92,92

91 CALL WTS(R,M2,PHIPHIL,JJ)
92 DO 23 K=1,M

Y(K,J)=TH-RR(K)
B(K,J)=RT(K)
IFIJ-MM)93,99,99

93 Z(KJ)=PHIL(K)+TH
G(KJ)=PHI(K)
GO TO 23

C ONLY ONE SET FOR FLUX AT 0
99 Z(K,J)=RR(K)

G(KJ)=RT(K)
23 CONTINUE
21 CONTINUE

WRITE OUTPUT TAPE 3,104,M,
WRITE OUTPUT TAPE 3,105,(A
DO 44 K=1,M
WRITE OUTPUT TAPE 3,105,(Y

44 CONTINUE
1003 C2=C/2.

M2=2*M
MAX=2*M+2
DO 70 J=1,M
T(J)=X(J)
L=J+M
T(L)=XX(J)
NLOC(J)=J
NLOC(L)=L

70 CONTINUE
M1=2*M-1

74 L=O
DO 71 J=1,M1
IF(T(J+1)-T(J))72,71,71

72 P=T(J+1)
T(J+1)=T(J)
T(J)=P
L=L+1
K=NLOC(J+1)
NLOC(J+1)=NLOC(J)
NLOC(J)=K

71 CONTINUE
IF(L)75,75,74

75 DO 76 J=1,M2
XBAR(J+1)=T(J)
K=NLOC(J)
IF(K-M)77,77,78

77 NX(K)=J+1
GO TO 76

78 L=K-M
NXX(L)=J+1

76 CONTINUE
XBAR(1)=0.
XBAR(MAX)=SIGTT
N1=1
MN=SW1+1.
P=EXPF(-SIGTT/GMU)

C THIS IS UNCCLLIDED

SIGTT

MMSIGTT
(K),X(K)iXX(K),K=1,MM)

(KJ),B(KJ),Z(K,.J),G(K,.J),J=1,tMM)

TRANSMITTED CURRENT FOR A BEAM AT ANGLE THETA

280

,I



281
C NEUTRON LEAKAGE FROM SOURCE VARIES AS (COS THETA)**(SW1-1)
C FOR SWI POSITIVE

IF(SW1)25,25,26
26 P=EXN(MN,SIGTT)*SW1
25 T(l)=P

AB(2)=(1.-C)*(1.-P)
C AB CONTAINS NEUTRON ABSORPTION PROBABILITIES AS FUNCTION OF
C NUMBER OF COLLISIONS

TOT=1.-P
C R AND T CONTAIN REFLECTION AND TRANSMISSION PROBABILITES AS
C FUNCTIONS OF COLLISION NUMBER

R(1)=0.
RR(1)=0.
TT=T(1)
AB(1)=0.
RRR=O.
ABS=AB(2)
L=SW1
DO 27 J=1,M
PHI(J)=EXPF(-X(J)/GMU)
PHB(J)=EXPF(-XX(J)/GMU)
IF(SWI)28,28,29

29 P=X(J)
PHI(J)=EXN(L,P)*SW1
P=XX(J)
PHB(J)=EXN(L,P)*SW1

28 K=NX(J)
PHILIK)=LOGF(PHI(J))
FB(K)=PHI(J)
PHIT(K)=PHI(J)

C PHIT CONTAINS TOTAL FLUX FOR ALL NUMBERS OF COLLISIONS
K=NXX(J)
FB(K)=PHB(J)
PHIT(K)=PHB(J)
PHIL(K)=LOGF(PHB(J))

27 CONTINUE
P=0.
FB(1)=EXN(LP)*SW1
FB(MAX)=EXN(LSIGTT)*SW1
IF(SW1)280,280,290

280 FB(1)=1.
FB(MAX)=EXPF(-SIGTT/GMU)

290 PHIT(1)=FB(1)
PHIT(MAX)=FB(MAX)
PHIL (1) =LOGF (FB(1))
PHIL(MAX)=LCGF(FB(MAX))

5 WRITE OUTPUT TAPE 2,102,N1,R(N1),T(N1),AB(.Nl)
102 FORMAT(1HO,3H N=,15,5X,5HR(N)=,E13.6,5X,5HT(N)=,E13.6,5X,6HAB(N)=,

1E13.6)
WRITE OUTPUT TAPE 2,103,(J,XBAR(J),FB(J),PHIT(J),PHIL(j),Jal,MAX)

103 FORMAT(15,4E15.6)
IF(GMU-1.)272,271,271

272 IF(N1-1)270,270,271
270 DO 273 J=1,MAX

FB( J)=FB(J)/GMU
PHIL(J)=LOGF(FB(J))
IF(J-M)274,274,273

274 PHI(J)=PHI(J)/GMU
PHB(J)=PHB(J)/GMU

273 CONTINUE
271 Q=ABSF(T(N1)/TT)
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C DECIDE IF MCRE COLLISIONS TO DO

1FfQ-ERROR)414,10
10 IF(NI-N)3,4,4
3 Nl=N1+1
SUM1=0.
SUM2=0.
DO 8 J=1,M
SUM1=SUM1+PHI(J)*AIJ)
SUM2=SUM2+P-B( J) *A( J)

8 CONTINUE
R(N1)=C2*SUP1
T(NI )=C2*SUP2
TOT=TOT-R(Nl)-T(Nl)-AB(N1)
IF(TOT)81,82,82

81 TOT=O.
82 AB(Nl+1)=(1.-C)*TOT

RRR=RRR+R (Ni)
TT=TT+T(Ni)
ABS=ABS+AB(N1+1)
DO 6 I=1,MM
SUM1=0.
SUM2=0.
SUM3=0.
SUM4=0.
DO 7 J=1,M
TH=Y(J,I)
TH1=Z(JI)
TH2=SIGTT-TH
TH3=SIGTT-TH1
IF(I-MM)94,95,95

95 TH2=TH
TH3=TH1

94 IF(SW2)33,33,34
33 CALL TAINT(XBAR, FBTH ,P,MAXNKNERRDMON)

CALL TAINT(XBAR, FBTH1,Q,MAXNK,NERRDMON)
CALL TAINT(XBAR, FB, TH2,U,MAXNKNERRDMON)
CALL TAINT(XBAR, FB, TH3,V,MAXNKNERRDMON)
GO TO 35

34 CALL TAINT(XBARPHILTH ,P,MAXNKNERRDMON)
CALL TAINT( XBARPHILTHl, Q,MAXNKNERRDMON)
CALL TAINTIXBARPHILTH2,U,MAXNKNERR,DMON)
CALL TAINT(XBARPHIL, TH3,V,MAXNKNERROMON)
P=EXPF(P)
Q=EXPF(Q)
U=EXPF(U)
V=EXPF(V)

35 SUM1=SUM1+P*B(J,I)
SUM2=SUM2+Q*G(J,i)
SUM3=SUM3+U*B(J,l)
SUM4=SUM4+V*G(J,I)

7 CONTINUE
IF (I-MM)96,97T,97

97 FB(1)=C2*SU2
FB(MAX)=C2*SUM1
GO TO 6

96 PHII I)=C2*(SUM1+SUM2)
PHB(I)=C2*(SUM3+SUM4)

6 CONTINUE
C UPDATE FLUXES

DO 9 Izl,M
L=NX(I)
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FB(L)=PHI( I)
L=NXX(I )
FB(L)=PHB(I)

9 CONTINUE
DO 85 I=1,MAX
PHIL(I)=LOGF(FB(I))
PHIT(I)=PHIT(I)+FB(I)

85 CONTINUE
GO TO 5

4 ABS=ABS-AB(N1+1)
CALL TALLY(T,R,RTRRABRABC2,TTRRRABS,NlMMSIGTTGMU)
GO TO 1000
END

* LABEL
* SUBROUTINE WTS

SUBROUTINE WTS(T,M2,A,X,JJ)
C CALCULATES GAUSSIAN QUADRATURE WEIGHTS AND ABSCISSAS FOR TAR(N)
C QUADRATURE CRDER M NOT TO EXCEED 39

DIMENSION A(40),X(40),C(40,40),R( 40),XX( 40),T( 80)
C M2 MOMENTS ARE IN ARRAY T. WTS GO IN A, AND LOCATIONS IN X

CALL JOBTM(JI)
C SUBROUTINE JOBTM GIVES RUNNING TIME

M=M2/2
DO I I=1,M
K=I-1
MI=M+I
DO 2 J=1,M
JK=J+K
C(I,J)=T(JK)

2 CONTINUE
R(I)=-T(MI)
R(MI)=0.
WRITE OUTPUT TAPE 2,101,R(I),(C(I,J),J=1,M)

I CONTINUE
101 FORMAT(1HO,E15.8,3X,(7E15.8))

L=1
I=4C
J=182
K=M
CALL JOBTM(J2)
CALL LEQ(CR,K,L,I,J,OET)

C SUBROUTINE LEQ SOLVES A LINEAR MATRIX EQUATION AX=R AND PUTS
C ANSWER VECTOR A IN R CONTAINS ABSCISSAS

CALL JOBTMtJ3)
C COEFF. OF X**M IS 1.0 IN OUR POLYNOMIAL

XX(1)=1.0
DO 11 J=1,M
M1=M+1-J
XX( J+1)=R( Ml)

11 CONTINUE
M1=M+l
WRITE OUTPUT TAPE 2,102,(XX(J),J=1,Ml)

102 FORMAT(1HO,8E15.8)
C NOW FIND RCOTS XX(J)

K=M
CALL JOBTM(J4)

C SUBROUTINE PULLER EXTRACTS ROOTS OF A POLYNOMIAL
CALL MULLER(XX,K,R,A)
CALL JOBTM(J5)
DO 12 J=1,M
XX( J )=R( J)
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12 CONTINUE

WRITE OUTPUT TAPE 2,102,t(XX(J),J=1,M)
C NOW PLACE RCOTS IN ASCENDING ORDER

Ml=M-l
5 N=0

00 3 I=1,M1
IF(XX(I+l)-XX(I))4,3,3

4 AA=XX([+1)
XX( I+1)=XX( I)
XX(I)=AA
N=N+1

3 CONTINUE
IF(N)6,6,5

6 DO T J=1,M
7 C(1,J)=1.

RI)=T(l)
R(M+1)=O.
WRITE OUTPUT TAPE 2,102,(XX(J),J=1,M)
WRITE OUTPUT TAPE 2,101,R(1),(C(1,J),

C SET UP SECCND MATRIX EQUATION FOR LEQ
DO 8 I=2,M
MIzM+I
DO 9 J=1,M
C(I,J)=C(I-1,J)*XX(J)

9 CONTINUE
R(I)= T(I)
R(MI)=0.
WRITE OUTPUT TAPE 2,101,R(I),(C(IJ),

8 CONTINUE
1=49
J=182
K=M
CALL LEQ(C,R,K,L, I,J,DET)

C WTS ARE IN R
WRITE OUTPUT TAPE 2,103

103 FORMAT(1H4, 1TH GAUSSIAN
DO 10 J=1,M
MJ=M+J
A(J)=R(J)
X(J)=XX(J)
WRITE OUTPUT TAPE 2,100,

10 CONTINUE
100 FORMAT(1H ,4E15.8)

CALL JOBTM(J6)

J=1 ,M)

J=1,M)

WEIGHTS,3X,9HLOCATIONS,5X,7HMOMENTS)

A(J),X(J) ,T(J),T(MJ)

J6=J6-JI
J5=J5-J4
J4=J4-J3
J3=J3-J2
J2=J2-J1
WRITE OUTPUT TAPE 2,104,J2,J3,J4,J5,J6

104 FORMAT(IH ,5110)
RETURN
END

* LABEL
FUNCTION QQQ(L,N, SIGTT,EXN)

D DIMENSION X(11),W(11),DD(9)
C 21 POINT NUMERICAL INTEGRATION BY GAUSSIAN QUADRATURES
C THIS SUBROUTINE OF TAR(N) EVALUATES MOMENTS OF EXPONENTIAL
C INTEGRAL FUNCTIONS E(N). N IS ARBITRARY. L IS THE MOMENT
C ORDER AND SIGTT IS THE OPTICAL THICKNESS(MFP).

IF(SIGTT)5,5,6



5 WRITE OUTPUT TAPE 2,100,SIGTT
100 FORMAT(IHO,7H SIGTT=,E1l.4)

CALL EXIT
C AN ERROR OCCURRED IF SIGTT NOT POSITIVE

6 IF(X(11)-0.5)1,2,1
O 1 X(1)=.0021714184870960
D X(2)=.0130467357414141
D X(3)=.0349212543221459
D X(4)=.0674683166555077
D X(5)=.1095911367067916
D X(6)=.1602952158504878
D X(7)=.2186214326656977
D X(8)=.2833023029353764
D X(9)=.3528035686492699
D X(1j)=O.4255628305091844
D X(11)=0.5
D Wt 1)=0.0058473194336859
D W( 2)=0.0162790811539824
D W( 3)=0.027-3779482871760
D W( 4)=0.0375198374054600
D W( 5)=0.0465627272918488
D W( 6)=0.0546935794011488
D Wt 7)=0.0617459881310329
D W( 8)=0.0673546086557367
D W( 9)=0.0713879692885300
D W(10)=0.0738695524506692
D W(11)=0.0373613885007292

2 INT=QINT(LSIGTT)
D DD(1)=0.

DD(2)=INT
DD(4)=SIGTT/DD(2)

D DD(2)=DD(4)
D DD(9)=0.

DD 7 J=1,INT
D DD(3)=0.

DO 8 K=1,11
D DD5)=DD(l)+0D(4)*X(K)
D DD(6)=DD(2)-DD(4)*X(K)

XP=DD(5)
XMDD(6)
DD7)=EXN(N,XP)
DD(8)=EXN(NXM)

D DD(7)=DD(7)*DD(5)**L
D DD(8)=DD(8)*DD(6) **L
D D03)=DD(3)+(DD(7)+DD(8) )*W(K)

8 CONTINUE
D DD(1)=DD(2)
D DD12)=DD(2)+DD(4)
D OD(9)=DD(9)+DD(3)

7 CONTINUE
D DD(9)=DD(9)*DD(4)

QQQ=0019)
RETURN
END

* LABEL
FUNCTION QINT(LSIGTT)

C SELECT NUMBER OF SUB-INTERVALS TO USE IN FINDING MOMENT L FOR
C A SLAB OF CPTICAL THICKNESS SIGTT

QINT=L
QINT=QINT/3. + SIGTT/3. +1.
RETURN
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END

* LABEL
FUNCTION EXN(MXX)

C FIND EXPONENTIAL INTEGRAL OF ORDER M EVALUATED AT XX
N=M
Z=1.
X=ABSF(XX)
IFfX-1.0E-1G)7,8,8

7 WRITE OUTPUT TAPE 2,9,X
9 FORMAT(HO,50H 1.OE-10 USED FOR ALL ARGUMENTS LESS THAN THIS. Xa,
1E15.8)
X=1.OE-10

C THE 1E-10 GETS AROUND LOGARITHMIC SINGULARITY IN El
8 W=EXPF(-X)

E=-EXPIF (-X)
4 IF(N-1)5,5,6
5 EXN=E

RETURN
C USE RECURSICN RELATION TO GET HIGHER ORDER EXPON. INTEGRALS

6 E=(W-X*E)/Z
Z=Z+1.
N=N-1
GO TO 4
END

* LABEL
* SUBROUTINE TALLY

SUBROUTINE TALLY(T,R,RTRRAB,RABC2,TTRRRABSN1,M,MM,SIGTTGMU)
DIMENSION T(80),R(80),RT(40),RR(40),AB(80),RAB(40)

C COMPUTE RTIK) AND RR(K) ETC FOR TAR(N), AND TABULATE OUTPUT
DO 9 J=3,Nl
L=J-1
K=J-2
RAB(K)=O.
IF(AB(L))12,12,ll

11 RAB(K)=AB(J)/(AB(L)*C2)
12 RT(K)=T(J)/(T(L)*C2)

RR(K)=R(J)/(R(L)*C2)
9 CONTINUE

N=NI
RAB(N-1)=C2
RAB(N)=0.
RT(N-1)=C2
RT(N)=0.
RR(N-1)=C2
RR(N)=0.
WRITE OUTPUT TAPE 2,106

106 FORMAT(1Hl,2H K,11X,4HT(K),11X,4HR(K),1OX,5HAB(K),1OX,5HRT(K),ioX,
15HRR(K),9X,6HRAB(K))
WRITE OUTPUT TAPE 2,104,(KT(K),R(K),AB(K),RT(K),RR(K),RAB(K),.K=l

1N)
104 FORMAT(1HO,15,6E15.8)

P=0.
IF(AB(N-1))51,51,50

50 P=AB(N)/AB(N-1)
Fl=AB(N)*P/(1.-P)
ABS=ABS+F1

51 P=R(N)/R(N-1)
F2=R(N)*P/(1.-P)
RRR=RRR+F2
P=T(N)/T(N-1)
F3=T(N)*P/(1.-P)
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TT4TT+F3
P=TT+RRR+ABS
WRITE OUTPUT TAPE 3,103,N,MMM,SIGTT,GMUP

103 FORMAT(315,3F10.5)
WRITE OUTPUT TAPE 3,102,(T(K),R(K),AB(K),K=1,N)

102 FORMAT(5E15.8)
WRITE OUTPUT TAPE 2,105,TTF3,RRRF2,ABS,F1,P

105 FORMAT(1HO,l9HTOTAL TRANSMISSION=,E15.8,26HINCLUDING EXTRAPOLATION
1 OF,E15.8,/,18H TOTAL REFLECTION=,E15.8,26HINCLUDING EXTRAPOLATION
2 OF,E15.8,/,18H TOTAL ABSORPTION=,E15.8,26HINCLUDING EXTRAPOLATION
3 OFE15.8,/,7H T+R+A=,E15.8)
RETURN
END

* DATA
.8 .5 1. .0001 0. 0. 0 3 20 6
0

ENC OF FILE
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A.2.3 SAMPLE PROBLEM FOR TAR(N)



PROGRAM TAR(N)

C= .80,000 SIGTT= .50000 GMU= 1.00000 ERROR= .00010 SW1

-.61849955E-02 .27839555E 00 .57288326E-01 .17401460E-01

-.23897327E-02 .57288326E-01 .17401460E-01 .61849955E-02

-. 97194329E-03 *17401460E-01 .61849955E-02 .23897327E-02

.10000000E )1 -.71533098E 00 .13288262E 00 -.48485519E-02

.23107859E 00 .43614380E 00 .48108592E-01

.48108592E-)1 .23107859E 00 .43614380E 00

.27839555E 00 .10000000E 01 .10000000E 01 .10000000E 01

.57288326E-01 .48108592E-01 .23107859E 00 .43614380E 00

.17401460E-11 .23144366E-02 .53397313E-01 .19022141E 00

00 SWz* 00 0j3, 0 M& 3 N=20 KKl 6

GAUSSIAN WEIGHT
.10190429E 00
.11991168E 0U
.56579579E-01

2

-.36762239E-05

- .13899062E-06

-.55056519E-38

.10000000E 01

.43968750E-02

.43968750E-02

.16742214E 00

.34587693E-02

.10489187E-13

LOCATIONS MOMENTS
.48108592E-01 .27839555E 00 .61849955E-02
.23107859E 00 .57288326E-01 .23897327E-02
.43614380E 00 .17401460E-01 .97194329E-03

1 0 3 13

.16742214E 00 .34587693E-02 *10489187E-03

.34587693E-C2 .10489187E-03 .36762239E-05

.10489187E-03 .36762239E-05 .13899062E-06

-.69281862E-01 .12417629E-02 -.42054867E-05

.42242680E-01 .22642308E-01

.22642308E-01 .42242680E-01

.10000000E 01 .10000000E 01

.43968750E-02 .22642308E-01

.19332510E-04 .51267409E-03

.10000000E 01

.42242680E-01

.17844440E-02

S



GAUSSIAN hEIGHTS
.58802959E-01
.70822401E-01
.37796785E-01

-. 83118789E-02

-. 28649721E-4)2

-. 10445325E-,02

.10C0000CE 01 -

.19748594E 00

.34513389E-0 1

.64456547E 00

.10156668E 00

.26487326E-01

GAUSSIAN hEIGHTS
.28389490E )

[) .25437777E 10
.10629279E X

0

-. 93673044E-:)3

~) -. 16751386E-03

-. 31539759E-04

.1000000CE 01 -

J .191048805E-01

.19048805E-01

.46173739E 00

.40993779E-01

.57036702E-02

LOCATIONS MOMENTS
.43968750E-02 416742214E 00 .36762239E-C5
.22642308E-01 .34587693E-02 .13899062E-06
.42242680E-01 .10489187E-03 .55056519E-08
0 0 0 12

.64456547E 00 .10156668E 00 .26487326E-01

.10156668E CO .26487326E-01 .83118789E-02

.26487326E-01 .83118789E-02 .28649721E-02

.62273575E 00 .97466496E-01 -.26632239E-02

.39073642E 00 .34513389E-01

.19748594E 00 .39073642E C

.10000000E 01 .lCOOOOO E 01 .10000000E 01

.34513389E-01 .19748594E 00 .39073642E 00

.11911740E-02 .39000697E-01 .15267495E 00

LOCATIONS MOrENTS
.34513389E-01 .64456547E 00 .83118789E-C2
.19748594E 00 C10156668E C0 .28649721E-C2
.39073642E 00 .26487326E-01 410445325E-C2

0 0 12 12

.46173739E 00 .40993779E-01 .57036702E-02

.40993779E-01 .57036702E-02 .93673044E-03

.57036702E-02 .93673044E-03 .16751386E-03

.32479608E 00 .26851566E-01 -040054772E-03

.20127718E 00 .10447009E 00

.10447009E 00 .20127718E CC

.100000O0E 01 .1CC00000E 01 .10000000E 01

.19048805E-01 .10447009E 00 .20127718E 00

.36285697E-03 .10914000E-01 .40512503E-01
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GAUSSIAN WEIGHTS
.1e495812E 0C

LOCATIONS MOMENTS
.19048805E-01 .46173739E 00 *93673044E-C3

.18840358E 00 .10447009E 00 .40993779E-01 .16751386E-C3

.88375682E-01 .20127718E 00 .57036702E-02 .31539759E-04
0 0 0 12

- .15556571E-02

-. 32290983E-03

-. 70628826E-04

.10000000E 01

.21840914E-01

.21840914E-01

.50125892E 00

.50868156E-01

.81734641E-02

GAUSSIAN WELGH1
.20460182E 00

D .2032997iOE 00
.93357408E-01

-. 743798'0E-02

-.24768648E-02

-. 87215206E-03

.10000000E 01

Q .19102990E 00

.33470951E-01

.63459589E 00

.97134501E-01

.24519367E-01

.50125892E 00 .50868156E-01 .81734641E-02

.50868156E-01 .81734641E-02 .15556571E-02

.81734641E-02 .15556571E-02 .32290983E-03

.37657800E 00 .36008515E-01 -. 61724024E-03

.23392707E 00 .12081002E 00

.12081002E 00 .23392707E 00

.10000000E 01 .10000000E 01 .1000000CE 01

.21840914E-01 .12081002E 00 .23392707E 00

.47702551E-03 .14595060E-01 .54721875E-01

rs LOCATIONS MOMENTS
.21840914E-01 .50125892E 00 .15556571E-C2
.12081002E 00 .50868156E-01 .32290983E-03
.23392707E 00 .81734641E-02 .70628826E-C4

0 0 Q 12

.63459589E CO .97134501E-01 .24519367E-01

.97134501E-C1 .24519367E-01 .74379800E-02

.24519367E-01 .74379800E-02 .24768648E-02

-. 60180845E 00 .91099829E-01 -*24124868E-C2

.37730761E 00 .33470951E-01

.19102990E 00 .37730760E 00

.100000COE 01 .IC00000CE 01 .10000000E 01

.33471951E-01 .19102990E 00 .37730760E 00

.112030V46E-C2 .36492423E-01 .14236102E 00



GAUSSIAN WEIGH1
.27787919E 00
.25101396E 00
.10570274E 00

12

-. 10285091E-04

-. 51523798E-06

-. 27057736E-07

.1C000000uE 01

.57573092E-02

.57573092E-02

.20463641E 00

.55373464E-12

.22171674E-03

GAUSSIAN AEIGH1
.7-3121906E-011

.45314398E-01

-. 11373896E-1

-. 43247399E-32

-. 17410424E-02

.1000000E 01

.21705046E 00

.37647401E-01

.67292938E 00 )

.11507379E 10

.32915684E-01

rs

-s

LOCATIONS MOMENTS
.33470951E-01 *63459589E 00 .74379800E-02
.19102990E 00 *97134501E-01 .24768648E-02
.37730760E 00 424519367E-01 *87215206E-03

0 0 0 24

.20463641E 00 .55373464E-02 .22171674E-03

.55373464E-02 .22171674E-03 .10285091E-04

.22171674E-03 .10285091E-04 .51523798E-06

.91681494E-01 *21699913E-02 -.96452158E-05

.56017441E-01 .29906743E-01

.29906743E-01 .56017441E-01

.1000,300E 01 .1CC0000CE 01 .10000000E 01

.57573392E-02 .29906743E-01 .56017441E-01

.33146609E-04 .89441326E-03 .31379537E-02

LOCATIONS MOMENTS
.57573092E-02 .20463641E 00 .10285091E-C4
.29906743E-01 .55373464E-02 .51523798E-06
.56017441E-01 .22171674E-03 .27057736E-C7

n c 0 12

.67292938E 00 .11507379E 00 .32915684E-01

.11507379E 00 .32915684E-01 .11373896E-01

.32915684E-01 .11373896E-01 .43247399E-02

-.68638166E 00 .11812033E 00 -.35274548E-02

.43168379E 00 .37647401E-01

.21705046E 00 .43168379E 00

.10001000E 01 .10CO0000E 01 .10000000E 01

.37647401E-01 .21705046E 00 .43168379E 00

.14173268E-02 .47110903E-01 .18635090E 00
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GAUSSIAN WEIGHTS LOCATIONS
.30152139E 00 .37647401E-01
.26374521E 00 .21705046E 00
.10766278E 00 .43168379E 00

3 1

MOMENTS
.67292938E 00 .11373896E-01
.11507379E 00 .43247399E-02
.32915684E-01 .17410424E-02

3 14

1.02-10 USED FOR ALL ARGUMENTS LESS THAN THIS. X= 4D0000000E 00

N= 1 R(N)=
1 .000000 00
2 .481086E-Cl
3 .638562E-01
4 .231079E 00
5 .268921E CO
6 .436144E 00
7 .451891E 00
8 .500000E 00

N= 2 R(N)=
1 .0000002 CO
2 .481086-01
3 .638562-01
4 .231079E CO
5 .2689212 CO
6 .4361442 00
7 .451891 00
8 .5000002 00

N= 3 R(N)=
1 .0000002 00
2 .481086E-01
3 .638562E-01
4 .2310792 00
5 .268921E 00
6 .436144E 00
7 .451891E CO
8 .5000002 00

N= 4 R(N)=
1 .0000E 00
2 .481086E-01
3 .638562E-01
4 .231079E CO
5 .268921E 00
6 .4361442 00
7 .451891E 00
8 .500002 00E

N= 5 R(N)=
1 .0000302 00
2 .481086E-01
3 .638562E-01
4 .231079 00
5 .268921E 00
6 .436144 00
7 .451891E CO
8 .500000E 00

.0000002 00
.100000E
.953030E
.938140E
.793677E
.764203E
.646525E
.636423E
.606531E

.915476E-01
.229034E
.276723E
.284768E
.304765E
.299547E
.244270E
.235452E
.195679E

01
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

.314259E-01
.754169E-01
.916933E-01
.952051E-01
.110478E 00
.109684E 00
.897983E-01
.863029E-01
.712448E-01

.110689E-01
.262802E-01
.319546E-01
.332437E-01
.395991E-01
.394848E-01
.325112E-01
.312314E-01
.257298E-01

.393767E-02
.931620E-02
.113228E-01
.117849E-01
.141584E-01
.141423E-01
.116849E-01
.112246E-01
.924185E-02

T(N)= .606531E 00 AB(N)Z=
.100000E 01 -.000000E 00
.953030E 00 -.481086E-01
.938140E 00 -.638562E-01
.793677E 00 -.231079E 00
.764203E 00 -.268921E 00
.646525E 00 -.436144E 00
.636423E 00 -.451891E 00
.606531E 00 -.500000E 00

TfN) .838283E-01 AB(N)z
.122903E 01 -.147389E 01
.122975E 01 -.128474E 01
.122291E 01 -.125608E 01
.109844E 01 -.118821E 01
.106375E 01 -4120548E 01
.890794E 00 -.140948E 01
.871876E 00 -.144625E 01
.802210E 00 -.163128E 01

T(N)= .304100E-01 AB(N)=
.130445E 01 -.258472E 01
.132145E 01 -.238931E 01
.131811E 01 -.235172E 01
.120892E 01 -.220294E 01
.117343E 01 -.221015E 01
.980593E 00 -.241019E 01
.958179E 00 -.244989E 01
.873455E 00 -.264163E 01

T(N)= .109335E-01 AB(N)=
.133073E 01 -.363894E 01
.135340E 01 -.344344E 01
.135136E 01 -.340389E 01
.124852E 01 -.322895E 01
.121292E 01 -.323184E 01
.101310E 01 -.342617E 01
.989410E 00 -.346633E 01
.899185E 00 -.366010E 01

T(N)= .391929E-02 AB(N)ft
.134005E 01 -.467600E 01
.136472E 01 -.448093E 01
.136314E 01 -.444094E 01
.126268E 01 -.425745E 01
.122706E 01 -.425858E 01
.102479E 01 -.444946E 01
.100063E 01 -.448965E 01
.908427E 00 -.468401E 01

N= 6 R(N)= .140509E-2-02

293

.0000002 00

.796939E-01

.278799E-01

.993675E-02

.354892E-02

T(N)= .140258E-02 AB(N)t: .126774E-02



.OCOOCE 00

.481086E-Cl
*638562E-C1
.231079E 00
.268921E 00
.436144E CO
.451891E 00
.500000E CO

N= 7 R(N)=
1 .000000E CO
2 .481086E-01
3 .638562E-01
4 .231079E 00
5 .268921E 00
6 .436144E CO
7 .4518912 CO
8 .500000 CO

N= 8 R(N)=
1 .000000 00
2 .481086E-Cl
3 .638562E-Cl
4 .231079E CO
5 .268921E 00
6 .436144E CO
7 .451891E CO
8 .50000E 00E

N= 9 R(N)=
1 .000000E 00
2 .481086E-Cl
3 .638562E-Cl
4 .231079E 00
5 .268921E 00
6 .436144E CO
7 .451891E CO
8 .500000 CO

1
2
3
4
5
6
7
8

.134337E 01

.136876E 01

.136734E 01

.126774E 01
.123212E 01
.102897E 01
.100466E 01
.911737E 00

294
-. 570769E 01
-. 551285E 01
-.547274E 01
-.528636E 01
-.528680E 01
-.547600E 01
-.551618E 01
-.571075E 01

.332033E-02

.403460E-02

.419971E-02

.506014E-02

.505791E-02

.418602E-02

.402117E-02

.331019E-02

.501903E-03
.118552E-02
.144042E-02
.149941E-02
.180844E-02
.180814E-02
.149754E-02
.143858E-02
.118413E-02

.179347E-03
.423561E-03
.514613E-03
.535694E-03
.646338E-03
.646296E-03
.535437E-03
.514360E-03
.423370E-03

.640958E-04
.151365E-03
.183901E-03
.191435E-03
.231006E-03
.231000E-03
.191400E-03
.183866E-03
.151339E-03

TIN)= .501558E-03 AB(N)*
.134455E 01 -.673757E 01
.137020E 01 -.654282E 01
.136884E 01 -.650268E 01
.126955E 01 -.631529E 01
.123393E 01 -.631546E 01
.103047E 01 -. 650393E 01
.100609E 01 -.654410E 01
.912921E 00 -.673875E 01

T(N)= .179300E-03 ABIN)ft
.134498E 01 -. 776681E 01
.137071E 01 -.757210E 01
.136938E 01 -.753195E 01
.127019E 01 -.734419E 01
.123457E 01 -4734425E 01
.103101E 01 -.753243E 01
.100661E 01 -.757259E 01
.913344E 00 -.776726E 01

T(N)= .640893E-04 AB(N)=
.134513E 01 -.879582E 01
.137090E 01 -.860111E 01
.136957E 01 -.856096E 01
.127042E 01 -.837307E 01
.123481E 01 -.837309E 01
.103120E 01 -.856114E 01
.100679E 01 -.860130E 01
.913496E 00 -.879599E 01

.452661E-03

.161437E-03

.574199E-04
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K

1

2

3

4

5

6

7

8

9

T(K)

.6:653067E 00

.83828290E-01

.30409954E-01

*10933485E-01

.39192879E-02

.14025776E-02

*50155798E-03

.179300U5E-03

.64089339E-04

R(K)

.OOOOOOOOE 00

.91547648E-01

.31425906E-01

.11068922E-01

. 39376732E-02

.14050916E-02

*50190265E-03

. 17934738E-03

.64095826E-04

AB(K)

.00000000E 00

.78693867E-01

.27879905E-01

.99367518E-02

.35489199E-02

*12677436E-02

.45266104E-03

.16143670E-03

.57419871E-04

RT(K)

*90691205E

.89884098E

.89616621E

.89466358E

.89399326E

.89371547E

*89360459E

.40000000E

.00000000E

00

00

00

00

00

00

00

00

00

RR(K)

.85818443E

.88055713E

.88935333E

.89208245E

*89300697E

.89333750E

.89345920E

.40000000E

.0000000DE

TOTAL TRANSMISSLON= .73780482E O0INCLUDING EXTRAPOLATION OF .35651575E-04
TOTAL REFLECTION= .14016623E O0INCLUDING EXTRAPOLATION OF *35646156E-04
TOTAL ABSORPTION= 412203040E OOINCLUDING EXTRAPOLATION OF .31697194E-04
T+R+A= .10000014E 01

00

00

00

00

00

00

00

00

00

RABA K)

.88570768E 00

.89103171E 00

*89287726E 00

.89304893E 00

.89265099E 00

*89159816E 00

*88920103E 00

.40000000E 00

.OOOOOOOOE 00
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A.3 LPF

LPF is an acronym for Legendre Polynomial Fits.

Its purpose is to use tabulated differential angular

scattering cross sections as(E,4) to evaluate the

coefficients Fn(E) of the following expansion:

0S(E)
as(E,.) 4 E .(2n + I)Fn (E) Pn(4l) (A.10)

n=0-

where 4 is the cosine of the scattering angle in the

center of mass system and as(E) is the total (inte-

grated over all solid angles") scattering cross section

at energy E. Orthogonality of the legendre polynomials

Pn(4) gives the relations desired from the moments An:

1

A n fL dp. PnGO' as (E, I.L), n = 0, 1,. .N

as(E) 27r A0 , with F0 (E) - 1.

Fn(E) A n/A0  (A.ll)

Subroutine QQQQQ, which numerically evaluates An'
uses a 21-point Gaussian quadrature approximation for

the integral. Provision has been made for subroutine

QINT to choose the number of sub-intervals to use in

evaluating the integral.
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The PnGL) are evaluated by subroutine PLN using the

rec ursion relation:

(n + 1)P n+1() - 4(2n + 1) Pn) - nP(n-1) (A.12)

starting with

P(4)0- 1 and P (s) -4

A test of PLN showed it to be accurate to seven decimal

places for n < 9, and to have an error no larger than a

digit in the seventh place for n = 10.

Numerical interpolation with the TAINT15 sub-

routine provides a (E, 4) at the nodes used by the

quadrature f ormula.

An idea of the accuracy of the fit (Equation (A.10))

is provided by computing the root mean square percentage

error evaluated at the tabulated sL-values. This is

done for all N from one to nine.

Input data to LPF is given in the next Section.

The code is listed in Section A.3.2. Sample input/output

for deuterium is listed in Section A.3.3.
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A.3.1 INPUT DATA FOR LPF

Card 1: Format (15, A5, 315)

1. NE = number of E-values in tables of

as(E, 4). Job terminates if NE 4 0.

2. ISO = alphanumeric label for isotope.

3. N = order of highest Legendre polynomial in fit.

4. NT = order of numerical interpolation.

5. ITEST ' output control digit. If > 0, output

L, MM, NT during calculation of each moment, AL'
MM is the number of 4-values for that particular

energy. The tnumber of moments and coefficients

evaluated is given by the least of MM or NI,

where NI is the number of 4-values at which

as(E, 4) is tabulated.

Card 2: Format (8(F7.3, 13))

I E(I) - energy-value in table of as(E, ), MeV.

I + 1. NI(I) . number of A-values at energy E(I).

For each energy E(I), I e L...NE, the following is

required:

Sufficient cafes to contain NI(I) table pairs in

Format (4(FlO.5, E10.3)) of:

X(JI) - J-th 4-value for energy E(I).

FX(J,I) angular scattering cross section

as(E(I), 4 ), barns/steradian.

Other isotopes may be processes at the same time by

placing data sets together. A final blank card (NE - 0)

will terminate the job.



A.3.2 LISTING OF LPF



A.3.2 LISTING OF LPF

C LPF -- LEGENDRE POLYNOMIAL FITTING TO ANGULAR SCATTERING CROSS
C SECTIONS
C ROUTINE FINDS BEST FIT IN LEAST SQUARES SENSE

DIMENSION X(50,50),FX(50,50),XX(50),FFX(50),F(50,10),NI(50),E(50),
1NM(10),RMS(10)

F TAINT,PLN
100 READ INPUT TAPE 4,20,NE,ISO,N,NTITEST
20 FORMAT(15,A5,315)

IF(NE)101,101,102
102 WRITE OUTPUT TAPE 2,21,NEISO,N,NT,ITEST
21 FORMAT(1H1,4H NE=,I2,2X,8HISOTOPE=,A5,2X,2HN=,I2,2X,3HNT=,12,2X,

I 6HITEST=,12)
READ INPUT TAPE 4,22,(E(I),NI(I),I=1,NE)
WRITE OUTPUT TAPE 2,23,(E(I),NI(I),I=1,NE)

22 FORMAT(8(F7.3,13))
23 FORMAT(1H0,9H E, NI(I),/,(8(F7.3,I3)))

DO 1 I=1,NE
M=NI(I)
READ INPUT TAPE 4, 24,(X(J,
WRITE OUTPUT TAPE 2,25,(X(J,

1 CONTINUE
24 FORMAT(4(F10.5,E10.3))
25 FORMAT(7H MU(CM),5XL5HDIFF.

C BEGIN POLYNOMIAL FITTING FOR
DO 2 I=1,NE
WRITE OUTPUT TAPE 2,26

26 FORMAT(1H4,5H E(I),2X, 8HSIG
DO 5 J=1,10

5 F(IJ)=0.
MM=NI(I)
00 3 J=1,MM
XX (J )=X(J, I)
FFX(J)=FX(J,I)

3 CONTINUE
Ml=MM
M=XMINOF(MlN) + 1

C FIT ONLY M COEFFS IF M DA

I),FX(JI),J=1,M)
I),FX(JI),J=1,M)

X-SECTION,/,(4(F1O.
EACH ENERGY

(EC),10X,T7HF1.*.F9)

TA

5,E10.3) ) )

POINTS, FOR M LESS N
DO 4 L1=1,M
L=L1-1
IF( ITEST)30,30,31

31 WRITE OUTPUT TAPE 2,32,L,MM,NT
32 FORMAT(1H ,315)
30 F(I,Ll)=QQCCQ(PLNXXFFX,LTAINTMMNTITEST)

IF(L)4,4,6
6 IF(F(I1,1))13,13,12

13 WRITE OUTPUT TAPE 2,29
29 FORMAT(1H4,29H TOTAL X-SECTION NOT POSITIVE)

F(I,1)=1.
GO TO 4

12 FtI,L1)=F(I,L1)/F(I,1)
4 CONTINUE
F(I,1)=F(I,1)*6.2831853
WRITE OUTPUT TAPE 2,27,E(I),(F(I,L),L=1,10)

27 FORMAT(lHO,FT.3,3X,10E10.3)
C NOW FIND ERRORS IN FIT AND CHOOSE BEST NUMBER

M=M-1
DO 40 M1=1,t

OF TERMS TO USE

299
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S=0.
DO 7 J=1,MMM
SUM=D.
W=XX(J)
DO 8 L=l,M1
V=2*L+1

8 SUM=SUM+F(I,L+1)*PLN(L,W)*V
SUM=0.25*F(I,1)*(1.+SUM)/3.1415927
FFX(J)=100.*(FX(Ji)-SUM)/FX(J,I)
S=S+FFX(J)**2.

7 CONTINUE
NMI M1)=Ml
RMS(M1)=SQRTFIS)

40 CONTINUE
WRITE OUTPUT TAPE 2,28,(NMIM1),M1=1,M)
WRITE OUTPUT TAPE 2,41,(RMS(M1),M1=1,M)

28 FORMAT(11H FIT ORDER=,13(5X,15))
41 FORMAT(11H RMS(PCT.)=,10F10.2)
2 CONTINUE

GO TO 100
101 CALL EXIT

END
* LABEL

FUNCTION QQQQQ(PLNXXFFX,LTAINT,MM,NTITEST)
D DIMENSION X(11),W(11),DD(11)

DIMENSION XX(50),FFX(50)
IF( L )5,6,6

5 WRITE OUTPUT TAPE 2,100,L
100 FORMAT11HO,3H L=,13)

CALL EXIT
6.IF(X(11)-005)1,2,1

D 1 X(1)=.0021714184870960
D X(2)=.0130467357414141
D X(3)=.0349212543221459
D X(4)=.0674683166555077
O X(5)=.1095911367067916
D X(6)=.1602952158504878
D X(7)=.2186214326656977
D X(8)=.2833023029353764
O X(9)=.3528035686492699
D X(10)=0.4255628305091844
D X(11)=0.5
D W( 1)=0.0058473194336859
D W( 2)=0.0162790811539824
D W( 3)=0.0273779482871760
O W( 4)=0.0375198374054600
D W( 5)=0.U465627272918488
D W( 6)=0.0546935794011488
D W( 7)=0.0617459881310329
D W( 8)=0.0673546086557367
D W( 9)=0.0713879692885300
D W(10)=0.0738695524506692
D W(11)=0.U373613885007292

2 INT=QINT(L)
DMON=0.

D DD(1)=-1.
DD(2)=INT
DD14)=2./DD(2)

D DD(2)=-1.+DC(4)
D DD(9)=0.

NN=NT
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IF (NT-MM) 14,14,15

15 NN=MM
14 DO 7 J=1,INT

D DD(3)=0.
DO 8 K=1,11

D DOD(5)=DD(1)+DD(4)*X(K)
D DD(6)=DD(2)-DD(4)*X(K)

XP=DD(5)
XM=DD(6)
DD( 7)=PLN(LXP)
00(8)=PLN(L,XM)
CALL TAINT(XXFFX,XP,FXP,MM,NN,NERR,DMON)
IF(NERR-1)10,11,10

11 CALL TAINT(XXFFX,XMFXM,PM,NNNERR,DMON)
IF(NERR-1)10,12,10

10 WRITE OUTPUT TAPE 2,13,NERR
13 FORMAT(1H4,6H NERR=,12)

CALL EXIT
12 DD(10)=FXP

DD(11)=FXM
D DD(7)=DD(7)*DD(10)
D DD(8)=DD(8)*DD(11)
D DD(3)=DD(3)+(DD(7)+DD(8))*W(K)

8 CONTINUE
D DD(1)=DD(2)
D DD(2)=DD(2)+DD(4)
D OD(9)=DD(9)+DD(3)

7 CONTINUE
O DD(9)=DD(9)*DD(4)

QQQQQ=DD(9)
IF(ITEST)20,20,21

21 WRITE OUTPUT TAPE 2,18,QQQQQ
18 FORMAT(lH ,E15.8)
20 QQQQQ=DD(9)

RETURN
END

* LABEL
FUNCTION QINT(L)
QINT=1.
RETURN
END

* LABEL
FUNCTION PLN(LX)

D DIMENSION DC(5)
IF(L-1)1,2,3

1 PLN=1.
RETURN

2 PLN=X
RETURN

3 DD(1)=X
D DD(2)=1.

DD(4)=X
M=L-1
DO 5 I=1,M
DD(3)=I

D DD(5)=((2.*CD(3)+1.)*DD(4)*DD(1) - DD(3)*DD(2))/(DD(3)+1.)
D DD(2)=DD(1)
D DD(1)=DD(5)

5 CONTINUE
PLN=CD(5)
RETURN
END

ENC OF FILE
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A 3.3 SAMPLE PROBLEM FOR LPF



DATA
11

14. 1
3.27

1
.2

-. 4
-,75
-.95

-1.
0.6

-1.
.,2
.6

1.00
.2

-. 5
-. 9
1 :2

-.6

1.2
.2

-. 5
-.9

1 2
.2

-.5
-. 9

1.
.2

-.5
-. 9
1.
.2

-.4
-. 8

.2
-. 5

0 9 5
18 .1 6
15 4.5 14

. 125E

.041E

.J12E

.018E

.087E
+0. 310E+O0
+0*242Ee00
+0380E+o0
+0.271E+30
+0. 190E+00
0. 93E+00

o 180E
.292E
. 523E
" 125E
.177E
.296E
.14E
o157E
.263E
. 517E

.227E

.140E

.180E

.425E

.325E
" 133E
. 143E
.335E
. 310E
* 123E
.094E
.230E
.2 95E
.)92E
.054E

.2
5.5

.8

.0-. 5

.8

-.6

.68

.8
0.

-*6

-.8
.8

0

-.6
-1.

.8
0

-*6
-1.

.8

-.6
-1.

.8

.0

-. 5
-9

.8

.0
-.6

11
15

.5 14 .75 11 1. 14 1.95 14 2.45 14

-100E
.028E
.17E-01
.027E

-118E
+0.290E+00
+0*235E+00
+0.352E+00
+0*249E+o0
+0. 177E+00

.114E 00

.203E

.325E
*647E
.135E

*201E
.333E
.140E

*172E
*300E
.675E

0 196E
0 136E
.20 5E
.640E
.261E
.117E
.167E
.42 E
.252E
* 1OOE
.107E
.296E

*233E
-061E
.073E

.6-.2
-.6
-.85

-.2

-. 6

12
1.
0.6
.2

-.7

.6

-.2
-11

.6

.2

-.6
.2

-. 7

.6
-.2
.7

.6

.2e6

-1,.,6

-. 2
-. 7

.775E-01

.018E

.107E-01

.425E-01

0 E+0.270E+00

+0.324E+00
+0.228E+00

+0,161E+00
.135E
.231E
.370E

. E
.147E
.2 30E

.370E

.140E

.196E

,345E
0 E
.170E
.141E
.252E

0 E
.237E
.116E
.202E

. E
.200E
.088E

*.130E
*380E
.178E

.,042E
,. IOOE

.4
-.3
-. 7
--9

0.2

-.4
.4

0.4
-,4
-.8

.4
-.4

.4
--4
-.8

.4
-- 4

-.8

.4
-. 4
-. 8

.4
-.3
-.7

.4

-. 4.18

.584E-01
* 144E-01
,0148
.0616

. E+0*255E+00

+0 297B+00
+0.210E+00

.158E

.2688

.437E

* E.1608
.262E

:146E
.237E
.414E

0 E.152E
.1638
.3206

E.1626
.1298
.2656

.158E

.088E
b170E

.131E

.044

.1368,

0

*



.185E
* 340E
.095E
.042E
.125E

-1.
.8
.3

-. 5
-. 9

.27DE

.264E
-063E
.050E
.170E

.6
-. 2

-. 6
-1.

0 E
0197E
.042E
.065E
.230E

.4
-. 3
-- 7

.

b E
143E

*040E
.088E
* E

ENC OF F ILE

\.A

-. 9
1.2

-. 4
-. 8

0



0 N= 9 NT= 5 ITEST= 0

E, Ni(I)
14.100 18
3.270 15

MU (CM)
1.00000

.20000
-. 40000
-. 75000
-. 95000

MU(CM)
-1.00000

.60000
MU(CM)
-1.00000

-. 20000
.60000

MU (CM)
1.00000

.20000
-. 50000
-. 90000

MU(CM)
1.00000

.20000
-. 60000

MU(CM)
1.00000

.20000
-. 50000
-. 90000

MU(Cr)
1.00000

.20000
-. 50000
-. 90000

mU(CM)
1.00000

.20000
-. 50000
-. 90000

MU (CM)
1.00000

.20000
-. 40000
-. 80000

MU(CM)
1.00000

.20000
-. 50000
-. 90000

MU(CM)
1.00000
.20000

-. 40000
-. 80000

.100 6 .200 11
4.5U0 14 5.500 15
DIFF. -SECTION
.125E CO .81000
.410E-C1 0.
.120E-C1 -.50000
.180E-01 -. 80000
.870 E-c1 -1.00000
DIFF. X-SECTION
.310E CO -.60000
.242E CO 1.00000
DIFF. X-SECTION
.380E 00 -.80000
.271E CO 0.
.190E CO .80000
DIFF. X-SECTION
.930E-C1 .80000
.180E CO 0.
.292E CO -.60000
.523E CO -1.01100
DIFF. X-SECTION
.125E CO .80000
.177E CO 0.
.296E 00 -. 8300
DIFF. X-SECTION
.140E CO .80000
.157E CO 0.
.263E CO -.60000
.517E CO -1.00000
DIFF. X-SECTION
.227E CO .80000
.140E CO 0.
.180E 00 -.60000
.425E CC -1.00000
DIFF. X-SECTION
.325E 00 .80000
.133E CO 0.
.143E CO -.61000
.335E CO -1.00000
DIFF. X-SECTION
.310E 00 .80000
.123E CO 0.
.940E-C1 -.50000
.230E 00 -.90000
DIFF. X-SECTION
.295E 00 .80000
.920E-C1 0.
.540E-C1 -.60000
.185E CO -1.00000
DIFF. >-SECTION
.340E 00 .80000
.950E-C1 0.
.420E-C1 -.50000
.125E CO -.90000

.500 14 .750 11 1.000 14

1 .OOOE-01
.280E-01
.107E-01
.270E-01
.118E 00

.290E 00

.235E 00

.352E 00

.249E 00

.177E 00

.114E 00

.203E 00

.325E 00

.647E 00

.135E 00

.201E 00

.333E 00

.140E C0O

.172E 00

.300E 00.

.675E 00

.196E C0
.136E 00
.205E 00
.640E 30

.261E 00

.117E C00

.167E 00

.425E 00

.252E CO
1.OOOE-01

.107E 00

.296E 00

.233E 00

.610E-01
.730E-01
.270E 00

.264E 00

.600E-01

.500E-01

.170E 00

.60000
-. 20000
-. 60000
-. 85000

.775E-01

.180E-01

.107E-0 1

.425E-01

-.20000 .270E 00

-.60000
.20000

1.00000

.60000
-. 20000
-.70000

.60000
-. 20000

-1.00000

.60000
-.20000
-. 70000

.60000
-. 20000
-. 70000

.60000
-. 20000
-. 70000

.60000
-. 20000
-.60000

-1.00000

.60000
-. 20000
-. 70000

.60000
-.20000
-. 60000

-1.00000

.324E 00

.228E 00
.161E 00

.135E 00

.231E 00

.370E 00

.147E 00

.230E 00

.370E 00

.140E 00

.196E 00
.345E 00

.170E 00

.141E 00

.252E 00

.207E 00

.116E 00

.202E 00

.200E 00

.880E-01

.130E 00

.380E 00

.178E 00

.420E-01
1.OOOE-01

.197E 00

.420E-0 1

.650E-01

.230E 00

1.950 14

.40000
-. 30000
-. 70000
-. 90000

2.450 14

,584E-01
144E-01
.140E-'01
.610E-o1

.20000 .255E 00

-.40000 .297E 00
.40000 .210E 00

.40000
-. 40000
-. 80000

.158E 00
*268E 00
*437E 00

.40000 4160E 00
-.40000 .262E 00

.40000
-. 40000
-. 80000

.40000
-. 40000
-. 80000

.40000
-. 40000
-. 80000

.40000
-. 30000
-. 70000

.40000
-. 40000
-. 80000

.40000
-. 30000
-. 70000

4146E 00
.237E 00
.414E 00

.152E 00
4163E 00
.320E 00

162E 00
.129E 00
v265E 00

.158E 00
*880E-01
iI70E 00

*131E 00
.440E-0O1
.136E 00

.143E 00

.400E-01

.860E-01

NE=11 ISCTOPE= 306



E(I) SIG(EC)

14.100
FIT ORDER=
RMS( PCT. ) =

.605E 00 .278E 00
1 2

383.23 261.79

.208E 00
3

170.87

-. 703E-01
4

106.30

.425E-01
5

54.54

-. 238E-01
6

23.13

.113E-01
7

16.12

-. 319E-02
8

15090

-. 9706 -03
9

12.96

. 136E-02

EUI) SIG(EC)

.100
FIT CRDER=
RMS(PCT. ) =

.334E 01 -.494E-01 .530E-02
1 2 3

4.40 1.03 .86

.187E-03 -.778E-C4
4 5

.88 .00

.530E-03 -107E-07
6

.00

.CO0E 00 .OOOE 00 .000E 00

E(lI) SIG(EC)

.323E 01
1

11.82

.142E 00
2

1.90

.123E-01
3

2.3m.

.535E-03
4

2.19

-. 942E-04
5

2.80

.434E-03
6

2.55

-. 128E-03 -. 512E-03 -. 401E,-03 -. 17E-*03
7 8 9

1.39 .56 .61

Eli) SIG(E,C)

.500
FIT CRDER=
RMS( PCT. ) =

.301E 01 -.278E 00 .788E-01 -.382E-01
1 2 3 4

86.34 57.57 29.60 11.85

.151E-C1 -.425E-02
5 6

2.52 1.59

.844E-03
7

2.05

.139E-"03 -.4898-03
8 9

1.09 1.40

-.118E-03

F1.. .F9
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F1.. .F9

.

FIT
RMS(

200
CRDER=
PCT. )=

Fl.. .F9

Fl...F9



E(l) SIG(EC)

.750
FIT ORDER=
RMS(PCT. )=

.275E 01
1

32.46

-. 189E 00.294E-01
2 3

2.99 3.71

.132E-02
4

1.10

-.190E-02 -.687E-03
5 6

1.74 1.24

242E-03
7

.37

.493E-03 -.477E 04 -.689E-04
8 9

.25 .10

E(l) SIG(E,C)

1.000
FIT ORDER=
RMS(PCT. ) =

.286E 01
1

108.92

-. 257E 00
2

52.76

.117E CO
3

25.68

-. 430E-01
4

13.96

.181E-01
5

5.72

-. 752E-02
6

4.21

.305E-02 -.154E-02 -.716-e04
7 8 9

1.01 1.12 o78

.312E-03

E(U) SIG(E,C)

1.950
FIT ORDER=
RMS(PCT. ) =

.252E 01 -.

1
133.83

139E 00
2

65.16

.159E 00 -.576E-01
3 4

35.69 19.24

.280E-C1 -.126E-01
5 6

10.07 5.84

4556E-02
7

3.74

7.268E-*02
8

3.33

.120E102 -. 118E-02
9

3.04

E(I) SIG(EC)

2.450
FIT CRDER=
RMS(PCT.)=

.239E 01
1

148.40

.151E-02 .171E 00 -. 334E-01
2

41.76
3

19.61
4

8.42

.131E-01 -.458E-02 -.111E-02
5 6 7

4.53 4.54 3.31

.230E-02 -.9105-03
8 9

3.04

.269E-03

3.01

Fl...F9
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E(I) SIG(E,C)

3.270
FIT CRDER=
RMS(PCT.) =

.213E 01
1

198.27

.419E-01
2

64.67

.186E 00)
3

21.74

-. 463E-01
4

6.70

.141E-01
5

5.97

-. 108E-02
6

4.98

-. 247E-02
7

3.46

.187E-02
8

2.95

-.869E'03 -.49AE-03
9

2*80

E(l) SIG(EC)

4.500
FIT ORDER=
RMS(PCT. ) =

.157E 01 .169E 00
1

278.27
2

80.42

.221E 00
3

19.05

-. 487E-01
4

6.95

.122E-01 -. 153E-02
5 6

6.95 6.31

o 134E-02
7

4.12

-. 217E-02
8

2.52

*139E-02 -. 663E-03
9

2.02

E(l) SIG(EC)

5.500
FIT ORDER=
RMS(PCT. )=

.163E 01 .232E 00 .223E 00 -.359E-01
1 2 3 4

326.97 69.09 17.00 7.02

.863E-02 -.851E-03
5 6

5.54 4.74

.712E-03
7

4.51

.164E-03 -. 142e-02 -. 327E-03
8 9

2.49 2016

F1 * ..F9
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A.4 STAR DATA REDUCTION

The STAR code has been modified (Section A.6) to

punch on cards the total transmission and reflection

matrices, Tt and R, respectively. The reason for this

is to find transmission and reflection for an arbitrary

neutron source, not just an isotropic fission source as

is given directly by STAR. The STAR DATA REDUCTION (SDR)

code has been written to perform this important task,

both to eliminate errors in hand calculations and to

save about two man-hours per calculation. It is coded

in FORTRAN-II for the IBM-7094 at the M.I.T. Compu-

tation Center.

It calculates angular group fluxes, n/cm -sec-MeV-

unit incident cosine, scalar fluxes in n/cm2 -sec-MeV

and n/cm2 -sec-unit lethargy, and dose rates in rad/min.

The output reflected or transmitted flux from one case

can be used as the source for the next case. For

example, the flux transmitted through tissue irradiated

by neutrons reflected from a scatterer is obtained by

the following sequence of cases:

1. neutron source at core-reflector interface

attenuated through Medical Beam Port;

2. special matrix to rotate coordinates by 450 to

give angular source as viewed by the scatterer;

3. reflection from the scatterer;

4. special matrix to rotate coordinates by 450 to

give angular source as viewed by the phantom;

5. transmission through various thicknesses of

tissue phantom.

In STAR17 the scalar flux is (per unit energy)



NEREG
FLUXm = FISSk RHOXTmk

k=1

RHOXTm,k =
NMUREG NMUREG

WMUj 7WMUj Tt( SE ; SIj,)/ 4m
J=1 1-1

(A .14)

Now define the fraction of the energy group k neutron

source strength in angular group j and Vjk. Then rede-

fine RHOXT as

RHOXT -m.9k

NMUREG
I WMU Vjk

j=1

NMUREG

I WMnTt (SELm; SIJk)4MU

(A.15)

The scalar

Dose rates

flux comes out as before, from Equation (A.13).

are simply found:

DOSEm = FLUXm*(CONV(m))*WE(m), rad/min

NEREG
DOSE - DOSEm, rad/min.

ml

Incident and exit states are defined as

Incident state - SIj,k - (Ek' j

Exit state SE (Em j

311

where

(A.13)

(A.16)

(A.17)



No subroutines are needed, as'the calculations are

a simple series of operations on vectors and matrices.

Input to SDR is described in the following Section,

with a listing in Section A.4.2. Section A.4.3 lists

input/output for fission neutron penetration through

0 and 15 cm of polyethylene. Also given is the special

matrix used for 45 rotation.
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A.4.1 INPUT FOR SDR

Set 1: Case Data

Card 1: Format (215)

1. NEREG = number of energy groups. If NEREG - 0,

job terminates.

2. NMUREG = number of angular groups.

Card 2: Format (8F10.5)

L DU(L) = direction cosine assigned to group L.

L+l WMU(L) - quadrature weight assigned to group L.

L = 1...NMUREG.

More cards may be needed if NS = NEREG*NMUREG > 8.

Card 3: Format (6E12.5)

J. S(J) forward-directed flux in group J, where

J = NEREG(I-1) + K for the I-th energy group

and the K-th angular group. J - 1...NS.

More cards may be needed if NS > 6.

Card 4: Format (8F10.5)

I. WE(I) = width, MeV, of energy group I. Energy

increases with I. I = 1...NEREG.

I+1. E(I) = energy, MeV, of group I.

More cards may be needed if NEREG > 4.

Card 5: Format (6E12.5)

I. CONV(I) = flux to dose conversion factor, rad/min

per n/cm2 -sec. (Table 2.3). I = 1...NEREG.

Card 6: Format (14A5)

1. Descriptive alphanumeric title for the case, to

appear on output.
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Card 7: Format (2F10.4, 15, 10A5)

1. XT = thickness at which the transmission

matrix applies.

2. XR = thickness at which the reflection

matrix applies.

3. NQ = source switch. If 0 < NQ < 10, existing

S(J) in memory is to be used. If NQ = 10, set

source for next problem to be the transmitted

flux. If NQ >10, set next source to be

reflected flux. If NQ ( 0, program control

switches to read all data from Card 1 again,

with a new S(J).

4. NAME = alphanumeric title for transmission and

reflection matrices, to appear on output.

Set 2: Transmission and Reflection Matrices.

This set is normally punched by STAR, along with

XT and XR of Card 7 as a title. The format is 6E12.5,

with Tt and R individually close-packed. The sequence

is:

1. Tt(L,M), M = 1. .. NS, for each L = 1. .. NS,

2. R(LM), M = 1...NS, for each L = 1...NS,

In STAR notation, the incident and exit states are M and

L, where

M = NEREG(I-1) + K, L = NEREG(I' - 1) + K',

for incident state (E1 , "'K) and exit state (E 1 , 4K *)
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A.4.2 LISTING OF SDR
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C
C
C
C

K=JJ+I
WW(K)=WMU(J)

61 CONTINUE
JJ=JJ+NEREG

60 CONTINUE
READ INPUT TAPE
READ INPUT TAPE
READ INPUT TAPE
READ INPUT TAPE

230 FORMAT(lHO, 46H
1 54H ANGULAR
2 59H PHIUT,
WRITE OUTPUT
WRITE OUTPUT
WRITE CUTPUT
WRITE OUTPUT

ALR(3

4,102, (S(J),J=1,NS)
4,101,(WE(J),E(J),J=1,NS)
4,102,(CONV(J),J=1,NEREG)
4,150,ITITLE
DINENSICNS OF SCALAR FLUXES ARE N/CM2/SEC/MEV,/,

FLUXES ARE
PHIUR

TAPE
TAPE
TAPE
TAPE

AR
2,
2,
2,
2,

E N/
105,
103,
113,
114,

00 62 I=1,NEREG
U(I)=LOGF(C ./E(I))

62 CONTINUE
WRITE OUTPUT TAPE
WRITE OUTPUT TAPE

210 FORMAT(1H0,6H U(I
114 FORMAT(1H,9H CCN
113 FORMATI1HOTH WE,
150 FORMAT(14A5)
151 FORMAT(lH0,14A5)

1001 READ INPUT
NQ GRTR 0
NQ .LE. 0
IF(NQ)1000

1002 READ INPUT
REAC INPUT

11
11
10
10
10

2,210,

)
V

N/CP2/SEC/MEV/UNIT INCIDENT COSINE,/,
CH2/SEC/UNIT LETHARGY, DOSE IS RAD/MIN)

NEREGNMUREG,(DU(L),WMU(L),L=1,NMUREG)
(S(J),J=1,NS)
(WE(J),E(J),J=1,NS)
(CCNV(J),J=1,NEREG)

(U(I),I=1,NEREG)
2,230
=,/,(12F10.4))

(J)=,/,(10E12.5))
E=,/,(8F10.5))

TAPE 4,112,XT,XRNQNAME
IMPLIES CLD SCURCE ETC IS OK
IMPLIES READ NEW SOURCE ETC.
,C00O,1002
TAPE 4,102,((T(KI ),I=1,NS),K=1,NS)
TAPE 4,102,(R(K,I),I=1,NS),K=1,NS)

WRITE OUTPUT TAPE 2,110
00 2 K=1,NS

2 WRITE OUTPUT TAPE 2,104,
WRITE OUTPUT TAPE 2,111
00 3 K=1,NS

3 WRITE OUTPUT TAPE 2,104,
0 FORMAT(8H T(KI)=,)
1 FORMAT(8H R(KI)=,)
0 FORMAT(215)
1 FORMAT(8F10.5)
2 FORMAT(6E12.5)

(T(K,I),I=1,NS)

(R(K, I), I=1,NS)

STAR DATA REDUCTION FOR ARBITRARY ANGULAR SCURCES

S CONTAINS THE FORWARD DIRECTED SOURCE STRENGTH OF EACH STATE

DU CONTAINS COSINES MU IN STAR NOTATION
T IS ARRAY ITOT IN STAR NOTATION

DIMENSION T132,32),R(32,32),DU(32),S(32),ANGR(32),ANGT(32),SC
12),SCALT(32),ITITLE(14),WE(32),CCNV(32),DTJ(32),DRJ(32),
2 WMU(32),WW(32),PHIUT(32),U(32),E(32),PHIUR(32),NAME(10)

1000 READ INPUT TAPE 4,100,NEREGNMUREG
IF(NEREG)2000,2C00,2001

2000 CALL EXIT
2001 READ INPUT TAPE 4,101,(DU(L), WMU(L), L=1,NMUREG)

NS=NEREG*NMUREG
JJ=O
DO 60 J=1,NMUREG
00 61 I=1,NEREG

C
C



FORMAT(IHO,6H S(J)=,/,(10E12.5))
FCRMAT(1H ,10E12.5)
FORMAT(1H1,TH NEREG=,12,2X,7HNMUREG=,12,/,(8F10.5))
FORMAT(2F10.4,IS,10A5)
KK =0
0C 4 L=1,NMUREG
X=1./(4.*DU(L))
00 5 K=1,NEREG
M=K+KK
00 6 I=1,NS
RIM,I)=R(M,1I)*X
'T(MI)=T(M,1)*X

6 CONTINUE
5 CONTINUE
KK=KK+NEREG

4 CONTINUE
WRITE OUTPUT TAPE
DC 7 K=1,NS

7 WRITE OUTPUT TAPE
WRITE OUTPUT. TAPE
00 8 K=1,NS

8 WRITE OUTPUT TAPE
00 9 I=1,NS
X=S(I)/WW(I)
00 10 K=1,NS
T(K,I)=T(K,I)*X/W
R(KI)=R(K,1)*X/W

10 CONTINUE
9 CONTINUE

C 11 K=1,NS
SUMT=0.
SUMR=0.
D 12 I=1,NS
SUMT=SUMT+T(K,I)*
SUMR=SUMR+R(Kv)*

12 CONTINUE
ANGT(K)=SUMT
ANGR(K)=SUMR

2,110

2,104,(T(K,I),I=1,NS)
2,111

2,104,(R(KI),I=1,NS)

W(K)
W (K)

WWI)
WiW()

ANGT(K) AND ANGR(K) ARE
11 CONTINUE

0CSET=0.
COSER=0.
00 13 J=1,NEREG
SCALT(J)=0.
SCALR(J)=0.
CC 14 L=1,NMUREG
LL=NEREG*(L-1)+J
SCALT(J)=SCALT(J)+ANGT(LL
SCALR(J)=SCALR(J)+ANGR(LL

14 CONTINUE
DTJ(J)=SCALT(J)*CCNV(J)*W
DRJ(J)=SCALR(J)*CCNV(J)*W
DCSET=0OSET+0TJ(J)
DCSER=CCSER+DRJ(J)
P[IUT(J)=SCALT(J)-*E(J)
PHIUR(J)=SCALR(J)*E(J)

13 CONTINUE
WRITE CUTPUT TAPE 2,120,X

120 FORMAT(lHl,4H XT=,F10.4,4
WRITE OUTPUT TAPE 2, 151,
WRITE CUTPUT TAPE 2,200,1(

FLUX/MEV/UNIT INC. CCSINE MU

)*%W(LL)
)*%W(LL)

E(J)
E(J)

T,XRNAME
H XR=,FlO.4,1OA5)
ITITLE

ANGT(I),I=1,NS)

103
104
105
112

317

C



200 FORMAT(lHO,14H AN
WRITE OUTPUT TAPE

201 FORMAT(lH0,19H AN
WRITE OUTPUT TAPE

202 FORMAT(IHO,20H SC
WRITE OUTPUT TAPE

203 FORMAT(lHO,18H SC

GULAR
2,20

GULAR

FLUX=,/,(10E12.4))
U(ANGR(I),=1,NS)

REF. FLUX=,/,(10E12.4))
2,202,(SCALT(

ALAR TRANS. FL
2,203, (SCALR(

ALAR REF. FLUX
WRITE OUTPUT TAPE 2,204,DOSET,(
WRITE CUTPUT TAPE 2,205,0OSER,(
WRITE OUTPUT TAPE 2,208,(PHIUT(
WRITE OUTPUT TAPE 2,209,(PHIUR(

208 FORMAT(1HO,1CH PHIUT(J)=,/,(10E
209 FORMAT(H,101H PHIUR(J)=,/,(10E

WRITE OUTPUT TAPE 2,206
204 FORMAT(lH0, 7H COSET=,E12.4,/,(
205 FORMAT(1HO, 7H COSER=,E12.4,/,(

J),J=1,NEREG)
UX=,/,(10E12.4))
J),J=1,NEREG)
=,/,(10E12.4))
DTJ(J),J=1,NEREG)
DRJ(J),J=1,NEREG)
J),J=1,NEREG)
J),J=1,NEREG)
12.4))
12.4))

IE12.4))
IOE12.4))

206 FORYAT(lH1)
C IF NQ=10 SET SOURCE EQUAL TO TRANS. FLUX
C IF NQ GRTR 10 SET SOURCE S=REF. FLUX

IF(NQ-10)1001,1003,1004
i003 00 50 I=1,NS

S(I)=ANGT(I)*WE(I)*WW(I)
50 CONTINUE

GO TO 1005
1004 D 51 I=1,NS

S(I)=ANGR(I)*WE(I)*WW(I)
51 CONTINUE

1005 WRITE OUTPUT TAPE 2,207,(S(J),J=1,NS)
207 FORMAT(lH0,12H NEW SOURCE=,/,(10EI2.5))

C S IS IN NEUTRONS/CM2-SEC, NOT DIFFERENTIAL
GC To 1001
ENO

FLUX

318
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A .4.3 SAMPLE PROBLEM FOR SDR



* DATA
4 2
.2113 .5 .7887 .5

0.28270E 00 0.18505E 00 0.22345E-01 0.17895E-02 0.2827 E 00
0.22345E-01 0.17895E-02

1.722 0.7874 3.228 3.367 3.228 6.733
1.722 J.7874 3.228 3.367 3.228 6.733

1.45 E-07 2.83 E-07 4.04 E-07 4.30 E-07
TEST OF POLY FOR FISSION SOURCE(ISOTROPIC)
0.

.49082E 00
1.00000E-30
1.OOOOOE-32
.26183E 00

1.OOOOOE-32
1.OOOOOE-32
.18321E 01

1.OOOOOE-30

.97732E 00
1.OOOOOE-32

1.OOCODE-30
1.00000E-30
1.OOOOOE-30
1.OOODE-30
1.0000E-32
1.00000E-30
1.OOCOE-30
1.00003E-30

1.OOCOE-30
1.OOC0E-32

1 ZERO
1.00000E-30
1.OOOOOE-32
1.00000E-30
1.00000E-32
1.00000E-32
1.OOOOOE-30
1.00000E-30
1.OOOOOE-32

1.00000E-32
1.OOOOOE-32

THICKNESS TEST
1.OOOOOE-30 1.OOOOOE-30
.26183E 00 1.00000E-30

1.OOOOOE-30 1.OOOOOE-32
1.00000E-32 1.00000E-30
.49082E 00 1.00000E-32

1.00000E-30 1.OOOOOE-30
1.OOOOOE-30 1.00000E-32
.97732E 00 1.00000E-30

1.OOOOE-32
.18321E 01

0.18505E 00

1.722
1.722

1*OOOOOE-30
1*00000E-30
1.OOOOOE-32
1.00000E-30
1.00000E-32
1*OOOOOE-30
1.00000E-30
1*00000E-30

1*OOOOOE-32 1.OOOOOE-30

15.0000
.37536E-03
.15315E-01

1.OOOOOE-32
.52723E-03

1.OOOOOE-32
1.OOOOE-32
.25303E-01

15.0000 1 POLY
.12049E-02 .17790E-02
.13962E-01 1.0000E-32
.32251E-02 .68985E-02
.54159E-03 1.OOOOOE-32

1.00O0DE-32 1.OOOOOE-32
.13313E-02 .30482E-02
.84490E-01 .87887E-01

.17137E-02

.21633E-03

.64971E-02
1.OOOOOE-32
.80792E-04
.84578E-02
.78878E-01

.31157E-02

.56116E-03
1.00000E-32
.82413E-02

1.00000E-32
.11351E-01

1.00000E-32

.12843E-01
. 56195E-03

1.OOOOOE-32
*88629E-02

1.00000E-32
.10838E-01
.31650E-02

O.

9.313
9.313

%



00 3SO916*0

00 39999870

00 3l I41101

00 3ZSCT960

311i A 0 21N3

00 39988+70

CC 9S096*0 CC3l LZI*O

00) E?80T9*0

00 3 1SVio

00 3911 9000

00 3

00 3S0916

00 3199884

*000 9 LZT0003 90
00 3 1s~,Vii

00 3zec19oo

00 394yg0oo 0c0

00 3

3 0

*000 3 *c00 3

C0 El9988t'*O

00 3S0916'C 00 El LZZI-0

00 3lZ80199O

00 3 1tplV1

00 394iS9C*O
00 E94S9000 00

00 00 3 L7ZIOG 00 3 *0 00 El
X1IIIVW b3AlSNVTLL El31930 94

0 00
*1I

3 o0 0 3 0

ZE-El00000*1
ZE-El00000*1
?E-El00000*I

10-El6Cf8t4
?Z:-a00000* I
'r-39I0SI*

ZE-300000 *1
1C-30L60V*
10-31098S*

Z0-3ZEI*
ZE-El00000 *
10-31LS04?

ZE -300000 ' I
ZE-3l0000001
10-El80S6Z
ZE-El00000*I
10-3I9LES'
ZE-00000*1
10-308 64t V
ZE-El00000*I
10-E 1 I*
00 gl40?lI

ZE -300000' 1
ZE-300000*I
1O-El819L4

ZE-300000 *1
?E-300000 I
10-30,QOsl
10-ElL0889*
10-36C498
10-319096*
ZO-349ZSS
ZE-300000*1
ZO-36L 606*
10-31S49Z
10-ElL611V
00 El1L181*
ZE-El00o0Q I
l0-3L98ze*
10-3 8 EL-',

ZE-El00000*1
ZE-El00000*1
10-3ElZ64I*
ZE-3l00000 I
co ELE10
CC 3091?Vo
ZE-El000001
ZE-E00000*T
10-3SZI*
ZE-300000 I
10-3l041I *
ZE-El00000
ZE-El00000 I
ZO-El99~tlg
U~-3000000 I

ZE-300000 I
Q-Els9sIE*

ZE-00000*1
I 0-366LtV
00 31fUZ
ZE-ElCOD00*1
ZE-00000*1
I 0-ELOGO9V
I C-3LSb6?'*
IC-3sog88V
I 0-El8L6LE*
?U-ElC0000
IC-E9E08*
?E-El00000*1
ZO-Elzooso

ZE-El00000*T
10-ElI098V'
E-El00000 I
10-31I99V
00 El6Z9EEt
?E-El0000Q I
Zf-30C0000 *1

ZE-l0000*1
10-3l416f9
10-El8898*
ZE-30000001
00 ElLSLSIO
?E-El00000 I

00 3



ZERC THICKNESS TEST 322

TEST OF POLY FCR FISSION SOURCE(ISOTRCPIC)

ANGULAR FLUX=
.3283E C .1147E 0

ANGULAR REF. FLLX=
.00008 00 .OOCOE 00

SCALAR TRANS. FLLX=
.3283E 00 .1147E 00

SCALAR REF. FLUX=
.00008 0 .0000E 00

DOSET= .2063E-06
.8198E-07 .lC47E-06

DCSER= .0030E CO
.0000 00

PHIUT(J)=
.2585E 00

PHIUR(J)=
.OCOOE 0C

.OCCOE 00

.3e60E 00

.0000E 00

.1384E-01

.0000E 00

* 1384E-01

.OOOOE 00

.1805E-07

.0000E 00

.9321E-01

.2078E-02

.0000E 00

.2078E-02

.0000E 00

.1539E-08

.0000E 00

.1936E-01

.3283E 00

.0000E 0C

.1147E 00

.0000E 00

.1384E-01

.0000E 00

.:20788-02

.0000E 00

.0000E 00 .0000E 00

XT= 0. XR= I0.0



XT= 15.CO0') XR= 15.0000 323
TEST OF PCLY FCR FISSION SOURCE(ISOTRCPIC)

ANGULAR FLUX=
.9457E-0 2 .1931E-02

ANGULAR REF. FLUX=
.1841E 00 .2526E-01

SCALAR TRANS. FLLX=
.1347E-01 .4329E-02

SCALAR REF. FLUX=
.1533E %C .1852E-01

DOSET= .9323E-0C8
.3365E-08 .39S5E-08

DCSER= .5688E-C7
.3827E-07

PHIUT( J)=
.1C61E-01

PHIUR(J)=
.1207E 00

.16c2E-07

.1458E-01

.6235E-01

.5035E-03

.1913E-02

.1476E-02

.1291E-02

.1924E-08

.1684E-08

.9936E-02

.5980E-05

.2340E-04

.1068E-03

.1170E-04

.7909E-10

.8664E-11

.9947E-03

.1749E-01

.1224E 00

.6728E-02

.1178E-01

02.448E-02

.6694E-03

*.2076E-03

*6237E-32

.8693E-02 .1090E-03

POLY
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A.5 MODIFICATIONS TO CSDP

Cross section data preparation for STAR is performed

by CSDP. It was coded in MAD by Mathews17 for the M.I.T.

Computation Center Fortran Monitor System as used by an

I.B.M.-7094 computer. Section 5 of CSDP, known as SEC5,

is a subroutine that averages the inelastic contribution

to the transfer probability SCS over each incident and

exit state. Input to SEC5 consists of:

1. The microscopic total inelastic scattering

cross section SIGIN( 1,1).. .SIGIN(NNNE),

2. NEIN = the number of incident energy values the

inelastic scattering energy distribution

function G(I,K,M) is non-zero. I is the

nuclide, K is the incident energy, and M is

the scattering energy.

3. G(1, NE-NEIN + 1, 1). ..G(NN, NE, NE).

The original SEC5 required that

fG(I,K,M)dEM - 1, all I and K. (A.18)

0

The probability P(K - M) of an inelastically scattered

neutron from group K transfering to group M is, for

nuclide I:

P(K -* M) f f$(EK)dEK fdEM G(I,K,M) = in(K M)
group K gioup M ain

(A.19)
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Trapezodal integration is used to evaluate Equation (A.19).

It turns out to be convenient for the user to be able to

use an arbitrary normalization on G, rather than that of

Equation (A-18). The only difference is a new defin-

ition of the total inelastic scattering cross section:

Uin = total inelastic scattering cross section 
for

a scattered neutron energy not less than

the lower bound of the lowest energy group.

SEC5 has been modified to automatically normalize G,

and is listed in Section A.5.1.
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A -5.1 LISTING OF SEC5 FOR CSDP
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* MAD
SEC5 R SECTICN 5

R REVISED BY A P OLSON TO AUTOMATICALLY NORMALIZE G TO I
EXTERNAL FUNCTION
ENTRY TO SEC5.
START=6
INTEGER MTLMTH
PROGRAM COMMON ETA,W,N,K,DE,NMUREG ,NEREGELiEH,

1 CCI,E,WE,MULMUH,J,MUWMUNEETKTKTLKTHDT,NNADSIGTTCS
2,I,CC2,FLUXPRINTSIGFSIGSSIGN2NNUC,CC3,DGDSNS,SIGINtNE
3lN,G,KlK2,SIL,M,SOSCSMTDFAFTFElE2,HSlS2,FISS(32)iF
4LC,DFL,LC,A,START,NPLNIT
INTEGER N,K,0E,NMUREGNEREG,JNEKTKTLKTH,DT,NNI,PRINTDG,
1DSNSNEIN,KlK2,SI,L,M,SOMTDFNPLNITDFLLCSTART,MAXT,NI
2T,N1,N2
DIMENSION ETA(137,DE),W(137,DE),DE(2),EL132),EH(32),E(32)6WEA
132),MUL(32),MUH(32),MU(32),WMU(32),ET(100),KTL(32),KTH(32),DT
2(2),AD(5),SIGT(500,DT),TCS(32),SIGF(500,DT),SIGS(500,DT),SIGN
32N(500,DT),NU(500,DT),C(32),DG(3),DSt2),SIGIN(500,DT),G(7500,
4DG),SCS(2048,DS),DF(2),AFf5),TF(5),FLC(1200,DFL),DFL(3),A(5),
5FLUX(lC0) ,LP (6)
VECTOR VALUES DG=3,1,0,6
VECTOR VALUES DS=2,1,0
NS=NEREG*NMUREG
DS(2)=2*NS
THROUGH QQlFOR SO=l,1,SO.G.2*NS*NS

QQ1 SCS(SO)=0.
PRINT COMMENT $0TYPE VALUE OF NEIN$
READ DATA
PRINT RESULTS NEIN
WHENEVER NEIN.E.0
PRINT COMMENT $ONEIN.E.0, NO INELASTIC SCATTER$
TRANSFER TO QQ140
END OF CONDITIONAL
DG(2)=NE
PRINT COMMENT SOTYPE VALUES OF SIGIN(1,I)...SIGIN(NNNE) AND

1G(1)...G(NN*NE*NE) $
READ DATA
DG(3)=NE
THROUGH QQ20,FOR I=1,1,I.G.NN
THROUGH QQ20,FOR KT=NE-NEIN+1,lKT.G.NE
GSUM=O.
THROUGH QQ5,FOR MT=KT+1,1,MT.G.NE

QQ5 GSUM=GSUM+G(I,KTMT)
WHENEVER .ABS.(GSUM) .G. l.E-10
PRINT COMMENT $DERROR IN SEC5,INELASTIC ENERGY DISTRIBUTION F

1UNCTION IMPLIES ENERGY INCREASES$
PRINT RESULTS IKT,G(I,KTKT+1)...G(I,KTNE)
PRINT COMMENT SOTYPE NEW VALUES OF G(IKT,KT+I)...G(IKTNE)

1 NOW#IF DESIRED, OTHERWISE QUIT$
READ DATA
END OF CONDITIONAL
WHENEVER KT.E.1
GSUM=G(I,1,1)
TRANSFER TO QQ9
END OF CONDITIONAL
GSUM=O.
CC1=G(I,KT,1)
THROUGH QQ1OFOR MT=1,1,MT.GE.KT
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CC2=G( I,KTMT+1)
GSUM=GSUM+(ET(MT+1)-ET(MT))*(CC1+CC2)

QQ10 CC1=CC2
GSUM=.5*GSUM

QQ9 GS=1.
WHENEVER .ABS.(GSUM-GS) .G. .001
PRINT COMMENT $OINTEGRAL OVER MT OF G(IKT,MT) .NE. ONE$
THROUGH QQ11,FOR MT=l,1,MT.G.KT

QQll G(I,KT,MT)=G(IKTMT)*GS/GSUM
END OF CONDITIONAL

QQ20 PRINT RESULTS I,KT,GSUM,G(I,KT,1)...G(IKTKT)
INTERNAL FUNCTION DET.(DV1)=ET(DV1+1)-ET(DV1)
INTERNAL FUNCTION SIGINF.(DV2,DV3)=(SIGIN(DV2,DV3)+SIGN2N(DV2
1,DV3))*E21.(DV2,DV3)/CSIGT.(DV2,DV3)
INTEGER DVIDV2,0V3
INTERNAL FUNCTION(DV4,DV5)
INTEGER DV4,0V5
ENTRY TO E21.
PRINT RESULTS DV4,DV5,MTL
WHENEVER MTL.G.DV5,FUNCTION RETURN 0.
WHENEVER DV5.E.1

WHENEVER MTL.E.1
FUNCTION RETURN G(DV4,1,1)

OTHERWISE
FUNCTION RETURN 0.

END OF CONDITIONAL
OTHERWISE
DIMENSION GSUMV(100)
GSUMV(DV5)= .5*DET.(DV5-1)*G(DV4,DV5,DV5)
WHENEVER MTL.E.DV5,FUNCTION RETURN GSUMV(DV5)
THROUGH QQ31,FOR MT=DV5-l,-1,MT.L.2 .OR. MT.L.MTL

QQ31 GSUMV(%MT)= .5*(ET(MT+1)-ETIMT-1))*G(DV4,DV5,MT)
GSUMV(1)= .5*DET.(1)*G(DV4,0V5,1)
GSUM=0.
THROUGH QQ32, FOR MT=MTL,1,MT.G.MTH .OR. MT.G.DV5

QQ32 GSUM=GSUM+GSUMV(MT)
PRINT RESULTS GSUM
FUNCTICN RETURN GSUM
END OF CONDITIONAL
END OF FUNCTION
INTERNAL FUNCTION(DV9)
INTEGER DV9
ENTRY TO ElI.
WHENEVER KTH.E.KTL
DV1O=SIGINF.(DV9,KTL)
OTHERWISE
DVl=o0.
DV11=SIGINF.(DV9,KTL)*FLUX(KTL)
THROUGH QQ40,FOR KT=KTL,1,KT.GE.KTH
DV12=SIGINF.(DV9,KT+1)*FLUX(KT+1)
DV10=DVl+DET.(KT)*(DV11+DV12)

QQ40 DV11=DV12
DV10= .5*DV10
END OF CONDITIONAL
FUNCTICN RETURN DV10
END OF FUNCTION
THROUGH QQ45,FOR SI=1,1,SI.G.NS

QQ45 SUMSCS(SI)=0.
DIMENSION SUMSCS(32)
THROUGH QQ70,FOR K=NEREG,-1,K.L.1 .OR. KTH(K).L.NE-NEIN+1
CC1=FLUXI.(K)*2.*AD
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PRINT RESULTS KCC1
KTL=KTL(K)
KTH=KTH(K)
WHENEVER KTL.L.NE-NEIN+1,KTL=NE-NEIN+1
WHENEVER KTH.L.KTLTRANSFER TO QQ70
THROUGH QQ7O,FOR M=K,-l,M.L.1
MTL=KTL(M)
MTH=KTH(M)
WHENEVER MTH.L.MTLTRANSFER TO QQTO
CC2=CC1*WE(M)
PRINT RESULTS CC2
CC3=0.
THROUGH QQ5OFOR I=1,1,I.G.NN

Q050 CC3=CC3+El.(I)*AD(I)
PRINT RESULTS CC3
THROUGH QQ60,FOR J=1,1,J.G.NMUREG
SI=NEREG*(J-I)+K
THROUGH QQ6OFOR L=1,1,L.G.NMUREG
SO=NEREG*(L-1)+M
SCS(SC,SI)=CC3/CC2
SCS(SO,SI+NS)=CC3/CC2

QQ60 SUMSCS(SI)=SUMSCS(SI)+(SCS(SO,SI)+SCS(SOSI+NS))*WE(M)*WMj(L)
QQ70 CONTINUE

PRINT RESULTS SIGIN(1,1)...SIGIN(NNNE)
PRINT RESULTS SUMSCS(1)...SUMSCS(NS)
PRINT RESULTS SCS( 1,1).. .SCS(NS,2*NS)

QQ140 FUNCTICN RETURN
END OF FUNCTION

END CF FILE
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A.6 MODIFICATIONS TO STAR

Program STAR is a multigroup shielding code which

solves the neutron transport equation in infinite slab

geometry by the Method of Invariant Imbedding. Two

changes have been made to STAR. The first modification

is concerned with the exponential predictor, Equation

(3.32) in Mathews' 17 thesis. It was found that, for a

laminated Bi-D 2 0 shield, some group transfers possible

in D2 0 were impossible in Bi. This meant that some

matrix elements in R and T which remained zero through

Bi had to become finite in D2 0. Unfortunately, the

exponential predictor is self-starting only if all

matrix elements of R and T are initially zero. Tests

were coded to detect this condition, and to linearly

integrate the troublesome matrix elements. The

integration step was examined and modified as required

to keep the value of the matrix elements less than

0.001. From this point on, the exponential predictor

again applied. If &x is the step in the numerical

integration of matrix element R, then the solution to

- R(x,I.J) = B(x,I,J) + Kr (xIJ)

with the initial condition

R(0,I,J) = 0
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is

R( AxIJ) _ R(OIJ) + (B(OIJ) + Kr(0,IJ))x

A similar method is used for the elements of T.

The second modification to STAR consisted of

adding two small subroutines to punch out and read

XT, XR, R, and Tt at each step where print-out occurs.

Data cards are punched by APO and read by CMO. A

control card has been added at the end of normal input

to STAR which indicates when an old case is to be

restarted be reading in XT, XR, R, and Tt. An integer

variable, NEWJOB, indicates special input of XT, XR, R,

and Tt if it is greater than zero.
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A.6.l1 LISTING OF STAR MODIFICATIONS
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* MAD
STAR R PROGRAM STAR

R MODIFIED MAY/67 TO ENABLE RESTARTING A CASE. NEW FUNCTIONS
R ARE CMO, TO READ EXTRA DATA, AND APO, TO PUNCH IT
PROGRAM COMMON ATE,B,C,CC,DR,DRMINDRMINSEEXPTHEXPTX,
1 EXPWH,F,FISSFOPT,H,HOPTHRHRMAXHRMINHRNHTHTMAXHTMIN,
2 HTNI,IP,ITCITCE,J,JRHOP,K,MAXNITMUMWIMWJNEREG,
3 NHITNITR,NITTNMUREGNORNSNSSQNXCREGNXSREGPSIPsR,RO,
4 RDRKRKORT,S,SCSSD,T,TOTCSTCSMUITCSMUJTDTERTERA,
5 TERSTETTETATETSTKTKO,TMAX,TMAXSTNON, TONLYTTOTVR,
6 VRI,VSVSI,VTVTI,W,WEWMUWRWRO,WT,WTObXCXMAXXPRXPRlNT,
7 XPU,XPUNCHXRXSXT
DIMENSION C(32),E(32),FISS(32),MU(32),R(1024,RD),RO(1024.RD),
1 RD(2),RK(1024,RD),RK0(1024,RD),RT(1024,RD),SCS(2048,SD).SD(2
2 ),T(1024,TD),TO(1024,TD),TCS(32),TD(2),TK(1024,TD),TKO(1024.
3 TD),TNON(32),TTOT(1024,TD),VR(64),VS(32),VT(32),W(32),WE132)
4 ,WMU(32),XC(256),XS(16)
INTEGER HOPT,IIP, ITC,ITCEJ,JRHOP,K,MAXNITNEREGNHITNITR,

1 NITTNMUREGNORNSNSSQNXCREGNXSREGPSIP,STONLYVRVRI-
2 VSVSIVTVTI,FOPT

QQ0 EXECUTE TIM.(0)
EXECUTE INPUT.
EXECUTE CMO.

QQIO EXECUTE TIM.(10)
EXECUTE RHS.
EXECUTE EXCHAN.(TKOTKRKORK)

QQ15 WHENEVER HT.L.HTMIN
PRINT COMMENT $lHT.L.HTMIN.$
TRANSFER TO ENDI
OR WHENEVER HT.G.HTMAX
HT=HTMAX
END OF CONDITIONAL
WHENEVER HR.L.HRMIN
PRINT COMMENT $1HR.L.HRMIN.$
TRANSFER TO END1
OR WHENEVER HR.G.HRMAX
HR=HRMAX
END OF CONDITIONAL
WHENEVER XT+HT.G.XC,HT=XC-XT+1.OE-06
WHENEVER XR+HR.G.XCHR=XC-XR+1.OE-06
WHENEVER HT.G.HR
HT=HR
OTHERWISE
FR=HT
END OF CONDITIONAL
PRINT RESULTS HRHT

QQ25 THROUGH QQ30,FOR I=1,1,I.G.NS
VSI=VS(I)
VTI=VT(I)
TCSMUIzTCS(I)/MU(I)
EXPTH=EXP.(-TCSMUI*HT)
THROUGH QQ30,FOR J=1,1,J.G.NS
VS=VSI+J
VT=VTI+J
TO=TO (VT)
WHENEVER TD.L.1.E-31,TRANSFER TO QQ30
WTO=TKO(VT) /TO
WHENEVER WTO*HT .G. 88.
PRINT COMMENT $OWTO*HT .G. 88.$



PRINT RESULTS TKO(VT), TO, HT
R EXPONENTIAL APPROX. FAILS TO START R OR T FROM ZERO IF
R ENTIRE R OR T MATRIX NOT ZERO, SUCH AS IN MULTI-SLAB
R PROBLEMS. USE ORDINARY INTEGRATION TO GET STARTED.
F=.ABS.(TKO(VT)*HT)
WHENEVER F *G. O.0011
HT=HT*C.001/F
HR=HR*C.001/F
TRANSFER TO QQ25
END OF CONDITIONAL
WTO=O.
TO=TO+TKD(VT)*HT
PRINT RESULTS I,J,TO
END OF CONDITIONAL
EXPWH=EXP.(WTO*HT)
F=MU(J)*SCS( VS)/W(J)
T(VT)=EXPWH*TO+F*TNON(I)*(EXPWH-EXPTH)/(TCSMUI+WTO)
CONTINUE
WHENEVER TONLY.E.1,TRANSFER TO QQ50
THROUGH QQ40,FOR I=1,1,I.G.NS
VRI=VR(I+NS)
VSI=VS(I)
MWI=2.*MU( I) /W( I)
THROUGH QQ40,FOR J=1,1,J.G.NS
VR=VRI+J
VS=VSI+J+NS
RO=RO(VR)
WHENEVER RD.L.1.E-31,TRANSFER TO QQ40
WRO=RKO (VR) /RO
WHENEVER WRO*HR .G. 88.
PRINT COMMENT $OWRO*HR .G. 88.$
PRINT RESULTS RKO(VR),RO,HR
B=MWI*MU(J)*SCS(VS)/W(J)
F=.ABS.((RKO(VR)+B)*HR)
WHENEVER F .G. D.0011
HR=HR*0.001/F
HT=HT.0.001/F
TRANSFER TO QQ25
END OF CONDITIONAL
R(VR)=RO+(RKO(VR)+B)*HR
PRINT RESULTS RB
TRANSFER TO QQ40
END OF CONDITIONAL
EXPWH=EXP.(WRO*HR)
B=MWI*MU(J)*SCS(VS)/(W(J)*WRO)
R(VR)=EXPWH*(RO+B)-8
CONTINUE
EXECUTE RHS.
H=0*5*HT*HT
TET=0.
THROUGH QQ60,FOR S=1,1,S.G.NSSQ
WHENEVER T(S).L.1.E-29
T(S)=1.E-32
TRANSFER TO QQ60
END OF CONDITIONAL
WTO=TKO(S)/TO(S)
WHENEVER WTO *G. 1.E+10
TRANSFER TO QQ60

R THIS TRANSFER OCCURS ONLY IF ORDINARY
END OF CONDITIONAL
WT=TK(S)/T(S)

INTEGRATION USED
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QQ30

QQ40
QQ50



TETS=-H*WTD*(WT-WTO)
WHENEVER .ABS.(TETS).G..ABS.(TET),TET=TETS

QQ60 CONTINUE
TETA=.ABS.(TET)
WHENEVER TONLY.E.1,TRANSFER TO QQ80
H=0.5*HR*HR
TER=0.
THROUGH QQTO,FOR S=l,1,S.G.NSSQ
WHENEVER R(S).L.1.E-29
R(S)=i.E-32
TRANSFER TO QQ70
END OF CONDITIONAL
WRO=RKC(S)/RO(S)
WHENEVER WRO .G. 1.E+13
TRANSFER TO QQTO
R THIS TRANSFER OCCURS ONLY IF ORDINARY INTEGRATION USED
END OF CONDITIONAL
WR=RK(S) /R(S)
TERS=-H*WRD*(WR-WRO)
WHENEVER .ABS.(TERS).G..ABS.(TER),TER=TERS

QQ7O CONTINUE
TERA=.ABS.(TER)

QQ80 WHENEVER HOPT.E.1 .OR. ATE.L.0.,TRANSFER TO QQ110
WHENEVER TONLY.E.1,TRANSFER TO QQ100
HTN=((CC/TETA).P..33)*HT
HRN=(tCC/TERA).P..33)*HR
WHENEVER TETA.G.2.*CC .OR. TERA.G.2.*CC
NHIT=NHIT+1
EXECUTE TIM.(90)
PRINT RESULTS XRXT,NITRNITTHRHRNHTHTNTERTET,NHIT
ITCE=0
EXECUTE END.
HT=HTN
HR=HRN
TRANSFER TO QQ15
END OF CONDITIONAL
XT=XT+HT
NITT=NITT+1
XR=XR+HR
NITR=NITR+1
EXECUTE OUTPUT.
ITCE=1
EXECUTE END.
EXECUTE EXCHAN.(TO,T,RO,R)
EXECUTE EXCHAN.(TKOTKRKORK)
WHENEVER HTN.L.HTMIN
PRINT COMMENT $1HTN.L.HTMIN.$
TRANSFER TO END1
OR WHENEVER HTN.G.HTMAX
HTN=HTMAX
END OF CONDITIONAL
WHENEVER HRN.L.HRMIN
PRINT COMMENT $1HRN.L.HRMIN.S
TRANSFER TO END1
OR WHENEVER HRN.G.HRMAX
HRN=HRMAX
END OF CONDITIONAL
WHENEVER XR+HRN.GE.XCHRN=XC-XR+1.OE-06
WHENEVER XR+HRN.GE.XPRHRN=XPR-XR+1.OE-06
WHENEVER ATE.LE.0.
HOPT=1
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WHENEVER HTN.G.HRN
HR=HRN
HT=HRN
OTHERWISE
HR=HTN
HT=HTN
END OF CONDITIONAL
WHENEVER NOR.E.1, TONLY=1
TRANSFER TO QQ25
END OF CONDITIONAL
NHT=HRN/HTN
INTEGER NHT
NHT=NHT+1
HTN=HRN/NHT
HT=HTN
HR=HRN
ITC=0
WHENEVER NHT.GE.2
TONLY=1
OTHERWISE
TONLY=0
END OF CONDITIONAL
WHENEVER NOR.E.1, TONLYml
TRANSFER TO QQ25

QQ100 XT=XT+HT
NITT=NITT+1
WHENEVER NOR.E.1 .AND. HT.L..99*HTMAXHTN=(tCC/TETA).P..33)
1*HT
EXECUTE OUTPUT.
EXECUTE EXCHAN.(TO,T,RO,R)
EXECUTE EXCHAN.(TKO,TKRKORK)
ITCE=1
EXECUTE END.
ITC=ITC+l
WHENEVER ITC.GE.NHT-1,TONLY=v
WHENEVER NOR.E.1,TONLY=1
WHENEVER NOR.E.1 .ANO. HTN.G.HT
HT=HTN
WHENEVER HT.G.HTMAX,HT=HTMAX
WHENEVER HT.L.HTMIN
PRINT COMMENT $1HT.L.HTMIN.$
TRANSFER TO END1
END OF CONDITIONAL
END OF CONDITIONAL
WHENEVER NOR.E.1 .AND. XT+HT.G.XCHT=XC-XT+1.OE-06
TRANSFER TO QQ25

QQ110 XT=XT+HT
NITT=NITT+1
WHENEVER TONLY.E.1, TRANSFER TO QQ120
XR=XR+HR
NITR=NITR+1

QQ120 EXECUTE OUTPUT.
EXECUTE EXCHAN.(TO,T,R),R)
EXECUTE EXCHAN.(TKO,TKRKO,RK)
ITCE=1
EXECUTE END.
WHENEVER NOR.E.1, TONLY=1
TRANSFER TO QQ25
INTERNAL FUNCTION(TTTTORRRRO)
ENTRY TO EXCHAN.
THROUGH EXlFOR S=l,1,S.G.NSSQ



EXI

EX2
EX3

ENDI

END2

END3

EN04

END 5
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TT(S)=TTD(S)
WHENEVER TONLY.E.1, TRANSFER TO EX3
THROUGH EX2, FOR S=1,1,S.G.NSSQ
RR(S)=RRD(S)
FUNCTICN RETURN
END OF FUNCTION
INTERNAL FUNCTION
ENTRY TO END.
WHENEVER NHIT.L.20,TRANSFER TO END2
PRINT COMMENT $2COULD NOT FIND STEP SIZE YIELDING ACCEPTABLE

1ERROR IN 20 ATTEMPTS. END OF PROBLEM.$
XPR=0.
TONLY=0
EXECUTE OUTPUT.
EXECUTE APO.
TRANSFER TO QQO
WHENEVER ITCE.E.0,TRANSFER TO END6
WHENEVER XT.GE.XMAX .OR. XR.GE.XMAX
PRINT COMMENT $2DESIRED VALUE OF X REACHED. END OF PROBLEM.$
TRANSFER TO END1
OR WHENEVER NITT.GE.MAXNIT .OR. NITR.GE.MAXNIT
PRINT COMMENT $2MAXIMUM NUMBER OF ITERATIONS (STEPS) REACHEBD.

1 END OF PROBLEM.$
TRANSFER TO ENDI
END OF CONDITIONAL
TMAXS=0.
THROUGH END3,FOR S=1,1,S.G.NS
TMAXS1=T(S,S)
WHENEVER TMAXS1.G.TMAXS, TMAXS=TMAXSI
WHENEVER TMAXS.L.TMAX
PRINT COMMENT $2DESIRED VALUE OF T REACHED. END OF PROBLEM.$
TRANSFER TO END1
END OF CONDITIONAL
WHENEVER NOR.E.1 .OR. TONLY.E.1, TRANSFER TO END5
DRM INS=O.
THROUGH END4,FOR S=1,1,S.G.NS
DR=.ABS.(R(S+NSS)-RO(S+NS,S))/HR
WHENEVER DR.G.DRMINSDRMINS=DR
WHENEVER DRMINS.L.DRMIN
PRINT COMMENT S00R.L.DRMIN. PROCEEDING WITH THE CALCULATION

1 OF T ONLY AFTER A COMPLETE PRINT OUT OF ALL VARIABLES AT TH
21S POINT.$
XXX1=XPR
XPR=0.
XXX2=XPRINT
XPRINT=0.
XXX3=HT
HT=O.
EXECUTE OUTPUT.
HT=XXX3
XPRINT=XXX2
XPR=XXXI
NORIl
END OF CONDITIONAL
EXECUTE DATA.
WHENEVER VR.G.O .OR. VT.G.0
TONLY=0
NOR=0
WHENEVER ATE.GE.O.,HOPT=0
TRANSFER TO QQ10
END OF CONDITIONAL
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END6 FUNCTION RETURN

END OF FUNCTION
END OF PROGRAM

* MAD
CMO RCMO, FOR STAR -- SPECIAL RESTART INPUT ROUTINE

EXTERNAL FUNCTION
ENTRY TO CMO.
PROGRAM COMMON ATE,B,C,CC,DR,DRMINORMINSEEXPTHEXPTX,

1 EXPWH,F ,FISSFOPT,H,HOPTHRHRMAXHRMINy.HRNHTHTMAXHTMIN,
2 HTNI,IP,ITC,ITCE,JJRHOP,KMAXNIT,MUMWI,'MWJNEREG,
3 NHITNITRNITTNMUREGNORNS,NSSQNXCREGNXSREGPSIPRROt
4 RD,RKRKO,RT,SSCSSD,T,TOTCSTCSMUITCSMUJTDTERTERA,
5 TERSTETTETATETS,TKTKO,TMAXTMAXSTNONTONLYTTOTVR,
6 VRIVSVSIVTVTI,W,WEWMUWRWROWTWTOXCLXMAXXPRXPRINT,
7 XPUXPUNCHXRXSXT
DIMENSION C(32),E(32),FISS(32),MU(32),R(1024'RD),RO(1024,RD)t

1 RD(2),RK(1024,RD),RKO(1024,RD),RT(1024,RD),SCS(2048,SD),SO(2
2 ),T(1024,TD),TO(1024,TD),TCS(32),TD(2),TK(1024,TD),TKO( 1024,
3 TD),TNON(32),TTOT(1024,TD),VR(64),VS(32),VTt32),W(32),WE#32)
4 ,WMU(32),XC(256),XS(16)
INTEGER HOPTI,IP,ITC,ITCE,J,JRHOP,KMAXNITNEREG,NHITNITt,

I NITTNMUREGNORNSNSSQNXCREGNXSREGPSIPSTONLYVRVRI,
2 VSVSJVTVTIFOPT
INTEGER NEWJOB
PRINT COMMENT $ONEWJOB$
READ DATA
WHENEVER NEWJOB .LE. 0, TRANSFER TO QQ1
PRINT COMMENT $:ARRAYS R, TTNON, RT, AND VARIABLES VRVTTON
1LY,NOR,RO,XRXTS
READ DATA

QQ1 FUNCTICN RETURN
END OF FUNCTION

* MAD
APO RAPO, FOR STAR -- SPECIAL RESTART OUTPUT ROUTINE

EXTERNAL FUNCTION
ENTRY TO APO.
PROGRAM COMMON ATE,8,C,CC,DR,DRMINDRMINSEEXPTHEXPTX,

1 EXPWH,FFISS,FOPTHHOPTHRHRMAXHRMINHRNHTHTMAXHTMIN#
2 HTN,IIPITCITCE,J,JRHOPK,MAXNITMUMWIMWJNEREG,
3 NHITNITR,NITTNMUREGNORNSNSSQNXCREGNXSREGPSIPRROI
4 RDRK,RKO,RT,S,SCSSD,T,TOTCSTCSMUITCSMUJTDTER,TERA*
5 TERSTETTETATETSTKTKOTMAXTMAXSTNONTONLYTTOTVR,
6 VRIVSVSIVTVTI,W,WE,WMUWRWRO,WTWTOXC,XMAX,XPRXPRINT,
7 XPUXPUNCHXRXSXT
DIMENSION C(32),E(32),FISS(32),MU(32),R(1024,RD),RO(1024*,D)4

1 RD(2),RK(1024,RD),RKO(1024,RD),RT(1024,RD),SCS(2048,SD),SD(2
2 ),T(1024,TD),TO(1024,TD),TCS(32),TD(2),TK(1024,TD),TKO(1024,
3 TD),TNON(32),TTOT(1024,TD),VR(64),VS(32),VT(32),W(32),WEB32)
4 ,WMU(32),XC(256),XS(16)
INTEGER HOPT,I,IP,ITCITCE,J,JRHOP,K,MAXNITNEREGNHITNITR,

1 NITTNMUREGNORNSNSSQNXCREGNXSREGPSIPSTONLYVRVRI,
2 VS,VSI,VTVTI,FOPT
NS=NMUREG*NEREG
PUNCH FORMAT FRM20
PUNCH FORMAT FORM1
PUNCH FORMAT FORM2,R(NS+1,1)...Rt2*NSNS)
PUNCH FORMAT FORM4
PUNCH FORMAT FORM2,T(1,1)...T( NSNS)
PUNCH FORMAT FORM6
PUNCH FORMAT FORM2,TNON(1)...TNON(NS)
PUNCH FORMAT FRM11
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PUNCH FORMAT FORM2,RT(NS+1,1)...RT(2*NSNS)
PUNCH FORMAT FRM14,VRVTTONLYNOR,RO,XRXT
VECTOR VALUES FORMI=$8HR( ,1)=*$
VECTOR VALUES FORM2=$4(E15.8,IH,)*$
VECTOR VALUES FORM4=$7HT(1,1)=*$
VECTOR VALUES FORM6=$8HTNON(1)=*$
VECTOR VALUES FRMLI=$9HRT( ,1)=*$
VECTOR VALUES FRM14=$3HVR=,I3,4HVT=,I3,THTONLY=,

12,5H.NOR= ,2,4HRO=,Ell.4,4H,XR=,F9.4,4HXT=,F9.4,H**i$
VECTOR VALUES FRM20=$9HNEWJOB=1**$
FUNCTION RETURN
END OF FUNCTION

END OF FILE
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