SOLUTION OF THE SPACE-DEPENDENT REACTOR KINETICS EQUATIONS IN THREE DIMENSIONS

by

Donald R. Ferguson, K. F. Hansen

August, 1971

Massachusetts Institute of Technology
Department of Nuclear Engineering
Cambridge, Massachusetts 02139

AEC Research and Development Report
Contract AT (30-1) 3903
U.S. Atomic Energy Commission

DEPARTMENT OF NUCLEAR ENGINEERING

Cambridge, Massachusetts 02139

SOLUTION OF THE
SPACE-DEPENDENT REACTOR KINETICS EQUATIONS
IN THREE DIMENSIONS
by

Donald R. Ferguson, K. F. Hansen

August, 1971

MIT - 3903-4
MITNE - 132

AEC Research and Development Report

Contract AT (30-1) 3903
U.S. Atomic Energy Commission

SOLUTION OF THE
 SPACE-DEPENDENT REACTOR KINETICS EQUATIONS
 IN THREE DIMENSIONS

by

Donald Ross Ferguson

Submitted to the Department of Nuclear Engineering on August 16, 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

A general class of two-step alternating-direction semi-implicit methods is proposed for the approximate solution of the semidiscrete form of the space-dependent reactor kinetics equations. An exponential transformation of the semi-discrete equations is described which has been found to significantly reduce the truncation error when several alternating-direction semi-implicit methods are applied to the transformed equations. A subset of this class is shown to be a consistent approximation to the differential equations and to be numerically stable. Specific members of this subset are compared in one- and two-dimensional numerical experiments. An "optimum" method, termed the NSADE (Non-Symmetric Alternating-Direction Explicit) method is extended to three-dimensional geometries. Subsequent three-dimensional numerical experiments confirm the truncation error, accuracy, and stability properties of this method.

Thesis Supervisor: Kent F. Hansen
Title: Professor of Nuclear Engineering

TABLE OF CONTENTS

Page
ABSTRACT 2
LIST OF FIGURES 5
LIST OF TABLES 6
ACKNOWLEDGMENTS 7
BIOGRAPHICAL NOTE 8
Chapter 1. INTRODUCTION 9
1.1 The Space-Dependent Reactor Kinetics Problem 9
1.2 The Space-Dependent Reactor Kinetics Equations 12
1.3 The Spatially Discretized Equations 15
1.4 A Review of Solution Techniques 18
Chapter 2. ALTERNATING-DIRECTION SEMI-IMPLICIT TECHNIQUES 23
2.1 The A Matrix 24
2.2 The Exponential Transformation 26
2.3 A General Two-Step Alternating-Direction Semi-Implicit Method 28
2.4 Properties of the Generalized Method with Transformation 30
2.5 Specific Splittings for Two Dimensions 41
2.6 A Proposed Method for Three Dimensions: NSADE 50
Chapter 3. NUMERICAL RESULTS 51
3.1 One- and Two-Dimensional Studies 51
3.2 Three-Dimensional Studies: Homogeneous Problem 59
3.3 Three-Dimensional Studies: Space-Dependent Problems 64
Page
Chapter 4. CONCLUSIONS AND RECOMMENDATIONS 78
4.1 Characteristics of the Numerical Results 78
4.2 Applicability of the NSADE Method 81
4.3 Limitations of the NSADE Method 84
4.4 Recommendations for Further Work 85
REFERENCES 86
Appendix A. THE SEMI-DISCRETE FORM OF THE SPACE- DEPENDENT REACTOR KINETICS EQUATIONS 90
Appendix B. THEOREMS 97
Appendix C. TEST PROBLEM DATA 107
Appendix D. THE COMPUTER PROGRAM 3DKIN 116
D. 1 Description of the Steady State Section 116
D. 2 Description of the Time-Dependent Section 125
D. 3 Overlay Structure and Input/Output Devices for 3DKIN 126
D. 4 Description of Input for 3DKIN 128
D. 5 Input for Sample Problem 140
Appendix E. SOURCE LISTING OF 3DKIN 142 (Only in first six copies)

LIST OF FIGURES

No. Page
3.1 Convergence Rate for Test Case 1 62
3.2 Test Case 1 Results, Centerline Thermal Flux 63
3.3 Test Case 4 Results, Point (1, 5, z) 75
3.4 Test Case 4 Results, Point (1, 21, z) 76
A. 1 Coordinate System 91
A.2a Plane Perpendicular to z -Axis at ($\mathrm{l}, \mathrm{j}, \mathrm{k}$) 91
A. 2b Plane Perpendicular to y-Axis at ($1, j, k$) 91
C.1a $\mathrm{x}-\mathrm{y}$ Plane for $24 \leqslant \mathrm{z} \leqslant 136 \mathrm{~cm}$ 109
C.1b $x-y$ Plane for $0 \leqslant z \leqslant 24, \quad 136 \leqslant z \leqslant 160 \mathrm{~cm}$ 109
C. $2 \quad \mathrm{x}-\mathrm{y}$ Plane for $0 \leqslant \mathrm{z} \leqslant 120 \mathrm{~cm}$ 111
C. 3a $\mathrm{x}-\mathrm{y}$ Plane for $30 \leqslant \mathrm{z} \leqslant 270 \mathrm{~cm}$ 113
C. $3 \mathrm{~b} x-y$ Plane for $0 \leqslant z \leqslant 30 \mathrm{~cm}, \quad 270 \leqslant z \leqslant 300 \mathrm{~cm}$ 113
D. 1 Overlay Structure for 3DKIN 126

LIST OF TABLES

No.
3.1 Group 1 Fluxes at Point $(3,9)$ 58
3.2 Group 1 Fluxes at Point $(12,3)$ 58
3.3 Group 4 Fluxes at Point $(3,9)$ 59
3.4 Group 4 Fluxes at Point $(12,3)$ 59
3.5 Test Case 1 Results, Group Two Fluxes at Centerpoint 61
3.6 Test Case 2 Results, z-Plane 3 66
3.7 Test Case 2 Results, z-Plane 11 66
3.8 Test Case 2 Results, z-Plane 19 67
3.9 Test Case 3 Results, z-Plane 4, Group 1 70
3.10 Test Case 3 Results, z-Plane 4, Group 4 70
3.11 Test Case 3 Results, z-Plane 12, Group 1 70
3.12 Test Case 3 Results, z-Plane 12, Group 4 71
3.13 Test Case 4 Results, z-Plane 5 73
3.14 Test Case 4 Results, z-Plane 10 74
3.15 Test Case 4 Results, z-Plane 16 74
4.1 Computational Times 81
4.2 Comparison of Computing Speeds 82
D. 1 Input/Output Symbolic Devices 128

ACKNOWLEDGMENTS

Several people and organizations are deserving of an expression of appreciation from the author for the assistance and encouragement they rendered during the course of this work. Professor Kent T. Hansen provided valuable guidance and made himself available for discussions whenever requested by the author.

Professor Allan F. Henry and Dr. William H. Reed shared helpful ideas and observations on several occasions. Much of section 2.4 of this thesis is based on work first completed by Dr. Reed and by Dr. Alan L. Wight.

The author's wife, Signe, provided support and never complained about the countless nights spent by the author at the Information Processing Center.

Fellowship support for the author was provided by the U.S. Atomic Energy Commission. The work was performed under USAEC Contract AT (30-1)-3903. All computation was performed on an IBM 360/65 computer at the M.I. T. Information Processing Center.

Finally, Mrs. Mary Bosco displayed a considerable amount of skill in the typing of this thesis.

BIOGRAPHICAL NOTE

Donald Ross Ferguson was born on May 14, 1944, on a farm near Kensington, Kansas. He attended elementary and secondary school in Kensington, Kansas, and was graduated from Kensington Public High School in May, 1962.

He enrolled at Kansas State University in September, 1962. While an undergraduate, he was a member of FarmHouse social fraternity and served as Chairman of the University's Student Senate and as Vice-President of the Student Body. He was elected to Blue Key National Honor Fraternity. In January, 1967, he was graduated Magna Cum Laude with a B.S. degree in Nuclear Engineering.

After spending seven months as a graduate student at Kansas State University, he entered the University of Birmingham, Birmingham, U. K., as a graduate student in the Department of Physics. He was supported by a Fulbright-Hays Scholarship. He received an M.Sc. degree in Reactor Physics and Technology in December, 1968.

In February, 1969, he entered Massachusetts Institute of Technology as a graduate student in the Department of Nuclear Engineering.

Mr. Ferguson is married to the former Signe Louise Burk of Wichita, Kansas.

Chapter 1

INTRODUCTION

1.1 The Space-Dependent Reactor Kinetics Problem

In the past few years, much effort has been devoted to developing methods for solving the time-dependent multigroup neutron diffusion equations in one or more spatial dimensions. This work has been motivated by at least three reasons. First, it is a mathematical certainty that the solution of these equations for any reactor subjected to a perturbation, which is not homogeneous over the entire reactor, will exhibit a spatially nonuniform behavior. Second, and more practically, the present generation of $1000 \mathrm{Mw}(\mathrm{e})$ and larger light water thermal reactors are so large that they behave in a loosely-coupled manner when subjected to localized perturbations. Finally, the inherently more severe safety problems associated with large liquid-metalcooled fast breeder reactors must be analyzed as exactingly as possible. Certainly, methods capable of treating space-time effects should be available for use in this analysis.

The time constants associated with the various phenomena which affect the neutron flux distribution in space span many orders of magnitude. Those associated'with the burnout of fissile isotopes, buildup of most fission products, and the production of fissile isotopes from fertile isotopes are on the order of weeks and months. Uneven variations in the xenon concentration in space and time can cause spatial power oscillations, with time constants on the order of several hours.

Sodium voiding, loss of coolant in water-cooled reactors, and rapid control rod motions give rise to flux changes with associated time constants on the order of tens of microseconds to a few seconds.

For the most part, those phenomena which occur on a time scale of hours or longer are adequately treated by quasi-static techniques, where the time dependence is treated by a series of static calculations. Of concern for this thesis are methods for treating the more rapid flux variations, where the transient of interest extends over a few seconds at most. The time derivatives cannot be ignored for these transients. These problems are also of the most concern from the standpoint of accident analysis.

For the purposes of this thesis, it is assumed that the multigroup form of the time-dependent diffusion equation is adequate to describe the spatial and energy distribution of the neutron population in a reactor. This is generally true for assemblies of the size of current power reactors, particularly if more exacting methods have been used to obtain the multigroup constants for the various material compositions in the assembly. A more exact mathematical treatment, such as using the time-dependent transport equation, is usually necessary only for more exotic problems such as weapons calculations.

In addition, only the linear form of the multigroup equation is treated in this thesis. Changes in material properties in time are not coupled to local or assembly-wide flux variations. Perturbations are intended to simulate external factors such as control rod motion. Fortunately, for both the reactor designer and for those concerned with methods development, most feedback mechanisms are relatively
smooth functions of such factors as temperature and pressure. Since the method developed in this thesis treats problems with time-varying coefficients with no difficulty, it is believed that the method should also treat problems with additional variations in coefficients due to nonlinear feedback effects.

As shown later in this thesis, the equations are finite-differenced on a fixed spatial mesh before they are solved. When the fixed mesh has been specified, an error has been incurred in computing the initial spatial flux distribution and largest eigenvalue when these are compared to the solution of the differential form of the equations. This error is due to the finite mesh spacing. It will be carried on into later time-dependent results obtained from the finite-differenced form of the equations. However, discussions of truncation error in the numerical results shown in this thesis do not refer to this error. Of concern here is the error in the approximate solution when compared to the exact solution of the differential-difference system of equations.

The remainder of this chapter presents the form of the spacedependent reactor kinetics equations to be used hereafter. Several methods previously employed to solve these equations are also reviewed. In Chapter 2, a very general solution technique is derived and shown to possess several desirable and mathematically necessary properties. Four specific variants are considered in more detail for comparative numerical testing. Finally, one of these methods is proposed as being most suitable to three spatial dimensions. Chapter 3 begins with the results of the numerical comparisons of the four variants over a range of problems in one and two spatial dimensions.

Numerical results for four problems in three dimensions, obtained with the method proposed in Chapter 2, are presented to conclude the chapter. Chapter 4 summarizes the conclusions which can be reached concerning this method and includes a discussion of its advantages and limitations.

1.2 The Space-Dependent Reactor Kinetics Equations

The diffusion approximation to the reactor kinetics equations may be written as follows: ${ }^{1}$

$$
\begin{align*}
& \frac{1}{v_{g}} \frac{d \phi_{g}}{d t}(\vec{r}, t)=\vec{\nabla} \cdot D_{g}(\vec{r}, t) \vec{\nabla} \phi_{g}(\vec{r}, t)+\sum_{g^{\prime}=1}^{G} \Sigma_{g g^{\prime}}(\vec{r}, t) \phi_{g^{\prime}}(\vec{r}, t) \\
& +\sum_{i=1}^{I} f_{g i} C_{i}(\vec{r}, t) \quad(1 \leqslant g \leqslant G) \\
& \frac{d C_{i}}{d t}(\vec{r}, t)=-\lambda_{i} C_{i}(\vec{r}, t)+\sum_{g^{\prime}=1}^{G} p_{i g^{\prime}}(\vec{r}, t) \phi_{g^{\prime}}(\vec{r}, t) \quad(1 \leqslant i \leqslant I), \tag{1.1}
\end{align*}
$$

where

$$
\begin{aligned}
\mathrm{g}= & \text { index number of the energy group } \\
\mathrm{i}= & \text { index number of the delayed neutron precursor group } \\
\phi_{\mathrm{g}}= & \text { scalar neutron flux in energy group } \left.\mathrm{g} \text { (neutrons } / \mathrm{cm}^{2} \cdot \mathrm{sec}\right) \\
\mathrm{C}_{\mathrm{i}}= & \text { density of the } \mathrm{i}^{\text {th }} \text { precursor }\left(\mathrm{cm}^{-3}\right) \\
\mathrm{v}_{\mathrm{g}}= & \text { speed of the neutrons in the } \mathrm{g}^{\text {th }} \text { group }(\mathrm{cm} / \mathrm{sec}) \\
\mathrm{D}_{\mathrm{g}}= & \text { diffusion coefficient for neutrons in group } \mathrm{g}(\mathrm{~cm}) \\
\Sigma_{\mathrm{gg}^{\prime}}= & \text { intergroup macroscopic transfer cross section from group } \\
& \mathrm{g}^{\prime} \text { to group } \mathrm{g}\left(\mathrm{~cm}^{-1}\right), \text { with the following structure: }
\end{aligned}
$$

$$
\begin{aligned}
& \Sigma_{g g}=\chi_{g} \nu_{g}(1-\beta) \Sigma_{f g}-\Sigma_{a g}-\sum_{g^{\prime} \neq g} \Sigma_{s^{\prime} g^{\prime}}, \\
& \chi_{g}=\text { the fission spectrum yield in group } g \text {. } \\
& \nu_{\mathrm{g}}=\text { average number of neutrons per fission in group } \mathrm{g} \\
& \Sigma_{\mathrm{fg}}=\text { macroscopic fission cross section in group } \mathrm{g} \\
& \Sigma_{\text {ag }}=\text { macroscopic absorption cross section in group } g \\
& \Sigma_{\text {sgg }}{ }^{\prime}=\text { macroscopic scattering cross section from } g^{\prime} \text { to } g \\
& \beta=\text { total fractional yield of delayed neutrons per } \\
& \text { fission. } \\
& \Sigma_{g^{\prime}}=\chi_{g^{\prime}} \nu_{g^{\prime}} \Sigma_{\mathrm{fg}}(1-\beta)+\Sigma_{\mathrm{sgg}}{ }^{\prime}, \quad \mathrm{g}^{\prime} \neq \mathrm{g} . \\
& \mathrm{f}_{\mathrm{gi}}=\lambda_{\mathrm{i}} \mathrm{X}_{\mathrm{gi}}=\text { probability }\left(\mathrm{sec}^{-1}\right) \text { that the } \mathrm{i}^{\text {th }} \text { precursor will } \\
& \text { yield a neutron in group } g \text {, where } \lambda_{i} \text { is the decay } \\
& \text { constant and } \vec{\chi}_{i} \text { the energy spectrum of neutrons } \\
& \text { from the } i^{\text {th }} \text { precursor } \\
& p_{i g^{\prime}}=\beta_{\mathrm{i}} \nu_{\mathrm{g}^{\prime}} \Sigma_{\mathrm{f} \mathrm{~g}^{\prime}}=\text { production factor }\left(\mathrm{cm}^{-1}\right) \text { for the } \mathrm{i}^{\text {th }} \text { pre- } \\
& \text { cursor having fractional yield } \beta_{\mathrm{i}} \text { by fissions } \\
& \text { in group } g^{\prime} \text {. }
\end{aligned}
$$

Boundary conditions for Eqs. (1.1) will be of the homogeneous Neumann or Dirichlet tÿpe. At internal interfaces, continuity of the flux and normal component of the neutron current, $\vec{n} \cdot \mathrm{D} \vec{\nabla} \phi$, will be required. An initial flux distribution in energy and space must be specified.

Equations (1.1) may be compacted into the form, ${ }^{1}$

$$
\begin{equation*}
\frac{\mathrm{d} \stackrel{\rightharpoonup}{\theta}}{\mathrm{dt}}(\overrightarrow{\mathrm{r}}, \mathrm{t})=\underline{\mathrm{M}}(\overrightarrow{\mathrm{r}}, \mathrm{t}) \vec{\theta}(\overrightarrow{\mathrm{r}}, \mathrm{t}), \tag{1.2}
\end{equation*}
$$

by defining the matrices

$$
\vec{\theta}(\vec{r}, t)=\left[\begin{array}{c}
\phi_{1}(\stackrel{\rightharpoonup}{r}, t) \tag{1.3a}\\
\phi_{2}(\vec{r}, t) \\
\vdots \\
\phi_{G}(\vec{r}, t) \\
C_{1}(\stackrel{\rightharpoonup}{r}, t) \\
\vdots \\
C_{I}(\vec{r}, t)
\end{array}\right]
$$

and

$$
\begin{aligned}
& \underline{M}(\vec{r}, t)=
\end{aligned}
$$

This form of the equations will be used later in discussing various mathematical properties of solution techniques proposed in this thesis.

1.3 The Spatially Discretized Equations

Equations (1.1) are continuous in both spatial and temporal variables. In order to discretize the spatial variables, a threedimensional spatial mesh is superimposed upon the reactor of interest. Equations (1.1) are then integrated over the volumes associated with each of the mesh points, using the box-integration technique. ${ }^{3}$ The resulting equations are referred to as the semi-discrete equations.

The semi-discrete forms of the reactor kinetics equations are derived in detail in Appendix A. The resulting equations for the neutron flux at all mesh points for group $g, \vec{\psi}_{g}$, and the $i^{\text {th }}$ precursor concentration at all mesh points, $\overrightarrow{\mathrm{C}}_{\mathrm{i}}$, can be written as

$$
\begin{equation*}
\frac{\mathrm{d} \stackrel{\rightharpoonup}{\psi}_{\mathrm{g}}}{\mathrm{dt}}=\underline{\mathrm{D}}_{\mathrm{g}} \vec{\psi}_{\mathrm{g}}+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{\mathrm{~T}}_{\mathrm{gg}^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}}+\sum_{\mathrm{i}=1}^{\mathrm{I}} \underline{\mathrm{~F}}_{\mathrm{gi}} \stackrel{\rightharpoonup}{\mathrm{C}}_{\mathrm{i}} \quad(1 \leqslant \mathrm{~g} \leqslant \mathrm{G}) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{C}}_{\mathrm{i}}}{\mathrm{dt}}=-\Lambda_{\mathrm{i}} \stackrel{\rightharpoonup}{\mathrm{C}}_{\mathrm{i}}+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{\mathrm{P}}_{\mathrm{ig}} \vec{\psi}_{\mathrm{g}^{\prime}} \quad(1 \leqslant \mathrm{i} \leqslant \mathrm{I}) \tag{1.5}
\end{equation*}
$$

Here, $\underline{D}_{\mathrm{g}}$ is a seven-stripe matrix representing the net neutron leakage across the six sides of the mesh volume. All other square matrices are diagonal. $\underline{T}_{\mathrm{gg}^{\prime}}$ contains terms representing intergroup transfer processes, and $\underline{F}_{\text {gi }}$ represents the transfer of delayed neutrons into group g due to decays in precursor group i. Λ_{i} contains the precursor decay constants, while $\underline{P}_{i g^{\prime}}$ represents the production of delayed precursor i due to fissions in group g^{\prime}.

Equations (1.4) and (1.5) can be combined into the single matrix equation,

$$
\begin{equation*}
\frac{\mathrm{d} \stackrel{\rightharpoonup}{\psi}}{\mathrm{dt}}=\underline{\mathrm{A}} \stackrel{\rightharpoonup}{\psi} . \tag{1.6}
\end{equation*}
$$

The matrix \underline{A} is square and of order $N *(G+I)$, where N is the number of spatial mesh points. Here, $\vec{\psi}$ and \underline{A} have been defined as

$$
\vec{\psi}=\left[\begin{array}{c}
\vec{\psi}_{1} \tag{1.7}\\
\vec{\psi}_{2} \\
\vdots \\
\vec{\psi}_{\mathrm{G}} \\
\stackrel{\rightharpoonup}{\mathrm{C}}_{1} \\
\ddots \vdots \\
\overrightarrow{\mathrm{C}}_{\mathrm{I}}
\end{array}\right]
$$

and

For later reference, several matrices are defined here as follows:

$$
\begin{align*}
& \underline{L}=\left[\begin{array}{cccc:c}
\underline{0} & \underline{0} & \cdots & \underline{0} & \\
\underline{\mathrm{~T}}_{21} & \underline{0} & \cdots & \underline{0} & \\
\underline{\mathrm{~T}}_{\mathrm{G} 1} & \underline{\mathrm{~T}}_{\mathrm{G} 2} & \cdots & \underline{0} & \\
\hdashline \underline{\mathrm{P}}_{11} & \underline{\mathrm{P}}_{12} & \cdots & \underline{\mathrm{P}}_{1 \mathrm{G}} & \underline{0} \\
& & \cdots & & \\
\underline{\mathrm{P}}_{\mathrm{I} 1} & \underline{\mathrm{P}}_{\mathrm{I} 2} & \cdots & \underline{\mathrm{P}}_{\mathrm{IG}} & \\
& & &
\end{array}\right], \tag{1.9c}
\end{align*}
$$

and

$$
\begin{equation*}
\underline{T}=\underline{A}-(\underline{D}+\underline{L}+\underline{U}) . \tag{1.9d}
\end{equation*}
$$

For any period of time, Δt, during which all terms in \underline{A} are constant, Eq. (1.6) has the solution

$$
\begin{equation*}
\vec{\psi}(\Delta t)=e^{\mathrm{A}} \mathrm{~A}_{\mathrm{t}} \vec{\psi}(0) . \tag{1.10}
\end{equation*}
$$

All solution techniques for the semi-discrete equations are approximations to Eq. (1.10).

1.4 A Review of Solution Techniques

Calculational methods used for solving the space-dependent kinetics equation can be placed into two broad categories. The first category can be generally classed as modal methods. ${ }^{4}$ More specifically, it can be broken into time synthesis and space-time synthesis, both of which could be termed indirect solution techniques.

These methods make some assumption about the shape of the solution over several subregions or the entire reactor. These assumptions are forced into the final solution through a variety of techniques. The second category could be termed direct techniques and consists of methods whereby Eqs. (1.1) are solved directly. Since these equations can be solved analytically only for the most trivial of problems, these direct techniques generally involve finite-differencing them and proceeding to solve some approximation to Eq. (1.6).

All of the indirect methods approach the problem by expanding the solution as a linear combination of some set of functions:

$$
\begin{equation*}
\vec{\psi}(\stackrel{\rightharpoonup}{\mathrm{r}}, \mathrm{t})=\sum_{\mathrm{k}=1}^{\mathrm{K}} \underline{\mathrm{~T}}_{\mathrm{k}}(\stackrel{\rightharpoonup}{\mathrm{r}}, \mathrm{t}) \vec{\psi}_{\mathrm{k}}(\stackrel{\rightharpoonup}{\mathrm{r}}) \tag{1.11}
\end{equation*}
$$

The time synthesis methods use one or more $\vec{\psi}_{k}(\vec{r})$, each of which is defined over the entire solution region. The T_{k} then become functions only of time. The $\vec{\psi}_{k}(\vec{r})$ may consist of eigenmodes of one of several static operators. Among those suggested are the Helmholtz eigenmodes, the ω-modes, and the λ-modes. ${ }^{4}$ None of these have been very successfully applied to any general class of two- or three-dimensional problems.

Alternatively, the $\vec{\psi}_{\mathrm{k}}(\overrightarrow{\mathrm{r}})$ may be the fundamental modes of a set of operators, each describing the reactor in a different state. Most naturally, these states are chosen to be static states of the reactor at different times during the particular transient of interest. ${ }^{5}$ These states can be computed by standard static methods. However, for three-dimensional problems, even the best methods for computing the $\vec{\psi}_{\mathrm{k}}(\vec{r})$ are very time-consuming. It should be noted that the well-known adiabatic method ${ }^{6}$ and quasi-static method ${ }^{7,8}$ can be considered as variants of time synthesis where only one trial function is used at a time, but new trial functions are used every few time steps. ${ }^{4}$

In space-time synthesis methods, the $\vec{\psi}_{k}(\vec{r})$ are chosen to represent flux shapes over subregions of the reactor, where the subregion may be a subvolume, plane, or subplane. For example, the so-called singlechannel synthesis technique ${ }^{9,10,11}$ divides a three-dimensional reactor into a number of axial zones and uses a set of two-dimensional flux shapes for the $\vec{\psi}_{\mathrm{k}}(\vec{r})$ within each zone. The sets may vary from zone to zone, and are chosen to represent static conditions across planes
perpendicular to the axis in the zones at various times in the transient. Being only two-dimensional, they are relatively easy to compute. Multi-channel synthesis techniques ${ }^{12,13}$ additionally partition the planes perpendicular to the axis into zones and use sets of $\vec{\psi}_{k}(\vec{r})$ which are allowed to vary independently in these planar zones.

Once the expansion functions have been chosen, equations to be solved for the expansion coefficients are generated using either a variational principle encompassing the multigroup diffusion equations or a weighted residual technique. The great advantage of the se methods is that the number of equations to be solved is generally small compared to the number of points at which $\vec{\psi}(\vec{r}, t)$ will be known when the expansion in Eq. (1.11) is carried out, even for three-dimensional calculations. Using a space-time synthesis technique, flux solutions at $10^{5}-10^{6}$ mesh points over the period of interest in a transient can be obtained in reasonable amounts of computer time.

These synthesis techniques are characterized by a lack of definitive error bounds, however. There is little but intuition to indicate when a set of trial functions will give good results for a particular perturbation.

The direct finite difference techniques, in contrast, are characterized by fairly definitive error estimates. Because of this property, they are extremely useful as numerical standards against which the more approximate methods may be compared. As computational capabilities increase, direct methods also become practical for routine production calculations in one and two dimensions. If fine spatial detail is not required, even three-dimensional direct methods become
practical for some types of routine calculations.
In one spatial dimension, the GAKIN ${ }^{14}$ and WIGLE ${ }^{15}$ methods have been incorporated successfully into codes after which they were named. GAKIN solves Eq. (1.6) by splitting \underline{A} and using the diagonal part of it as an integrating factor to integrate the equation. The behavior of the dependent variables, $\vec{\psi}$, is approximated over each time step so that the integrals can be evaluated.

The WIGLE method approximates the solution to Eq. (1.6) over a series of time steps Δt by

$$
\begin{equation*}
\vec{\psi}^{\mathrm{j}+1}=\Delta \mathrm{t} \underline{\theta} \underline{\mathrm{~A}} \vec{\psi}^{\mathrm{j}+1}+\Delta \mathrm{t}\left(\underline{\mathrm{I}-\theta} \underline{\theta} \underline{\mathrm{A}} \vec{\psi}^{\mathrm{j}}\right. \tag{1.12}
\end{equation*}
$$

where $\underline{\theta}$ is a diagonal matrix of coefficients, $\theta_{\mathrm{ii}}\left(0 \leqslant \theta_{\mathrm{ii}} \leqslant 1\right)$. The θ_{ii} 's are chosen to improve the accuracy of the approximation. Setting $\underline{\theta}=\frac{1}{2} \underline{I}$ would yield the Crank-Nicholson approximation with its favorable $\mathrm{O}\left(\Delta \mathrm{t}^{3}\right)$ truncation error. Thus, relatively large time steps can be taken, but the inversion of the matrix ($I-\Delta t \underline{\theta} \underline{A}$) must be carried out iteratively. This is equivalent to solving a fixed-source subcritical reactor calculation at each time step.

In two dimensions, the WIGLE method has been extended into the code TWIGL. ${ }^{16}$ This code is limited to two neutron groups, but the method could treat any number of groups. Practically, a difficulty arises because even two-group, two-dimensional fixed-source calculations must be done by time-consuming iterative techniques. As more groups are added, time requirements increase rapidly for these iterations.

The LUMAC ${ }^{17}$ code extends the GAKIN method to two dimensions by approximating the leakage in first one dimension and then the other by a pointwise transverse buckling over two time steps. The matrices to be inverted at each time step are of the same form as in one dimension and are easily inverted.

Finally, the MITKIN ${ }^{1,2}$ method uses a particular alternatingdirection, semi-implicit splitting technique referred to as an alternating-direction explicit method。 ${ }^{18}$ In addition, an exponential transformation is applied to Eq. (1.6), which greatly improves the truncation error. This method is computationally very rapid since all matrices to be inverted are triangular in form. Over a range of problems, it has been shown to be more rapid than the LUMAC algorithm. Increasing the number of mesh points or the number of energy groups results in only a linear increase in computational time. It has also been successfully extended to cylindrical ($\mathrm{r}-\mathrm{z}$) and hexagonal geometries. ${ }^{19}$

Motivation for extension of one of these or another method to treat a general class of three-dimensional multigroup problems comes primarily from the need for an accurate numerical standard against which the more rapid synthesis techniques can be tested. In three dimensions, the WIGLE method would be straightfor ward but extremely timeconsuming, due to the great increase in time necessary to perform the three-dimensional, fixed-source-like calculations. Because of its demonstrated superiority over the GAKIN method in two dimensions, the alternating-direction semi-implicit method used in MITKIN is the most promising technique for three dimensions. It is the purpose of this thesis to investigate several variations of this method and extend the "optimum" variation to three dimensions.

Chapter 2

ALTERNATING-DIRECTION SEIMI-IMPLICIT TECHNIQUES

It is the purpose of this chapter to examine the theoretical foundations of a class of semi-implicit approximations to the solution of Eq. (1.6), given exactly by Eq. (1.10). Thus, approximations to the operator $\exp (\underline{\mathrm{A}} \Delta \mathrm{t})$ are examined. Restricting consideration to twolevel (first order) approximations of the time derivative, the matrix equivalents of the well-known Padé rational approximations ${ }^{20}$ are the most straightforward. Equation (1.12), with $\underline{\theta}$ set to $\underline{0}, \underline{I}$, and $\frac{1}{2} \underline{I}$ gives, respectively, the Padé $(0,1),(1,0)$, and (1,1) approximations. However, the $(0,1)$ approximation suffers from severe stability restrictions, ${ }^{20}$ while the $(1,0)$ and $(1,1)$ approximations require inversion of a matrix containing $\underline{\text { A. This becomes prohibitively time- }}$ consuming in problems involving three spatial dimensions and several neutron energy groups.

The class of semi-implicit techniques examined here circumvents this difficulty by "splitting" \underline{A} and inverting only a part of it at a time, a part generally chosen to be easily inverted. The alternatingdirection implicit method ${ }^{21}$ and alternating-direction explicit method ${ }^{18}$ are members of this class. Treating only a part of \underline{A} implicitly necessarily leads to more severe truncation error difficulties and the requirement of much smaller time steps than for methods which invert A in its entirety. Thus, application of several of the se methods to the direct solution of Eq. (1.6) has been found to be unsatisfactory. 1,22,23

After reviewing properties of the \underline{A} matrix in section 2.1, an exponential transformation to Eq. (1.6) is introduced in section 2.2. This transformation has been found to significantly reduce the truncation error when several of these "splitting" methods are subsequently applied to the transformed equations. ${ }^{1,23}$ Section 2.3 presents a general two-step alternating-direction splitting method for application to the transformed version of Eq. (1.6), and section 2.4 discusses mathematical properties of this method. Four specific splittings of \underline{A} are proposed for further examination in section 2.5 . Finally, one of these four is examined in section 2.6 for application to three-dimensional geometries.

2.1 The A Matrix

It is instructive to examine the \underline{A} matrix in some detail. The magnitudes of its elements vary over 6 to 8 orders of magnitude. The decay constants λ are on the order of unity, while velocities of order 10^{5} to 10^{9} multiply absorption and leakage coefficients which may be as large as 10^{-1}. Its eigenvalues likewise span several orders of magnitude, from $10^{-1} \mathrm{sec}^{-1}$ to $-10^{6} \mathrm{sec}^{-1}$, giving rise to a property known as "stiffness" to the set of differential equations for reactivities less than prompt critical. ${ }^{1}$ Thus, any attempt to represent the derivative in Eq. (1.6) by a finite difference approximation will require that relatively small time steps be taken in order to follow the more rapidly varying components of the solution. At the same time, the interesting part of the transient may span a large number of these time steps.

Additionally, \underline{A} is a real, square irreducible matrix with nonnegative off-diagonal elements and negative diagonal elements. In Chapter 8 of Varga, ${ }^{20}$ this is termed an "essentially positive" matrix. Varga's Theorem 8.1 states that $\exp (\underline{A} t)$ is positive for all $t>0$. His Theorem 8.2 further states that \underline{A} has a real, simple eigenvalue, ω_{0}, which is larger than the real part of any other eigenvalues, ω_{i}, and to which corresponds a positive eigenvector, \vec{e}_{O}. If any element of \underline{A} increases algebraically, ω_{O} increases. Finally, his Theorem 8.3 states that the asymptotic behavior of $\exp (\underline{A} t)$ is given by

$$
\begin{equation*}
\|\exp (\underline{A} t)\| \sim K \cdot \exp \left(\omega_{o} t\right) \tag{2.1}
\end{equation*}
$$

as $t \rightarrow \infty$, where K is some constant, independent of t. This also assumes that \underline{A} is constant. The solution vector $\vec{\psi}(t)$ in Eq. (1.10) will always be non-negative for a non-negative initial condition $\vec{\psi}(0)$. Thus, the desired solution $\vec{\psi}(t)$ is well-behaved and bounded, as physically it must be.

The numerical property of consistency is discussed later in this chapter. The discrete approximation to the $\vec{\nabla} \cdot \mathrm{D} \vec{\nabla}$ operator contained in \underline{A} is consistent and accurate to order $(\Delta x),(\Delta y)^{2}$ and $(\Delta z)^{2}$, the mesh spacings in the three dimensions. ${ }^{25}$ Stated in another way, if $\vec{\theta}$ is a genuine solution to Eq. (1.2), then

$$
\begin{equation*}
\underline{A} \vec{\theta}=\underline{M} \vec{\theta}+O\left(\Delta x^{2}\right)+O\left(\Delta y^{2}\right)+O\left(\Delta z^{2}\right) \tag{2.2}
\end{equation*}
$$

It is also instructive to observe certain properties of \underline{D} as defined in Eq. (1.9a). Use of the box integration technique to discretize the spatial variables assures that ($-\underline{D}$) is symmetric and diagonally dominant with positive diagonal entries and nonpositive off-diagonal entries.

It is also irreducible. A sufficient condition for ($-\underline{D}$) to be irreducibly diagonally dominant is that homogeneous Dirichlet boundary conditions be specified along at least one of the boundaries. If this is the case, then \underline{D} is negative definite. ${ }^{3}$

2.2 The Exponential Transformation

It is desired to increase the size of the time step size while still controlling truncation error when using alternating-direction splitting methods. A change of variables has been suggested ${ }^{1,23}$ which achieves this end. Let

$$
\begin{equation*}
\vec{\psi}(t)=e^{\underline{\Omega} t} \vec{\phi}(t), \tag{2.3}
\end{equation*}
$$

where $\underline{\Omega}$ is a diagonal matrix of free parameters, henceforth referred to as frequencies. Since $\underline{\Omega}$ is diagonal, the exponential is easily computed.

To obtain an equation for $\vec{\phi}$, differentiate Eq. (2.3) to obtain

$$
\begin{equation*}
\frac{\mathrm{d} \vec{\psi}}{\mathrm{dt}}=\mathrm{e}^{\underline{\Omega} \mathrm{t}} \frac{\mathrm{~d} \vec{\phi}}{\mathrm{dt}}+\underline{\Omega} \mathrm{e}^{\underline{\Omega} \mathrm{t}} \vec{\phi} \tag{2.4}
\end{equation*}
$$

Substituting this into Eq. (1.6) yields

$$
\begin{equation*}
\frac{d \vec{\phi}}{d t}=e^{-\underline{\Omega} t}(\underline{A}-\underline{\Omega}) e^{\underline{\Omega} t} \vec{\phi} \tag{2.5}
\end{equation*}
$$

to be solved for $\vec{\phi}$.
This change of variables has been motivated by the idea that since the behavior of $\vec{\psi}$ is basically exponential in nature, the function $\vec{\phi}$ should be relatively slowly-varying, providing that the $\underline{\Omega}$ are properly chosen. Hence, the time derivative in Eq. (2.5) should be approximated by a simple finite difference with less resultant truncation error
than if the same finite difference were used to approximate the time derivative in Eq. (1.6). Equation (2.5) has the same form as does Eq. (1.6), so the same solution techniques are applicable to both. The choice of $\underline{\Omega}$ is a delicate matter. ${ }^{1}$ That such an $\underline{\Omega}$ matrix exists is seen by choosing $\underline{\Omega}$ so that

$$
\begin{equation*}
\underline{\Omega} \vec{\psi}\left(t^{\prime}\right)=\underline{A} \vec{\psi}\left(t^{\prime}\right) . \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left.\frac{\mathrm{d} \stackrel{\rightharpoonup}{\phi}}{\mathrm{dt}}\right|_{\mathrm{t}=\mathrm{t}^{\prime}}=0 \tag{2.7}
\end{equation*}
$$

so that in some interval about $t^{\prime}, \vec{\phi}$ should be slowly varying. For many problems, this interval is long compared to the time step sizes necessary to control truncation error when solving the untransformed equation.

Best results are obtained ${ }^{1,23}$ when a new $\underline{\Omega}$ is chosen for each time step, Δt. For the time step from $t=N \Delta t$ to $t=(N+1) \Delta t$, the vector $\vec{\psi}([N+1] \Delta t)=\vec{\psi}^{N+1}$ is not yet known. Using $\vec{\psi}^{N}$ in Eq. (2.6) to compute $\underline{\Omega}$ for this step has been found to be unstable. Providing $\underline{\Omega}$ does not change very much for $t \leqslant t^{\prime} \leqslant t+\Delta t$, it has been found that the Ω values to be used for the neutron groups at point j for this step may be successfully approximated by

$$
\begin{equation*}
\left(\Omega^{N}\right)_{\text {point } j}^{\text {group } g}=\frac{1}{\Delta t} \ln \frac{\psi \frac{N}{\overline{\mathrm{~g}}, j}}{\psi \frac{\mathrm{~N}-1}{\overline{\mathrm{~g}}, j}}, \quad 1 \leqslant \mathrm{~g} \leqslant \mathrm{G} \tag{2.8}
\end{equation*}
$$

All of the groups thus use the same frequency at a mesh point. The group \bar{g} to be used in Eq. (2.8) is the thermal group in thermal reactor problems and a representative fast group in fast reactor problems.

The procedure outlined here can equally well be viewed as an extrapolation procedure. Based on past behavior, the desired solution $\vec{\psi}$ is extrapolated from time t to $t+\Delta t$. A relatively small correction factor to this extrapolated behavior is then computed by some finite difference technique. As long as the rate of change of $\vec{\psi}$ is smooth, this extrapolation procedure should work well, thus allowing relatively long time steps to be taken. On the other hand, sudden variations in the rates of change of elements in \underline{A} can cause relatively rapid changes in the behavior of some components of $\vec{\psi}$. When the se rapid variations occur, the extrapolation works less well. Smaller time steps must then be taken in order to retain accuracy. This behavior is evidenced in the numerical results shown in Chapter 3.

2.3 A General Two-Step Alternating-Direction Semi-Implicit Method

To apply the general class of alternating-direction splitting methods to Eq. (2.5), the time derivative is replaced by two successive forward differences over a time step, $\Delta t(=2 h)$. For notational purposes, let the time step start at $t=0$ so that $\vec{\psi}(0)=\vec{\phi}(0)=\vec{\phi}^{\mathrm{O}}$. For the two halves of the time step, each of duration h, split \underline{A} as follows:

$$
\begin{equation*}
\underline{A}=\underline{A}_{1}+\underline{A}_{2} \tag{2.9a}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{A}=\underline{A}_{3}+\underline{A}_{4} \tag{2.9b}
\end{equation*}
$$

By evaluating the two exponentials at $\mathrm{t}=\mathrm{h}$, the midpoint of the step, the difference approximations to Eq. (2.5) become
$\frac{\vec{\phi}(\mathrm{h})-\vec{\phi}(0)}{h}=e^{-\underline{\Omega} h}\left(\underline{A}_{2}-\alpha \underline{\Omega}\right) e^{\underline{\Omega} h} \vec{\phi}(h)+e^{-\underline{\Omega h}}\left(\underline{A}_{1}-\gamma \underline{\Omega}\right) e^{\underline{\Omega} h} \vec{\phi}(0)$
$\frac{\vec{\phi}(2 h)-\vec{\phi}(h)}{h}=e^{-\underline{\Omega} h}\left(\underline{A}_{4}-\alpha \underline{\Omega}\right) e^{\underline{\Omega}} \vec{\phi}(2 h)+e^{-\underline{\Omega} h}\left(\underline{A}_{3}-\gamma \underline{\Omega}\right) e^{\underline{\Omega} \underline{h}} \vec{\phi}(h)$,
where $\alpha+\gamma=1$.
The unknowns at $t=h$ can be eliminated to yield

$$
\begin{aligned}
\vec{\phi}(2 h)= & e^{-\underline{\Omega} h}\left[\underline{I}-\mathrm{h}\left(\underline{A}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{I}+\mathrm{h}\left(\mathrm{~A}_{3}-\gamma \underline{\Omega}\right)\right] \\
& \cdot\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{2}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h}\left(\underline{\mathrm{~A}}_{1}-\gamma \underline{\Omega}\right)\right] \mathrm{e} \underline{\Omega} \mathrm{~h} \vec{\phi}(0) .
\end{aligned}
$$

Since $\vec{\psi}(2 h)=e^{2 h \underline{\Omega}} \vec{\phi}(2 h)$, this can be written as

$$
\begin{equation*}
\vec{\psi}(2 \mathrm{~h})=\vec{\psi}^{1}=\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h}) \vec{\psi}^{\mathrm{o}}, \tag{2.11}
\end{equation*}
$$

where \underline{B} is called the advancement matrix. ${ }^{1}$ It is given by

$$
\begin{align*}
\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})= & \mathrm{e}^{\underline{\Omega} \mathrm{h}}\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h}\left(\underline{\mathrm{~A}}_{3}-\gamma \underline{\Omega}\right)\right] . \\
& \cdot\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{2}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h}\left(\underline{\mathrm{~A}}_{1}-\gamma \underline{\Omega}\right)\right] \mathrm{e}^{\underline{\Omega} \mathrm{h}} . \tag{2.12}
\end{align*}
$$

Likewise, for any interval Δt,

$$
\begin{equation*}
\vec{\psi}^{\mathrm{N}+1}=\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h}) \vec{\psi}^{\mathrm{N}} . \tag{2.13}
\end{equation*}
$$

Equations (2.11) and (2.12) represent an arbitrary alternatingdirection semi-implicit method. Although it is termed a two-step method because two successive finite differences are taken to advance the solution over time Δt, it is essential to think of the two operators which advance the solution over each half-step h as inseparable from each other. Either used by itself is quite unstable. However, the error modes most strongly excited by one operator are the ones most
strongly damped by the other operator. The solution is thus said to be advanced over one step during time Δt, even though the entire space and energy mesh has been swept twice.

2.4 Properties of the Generalized Method with Transformation

It is imperative to examine the approximation to the solution of Eq. (1.6) given by Eqs. (2.11) and (2.12) with respect to several important numerical properties. This examination has been carried out in a complete and concise fashion in Ref. 1. It is repeated in this thesis for the sake of completeness. The proofs of several theorems and lemmas quoted here are given in Appendix B. The proofs for consistency and stability follow particularly closely those of Ref. 1.

Property 1. Steady State Behavior
For the steady state case where $\underline{A} \vec{\psi}_{o}=\overrightarrow{0}$,

$$
\begin{equation*}
\vec{\psi}(2 \mathrm{~h})=\underline{\mathrm{B}}(\underline{0}, \mathrm{~h}) \vec{\psi}(0)=\vec{\psi}_{\mathrm{O}}, \tag{2.14}
\end{equation*}
$$

which is the exact solution, independent of h. Thus, operation on a $\vec{\psi}_{\mathrm{O}}$ which represents a just-critical configuration by a $\underline{B}(\underline{0}, \mathrm{~h})$ formed from an A containing the just-critical parameters will result in no change in $\vec{\psi}_{\mathrm{O}}$.

This can be shown by writing Eq. (2.12) with $\underline{\Omega}=\underline{0}$:

$$
\underline{B}(\underline{0}, \mathrm{~h})=\left(\underline{\mathrm{I}-\mathrm{hA}} \underline{4}^{-1}\left(\underline{\mathrm{I}}+\mathrm{h} \underline{\mathrm{~A}}_{3}\right)\left(\underline{\mathrm{I}-\mathrm{h}} \underline{A}_{2}\right)^{-1}\left(\underline{\mathrm{I}+\mathrm{h}} \underline{1}_{1}\right) .\right.
$$

Using the splitting relations defined in Eqs. (2.9), this becomes

$$
\underline{B}(\underline{0}, \mathrm{~h})=\left(\underline{\mathrm{I}}-\mathrm{hA}_{4}\right)^{-1}\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{4} \underline{-\mathrm{A}}\right)\right]\left(\underline{\mathrm{I}-\mathrm{hA}} \underline{2}_{2}\right)^{-1}\left[\underline{\mathrm{I}-\mathrm{h}}\left(\underline{\mathrm{~A}}_{2}-\underline{\mathrm{A}}\right)\right] .
$$

Since $\underline{A} \vec{\psi}_{\mathrm{O}}=\underline{\overrightarrow{0}}$,

$$
\begin{aligned}
& \left.\underline{B}(\underline{0}, \mathrm{~h}) \vec{\psi}_{\mathrm{O}}=\left(\underline{\mathrm{I}-\mathrm{hA}} \mathbf{A}_{4}\right)^{-1}\left[\underline{\mathrm{I}-\mathrm{h}} \underline{\mathrm{~A}}_{4}-\underline{\mathrm{A}}\right)\right]\left(\underline{\mathrm{I}-\mathrm{hA}} \underline{2}_{2}\right)^{-1}\left(\underline{\mathrm{I}}-\underline{h A}_{2}\right) \vec{\psi}_{\mathrm{O}}
\end{aligned}
$$

Property 2. Temporal Truncation Error

This property is concerned with how well the advancement matrix $\underline{B}(\underline{\Omega}, \mathrm{~h})$ approximates the exact discrete solution operator $\mathrm{e}^{2 \mathrm{~h}} \underline{\underline{A}}$. For sufficiently small values of h, the difference between the solution computed using $\underline{B}(\underline{\Omega}, h)$ and that computed using $e^{2 h \underline{A}}$ over a time step Δt varies approximately as a single power of h. As shown below, for a perfectly symmetric splitting $\left(\alpha=\gamma=0.5, \underline{A}_{1}=\underline{A}_{4}, \underline{A}_{2}=\underline{A}_{3}\right), \underline{B}(\underline{\Omega}, \mathrm{~h})$ agrees with the expansion of $e^{2 h \underline{A}}$ through terms of order h^{2}. For any other splitting, the agreement is through terms of order h.

A Taylor series expansion of the exact operator yields

$$
\begin{equation*}
e^{2 h \underline{A}}=\underline{I}+2 h \underline{A}+2 h^{2} \underline{A}^{2}+\ldots \tag{2.15}
\end{equation*}
$$

Expanding $\underline{B}(\underline{\Omega}, \mathrm{~h})$ likewise gives

$$
\begin{align*}
\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})= & \underline{\mathrm{I}}+2 \mathrm{~h} \underline{\mathrm{~A}}+\mathrm{h}^{2}\left[(\underline{\mathrm{~A}} \underline{\underline{\Omega}})^{2}+2(\underline{\Omega} \underline{\mathrm{~A}}+\underline{\mathrm{A}} \underline{\Omega})\right. \\
& +\left(\underline{\mathrm{A}}_{4}+\underline{\mathrm{A}}_{2}-2 \alpha \underline{\Omega}\right)\left(\underline{\left.\mathrm{A}-\underline{\Omega})-2 \underline{\Omega}^{2}\right]+\mathrm{O}\left(\mathrm{~h}^{3}\right) .}\right. \tag{2.16}
\end{align*}
$$

For the symmetric splitting given above,

$$
\begin{equation*}
\underline{B}(\underline{\Omega}, h)=\underline{I}+2 h \underline{A}+2 h^{2} \underline{A}^{2}+O\left(h^{3}\right) . \tag{2.17}
\end{equation*}
$$

For any other splitting, terms of order h^{2} remain in Eq. (2.16).
For the approximate solution method outlined here to be most useful, the discrete solution $\vec{\psi}^{N}$ should approach the exact solution $\vec{\theta}(N \Delta t)$ more and more closely as the spatial and temporal meshs are successively decreased in size. Mathematically, this can be stated as requiring
that discrete solutions converge to the solution of the differential equations, Eq. (1.2). A theorem due to Lax ${ }^{26}$ enables this convergence to be shown. His theorem states that given a properly posed initial-value problem and a consistent finite-difference approximation, stability is the necessary and sufficient condition for convergence.

It has been found most convenient ${ }^{1}$ to carry out proofs of consistency and stability in a Hilbert space L_{2}. Thus, vector functions $\vec{\theta}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$ which are square integrable are to be considered. On this space L_{2}, the norm of a linear matrix operator \underline{M} is given by

$$
\|\underline{\mathbb{M}}\|=\sup _{\vec{\theta}} \frac{\|\underline{\mathbb{M}} \vec{\theta}\|}{\|\vec{\theta}\|}
$$

It is assumed that Eq. (1.2) with its associated boundary conditions is a properly-posed initial value problem in the space L_{2}. The consistency and stability of the method proposed are proven here; convergence is inferred from these.

Property 3. Consistency ${ }^{1}$
The domain of the linear operator \underline{M} in Eq. (1.2) is the set of functions $\vec{\theta}(\vec{r})$ which satisfy the appropriate boundary conditions and for which $\vec{\nabla} \cdot \mathrm{D} \vec{\nabla} \vec{\theta}$ exists in L_{2}. Any function $\vec{\theta}(\vec{r}, \mathrm{t})$ which is in this domain for all t in the interval $0 \leqslant t \leqslant T$ and which satisfies Eq. (1.2) in the sense that

$$
\left\|\frac{\vec{\theta}(\vec{r}, t+h)-\vec{\theta}(\stackrel{\rightharpoonup}{r}, t)}{h}-\underline{M} \vec{\theta}(\vec{r}, t)\right\| \rightarrow 0 \text { as } h \rightarrow 0, \quad 0 \leqslant t \leqslant T
$$

is called a genuine solution of the problem.

Informally stated, the consistency condition requires that the temporal finite differencing used to obtain Eq. (2.13) be an approximation to the time derivative of the genuine solution or, equivalently, that

$$
\frac{(\underline{B}(\underline{\Omega}, \mathrm{~h})-\underline{\mathrm{I}})}{2 \mathrm{~h}} \vec{\theta}(\overrightarrow{\mathrm{r}}, \mathrm{t})
$$

be an approximation to $\underline{M} \vec{\theta}(\vec{r}, t)$. How the discrete operator \underline{B} operates on the continuous function $\vec{\theta}$ must be specified. It is assumed that $\underline{B}(\underline{\Omega}$, h) picks out points from $\vec{\theta}$, and an interpolation rule is applied to the result to make it continuous in space. This interpolation need not be specified for the proofs contained in this thesis.

A more formal statement of the consistency condition is that if, for every $\vec{\theta}$ in the class of genuine solutions whose initial elements $\vec{\theta}(\vec{r}, 0)$ are dense in L_{2}, the condition ${ }^{26}$

$$
\left\|\left[\frac{\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})-\underline{\mathrm{I}}}{2 \mathrm{~h}}-\underline{\mathrm{M}}\right] \vec{\theta}(\overrightarrow{\mathrm{r}}, \mathrm{t})\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0, \quad 0 \leqslant \mathrm{t} \leqslant \mathrm{~T}
$$

holds, then the operator $\underline{B}(\underline{\Omega}, h)$ is a consistent approximation to the initial-value problem. With the definition of the derivative,

$$
\frac{\mathrm{d} \vec{\theta}}{\mathrm{dt}}=\lim _{\mathrm{h} \rightarrow 0} \frac{\vec{\theta}(\mathrm{t}+2 \mathrm{~h})-\vec{\theta}(\mathrm{t})}{2 \mathrm{~h}},
$$

the consistency condition may be modified to be

$$
\begin{equation*}
\left\|\frac{\vec{\theta}(t+2 \mathrm{~h})-\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h}) \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0 \tag{2.18}
\end{equation*}
$$

the form used in the proof of consistency.

The proof ${ }^{1}$ begins by factoring $\underline{B}(\underline{\Omega}, \mathrm{~h})$ as follows:

$$
\begin{equation*}
\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})=\underline{\mathrm{C}}_{1}(\underline{\Omega}, \mathrm{~h}) * \underline{\mathrm{C}}_{2}(\underline{\Omega}, \mathrm{~h}) . \tag{2.19}
\end{equation*}
$$

Here

$$
\begin{equation*}
\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})=\mathrm{e}^{\underline{\Omega} \mathrm{h}}\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h}\left(\underline{\mathrm{~A}}_{3}-\gamma \underline{\Omega}\right)\right] \tag{2.20a}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{\mathrm{C}}_{2}(\underline{\Omega}, \mathrm{~h})=\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{~A}}_{2}-\alpha \underline{\Omega}\right)\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h}\left(\underline{\mathrm{~A}}_{1}-\gamma \underline{\Omega}\right)\right] \mathrm{e}^{\underline{\Omega}} . \tag{2.20b}
\end{equation*}
$$

Lemma 1, ${ }^{1}$ stated here and proved in Appendix B, treats the consistency of C_{1} and C_{2}.

LEMMA 1. The operators $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ and $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ are consistent.
The only restriction which must be placed on the operator $\underline{B}(\underline{\Omega}, h)$ in order to complete this proof is that as h is decreased, $\Delta x, \Delta y$, and Δz are decreased so that the ratios $h / \Delta x^{2}, h / \Delta y^{2}$, and $h / \Delta z^{2}$ are fixed, real constants of any finite size. The need for this restriction is made clear during the discussion concerning the stability of $\underline{B}(\underline{\Omega}, \mathrm{~h})$.

Lemma 2, ${ }^{1}$ proved in Appendix B, is also necessary for the completion of the consistency proof.

LEMMA 2. If two operators are consistent, then their product is consistent.

With these two lemmas, the consistency proof can be stated in Theorem 1. ${ }^{1}$

THEOREM 1. The difference operator $\underline{B}(\underline{\Omega}$, h) given in Eq. (2.12) is a consistent approximation.

Lemma 1 has shown that $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ and $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ are consistent. Since their product equals $\underline{B}(\underline{\Omega}, \mathrm{~h})$, Lemma 2 provides the proof to this theorem.

Property 4. Stability ${ }^{1}$
In Eqs. (1.9), the matrix \underline{A} has been split into four parts. Of these four, \underline{D} contains all of the terms which relate to the diffusion of neutrons and, in addition, terms relating to precursor decay. In three-dimensional geometries, the first G submatrices, \underline{D}_{g}, on the diagonal have seven nonzero stripes containing terms which are inversely proportional to the square of the mesh spacings $\Delta x, \Delta y$, and $\Delta z . \underline{D}$ is termed the principle part of \underline{A} as it is the part of \underline{A} which determines the property of stability. This arises because of the requirement that the ratios $h / \Delta x^{2}, h / \Delta y^{2}$, and $h / \Delta z^{2}$ be fixed, real constants as h goes to zero. Subsequently, terms in the product $h \underline{D}$ do not vanish as h goes to zero.

For convenience, the matrix E is defined as

$$
\begin{equation*}
\underline{\mathrm{E}}=\underline{\mathrm{E}}_{1}+\underline{E}_{2}=\underline{E}_{3}+\underline{\mathrm{E}}_{4}=\underline{\mathrm{A}}-\underline{\mathrm{D}} . \tag{2.21}
\end{equation*}
$$

The matrices $\underline{E}_{1}, \underline{E}_{2}, \underline{E}_{3}$, and \underline{E}_{4} are those parts of \underline{E} associated with $\underline{A}_{1}, \underline{A}_{2}, \underline{A}_{3}$, and \underline{A}_{4}, respectively. All terms in \underline{E} are independent of the mesh spacings.

Split D according to

$$
\begin{equation*}
\underline{\mathrm{D}}=\underline{\mathrm{D}}_{1}+\underline{\mathrm{D}}_{2} \tag{2.22}
\end{equation*}
$$

Let \underline{D}_{1} be that part of \underline{D} contained in \underline{A}_{1} and \underline{A}_{4} and \underline{D}_{2} be that part which is contained in \underline{A}_{2} and \underline{A}_{3}. To complete the proof of stability,
it is necessary to restrict the splitting of \underline{D} such that

$$
\begin{equation*}
\underline{D}_{1}+\underline{D}_{1}^{\mathrm{T}} \text { and } \underline{\mathrm{D}}_{2}+\underline{\mathrm{D}}_{2}^{\mathrm{T}} \text { are negative definite. }{ }^{1} \tag{2.23}
\end{equation*}
$$

As will be seen later, this is not a serious limitation.
From the proof for consistency, it was required that the ratios $h / \Delta x^{2}, h / \Delta y^{2}$, and $h / \Delta z^{2}$ be fixed, real constants. Here, those constants are defined as

$$
\begin{align*}
& \mathrm{h} / \Delta \mathrm{x}^{2}=\sigma_{1} \tag{2.24a}\\
& \mathrm{~h} / \Delta \mathrm{y}^{2}=\sigma_{2} \tag{2.24b}\\
& \mathrm{~h} / \Delta \mathrm{z}^{2}=\sigma_{3} \tag{2.24c}
\end{align*}
$$

The proof for stability examines the case where both the spatial and temporal meshes are taken to zero together. The class of problems where the spatial mesh is fixed and only the temporal mesh is taken to zero is unimportant, because almost any method is stable if h is taken sufficiently small with a given spatial mesh. It is shown that the difference approximation is stable under the conditions of Eqs. (2.24) with σ_{1}, σ_{2}, and σ_{3} arbitrary and thus is unconditionally stable. ${ }^{1}$

A third condition imposed upon the proof for stability is that all elements in \underline{A} and $\underline{\Omega}$ be held fixed in time. Thus, stability is shown only for each period of time over which this is true. In the algorithm finally used in numerical calculations in this thesis, $\underline{\Omega}$ is changed with each time step Δt. Additionally, elements of A may also vary each step, such as during an insertion of reactivity. The much more difficult question of stability for this nonlinear procedure has not been analytically examined yet. Experimentally, however, stability problems
have not arisen over a series of sample problems in two- and threedimensional geometries.

With the difference equations written in the form of Eq. (2.13), a sufficient condition for numerical stability ${ }^{26}$ is that

$$
\begin{align*}
& \left\|\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})^{\mathrm{N}}\right\| \leqslant \mathrm{K}, \quad \mathrm{~K} \text { some constant, } \\
& 0 \leqslant \mathrm{~h} \leqslant \tau, \quad 0 \leqslant 2 \mathrm{Nh} \leqslant \mathrm{~T} . \tag{2.25}
\end{align*}
$$

This implies that the computed solution will remain bounded as both spatial and temporal meshes are decreased in size so that more and more steps are required to reach a fixed total time T.

The proof of stability proceeds in several steps. A theorem due to Kreiss and Strang ${ }^{26}$ motivates the se steps.

THEOREM 2. If the difference system

$$
\overrightarrow{\mathrm{U}}^{\mathrm{N}+1}=\underline{\mathrm{C}}(\Delta \mathrm{t}) \overrightarrow{\mathrm{U}}^{\mathrm{N}}
$$

is stable, and if $\underline{Q}(\Delta t)$ is a bounded family of operators, then the difference system

$$
\overrightarrow{\mathrm{U}}^{\mathrm{N}+1}=[\underline{\mathrm{C}}(\Delta \mathrm{t})+\Delta \mathrm{t} \underline{\mathrm{Q}}(\Delta \mathrm{t})] \overrightarrow{\mathrm{U}}^{\mathrm{N}}
$$

is stable.

It thus must first be shown that the operator $\underline{B}(\underline{\Omega}$, h) can be written as

$$
\begin{equation*}
\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})=\underline{\mathrm{B}}^{\prime}(\mathrm{h})+\mathrm{h} \underline{\mathrm{Q}}(\underline{\Omega}, \mathrm{~h}) . \tag{2.26}
\end{equation*}
$$

If $\underline{B}^{\prime}(\mathrm{h})$ can be shown to be stable and $\underline{Q}(\underline{\Omega}, \mathrm{~h})$ bounded, then the stability of $\underline{B}(\underline{\Omega}, h)$ is assured.

With $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ and $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ defined as in Eqs. (2.20), $\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{h})$ is again factored as

$$
\underline{\mathrm{B}}(\underline{\Omega}, \mathrm{~h})=\underline{\mathrm{C}}_{1}(\underline{\Omega}, \mathrm{~h}) \underline{\mathrm{C}}_{2}(\underline{\Omega}, \mathrm{~h}) .
$$

The matrix $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ can be factored as

$$
\begin{aligned}
\underline{C}_{1}(\underline{\Omega}, h)= & {\left[\underline{I}+h \underline{\Omega}+O\left(h^{2}\right)\right]\left[\underline{I}-h\left(\underline{I}-h \underline{D}_{1}\right)^{-1}\left(\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1} } \\
& \cdot\left[\underline{I}-h \underline{D}_{1}\right]^{-1}\left[\underline{I}+h\left(\underline{D}_{2}+\underline{E}_{3}-\gamma \underline{\Omega}\right)\right] \\
= & {\left[\underline{I}+h \underline{\Omega}+O\left(h^{2}\right)\right]\left[\underline{I}+h\left(\underline{I}-h \underline{D}_{1}\right)^{-1}\left(\underline{E}_{4}-\alpha \underline{\Omega}\right)+O\left(h^{2}\right)\right] . } \\
& \cdot\left[\underline{I}-h \underline{D}_{1}\right]^{-1}\left[\underline{I}+h\left(\underline{D}_{2}+\underline{E}_{3}-\gamma \underline{\Omega}\right)\right] .
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})=\left[\underline{\mathrm{I}}-\mathrm{h} \underline{\mathrm{D}}_{1}\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h} \underline{\mathrm{D}}_{2}\right]+\mathrm{h} \underline{Q}_{1}(\underline{\Omega}, \mathrm{~h}) \tag{2.27}
\end{equation*}
$$

Similarly, $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ can be written as

$$
\begin{equation*}
\underline{C}_{2}(\underline{\Omega}, h)=\left[\underline{I}-h \underline{D}_{2}\right]^{-1}\left[\underline{I}+h \underline{D}_{1}\right]+h \underline{Q}_{2}(\underline{\Omega}, \mathrm{~h}) . \tag{2.28}
\end{equation*}
$$

Combining Eqs. (2.27) and (2.28) gives

$$
\begin{equation*}
\underline{B}(\underline{\Omega}, \mathrm{~h})=\left[\underline{\mathrm{I}}-\mathrm{h} \underline{\mathrm{D}}_{1}\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h} \underline{\underline{D}}_{2}\right]\left[\underline{\mathrm{I}}-\mathrm{h} \underline{\underline{D}}_{2}\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h} \underline{\mathrm{D}}_{1}\right]+\mathrm{h} \underline{Q}(\underline{\Omega}, \mathrm{~h}), \tag{2.29}
\end{equation*}
$$

so that the matrix $\underline{B}^{\prime}(\mathrm{h})$ in Eq. (2.26) is defined as

$$
\begin{equation*}
\underline{B}^{\prime}(\mathrm{h})=\left[\underline{\mathrm{I}-\mathrm{h}} \underline{D}_{1}\right]^{-1}\left[\underline{I}+\mathrm{h} \underline{D}_{2}\right]\left[\underline{\mathrm{I}}-\mathrm{h} \underline{D}_{2}\right]^{-1}\left[\underline{\mathrm{I}}+\mathrm{h} \underline{D}_{1}\right] . \tag{2.30}
\end{equation*}
$$

Proving the boundedness in the various matrices in $\underline{Q}(\underline{\Omega}, \mathrm{~h})$ requires careful analysis. This is because the number of mesh points and, hence, the order of these matrices approach infinity as h is taken toward zero. Theorem 3, ${ }^{1}$ the proof of which is given in Appendix B, resolves this issue.

THEOREM 3. A family of matrices \underline{M}_{n} of varying dimension n having at most $\ell<n$ nonzero elements in each row or column, ℓ being
constant for all n , has a uniform L_{2} bound if the individual elements of the matrices \underline{M}_{n} are uniformly bounded for all n.

All elements in E and, hence, in $\underline{E}_{1}, \underline{E}_{2}, \underline{E}_{3}$, and \underline{E}_{4} are independent of the mesh spacings. Thus they are uniformly bounded. The number of nonzero elements in each row of $\underset{E}{ }$ is less than or equal to the number of prompt and delayed neutron groups. Thus, $\underline{E}_{1}, \underline{E}_{2}, \underline{E}_{3}$, and E_{4} have uniform L_{2} bounds.

The matrix h \underline{D} has at most seven nonzero elements in each row (nine for a hexagonal-z mesh configuration). Providing the conditions given in Eqs. (2.24) are obeyed, the magnitudes of its elements are fixed as h tends toward zero. Thus the L_{2} norm of $h \underline{D}$ is bounded for all h . This also assures that $\left(\underline{I}+h \underline{D}_{1}\right)$ and $\left(\underline{I}+h \underline{D}_{2}\right)$ are bounded.

The boundedness of $\left(\underline{I}-\mathrm{h} \underline{D}_{1}\right)^{-1}$ and $\left(\underline{I}-\mathrm{h} \underline{D}_{2}\right)^{-1}$ is given by Theorem 4, which is proved in Appendix B.

THEOREM 4. The matrices $(\underline{I}-\mathrm{h} \underline{R})^{-1}$ and $(\underline{I}+h \underline{R})(\underline{I}-\mathrm{h} \underline{R})^{-1}$ have L_{2} norms of less than unity provided that $\left(\underline{R}+\underline{R}^{T}\right)$ is negative definite.

All matrices which form the matrix $\underline{Q}(\underline{\Omega}, h)$, as given in Eq. (2.29), have been shown to be bounded. Thus $\underline{Q}(\underline{\Omega}, \mathrm{~h})$ is bounded as h tends toward zero. It remains only to show that $\underline{B}^{\prime}(\mathrm{h})$ is stable. This can be done by factoring it in the form: ${ }^{1}$
where

$$
\begin{aligned}
\underline{B}^{\prime}(\mathrm{h})= & \underline{R}_{1} \underline{\mathrm{R}}_{2} \underline{\mathrm{R}}_{3} \\
& \underline{\mathrm{R}}_{1}=\left(\underline{\mathrm{I}}-\mathrm{h}_{1}\right)^{-1} \\
& \underline{R}_{2}=\left(\underline{\mathrm{I}+\mathrm{h}} \underline{D}_{2}\right)\left(\underline{\mathrm{I}-\mathrm{h}} \underline{D}_{2}\right)^{-1} \\
& \underline{R}_{3}=\left(\underline{\mathrm{I}}+\mathrm{h} \underline{\mathrm{D}}_{1}\right)
\end{aligned}
$$

By Theorem 4, $\left\|\underline{R}_{2}\right\|<1$ and $\left\|\underline{R}_{3} \underline{R}_{1}\right\|<1$. Writing $\left[\underline{B}^{\prime}(\mathrm{h})\right]^{\mathrm{N}}$ in terms of the above factorization,

$$
\underline{\mathrm{B}}^{\prime \mathrm{N}}(\mathrm{~h})=\underline{\mathrm{R}}_{1} \underline{\mathrm{R}}_{2} \underline{\mathrm{R}}_{3} \quad \underline{\mathrm{R}}_{1} \underline{\mathrm{R}}_{2} \underline{\mathrm{R}}_{3} \cdots \underline{\mathrm{R}}_{1} \underline{\mathrm{R}}_{2} \underline{\mathrm{R}}_{3} \quad(\mathrm{~N} \text { times }) .
$$

Thus,

$$
\begin{aligned}
& \left\|\underline{B}^{\prime N}(h)\right\| \leqslant\left\|\underline{R}_{1}\right\| \cdot\left\|\underline{R}_{2}\right\| \cdot\left\|\underline{R}_{3} \underline{R}_{1}\right\| \cdot\left\|\underline{R}_{2}\right\| \cdot\left\|\underline{\mathrm{R}}_{3} \underline{\mathrm{R}}_{1}\right\| \ldots\left\|_{\underline{R}_{2}}\right\| \cdot\left\|\underline{\mathrm{R}}_{3}\right\|, \\
& \left\|\underline{\mathrm{B}}^{\prime N}(\mathrm{~h})\right\|<\left\|\underline{\mathrm{R}}_{1}\right\| \cdot\left\|\underline{\mathrm{R}}_{3}\right\| .
\end{aligned}
$$

Again, \underline{R}_{1} has a bounded norm by Theorem 4 and \underline{R}_{3} has a bounded norm by Theorem 3, both for $0<h<\tau$. Thus, $\left\|\underline{B}^{\prime N}(\mathrm{~h})\right\|$ is bounded for $0<\mathrm{h}<\tau$ and $0<2 \mathrm{Nh}<\mathrm{T}$ and is stable. Finally, from this fact and Theorem 2, $\underline{B}(\underline{\Omega}, \mathrm{~h})$ is seen to be stable. Since no restrictions have been placed on the size of σ_{1}, σ_{2}, and σ_{3} in Eqs. (2.24), except that they be real and finite, this stability is unconditional.

Property 5. Asymptotic Behavior

Because of the form of the exponential transformation, the difference method proposed here can be forced to yield the correct asymptotic behavior. The asymptotic behavior of the exact solution is given by Theorem 5, ${ }^{24}$ which is proved in Appendix B.

THEOREM 5. As t approaches infinity, the solution vector $\vec{\psi}(t)=e^{(\underline{A} t)} \vec{\psi}_{o}$ approaches $\alpha e^{\omega_{o} t} \vec{e}_{o}$, where ω_{o} is the largest eigenvalue of $\underline{A}, \vec{e}_{o}$ the corresponding eigenvector, and $\alpha=\left(\vec{\psi}_{0}, \vec{e}_{o}\right)$.

Theorem $6{ }^{2}$ gives the largest eigenvalue and corresponding eigenvector of $\underline{B}(\underline{\Omega}, h)$ under the assumption that $\underline{\Omega}=\omega_{0} \underline{I}$. It is also proved in Appendix B.

THEOREM 6. If $\underline{\Omega}=\omega_{\mathrm{O}} \underline{I}$, the approximate solution operator $\underline{B}(\underline{\Omega}, \mathrm{~h})$ has as its largest eigenvalue $\mathrm{e}^{2 \omega_{0} h}$, with corresponding eigenvalue $\overrightarrow{\mathrm{e}}_{\mathrm{O}}$, where $\underline{\mathrm{A}_{\mathrm{e}}} \overrightarrow{\mathrm{e}}_{\mathrm{o}}=\omega_{\mathrm{o}} \overrightarrow{\mathrm{e}}_{\mathrm{o}}$.

If, at asymptotic times, the matrix $\underline{\Omega}$ were set equal to $\omega_{\mathrm{O}} \underline{I}$, the action of $\underline{B}(\underline{\Omega}, h)$ on the asymptotic solution would ultimately yield the exact growth of $e^{2 h \omega_{0}}$ over the time step $2 h$.

2.5 Specific Splittings for Two Dimensions

Up to this point, the splitting of \underline{A} into \underline{D} and \underline{E} and the se into \underline{D}_{1} and \underline{D}_{2} and $E_{1}, \underline{E}_{2}, \underline{E}_{3}$, and \underline{E}_{4}, respectively, has been very general. Specific splittings must be indicated before proceeding to numerical calculations. Any splitting proposed must obey Condition (2.23) in addition to offering relative computational ease.

Four specific splittings are presented for study in this section. Two of these have been extensively tested previous to this work, the Non-Symmetric Alternating-Direction Explicit (hereafter referred to as NSADE) method in Refs. 1 and 2 and the Symmetric AlternatingDirection Implicit (SADI) method in Refs. 23 and 24. This testing was carried out in two spatial dimensions. The NSADE method has been shown to handle a wide variety of test problems successfully, while the SADI method required unreasonably small time steps to treat a difficult asymmetric problem. The four splittings proposed here for further twodimensional studies are motivated by a desire to understand what has caused the difference in performance of these two methods and to arrive at an "optimum" splitting.

The terminology used above deserves clarification. The "Symmetric" and "Non-Symmetric" have been prefixed to the names originally given to these methods to indicate the placement of the matrices. \underline{U} and \underline{L} in the two splittings of \underline{A}. A method is termed symmetric if the matrix \underline{L} is treated implicitly over the first halfstep and \underline{U} implicitly over the second half-step. If \underline{L} is treated implicitly over both half-steps, the method is called non-symmetric. If the two-dimensional spatial mesh is swept solving for the new fluxes point by point, the method is termed explicit. It is termed implicit if a whole row or column of points is solved simultaneously for new fluxes.

SADI Method. For this method, let

$$
\begin{align*}
& \alpha=\gamma=0.5 \\
& \underline{A}_{1}=\frac{1}{2} \underline{T}+\underline{U}+\underline{D}_{1}=\underline{A}_{4} \tag{2.31}\\
& \underline{A}_{2}=\frac{1}{2} \underline{T}+\underline{L}+\underline{D}_{2}=\underline{A}_{3},
\end{align*}
$$

where \underline{D}_{1} is composed of the terms associated with diffusion in one direction and one-half of each term in the submatrices $\underline{\Lambda}_{i}$. The matrix \underline{D}_{2} is composed of the diffusion terms for the other direction and the remaining half of each term in the $\underline{\Lambda}_{i}$. As discussed under Property 2, this splitting agrees with the Taylor series expansion of the exact solution operator through terms of order h^{2}.

NSADI Method. Here let

$$
\begin{align*}
& \alpha=1.0, \gamma=0, \\
& \underline{A}_{1}=\underline{U}+\underline{D}_{1} \\
& \underline{A}_{2}=\underline{T}+\underline{L}+\underline{D}_{2} \tag{2.32}\\
& \underline{A}_{3}=\underline{U}+\underline{D}_{2} \\
& \underline{A}_{4}=\underline{T}+\underline{L}+\underline{D}_{1},
\end{align*}
$$

where \underline{D}_{1} and \underline{D}_{2} are as defined above. By defining the truncation error over one step as

$$
\begin{equation*}
\text { T.E. }=e^{2 h \underline{A}}-\underline{B}(\underline{\Omega}, h), \tag{2.33}
\end{equation*}
$$

the NSADI method has a truncation error of

$$
\text { T.E. }=h^{2}(\underline{T}+\underline{L}-\underline{U}-\underline{\Omega})(\underline{A}-\underline{\Omega})+O\left(h^{3}\right)
$$

SADE Method. Let

$$
\begin{align*}
& \alpha=\gamma=0.5, \\
& \underline{A}_{1}=\frac{1}{2} \underline{T}+\underline{U}+\underline{D}_{1}=\underline{A}_{4} \\
& \underline{A}_{2}=\frac{1}{2} \underline{T}+\underline{L}+\underline{D}_{2}=\underline{A}_{3}, \tag{2.34}
\end{align*}
$$

where \underline{D}_{1} contains the two stripes of \underline{D} which lie above the diagonal plus one-half of each term on the diagonal and \underline{D}_{2} contains the two stripes below the diagonal plus the remainder of each diagonal term. As with the SADI method, the truncation error for one time step is of order h^{3}.

NSADE Method. Let

$$
\begin{align*}
& \alpha=1.0, \gamma=0, \\
& \underline{A}_{1}=\underline{U}+\underline{D}_{1} \\
& \underline{A}_{2}=\underline{T}+\underline{L}+\underline{D}_{2} \tag{2.35}\\
& \underline{A}_{3}=\underline{U}+\underline{D}_{2} \\
& \underline{A}_{4}=\underline{T}+\underline{L}+\underline{D}_{1},
\end{align*}
$$

where \underline{D}_{1} and \underline{D}_{2} are as defined for the SADE method. Its truncation error is the same as that given for the NSADI method.

It can be seen that all four methods just presented satisfy the conditions for consistency and stability. The box integration technique used to derive the five-point finite difference relations in two dimensions guarantees that the diagonal term in each row of \underline{D} is just the negative of the sum of the other terms in that.row. Both implicit and explicit splittings make the diagonal term in each row in both \underline{D}_{1} and \underline{D}_{2} the negative sum of the other two terms in that row. Thus, both \underline{D}_{1} and \underline{D}_{2} are diagonally dominant. Since

$$
\underline{\mathrm{D}}_{1}+\underline{\mathrm{D}}_{1}^{\mathrm{T}}=\underline{\mathrm{D}}_{2}+\underline{\mathrm{D}}_{2}^{\mathrm{T}}=\underline{\mathrm{D}}
$$

for both splittings and $\underline{\mathrm{D}}$ is negative definite, the condition (2.23) is satisfied.

All four methods offer relative computational ease. The matrices to be inverted in the SADE and NSADE methods are always upper or lower triangular or can be made so by rearranging the order of the unknowns. The first half-step is carried out by forward substitution,
sweeping from one corner of the mesh to the diagonally-opposite corner and from the highest energy group to the lowest. The second half-step reverses the direction of the spatial sweep and also from the lowest energy group to the highest in the case of the SADE method.

For the SADI and NSADI methods, the matrices to be inverted are block lower or upper triangular, but the diagonal submatrices are tridiagonal. In sweeping from one corner of the mesh to the diagonally opposite corner, entire lines of fluxes in one of the two directions must be solved simultaneously by the rapid forward elimination, backward substitution process. In working back across the mesh during the second half-step, lines of fluxes in the second direction are solved simultaneously. For the NSADI method, the groups are solved from the highest to the lowest energy over both half-steps, while the order is reversed for the second half-step of the SADI method.

This section is concluded with a discussion of the factors which could cause these four methods to perform differently on actual numerical experiments. The first difference apparent is the implicit versus explicit spatial treatment. From experience gained in static calculations, it is tempting to state that solving for an entire line of fluxes simultaneously should result in less total error than solving for the fluxes one by one. The analogy is not entirely appropriate, however, since the kinetics problem is an initial-value problem and not a boundary-value problem. Considering the two sweeps of the mesh together, new fluxes at each of the five points in two-dimensional problems are given half of the weighting and old fluxes the other half for both types of methods.

There does appear to be a difference in the spatial distribution of the errors for the two spatial treatments. No analytical examination of error distribution and propagation has yet been completed. Qualitatively, however, experience seems to indicate that the implicit treatment is somewhat more stable with respect to propagation of errors.

For illustrative purposes, consider the first time step, Δt, in a two group homogeneous problem, where the initial condition $\vec{\psi}_{\mathrm{O}}$ is taken to be exact. Let the perturbation be due to uniform step decreases in the absorption cross sections of both groups over the entire system.

Both the implicit and explicit methods are inexact so that some error is introduced into the new group one flux as it is calculated at each mesh point over the first half-step. This error is distributed differently for the two methods, however. In the implicit treatment, each line of fluxes is computed simultaneously, using the old fluxes on each side of it to compute the leakage in the direction perpendicular to that line. Thus, the error in the growth is distributed along the entire line. The new fluxes in other lines see none of the error introduced in that line. At the end of the mesh sweep for group one, it is easily shown that the error at each mesh point is proportional to the initial flux value at that point for this model problem.

The group two fluxes at the end of the first half-step likewise contain an error component which has the same spatial distribution as the initial fundamental mode solution. Part of the error at each point is due to error in the group one flux previously computed, and part is
due to inexact treatment of the growth of group two given the group one flux.

At the end of the second half-step, additional errors have been introduced into both group fluxes at each mesh point. However, the errors still have a fundamental mode distribution for both groups. No spatial flux tiltings have been introduced by the implicit spatial treatment.

This is not the case with the explicit spatial treatment. As group one fluxes are computed one by one over the first mesh sweep, the error introduced at a point due to the inexact operator is carried on across to the computation of all subsequent mesh points. At the end of the first sweep for group one, the spatial distribution is tilted so that the last point calculated has grown proportionately more than any point previously computed.

If this were a one group problem, the tilting would be erased as the sweep is reversed over the second half-step. In the two group problem, however, the second group must first be calculated. The second group now sees a tilted source and is tilted proportionately worse at the end of the first mesh sweep.

This tilted second group is used in computing the source for the reverse mesh sweep for group one. It is difficult to predict exactly how the group one flux will be distributed at the end of the reverse sweep since that depends on the reactor size and composition and the magnitude of the initial perturbation. However, it would be strictly fortuitous if the errors in the group one flux have a fundamental mode distribution. The first mesh sweeps for the two groups have introduced
higher error modes which tend to persist in the solution, although the stability proof in section 2.4 gives assurance that they will not grow without bound for the case of constant $\underline{\Omega}$ and reactor properties.

The really important question is to what degree does the introduction of these higher error modes affect the solution of real problems. In actual practice, it has been found that for realistic perturbations and time step sizes, these higher modes do not severely affect the solution. In addition, the exponential transformation tends to damp out these higher modes, as is shown in the numerical results given in Chapter 3.

There is one situation, however, in which this accumulation of errors can severely hamper the explicit methods. If the initial condition $\vec{\psi}_{\mathrm{O}}$ used to start the transient differs sufficiently from the true fundamental mode initial condition, the presence of these additional errors can affect a sufficient accumulation of error to swamp the true solution.

It should be noted that a fully explicit method cannot properly treat the fluxes at an outer boundary where a zero current normal to that boundary has been specified. This problem was noted in the initial work done in extending the NSADE method to $\mathrm{r}-\mathrm{z}$ geometry, ${ }^{19}$ where the z-axis is always a so-called symmetry boundary. It is easily solved, however, by solving for new fluxes at each point on such a boundary and the interior point closest to it simultaneously for whichever of the two half-steps originates from that boundary.

A second difference to be noted in the methods is the symmetric versus non-symmetric sweeping of the energy groups. Favoring the
symmetric methods is the fact that terms of order h^{2} in the truncation error expression vanish for these splittings. On the other hand, most thermal reactor models have group structures which are closely coupled by down-scattering from each group to the next lowest, but are only loosely coupled by the upward flow of neutrons. This is because the higher energy groups have relatively small fission cross sections, while the fission spectrum is nonzero only in the highest groups. During a sweep of the energy mesh from the lowest energy group to the highest group, a perturbation in the thermal group can cause a change only in the high energy groups with nonzero fission fractions during the remainder of that sweep. In a two group thermal reactor problem, this effect should be minimal. With four or more groups, this effect could become important. This effect should also be minimized in a fast reactor problem, where the fission cross section is fairly constant over most of the groups, and the fission spectrum is nonzero over most of the groups.

The concept of truncation error accumulation is complicated by the presence of the exponential transformation. It is generally stated that the total error at time $\mathrm{T}=2 \mathrm{Nh}$ varies as a function of one order less of h than does the local truncation error. The correct asymptotic behavior resulting from the exponential transformation should tend to lessen the severity of error accumulation, however.

2.6 A Proposed Method for Three Dimensions: NSADE

It is the stated purpose of this thesis to develop an alternatingdirection semi-implicit method for solving the space-dependent kinetics equations in three-dimensional geometries. The method so proposed is the NSADE (Non-Symmetric Alternating-Direction Explicit) method as outlined in section 2.5. The splitting of the \underline{A} matrix for three dimensions is identical to that presented in Eq. (2.35) for two dimensions. However, \underline{D}_{1} now has three nonzero stripes above the diagonal and \underline{D}_{2} has three nonzero stripes below it. Because the \underline{L} matrix is treated implicitly over both half-steps, the groups are always to be solved from the highest energy group to the lowest. The spatial sweep starts in one corner of the three-dimensional mesh and works toward the diagonally-opposite corner during the first half-step. It is then exactly reversed for the second half-step.

This particular method has been chosen for three reasons. Based on a number of test problems in one and two dimensions, it is shown in Chapter 3 that the non-symmetric splittings perform far more satisfactorily in thermal reactor problems. Secondly, the NSADI and NSADE methods are shown to perform practically identically over a range of problems. Finally, in addition to being computationally slightly faster, the NSADE method is directly applicable to three-dimensional geometries as a two-step method. Only two dimensions could be treated implicitly if an implicit method as outlined in section 2.5 were to be applied to three-dimensional geometries as a two-step method.

Chapter 3

NUMERICAL RESULTS

Four different members of a general class of alternatingdirection semi-implicit methods for solution of the semi-discrete reactor kinetics equations have been proposed in section 2.5 for further study in one- and two-dimensional geometries. The results of several numerical experiments, where these methods have been used to solve reactor problems, are presented and compared in section 3.1 of this chapter. In section 3.2 , the behavior of the NSADE method when solving a three-dimensional model problem is compared to the exact solution of this problem. Finally, section 3.3 presents the results of a number of true space-dependent, threedimensional numerical experiments with the NSADE method.

3.1 One- and Two-Dimensional Studies

Two of the four specific methods that are presented in section 2.5 have been extensively tested previous to this thesis. The NSADE method has been shown to perform satisfactorily over a range of problems in $x-y, r-z$, and hexagonal geometries. ${ }^{1,19}$ In contrast, the SADI method has been shown to perform poorly in a space-dependent, four group thermal reactor problem. ${ }^{23}$ The numerical experiments presented in this section have been performed in an effort to explain the difference in behavior of these two methods.

Four different test cases are examined in this section. They have been chosen in an attempt to compare the methods over a wide range of problem types. The first three cases are in one-dimensional slab geometry, while the fourth is the two-dimensional rectangular multiregion thermal reactor which the SADI method had difficulty in treating.

In order to solve the one-dimensional problems, the computational subroutines of an existing one-dimensional code, GAKIN, ${ }^{14}$ were replaced with a single subroutine which, depending on several input parameters, treated problems with one of the four methods. Since one-dimensional problems have diffusion on one direction only, the diffusion terms in that direction were halved, with one-half of each term in the matrix \underline{D} being treated as diffusion in one dimension and the other half as diffusion in a second dimension. For the twodimensional case, subroutines were added to the code MITKIN ${ }^{1}$ so that it had multi-method capabilities.

Both because it is the primary purpose of this thesis to deal with multi-dimensional geometries and because the one-dimensional problems treated for this thesis are relatively simplistic, the three one-dimensional problems are discussed here in a qualitative fashion only. The numerical results are not presented in either tabular or graphical form.

The first one-dimensional problem was a homogeneous thermal slab reactor with four neutron groups and one precursor group. The critical configuration was perturbed by a fifty-cent step insertion of reactivity caused by uniformly decreasing the thermal group capture cross section. Twenty-one mesh points were used to represent the
$146-\mathrm{cm}$ slab. Because of the homogeneous composition, the initial flux distribution in each group was cosinusoidal in shape. The exact solution to the time-dependent problem was obtained using an eigenvector expansion technique ${ }^{2}$ and was available for comparison.

Using a time step, Δt, of .0005 sec , both the SADI and SADE methods underestimated the solution throughout the transient. At 1.0 seconds into the transient, both solutions were about 15% too low. With $\Delta t=.00025 \mathrm{sec}$, both methods gave considerably better results, but were still about 1% low at 1.0 sec . Only when $\Delta \mathrm{t}$ was reduced to .0001 sec did the SADI method give the correct result ($<.1 \%$ error) throughout the transient. The SADE method was not used at this small time step since it was expected that it would again behave similarly to the SADI method.

In contrast, both the NSADE and NSADI methods gave good results (<.1\% error) for time steps as large as $\Delta t=.001 \mathrm{sec}$ out to about 0.2 sec into the transient. At around 0.2 sec , however, both methods were overcome by stability problems for time steps of .001 and .0005 sec . The instabilities seemed to result from the feedback of accumulated errors through the frequencies. These instabilities first appeared as a small ripple-like component superimposed on the true solution, but soon grew to the point that negative fluxes resulted.

The characteristic which separated the four methods into two distinct classes is the property which has been termed symmetry. The symmetric methods behaved in one fashion, while the nonsymmetric methods behaved in another and different fashion.

These results shed light on several of the conjectures made in section 2.5 about these methods. The group structure for this four group problem was loosely-coupled by the upward flow of neutrons, thus causing the symmetric methods to underpredict the growth of the fluxes at time steps reasonable for this problem. This tendency to underpredict can also be explained from an analytic point of view. In the limit of large h, the advancement matrix goes to the identity matrix for the symmetric methods. For any finite time step, the symmetric methods underpredict the growth over each time step. The feedback effect introduced by the method used to compute the frequencies may offset this to some extent, but the numerical experiment cited here indicates that it does not offset it completely. Once a sufficiently small time step is used, however, the se methods converge rapidly to the correct solution.

The non-symmetric methods, even though they have a local truncation error of only order h^{2}, followed the solution closely for much large time steps. Physically, this smaller error at each step was the result of sweeping down through the groups at both half steps, taking advantage of the tightly-coupled downward flow of neutrons. The instabilities observed prove that these methods can also become unstable due to the feedback effect of the frequencies. Fortunately, these instabilities have never been noted in problems in two or three dimensions or in one-dimensional problems with a large number of mesh points.

The second one-dimensional problem was a homogenized slab unit cell, 10 cm in width, from a fast gas-cooled reactor with ten neutron
groups and four precursor groups. The initial flux distribution was flat for all groups. The critical configuration was perturbed by a step reduction in the capture cross sections in all groups.

Only the two implicit methods could be used to treat this problem because the explicit options were not programmed to handle homogeneous Neumann boundary conditions. The SADI method followed the transient accurately for as long as the solution was carried out, although relatively small time steps had to be taken. Physically, this problem was better suited to the symmetric techniques because the fission cross section was fairly constant over most of the groups, and the fission spectrum was nonzero over most of the groups. Thus, even though there was no upscattering in this problem, a perturbation could propagate in an upward sweep of the groups as well as in a downward sweep.

The NSADI method followed the early part of the transient as well as did the SADI method, using the same time step sizes. However, at about .0005 seconds into the transient, instabilities again appeared and soon swamped the true solution. A close examination reveals one reason why these non-symmetric methods should be more susceptible to these feedback-induced instabilities. Unlike the symmetric methods, the non-symmetric methods have advancement matrices which do not reduce to the identity matrix in the limit of large time steps. Depending on the problem and the flux vector at a particular time, they can underestimate or overestimate the flux at the end of the next time step. Add to this the feedback effect of the method used to compute the frequencies, and it becomes possible for these oscillations to grow
large. Again it is stressed that these instabilities have been observed only in one-dimensional problems with a relatively small number of spatial mesh points.

The last one-dimensional problem used to compare these four methods was a $240-\mathrm{cm}$, three-region thermal slab reactor with two neutron groups and six precursor groups. An inner zone, 160 cm thick, of relatively low enrichment, was surrounded on either side with a 40-cm-thick slab of higher enrichment. Ninety-seven equallyspaced mesh points were used. The critical configuration was perturbed by linearly decreasing the thermal capture cross section by 1% over 1.0 second in one of the two outer slabs.

The composition of this test problem was similar to a graphite slab reactor, so that a relatively large time step, Δt, of .0025 second was used. Both the NSADI and NSADE methods followed the transient out to 1.0 second with little error and with no sign of any instabilities. As in the first test case, the SADI and SADE methods initially underestimated the growth in the solution. However, they both improved considerably by the end of the transient.

For two-group problems such as this, the two groups are tightly coupled by both the upward and downward flow of neutrons. This apparently minimized the difference in performance between the symmetric and non-symmetric methods for this problem. Again, the method used to sweep the spatial mesh made little difference in the results.

The final numerical experiment discussed in this section is a highly-asymmetric, two-dimensional problem with four neutron groups
and one delayed precursor group. This problem has been discussed in two previous works, ${ }^{1,23}$ but it is included here because it again demonstrates the validity of the arguments presented in section 2.5.

The geometry for this problem was identical to that of any plane perpendicular to the z-axis taken between z mesh planes 8 and 17 of Configuration 3, found in Appendix C. The material constants for the four materials were also identical to those shown in Configuration 3, except that the critical value of v for all groups was 1.450679 for the two-dimensional problem. The critical configuration was perturbed by linearly decreasing the group four capture cross section in material 4 by $0.003 \mathrm{~cm}^{-1}$ over 0.2 second. From that time, all material properties were held fixed.

Tables 3.1, 3.2, 3.3, and 3.4 list the group one and group four fluxes at two points in the reactor for various times in the transient. The results for the SADI method have been taken from Ref. 24, while the NSADE results represent improved results (more accurate initial flux distribution) of those quoted in Ref. 1.

The NSADE and NSADI methods gave practically identical results for the results shown, with $\Delta t=.001 \mathrm{sec}$. Results using the NSADE method and time steps of .0005 sec and .002 sec gave similar results to those listed here, so it is assumed that the results for the two nonsymmetric methods represent converged solutions. In contrast, the SADI method gave inconsistent results for time steps as small as .00025 sec and was still nearly 6% in error at 0.3 sec into the transient with a $\Delta t=.000125 \mathrm{sec}$.

This problem represented a severe test of these methods because of the large changes in the spatial shape and energy spectrum induced by the perturbation. The results shown here again confirm that the method used to sweep the spatial mesh makes little difference in the final result. For thermal reactors, the critical factor is that the groups be swept from high energy to low energy over both half steps. The non-symmetric methods are thus preferred for any scheme which is to have general applicability.

Table 3.1. Group 1 Fluxes at Point $(3,9)$

Time (sec)	$\Delta \mathrm{t}=$	NSADE	NSADI	SADI		
	.001	.001	.000125	.0005	.001	
.0	.4463	.4463	.4463	.4463	.4463	
.05	.4561	.4559	.4525	.4463	.4463	
.10	.4670	.4669	.4781	.4464	.4463	
.15	.4796	.4795	.4985	-	.4463	
.20	.4943	.4944	.5064	.4624	.4463	
.30	.4945	.4946	.5194	.4624	.4465	

Table 3.2. Group 1 Fluxes at Point $(12,3)$

Time (sec)	$\Delta t=$	NSADE	NSADI	SADI		
	.001	.001	.000125	.0005	.001	
.0	.1341	.1341	.1341	.1341	.1341	
.05	.1383	.1383	.1375	.1346	.1342	
.10	.1431	.1430	.1473	.1371	.1346	
.15	.1485	.1485	.1554	-	.1359	
.20	.1549	.1549	.1604	.1413	.1382	
.30	.1549	.1550	.1640	.1489	.1438	

Table 3.3. Group 4 Fluxes at Point $(3,9)$

Time (sec)	$\Delta t=$	NSADE	NSADI	SADI		
	.001	.001	.000125	.0005	.001	
.0	.0359	.0359	.0359	.0359	.0359	
.05		.0367	.0367	.0364	.0359	.0359
.10	.0376	.0376	.0385	.0360	.0359	
.15	.0386	.0386	.0401	-	.0359	
.20	.0398	.0398	.0408	.0361	.0359	
.30		.0398	.0398	.0418	.0373	.0360

Table 3.4. Group 4 Fluxes at Point $(12,3)$

Time (sec)	$\Delta t=$	NSADE	NSADI	SADI		
	.001	.001	.000125	.0005	.001	
0	.9684	.9684	.9684	.9684	.9684	
.05		1.0532	1.0528	1.0474	1.0255	1.0223
.10	1.1513	1.1510	1.1855	1.1006	1.0873	
.15	1.2669	1.2668	1.3278	-	1.1614	
.20	1.4051	1.4051	1.4565	1.2914	1.2498	
.30	1.4060	1.4064	1.4920	1.3498	1.2889	

3.2 Three-Dimensional Studies: Homogeneous Problem

As stated in section 2.6, the NSADE method has been chosen as the method to be extended to treat three-dimensional geometries. Four numerical experiments have been designed to test this method. The geometries and compositions for these experiments are presented in Appendix C. The results from the first of these, the only homogeneous problem, are presented in this section. All of the numerical results from three-dimensional experiments have been obtained from
a computer code called 3DKIN, which is discussed in Appendices D and E .

Again, it must be stressed that the truncation error discussed in this chapter is the difference between the particular solution under consideration and the exact solution of the semi-discrete equations. In the case of the homogeneous problem, the exact solution can be generated using an eigenvector expansion technique. ${ }^{2}$ The exact solutions cannot be obtained for the other three-dimensional problems. Thus it is assumed that if two successive solutions are generated, one using a time step half of the size of that used to generate the other, and are in good agreement, then the solution generated with the smaller time step represents a "converged" solution.

TEST CASE 1

Geometry and Composition: Configuration 1
Perturbation: Step change, $\Delta \Sigma_{\mathrm{a}}($ group 2$)=-.369 \times 10^{-4}$
This case is a bare, homogeneous cube, 200 cm on a side, with two neutron groups and one precursor group. Ten mesh intervals were used in each direction, and the boundary conditions were homogeneous Dirichlet on all six sides. The perturbation consisted of a uniform step decrease in the thermal group absorption cross section and had a reactivity worth of about 50 cents. Since the geometry is symmetric about the mid-plane in the x -direction, only the right half of the reactor was actually used in the 3DKIN computer runs. It was determined that the half-core and full-core results compared through six significant figures for two different time step sizes.

The results of 3DKIN runs using four different time step sizes at various times in the transient are shown in Table 3.5. The values presented are the thermal group fluxes at the center point of the reactor.

Table 3.5. Test Case 1 Results, Group Two Fluxes at Centerpoint

Time (sec)	$\Delta t=$	3DKIN				EXACT
	.01	.005	.002	.001	.	
.05	.816	.816	.816	.816	.816	
.10	.920	1.043	1.116	1.124	1.127	
.15	1.151	1.361	1.403	1.406	1.407	
.20	1.454	1.651	1.660	1.660	1.660	
.30	1.782	1.904	1.892	1.890	1.890	
.40	2.388	2.328	2.294	2.289	2.288	
	2.840	2.671	2.628	2.622	2.620	

Table 3.5 demonstrates the rapid convergence of the NSADE method with the exponential transformation. With a time step of .002 sec , the solution was only $.3 \%$ in error at .4 second, during which time the thermal flux had more than tripled. That this convergence is approximately of order h^{2} is displayed in Fig. 3.1, where the percentage truncation error is plotted as a function of h at 0.4 second into the transient.

The results that are tabulated in Table 3.5 are presented in graphical form in Fig. 3.2 to illustrate an interesting characteristic of this exponentially-transformed method. The semi-discrete equations are a coupled set of first-order differential equations. As such, any change in $\vec{\psi}$ at time t depends only on the values of $\vec{\psi}$ and \underline{A} at that time

Fig. 3.1. Convergence Rate for Test Case 1

Fig. 3.2. Test Case 1 Results, Centerline Thermal Flux
and not on the past history of the system. By adding the exponential transformation and computing $\underline{\Omega}$ to be used at t_{N} based on the change in the solution between $t_{\mathrm{N}-1}$ and t_{N}, the behavior of the solution at ${ }^{\mathrm{t}} \mathrm{N}$ has been coupled to its rate of change. The system now behaves in the fashion of a second order system in that it builds up "inertia" during a transient. Figure 3.2 clearly displays the damped sinusoidal oscillations superimposed on the true solution which are characteristic of such a system. The amplitude of the "overshoot" is clearly a function of h and decreases as order h^{2}.

When material properties are constant or changing in a smooth fashion, this "inertia" enables the time step to be increased without affecting the accuracy seriously. However, when properties or their rates of change are abruptly changed, such as at the end of a ramp insertion of reactivity, time step sizes must be decreased in order to overcome the "inertia."

3.3 Three-Dimensional Studies: Space-Dependent Problems

The three test cases presented in this section are all spatiallydependent problems. Test Cases 2 and 3 are three-dimensional versions of problems already used to test some or all of the methods discussed in section 2.5. Test Case 4 is a new problem, designed with the idea of simulating the withdrawal of a cluster of control rods from two adjacent subassemblies in a medium-sized pressurized-water power reactor. Taken together, these problems provide a stern test of the general applicability of the NSADE method.

TEST CASE 2

Geometry and Composition: Configuration 2
Perturbation: Ramp change, $\Delta \Sigma_{\mathrm{a}}$ (material 1, group 2) $=-.0045(t / 0.2)$ for $0 \leqslant t \leqslant 0.2 \mathrm{sec}$
$\Delta \Sigma_{\mathrm{a}}($ material 1, group 2) $=-.0045$ for $\mathrm{t}>0.2 \mathrm{sec}$

The original two-dimensional version of this problem has been used to test several two-dimensional solution methods. $1,23,17,15$ The original plane was 160 cm square, with a central blanket area surrounded by a highly-enriched seed area. It was in turn surrounded by another blanket region. In three dimensions, this configuration was made 112 cm thick in the z -direction, and a blanket of 24 cm thickness added to the top and bottom. Thus, the overall reactor is cubical, 160 cm on a side. It has two neutron groups and one delayed precursor group.

The four regions containing material 1 , each $32 \times 32 \times 124 \mathrm{~cm}$ in size, which were perturbed are located symmetrically with respect to the central x-plane. Only the right half of the cube was considered, with a homogeneous Neumann boundary condition imposed at the exposed mid-plane to preserve symmetry. With $8.0-\mathrm{cm}$ mesh spacings in each direction, a total of 4841 mesh points were needed to represent the half-reactor. The initial flux distribution and eigenvalue were computed with the steady state option of 3DKIN.

Test Case 2 was carried out to 0.3 second into the transient for time step sizes of .001 sec and .002 sec . The results of the 3DKIN runs
for these two time step sizes are presented in Tables 3.6, 3.7, and 3.8. The values tabulated are the thermal flux values. The z-planes 3 and 19 are 8 cm below and above the core, respectively, while z-plane 11 is the central z-plane. Point $(6,6, z)$ is on the central z-axis of one of the perturbed regions. Values at points ($6,16, z$) are not shown in these tables. However, they agreed with corresponding values at points ($6,6, z$) to better than 0.05% for every z value, thus preserving symmetry.

Table 3.6. Test Case 2 Results, z-Plane 3

Time (sec)	$\Delta \mathrm{t}=$	Point (1, 11, 3)		Point (6, 6, 3)	
		.002	.001	.002	.001
.05		.392	.347	.245	.245
.10		.484	.483	.350	.349
.15		.610	.619	.446	.454
.20		.853	.867	.633	.643
.25		1.094	.994	.811	.737
.30		.998	.991	.740	.735

Table 3.7 Test Case 2 Results, z-Plane 11

Time (sec)	$\Delta t=$	Point $(1,11,11)$		Point (6, 6, 11)	
	.002	.001	.002	.001	
.0	1.279	1.279	.422	.422	
.05		1.442	1.467	.487	.496
.10	1.784	1.780	.617	.616	
.15	2.248	2.284	.796	.809	
.20	3.149	3.197	1.144	1.162	
.25	4.035	3.666	1.465	1.330	
.30	3.679	3.655	1.334	1.326	

Table 3.8. Test Case 2 Results, z-Plane 19

$\begin{aligned} & \text { Time } \\ & (\mathrm{sec}) \\ & \hline \end{aligned}$	$\Delta t=$	Point (1,11,19)		Point (6,6,19)	
		. 002	. 001	. 002	. 001
. 0		. 347	. 347	. 245	. 245
. 05		. 388	. 395	. 278	. 283
. 10		. 480	. 479	. 348	. 348
. 15		. 605	. 615	. 444	. 452
. 20		. 847	. 860	. 630	. 640
. 25		1.086	. 987	. 808	. 734
. 30		. 991	. 984	. 737	. 732

The results at a Δt of .001 indicate that the thermal flux grew by factors of 2.86 and 3.16 at the reactor center and in the center of the perturbed regions, respectively. The group one fluxes grew by practically equal amounts. Thus, spatial and energy spectral changes were minimal, as would be expected for this symmetric problem.

From Tables 3.6 and 3.8 , it is seen that differences of up to 1% exist in the results at planes 3 and 19, when they should be equal. After these runs were made, an error was discovered in 3DKIN which caused several coefficients for points on z-plane 18 to be incorrectly computed. This was the cause of the slight retardation in growth in z-plane 19 flux values. With the error corrected, a later run was carried out to .10 sec and gave results symmetric to 4 significant figures in the z-direction. The runs shown here were not repeated because of the cost of the $2-1 / 2$ hours of computer time required to do so.

At $\Delta t=.002 \mathrm{sec}$, the solution considerably overshot the true solution during time $0.2 \leqslant \mathrm{t} \leqslant 0.3 \mathrm{sec}$. To overcome this damped oscillatory behavior when the run with $\Delta t=.001 \mathrm{sec}$ was made, the time step was decreased to .0005 sec for .01 sec just as the ramp was cut off. This was largely successful as the solution then overshot by only a very small amount. Closer examination of the solution at several times in the range $0.2 \leqslant t \leqslant 0.3$ revealed that the peak of the overshoot occurred at. 25 sec and that the solution was growing smoothly and asymptotically by $t=0.3 \mathrm{sec}$. It is believed that the solution shown here for $\Delta t=.001 \mathrm{sec}$ has converged to less than 1% error at all times except perhaps at the peak of the overshoot. A run made out to .10 sec with $\Delta \mathrm{t}=.0005 \mathrm{sec}$ supported this statement for that part of the transient.

TEST CASE 3

Geometry and Composition: Configuration 3
Perturbation: Ramp change, $\Delta \Sigma_{\mathrm{a}}$ (material 4, group 4) $=-.0035(\mathrm{t} / 0.2$)
for $0 \leqslant t \leqslant 0.2 \mathrm{sec}$
$\Delta \Sigma_{\mathrm{a}}($ material 4, group 4$)=-.0035$
for $t \geqslant 0.2 \mathrm{sec}$
As mentioned in section 3.1, this problem, with four neutron groups and one precursor group, is a three-dimensional version of a problem used to compare several methods in two dimensions. Specifically, the original $160 \mathrm{~cm} \times 80 \mathrm{~cm}$ plane was made 120 cm thick in the z-direction. However, the bottom 56 cm of the region with material 4
was changed to material 3 (which was identical to material 4 before the perturbation). Thus, only the top 64 cm was perturbed for this transient.

This problem is asymmetric in all three dimensions so that the full reactor with homogeneous Dirichlet boundary conditions had to be considered. With $8.0-\mathrm{cm}$ mesh spacings, a total of 3696 mesh points were used.

Material 1 is a highly enriched material so that group one fluxes were initially more than five times higher than group four fluxes in it. On the other hand, materials 3 and 4 are strong moderators so that the group four flux peaked in them. Given these spectral variations in the initial condition, which was computed with 3DKIN, and the asymmetric perturbation, it was expected that large spatial and energy spectrum changes would result.

The results of runs made on 3DKIN out to 0.3 second with time step sizes of .002 and .001 sec are shown in Tables 3.9 through 3.12. Point ($3,9, z$) is near the center of the highly-enriched core, while point $(12,3, z)$ is in the center of the perturbed region for $z>56 \mathrm{~cm}$. z-plane 4 is the mid-plane of the unperturbed lower portion, while z-plane 12 is near the center of the upper 64 cm region.

As expected, this transient resulted in rather severe spectral changes. At point $(3,9,4)$, the group one and group four fluxes grew by only 6%. Meanwhile, the group one and group four fluxes at point $(12,3,12)$ grew by 11% and 45%, respectively. The solution overshot slightly at the end of the ramp for $\Delta t=.002 \mathrm{sec}$, but practically all traces of overshoot were wiped out during the run with $\Delta t=.001 \mathrm{sec}$.

Table 3.9. Test Case 3 Results, z-Plane 4, Group 1

Time (sec)	$\Delta t=$	Point $(3,9,4)$		Point (12, 3, 4)	
	.002	.001	.002	.001	
.05		1.402	1.402	.384	.384
.10	1.416	1.419	.389	.390	
.15		1.457	1.438	.396	.396
.20	1.487	1.489	.402	.403	
.25	1.487	1.484	.411	.410	
.30	1.484	1.486	.410	.410	

Table 3.10. Test Case 3 Results, z-Plane 4, Group 4

Time (sec)	$\Delta t=$	Point $(3,9,4)$		Point (12, 3, 4)	
	.002	.001	.002	.001	
.0		.112	.112	2.742	2.742
.05		.114	.114	2.775	2.781
.10		.115	.115	2.825	2.824
.15		.117	.117	2.867	2.872
.20		.119	.119	2.931	2.928
.25	.119	.119	2.935	2.930	
.30	.119	.119	2.928	2.934	

Table 3.11. Test Case 3 Results, z-Plane12, Group 1

Time (sec)	$\Delta t=$	Point $(3,9,12)$		Point (12,3,12)	
	.002	.001	.002	.001	
.05		1.772	1.772	.486	.486
.10		1.791	1.795	.496	.497
.15		1.845	1.820	.510	.509
.20	1.883	1.881	.522	.523	
.25	1.885	1.881	.539	.538	
.30		1.881	1.883	.538	.539

Table 3.12. Test Case 3 Results, z-Plane 12, Group 4

Time (sec)	$\Delta t=$	Point $(3,9,12)$		Point (12, 3, 12)	
	.002	.001	.002	.001	
.05	.142	.142	3.467	3.467	
.10	.144	.144	3.755	3.764	
.15	.146	.146	4.114	4.112	
.20	.148	.148	4.510	4.521	
.25	.151	.151	5.010	5.008	
.30	.151	.151	5.026	5.012	
		.151	.151	5.012	5.019

The results at the two time step sizes are in good agreement and are thought to represent a good approximation to the exact solution.

TEST CASE 4

Geometry and Compositions: Configuration 4
Perturbation: Ramp changes, $\Delta \Sigma_{\mathrm{a}}$ (material 5, group 2) $=-.004$ ($t / .08$) for $0 \leqslant t \leqslant 0.08 \mathrm{sec}$
$\Delta \Sigma_{\mathrm{a}}($ material 5, group 2$)=-.004$ for $t \geqslant 0.08 \mathrm{sec}$
$\Delta \Sigma_{\mathrm{a}}($ material 6, group 2$)=0$ for $0 \leqslant t \leqslant 0.08 \mathrm{sec}$ $\Delta \Sigma_{\mathrm{a}}$ (material 6, group 2) $=-.004\left(\frac{\mathrm{t}-.08}{.08}\right)$ for $0.08 \leqslant t \leqslant 0.16 \mathrm{sec}$
$\Delta \Sigma_{\mathrm{a}}($ material 6, group 2$)=-.004$ for $t>0.16 \mathrm{sec}$

$$
\begin{aligned}
& \Delta \Sigma_{\mathrm{a}}(\text { material } 7 \text {, group } 2)=0 \\
& \quad \text { for } 0 \leqslant t \leqslant 0.16 \mathrm{sec} \\
& \Delta \Sigma_{\mathrm{a}}(\text { material } 7, \text { group } 2)=-.004\left(\frac{\mathrm{t}-.16}{.08}\right) \\
& \quad \text { for } 0.16 \leqslant \mathrm{t} \leqslant 0.24 \mathrm{sec} \\
& \Delta \Sigma_{\mathrm{a}}(\text { material } 7, \text { group } 2)=-.004 \\
& \quad \text { for } \mathrm{t} \geqslant 0.24 \mathrm{sec}
\end{aligned}
$$

This problem represents an attempt to simulate the withdrawal of control rods from two adjacent subassemblies in a medium-sized pressurized-water power reactor with two neutron groups and one precursor group. The central core zone consists of 16 square subassemblies, each 30 cm on a side, containing 2.8% enriched U^{235}. Four subassemblies of the same size, but containing 3.3% enriched U^{235}, are located along each side of the inner zone. The four $30-\mathrm{cm}-$ square corners plus a $20-\mathrm{cm}$-thick band around the entire reactor consist of a water and steel reflector. The active core height is 240 cm , with a reflector of $30-\mathrm{cm}$ thickness located above and below it.

The two subassemblies which were perturbed were adjacent to each other with the x mid-plane passing between them. Thus, only the right half of the reactor was considered for the computer calculations. A spatial mesh with $13 \times 25 \times 20$ mesh points was used. A homogeneous Neumann boundary condition was imposed on the exposed mid-plane of the reactor.

The rod withdrawal was simulated by linearly decreasing the thermal absorption cross section over three successive time zones of 0.08 sec length. During the first zone, only the bottom third of the
subassembly was perturbed. The middle and upper thirds followed successively in the next two zones. With the full perturbation inserted, the reactor had about fifty cents of excess reactivity.

The thermal group fluxes at three heights in the core, both in the center of the perturbed subassembly and in the center of the subassembly located symmetrically across the y mid-plane from it, are tabulated in Tables 3.13 through 3.15. Runs were made on 3DKIN with time steps of .002 and .001 sec . The results for $\Delta t=.001 \mathrm{sec}$ are also plotted on Figs. 3.3 and 3.4.

Table 3.13. Test Case 4 Results, z-Plane 5

Time (sec)	$\Delta t=$	Point (1,5,5)		Point (1, 21, 5)	
	.002	.001	.002	.001	
.04	.291	.291	.291	.291	
.08	.296	.299	.364	.369	
.12	.313	.313	.492	.493	
.16	.330	.337	.556	.567	
.20	.376	.381	.684	.694	
.24	.439	.415	.803	.768	
.28	.439	.442	.819	.828	
.32	.466	.456	.879	.857	
.35	.463	.457	.870	.859	

Table 3.14. Test Case 4 Results, z-plane 10

Time (sec)	$\Delta t=$	Point $(1,5,10)$		Point (1, 21, 10)	
	.002	.001	.002	.001	
.04	.547	.547	.547	.547	
.08	.552	.559	.570	.577	
.12	.581	.579	.625	.624	
.16	.615	.625	.821	.838	
.20	.696	.706	1.212	1.236	
.24	.816	.773	1.473	1.401	
.28	.824	.828	1.544	1.557	
.32	.874	.855	1.660	1.616	
.35	.868	.857	1.642	1.619	

Table 3.15. Test Case 4 Results, z-Plane 16

Time (sec)	$\Delta t=$	Point (1, 16$)$		Point (1, 21, 16)	
	.002	.001	.002	.001	
.04	.291	.291	.291	.291	
.08	.292	.297	.294	.298	
.12	.306	.305	.309	.308	
.16	.324	.328	.345	.349	
.20	.365	.369	.416	.422	
.24	.431	.407	.606	.581	
.28	.438	.441	.806	.820	
.32	.466	.456	.877	.858	
.35	.462	.457	.868	.858	

Fig. 3.3. Test Case 4 Results, Point (1, 5, z)

Fig. 3.4. Test Case 4 Results, Point (1, 21, z)

As expected, this perturbation caused severe flux tilting in the reactor. The flux at point $(1,21,10)$ grew by a factor of 2.97 during .35 sec , while the flux at point $(1,5,10)$ grew by only a factor of 1.57 . Likewise, the flux in the upper portion of the core lagged that in the lower third considerably early in the transient, but caught up nicely within.. 10 sec after the perturbation had become symmetric in the z-direction.

As in earlier cases, the solution at $\Delta t=.002$ behaved in a damped oscillatory fashion at the end of the ramp, due to the frequency calculation. Again, these oscillations disappeared when Δt was halved to .001 sec and halved again for .02 sec just after the end of the ramp. Based on the smoothness of the solution with $\Delta t=.001 \mathrm{sec}$ and the relatively good agreement of the two solutions except at the end of the ramp, it is again believed that the solution obtained with $\Delta t=.001 \mathrm{sec}$ is a good approximation to the exact solution.

Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

To be a truly useful numerical technique, a proposed method must treat difficult, practical problems successfully with reasonable computational, costs, as well as possess desirable analytical properties. It has been concluded in section 2.4 that the NSADE method satisfies certain analytical criteria necessary for success. This chapter summarizes the practical experience gained from the several numerical experiments presented in Chapter 3.

4.1 Characteristics of the Numerical Results

Several important characteristics are easily observed in the numerical experiments. The property of truncation error behavior for the NSADE method has been shown to be approximately of order h^{2}, as predicted by the theoretical analysis, for the one problem where it could be accurately measured.

Closely related to truncation error is accuracy. Over several test cases, the NSADE method has been seen to give acceptably accurate solutions at reasonable time step sizes. It is unfortunate that solutions with even smaller Δt 's are not available for Test Cases 2,3 , and 4 to further verify the accuracy of the solutions shown. Given the relatively slow computer available for numerical experiments for this thesis, this was just too costly.

It is granted that the time steps required by the NSADE method are probably an order of magnitude smaller than those which would be required for similar accuracy by a direct solution technique where the A matrix is not split before inversion. However, it is difficult to imagine any such method, which would necessarily require an iterative technique to carry out the inversion process, requiring less than an order of magnitude more, computational effort per time step.

The time step size used by the NSADE method is limited by two factors. These generally come into play during different parts of a transient. During that part of the transient where reactivity is being inserted, usually by an externally-controlled factor such as control rod motion, the time steps are initially limited by the rate of reactivity insertion. This is necessary so that truncation error is controlled while the frequencies used in the exponential transformation are "seeking" the rates of flux change in the various regions of the reactor. Once this has happened, the time steps can be gradually increased in size with little effect on accuracy, so long as the rate of reactivity change remains fairly constant.

During any part of the transient when the rate of reactivity change is suddenly altered, the time steps must be decreased in size. This is necessary if accuracy is to be retained while the frequencies again "seek" the new rates of flux change. This must be done to control the damped oscillations that arise if a time step too large is used through this part of the transient.

A rule of thumb which was first offered for the NSADE method in two dimensions ${ }^{1}$ and which has been found to hold approximately for
three dimensions relates the truncation error to the rate of solution change over one time step. A 1% change in the solution over each time step generally produces about 1% error in about 100 steps. For a given problem, this implies that about 100 steps are required to predict a doubling in the flux to 1% accuracy.

The numerical stability of the NSADE method has never been found to be a limiting factor in two- and three-dimensional calculations. The oscillations which plague the solution during periods of abrupt change in the rate of reactivity change affect the accuracy of the solution temporarily. They quickly damp out, however, so that the solution returns to the correct rate of change. This correct asymptotic behavior is a result of the exponential transformation. The time step sizes to be used for a particular problem are thus primarily limited by the accuracy desired in the solution.

One great advantage of the NSADE method is its computational ease. All matrix inversions required by it are simple backsubstitutions. Because of this, computational times per time step for a range of problems vary approximately linearly with the number of mesh points and neutron groups. It has thus been found possible ${ }^{1}$ to derive an expression of the form

$$
\text { Time } / \text { Step }=\alpha \mathrm{N}(\mathrm{G}+\beta \mathrm{I})
$$

which relates the time necessary to advance the solution over one time step, Δt, to the number of unknowns in the problem. Here, N is the number of mesh points in the problem, and G and I are the number of neutron and precursor groups, respectively.

Listed in Table 4.1 below are running times per step required by 3DKIN for four different problems. The computer used for these runs was an IBM 360/65 running under 0S/360-MVT. All unknowns were stored in fast memory.

Table 4.1. Computational Times

Mesh Points	Groups	Precursors	Seconds/Step
1331	2	1	3.09
3696	4	1	16.0
4851	2	1	13.3
6500	2	1	18.3

Since only problems with one precursor are available, a value of $\beta=0.3$ will be used as determined in previous two-dimensional work. From Table 4.1, two values of α are obtained:

$$
\begin{array}{ll}
\alpha=1.2 \times 10^{-3} & \text { for } \mathrm{G}=2 \\
\alpha=1.0 \times 10^{-3} & \text { for } \mathrm{G}=4
\end{array}
$$

As G increases, the work per group decreases in 3DKIN since only one frequency is computed for all neutron groups at each mesh point.

4.2 Applicability of the NSADE Method

The numerical experiments presented in Chapter 3 offer strong evidence that the NSADE method is capable of treating a general class of transients in three spatial dimensions with reasonable time step sizes. These include difficult sub-prompt critical transients which
result in significant spatial flux tilting and energy spectrum changes.
It is obvious that it would not be feasible to solve problems of a really practical size with the computer which was used for the numerical experiments for this thesis. Table 4.2 compares the floating-point add time (for 64 -bit words) of the IBM $360 / 65$ to those of several of the fastest computer systems currently in use or being installed. An extrapolation from the relation developed in the last section for the IBM $360 / 65$ should be approximately correct if it is based on the information in the table.

Table 4.2. Comparison of Computing Speeds

Computer Model	Floating Point Add Time (microseconds)
IBM $360 / 65$	1.8
CDC 6600	0.4
IBM $370 / 195$	0.11
CDC 7600	0.1
CDC STAR	0.02

It seems reasonable to expect that increases in computing speeds over the IBM $360 / 65$ by factors of at least 16,18 , and 50 , respectively, can be expected from the last three machines listed in Table 4.2. These last three machines can be obtained with 5×10^{5} words or more of either fast core storage or slower extended core storage which, through clever programming, slows down computing speed only slightly. Thus, a program like 3DKIN could treat a problem with three neutron groups, one
precursor group, and 5×10^{4} or more spatial mesh points with all unknowns stored in fast or extended core storage, provided an excessive amount of geometrical detail were not specified for the problem.

Consider, then, the time which would be required on a machine which is 20 times faster than the IBM $360 / 65$. Table 4.2 gives assurance that such machines are being built. A reasonable estimate for a problem with three neutron groups, one precursor group, and 5×10^{4} mesh points on this machine would be

$$
\begin{aligned}
\text { time } / \text { step } & =\left(1.1 \times 10^{-3}\right)(.05)\left(5 \times 10^{4}\right)(3+.3) \mathrm{sec} \\
& =9.1 \mathrm{sec} .
\end{aligned}
$$

Two hours of computing time would traverse about 800 time steps, enough to describe many interesting transients.

One goal set for the direct solution technique developed in this thesis has been that it provide benchmark solutions for difficult, practical problems. Solutions from the more rapid but more approximate synthesis techniques can then be compared against these. At the same time, the cost of obtaining these benchmark solutions must not be unduly great. The NSADE method appears to satisfy both of these criteria.

More importantly, the NSADE method is a practical method for the routine solution of several classes of problems, given that a very fast computer is available. One such class includes survey calculations where fine spatial detail is not required. Since more effort is required to prepare a problem for solution by a space-time synthesis
method than for solution by the NSADE method, the synthesis methods lose much of their speed advantage when a number of different problems are to be run during a survey.

Space-time synthesis methods also have difficulty in treating problems where severe spatial flux tiltings and energy spectrum changes result. Selection of trial functions for such problems requires much insight and intuition. In contrast, the NSADE method requires only an initial flux distribution to start such a problem. Little insight is required as to how the solution will behave during the transient.

4.3 Limitations of the NSADE Method

The NSADE method is a more costly method than are space-time synthesis methods for a number of problems of interest to reactor designers. Once a reactor design has been finalized, there are a number of operating transients which need to be analyzed with fine spatial detail. Here, space-time synthesis methods are capable of providing sufficiently accurate solutions at a significantly lower cost.

Another factor may limit the effectiveness of the NSADE method on some current computing systems. Because this method tends to accumulate errors during the first few steps of a transient, a very accurate initial flux distribution and eigenvalue estimate must be used to start the calculations. All initial conditions used in this thesis were accurate to better than one part in 10^{7} in the flux distribution and one part in 10^{8} in the eigenvalue. Not only is it costly to obtain such an accurate initial condition, but it also is necessary to be able to carry 10 or more significant digits in all calculations. It would be difficult
to utilize this method on any computing system which did not have floating-point capabilities which carry at least 10 significant decimal digits.

4.4 Recommendations for Further Work

The NSADE method can be easily extended to $\mathrm{r}-\theta-\mathrm{z}$ cylindrical geometry and to hexagonal-z geometry. Such extension would greatly increase the utility of the method in treating problems associated with several types of reactors.

It has been mentioned that it is possible to increase the time step size during certain parts of a transient, while it is necessary to decrease it during other parts if accuracy is to remain fairly constant throughout the transient. Algorithms which would automate this time step size variation should be investigated. It is probable that the rate of change of the frequencies, $\underline{\Omega}$, would provide an indication of when the time step size should be changed.

A final recommendation concerns the selection of the frequencies. There may well be algorithms which would select frequencies which would allow even larger time steps to be taken. This area of investigation deserves a great deal of attention.

REFERENCES

1. William H. Reed and K. F. Hansen, "Alternating Direction Methods for Reactor Kinetics Equations," Nucl. Sci. Eng. 41, 431 (1970).
2. William H. Reed, "Finite Difference Techniques for the Solution of the Reactor Kinetics Equations," Sc. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, MIT-NE-100 (May, 1969).
3. Richard S. Varga, Matrix Iterative Analysis, Chap. 6, PrenticeHall, Englewood Cliffs, N. J. (1962).
4. A. F. Henry, "Space-Time Reactor Kinetics," 22.243 Course Notes, Massachusetts Institute of Technology (1969), unpublished.
5. S. Kaplan, O. J. Marlowe, and J. Bewick, "Application of Synthesis Techniques to Problems Involving Time Dependence," Nucl. Sci. Eng. 18, 163 (1964).
6. A. F. Henry, "The Application of Reactor Kinetics to the Analysis of Experiments," Nucl. Sci. Eng. 3, 52 (1958).
7. K. Ott, "Quasistatic Treatment of Spatial Phenomena in Reactor Dynamics," Nucl. Sci. Eng. 26, 563 (1966).
8. D. A. Meneley, K. Ott, and E. S. Wiener, "Space-Time Kinetics, the QX1 Code," ANL-7310, Argonne National Laboratory (1967).
9. J. B. Yasinsky and S. Kaplan, "Synthesis of Three-Dimensional Flux Shapes Using Discontinuous Sets of Trial Functions," Nucl. Sci. Eng. 28, 426 (1967).
10. J. B. Yasinsky, "Combined Space-Time Synthesis with Axially Discontinuous Trial Functions," WAPD-TM-736, Bettis Atomic Power Laboratory (1967).
11. J. B. Yasinsky, "The Solution of the Space-Time Neutron Group Diffusion Equations by a Time-Discontinuous Synthesis Method," Nucl. Sci. Eng. 29, 381 (1967).
12. E. L. Wachspress and M. Becker, "Variational Multichannel Synthesis with Discontinuous Trial Functions," KAPL-3095, Knolls Atomic Power Laboratory (1965).
13. W. M. Stacey, Jr., "A Variational Multichannel Space-Time Synthesis Method for Nonseparable Reactor Transients," Nucl. Sci. Eng. 34, 45 (1968).
14. K. F. Hansen and S. R. Johnson, "GAKIN, A Program for the Solution of the One-Dimensional, Multigroup, Space-Time Dependent Diffusion Equations," GA-7543, General Atomic (1967).
15. W. R. Cadwell, A. F. Henry, and A. J. Vigilotti, "WIGLE A Program for the Solution of the Two-Group, Space-Time Diffusion Equations in Slab Geometry," WAPD-TM-416, Bettis Atomic Power Laboratory (1964).
16. J. B. Yasinsky, M. Natelson, and L. A. Hageman, "TWIGL A Program to Solve the Two-Dimensional, Two-Group, SpaceTime Neutron Diffusion Equations with Temperature Feedback," WAPD-TM-743, Bettis Atomic Power Laboratory (1968).
17. W. T. McCormick, Jr., "Numerical Solution of the TwoDimensional Multigroup Kinetics Equations," Ph. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, MIT-NE-99 (May, 1969).
18. B. K. Larkin, "Some Stable Explicit Difference Approximations to the Diffusion Equation," Math. Comp. 18, 196 (1964).
19. S. J. Kast, "Solution of the Reactor Kinetics Equations in Two Dimensions by Finite Difference Methods," S. M. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology (August, 1970).
20. Richard S. Varga, op. cit., Chap. 8.
21. D. W. Peaceman and H. H. Rachford, Jr., "The Numerical Solution of Parabolic and Elliptic Differential Equations," J. Soc. Ind. Appl. Math. 3, 28 (1955).
22. L. A. Hageman and J. B. Yasinsky, "Comparison of AlternatingDirection Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations," Nucl. Sci. Eng. 38, 8 (1969).
23. A. L. Wight, K. F. Hansen, and D. R. Ferguson, "Application of Alternating-Direction Implicit Methods to the Space-Dependent Kinetics Equations," Nucl. Sci. Eng. 44, 239 (1971).
24. A. L. Wight, "The Application of Alternating-Direction Implicit Methods to the Space-Dependent Kinetics Equations," Ph. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology (August, 1969).
25. Eugene L. Wachspress, Iterative Solution of Elliptic Systems, Chap. 3, Prentice-Hall, Englewood Cliffs, N. J. (1966).
26. Robert D. Richtmeyer and K. W. Morton, Difference Methods for Initial-Value Problems, Chap. 3, John Wiley and Sons, New York (1967).
27. L. A. Hageman, "Numerical Methods and Techniques Used in the Two-Dimensional Neutron-Diffusion Program PDQ-5," WAPD-TM-364, Bettis Atomic Power Laboratory (1963).

APPENDICES

Appendix A

THE SEMI-DISCRETE FORM OF THE SPACE-DEPENDENT REACTOR KINETICS EQUATIONS

The differential form of the space-dependent reactor kinetics equations has been given in Eqs. (1.1). These equations are repeated here for the sake of clarity.

$$
\begin{align*}
& \frac{1}{v_{g}} \frac{d \phi_{g}(\vec{r}, t)}{d t}= \stackrel{\rightharpoonup}{\nabla} \cdot D_{g}(\stackrel{\rightharpoonup}{r}, t) \vec{\nabla} \phi_{g}(\vec{r}, t)+\sum_{g^{\prime}=1}^{G} \Sigma_{g g^{\prime}}(\vec{r}, t) \phi_{g^{\prime}}(\vec{r}, t) \\
&+\sum_{i=1}^{I} f_{g i} C_{i}(\vec{r}, t) \quad(1 \leqslant g \leqslant G) \\
& \frac{{d C_{i}}(\stackrel{\rightharpoonup}{r}, t)}{d t}=-\lambda_{i} C_{i}(\vec{r}, t)+\sum_{g^{\prime}=1}^{G} p_{i g^{\prime}}(\stackrel{\rightharpoonup}{r}, t) \phi_{g^{\prime}}(\vec{r}, t) \tag{1.1}
\end{align*}
$$

All of the symbols used here have been defined in section 1.2.
The discretization is carried out here in rectangular Cartesian coordinates. The region of interest is a rectangular parallelepiped. The origin of coordinates is placed in the lower front left corner of the parallelepiped, as shown in Fig. A.1.

The three-dimensional mesh is created by passing a series of planes, each of which is perpendicular to one of the three axes, entirely through the parallelepiped. The points of intersection of these planes, which lie within or on the boundaries of the parallelepiped, form the mesh. It is assumed that six of the planes are

Fig. A.1. Coordinate System
coincident with the six faces so that planes of mesh points lie on the six faces. If a total of L, J, and K planes are passed perpendicular to the $\mathrm{x}-, \mathrm{y}-$, and z -axis, respectively, there are a total of $\mathrm{L} \times \mathrm{J} \times \mathrm{K}$ points in the mesh within or on the boundaries of the parallelepiped.

Figures A.2a and A.2b depict, respectively, planes perpendicular to the z-axis and y-axis which pass through mesh point $(1, j, k)$.

Fig. A.2a. Plane Perpendicular to z-Axis at ($1, j, k$)

Fig. A.2b. Plane Perpendicular to y -Axis at ($1, \mathrm{j}, \mathrm{k}$)

The broken lines lie exactly halfway between the solid mesh lines. The eight octants which touch on point ($1, j, k$) are numbered as shown above. Octants 1, 2, 3, and 4 lie below the z-plane passing through point ($1, j, k$), while octants $5,6,7$, and 8 lie above it.

The discrete equations for point ($\mathrm{i}, \mathrm{j}, \mathrm{k}$) are obtained by integrating Eqs. (1.1) over the volume contained within $x_{1}-h_{x}^{-} / 2 \leqslant x \leqslant x_{1}+h_{x}^{+} / 2$, $y_{j}-h_{y}^{-} / 2 \leqslant y \leqslant y_{j}+h_{y}^{+} / 2$, and $z_{k}-h_{z}^{-} / 2 \leqslant z \leqslant z_{k}+h_{z}^{+} / 2$. It is assumed that the material within each octant is homogeneous. In the derivation that follows, superscripts on material constants denote the octants in which the materials lie.

$$
\begin{align*}
& \frac{1}{v_{g}} \frac{d}{d t} \int_{z_{k}-h_{z}^{-} / 2}^{z_{k}+h_{z}^{+} / 2} d z \int_{y_{j}-h_{y}^{-} / 2}^{y_{j}^{+h_{y}^{+} / 2} d y \int_{x_{1}-h_{x}^{-} / 2}^{x_{1}+h_{x}^{+} / 2} d x \phi_{g}(x, y, z, t)=} \\
& \int_{z_{k}-h_{z}^{-} / 2}^{z_{k}+h_{z}^{+} / 2} d z \int_{y_{j}-h_{y}^{-} / 2}^{y_{j}+h_{y}^{+} / 2} d y \int_{x_{1}-h_{x}^{-} / 2}^{x_{1}+h_{x}^{+} / 2} d x \times \\
& \left\{\begin{array}{l}
\vec{\nabla} \cdot D_{g}(x, y, z, t) \vec{\nabla} \phi_{g}(x, y, z, t)+\sum_{g^{\prime}=1}^{G} \Sigma_{g g^{\prime}}(x, y, z, t) \phi_{g^{\prime}}(x, y, z, t)+ \\
\left.\sum_{i=1}^{I} f_{g i} C_{i}(x, y, z, t)\right\},
\end{array}\right.
\end{align*}
$$

With the following definitions,

$$
\begin{align*}
& \phi_{\mathrm{g}, 1, \mathrm{j}, \mathrm{k}}=\frac{1}{\mathrm{~V}_{1, j, k}} \iiint \phi_{\mathrm{g}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dx} \mathrm{dy} \mathrm{dz} \tag{A.2a}\\
& \mathrm{C}_{\mathrm{i}, 1, \mathrm{j}, \mathrm{k}}=\frac{1}{\mathrm{~V}_{1, \mathrm{j}, \mathrm{k}}} \iiint \mathrm{C}_{\mathrm{i}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \mathrm{dx} d y \mathrm{dz} \tag{A.2b}
\end{align*}
$$

$$
\begin{equation*}
\mathrm{V}_{1, \mathrm{j}, \mathrm{k}}=\frac{1}{8}\left(\mathrm{~h}_{\mathrm{x}}^{+}+\mathrm{h}_{\mathrm{x}}^{-}\right)\left(\mathrm{h}_{\mathrm{y}}^{+}+\mathrm{h}_{\mathrm{y}}^{-}\right)\left(\mathrm{h}_{\mathrm{z}}^{+}+\mathrm{h}_{\mathrm{z}}^{-}\right) \tag{A.2c}
\end{equation*}
$$

and

$$
\begin{align*}
\Sigma_{g g^{\prime}, l, j, k}= & \frac{1}{8}\left[h_{x}^{+} h_{y}^{+} h_{z}^{-} \Sigma_{g g^{\prime}}^{1}+h_{x}^{-} h_{y}^{+} h_{z}^{-} \Sigma_{g g^{\prime}}^{2}+h_{x}^{-} h_{y_{z}^{-}}^{-} \Sigma_{g g^{\prime}}^{3}+h_{x}^{+} h_{y}^{-} h_{z}^{-} \Sigma_{g g^{\prime}}^{4}+\right. \\
& \left.h_{x}^{+} h_{y}^{+} h_{z}^{+} \Sigma_{g g^{\prime}}^{5}+h_{x}^{-} h_{y}^{+} h_{z}^{+} \Sigma_{g g^{\prime}}^{6}+h_{x}^{-} h_{y}^{-} h_{z}^{+} \Sigma_{g g^{\prime}}^{7}+h_{x}^{+} h_{y}^{-} h_{z}^{+} \Sigma_{g g^{\prime}}^{8}\right] \tag{A.2d}
\end{align*}
$$

where the integrals are taken over the limits shown in Eq. (A.1), Eq. (A.1) becomes

$$
\begin{align*}
& \frac{\mathrm{V}_{1, j, k}}{\mathrm{v}_{\mathrm{g}}} \frac{\mathrm{~d} \phi_{\mathrm{g}, \mathrm{l}, \mathrm{j}, \mathrm{k}}}{\mathrm{dt}}= \sum_{\mathrm{m}=1}^{6}\left\{\int \mathrm{~d} \overrightarrow{\mathrm{~s}}_{\mathrm{m}} \cdot \mathrm{D}_{\mathrm{g}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \vec{\nabla} \phi_{\mathrm{g}}(\mathrm{x}, \mathrm{y}, \mathrm{z})\right\}+ \\
& \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \Sigma_{\mathrm{gg}}, 1, \mathrm{j}, \mathrm{k} \\
& \phi_{\mathrm{g}^{\prime}, 1, j, k}+ \tag{A.3}\\
& V_{1, j, k} \sum_{\mathrm{i}=1}^{\mathrm{I}} \mathrm{f}_{\mathrm{gi}} C_{i, l}, \mathrm{j}, \mathrm{k}
\end{align*}
$$

In Eq. (A.3), the volume integral for the diffusion terms has been changed to a surface integral, using Gauss' theorem. The summation over m indicates that the integral has been broken into integrals over the six faces of the volume. For illustrative purposes, consider the face which is perpendicular to the x-axis at $x=x_{1}+h_{x}^{+} / 2$. The surface integral for this face is given by

$$
\left.\int_{z-h_{z}^{-} / 2}^{z+h_{z}^{+} / 2} d z \int_{y-h_{y}^{-} / 2}^{y+h_{y}^{+} / 2} d y\left\{D_{g}(x, y, z) \vec{\nabla} \phi_{g}(x, y, z) \cdot \vec{n}_{x}\right\}\right|_{x=x_{1}+h_{x}^{+} / 2}
$$

where \vec{n}_{x} is a unit vector in the positive x-direction.

In order to carry out this integration, the current normal to the face is approximated by a simple finite difference:

$$
\begin{equation*}
\vec{\nabla} \phi_{\mathrm{g}}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \cdot \overrightarrow{\mathrm{n}}_{\mathrm{x}} \doteq \frac{\phi_{\mathrm{g}, 1+1, \mathrm{j}, \mathrm{k}}-\phi_{\mathrm{g}, 1, \mathrm{j}, \mathrm{k}}}{\mathrm{~h}_{\mathrm{x}}^{+}} \tag{A.4}
\end{equation*}
$$

With this approximation, the surface integral representing leakage across the face at $x=x_{1}+h_{x}^{+} / 2$ becomes

$$
\begin{align*}
& \left.\int_{z-h_{z}^{-} / 2}^{z+h_{z}^{+} / 2} d z \int_{y-h_{y}^{-} / 2}^{y+h_{y}^{+} / 2} d y\left\{D_{g}(x, y, z) \vec{\nabla} \phi_{g}(x, y, z) \cdot \vec{n}_{x}\right\}\right|_{x=x_{1}+h_{x}^{+} / 2} \doteq \\
& \quad\left(\frac{\phi_{g, l+1, j, k}}{} h_{x}^{+} \phi_{g, l, j, k}\right. \\
& \left.\quad=R_{g, l+\frac{1}{2}, j, k^{(}}\right) \cdot\left(\frac{D_{g}^{1} h_{y}^{+} h_{z}^{-}}{4}+\frac{D_{g}^{5} h_{y}^{+} h_{z}^{+}}{4}+\frac{D_{g}^{8} h_{y}^{-} h_{z}^{+}}{4}+\frac{D_{g}^{4} h_{y}^{-} h_{z}^{-}}{4}\right) \tag{A.5}
\end{align*}
$$

where $R_{g, l+\frac{1}{2}, j, k}$ has been defined as

$$
\begin{equation*}
R_{g, 1+\frac{1}{2}, j, k}=\frac{1}{4 h_{x}^{+}}\left(D_{g}^{1} h_{y}^{+} h_{z}^{-}+D_{g}^{5} h_{y}^{+} h_{z}^{+}+D_{g}^{8} h_{y}^{-} h_{z}^{+}+D_{g}^{4} h_{y}^{-} h_{z}^{-}\right) \tag{A.6a}
\end{equation*}
$$

By defining five more leakage coefficients as

$$
\begin{align*}
& R_{g, 1-\frac{1}{2}, j, k}=\frac{1}{4 h_{x}^{-}}\left(D_{g}^{2} h_{y}^{+} h_{z}^{-}+D_{g}^{6} h_{y}^{+} h_{z}^{+}+D_{g}^{7} h_{y}^{-} h_{z}^{+}+D_{g}^{3} h_{z}^{-} h_{y}^{-}\right), \tag{A.6b}\\
& R_{g, 1, j+\frac{1}{2}, k}=\frac{1}{4 h_{y}^{+}}\left(D_{g}^{1} h_{x}^{+} h_{z}^{-}+D_{g}^{5} h_{x}^{+} h_{z}^{+}+D_{g}^{6} h_{x}^{-} h_{z}^{+}+D_{g}^{2} h_{x}^{-} h_{z}^{-}\right), \tag{A.6c}\\
& R_{g, 1, j-\frac{1}{2}, k}=\frac{1}{4 h_{y}^{-}}\left(D_{g}^{4} h_{x}^{+} h_{z}^{-}+D_{g}^{8} h_{x}^{+} h_{z}^{+}+D_{g}^{7} h_{x}^{-} h_{z}^{+}+D_{g}^{3} h_{x}^{-} h_{z}^{-}\right), \tag{A.6d}\\
& R_{g, 1, j, k+\frac{1}{2}}=\frac{1}{4 h_{z}^{+}}\left(D_{g}^{8} h_{x}^{+} h_{y}^{-}+D_{g}^{7} h_{x}^{-} h_{y}^{-}+D_{g}^{6} h_{x}^{-} h_{y}^{+}+D_{g}^{5} h_{x}^{+} h_{y}^{+}\right), \tag{A.6e}\\
& R_{g, 1, j, k-\frac{1}{2}}=\frac{1}{4 h_{z}^{-}}\left(D_{g}^{4} h_{x}^{+} h_{y}^{-}+D_{g}^{3} h_{x}^{-} h_{y}^{-}+D_{g}^{2} h_{x}^{-} h_{y}^{+}+D_{g}^{1} h_{x}^{+} h_{y}^{+}\right), \tag{A.6f}
\end{align*}
$$

Eq. (A.3) can be written in its final form as

$$
\begin{align*}
& \frac{d \phi_{g, l, j, k}}{d t}=v_{g}\left\{\frac { 1 } { V _ { l , j , k } } \left[R_{g, l+\frac{1}{2}, j, k}\left(\phi_{g, l+1, j, k}-\phi_{g, l, j, k}\right)+\right.\right. \\
& \left.R_{g, 1-\frac{1}{2}, j, k}\left(\phi_{g, 1-1, j, k}{ }^{-\phi_{g, l, j}}\right)\right)+R_{g, 1, j+\frac{1}{2}, k}\left(\phi_{g, l, j+1, k}-\right. \\
& \left.\left.\phi_{g, 1, j, k}\right)+R_{g, 1, j-\frac{1}{2}, k^{(}}{ }_{g, 1, j-1, k^{-}} \phi_{g, 1, j, k}\right)+ \\
& R_{g, 1, j, k+\frac{1}{2}}\left(\phi_{g, l, j, k+1}{ }^{-\phi_{g, 1, j, k}}\right) \mathrm{R}_{\mathrm{g}, \mathrm{l}, \mathrm{j}, \mathrm{k}-\frac{1}{2}}\left(\phi_{\mathrm{g}, \mathrm{l}, \mathrm{j}, \mathrm{k}-1}-\right. \\
& \left.\left.\phi_{g, 1, j, k}\right)+\sum_{g^{\prime}=1}^{G} \Sigma_{g g^{\prime}, 1, j, k^{\prime}} g_{g^{\prime}, 1, j, k}\right]+ \\
& \left.\sum_{i=1}^{I} f_{g i} C_{i, l, j, k}\right\}, \quad(1 \leqslant g \leqslant G) . \tag{A.7}
\end{align*}
$$

Furthermore, by defining the (LJK) $\times(\mathrm{LJK})$ square matrices

$$
\begin{align*}
& \underline{T}_{g g^{\prime}}=\operatorname{diag}\left\{\mathrm{v}_{\mathrm{g}}{ }_{\mathrm{gg}}{ }^{\prime}, 1, \mathrm{j}, \mathrm{k}\right. \tag{A.8a}\\
& \left./ \mathrm{V}_{1, \mathrm{j}, \mathrm{k}}\right\}, \tag{A.8b}\\
& \underline{\mathrm{F}}_{\mathrm{gi}}=\operatorname{diag}\left\{\mathrm{v}_{\left.\mathrm{g}_{\mathrm{f}}{ }_{\mathrm{gi}}\right\},},\right.
\end{align*}
$$

and $\underline{D}_{\mathrm{g}}$ such that

$$
\begin{align*}
& \underline{D}_{g} \vec{\psi}_{g}=v_{g} \operatorname{col}\left\{\frac { 1 } { V _ { 1 , j , k } } \left[R_{g, 1+\frac{1}{2}, j, k}\left(\phi_{g, 1+1, j, k}{ }^{-\phi_{g}, 1, j, k}\right)+\right.\right. \\
& R_{g, 1-\frac{1}{2}, j, k}\left(\phi_{g, 1-1, j, k^{-}} \phi_{g, 1, j, k}\right)+R_{g, 1, j+\frac{1}{2}, k^{(} \phi_{g, l, j+1, k^{-}}} \\
& \left.\phi_{g, 1, j, k}\right)+R_{g, 1, j-\frac{1}{2}, k}\left(\phi_{g, 1, j-1, k^{-}} \phi_{g, 1, j, k}\right)+ \\
& \begin{array}{l}
R_{g, 1, j, k+\frac{1}{2}}\left(\phi_{g, l, j, k+1} \phi_{g, l, j, k}\right)+ \\
\left.R_{g, l, j, k-\frac{1}{2}}\left(\phi_{g, 1, j, k-1}{ }^{\left.-\phi_{g, l, j, k}\right)}\right]\right\},
\end{array} \tag{A.8c}
\end{align*}
$$

the equations for all mesh points can be combined into the single
matrix equation

$$
\begin{equation*}
\frac{\mathrm{d} \stackrel{\rightharpoonup}{\psi}_{\mathrm{g}}}{\mathrm{dt}}=\underline{D}_{\mathrm{g}} \stackrel{\rightharpoonup}{\psi}_{\mathrm{g}}+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{\mathrm{~T}}_{\mathrm{gg}}{ }^{\prime} \vec{\psi}_{\mathrm{g}^{\prime}}+\sum_{\mathrm{i}=1}^{\mathrm{I}} \underline{F}_{\mathrm{gi}} \overrightarrow{\mathrm{C}}_{\mathrm{i}}, \quad(1 \leqslant \mathrm{~g} \leqslant \mathrm{G}) \tag{1.4}
\end{equation*}
$$

Here, the vectors $\vec{\psi}_{\mathrm{g}}$ and $\overrightarrow{\mathrm{C}}_{\mathrm{i}}$ are formed by ordering the group g fluxes and delayed precursor group i concentrations, respectively, in a consistent manner.

The discrete equation for the $i^{\text {th }}$ delayed precursor concentration at point ($1, \mathrm{j}, \mathrm{k}$) is derived in an analogous fashion. It is given by

$$
\begin{array}{r}
\frac{d C_{i, 1, j, k}}{d t}=-\lambda_{i} C_{i, 1, j, k}+\frac{1}{V_{1, j, k}} \sum_{g^{\prime}=1}^{G} P_{i g^{\prime}, l, j, k^{\phi} g^{\prime}, l, j, k} \\
(1 \leqslant i \leqslant I) \tag{A.9}
\end{array}
$$

where

$$
\begin{align*}
& h_{x}^{+} h_{y}^{-} h_{z}^{-} \nu_{g^{\prime}}^{4} \Sigma_{\mathrm{fg}^{\prime}}^{4}+\mathrm{h}_{\mathrm{x}}^{+} \mathrm{h}_{\mathrm{y}}^{+} \mathrm{h}_{\mathrm{z}}^{+} \nu_{\mathrm{g}^{\prime}}^{5} \Sigma_{\mathrm{fg}}{ }^{5}+\mathrm{h}_{\mathrm{x}}^{-} \mathrm{h}_{\mathrm{y}}^{+} \mathrm{h}_{\mathrm{z}}^{+} \nu_{\mathrm{g}^{\prime}}^{6} \Sigma_{\mathrm{fg}}{ }^{6}+ \\
& \left.\mathrm{h}_{\mathrm{x}}^{-} \mathrm{h}_{\mathrm{y}}^{-} \mathrm{h}_{\mathrm{z}}^{+} \nu_{\mathrm{g}^{\prime}}^{7} \Sigma_{\mathrm{fg}}{ }^{7}+\mathrm{h}_{\mathrm{x}}^{+} \mathrm{h}_{\mathrm{y}}^{-} \mathrm{h}_{\mathrm{z}}^{+} \nu_{\mathrm{g}^{\prime}}^{8} \Sigma_{\mathrm{f} \mathrm{~g}^{\prime}}^{8}\right] . \tag{A.10}
\end{align*}
$$

By defining the (LJK) by (LJK) matrices

$$
\begin{equation*}
\underline{\Lambda}_{\mathrm{i}}=\lambda_{\mathrm{i}} \underline{I} \tag{A.11a}
\end{equation*}
$$

and

$$
\begin{equation*}
\underline{P}_{i g^{\prime}}=\operatorname{diag}\left\{P_{i g^{\prime}, l, j, k} / V_{l, j, k}\right\} \tag{A.11b}
\end{equation*}
$$

Eq. (A.9) for all mesh points can be written in matrix form as

$$
\begin{equation*}
\frac{\mathrm{d} \overrightarrow{\mathrm{C}}_{\mathrm{i}}}{\mathrm{dt}}=-\underline{\Lambda}_{\mathrm{i}} \overrightarrow{\mathrm{C}}_{\mathrm{i}}+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{\mathrm{P}}_{\mathrm{i} \mathrm{~g}^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}} \tag{1.5}
\end{equation*}
$$

Appendix B

THEOREMS

Several theorems and lemmas were offered without proof in Chapter 2. They are restated and proved here.

LEMMA 1. ${ }^{1}$ The operators $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ and $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ are consistent.
Proof. The consistency condition requires that

$$
\begin{equation*}
\left\|\frac{\vec{\theta}(t+h)-\underline{C}_{1}(\underline{\Omega}, \mathrm{~h}) \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0 \tag{B.1}
\end{equation*}
$$

An identical condition must hold for $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$. Only $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ will be treated here. The proof for $\underline{C}_{2}(\underline{\Omega}, \mathrm{~h})$ is identical.

The numerator in Eq. (B.1) can be written in the form

$$
\begin{aligned}
\vec{\theta}(t+h)-\underline{C}_{1} \vec{\theta}(t)= & e^{\underline{\Omega} h}\left[\underline{I}-h\left(\underline{D}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1} \\
& \times\left\{\left[\underline{I}-h\left(\underline{D}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right] e^{-\underline{\Omega} h} \vec{\theta}(t+h)\right. \\
& \left.-\left[\underline{I}+h\left(\underline{D}_{2}+\underline{E}_{3}-\gamma \underline{\Omega}\right)\right]\right\} \vec{\theta}(t)
\end{aligned}
$$

Expanding $e^{\Omega h}$ and $\vec{\theta}(t+h)$ in a Taylor's series gives

$$
\begin{aligned}
\vec{\theta}(t+h)-\underline{C}_{1} \vec{\theta}(t)= & e^{\underline{\Omega}}\left[\underline{I}-\mathrm{h}\left(\underline{D}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1} \\
& \times\left\{\mathrm{h} \frac{\mathrm{~d} \vec{\theta}(\mathrm{t})}{\mathrm{dt}}-\mathrm{h} \underline{\underline{A}} \vec{\theta}(\mathrm{t})+\mathrm{O}\left(\mathrm{~h}^{2}\right)\right\} .
\end{aligned}
$$

It has been stated in section 2.1 that

$$
\underline{M} \vec{\theta}(t)=\underline{A} \vec{\theta}(t)+O\left(\Delta x^{2}\right)+O\left(\Delta y^{2}\right)+O\left(\Delta z^{2}\right)
$$

Therefore,

$$
\begin{align*}
\left\|\frac{\vec{\theta}(t+h)-\underline{C}_{1} \vec{\theta}(t)}{h}\right\|= & \left\|e^{\underline{\Omega} h}\left[\underline{I}-h\left(\underline{D}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\right\| \\
& \times\left\{O(h)+O\left(\Delta x^{2}\right)+O\left(\Delta y^{2}\right)+O\left(\Delta z^{2}\right)\right\} \\
\left\|\frac{\vec{\theta}(t+h)-\underline{C}_{1} \vec{\theta}(t)}{h}\right\| \leqslant & \left\|e^{\underline{\Omega} h}\left[\underline{I}-h\left(\underline{D}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\right\| \tag{B.2}\\
& \times\left\|O(h)+O\left(\Delta x^{2}\right)+O\left(\Delta y^{2}\right)+O\left(\Delta z^{2}\right)\right\|
\end{align*}
$$

Theorem 3, proved later in this Appendix gives assurance that $\left\|e^{\underline{\Omega} h}\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{\mathrm{D}}_{1}+\underline{E}_{4}-\alpha \underline{\Omega}\right)\right]^{-1}\right\|$ is bounded for the L_{2} norm provided the ratios $h / \Delta x^{2}, h / \Delta y^{2}$, and $h / \Delta z^{2}$ are fixed, real constants of any finite size. Calling this bound K allows Eq. (B.2) to be written as

$$
\left\|\frac{\vec{\theta}(\mathrm{t}+\mathrm{h})-\underline{\mathrm{C}}_{1}(\underline{\Omega}, \mathrm{~h}) \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \leqslant \mathrm{K}\|\mathrm{O}(\mathrm{~h})\|
$$

for the L_{2} norm. Thus, $\underline{C}_{1}(\underline{\Omega}, \mathrm{~h})$ satisfies the consistency condition.
LEMMMA 2. ${ }^{1}$ If two operators are consistent, then their product is consistent.

Proof. Let \underline{C}_{1} and \underline{C}_{2} be two consistent operators, i.e.,

$$
\begin{aligned}
& \left\|\frac{\vec{\theta}(\mathrm{t}+\mathrm{h})-\mathrm{C}_{2} \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0 \\
& \left\|\frac{\vec{\theta}(\mathrm{t}+2 \mathrm{~h})-\mathrm{C}_{1} \vec{\theta}(\mathrm{t}+\mathrm{h})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0
\end{aligned}
$$

Since C_{1} is consistent, it has a bounded norm so that

$$
\left\|\underline{C}_{1}\right\|\left\|\frac{\vec{\theta}(\mathrm{t}+\mathrm{h})-\mathrm{C}_{2} \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0
$$

The definition of a norm provides that $\|\underline{C} \overrightarrow{\mathrm{x}}\| \leqslant\|\underline{C}\|\|\overrightarrow{\mathrm{x}}\|$. Therefore,

$$
\left\|\underline{C}_{1} \vec{\theta}(\mathrm{t}+\mathrm{h})-\underline{C}_{1} \underline{C}_{2} \vec{\theta}(\mathrm{t})\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0
$$

Using the triangle inequality, $\|\overrightarrow{\mathrm{x}}+\overrightarrow{\mathrm{y}}\| \leqslant\|\overrightarrow{\mathrm{x}}\|+\|\overrightarrow{\mathrm{y}}\|$, this becomes

$$
\left\|\frac{\vec{\theta}(t+2 h)-\underline{C}_{1} \vec{\theta}(t+h)}{h}+\frac{\mathrm{C}_{1} \vec{\theta}(\mathrm{t}+\mathrm{h})-\mathrm{C}_{1} \underline{C}_{2} \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0
$$

or

$$
\begin{equation*}
\left\|\frac{\vec{\theta}(t+2 \mathrm{~h})-\mathrm{C}_{1} \underline{C}_{2} \vec{\theta}(\mathrm{t})}{\mathrm{h}}\right\| \rightarrow 0 \text { as } \mathrm{h} \rightarrow 0 \tag{B.3}
\end{equation*}
$$

which is the consistency requirement for the product.

THEOREM 3. ${ }^{1}$ A family of matrices \underline{M}_{n} of varying dimension n having at most $\ell<$ n nonzero elements in each row or column, ℓ being constant for all n , has a uniform L_{2} bound if the individual elements of the matrices \underline{M}_{n} are uniformly bounded for all n.

Proof. Let $c>0$ be a bound on the absolute value of the individual elements, $m_{j, k}^{n}$, of the matrices \underline{M}_{n}. Then

$$
\begin{aligned}
& \max _{\mathrm{k}} \sum_{j=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}}\right| \leqslant \mathrm{c} \mathrm{\ell} \\
& \max _{\mathrm{j}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}}\right| \leqslant \mathrm{c} \mathrm{\ell}
\end{aligned}
$$

for all n. However, by definition,

$$
\left\|\underline{M}_{\mathrm{n}}\right\|_{2}^{2}=\sup _{\|\overrightarrow{\mathrm{x}}\|_{2}=1} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left|\sum_{\mathrm{k}=1}^{\mathrm{n}} \mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}\right|^{2}
$$

The Cauchy-Schwarz inequality gives

$$
\begin{aligned}
\left\|\underline{\mathrm{m}}_{\mathrm{n}}\right\|_{2}^{2} & \leqslant \sup _{\|\overrightarrow{\mathrm{x}}\|_{2}=1} \sum_{j=1}^{\mathrm{n}}\left\{\left[\sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}}\right|\right]\left[\sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}^{2}\right|\right]\right\} \\
& \leqslant \sup _{\|\overrightarrow{\mathrm{x}}\|_{2}=1} \sum_{j=1}^{\mathrm{n}}\left\{\mathrm{cl} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}} \mathrm{x}_{\mathrm{k}}^{2}\right|\right\} \\
& \leqslant \sup _{\|\overrightarrow{\mathrm{x}}\|_{2}=1} \operatorname{cl} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left\{\left|\mathrm{x}_{\mathrm{k}}\right|^{2} \sum_{\mathrm{j}=1}^{\mathrm{n}}\left|\mathrm{~m}_{\mathrm{j}, \mathrm{k}}^{\mathrm{n}}\right|\right\} \\
& \leqslant(\mathrm{c} \ell)^{2} \sup _{\|\overrightarrow{\mathrm{x}}\|_{2}=1}^{\mathrm{n}} \sum_{\mathrm{k}=1}^{\mathrm{n}}\left|\mathrm{x}_{\mathrm{k}}\right|^{2} \\
\left\|\underline{\mathrm{~m}}_{\mathrm{n}}\right\|_{2}^{2} & \leqslant(\mathrm{cl})^{2}
\end{aligned}
$$

or

$$
\begin{equation*}
\left\|\underline{\mathrm{M}}_{\mathrm{n}}\right\| \leqslant \mathrm{c} \ell, \tag{B.4}
\end{equation*}
$$

and the theorem is proved.

THEOREM 4. ${ }^{1}$ The matrices $(\underline{I}-\mathrm{h} \underline{R})^{-1}$ and $(\underline{I}+h R)(\underline{I}-h \underline{R})^{-1}$ have L_{2} norms of less than unity provided that $\left(\underline{R}+\underline{R}^{T}\right)$ is negative definite. Proof. By definition,

$$
\left\|(\underline{I}-\mathrm{h} \underline{R})^{-1}\right\|_{2}^{2}=\max _{\stackrel{\rightharpoonup}{\mathrm{v}}} \frac{\overrightarrow{\mathrm{v}}^{\mathrm{T}}\left(\underline{\mathrm{I}-\mathrm{h}} \underline{R}^{\mathrm{T}}\right)^{-1}\left(\underline{\mathrm{I}-\mathrm{h} \underline{R})^{-1} \stackrel{\rightharpoonup}{\mathrm{v}}}\right.}{\overrightarrow{\mathrm{v}}^{\mathrm{T}} \stackrel{\rightharpoonup}{\mathrm{v}}}
$$

Let $\overrightarrow{\mathrm{u}}=(\underline{\mathrm{I}}-\mathrm{hR})^{-1} \stackrel{\rightharpoonup}{\mathrm{v}}$. Then

$$
\begin{align*}
\left\|(\underline{I}-\mathrm{hR})^{-1}\right\|_{2}^{2} & =\max _{\overrightarrow{\mathrm{u}}} \frac{\overrightarrow{\mathrm{u}}^{\mathrm{T}} \overrightarrow{\mathrm{u}}}{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left(\underline{\mathrm{I}}-\mathrm{h} \underline{R}^{\mathrm{T}}\right)(\underline{I}-\mathrm{h} \underline{R}) \overrightarrow{\mathrm{u}}} \\
& =\max _{\overrightarrow{\mathrm{u}}} \frac{\overrightarrow{\mathrm{u}}^{T} \overrightarrow{\mathrm{u}}}{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left[\underline{\mathrm{I}}-\mathrm{h}\left(\underline{R}^{\mathrm{T}}+\underline{\mathrm{R}}\right)+\mathrm{h}^{2} \underline{\mathrm{R}}^{\mathrm{T}} \underline{\mathrm{R}}\right] \overrightarrow{\mathrm{u}}} . \tag{B.5}
\end{align*}
$$

If ($\underline{R}^{T}+\underline{R}$) is negative definite, the denominator of Eq. (B.5) is positive and larger than the numerator. Therefore,

$$
\left\|(\underline{\mathrm{I}}-\mathrm{h} \underline{\mathrm{R}})^{-1}\right\|_{2}<1
$$

Likewise, for the product $(\underline{I}+h \underline{R})(\underline{I}-h \underline{R})^{-1}$, the L_{2} norm is defined as

$$
\left\|(\underline{I}+h \underline{R})(\underline{I}-h \underline{R})^{-1}\right\|_{2}^{2}=\max _{\vec{v}} \frac{\vec{v}^{T}\left(\underline{I}-h \underline{R}^{T}\right)^{-1}\left(\underline{I}+h \underline{R}^{T}\right)(\underline{I}+h \underline{R})(\underline{I}-h \underline{R})^{-1} \vec{v}}{\vec{v}^{T} \vec{v}}
$$

With $\overrightarrow{\mathrm{u}}$ defined as before, this becomes

$$
\begin{align*}
\left\|(\underline{I}+h \underline{R})(\underline{I}-h \underline{R})^{-1}\right\|_{2}^{2} & =\max _{\overrightarrow{\mathrm{u}}} \frac{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left(\underline{I}+h \underline{R}^{\mathrm{T}}\right)(\underline{I}+\mathrm{h} \underline{R}) \overrightarrow{\mathrm{u}}}{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left(\underline{I}-\underline{h}^{\mathrm{T}}\right)(\underline{I}-h \underline{R}) \overrightarrow{\mathrm{u}}} \\
& =\max _{\overrightarrow{\mathrm{u}}} \frac{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left[\underline{I}+\mathrm{h}\left(\underline{R}^{\mathrm{T}}+\underline{R}\right)+\mathrm{h}^{2} \underline{R}^{\left.T^{R} \underline{R}\right] \overrightarrow{\mathrm{u}}}\right.}{\overrightarrow{\mathrm{u}}^{\mathrm{T}}\left[\underline{I}-\mathrm{h}\left(\underline{R}^{\mathrm{T}}+\underline{R}\right)+h^{2} \underline{R}^{\mathrm{T}} \underline{R}\right] \overrightarrow{\mathrm{u}}} \tag{B.6}
\end{align*}
$$

Again, if ($\underline{R}^{T}+\underline{R}$) is negative definite, the denominator of Eq. (B.6) is larger than the numerator so that

$$
\left\|(\underline{I}+h \underline{R})(\underline{I}-h \underline{R})^{-1}\right\|_{2}<1 .
$$

THEOREM 5. ${ }^{24}$ As t approaches infinity, the solution vector $\vec{\psi}(\mathrm{t})=\mathrm{e}^{\mathrm{A} t} \vec{\psi}_{\mathrm{o}}$ approaches $\alpha \mathrm{e}^{\omega_{\mathrm{o}}^{\mathrm{t}}} \vec{e}_{\mathrm{o}}$, where ω_{o} is the largest eigenvalue of $\underline{A}, \vec{e}_{o}$ the corresponding eigenvector, and $\alpha=\left(\vec{\psi}_{0}, \vec{e}_{o}\right)$.

Proof. Write $\vec{\psi}_{o}$ as a linear combination of \vec{e}_{o} and \vec{v}, where $\left(\vec{v}, \vec{e}_{o}\right)=0$, that is, $\vec{\psi}_{\mathrm{o}}=\alpha \overrightarrow{\mathrm{e}}_{\mathrm{o}}+\beta \overrightarrow{\mathrm{v}}$. Now,

$$
\alpha\left(\vec{e}_{o}, \vec{e}_{o}\right)+\beta\left(\vec{e}_{\mathrm{o}}, \overrightarrow{\mathrm{v}}\right)=\left(\overrightarrow{\mathrm{e}}_{\mathrm{o}}, \vec{\psi}_{\mathrm{o}}\right)
$$

or

$$
\alpha=\left(\vec{e}_{o}, \vec{\psi}_{o}\right),
$$

if ($\vec{e}_{o}, \overrightarrow{\mathrm{e}}_{\mathrm{o}}$) is normalized to unity.
Write $\vec{\psi}(\mathrm{t})$ as

$$
\begin{align*}
\vec{\psi}(\mathrm{t}) & =\mathrm{e}^{\underline{\mathrm{A} t}}\left(\alpha \overrightarrow{\mathrm{e}}_{\mathrm{o}}+\beta \overrightarrow{\mathrm{v}}\right) \\
& =\alpha \mathrm{e}^{\omega}{ }^{\mathrm{t}} \overrightarrow{\mathrm{e}}_{\mathrm{o}}+\beta \mathrm{e}^{\underline{-A} t} \overrightarrow{\mathrm{v}} \\
& =\alpha \mathrm{e}^{\omega_{\mathrm{o}} \mathrm{t}}\left[\overrightarrow{\mathrm{e}}_{\mathrm{o}}+(\beta / \alpha) \mathrm{e}^{\underline{\mathrm{B}} \mathrm{t}} \overrightarrow{\mathrm{v}}\right], \tag{B.7}
\end{align*}
$$

where

$$
\underline{B}=\underline{A}-\omega_{\mathrm{o}} \underline{I} .
$$

Note that the largest eigenvalue of \underline{B} is 0 , and all the others are given by $\lambda_{i}=\omega_{i}-\omega_{o}$ and have real parts less than zero.

Now, put B in Jordan form:

$$
\underline{\mathrm{J}}=\underline{\mathrm{S}}^{-1} \underline{B} \underline{S}=\left[\begin{array}{cccc}
\underline{\mathrm{J}}_{1} & & & \tag{B.8}\\
& \underline{\mathrm{~J}}_{2} & & \underline{0} \\
& \underline{0}_{e} & \underline{\mathrm{~J}}_{3} & \\
& & & \\
&
\end{array}\right],
$$

where each of the blocks on the diagonal is of the form

$$
\underline{J}_{\mathrm{i}}=\left[\begin{array}{ccccc}
\lambda_{\mathrm{i}} & 1 & & & \tag{B.9}\\
& & \lambda_{\mathrm{i}} & 1 & \\
& & & \lambda_{\mathrm{i}} & 1 \\
& 0 & & \cdot & .
\end{array}\right]
$$

\underline{J}_{i} is a p_{i} by p_{i} matrix, p_{i} being less than or equal to the multiplicity of the $i^{\text {th }}$ eigenvalue, and the λ_{i} 's are arranged in order of nonincreasing real part. J_{1} is a 1×1 matrix since the largest eigenvalue of \underline{B} is simple.

Now

$$
\begin{align*}
e^{B t} \vec{v} & =e^{-1} \underline{J} \underline{S} t \vec{v} \\
& =\left(\underline{I}^{-S^{-1}}(\underline{J} t) \underline{S}+(1 / 2!) \underline{S}^{-1}(\underline{J} t)^{2} \underline{S}+\ldots\right) \stackrel{\rightharpoonup}{v} \\
& =\underline{S}^{-1} e^{\underline{J} t} \underline{S} \vec{v}=\underline{S}^{-1} e^{\underline{J} t} \underline{a}, \tag{B.10}
\end{align*}
$$

where $\overrightarrow{\mathrm{a}}=\underline{\mathrm{S}} \stackrel{\rightharpoonup}{\mathrm{v}} . \quad$ But

$$
\mathrm{e}^{\underline{J} t}=\left[\begin{array}{ccccc}
1 & & & & \tag{B.11}\\
& e^{\underline{J} 2 t} & & \underline{0} \\
& & e^{\underline{J} 3^{t}} & & \\
\underline{0} & & & \cdot & \\
& & & & .
\end{array}\right]
$$

Since \underline{A} and \underline{B} share the same eigenvectors, \vec{e}_{o} is the eigenvector of \underline{B} corresponding to eigenvalue 0 , and the transformation \underline{S} also puts A into Jordan form. That is,

$$
\underline{J}^{\prime} \underline{S}=\underline{\mathrm{S}} \underline{A}, \quad \underline{\mathrm{~S}}^{-1} \underline{J}^{\prime} \underline{\mathrm{S}} \overrightarrow{\mathrm{e}}_{0}=\underline{A} \overrightarrow{\mathrm{e}}_{0}=\omega_{0} \overrightarrow{\mathrm{e}}_{0}, \quad \underline{J}^{\prime} \underline{\mathrm{S}} \overrightarrow{\mathrm{e}}_{\mathrm{o}}=\omega_{\mathrm{o}} \underline{\mathrm{~S}} \overrightarrow{\mathrm{e}}_{\mathrm{o}},
$$

where

$$
\underline{J}^{\prime}=\left[\begin{array}{ccccc}
\omega_{0} & & & \tag{B.12}\\
& \underline{J}_{2}^{\prime} & & \underline{0} \\
& & \underline{J}_{3}^{\prime} & \\
& \underline{0} & & & \\
& & & .
\end{array}\right] .
$$

Thus

$$
\underline{\mathrm{S}}_{\mathrm{e}}^{\mathrm{o}}=\left[\begin{array}{c}
1 \\
0 \\
0 \\
\vdots
\end{array}\right] \quad \text { and } \quad \overrightarrow{\mathrm{S}}=\left[\begin{array}{c}
\overrightarrow{\mathrm{e}}_{\mathrm{o}}^{\mathrm{T}} \\
\mathrm{x} \\
\mathrm{x} \\
\\
\ldots
\end{array}\right]
$$

so that

$$
\underline{\mathrm{S}} \overrightarrow{\mathrm{v}}=\left[\begin{array}{c}
\overrightarrow{\mathrm{e}}_{\mathrm{o}}^{\mathrm{T}} \overrightarrow{\mathrm{v}} \\
\mathrm{x} \\
\mathrm{x} \\
\cdot \\
\cdot
\end{array}\right]=\left[\begin{array}{c}
0 \\
\mathrm{x} \\
\mathrm{x} \\
\cdot \\
.
\end{array}\right] .
$$

The first element of $\underline{S} \vec{v}$ is zero since \vec{e}_{o} is orthogonal to \vec{v}.

Now

$$
\begin{align*}
& e^{\underline{\mathcal{I}} t} \underline{\underline{S}} \overrightarrow{\mathrm{v}}=\left[\begin{array}{cccc}
1 & & \\
& e^{\boldsymbol{J}} 2^{t} & \underline{0} \\
& & e^{\underline{J} 3 t} & \\
& & & .
\end{array}\right]\left[\begin{array}{c}
0 \\
\overrightarrow{\mathrm{a}}_{2} \\
\overrightarrow{\mathrm{a}}_{3} \\
\cdot \\
.
\end{array}\right] \\
& =\left[\begin{array}{c}
0 \\
e^{\underline{J}} 2^{t} \vec{a}_{2} \\
e^{\underline{J}} 3^{t} \vec{a}_{3} \\
\vdots \\
.
\end{array}\right] . \tag{B.13}
\end{align*}
$$

Hence, $\left\|\underline{S}^{-1} e^{\underline{J} t} \underline{S} \vec{v}\right\| \leqslant\left\|\underline{S}^{-1}\right\| \sum_{i=2}^{n}\left\|e^{J_{i}}{ }^{t}\right\| \cdot\left\|\vec{a}_{i}\right\|$, which approaches

$$
\left\|\underline{S}^{-1}\right\| \sum_{i=2}^{n}\left\|\vec{a}_{i}\right\| \frac{t^{p_{i}^{-1}}}{\left(p_{i}-1\right)} e^{t \cdot \operatorname{Re}\left(\lambda_{i}\right)}
$$

as t approaches infinity, using Lemma 8.1 from Ref. 20. Since $\operatorname{Re}\left(\lambda_{i}\right)$ is less than zero, all i>1, this norm goes to zero for large t. Hence, $\left\|(\beta / \alpha) e^{\mathrm{Bt}} \stackrel{\rightharpoonup}{\mathrm{v}}\right\|$ approaches zero as t approaches infinity, and the vector $\overrightarrow{\mathrm{e}}_{\mathrm{o}}+(\beta / \alpha) \mathrm{e}^{\underline{\mathrm{B}} \mathrm{t}} \stackrel{\mathrm{v}}{ }$ approaches $\overrightarrow{\mathrm{e}}_{\mathrm{o}}$, completing the proof.

THEOREM 6. ${ }^{2}$ If $\underline{\Omega}=\omega_{0}$ I, the approximate solution operator $\underline{B}(\underline{\Omega}, \mathrm{~h})$ has as its largest eigenvalue $\mathrm{e}^{2 \omega_{\mathrm{o}} \mathrm{h}}$ with corresponding eigenvalue $\overrightarrow{\mathrm{e}}_{\mathrm{O}}$, where $\underline{\mathrm{A}}_{\mathrm{e}}^{\mathrm{o}} \overrightarrow{\mathrm{e}}=\omega_{\mathrm{o}} \overrightarrow{\mathrm{e}}_{\mathrm{o}}$.

$$
\begin{aligned}
\underline{B}\left(\omega_{o} \underline{I}, h\right) \vec{e}_{o}= & e^{\omega_{0} h}\left[\underline{I}-h\left(\underline{A}_{4}-\alpha \omega_{o} \underline{I}\right)\right]^{-1}\left[\underline{I}+h\left(\underline{A}_{3}-\alpha \omega_{o} \underline{I}\right)\right] \\
& \times\left[\underline{I}-h\left(\underline{A}_{2}-\alpha \omega_{o} \underline{I}\right)\right]^{-1}\left[\underline{I}+h\left(\underline{A}_{1}-\gamma \omega_{o} \underline{I}\right)\right] e^{\omega_{0} h} \vec{e}_{o} .
\end{aligned}
$$

But

$$
\left[\underline{I}+h\left(\underline{A}_{3}-\gamma \omega_{o} \underline{I}\right)\right] \vec{e}_{o}=\left[\underline{I}-h\left(\underline{A}_{4}-\alpha \omega_{o} \underline{I}\right)\right] \vec{e}_{o}
$$

and

$$
\left[\underline{I}+h\left(\underline{A}_{1}-\gamma \omega_{o} \underline{I}\right)\right] \overrightarrow{\mathrm{e}}_{\mathrm{o}}=\left[\underline{I}-\mathrm{h}\left(\underline{A}_{2}-\alpha \omega_{\mathrm{o}} \underline{I}\right)\right] \overrightarrow{\mathrm{e}}_{\mathrm{o}} .
$$

Therefore,

$$
\begin{aligned}
\underline{B}\left(\omega_{o} \underline{I}, h\right) \vec{e}_{o}= & e^{\omega_{o} h}\left[\underline{I}-h\left(\underline{A}_{4}-\alpha \omega_{o}\right)\right]^{-1}\left[\underline{I}+h\left(\underline{A}_{3}-\gamma \omega_{o} \underline{I}\right)\right] \\
& \times\left[\underline{I}-h\left(\underline{A}_{2}-\alpha \omega_{o} \underline{I}\right)\right]^{-1}\left[\underline{I}-h\left(\underline{A}_{2}-\alpha \omega_{o} \underline{I}\right)\right] e^{\omega_{o} h} \vec{e}_{o} \\
= & e^{\omega_{0} h}\left[\underline{I}-h\left(\underline{A}_{4}-\alpha \omega_{o} \underline{I}\right)\right]^{-1}\left[\underline{I}-h\left(\underline{A}_{4}-\alpha \omega_{o} \underline{I}\right)\right] e^{\omega_{o} h} \vec{e}_{o}
\end{aligned}
$$

or

$$
\begin{equation*}
\underline{\mathrm{B}}\left(\omega_{\mathrm{o}} \underline{I}, \mathrm{~h}\right) \overrightarrow{\mathrm{e}}_{\mathrm{o}}=\mathrm{e}^{2 \omega_{\mathrm{o}} \mathrm{~h}} \overrightarrow{\mathrm{e}}_{\mathrm{o}} . \tag{B.14}
\end{equation*}
$$

Appendix C
 TEST PROBLEM DATA

The reactor parameters for the four configurations used in Chapter 3 for three-dimensional experiments are presented in this appendix. The symbols used in this appendix are defined as follows:

$$
\begin{aligned}
\Delta \mathrm{x}= & \text { mesh spacing (cm) in } \mathrm{x} \text {-direction } \\
\Delta \mathrm{y}= & \text { mesh spacing }(\mathrm{cm}) \text { in } \mathrm{y} \text {-direction } \\
\Delta \mathrm{z}= & \text { mesh spacing }(\mathrm{cm}) \text { in } \mathrm{z} \text {-direction } \\
\lambda_{\mathrm{i}}= & \text { decay constant }\left(\mathrm{sec}^{-1}\right) \text { of } \mathrm{i}^{\text {th }} \text { precursor } \\
\beta_{\mathrm{i}}= & \text { delay fraction of } \mathrm{i}^{\text {th }} \text { precursor } \\
\mathrm{X}_{\mathrm{gi}}= & \text { fraction of decays of } \mathrm{i}^{\text {th }} \text { precursor which yield neutrons } \\
& \text { in group } \mathrm{g} \\
\mathrm{v}_{\mathrm{g}}= & \text { velocity of } \mathrm{g}^{\text {th }} \text { neutron group (cm/sec) } \\
\mathrm{X}_{\mathrm{g}}= & \text { prompt fission spectrum component for group } \mathrm{g} \\
\Sigma_{\mathrm{tr}}= & \text { macroscopic transport cross section (cm }{ }^{-1} \text {) } \\
\mathrm{D}= & 1 /\left(3 \Sigma_{\text {tr }}\right)=\text { diffusion coefficient (cm) } \\
\Sigma_{\mathrm{a}}= & \text { macroscopic absorption cross section }\left(\mathrm{cm}^{-1}\right) \\
\Sigma_{\mathrm{f}}= & \text { macroscopic fission cross section (cm }{ }^{-1} \text {) } \\
\nu= & \text { average number of neutrons per fission } \\
\Sigma_{\mathrm{J} \rightarrow \mathrm{~J}+1}= & \text { macroscopic scattering cross section from group } \mathrm{J} \text { to } \\
& \text { group J+1 (cm }{ }^{-1} \text {). }
\end{aligned}
$$

Unless otherwise noted, all boundary conditions are homogeneous Dirichlet.

Configuration 1

Number of neutron groups $=2$
Number of precursor groups = 1

Geometry: Homogeneous cube, 200 cm on a side

$$
\Delta \mathrm{x}=\Delta \mathrm{y}=\Delta \mathrm{z}=20 \mathrm{~cm}
$$

Precursor Constants:

$$
\lambda_{i}=.08, \quad \beta_{i}=.0064, \quad \chi_{11}=1.0, \quad x_{21}=0.0
$$

Material Properties:

	Group 1	Group 2
v	3.0×10^{7}	2.2×10^{5}
$\mathrm{\chi}$	1.0	0.0
Σ_{tr}	.2468	.3084
Σ_{a}	.001382	.0054869
ν	2.41	2.41
Σ_{f}	.000242	.00408
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$.0023	0.0

Initial Conditions:

Spatial shape: cosine
Critical $\mathrm{k}_{\text {eff }}$: . 895285417

Configuration 2

Number of neutron groups $=2$
Number of precursor groups $=1$

Geometry:

$$
\begin{aligned}
\Delta x=\Delta y=\Delta z & =8.0 \mathrm{~cm} \\
\text { height } & =160 \mathrm{~cm}(z-\text { direction })
\end{aligned}
$$

Fig. C.1a. x-y Plane for $* 24 \leqslant \mathrm{z}: 136 \mathrm{~cm}$

Fig. C.1b. $\quad x-y$ Plane for $0 \leqslant z \leqslant 24,136 \leqslant z \leqslant 160 \mathrm{~cm}$

The numbers in the various regions indicate the material number in that region. Only the right half of this reactor is shown since the left half is symmetrical to it.

Precursor Constants:

$$
\begin{array}{ccc}
\lambda_{1}=.08, & \beta_{1}=.0075, \quad \chi_{11}=1.0, \quad \chi_{21}=0.0 \\
& \underline{\text { Group 1 }} & \\
\mathrm{v} & 1.0 \times 10^{7} & \underline{\text { Group 2 }} \\
\mathrm{x} & 1.0 & 0.0
\end{array}
$$

Material Properties:

	$\frac{\text { Material 1 }}{\text { Group 1 }}$	
$\Sigma_{\operatorname{tr}}$	$\frac{\text { Group 2 }}{}$	
Σ_{a}	.038095	.833333
ν	2.40	.15
Σ_{f}	.0035	2.40
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$.01	.10
		0.0

Material 2

(Same as Material 1)

	Material 3	
	Group 1	Group 2
$\Sigma_{\text {tr }}$. 25461	. 666667
$\Sigma{ }_{\text {a }}$. 008	. 05
ν	2.40	2.40
$\Sigma_{\text {f }}$. 0015	. 03
$\Sigma_{J \rightarrow J \nmid 1}$. 01	0.0

Initial Condition:
Critical $\mathrm{k}_{\mathrm{eff}}$: 1.06432742

Configuration 3

Number of neutron groups $=4$
Number of precursor groups $=1$

Geometry:

$$
\begin{aligned}
& \Delta x=\Delta y=\Delta z=8.0 \mathrm{~cm} \\
& \text { height }=120 \mathrm{~cm}(z-\text { direction })
\end{aligned}
$$

Fig. C.2. $x-y$ Plane for $0 \leqslant z \leqslant 120 \mathrm{~cm}$

$$
\begin{array}{lll}
\mathrm{m}=3 & \text { for } & 0 \leqslant \mathrm{z} \leqslant 56 \mathrm{~cm} \\
\mathrm{~m}=4 & \text { for } & 56 \leqslant \mathrm{z} \leqslant 120 \mathrm{~cm}
\end{array}
$$

Precursor Constants:

$$
\begin{aligned}
& \lambda_{1}=.08, \quad \beta_{1}=.0064, \quad \chi_{11}=0.0, \quad x_{21}=1.0, \quad x_{31}=0.0, \\
& x_{41}=0.0
\end{aligned}
$$

	Group 1	Group 2	Group 3	Group 4
v	110×10^{9}	1.0×10^{8}	5.0×10^{6}	2.0×10^{5}
χ	0.755	0.245	0.0	0.0

Material Properties:

Material 1

	Group 1	Group 2	Group 3	Group 4
$\Sigma_{\text {tr }}$. 120	. 310	. 520	2.050
$\Sigma{ }_{\text {a }}$. 00266	. 00297	. 0359	. 655
ν	1.60	1.60	1.60	1.60
$\Sigma_{\text {f }}$. 00136	. 00197	. 0262	. 540
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$. 0586	. 0828	. 0850	0.0

Material 2

	Group 1	Group 2	Group 3	Group 4
$\Sigma_{\text {tr }}$. 100	. 240	. 400	1.600
$\Sigma{ }_{\text {a }}$. 00135	. 00140	. 0176	. 332
ν	1.60	1.60	1.60	1.60
$\Sigma_{\text {f }}$. 0007	. 0009	. 0131	. 274
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$. 0586	. 0828	. 0850	0.0

		terial 3		
	Group 1	Group 2	Group 3	Group 4
$\Sigma_{\text {tr }}$. 080	. 160	. 310	1.270
$\Sigma{ }_{\text {a }}$. 00077	. 00072	. 00051	. 012
ν	0.0	0.0	0.0	0.0
$\Sigma_{\text {f }}$	0.0	0.0	0.0	0.0
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$. 0570	. 0822	. 0847	0.0

Material 4
(Same as Material 3)

Initial Condition:

$$
\text { Critical } k_{e f f}: 1.06601870
$$

Configuration 4

Number of neutron groups $=2$
Number of precursor groups $=1$
Geometry:
Height $=300 \mathrm{~cm}$ (z-direction)
$\Delta \mathrm{x}=10.0 \mathrm{~cm}, 0 \leqslant \mathrm{x} \leqslant 20 \mathrm{~cm}, 50 \leqslant \mathrm{x} \leqslant 170 \mathrm{~cm}, 200 \leqslant \mathrm{x} \leqslant 220 \mathrm{~cm}$
$\Delta x=7.5 \mathrm{~cm}, 20 \leqslant \mathrm{x} \leqslant 50 \mathrm{~cm}, 170 \leqslant \mathrm{x} \leqslant 200 \mathrm{~cm}$
$\Delta y=7.5 \mathrm{~cm}, 0 \leqslant y \leqslant 30 \mathrm{~cm}$
$\Delta y=10.0 \mathrm{~cm}, 30 \leqslant \mathrm{y} \leqslant 110 \mathrm{~cm}$
$\Delta z=15.0 \mathrm{~cm}, 0 \leqslant z \leqslant 30 \mathrm{~cm}, 270 \leqslant z \leqslant 300 \mathrm{~cm}$

Fig. C. 3a. x-y Plane for $30 \leqslant z \leqslant 270 \mathrm{~cm}$

Fig. C.3b. x-y Plane for
$0 \leqslant z \leqslant 30 \mathrm{~cm}, 270 \leqslant z \leqslant 300 \mathrm{~cm}$

$$
\mathrm{m}=\begin{aligned}
& 5, \\
& 6, \text { for } 30 \leqslant z \leqslant 110 \mathrm{~cm} \\
& \\
& 7,
\end{aligned} \text { for } 110 \leqslant z \leqslant 190 \mathrm{~cm}, \mathrm{z} \leqslant 270 \mathrm{~cm}
$$

Precursor Constants:

$$
\begin{array}{ccl}
\lambda_{1}=.08, & \beta_{1}=.0064, \quad x_{11}=1.0, & \chi_{21}=0.0 \\
& \frac{\text { Group 1 }}{1.0 \times 10^{8}} & \text { Group 2 } \\
\mathrm{v} & 1.0 & 4.4 \times 10^{5} \\
\mathrm{x} & & 0.0
\end{array}
$$

, Material Properties:

	Material 1	
	Group 1	
$\Sigma_{\text {tr }}$.2246	$\underline{\text { Group 2 }}$
Σ_{a}	.009434	.8375
ν	2.571	.07345
Σ_{f}	.002437	2.441
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$.01872	.05112
		0.0

Material 2

Group 1
$\Sigma_{t r}$
$\Sigma_{\text {a }}$
ν
Σ_{f}
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$

Group 1
. 2264
. 009223
2.584
. 002236
.01893
$.01893 \quad 0.0$
.8445
.06737
2.442
. 04557

	$\frac{\text { Material 3 }}{}$	
Σ_{tr}	$\frac{\text { Group 1 }}{}$	Group 2
Σ_{a}	.1971	.8685
ν	.0001984	.007207
Σ_{f}	0.0	0.0
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$	0.0	0.0
	.03010	0.0

Material 4

	$\frac{\text { Group 1 }}{}$	Group 2
$\Sigma_{\operatorname{tr}}$.1487	.5490
Σ_{a}	.0003288	.004677
ν	0.0	0.0
Σ_{f}	0.0	0.0
$\Sigma_{\mathrm{J} \rightarrow \mathrm{J}+1}$.01798	0.0

Material 5

(Same as Material 1)

Material 6
(Same as Material 1)

Material 7
(Same as Material 1)

Initial Condition:

$$
\text { Critical } \mathrm{k}_{\mathrm{eff}}: 1.28041608
$$

Appendix D
 THE COMPUTER PROGRAM 3DKIN

The computer program used to conduct the three-dimensional numerical experiments for this thesis has been named 3DKIN. It is written entirely in Fortran IV for IBM System 360 computers. It can be easily converted to run on any computer with a Fortran IV compiler, however.

The program 3DKIN is described in the several sections of this appendix. It is intended that the description given here be adequate for this appendix to serve as a user's manual for the code. A more detailed description would be necessary for anyone wishing to make modifications to the code, however.

Section D. 1 discusses the methods used to obtain an initial steady state solution for a problem. Section D. 2 then describes the organization of that part of the code used in a subsequent time-dependent calculation. The overlay structure used to reduce core storage requirements and the input/output devices necessary to run 3DKIN are presented in section D.3. A detailed description of the input information for 3DKIN follows in section D.4. Section D. 5 lists the card images of the input data for 3DKIN for a sample problem.

D. 1 Description of the Steady State Section

Several comments of a general nature concerning 3DKIN should be made before proceeding to the algorithms used to obtain the initial critical flux distribution and $\mathrm{k}_{\text {eff }}$. The first concerns the overall
organization of the code. It has been written in a modular fashion, where each subroutine or set of subroutines performs one task or several closely-related tasks. This facilitates the division of the code into segments for subsequent use of the overlay feature of OS/360. It also allows additional code options such as new geometries to be added to the code without severely altering existing subroutines.

The second comment concerns the use of directly-addressable core storage for the storage of program variables. The variable dimensioning feature of Fortran IV is used throughout the code. In the MAIN routine, a vector named A is placed in the labeled common area ARAY and given a length which corresponds to the total core area which the user desires to allot to program variable storage. Based on input parameters which describe the size of the problem to be considered, a subroutine called MEMORY computes a series of pointer variables. Each pointer variable indicates a location in A where the first member of a program array will be located. The remaining members of that array are then stored in successive locations in A.

The obvious advantage of this technique is that each program array is dimensioned to exactly the size necessary for each particular problem. Core storage is thus used very efficiently. In addition, the total amount of core storage allotted to program variable storage can be changed merely by recompiling the short MAIN routine after changing two statements.

For both the steady state and time-dependent parts of the code, the total core storage necessary to store program variables for each problem is computed. If this amount exceeds the amount allocated to
the vector A in MAIN, another attempt is automatically made to allot storage for program variables. This time, however, the flux and fission source vectors are stored on input/output devices for the steady state section, as are the fluxes and precursor concentrations for the time-dependent section. This greatly reduces the amount of core storage required and allows very large problems to be run.

The remainder of this section describes the program flow in the steady state section. The program entry point is in the MAIN routine. The MAIN routine zeroes out the entire A array and reads in the title card and second card for a particular problem. The second card contains the parameters which completely define the amount of storage required for that problem. Subroutine MEMORY is called to allocate storage for program variables and to determine whether or not input/output devices are required to store several large arrays. If these input/output devices are required, MAIN opens the datasets on these devices. Program control is then passed to subroutine CALLER, which calls the subroutines which control the various first overlay level segments.

Subroutine INPUT is called first to read in the remaining input data for the problem. Subroutine IOEDIT prints out an edited version of the problem description. The flux vector needed to start the iterative solution process is read in either from cards or from a dataset on an input/output device or is generated as a cosine in each dimension. Subroutine FLUXIN performs whichever of these options is requested.

The iterative solution process is controlled by subroutine SSTATE. To detail the form of this iterative process, several equations need to
be restated. The time-dependent equation for the group g flux at all points has been given in Eq. (1.4) as

$$
\begin{equation*}
\frac{\mathrm{d} \vec{\psi}_{\mathrm{g}}}{\mathrm{dt}}=\underline{D}_{\mathrm{g}^{\prime}} \vec{\psi}_{\mathrm{g}}+\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{\mathrm{~T}}_{\mathrm{gg}}{ }^{\prime} \vec{\psi}_{\mathrm{g}^{\prime}}+\sum_{\mathrm{i}=1}^{\mathrm{I}} \underline{F}_{\mathrm{gi}} \overrightarrow{\mathrm{C}}_{\mathrm{i}} \tag{1.4}
\end{equation*}
$$

To obtain the initial condition, the time derivative is set to zero. Further, given the definitions of χ_{g} and $\chi_{g i}$ in section 1.2 , a weighted prompt fission spectrum, X_{g}^{\prime}, can be defined as

$$
\begin{equation*}
x_{g}^{\prime}=(1-\beta) x_{g}+\sum_{i=1}^{I} \beta_{i} x_{g i} \tag{D.1}
\end{equation*}
$$

If χ_{g}^{\prime} replaces χ_{g} in Eq. (1.4), the precursor concentration term in it can also be ignored for the steady state calculation.

Several additional matrices need to be defined. Let

$$
\begin{align*}
& \underline{T}_{g g^{\prime}}=\underline{v}_{g} \underline{V}^{-1}\left(x_{g}^{\prime} \underline{F}_{g^{\prime}}+\underline{R}_{g g^{\prime}}\right), \quad g^{\prime} \neq g \tag{D.2a}\\
& \underline{T}_{g g}=\underline{v}_{g} \underline{V}^{-1}\left(x_{g}^{\prime} \underline{F}_{g}-\underline{\Sigma}_{g}\right) \tag{D.2b}\\
& \underline{D}_{g}=\underline{v}_{g} \underline{V}^{-1} \underline{D}_{g}^{\prime} \tag{D.2c}
\end{align*}
$$

Here, $\underline{V}_{g}=v_{g} \underline{I}$ and \underline{V} is the diagonal matrix of volumes associated with each mesh point. $\underline{F}_{g^{\prime}}$ is a diagonal matrix containing the $v_{g^{\prime}} \Sigma_{f g^{\prime}}$ term for each mesh volume. The matrix $\underline{R}_{\mathrm{gg}^{\prime}}$ is also diagonal and describes the scattering from group g^{\prime} to g in each mesh volume. Finally, $\underline{\Sigma}_{\mathrm{g}}$ contains the absorption and out-scattering terms for group g at each mesh volume.

The form of Eq. (1.4) to be solved for the initial condition becomes

$$
\begin{array}{r}
\underline{\mathrm{v}}_{\mathrm{g}} \underline{\mathrm{~V}}^{-1}\left(\underline{\mathrm{D}}_{\mathrm{g}}^{\prime}-\underline{\Sigma}_{\mathrm{g}}\right) \vec{\psi}_{\mathrm{g}}+\underline{\mathrm{v}}_{\mathrm{g}} \underline{\mathrm{~V}}^{-1}\left(\sum_{\mathrm{g}^{\prime} \neq \mathrm{g}}^{\mathrm{G}} \underline{\mathrm{R}}_{\mathrm{gg}}, \vec{\psi}_{\mathrm{g}^{\prime}}+\frac{\mathrm{x}_{\mathrm{g}}^{\prime}}{\mathrm{k}_{\mathrm{eff}}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{F}_{\mathrm{g}^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}}\right)=\overrightarrow{0} \\
(1 \leqslant \mathrm{~g} \leqslant \mathrm{G}) \tag{D.3}
\end{array}
$$

In 3DKIN, only downscattering is allowed so that $\underline{R}_{\mathrm{gg}^{\prime}}=\underline{0}$ for $\mathrm{g}^{\prime}>\mathrm{g}$. Equation (D.3) can be reduced to

$$
\begin{equation*}
\left(-\underline{D}_{\mathrm{g}}^{\prime}+\underline{\Sigma}_{\mathrm{g}}\right) \vec{\psi}_{\mathrm{g}}=\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1} \underline{\mathrm{R}}_{\mathrm{g} g^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}}+\frac{\chi_{\mathrm{g}}^{\prime}}{\mathrm{k}_{\mathrm{eff}}} \sum_{\mathrm{g}^{\prime}=1}^{\mathrm{G}} \underline{F}_{\mathrm{g}^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}} \tag{D.4}
\end{equation*}
$$

In 3DKIN, Eq. (D.4) is solved by a two-level iterative process. This is the standard inner iteration-outer iteration method. ${ }^{27}$ Let the inner iteration index be m and the outer iteration index be ℓ. The inner iterations involve solving the equation

$$
\begin{equation*}
\left(-\underline{D}_{g}^{\prime}+\underline{\Sigma}_{g^{\prime}}\right) \vec{\psi}_{\mathrm{g}}^{\ell+1}=\sum_{\mathrm{g}^{\prime}=1}^{\mathrm{g}-1} \underline{\mathrm{R}}_{\mathrm{gg}^{\prime}} \vec{\psi}_{\mathrm{g}^{\prime}}^{\ell+1}+\frac{\chi_{\mathrm{g}}^{\prime}}{\sigma^{\ell}} \overrightarrow{\mathrm{S}}^{\ell} \tag{D.5}
\end{equation*}
$$

for each group, starting with $g=1$. Here, $\overrightarrow{\mathrm{S}}^{\ell}$, the fission source vector, and σ^{l} have been obtained from

$$
\begin{align*}
\sigma^{\ell} & =\frac{\left\|\sum_{g=1}^{G} \mathrm{~F}_{\mathrm{g}} \vec{\psi}_{\mathrm{g}}^{\ell}\right\|_{1}}{\left\|\sum_{\mathrm{g}=1}^{\mathrm{G}} \mathrm{~F}_{\mathrm{g}} \vec{\psi}_{\mathrm{g}}^{\ell-1}\right\|_{1}} \tag{D.6}\\
\overrightarrow{\mathrm{~S}}^{\ell} & =\frac{\mu}{\sigma^{\ell}} \sum_{\mathrm{g}=1}^{\mathrm{G}} \underline{F}_{\mathrm{g}} \vec{\psi}_{\mathrm{g}}^{\ell}+\frac{(1-\mu)}{\sigma^{\ell}} \sum_{\mathrm{g}=1}^{\mathrm{G}} \mathrm{~F}_{\mathrm{g}} \vec{\psi}_{\mathrm{g}}^{\ell} \tag{D.7}
\end{align*}
$$

Here, μ is an input fission source overrelaxation parameter bounded
by $1 \leqslant \mu \leqslant 2$. The outer iteration consists of the computation of σ^{ℓ} and an $\overrightarrow{\mathrm{S}}^{\ell}$, used to start a new set of inner iterations.

The inner iterations in 3DKIN are carried out by a one-line successive overrelaxation method. Lines of fluxes in the x-direction are overrelaxed successively across each z-plane of mesh points, starting with the bottom z-plane. An optimum overrelaxation parameter is computed for each group, using a method prescribed in Ref. 27. The iterative process continues on a particular group until convergence is obtained for that group, where convergence is defined as

$$
\begin{equation*}
\max _{1, \mathrm{j}, \mathrm{k}}\left|\frac{\phi_{\mathrm{g}, 1, \mathrm{j}, \mathrm{k}}^{\mathrm{m}}-\phi_{\mathrm{g}, 1, \mathrm{j}, \mathrm{k}}^{\mathrm{m}}}{\phi_{\mathrm{g}, 1, \mathrm{j}, \mathrm{k}}^{\mathrm{m}}}\right| \leqslant \epsilon_{2} \tag{D.8}
\end{equation*}
$$

The parameter ϵ is input by the user, as is a parameter $m_{\text {max }}$. If the condition (D.8) is not satisfied for $m \leqslant m_{\text {max }}$, the iterative process is stopped for that group automatically for that outer iteration.

As can be seen from Eq. (D.6), the L_{1} norm is used as an indication of the total solution change during an outer iteration. In an attempt to speed convergence of the outer iterations, the fission source vector, $\overrightarrow{\mathrm{S}}^{\ell}$, is overrelaxed in a rather crude fashion. The entire iterative process is completed after the $\ell^{\text {th }}$ outer iteration if condition (D.8) has been satisfied for all groups during that outer iteration and if

$$
\begin{equation*}
\left|1.0-\sigma^{\ell}\right| \leqslant \epsilon_{1} . \tag{D.9}
\end{equation*}
$$

At this point, $\mathrm{k}_{\mathrm{eff}}$ is computed from

$$
\begin{equation*}
\mathrm{k}_{\mathrm{eff}}=\prod_{\mathrm{n}=1}^{\ell} \sigma^{\mathrm{n}} \tag{D.10}
\end{equation*}
$$

Before starting the iterative process just described, subroutine SSTATE calls subroutine SETUP1 to compute the necessary coefficients. SETUP1 uses subroutine COEF1 to do this.

SSTATE also calls subroutine ORPEST to compute the groupwise optimum overrelaxation parameters. SSTATE computes the fission and scattering source for each group during an outer iteration. Subroutine INNER0 or INNER1 is called to carry out the actual inner iterations for the groups. INNER0 is used if all program variables are stored in core, while INNER 1 is used if the flux and fission source vectors are stored on input/output devices. SSTATE completes the outer iteration by computing a new estimate of σ and overrelaxing the fission source vector. It also tests for convergence of the outer iterations. Subroutine SSTOUT prints out a one-line summary of each outer iteration and saves the converged fluxes if requested.

Two additional features of the steady state section of 3DKIN are worthy of note, although they are invisible to the user of 3DKIN. The first is an additional technique used to accelerate convergence of the inner iterations. Before the inner iterations are started for group g during outer iteration $\ell+1$, the quantities

$$
\alpha_{1}=\left\|\sum_{g^{\prime}=1}^{g-1} \underline{R}_{g g^{\prime}} \vec{\psi}_{g^{\prime}}^{\ell+1}+\frac{x_{g}^{\prime}}{\sigma^{\ell}} \overrightarrow{\mathrm{S}}^{\ell}\right\|_{1}
$$

and

$$
\alpha_{2}=\left\|\left(-\underline{\mathrm{D}}_{\mathrm{g}}^{\prime}+\underline{\Sigma}_{\mathrm{g}}\right) \vec{\psi}_{\mathrm{g}}^{\ell}\right\|_{1}
$$

are computed. The vector $\vec{\psi}_{\mathrm{g}}^{\ell}$ is multiplied by the ratio $\left(\alpha_{1} / \alpha_{2}\right)$, and
the result is used as an initial guess for the inner iterations for groupg. This has the effect of scaling the initial guess so that the neutron balance is satisfied in an integral sense when the inner iterations are started. This so-called group rebalancing is carried out by subroutines GRBAL0 and GRBAL1, which are called by INNER 0 and INNER1, respectively.

The second feature is the manner in which the coefficients for Eqs. (D.4) are stored in 3DKIN for the $x-y-z$ geometry option. The manner in which planes are passed through the parallelepiped of interest to create the three-dimensional fine mesh has been presented in Appendix A. The only restriction placed on these planes at that time was that every boundary of a homogeneous material region must lie on a fine-mesh plane.

In 3DKIN, an additional restriction is introduced. Each of the fine-mesh planes which has a homogeneous material region boundary coincident on any part of it becomes a coarse-mesh plane. Between two successive coarse-mesh planes in a particular direction, all finemesh planes parallel to these coarse-mesh planes must be equidistant.

The reactor of interest is thus divided into a three-dimensional array of rectangular parallelepipeds by the coarse-mesh planes. These rectangular parallelepipeds are hereafter referred to as material regions. Within a given material region, only one material is present. Additionally, fine-mesh spacings are constant across that material region for each of the three directions.

Each material region has a total of 26 faces, edges, and corners associated with it. Thus, regardless of how many fine-mesh points lie
within or on its boundaries, only 27 sets of coefficients need to be computed and stored. The extra set is for all of the fine-mesh points which lie within the boundaries of the material region.

Because of the manner in which faces, edges, and corners are shared by more than one material region, however, an average of only 8 sets need to be associated with each material region. This assumes that the right, upper, and back outer boundaries of the parallelepiped as shown in Fig. A. 1 have homogeneous Dirichlet boundary conditions.

In 3DKIN, a so-called problem region number is assigned to each set of coefficients. A three-dimensional array, called a problem region map, is created, with one entry per fine-mesh point. In this problem region map, all fine-mesh points which have the same set of coefficients are assigned the same unique problem region number. Coefficients are computed and stored by problem region number, and the problem region map is used to obtain the proper set of coefficients to be used at a particular fine-mesh point.

The advantages of this method are two-fold. No coefficients ever have to be recomputed during the entire steady state calculation, and each fine-mesh point has a set of coefficients correct for it. At the same time, the amount of storage necessary to contain the coefficients is reduced drastically over that required if a set of coefficients were computed and stored for each fine-mesh point.

D. 2 Description of Time-Dependent Section

The program flow for the time-dependent section of 3DKIN is much less complicated than that for the steady state section. This is primarily due to the simplicity of the NSADE algorithm. When the initial condition has been computed, SSTATE returns program control to CALLER. CALLER calls subroutine FLUXTR, which writes the converged fluxes out on an input/output device. CALLER then calls subroutine TIMDEP, which controls the remainder of the timedependent section.

Subroutine TIMDEP first redefines several coefficients in each problem region. It then calls subroutine DELAYS, which reads the fluxes back in from the input/output device and computes the corresponding pointwise initial precursor concentrations. After zeroing out the frequency array and dividing the various $\nu \Sigma_{\mathrm{f}}$ values by the critical value of $\mathrm{k}_{\text {eff }}$, the main time-dependent loop in TIMDEP is entered.

Within this main loop, time is divided into a series of time zones. Within each time zone, a number of materials are allowed to have properties which undergo a step change at the beginning of the time zone and/or a ramp change throughout the time zone. Subroutine TIMINP reads in the data describing each of the se time zones.

Within each time zone, subroutine CHANGE is called whenever necessary to recompute coefficients which vary with time. The coefficients are recomputed consistent with the problem region concept. Coefficients are recomputed only for those problem regions which have time-varying properties.

For the case where all problem variables are stored in core, the initial $e^{\underline{\Omega} h}$ transformation and forward sweep of the spatial mesh for all groups is performed in subroutine STEPA0 for each time step. Subroutine STEPB0 performs the reverse sweep and the second $e^{\Omega h}$ transformation for each time step. Subroutine FREQ0 computes the frequencies for the next time step according to Eq. (2.8). For the case where the fluxes and precursor concentrations are stored on input/output devices, subroutines STEPA1, STEPB1, and FREQ1 perform the same functions as their similarly-named counterparts.

At regular intervals, the fluxes at a number of specified test points are printed out. At the end of each time zone, the entire flux and precursor vector can be printed out if requested. These printouts are obtained from the subroutine TIMOUT.

D. 3 Overlay Structure and Input/Output Devices for 3DKIN

Two levels of overlay are used in 3DKIN. There are a total of 11 segments. The overlay structure is shown in Fig. D.1.

Fig. D.1. Overlay Structure for 3DKIN

Card input to 3DKIN is read in on symbolic device 5 , while output to the printer is on device 6. If the option where the fluxes are punched onto cards is requested, the card punch is specified as device 7.

Up to seven sequential datasets on different symbolic devices may be required by 3DKIN. These datasets may each be placed on a separate magnetic tape drive, or they may be placed on one or more disk drives. The disk drives are preferable because their use generally results in faster execution times.

If the option is requested where steady state fluxes are to be stored on an input/output device between runs, this dataset is placed on symbolic device 8. Additionally, symbolic devices 11 and 12 are required for every run in which a time-dependent calculation is to be made. These datasets are used for scratch purposes only.

If the problem is large enough to require that several program vectors be stored on input/output devices, symbolic devices 11 and 12 are required during the steady state calculation as well. The fluxes for each group are spooled back and forth from one to the other during the inner iterations for that group.

In addition, four more symbolic devices are required for scratch purposes for these large problems. During the steady state calculation, old and new fission source vectors alternate on devices 1 and 2. During the time-dependent calculation, the flux for the group used in the frequency calculation is saved from one time step to the next, alternately, on these two devices. Devices 3 and 4 alternate in storing the complete flux vector (and precursors as well during the time-dependent calculation) for both sections of the code. All of these seven datasets are
written with unformatted write statements. Table D. 1 summarizes the usage of these datasets.

Table D.1. Input/Output Symbolic Devices

Device Number	Logical Record Length		Number of Records		When Used
	Steady State	TimeDependent	Steady State	TimeDependent	
1	L* J	L* J	K	K	$\mathrm{IOPT}=1$
2	L* J	L* J	K	K	$\mathrm{IOPT}=1$
3	L* J	L*J* (G+I)	$\mathrm{K} * \mathrm{G}$	K	$\mathrm{IOPT}=1$
4	L * J	$\mathrm{L} * \mathrm{~J} *(\mathrm{G}+\mathrm{I})$	$\mathrm{K} * \mathrm{G}$	K	$\mathrm{IOPT}=1$
8	L* J	L * J	K * G	K * G	When fluxes saved
11	$\mathrm{L} * \mathrm{~J}$	L * J	K	$\mathrm{K} * \mathrm{G}$	Always
12	L* J	L* J	K	$\mathrm{K} * \mathrm{G}$	Always

The variables L, J, and K are the number of fine-mesh x-planes, y-planes, and z-planes, respectively. In order to minimize execution time, symbolic devices 1, 3, and 11 should be placed on different disk drives from symbolic devices 2 , 4 , and 12 , respectively.

D. 4 Description of Input for 3DKIN

The only geometry currently available in 3DKIN is $x-y-z$ rectangular geometry, as shown in Fig. A.1. For both steady state and timedependent sections, the right, back, and top faces of the rectangular parallelepiped must have homogeneous Dirichlet boundary conditions.

In the steady state section, the left, front, and bottom faces may each have homogeneous Dirichlet or Neumann boundary conditions specified, independent of what condition is specified for the other two faces. In the time-dependent section, however, the bottom face must always have the homogeneous Dirichlet condition. If only one face is to have a homogeneous Neumann condition, it must be the left face. If quartercore symmetry is desired, both left and front faces are specified to have a homogeneous Neumann boundary condition.

At the time that the input description of a problem is formulated, an estimate of the amount of core required for program variable storage can be made. Equation (D.11) gives the total number of double precision (64-bit) words required on an IBM System 360 computer in the vector A for each problem. The variables in the equation are defined in the input description.

$$
\begin{align*}
\text { Min. length of } \mathrm{A}= & \mathrm{NNG} *[3+(4+\mathrm{NDNSCT}) * \mathrm{NMAT}+\mathrm{NDG}]+2 * \mathrm{NDG} \\
& +\mathrm{IM}+\mathrm{JM}+\mathrm{KM}+3 *(\mathrm{IRM}+\mathrm{JRM}+\mathrm{KRM}+1) / 2 \\
& +8 * \mathrm{IRM} * \mathrm{JRM} * \mathrm{KRM} *[6 * \mathrm{NNG}+(\mathrm{NNG}-1) \\
& * \mathrm{NDNSCT}+1]+\left(\mathrm{IRM} * \mathrm{JRM} \mathrm{I}^{2} \mathrm{KRM}+3\right) / 4 \\
& +(\mathrm{IM} * J M * \mathrm{KM}+3) / 4+\mathrm{V}_{\text {core }} . \tag{D.11}
\end{align*}
$$

For the steady state section,

$$
\begin{aligned}
\mathrm{V}_{\text {core }}= & 3 * \mathrm{IM}+5 * \mathrm{NNG}+\mathrm{IM} * \mathrm{JM} * \mathrm{KM}+ \\
& (1-\mathrm{IOPT}) *\left[\mathrm{IM} * \mathrm{JM} * \mathrm{KM}^{*}(\mathrm{NNG}+2)+5\right]+ \\
& I O P \mathrm{~T} *(5 * \mathrm{IM} * \mathrm{JM}+5) .
\end{aligned}
$$

For the time-dependent section,

$$
\begin{aligned}
\mathrm{V}_{\text {core }}= & \mathrm{IM} * \mathrm{JM} * \mathrm{KM}+(1-\mathrm{IOPT}) *[\mathrm{IM} * \mathrm{JM} * \mathrm{KM} *(\mathrm{NNG}+\mathrm{NDG}+1)+5]+ \\
& I O P T *[I M * J M *(3 * \mathrm{NNG}+3 * \mathrm{NDG}+2)+2] .
\end{aligned}
$$

Setting IOPT $=0$ gives the minimum length of A required if all variables are to be stored in core. Likewise, setting IOPT $=1$ gives the core storage requirement for the option where several vectors are stored on input/output devices.

Using the Fortran H compiler with optimization level 2 and the level 18.6 version of OS-MVT for the IBM $360 / 65$, a total of 77,500 bytes are required to store 3 DKIN in core, exclusive of the number of bytes allocated to the vector A. In addition, when the code is actually executed, some additional core is needed for input/output device buffers. With 46,000 -byte words allocated to A and with about 12,000 bytes allocated to buffers, 3DKIN requires 458,000 bytes of core. A load module of this size was necessary to run Test Case 4 in Chapter 3.

What follows is a card-by-card description of the input for 3DKIN.

Card Type 1
FORMAT (20A4)
Columns 1-80: (ITITLE(I), $\mathrm{I}=1,20$). This is the alphanumeric problem title.

Card Type 2
FORMAT (20I4)

Columns 1-4: NNG. This is the number of prompt neutron groups.
Columns 5-8: NDG. This is the number of precursor groups.

Columns 9-12: NTG. This is the number of the group to be used in the frequency calculation for the time-dependent section.

Columns 13-16: NDNSCT. This is the maximum number of downscatter groups for any of the neutron groups. No upscattering is allowed in 3DKIN.

Columns 17-20: NMAT. The code expects to read in a total of NMAT macroscopic cross-section sets. These sets are numbered consecutively, from 1 to NMAT.

Columns 21-24, 25-28, 29-32: IM, JM, KM. These variables give, respectively, the number of fine-mesh x-planes, y-planes, and zplanes. The outer boundary planes are included.

Columns 33-36, 37-40, 41-44: IRM, JRM, KRM. These variables indicate the number of coarse-mesh zones in the $x-, y-$, and $z-$ direction, respectively.

Columns 45-48, 49-52, 53-56: NXTP, NYTP, NZTP. These are the number of x, y, and z points, respectively, that are to be used in printing out fluxes during the time-dependent calculation. Every IPRSTP steps, a total of NXTP*NYTP*NZTP points will have their flux values printed out.

Columns 57-60: NSTEAD. If NSTEAD $=0$, only a time-dependent calculation will be performed. The input fluxes will be taken as the initial condition. If NSTEAD $=1$, a steady state calculation will first be performed. If the solution converges within NOIT outer iterations, a time-dependent calculation will follow. If NSTEAD $=2$, only a steady state calculation will be performed.

Columns 61-64: IFLIN. If IFLIN $=0$, the initial flux will be generated by 3DKIN as a cosine in each direction for each group. If IFLIN $=1$, the initial fluxes are to be input on cards. If $\operatorname{IFLIN}=2$, the initial fluxes are to be read in as a sequential dataset from device 8 .

Columns 65-68: IFLOUT. This variable applies only to the output of fluxes at the end of a steady state calculation. If $\operatorname{IFLOUT}=0$, no fluxes will be output. If IFLOUT $=1$, the fluxes will be printed out. If IFLOUT $=2$, the fluxes will be printed and also punched onto cards in a 5 D 16.10 format. If IFLOUT $=3$, the fluxes will be printed and also written on device 8 as a sequential dataset. If IFLOUT $=4$, the fluxes are only written on device 8.

Columns 69-72: IGEOM. This is the geometry indicator. At present, IGEOM = 1 gives $x-y-z$ geometry, the only option available.

Columns 73-76: IETIME. If IETIME >0, the outer iteration completed after accumulated computing time exceeds IETIME will be the last. The fluxes at that point are output as indicated by IFLOUT, and the program stops. If IETIME $=0$, it is ignored.

Card Type 3
FORMAT (E16.10, 4X, 3E10.4, 3I4)
Columns 1-16: EFFK. This is the initial estimate of $\mathrm{k}_{\text {eff }}$. If it is not in the range $.1 \leqslant \mathrm{k}_{\mathrm{eff}} \leqslant 10.0$, it is set to 1.0 .

Columns 21-30: ORFP. This is the parameter used to overrelax the fission source vector, as in Eq. (D.7). It should be in the range $1.0 \leqslant O R F P \leqslant 2.0$.

Columns 31-40: EPS1. This is the eigenvalue convergence parameter, ϵ_{1}, from Eq. (D.9).

Columns 41-50: EPS2. This is the flux convergence parameter, ϵ_{2}, from Eq. (D.8).

Columns 41-44: NOIT. This is the maximum number of outer iterations allowed in the steady state section. If convergence has not been obtained after NOIT outer iterations, the eigenvalue estimate is printed, the fluxes at that time are output as indicated, and the program is stopped. Provided the fluxes have been saved on cards or on device 8, the latest $\mathrm{k}_{\text {eff }}$ can be input to a new run with these fluxes and the calculation restarted.

Columns 45-48: NIIT. This is the maximum number of inner iterations per group per outer iteration.

Columns 49-52: NPIT. If the flux and fission source vectors are stored on input/output devices (IOPT=1), then the fluxes for a group are recomputed across each plane a total of NPIT times before going to the next plane during the inner iterations.

Card Type 3'
 FORMAT (8E10.4)

Use as many cards as are necessary.
Columns $1-10,11-20, \ldots:(\mathrm{OMEG}(\mathrm{NG}), \mathrm{NG}=1, \mathrm{NNG})$. These are estimates of the overrelaxation parameters for the inner iterations. If any $\operatorname{OMEG}(\mathrm{NG})$ is in the range $.95 \leqslant \operatorname{OMEG}(\mathrm{NG}) \leqslant 1.05$, all of them will be computed by 3DKIN to be the optimum values. Once the optimum values are known, they can be input and the calculation thus avoided.

Card Type 4
FORMAT (I5, 5(I5, E10.4)/5(I5, E10.4))
One set of these cards is needed for each of the three directions.
First set -
Columns 1-5: NLBC. This is the boundary condition at $\mathrm{x}=0$. NLBC $=0$ indicates a zero flux (homogeneous Dirichlet) condition, while NLBC = 1 indicates a zero current (homogeneous Neumann) condition.

Columns 6-10, 11-20; 21-25, 26-35; ...: (IBP(IR),HX(IR),IR=1,IRM). $I B P(I R)$ is the right x fine-mesh plane number for the $I^{\text {th }} \mathrm{x}$ coarsemesh region. HX(IR) is the total x-width for that region in centimeters. Additional cards may be used for these pairs of boundary planes and widths. If the last card has five pairs on it, a blank card must follow it.

Second set -
Columns 1-5: NFBC. This is the boundary condition at $\mathrm{y}=0$. For the steady state section, it can be either 0 (zero flux) or 1 (zero current). It can be 1 only if $\mathrm{NLBC}=1$ for the time-dependent section.

Columns $6-10,11-20 ; 21-25,26-35 ; \ldots:(J B P(J R), H Y(J R), J R=1$, JRM). These are the pairs of back fine-mesh y-planes and total y widths for the y coarse-mesh zones.

Third set -
Columns 1-5: NBBC. This is the boundary condition at $\mathrm{z}=0$. Either a 0 or a 1 can be used for a steady state calculation, but only a zero flux boundary condition is allowed here for the time-dependent calculation.

Columns 6-10, 11-20; 21-25, 26-35; ... : (KBP(KR), HZ(KR), $\underline{K R=1, K R M})$. These are the pairs of upper fine-mesh z-planes and total z-widths for the z coarse-mesh zones.

Use as many cards as necessary.
Columns $1-4,5-8, \ldots$: (IXTP(I) , $\mathrm{I}=1, \mathrm{NXTP}$), (IYTP(I), I=1, NYTP), (IZTP(I), I=1, IZTP). These are the points at which fluxes will be printed out every IPRSTP steps during the time-dependent calculation.

Card Type 6
 FORMAT (20I4)

One set of cards is required for each coarse-mesh z-region. Use as many cards as necessary for each set, with 20 values on each card.

Columns $1-4,5-8, \ldots:((\operatorname{MMAP}(\mathrm{IR}, \mathrm{JR}, \mathrm{KR}), \mathrm{IR}=1, \mathrm{IRM}), \mathrm{JR}=1, \mathrm{JRM})$. These are the material numbers assigned to each material region in the $K R^{\text {th }}$ coarse-mesh z-region.

Card Type 7
 FORMAT (6E12.6)

Columns 1-12, 13-24, ...: (V(NG), NG=1, NNG). These are the group velocities in $\mathrm{cm} / \mathrm{sec}$.

Card Type 8

FORMAT (6E12.6)
Columns $1-12,13-24, \ldots:(X I(N G), N G=1, N N G)$. This is the prompt fission spectrum.

A set of NNG card type 9^{\prime} s and as many card type 10's as are necessary is input as a package for each material $N M, 1 \leqslant N M \leqslant$ NMAT. The sets start with material 1 and proceed consecutively to material NMAT.

Card Type 9
FORMAT (4E12.6)
Columns 1-12: XNU(NM, NG). This is ν for group NG.

Columns 13-24: SIGF(NM,NG). This is Σ_{f} for group NG in cm^{-1}. Columns 25-36: SIGR(NM, NG). This is Σ_{a} for group NG in cm^{-1}. Columns 37-48: SIGT(NM, NG). This is $\Sigma_{t r}$ for group NG in cm^{-1}. In each set, the NNG card type 9's are arranged consecutively from group 1 to group NNG.

Card Type 10
FORMAT (6E12.6)
Columns $1-12,13-24, \ldots:((S I G S(N M, N G, N D N), N D N=1$, NDNSCT), NG=1, NGX). This is $\Sigma_{S_{g^{\prime} g}}$ for $g^{\prime}=N G+1$ to $g^{\prime}=N G+N D N S C T$ for each group $g=N G . \quad N G X=N N G-1$, so no values are read in for group NNG.

Card Type 11

FORMAT (6E12.6)
One or more card type 11 is required for each precursor group. Begin on a new card for each precursor group.

Columns 1-12: ALAM(ND). This is the λ for precursor group ND in $\sec ^{-1}$.

Columns 13-24: BETA(ND). This is β for each precursor group ND.

Columns 25-36, 37-48, ...:(XIP(NG, ND), NG=1,NNG). This is $\chi_{\text {gi }}$ for all groups $g, 1 \leqslant g \leqslant N N G$, for precursor group ND.

Card Type 12
FORMAT (5E16.10)
These cards are needed only if IFLIN $=1$. There are a total of NNG $*$ KM sets of card type 12 's required then. Each set begins on a new card and contains the fluxes for one z-plane and one group. The sets are arranged from plane 1 to plane KM for each group, with those for group 1 coming first.

Columns 1-16, 17-32, ...: ((PSI(NG, I, J, K), I=1, IM), J=1, JM). These are the fluxes at all points on z-plane $K R$ for group NG.

For a time-dependent calculation, a set of one card type 13, NNG*ISTPCH card type $14^{\prime} \mathrm{s}$, and NNG * ILINCH card type 15's are needed for each time zone.

Card Type 13

FORMAT (6I5, 3E12.5)
Columns 1-5: LASZON. If >0, this is the time zone number. If LASZON $=0$, this is the last time zone for this problem.

Columns 6-10: ISTPCH. If ISTPCH $=0$, no step change in any material properties will occur at the beginning of this time zone. If ISTPCH >0, then a total of ISTPCH materials have one or more properties which undergo step changes at the beginning of this time zone.

Columns 11-15: ILINCH. ILINCH indicates the total number of materials in which one or more properties will vary as a linear function of time over this time zone.

Columns 16-20: IPRSTP. During the time-dependent calculation, the fluxes at NXTP*NYTP*NZTP points are printed out every IPRSTP ${ }^{\text {th }}$ step.

Columns 21-25: ICHHT. This variable is not used at present.
Columns 26-30: IFLOUT. If IFLOUT = 0, fluxes at only the test points are printed out at the end of this time zone. If IFLOUT = 1, the entire flux and precursor vector is printed out at the end of this time zone.

Columns 31-42: HMIN. The value of $h(=\Delta t / 2)$ to be used throughout this time zone is given here in sec.

Columns 43-54: HMAX. This variable is not used at present.
Columns 55-66: TEND. This is the time at the end of this time zone in sec. It should be an integer multiple of Δt.

Card Type $14 \quad$ FORMAT (I5, 5X, 5E12.5)
For each material which has a property undergoing a step change, the NNG card type 14 's are ordered by group, from group 1 to group NNG. There is a total of NGG*ISTPCH card type 14's in a time zone set.

Columns 1-5: MNSCH(I). This is the material number for which this change takes place.

Columns 11-22: DELSFS(MN, NG). This is the step change in SIGF(MN, NG) for this time zone.

Columns 23-34: DELSRS(MN, NG). This is the step change in SIGR(MN, NG) for this time zone.

Columns 35-46: DELSTS(MN, NG). This is the step change in SIGT(MN, NG) for this time zone.

Columns 47-58: DELS1S(MN, NG). This is the step change in SIGS(MN, NG, 1) for this time zone.

Columns 59-70: DELS2S(MN, NG). This is the step change in $\operatorname{SIGS}(M N, N G, 2)$ for this time zone. It is necessary only if NDNSCT $\geqslant 2$.

The MN above corresponds to the value of $\operatorname{MNSCH}(\mathrm{I})$ for this card. At the present time, this option is limited to problems having 4 groups or less. Also, the maximum number of materials which can be changed in each time zone is five. However, both of these limitations can be changed by altering several COMMON statements in the code.

Card Type 15
FORMAT (I5, 5X, 5E12.5)
For each material which has a property undergoing a linear variation, the NNG card type 15's are ordered by group, from group 1 to group NNG. There are a total of NNG* ILINCH card type 15's in a time zone set.

Columns 1-5: MNLCH(I). This is the material number for which this change takes place.

Columns 11-22: DELSFL(MN, NG). This is the total amount by which $\operatorname{SIGF}(M N, N G)$ is to vary over this time zone.

Columns 23-34: DELSRL(MN, NG). This is the total amount by which $\operatorname{SIGR}(M N, N G)$ is to vary over this time zone.

Columns 35-46: DELSTL(MN, NG). This is the total amount by which SIGT(MN, NG) is to vary over this time zone.

Columns-47-58: DELS1L(MN, NG). This is the total amount by which SIGS(MN, NG, 1) is to vary over this time zone.

Columns 59-70: DELS2L(MN, NG). This is the total amount by which $\operatorname{SIGS}(M N, N G, 2)$ is to vary over this time zone. It is required only if NONSCT $\geqslant 2$.

The MN above corresponds to the value of MNLCH(I) for this card. The limitations concerning number of groups and number of materials apply to card type 15 as they do to card type 14.

Card Type 16
FORMAT (I4)
Columns 1-4: If the number 9999 is placed in these 4 columns, this problem is the last problem in this computer run. If any sequence of numbers other than 9999 is placed here, another problem may be
placed immediately after this card. Each problem must have a complete set of input data.

D. 5 Input for Sample Problem

On the pages that follow, the data for running a problem on 3DKIN are presented in card image format. This sample problem is actually the data for Test Case 2. For the steady state calculation, the initial flux guess is generated by 3DKIN. A total of 120 outer iterations are allowed. The time-dependent calculationsis set to run out to .3 second: with a Δt of .001 second. This problem requires about two hours of running time on an IBM 360/65.

FIRST THREE LINES NOT 3DKIN INPUT

```
1 10 llllllllll
    THESIS CASE 3: ci-D VERSION OF TWIGLE PROBLEM WITH HALF CORE SYMMMETRY 
1.0 1.40000 001.00000-091.00000-08 200 10 1
1.0 1.0
    42.40000 01 83.20000 C1 112.40000 01
    0 42.40000 01 83.20000 C1 144.8000D 01 183.20000 01 212.4000D C1
    0 42.40000 01 181.12000 02 212.40000 01
    1
1.0000000 072.00000000 05
1.0 0.0
2.4000000 003.500000D-031.000000D-022.380952D-01
2.4000000 001.000000D-011.5000000-018.333333D-01
1.0000000-020.0
2.400000D 003.500000D-031.000000D-022.380952D-01
2.400000D 001.000000D-011.5000000-018.333333D-01
1.0000000-020.0
2.400000D 001.500000D-038.000000D-032.564103D-01
2.4000000 003.0000000-025.0000000-026.666667D-01
1.0000000-020.0
8.000000D-027.5000000-031.000000D 000.0
    1 0 1 1 10 0 15.0000000 -045.000000 D-042.000000D-01
    1 0.000000 00 0.000000 00 0.000000 00 0.000000 00 0.000000 00
    1 0.00000D 00-0.00450D 00 0.000000 00 0.000000 00 0.00C00D 00
0 0 0 10 0 15.000000D-045.000000D-043.0000000D-01
9999
```


Appendix E
 SOURCE LISTING OF 3DKIN

```
********** STATUS JF 3DKIN AS DF JULY 28, 1971 ************
ALL FEATURES JF 3DKIN AS DESCRIBED IN APPENDIX D HAVE BEEN TESTED AVD ARE WDRKIVG EXCEPT FOR THE FJLLOHING ITEMS:
1. THERE IS A BUG SOMEWHERE IN THE STEADY STATE SECTION FOR THE OPTIOV WHERE FLJX AND FISSION SOJRCE VECTORS ARE STDRED ON IVPUT/OUTPUT DEVICES (IOPT=1).
2. THE SUBROUTINES FOR THE TIME-DEPENDENT SECTION WHICH PERFORM THE FORWARD AND BACKWARD SWEEP AND CALCULATE NEW FREQUENEIES WHEN IOPT=1 (STEPAL,STEPBI,FREQ1) HAVE NDT BEEN THJROUGHLY TESTED AND ARE NOT INCLUDED IN THIS LISTING.
3. THE QUARTER-CDRE SYYMETRY OPTION (NLBC=1,NFBC=1) FOR THE TIME-DEPENDENT SECTIJN HAS A BUG IN IT.
VARIABLE DIMENSIONING IS USED THROUGHOUT 3DKIN. SPACE FOR ALL ARRAYS IS ALLDCATED IN THE VESTOR A IN LABELLED CJMMON ARAY. A NUMRER OF POINTERS ARE COMPUTED IN SUBRJUTINE MEMJRY UHICH INDICATE THE LDCATIONS IN A HHERE EACH OF THE FIRST ELEMENTS OF THE ARRAYS ARE STORED. THE POINTERS ARF NAMED SO THAT EACH CONSISTS OF THE LETTER L PREFIXED TO THE ARRAY NAME.
```



```
            41,0000121
            COMMON/FLDTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, 0000130
        ITEMP 5, TEMPS, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCJN, BETAT
            COMMDN/ARAY/A(46000)
                    CALL ETIME 0000160
            IASI 2E=46000
        99 0% 100 I=1,IASIZE
            A(I)=0.0DO
    100 CONTINUE
    100 CONTINUE
            IODUMP=10 0000220
            IDFN=1
            IOFO=?
            IDPN=3
            IDPO=4
            IOSC1=11
            10SC 2=12
c READ CARD 1
    READ(5,1000)(ITITLE(I),I=1,20) 0000300
    1000 FORMAT(20A4)
WRITE(6,1010)(ITITLE(1),I=1,20)
    1010 FORMAT(1H1,10X,2044)
C READ CARD 2
            RE CARD 2
            READ(5,102J)NNG,N)G,NTG,NDVSCT, NMAT,IM,JM,KM,IRM,JRM,KRM,NXTP,NYTP 0000350
        I,NZTP,NSTEAD,IFLIN, IFLOUT, TGEOM, IETIME 0000360
1020 FORMAT(2014)
WRITEIS,103OINNG,NDG,NTG,NDNSCT,NMAT,IM, JM, KM,IRM,JRM, <RM,NXTP,
            INYTP,NTTP,NSTEAD,IFLIN,IFLJUT, IGEDM,IETIME
1030 FDRMAT(11X, 2014)
1030 FORMATM11X, \O144)
    NTJG=NNG +NDG
    IMX = IM-I
    JMX=JM-1
    KMX=KM-1
    NGX = NNG-1
    TIME=1.OD+10
            41,0000121
                0000140
                00001.50
                0000160
                0000170
                0000180
                0000190
                0000200
                    0000210
            <0000230
                            0000230
                    0000240
                            0000250
                                    0000250
            M,0000260
                                    0000270
                                    0000270
0000280
```

```
0000290
```

0000290
0000300
0000310
[...0000320
0000330
0000360
0000370
0000380
000390
l
0000400
0000410
0000420
0000430
0000430
0000440
0000450
0000451
0000460
PAGE }14

```
```

 IFIIETIME.NE.OITIME=IETIME 0000470
 IMEM=1
 CALL MEMORY(IMEM)
 IF(IMEM.FQ.5) GO TO 999
 IF(IOPT.EQ.O) GO TJ 110
 REWINO IDFN
 REWIND IOFS
 REWIND IOPN
 REWIND IOPG
 RFWIND IOSCI
 REWIND IOS:2
 110 CALL CALLER
READ(5,1040) INDIC
ITEMP4=9999
1040 FORMAT(I4)
IF(INDIC.NE.ITEMP4IGO TO 99
IF(INDIC.E2.ITEMP4)WRITE(6,1050)
1050 FDRMAT(1HO,1OX,'LAST CASE CTMPLETED')
999 STOP
END
0000480
0000490
0000500
0000510
0000520
00005520
0000530
0000540
0000550
0000560
0000570
0000580
0000590
0000600
0000610
0000620
0000630
0000640
0000650
0000660

```
```

 SUBROUTINE MEMORY(IMEM) MEMOOO1O
 IMPLICIT REAL*8 (A-H,D-Z) MEMOOO2O
 INTEGER*2 YMAP,NPRMP MEMO0030
 COMMON/POIVT/LV,LXI, LXIM,LXVU,LSIGF,LSIGR,LSIGT,LSIGS,LALAM, LBETA,MEMO0040
 ILXIP,LX,LY,LZ,LHX,LHY,LHZ,LIBP,LJBP,LKBP,LDDI,LDDZ,LDD3,LDD4,LDD5,MEM00050
 TLDDG,LDJT,LVO,LMMAP, LNPRMP, DSI,LP1,LP2,LP3, LFRO,LFRN,LFO,LFN,LSRCMEMO0060
 3,LWA,LGA,LSOLN,LOMEG,LXFISS,LXINSC,LXREM,LXLEK,LTOT,LPSO,LH,LPO,LHMEMOOO7O
 4 1 .
 MEM00071
 CTMMON/INTG/IASIZE,NNG,NDG,VTOG,NMAT,IM, JM, KM,IRM,JRM,KRM,NLBC, MEMOOO8O
 INFBC,VB3C,VDNSCT,NPRG,IJPT,VTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), MEMO0090
 2IITP(5),NSTFAD, IFLIN,IGEOM, ITITLE(20),N3IT,NIIT,NPIT,IJPSI, I ODUMP,MEMOOI OO
 3IOFN,IJFO,IDPN,IOPJ,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, MEMO0110
 4NTIT,IETIME,IFLDUT, IMX,JMX, KMX,IOSCI,TOSC2,VGX
 MEM00120
 COMMON/FLOTE/EFFK,ORFP,EPSI,EPS2,TEMP,TEMP1, TEMP 2,TEMP3,TEMD4,
 ITEMP5,TEMPS, XFISST,XFISSN,ALAMN,ALAMO,TIME,FLXCON,BETAT MEMOO140
 G3 TO(100,200),IMEM
 100 10PT=0
LV=1
LXI=LV+NNG
LXIM=L XI +NNG
LXNU=LXIM+VNG
LSIGF=LXNU+NMAT*NNG
LSIGR=LSIGF + NMAT*NNG
LSIGT=LSIGR +NMAT*NVG
LSIGS=LSIGT+NMAT*NNG
LAL.AM=LSIGS + NMAT*NNG*NDNSCT
LRETA=LALAM+NDG
LXIP=LBETA+NOG
LX=LXIP+NNG*NDG
LY=LX+IM
LZ=LY+JM
LHX=LZ+KM
LHY=LHX+IRY
LHZ=LHY +JRM
LIBP=LHZ +KRM
LJBP=LIRP+(IRM+1)/2
MEM00150
MEMOO160
MEMOO170
MEM00180
MEMOO190
MEM00200
ME M00210
MEM00220
ME MO0230
MEM00240
MEM00250
MEM00260
MEM00270
MEM00280
ME M00290
MEM00300
MEM00310
ME M00320
MEM00330
ME M00340
MEM00350

```
```

 LKBP=LJBP+(JRM+1)/? MEM00360
 LDD 1=LKBP+(KRM+1)/2
 LDD2=LDOL +NPRG*NNG
 LDD3=LDD2+VPRG*NNG
 LDD4=LDJ3+NPRG*NNG
 LDD5=LDD4+NPRG*NNG
 LDD6=LDJ5+NPRG*NNG
 LDD7=LDD6+VPRG*NNG
 LVO=LDDT+NPRG*NGX*NDNSCT
 LMMAP =LVO+NPRG
 LNPRMP=LMMAP +(IRM*JRM*KRM+3)/4
 こ
NOW COMPUTE THOSE POINTERS WHICH MAY VARY WITH IOPT
110 LPSI=LNPRMP+(IM*JM*KM+3)/4
LPI = LPSI + (1-IOPT)*IM*JM*KM*VNG+IOPT
LP2 = LP 1 + IM* JM*IOPT+(1-IOPT)
LP3 =LP? + IM*JM* IOPT+(1-IOPT)
LFRO=LP3 +IM*JM*IDPT + (1-IOPT)
LFRN=LFRD+(1-IJPT)*IM*JM*KM+IOPT
LFO=LFRN+(1-IOPT)*IM*JM*KM+IOPT
LFN=LFO+IM*JM*IOPT+(1-IOPT)
LSRC=LFN+IM*JM*IOPT+(1-IDPT)
LHA=LSRC+IM*JM*KM
LGA=LWA+IM
LSOLN=LGA+IM
LOMEG=LS OLN+IM
LXFISS=LOMEG+NNG
LXINSC=LXFISS+NNG
LXREM=LXINSC+NNG
LXLEK=LXREM+NNG
LTDT=LXLEK+NNG
IF(IASIZE-LTOT)120,140,140
120 IOPT=IOPT+1
IF(IOPT.GT.1)GO TO 130
GO TO 110
130 IMEM=5
WRITEI6,1000IIASIZE,LTOT

```

MEM00360
MEM00370 ME M003 80 MEM00390 MEM00400 ME M00410 MEM00420 MEM00430 MEM00431 MEM00440 ME M00450 MEM00460 MEM00470 ME M00480 MEM00490 MEM00500 MEM00510 MEM00520 ME M00530 ME M00540 ME M00550 ME M00560 MEM00570 MEM00580 MEM00590 MEM00600 ME M006 10 MEM00620 MEM00630 ME M00640 MEM00650 MEM00660 ME M00670 MEM00680 MFM00690 ME M00700
```

TOOJ FJRMAT(1H, 1OX,IG, 2X,'WOR)S ALLJTTED,', 2X,I6, 2X,'WORDS NEEJED,COREMEMOOT10
I CAPACITY EXCEEDED'।
GO TO 300 MEMOOT30
140 WRITEI6,1010IIASIZE,LTOT
1010 FORMAT(1H, IOX,IG, 2X,'WORDS ALLOTTED,', 2X,I5, 2X,'WORDS USED')
gO TO 300

- BPANCH TO HERE TO CJMPUTE DIMENSION PJINTERS THAT CHANGE FOR
KINETICS CALCULATION
KINETICS CALCULATION
LP2 = LP1 +IM*JM*NTOG*IOPT+(1-IOPT)
LP3=LP2+IM*JM*NTOG*IOPT+(1-IOPT)
LPSO=LP2+IM*JM*NTOG*IOPT+(1-1OPT)
LH=LPSD+(1-IOPT)*TM*JM*KM+IJPT
LP\cap=LW+IM*JM*KM
LWL =LPO+IM*JM*IOPT + (I-IOPTI
LTOT=LWI+IM*JM*IOPT+(1-IOPT)
IF(IASIZE-LTOT1210,230,230
210 I\capPT=IOPT+I
IFIIOPT.GT.1 IGO TJ 220
GO TO 230
220 TMEM=5
WRITE(6,1000)IIASIZE,LTOT
GO TO 300
230 WRITEI6,1010IIASIZE,LTOT
300 RETURN
END
MEM00730
MEM00750
MEM00760
MEM00770
MEM00780
MEM00790
ME M00800
MEM00810
ME M00820
MEM00830
MEM00840
MEM00850
ME4 86
MEM00870
MEM00880
MEM00890
MEM00900
MEM00910
MEM00920
MEM00930
MEM00940
MEM00950
MEM00960

```

SUBROUTINE CALLER CALOOO10
IMPLICIT REAL*9 ( \(A-H, O-Z)\) CALOOO20
INTEGER*2 पMAP, NPRMP CAL00030
COMMON/POINT/LV,LXI,LXIM,LXVU,LSIGF,LSIGR,LSIGT,LSIGS,IALAM,LBETA,CALOOO4O 1LXIP,LX,LY,LZ,LHX,LHY,LHZ,LIBP,L JBP, LKBP, LDOI, LDD2, LDD3, LDD4, LDD5,CAL00050 2LDO6, LDD7,LVO, LMMAP, LNPRMP, -PSI, LP1, LP2, LP3, LFRO, LFRN,LFO,LFN,LSRCCALOOO60 3,LWA,LGA,LSOLN,LOMEG,LXFISS, LXINSC,LXREM,LXLEK,LTOT,LPSO,LW,LPO,LWCALOOO7O 41

CAL00071
COMMON/INTG/IASIZE,NNG,NDG, VTOG, NMAT,IM, JM, KM, IRM,JRM, XRM,NLBC, CALOOO8O INFBC, NBBC, VONSCT, NPRG,ISPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5), CAL00090 2ITTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IJP SI, I ODUMP, CALOOLOO 3 IOFN, I TFO, ITPN, IOPY, ITEMP, ITEMPI, ITEMP2, ITEMP3, ITEMP4, ITEMP5, CALOO110 4NTIT,IETIME, IFLDUT, IMX,JMX,KMX,IOSCI,IOSC2,VGX. CALOO120 COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP 1, TEMP 2, TEMP3, TEMP4, CAL00130 ITEMP 5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME,FLXCON, BETAT CALOO140 COMMON / AR AY/AC1)

CALOO1 50
\(\therefore\) CALL INPUT FOR REMAIVDER OF IVPUT DATA
CALOO160
CALL IVOUTYA(LV), A(LXII, A(LXNU), A(LSIGF), A(LSIGR), A(LSIGT), CALOOI70 1A(LSIGS), A(LALAM), A(LBETA), A(LXIP), A(LX),A(LY), A(LZ), A(LHX), CAL00180 2A(LHY), \(A(L H Z), A(L I B P), A(L J B P), A(L K B P), A(L M M A P), A(L O M E G), N N G, N D G, C A L O O 190\) 3NDVSCT, NMAT,IM, JM,KM,IRM,JRM,KRM)
CALL EDIT TO PRINT JUT EDITED VERSION OF PROBLEM DESCRIPTIGN
CAL 00200
CALL I OEDIT A LLV) A (LXI) A(LXNU) A LLSIGF) A(LSIGR) A(LSIGT) CALO0210

CAL 00220 IAILSIGS), A(LALAM), A(LBETA), A(LXIP), A(LXI, A(LY), A(LZ), A(LHX), CALOO230 2A(LHY), A(LHZ), A(LIBP), A(LJBP), A(LKBPI, APLMMAP), A(LOMEG), NNG,NDG, CALOO240 3NDNSCT,NMAT,IM,JM,KM,IRM,JRM,KRMI

CALOO250
C CALL FLUXINTO INPUT INITIAL FLUX GUESS
CAL00260
CALL FLUXIN(A(LPSI), A(LPII, NNG,IM,JM,KM)
CAL00270
CALL SSTATE TO COMPUTE CDEFFIEIENTS, SET UP PROBLEM REGTJNS, AND CALOO28O
COMPUTE STEADY STATF FLUXESIIF REQUESTFDI CAL 00290
CALL SSTATE(AILV), A (LXI), A(LXIM), A(LXNU), AILSIGF), A(LSIGR),
CALOO300 1. A(LSIGT), A(LSIGSI, A(LALAM), A(LBETA), A(LXIP), A(LX), A(LY), A(LZ). CALOO310 \(2 A(L H X), A(L H Y), A(L H Z), A(L I B P), A(L J B P), A(L K B P), A(L D D 1), A(L D D 2) ; C A L O 0320\) \(3 A(L D 03), A(L D D 4), A(L D D 5), A(L D D 6), A(L D D 7), A(L V O 1, A(L M H A P), A(L N P R M P), C A L 00330\) \(4 A(L P S I), A(L P 1), A(L P 2), A(L P 3), A(L F R)), A(L F R N), A(L F O), A(L F N), A(L S R C) C A L 00340\) 5, A(LHA), A(LGA), A(LSOLN), A(LOMEG), A(LXFISS), A(LXINSC), A(LXREM), A(LXCALO0350
```

 GLEKI,NNG,NDG,NONSCT,NMAT,IM,JM,KM,IRM,JRM,KPM,NPRE,NGXI CALOO360
 IF(ITEMP.NE.&IGO TO 200
 IF(NSTEAD.EQ.2IGOTO 200
 WRITE(6,?000)
 10OO FORMAT (1H1,///, 10X, PROCEEDING INTO TIME-DEPFNDENT CALCULATION')
 C CALL FIUXTR TO WRITE FLUXES CUT ON IOSC1 FOR PASSAGE TO TIMDEP
CALL FLUXTP(A(LPSI),A(LPZ),NVG,IM,JM,KM)
C CALL MEMDRY TO २EBUILD STORAGE FOR TIME-DEPENDEVT CALCULATION
IMEM=2
CALL MEMOPY(IMEM)
IF(IMEM.EQ.5)30 TO 200
C CALI TIMDED TO PERFJRM TIME-DEPENDENT CALCULATION
CALL TIM)EP(A(LV), A(LXI),A(LXIM),A(LXNU),A(LSIGF),A(LSIGR),
2X), A(LHY), A(LHZ),A(LIRP), A(LJBP),A(LKRP), A(LDDI),A(LDD2),A(LDO 3), CALO0500
3A(LDD'), A(LOD5),A(LOD6),A(LDD7),A(LVO), A(LMMAP), A(LNPRMP), A(LPSI) CALO0510
4,A(LP)),A(LP2),A(LP3), A(LPSO), A(LW),A(LPC),A(LH1),NNG,NDG,NTOG.
5NONSCT,NMAT,IM,JM,KM,IRM,JRM,KRM,NPRG,NGXI
c. NOW RETIRN TOMAIN
?O RETURN
END
CAL 00370
CALO0380
CALO0390
CAL 00400
CALO0410
CALO0420
CALO0430
CALO0440
CAL O0450
CALOO460
CAL00460
CALO0470
CAL 00480
CAL 00520
CAL00530
CALO0540
CALO0550
CALOO560

```
```

SUBROUTINE ETIME
IMPLICIT REAL*8 (A-H,O-Z)
INTEGER TNJW,TSTART,TREL,TIJ
CALL TIMING(TSTART,TIO)
RETURN
ENTRY ETIMEF(TI)
CALL TIMING(TNOH,TIO)
TREL=TV?W-TSTART
IF(TRFL.LT.0)TREL=TREL+8640000
TI = TREL/6000.
RETURN
END

```

ETI00010
ETI00020
ETI00030
ETIO0040
ETI00050
ETI00060
ETI00070
ETI00080
ETI00090
ETIOO100
ETI00110
FTIOO1 20
```

 SUBROUTINE INPUTIV,XI,XNU,SIGF,SIGR,STGT,SIGS,ALAM,BETA,XIP,X,Y,Z,INPOOOIO
 1HX,HY,HZ,IBP,JBP,K3P,MMAP,OMEG,NNGV,NOGV,NDNSCV,NMATV,IMV,JMV,KMV,INP 00020
 2IRMV,JRMV,KRMV)
 INP00030
 IMPLICIT REAL*B (A-H,O-2)
 INP00040
 INTEGEQ*2 MMAP,NPRMP INP00050
 COMMON/INTG/IASIZE,NNG,NDG,VTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC, INP00100
 INFBC,NBSC,NDNSCT,NPRG,IJPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), INP00110
 2IZTP(5),NSTFAD,IFLIN,IGEOM,ITITLE(20),NOIT,VIIT,NPIT,IJPSI,IODUMP,INPOOI20
 3IOFN,IOF %,IOPN,IOP3, ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, INPOOI30
 4NTIT,IETIME,IFLDUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX INPOO140
 COMMON/FLOTE/EFFK, JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, INP00150
 ITEMP5,TEMPS,XFISST,XFISSO,ALAMN,ALAMO,TIME,FLXCON,BETAT INP00160
 DIMENSITN V(NNGVI, XI (NNGV), XNU(NMATV,NNGV),SIGF(NMATV,NNGV), INPOOI70
 I SIGR(NMATV,NNGV), SIGT(NMATV,NNGV),SIGS(NMATV,NNGV,NONSCV), AL AM(NDGINPOO180
 2V), BETA(NDGV),XIP(NNGV,NDGV),X(IMV),Y(JMV),Z(KMV),HX(IRMV), INPOOI90
 3HY(JRYV),HZ(KRMV), IBP(IRMV), JBP(JRMV),KRPIKZMV),MMAP(IRMV,JRMV, INP00200
 4KRMV),OMEG(NNGV) INPO0210
 D3 100 I=1,5 INP00220
 IXTP(I)=0
 IYTP(I)=0
 IZTP(I)=0
 10J CONTINUE
 = READ IN REMAIVDER OF TIME-INDEPENDENT INFORMATION
C ONLY EFFK IS USED IF NSTEAD=0
READ CARD 3
READ(5,1000)EFFK,ORFP,EPS1,EPS2,NOIT,NIIT,NPIT
1000 FJRMAT(D16.10,4X,3010.4,314)
WRITEIG,1010)EFFK, JRFP,EPSI,EPS2,NDIT,NIIT,NPIT
1010 FSRMAT(11X,016.10,4X,3010.4,314)
READ(5,1001)(DMEG(NG),NG=1,NNG)
1001 FORMAT(8E10.4)
WRITF(6,1002)(OMEG(NG),NG=1,NNG)
1002 FORMAT(1IX,8EL0.4,/(10X,8E!).4))
c READ CARDS 4
105 READ(5,102J)NLBC,(IBP(IR),HX(IR),IR=1,IRM)
1020 FORMAT(I5,5(15,E10.4)/5(15,E10.4))
INPOO
INP00230
INP00240
INPOO250
INP00260
INP00270
INP00280
INP00290
INP00300
INP00310
INP00320
INP00330
INP00340
INP00350
INP00360
INP00380
INP00390
INP00400

```
        WRITE(G,1030)NLBC,(IBP(IR),4X(IR),IR=1,IRM) INP00410
    1 0 3 0
        FJRMAT(11X,15,5(15,E10.4)/(10X,5(15,E10.4)1)
        INP00420
        READ(5,102))NFBC,(JBP(JR),HY(JR),JR=1,JRM)
        WRITE(6,1030)NFBC, (JBP(JR),HY(JR),JR=1,JRM)
        READ(5,1020) NBBC,(KBP(KR),HZ(KR), KR=1,KRM)
        WRITE(6,1030)NBBC, (KBP(KR),HZ(KR ), KR=1,KRM)
` GENERATE YESH SPACINGS AND MESH PLANE DISTANCES frOM ORIGIN
            IS=1
            ISS=2
    D) 120 IR=1,IRM
    HX(IR)=HX(IR)/(IBP(IR)-IS)
    IS=IBP(IR)
    DJ 110 I=ISS,IS
    110 X(I)=X(I-I) +HX(IR)
    120 ISS=IBP(IR)+1
    IS=1
    ISS=2
    03 140 JR=1,JRM
    HY(JR)=HY(JR)/(JRP(JR)-IS)
    IS=JBP(JR)
    DO 130 J=ISS,IS
    130 Y(J)=Y(J-1)+HY(JR)
    140 ISS=JBP(JR)+1
    IS=1
    ISS=2
        D3 160<R=1,KRM
        HZ(KR)=HZ(KR)/(KBP(KR)-IS)
        IS=KBP(KR)
        DO 1.50 K=ISS,IS
    150 Z(K)=Z(K-1.)+HZ(KR)
    160 ISS=KBP(KR)+1
= PEAD TEST POINTS FJR RINETICS CALCULATIJNS CARD 5
    INP00700
    INPOO
    READ(5,1040)(IXTP(I),I=1,NXTP),IIYTP(I),I=1,NYTP),(IZTP(I),I=1,N2TINP00730
    (P)
    INP00740
    WRITE(6,1050)(IXTP(I),I=1,NXTP), (IYTP(I),I=1,NYTP),(TZTP(II,I=1,NZINP00750
    1TP)
INP00760
```

C QEAD IN MATERIAL REGION MAP EARDS 6 INPOOTTO
DO 1.70 KR=1;KRM
READ(5,1040)((YMAP(IR,JR,KR),IR=1,IRM),JR=1,JRM)
WRITE(5,1050)((MMAP{IR,JR,KR),IR=1,IRM),JR=1,JRM)
170 CONTINUE
1040 FORMAT (2014)
1050 FORMAT(11X,2014)
= READ VELOCITIES CARD }
READ(5,1060)(V(NG),NG=1,NNG)
WRITE(6,1070)(V(NG),NG=1,NNG)
1060 FORMAT(6E12.6)
1070 FJRMAT(11X,6E12.6/(10X,6E12.6))
\& PEAD FISSIDN SPECTRUM CARD 8
READ(5,1060)(XI(NG),NG=1,VNG)
WRITE(6,1070)(XI(NG),NG=1,NNG)

- READ MATERIAL PROPERTIES
DO 190 NM=1, NMAT
C READ CARD }
DO 180 VG=1,NNG
READ(5,106)\XNU(NM,NGI,SIGF(NM,NG);SIGR(NM,NG),SIGT(NM,NG)
180 WRITE(S,1070)XNU(NM,NG),SIGF(NM,NG),SIGR(NM,NG),SIGT(NM,NG)
C
READ CARD 10
READ(5,1060)({SIGS(NM,NG,NONSC), NDNSC=1,NDNSCTI,NG=1, NNG:
WRITE(G,1070)(YSIGS(NM,NG,VDNSC),NDNSC=1,NDYSCTI,NG=1,NNG)
190 CONTINUE
C READ PRECURSJR DATA CARD 11
DO 200 VD=1, NDG
READ(5,1060) ALAM(VD), BETA(VD), (XIP(NG,ND),NG=1,NNG)
WRITE{G,10TOIALAM(NDI,BETAPVDI, (XIP{NG,NDI,NG=1,NNG)
200 CONTINUE
RETURN
END

```

INP00770
INP00780
INP00790
INP00800
INP00810
INPOOB20
INP00830
INP 00840
INP00850
INP 00860
INP00870
INP00880
INP00890
INP00900
INP00910
IND00920
INP00930
INP 00940
INP00950
INP00960
INP00970
INP00980
INP00990
INP01000
INPOLO10
INPO1020
INP01030
INPO1040
INPO1050
INPO1060
INP01070
INPO1080
```

 SUBROUTINE IOEDITIV,XI,XNU,SIGF,SIGR,SIGT,SIGS,ALAM, BETA,XIP,X,Y,ZINPOOOIO
 1,HX,HY,HZ,IBP,JBP,KBP,MMAP, ПMEG,NNGV,NDGV,NDNSCV,NMATV,IMV,JMV, KMVINPOOO2O
 2,IRMV,JRMV,KRMVI
 INP00030
 IMPLICIT REAL*8 (A-H,O-Z)
 INP00040
 INTEGER*2 MMAP,NPRMP
 INP00050
 COMMON/INTG/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC, INPOOLOO
 INFBC,VB3C,VONSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5), IYTP(5),
 INP00110
 2IZTP(5),NSTEAD,IFLIN,IGEOM,ITITLE(20),NOIT,NIIT,NPIT,IJPSI,I ODUMP,INPOOL 20
 3IDFN,IJFO,IOPN,IOPJ,ITEMP, ITEMP1,ITEMP2,ITEMP3,ITEMP4, ITEMP5, INP00130
 4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IDSC2,VGX INP00140
 COMMON/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1, TEMP2,TEMP3,TEMP4, INP00150
 ITEMP5, TEMP5, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCJN, BETAT INP00160
 DIMENSIJN V(NNGVI,XI (NNGVI; XNU(NMATV,NNGV),SIGF(NMATV,UNGV), INPOOLTO
 I SIGR(VMATV,NNGV),SIGT(NMATV,NNGV),SIGS(NMATV,NNGV,NDNSEV),ALAM(NDGINP00180
 2V), BETA(NDSV),XIP(VNGV,NDGVI, X(IMV),Y(JMVI,Z(KMV),HXIIRMV), INP00190
 3HY(JRYV),HZ(KRMV), IBP(IRMV), JBP(JRMVI,KBPIKRMV),MMAP IIRMV,JRMV, INPOO2OD
 4KRMV), OMEG(NNGV)
 WRITE(6,1000)(ITITLE(I),I=1,20)
 INP0021O
 INP00220
 1000 FORMAT(1H1,10X,'3DKIN RUN FJR',2X,20A4)
INP00230
= WILL ADD REST OF EDITING ROUTINE LATER
INP00240
RETURN INPOO250
END
INP00260

```
```

 SUBROJTINE FLUXIN(PSI,P!,NVSV,IMV,JMV,KMV) FLU0001O
 IMPLIEIT REAL*8 (A-H,O-Z) FLUOOO2O
 INTEGER*2 पMAP,NPRMP
 COMMON/INTG/IASIZE,NNG,NDG, VTOG, NMAT,IM, JM, XM,IRM,JZM, <RM,NLBC,
 FLU00030
 FLU00080
 1NFBC,VBBC,VDNSCT,NPRG,IOPT,VTG,NXTP,NYTP,NZTP,IXTP(5),TYTP(5),
 FLU00090
 2IZTP(5),NSTEAD,IFLIN,IGEOM, ITITLE(20), NJIT, VIIT,NPIT,IJPSI,I ODUMP,FLUOOIOO
 3IOFN,IJFO,IDPN,IDPJ,ITFMP,ITEMP1,ITEMP2, ITEMP3,ITEMP4, ITEMP5, FLU00110
 4NTIT,IETIME,IFLOUT, IMX,JMX,KMX,IOSC1,IOSC2,VGX
 CJMMON/FLOTF/EFFK,ORFP,EPS1, EPS2,TEYP,TEMP1, TEMP2, TEMP3, TEMD4,
 ITEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCJN, BETAT
 DIMENSIJN PSI(NNGV,IMV,JMV,KMV), PI(IMV,JMV)
 ITEMP=IFLIN+].
 [TEMP]=IDPT +1
 PI=3.1415926535897900
 TWD=2.000
 GO TO(100,300,400); I TEMP
 : BRANCH HERE FOR SINE FLUX GUESS
100 DO 200 VG=1,NNG
D) 200 K=1, KM
IF(NBBC.EQ.1)GO TO 110
TEMP)= DSIN((K-1)*PI/(KM-1))
GO TO 120
110 TEMP 1=DEDS((K-1)*PI/(TWO*(KM-1)))
120 IF(K.EQ.KM)TEMP!=0.000
DT 190 J=1, JM
IF(NFBC.FQ.1)GO TO 130
TEMP?= DSIN((J-1)*PI/(JM-1))
GO TO 140
130 TEMP2=DCDS((J-1)*PI/(TND*(JM-1)!)
140 IF(J.EO.JM)TEMP?=0.000
D) }180\textrm{I}=1,I
IFINLBC.EQ.1 IGO TS 150
TEMP3=DSIN((I-1)*PI/(IM-1))
GO TO 160
150 TEMP 3=DCOS((I-1)*PI/(TWO*(IM-1)))
160 IF(I.EQ.IM)TEMP3=0.000

```

Lu00110 FLU001 20 flu00130 FLU00140 FLU00150 FLU00160 FLU001 70 Fluool 80 FLU00190 FLU00200 FLU00210 FLU00220 FLU00230 FLU00240 FLU00250 Five02.60 FLU00270 FLU00280 FLU00290 FLU00300 FLU00310 FLU00320 FLU00330 FLU00340 FLU00350 FLU00360 FLU00370 FLU00380 FLU00390
FLU00400
```

 IF(ITEMP1.EQ.2)G0 TO 170 FLU00410
 PSI(NG,I,J,K)=TEMP1*TEMP2*TEMP3
 GO TO 180
 170 P1(I,J)=TEMP1*TEMP?*TEMP3
 180 CJNTIVUE
 190 CONTINUE
 IFIITEMP1.EO.1IGO TO 200
 WRITE(IOPN) PI
 200 CONTINUE
 GO TO }99
 : BRANCH HERE FIR FLUXES INPUT IN CARDS
300 DO 340 NG=1, NNG
D) 340 K=1,KM
G] TO(310,320),1TEMP1
310 READ(5,100J)((PSI(NG,I,J,K),I=1,IM),J=1,JM)
IF(K.LT.KMIGO TO 330
OO 315 J=1.JM
DO 315 I=1,IM
215 PSI(NG,I,J,KM)=0.000
go TO 330
320 READ(5,1000)((P1(I,J),I=1,IM),J=1,JM)
IF(K.LT.KM)GO TO 325
DO }324\textrm{J}=1,\textrm{JM
DO 324 I=1.,IM
324 P1(I,J)=0.000
325 URITE(IDPNIPI
330 CONTINUE
340 CONTINUE
1000 FORMAT(5D15.10)
GO TO 999
: BRANCH HERE FOR FLUXES INPUT ON TAPE
400 DO 440 VG=1,NNG
DO 440 K=1, KM
GO TO(410,420), ITEMP1
410 READ(IJPSI)((PSI(VG,I,J,K),I=1,IM),J=1,JM)
IF(K.LT.KM)GO TO 430
FLU00410
FLU00430
FLU00440
FLU00450
FLU00460
FLU00470
FLU00480
FLU00490
FLU00500
FLU00510
FLU00520
FLU00530
FLU00540
FLU00550
FLU00560
FLU00570
FLU00580
FLU00590
FLU00600
FLU00610
FLU00620
FLU00630
FLU00640
FLU00650
FLU00660
FLU00570
FLU00680
FLU00690
FLU00700
FLU00710
FLU00720
FLU00730
FLU00740
FLU00750
FLU00760
PAGE 157

```
```

 DO 415 J=1,JM FLU00770
 D) 415 I=1,Im
 41.5 PSI(NG,I,J,KM)=0.000
GO TO 430
420 READIIJPSIIPI
IF(K.LT.KM)GO TO }42
00 424 J=1,JM
DO 424 I=1,IM
424 P1 (I,J)=0.3D0
425 WRITE(IOPN)PI
4 3 0 ~ C O N T I N U E ~
4 4 0 ~ C O N T I N U E ~
999 IFPITEMD 1.EQ.2IREHIND IOPN
RETURN
END

```

FLU00770
FLU00780
FLU00790
FLU00800
FLU00810
FLU00320
FLU00830
FLU00840
FLU00850
FLU00860
FLU00870
FLU00880
FLU00890
FLU00900
FLU00910
SUBROJTINE SSTATEIV,XI,XIM,XNU,SIGF,SIGR,SIGT,SIGS,ALAM, BETA,XIP,XSSTOOOIO \(1, Y, Z, H X, H Y, H Z, I B P, J B P, K B P, D D 1, D D 2, D D 3, D D 4, D D 5, D D 6, D D 7, V O, M M A P, N P R M S S T 00020\) 2P,PSI, P1, P2, P3, FRJ, FRN, FD,FV, SRC, WA, GA, SOLN, OMES, XFI SS, XINSC, XREM, SST00030 3 XLEK, NNGV,NDGV, NDNSCV,NMATV, IMV, JMV, KMV, IRMV, JRMV, KRMV, NPRGV, NGXVISST00040
IMPLIEIT REAL*8 (A-H, D-Z) SST00050
INTEGER*2 MMAP, NPRMP SSTOOO6O
    COMMON/INTG/IASITE,NNG,NDG, VTOG, NMAT,IM, JM, KM,IRM, JRM,KRM,NLBC, SSTOOL10
    1 NF BC, VBAC, NDNSCT, NPRG,IJPT, VTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5), SST00120
    2IZTP(5), NSTEAD, IFLIN,IGEOM, ITITLE(? D), NOIT, VIIT, NPIT, IJPSI, I ODUMP, SSTOOL 30
    3IOFN, IOFO,IQPN, ITPJ, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5, SSTOO140
    4NTIT,IETIME, IFLOUT, IMX, JMX,KMX,IOSCI,I OSCR,NGX
    COMMON/FLOTE/EFFK, गRFP, EPS 1, EPS?,TEMP, TEMP1, TEMP 2, TEMP 3, TEMP4, SST00160
    1 TEMP5, TEMPS, XFISST, XFISSO, ALAMN, ALAMO, TIME,FLXCON,BETAT SSTOO170
    DIMENSITN V(NNGV), XI(NNGV), XIM(NNGV), XNU(NMATV,NNGV), SST00180
    ISIGF(NMATV, NNGVI, SIGR(NMATV, NNGV), SIGT(NMATV, NNGVI, SIGSINMATV, UNGVSSTOOI 90
    2,NDNSEV), ALAM(NDGV), BETA(NDGV), XIP(NNGV, NDGV), X(IMV), Y(JMV), Z(KMVISST00200
    3, HX(IRMV), HY(JRMV), HZ(KRMV), IBP(IRYV), JBP(JPMV), KBP(KRMV), DDII NPRGSST00210
    4V, NNGV), DD2 (NPRGV, VNGV), D)3(NPRGV, NNGV), DD4(NPRGV, NNGV), DD5(NPRGV,SST00220
    5NNGV), DJ 6 (YPRGV, NNGV), DD7(NDRGV, NGXV, VDNSCV), MMAP (IRMV, JRMV, KRMV I, SS TOO2 30
    GNPRMP(IMV,JMV,KMV), PSI(NNGV, IMV, JMV, KMV), P1(IMV, JMV), P2 (IMV, JMV), SST00240
    TP3(IMV, JMV), FRO(IMV, JMV, KMV), FRN(IMV, JMV, KMV), FJ (IMV, JMV I, FN(IMV, JSST 00250
    8MV), SRC(IMV, JMV, KYV), HA(IMV), GA(IMV , SOLN(IYV), JMEG(NNGV I, XF ISS(NNSST00260
        QGV), XINSC(NNGV), XREM(NNGV) ;XLEK(NNGV),VO(NPRGV) SST00270
        WRITE(6,1000)(ITITLEIT),I=1,20) SST00280

SST00290
CALL SETUPI TO COMPUTE PROBLEM REGION NJMBERS, GEVERATE VPRMP (I,J,K)SST00300
C AND COMPUTE EOEFFICIENTS \(\quad\) SSTOO310
CALL SETUPI (V,XI, XNU,SIGF,SIGR,SIGT,SIGS,X,Y,Z,HX,HY,HZ,IBP, JBP, SST00320
        1 KBP, D) 1, DD2, DD3,DD4, DD5,DDS, DD7, VD, MMAP, NPRMP, NNG, NDG, NDNSCT, NMAT, SSTOO330
        2IM,JM,KM,IRM,JRM,KRM,NPRG,NSXI SST00340
\(C\) SWITCH FLUX TAPE DESIGNATIONS SSTOO350
        ITEMP \(=1\) IJPO SSTO0360
        IOPO=IOPN SSTOO370
        IOPN=ITEMP SSTOO380
        ITEMP=4 SSTOO390
        ONE \(=1.000\)
SST00392
```

 HALF=0.500 SST00393
 BETAT=0.ODO NO ND=1,NOG SO STOO394
 BETAT=0.ODO
 8O BETAT= BETAT + BETA(ND)
 DO }85\mathrm{ VG=1,NNG
 85 XIM(NG)=XI(NG)*(1. .DO-BETAT)/EFFK
 IFINSTEAD.EQ.OI GO TO 540
 DO 90 NG=1,NNG
 IF(OMEG(NG).LT..95.OR.OMEG(NG).GT.1.05)GOTJ 90
 GO TO 95
 90 CONTIVUE
GO TO }9
95 CALL JRDESTIX,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,
1P1,P2,P3,FRO,FRN,F3,FN,SRC,WA,GA,SOLN,OMEG,XFISS,XINSC, XREM,
2XLEK,NNG,NMAT,IM,JM,KM,IRM,JRM,KRM,NPRGI SSTOO5OD
C. COMPUTE PJINT FISSION SNURCE
99 00 145 VG=1,NNG
XFISS(NG) =0.ODO
VOLB=ONE
VDLF=DNE
VOLL=ONE
IFINBSC.EQ.1 IVOLB=HALF
OD 14J. K=1,KM
IFIK.GT. IIVOLB=ONE
IF(NFBC.EQ.I VOLF=HALF
IF(IOPT.EQ.O) GO TJ 100
READ (IOPOIP2
IF(K.EQ.KM) GO TO 140
100 DO 130 J=1; JMX
IF(J.GT.1)VOLF=ONE
VOLC=VOLF*VOLB
IF(NLSC.EQ.1)VOLL=HALF
DO 130 I =1, I MX
IFII.GT.I IVOLL=ONE
VOLD=VOLL*VOLC
NPR=NPRYP{I,J,K)
SST00396
SST00400
XIM(NG)=XI(NG)*(1.JDO-BETAT)/EFFK SST00410
SST00420
SST00430
SST00440
SST00450
SST00460
SST00470
SST00510
SST00520
SST00530
SST00531
SST00532
SST00532
SST00533
SST00534
SST00540
SST00541
SST00542
SST00550
SST00560
SST00570
SST00580
SST00580
S5T00581
SST00582
SST00583
SST00590
SST00591
SST00592
SST00600
PAGE }16

```
```

 IFIIOPT.EQ.I\GO TV 110 SST00610
 FRO(I,J,K)=FRO(I,J,K)+DDG(NPR,NG)*PSI(NG,I,J,K) SST00620
 XFISS(NG)=XFISS(NG) +DO6(NPR,NG)*PSI(NG,I,J,K)*VOLD SST00630
 GO TO 120
 = IF FISSION SJURCE ON I/O, STJRE TEMPIRARILY IN SRC(I,J,KI
110 SRC(I,J,K)=SRC(I,J,K)+DDG(VDR,NG)*P2(I,J)
XFISS(NG)=XFISS(NS) +DD6(NPR,NG)*P2(I,J)*VOLD
120 CDNTINUE
130 CONTINUE
140 CONTINUE
XFISST =0.000
TEMP=0.000
IFIEFFK.LT.O.1.OR.EFFK.GT.10.0)EFFFK=1.ODO
ALAMN=ONE
DO 150 VG=1,NNG
150 TEMP=TEMP+XFISS(NG)
DN 160 VG=1,NNG
TEMP2=0.0DO
DO 155 VD=1,NDG
155 TEMP2=TEMP2 +XIP(NG,ND)*BETA(ND)/EFFK
XIM(NG)=XI(NG)*(1.ODO-BETAT)/EFFK
XFISS(NG)=(XIM(NG)+TEMP2)*TEMP
160 XFISST=XFISST+XFISS(NG)
IF(IOPT.EQ.O) GO TO 180
D3 170 K=1,kM
170 WRITE (IOFJ)((SRC(I,J,K),I=1,IM),J=1,JM)
REWIND IOFS
REWIND IDPI
: DUTER ITERATION LOOP STARTS HERE
180 NOITT=0
190 cONTINUE
NTIT=0
NG=1.
FLXC.ON=0.000
200 CONTIVUE
C ZERJ SOURCE AND ADD IN FISSIJV SOURCE
SST00630
SST00640
SST00650
SST00660
SST00670
SST00680
SST00690
SST00700
SST00710
SST00720
SST00730
SST00740
SST00750
SST00760
SST00770
SST00772
SST00773
SST00775
SST00780
SST00790
|0
SST00800
SST00800
SST00810
SST00820
SST00830
SST00840
SST00840
SST00850
SST00860
S5T00870
SST00880
SST00890
SST00900
SST00910
SST00920
SST00930
PAGE 161

```
```

 TEMP=0.000
 D7 205 VD=1,NDG
 205 TEMP=TEMP+XIP(NG,ND)*BETA(ND)/EFFK
 D] 240 K=1.,KM
 IF(IOPT.EQ.O) GO TO 210
 READ(IOFO) FO
 IF(K.FQ.KM) GO TO 240
 210
 07 230 J=1,JMX
 D) 230 I=1.IMX
 SRC(I,J,K)=0.0DO
 IF(IOPT.FQ.O) GO TT 220
 SRC(I,J,K)=SRE(I,J,K)+(XIM(VG)+TEMP)*FO(I,J)
 GO JO 230
 220 SRC(I,J,K)=SRE(I,J,K)+(XIM(NG)+TEMP)*FRO(I,J,K)
 IF(NG.EQ.I|FRN(I,J,K)=0.000
 230
 CONTINUE
 CONTINUF
 IF(IOPT.EQ.I) REHIND IOFO
 = ADD IN SCATTERING SOURCES
ITEMPI=NG-NDNSCT
IF(ITEMP1.GE.1) G] TO 250
ITEMPl=1
250 ITEMP2=NG-1
IF(ITEMP2.LE *NDNSCTIGO TO 250
ITEMP2=NDNSCT
260 IF(ITEMP1.GE.NG) 50 TO 310
SCATTERING SJURCE TO GROUP NG FROM GROUP ITEMPI
270 DO 300 K=1,KM
IF(IOPT.EQ.1) READ(IOPNIP2
IFIK.EQ.KMIGO TO 300
n] 290 J=1, JMX
DO 290 I=1, I MX
NPR=NPRMP{I,J,K)
IF(IOPT.EQ.1) GO TJ 280
SRC(I,J,K)=SRC(I,J,K) +DDT(VPR,ITEMPI,ITEMP2)*PSI(ITEMPI,I,J,K)
GO TO 290

```

SST00931
SST00932
SST00933
SST00940
SST00950
SST00960
SST00970
SST00980
SST00990
SSTOI 000
SSTO1010
SST01020
SSTO1030
SSTO1040
SSTO1.050
SST01060
SST01070
SSTO1080
SSTO1090
SSTOL100
SSTO1110
SSTO1120
SSTOI. 130
SST01140
SSTO1150
SSTOL160
SSTO1170
SSTO1180
SS TOI 190
SSTOL200
SST01210
SSTO1220
SST01230
SST01240
SSTO1250
SSTOL260
PAGE 16 ?
```

 280 SRC{I,J,K)=SRC(I,J,K)+DDT(VPR,ITEMP1,ITEMP2)*P2(I,J) SSTO1270
 290 CONTIVUE
 300 CONTINUE
 310 ITEMP1 = I TEYP 1+1
 ITEMP2 = I TEMP 2-1
 SSTOL280
 R2=1TEMP2-1 SST01310
 IF(ITEMPI.LT.NG)GO TO 270 SST01320
 ; SOURCE NON CALCULATED I/J DEVICE IDPJ READY TO READ IN FIRST PLANE SSTOI33O
C. FOR GROJP NG IF IOPT=1 SSTO:340
TEMP=0.000 SSTO1350
VOLB=JNE SSTO1351
VOLF=ONE
VOLL=ONE
IFINBSC.EQ.IIVOLB=HALF
DO 320 K=1,KMX
IFIK.GT.1IVOLB=ONE
IFINFSC.EQ.1 VOLF=HALF
D) 3?J J=1,JMX
IF(J.GT.I)VOLF=ONE
VOLC=VOLB*VOLF
IFINLBC.EQ.I IVOLL=HALF
DO 320 I =1,IMX
IFII.GT.1)VOLL=ONE
TEMP=TEMP+SRC(I,J,K)*VOLC*VOLL
320 CONTIVUE
XINSC(NG) =TEMP-XFISS(NG)
: VOU PERFORM INNER ITERATIONS FOR GROUP VG
ITEMP5=1
IFINOITT.GT.O.AND.FLCOND.LT.1.OD-51ITEMP 5=5
IFIIOPT.EQ.I) GO TO }33
CALL INVEROIX,Y,Z,HX,HY,HZ,DDI,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,P1.
1P2,P3,F3,SRC,MA,GA,SOLN,OMEG,XFISS,XINSC,XREM,XLEK,NNG,NMAT,IM,
2 JM,KM, IRM,JRM,KRM,NPRG,NGI
SST01351.
SSTO1353
SSTO1354
SST01360
SST01361
SST01362
SST01370
SST01371
SST01372
SST01373
SSTO1380
SSTO1381
SSTO1381
SSTO1400
SSTO1410
SSTO1420
SSTO1430
SSTO1435
SST01440
SST01450
SST01460
SST01470
IF(TEYP3.GT.FLXCONIFLXCON=TEMP3 SSTO:480
GO TO 400 FLXCONJFLXCON TEMP3
SST01490
GALL INNERL (X,Y,Z,4X,HY,HZ,DD1,DD2,DD3,DD4,)D5,MMAP,'NPRMP,PSI,P1, SSTOL5OO
330 CALL INNERLIX,Y,Z,4X,HY,HZ,DDI,DDZ,DD3,DD4, DD5,MMAP,NPRMP,PSI,PI, SSTO1500

```
        2JM,KM, IRM,JRM,KRM,NPRG,NGI SST01520
        IFITEMP3.GT.FLXCDNIFLXCON=TEMP3 SSTO1530
        REWIND IOS:1
        OO 342 ITEMD4=1,NDNSCT
        09340 K=1, KM
        BACKSPACE IOPN
    340 CONTINUE
IIOPN HAS YON BEEN PISITIONED TO COMPUTE SCATTERING SOURCE FOR NEXT
C GROJP. IJSCI CAN BE USED TJ JBTAIN FLUXES FOR COMPUTING FN SNTOIG00
        DO 380 K=1,KM
        READ(IJSC1)P?
    IF(K.EQ.KM)GO TO 390
    IF(K.EQ.KM)GO TO 380
    O] 350 J=1,JMX
        DO 350 I=1,IMX
    NPR=NPRYP{I,J,K)
350 SRC(I,J,K)=DDG(NPR,NG)*P2(I,J)
    -G3 TO 380
360 READ(IOFNIFN
D0 370 J=1, JMX
D0 370 J=1,JMX
        NPR=NPRYP{I,J,K)
370 SRC(I,J,K)=FN(I,J)+DD6(NPR,VG)*P2(I,J)
380 CONTINUE
    IF(NG.GT.lIREWIND IOFN
    0O 390 K=1,KM
    WRITE(IOFN)(ISRC(I,J,K),I=1,IM),J=1,JM)
390
    CONTINUE
    REWIND IDSE:
    REWIND IOFN
    GO TO 420
4 0 0
    410 K=1, KMX
    DO 410 J=1,JMX
    D0 410 I=1, IMX
    NPR=NPRMP(I,J,K)
410 FRN(I,J,K)=FRN(I,J,K)+DD6(NPR,NG)*PSI(NG,I,J,K)
SST01540
SSTOl550
SST01560
SST01570
SST01580
C
SSTOl590
SST01610
SST01620
SST01630
    NPR=NPRYP:, MX
SST01640
SST01650
SST01650
SST01660
SST01670
SST01680
SST01690
SST01690
SST01700
SST01710
SST01720
SST01730
SST01730
SST01750
SST01760
SST01770
SST01780
SST01790
SST01800
SST01810
SST01820
SST01830
SST01.840
SST01850
SST01860
SST01.870
PAGE 164
```

```
    420 NG=NG+1
        IF(NG.LE.NVG) GO TJ 200
= NOW ONE OUTER ITERATION HAS BEEN CONPLETED
    VEW FISSION SOURCE IS STORED IN SRC IF IOPT=1
        FLCONJ=FLXCON
        XFISSO=XFISST
        TEMP 5=0.0D0
        TEMP6=0.0D0
        VOLR=JNE
        VOLF=TNE
        VOLL=TNE
        IFINR3C.EQ.1)VOLB=4ALF
        IFIIOPT.FQ.I: GO TO 450
        DO 430 K=1,KMX
        IF(K.GT. I)VOLB=ONE
        IF(NFBC.EQ.I)VOLF=HALF
        0) 430 J=1,JMX
        IF(J.GT. I IVOLF=ONE
        VOLC=VOLB*VOLF
        IF(NL3C.EQ.1)VOLL=HALF
        D] 430 I=1, I MX
        IF(T.GT.1)VOLL=ONE
        VOLD=VOLC*VOLL
        TEMP5=TEMP5 +FRN(I,J,K)*VOLO
        FRN(I,J,K)=FRO(I,J,K)+ORFP*(FRN(I,J,K)-FRO(I,J,K))
    430 TEMP6=TEMP6 +FRN(I,J,K)*VOL)
    TEMP=TEMP5/TEMP6
    D] }440\textrm{K}=1,\textrm{KMX
    DO 440 J=1., JMX
    0] 440 I=1, I MX
440 FRO(I,J,K)=TEMP*FRN(I,J,K)
    GO TO 490
450 D] 460 K=1,KMX
    IFIK.GT.IIVOLB=ONE
    IF(NFBC.FQ.IIVOLF=4ALF
    READ(IOFOI FO
```

SST01880 SSTOL890 SSTO1900 SST01910 SST01920 SSTO1930 SSTO1940 SSTO1950 SSTO1951 SST01952 SSTO1953 SSTO1954 SSTO1960 SSTO1970 SST01.971 SST01972 SST01980 SST01981 SST01982 SSTO1983 SST01.990 SST01991 SSTO1992 SST02000 SST02010 SST02020 SST02030 SST02040 SSTO2050 SST02060 SST02070 SST02080 SST02090 SST02091 SST02092
SST02100

```
    00 460 J=1,JMX SSTO2110
    IFIJ.GT.1IVOLF=ONE SSTO21.11
    VOLC=VOLB*VחLF SST02112
    IFINL3C.EQ.1)VOLL=4ALF SSTO2113
    D7 460 I=1,I MX
    IFIT.GT,IIVOLL=ONE SSTO2121
    SST02121
    VOLD=VOLC*VOLL
    TEMP5=TEMP5 +SRC(I,J,K)*VOLD
    SST02122
    TEMP5=TEMP5+SRC(I,J,K)*VOLD SSTO21.30
    SRC(I,J,K)=FO(I,J)+ORFP*(SRC(I,J,K)-FJ(T,J)) SST02140
    460 TEMPG=TEMPG+SRC(T,J,K)*VOLD
    TEMP=TEMP5/TEMPG
    DJ 480 K=1,KMX
    D) 470 J=1.,JMX
    00470 I=1, IMx
    470 FN(I,J)=SR:(I,J,K)*TEMP
    WRITE(I3FNIFN
    REWIND IDFJ
    REWIND IDFN
    REWIND IOPT
    REWINS IOPV
    4 9 0
    XFTSST=0.000
    DO 500 VG=1,NNG
    TFMP1=0.0D0
    DO 495 ND=1,NDG
    405 TEMP1=TEMP1+BETA(ND)*XIP(NG,ND)/EFFK
    XEISS(VG)=(XIM(NG)+TEMP1)*TEMPS
    500 XFISST=XFTSST+XFISS(NG)
    ALAMO=ALAMN
    ALAMN=XFISST/XFISS?
    DO 510 VG=1,NNG
    XFISS(VG)=XFISS(NG)/ALAMN
    510 XIM(NG)=XIM(NG)/ALAMN
    XFISST=XFISST/ALAMN
- CONVERGENCE TESTS
    NGOTO=?
```

SST02110
SST021.11
STO2112
SST02113
SST02120
SST02121
S5T02130
SST02140
SST02150
SST02160
SST02170
SST02180 SST02190
SST02200
SST02210
SST02220
SST02230
SST02240
SST02250
SST02260
SST02270
SST02280
SST02281
SST02282
SST02283
SST02290
SST02300
SST02310
SST02320
SST02330
SST02340
SST02350
SST02360
SST02370
SST02380

```
        NOITT=NJITT+1 SSTO2390
        IF(IETIME.EQ.OIGO TO 520 SSTO2400
        CALL ETIMEF(TEMP)
        IF(TEMP.GT.TIME)NGJTO=2
    SST02410
    SST02420
    520 IFINOITT.GE.NOITINGOTN=3
IF(NOITT.GE.NOITINGOTO=3
C STMPUTE NEW K-EFFECTIVE SSTO2450
    EFFK=0.ODO
    TEMP=0.0DO
    DO 530 NG=1, NNG
    EFFK=EFFK+XIM(NG)
    530 TEMD =TEMP + XI (NG)
EFFK=(TEMP/FFFK)*(1.000-BETAT)
EFFK=(TEMP/EFFK)*(1.ODO-BETAT)
ITCH I/J DEVICES
        ITEMPI = I OPN
            IOPN=ITPO
        IJPO=ITFMP1
            ITEMPI = I OFN
        IOFN=IJFO
        IOFO=ITEMP1
\therefore IF IOPT=1, LATEST FLUXES ON IJPO AND LATEST FISSION SOURCE ON IOFO
r. CALL STEAOY STATE ITERATION PRINT MONITOR
```



```
SST02430
SSTO2440
    SST02460
            ITEMPI =I OPN
SST02540
SST02550
SSTO2560
SST02570
SST02580
SSTO2590
SST02600
SST02610
C IF NGOTJ=1, LOOP TO 190 TO BEGIN ANOTHER DUTER ITERATION SSTO262O
C IF NGOT3=2, 4AVE EXCFEDED RUVVING TIME SSTO2630
: IF NGOTJ=3, HAVE REACHED MAX. NO. DF OUTER ITERATIONS
SST02640
IF NGOTJ=4, YAVE ACHIEVED COVVERGENCE, CAN GO ON TO TIME-DEP CALC. SSTO265O
ITEMP=NGOTO
SST02660
GO TO (190,540,540,540),NGOTO SSTO2670
540 CONTIVUE
RETURN
SST02580
SST02690
END SSTO2700
```

```
        SUBROJTINE ORPESTIX,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,ODS,MYAP,NPRMP, ORPOOOIO
    1PSI,PI,P?,D3,FRN,FRN,FO,FN,SRC,WA,GA,SJLN,JMEG,XFISS,XINSC,XREM,
        2XLEK,NNGV,NMATV,IMV,JMV,KMV,IRMV,JRMV,KRMV,NPRGVI
            IMPLICIT REAL*& (A-H,N-Z)
            INTEGER*? MMAP,NPRMP
            C.IMMOV/INTS/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,
        INFRC, NBBC,NDNSCT, YPRG,IDPT, VTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),
    2IZTP(5),NSTFAD,IFLIN,IGEOM,ITITLE(20),NJIT, VIIT,NPIT,IJPSI,IODUMP,ORPOOL20
    3IOFN,IJFO,I\capPN,IJP3, ITEMP, ITEMP1,ITEMP2, ITEMP3,ITFMP4, ITEMP5, ORPODI30
    4NTIT,IETIME,IFLOUT,IMX,JMX, KMX,IOSC1,IOSC2,VGX JRPOO140
    COMMOV/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4,
        \TEMPS,TEMPS, XFISST, XFISSD,A:AMN,ALAMO,TIME, =LXCJN, BETAT
            DIMENSIJN X(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRYV),
        1DDI(NJRSV,VNGV), DJ?(NPRGV,VNGV), DD3(NPRGV,NVGV), DD4(NPRGV,NVGV),
        2DD5(NPRGV,NNGV),MMAP(IRMV,JRMV,KRMV),VPRMP(IMV,JMV,KMV),
        3PSI(NVFV,IMV,JMV,KMV),P1(IMV,JMV),P2(IMV,JMV), P3(IMV,JMV),
        4FRO(IMV,JMV,KMV),FRN(IMV,JMV,KMV),FO(IMV,JMV),FV(IMV,JMVI,
        5S2C(IMV, JMV,KMV),WA(IMV),GA(IMVI,SJLN(IMV), JMEG(NNGV), XFISS(NNGV),ORPOO220
        GXINSC(NVGV), XREM(NVGV),XLEK(NNGV) ORPO0230
\SAVENITT AND NPIT 
= SAVENITT AND NPIT 
= SAVE NITT AND NPIT 
    ITEMPI=NIIT (OROM
    ITEMP5 =5
C INITIALIRE SRC IRPOO28O
            D3 100 K=1,KM ORPOO290
            DO 100 J=1.JM ORP00300
            D) 100 I=1,IM
    100 SRC(I,J,K)=0.000
            DO 260 VG=1,NNG
C STORE IVITIAL FLUXFS FOR GROJP NG IN FRJ IF IJPT=0 ORPOO340
            IFIIOPT.EQ.1 IGO TM 120
    O) 110 K=1, KM
    D5 110 J=1.JM
    D) 110 I=1,IM
110 FRJ(I,J,K)=PSI(NG,I,J,K)
    GOTO 140 ORPOOO400
    ORP00020
    TRP00030
    QRP00040
    0RP00050
    ORP00100
    ORPOO110
    00140
    ORPOO150
    JRP00160
    3RP00170
    3RPOOI }8
    DRP00190
    3RP00200
    ORP00210
ORP00260
ORD00270
                                    ORP00300
                                    ORP00310
ORP00320
                                    ORP00330
                                    ORPOO340
            D3 110 K=1, KM
                                    ORD00350
TRP00360
ORP00370
TRP00380
ORP00390
```

```
    120 REWINJ IOSEI
        DO 1.35 K=1,KM
        READIIOPOIP2
        WRITEIITSCIIP2
    130 CONTINUE
    VJH INITIALIZE SOME PARAMETERS
    140 NPIT=1
        NI IT=5
        OMFGBJ=0.050
        OMEGRL=0.050
        ICT=0
        AL AMFS =0.ODO
    150 CONTINUE
        IF(IOPT.EQ.1IGO Tר 170
        07 1.63 K=1,KM
        07 160 J=1, JM
        DC 160 I=l,IM
    160 FRN(I,J,K)=PSI(NG,I,J,K)
            CALL INNEROIX,Y,Z,HX,HY,HZ,ODI,DD2,DD3,DD4, OD5,MMAP,NPRMP,PSI,
        {P1,P2,P3,FI, SRC,WA,GA,SOLN, TMEG, XFISS, XINSC, XREM, XLEK, NNG,NMAT,
        2IM,JM,KM,IRM,JRM,KRM,NPRG,NGI
            GO TO 180
    170 CALL INNERI (X,Y,Z,HX,HY,HZ,DDI,DD2,DD3,DD4, OD5,MMAP,NPRMP,PSI,
        IP1,P2,P3,F工,SRC,WA,GA,SOLN, JMEG, XFISS,XINSC, XREM, XLEK,VNG,NMAT,
        2IM,JM,KM,I२M,JRM,K२M,NPRG,NGI
    190 NIIT=?
        ICT=IST+1
        IF(ICT.LE.IIGO TJ 150
- COMPUTE IAMBDA(M)
    TEMP5=0.ODO
    TEMP6=0.0DO
    IFIIOPT.EO.1IGO TO 200
    D) 190 K=1,KM
    D) 190 J=1.JM
    DO 190 I=1,IM
    TFMP5=TEMP5+PSI(NG,I,J,K)*PSI(NG,I,J,K)
ORP00410
ORP00420
TRP00430
IRP00440
IR P00450
ORP00460
ORP00470
TRP00480
ORP00490
TRP00500
TRP00510
ORP00520
7RP00530
ORP00540
IRP00550
OR P00560
ORP00570
32P00580
IRP00590
ORP00600
OR P00610
OR P006620
TR P00630
JRP00640
IR P00650
ORP00660
TRP00670
TRP00680
TRP00690
nRP00700
ORP00710
7RP00720
ORP00730
ORP00740
IRP00750
7RP00760
```

```
    TEMPG=TEMP5+PSI(NG,I,J,K)&F२N(I,J,K) 3RPO0770
```

```
    TEMPG=TEMP5+PSI(NG,I,J,K)&F२N(I,J,K) 3RPO0770
    $90 CONTIVUF
    $90 CONTIVUF
    G] TO 230
    G] TO 230
    200 REWIND IOSE?
    200 REWIND IOSE?
    REWIND INS:I
    REWIND INS:I
    D) 220 K=1,KMX
    D) 220 K=1,KMX
    READ(IOSCI)D?
    READ(IOSCI)D?
    RFAD(ITSC2)PI
    RFAD(ITSC2)PI
    O7 210 J=1.JM
    O7 210 J=1.JM
    DO 21) I=\.IM
    DO 21) I=\.IM
    TEMP5=TEMP5 + P2(T,J)*P2(T,J)
    TEMP5=TEMP5 + P2(T,J)*P2(T,J)
    2* TFMPS=TFMPS +P1 (I,J)*P\(I,J)
    2* TFMPS=TFMPS +P1 (I,J)*P\(I,J)
    2>0 CONTINUF
    2>0 CONTINUF
    23) ALAMES=TEMD 5/TEMPS
    23) ALAMES=TEMD 5/TEMPS
    TEMP4=TABS(1.ODO-3.ODO/TEMD&)
    TEMP4=TABS(1.ODO-3.ODO/TEMD&)
    TEMP1=TARS(1.0DO-1.0DO/TEMP1)
    TEMP1=TARS(1.0DO-1.0DO/TEMP1)
    ALAMFS=DABS (1.ODO-ALAMES)
    ALAMFS=DABS (1.ODO-ALAMES)
    OMEGBU=?.0כO/(1.ODO+DSQRT(TEMP4))
    OMEGBU=?.0כO/(1.ODO+DSQRT(TEMP4))
    \capMEGRL=2.0)0/(1.0)0+DSDRT(TEMP1))
    \capMEGRL=2.0)0/(1.0)0+DSDRT(TEMP1))
    OMFGM=?.0DO/(1.000+DSORT(ALAMES))
    OMFGM=?.0DO/(1.000+DSORT(ALAMES))
        IF(DA3S(JMEGBU-DMESRL).LE.((?.ODO-OMEGM)/1.JD1)IGO TO 240
        IF(DA3S(JMEGBU-DMESRL).LE.((?.ODO-OMEGM)/1.JD1)IGO TO 240
        IF(ICT.LT.15)GO TJ ?50
        IF(ICT.LT.15)GO TJ ?50
C VOW STORE \capMEGM AS DMEG(NG)
C VOW STORE \capMEGM AS DMEG(NG)
    240 OMEG(NG)=OMEGM
    240 OMEG(NG)=OMEGM
C STORE IVITIAL FLUXES BACK INTY PSI IF IJPT=0
C STORE IVITIAL FLUXES BACK INTY PSI IF IJPT=0
            IFIIOPT.FQ.IIGOTT 260
            IFIIOPT.FQ.IIGOTT 260
            D7 250 K=1,KM
            D7 250 K=1,KM
            DO 250 J=3,JM
            DO 250 J=3,JM
            D# ?50 I=?,IM
            D# ?50 I=?,IM
            PSI(NG,I,J,K)=FRO(I,J,K)
            PSI(NG,I,J,K)=FRO(I,J,K)
    250 FRO(I,J,K)=0.000
    250 FRO(I,J,K)=0.000
    260 CONTINUE
    260 CONTINUE
            IFIIOPT.EQ.IIREWIVO IOPO
            IFIIOPT.EQ.IIREWIVO IOPO
    WRITE(6,1000)(NMEG(NG),NG=1,NNG)
    WRITE(6,1000)(NMEG(NG),NG=1,NNG)
103) FORMAT(1HO,10X, JPTIMUM DMEGAS NOW COMPJTED'//(10X,6'E15.8))
103) FORMAT(1HO,10X, JPTIMUM DMEGAS NOW COMPJTED'//(10X,6'E15.8))
    NIIT=ITEMPI
```

 NIIT=ITEMPI
    ```
```

 RFADIIOSCIJP?
    ```
    RFADIIOSCIJP?
    2>0 CONTINUE
    2>0 CONTINUE
TRP00780
7RP00790
ORP00900
7RO00910
ORPOO820
3Q P00830
JRP00R40
IRP00850
7RP00860
フPP00870
ORP00980
7RP00890
ORP00900
3RP00910
ORP 00920
ORP00930
72P00940
IRP00950
ORP00960
ORP00970
ORP00980
ORP00990
IRP01000
ORPO1010
ORP01020
TRPO1030
ORP01040
TRP01050
ORP01060
ORP01070
IRP01080
ORP01000
3RPO1100
TRPO1110
ORPO1120
PAGE 170
```


NPIT=ITEMP?

RETIURN
ORPO1:30

END

```
    SURROJTINE SSTDUT(PSI,P2,NVFV,IMV,JMV,KMV,NGNTO,NOITTI SST00010
        IMPLIEIT REAL*8 (A-H,O-Z) SST00020
        INTEGER*2 MMAP,NPRMP
        CJMMOV/INTS/IASITE,NNG,NDG, VTOL,NMAT,IM, JM,KM,IRM, JRM, KRM,NLBC, SST00030
        I NFBC,NBAC,VDNSCT,NPRG,IJPT,NTG,NXTP,NYTP,NZTP,IXTP(5), IYTP(5),
        SST00080
        SST00090
        2IZTP(5),NSTEAD, IFLIN,IGEOM,ITIITLFI?O),NOIT,NIIT,NPIT,IJPSI,IODUMP,SSTOOIOO
        3IDFN,IJFD,IOPN,ITPJ, ITEMP, ITEMPPI,ITEMD?,ITEMP3,ITEMP4,ITEMP5, SSTOOIIO
        GNTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,VGX
        SST00120
        COMMOV/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, SSTOO130
        \TEMP5, TEMPS, XFISST, XFISSN,ALAMN, ALAMN,TIME,FLXCJN,BFTAT SSTOO140
        DIMENSITN PSI(NNGV,IMV,JMV,KMV), P2IIMV,JMV) SSTOO150
        TEMP?=DABS(1.0DO-ALAMO/ALAYV)
        SST001.60
        CALL ETTME = (TEMP)
        IF(NOITT.GT.1)GO TT }10
        HRITE(6,10!0)
        1010 FJRMAT(IHO,//,53X,'OUTER ITERATION SUMMARY',/)
        WRITE(6,1020)
    SST00170
    SST00180
    SST001.90
    SST00210
    1020 FJRMATIIH, 11X,'OJTER IT,',5X,'NO. FF INNER',6X, TOTAL EOMP.',7X, SSTOOR2O
        'PREL. FLUX',9X,'LAMBDA',27X,'ESTIMATED'') SSTOO230
        WRITE(6,1030)
    SST00240
    '030 FJRMATIIH, !2X,'NJMBER',9X,'ITERATIJNS', 7X,'TIMEIMIN.I', 6X,' CONVESSTOOZ50
        IRGENCE', 6X,'CONVERSENCE',9X,'LAMBDA',9X,'K-EFFECTIVE',1;',
    TOO WRITEIG,104O INOITT, NTIT,TEMO,FLXCON,TEMP1,ALAMN,EFFK SST00270
    1040 FORMATIIH,13X,14,13X,14,11X,F8.3,6X,3017.9,1X,F16.121 SSTO0280
        IF(NGITJ.E2.1)GOTJ 220 SST00290
        WRITE(6,1050)
    1050 FJRMATIIHO,10X,'STEADY STATE ITERATIONS TERMINATED'I SSTOO310
    SST00300
    lOGO FJRMATIIH,I5X,'INSUFFICIEVT TIME REMAINING FOR ANOTHER ITERATIJNISSTOOB3O
        1)
        IF(NGOTO.EQ.3)WRITE(6,1070) SSTOO350
        SST00340
    1070 FORMATIIH,I5X,'MAXIMUM NUM3ER OF OUTER ITERATIJNS EXCEEDED'I SSTOO360
        IF(NGJTO.EQ.4)WRITE(6,1080)
    1080 FORMATI!H,15X,'CONVERGENCE HAS BEEN ACHIEVED')
: IF IFLOUT = 0, RETURN S SSTOO390
        IFIIFLJUT.EQ.OIGOTO 220 SSTO0400
    PAGE 172
```

```
C. IF IFLOJT = 1, 2, OR 3, PRINT FLUXES SSTOO410
    IF(TELJJT.EQ.4IGO TO 180
    WRITE(5,1090)(ITITLE(I),I=1,20)
1093 FJRMAT(1HI,///,IOX, 'FINAL FLUXES FOR THE RUN !,20A4)
    JME = JM
    IF(JM.GT.53) JME=50
    ITEMP2=50/JME
    JMS=1.
    D) 170 VG=1,NNG
    D7 1.60 K=1,KM
    IF(K.GT.1.JR.NG.GT.1)WRITE(5,1100)
1100 FJRMAT(1H1,/)
    WRITF(6,1110)NG,K
1110 FJRMAT(1HO,10X,'FLUXES FOR %ROUP ', I2,', PLANE ' I 2)
    IFIIOPT.EQ.IIREAD(IOPOIP?
    JMS=?
    JMF=JM
    IF(JM.GT.50) JME=50
    ITEMP2=50/JME
    ITFMP5 = I TEMO2
    DO 143 I=1, I M, 10
    IS=I
    IE=I+9
    IF(TE.GT.IM)IE=IM
    IF((I-1)/10.LT.ITEMP5IGS TY 110
    WRITE(6,11.00)
    ITEMP5=ITEMP5+50/ITEMP2
    110 WRITE(6,1120)(ITEMP3,ITEMP3=IS,IE)
1120 FORMAT(IHO,3X,'J / I',2X,I7,9II2)
    O\ 130 ITEMP 3=JMS,JME
    J=JME+1-ITEMP3
    IF(IOPT. FQ.1)GO TO 120
    WRITE(6,1130)J,(PSI(NG,II,J,K),II=IS,IE)
1130
    FORMAT(1H, 2X,I2,6X, 1P10012. 5)
    GO TO 1.30
    120 WRITE(6,1130)J,(P2III,J),II=IS,IF)
```

SST00410 SST00420 SST00430 SST00440 SST00450 SST00460 SST00470 SST00480 SST00490 SST00500 SST00510 SSTOO520 SST00530 SST00540 SST00550 SST00560 SST00570 SST00580 SST00590 SST00591 SST00600 SST00610 SST00620 SST00630 SST00640 SST00650 SST00660 SST00670 SST00680 SST00690 SST00700 SST00710 SST00720 SST00730 SST00740 SST00750

```
130 CONTINUE SST00760
    IF(JME.GE.JM)GO TO 140
    JMS=JME+1
    JME=JMS+49
    IF(JME.GT.JMM)JME=JM
    HRITE(6,1100)
    go TO 110
140 CONTINUE
    IF(IFLJUT.VE.2)GO TO 160
    IFIIOPT.EQ.IIGO TO 150
    WRITE(T,1140)((PSI(NG,I,J,K),I=1,IM),J=1,JM)
1140 FDRMAT(5D16.10)
    GO TO 150
150 WRITE{T,1140)((P2(I,J),I=1,IM),J=1,JM)
160 CONTINUE
170 CONTINUE
    IFIIOPT.EQ.IIREWINJ IOPD
    IFIIFLJUT.&T.3)GO TO 220
180 REWIND IOPSI
    DJ 210 VG=1,NNG
    D3 200 K=1,KM
    IF(IOPT.EQ.1)GO TO 190
    WRITE(IJPSI)((PSI(VG,I,J,K),I=1,IM),J=1,JM)
    GO TO 200
190 READ{IOPO\P2
    WRITE(IDPSI)P2
200 CONTINUE
210 CONTINUE
    IFIIOPT.EQ.IJREWIND IOPO
    REWIND IOPSI
220 RETURN
    END
SST00770
SST00780
SST00790
SST00800
SST00810
SST008?O
SST00830
SST00840
SST00850
SST00860
SST00870
SST00880
SST00890
SST00900
SST00910
SST00920
SST00930
SST00940
SST00950
SST00960
SST00970
SST00980
SST00990
S5T01000
SST01010
SST01020
SST01030
SST01040
SST01050
SST01.060
SST01070
```

SUBROUTINE SETUPIIV,XI,XNU,SIGF,SIGR,SIGT,SIGS,X,Y,Z,HX,HY,HZ,IBP,SETOOOIO 1 JBP, K月P, DD1, DD2, DD3, OD4, DD5, DD6, DD7, VJ, MMAP, NPRYP, NVGV, NDGV, NDNSCVSETOOO20 2, NMATV, IMV, JMV, KMV, IRMV, JRMV, KRMV, NPRGV, NGXVI

SET00030
IMPLIEIT REAL*8 (A-H, D-Z $)$
SET00040
INTEGER* 2 MMAP, NPRMP SET00050
COMMON/INTG/IASIZF,NNG,NDG, VTOG, NMAT,IM, JM,KM, IRM, JRM,KRM,NLBC, SETOOIOO
1 NFBC, NBBC, NDNSCT, YPRG,IJPT, NTG,NXTP, NYTP,NZTP,IXTP(5),IYTP(5), SETOOL10
2IZTP(5), NSTEAD, IFLIN,IGEOM, ITITLE(?O), NOIT,NIIT,NPIT, IJPSI, IODUMP,SETOO1 20
3IDFN, IOF D, INPN, IOPJ, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5, SETOO130
4NTIT,IETIME, IFLOUT, IMX,JMX,KMX,IOSC1,IJSC2,NGX SETOOI40
COMMOV/FLOTE/EFFK, JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, SET00150
1 TEMP 5, TEMPS, XFISST, XFISSI, ALAMN, ALAMN, TIME,FLXCJN, BETAT SETOOIGO
DIMENSIJN V(NNGV), XI (NNGV), XNU(NMATV,NNGV), SET00170
1 SIGF (VMATV, VNGV), SIGR(NMATV, NNGV), SIGT(NMATV, NNGV), SIGS(NMATV,NNGVSETOOIBO Z,NONS:V), X(IMV),Y(JMV),Z(KMV),VO(NPRGV), SETOO190 3HX(IRMV), HY(JRMV), HZ (KRMV), IBP(IRMV), JBP(JRMV), KBP(KRMV), DDI (NPRGVSETOO200 4,NNGV), JD2 (NPRGV, VVGV), DD3(VPRGV,NNGV), D04(NPRGV, NNGV), DD5(NPRGV,NSET00210 5NGV), DJS (NPRGV, NNGV), DDT (NPRGV,NGXV, NDNSCV), MMAP (IRMV, JRMV, KRMV), SETOO220 SNPRMP (IMV,JMV,KMV)

SET00230
DIMENSIJN $40(6)$,MN(B) SETOO240
D) 102 VM=1,NMAT SET00250

D2 107 VG=1,NNG SETOO260
DO 101 VDN=1,NDNSCT SETOO270
SIGR(VM,NG) = SIGR(N4,NG) +SISS(NM,NG,NDN) SETOO280
101 CONTINUE
SET00290
10? CONTINUE
SET00300
= START WITH NESTED DJ LDOPS JVER MATERIAL REGIJNS SET00310
ITEMPL =1
SETOO320
DO $560 \times R=1$, KRM
SET00330
ITEMP2 =1
DO 550 JR=1,JRM
SET00340
ITEMD3=1
SET00350

DO 543 IR=1, IRM
SET00360

- HOMOGENEDUS REGION

SET00370
SET00380
NPR=4*IRM*)RM*(?*<R-1)+2*I2 $4 *(2 * J R-1)+2 * I R$
SETOO390
$K F=K B P(K R)-1$
SFT00400

```
        KS=KBP(KR-1)+1
        IF(KR.EZ.1)KS=2
        JE=JBP(JR)-1
        JS=JBP(JR-1)+1
        IF(JR.EQ.1) JS=2
        IE=IBP(IR)-1
        TS=IBP(IR-1)+1
        IFIIR.EZ.1)IS=2
        ITEMP5=1
        NPRP=NPR
        G3 TO 500
    110 HD(1)=HZ(K2)
    HD(2)=HD(1)
    HD(3)=HY(J2)
    HD(4)=HD(3)
    HD(5)=4X(I2)
    HD(6)=HD(5)
    OO 120 ITEYP4=1,3
    MN(ITEMP4)=MMAP(IR,JR,KR)
    120 CONTINUE
        G] TO 530
c LOWER LEFT EDGE
    130 NPRP=NPR-4*IRM*JRM-1
        IS=1S-1
        IE=IS
        KS=KS-1
        KE=KS
        ITEMP5=?
        G0 TO 500
    140 HD(1)=HZ(KR)
        HD(2)=HZ (KR-1)
        IF(KR.EQ.1)HD(2)=H)(1)
        HO(5)=HX(12)
        HD(6)=HX(IR-1)
        IF(IR.EQ.1)HD(6)=HD(5)
        MN(1)=MMAP(IR,JR,K2-1)
```

```
        IF(KR.EQ.1)MN(1)=MN(5)
        MN(4)=MN(1)
        MN(6)=MMAP(IR-1,JR,KR)
        IF(IR.EQ.1)MN(6)=4N(5)
        MN(7)=MN(6)
        MN(2)=MMAP(IR-1,JR,KR-1)
        IF(KR.EO.1)MN(2)=MN(6)
        IF(IR.E2.1)MN(2)=MN(1)
        MN(3)=MN(2)
        GJ TO 530
: LEFT SIDE
    150 NPRP=NPR-1
            KE=KAP(KR)-1
            KS=K S+1
            ITEMP5=3
            GO TO 500
    1.60 HD(2)=HD(1)
            MN(4)=MN(8)
            MN(1)=MN(5)
            MN(2)=MN(6)
            MN(3)=MN(7)
            GO TO 530
= LEFT FRONT EDGE
    170 NPRP =NPR-2*IRM-1
        JS=JS-1
        JE=JS
        ITEMP5=4
        GO TO 500
        180 MN(R)=MMAP(IR,JR-I,KR)
            IF(JR.EQ.1)MN(8)=MN(5)
            MN(4)=MN(B)
            MN(7) =MMAP(IR-1,JR-1,KR)
            IF(IR.ED.1IMN(T)=MV(8)
            IF(JR.EQ.1)MN(T) =MN(6)
            MN(3)=MN(7)
            HD(4)=HY(JR-1)
```

```
        IF(JR.E2.1)HD(4)=HD(3)
        GO TO 530
: LOWER FRONT EDGE
    190 KS=KS-1
        KE=KS
        IS=1S+1
        IE=IBP(IR)-1.
        NPRP=VPR-4*I RM*JRM-2 * IRM
        ITEMP5=5
        GO TO 500
    200 HD(2)=HZ(KR-1)
        IF(KR.EQ.1)HD(2)=HD(1)
        HD(6)=HD(5)
        MN(6)=MN(5)
        MN(1)=MMAP(IR,JR,KR-1)
        IF(KR.EQ.1)MN(1)=MN(5)
        MN(2)=MV(1)
        MN(7)=MN(8)
        MN(4)=MMAP(IR,JR-1,KR-1)
        IF(KR.EQ.1)MN(4)=YV(8)
        IF(JR.EQ.1)MN(4)=MN(1)
        MN(3)=MN(4)
        G% TO 530
` LOWER FRONT LEFT CORNER
    210 NPRP=VPR-4*IRM*JRM-2*IRM-1
            IS=IS-1
            IE=IS
            ITEMP5=6
            G0 TO 500
    220 HD(6)=HX(I2-1)
            IF(IR.EQ.1)HD(6)=HD(5)
            MN(6)=MMAP(IR-1,JR,KR)
            IF(IR.EQ.1)MN(6)=MN(5)
            MN(2)=MMAP( [R-1,JR,KR-1)
            IF(IR.EQ.1)MN(2)=MN(1)
            IF(KR.EO.1)MN(2)=4V(6)
```

SETOL120 SET01130 SETOI140 SETOl150 SETOI160 SETO1170 SETOI180 SETO1190 SETOI 200 SETO1210 SETO1220 SETO1230 SET01240 SETO1260 SETO1270 SETOL280 SET01290 SETO1300 SETO1310 SETO1320 SETO1330 SETO1340 SETOI 350 SETO1360 SET01.370 SET01380 SETO1390 SET01400 SET01410 SETO1420 SFT01430 SETO1440 SET01450 SET01460 SET01470 SETO1480

```
        MN(7)=MMAP(IR-1,JR-1,KR)
        IF(IR.EQ.1IMN(T)=MN(8)
        IF(JR.EQ.1)MN(7)=MN(6)
        MN(3)=M4AP(IR-1,JR-1,KR-1)
        IF(IR.EO.1)MN(3)=MN(4)
        IF(JR.EQ.1)MN(3)=MN(2)
        IF(KR.EQ.1)MN(3)=MY(7)
        G7 TO 530
C FRONT SIDE
    730 NPRP=NPR-2*IRM
        IS = IS+1
        IE=IBP(IR)-1
        KS=KS+1
        KE=KBP\<R|-1
        ITEMP5=7
        GO TO 500
    240 HD(2)=HD(1)
        HD(6)=HD(5)
        MN(4)=MN(8)
        MN(7)=MN(8)
        MN(3)=MN(8)
        MN(6)=MN(5)
        MN(1)=MN(5)
        MN(2)=MN(5)
        GO TO 530
C BOTTOM SIDE
    250 NPRP=NPR-4*IRM*JRM
        KS=KS-1
        KE=KS
        JS=JS+1
        JE=JBP(JR)-1
        ITEMP5=8
        GD TO 500
    260 HD(2)=HZ(KP-1)
    IF(KR.EQ.1)HD(2)=HD(1)
    HD(4)=HD(3)
```

```
    MN(8)=MV(5) SET01840
    MN(7)=MN(6)
    SET01850
    MN(1)=MMAP(IR,JR,KR-1)
    SET01860
    IF(KR.EQ.1)MN(1)=MN(5)
    SET01870
    MN(2)=MN(!)
    MN(3)=MN(1)
    MN(4)=MN(1.1
    GO TO 530
500 D3 520 K=KS, KE
    DO 52J J=JS,JE
    DO 510 I=IS,IE
    NPRMP(I,J,K)=NPRP
510 CONTINUE
520 cJNTIVUE
    GO TO (110,140,160,180,200,220,240,260), ITEMP5
    SETO1880
    SET01890
    SET01900
    SETO1910
    SET01920
    SET01930
    SETO1940
    SET01950
SET01960
SET01970
    SET01980
530 CALL COEFIIXNU,SIGF,SIGR,SIGT,SIGS,DD1,DD2,DD3,DD4,DD5,DD6,DD7,VO,SETO1990
    INNG, NDNSCT, NMAT, NPRG,HD,MN,NPRP, NGXI
                                    SET02000
    G3 TO (130,150,170,190,210,230,250,540), ITEMP5
    SET02010
5 4 0 ~ C O N T I N U E ~
550 CONTINUE
560 CONTINUE
    RETURV
SETO2020
SET02030
    SET02040
    END
    SET02050
    END
    SET02060
```

```
    SUBROUTINE COEFIIXVU,SIGF,SIGR,SIGT,SIGS,DD1,DD2,DD3,DD4,DD5, COEOOO10
    IDD6,DD7,VD,NNGV,NDNSCV,NMATV,NPRGV,HD,MN,NPRP,NGXVI COEOOO2O
    IMPLICIT REAL*8 (A-H,O-Z) COEOOO3O
    INTEGER*2 MMAP,NPRMP
    COMMON/INTS/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM, KM,IRM,JRM,KRM,NLBC,
    CDE00040
    CJE00090
    COE00100
    2IZTP(5), NSTEAD, IFLIN,IGEOM, ITITLE(2J),NOIT, VIIT,NPIT,IOP SI, IODUMP,CDEOOI10
    3TOFN,IOFO,IOPN,IOPD, ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, COEOO120
    4NTIT,IETIME, IFLOUT,IMX,JMX,KMX,IOSCI,IOSC2,NGX COEOO130
    COMMON/FLOTE/EFFK,DRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, COE00140
    1TEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCJN, BETAT COEOO150
    DIMENSIJN XNUINMATV, NNGVI,SIGF(NMATV,NNGV),SIGRINMATV,NNGV), SIGT(NCOEOOI.60
    IMATV,VNSVI,SIGS(NMATV,NNGV,NDNSCV), ODI(NPRGV,NNGV), COEOO170
    2DD2(NPRGV,VNGV),DD3(NPRGV,VNGV),DD4(NPRGV,NNGV),DO5(NPRGV,NNGV), COEO0180
    3DD6(NPRGV,VNGV),DD7 (NPRGV,VGXV,NDNSCV),VO(NPRGV) COEO0190
    DIMENSIJN HD(6),MN(B) CSFOO2OO
Z LDOP DVER ALL GROUPS CDEOO210
    TEMP=1.2001 COE00220
    TEMP1=8.000 COE00230
    NPR=NPRP
    COE00240
    VD(NPR)=((4D(1)+HD(2))*(HD(3)+HD(4))*(HD(5)+HD(5)))/TEMP1 C3E00241
    DO 110 VG=1,NNG
    DD1(NPR,NG) = ((HD(3)*HD(2)/SIGT(MN(1),VG)) +(HD(3) *HD(1)/SIGT(MN(5),CDE 00260
    1NG) )+(HD(4)*HD(2)/SIGT(MN(4),NG))+(HD(4)*HD(1)/SIGT(MN(8),NG)|)/(HCOEO0270
20(5)*TEMP1
CDE00280
    DD2(NPR,NG) =((HD(5) *HD(2)/SIGT(MN(1),NG)) +(4D(6) *HD(2)/SIGT(MN(2),COE00290
1NG))+(HD(6)*HD(1)/SIGT(4N(6);NG) 1+(HD(5)*HD(1I/SIGT(MN(5),NG)|I/(HCOE00300
2D(3)*TEMP)
    CDE00310
    DD3(NPR,NG) = ((HD(4)*HD(5)/SIGT(MN(7),NG))+(4D(4)*HD(5)/SIGT(MN(8),COE00320
    ING) ) +(HD(3)*HD(5)/SIGT(MN(5),NG))+(HD(3)*HD(6)/SIGT(MN(6),NG)II/(HCOEOO330
2D(1)*TEMP)
                            CDE00340
        DD4(NPR,NG) = DD1(NPR,NG) +DD2(NPR,NG) +DD3(NPR,NG) + ((HD(3) & HD(2)/SIGTCDE00350
        I(MN(2),NGI)+(HD(4)*HD(2)/SIGT(MN(3),NG))+(HD(4)*HD(1)/SIGT(MN(7),NCOEOO360
        2G))+(HD(3)*HD(1)/SIGT(MN(6);NG)I)/(HD(6)*TEMP) +((HD(6)*HD(2)/SIGT(COEO0370
        3MV(3),NG)1+(HD(5)*HD(2)/SIGT(MN(4);NG))+(HD(5)*HD(1)/SIGT(MN(8),NGCDE00380
        4)l+(HD(S)*HD(1)/SIGT(MN(7),NG)I)/(HD(4)*TEMD)+((HD(5)*HD(3)/SIGT(MCOEO0390
```

5N(1), VG) $)+(H D(3) * H D(6) / S I G T(M N(2), V G))+(H D(4) * H D(6) / S I S T(M N(3), N G) C O E 00400$ $6)+(H D(4) * H D(5) / S I G T(M N(4), N G) 1) /(H D(2) * T E M P)$

COE 00410
 $1(3) * H D(2) * S I G R(M N(2), N G)+H D(6) * H D(4) * H D(2) * S I G R(M N(3), N G)+H D(5) * H D C O E 00430$ $2(4) * H D(2) * S I G R(4 N(4), N G)+H D(5) * H D(3) * H D(1) * S I G R(M N(5), N G)+H D(6) * H D C O E 00440$ $3(3) * H D(1) * S I G R(M N(6), N G)+H D(6) * H D(4) * H D(1) * S I G R(M N(7), N G)+H D(5) * H D C D E 00450$ 4(4)*HD(1)*SIGR(MN(3), NG))/TEMP1.

CJE00460
DD6 (NPR, NG) $=(H D(5) * H D(3) * H D(2) * S I G F(M N(1), N G) * X N U(M N(1), N G)+H D(6) * C O E 00470$ 1 HD (3)*HO(2)*SIGF(MN(2),NG)*XNU(MN(2), VG) +HD(6)*HD(4)*HD(2)*SIGF(MNCOEOO480
 $3(6)+\operatorname{HD}(5) * H)(3) * H D(1) * S I G F(M V(5), N G) * X N U(M N(5), N G)+H D(6) * H D(3) * H D(1 C O E O 0500$ 4)*SIGF(MN(5),NG)*XNU(MN(6), VG) + HD(6)*HD(4)*HD(1)*SIGF(YN(7), NG)*XNCDEOO510 $5 U(M N(7), N G)+H D(5) * H D(4) * H D(1) * S I G F(M N(8), N G) \neq X N U(M N(8), N G)) /$ TEMP 1 COEOO520 IF(NG.EQ.NNGIGO TO 110

COEOO521
DO 100 NDN=1,NDNSCT
COEOO530
 1 HD (2)*SIGS(MN(2), NG, NDN) +HD(6)*HD(4)*HD(2)*SIGS(MN(3), NG, NDN) +HD(5COE00550 $2) * H D(4) * H D(2) * S I G S(M N(4)$ iNG, NDN) +HD(5)*HD(3)*HD(1)*SIGS(MN(5),NG,NCOEOO560 $3 D N)+H D(5) * H D(3) * H D(1) * S I G S(Y N(6) ; N G, N D N)+H D(6) * H D(4) * H D(1) * S I G S(M N C O E O O 570$ $4(7), N 3, N D N)+H D(5) * H D(4) * H D(1) * S I G S(M N(8)$ iNG, NDN) //TEMP1

COEOO580
100 CONTIVUE
COEOO590
110 CONTINUE
CDE 00600
RETURN
COE00610
END
COEOO620

```
        SUBROUTINE INNEROIX,Y,Z,HX,HY,HZ,DD1,DDZ,DD3,DD4,OD5,MMAP,NPRMP, INNOOOIO
        1PSI,PI,P2,P3,FO,SRC,WA,GA,SOLN,OMEG,XFISS,XINSC, XREM,XLEK, INN0002O
        2NNGV,VMATV,IMV,JMV,KMV,IRMV,JRMV,KRMV,NPRGV,NGI INNOOOSO
            IMPLICIT REAL*8 (A-H,O-Z) INNOOO4O
            INTEGER*2 MMAP,NPRMP
            CJMMOV/INTS/TASIZE,VNG,NDG,VTDG,NMAT,IM, JM,KM,IRM,JRM,KRM,NLBC,
            NFBC,VB
            2IZTP(5),MST
            MINT,
            3IOFN,IJFO,IOPN,IJP3,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, INNOO130
            4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,VGX INNOOI4O
            COMMOV/FLOTE/EFFK,ORFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, INN00150
        1TEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCJN,BETAT INNOOL6O
            DIMENSION X(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRYV), INN00170
        1DD1(NPRSV,VNGV), DD?(NPRGV,VVGV), DD3(NPRRGV,NNGV),DD4(NPRGV,NNGVI, INNODI80
        2DD5(NPRGV,NNGV),MMAP(IRMV,JRMV,KRMVI,NPRMPIIMV,JMV,KMVI, INNOOI90
        3PSI(NVGV,IMV,JMV,KMV),P1(IMV,JMV),P2(IMV,JMV), P3(IMV,JMV), INN00200
        4SRC(IMV, JMV, KMV),WA(IMN),GA(IMV),SJLN(IMV),JMEG(NNGV), XFISS(NNGV),INNOO210
        5XINSC(NVGV), XREM(NNGV),XLEK(NNGV) INNOO220
            IF(ITEMP5.EQ.5)GO TD 90 INNOO23O
            CALL GRRALT(DD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,PP,P3,XFISS,XINSC, INN00240
            1XREM,XLEK,NNG,IM,JM,KM,NPRG,NGI INNOO250
    90 NIT=0
    INNOO260
    START WITH BOTTOM PLANE
100 CONTIVUE
        XNL BC =NLBC
        TEMP1=0.0DO
        TEMP4=1.0D+50
        K=1
        IFINRSC.EQ.OIGO TO 200
        J=1
        IF(NFBC.EQ.OIGO TO }14
    NPR=NPRMP (1,1,1)
    WA(1)=-2.0DO*DD1(NPR,NG)*XNL BC/DD5(NPR,VG) INNO0370
    GA(l)=((SRE(1,J,K)+2.0DO*(DD2(NPR,NG)*PSI(NG,1,2,1)+DD3(NPR,NG)*PSINN00380
    1I(NG,1,1,2)))*XNLBC)/DD5(NPR,NG).
    DO 110 I=2,IMX INNOOC400
    PAGE 183
```

```
    NPR=NPRMP(1,1,1)
    NPRX=VPRMP(I-1,1,1) INNOO420
    TEMP=1.ODO/(DD5(NPR,NG)+DDI(NPRX,NG)*NA(I-1))
    WA(I)=-DD1(NPR,NG)*TEMP
    INN00410
    INNOO430
GA(I)=(SRC(I, J,K)+2,ODO*(DD2(NPR,NG)*PSIING,I 2,I) *DD3(NPR,VG)*PSINNO0440
    1(NG,I,1,?1)+DD1(NPRX,NG)*GA(I-1))*TEMP
        INNOO460
        SOLN(IM)=0.0DO
    INN00470
        DN 125 II=1,IMX
        I=IM-II
120 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)
    DO 130 I=1,IM
        TEMP 2=PSI(VG,1,1,1)
        PSI(NG,I,1,1)=TEMP2 +OMEG(NG)*(SOLN(1)-TEMP2)
    ,IFIPSI(NG,I,1,1).GT.0.0DO)G0 TO 125
        PSI(NG,I,1,1)=0.000
        GO TO 1.30
125 TEMP 3=TEMP2/PSI(NG,1,1,1)
    IFITEYP1.LT.TEMP3ITEMP1=TEMP3 INNOO580
        IF(TEMP4.GT.TEMP3)TEMP4 = TEMP 3
130 CONTINUE
140 DS 1 80 J=2, JMX
    NPR=NPRMP(1,J,1)
    NPRY=VPRMP(1,j-1,1)
    HA(1)=-2.0J0*DD1(NPR,NG)*XN, BC/DD5(NPR,NG) INN00640
INN00480
    INN00490
    INN00500
    INNOO520
    IF(PSI(NG,I,1,1).GT.0.ODO)G0 TO 125 INNOO530
    INNOO540
INN00560
INN00570
INN00590
INN00600
    INN00610
    GA(1)=((SRC(1,J,K)+DD2(NPRY,NG) #PSI(NG,1,J-1,1)+DD2(NPR,NG)*PSI(NGINN00650
    1,1,J+1,I)+2.0DO*DD3(NPR,NG)*PSI(NG,1,J,2))*XNLBC)/DD5(NPR,NG) INN00660
INN00670
    NPR=NPRपP(I, J,1)
    INN00670
    INN00680
    NPRX=NPRMP(I-1,J,1)
    INN00690
    NPRY=NPRMP(I,J-1,!!
    INN00700
    TEYP=1.0DO/(DD5(NPR,NG) +DD1(NPRX,NG) *WA(1-1))
    INN00710
    WA(I) =-DD1(NPR,NG) &TEMP
    INN00720
150 GA(I)=(SRC(I,J,1)+DD2(NPRY,VG)*PSI(NG,I,J-1,1)*DD2(NPR,NG)*PSI(NG,INNOO730
    1I,J+1,1)+2.0D0*DD3(NPR,NG)*PSI(NG,I,J,2) +DDI(NPRX,NG)*GA(I-1|)*TEMINN00740
    2P
INN00750
SOLN(IM)=0.000
INNOOT60
```

 DO 160 II=1,IMX INNNOOT7O
 I=IM-II INNOM
 160 SOLN(I)=GA(I)-WA(I)*SOLN(I+1) INN00790
 D) 170 I=1,IM
 TEMP2=PSI(VG,I,J,1)
 PSI(NG,I,J,1)=TEMP2 + OMEG(NG) #(SOLN(I)-TEMP2)
 IFIPSIING,I,J,1).GT.0.0001SO TN 165
 PSI(NG,I,J,I)=0.000
 GO TO 170
 165 TEMP3=TEMP2/PSIING,I,J,11
 IF(TEMPL -LT. TEMP3)TEMP1 = TEMP3
 IF(TEMP4.GT.TEMP3)TEMP4=TEMP3
 170 CONTIVUE
 180 CONTINUE
 DJ 1.90 I=1,IM
 190 PSI(NG,I,JM,1)=0.000
 : NOW COMPUTE FDR THE REST OF THE PLANES
200 D] 300 K=2,KMX
IF(NFBC.EQ.O) GO TO 240
J=1
NPR=NPRMP (1,1,K)
NPRZ=NPRMP(1,1,K-1)
WA(1)=-2.000*DD1(NPR,NG) *XNL BC/DD5(NPR,NG)
GA(1)=((SRC(1,1,K)+2,ODO*DD2 (NPR,NG)*PSI (NG,1,2,K) \&DD3(NPR,NG) \&P SIINNOIO00
1(NG,1,1,K+1)+DD3(NPRZ,NG)*PSI(NG,1,1,K-1)|*XNLBC)/DO5(NPR,NG) INN01010
DO 210 I=2,IMX
NPR=NPRMP(I,1,K)
NPRX=VPRMP(I-1,1,K)
NPRI=NPRMP(1,1,K-1)
TEMP=1 ODO/(DD5 (NPR,NG) +DD1 (NPRX,NG)*HA(I-1))
TEMP=1.ODO/(DDS(NPR,NG) +DD1 (NPRX,NG)*WA(1-1)) INN01060
HA(II=-DDI(NPR,NG)*TEMP INN01070
210 GA(I)=(SRC(I,I,K)+2.0D0*DD2(NPR,NG)*PSI(NG,I,2,K)\&DD3(NPR,NG)*PSI(INN01080
1NG,I, 1,K+1) +DD3(NPRZ,NG)*PSI (NG,I,I,K-1) +DD1 (NPRX,NG)*GA(I-1)|FEMINNOIO90
2P
INNO1100
SOLN(IM) =0.000
INNOL11O
INNOLI2O
PAGE }18

```
```

 I=IM-II INNOL130
 220 SOLN(I)=GA(II-HAIII*SOLN(I+I) INNOII4O
DO 235 I=1.IM
TEMP 2=PSI(NG,I,I,K)
INNO1170
IF(PSI(NG,I,I,K).GT.O.ODO)GO TO 225 INNOLI8O
PSI(NG,I,I,K)=0.000
GO TO 230
225 TEMP3=TEMP2/PSI(NG,I I,K)
IF(TEMP1.LT.TEMP3)TEMP1 =TEMP 3
IF(TEMP4.GT .TEMP3)TEMP4=TEMP3
230 CONTINUE
240 DO 280 J=2,JMX
NPR=NPRMP{1;J,K}
NPRY=VPRMP(1;J-1,K)
NORZ=NPRMP(1, J,K-1.)
HA(1)=-2.030*DD1(NPR,NG)*XNLBC/DD5(NPR,NG) INNO1280
GA(1.)=((SRC(1,J,K) +DD2(NPR,NG)*PSI(NG,1,J+1,K)+DD2(NPRY,NG) * PSI(NGINNO1 300
1,1,J-1,K)+DD3(NPR,VG)*PSI(VG,1,J,K+1)+DD3(NPRZ,NG)*PSI(NG,1.,J,K-1)IINN01310
2)*XNLSCI/DD5(NPR,NG)
INNO1320
D7 250 I=2,IMX
INNO1330
NPR=NPRMP(I,J,K)
INNO1340
NPRX=VPRMP(I-1,J,K)
INNO1350
NPRY = YPRMP{I ,J-1,K)
INNO1360
NPRY=VPRMP(I,J-1,K)
INNO1370
TEMP=1.ODO/(DO5(NPR,NG)+DDI(NPRX,NG)*WA(I-1))
HA(I)=-DDI(NPR,NG) \&TEMP
INNO1390
250 GA(I)=(SRC(I,J,K)+DD2(NPR,NG)*PSI(NG,I,J+1,K)*DD2(NPRY,NG)*PSI(NG,INNOI4OO

```

```

 2DD1(NPRX,NG)*GA(I-1))*TEMP
 INNO1420
 SOLN(IM)=0.ODO
 INNOI430
 DJ 263 II=1,IMX
 INNOI440
 I=IM-II INNOIL450
 260 SOLNIII=GAIII-WAIII*SOLN(I+I)
DO 270 I=1,IM INNO1470
TEMP2=PSI(NG,I,J,K) INN01480
PAGE 186

```
```

 PSI(NS,I,J,K)=TEMP2 +OMEG(NG)*(SDLN(I)-TEMP2) INNO1490
 IF(PSI(NG,I,J,K).GT.O.ODOIGJ TO 265
 PSI(NG,I,J,K)=0.ODO
 GO TO 270
 265 TEMP3=TEMP2/PSI(NG,I&J,K)
 IF(TEMP1 .LT.TEMP3)TFMP1 = TEMP 3
 IF(TEMP4,GT,TEMP3)TEMP4=TEMP 3
 270
 CONTINUE
 280 CONTIVUE
 D] 290 I=1,IM
 290 PSI(NG,I,JM,K)=0.000
 300 CONTINUE
 C COMPLETE YESH NOW SWEPT
C NOW COMPUTE LARGEST RESIDUAL
TEMP 2=DABS(1.0DO-TFMP1)
TEMP3=DARS(1.000-TEMP4)
IF(TEMP2-TEMP3)320,320,310
310 TEMP 3=TEMP2
320 NT IT=NTIT+1
NIT=NIT+1
IFINIT.GE.VIITIGO TO }33
IF(TEMP3.GT.EPS2IGO TO 100
3 3 0
CONTINUE
RETURN
ENO

```

I NNO 1490
I NNOI 500
INNOI 510
INNO1520
INN01530
INNO1540
INNO1550
INNO1560
INNO 1570
INNO1580
INNO1590
INN01600
INNO1610
INNO1620
INNOI. 630
INNOL640
INNO1650
INNOL660
INNO1670
INNOI 680
INNO1690
INNO1700
INNO1710
INNOI720
INNO1730
```

 SUBROUTINE GRRALOIDD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFISS, GRB00010
 IXINSC,XREM, XLEK,NVGV,IMV,JMV,KMV,NPRGV,NGI GRB00020
 IMPLICIT REAL*B (A-H,O-Z)
 GRB00030
 INTEGER*2 MMAP,NPRMP
 C.OMMDN/INTS/IASIZE,NNG,NDG,NTOG,NMAT,IM, JM,KM,IRM, JRM,KRM,NLBC,
 GRB00040
 GRB00090
 INFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), GRBOOIOD
 2IZTP(5),NSTEAD,IFLIN,IGEOM,ITITLE(20), NOIT, NIIT,NPIT,IJPSI,IOOUMP,GRBOOI10
 3IOFN,IJFO,IDPN, IJP3, ITEMP, ITEMP1,ITEMP?, ITEMP3,ITEMP4, ITEMP5, GRB00120
 4NTIT,IETIME,IFLOUT, IMX,JMX,KMX, IOSC1,IOSC2,NGX GRB00130
 COMMON/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, GRBO0140
 ITEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMD,TIME,FLXCJN, BETAT
 GRB00150
 DIMENSIJN DDI(NPRSV,NNGV),DD2(NPRGV,NNGV),DD3(NPRGV,NNGV),DD4(NPRGGRBOO160
 IV,VNGV), DDS (NPRGV, VNGV),NPRMP(IMV, JMV, KMV), PSI(NNGV,IMV, JMV, KMVI, GRBOOL70
 2P1(IMV,JMV), P2(IMV,JMVI, P3(IMV,JMV), XFISS(NNGVI,XINSC(NNGV), GRB00180
 3XREM(VNGV),XLEK(NNGV) GRB00190
 XREM(VG)=0.000 GRBOO200
 XLEK(NG)=0.000 GRB00210
 ONE=1.ODO GRBOO211
 HALF=0.5DO GRB00212
 VOLB=3NE GRB00213
 VOLF=3NE
 VOLL=ONE
 IF(NB3C.EQ.1)VOLB=HALF
 DO 230 K=1, KMX
 IFIK.GT.1)VOLB=ONE
 IFIK.EQ.1.AND.NBBE.EQ.OI GO TO 230
 IFIK.VE.2IGO TO 120
 100 IFINBBC.EQ. 1IGO TO 120
 - COMPUTE LEAKAGE FOR BOTTOM PLANE
IFINFBC.EQ.1 IVOLF=HALF
D] 110 J=1,J MX
IFIJ.GT.1IVDLF=ONE
IFINLBC.EQ.1 IVOLL=HALF
DO 110 I=1,I MX
IF(I.GT.1)VOLL=ONE GROM
NPR=NPRMP(I,J,1) GRB00290

```
            XLEK(NG)=XLEK(NG)+DD3(NPR,NG)*PSI(NG,I,J,2)*VOLF*VOLL GRB00300
Mlol
```

GRB00310 GRB00320 GRB00330 GR B00331 GRB00340 GRB0034 1 GRB00350 GRB 00360 GR 800370 GR 800380 GRB00381 GRB00390 GRB00391 GR 800400 GRB00410 GRB00420 GR 800421 GRB00430 GRB00431 GRB00440 GRB00450 GR B00460 GRR00461 GRB00470 GRB00471 GRB00480 GRB00490 GRB00491 GRB00500 GR B00501 GRB00502 GRB00503 GR 800510 GRB00511
GRB00512
PAGE 189

```
        NPR=NPRMP(I , J,K)
    190 XREM(NG)=XREM(NG) +(DDS(NPR,NG)-DD4(NPR,VG))*PSI(NG,I,J,K)*VOLD
200 CONTINUE
    IF{K.LT.KMX) GO TO 230
C COMPUTE TJP LEAKAGE
IF(NFBC.EO.I IVOLF=HALF
    00 220 J=1.JMX
    IFIJ.GT.I IVOLF=ONE
    IFINLBC.EQ.IIVOLL=HALF
    D\ 210 I= 1.IMX
    IFII.GT.I IVOLL = ONE
    NPR=NPRMP(I,J,KMX)
21) XLEK(NG)=XLEK(NG)+DO3(NPR,NG)*PSI(NG,I,J,KMX)*VJLL*VOLF
220 CONTINUE
230 CJNTIVUE
    TEMP = (XFISS(NG) +XINSC(NG))/(XLEK(NG) +XREM(NG))
    DO ? 250 K=1,KMX
    D] 250 J=1,JM
    DJ 240 I= 1,IM
240 PSI(NG,I,J,K)=TEMP*PSI(NG,I,J,K)
250 CONTIVUE
    XREM(NG)=TEMP*XREM(NG)
    XLEK(NG) = TEMP* XLEK(NG)
    RETURN
    END
GRB00520
GRB00530
GRB00540
GRB00550
GRB00561
GRB00571
    GRR00581
    GRB00590
GRR00600
220 CONTINUE
GRB00610
GRB00620
GRB00630
GRB00640
GR B00650
GRB00660
GRB00670
GRB00680
GRB00690
GRB00690
GRB00700
GR800710
GRB00720
```

```
            SUBROUTINE INNERIIX,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP, INNOOOIO
    1PSI,P1,P2,P3,FO,SRC,WA,GA,SOLN,OMEG,XFISS,XINSC, XREM,XLEK, INNOOO2O
    2NNGV,NMATV,IMV,JMV,KMV,IRMV,JRMV,KRMV,NPRGV,NGI INNOOO3O
            IMPLICIT REAL*8 (A-H,D-Z) INNOOO4O
            INTEGER*2 MMAP,NPRMP
            COMMOV/INTG/IASIZE,NNG,NDG,VTOG, NMAT,IM, JM,KM,IRM, JRM, KRM,NLBC,
            INFBC, VB3C,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(,5), INNOOLIO
    INN00050
                        INNOOIOO
            2IZTP(5),NSTEAD, IFLIN,IGEOM, ITITLE(2O), NOIT,NIIT, NPIT,IOPSI, IODUMP,INNOOI.20
            3IDFN,IOFO,IOPN,IOP3, ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4, ITEMP5, INNOOI3O
            4NTIT,IETIME, IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX INNOO14O
            COMMON/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1, TEMP2,TEMP3,TEMP4, INNOO150
            1TEMP5, TEMPS, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCON, BETAT, INNOOI60
            DIMENSIJN X(IMV),YIJMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV), INNOOITO
            1DD1(NPRSV,YVGV), DJ?(NPRGV,VNGV), DD3(NPRGGV,NVGV),DD4(NPRGV,NNGV), INNO0180
            2.DD5(NPRGV,NNGV),MMAP (IRMV,JRMV,KRMV),NPRMP (IMV,JMV,KMV), INNOOI90
            3PSI(NVGV,IMV,JMV,KMV),P1(IMV,JMV),PZ(IMV,JMV),P3(IMV,JMV), INNOO2OO
            4SRC(IMV,JMV,KMV),HA(IMV),GA(IMMV, SOLN(IMV),JMEG(NNGVI, XFISS(NNGVI,INNOO2IO
            5XINSC(NNGV), XREM(NNGV),XLEK(NNGV) INNOO220
            IF(ITFMP5.EQ.5)GO TO 90}\mathrm{ INNOO23O
            CALL GRBAL1(DD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFISS,XINSC, INNOO24O
            IXREM, XLEK,NNG,IM,JM,KM,NPRG,NGI N
90 NIT=0
90 NIT=0 
                    INN00260
\ START WITH B3TTOM PLANE INNOO280
= START WITH BJTTOM PLANE INNOO280
100 CONTINUE
REWIND IOSEI
    REWIND IOSC?
    TEMP1 = 0. ODO
TEMP4=1.00 +50
K=1
    READ(IOSC1)PI
    READ(IJSCI)P2
    IF(NBBC.EQ.OIGO TO 200
    DO 185 NP=1, NPIT
    IFINP.LT.NPITIGO TJ 105
TEMP1=0.0DO
    INN0011O
INN00270
INN00290
INN00300
INN00310
INN00320
INN00330
INNOO340
INNOO350
INN00360
INN00370
INN00380
INNOO390
INN0O400
```

```
        TEMP4=1.0D+50 INN00410
105
        J=1
        IF(NFBC.EQ.OIGJ TJ 140
        NPR=NPRMP(1,1,1) INN0044O
        INN00420
        WA(1)=-2.0D0*DD1(NPR,NG)*XNL BC/DD5(NPR,NG)
        INN00440
    1H*XNLBCI/DD5(NPR,NG)
        DO 110 I=2,IMX
        NPR=NPRMP (I, 1,1)
        NPRX=NPRMP{ (-1,1,1)
        TEMP=1.0D0/(DDS(NPR,NG) +DD1(NPRX,NG)*WA(I-1))
        WA(I)=-DDI(NPR,NG) *TEMP
            INN00480
        INN00490
    IVN00500
110 GA(I)=(SRC(I,1,1)+2.0DO*(DD2(NPR,NG)*P1(I,2)+DD3(NPR,NG)*P2(1, (1) )
        SDLNIIMI=0.ODO INNOOS5O
        D5 120 II=1,IMX
        I=IM-II
120 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)
    DO 130 I=1,IM
    TEMP 2=P1.(1,1)
    P1(I,1)=TEMP2+OMEG(NG)*(SOLN(I)-TEMP2)
    IF(P1(I,1).GT.0.0DO)GO TO 125
    P1(I,l)=0.000
    G0 TO 130
125 TEMP 3=TEMP2/P1(1,1)
    IF(TEMP1.LT.TEMP3)TEMP1 = TEMP3
    IF(TEYP4.GT.TEMP3)TEMP4=TEMP3
130 CONTINUE
140 DO 180 J=2, JMX
    NPR=NPRMP(1,J,1)
    NPRY=NPRMP(1,J-1,1)
    WA(1)=-2.000*DD1(NPR,NG)*XV_BC/DD5(NPR,NG)
    GA(1)=(|SRE(1,J,1)+DD2(NPRY,NG)*P1(1,J-1)+0D2(NPR,NG)*P1(1,j+1) +
    12.0D0*DD3(NPR,NG)*P2(1,J))*XNLBC)/DD5(NPR,NG)
    DO 150 I=2,IMX
    740
    NPR=NPRMP(I,J,1)
NN00750
INN00760
PAGE }19
```

```
        NPRX=NPRMP(I-1,J,1) INNNOOT70
        NPRY=NPRMP(I,J-1,1) IVN00780
        TEMP=1.ODO/(DDS(NPR,NG) +DDI(NPRX,NG)*WA(I-1)) INN00790
        GA(I)=(SRC(I,J,1)+DD2(NPRY,NG)*P1(I,J-1) +DD?(NPR,NG)*PI(I,J+1)+
        12.0DO*DD3(NPR,NG)*P2(I,J)+DD1(NPRX,NG)*GA(I-1))*TEMP
        INN00810
        INN0082O
        SOLN(IM)=0.000
        DJ 160 II=1,IMX
        I=IM-II
    160 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)
        DN 170 I=1,IM
        TEMP 2=P1 (I,J)
        P1(I,J)=TEMP2+OMEG(NG)*(SOLN(I)-TEMP2)
        IF(PI(I.J).GT.0.0DJIGO TO 155
        PI(I,J)=0.0DO
        GO TO 170
    165 TEMP 3=TEMP2/P1(I,J)
        IF(TEMP1.LT.TEMP3ITEMP1 = TEMP3
        IF(TEMP4.GT.TEMP3)TEMP4=TEMP3
    170 CONTINUE
    180 CONTIVUE
    185 CONTINUE
        TEMP5=TEMPL
        TEMP6 = TEMP4
    190 P1(I,JM)=0.000
    NOW COMPUTE FOR THE REST OF THE PLANES
200 DO 310 K=2,KMX
        READ(IDSC1)P3
        DJ 295 VP=1,NPIT
        IFINP.LT.NPITIGO TO 205
        TEMP1=0.000
        TEMP4=1.00+50
    205 J=1
        IF(NFBC.EQ.OI GO TO 240
        NPR=NPRMP(1,1,K)
        NPRT=NPRMP(1,1,K-1)
```

INN00770 IVN00780 [NNOOT90 INN00800 INN00810 INN00820 INN00830 INNOO840 INN00850 INNOO860 INNOO870 INN00880 I NNOO890 INNOO900 INNOO910 INN00920 INN00930 INN00940 INN00950 INN00960 INN00970 INN00980 INN00990 INNOI 000 INNOLOIO
INNO1020
INNOI 030
INNO1040
INNO1050
INNOLO6O
INNO1070
INNO1 080
INNO1090
INNO1100
INNO1110
INNOL120
PAGE 193

```
    WA(1)=-2.0DO*DD1(NPR,NG)*XN:BC/DD5(NPR,NG) INN01130
    GA(1)=((SRC (1,1,K)+2.ODO*DD2(NPR,NG)*P2(1, 2) +OD3(NPR,NG) *P3(1,1) + INNO1140
    10D3(NPRZ,NG)*P1(1,1|)*XNLRC)/DD5(NPR,NG) INNOL150
        DO 210 I=2,IMX
        NPR=NPRYP{I,1,K)
        NPRX=NPRMP{I-1,I,K}
        NPRI=VPRMP{I, 1,K-1)
    TEMP=1.ODO/(DO5(NPR,NG)+DDI(NPRX,NG)*WATI-1))] INNO1200
    WA(I)=-DD1 (NPR,NG)*TEMP
210 GA(I)=(SRC(I, 1,K)+2.ODO*DD2(NPR,NG)*P2(I,2)+DD3(NPR,NG)*P3(I, 1)*
    1DD3(NPRZ,NGI**PI(I,I) +DDI(NPQX,NG)*GAII-1)I*TEMP INNOI230
    SOLN(IM)=0.000
    DO 220 II=1,IMX
    I=IM-II
220 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)
    DO 235 I=1,IM
    TEMP2=P2{I,1}
    P2(I,1)=TEMP2+OMEG(NG)*(SOLV(I)-TEMP2)
    IF(P2(I.1).GT.0.000)GOT0 225
    P2(I,l)=0.000
    GO TO 230
225 TEMP3=TEMP2/P2(I,1)
        IF(TEMP1.LT.TEMP3)TEMP1= TEMP 3
        IF(TFYP4.GT.TFMP3)TEMP4=TEMP3
230 CONTIVUE
240 DJ 280 J=2,JMX
    NPR=NPRGP(1;J,K)
    NPRY=VPRMP(1,J-1,K)
    NPRZ =VPRMP(1,J,K-1)
    WA(1)=-2.0D0*DD1(NPR,NG) *XNLBC/DD5(NPR,NG)
    GA(1)=((SRE(1,J,K) +DD2(NPR,VG)*P2(1,J+1) +DD2(NPRY,NG)*P2(1,J-1)4
    1.DD3(NPR,NG)*P3(l,J) +DD3(NPRZ,NG)*P1(1,J))*XNLBC)/DD5(NPR,NG):
    00 250 I =2,IMX
    NPR=NPRMP (I ,J,K)
    NPRX=NPRMP{I-1,J,K)
    NPRY=NPRMP(I ,J-1,K)
    INNO1160
    INNO1170
    INNO1180
    INNO1190
    INNO1200
    INNO1210
    INNO1220
    INNO1240
*
    INNO1250
    INNO1260
```

```
    INNO1270
    INNO1280
    INTEYP 2+OMEG(NG)* (SOLN(I)-TEMP2) INNO1300
INN01290
INNO1300
INNO1300
INNO1320
INNO1330
225
INNOI340
INNOI350
INNO1360
INNO1370
    INNO1380
    INNO1400
    INN01410
    INNO1430
    INNO1440
INNO1450
    INNO1460
INNO1470
INNO1480
PAGE 194
```

```
        NPRZ=NPRMP{I,J,K-1) INN01490
        TENP=1.0DO/(DD5(NPR,NG) +DDI(NPRX,NG)*WA(I-1)) INNOI500
        WA(I)=-DDI(NPR,NG) %TEMP
    INNOI510
    250 GA(I)=(SRC(I,J,K)*DD2(NPR,NG)*P2(I,J+1)+DD2(NPRY,NG)*P2(I,J-1) +
    INNO1520
        l LDD(NPR,NG)*P3(I,J)+DD3(NPRZ,NG)*P1(I,J)+DDI.(NPRX,NG)*GA(I-1))*TEMINNO1530
        2P
        SOLN(IM) =0.ODO
        D7 260 II=1,IMX
        I= IM-II
    260 SOLN(I)=GA(I)-HAII)*SOLN(I+1)
        D] 270 I=1,IM
        TEMP2=P2(1,J)
        P2(I,J)=TEMP2+OMEG(NG)*(SOLV(I)-TEMP2)
        IF(P2(I,J).GT.0.0DO)GO TO 255
        P2(I,J)=0.000
        GO TO 270
    265 TEMP 3 = TEMP2 / P2 (I , J)
    IF(TEMP1.LT.TEMP3 )TEMP1 = TEMP 3
    IF(TEMP1.LT.TEMP3)TEMP1 = TEMP 3
    270 CONTINUE
    280 CONTINUE
    DO 293 I=1,IM
    290 P2(I,JM) =0.000
    295 CONTIVUE
: TEST MIN AND MAX FLUX RATIO FJR THIS PLANE
            IF(TEMP1.GT.TEMP5)TEMP5 =TEMP I
IF(TEMP4.IT.TEMPG)TEMPG=TEMP4
            WRITE(IOSC2)P1
            DO 305 J=1, JM
            D0 305 I=1,IM
        P1(I,J)=P2(I,J)
    305 P2(1,J)=P3(I,J)
310 CONTINUE
C COMPLETE MESH NOW SWEPT
    WRITE(IJSC2IPI
    WRITEIIJSC2IP2
        INNOL550
    INNOL560
    DT 270 I=1,IM
        1FPP211,J),GT:0.0001G0 TO 255 (1)
    INNO1.580
    INNO1590
    INNO1600
INNO162O
INNO1640
INN01650
INNO1660
INNO1670
    INNO1680
INN01690
INNOI700
    CONTIVUE
INNOIT1O
```

```
INNO1710
INNOL730
INNO174O
INNO1750
INNO1760
INNO1770
INNO1780
INNOI790
© COMPLETE MESH NOW SWEPT
INNOI 800
INNOL810
INNO1820
INNO1820
WRITEIIJSC2)P2
INNO1830
INNO1840
```

こ SWITCH DATASET DESIGNATIONS
INNO1850
ITEMP4=IOSE2 INNO1860
IOSC2=10SC1
IOSC1=I TEMP4

- NOW COMPUTE LARGEST PESIDUAL
TEMP1 = TEMP5
TEMP4=TEMP6
TEMP 2=DABS(1.ODO-TEMP1)
TEMP 3=DABS(1.0D0-TEMP4)
IF(TEYP2-TEMP3) 330,330,320
320 TEMP 3=TEMP?
330 NTIT=NTIT+1
NIT=NIT+1
IF(NIT.GE.VIITIGO TO }34
IF(TEMP3.GT.EPS2IGO TO 100
= INNFR ITERATION CONVERGES, URITE FLUXES ON IOPN
340 CONTIVUE
REWIND IOSC1
IF(ITEMP5.EQ.5)GO TO 360
D] 350 K=1,KM
READIIOSCIIP2
WRITE(IOPN)P2
350 CONTINUE
360 RETURN
RETURN INN02080
END INNO2090

```
```

 SUBROUTINE GRBALICDD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFISS, GRB00010
 IXINSC, X2EM, XLEK,NNGV,IMV,JMV,KMV,NPRGV,NGI
 IMPLICIT REAL*8 (A-H,O-Z)
 INTEGER*2 MMAP,NPRMP
 COMMON/INTG/IASIZE,NNG,NDG, VTOG,NMAT,IM, JM,KM,IRM,JRM,KRM,NLBC,
 INFBC,NBSC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),
 GR800020
 GRB00030
 GRB00040
 GR B00090
 M, GRB00100
 2IZTP(5);NSTEAD, IFLIN,IGEOM, ITITLE(20), NOIT,NIIT,NPIT,IJPSI,IODUMP,GRBOOIIO
 3ITFN,IJFO,IBPN,IJP3,ITEMP, ITEMP1,ITEMP2,ITEMP3,ITEMP4, ITEMP5, GRBOOI2O
 4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSCI,IOSC2,NGX
 NNIT,IETIME,IFLQUT,IMX,JMX,KMX,IOSCI,IOSC2,NGX GRBOO130
 COMMOV/ELDTE/EFFR,ORFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, GRB00140
 1TEMP5,TEMPS, XFISST, XFISSO, ALAMN, ALAMO, TIMME,FLXCON, BETAT
 GR B00150
 DIMENSIJN SDI(NPRSV,NNGV),D)2(NPRGV,NNGV),DO3(NPRGV, NNGV),DD4(NPRGGRB00160
 IV,NNGV), DD5 (NPRGV, VNGV), NPRMP(IMV,JMV,KMVI, PSI(NNGV,IMV, JMV, KMV) , GRB00170
 2PI(IMV,JMV), P2(IMV,JMV), P3(IMV,JMV), XFISS(NVGV),XINSC(VNGV), GRB00180
 3XREM(VNGV),XLEK(NNGVI
 XREM(VG)=0.0DO
 GRB00190
 XLEK(NG) = O. ODO
 GR800210
 REWIND IOS:1 GRROO220
 REWIND IOSC2 GRBO0230
 ONE=1.000
 HALF=0.500
 GRB00231
 HALF=0.500 GRBOO232
 VOLB=ONE
 GRB00233
 VOLF=ONE
 VOLL=ONE GRBOO235
 IFINBBC.EQ.1 IVOLB=HALF GRBOO236
 m3 230 K=1,KMX GRBO0240
 READIIOPOIP?
 HRITEIIOSC2)P2
 IF(K.GT.1 VOLB=ONE
 GRB00234
 GRB00250
 GRB00260
 IF(K.EQ.1.AND.NBBC.EO.O) GO TO 230
 IF(K.NE.2IGO TO 120
 GRB00270
 GRB00280
 100 IFINBBC.EQ. 1 IGO TJ 120
 GRB00290
C COMPUTE LEAKAGE FDR BOTTOM PLANE GRB00300
IFINFBC.EQ.1 IVOLF=HALF GRB00301
DO 110 J=1,JMX
GRB00310
IFIJ.GT.1)VOLF=ONE GRBOO311
PAGE 197

```
```

 IFINLBC.EQ.1)VOLL=HALF GRB00312
 D] 110 I=1,I MX
 IFII.GT.I IVOLL=ONE
 NPR=NPRMP{I;J,1)
 XLEK(NG)=XLEK(NG)+DD3(NPR,NG)*P2(I,J)*VOLF*VOLL
 < 110 CONTINUE
< 110 CONTINUE
COMPUTE FRONT LEAKAGE
IF(NLBC.EO.1)VOLL=HALF
DO 130 I=1,IMX
IFII.GT.1JVOLL=ONE
NPR=NPRMP(I,1,K)
130 XLEK(NG)=XLEK(NG)+DD2(NPR,NG)*P2(1,2)*VOLL*VOLB
c. COMPUTE LEFT LEAKAGE
140 IF(NLBC.EQ.1) GO TO 160
IFINFBC.EQ.1 IVOLF=HALF
09 150 J=1,JMX
IFIJ.GT.1)VOLF=ONE
NPR=NPRMP(1;J,K)
1.50 XLEK(NG) =XLEK(NG) +DD1 (NPR,NG)*P2 (2,3)*VOLF*VOLB
c COMPUTE RIGHT LEAKAGE
160 IFINFBC.EO.1 JVOLF=HALF
DJ 170 J=1,JMX
IF(J.GT.1)VOLF=ONE
NPR=NPRMP (IMX,J,K)
170 XLEK(VG) =XLEK(NG) +DD1(NPR,NG)*P2(IMX,J)*VOLF*VOLB
C COMPUTE BACK LEAKAGE
IF(NLBC.EQ.I IVOLL=HALF
D] 180 I=1, I MX
IFII.GT.I IVOLL=ONE
NPR=NPRMP(I, MMX,K)
180 XLEK(NG)=XLEK(NG)+DD2(NPR,VG)*P2(I,JMX)*VOLL*VOLB
IFINFBC.EQ.1 IVOLF=HALF
D3 200 J=1,JMX
IFIJ.GT.1 IVOLF=ONE
VOLC =VOLB*VOLF
GRB00320
GRB00321
GRB00330
GRB00340
GRB00350
GRB00360
GRB00370
GRB0037
GRB00380
GRB00381
GRB00390
GRB00410
|
GRB00420
GRB00421
GRB00430
GRB00431
GRB00440
GRB00450
GRB00460
GR800461
GR B00470
GRB00471
GRB00480
GRB00490
GRB00500
GRB00501
GRB00510
GRB00510
GRB00511
GRB00520
GRB00530
GRB00531
GR B00540
GRB00541
GRB00542
PAGE }19

```
```

 IFINLBC.EQ.1 IVOLL=HALF GRB00543
 DT 190 I=1, IMX
 IFII.GT.1IVOLL=ONE
 VOLD=VOLL*VOLC
 NPR=NPRYP(I,J,K)
 190 XRFM(NG)=XRFM(NG) +(DD5(NPR,NG)-DD4(NPR,NG))*P2(I,J)*VOLD
 200 CJNTIVUE
 IF(K.LT.KMX) GD TJ 230
 = COMPUTE TJP LEAKAGE
IF(NF3C.EO.1)VDLF=HALF
D) 220 J=1,JMX
IF(J.GT.l)VOLF=ONE
IF(NLBC.EQ.1)VOLL=HALF
DT 215 I=1, IMX
IFII.GT.1)VOLL=ONE
NPR=NPRYP(I,J,KMX)
210 XLEK(NG) =XLEK(NG)+DD3(NPR,VG)*P2(I,J)*VJLL*VOLF
220 CONTINUE
230 cONTINUE
READ(IDPOIP?
WRITE(IJSC?IP2
REWIND IOSC?
TEMP=(XFISS(NG)+XINSC(NG))/(XLER(NG)+XREM(NG))
DD 260 K=1,KM
READ(IOSC2)P2
DO 250 J=1,JM
D0 250 I=1,IM
250 P2(I,J)=TEMP*P2(I,J)
WRITE(IJSCIIP2
260
XREM(NG) =TEMP*XREM(NG)
XLEK(NG) =TEMP*XLER(NG)
RETURN
END

```
```

 SUBRDUTINE FLUXTR(PSI,P2,NNGV,IMV,JMV,KMV) FLU00010
 IMPLICIT REAL*8 (A-H,O-Z) FLU00020
 INTEGER*2 MMAP,NPRMP
 COMMON/INTS/IASIIE,NNG,NDG,NTOG,NMAT,IM, JM,KM,IRM, JRM,KRM,NLBC,
 FLU00030
 NFBC,YBBC, YDNSCT, UPRG,IDPT,NTG,NX
 ,
 2IZTP(5),NSTEAD,IFLIN,IGEDM, ITITLE(20), NOIT, VIIT, NPIT,IJP SI, IODUMP,FLU00060
 3IJFN,IJFO,IOPN,IOPD,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, FLU00070
 4NTIT,IETIME, IFLOUT, IMX,JMX,KMX,IOSC1,IOSC2,VGX
 COMMON/FLOTE/EFFR,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP 3,TEMP4, FLUU00130
 COMMON/FLOTE/EFFK,ORFP,EPS1, EPS2,TEMP,TEMP1, TEMP2,TEMP 3,TEMP4, FLU00130
 DIMENSION PSI(NNGV,IMV,JMV,XMV), P2(IMV,JMV)
 : WILL USE IOSCI TO BUILD FLUXES FOR TRANSMITTAL TO TIMDEP
REWIND IOSCI
IFIIDPT.EQ.IIGD TD 200
%) }100\textrm{K}=1,\textrm{KM
DO 10J VG=1,NNG
WRITE(IJSCI)((PSI(NG,I,J,K),I=1,IM),J=1,JM)
100
REWIND IOSEI
GO TO 300
200 CONTINUE
K=0
210 K=K+1
ITEMP2 = K-1
IF(ITEMP2.EQ.OIGO TO 230
D] 220 ITEMP=1,ITEMP2
READ(IDPO)
220 cJntIVUE
230 DO 250 ITEMP=1,NNG
READIIOPDIP2
WRITEIIJSCIIP2
IF{ITEMP.EQ.NNGIGO TO }25
D3 240 [TFMP3=1,KMX
READ(IDPD)
240 CONTINUE
250 CONTIVUE
FLU00080
FLU000130
FLU00140
*
FLU00160
FLU00170
flU00180
FLU001.90
FLU00200
FLU00210
GONTINO
FLU00230
FLU00240
FLU00250
FLU00260
FLU00270
FLU00280
FLU00290
FLU00300
FLU00310
FLU00320
FLU00330
FLU00340
FLU00350
FLU00360
FLU00370
FLU00380
FLU00390
FLU00400
PAGE 200

```
```

REWIND IOPO
FLU004 10

```

IF(K.LT.KM)GO TO 210
REWIND IBSCI
300 RETURN
FLU00420
FLU00430
FLU00440
END

SUBROJTINE TIMDEPIV,XI,XIM,XNU,SIGF,SIGR,SIGT,SIGS,ALAM, BETA,XIP, TIMOOOIO \(I X, Y, Z, H X, H Y, H Z, I B P, J B P, K B P, D D 1, D D 2, D D 3, D D 4, D D 5, D D 6, D D 7, V D, M M A P, N P R T I M 0002 O\) 2MP, PSI, P1,P2, P3, PSO, W, PO, W1, NNGV, NDGV, NT OGV, NDNS CV, NMATV, IMV, JMV, KTI MO0030 3MV, IRMV, JRYV,KRMV, VPRGV, NGXV) TIM00040
\begin{tabular}{ll} 
IMPLICIT REAL*S \((A-H, O-Z)\) & TIM00050
\end{tabular}

INTEGFR*2 MMAP,NPRMP
TIM00050
CSMMON/INTG/IASITE,NNG,NDG, VTOG, NMAT,IM, JM, KM,IRM, JRM,KRM,NLBC, IIM00060 1 NFBC, VB3C, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5), TI M00070 IIM00080 3ITFN IDFO 3IOFN, IDFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5, TIM00100 4NTIT, IETIME, IFLOUT, IMX,JMX, KMX, IOSCI,IOSC2, VGX TIM00110 COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2,TEMP,TEMP1, TEMP2,TEMP3,TEMP4, TIMOO160 ITEMP 5, TEMPG, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT TIMOO170 COMMOV/TIMINT/LASZJN, ISTPCH, ILINCH, IPRSTP,MNSCH(5),MNLCH(5), TIMOOIBO IISTEP, ICHHT TIM00190 COMMOV/TIMFLO/T,HT,HMIN,HMAX,TSTART, TEND, DELSFS(5,4), DELSRS(5,4); TIMOO200 1 IDELSTS \((5,4)\), DELS1S(5,4), DELS \(2 S(5,4)\), DELSFL(5,4), DELSRL(5,4), TIMOO210 2DELSTL 5,41 , DELS1L 5,4\(),\) DELS \(2 L(5,4)\) TIM00220 DIMENS IJN V(NNGV), XI (NNGV), XIM(NNGV), XNU(NMATV,NNGV), TIM00230 1 SIGF(NMATV, NNGV), SIGR(NMATV, NNGV), SIGT (NMATV, NNGV), SIGSI NMATV, NNGVTIM00240 2, VDNSCV), ALAM(NDGV), BETA(NDGV), XIP(NNGV, NDGV), X(IMV), Y(JMV), Z (KMV)TIMOO250 3, HX(IRMV), HY(JRMV), HZ(KRMV), IBP(IRMV), JBP(JRMV), KBP(KRYV), DDI(NPRGTIMOO260 4V, VNGV), DD2 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV), DD5 (NPRGV, TIM00270 5NNGV), DJ6(YPRGV, NNGV), DD7 (NPRGV, NGXV, VDN SCV), MMAP (IRMV, JRMV, KRMV I, TIMO0280 GNPRMP( IMV, JMV, KMV), PSI(NTOSV, IMV,JMV, KMV), PII (NTJGV, IMV, JMVI, TIMO0290 7P2(NTJGV,IMV,JMV), P 3 (NTOGV,IMV, JMNI, PSO(IMV, JMV, KMV) ;H(IMV, JMV, KMVTI MOO 300 8), PO(IMV, JYV), WI(IMV, JMVI, VO(NPRGV) TIM00310 IFIIOPT.EQ.OI GO TO 100 TIMOO320 \(\begin{array}{ll}\text { REWIND IOPS } \\ \text { REWIND IOPN } & \text { TIMOO330 }\end{array}\) REWIND IOPN TIM00340 REWIND IOFJ TIM00350 REWIND IOFV IIM00360
DC 105 NPR=1 ,NPRG TIM00365 D3 105 NG=1, NNG TIM00370 DO4(NPR,NG) \(=0.500 \%\) DD4(NPR,NG) TIM00375 DD5 (NPR,NG) = DD5 (NPR,NG)-DD4(NPR,NG)-XIM(NG)*DD6(NPR,NG) TIM003BO
```

 105 CONTIVUE
 O CALL DELAYS TO COMPYTE INITIAL DELAYED NEWTRON PRECURSOR DENSITIES TIMOO4OO
T1M00390
C AND READ FLUXES FROM IOSC1
TIM00410
CALL DELAYSIALAM,BETA,XIP,DD6,VO,NPRMP,PSI,P2, PSO,PO,NNG,NDG,NTOG,TIMO0420
INMAT,IM,JM,KM,NPRGI TIM00430
D? 123 ND=1, NDG
TIM00431
DO 110 VG=1,NNG
TIM00432
110 XIP(NG,VD)=XIP(NG,ND)*AL AM(VD)
l20 AL AM(ND)=ALAM(ND)/2.000 TIM00434
TIMO0433
Z ZERT FREQUENEY VECTOR TIM00440
03 130 K=1,KM TIM00450
D2 130 J=1,JM
D] 130 I= 1,IM
TIM00460
130 W(I,J,K)=0.000
TMMOO480
TIM00480
TSTART=0.050
ISTEP=0
TIM00490
TIM00500
C START LJOP HERE OVER TIME ZOVES BY CALLING TIMINP TIMOOSIO
200 CALL TIMINP
TIM00520
NFLAG1=1
TIM00530
IFIISTPEH.GT,OICALL CHANGEIXIM,XNU,SIGF,SIGR,SIGT,SIGS,HX,HY,HZ, TIMO054O
IIBP,JBP, KBP,DO1,DD2,DD3,DD4,DD5,DO6,DD7, MMAP,NNS,NDNSCT, NMAT, IM, JMTIMO0550
2,KM,IRM,JRM,KRM,NPRG,NFLAGI,NGXI TIM00560
T= TSTART
TIM00570
HT=HMIN
TIM00580
NFLAG2=1
TIM00590
IF(ISTEP.E2.OICALL TIMNUTIPSI,P2,H,W1,NTOG,IM,JM,KM,NFLAG2I: TIM00600
210 IFIIOPT.EQ.1)GOT3 230 TIM00610
CALL STEPADIV,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5TIMOO620
1,DDK,DDT,VJ,NPRMP,PSI,H,NVG,NDG,NTOG,NDNSCT,IM,JM,KM,IRM,JRM,KRM, TIMO06 30
2NPRG,NGXI
IIM00640
CALL STEPBOIV,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DDL,DD2,DD3,DD4,DD5TIM00650
1,DD6,DD7,VJ,NPRMP,PSI,H,NVG,NDG,NTOG,NDNSCT,IM,JM,KM,IRM,JRM,KRM, TIM00660
2NPRG,NGX)
CALL FREQO(PSI,PSO,N,NTOG,IM,JM,KM)
T1M00670
TIM00680
D] 220 K=1,KM
TI M00690
DO 220 J=1,JM
TIM00700
PAGE }20

```
```

 DO220 I=1,IM TIMOOT10
 2 2 0
 PSO(I,J,K)=PSI(NTG,I,J,K)
 GO TO 250
 TIM00720
 O 25
 TIM00730
 230 CONTINUE
 TEMP
 230 CALL STEPALIV,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DD1,DD2,OD3,DD4, TIMOOT4O
1 DD5,0D6,DD7,NPRMP,P1,P2,P3,W,PD,W1,NNG,NOG,NTOG,NONSCT,IM,JM,KM, TIMO0750
2IRM,JRM,KRM,NPRGI TIM00760
GALL STEPBIIV,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DDL,DD2,DD3,DD4, TIMOO7T0
1DN5,DD5,DD7,NPRMP,P1,P2,P3,N,PO,W1,NNG,NDG,YTOG,NDNSCT,IM,JM,KM, TIMOO780
2IRM,JRM,KRM,NPRGI
TSTEP=ISTEP+
NFLAGI=2
NFLAG2=0 TIM00840
IFIILINEH,GT.OICALL CHANGEIXIM,XNU,SIGF,SIGR,SIGT,SIGS,HX,HY,HZ. TIMOO85O
IIBP, JRP,KBP,DD1,DD2,DD3,DD4,DD5,DD5,DD7, MMAP, NNE, NDNSCT, NMAT, IM, JMTIMO0860
2,KM, I2M, JRM, KRM,NPRG,NFLAG1,NGXI
TIM00870
IF(DABS(T-TEND).LT.1.OD-10)NFLAG2=1 TIM00880
IF(NFLAG2.EQ.1.OR.MODIISTEP,IPRSTPI.EQ.OICALL TIMOUTIPSI,P2.H,NL, TIM00890
INTOG,IM, JM,KM,NFLAG2I
IM00800
IF(ICHHT E2.IICALL TALTER
CALL ETIMEF(TEMP):
IFITEMP.LT.TIMEIGO TO 270
NFLAG2=2
LASZON=1
CALL TIMOUT(PSI,P2,W,WI,NTOG,IM,JM,KM,NFLAG2)
GO TO 280
270 IFINFLAG2.EQ.0)GD TO 210
TSTART=T
IF{LASZON.GT.OIGO TO 200
280 IFIIOPT.EQ.OIGO TJ 300
REWIND IDFJ
REWIND IOFN
REWIND IOPI
REWIND IOPN
TIM00910
TIM00920
TIM00930
TIM00940
TIM00950
TIM00960
TIM00970
TIM00980
IIM00990
TIM01000
TIM01010
TIM01020
TIMO1030
TIM01040
TIM01050

	REWIND IOSCI	TIMO1060
	REWIND IOSE2	TIMO1070
300	TIMTURN	TIMO1080

TIMO1090

```
        SUBROUTINE TIMINP TIMOOO10
        IMPLIEIT REAL*8 (A-H,D-Z) TIMOOOO2O
        INTEGFR*2 MMAP,NPRMP
        COMMON/INTS/IASIZE,NNG,NDG,VTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC, TIMO0040
    INFBC,NBRC,VDNSCT,NPRG,IDPT,VTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),
    IIM00040
    2IZTP(5),NSTEAD,IFLIN,IGEOM, ITITLE(20),NDIT,NIIT,NPIT,IJP SI, IODUMP,TIM00060
    3IOFN,IJFO,IOPN,IJPJ, ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, TIM00070
    4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSCI,IOSC2,NGX TIM00080
    COMMON/FLOTE/EFFK,DRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, TIM00130
    ITEMP 5, TEMP5, XFISST, XFISSO,ALAMN, ALAMO,TIME,FLXCON, BETAT TIMO0140
        COMMOV/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLこH(5)., TIMOOL50
    IISTEP,ICHHT TIMO0160
        COMMOV/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4), TIMOOL70
        1.DELSTS(5,4),DELS1S(5,4),DELS2S(5,4),DELSFL(5,4),DELSRL(5,4), TIM00180
        2DELSTL(5,4),DELSIL(5,4),DELS2L(5,4) TIMOO190
= READ IN FIRST TIME ZONE DESCRIPTION CARD (CARD TYPE 13) TIMOO2O0
    100 READ(5,100JILASZOV, I STPCH,ILINCH,IPRSTP, ICHHT, IFLOUT,HMIN,HMAX,TENTIMOO210
        1D
TIM00211
    1000 FORMAT(6I5,3D12.5)_TIMO0220
        IF(ISTEP.GT.O)WRITE(6,1010) TIMOO230
    1010 FORMAT(1H1,/1) TIMO0240
        IFILASZJN.GT.OIGO TO 110 TIMO025O
        LTMZON=LTMZON+1 TIMOO260
        GO TO 120
    TIM00270
    110 LTMZOV=LASZON
    120 GRITEI6.1020)LTMZON
1020 FORMAT(IHO,//,15X,'EDITED IYPUT FDR TIME ZOVE',I3,//1 TIMO0300
        WRITE(G,103O)ILASZON, ISTPCH,ILINCH,IPRSTP,ICHHT,IFLOUT,HMIN,HMAX, TETI MO0310
        IND TIMOO311
: IF ISTP=4 GT O, READ IN STEP CHANGE INFDRMATION TIMOO320
    IFIISTPEH.EQ.OIGO TO 140 TIMOOO330
    DT 135 MN=1.ISTPCH TIMOO340
    DO 130 VG=1,NNG TIM00350
    READ(5,1040)MNSCH(YN),DELSFS(YN,NG),DELSRS(YN,NG),DELSTS(MN,NG), TIMO0360
    IDELSIS(MN,NGI,DELS2S{MN,NG)
    WRITE(6,1050)MNSCH(MN),DELSFS(MN,NG),DELSRS(MN,NG),DELSTS(MN,NG), IIMOO3BO
```

 1DFLSIS(MN,NG),DELS2S(MN,NG) TIM00390
 130 CONTINUE
 1030 FORMAT(11X,6I5,3012.5)
1040 FORMAT({5,5X,5012.5)
1050 FORMAT(11X,15,5X,5012.51
140 IFIILINCH.EQ.OIGO TO 180
DJ 150 पN=1, ILINCH
DO 150 NG=1. NNG
READ(5,104))MNLCH(MN),DELSFL(YN,NG), DELSRL(MN,NG), DELSTL(MN,NG),
1DELSIL(MN,VG),DELS2L(MN,NG)
WRITE(6,1050)MNLCH(MN),DELSFL(MN,NG),DELSRL(MN,NG),DELSTL(MN,NG).
1DELSIL(MN,NG),DELSZL(MN,NG)
150 CONTINUE
VOW PRINT OUT EDITED INFORMATION
160 WRITEIG,1060IHMIN, 4MAX,TEND

```

```

 1)= ,D12.6,' ZONE END TIME(SEC)= , D12.6i TIM00550
 IFIISTPCH.EQ.OIGO TO 180
 WRITEIG,IOTOIISTPCH TIMO0570
 TIM00560
 1070 FDRMAT(IHO,10X, STEP CHANGES IN',I2," MATERIALS IN THIS TIME ZONE TIMOO580
1%
WRITE(6,1080)
TIM00590
TIM00600
1080 FORMATIIHO,55X, TTJTAL CHANGE IIN CM-II IN CROSS-SECTIONS'./11X, TIMOOGIO
I'MATERIAL', 4X,'GRJUP, 70X, 'SCATTERING*,/, 35X, 'FISSION*,10X, TIMO0620
2'ABSORPTION',8X,'TRANSPORT', 10X, 'G TO G+1%,10X,'G TO G+2%./1: TIM00630
DO 170 MN=1,ISTPCH T1M00640
DO 170 VG=1,NNG TIM00650
WRITE(6,1090IMNSLHIMN),NG,DELSFS(MN,NGI,DELSRSIMN,NGI,DELSTS(MN,NGTIM00660
1),DELSIS(MV,NG), DELS2S(MN, VGI TIMOO670
170 CJNTINUE
1090 FORMATI1H, 14X,12,7X,12,2X,514X,D14.711 TIM00690
180 IFIILINEH.EQ.OIGOTO 200 TIM00700
WRITEIB,1100IILINEH T1M00710
1100 FORMATIIHO,1OX, "RAMP CHANGES IN ',I2," MATERIALS IN,THIS TIME ZONETIMOOT2O
1')
TIM00730
TIM00740
PAGE 207

```
DO 190 MN=I, ILINCH TIM00750
DO 193 NG=1,NNG TIM00760
WRITE( 6,1090 )MNLCH(MN), NG, DELSFL(MN, NG), DELS RL(MN, NG), DELSTLIMN, NGT I M00770
1), DELSIL(MV,NG),DELS2L(MN,VG) TIM00780
190 CONTINUE TIM00790
200 WRITEI6,1110) TIM00800
1110 FORMAT (1HO,//.10X, BEGIN TIME-DEPENDEVT CALZULATION FOR THIS ZONE'TIMOO810
11
TIM00820
RETURN
TIM00830
END
TIM00840
```

 SUBRDUTINE TALTER TALO0010
 IMPLICIT REAL*8 (A-H,O-2) TALO00020
 INTEGER*2 MMAP,NPRMP
 COMMOY/INTS/IASIIE,NNG,NDG,NTOG,NMAT,IM, JM,KM_IRM, JRM,KPM,NLBC,
 INFRC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTPP(5),IYTP(5), TALO0040
 2IITP(5),NSTEAD, IFLIN,IGEOM, ITITLE(20),NSIT,NIIT,NPIT,IJPSI,IODUMP,TALO0060
 3IOFN,IOFD,IOPN,IJP3, ITEMP, ITEMP1,ITEMP2,ITEMP3, ITEMP4, ITEMP5, TAL00070
 4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSCI,IOSCZ,NGX
 TAL00080
 COMMOV/FLOTE/EFFK,ORFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, TAL00130
 1TEMP5,TEMPS, XFISST, XFISSO,A_AMN, ALAMO,TIME,FLXCJN, BETAT
 TAL00140
 COMMON/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLCH(5); TALOOI50
 1ISTEP,IこHHT
 TAL00160
 CDMMOV/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4), TALOOI70
 1DELSTS(5,4),DELSIS(5,4),DELS2S(5,4),DELSFL(5,4),DELSRL(5,4), TAL00180
 2DELSTL(5,4), DELSIL(5,4),DELS2L(5,4)
 C THE FOLLOWING LOGIC ASSURES THAT HT IS AN INTEGER mULTIPLE OF TIME
ZONE LEVGTH
TEMP5=(TEND-TSTART)/(2.000*HT)
ITEMP5=TEMPS
TEMP6= ITEMP5
IF((TEMP5-TEMP6).LT.1.00-11)GO TO 110
1000 FJRMATIIHO,15X,0*****TMPUT IMIN (=HT) IS NOT AN INTEGER MULTIPLE OTALO0250
IF TIME ZONE LENGTH******!
TAL00270
HT=(TEND-TSTART-2.ODO*HT)/(TEMPG-1.0DJ): TAL00280
URITE(6,1000)
TAL00290
WRITE(6,1010)HT
TAL00300
1010 FDRMATIIH,15X,"HT HAS BEEN CHANGED TO ',D20.13,' SECONDS AND WILLTALO031O
O
110 ICHHT=0
RETURN
TAL00330
END
TAL00350

```
```

 SUBROUTINE DSIMQ(A,B,N,KS)
 ` THIS SUBRJUTINE HAS BEEN TAKEV FROM THE IBM SCIENTIFIC
SUBRDUTINE PACKAGE AND CONVERTED TO DJUBLE PRECISION
IMPLIEIT REAL*8 (A-H,O-Z)
DIMENSIJN A(1),B(I)
FORWARD SOLUTION
TOL=0.0
KS=0
JJ=-N
DO 65 J=1,V
JY=J+1
JJ=JJ+N+1
BIGA=0
IT=JJ-J
DO 30 I= J,N
c
SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN
IJ=IT+I
IF(DABS(BIGA)-DABS(A(IJ))) 20,30,30
20 BIGA=A(IJ)
IMAX=1
30 CONTINUE
TEST FOR PIVOT LESS THAV TOLERANCE (SINGULAR MATRIX)
IF(DABS(BIGA)-TOL) 35,35,40
35 KS=1
RETURY
C

```
```

 DO 50 K=J,N
 I1=I I+N
 I2=I1+IT
 SAVE=A(III)
 A(I1)=A(I2)
 A(I2)=SAVE
 DIVIDE EQUATION BY LEADING COEFFICIENT
 50 A(Il)=A(II)/BIGA
 SAVE=B(IMAX)
 B(IMAX)=B(J)
 B(J)=SAVE/BIGA
 ELIMINATE NEXT VARIABLE
 IF(J-N) 55,70,55
 55 TQS=N*(J-1)
 DO 65 IX=JY,N
 IXJ= IQS+IX
 IT=J-IX
 DS 60 JX=JY,N
 IXJX=N*(JX-I)+IX
 JJX=IXJX+IT
 60 A(IXJX)=A(IXJX)-(A(IXJ)*A|JJX))
 65 B(IX)=B(IX)-(B(J)*A(IXJ))
 c
c
BAEK SOLUTION
70 NY=N-1
IT=N*N
DO 80 J=1,vr
IA=IT-J
IB=N-J
IC=N
DO 80 K=1,J

```

S 100370 S 100380
SI 00390
S 100400
S 100410
S 100420
SI 00430
S 100440
SI 00450
S 100460
S 100470
S 100480
S 100490
S 100500
SI 100510
S 100520
S100530
S 100540
S 100550
SI 00560
S100570
S 100580
SI 00590
S 100600
S 100610
S 100620
S 100630
S 100640
S 100650
S 100660
SI 00670
SI 00680
SI 00690
S 100700
S 100710
S 100720
PAGE 211
\(B(I B)=B(I B)-A(I A) * B(I C)\)
SI 100730
\(I A=I A-N\)
80 IC \(=I C-1\)
S 100740
\(\$ 100750\)
RETURN
S 100760
END
S 100770
```

 SUBROUTINE TIMOUT(PSI,P2,H,N1,NTOGV,IMV,JMV,KMV,NFLAG2I TIM00010
 IMPLICIT REAL#8 (A-H,O-Z) TIM00020
 INTEGER*2 MMAP,NPRMP
 TIM00030
 COMMON/INTG/IASIIE,NNG,NDG,NTOG,NMAT,IM, JM,KM,IRM,JRM,KRM,NLBC,
 TIM00040
 NFBC YBBC YDNSCT,NPPRG
 TIM00050
 2IZTP(5),NSTEAD,IFLIN,IGEOM, ITITLE(2O), NOIT, VIIT,NPIT,IJP SI, IODUMP, TIMOOO6O
 3IOFN,IJFO,IGPN, IOPO, ITEMP, ITEMP1,ITEMP2, ITEMP3,ITEMP4, ITEMP5, TIM00070
 4NTIT,IETIME, IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX TIM00080
 CSMMON/FLOTE/EFFK,ORFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, TIM00130
 ITEMP 5, TEMPS, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT TIM00140
 COMMON/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5);MNLCH(5); TIMOOL50
 IISTEP,ICHHT TIM00160
 COMMON/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4), TI M00170
 1DELSTS(5,4),DELS1S(5,4),DELS2S(5,4),DELSFL(5,4),DELSRL(5,4), TIM00180
 2DELSTL(5,4),DELSIL(5,4),DELS2L(5,4): TIM00190
 DIMENSION PSIINTOGV,IMV,JMV,KMV),P2(NTOGV,IMV,JMVI,W(IMV,JMV,KMV),TIMOOO2OO
 IHI(IMV,JMV)
 TIM00210
CALL ETIMEF(TEMP)
WRITE(6,1000)
1000 FORMAT(1H1,//)
IFIISTEP.GT.0IGO TO 100
WRITE(6,1010)(ITITLE(I),I=1,20)
1010 FJRMATIIH,10X,'INITIAL FLUXES FOR THE PROBLEM ',20A4) TIMO0270
ISSAVE=ISTEP TIM00280
100 WRITE(6,1020)ISTEP,T,HT,TEMP TIM00290
1020 FDRMAT(1HO,5X,'STEP NUMBER',14,2X,'TRANSIENT TIME(SEC)\#',1PD14.7
TIM00300
1, 2X,'1/2 TIME STED(SEC)= , 1PDI4.7,2X,'ELAPSED CPU TIME(MIN)=', TIM00310
2OPF10.41 TIM00320
IFIISTEP.EQ.OJGO TO 230
TIM00330
: WRITE OUT FREQUENCIES AT TEST POINTS TIM00340
HRITE(6,1030)
1030 FORMAT(1HO,/,15X,'FREQUENCIES AT TEST POINTS',/1
DO 130 K=1,N2TP
IFIK.GT.1IGO TO 110
WRITE(G,1040)(IXTP(I),I=1,NXTP): 1, TIM00390
1040 FJRMAT(1H,24X,'J / I',7X,5(I3,15X))
TIM00350
TIM00360
IIM00360
TIM00390
TIM00400

```
```

 110 WRITE(6,1050)IZTP(K) TIM00410
 1050 FORMAT(1HO,12X,PPLANE •,121
DJ 120 JJ=1, NYTP
J=NYTP+1-JJ
HRITE(5,1050)IYTP(J),(W(IXT)(I),IYTP(J),IZTP(K)),I=1,NXTP)
120
CONTINUE
1060 FORMAT(1H, 22X,13,2X,5(4x,1PD14.71)
130 continue
IFIIFLJUT.GT.O.AND.NFLAG2.GT.OIGO TD 220
C GO HERE FJR WRITING DUT FLUXES AT TEST POINTS ONLY
IF((NZTP*(NYTP+2)).GT.26)WRITE(6,1000)
WRITET6,1070)
1070 FORMAT(1HO,/,15X,'FLUXES AT TEST POINTS',/)
LINECT=(NZTP*(NYTP+2))+14
IFI(NZTP*(NYTP+2)I.GT.26)LIVECT=10
C IF IDPT=l,ASSUME NEN FLUXES ON IOPD AND THAT IOPS IS REWDUND
KS=1
D] 210 K=1,NZTP
IFIK.GT.1)GO TO 140
WRITE(6,1040)(IXTP(I),I=1,NXTP)
140 IFIIOPT.EQ.OIGO TD 170
KD=ITTP(K)-KS
IFIKD.ER.OIGO TO 160
DO 150 ITEMP 3=1,KD
READ(IOPO)
150 CONTINUE
160 READ(IOPDIP2
170 DO 200 NG=1,NNG
ND=NG-NNG
IF(NG.LE.NNGIHRITE(6,1080)IZTP(K),NG
IFING.GT.NVGIWRITE(6,1090)IZTP(K),ND
1080 FJRMAT(1HO,12x,'PLANE ', 12,: NEUTRON GRDUP ',I2)
1090 FDRMAT(1HO,12X,'PLANE ',12,' , PRECJRSOR GRJUP ',I2)
DO 190 JJ=1,NYTP
J=NYTP+1-JJ
IFIIOPT.EQ.OIGO TO 180
TIM00420
TIM00430
TIM00440
TIM00450
TIM00460
TIM00470
TIM00480
TIM00490
TIM00500
TIM00510
TIM00520
TIM00530
TIM00540
IIM00550
TIM00560
TIM00570
TIM00580
TIM00590
TIM00600
T1M00610
TIM00620
TIM00630
TIM00640
TIM00650
TIM00660
TIM00670
T1M00680
TIM00690
TIM00700
T1M00710
TIM00720
TIM00730
TIM00740
TIM00750
TIM00760
PAGE 214

```
```

 WRITE(6,1060)IYTP(J),(P2(NS,IXTP(I),IYTP(J)I;I=I,NXTP): TIM00770
 GO TD 190
 180 WRITE(6,1050)IYTP(J),PPSI(NS,IXTP(I),IYTP(J);IZTP(K)),I=1,VXTP)
 190 CONTINUE
 LINECT=LINECT+NYTP+2
 IF(ILINECT+NYTP+2).LE.60)G% TO 200
 WRITE(6,1000)
 WRITE(6,1070)
 WRITE(6,1040)(IXTP(I),I=1,NXTP)
 LINECT=7
 200
 KS=I ITPIK
 210 CONTINUE
 GO TO 290
 : BRANCH HERE FOR COMPLETE FLUX DUMP
220 WRITE{6,1000)
WRITE(6,1100)(IITITLE{I),I=1, 20)
1100 FJRMAT(1HO,10X, FLUXES FOR THE PROBLEM', 20A4)
230 DO 280 K=1,KM
IFIIDPT.EQ.I IREADIIOPOIP2
DO 280 NG=1,NTOG
ND=NG-NNG
IFIK.GT.1.OR.NG.GT.1IWRITE(S,1110)
1110 FORMAT(1H1,/)
IFING.LE.NNGIWRITEI 6,1120IK,NG
IF(NG.GT.NVG)WRITE(6,1130)K,ND
1120 FORMAT(1HO,10X, NEUTRON FLUXES FOR PLANE , I2,", GROUP ,,I2), TIMOIO3O
1130 FORMAT(1HO,IOX, PPREURSOR CONC. FOR PLANE ',12," GROUP ',I2)
JMS=1
JME=JM
IFIJM.GT.50 I JME=50
ITEMP2=50/JME
ITEMP\&=ITEMP2
DO 270 I= 1,IM, 10
IS=I
1
IE=I+9

```

TIM00770 T1M00780
TIM00790 TIM00800 TIM00810 TIM00820 TIM00830 TIM00840 TIM00850 TIM00860
TIM00870 TIM00880
TIM00890 TIM00900 TIM00910 TIM00920 TIM00930 TIM00940 TIM00950 TIM00960
TIM00970
TIM00980
TIM00990
TIM01000
TIM01010
TIMO1020
TIMO1030
TIM01040
TIM01050
IIM01060
TIMOLOTO
TIMOL 080
TIM01090
TIM01100
TIM01110
TIMO1120
PAGE 215
```

 IF(IE.GT.IMIIE=IM T1M01130
 IF((I-1)/10.LT.ITEMP4)GO TJ 240
 WRITE(6,1110)
 ITEMPG = ITEMP4+I TEMP2
 240 WRITE(6,1140)(ITEMP3,ITEMP3=1S,IE)
1145 FJRMAT(1HO, 3X,'J/I I',2X,I7,9I12)
WRITE{6,1150)
1150
OO 265 ITEMP 3=JMS,JME
J=JME+1-ITEMP3
IFIIOPT.FQ.IIGO TO 250
WRITE{6,1150)J,(PSI(NG,II,J,K),II=IS,IE)
1160 FORMAT(1H, 2X,I2,6X,1P10012.5)
G0 TO 260
WRITE(6,1150)J,(P2(NG,II,J),II=IS,IE)
260 CJNTINUE
IFPJME.GE.JMIGO TO 270
JMS = JME +1
JME=JMS+49
IF(JME.GT.JM)JME=JM
WRITE(6,1110)
GO TO 240
270 CONTIVUE
2RO CONTINUE
CALL ETIMEF(TEMP)
WRITE(6,1190)TEMP
1180 FORMATIIHO,IOX, FLUX PQINTOUT CJMPLETED, ELAPSED TIMEIMINI = *FIOTIMOI390
1.4)
IFINFLAG2.EQ.2)WRITE{6,1170)
1170 FORMAT(1H1,10X,*HAVE USED ALLOTTED CPU TIME')
290 CONTIVUE
IFIIOPT.EQ.IIREWIND IOPO
RETURN
END

```
```

 SUBROUTINE CHANGEIXIM,XNU,SIGF,SIGR,SIGT,SIGS,HX,HY,HZ,IBP,JBP,KBPSETOOOIO
 1,DD1,DD2,DD3,DD4,DD5,DD6,DD7,MMAP,NNGV,NDNSCV,NMATV,IMV,JMV,KMV, SETO002O
 2IRMV,JRMV,KRMN,NPRGV,NFLAG1,NGXVI SETO0030
 IMPLIEIT REAL*8 (A-H,O-Z) SETOOO4O
 INTEGFR*2 MMAP,NPRMP SETOO050
 COMMON/INTG/IASIZE,NNG,NDG,NTOG,NMAT,IM, JM,KM,IRM,JRM,KRM,NLBC, SETOOO6O
 INFBC,NBBC,NONSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), SET00070
 2IZTP(5), NSTEAD, IFLIN,IGEOM, ITITLE(201,NOIT,NIIT,NPIT,IJPSI,IODUMP,SETOOOBO
 3IJFN,IJFO,IOPN,IOPS,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, SET00090
 4NTIT,IETIME,IFLDUT, IMX,JMX,KMX,IOSC1,IOSC2,NGX SETOOIOD
 COMMON/FLOTE/EFFK,ORFP,EPS1, EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, SET00150
 1TEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMD,TIME,FLXCON, BETAT SETOOI60
 CJMMON/TIMINT/LASTON,ISTPCH,ILINCH,IPRSTP,MVSCH(5),MNLCH(5), SETOOI70
 1ISTEP,ICHHT SETOO180
 COMMOV/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4), SETOO190
 1DELSTS(5,4), DELS1S(5,4),DELS2S(5,4),DELSFL(5,4),DELSRL(5,4), SETOO200
 2DELSTL(5,4),DELSIL(5,4),DELS2L(5,4) SETO0210
 DIMENSION XIM(NNGVI, XNU(NMATV,NNGVI,SIGF(NMATV,NNGV),SIGRINMATV, SETOO22O
 INNGV),SIGT(NMATV,NVGV),SIGS(NMATV,NNGV,NDNSCV),HX(IRMV), HY(JRMV), SETOO230
 2HZ(KRYV),IBP(IRMV),JBP(JRMV),KBP(KRMV),DDI(NPRGV,NNGV),DD2(NPRGV, SET00240
 3NNGV),DJ3(NPRGV,NNGV),DDG(NPRGV,NNGV),DD5(NPRGV,NNGV),DD6(NPRGV, SETO0250
 4NNGV),DD7(NPRGV,NGXV,NDNSCV),MMAP(IRMV,JRMV,KRMV) SET00260
 DIMENSITN HD(6),MN(B) SETOO270
 TEMP=1.2D1
 TEMP1=8.000 SETOO290
 SET00280
 ` FIRST ALTER EROSS SECTIONS SETOO300
IFINFLAG1.EQ.2IGOTO 110 SETOO310
ITEMPL = ISTPCH SETOO320
TEMP2=1.000 SETOO330
GO TO 120 SETOO340
110 ITEMP1=ILINCH
TEMP2=2.0DO*HT/(TEND-TSTART) SET00360
120 DJ 600 ITEMP 2=1,ITEMP1
IF(NFLAG1.E0.2)GOTO 150
SET00370
HFINFLAGI•EQ.2IGO TO 150 SETOO380
130 NM=MNSCH(ITEMP2)
SET00390
MM=ITEMP2
SETO0395

```
```

 DD 140 VG=1,NNG SET00400
 SIGF(NM,NG) = SIGF(NM,NG) +DELSFS(MM,VG) SET00410
 SIGR(NM,NG) = SIGR(NM,NG)+DELSRS(MM,NG)+DELS1S(MM,NG)+DELS2S(MM,NG) SET00420
 SIGT(VM,NG)=SIGT(NM,NG) +DELSTS(MM,NG) SETOO430
 SIGS(NM,NG,1)=SIGS(NM,NG,1)+DELSIS(MM,NG) SET00440
 IF(NDNSET.LT.2IGO TO 140 SETOO450
 SIGS(NM,NG, ?)=SIGS(NM,NG,2)+DELS 2S(MM,NG) SET00460
 140 CONTINUE
 GO TO 170
 150 NM=MNLCH(ITEMP2)
 MM = ITEMP 2
 OT 160 NG=1,NNG
 SIGF(NM,NG) =SIGF(NM,NG) +TEMP 2*DELSFL(MM,NG)
 SIGR(VM,NG) =SIGR(NM,NG) +TEYP2*(DELSRL(MM,NG) +DELSIL(MM,NGI)
 SIGT(NM,NG) & SIGT(NM,NG) +TEMP 2*DELSTL(MM,NG)
 SIGS(NM,NG,1)=SIGS(NM,NG,1) +TEMP 2*DELSIL(MM,NG)
 IFINDNSET.LT.2IGO TO 160
 SIGR(NM,NG) = SIGR(NM,NG) +TEMP 2*DELSSL(MM,NG)
 SIGS(NM,NG, 2)=SIGS(NM,NG,2) +TEMP 2*DELS2L(MM,NG)
 160 CONTIVUE
 SET00580
 F LOOP OVER MATERIAL REGIDNS, CHANGING COEFFICIENTS WHEVEVER MMAPIIR,JSETOOS9O
C R,KR)=NM SETOO600
170 D3 550 <R=1,KRM SETO0610
DO 540 JR=1,JRM SET00620
DO 530 IR=1,IRM
IF(MMAP(IR,JR,KRI.VE.NM)GD TO 530
= HOMOGENEDUS REGION
NPR=4*IRM*JRM*(2*RR-1)+2*IRY*(2*JR-1)+2*IR
ITEMP5=1
NPRP=NPR
HD(1)=HZ(KR)
HD(2)=HD(1)
HD(3)=HY(JR)
HD(4)=HD(3)
HD(5)=HX(IR)
HD(6)=HD(5)
SET00630
SET00640
SET00650
SET00660
SET00670
SET00680
SET00690
SET00700
SET00710
SET00720
SET00730
SET00740
PAGE }21

```
```

 D) 180 ITEMP4=1,8
 MN(ITEMP4)=MMAP(IR,JR,KR)
 180 CJNTINUE
 GO TD 500
 = lowER left edge
200 NPRP=VPR-4*IRM*JRM-1
ITEMP5=?
HD(1)=HZ(KR)
HD(2)=HZ(KR-1)
IF(KR.EQ.1)HD(2)=HD(1)
HD(5)=HX(IR)
HD(6)=HX(12-1)
IF(IR.EQ.1)HD(6)=HD(5)
MN(1)=MMAP(IR,JR,KR-1)
IF(KR.EQ.1)MN(1)=MN(5)
MN(4)=MN(1)
MN(6)=MMAP(IR-1,JR,KR)
IF(IR.EQ.1)MN(6)=MN(5)
MN(7)=MN(6)
MN(2)=MMAP(IR-1,JR,KR-1)
IF(KR.EQ.1)MN(2)=MN(6)
IF(IR.EQ.1)MN(2)=MN(1)
MN(3)=MN(2)
GO TO 500
~ LEFT SIDE
210 NPRP=NPR-1
ITEMP5 =3
HD(2)=HD(1)
MN(4)=MN(8)
MN(1)=MN(5)
MN(2)=MN(6)
MN(3)=MN(7)
GO TO 500
= LEFT FRDNT EDGE
220 NPRP=NPR-2*IRM-1
ITEMP5=4

```

SET00750
SET00760
SET00770
SET00780
SET00790
SET00800
SET00810
SET00820
SET00830
SET00840
SETOOR50
SET00860
SET00870
SET00880
SET00890
SET00900
SET00910
SET00920
SET00930
SET00940
SET00950
SET00960
SET00970
SET00980
SET00990
SET01000
SET01010
SET01020
SETOI030
SETO1040
SETOI 050
SET01060
SET01070 SET01080
SET01090
SETOLIOO
PAGE 219
```

 MN(8)=MMAP(IR,JR-1,KR)
 IF(JR.EQ.1)MN(8)=MN(5)
 MN(4)=MN(8)
 MN(7) =MMAP(IR-1,JR-1,KR)
 IF(IR.E2.1)MN(7) =MN(8)
 IF(JR.EQ.1)MN(7)=MN(6)
 MN(3)=MN(7)
 HD(4)=HY(JR-1)
 IF(JR.E2.1)HD(4)=HD(3)
 GO TO 500
 = LOWER FRONT EDGE
230 NPRP=VPR-4*IRM*JRM-2*IRM
ITEMP5=5
HD(2)=HZ(KR-1)
IF(KR.EQ.1)HD(2)=HD(1)
HD(6)=HD(5)
MN(6)=MV(5)
MN(1)= MMAP(IR,JR,KR-1)
IF(KR.EQ.1)MN(1)=MN(5)
MN(2)=MN(1)
MN(7)=MN(8)
MN(4)=MMAP(IR,JR-1,KR-1)
IF(KR.EQ.1)MN(4)=MN(8)
IF(JR.EQ.1)MN(4)=MN(1)
MN(3)=MN(4)
GO TO 500
C LOWER FROVT LEFT CORNER
240 NPRP=NPR-4*IRM*JRM-2*IRM-1
ITEMP5 =5
HD(6)=HX(IR-1)
IF(IR.EQ.1)HD(6)=HD(5)
MN(6)=MMAP(IR-1,JR,KR)
IF(IR.EQ.1)MN(6) =MN(5)
MN(2)=MMAP(1R-1,JR,KR-1)
IF(IR.EQ.1)MN(2)=MN(1)
IF(KR.EQ.1)MN(2)=MN(6)

```
    SET01110
    SETOLI20
    SETOL130
    SETOL140
    SETO1150
    SET01160
    SET01170
    SETO1180
    SET01190
    SET01200
    SET01210
    SETO1220
    SETO1230
    SET01240
SETO1250
SETO1260
SET01270
SET01280
SETO1290
SETO1300
SETO1310
SET01320
SET01330
SETO1340
SET01350
SETO1360
SETO1370
SETO1380
SETO1390
SET01400
SET01410
SETO1420
SETO1430
SET01440
SETO1450
SET01460
PAGE 220
```

 MN(7)=MMAP(IR-1,JR-1,KR)
 IF(IR.EQ.1)MN(7)=MN(8)
 IF(JR.EQ.1)MN(7)=MN(6)
 MN(3)=MMAP(IR-1,JR-1, KR-1)
 IF(IR.EQ.1)MN(3)=MN(4)
 IF(JR.E2.1)MN(3)=MN(2)
 IF(KR.EQ.1)MN(3)=MV(7)
 GO TO 500
 C FRONT SIDE
250 NPRP=NPR-2*IRM
ITEMP5=7
HD(2)=HD(1)
HD(6)=HD(5)
MN(4)=MN(8)
MN(7)=MN(8)
MN(3)=MN(8)
MN(6)=MN(5)
MN(1)=MN(5)
MN(2)=MN(5)
GO TO 500
C BOTTOM SIDE
260 NPRP = NPR -4*IRM*JRM
ITEMP5=8
HD(2)=HZ(KR-1)
IF(KR.EQ.1)HD(2)=HD(1)
HD(4)=HD(3)
MN(8)=MN(5)
MN(7)=MN(6)
MN(1)=MMAP(IR,JR,KR-1)
IF(KR.EQ.1)MN(1)=MN(5)
MN(2)=MN(1)
MN(3)=MN(1)
MN(4)=MN(1)
GO TO 500
C BOTTOM RIGHT EDGE (9)

```

SET01470 SET01480 SET01490 SETOL500 SETO1510 SET01520 SETO1530
SET01540
SETO1550
SET01560
SETO1570
SETO1580
SET01590
SETO1600
SET01610
SETO1620
SET01630
SET01640
SET01650
SET01660
SET01670
SETO1680
SETO1.690
SETO1700
SETO1710
SETO1720
SET01730
SETO1740
SET01750
SETO1760
SET01770
SET01780
SET01790
SET01800
SET01810
SET01820
PAGE 221
```

 NPRP=NPR-4*IRM*JRM+1 SET01830
 ITEMP5=9
 HD(5)=HX(IR+1)
 MN(5)=MMAP(IR+1,JR,KR)
 MN(8)=MN(5)
 MN(1)=MMAP(IR+1,JR,KR-1)
 IF(KR.EQ.1)MN(1)=MN(5)
 MN(4)=MY(1)
 GO TO 500
 C FRONT BJTTOM RIGHT CORNER (10)
280 NPRP=YPR-4*IRM*JRM-2*IRM+1
ITEMP5=10
IFIJR.EQ.1)GO TO 285
HD(4)=HY(JR-1)
MN(7) =MMAP(IR,JR-1,KR)
MN(3)=M4AP(IR,JR-1,KR-1)
MN(8)=MMAP(IR+1,JR-1,KR
MN(4)=MMAP(IR+1,JR-1,KR-1)
IF(KR.NE.1)GO TO 285
MN(3) =MN(7)
MV(4)=MM(8)
285 GO TO 500
C FRONT RIGHT EDGE
290 NPRP=NPR-2* IRM+1
HD(2)=HD(1)
ITEMP5=11
IF(KR.EQ.1)GO TO 295
MN(4)=MN(8)
MN(3)=MY(7)
MN(1)=MN(5)
MN(2)=MN(6)
295 GO TO 500
C FRONT TOP RIGHT CORNER (12)
300 IFIKR.EQ.KRMIGO TO }32
NPRP=NPR +4* IRM*JRM-2*IRM+1
ITEMP5=12

```

SET01830
SET01.840
SETOl 850
SET01860
SETO1870
SET01880
SETO1890
SET01900
SET01910
SET01920
SET01930
SET01940
SETOI 950
SET01960
SET01970
SETO1980
SETO1990
SET02000
SET02010
SET02020
SET02030
SET02040
SET02050
SET02060
SET02070
SET02080
SETO2090
SET02100
SET02110
SET02120
SETO2130
SET02140
SETO2150
SET02160
SET02170
SETO2180
```

 HD(1)=HZ(KR+1)
 MN(6)=MMAP(IR,JR,KR+1)
 SETO2190
 SET02200
 MN(5)=MMAP{IR+1,JR,KR+1)
 SET02210
MN(B) =MMAP(IR+1,JR-1,KR+1)
MN(7)=MMAP{IR,JR-1,KR+1)
IF(JR.NE.1)GO TO 305
MN(8)=MN(5)
MN(7)=MN(6)
305 GO TO 500
= TOP RIGHT EDGE (13)
310 NPRP=NPR+4*IRM*JRM+1
ITEMP5=13
IF(JR.EQ.1)GO TO 315
HD(4)=HD(3)
MN(7)=MN(6)
MN(8)=MN(5)
MN(4)=MN(1)
MN(3)=MN(2)
315 GO TO 500
RIGHT SIDE (14)
320 NPRP=NPR+1
ITEMP5=14
IF(KR.NE.KPMIGO TO 325
IF(JR.EQ.1)GO TO }32
HD(4)=HD(3)
MN(4)=MN(1)
MN(3)=MV(2)
325 MN(8)=MN(4)
MN(5)=MN(1)
MN(7)=MN(3)
MN(6)=MN(2)
HD(1)=HD(2)
GO TO 500
C BACK BOTTOM RIGHT CORNER (15)
330 IFIJR.EO.JRMIGO TO 420
NPRP=NPR-4* I RM*JRM+2*IRM+1
SET02220
SET02230
SET02240
SETO2250
SET02260
SET02270
SET02280
SET02290
SETO2300
SET02310
SET02320
SET02330
SETO2340
SET02350
SET02360
SET02370
SET02380
SETO2390
SET02400
SET02410
SET02420
SET02430
SET02440
SET02450
SET02460
SET02470
SET02475
SET02480
SET02490
SET02500
SET02510
SET02520
SETO2530

```
        ITEMP5=15
        HD(3)=HY(J?+1)
        MN(5)=MMAP(IR+1,JR+1,KR)
        MN(6)=MMAP(IR,JR+1,KR)
        MN(2)=YN(6)
        MN(1)=MN(5)
        IF(KR.EQ.1)GO TO 335
        HD(2)=HZ(KR-1)
        MN(2) =MMAP(IR,JR+1, KR-1)
        MN(1)=MMAP(IR+1,JR+1,KR-1)
        MN(3)=MMAP(IR,JR,KR-1)
        MN(4)= MMAP(IR+1;JR,KR-1)
    335 GO TO 500
    BACK RIGHT EDGE (16)
    340 NPRP=NPR+2*IRM+1
            ITEMP5=16
            IF(KR.EQ.11GO TO 345
            HD(2)=H2(K2)
            MN(1)=MN(5)
            MN(2)=MN(6)
            MN(3)=MN(7)
            MN(4)=MN(8)
    345 GO TO 500
C BACK TOP PIGHT CORNER (171
    350 IF(KR.EQ.KRMIGO TO 370
        NPRP=VPR+4*1RM*JRM+2*IRM+1
        ITEMP5=17
        HD(1)=HZ(K2+1)
        MN(5)=MMAP(IR+1,JR+1,KR+1)
        MN(6):MMAP(IR,JR+1, KR+1)
        MN(7) =MMAP(IR,JR,KR+1)
        MN(8)=MMAP(IR+1,JR,KR+1)
        GO TO 500
BACK TOP EDGE (18)
    360 IFIJR.EQ.JRMIGO TO 420
        IFIKR.EQ.KRMIGO TO }37
```

SET02540
SET02550
SET02560
SET02570
SET02580
SET02590
SET02600
SET02610
SET02620
SET02630
SET02840
SETO2650
SET02660
SET02670
SET02680
SET02690
SET02700
SET02710
SET02720
SET02730
SETO2740
SET02750
SET02760
SET02770
SET02775
SET02780
SET02790
SET02800
SET02810
SET02820
SET02830
SET02840
SET02850
SET02860
SET02865
SET02870
PAGE 224

```
        NPRP=NPR+4*IRM*JRM*2*IRM
        ITEMP5=18
        HD(1)=HZ(KR+1)
    HD(1)=HZ(KR+1
    HD(3)=HY(JR +1)
    MN(2)=MMAP(IR,JR+1,KR)
    MN(3)=MMAP(IR,JR,KR)
    MN(6)=MMAP(IR,JR+1,KR+1)
    MN(7)=MMAP(IR,JR;KR+1)
    365 MN(1)=MN(2)
    MN(4)=MN(3)
    MN(5)=MN(6)
    MN(8)=MN(7)
    HD(5)=HD(6)
    GO TO 500
C BACK SIDE (19)
    370 NPRP=NPR+2*IRM
            ITEMP5=19
            IF(IR.NE.IRM.AND.KR.NE.KRM)GO TO }37
            MN(2)=MMAP(IR,JR+1,KR)
            MN(3)=MMAP(IR,JR,KR)
            HD(2)=HD(1)
            HD(3)=HY(JR+1)
            HD(5)=HD(6)
            MN(4)=MN(3)
            MN(1)=MN(2)
    375 HD(1)=HZ(K2)
            MN(5)=MN(1)
            MN(6)=MN(2)
            MN(7) =MN(3)
            MN(8)=MN(4)
            GO TO 500
C BACK BOTTJM EDGE (20)
    380 NPRP=NPR-4*IRM*JRM+2*IRM
    ITEMP5=20
```

 SET02875
 SET02880
 SET02890
SET02900

SET02875 SET02880 SET02900 SET02910 SET02920 SET02930 SET02940 SET02950 SET02960 SETO2970 SET02980 SET 02990 SET03000 SET03010 SET03020 SET03030 SET03040 SET03050 SET03060 SET03062 SET03064 SET03066 SET03068 SET03070 SET03080 SET03090 SET03100 SET03110 SET03120 SET03130 SET03140 SET03150 SET03160 SET03170 SET03180 PAGE 225

```
            IF(KR.EQ.1)GOTO 385 SETO3190
            HD(2)=HZ(KR-1)
            MN(1)=MMAP(IR,JR+1,KR-1)
            MN{2}=MN(1)
            MN(3)=MMAP(IR,JR,KR-1)
            MN(4)=MN(3)
    385 GO TO 500
    BACK BOTTOM LEFT CORNER (21)
    390 NPRP=NPR-4*IRM*JRM+2*IRM-1
            ITEMP5=21
            IFIIR.ER.1/GO TO 395
            HD(6)=HX(IR-1)
            MN(6)=MMAP(IR-1;JR+1,KR)
            MN(7)=MMAP(IR-1,JR,KR)
            MN(3)=MN(7)
            MN(2)=MN(6)
            IF(KR.EQ.1)GO TO 395
            MN(3) =MMAP(IR-1,JR,KR-1)
            MN(2)=MMAP(IR-1;JR+1,KR-1)
    395 GO TO 500
            BACK LEFT EDGE (22)
    400 NPRP=NPR+2*IRM-1
            ITEMP5=22
            IF(KR.EQ.1)GO TO 405
            MN(1)=MN(5)
            MN(2)=MN(6)
            MN(3)=MN(7)
            MN(4)=MN(8)
            HD(2)=HD(1)
    405 GO TO 530
BACK TOP LEFT CORNER (23)
    410 IFIKR.EQ.KPMIGO TJ 530
            NPRP=NPR+4*IRM*JRM*2*IRM-1
            ITEMP5=23
            HD(1)=HZ(KR+1)
            MN(5)=MMAP(IR,JR+1,KR+1)
```

SET03190 SET03200 SET03210 SET03220 SET03230 SET03240 SETO3250 SET03260 SET03270 SET03280 SET03290 SET03300 SET03310 SET03320
SET03330 SET03340 SET03350 SET03360 SET03370 SET03380 SET03390 SET03400 SET03410 SET03420 SET03430 SET03440 SET03450 SET03460 SET03470 SET03480 SET03490 SET03500 SET03510 SET03520 SET03530 SET03540

```
            MN(8)=MMAP(IR,JR,KR+1) SET03550
            MN(6)=MN(5)
            MN(7)=MV(B)
            IF(IR.EQ.1)GO TO 415
            MN(6)=MMAP(IR-1,JR+1,KR+1)
            MN(7)=MMAP(IR-1,JR,KR+1)
    415 GO TO 500
    TOP LEFT EDGE (24)
    420 IF(KR.EQ.KRM)GO TJ 530
            NPRP=NPR +4* IRM*JRM-1
        ITEMP5=24
            IFPIR.NE.IRM.AND.JR.NE.JRMIGO TO }42
            HD(1)=HZ(KR+1)
            HD(2)=HZ(KR)
            HD(5)=H\times(IR)
            MN(8)= MMAP(IR,JR,KR+1)
            MN(4)=MMAP(IR,JR,KR)
            MN(7)=MN(8)
            MN(3)=MN(4)
            IF(IR.EQ.1)GO TO 425
            HD(6)=HX(IR-1)
            MN(7)=MMAP(IR-1,JR,KR+1)
            MN(3)=MMAP(IR-1,JR,KR)
    4 2 5
            HD(3)=HD(4)
            MN(1)=MN(4)
            MN(2)=MN(3)
            MN(5)=MN(8)
            MN(6)=MN(7)
            GO TO 500
C FRONT TJP LEFT CORNER
    430 NPRP=NPR+4*IRM*JRM-2*IRM-1
            ITEMP5=25
            IF(JR.EQ.11GO TO 435
            HD(4)=HY(JR-1)
            MN(4)=MMAP(IR,JR-1,KR)
            MN(8) = MMAP(IR,JR-1,KR+1)
```

SET03550 SET03560 SET03570 SET03580 SET03590 SET03600 SET03610 SET03620 SET03630 SET03635 SET03640 SET03650 SET03660 SET03665 SET03670 SET03680 SET03690 SET03700 SET03705 SET03710 SET03720 SET03730 SET03740 SET03750 SET03760 SET03770 SET03780 SET03790 SET03800 SET03810 SET03820 SET03830 SET03840 SET03850 SET03860 SET03870

```
            MN(3)=MN(4): SETO3880
            MN{7}=MN(8): SETO3890
            IFIIR.EQ.1IGO TO 435
            MN(3)=MMAP(IR-1,JR-1,KR)
            MN(7)=MMAP(IR-1,JR-1,KR+1)
435 GO TO 500
            SET03930
- TOPFRONT EDGE
440 NPRP=YPR+4*IRM*JRM-2*IRM
            ITEMP5=26
            IF(IR.EO.1)GO TO 445
            MD(6)=HD(5)
            MN(2)=MN(1)
            MN(3)=MN(4)
            MN(6)=MN{5)
            MN(7)=MN(8)
445 GO TO 500
TOP SIDE (27)
450 NPRP=NPR+4*1RM*JRM
            ITEMP5=27
            IF(JR.EQ.1)GO TO 455
MD(4)=HD(3)
MD(4)=HD(3)
            MN(3)=MN(2)
MN(7)=MN(6)
            MN(8)=MN(5)
    455 GO TO 500
` BRANCH HERE TO COMPUTE COEFFI:IENTS
500 NRP=NPRP
TEMP 3=1.ODO
SET03940
    SET03950
                    SET03960
                            SET03970
                    SET03980
                            SET03990
                    SET04000
                            SET04010
SET04020
C
SET04030
SET04040
SET04050
SETO4060
SET04070
SET04080
S. SETO4090
SETO4100
SET04120
SET04140
    DD1(NRP,NG) & ((HD(3) *HD(2)/SIGT(MN(1),NG))&(HD(3)*HD(1)/S IGT(MN(5),SETO4180
```



```
    2(TEMP3/(HD(5)*TEMP)|
SET04200
DO2(NRP,NG)=((HD(5)&HD(2)/SIGT(MN(1), NG))&(HD(6)*HD(2)/S IGT(MN(2),SETO4210
ING)| +(HD(6)*HD{1)/SIGT(MN(6);NG)I+(HD(5)*HD(1)/SIGT(MN(5),NGI|)* SETO4220
2(TEMP3/(HD(3)*TEMP)| SETO4230
PAGE }22
```

 1NG) $)+(H D(3) * \operatorname{HD}(5) / S I G T(M N(5)$,NG) $1+(H D(3) * H D(6) / S I G T(M N(6), N G 1)) *$ SETO4250 2(TEMP3/(HD(1)*TEMP))
SET04260
DD4 (NRP, NG) = DD1 (NRP, NG) + DD2 (NRP, NG) + DD3 (NRP, NG) + (((HD (3) *HD (2)/S IGSET04270 IT(MN(2), NG)) +(HD(4)*HD(2)/SIGT(MN(3),NG))+(HD(4)*HD(1)/SIGT(MN(T), SETO4280 2NG) $1+(H D(3) * H D(1) / S I G T(M N(6) ; N G)) /(H D(6) * T E M P)+((H D(6) * H D(2) / S I G T S E T O 4290$ 3(MN(3), NG)) +(HD(5)*HD(2)/SIGT(MN(4), NG)) +(HD(5)*HD(1)/SIGT(MN(8), NSETO4300 4G)) + (HD(6)*HD(1)/SIGT(MN(7), NG)I)/(HD(4)*TEMP) + ((HD(5)*HD(3)/SIGT(SETO4310

\qquad
 1(3)*HD(2)*STGR(MN(2), NG) +HD(6)*HD(4)*HD(2)*SIGR(MN(3),NG)*HD(5)*HDSETO4360 2(4)*HD(2)*S IGR(MN(4),NG) *HD(5)*HD(3)*HD(1)*SIGR(MN(5),NG)+HD(6)*HDSETO4370 3(3)*HD(1)*SIGR(MN(5),NG) *HD(6)*HD(4)*HD(1)*SIGR(MN(7), NG) + HD(5)*HDSETO4380 4(4)*HD(1)*SIGR(MN(8),NG))*(TEMP3/TEMP1) SETO4390
DD6 (NRP, NG) $=(H D(5) * H D(3) * H D(2)$ *S IGF(MN(1), NG) \#XNU(MV(1), NG) + HD (6) *SET04400 1HD(3)*H)(2) \#SIGF(MN(2),NG) *XNU(MN(2),NG) +HD(6)*HD(4)*HD(2)*SIGF(MNSETO4410
 3G) + HD (5) *HD (3) *HD(1)*SIGF(MV(5), NG) *XNU(MN(5), NG) + HD(6) * HD(3) *HD(1SET04430 4) *S IGF (MN(6),NG) *XNU(MN(6);VG) +HD(6)*HO(4)*4D(1)*SIGF(MN(7), NG)*XNSETO4440 $5 U(M N(7), N G)+H D(5) * H D(4) * H D(1) * S$ IGF(MN(8), NG) *XNU(MN(8), NGI) * (TEMP3SETO4450 6/TEMP1)
DO5(NRP,NG) = DD5(NRP,NG)-XIM(NG) \#DD6(NRP,NG): SET04470
IFING.EQ.NNGIGO TO 520 SETO4471
DJ 510 NDN $=1$,NDNSCT SETO4480
DDT (NRP, NG, NDN $)=(H D(5) * H D(3) * H D(2) * S I G S(M N(1), N G, N D N)+H D(6) * H D(3) * S E T 04490$ 1HO (2)*SIGS(MN(2), NG, NDN) +HD(6)*HD(4)*HD(2)*SIGS(MN(3), NG, NDN) +HD(5SET04500 2)*HD(4)*HD(2)*SIGS(MN(4), NG,NDN) +HD(5) *HD(3) *HD(1) *SIGS(MN(5), NG ,NSETO4510 3DN) + HD (5) *HD(3) *HD(1) *SIGS(4N(6),NG,NON) +HD(6) *HD (4) *HD (1) *SIGS(MNSET04520 $4(7)$, NG, VDN $)$ +HD(5)*HD(4) *HD (1) *SIGS(MN(8), NG, NDNI)*(TEMP3/TEMP1) SETO4530
510 CONTIVUE SETO4540
520 CONTIVUE SETO4550
GO TO $1200,210,220,230,240,250,260,270,280,290,300,310,320,330,340$ SETO4560 $1,350,360,370,380,390,400,410,420,430,440,450,5301$, ITEMP 5 SETO4570
530 CONTINUE SETO4580

540 CONTINUE
550 CONTINUE
600 CONTIVUE
SET04590
SET04600
SETO4610 RFTURN

SET04620
END
SET04630

SUBROUTINE DELAYSIALAM, BETA,XIP, DDS,VD,NPRMP, PSI,P2, PSJ, PD,NNGV, NDDELOOO1O IGV,NTOGV,NYATV,IMV,JMV,KMV,NPRGV) DELOOO2O
IMPLICIT REAL*8 (A-H,O-Z) DEL 00030

INTEGER* 2 पMAP,NPRMP DEL 00030

COMMON/INTG/IASIZF,NNG,NDG,NTOG, NMAT,IM, JM, XM,IRM, JRM, KRM,NLBC, DEL00050 INFBC, VB3C, VONSCT, NPRG,IOPT, NTG,NXTP, NYTP,NZTP, IXTP(5), IYTP(5), DEL00060 2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NSIT, NIIT, NPIT, IJP SI, I ODUMP, DEL00070 3IOFN, IJFO, I TPN, IDPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5, DEL00080 4NTIT, IETIME, IFLOUT, IMX,JMX,KMX,IOSCI,IOSCZ, VGX DEL00090
COMMON/FLOTE/EFFK, ORFP,EPS1, EPS2,TEMP, TEMP1, TEMP2, TEMP3, TEMD4,
ITEMP 5, TEMPS, XFTSST, XFISSO, ALAMN, ALAMO, TIME,FLXCON, BETAT DEL00140

COMMOV/TIMINT/LASZON, ISTPEH, ILINCH, IPRSTP,MVSCH(5), MNLCH(5), IISTEP, ICHHT 00150

COMMOV/TIMFLO/T, HT, HMIN,HMAX, TSTART, TEND, DEL SFS(5,4), DELSRS(5,4), DELOO180
1 DELSTS $(5,4)$, DELSIS(5,4), DELS2S(5,4), DELSFL(5,4), DELSRL(5,4), DELOO190
2DELSTL $(5,4)$, DELS1L(5,4$)$, DELS2L(5,4) DEL00200
DIMENSION AL AM(NDGV), BETA(VDGV), XIP(NVGV,NDGV), JDG(NPRGV,NNGV), DELOO210
1NPRMP(IMV,JMV,KMV), PSI(NTOGV,IMV,JMV,KMV), P2 (NTJGV,IMV, JMV),
2PSO(IMV, JMV, KMV), PO(IMV, JMV), VO(NPRGV)
IFIINPT.EQ.IIGO TO 200
D) $180 \mathrm{~K}=1, \mathrm{KM}$

DD 110 VGE1, NNG
DEL00220

READ (IOSCI) ($(P S I(N G, I, J, K), I=1, I M), J=1, J M)$
IFING.NE.NTGIGD TO 110
O3 $100 \mathrm{~J}=1, \mathrm{JM}$
DO $100 \mathrm{I}=1$, IM
$100 \operatorname{PSO}(I, J, K)=P S I(N T G, I, J, K)$
110 CONTINUE
NDL $=$ NNG +1
D5 $170 \mathrm{~J}=1, \mathrm{JM}$
DO $170 \mathrm{I}=1$. IM
IF(K.EQ.KM) GO TO 150
$N P R=N P R M P(I, J, K)$
TEMP $=0.000$
DS 120 VG $=1$, NNG DEL00230 DEL00240 DEL 00250 DEL00260 DEL00270 DEL00280 DEL00290 DEL00300

TEMP $=$ TEMP $+D D 6(N P R, N G) * P S I(V G, I, J, K)$

DEL00310
DEL00320
DEL00330 DEL00340 DEL00350 DEL00360 DEL00370 DEL00380 DEL00390 DEL00400

```
    TEMP=TEMP/(EFFK*VO(NPR))
    DO 140 NG=NDL,NTOG
    ND=NG-NNG
    IFIJ.EQ.JM.OR.I.EQ.IMIGO TJ 130
    PSI(NF,I,J,K)=BETA(ND)*TEMP/ALAM(ND)
    GO TO 140
    130 PSI(NG,I,J,K)=0.000
    140 CONTINUE
    GO Tח 170
    150 DO 1.60 NG=NDL,NTOG
    150 PSI(NG,I,J,KM)=0.000
    170 CJNTINUE
    180 CONTIVUE
    GO TO 300
: BRANCH HERE IF IOPT=1.
    200 DJ 280 K=1,KM
        DO 210 NG=1,NNG
        READ(IOSC1)((P2(NG,I,J),I=1,IM),J=1,JM)
    210 CDNTINUE
        WRITE(IJFO)((P2(NTG,I,J),I=1,IM),J=1,JM)
        NDL =NNG+1
        OJ 270 J=1,JM
        DO 270 I=1,IM
        IF(K.EQ.KM)GO TO 250
        NPR=NPRMP(I,J,K)
        TEMP=0.0DO
        D7 220 NG=1,NNG
    220 TEMP=TEMP +DDG(NPR,NG)*P2(NG,I,J)/(EFFK*VO(NPR))
    DO 240 VG=NDL,NTOG
    ND=NG-NNG
    IFII.EQ.IM.OR.J.EQ.JMIGO TJ }23
    P?(NG,I,J)=BETA(ND)*TEMP/ALAM(ND)
    GO TO 240
    230 P2(NG,I,J)=0.000
    240 CONTIVUE
    GO TO 270
```

DEL00405
DEL00410
DELOO420
DEL00430
DEL00440
DEL00450
DELOO460
DEL00470
DEL00480
DEL00490
DELOO500
DELOO510
DEL 00520 DEL00530 DEL00540 DEL00550 DELOO560 DEL00570 DELOO580 DELOO590 DEL00600 DEL00610 DEL00620 DELO0630 DEL00640 DEL00650 DEL 00660 DEL00670 DELOO680 DEL00690 DEL00700 DEL00710 DEL00720 DEL00730 DEL00740 DEL00750 PAGE 232

250	DO 263 NG=NDL, NTOG	DEL00760
260	P2 (NG, I, J) $=0.000$	DEL00770
270	CONTINUE	DEL00780
	WRITEIIOPOIP 2	DEL00790
280	CONTINUE	DEL00800
	REWIND IOPJ	DEL00810
	REWIND IOFS	DEL00820
300	REHIND IOSEI	DEL00830
	RETURN	DEL00840
	END	DEL00850

```
        SUBROUTINE STEPAOIV,XIM,ALAY,BETA,XIP,X,Y,Z,HX,HY,HZ,DJ1,DDZ,DD3, STEO0010
        10D4,DD5, DDS,DD7,VO,NPRMP,PSI,W,NNGV, NDGV,NTJGV,VDNSCV,IMV,JMV,KMV,STE00020
        2IRMV,JRMV,KRMV,NPRGV,NGXVI
            STE00030
            IMPLIEIT REAL*R (A-H,O-Z)
                    STE00040
            COMMON/INTG/IASIZE,NNG,NDG,NTOG,NMAT,IM, JM,KM,IRM,JRM,KRM,NLBC, STE00060
            INFBC,VBBC,NDNSCT,NPRG,IOPT, VTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), STE00070
            2IZTP(5),NSTEAD,IFLIN,IGEOM,ITITLE(20I,NOIT,NIIT,NPIT,IJPSI, IODUMP,STEOOO80
            3IDFN,IOFO,IOPN,IJPJ, ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5, STE00090
            4NTIT,IETIME, IFLOUT,IMX,JMX,KMX,IOSCI,IOSC2,NGX STE00100
            COMMON/FLOTE/EFFK,ORFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4, STEO0150
            ITEMP5,TEMPS, XFISST, XFISSO,ALAMN,ALAMO,TIME,FLXCJN, BETAT STEOOI60
            COMMOV/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLCHI5), STEOOLTO
            1ISTEP,ICHHT STEOO1.80
            COMMOV/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4), STEOO190
            IDELSTS(5,4);DELSIS(5,4),DELS2S(5,4);DELSFL(5,4);DELSRL(5,4), STEOO200
            2DELSTL(5,4),DELS1L(5,4),DELS2L(5,4): STF00210
            DIMENSION V(NNGVI, XIM(NNGVI, ALAM(NDGV); BETA(NDGV), XIP(VNGV,NDGV), STEOO220
            IX(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV);HZ(KRMV),DDI(NPRGV,NNGV), STEO0230
            2DD2(NPRGV,NNGV),DD3(NPRGV,NNGV), DD4(NPRGV,NNGV),DD5(NPRGV,NNGV), STE00240
            3DJ6(NPRGV,NNGV),DD7(NPRGV,NGXV,NDNSCV),NPRMP (IMV,JMN,KYVI, STEO0250
            4PSI(NTOGV,IMV,JMV,KMVI,W(IMV,JMV,KMV),VO(NPRGV) STE00260
            DIMENSION CC(4,4),DD(4) STE00270
: FIRST TRANSFORM ALL POINTS STEO0280
            DS 110 K=2,KMX
            00 110 J=1,JMX
                    STE00290
                    STE00300
            D] 110 I =1,IMX
                    STE00310
            TEMP1=DEXP(W(I,J,K)*HT)
                    STE00320
            DO 100 NG=1.;NNG
                    STE00330
100 PSI(NG,I,J,K)=TEMPI*PSI(NS,I,J,K) STE00340
110 CDNTINUE
- vOW SET STARTING I,J,AND K INDICES ASSUMIVG NJ SYMmETRY BOUNDARIES
            IS=2
                    STF00350
                    STE00360
            JS=2
                    STE00370
                    STE00380
    KS=2 STE00390
    HINV=1.000/HT STE00400
```

```
500 DJ 850 K=KS,KMX STE02370
    IF(NFBC.EQ.OIGO TO }66
    D3 620 VG=1,NNG
STE02380
    TEMP=1.ODO/(V(NG)*HT)
    DJ 550 J=1,?
    DJ }550\textrm{I}=1,
    NPR=NPRMP(I,J,K)
    II=2*(J-1)+I
    DD(II)=0.000
    DO 523 NGP=1,NTOG
    IF(NGP.GT.NNG)GO TO 510
    IF(NGP.EQ.NGIGO TO 520
    DD(II)=DD(III+XIM(NG)*DDG(NPR,NGP) #PSI(NGP,I,J,K)
    GO TO }52
510 ND=NGP-NNG
DD(II)=DD(II)+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(VPR) STEO2520
5 2 0
    DO 530 NDN=1,NDNSCT
    ITEMP I =NG-NDN
    IFIITEMPIOLE.OIGS TO 530
    DD(II)=DD(III+DDT(NPR,ITEMPI,NDN)*PSI(ITEMPI,I,J,K)
530 CONTINUE
    PTEM=TEMP*VO(NPR)
    DD(II)=DD(II)+(PTEM-DD4(NPR,NG))*PSI(NG,I,J,K) +DDI(NPR,NG)*P SI(NG,STE02590
    II+I,J,K) +DD2(NPR,NG)*PSI(NG,I,J+I,K)+DO3(NPR,NG)*PSI(NG,I,J,K+1) & STE02600
    2D03(NPRMP(I,J,K-1),NG)*PSI(NG,I,J,K-1)
        STE02610
    2D03(NPRMP II;J,K-1I,NG)*PSI(NG,I, J,K-1)
    STE02620
540 CC(II, ITEMP 2 )=0.000
    CC(II,II)=(TEMP+M(I,J,K)/V(NG))*VO(NPR)&DD5(NPR,NG)
550 CONTIVUE
    NPR=NPRMP(1,1,K)
    CC(1,2)=-DD1 (NPR,NG)
    CC(1,3)=-DD2(NPR,NG)
    CC(2,4)=-DD2(NPRMP (2,1,K),NG)
    CC(3,4)=-DD1 (NPRMP(1,2,K),NG)
    CC(2,1)=CC(1,2)
    STE02390
    STE02400
    STE02410
    STE02420
    STE02430
    STE02440
    STE02450
    STE02460
STE02470
    STE02480
STE02490
STE02500
STE02510
    STE02520
STE02530
    STE.02540
STE02550
STE02560
    CONTINUE
STE02570
STE02630
STE02640
STE02650
STE02660
    STE02670
    STE02680
    STE02690
STE02700
STE02710
PAGE }23
```

```
        CC(3,1)=CC(1,3) STEO2720
        CC(4,2)=CC(2,4)
        CC( (4,3)=CC(3,4)
CALL DSIMQ TJ SDLVE SYSTEM
    NEQ=4
    CALL DSIMQ(CC,DD,NEQ,ISING)
    DO 560 J=1,2
    DO 560 I =1,2
    II=2*(J-1)+I
560 PSI(NG,I,J,K)=DD(II)
    DJ 620 I =3,IMX
    DJ 570 II=1,4
570 DD(II)=0.000
    NPRY=NPRMP{1,1,K)
    DO 610 J=1,2
    NPR=NPRMP(I;J,K)
    DD 590 VGP=1,NTDG
    IFINGP.GT.NNGIGO TJ 580
    IF(NGP.EQ.NGIGO TS 590
    DD(J)=DD(J) + XIM(NG) # DDG(NPR,NGP) #PSI(NGP,I,J,K)
    GO TO 590
580 ND=NGP-NNG
    OD(J)=DD(J) +XIP(NG,ND)*PSII(YGP,I,J,K)*VO(NPR)
590 CONTINUE
    DS 600 NDN=1,NDNSCT
    ITEMPL = NG-NDN
    IF(ITEMP1.LE.OIGO TO 600
    DD(J)=DD(J) +DD7(NPR, ITEMP1, VDN)*PSI(ITEMPI,I,J,K)
6 0 0 ~ C O N T I N U E ~
    PTEM=TEMP*VO(NPR) STE03001
    DD(J)=DD(J) +(PTEM-DD4(NPR,VG)I*PSI(NG,I,J,K) +DDI(NPR,NG) *PSI(NG,I+STE03010
    II,J,K)+DD2(NPR,NG)*PSI(NG,I,J+1,K)+DO1(NPRMP(I-I,J,K),VG)*PSI(NG,ISTE03020
    2-1,J,K)+DD3(NPR,NG) #PSI(NG,I,J,K+1)+DD3(NPRMP(I,J,K-1),NG)*PSI(NG,STE03030
    3I,J,k-1)
STE03040
610 DD(J+2)=(TEMP+W(1,J,K)/V(NG))#VO(NPR)+DD5(NPR,NG)
STE03051
    TEMP5=D)(3)*DD(4)-(DD2(NPRY,NG)**2.ODO)
STE03060
```

 PSI(N3,I,L,K)={DD(1)*DD(4)+2D(2)*DD2(NPRY,NG)//TEMP5
 PSI(NS,I,2,K)=(DD(2)*DD(3)*DD(1)*DD2(NPRY,NG))/TEMP5 STE03080
620 CONTINUE
DO 650 J=1,2
DO 650 I=1,IMX
NPR=NPRMP(II,J,K)
DO 640 VD=1,NDG
NG=ND+NNG
TEMP1=0.ODO
DO }630\mathrm{ NGP=1, NNG
630 TEMP1=TEMPL + BETA(ND)*DOS(NPR,NGP)*PSI(NGP,I,J,K)
TEMP 1= TEMP1/ (EFFK*VO(NPR))
STE03070
STE03090
STE03100
STE03120
STE03130
STE03140
STE03150
STE03160
STE03170
640 PSIING,I,J,K)\#(THTNV-ALAMINDII*PSITNGIIFJ.KIHTEMP1I/(HINVGALAM(NDISTE03190
1)
STE03190
650 CONTIVUE
JS=3
660 D3 840 J=JS, JMX
IFINLBC.EQ.OIGO TO }76
DO 720 NG=1,NNG
TEMP=1.000/(V(NG)*HT)
DO 670 II=1;4
670 DD(II)=0.000
NPRX=NPRMP{1;J,K)
DO 710 I=1,2
NPR=NPRMP{I,J,K)
DO }690\mathrm{ VGP=1,NTOG
STE03210
STE03220
STE03230
STE03240
STE03250
STE03260
STE03270
STE03280
STE03290
STE03300
STE03310
IF(NGP.GT.NNGIGO TO }68
STE03320
IFINGP.EO.NGIGD TO 690
STE03330
STE03340
DD(If=DD(II*XIM(NG)*DDS(NPR,NGP) \&PSI(NGP,I,J,K)
STE03350
GO TO 690
03350
STE03360
680 ND=NGP-NNG
STE03370
DD(I)=DD(I)*XIP(NG,NDI*PSI(YGP,I,J,K)*VO(NPR)
STE03380

```
DO 700 VDN \(=1\), NDNSCT
STE03390
STE03400
\(1-1\)
IFAITEMP1.LE.OIGOTO 700
STE03410
STE03420
```

 DD(I)=03(I)+DD7(NPR,ITEMP1,NDN)*PSIIITEMP1,I,J,K) STE03430
 700
CONTINUE
PTEM=TEMP*VO(NPR) STE03441
STE03440
DD(I)=DD(I) +(PTEM-)D4(NPR,NG))*PSI(NG;I,J,K) +DDL(NPR,NG) \#PSI(NG, I +STE03450
11,J,K)+DD2(NPR,NG) *PSI(NG,I,J+1,K)+DD2(NPRMP(I,J-1,NI,NG)*PSI(NG,ISTE03460
2,J-1,K) +DD3(NPR,NG)*PSI(NG,1,J,K+1)+DD3(NPRMP(I,J,K-1),NG1*PSI(NG STE03470
3,I,J,k-1)
710 DD(I+2)={TEMP+W(I,J,K)/V(NG))*VD(NPR)+DD5(NPR,NG): STE03490
STE03480
TEMP5=DD(3)*DD(4)-(DD1(NPRX,NG)**2.0DO) STE03500
PSI(NG,I,J,K)=(DD(1) *DD(4) +DD(2)*DD1(NPRX,NG)I//TEMP5 STE03510
PSI(NG,2,J,K)=(DD(2)*DD(3)*DD(1)*DD1(NPRX,NG)I/TEMP5 STE03520
720 CONTINUE
STE03530
D5 750 I=1,2
NPR=NPRMP(I,J,K) STE03550
STE03540
DO 740 VD=1,NDG STE03560
NG=ND+NNG
- TEMP1=0.0DO
DO 730 VGP=1,NNG
730 TEMP1=TEMPL + BETA(ND)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03600
TEMP1=TEMP1/(EFFK*VO(NPRI) STEO3610
740 PSI(NG,I,J,K)={(HINV-ALAM(ND))*PSI(NG,I,J,K)\&TEMPI)/(HINV+ALAM(ND)STE03620
1)
STE03630
750 CONTIVUE STE03640
IS=3 STEO3650
760 DJ 830 I I IS,IMX
STE03660
NPR=NPRMP(I,J,K) STE03670
NPRX=NPRMP(I-1,J,K): STE03680
NPRY=NPRMP(I,J-1,K)
NPRI=NPRMP(1,J,K-1)
DO 800 NG=1, NNG
TEMP=1.000/(V(NG)*HT)
TEMP1=0.000
DC }780\mathrm{ NGP=1,NTOG
IFINGP.GT.NNGIGO TO 770 STEO3750
IF(NGP.EQ.NGIGO TO }78
IFINGP.GT.NNGIGO TO 770 STEO3750
TEMPI=TEMP1 + XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STEO3770
STE03690
STE03700
STE03710
STE03720
TEMP=1.000)
STE03730
STE03740
STE03760

```
    GO TO 780
    STE03780
770 ND=NGP NNG - NMP
    TEMPI=TEMPI +XIP{NG,ND)*PSI(VGP,I&J&K)*VO(NPR) STE03800
780 CBNTINUE
    DO }790\mathrm{ VDN=1,NDNSCT
    ITEMPI = NG-NDN
    IF(ITEMP1.LE.O)GO TO }79
    TEMP1 = TEMPI +DD7(NPR ITEMP1, YDN\*PSI (ITEMP1,I , , K)
7 9 0
    ONTINUE
    PSI(NG,I,J,K)=((PTEM-DDG(NPR,NG))*PSI(NG,I,J,K)&DDI(NPR,NG)&PSI(NGSTEO3R70
    1,I&R,J, ()&ODI(NPRX,NG)*PSI(VG,I-I,J,K)+DD2(YPR,YG)*PSI(NG,I,J+I,KISTEO3880
    2+DD2(NPRY,NG)*PSIfVG,I,J-1,K)+DD 3(NPR,NG)*PSI(NS.,I,J,K+I)+DD3(NPRZSTE03890
    3,NG) *PSI(NG,I,J,K-I) +TEMPI)/((TEMP+W(I,J,K)/V(NG))*VO(NPR)&DD5(NPRSTE03900
    4,NGI!
STE03901
800 CONTIVUE
    STE03910
    DO B20 ND=1,NDG STEO3920
    NG=ND+NNG
    TEMP1=0.0DJ
    DO 810 NGP=1,NNG
TEMP1 = TEMP1 + BETA(ND) *DDG(NPR,NGP)*PSI(NGP,I,J,K)
    TEMP1=TEMP1 / (EFFK*VO(NPR)) STE03970
STF03930
STE03940
STE03950
820 PSI(NS,I,J,K)=((HINV-ALAM(ND)I*PSI(NG,I,J,K) +TEMPI)/(HINV ALAM(ND)STEO3980
    1)
STE03990
830 CDNTINUE STE04000
840 CONTTVU
850 CONTIVUE
    RETURN
STE04010
STE04020
    END STEO4040
```

```
SUBRDUTINE STEPBOIV, XIM, ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DJ1,DD2,DD3, STE00010
1DD4,DD5,DD6,DD7,VO,NPRMP,PSI,W,NNGV,NDGV,NTOGV,NDNSCV, IMV,JMV,KMV,STE00020
2IRMV,JRMV,KRMV,NPRGV,NGXVI \
    IMPLICIT REAL*8 (A-H,O-Z) STE0004O
    INTEGER*2 MMAP,NPRMP
    COMMON/INTG/IASIZE,NNG,NDG, VTOG,NMAT OIM,JM,KM,IRM, JRM, KRM,NLBC,
INFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5), STE00070
2ILTPI5I,NSTEAD,IFLIN,IGEOM,ITITLEI2OI,NOIT,NIIT,NPIT,IJPSI,IODUMP,STE00080
3ITFN,IJFO,I OPN, IDPD, ITEMP, ITEMP1, ITEMP 2, ITEMP3, ITEMP4, ITEMP5, STE00090
4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX STEO0100
    COMMON/FLOTE/EFFR,JRFP,EPS1,EPS2,TEMP,TEMP1, TEMP2,TEMP3,TEMP4, STE00150
ITEMP5,TEMPS, XFISST, XFISSO,ALAMN, ALAMD, TIME, FLXCON, BETAT
    COMMOV/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLCH(5).
    STE00160
    STE00170
IISTEP, ICHHT
    C.OMMOY/TIMELO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4);
1DELSTS(5,4);DELSIS(5,4);DELS2S(5,4);DELSFL(5,4),DELSRL(5,4), STEO0200
STE00180
2DELSTL(5,4),DELS1L(5,4),DELS2L(5,4)
    DIMENSIJN V(NNGVI; XIM(NNGVI, ALAM(NDGV),BETA(NDGV),XIP(NNGV,NDGV), STE00220
IXIIMV);Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV),DDI(NPRGV,NNGV); STE00230
2DD2(NPRGV,VNGV),DD3(NPRGV,NNGV),DD4(NPRGV,NNGV),DD5(NPRGV,NNGV): STE00240
3DD6(NPRGV,NNGV),DD7(NPRGV,NGXV,NDNSCV),NPRMP(IMV,JMV,KMVI: STE00250
4PSI(NTOGV,IMV,JMV,KMV),W(IMV,JMV,KMV),VO(NPRGV) STE00260
    KE=KMX-1
STE00270
    JE=JMX-l
    IF(NFBC.EQ.1)JE=JMX-2
    HINV=1.0DO/HT
    IE=IMX-1
    DO 340 KK=1,KE
    K=KM-KK
    DO 220 JJ=1,JE
    J=JM-JJ
    DO 210 II=1,IE
    I=IM-11
    NPR=NPRMP(I, J,K)
NPRX=NPRMP(I-1,J,K)
    NPRY=NPRMP(1,J-1;K)
STE00290
STE00300
STE00310
STE00320
STE00330
STE00340
STE00350
STE00360
STE00370
STE00380
STE00390
STE00400
STE00410
```

 NPRZ=NPRMP(I,J,K-1) STE00420
 DO 160 NG=1,NNG
 STE00430
 TEMP=1.ODO/(V(NG)*HT)
 STE00440
 110 TEMP1=0.000
STE00450
DO 130 VGP=1,NTOG
IFINGP.GT.VNGIGO TO }12
STE00460
STE00470
IF(NGP.EQ.NGIGO TO 130
STE00480
TEMP1 = TEMPI + XIM(NG) *DD6(NPR,NGPI FPSI(NGP,I,J,K)
STE00490
GO TO 130
STE00500
120 ND=NGP-NNG
TEMP1=TEMP1 +XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR)
130 CONTINUE
DO 140 NDN=1,NDNSCT
ITEMP1 =VG-NDN
IFIITEMP1.LE.0IGO TD 140
TEMP1 = TEMP1 +DD7(NPR,ITEMP1,VDN)*PSI (ITEMP1,I,J,K)
STE00510
STE00520
STE00530
STE00540
STE00550
STE00560
140 CONTINUE
STE00570
STE00580
PTEM=TEMP*VO(NPR)
STE00581
IFII.EQ.1IGO TO 1.50
STE00590
TEMP2=PSI(NG,I,J,K)
STE00600
PSI(NG,I,J,K)=((PTEM-DD4 (NPR,NG))*TEMP2+DDI(NPR,NG)*PSI(NG,I+1,J,KSTEO0610
1)+DD1(NPRX,NG)*PSI(NG,I-1,J,K)\&DD2(NPR,NG)*PSI (NG,I*J*I, K)+DD2(NPRSTE00620
2Y,NG)*PSI(NG,I,J-1,K)+DD3(NPR,NG)*PSI(NG,I,J,KR+1)+DO3(NPRZ,NG)*PSISTE00630
3(NG,I,J,K-I)+TEMPI)/((TEMP+W(I,J,K)/V(NG))*VO(NPR)+DDS(NPR,NG)): STE00640
IFII.GT.2IG0 TO 160
STE00650
IFINLSC.EQ.OIGO TO }16
STE00660
I=1
STE00670
GO TO 110 STE00690
STE00680
150 PSI(NG,I,J,K)=((PTEM-DD4(NPR,NG))*PSI(NG,1,J,K)\&DDI(NPR,NG)\&(PSI(NSTE00700
1G,2,J,K) +TEMP2) +DD2 (NPR,NG)*PSI(NG,1,J+1,K)+DD2(NPRMP(1,J-1, K),NGISTE00710
2*PSI(VG, 1,J-1,K)+DD3(NPR,NG) \#PSI(NG,1,J,K+1) +DD3(NPRMP(1,J,K-1), MGSTEO0720
3)*PS[(NG,1,J,K-1)+TEMP1)/((TEMP+W(I,J,K)/V(NG))*VO(NPR) \& OD5(NPR,NGSTE00730
4))
STE00731
NPR=NPRMP(2,J,K)
STE00740
STE00740
I=2

```
160 CONTINUE
    STE00760
    DO 200 ND=1,NDG
    NG=ND+NNG
170 TEMP1=0.00J
    DO 180 NGP=1,NNG
180 TEMP1=TEMPI +BETA(ND) #DDG(NPR,NGP)*PSI(NGP,I;J,K)
TEMP1 = TEMPL/ (EFFK*VO(NPR)) STE00820
PST(NG,I,J,K)=((HINV-ALAM(VD))*PSI(NG,I,J,K) +TEMPI)/(HINV+AL AM(ND)STE00830
    1)
    STE00840
    STE00850
    STE00860
    IF(I.EQ.1)GO TO 190
    IF(I.GT.2)G0 TO 200
    IFINLBC.EQ.OIGO TO 200
    I=1
    NPR=NPRMP(1,J,K)
    GO TO 170
190 I=2
    NPR=NPRMP(2,J,K)
200 CONTIVUE
210 CONTINUE
220 CONTINUE
    IFINFSC.EQ.OIGO TO }34
    DD 300 NG=1,NNG
    TEMP=1.ODO/(V(NG)*HT)
    DO 290 II=1,IE
230 TEMP2=PSI(NG,I,1,K)
    DO 270 JJ=1,2
    J=3-JJ
    NPR=NPRMP(I,J,K)
    NPRX=NPQMP(1-1,J,K)
    NPRY=NPRMP(1,1,K)
    NPRI=NPRMP(I,J,K-1)
    TEMP1=0. ODO
    DJ 250 VGP=1,NTOG
    IF(NGP.GT.NNGIGO TO 240
    IF(NGP.VE.VG)TEMPI =TEMP1+DDG(NPR,NGP)*PSI(NGP,I,J,K)
    IF(NGP.EQ.NNG)TEMPI = TEMP 1*XIM(NG)
```

STE00760
STE00770
STE00780 STE00790
STE00800 STE00810
STE 00820
STE00830
STE00850
STE00860
STE00870
STE00880
STE00890
STE 00900
STE00910
STE00920
STE 00930
STE00940
STE00950
STE00960
STE00970
STE 00980
STE00990
STE01000
STE01010
STE01020
STE01030
STEO1040
STE01050
STE01060
STE01070
STE01080
STE 01090
STEO1100
STE01110
PAGE 242

G3 TO 250
240 ND=NGP-NNG
TEMP $1=T E M P I+X I P(N G, N D) * P S I(N G P, I, J, K) * V O(N P R)$
250 CONTINUE
TEMP 3=PSI(NG, I, 2,K)
PTEM=TEMP*VO(NPR)
IFII.EQ.1)GO TO 260
STEOL120 STE01130 STE01.140 STE01150

$1, I+1, J,()+T D 1(N P R X, N G) * P S I(N G, I-1, J, K)+D D 2(N P R, N G) \neq P S I(N G, I ; J+1, K$ ISTEO1190
3G,I,J,K-1)+TEMPI)/(ITEMP+WII,J,K)/V(NGI)*VO(NPR)+DO5(NPR,NG)) STE01210
TEMP 2 $=$ TFMP3
STE01220
GD TO 270
STEO1230
260 PSI(NG,I,J,K)=((PTEM-DD4(VPR,NG))*PSI(NG,I,J,K)+DDI(NPR,NG) \# (TEMP4STE01240 $1+P S I(V G, 2, J, K))+D D 2(N P R, N G) * P S I(N G, 1, J+1, K)+D D 2(N P R Y, N G) * T E M P 2+\quad$ STE 01250
$2003(N P R, N G) * P S I(N G, 1, J, K+1)+D 03(N P R Z, N G) * P S I(N G, 1, J, K-1)+T E M P 1) /$ STEO1260
$3((T E M P+W(1, J, K) / V(N G)) * V O(N P R)+D D 5(N P R, N G))$ STE01270
TEMP $4=$ TEMP5
STE01280
TEMP 2=TEMP3
STEO1290
IFII.EQ. 2150 TO 280
IFII.VE.3)GD TO 290
TEMP4=PSI(NG,2,2,K)
TEMP 5=PSI(NG,2,1,K)
GO 10290
280 I=1
GD TO 230
290 CONTINUE
300
continue
DJ 330 II $=1$, IMX
$\mathrm{I}=\mathrm{IM}$-II
D $330 \mathrm{JJ}=1,2$
$\mathrm{J}=3-\mathrm{JJ}$
NPR $=N P R M P(I, J, K)$
DO 320 ND=1, NDG
NG $=$ ND + NNG

STE01300
STEO1310
STEO1320
STE01330
STE01340
STE01350
STE01360
STEOI 370
STE01380
STE01390
STEO1400
STE01410
STE01420
STE01430
STE 01440
STE01450
STE01460

```
        TEMP1=0.000
    STE01470
    DO 315 VGP=1, NNG
STEO1480
    310 TEMP1=TEMP1 + BETA(ND)*DDS(NPR,NGP)*PSI(NGP,I,J,K)
    TEMP 1 = TEMP1 / (EFFK*VO(NPR))
    STE01490
    STE01500
    320 PSI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K) +TEMPI)/(HIYV+ALAM(ND)STEOL510
        1) STEO1520
    330 CONTINUE
    340 CONTIVUE
    VOH CARPY OUT EXP(W*H) TRANSFJRMATION
    STE01530
    STE01540
    STE01550
    STE01560
    STE01570
    00 370 I=1,IMX
    TEMPI=DEXP(W(I,J,K)*HT)
    DO 360 VG=1,NNG
360 PSI(NG,I,J,K)=TEMP1*PSI(NG,I,J,K)
370 CONTINUE
    RETURV
    END
STE01580
STE01590
STEO1600
STE01610
STE01620
STE01630
STE01640
```

```
    SUBROJTINE FREQO(PSI,PSD,W,VTOGV,IMV,JMV,KMV) FRE00010
    IMPLICIT REAL*8 (A-H,O-Z) FRE0002O
    INTEGER*2 MMAP,NPRMP
    COMMON/INTS/IASIZE,NNG,NDG,NTDG,NMAT,IM,JM,KM,IRM,JRMPKRM,NLBC,
    FRE00030
    FRE00040
    1NFBC,NBBC,NDNSCT,NPRG,IDPT,NTG,NXTP,NYTP,NZTP,IXTP(5), IYTP(5),
    FRE00050
    2IZTP(5),NSTEAD,IFLIN,IGECM,ITITLE(20),NOIT,NIIT,NPIT,IOPSI, IODUMP,FREO0060
    3IOFN,IOFD,IOPN,IOPD, ITEMP,ITEMP1, ITEMP 2, ITEMP3, ITEMP4, ITEMP5, FRE00070
    4NTIT,IETIME,IFLOUT, IMX,JMX,KMX,I OSCI,IOSC2,VGX
    COMMON/FLOTE/EFFK,JRFP,EPS1,EPS2,TEMP,TEMP1,TEMP2,TEMP3,TEMP4,
    ITEMP5, TEMPS, XFISST, XFISSD, ALAMN, ALAMD, TIME,FLXCJN, BETAT
    FRE00080
    COMMOV/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLCH(5),
    IISTEP,ICHHT
    COMMON/TIMFLO/T,HT,HMIN,HMAX,TSTART,TEND,DELSFS(5,4),DELSRS(5,4),
    1DELSTS(5,4);DELSIS(5,4),DELS2S(5,4),DELSFL(5,4),DELSRL(5,4),
    2DELSTL(5,4),DELS1L(5,4),DELS2L(5,4)
    DIMENSIJN PSI(NTOSV,IMV,JMV,KMV),PSI(IMV,JMV,KMV),W(IMV,JMV,KMV)
    TEMP5=1.000/(2.000*HT)
C COMPUTE FREOUENCIES
    DJ 120 K=2,KMX
    DO 120 J=1,JMX
    OD 120 I=1,IMX
    IF(PSJ(I,J,K).LT.1.0D-30)GD TO 110
    TEMP4=PSI(NTG,I,J,K)/PSO(I,J,K)
    IF(DABS(1.000-TEMP4).LT.1.0D-08)GO TO 110
    W(I,J,K)=TEMP5*DL OG (TEMP4)
    GO TO 120
110 W(I,J,K)=0.000
1.20 CONTIVUE
    RETURN
    END
FRE00340
```

