

CA 138 ALBANY STREET 9 CAMBRIDGE, MASS. 02139 MIT-3903-4 MITNE-132

SOLUTION OF THE SPACE-DEPENDENT REACTOR KINETICS EQUATIONS IN THREE DIMENSIONS

by

Donald R. Ferguson, K. F. Hansen

August, 1971

Massachusetts Institute of Technology Department of Nuclear Engineering Cambridge, Massachusetts 02139

AEC Research and Development Report

Contract AT (30-1) 3903 U.S. Atomic Energy Commission

MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF NUCLEAR ENGINEERING Cambridge, Massachusetts 02139

SOLUTION OF THE

SPACE-DEPENDENT REACTOR KINETICS EQUATIONS IN THREE DIMENSIONS

by

Donald R. Ferguson, K. F. Hansen

August, 1971

RETURN TO: NUCLEAR ENGINEERING LIBRARY 138 ALBANY STREET CAMBRIDGE, MASS. 02139

MIT - 3903 - 4

MITNE - 132

AEC Research and Development Report

Contract AT (30-1) 3903

U.S. Atomic Energy Commission

4 . .

SOLUTION OF THE SPACE-DEPENDENT REACTOR KINETICS EQUATIONS IN THREE DIMENSIONS

by

Donald Ross Ferguson

Submitted to the Department of Nuclear Engineering on August 16, 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

A general class of two-step alternating-direction semi-implicit methods is proposed for the approximate solution of the semidiscrete form of the space-dependent reactor kinetics equations. An exponential transformation of the semi-discrete equations is described which has been found to significantly reduce the truncation error when several alternating-direction semi-implicit methods are applied to the transformed equations. A subset of this class is shown to be a consistent approximation to the differential equations and to be numerically stable. Specific members of this subset are compared in one- and two-dimensional numerical experiments. An "optimum" method, termed the NSADE (Non-Symmetric Alternating-Direction Explicit) method is extended to three-dimensional geometries. Subsequent three-dimensional numerical experiments confirm the truncation error, accuracy, and stability properties of this method.

Thesis Supervisor: Kent F. Hansen Title: Professor of Nuclear Engineering

TABLE OF CONTENTS

	Page
ABSTRACT	2
LIST OF FIGURES	5
LIST OF TABLES	6
ACKNOWLEDGMENTS	7
BIOGRAPHICAL NOTE	8
Chapter 1. INTRODUCTION	9
1.1 The Space-Dependent Reactor Kinetics Problem	9
1.2 The Space-Dependent Reactor Kinetics Equations	12
1.3 The Spatially Discretized Equations	15
1.4 A Review of Solution Techniques	18
Chapter 2. ALTERNATING-DIRECTION SEMI-IMPLICIT TECHNIQUES	23
2.1 The <u>A</u> Matrix	24
2.2 The Exponential Transformation	26
2.3 A General Two-Step Alternating-Direction Semi-Implicit Method	28
2.4 Properties of the Generalized Method with Transformation	30
2.5 Specific Splittings for Two Dimensions	41
2.6 A Proposed Method for Three Dimensions: NSADE	50
Chapter 3. NUMERICAL RESULTS	51
3.1 One- and Two-Dimensional Studies	51
3.2 Three-Dimensional Studies: Homogeneous Problem	59
3.3 Three-Dimensional Studies: Space-Dependent Problems	64

-			
Р	а	g	е

Chapter 4. CONCLUSIONS AND RECOMMENDATIONS	78
4.1 Characteristics of the Numerical Results	78
4.2 Applicability of the NSADE Method	81
4.3 Limitations of the NSADE Method	84
4.4 Recommendations for Further Work	85
REFERENCES	86
Appendix A. THE SEMI-DISCRETE FORM OF THE SPACE- DEPENDENT REACTOR KINETICS EQUATIONS	90
Appendix B. THEOREMS	97
Appendix C. TEST PROBLEM DATA	107
Appendix D. THE COMPUTER PROGRAM 3DKIN	116
D.1 Description of the Steady State Section	116
D.2 Description of the Time-Dependent Section	125
D.3 Overlay Structure and Input/Output Devices for 3DKIN	126
D.4 Description of Input for 3DKIN	128
D.5 Input for Sample Problem	140
Appendix E. SOURCE LISTING OF 3DKIN (Only in first six copies)	142

LIST OF FIGURES

<u>No</u> .		Page
3.1	Convergence Rate for Test Case 1	62
3.2	Test Case 1 Results, Centerline Thermal Flux	63
3.3	Test Case 4 Results, Point (1, 5, z)	75
3.4	Test Case 4 Results, Point (1, 21, z)	76
A.1	Coordinate System	91
A.2a	Plane Perpendicular to z-Axis at (l, j, k)	91
A.2b	Plane Perpendicular to y-Axis at (l, j, k)	91
C.1a	x-y Plane for $24 \le z \le 136$ cm	109
C.1b	x-y Plane for $0 \le z \le 24$, $136 \le z \le 160$ cm	109
C.2	x-y Plane for $0 \le z \le 120$ cm	111
C.3a	x-y Plane for $30 \le z \le 270$ cm	113
C.3b	x-y Plane for $0 \le z \le 30$ cm, $270 \le z \le 300$ cm	113
D.1	Overlay Structure for 3DKIN	126

LIST OF TABLES

<u>No</u> .		Page
3.1	Group 1 Fluxes at Point (3,9)	58
3.2	Group 1 Fluxes at Point (12, 3)	58
3.3	Group 4 Fluxes at Point (3, 9)	59
3.4	Group 4 Fluxes at Point (12, 3)	59
3.5	Test Case 1 Results, Group Two Fluxes at Centerpoint	61
3.6	Test Case 2 Results, z-Plane 3	66
3.7	Test Case 2 Results, z-Plane 11	66
3.8	Test Case 2 Results, z-Plane 19	67
3.9	Test Case 3 Results, z-Plane 4, Group 1	70
3.10	Test Case 3 Results, z-Plane 4, Group 4	70
3.11	Test Case 3 Results, z-Plane 12, Group 1	70
3.12	Test Case 3 Results, z-Plane 12, Group 4	71
3.13	Test Case 4 Results, z-Plane 5	73
3.14	Test Case 4 Results, z-Plane 10	74
3.15	Test Case 4 Results, z-Plane 16	74
4.1	Computational Times	81
4.2	Comparison of Computing Speeds	82
D.1	Input/Output Symbolic Devices	128

ACKNOWLEDGMENTS

Several people and organizations are deserving of an expression of appreciation from the author for the assistance and encouragement they rendered during the course of this work. Professor Kent T. Hansen provided valuable guidance and made himself available for discussions whenever requested by the author.

Professor Allan F. Henry and Dr. William H. Reed shared helpful ideas and observations on several occasions. Much of section 2.4 of this thesis is based on work first completed by Dr. Reed and by Dr. Alan L. Wight.

The author's wife, Signe, provided support and never complained about the countless nights spent by the author at the Information Processing Center.

Fellowship support for the author was provided by the U.S. Atomic Energy Commission. The work was performed under USAEC Contract AT (30-1)-3903. All computation was performed on an IBM 360/65 computer at the M.I.T. Information Processing Center.

Finally, Mrs. Mary Bosco displayed a considerable amount of skill in the typing of this thesis.

7

BIOGRAPHICAL NOTE

Donald Ross Ferguson was born on May 14, 1944, on a farm near Kensington, Kansas. He attended elementary and secondary school in Kensington, Kansas, and was graduated from Kensington Public High School in May, 1962.

He enrolled at Kansas State University in September, 1962. While an undergraduate, he was a member of FarmHouse social fraternity and served as Chairman of the University's Student Senate and as Vice-President of the Student Body. He was elected to Blue Key National Honor Fraternity. In January, 1967, he was graduated Magna Cum Laude with a B.S. degree in Nuclear Engineering.

After spending seven months as a graduate student at Kansas State University, he entered the University of Birmingham, Birmingham, U.K., as a graduate student in the Department of Physics. He was supported by a Fulbright-Hays Scholarship. He received an M.Sc. degree in Reactor Physics and Technology in December, 1968.

In February, 1969, he entered Massachusetts Institute of Technology as a graduate student in the Department of Nuclear Engineering.

Mr. Ferguson is married to the former Signe Louise Burk of Wichita, Kansas.

Chapter 1

INTRODUCTION

1.1 The Space-Dependent Reactor Kinetics Problem

In the past few years, much effort has been devoted to developing methods for solving the time-dependent multigroup neutron diffusion equations in one or more spatial dimensions. This work has been motivated by at least three reasons. First, it is a mathematical certainty that the solution of these equations for any reactor subjected to a perturbation, which is not homogeneous over the entire reactor, will exhibit a spatially nonuniform behavior. Second, and more practically, the present generation of 1000 Mw (e) and larger light water thermal reactors are so large that they behave in a loosely-coupled manner when subjected to localized perturbations. Finally, the inherently more severe safety problems associated with large liquid-metalcooled fast breeder reactors must be analyzed as exactingly as possible. Certainly, methods capable of treating space-time effects should be available for use in this analysis.

The time constants associated with the various phenomena which affect the neutron flux distribution in space span many orders of magnitude. Those associated with the burnout of fissile isotopes, buildup of most fission products, and the production of fissile isotopes from fertile isotopes are on the order of weeks and months. Uneven variations in the xenon concentration in space and time can cause spatial power oscillations, with time constants on the order of several hours. Sodium voiding, loss of coolant in water-cooled reactors, and rapid control rod motions give rise to flux changes with associated time constants on the order of tens of microseconds to a few seconds.

For the most part, those phenomena which occur on a time scale of hours or longer are adequately treated by quasi-static techniques, where the time dependence is treated by a series of static calculations. Of concern for this thesis are methods for treating the more rapid flux variations, where the transient of interest extends over a few seconds at most. The time derivatives cannot be ignored for these transients. These problems are also of the most concern from the standpoint of accident analysis.

For the purposes of this thesis, it is assumed that the multigroup form of the time-dependent diffusion equation is adequate to describe the spatial and energy distribution of the neutron population in a reactor. This is generally true for assemblies of the size of current power reactors, particularly if more exacting methods have been used to obtain the multigroup constants for the various material compositions in the assembly. A more exact mathematical treatment, such as using the time-dependent transport equation, is usually necessary only for more exotic problems such as weapons calculations.

In addition, only the linear form of the multigroup equation is treated in this thesis. Changes in material properties in time are not coupled to local or assembly-wide flux variations. Perturbations are intended to simulate external factors such as control rod motion. Fortunately, for both the reactor designer and for those concerned with methods development, most feedback mechanisms are relatively

10

smooth functions of such factors as temperature and pressure. Since the method developed in this thesis treats problems with time-varying coefficients with no difficulty, it is believed that the method should also treat problems with additional variations in coefficients due to nonlinear feedback effects.

As shown later in this thesis, the equations are finite-differenced on a fixed spatial mesh before they are solved. When the fixed mesh has been specified, an error has been incurred in computing the initial spatial flux distribution and largest eigenvalue when these are compared to the solution of the differential form of the equations. This error is due to the finite mesh spacing. It will be carried on into later time-dependent results obtained from the finite-differenced form of the equations. However, discussions of truncation error in the numerical results shown in this thesis do not refer to this error. Of concern here is the error in the approximate solution when compared to the exact solution of the differential-difference system of equations.

The remainder of this chapter presents the form of the spacedependent reactor kinetics equations to be used hereafter. Several methods previously employed to solve these equations are also reviewed. In Chapter 2, a very general solution technique is derived and shown to possess several desirable and mathematically necessary properties. Four specific variants are considered in more detail for comparative numerical testing. Finally, one of these methods is proposed as being most suitable to three spatial dimensions. Chapter 3 begins with the results of the numerical comparisons of the four variants over a range of problems in one and two spatial dimensions. Numerical results for four problems in three dimensions, obtained with the method proposed in Chapter 2, are presented to conclude the chapter. Chapter 4 summarizes the conclusions which can be reached concerning this method and includes a discussion of its advantages and limitations.

1.2 <u>The Space-Dependent Reactor Kinetics Equations</u>

The diffusion approximation to the reactor kinetics equations may be written as follows:¹

$$\frac{1}{v_g} \frac{d\phi_g}{dt} (\vec{r}, t) = \vec{\nabla} \cdot D_g(\vec{r}, t) \vec{\nabla}\phi_g(\vec{r}, t) + \sum_{g'=1}^G \Sigma_{gg'}(\vec{r}, t)\phi_{g'}(\vec{r}, t) + \sum_{i=1}^I f_{gi}C_i(\vec{r}, t) \quad (1 \le g \le G)$$

$$\frac{\mathrm{d}C_{i}}{\mathrm{d}t}(\vec{r},t) = -\lambda_{i}C_{i}(\vec{r},t) + \sum_{g'=1}^{G} p_{ig'}(\vec{r},t)\phi_{g'}(\vec{r},t) \quad (1 \leq i \leq I),$$
(1.1)

where

g = index number of the energy group i = index number of the delayed neutron precursor group ϕ_g = scalar neutron flux in energy group g (neutrons/cm².sec) C_i = density of the ith precursor (cm⁻³) v_g = speed of the neutrons in the gth group (cm/sec) D_g = diffusion coefficient for neutrons in group g (cm) $\Sigma_{gg'}$ = intergroup macroscopic transfer cross section from group g' to group g (cm⁻¹), with the following structure:

$$\Sigma_{gg} = \chi_{g} \nu_{g} (1-\beta) \Sigma_{fg} - \Sigma_{ag} - \sum_{g' \neq g} \Sigma_{sg'g},$$

 χ_g = the fission spectrum yield in group g ν_g = average number of neutrons per fission in group g Σ_{fg} = macroscopic fission cross section in group g Σ_{ag} = macroscopic absorption cross section in group g $\Sigma_{sgg'}$ = macroscopic scattering cross section from g' to g β = total fractional yield of delayed neutrons per fission.

$$\Sigma_{gg'} = \chi_g \nu_g \Sigma_{fg'} (1-\beta) + \Sigma_{sgg'}, \qquad g' \neq g.$$

 $f_{gi} = \lambda_i \chi_{gi}$ = probability (sec⁻¹) that the ith precursor will yield a neutron in group g, where λ_i is the decay constant and $\vec{\chi}_i$ the energy spectrum of neutrons from the ith precursor

$$p_{ig'} = \beta_i \nu_{g'} \Sigma_{fg'}$$
 = production factor (cm⁻¹) for the ith pre-
cursor having fractional yield β_i by fissions
in group g'.

Boundary conditions for Eqs. (1.1) will be of the homogeneous Neumann or Dirichlet type. At internal interfaces, continuity of the flux and normal component of the neutron current, $\vec{n} \cdot D \nabla \phi$, will be required. An initial flux distribution in energy and space must be specified.

Equations (1.1) may be compacted into the form,¹

$$\frac{d\vec{\theta}}{dt}(\vec{r},t) = \underline{M}(\vec{r},t)\vec{\theta}(\vec{r},t), \qquad (1.2)$$

by defining the matrices

$$\vec{\theta}(\vec{r}, t) = \begin{bmatrix} \phi_1(\vec{r}, t) \\ \phi_2(\vec{r}, t) \\ \vdots \\ \phi_G(\vec{r}, t) \\ C_1(\vec{r}, t) \\ \vdots \\ C_I(\vec{r}, t) \end{bmatrix}$$
(1.3a)

and

 $\underline{M}(\vec{r}, t) =$

$$\begin{bmatrix} v_{1}(\vec{\nabla} \cdot D_{1}\vec{\nabla} + \Sigma_{11}) & v_{1}\Sigma_{12} & \cdots & v_{1}\Sigma_{1G} & | v_{1}f_{11} & \cdots & v_{1}f_{1I} \\ v_{2}\Sigma_{21} & v_{2}(\vec{\nabla} \cdot D_{2}\vec{\nabla} + \Sigma_{22}) & \cdots & v_{2}\Sigma_{2G} & | v_{2}f_{21} & \cdots & v_{2}f_{2I} \\ & & \ddots & & & & & & \\ - \frac{v_{G}\Sigma_{G1}}{p_{11}} & \frac{v_{G}\Sigma_{G2}}{p_{12}} & \cdots & v_{G}(\vec{\nabla} \cdot D_{G}\vec{\nabla} + \Sigma_{GG}) & | v_{G}f_{G1} & \cdots & v_{G}f_{GI} \\ & & & \ddots & & & & & \\ p_{11} & p_{12} & \cdots & p_{1G} & | & -\lambda_{1} & 0 \\ & & & \ddots & & & & \\ p_{11} & p_{12} & \cdots & p_{1G} & | & & -\lambda_{1} \end{bmatrix}$$

$$(1.3b)$$

This form of the equations will be used later in discussing various mathematical properties of solution techniques proposed in this thesis.

1.3 The Spatially Discretized Equations

Equations (1.1) are continuous in both spatial and temporal variables. In order to discretize the spatial variables, a threedimensional spatial mesh is superimposed upon the reactor of interest. Equations (1.1) are then integrated over the volumes associated with each of the mesh points, using the box-integration technique.³ The resulting equations are referred to as the semi-discrete equations.

The semi-discrete forms of the reactor kinetics equations are derived in detail in Appendix A. The resulting equations for the neutron flux at all mesh points for group g, $\vec{\psi}_g$, and the ith precursor concentration at all mesh points, \vec{C}_i , can be written as

$$\frac{\mathrm{d}\vec{\psi}_{g}}{\mathrm{d}t} = \underline{\mathrm{D}}_{g}\vec{\psi}_{g} + \sum_{g'=1}^{G} \underline{\mathrm{T}}_{gg'}\vec{\psi}_{g'} + \sum_{i=1}^{I} \underline{\mathrm{F}}_{gi}\vec{\mathrm{C}}_{i} \quad (1 \leq g \leq G)$$
(1.4)

and

$$\frac{d\vec{C}_{i}}{dt} = -\underline{\Lambda}_{i}\vec{C}_{i} + \sum_{g'=1}^{G} \underline{P}_{ig'}\vec{\psi}_{g'} \quad (1 \le i \le I).$$
(1.5)

Here, \underline{D}_{g} is a seven-stripe matrix representing the net neutron leakage across the six sides of the mesh volume. All other square matrices are diagonal. $\underline{T}_{gg'}$ contains terms representing intergroup transfer processes, and \underline{F}_{gi} represents the transfer of delayed neutrons into group g due to decays in precursor group i. $\underline{\Lambda}_{i}$ contains the precursor decay constants, while $\underline{P}_{ig'}$ represents the production of delayed precursor i due to fissions in group g'.

Equations (1.4) and (1.5) can be combined into the single matrix equation,

$$\frac{\mathrm{d}\vec{\psi}}{\mathrm{dt}} = \underline{A}\,\vec{\psi}\,.\tag{1.6}$$

The matrix <u>A</u> is square and of order N * (G+I), where N is the number of spatial mesh points. Here, $\vec{\psi}$ and <u>A</u> have been defined as

$$\vec{\psi} = \begin{bmatrix} \vec{\psi}_{1} \\ \vec{\psi}_{2} \\ \vdots \\ \vec{\psi}_{G} \\ \vec{c}_{1} \\ \vdots \\ \vec{c}_{I} \end{bmatrix}$$
(1.7)

and

$$\underline{A} = \begin{bmatrix} \underline{P}_{1} + \underline{T}_{11} & \underline{T}_{12} & \cdots & \underline{T}_{1G} & | & \underline{F}_{11} & \cdots & \underline{F}_{1I} \\ \underline{T}_{21} & \underline{D}_{2} + \underline{T}_{22} & \cdots & \underline{T}_{2G} & | & \underline{F}_{21} & \cdots & \underline{F}_{2I} \\ & & & & & & & & \\ \hline \underline{T}_{G1} & \underline{T}_{G2} & \cdots & \underline{D}_{G} + \underline{T}_{GG} & | & \underline{F}_{G1} & \cdots & \underline{F}_{GI} \\ \hline \underline{P}_{11} & \underline{P}_{12} & \cdots & \underline{P}_{1G} & | & -\underline{\Lambda}_{1} \\ \underline{P}_{21} & \underline{P}_{22} & \cdots & \underline{P}_{2G} & | & & & \\ & & & & & & & \\ \underline{P}_{I1} & \underline{P}_{I2} & \cdots & \underline{P}_{IG} & | & \underline{0} & & \\ \hline \underline{P}_{I1} & \underline{P}_{I2} & \cdots & \underline{P}_{IG} & | & \underline{0} & & \\ \end{bmatrix} . (1.8)$$

For later reference, several matrices are defined here as follows:

16

$$\mathbf{L} = \begin{bmatrix} \mathbf{P}_{1} & \mathbf{Q} & \cdots & \mathbf{Q} & \\ \mathbf{Q} & \mathbf{P}_{2} & \cdots & \mathbf{P}_{G} & \\ & & & & \mathbf{Q} & \\ & & & & & \mathbf{Q} & \\ & & & & & \mathbf{Q} & \\ & & & & & \mathbf{Q} & & \\ & & & & & \mathbf{Q} & \\ & & & & & \mathbf{Q} & & \\ & & & &$$

and

$$\underline{\mathbf{T}} = \underline{\mathbf{A}} - (\underline{\mathbf{D}} + \mathbf{L} + \mathbf{U}) \,. \tag{1.9d}$$

For any period of time, Δt , during which all terms in <u>A</u> are constant, Eq. (1.6) has the solution

$$\vec{\psi}(\Delta t) = e^{\underline{A}\Delta t} \vec{\psi}(0) . \qquad (1.10)$$

All solution techniques for the semi-discrete equations are approximations to Eq. (1.10).

1.4 <u>A Review of Solution Techniques</u>

Calculational methods used for solving the space-dependent kinetics equation can be placed into two broad categories. The first category can be generally classed as modal methods.⁴ More specifically, it can be broken into time synthesis and space-time synthesis, both of which could be termed indirect solution techniques. These methods make some assumption about the shape of the solution over several subregions or the entire reactor. These assumptions are forced into the final solution through a variety of techniques. The second category could be termed direct techniques and consists of methods whereby Eqs. (1.1) are solved directly. Since these equations can be solved analytically only for the most trivial of problems, these direct techniques generally involve finite-differencing them and proceeding to solve some approximation to Eq. (1.6).

All of the indirect methods approach the problem by expanding the solution as a linear combination of some set of functions:

$$\vec{\psi}(\vec{r},t) = \sum_{k=1}^{K} \underline{T}_{k}(\vec{r},t) \vec{\psi}_{k}(\vec{r}) . \qquad (1.11)$$

The time synthesis methods use one or more $\vec{\psi}_k(\vec{r})$, each of which is defined over the entire solution region. The \underline{T}_k then become functions only of time. The $\vec{\psi}_k(\vec{r})$ may consist of eigenmodes of one of several static operators. Among those suggested are the Helmholtz eigenmodes, the ω -modes, and the λ -modes.⁴ None of these have been very successfully applied to any general class of two- or three-dimensional problems.

Alternatively, the $\vec{\psi}_k(\vec{r})$ may be the fundamental modes of a set of operators, each describing the reactor in a different state. Most naturally, these states are chosen to be static states of the reactor at different times during the particular transient of interest.⁵ These states can be computed by standard static methods. However, for three-dimensional problems, even the best methods for computing the $\vec{\psi}_k(\vec{r})$ are very time-consuming. It should be noted that the well-known adiabatic method⁶ and quasi-static method^{7,8} can be considered as variants of time synthesis where only one trial function is used at a time, but new trial functions are used every few time steps.⁴

In space-time synthesis methods, the $\vec{\psi}_k(\vec{r})$ are chosen to represent flux shapes over subregions of the reactor, where the subregion may be a subvolume, plane, or subplane. For example, the so-called singlechannel synthesis technique^{9,10,11} divides a three-dimensional reactor into a number of axial zones and uses a set of two-dimensional flux shapes for the $\vec{\psi}_k(\vec{r})$ within each zone. The sets may vary from zone to zone, and are chosen to represent static conditions across planes perpendicular to the axis in the zones at various times in the transient. Being only two-dimensional, they are relatively easy to compute. Multi-channel synthesis techniques^{12,13} additionally partition the planes perpendicular to the axis into zones and use sets of $\vec{\psi}_k(\vec{r})$ which are allowed to vary independently in these planar zones.

Once the expansion functions have been chosen, equations to be solved for the expansion coefficients are generated using either a variational principle encompassing the multigroup diffusion equations or a weighted residual technique. The great advantage of these methods is that the number of equations to be solved is generally small compared to the number of points at which $\vec{\psi}(\vec{r}, t)$ will be known when the expansion in Eq. (1.11) is carried out, even for three-dimensional calculations. Using a space-time synthesis technique, flux solutions at 10^5-10^6 mesh points over the period of interest in a transient can be obtained in reasonable amounts of computer time.

These synthesis techniques are characterized by a lack of definitive error bounds, however. There is little but intuition to indicate when a set of trial functions will give good results for a particular perturbation.

The direct finite difference techniques, in contrast, are characterized by fairly definitive error estimates. Because of this property, they are extremely useful as numerical standards against which the more approximate methods may be compared. As computational capabilities increase, direct methods also become practical for routine production calculations in one and two dimensions. If fine spatial detail is not required, even three-dimensional direct methods become practical for some types of routine calculations.

In one spatial dimension, the GAKIN¹⁴ and WIGLE¹⁵ methods have been incorporated successfully into codes after which they were named. GAKIN solves Eq. (1.6) by splitting <u>A</u> and using the diagonal part of it as an integrating factor to integrate the equation. The behavior of the dependent variables, $\vec{\psi}$, is approximated over each time step so that the integrals can be evaluated.

The WIGLE method approximates the solution to Eq. (1.6) over a series of time steps Δt by

$$\vec{\psi}^{j+1} = \Delta t \,\underline{\theta} \,\underline{A} \,\vec{\psi}^{j+1} + \Delta t \,(\underline{I} - \underline{\theta}) \,\underline{A} \,\vec{\psi}^{j} \,, \qquad (1.12)$$

where $\underline{\theta}$ is a diagonal matrix of coefficients, θ_{ii} ($0 \le \theta_{ii} \le 1$). The θ_{ii} 's are chosen to improve the accuracy of the approximation. Setting $\underline{\theta} = \frac{1}{2} \underline{I}$ would yield the Crank-Nicholson approximation with its favorable $O(\Delta t^3)$ truncation error. Thus, relatively large time steps can be taken, but the inversion of the matrix ($I - \Delta t \underline{\theta} \underline{A}$) must be carried out iteratively. This is equivalent to solving a fixed-source subcritical reactor calculation at each time step.

In two dimensions, the WIGLE method has been extended into the code TWIGL.¹⁶ This code is limited to two neutron groups, but the method could treat any number of groups. Practically, a difficulty arises because even two-group, two-dimensional fixed-source calculations must be done by time-consuming iterative techniques. As more groups are added, time requirements increase rapidly for these iterations.

The LUMAC¹⁷ code extends the GAKIN method to two dimensions by approximating the leakage in first one dimension and then the other by a pointwise transverse buckling over two time steps. The matrices to be inverted at each time step are of the same form as in one dimension and are easily inverted.

Finally, the MITKIN^{1,2} method uses a particular alternatingdirection, semi-implicit splitting technique referred to as an alternating-direction explicit method.¹⁸ In addition, an exponential transformation is applied to Eq. (1.6), which greatly improves the truncation error. This method is computationally very rapid since all matrices to be inverted are triangular in form. Over a range of problems, it has been shown to be more rapid than the LUMAC algorithm. Increasing the number of mesh points or the number of energy groups results in only a linear increase in computational time. It has also been successfully extended to cylindrical (r-z) and hexagonal geometries.¹⁹

Motivation for extension of one of these or another method to treat a general class of three-dimensional multigroup problems comes primarily from the need for an accurate numerical standard against which the more rapid synthesis techniques can be tested. In three dimensions, the WIGLE method would be straightforward but extremely timeconsuming, due to the great increase in time necessary to perform the three-dimensional, fixed-source-like calculations. Because of its demonstrated superiority over the GAKIN method in two dimensions, the alternating-direction semi-implicit method used in MITKIN is the most promising technique for three dimensions. It is the purpose of this thesis to investigate several variations of this method and extend the "optimum" variation to three dimensions.

Chapter 2

ALTERNATING-DIRECTION SEMI-IMPLICIT TECHNIQUES

It is the purpose of this chapter to examine the theoretical foundations of a class of semi-implicit approximations to the solution of Eq. (1.6), given exactly by Eq. (1.10). Thus, approximations to the operator $\exp(\underline{A} \Delta t)$ are examined. Restricting consideration to twolevel (first order) approximations of the time derivative, the matrix equivalents of the well-known Padé rational approximations²⁰ are the most straightforward. Equation (1.12), with $\underline{\theta}$ set to $\underline{0}$, \underline{I} , and $\frac{1}{2} \underline{I}$ gives, respectively, the Padé (0, 1), (1, 0), and (1, 1) approximations. However, the (0, 1) approximation suffers from severe stability restrictions,²⁰ while the (1, 0) and (1, 1) approximations require inversion of a matrix containing \underline{A} . This becomes prohibitively timeconsuming in problems involving three spatial dimensions and several neutron energy groups.

The class of semi-implicit techniques examined here circumvents this difficulty by "splitting" <u>A</u> and inverting only a part of it at a time, a part generally chosen to be easily inverted. The alternatingdirection implicit method²¹ and alternating-direction explicit method¹⁸ are members of this class. Treating only a part of <u>A</u> implicitly necessarily leads to more severe truncation error difficulties and the requirement of much smaller time steps than for methods which invert <u>A</u> in its entirety. Thus, application of several of these methods to the direct solution of Eq. (1.6) has been found to be unsatisfactory.^{1,22,23} After reviewing properties of the <u>A</u> matrix in section 2.1, an exponential transformation to Eq. (1.6) is introduced in section 2.2. This transformation has been found to significantly reduce the truncation error when several of these "splitting" methods are subsequently applied to the transformed equations.^{1,23} Section 2.3 presents a general two-step alternating-direction splitting method for application to the transformed version of Eq. (1.6), and section 2.4 discusses mathematical properties of this method. Four specific splittings of <u>A</u> are proposed for further examination in section 2.5. Finally, one of these four is examined in section 2.6 for application to three-dimensional geometries.

2.1 The A Matrix

It is instructive to examine the <u>A</u> matrix in some detail. The magnitudes of its elements vary over 6 to 8 orders of magnitude. The decay constants λ are on the order of unity, while velocities of order 10^5 to 10^9 multiply absorption and leakage coefficients which may be as large as 10^{-1} . Its eigenvalues likewise span several orders of magnitude, from 10^{-1} sec⁻¹ to -10^6 sec⁻¹, giving rise to a property known as "stiffness" to the set of differential equations for reactivities less than prompt critical.¹ Thus, any attempt to represent the derivative in Eq. (1.6) by a finite difference approximation will require that relatively small time steps be taken in order to follow the more rapidly varying components of the solution. At the same time, the interesting part of the transient may span a large number of these time steps. Additionally, <u>A</u> is a real, square irreducible matrix with nonnegative off-diagonal elements and negative diagonal elements. In Chapter 8 of Varga,²⁰ this is termed an "essentially positive" matrix. Varga's Theorem 8.1 states that $\exp(\underline{A}t)$ is positive for all t > 0. His Theorem 8.2 further states that \underline{A} has a real, simple eigenvalue, $\omega_{0'}$, which is larger than the real part of any other eigenvalues, $\omega_{1'}$, and to which corresponds a positive eigenvector, \vec{e}_{0} . If any element of <u>A</u> increases algebraically, ω_{0} increases. Finally, his Theorem 8.3 states that the asymptotic behavior of exp(At) is given by

$$\|\exp(\underline{A}t)\| \sim K \cdot \exp(\omega_{o}t)$$
 (2.1)

as $t \rightarrow \infty$, where K is some constant, independent of t. This also assumes that <u>A</u> is constant. The solution vector $\vec{\psi}(t)$ in Eq. (1.10) will always be non-negative for a non-negative initial condition $\vec{\psi}(0)$. Thus, the desired solution $\vec{\psi}(t)$ is well-behaved and bounded, as physically it must be.

The numerical property of consistency is discussed later in this chapter. The discrete approximation to the $\vec{\nabla} \cdot D\vec{\nabla}$ operator contained in <u>A</u> is consistent and accurate to order $(\Delta x)^2$, $(\Delta y)^2$ and $(\Delta z)^2$, the mesh spacings in the three dimensions.²⁵ Stated in another way, if $\vec{\theta}$ is a genuine solution to Eq. (1.2), then

$$\underline{A}\vec{\theta} = \underline{M}\vec{\theta} + O(\Delta x^2) + O(\Delta y^2) + O(\Delta z^2). \qquad (2.2)$$

It is also instructive to observe certain properties of \underline{D} as defined in Eq. (1.9a). Use of the box integration technique to discretize the spatial variables assures that (- \underline{D}) is symmetric and diagonally dominant with positive diagonal entries and nonpositive off-diagonal entries. It is also irreducible. A sufficient condition for $(-\underline{D})$ to be irreducibly diagonally dominant is that homogeneous Dirichlet boundary conditions be specified along at least one of the boundaries. If this is the case, then D is negative definite.³

2.2 The Exponential Transformation

It is desired to increase the size of the time step size while still controlling truncation error when using alternating-direction splitting methods. A change of variables has been suggested^{1,23} which achieves this end. Let

$$\vec{\psi}(t) = e^{\underline{\Omega}t} \vec{\phi}(t) , \qquad (2.3)$$

where $\underline{\Omega}$ is a diagonal matrix of free parameters, henceforth referred to as frequencies. Since $\underline{\Omega}$ is diagonal, the exponential is easily computed.

To obtain an equation for $\vec{\phi}$, differentiate Eq. (2.3) to obtain

$$\frac{\mathrm{d}\vec{\psi}}{\mathrm{dt}} = \mathrm{e}^{\underline{\Omega}t} \, \frac{\mathrm{d}\vec{\phi}}{\mathrm{dt}} + \underline{\Omega} \, \mathrm{e}^{\underline{\Omega}t} \, \vec{\phi} \,. \tag{2.4}$$

Substituting this into Eq. (1.6) yields

$$\frac{\mathrm{d}\overline{\phi}}{\mathrm{dt}} = \mathrm{e}^{-\underline{\Omega}t} (\underline{A} - \underline{\Omega}) \mathrm{e}^{\underline{\Omega}t} \overline{\phi}, \qquad (2.5)$$

to be solved for $\overline{\phi}$.

This change of variables has been motivated by the idea that since the behavior of $\vec{\psi}$ is basically exponential in nature, the function $\vec{\phi}$ should be relatively slowly-varying, providing that the $\underline{\Omega}$ are properly chosen. Hence, the time derivative in Eq. (2.5) should be approximated by a simple finite difference with less resultant truncation error than if the same finite difference were used to approximate the time derivative in Eq. (1.6). Equation (2.5) has the same form as does Eq. (1.6), so the same solution techniques are applicable to both.

The choice of $\underline{\Omega}$ is a delicate matter.¹ That such an $\underline{\Omega}$ matrix exists is seen by choosing Ω so that

$$\underline{\Omega}\,\overline{\psi}\,(\mathbf{t}') = \underline{A}\,\overline{\psi}\,(\mathbf{t}')\,. \tag{2.6}$$

Then

$$\frac{\mathrm{d}\vec{\phi}}{\mathrm{d}t}\Big|_{t=t'} = 0, \qquad (2.7)$$

so that in some interval about t', $\vec{\phi}$ should be slowly varying. For many problems, this interval is long compared to the time step sizes necessary to control truncation error when solving the untransformed equation.

Best results are obtained^{1,23} when a new $\underline{\Omega}$ is chosen for each time step, Δt . For the time step from $t = N\Delta t$ to $t = (N+1)\Delta t$, the vector $\vec{\psi}([N+1]\Delta t) = \vec{\psi}^{N+1}$ is not yet known. Using $\vec{\psi}^N$ in Eq. (2.6) to compute $\underline{\Omega}$ for this step has been found to be unstable. Providing $\underline{\Omega}$ does not change very much for $t \leq t' \leq t + \Delta t$, it has been found that the Ω values to be used for the neutron groups at point j for this step may be successfully approximated by

$$\left(\Omega^{N}\right)_{\text{point }j}^{\text{group }g} = \frac{1}{\Delta t} \ln \frac{\psi_{\overline{g},j}^{N}}{\psi_{\overline{g},j}^{N-1}}, \quad 1 \le g \le G.$$
(2.8)

All of the groups thus use the same frequency at a mesh point. The group \bar{g} to be used in Eq. (2.8) is the thermal group in thermal reactor problems and a representative fast group in fast reactor problems.

The procedure outlined here can equally well be viewed as an extrapolation procedure. Based on past behavior, the desired solution $\vec{\psi}$ is extrapolated from time t to t+ Δ t. A relatively small correction factor to this extrapolated behavior is then computed by some finite difference technique. As long as the rate of change of $\vec{\psi}$ is smooth, this extrapolation procedure should work well, thus allowing relatively long time steps to be taken. On the other hand, sudden variations in the rates of change of elements in <u>A</u> can cause relatively rapid changes in the behavior of some components of $\vec{\psi}$. When these rapid variations occur, the extrapolation works less well. Smaller time steps must then be taken in order to retain accuracy. This behavior is evidenced in the numerical results shown in Chapter 3.

2.3 A General Two-Step Alternating-Direction Semi-Implicit Method

To apply the general class of alternating-direction splitting methods to Eq. (2.5), the time derivative is replaced by two successive forward differences over a time step, $\Delta t(=2h)$. For notational purposes, let the time step start at t=0 so that $\vec{\psi}(0) = \vec{\phi}(0) = \vec{\phi}^{0}$. For the two halves of the time step, each of duration h, split A as follows:

$$\underline{A} = \underline{A}_1 + \underline{A}_2 \tag{2.9a}$$

and

$$\underline{A} = \underline{A}_3 + \underline{A}_4 . \tag{2.9b}$$

By evaluating the two exponentials at t=h, the midpoint of the step, the difference approximations to Eq. (2.5) become

$$\frac{\vec{\phi}(\mathbf{h}) - \vec{\phi}(\mathbf{0})}{\mathbf{h}} = e^{-\underline{\Omega}\mathbf{h}}(\underline{A}_{2} - \alpha \underline{\Omega}) \ e^{\underline{\Omega}\mathbf{h}} \ \vec{\phi}(\mathbf{h}) + e^{-\underline{\Omega}\mathbf{h}}(\underline{A}_{1} - \gamma \underline{\Omega}) \ e^{\underline{\Omega}\mathbf{h}} \ \vec{\phi}(\mathbf{0})$$

$$\frac{\vec{\phi}(2\mathbf{h}) - \vec{\phi}(\mathbf{h})}{\mathbf{h}} = e^{-\underline{\Omega}\mathbf{h}}(\underline{A}_{4} - \alpha \underline{\Omega}) \ e^{\underline{\Omega}\mathbf{h}} \ \vec{\phi}(2\mathbf{h}) + e^{-\underline{\Omega}\mathbf{h}}(\underline{A}_{3} - \gamma \underline{\Omega}) \ e^{\underline{\Omega}\mathbf{h}} \ \vec{\phi}(\mathbf{h}) ,$$
(2.10)

where $\alpha + \gamma = 1$.

The unknowns at t = h can be eliminated to yield

$$\vec{\phi}(2h) = e^{-\underline{\Omega}h} \left[\underline{I} - h(\underline{A}_4 - \alpha \underline{\Omega}) \right]^{-1} \left[\underline{I} + h(\underline{A}_3 - \gamma \underline{\Omega}) \right] \cdot \left[\underline{I} - h(\underline{A}_2 - \alpha \underline{\Omega}) \right]^{-1} \left[\underline{I} + h(\underline{A}_1 - \gamma \underline{\Omega}) \right] e^{\underline{\Omega}h} \vec{\phi}(0) .$$

Since $\vec{\psi}(2h) = e^{2h\Omega} \vec{\phi}(2h)$, this can be written as

$$\vec{\psi}(2h) = \vec{\psi}^{1} = \underline{B}(\underline{\Omega}, h) \vec{\psi}^{0}$$
, (2.11)

where <u>B</u> is called the advancement matrix.¹ It is given by

$$\underline{B}(\underline{\Omega}, h) = e^{\underline{\Omega}h} \left[\underline{I} - h(\underline{A}_{4} - \alpha \underline{\Omega}) \right]^{-1} \left[\underline{I} + h(\underline{A}_{3} - \gamma \underline{\Omega}) \right] \cdot \left[\underline{I} - h(\underline{A}_{2} - \alpha \underline{\Omega}) \right]^{-1} \left[\underline{I} + h(\underline{A}_{1} - \gamma \underline{\Omega}) \right] e^{\underline{\Omega}h} .$$
(2.12)

Likewise, for any interval Δt ,

$$\vec{\psi}^{N+1} = \underline{B}(\underline{\Omega}, h) \, \vec{\psi}^{N}$$
 (2.13)

Equations (2.11) and (2.12) represent an arbitrary alternatingdirection semi-implicit method. Although it is termed a two-step method because two successive finite differences are taken to advance the solution over time Δt , it is essential to think of the two operators which advance the solution over each half-step h as inseparable from each other. Either used by itself is quite unstable. However, the error modes most strongly excited by one operator are the ones most strongly damped by the other operator. The solution is thus said to be advanced over one step during time Δt , even though the entire space and energy mesh has been swept twice.

2.4 Properties of the Generalized Method with Transformation

It is imperative to examine the approximation to the solution of Eq. (1.6) given by Eqs. (2.11) and (2.12) with respect to several important numerical properties. This examination has been carried out in a complete and concise fashion in Ref. 1. It is repeated in this thesis for the sake of completeness. The proofs of several theorems and lemmas quoted here are given in Appendix B. The proofs for consistency and stability follow particularly closely those of Ref. 1.

Property 1. Steady State Behavior

For the steady state case where $\underline{A}\vec{\psi}_{0} = \vec{0}$,

$$\overline{\psi}(2h) = \underline{B}(\underline{0}, h)\overline{\psi}(0) = \overline{\psi}_{0},$$
 (2.14)

which is the exact solution, independent of h. Thus, operation on a $\vec{\psi}_{0}$ which represents a just-critical configuration by a $\underline{B(0,h)}$ formed from an <u>A</u> containing the just-critical parameters will result in no change in $\vec{\psi}_{0}$.

This can be shown by writing Eq. (2.12) with $\Omega = 0$:

$$\underline{B}(\underline{0}, h) = (\underline{I}-h\underline{A}_4)^{-1}(\underline{I}+h\underline{A}_3)(\underline{I}-h\underline{A}_2)^{-1}(\underline{I}+h\underline{A}_1).$$

Using the splitting relations defined in Eqs. (2.9), this becomes

$$\underline{B}(\underline{0}, h) = (\underline{I}-h\underline{A}_4)^{-1}[\underline{I}-h(\underline{A}_4-\underline{A})](\underline{I}-h\underline{A}_2)^{-1}[\underline{I}-h(\underline{A}_2-\underline{A})].$$

Since $\underline{A} \vec{\psi}_{O} = \underline{\vec{0}}$,

$$\underline{\mathbf{B}}(\underline{\mathbf{0}},\mathbf{h}) \, \vec{\psi}_{\mathrm{O}} = (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{A}}_{4})^{-1} [\underline{\mathbf{I}} - \underline{\mathbf{h}}(\underline{\mathbf{A}}_{4} - \underline{\mathbf{A}})] (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{A}}_{2})^{-1} (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{A}}_{2}) \, \vec{\psi}_{\mathrm{O}}$$
$$= (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{A}}_{4})^{-1} (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{A}}_{4}) \, \vec{\psi}_{\mathrm{O}} = \vec{\psi}_{\mathrm{O}} \, .$$

Property 2. Temporal Truncation Error

This property is concerned with how well the advancement matrix $\underline{B}(\underline{\Omega}, h)$ approximates the exact discrete solution operator $e^{2h\underline{A}}$. For sufficiently small values of h, the difference between the solution computed using $\underline{B}(\underline{\Omega}, h)$ and that computed using $e^{2h\underline{A}}$ over a time step Δt varies approximately as a single power of h. As shown below, for a perfectly symmetric splitting ($\alpha = \gamma = 0.5$, $\underline{A}_1 = \underline{A}_4$, $\underline{A}_2 = \underline{A}_3$), $\underline{B}(\underline{\Omega}, h)$ agrees with the expansion of $e^{2h\underline{A}}$ through terms of order h^2 . For any other splitting, the agreement is through terms of order h.

A Taylor series expansion of the exact operator yields

$$e^{2h\underline{A}} = \underline{I} + 2h\underline{A} + 2h^{2}\underline{A}^{2} + \dots$$
 (2.15)

Expanding $\underline{B}(\Omega, h)$ likewise gives

$$\underline{B}(\underline{\Omega}, h) = \underline{I} + 2h\underline{A} + h^{2}[(\underline{A} - \underline{\Omega})^{2} + 2(\underline{\Omega}\underline{A} + \underline{A} \underline{\Omega}) + (\underline{A}_{4} + \underline{A}_{2} - 2\alpha \underline{\Omega})(\underline{A} - \underline{\Omega}) - 2\underline{\Omega}^{2}] + O(h^{3}). \qquad (2.16)$$

For the symmetric splitting given above,

$$\underline{B}(\underline{\Omega}, h) = \underline{I} + 2h\underline{A} + 2h^{2}\underline{A}^{2} + O(h^{3}). \qquad (2.17)$$

For any other splitting, terms of order h^2 remain in Eq. (2.16).

For the approximate solution method outlined here to be most useful, the discrete solution $\vec{\psi}^{N}$ should approach the exact solution $\vec{\theta}$ (N Δ t) more and more closely as the spatial and temporal meshs are successively decreased in size. Mathematically, this can be stated as requiring that discrete solutions converge to the solution of the differential equations, Eq. (1.2). A theorem due to Lax²⁶ enables this convergence to be shown. His theorem states that given a properly posed initial-value problem and a consistent finite-difference approximation, stability is the necessary and sufficient condition for convergence.

It has been found most convenient¹ to carry out proofs of consistency and stability in a Hilbert space L_2 . Thus, vector functions $\vec{\theta}(x, y, z, t)$ which are square integrable are to be considered. On this space L_2 , the norm of a linear matrix operator <u>M</u> is given by

$$\|\underline{\mathbf{M}}\| = \frac{\sup}{\overrightarrow{\theta}} \frac{\|\underline{\mathbf{M}} \, \overrightarrow{\theta} \|}{\| \overrightarrow{\theta} \|}$$

It is assumed that Eq. (1.2) with its associated boundary conditions is a properly-posed initial value problem in the space L_2 . The consistency and stability of the method proposed are proven here; convergence is inferred from these.

Property 3. Consistency¹

The domain of the linear operator \underline{M} in Eq. (1.2) is the set of functions $\vec{\theta}(\vec{r})$ which satisfy the appropriate boundary conditions and for which $\vec{\nabla} \cdot D\vec{\nabla}\vec{\theta}$ exists in \underline{L}_2 . Any function $\vec{\theta}(\vec{r}, t)$ which is in this domain for all t in the interval $0 \le t \le T$ and which satisfies Eq. (1.2) in the sense that

$$\left\| \frac{\vec{\theta}(\vec{r},t+h) - \vec{\theta}(\vec{r},t)}{h} - \underline{M}\vec{\theta}(\vec{r},t) \right\| \to 0 \text{ as } h \to 0, \quad 0 \le t \le T,$$

is called a genuine solution of the problem.

Informally stated, the consistency condition requires that the temporal finite differencing used to obtain Eq. (2.13) be an approximation to the time derivative of the genuine solution or, equivalently, that

$$\frac{(\underline{B}(\underline{\Omega}, h) - \underline{I})}{2h} \vec{\theta} (\vec{r}, t)$$

be an approximation to $\underline{M} \vec{\theta}(\vec{r}, t)$. How the discrete operator <u>B</u> operates on the continuous function $\vec{\theta}$ must be specified. It is assumed that <u>B(Ω , h)</u> picks out points from $\vec{\theta}$, and an interpolation rule is applied to the result to make it continuous in space. This interpolation need not be specified for the proofs contained in this thesis.

A more formal statement of the consistency condition is that if, for every $\vec{\theta}$ in the class of genuine solutions whose initial elements $\vec{\theta}(\vec{r}, 0)$ are dense in L₂, the condition²⁶

$$\left[\frac{\underline{B}(\underline{\Omega}, h) - \underline{I}}{2h} - \underline{M}\right] \vec{\theta}(\vec{r}, t) \longrightarrow 0 \text{ as } h \to 0, \quad 0 \leq t \leq T,$$

holds, then the operator $\underline{B}(\underline{\Omega}, h)$ is a consistent approximation to the initial-value problem. With the definition of the derivative,

$$\frac{\mathrm{d}\vec{\theta}}{\mathrm{dt}} = \lim_{\mathrm{h}\to 0} \frac{\vec{\theta}(\mathrm{t+2h}) - \vec{\theta}(\mathrm{t})}{2\mathrm{h}} ,$$

the consistency condition may be modified to be

$$\frac{\vec{\theta}(t+2h) - \underline{B}(\underline{\Omega}, h) \vec{\theta}(t)}{h} \rightarrow 0 \text{ as } h \rightarrow 0, \qquad (2.18)$$

the form used in the proof of consistency.

The proof¹ begins by factoring $\underline{B}(\underline{\Omega}, h)$ as follows:

$$\underline{B}(\underline{\Omega}, h) = \underline{C}_{1}(\underline{\Omega}, h) * \underline{C}_{2}(\underline{\Omega}, h) .$$
(2.19)

Here

$$\underline{C}_{1}(\underline{\Omega}, \mathbf{h}) = e^{\underline{\Omega}\mathbf{h}} \left[\underline{\mathbf{I}} - \mathbf{h}(\underline{A}_{4} - \alpha \underline{\Omega}) \right]^{-1} \left[\underline{\mathbf{I}} + \mathbf{h}(\underline{A}_{3} - \gamma \underline{\Omega}) \right]$$
(2.20a)

and

$$\underline{C}_{2}(\underline{\Omega}, \mathbf{h}) = \left[\underline{\mathbf{I}} - \mathbf{h}(\underline{\mathbf{A}}_{2} - \alpha \underline{\Omega})\right]^{-1} \left[\underline{\mathbf{I}} + \mathbf{h}(\underline{\mathbf{A}}_{1} - \gamma \underline{\Omega})\right] e^{\underline{\Omega}\mathbf{h}} .$$
(2.20b)

Lemma 1,¹ stated here and proved in Appendix B, treats the consistency of \underline{C}_1 and \underline{C}_2 .

LEMMA 1. The operators $\underline{C}_1(\underline{\Omega}, h)$ and $\underline{C}_2(\underline{\Omega}, h)$ are consistent.

The only restriction which must be placed on the operator $\underline{B}(\underline{\Omega}, h)$ in order to complete this proof is that as h is decreased, Δx , Δy , and Δz are decreased so that the ratios $h/\Delta x^2$, $h/\Delta y^2$, and $h/\Delta z^2$ are fixed, real constants of any finite size. The need for this restriction is made clear during the discussion concerning the stability of $B(\Omega, h)$.

Lemma 2,¹ proved in Appendix B, is also necessary for the completion of the consistency proof.

LEMMA 2. If two operators are consistent, then their product is consistent.

With these two lemmas, the consistency proof can be stated in Theorem 1. 1

THEOREM 1. The difference operator $\underline{B}(\underline{\Omega}, h)$ given in Eq. (2.12) is a consistent approximation.

Lemma 1 has shown that $\underline{C}_1(\underline{\Omega}, h)$ and $\underline{C}_2(\underline{\Omega}, h)$ are consistent. Since their product equals $\underline{B}(\underline{\Omega}, h)$, Lemma 2 provides the proof to this theorem.

Property 4. Stability¹

In Eqs. (1.9), the matrix <u>A</u> has been split into four parts. Of these four, <u>D</u> contains all of the terms which relate to the diffusion of neutrons and, in addition, terms relating to precursor decay. In three-dimensional geometries, the first G submatrices, <u>D</u>_g, on the diagonal have seven nonzero stripes containing terms which are inversely proportional to the square of the mesh spacings Δx , Δy , and Δz . <u>D</u> is termed the principle part of <u>A</u> as it is the part of <u>A</u> which determines the property of stability. This arises because of the requirement that the ratios $h/\Delta x^2$, $h/\Delta y^2$, and $h/\Delta z^2$ be fixed, real constants as h goes to zero. Subsequently, terms in the product h<u>D</u> do not vanish as h goes to zero.

For convenience, the matrix \underline{E} is defined as

$$\underline{\mathbf{E}} = \underline{\mathbf{E}}_1 + \underline{\mathbf{E}}_2 = \underline{\mathbf{E}}_3 + \underline{\mathbf{E}}_4 = \underline{\mathbf{A}} - \underline{\mathbf{D}}.$$
(2.21)

The matrices \underline{E}_1 , \underline{E}_2 , \underline{E}_3 , and \underline{E}_4 are those parts of \underline{E} associated with \underline{A}_1 , \underline{A}_2 , \underline{A}_3 , and \underline{A}_4 , respectively. All terms in \underline{E} are independent of the mesh spacings.

Split <u>D</u> according to

$$\underline{\mathbf{D}} = \underline{\mathbf{D}}_1 + \underline{\mathbf{D}}_2 \,. \tag{2.22}$$

Let \underline{D}_1 be that part of \underline{D} contained in \underline{A}_1 and \underline{A}_4 and \underline{D}_2 be that part which is contained in \underline{A}_2 and \underline{A}_3 . To complete the proof of stability,
it is necessary to restrict the splitting of D such that

$$\underline{D}_1 + \underline{D}_1^T$$
 and $\underline{D}_2 + \underline{D}_2^T$ are negative definite.¹ (2.23)

As will be seen later, this is not a serious limitation.

From the proof for consistency, it was required that the ratios $h/\Delta x^2$, $h/\Delta y^2$, and $h/\Delta z^2$ be fixed, real constants. Here, those constants are defined as

$$h/\Delta x^2 = \sigma_1 \tag{2.24a}$$

$$h/\Delta y^2 = \sigma_2 \tag{2.24b}$$

$$h/\Delta z^2 = \sigma_3.$$
 (2.24c)

The proof for stability examines the case where both the spatial and temporal meshes are taken to zero together. The class of problems where the spatial mesh is fixed and only the temporal mesh is taken to zero is unimportant, because almost any method is stable if h is taken sufficiently small with a given spatial mesh. It is shown that the difference approximation is stable under the conditions of Eqs. (2.24) with σ_1 , σ_2 , and σ_3 arbitrary and thus is unconditionally stable.¹

A third condition imposed upon the proof for stability is that all elements in <u>A</u> and <u>O</u> be held fixed in time. Thus, stability is shown only for each period of time over which this is true. In the algorithm finally used in numerical calculations in this thesis, <u>O</u> is changed with each time step Δt . Additionally, elements of <u>A</u> may also vary each step, such as during an insertion of reactivity. The much more difficult question of stability for this nonlinear procedure has not been analytically examined yet. Experimentally, however, stability problems have not arisen over a series of sample problems in two- and threedimensional geometries.

With the difference equations written in the form of Eq. (2.13), a sufficient condition for numerical stability 26 is that

$$\|\underline{B}(\underline{\Omega}, h)^{N}\| \leq K, \quad K \text{ some constant,}$$

$$0 \leq h \leq \tau, \quad 0 \leq 2Nh \leq T.$$
(2.25)

This implies that the computed solution will remain bounded as both spatial and temporal meshes are decreased in size so that more and more steps are required to reach a fixed total time T.

The proof of stability proceeds in several steps. A theorem due to Kreiss and Strang^{26} motivates these steps.

THEOREM 2. If the difference system

$$\vec{U}^{N+1} = C (\Delta t) \vec{U}^N$$

is stable, and if $\underline{Q}(\Delta t)$ is a bounded family of operators, then the difference system

$$\vec{U}^{N+1} = [\underline{C}(\Delta t) + \Delta t \underline{Q}(\Delta t)] \vec{U}^{N}$$

is stable.

It thus must first be shown that the operator $\underline{B}(\underline{\Omega}, h)$ can be written as

$$\underline{B}(\underline{\Omega}, h) = \underline{B}'(h) + h\underline{Q}(\underline{\Omega}, h). \qquad (2.26)$$

If $\underline{B'}(h)$ can be shown to be stable and $\underline{Q}(\underline{\Omega}, h)$ bounded, then the stability of $\underline{B}(\underline{\Omega}, h)$ is assured.

With $\underline{C}_1(\underline{\Omega}, h)$ and $\underline{C}_2(\underline{\Omega}, h)$ defined as in Eqs. (2.20), $\underline{B}(\underline{\Omega}, h)$ is again factored as

$$\underline{B}(\underline{\Omega}, h) = \underline{C}_1(\underline{\Omega}, h)\underline{C}_2(\underline{\Omega}, h)$$
.

The matrix $\underline{C}_1(\underline{\Omega}, h)$ can be factored as

$$\begin{split} \underline{\mathbf{C}}_{1}(\underline{\Omega}, \mathbf{h}) &= \left[\underline{\mathbf{I}} + \mathbf{h}\underline{\Omega} + \mathbf{O}(\mathbf{h}^{2})\right] \left[\underline{\mathbf{I}} - \mathbf{h}(\underline{\mathbf{I}} - \mathbf{h}\underline{\mathbf{D}}_{1})^{-1}(\underline{\mathbf{E}}_{4} - \alpha \underline{\Omega})\right]^{-1} \cdot \\ &\cdot \left[\underline{\mathbf{I}} - \mathbf{h}\underline{\mathbf{D}}_{1}\right]^{-1} \left[\underline{\mathbf{I}} + \mathbf{h}(\underline{\mathbf{D}}_{2} + \underline{\mathbf{E}}_{3} - \gamma \underline{\Omega})\right] \\ &= \left[\underline{\mathbf{I}} + \mathbf{h}\underline{\Omega} + \mathbf{O}(\mathbf{h}^{2})\right] \left[\underline{\mathbf{I}} + \mathbf{h}(\underline{\mathbf{I}} - \mathbf{h}\underline{\mathbf{D}}_{1})^{-1}(\underline{\mathbf{E}}_{4} - \alpha \underline{\Omega}) + \mathbf{O}(\mathbf{h}^{2})\right] \cdot \\ &\cdot \left[\underline{\mathbf{I}} - \mathbf{h}\underline{\mathbf{D}}_{1}\right]^{-1} \left[\underline{\mathbf{I}} + \mathbf{h}(\underline{\mathbf{D}}_{2} + \underline{\mathbf{E}}_{3} - \gamma \underline{\Omega})\right] . \end{split}$$

Finally,

$$\underline{C}_{1}(\underline{\Omega}, \mathbf{h}) = [\underline{\mathbf{I}} - \mathbf{h}\underline{\mathbf{D}}_{1}]^{-1}[\underline{\mathbf{I}} + \mathbf{h}\underline{\mathbf{D}}_{2}] + \mathbf{h}\underline{\mathbf{Q}}_{1}(\underline{\Omega}, \mathbf{h}). \qquad (2.27)$$

Similarly, $\underline{C}_2(\underline{\Omega}, h)$ can be written as

$$\underline{C}_{2}(\underline{\Omega}, \mathbf{h}) = [\underline{I} - \mathbf{h}\underline{D}_{2}]^{-1}[\underline{I} + \mathbf{h}\underline{D}_{1}] + \mathbf{h}\underline{Q}_{2}(\underline{\Omega}, \mathbf{h}). \qquad (2.28)$$

Combining Eqs. (2.27) and (2.28) gives

$$\underline{\mathbf{B}}(\underline{\Omega}, \mathbf{h}) = [\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{D}}_1]^{-1} [\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{D}}_2] [\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{D}}_2]^{-1} [\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{D}}_1] + \underline{\mathbf{h}}\underline{\mathbf{Q}}(\underline{\Omega}, \mathbf{h}), \quad (2.29)$$

so that the matrix B'(h) in Eq. (2.26) is defined as

$$\underline{\mathbf{B}}'(\mathbf{h}) = [\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{D}}_1]^{-1} [\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{D}}_2] [\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{D}}_2]^{-1} [\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{D}}_1].$$
(2.30)

Proving the boundedness in the various matrices in $Q(\Omega, h)$ requires careful analysis. This is because the number of mesh points and, hence, the order of these matrices approach infinity as h is taken toward zero. Theorem 3,¹ the proof of which is given in Appendix B, resolves this issue.

THEOREM 3. A family of matrices \underline{M}_n of varying dimension n having at most $\ell < n$ nonzero elements in each row or column, ℓ being

constant for all n, has a uniform L_2 bound if the individual elements of the matrices \underline{M}_n are uniformly bounded for all n.

All elements in \underline{E} and, hence, in \underline{E}_1 , \underline{E}_2 , \underline{E}_3 , and \underline{E}_4 are independent of the mesh spacings. Thus they are uniformly bounded. The number of nonzero elements in each row of \underline{E} is less than or equal to the number of prompt and delayed neutron groups. Thus, \underline{E}_1 , \underline{E}_2 , \underline{E}_3 , and \underline{E}_4 have uniform L_2 bounds.

The matrix hD has at most seven nonzero elements in each row (nine for a hexagonal-z mesh configuration). Providing the conditions given in Eqs. (2.24) are obeyed, the magnitudes of its elements are fixed as h tends toward zero. Thus the L_2 norm of hD is bounded for all h. This also assures that (I+hD₁) and (I+hD₂) are bounded.

The boundedness of $(\underline{I}-h\underline{D}_1)^{-1}$ and $(\underline{I}-h\underline{D}_2)^{-1}$ is given by Theorem 4, which is proved in Appendix B.

THEOREM 4. The matrices $(\underline{I}-h\underline{R})^{-1}$ and $(\underline{I}+h\underline{R})(\underline{I}-h\underline{R})^{-1}$ have L_2 norms of less than unity provided that $(\underline{R}+\underline{R}^T)$ is negative definite.

All matrices which form the matrix $\underline{Q}(\underline{\Omega}, h)$, as given in Eq. (2.29), have been shown to be bounded. Thus $\underline{Q}(\underline{\Omega}, h)$ is bounded as h tends toward zero. It remains only to show that $\underline{B'}(h)$ is stable. This can be done by factoring it in the form:¹

$$\underline{\mathbf{B}}'(\mathbf{h}) = \underline{\mathbf{R}}_{1} \underline{\mathbf{R}}_{2} \underline{\mathbf{R}}_{3},$$

$$\underline{\mathbf{R}}_{1} = (\underline{\mathbf{I}} - \underline{\mathbf{h}} \underline{\mathbf{D}}_{1})^{-1}$$

$$\underline{\mathbf{R}}_{2} = (\underline{\mathbf{I}} + \underline{\mathbf{h}} \underline{\mathbf{D}}_{2})(\underline{\mathbf{I}} - \underline{\mathbf{h}} \underline{\mathbf{D}}_{2})^{-1}$$

$$\underline{\mathbf{R}}_{3} = (\underline{\mathbf{I}} + \underline{\mathbf{h}} \underline{\mathbf{D}}_{1}).$$

where

By Theorem 4, $\|\underline{\mathbf{R}}_2\| < 1$ and $\|\underline{\mathbf{R}}_3\underline{\mathbf{R}}_1\| < 1$. Writing $[\underline{\mathbf{B}'}(h)]^N$ in terms of the above factorization,

 $\underline{\mathbf{B}'}^{\mathbf{N}}(\mathbf{h}) = \underline{\mathbf{R}}_{1} \underline{\mathbf{R}}_{2} \underline{\mathbf{R}}_{3} \quad \underline{\mathbf{R}}_{1} \underline{\mathbf{R}}_{2} \underline{\mathbf{R}}_{3} \quad \dots \quad \underline{\mathbf{R}}_{1} \underline{\mathbf{R}}_{2} \underline{\mathbf{R}}_{3} \quad (\mathbf{N} \text{ times}).$

Thus,

$$\|\underline{\mathbf{B}}^{\mathbf{N}}(\mathbf{h})\| \leq \|\underline{\mathbf{R}}_{1}\| \cdot \|\underline{\mathbf{R}}_{2}\| \cdot \|\underline{\mathbf{R}}_{3}\underline{\mathbf{R}}_{1}\| \cdot \|\underline{\mathbf{R}}_{2}\| \cdot \|\underline{\mathbf{R}}_{3}\underline{\mathbf{R}}_{1}\| \cdot \dots \|\underline{\mathbf{R}}_{2}\| \cdot \|\underline{\mathbf{R}}_{3}\|,$$

$$\|\underline{\mathbf{B}}^{\mathbf{N}}(\mathbf{h})\| < \|\underline{\mathbf{R}}_{1}\| \cdot \|\underline{\mathbf{R}}_{3}\|.$$

Again, $\underline{\mathbf{R}}_1$ has a bounded norm by Theorem 4 and $\underline{\mathbf{R}}_3$ has a bounded norm by Theorem 3, both for $0 < h < \tau$. Thus, $||\underline{\mathbf{B}'}^{\mathbf{N}}(\mathbf{h})||$ is bounded for $0 < h < \tau$ and $0 < 2\mathbf{N}\mathbf{h} < \mathbf{T}$ and is stable. Finally, from this fact and Theorem 2, $\underline{\mathbf{B}}(\underline{\Omega}, \mathbf{h})$ is seen to be stable. Since no restrictions have been placed on the size of σ_1 , σ_2 , and σ_3 in Eqs. (2.24), except that they be real and finite, this stability is unconditional.

Property 5. Asymptotic Behavior

Because of the form of the exponential transformation, the difference method proposed here can be forced to yield the correct asymptotic behavior. The asymptotic behavior of the exact solution is given by Theorem 5,²⁴ which is proved in Appendix B.

THEOREM 5. As t approaches infinity, the solution vector $\vec{\psi}(t) = e^{(\underline{A}t)}\vec{\psi}_{0}$ approaches $\alpha e^{\omega_{0}t}\vec{e}_{0}$, where ω_{0} is the largest eigenvalue of \underline{A} , \vec{e}_{0} the corresponding eigenvector, and $\alpha = (\vec{\psi}_{0}, \vec{e}_{0})$.

Theorem 6² gives the largest eigenvalue and corresponding eigenvector of $\underline{B}(\underline{\Omega}, h)$ under the assumption that $\underline{\Omega} = \omega_{O} \underline{I}$. It is also proved in Appendix B.

If, at asymptotic times, the matrix $\underline{\Omega}$ were set equal to $\omega_{O}\underline{I}$, the action of $\underline{B}(\underline{\Omega}, h)$ on the asymptotic solution would ultimately yield the exact growth of e over the time step 2h.

2.5 Specific Splittings for Two Dimensions

Up to this point, the splitting of <u>A</u> into <u>D</u> and <u>E</u> and these into <u>D</u>₁ and <u>D</u>₂ and <u>E</u>₁, <u>E</u>₂, <u>E</u>₃, and <u>E</u>₄, respectively, has been very general. Specific splittings must be indicated before proceeding to numerical calculations. Any splitting proposed must obey Condition (2.23) in addition to offering relative computational ease.

Four specific splittings are presented for study in this section. Two of these have been extensively tested previous to this work, the Non-Symmetric Alternating-Direction Explicit (hereafter referred to as NSADE) method in Refs. 1 and 2 and the Symmetric Alternating-Direction Implicit (SADI) method in Refs. 23 and 24. This testing was carried out in two spatial dimensions. The NSADE method has been shown to handle a wide variety of test problems successfully, while the SADI method required unreasonably small time steps to treat a difficult asymmetric problem. The four splittings proposed here for further twodimensional studies are motivated by a desire to understand what has caused the difference in performance of these two methods and to arrive at an "optimum" splitting. The terminology used above deserves clarification. The "Symmetric" and "Non-Symmetric" have been prefixed to the names originally given to these methods to indicate the placement of the matrices. \underline{U} and \underline{L} in the two splittings of \underline{A} . A method is termed symmetric if the matrix \underline{L} is treated implicitly over the first halfstep and \underline{U} implicitly over the second half-step. If \underline{L} is treated implicitly over both half-steps, the method is called non-symmetric. If the two-dimensional spatial mesh is swept solving for the new fluxes point by point, the method is termed explicit. It is termed implicit if a whole row or column of points is solved simultaneously for new fluxes.

SADI Method. For this method, let

$$\alpha = \gamma = 0.5$$

$$\underline{A}_{1} = \frac{1}{2} \underline{T} + \underline{U} + \underline{D}_{1} = \underline{A}_{4}$$

$$\underline{A}_{2} = \frac{1}{2} \underline{T} + \underline{L} + \underline{D}_{2} = \underline{A}_{3},$$
(2.31)

where \underline{D}_1 is composed of the terms associated with diffusion in one direction and one-half of each term in the submatrices $\underline{\Lambda}_i$. The matrix \underline{D}_2 is composed of the diffusion terms for the other direction and the remaining half of each term in the $\underline{\Lambda}_i$. As discussed under Property 2, this splitting agrees with the Taylor series expansion of the exact solution operator through terms of order h^2 .

NSADI Method. Here let

1

$$\alpha = 1.0, \ \gamma = 0,$$

$$\underline{A}_{1} = \underline{U} + \underline{D}_{1}$$

$$\underline{A}_{2} = \underline{T} + \underline{L} + \underline{D}_{2}$$

$$\underline{A}_{3} = \underline{U} + \underline{D}_{2}$$

$$\underline{A}_{4} = \underline{T} + \underline{L} + \underline{D}_{1},$$
(2.32)

where \underline{D}_1 and \underline{D}_2 are as defined above. By defining the truncation error over one step as

$$T.E. = e^{2h\underline{A}} - B(\underline{\Omega}, h), \qquad (2.33)$$

the NSADI method has a truncation error of

$$T.E. = h^{2}(\underline{T}+\underline{L}-\underline{U}-\underline{\Omega})(\underline{A}-\underline{\Omega}) + O(h^{3}).$$

SADE Method. Let

$$\alpha = \gamma = 0.5,$$

$$\underline{A}_{1} = \frac{1}{2} \underline{T} + \underline{U} + \underline{D}_{1} = \underline{A}_{4}$$

$$\underline{A}_{2} = \frac{1}{2} \underline{T} + \underline{L} + \underline{D}_{2} = \underline{A}_{3},$$
(2.34)

where \underline{D}_1 contains the two stripes of \underline{D} which lie above the diagonal plus one-half of each term on the diagonal and \underline{D}_2 contains the two stripes below the diagonal plus the remainder of each diagonal term. As with the SADI method, the truncation error for one time step is of order h^3 .

NSADE Method. Let

$$\begin{split} \alpha &= 1.0, \ \gamma = 0, \\ \underline{A}_1 &= \underline{U} + \underline{D}_1 \\ \underline{A}_2 &= \underline{T} + \underline{L} + \underline{D}_2 \\ \underline{A}_3 &= \underline{U} + \underline{D}_2 \\ \underline{A}_4 &= \underline{T} + \underline{L} + \underline{D}_1, \end{split}$$
(2.35)

where \underline{D}_1 and \underline{D}_2 are as defined for the SADE method. Its truncation error is the same as that given for the NSADI method.

It can be seen that all four methods just presented satisfy the conditions for consistency and stability. The box integration technique used to derive the five-point finite difference relations in two dimensions guarantees that the diagonal term in each row of \underline{D} is just the negative of the sum of the other terms in that row. Both implicit and explicit splittings make the diagonal term in each row in both \underline{D}_1 and \underline{D}_2 the negative sum of the other two terms in that row. Thus, both \underline{D}_1 and \underline{D}_2 are diagonally dominant. Since

$$\underline{\mathbf{D}}_1 + \underline{\mathbf{D}}_1^{\mathrm{T}} = \underline{\mathbf{D}}_2 + \underline{\mathbf{D}}_2^{\mathrm{T}} = \underline{\mathbf{D}}$$

for both splittings and \underline{D} is negative definite, the condition (2.23) is satisfied.

All four methods offer relative computational ease. The matrices to be inverted in the SADE and NSADE methods are always upper or lower triangular or can be made so by rearranging the order of the unknowns. The first half-step is carried out by forward substitution, sweeping from one corner of the mesh to the diagonally-opposite corner and from the highest energy group to the lowest. The second half-step reverses the direction of the spatial sweep and also from the lowest energy group to the highest in the case of the SADE method.

For the SADI and NSADI methods, the matrices to be inverted are block lower or upper triangular, but the diagonal submatrices are tridiagonal. In sweeping from one corner of the mesh to the diagonally opposite corner, entire lines of fluxes in one of the two directions must be solved simultaneously by the rapid forward elimination, backward substitution process. In working back across the mesh during the second half-step, lines of fluxes in the second direction are solved simultaneously. For the NSADI method, the groups are solved from the highest to the lowest energy over both half-steps, while the order is reversed for the second half-step of the SADI method.

This section is concluded with a discussion of the factors which could cause these four methods to perform differently on actual numerical experiments. The first difference apparent is the implicit versus explicit spatial treatment. From experience gained in static calculations, it is tempting to state that solving for an entire line of fluxes simultaneously should result in less total error than solving for the fluxes one by one. The analogy is not entirely appropriate, however, since the kinetics problem is an initial-value problem and not a boundary-value problem. Considering the two sweeps of the mesh together, new fluxes at each of the five points in two-dimensional problems are given half of the weighting and old fluxes the other half for both types of methods. There does appear to be a difference in the spatial distribution of the errors for the two spatial treatments. No analytical examination of error distribution and propagation has yet been completed. Qualitatively, however, experience seems to indicate that the implicit treatment is somewhat more stable with respect to propagation of errors.

For illustrative purposes, consider the first time step, Δt , in a two group homogeneous problem, where the initial condition $\vec{\psi}_0$ is taken to be exact. Let the perturbation be due to uniform step decreases in the absorption cross sections of both groups over the entire system.

Both the implicit and explicit methods are inexact so that some error is introduced into the new group one flux as it is calculated at each mesh point over the first half-step. This error is distributed differently for the two methods, however. In the implicit treatment, each line of fluxes is computed simultaneously, using the old fluxes on each side of it to compute the leakage in the direction perpendicular to that line. Thus, the error in the growth is distributed along the entire line. The new fluxes in other lines see none of the error introduced in that line. At the end of the mesh sweep for group one, it is easily shown that the error at each mesh point is proportional to the initial flux value at that point for this model problem.

The group two fluxes at the end of the first half-step likewise contain an error component which has the same spatial distribution as the initial fundamental mode solution. Part of the error at each point is due to error in the group one flux previously computed, and part is

due to inexact treatment of the growth of group two given the group one flux.

At the end of the second half-step, additional errors have been introduced into both group fluxes at each mesh point. However, the errors still have a fundamental mode distribution for both groups. No spatial flux tiltings have been introduced by the implicit spatial treatment.

This is not the case with the explicit spatial treatment. As group one fluxes are computed one by one over the first mesh sweep, the error introduced at a point due to the inexact operator is carried on across to the computation of all subsequent mesh points. At the end of the first sweep for group one, the spatial distribution is tilted so that the last point calculated has grown proportionately more than any point previously computed.

If this were a one group problem, the tilting would be erased as the sweep is reversed over the second half-step. In the two group problem, however, the second group must first be calculated. The second group now sees a tilted source and is tilted proportionately worse at the end of the first mesh sweep.

This tilted second group is used in computing the source for the reverse mesh sweep for group one. It is difficult to predict exactly how the group one flux will be distributed at the end of the reverse sweep since that depends on the reactor size and composition and the magnitude of the initial perturbation. However, it would be strictly fortuitous if the errors in the group one flux have a fundamental mode distribution. The first mesh sweeps for the two groups have introduced

higher error modes which tend to persist in the solution, although the stability proof in section 2.4 gives assurance that they will not grow without bound for the case of constant Ω and reactor properties.

The really important question is to what degree does the introduction of these higher error modes affect the solution of real problems. In actual practice, it has been found that for realistic perturbations and time step sizes, these higher modes do not severely affect the solution. In addition, the exponential transformation tends to damp out these higher modes, as is shown in the numerical results given in Chapter 3.

There is one situation, however, in which this accumulation of errors can severely hamper the explicit methods. If the initial condition $\vec{\psi}_0$ used to start the transient differs sufficiently from the true fundamental mode initial condition, the presence of these additional errors can affect a sufficient accumulation of error to swamp the true solution.

It should be noted that a fully explicit method cannot properly treat the fluxes at an outer boundary where a zero current normal to that boundary has been specified. This problem was noted in the initial work done in extending the NSADE method to r-z geometry,¹⁹ where the z-axis is always a so-called symmetry boundary. It is easily solved, however, by solving for new fluxes at each point on such a boundary and the interior point closest to it simultaneously for whichever of the two half-steps originates from that boundary.

A second difference to be noted in the methods is the symmetric versus non-symmetric sweeping of the energy groups. Favoring the

symmetric methods is the fact that terms of order h^2 in the truncation error expression vanish for these splittings. On the other hand, most thermal reactor models have group structures which are closely coupled by down-scattering from each group to the next lowest, but are only loosely coupled by the upward flow of neutrons. This is because the higher energy groups have relatively small fission cross sections, while the fission spectrum is nonzero only in the highest groups. During a sweep of the energy mesh from the lowest energy group to the highest group, a perturbation in the thermal group can cause a change only in the high energy groups with nonzero fission fractions during the remainder of that sweep. In a two group thermal reactor problem, this effect should be minimal. With four or more groups, this effect could become important. This effect should also be minimized in a fast reactor problem, where the fission cross section is fairly constant over most of the groups, and the fission spectrum is nonzero over most of the groups.

The concept of truncation error accumulation is complicated by the presence of the exponential transformation. It is generally stated that the total error at time T=2Nh varies as a function of one order less of h than does the local truncation error. The correct asymptotic behavior resulting from the exponential transformation should tend to lessen the severity of error accumulation, however.

2.6 <u>A Proposed Method for Three Dimensions</u>: NSADE

It is the stated purpose of this thesis to develop an alternatingdirection semi-implicit method for solving the space-dependent kinetics equations in three-dimensional geometries. The method so proposed is the NSADE (Non-Symmetric Alternating-Direction Explicit) method as outlined in section 2.5. The splitting of the <u>A</u> matrix for three dimensions is identical to that presented in Eq. (2.35) for two dimensions. However, \underline{D}_1 now has three nonzero stripes above the diagonal and \underline{D}_2 has three nonzero stripes below it. Because the <u>L</u> matrix is treated implicitly over both half-steps, the groups are always to be solved from the highest energy group to the lowest. The spatial sweep starts in one corner of the three-dimensional mesh and works toward the diagonally-opposite corner during the first half-step. It is then exactly reversed for the second half-step.

This particular method has been chosen for three reasons. Based on a number of test problems in one and two dimensions, it is shown in Chapter 3 that the non-symmetric splittings perform far more satisfactorily in thermal reactor problems. Secondly, the NSADI and NSADE methods are shown to perform practically identically over a range of problems. Finally, in addition to being computationally slightly faster, the NSADE method is directly applicable to three-dimensional geometries as a two-step method. Only two dimensions could be treated implicitly if an implicit method as outlined in section 2.5 were to be applied to three-dimensional geometries as a two-step method.

Chapter 3 NUMERICAL RESULTS

Four different members of a general class of alternatingdirection semi-implicit methods for solution of the semi-discrete reactor kinetics equations have been proposed in section 2.5 for further study in one- and two-dimensional geometries. The results of several numerical experiments, where these methods have been used to solve reactor problems, are presented and compared in section 3.1 of this chapter. In section 3.2, the behavior of the NSADE method when solving a three-dimensional model problem is compared to the exact solution of this problem. Finally, section 3.3 presents the results of a number of true space-dependent, threedimensional numerical experiments with the NSADE method.

3.1 One- and Two-Dimensional Studies

Two of the four specific methods that are presented in section 2.5 have been extensively tested previous to this thesis. The NSADE method has been shown to perform satisfactorily over a range of problems in x-y, r-z, and hexagonal geometries.^{1,19} In contrast, the SADI method has been shown to perform poorly in a space-dependent, four group thermal reactor problem.²³ The numerical experiments presented in this section have been performed in an effort to explain the difference in behavior of these two methods.

Four different test cases are examined in this section. They have been chosen in an attempt to compare the methods over a wide range of problem types. The first three cases are in one-dimensional slab geometry, while the fourth is the two-dimensional rectangular multiregion thermal reactor which the SADI method had difficulty in treating.

In order to solve the one-dimensional problems, the computational subroutines of an existing one-dimensional code, GAKIN,¹⁴ were replaced with a single subroutine which, depending on several input parameters, treated problems with one of the four methods. Since one-dimensional problems have diffusion on one direction only, the diffusion terms in that direction were halved, with one-half of each term in the matrix <u>D</u> being treated as diffusion in one dimension and the other half as diffusion in a second dimension. For the two-dimensional case, subroutines were added to the code MITKIN¹ so that it had multi-method capabilities.

Both because it is the primary purpose of this thesis to deal with multi-dimensional geometries and because the one-dimensional problems treated for this thesis are relatively simplistic, the three one-dimensional problems are discussed here in a qualitative fashion only. The numerical results are not presented in either tabular or graphical form.

The first one-dimensional problem was a homogeneous thermal slab reactor with four neutron groups and one precursor group. The critical configuration was perturbed by a fifty-cent step insertion of reactivity caused by uniformly decreasing the thermal group capture cross section. Twenty-one mesh points were used to represent the

146-cm slab. Because of the homogeneous composition, the initial flux distribution in each group was cosinusoidal in shape. The exact solution to the time-dependent problem was obtained using an eigenvector expansion technique² and was available for comparison.

Using a time step, Δt , of .0005 sec, both the SADI and SADE methods underestimated the solution throughout the transient. At 1.0 seconds into the transient, both solutions were about 15% too low. With $\Delta t = .00025$ sec, both methods gave considerably better results, but were still about 1% low at 1.0 sec. Only when Δt was reduced to .0001 sec did the SADI method give the correct result (< .1% error) throughout the transient. The SADE method was not used at this small time step since it was expected that it would again behave similarly to the SADI method.

In contrast, both the NSADE and NSADI methods gave good results (< .1% error) for time steps as large as $\Delta t = .001$ sec out to about 0.2 sec into the transient. At around 0.2 sec, however, both methods were overcome by stability problems for time steps of .001 and .0005 sec. The instabilities seemed to result from the feedback of accumulated errors through the frequencies. These instabilities first appeared as a small ripple-like component superimposed on the true solution, but soon grew to the point that negative fluxes resulted.

The characteristic which separated the four methods into two distinct classes is the property which has been termed symmetry. The symmetric methods behaved in one fashion, while the nonsymmetric methods behaved in another and different fashion. These results shed light on several of the conjectures made in section 2.5 about these methods. The group structure for this four group problem was loosely-coupled by the upward flow of neutrons, thus causing the symmetric methods to underpredict the growth of the fluxes at time steps reasonable for this problem. This tendency to underpredict can also be explained from an analytic point of view. In the limit of large h, the advancement matrix goes to the identity matrix for the symmetric methods. For any finite time step, the symmetric methods underpredict the growth over each time step. The feedback effect introduced by the method used to compute the frequencies may offset this to some extent, but the numerical experiment cited here indicates that it does not offset it completely. Once a sufficiently small time step is used, however, these methods converge rapidly to the correct solution.

The non-symmetric methods, even though they have a local truncation error of only order h^2 , followed the solution closely for much large time steps. Physically, this smaller error at each step was the result of sweeping down through the groups at both half steps, taking advantage of the tightly-coupled downward flow of neutrons. The instabilities observed prove that these methods can also become unstable due to the feedback effect of the frequencies. Fortunately, these instabilities have never been noted in problems in two or three dimensions or in one-dimensional problems with a large number of mesh points.

The second one-dimensional problem was a homogenized slab unit cell, 10 cm in width, from a fast gas-cooled reactor with ten neutron

groups and four precursor groups. The initial flux distribution was flat for all groups. The critical configuration was perturbed by a step reduction in the capture cross sections in all groups.

Only the two implicit methods could be used to treat this problem because the explicit options were not programmed to handle homogeneous Neumann boundary conditions. The SADI method followed the transient accurately for as long as the solution was carried out, although relatively small time steps had to be taken. Physically, this problem was better suited to the symmetric techniques because the fission cross section was fairly constant over most of the groups, and the fission spectrum was nonzero over most of the groups. Thus, even though there was no upscattering in this problem, a perturbation could propagate in an upward sweep of the groups as well as in a downward sweep.

The NSADI method followed the early part of the transient as well as did the SADI method, using the same time step sizes. However, at about .0005 seconds into the transient, instabilities again appeared and soon swamped the true solution. A close examination reveals one reason why these non-symmetric methods should be more susceptible to these feedback-induced instabilities. Unlike the symmetric methods, the non-symmetric methods have advancement matrices which do not reduce to the identity matrix in the limit of large time steps. Depending on the problem and the flux vector at a particular time, they can underestimate or overestimate the flux at the end of the next time step. Add to this the feedback effect of the method used to compute the frequencies, and it becomes possible for these oscillations to grow

large. Again it is stressed that these instabilities have been observed only in one-dimensional problems with a relatively small number of spatial mesh points.

The last one-dimensional problem used to compare these four methods was a 240-cm, three-region thermal slab reactor with two neutron groups and six precursor groups. An inner zone, 160 cm thick, of relatively low enrichment, was surrounded on either side with a 40-cm-thick slab of higher enrichment. Ninety-seven equallyspaced mesh points were used. The critical configuration was perturbed by linearly decreasing the thermal capture cross section by 1% over 1.0 second in one of the two outer slabs.

The composition of this test problem was similar to a graphite slab reactor, so that a relatively large time step, Δt , of .0025 second was used. Both the NSADI and NSADE methods followed the transient out to 1.0 second with little error and with no sign of any instabilities. As in the first test case, the SADI and SADE methods initially underestimated the growth in the solution. However, they both improved considerably by the end of the transient.

For two-group problems such as this, the two groups are tightly coupled by both the upward and downward flow of neutrons. This apparently minimized the difference in performance between the symmetric and non-symmetric methods for this problem. Again, the method used to sweep the spatial mesh made little difference in the results.

The final numerical experiment discussed in this section is a highly-asymmetric, two-dimensional problem with four neutron groups

and one delayed precursor group. This problem has been discussed in two previous works,^{1,23} but it is included here because it again demonstrates the validity of the arguments presented in section 2.5.

The geometry for this problem was identical to that of any plane perpendicular to the z-axis taken between z mesh planes 8 and 17 of Configuration 3, found in Appendix C. The material constants for the four materials were also identical to those shown in Configuration 3, except that the critical value of ν for all groups was 1.450679 for the two-dimensional problem. The critical configuration was perturbed by linearly decreasing the group four capture cross section in material 4 by 0.003 cm⁻¹ over 0.2 second. From that time, all material properties were held fixed.

Tables 3.1, 3.2, 3.3, and 3.4 list the group one and group four fluxes at two points in the reactor for various times in the transient. The results for the SADI method have been taken from Ref. 24, while the NSADE results represent improved results (more accurate initial flux distribution) of those quoted in Ref. 1.

The NSADE and NSADI methods gave practically identical results for the results shown, with $\Delta t = .001$ sec. Results using the NSADE method and time steps of .0005 sec and .002 sec gave similar results to those listed here, so it is assumed that the results for the two nonsymmetric methods represent converged solutions. In contrast, the SADI method gave inconsistent results for time steps as small as .00025 sec and was still nearly 6% in error at 0.3 sec into the transient with a $\Delta t = .000125$ sec.

This problem represented a severe test of these methods because of the large changes in the spatial shape and energy spectrum induced by the perturbation. The results shown here again confirm that the method used to sweep the spatial mesh makes little difference in the final result. For thermal reactors, the critical factor is that the groups be swept from high energy to low energy over both half steps. The non-symmetric methods are thus preferred for any scheme which is to have general applicability.

Time		NSADE	NSADI		SADI	
(sec)	Δt =	.001	.001	.000125	.0005	.001
.0	•	.4463	.4463	.4463	.4463	.4463
.05		.4561	.4559	.4525	.4463	.4463
.10		.4670	.4669	.4781	.4464	.4463
.15		.4796	.4795	.4985		.4463
.20		.4943	.4944	.5064	.4624	.4463
.30		.4945	.4946	.5194	.4624	.4465

Table 3.1. Group 1 Fluxes at Point (3, 9)

Table 3.2. Group 1 Fluxes at Point (12, 3)

Time		NSADE	NSADI		SADI	
(sec)	Δt =	.001	.001	.000125	.0005	.001
.0		.1341	.1341	.1341	.1341	.1341
.05		.1383	.1383	.1375	.1346	.1342
.10		.1431	.1430	.1473	.1371	.1346
.15		.1485	.1485	.1554		.1359
.20		.1549	.1549	.1604	.1413	.1382
.30		.1549	.1550	.1640	.1489	.1438

Time		NSADE	NSADI		SADI	
(sec)	$\Delta t =$.001	.001	.000125	.0005	.001
.0	,	.0359	.0359	.0359	.0359	.0359
.05		.0367	.0367	.0364	.0359	.0359
.10		.0376	.0376	.0385	.0360	.0359
.15		.0386	.0386	.0401		.0359
.20		.0398	.0398	.0408	.0361	.0359
. 30		.0398	.0398	.0418	.0373	.0360

Table 3.3. Group 4 Fluxes at Point (3,9)

Table 3.4. Group 4 Fluxes at Point (12, 3)

Time		NSADE	NSADI		SADI	
(sec)	Δt =	.001	.001	.000125	.0005	.001
.0		.9684	.9684	.9684	.9684	.9684
.05		1.0532	1.0528	1.0474	1.0255	1.0223
.10		1.1513	1.1510	1.1855	1.1006	1.0873
.15		1.2669	1.2668	1.3278		1.1614
.20		1.4051	1.4051	1.4565	1.2914	1.2498
.30		1.4060	1.4064	1.4920	1.3498	1.2889

3.2 Three-Dimensional Studies: Homogeneous Problem

As stated in section 2.6, the NSADE method has been chosen as the method to be extended to treat three-dimensional geometries. Four numerical experiments have been designed to test this method. The geometries and compositions for these experiments are presented in Appendix C. The results from the first of these, the only homogeneous problem, are presented in this section. All of the numerical results from three-dimensional experiments have been obtained from a computer code called 3DKIN, which is discussed in Appendices D and E.

Again, it must be stressed that the truncation error discussed in this chapter is the difference between the particular solution under consideration and the exact solution of the semi-discrete equations. In the case of the homogeneous problem, the exact solution can be generated using an eigenvector expansion technique.² The exact solutions cannot be obtained for the other three-dimensional problems. Thus it is assumed that if two successive solutions are generated, one using a time step half of the size of that used to generate the other, and are in good agreement, then the solution generated with the smaller time step represents a "converged" solution.

TEST CASE 1

Geometry and Composition: Configuration 1 Perturbation: Step change, $\Delta \Sigma_{a}$ (group 2) = -.369 × 10⁻⁴

This case is a bare, homogeneous cube, 200 cm on a side, with two neutron groups and one precursor group. Ten mesh intervals were used in each direction, and the boundary conditions were homogeneous Dirichlet on all six sides. The perturbation consisted of a uniform step decrease in the thermal group absorption cross section and had a reactivity worth of about 50 cents. Since the geometry is symmetric about the mid-plane in the x-direction, only the right half of the reactor was actually used in the 3DKIN computer runs. It was determined that the half-core and full-core results compared through six significant figures for two different time step sizes. The results of 3DKIN runs using four different time step sizes at various times in the transient are shown in Table 3.5. The values presented are the thermal group fluxes at the center point of the reactor.

Time			3DKIN				
(sec)	$\Delta t =$.01	.005	.002	.001		
.0		.816	.816	.816	.816	.816	
.05		.920	1.043	1.116	1.124	1.127	
.10		1.151	1.361	1.403	1.406	1.407	
.15		1.454	1.651	1.660	1.660	1.660	
.20		1.782	1.904	1.892	1.890	1.890	
.30		2.388	2.328	2.294	2.289	2.288	
.40		2.840	2.671	2.628	2.622	2.620	

Table 3.5. Test Case 1 Results, Group Two Fluxes at Centerpoint

Table 3.5 demonstrates the rapid convergence of the NSADE method with the exponential transformation. With a time step of .002 sec, the solution was only .3% in error at .4 second, during which time the thermal flux had more than tripled. That this convergence is approximately of order h^2 is displayed in Fig. 3.1, where the percentage truncation error is plotted as a function of h at 0.4 second into the transient.

The results that are tabulated in Table 3.5 are presented in graphical form in Fig. 3.2 to illustrate an interesting characteristic of this exponentially-transformed method. The semi-discrete equations are a coupled set of first-order differential equations. As such, any change in $\vec{\psi}$ at time t depends only on the values of $\vec{\psi}$ and <u>A</u> at that time

Fig. 3.1. Convergence Rate for Test Case 1

Fig. 3.2. Test Case 1 Results, Centerline Thermal Flux

and not on the past history of the system. By adding the exponential transformation and computing $\underline{\Omega}$ to be used at t_N based on the change in the solution between t_{N-1} and t_N , the behavior of the solution at t_N has been coupled to its rate of change. The system now behaves in the fashion of a second order system in that it builds up "inertia" during a transient. Figure 3.2 clearly displays the damped sinusoidal oscillations superimposed on the true solution which are characteristic of such a system. The amplitude of the "overshoot" is clearly a function of h and decreases as order h^2 .

When material properties are constant or changing in a smooth fashion, this "inertia" enables the time step to be increased without affecting the accuracy seriously. However, when properties or their rates of change are abruptly changed, such as at the end of a ramp insertion of reactivity, time step sizes must be decreased in order to overcome the "inertia."

3.3 Three-Dimensional Studies: Space-Dependent Problems

The three test cases presented in this section are all spatiallydependent problems. Test Cases 2 and 3 are three-dimensional versions of problems already used to test some or all of the methods discussed in section 2.5. Test Case 4 is a new problem, designed with the idea of simulating the withdrawal of a cluster of control rods from two adjacent subassemblies in a medium-sized pressurized-water power reactor. Taken together, these problems provide a stern test of the general applicability of the NSADE method.

TEST CASE 2

Geometry and Composition: Configuration 2 Perturbation: Ramp change, $\Delta \Sigma_a$ (material 1, group 2) = -.0045(t/0.2) for $0 \le t \le 0.2$ sec $\Delta \Sigma_a$ (material 1, group 2) = -.0045 for t > 0.2 sec

The original two-dimensional version of this problem has been used to test several two-dimensional solution methods.^{1, 23, 17, 15} The original plane was 160 cm square, with a central blanket area surrounded by a highly-enriched seed area. It was in turn surrounded by another blanket region. In three dimensions, this configuration was made 112 cm thick in the z-direction, and a blanket of 24 cm thickness added to the top and bottom. Thus, the overall reactor is cubical, 160 cm on a side. It has two neutron groups and one delayed precursor group.

The four regions containing material 1, each 32 × 32 × 124 cm in size, which were perturbed are located symmetrically with respect to the central x-plane. Only the right half of the cube was considered, with a homogeneous Neumann boundary condition imposed at the exposed mid-plane to preserve symmetry. With 8.0-cm mesh spacings in each direction, a total of 4841 mesh points were needed to represent the half-reactor. The initial flux distribution and eigenvalue were computed with the steady state option of 3DKIN.

Test Case 2 was carried out to 0.3 second into the transient for time step sizes of .001 sec and .002 sec. The results of the 3DKIN runs for these two time step sizes are presented in Tables 3.6, 3.7, and 3.8. The values tabulated are the thermal flux values. The z-planes 3 and 19 are 8 cm below and above the core, respectively, while z-plane 11 is the central z-plane. Point (6, 6, z) is on the central z-axis of one of the perturbed regions. Values at points (6, 16, z) are not shown in these tables. However, they agreed with corresponding values at points (6, 6, z) to better than 0.05% for every z value, thus preserving symmetry.

Time		Point (1, 11, 3)		Point (6,6,3)
(sec)	∆t =	.002	.001	.002	.001
.0		.347	.347	.245	.245
.05		.392	.398	.280	.284
.10		.484	.483	.350	.349
.15		.610	.619	.446	.454
.20		.853	.867	.633	.643
.25		1.094	.994	.811	.737
.30		.998	.991	.740	.735

Table 3.6. Test Case 2 Results, z-Plane 3

Table 3.7 Test Case 2 Results, z-Plane 11

Time		Point (1,11,11)	Point (6	5,6,11)
(sec)	Δt =	.002	.001	.002	.001
.0		1.279	1.279	.422	.422
.05		1.442	1.467	.487	.496
.10		1.784	1.780	.617	.616
.15		2.248	2.284	.796	.809
.20		3.149	3.197	1.144	1.162
.25		4.035	3.666	1.465	1.330
.30		3.679	3.655	1.334	1.326

Time		Point(1	,11,19)	Point (6,6,19)
(sec)	∆t =	.002	.001	.002	.001
.0	•	.347	.347	.245	.245
.05		.388	.395	.278	.283
.10		.480	.479	.348	.348
.15		.605	.615	.444	.452
.20		.847	.860	.630	.640
.25		1.086	.987	.808	.734
.30		.991	.984	.737	.732

Table 3.8. Test Case 2 Results, z-Plane 19

The results at a Δt of .001 indicate that the thermal flux grew by factors of 2.86 and 3.16 at the reactor center and in the center of the perturbed regions, respectively. The group one fluxes grew by practically equal amounts. Thus, spatial and energy spectral changes were minimal, as would be expected for this symmetric problem.

From Tables 3.6 and 3.8, it is seen that differences of up to 1% exist in the results at planes 3 and 19, when they should be equal. After these runs were made, an error was discovered in 3DKIN which caused several coefficients for points on z-plane 18 to be incorrectly computed. This was the cause of the slight retardation in growth in z-plane 19 flux values. With the error corrected, a later run was carried out to .10 sec and gave results symmetric to 4 significant figures in the z-direction. The runs shown here were not repeated because of the cost of the 2-1/2 hours of computer time required to do so. At $\Delta t = .002$ sec, the solution considerably overshot the true solution during time $0.2 \le t \le 0.3$ sec. To overcome this damped oscillatory behavior when the run with $\Delta t = .001$ sec was made, the time step was decreased to .0005 sec for .01 sec just as the ramp was cut off. This was largely successful as the solution then overshot by only a very small amount. Closer examination of the solution at several times in the range $0.2 \le t \le 0.3$ revealed that the peak of the overshoot occurred at .25 sec and that the solution was growing smoothly and asymptotically by t = 0.3 sec. It is believed that the solution shown here for $\Delta t = .001$ sec has converged to less than 1% error at all times except perhaps at the peak of the overshoot. A run made out to .10 sec with $\Delta t = .0005$ sec supported this statement for that part of the transient.

TEST CASE 3

Geometry and Composition: Configuration 3 Perturbation: Ramp change, $\Delta \Sigma_a$ (material 4, group 4) = -.0035(t/0.2) for $0 \le t \le 0.2$ sec $\Delta \Sigma_a$ (material 4, group 4) = -.0035 for $t \ge 0.2$ sec

As mentioned in section 3.1, this problem, with four neutron groups and one precursor group, is a three-dimensional version of a problem used to compare several methods in two dimensions. Specifically, the original 160 cm \times 80 cm plane was made 120 cm thick in the z-direction. However, the bottom 56 cm of the region with material 4 was changed to material 3 (which was identical to material 4 before the perturbation). Thus, only the top 64 cm was perturbed for this transient.

This problem is asymmetric in all three dimensions so that the full reactor with homogeneous Dirichlet boundary conditions had to be considered. With 8.0-cm mesh spacings, a total of 3696 mesh points were used.

Material 1 is a highly enriched material so that group one fluxes were initially more than five times higher than group four fluxes in it. On the other hand, materials 3 and 4 are strong moderators so that the group four flux peaked in them. Given these spectral variations in the initial condition, which was computed with 3DKIN, and the asymmetric perturbation, it was expected that large spatial and energy spectrum changes would result.

The results of runs made on 3DKIN out to 0.3 second with time step sizes of .002 and .001 sec are shown in Tables 3.9 through 3.12. Point (3, 9, z) is near the center of the highly-enriched core, while point (12, 3, z) is in the center of the perturbed region for z > 56 cm. z-plane 4 is the mid-plane of the unperturbed lower portion, while z-plane 12 is near the center of the upper 64 cm region.

As expected, this transient resulted in rather severe spectral changes. At point (3,9,4), the group one and group four fluxes grew by only 6%. Meanwhile, the group one and group four fluxes at point (12, 3, 12) grew by 11% and 45%, respectively. The solution overshot slightly at the end of the ramp for $\Delta t = .002$ sec, but practically all traces of overshoot were wiped out during the run with $\Delta t = .001$ sec.

Time		Point (3, 9, 4)		Point (12,3,4)
(sec)	∆t =	.002	.001	.002	.001
.0		1.402	1.402	.384	.384
.05		1.416	1.419	.389	.390
.10		1.439	1.438	.396	.396
.15		1.457	1.459	.402	.403
.20		1.487	1.484	.411	.410
.25		1.487	1.484	.411	.411
.30		1.484	1.486	.410	.410

Table 3.9. Test Case 3 Results, z-Plane 4, Group 1

Table 3.10. Test Case 3 Results, z-Plane 4, Group 4

Time		Point	(3,9,4)	Point (12,3,4)
(sec)	∆t =	.002	.001	.002	.001
.0		.112	.112	2.742	2.742
.05		.114	.114	2.775	2.781
.10		.115	.115	2.825	2.824
.15		.117	.117	2.867	2.872
.20	1	.119	.119	2.931	2.928
.25		.119	.119	2.935	2.930
.30		.119	.119	2.928	2.934

Table 3.11. Test Case 3 Results, z-Plane 12, Group 1

Time		Point (3, 9, 12)		Point (1	2,3,12)
(sec)	∆t =	.002	.001	.002	.001
.0		1.772	1.772	.486	.486
.05		1.791	1.795	.496	.497
.10		1.821	1.820	.510	.509
.15		1.845	1.848	.522	.523
.20		1.883	1.881	.539	.538
.25		1.885	1.881	.539	.538
.30		1.881	1.883	.538	.539

Time		Point (3,9,12)	Point (12,3,12)
(sec)	Δt =	.002	.001	.002	.001
.0	:	.142	.142	3.467	3.467
.05		.144	.144	3.755	3.764
.10		.146	.146	4.114	4.112
.15		.148	.148	4.510	4.521
.20		.151	.151	5.010	5.008
.25		.151	.151	5.026	5.012
.30		.151	.151	5.012	5.019

Table 3.12. Test Case 3 Results, z-Plane 12, Group 4

The results at the two time step sizes are in good agreement and are thought to represent a good approximation to the exact solution.

TEST CASE 4

Geometry and Compositions: Configuration 4 Perturbation: Ramp changes, $\Delta \Sigma_a$ (material 5, group 2) = -.004 (t/.08) for $0 \le t \le 0.08$ sec $\Delta \Sigma_a$ (material 5, group 2) = -.004 for $t \ge 0.08$ sec $\Delta \Sigma_a$ (material 6, group 2) = 0 for $0 \le t \le 0.08$ sec $\Delta \Sigma_a$ (material 6, group 2) = -.004 $\left(\frac{t-.08}{.08}\right)$ for $0.08 \le t \le 0.16$ sec $\Delta \Sigma_a$ (material 6, group 2) = -.004

(continued)
$$\begin{split} \Delta \Sigma_{a} \text{ (material 7, group 2)} &= 0\\ &\text{for } 0 \leq t \leq 0.16 \text{ sec} \\ \Delta \Sigma_{a} \text{ (material 7, group 2)} &= -.004 \left(\frac{t-.16}{.08}\right)\\ &\text{for } 0.16 \leq t \leq 0.24 \text{ sec} \\ \Delta \Sigma_{a} \text{ (material 7, group 2)} &= -.004\\ &\text{for } t \geq 0.24 \text{ sec} \end{split}$$

This problem represents an attempt to simulate the withdrawal of control rods from two adjacent subassemblies in a medium-sized pressurized-water power reactor with two neutron groups and one precursor group. The central core zone consists of 16 square subassemblies, each 30 cm on a side, containing 2.8% enriched U^{235} . Four subassemblies of the same size, but containing 3.3% enriched U^{235} , are located along each side of the inner zone. The four 30-cmsquare corners plus a 20-cm-thick band around the entire reactor consist of a water and steel reflector. The active core height is 240 cm, with a reflector of 30-cm thickness located above and below it.

The two subassemblies which were perturbed were adjacent to each other with the x mid-plane passing between them. Thus, only the right half of the reactor was considered for the computer calculations. A spatial mesh with $13 \times 25 \times 20$ mesh points was used. A homogeneous Neumann boundary condition was imposed on the exposed mid-plane of the reactor.

The rod withdrawal was simulated by linearly decreasing the thermal absorption cross section over three successive time zones of 0.08 sec length. During the first zone, only the bottom third of the subassembly was perturbed. The middle and upper thirds followed successively in the next two zones. With the full perturbation inserted, the reactor had about fifty cents of excess reactivity.

The thermal group fluxes at three heights in the core, both in the center of the perturbed subassembly and in the center of the subassembly located symmetrically across the y mid-plane from it, are tabulated in Tables 3.13 through 3.15. Runs were made on 3DKIN with time steps of .002 and .001 sec. The results for $\Delta t = .001$ sec are also plotted on Figs. 3.3 and 3.4.

Time		Point (1, 5, 5)		Point (1, 21, 5)	
(sec)	Δt =	.002	.001	.002	.001
.0		.291	.291	.291	.291
.04		.296	.299	.364	.369
.08		.313	.313	.492	.493
.12		.330	.337	.556	.567
.16		.376	.381	.684	.694
.20		.439	.415	.803	.768
.24		.439	.442	.819	.828
.28		.466	.456	.879	.857
.32		.463	.457	.870	.859
.35		.453	.458	.850	.861

Table 3.13. Test Case 4 Results, z-Plane 5

Time		Point (1, 5, 10)		Point (1, 21, 10)	
(sec)	Δt =	.002	.001	.002	.001
.0	,	.547	.547	.547	.547
.04	:	.552	.559	.570	.577
.08		.581	.579	.625	.624
.12		.615	.625	.821	.838
.16		.696	.706	1.212	1.236
.20		.816	.773	1.473	1.401
.24		.824	.828	1.544	1.557
.28		.874	.855	1.660	1.616
.32		.868	.857	1.642	1.619
.35		.850	.859	1.604	1.623

Table 3.14. Test Case 4 Results, z-plane 10

Table 3.15. Test Case 4 Results, z-Plane 16

Time		Point (1, 5, 16)		Point (1,21,16)
(sec)	Δt =	.002	.001	.002	.001
.0		.291	.291	.291	.291
.04		.292	.297	.294	.298
.08		.306	.305	.309	.308
.12		.324	.328	.345	.349
.16		.365	.369	.416	.422
.20		.431	.407	.606	.581
.24		.438	.441	.806	.820
.28		.466	.456	.877	.858
.32		.462	.457	.868	.858
. 35		.453	.458	.851	.860

Fig. 3.3. Test Case 4 Results, Point (1, 5, z)

Fig. 3.4. Test Case 4 Results, Point (1, 21, z)

ŧ

As expected, this perturbation caused severe flux tilting in the reactor. The flux at point (1, 21, 10) grew by a factor of 2.97 during .35 sec, while the flux at point (1, 5, 10) grew by only a factor of 1.57. Likewise, the flux in the upper portion of the core lagged that in the lower third considerably early in the transient, but caught up nicely within..10 sec after the perturbation had become symmetric in the z-direction.

As in earlier cases, the solution at $\Delta t = .002$ behaved in a damped oscillatory fashion at the end of the ramp, due to the frequency calculation. Again, these oscillations disappeared when Δt was halved to .001 sec and halved again for .02 sec just after the end of the ramp. Based on the smoothness of the solution with $\Delta t = .001$ sec and the relatively good agreement of the two solutions except at the end of the ramp, it is again believed that the solution obtained with $\Delta t = .001$ sec is a good approximation to the exact solution.

77

Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

To be a truly useful numerical technique, a proposed method must treat difficult, practical problems successfully with reasonable computational costs, as well as possess desirable analytical properties. It has been concluded in section 2.4 that the NSADE method satisfies certain analytical criteria necessary for success. This chapter summarizes the practical experience gained from the several numerical experiments presented in Chapter 3.

4.1 Characteristics of the Numerical Results

Several important characteristics are easily observed in the numerical experiments. The property of truncation error behavior for the NSADE method has been shown to be approximately of order h^2 , as predicted by the theoretical analysis, for the one problem where it could be accurately measured.

Closely related to truncation error is accuracy. Over several test cases, the NSADE method has been seen to give acceptably accurate solutions at reasonable time step sizes. It is unfortunate that solutions with even smaller Δt 's are not available for Test Cases 2, 3, and 4 to further verify the accuracy of the solutions shown. Given the relatively slow computer available for numerical experiments for this thesis, this was just too costly.

It is granted that the time steps required by the NSADE method are probably an order of magnitude smaller than those which would be required for similar accuracy by a direct solution technique where the <u>A</u> matrix is not split before inversion. However, it is difficult to imagine any such method, which would necessarily require an iterative technique to carry out the inversion process, requiring less than an order of magnitude more computational effort per time step.

The time step size used by the NSADE method is limited by two factors. These generally come into play during different parts of a transient. During that part of the transient where reactivity is being inserted, usually by an externally-controlled factor such as control rod motion, the time steps are initially limited by the rate of reactivity insertion. This is necessary so that truncation error is controlled while the frequencies used in the exponential transformation are "seeking" the rates of flux change in the various regions of the reactor. Once this has happened, the time steps can be gradually increased in size with little effect on accuracy, so long as the rate of reactivity change remains fairly constant.

During any part of the transient when the rate of reactivity change is suddenly altered, the time steps must be decreased in size. This is necessary if accuracy is to be retained while the frequencies again "seek" the new rates of flux change. This must be done to control the damped oscillations that arise if a time step too large is used through this part of the transient.

A rule of thumb which was first offered for the NSADE method in two dimensions 1 and which has been found to hold approximately for

79

three dimensions relates the truncation error to the rate of solution change over one time step. A 1% change in the solution over each time step generally produces about 1% error in about 100 steps. For a given problem, this implies that about 100 steps are required to predict a doubling in the flux to 1% accuracy.

The numerical stability of the NSADE method has never been found to be a limiting factor in two- and three-dimensional calculations. The oscillations which plague the solution during periods of abrupt change in the rate of reactivity change affect the accuracy of the solution temporarily. They quickly damp out, however, so that the solution returns to the correct rate of change. This correct asymptotic behavior is a result of the exponential transformation. The time step sizes to be used for a particular problem are thus primarily limited by the accuracy desired in the solution.

One great advantage of the NSADE method is its computational ease. All matrix inversions required by it are simple backsubstitutions. Because of this, computational times per time step for a range of problems vary approximately linearly with the number of mesh points and neutron groups. It has thus been found possible¹ to derive an expression of the form

Time/Step = $\alpha N(G + \beta I)$,

which relates the time necessary to advance the solution over one time step, Δt , to the number of unknowns in the problem. Here, N is the number of mesh points in the problem, and G and I are the number of neutron and precursor groups, respectively.

80

Listed in Table 4.1 below are running times per step required by 3DKIN for four different problems. The computer used for these runs was an IBM 360/65 running under 0S/360-MVT. All unknowns were stored in fast memory.

Mesh Points	Groups	Precursors	Seconds/Step
1331	2	1	3.09
3696	4	1	16.0
4851	2	1	13.3
6500	2	1	18.3

Table 4.1. Computational Times

Since only problems with one precursor are available, a value of $\beta = 0.3$ will be used as determined in previous two-dimensional work. From Table 4.1, two values of α are obtained:

> $\alpha = 1.2 \times 10^{-3}$ for G = 2 $\alpha = 1.0 \times 10^{-3}$ for G = 4.

As G increases, the work per group decreases in 3DKIN since only one frequency is computed for all neutron groups at each mesh point.

4.2 Applicability of the NSADE Method

The numerical experiments presented in Chapter 3 offer strong evidence that the NSADE method is capable of treating a general class of transients in three spatial dimensions with reasonable time step sizes. These include difficult sub-prompt critical transients which result in significant spatial flux tilting and energy spectrum changes.

It is obvious that it would not be feasible to solve problems of a really practical size with the computer which was used for the numerical experiments for this thesis. Table 4.2 compares the floating-point add time (for 64-bit words) of the IBM 360/65 to those of several of the fastest computer systems currently in use or being installed. An extrapolation from the relation developed in the last section for the IBM 360/65 should be approximately correct if it is based on the information in the table.

Computer Model	Floating Point Add Time	
	(microseconds)	
IBM 360/65	1.8	
CDC 6600	0.4	
IBM 370/195	0.11	
CDC 7600	0.1	
CDC STAR	0.02	

Table 4.2. Comparison of Computing Speeds

It seems reasonable to expect that increases in computing speeds over the IBM 360/65 by factors of at least 16, 18, and 50, respectively, can be expected from the last three machines listed in Table 4.2. These last three machines can be obtained with 5×10^5 words or more of either fast core storage or slower extended core storage which, through clever programming, slows down computing speed only slightly. Thus, a program like 3DKIN could treat a problem with three neutron groups, one precursor group, and 5×10^4 or more spatial mesh points with all unknowns stored in fast or extended core storage, provided an excessive amount of geometrical detail were not specified for the problem.

Consider, then, the time which would be required on a machine which is 20 times faster than the IBM 360/65. Table 4.2 gives assurance that such machines are being built. A reasonable estimate for a problem with three neutron groups, one precursor group, and 5×10^4 mesh points on this machine would be

time/step =
$$(1.1 \times 10^{-3})(.05)(5 \times 10^{4})(3+.3)$$
 sec
= 9.1 sec.

Two hours of computing time would traverse about 800 time steps, enough to describe many interesting transients.

One goal set for the direct solution technique developed in this thesis has been that it provide benchmark solutions for difficult, practical problems. Solutions from the more rapid but more approximate synthesis techniques can then be compared against these. At the same time, the cost of obtaining these benchmark solutions must not be unduly great. The NSADE method appears to satisfy both of these criteria.

More importantly, the NSADE method is a practical method for the routine solution of several classes of problems, given that a very fast computer is available. One such class includes survey calculations where fine spatial detail is not required. Since more effort is required to prepare a problem for solution by a space-time synthesis method than for solution by the NSADE method, the synthesis methods lose much of their speed advantage when a number of different problems are to be run during a survey.

Space-time synthesis methods also have difficulty in treating problems where severe spatial flux tiltings and energy spectrum changes result. Selection of trial functions for such problems requires much insight and intuition. In contrast, the NSADE method requires only an initial flux distribution to start such a problem. Little insight is required as to how the solution will behave during the transient.

4.3 Limitations of the NSADE Method

The NSADE method is a more costly method than are space-time synthesis methods for a number of problems of interest to reactor designers. Once a reactor design has been finalized, there are a number of operating transients which need to be analyzed with fine spatial detail. Here, space-time synthesis methods are capable of providing sufficiently accurate solutions at a significantly lower cost.

Another factor may limit the effectiveness of the NSADE method on some current computing systems. Because this method tends to accumulate errors during the first few steps of a transient, a very accurate initial flux distribution and eigenvalue estimate must be used to start the calculations. All initial conditions used in this thesis were accurate to better than one part in 10^7 in the flux distribution and one part in 10^8 in the eigenvalue. Not only is it costly to obtain such an accurate initial condition, but it also is necessary to be able to carry 10 or more significant digits in all calculations. It would be difficult to utilize this method on any computing system which did not have floating-point capabilities which carry at least 10 significant decimal digits.

4.4 Recommendations for Further Work

The NSADE method can be easily extended to $r-\theta-z$ cylindrical geometry and to hexagonal-z geometry. Such extension would greatly increase the utility of the method in treating problems associated with several types of reactors.

It has been mentioned that it is possible to increase the time step size during certain parts of a transient, while it is necessary to decrease it during other parts if accuracy is to remain fairly constant throughout the transient. Algorithms which would automate this time step size variation should be investigated. It is probable that the rate of change of the frequencies, $\underline{\Omega}$, would provide an indication of when the time step size should be changed.

A final recommendation concerns the selection of the frequencies. There may well be algorithms which would select frequencies which would allow even larger time steps to be taken. This area of investigation deserves a great deal of attention.

REFERENCES

- William H. Reed and K. F. Hansen, "Alternating Direction Methods for Reactor Kinetics Equations," <u>Nucl. Sci. Eng</u>. <u>41</u>, 431 (1970).
- 2. William H. Reed, "Finite Difference Techniques for the Solution of the Reactor Kinetics Equations," Sc. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, MIT-NE-100 (May, 1969).
- 3. Richard S. Varga, <u>Matrix Iterative Analysis</u>, Chap. 6, Prentice-Hall, Englewood Cliffs, N. J. (1962).
- 4. A. F. Henry, "Space-Time Reactor Kinetics," 22.243 Course Notes, Massachusetts Institute of Technology (1969), unpublished.
- 5. S. Kaplan, O. J. Marlowe, and J. Bewick, "Application of Synthesis Techniques to Problems Involving Time Dependence," <u>Nucl. Sci. Eng.</u> <u>18</u>, 163 (1964).
- 6. A. F. Henry, "The Application of Reactor Kinetics to the Analysis of Experiments," <u>Nucl. Sci. Eng.</u> 3, 52 (1958).
- 7. K. Ott, "Quasistatic Treatment of Spatial Phenomena in Reactor Dynamics," Nucl. Sci. Eng. 26, 563 (1966).
- 8. D. A. Meneley, K. Ott, and E. S. Wiener, "Space-Time Kinetics, the QX1 Code," ANL-7310, Argonne National Laboratory (1967).
- 9. J. B. Yasinsky and S. Kaplan, "Synthesis of Three-Dimensional Flux Shapes Using Discontinuous Sets of Trial Functions," Nucl. Sci. Eng. 28, 426 (1967).
- J. B. Yasinsky, "Combined Space-Time Synthesis with Axially Discontinuous Trial Functions," WAPD-TM-736, Bettis Atomic Power Laboratory (1967).
- 11. J. B. Yasinsky, "The Solution of the Space-Time Neutron Group Diffusion Equations by a Time-Discontinuous Synthesis Method," <u>Nucl. Sci. Eng. 29</u>, 381 (1967).
- 12. E. L. Wachspress and M. Becker, "Variational Multichannel Synthesis with Discontinuous Trial Functions," KAPL-3095, Knolls Atomic Power Laboratory (1965).

- W. M. Stacey, Jr., "A Variational Multichannel Space-Time Synthesis Method for Nonseparable Reactor Transients," <u>Nucl. Sci. Eng. 34</u>, 45 (1968).
- K. F. Hansen and S. R. Johnson, "GAKIN, A Program for the Solution of the One-Dimensional, Multigroup, Space-Time Dependent Diffusion Equations," GA-7543, General Atomic (1967).
- 15. W. R. Cadwell, A. F. Henry, and A. J. Vigilotti, "WIGLE A Program for the Solution of the Two-Group, Space-Time Diffusion Equations in Slab Geometry," WAPD-TM-416, Bettis Atomic Power Laboratory (1964).
- 16. J. B. Yasinsky, M. Natelson, and L. A. Hageman, "TWIGL A Program to Solve the Two-Dimensional, Two-Group, Space-Time Neutron Diffusion Equations with Temperature Feedback," WAPD-TM-743, Bettis Atomic Power Laboratory (1968).
- W. T. McCormick, Jr., "Numerical Solution of the Two-Dimensional Multigroup Kinetics Equations," Ph. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology, MIT-NE-99 (May, 1969).
- 18. B. K. Larkin, "Some Stable Explicit Difference Approximations to the Diffusion Equation," Math. Comp. 18, 196 (1964).
- S. J. Kast, "Solution of the Reactor Kinetics Equations in Two Dimensions by Finite Difference Methods," S. M. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology (August, 1970).
- 20. Richard S. Varga, op. cit., Chap. 8.
- D. W. Peaceman and H. H. Rachford, Jr., "The Numerical Solution of Parabolic and Elliptic Differential Equations," <u>J. Soc. Ind. Appl. Math.</u> <u>3</u>, 28 (1955).
- 22. L. A. Hageman and J. B. Yasinsky, "Comparison of Alternating-Direction Time-Differencing Methods with Other Implicit Methods for the Solution of the Neutron Group-Diffusion Equations," Nucl. Sci. Eng. 38, 8 (1969).
- 23. A. L. Wight, K. F. Hansen, and D. R. Ferguson, "Application of Alternating-Direction Implicit Methods to the Space-Dependent Kinetics Equations," Nucl. Sci. Eng. 44, 239 (1971).
- 24. A. L. Wight, "The Application of Alternating-Direction Implicit Methods to the Space-Dependent Kinetics Equations," Ph. D. Thesis, Department of Nuclear Engineering, Massachusetts Institute of Technology (August, 1969).

- 25. Eugene L. Wachspress, <u>Iterative Solution of Elliptic Systems</u>, Chap. 3, Prentice-Hall, Englewood Cliffs, N. J. (1966).
- 26. Robert D. Richtmeyer and K. W. Morton, <u>Difference Methods</u> for Initial-Value Problems, Chap. 3, John Wiley and Sons, New York (1967).
- 27. L. A. Hageman, "Numerical Methods and Techniques Used in the Two-Dimensional Neutron-Diffusion Program PDQ-5," WAPD-TM-364, Bettis Atomic Power Laboratory (1963).

APPENDICES

Appendix A

THE SEMI-DISCRETE FORM OF THE

SPACE-DEPENDENT REACTOR KINETICS EQUATIONS

The differential form of the space-dependent reactor kinetics equations has been given in Eqs. (1.1). These equations are repeated here for the sake of clarity.

$$\frac{1}{v_g} \frac{d\phi_g(\vec{\mathbf{r}}, t)}{dt} = \vec{\nabla} \cdot D_g(\vec{\mathbf{r}}, t) \vec{\nabla} \phi_g(\vec{\mathbf{r}}, t) + \sum_{\substack{g'=1\\g'=1}}^{G} \Sigma_{gg'}(\vec{\mathbf{r}}, t) \phi_{g'}(\vec{\mathbf{r}}, t) + \sum_{\substack{i=1\\i=1}}^{I} f_{gi}C_i(\vec{\mathbf{r}}, t) \quad (1 \leq g \leq G)$$

$$\frac{dC_i(\vec{\mathbf{r}}, t)}{dt} = -\lambda_i C_i(\vec{\mathbf{r}}, t) + \sum_{\substack{g'=1\\g'=1}}^{G} p_{ig'}(\vec{\mathbf{r}}, t) \phi_{g'}(\vec{\mathbf{r}}, t) \quad (1.1)$$

All of the symbols used here have been defined in section 1.2.

The discretization is carried out here in rectangular Cartesian coordinates. The region of interest is a rectangular parallelepiped. The origin of coordinates is placed in the lower front left corner of the parallelepiped, as shown in Fig. A.1.

The three-dimensional mesh is created by passing a series of planes, each of which is perpendicular to one of the three axes, entirely through the parallelepiped. The points of intersection of these planes, which lie within or on the boundaries of the parallelepiped, form the mesh. It is assumed that six of the planes are

Fig. A.1. Coordinate System

coincident with the six faces so that planes of mesh points lie on the six faces. If a total of L, J, and K planes are passed perpendicular to the x-, y-, and z-axis, respectively, there are a total of LXJXK points in the mesh within or on the boundaries of the parallelepiped.

Figures A.2a and A.2b depict, respectively, planes perpendicular to the z-axis and y-axis which pass through mesh point (l, j, k).

Fig. A.2a. Plane Perpendicular to z-Axis at (l, j, k)

Fig. A.2b. Plane Perpendicular to y-Axis at (1, j, k)

The broken lines lie exactly halfway between the solid mesh lines. The eight octants which touch on point (l, j, k) are numbered as shown above. Octants 1, 2, 3, and 4 lie below the z-plane passing through point (l, j, k), while octants 5, 6, 7, and 8 lie above it.

The discrete equations for point (i, j, k) are obtained by integrating Eqs.(1.1) over the volume contained within $x_1 - h_x^-/2 \le x \le x_1 + h_x^+/2$, $y_j - h_y^-/2 \le y \le y_j + h_y^+/2$, and $z_k - h_z^-/2 \le z \le z_k + h_z^+/2$. It is assumed that the material within each octant is homogeneous. In the derivation that follows, superscripts on material constants denote the octants in which the materials lie.

$$\frac{1}{v_{g}} \frac{d}{dt} \int_{z_{k}-h_{z}^{-}/2}^{z_{k}+h_{z}^{+}/2} dz \int_{y_{j}-h_{y}^{-}/2}^{y_{j}+h_{y}^{+}/2} dy \int_{x_{1}-h_{x}^{-}/2}^{x_{1}+h_{x}^{+}/2} dx \phi_{g}(x, y, z, t) = \int_{z_{k}-h_{z}^{-}/2}^{z_{k}+h_{z}^{+}/2} dz \int_{y_{j}-h_{y}^{-}/2}^{y_{j}+h_{y}^{+}/2} dy \int_{x_{1}-h_{x}^{-}/2}^{x_{1}+h_{x}^{+}/2} dx \times \left\{ \vec{\nabla} \cdot D_{g}(x, y, z, t) \vec{\nabla} \phi_{g}(x, y, z, t) + \sum_{g'=1}^{G} \Sigma_{gg'}(x, y, z, t) \phi_{g'}(x, y, z, t) + \sum_{i=1}^{I} f_{gi}C_{i}(x, y, z, t) \right\}, \quad (1 \leq g \leq G).$$
(A.1)

With the following definitions,

$$\phi_{g,l,j,k} = \frac{1}{V_{l,j,k}} \int \int \int \phi_g(x, y, z) \, dx \, dy \, dz \qquad (A.2a)$$

$$C_{i,l,j,k} = \frac{1}{V_{l,j,k}} \int \int \int C_{i}(x, y, z) dx dy dz$$
 (A.2b)

$$V_{1, j, k} = \frac{1}{8} \left(h_{x}^{+} + h_{x}^{-} \right) \left(h_{y}^{+} + h_{y}^{-} \right) \left(h_{z}^{+} + h_{z}^{-} \right)$$
(A.2c)

and

$$\Sigma_{gg',1,j,k} = \frac{1}{8} \left[h_x^+ h_y^+ h_z^- \Sigma_{gg'}^1 + h_x^- h_y^+ h_z^- \Sigma_{gg'}^2 + h_x^- h_y^- h_z^- \Sigma_{gg'}^3 + h_x^+ h_y^- h_z^- \Sigma_{gg'}^4 + h_x^- h_y^+ h_z^- \Sigma_{gg'}^2 + h_x^- h_y^- h_z^- \Sigma_{gg'}^3 + h_x^- h$$

where the integrals are taken over the limits shown in Eq. (A.1), Eq. (A.1) becomes

$$\frac{V_{1, j, k}}{v_{g}} \frac{d\phi_{g, 1, j, k}}{dt} = \sum_{m=1}^{6} \left\{ \int d\vec{s}_{m} \cdot D_{g}(x, y, z) \vec{\nabla} \phi_{g}(x, y, z) \right\} + \frac{G}{g'=1} \sum_{g'=1}^{C} \sum_{gg', 1, j, k} \phi_{g', 1, j, k} + V_{1, j, k} \sum_{i=1}^{I} f_{gi} C_{i, 1, j, k} .$$
(A.3)

In Eq. (A.3), the volume integral for the diffusion terms has been changed to a surface integral, using Gauss' theorem. The summation over m indicates that the integral has been broken into integrals over the six faces of the volume. For illustrative purposes, consider the face which is perpendicular to the x-axis at $x=x_1+h_x^+/2$. The surface integral for this face is given by

$$\int_{z-h_{z}^{-}/2}^{z+h_{z}^{+}/2} dz \int_{y-h_{y}^{-}/2}^{y+h_{y}^{+}/2} dy \{ D_{g}(x, y, z) \vec{\nabla} \phi_{g}(x, y, z) \cdot \vec{n}_{x} \} \Big|_{x=x_{1}^{+}h_{x}^{+}/2},$$

where \vec{n}_x is a unit vector in the positive x-direction.

In order to carry out this integration, the current normal to the face is approximated by a simple finite difference:

$$\vec{\nabla}\phi_{g}(x, y, z) \cdot \vec{n}_{x} \doteq \frac{\phi_{g, l+1, j, k} - \phi_{g, l, j, k}}{h_{x}^{+}} . \tag{A.4}$$

With this approximation, the surface integral representing leakage across the face at $x=x_1+h_x^+/2$ becomes

$$\int_{z-h_{z}^{-}/2}^{z+h_{z}^{+}/2} dz \int_{y-h_{y}^{-}/2}^{y+h_{y}^{+}/2} dy \left\{ D_{g}(x, y, z) \overrightarrow{\nabla} \phi_{g}(x, y, z) \cdot \overrightarrow{n_{x}} \right\} \bigg|_{x=x_{1}^{+}h_{x}^{+}/2} \doteq \left(\frac{\phi_{g,1+1,j,k}^{-} - \phi_{g,1,j,k}^{-}}{h_{x}^{+}} \right) \cdot \left(\frac{D_{g}^{1}h_{y}^{+}h_{z}^{-}}{4} + \frac{D_{g}^{5}h_{y}^{+}h_{z}^{+}}{4} + \frac{D_{g}^{8}h_{y}^{-}h_{z}^{+}}{4} + \frac{D_{g}^{4}h_{y}^{-}h_{z}^{-}}{4} \right)$$
$$= R_{g,1+\frac{1}{2},j,k}(\phi_{g,1+1,j,k}^{-}\phi_{g,1,j,k}), \qquad (A.5)$$

where $R_{g, l+\frac{1}{2}, j, k}$ has been defined as

$$R_{g, 1+\frac{1}{2}, j, k} = \frac{1}{4h_{x}^{+}} \left(D_{g}^{1}h_{y}^{+}h_{z}^{-} + D_{g}^{5}h_{y}^{+}h_{z}^{+} + D_{g}^{8}h_{y}^{-}h_{z}^{+} + D_{g}^{4}h_{y}^{-}h_{z}^{-} \right).$$
(A.6a)

By defining five more leakage coefficients as

$$R_{g,1-\frac{1}{2},j,k} = \frac{1}{4h_{x}} \left(D_{g}^{2}h_{y}^{+}h_{z}^{-} + D_{g}^{6}h_{y}^{+}h_{z}^{+} + D_{g}^{7}h_{y}^{-}h_{z}^{+} + D_{g}^{3}h_{z}^{-}h_{y}^{-} \right), \quad (A.6b)$$

$$R_{g,l,j+\frac{1}{2},k} = \frac{1}{4h_{y}^{+}} \left(D_{g}^{1}h_{x}^{+}h_{z}^{-} + D_{g}^{5}h_{x}^{+}h_{z}^{+} + D_{g}^{6}h_{x}^{-}h_{z}^{+} + D_{g}^{2}h_{x}^{-}h_{z}^{-} \right), \quad (A.6c)$$

$$R_{g,l,j-\frac{1}{2},k} = \frac{1}{4h_{y}^{-}} \left(D_{g}^{4}h_{x}^{+}h_{z}^{-} + D_{g}^{8}h_{x}^{+}h_{z}^{+} + D_{g}^{7}h_{x}^{-}h_{z}^{+} + D_{g}^{3}h_{x}^{-}h_{z}^{-} \right), \quad (A.6d)$$

$$R_{g,1,j,k+\frac{1}{2}} = \frac{1}{4h_{z}^{+}} \left(D_{g}^{8}h_{x}^{+}h_{y}^{-} + D_{g}^{7}h_{x}^{-}h_{y}^{-} + D_{g}^{6}h_{x}^{-}h_{y}^{+} + D_{g}^{5}h_{x}^{+}h_{y}^{+} \right), \quad (A.6e)$$

$$R_{g,l,j,k-\frac{1}{2}} = \frac{1}{4h_{z}} \left(D_{g}^{4}h_{x}^{+}h_{y}^{-} + D_{g}^{3}h_{x}^{-}h_{y}^{-} + D_{g}^{2}h_{x}^{-}h_{y}^{+} + D_{g}^{1}h_{x}^{+}h_{y}^{+} \right), \quad (A.6f)$$

Eq. (A.3) can be written in its final form as

$$\frac{d\phi_{g,l,j,k}}{dt} = v_{g} \left\{ \frac{1}{V_{l,j,k}} \left[R_{g,l+\frac{1}{2},j,k}(\phi_{g,l+1,j,k}^{-}\phi_{g,l,j,k}) + R_{g,l,j,k}^{-} R_{g,l-\frac{1}{2},j,k}(\phi_{g,l-1,j,k}^{-}\phi_{g,l,j,k}) + R_{g,l,j+\frac{1}{2},k}(\phi_{g,l,j+1,k}^{-} \phi_{g,l,j,k}) + R_{g,l,j,k}^{-} R_{g,l,j,k}^{-} R_{g,l,j,k+\frac{1}{2}}(\phi_{g,l,j,k}) + R_{g,l,j,k}^{-} R_{g,l,j,k+\frac{1}{2}}(\phi_{g,l,j,k+1}^{-}\phi_{g,l,j,k}) + R_{g,l,j,k-\frac{1}{2}}(\phi_{g,l,j,k-1}^{-} \phi_{g,l,j,k}) + \sum_{g'=1}^{G} \Sigma_{gg',l,j,k} \phi_{g',l,j,k} \right] + \sum_{i=1}^{I} f_{gi}C_{i,l,j,k} \right\}, \quad (1 \le g \le G). \quad (A.7)$$

Furthermore, by defining the (LJK) \times (LJK) square matrices

$$\underline{T}_{gg'} = diag\{v_g \Sigma_{gg', 1, j, k} / V_{1, j, k}\},$$
(A.8a)

$$\underline{\mathbf{F}}_{gi} = \operatorname{diag}\{\mathbf{v}_{g}\mathbf{f}_{gi}\}, \qquad (A.8b)$$

and \underline{D}_g such that

$$\begin{split} \underline{D}_{g}\vec{\psi}_{g} &= v_{g} \operatorname{col}\left\{\frac{1}{V_{1, j, k}} \left[R_{g, 1+\frac{1}{2}, j, k}(\phi_{g, 1+1, j, k}-\phi_{g, 1, j, k}) + R_{g, 1-\frac{1}{2}, j, k}(\phi_{g, 1-1, j, k}-\phi_{g, 1, j, k}) + R_{g, 1, j+\frac{1}{2}, k}(\phi_{g, 1, j+1, k}-\phi_{g, 1, j, k}) + R_{g, 1, j, k}\right) + R_{g, 1, j, k}(\phi_{g, 1, j-\frac{1}{2}, k}(\phi_{g, 1, j-1, k}-\phi_{g, 1, j, k}) + R_{g, 1, j, k+\frac{1}{2}}(\phi_{g, 1, j, k+1}-\phi_{g, 1, j, k}) + R_{g, 1, j, k+\frac{1}{2}}(\phi_{g, 1, j, k+1}-\phi_{g, 1, j, k})\right] \bigg\}, \quad (A.8c)$$

the equations for all mesh points can be combined into the single

matrix equation

$$\frac{\mathrm{d}\vec{\psi}_{g}}{\mathrm{dt}} = \underline{\mathrm{D}}_{g}\vec{\psi}_{g} + \sum_{g'=1}^{G} \underline{\mathrm{T}}_{gg'}\vec{\psi}_{g'} + \sum_{i=1}^{I} \underline{\mathrm{F}}_{gi}\vec{\mathrm{C}}_{i}, \quad (1 \leq g \leq G). \quad (1.4)$$

Here, the vectors $\vec{\psi}_g$ and \vec{C}_i are formed by ordering the group g fluxes and delayed precursor group i concentrations, respectively, in a consistent manner.

The discrete equation for the i^{th} delayed precursor concentration at point (l, j, k) is derived in an analogous fashion. It is given by

$$\frac{dC_{i,l,j,k}}{dt} = -\lambda_i C_{i,l,j,k} + \frac{1}{V_{l,j,k}} \sum_{g'=1}^{G} P_{ig',l,j,k} \phi_{g',l,j,k},$$

$$(1 \le i \le I),$$
(A.9)

where

1

$$P_{ig', 1, j, k} = \frac{\beta_{i}}{8} \left[h_{x}^{+} h_{y}^{+} h_{z}^{-} \nu_{g'}^{1} \Sigma_{fg'}^{1} + h_{x}^{-} h_{y}^{+} h_{z}^{-} \nu_{g'}^{2} \Sigma_{fg'}^{2} + h_{x}^{-} h_{y}^{-} h_{z}^{-} \nu_{g'}^{3} \Sigma_{fg'}^{3} + h_{x}^{+} h_{y}^{-} h_{z}^{-} \nu_{g'}^{2} \Sigma_{fg'}^{2} + h_{x}^{-} h_{y}^{-} h_{z}^{-} \nu_{g'}^{3} \Sigma_{fg'}^{3} + h_{x}^{-} h_{y}^{-} h_{z}^{-} \mu_{g'}^{3} \Sigma_{fg'}^{3} + h_{x}^{-} h_{z}^{-} h_{z}^{-}$$

By defining the (LJK) by (LJK) matrices

-

$$\underline{\Lambda}_{i} = \lambda_{i} \underline{I}$$
(A.11a)

and

$$\underline{P}_{ig'} = diag \{ P_{ig', l, j, k} / V_{l, j, k} \}, \qquad (A.11b)$$

Eq. (A.9) for all mesh points can be written in matrix form as

$$\frac{d\vec{C}_{i}}{dt} = -\underline{\Lambda}_{i}\vec{C}_{i} + \sum_{g'=1}^{G} \underline{P}_{ig'}\vec{\psi}_{g'} . \qquad (1.5)$$

Appendix B

THEOREMS

Several theorems and lemmas were offered without proof in Chapter 2. They are restated and proved here.

LEMMA 1.¹ The operators $\underline{C}_1(\underline{\Omega}, h)$ and $\underline{C}_2(\underline{\Omega}, h)$ are consistent.

<u>Proof</u>. The consistency condition requires that

$$\left\| \frac{\overline{\theta}(t+h) - \underline{C}_1(\underline{\Omega}, h) \,\overline{\theta}(t)}{h} \right\| \to 0 \text{ as } h \to 0.$$
 (B.1)

An identical condition must hold for $\underline{C}_2(\underline{\Omega}, h)$. Only $\underline{C}_1(\underline{\Omega}, h)$ will be treated here. The proof for $\underline{C}_2(\underline{\Omega}, h)$ is identical.

The numerator in Eq. (B.1) can be written in the form

$$\vec{\theta}(t+h) - \underline{C}_{1}\vec{\theta}(t) = e^{\underline{\Omega}h} \left[\underline{I} - h(\underline{D}_{1} + \underline{E}_{4} - \alpha \underline{\Omega})\right]^{-1} \\ \times \left\{ \left[\underline{I} - h(\underline{D}_{1} + \underline{E}_{4} - \alpha \underline{\Omega})\right] e^{-\underline{\Omega}h} \vec{\theta}(t+h) \\ - \left[\underline{I} + h(\underline{D}_{2} + \underline{E}_{3} - \gamma \underline{\Omega})\right] \right\} \vec{\theta}(t) .$$

Expanding $e^{\underline{\Omega}h}$ and $\overline{\theta}$ (t+h) in a Taylor's series gives

$$\vec{\theta} (t+h) - \underline{C}_1 \vec{\theta} (t) = e^{\underline{\Omega} h} \left[\underline{I} - h(\underline{D}_1 + \underline{E}_4 - \alpha \underline{\Omega}) \right]^{-1} \\ \times \left\{ h \frac{d\vec{\theta} (t)}{dt} - h\underline{A}\vec{\theta} (t) + O(h^2) \right\}.$$

It has been stated in section 2.1 that

$$\underline{\mathbf{M}} \vec{\boldsymbol{\theta}} (\mathbf{t}) = \underline{\mathbf{A}} \vec{\boldsymbol{\theta}} (\mathbf{t}) + \mathbf{O}(\Delta \mathbf{x}^2) + \mathbf{O}(\Delta \mathbf{y}^2) + \mathbf{O}(\Delta \mathbf{z}^2) \,.$$

Therefore,

$$\begin{aligned} \left\| \frac{\vec{\theta} \left(t+h \right) - \underline{C}_{1} \vec{\theta} \left(t \right)}{h} \right\| &= \left\| e^{\underline{\Omega} h} \left[\underline{I} - h(\underline{D}_{1} + \underline{E}_{4} - \alpha \underline{\Omega}) \right]^{-1} \right\| \\ &\times \left\{ O(h) + O(\Delta x^{2}) + O(\Delta y^{2}) + O(\Delta z^{2}) \right\}, \end{aligned} \tag{B.2}$$

$$\begin{aligned} \left\| \frac{\vec{\theta} \left(t+h \right) - \underline{C}_{1} \vec{\theta} \left(t \right)}{h} \right\| &\leq \left\| e^{\underline{\Omega} h} \left[\underline{I} - h(\underline{D}_{1} + \underline{E}_{4} - \alpha \underline{\Omega}) \right]^{-1} \right\| \\ &\times \left\| O(h) + O(\Delta x^{2}) + O(\Delta y^{2}) + O(\Delta z^{2}) \right\|. \end{aligned}$$

Theorem 3, proved later in this Appendix gives assurance that $\|e^{\underline{\Omega}h}[\underline{I}-h(\underline{D}_1+\underline{E}_4-\alpha\underline{\Omega})]^{-1}\|$ is bounded for the L_2 norm provided the ratios $h/\Delta x^2$, $h/\Delta y^2$, and $h/\Delta z^2$ are fixed, real constants of any finite size. Calling this bound K allows Eq. (B.2) to be written as

$$\left\|\frac{\vec{\theta}(t+h) - \underline{C}_{1}(\underline{\Omega}, h) \vec{\theta}(t)}{h}\right\| \leq K \|O(h)\|$$

for the L_2 norm. Thus, $\underline{C}_1(\underline{\Omega}, h)$ satisfies the consistency condition.

LEMMA 2.¹ If two operators are consistent, then their product is consistent.

<u>Proof</u>. Let \underline{C}_1 and \underline{C}_2 be two consistent operators, i.e.,

$$\left\|\frac{\vec{\theta}(t+h) - \underline{C}_2 \vec{\theta}(t)}{h}\right\| \to 0 \text{ as } h \to 0$$

 $\left\|\frac{\vec{\theta}(t+2h) - \underline{C}_1 \vec{\theta}(t+h)}{h}\right\| \to 0 \text{ as } h \to 0.$

Since \underline{C}_1 is consistent, it has a bounded norm so that

$$\left\|\underline{C}_{1}\right\|\left\|\frac{\vec{\theta}\left(t+h\right)-\underline{C}_{2}\vec{\theta}\left(t\right)}{h}\right\| \to 0 \text{ as } h \to 0.$$

The definition of a norm provides that $\|\underline{C} \cdot \underline{x}\| \leq \|\underline{C}\| \| \| \cdot \underline{x} \|$. Therefore,

$$\left\|\underline{C}_{1}\vec{\theta}(t+h) - \underline{C}_{1}\underline{C}_{2}\vec{\theta}(t)\right\| \to 0 \text{ as } h \to 0.$$

Using the triangle inequality, $\|\vec{x} + \vec{y}\| \le \|\vec{x}\| + \|\vec{y}\|$, this becomes

$$\left\|\frac{\vec{\theta}(t+2h) - \underline{C}_1 \vec{\theta}(t+h)}{h} + \frac{\underline{C}_1 \vec{\theta}(t+h) - \underline{C}_1 \underline{C}_2 \vec{\theta}(t)}{h}\right\| \to 0 \text{ as } h \to 0$$

 \mathbf{or}

$$\left\|\frac{\vec{\theta}(t+2h) - \underline{C}_1 \underline{C}_2 \vec{\theta}(t)}{h}\right\| \to 0 \text{ as } h \to 0, \qquad (B.3)$$

which is the consistency requirement for the product.

THEOREM 3.¹ A family of matrices \underline{M}_n of varying dimension n having at most $\ell < n$ nonzero elements in each row or column, ℓ being constant for all n, has a uniform L_2 bound if the individual elements of the matrices \underline{M}_n are uniformly bounded for all n.

<u>Proof.</u> Let c > 0 be a bound on the absolute value of the individual elements, $m_{j,k}^n$, of the matrices \underline{M}_n . Then

$$\max_{k} \sum_{j=1}^{n} |m_{j,k}^{n}| \leq c\ell$$
$$\max_{j} \sum_{k=1}^{n} |m_{j,k}^{n}| \leq c\ell$$

for all n. However, by definition,

$$\|\underline{\mathbf{M}}_{n}\|_{2}^{2} = \sup_{\|\mathbf{x}\|_{2}=1} \sum_{j=1}^{n} \left|\sum_{k=1}^{n} \mathbf{m}_{j,k}^{n} \mathbf{x}_{k}\right|^{2}.$$

The Cauchy-Schwarz inequality gives

$$\begin{split} \left\|\underline{\mathbf{M}}_{n}\right\|_{2}^{2} &\leq \sup_{\left\|\vec{\mathbf{x}}\right\|_{2}=1}^{n} \sum_{j=1}^{n} \left\{ \left[\sum_{k=1}^{n} |\mathbf{m}_{j,k}^{n}|\right] \left[\sum_{k=1}^{n} |\mathbf{m}_{j,k}^{n} \mathbf{x}_{k}^{2}|\right] \right\} \\ &\leq \sup_{\left\|\vec{\mathbf{x}}\right\|_{2}=1}^{n} \sum_{j=1}^{n} \left\{ c\boldsymbol{\ell} \sum_{k=1}^{n} |\mathbf{m}_{j,k}^{n} \mathbf{x}_{k}^{2}| \right\} \\ &\leq \sup_{\left\|\vec{\mathbf{x}}\right\|_{2}=1}^{n} c\boldsymbol{\ell} \sum_{k=1}^{n} \left\{ |\mathbf{x}_{k}|^{2} \sum_{j=1}^{n} |\mathbf{m}_{j,k}^{n}| \right\} \\ &\leq (c\boldsymbol{\ell})^{2} \sup_{\left\|\vec{\mathbf{x}}\right\|_{2}=1}^{n} \sum_{k=1}^{n} |\mathbf{x}_{k}|^{2} , \end{split}$$

$$\left\|\underline{\mathbf{M}}_{n}\right\|_{2}^{2} \leq (c\ell)^{2}$$
 ,

 \mathbf{or}

$$\left\|\underline{\mathbf{M}}_{n}\right\| \leq c\ell, \tag{B.4}$$

and the theorem is proved.

THEOREM 4.¹ The matrices $(\underline{I} - h\underline{R})^{-1}$ and $(\underline{I} + h\underline{R})(\underline{I} - h\underline{R})^{-1}$ have L_2 norms of less than unity provided that $(\underline{R} + \underline{R}^T)$ is negative definite. <u>Proof.</u> By definition,

$$\left\| (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \right\|_{2}^{2} = \max_{\overrightarrow{\mathbf{v}}} \frac{\overrightarrow{\mathbf{v}}^{\mathrm{T}} (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}}^{\mathrm{T}})^{-1} (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \overrightarrow{\mathbf{v}}}{\overrightarrow{\mathbf{v}}^{\mathrm{T}} \overrightarrow{\mathbf{v}}}$$

Let $\vec{u} = (\underline{I} - h\underline{R})^{-1}\vec{v}$. Then

$$\left\| (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \right\|_{2}^{2} = \max_{\underline{\mathbf{u}}} \frac{\overline{\mathbf{u}}^{T} \overline{\mathbf{u}}}{\overline{\mathbf{u}}^{T} (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}}^{T}) (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}}) \overline{\mathbf{u}}}$$
$$= \max_{\underline{\mathbf{u}}} \frac{\overline{\mathbf{u}}^{T} \overline{\mathbf{u}}}{\overline{\mathbf{u}}^{T} [\underline{\mathbf{I}} - \underline{\mathbf{h}} (\underline{\mathbf{R}}^{T} + \underline{\mathbf{R}}) + \underline{\mathbf{h}}^{2} \underline{\mathbf{R}}^{T} \underline{\mathbf{R}}] \overline{\mathbf{u}}}.$$
(B.5)

If $(\underline{R}^T + \underline{R})$ is negative definite, the denominator of Eq. (B.5) is positive and larger than the numerator. Therefore,

$$\left\|\left(\underline{\mathrm{I}}-\mathrm{h}\underline{\mathrm{R}}\right)^{-1}\right\|_{2} < 1.$$

Likewise, for the product $(\underline{I} + h\underline{R})(\underline{I} - h\underline{R})^{-1}$, the L₂ norm is defined as

$$\left\| (\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}})(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \right\|_{2}^{2} = \max_{\overline{\mathbf{v}}} \frac{\overline{\mathbf{v}}^{T}(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}}^{T})^{-1}(\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}}^{T})(\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}})(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1}\overline{\mathbf{v}}}{\overline{\mathbf{v}}^{T}\overline{\mathbf{v}}}$$

With \vec{u} defined as before, this becomes

$$\left\| (\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}})(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \right\|_{2}^{2} = \max_{\vec{u}} \frac{\vec{u}^{T}(\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}}^{T})(\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}})\vec{u}}{\vec{u}^{T}(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}}^{T})(\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})\vec{u}}$$
$$= \max_{\vec{u}} \frac{\vec{u}^{T}[\underline{\mathbf{I}} + \underline{\mathbf{h}}(\underline{\mathbf{R}}^{T} + \underline{\mathbf{R}}) + \underline{\mathbf{h}}^{2}\underline{\mathbf{R}}^{T}\underline{\mathbf{R}}]\vec{u}}{\vec{u}^{T}[\underline{\mathbf{I}} - \underline{\mathbf{h}}(\underline{\mathbf{R}}^{T} + \underline{\mathbf{R}}) + \underline{\mathbf{h}}^{2}\underline{\mathbf{R}}^{T}\underline{\mathbf{R}}}]\vec{u}} .$$
(B.6)

Again, if $(\underline{R}^T + \underline{R})$ is negative definite, the denominator of Eq. (B.6) is larger than the numerator so that

$$\left\| (\underline{\mathbf{I}} + \underline{\mathbf{h}}\underline{\mathbf{R}}) (\underline{\mathbf{I}} - \underline{\mathbf{h}}\underline{\mathbf{R}})^{-1} \right\|_{2} < 1.$$

THEOREM 5.²⁴ As t approaches infinity, the solution vector $\vec{\psi}(t) = e^{\underline{A}t}\vec{\psi}_{0}$ approaches $\alpha e^{\omega_{0}t}\vec{e}_{0}$, where ω_{0} is the largest eigenvalue of \underline{A} , \vec{e}_{0} the corresponding eigenvector, and $\alpha = (\vec{\psi}_{0}, \vec{e}_{0})$.

<u>Proof</u>. Write $\vec{\psi}_{0}$ as a linear combination of \vec{e}_{0} and \vec{v} , where $(\vec{v}, \vec{e}_{0}) = 0$, that is, $\vec{\psi}_{0} = \alpha \vec{e}_{0} + \beta \vec{v}$. Now,

$$\alpha(\vec{e}_{0},\vec{e}_{0}) + \beta(\vec{e}_{0},\vec{v}) = (\vec{e}_{0},\vec{\psi}_{0})$$

or

$$\alpha = (\vec{e}_0, \vec{\psi}_0) ,$$

if (\vec{e}_0, \vec{e}_0) is normalized to unity.

Write
$$\vec{\psi}(t)$$
 as
 $\vec{\psi}(t) = e^{\underline{A}t} (\alpha \vec{e}_0 + \beta \vec{v})$
 $= \alpha e^{\omega_0 t} \vec{e}_0 + \beta e^{\underline{A}t} \vec{v}$
 $= \alpha e^{\omega_0 t} \left[\vec{e}_0 + (\beta/\alpha) e^{\underline{B}t} \vec{v} \right],$ (B.7)

where

$$\underline{\mathbf{B}} = \underline{\mathbf{A}} - \boldsymbol{\omega}_{\mathbf{O}} \underline{\mathbf{I}} \ .$$

Note that the largest eigenvalue of <u>B</u> is 0, and all the others are given by $\lambda_i = \omega_i - \omega_0$ and have real parts less than zero.

Now, put <u>B</u> in Jordan form:

$$\underline{\mathbf{J}} = \underline{\mathbf{S}}^{-1} \underline{\mathbf{BS}} = \begin{bmatrix} \underline{\mathbf{J}}_1 & & \\ & \underline{\mathbf{J}}_2 & & \\ & & \underline{\mathbf{J}}_3 & \\ & & & \ddots \end{bmatrix}, \qquad (B.8)$$

where each of the blocks on the diagonal is of the form

$$\underline{J}_{i} = \begin{bmatrix} \lambda_{i} & 1 & & & \\ & \lambda_{i} & 1 & & \\ & \lambda_{i} & 1 & & \\ & & & \lambda_{i} & 1 \\ & & & & \ddots \end{bmatrix} .$$
(B.9)

 \underline{J}_i is a p_i by p_i matrix, p_i being less than or equal to the multiplicity of the ith eigenvalue, and the λ_i 's are arranged in order of nonincreasing real part. \underline{J}_1 is a 1X1 matrix since the largest eigenvalue of <u>B</u> is simple.

Now

$$e^{\mathbf{B} \mathbf{t}} \overrightarrow{\mathbf{v}} = e^{\mathbf{S}^{-1} \mathbf{J} \mathbf{S} \mathbf{t}} \overrightarrow{\mathbf{v}}$$
$$= (\mathbf{I} + \mathbf{S}^{-1} (\mathbf{J} \mathbf{t}) \mathbf{S} + (1/2!) \mathbf{S}^{-1} (\mathbf{J} \mathbf{t})^2 \mathbf{S} + \dots) \overrightarrow{\mathbf{v}}$$
$$= \mathbf{S}^{-1} e^{\mathbf{J} \mathbf{t}} \mathbf{S} \overrightarrow{\mathbf{v}} = \mathbf{S}^{-1} e^{\mathbf{J} \mathbf{t}} \mathbf{a}, \qquad (B.10)$$

where $\vec{a} = \underline{S}\vec{v}$. But

Since <u>A</u> and <u>B</u> share the same eigenvectors, $\vec{e_0}$ is the eigenvector of <u>B</u> corresponding to eigenvalue 0, and the transformation <u>S</u> also puts <u>A</u> into Jordan form. That is,

$$\underline{J'S} = \underline{S}\underline{A}, \quad \underline{S}^{-1}\underline{J'}\underline{S}\vec{e}_{0} = \underline{A}\vec{e}_{0} = \omega_{0}\vec{e}_{0}, \quad \underline{J'S}\vec{e}_{0} = \omega_{0}\underline{S}\vec{e}_{0},$$

where

(B.12)

Thus

$$\underline{S} \, \overrightarrow{e}_{O} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ . \\ . \\ . \end{bmatrix} \text{ and } \overrightarrow{S} = \begin{bmatrix} \overrightarrow{e}_{O}^{T} \\ x \\ x \\ . \\ . \end{bmatrix},$$

so that

$$\underline{S} \, \overrightarrow{\mathbf{v}} = \begin{bmatrix} \overrightarrow{\mathbf{e}} \, \mathbf{T} \, \overrightarrow{\mathbf{v}} \\ \mathbf{x} \\ \mathbf{x$$

The first element of $\underline{S}\vec{v}$ is zero since \vec{e}_0 is orthogonal to \vec{v} .

$$e^{\mathbf{J}\cdot\mathbf{t}} \underline{\mathbf{S}} \vec{\mathbf{v}} = \begin{bmatrix} \mathbf{1} & & & \\ & e^{\mathbf{J}\cdot\mathbf{2}\cdot\mathbf{t}} & & \\ & & e^{\mathbf{J}\cdot\mathbf{3}\cdot\mathbf{t}} \\ & & & & \\ \underline{\mathbf{0}} & & & & \\ & & & \\ \end{bmatrix} \begin{bmatrix} \mathbf{0} & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} \begin{bmatrix} \mathbf{0} & & \\ & & \\ & & \\ & & \\ & & \\ \end{bmatrix} = \begin{bmatrix} \mathbf{0} & & \\ & e^{\mathbf{J}\cdot\mathbf{2}\cdot\mathbf{t}} \vec{\mathbf{a}}_{2} \\ & e^{\mathbf{J}\cdot\mathbf{2}\cdot\mathbf{t}} \vec{\mathbf{a}}_{3} \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & &$$

Hence, $\|\underline{S}^{-1} e^{\underline{J}t} \underline{S} \overline{v}\| \leq \|\underline{S}^{-1}\| \sum_{i=2}^{n} \| e^{\underline{J}_{i}t} \| \cdot \| \overline{a}_{i} \|$, which approaches

$$\left\|\underline{\mathbf{S}}^{-1}\right\| \sum_{i=2}^{n} \left\| \vec{\mathbf{a}}_{i} \right\| \frac{\mathbf{p}_{i}^{-1}}{(\mathbf{p}_{i}^{-1})} e^{\mathbf{t} \cdot \operatorname{Re}(\lambda_{i})}$$

as t approaches infinity, using Lemma 8.1 from Ref. 20. Since $\operatorname{Re}(\lambda_i)$ is less than zero, all i > 1, this norm goes to zero for large t. Hence, $\|(\beta/\alpha) e^{\operatorname{Bt} \vec{v}}\|$ approaches zero as t approaches infinity, and the vector $\vec{e}_0 + (\beta/\alpha) e^{\operatorname{Bt} \vec{v}}$ approaches \vec{e}_0 , completing the proof.

THEOREM 6.² If $\underline{\Omega} = \omega_0 I$, the approximate solution operator $\underline{B}(\underline{\Omega}, \mathbf{h})$ has as its largest eigenvalue e with corresponding eigenvalue \vec{e}_0 , where $\underline{A}\vec{e}_0 = \omega_0\vec{e}_0$.

Now

<u>Proof</u>. Letting $\underline{\Omega} = \omega_0 I$,

$$\begin{split} \underline{\mathbf{B}}(\boldsymbol{\omega}_{\mathrm{o}}\underline{\mathbf{I}},\mathbf{h})\vec{\mathbf{e}}_{\mathrm{o}} &= \mathrm{e}^{\boldsymbol{\omega}_{\mathrm{o}}\mathbf{h}}[\underline{\mathbf{I}}-\mathbf{h}(\underline{\mathbf{A}}_{4}-\boldsymbol{\alpha}\boldsymbol{\omega}_{\mathrm{o}}\underline{\mathbf{I}})]^{-1}[\underline{\mathbf{I}}+\mathbf{h}(\underline{\mathbf{A}}_{3}-\boldsymbol{\alpha}\boldsymbol{\omega}_{\mathrm{o}}\underline{\mathbf{I}})] \\ &\times [\underline{\mathbf{I}}-\mathbf{h}(\underline{\mathbf{A}}_{2}-\boldsymbol{\alpha}\boldsymbol{\omega}_{\mathrm{o}}\underline{\mathbf{I}})]^{-1}[\underline{\mathbf{I}}+\mathbf{h}(\underline{\mathbf{A}}_{1}-\boldsymbol{\gamma}\boldsymbol{\omega}_{\mathrm{o}}\underline{\mathbf{I}})]\,\mathrm{e}^{\boldsymbol{\omega}_{\mathrm{o}}\mathbf{h}}\vec{\mathbf{e}}_{\mathrm{o}} \; . \end{split}$$

But

$$\left[\underline{I} + h(\underline{A}_{3} - \gamma \omega_{0}\underline{I})\right]\vec{e}_{0} = \left[\underline{I} - h(\underline{A}_{4} - \alpha \omega_{0}\underline{I})\right]\vec{e}_{0}$$

and

$$\left[\underline{\mathbf{I}} + \mathbf{h}(\underline{\mathbf{A}}_{1} - \gamma \boldsymbol{\omega}_{0} \underline{\mathbf{I}})\right] \vec{\mathbf{e}}_{0} = \left[\underline{\mathbf{I}} - \mathbf{h}(\underline{\mathbf{A}}_{2} - \alpha \boldsymbol{\omega}_{0} \underline{\mathbf{I}})\right] \vec{\mathbf{e}}_{0} .$$

Therefore,

$$\underline{B}(\omega_{O}\underline{I}, h)\vec{e}_{O} = e^{\omega_{O}h}[\underline{I} - h(\underline{A}_{4} - \alpha \omega_{O}\underline{I})]^{-1}[\underline{I} + h(\underline{A}_{3} - \gamma \omega_{O}\underline{I})]$$

$$\times [\underline{I} - h(\underline{A}_{2} - \alpha \omega_{O}\underline{I})]^{-1}[\underline{I} - h(\underline{A}_{2} - \alpha \omega_{O}\underline{I})]e^{\omega_{O}h}\vec{e}_{O}$$

$$= e^{\omega_{O}h}[\underline{I} - h(\underline{A}_{4} - \alpha \omega_{O}\underline{I})]^{-1}[\underline{I} - h(\underline{A}_{4} - \alpha \omega_{O}\underline{I})]e^{\omega_{O}h}\vec{e}_{O}$$

or

$$\underline{B}(\omega_{O}\underline{I},h)\vec{e}_{O} = e^{2\omega_{O}h}\vec{e}_{O}.$$
(B.14)

è

Appendix C

TEST PROBLEM DATA

The reactor parameters for the four configurations used in Chapter 3 for three-dimensional experiments are presented in this appendix. The symbols used in this appendix are defined as follows:

 $\Delta x = \text{mesh spacing (cm) in x-direction}$ $\Delta y = \text{mesh spacing (cm) in y-direction}$ $\Delta z = \text{mesh spacing (cm) in } z$ -direction $\lambda_i = \text{decay constant (sec}^{-1}) \text{ of i}^{\text{th}} \text{ precursor}$ β_i = delay fraction of ith precursor χ_{gi} = fraction of decays of ith precursor which yield neutrons in group g v_{σ} = velocity of gth neutron group (cm/sec) $\boldsymbol{\chi}_g$ = prompt fission spectrum component for group g $\Sigma_{\rm tr}$ = macroscopic transport cross section (cm⁻¹) $D = 1/(3\Sigma_{+n}) = diffusion coefficient (cm)$ Σ_{a} = macroscopic absorption cross section (cm⁻¹) Σ_{f} = macroscopic fission cross section (cm⁻¹) ν = average number of neutrons per fission $\Sigma_{J \rightarrow J+1}$ = macroscopic scattering cross section from group J to group J+1 (cm⁻¹).

Unless otherwise noted, all boundary conditions are homogeneous Dirichlet.
Configuration 1

Number of neutron groups = 2

Number of precursor groups = 1

Geometry: Homogeneous cube, 200 cm on a side

 $\Delta x = \Delta y = \Delta z = 20 \text{ cm}$

Precursor Constants:

$$\lambda_i = .08, \quad \beta_i = .0064, \quad \chi_{11} = 1.0, \quad \chi_{21} = 0.0$$

Material Properties:

	Group 1	<u>Group 2</u>
v	3.0×10^{7}	2.2×10^{5}
x	1.0	0.0
Σ _{tr}	.2468	.3084
Σ _a	.001382	.0054869
ν	2.41	2.41
Σ_{f}	.000242	.00408
$\Sigma_{J \rightarrow J+1}$.0023	0.0

Initial Conditions:

Spatial shape: cosine Critical k_{eff} : .895285417

Configuration 2

Number of neutron groups = 2

Number of precursor groups = 1

Geometry:

$$\Delta x = \Delta y = \Delta z = 8.0 \text{ cm}$$

The numbers in the various regions indicate the material number in that region. Only the right half of this reactor is shown since the left half is symmetrical to it.

Precursor Constants:

$\lambda_{1} = .08,$	$\beta_1 = .0075,$	$\chi_{11} = 1.0,$	$x_{21} = 0.0$
	Group 1	Gi	coup 2
v	$1.0 imes 10^7$	2.	0×10^5
x	1.0	0.	0

Material Properties:

	Material 1	
	Group 1	Group 2
Σ_{tr}	.238095	.833333
Σ _a	.01	.15
ν	2.40	2.40
Σ_{f}	.0035	.10
$\Sigma_{J \rightarrow J+1}$.01	0.0

Material 2

(Same as Material 1)

	<u>Material 3</u>	
	Group 1	<u>Group 2</u>
Σ _{tr}	.25461	.666667
Σ _a	.008	.05
ν	2.40	2.40
Σ_{f}	.0015	.03
Σ _{J→J#1}	.01	0.0

Initial Condition:

Critical k_{eff}: 1.06432742

Configuration 3

Number of neutron groups = 4

Number of precursor groups = 1

Geometry:

 $\Delta x = \Delta y = \Delta z = 8.0$ cm

```
height = 120 cm (z-direction)
```


Fig. C.2. x-y Plane for $0 \le z \le 120$ cm m = 3 for $0 \le z \le 56$ cm m = 4 for $56 \le z \le 120$ cm

Precursor Constants:

 $\lambda_1 = .08, \quad \beta_1 = .0064, \quad \chi_{11} = 0.0, \quad \chi_{21} = 1.0, \quad \chi_{31} = 0.0,$ $\chi_{41} = 0.0$

	<u>Group 1</u>	<u>Group 2</u>	Group 3	Group 4
v	1.0×10^{9}	1.0×10^{8}	5.0×10^{6}	2.0×10^{5}
x	0.755	0.245	0.0	0.0

Material Properties:

		Material 1		
	Group 1	Group 2	Group 3	Group 4
Σ_{tr}	.120	.310	.520	2.050
Σ _a	.00266	.00297	.0359	.655
ν	1.60	1.60	1.60	1.60
Σ_{f}	.00136	.00197	.0262	.540
$\Sigma_{J \rightarrow J+1}$.0586	.0828	.0850	0.0
		Material 2		
	<u>Group 1</u>	Group 2	Group 3	<u>Group 4</u>
Σ _{tr}	.100	.240	.400	1.600
Σ _a	.00135	.00140	.0176	.332
ν	1.60	1.60	1.60	1.60
Σ_{f}	.0007	.0009	.0131	.274
$\Sigma_{J \rightarrow J+1}$.0586	.0828	.0850	0.0
		<u>Material 3</u>		
	Group 1	Group 2	Group 3	Group 4
$\Sigma_{\rm tr}$.080	.160	.310	1.270
Σ _a	.00077	.00072	.00051	.012
ν	0.0	0.0	0.0	0.0
Σ_{f}	0.0	0.0	0.0	0.0
$\Sigma_{J \rightarrow J+1}$.0570	.0822	.0847	0.0

Material 4

(Same as Material 3)

Initial Condition:

Configuration 4

Number of neutron groups = 2

Number of precursor groups = 1

Geometry:

Height = 300 cm (z-direction) $\Delta x = 10.0 \text{ cm}, 0 \le x \le 20 \text{ cm}, 50 \le x \le 170 \text{ cm}, 200 \le x \le 220 \text{ cm}$ $\Delta x = 7.5 \text{ cm}, 20 \le x \le 50 \text{ cm}, 170 \le x \le 200 \text{ cm}$ $\Delta y = 7.5 \text{ cm}, 0 \leq y \leq 30 \text{ cm}$ $\Delta y = 10.0 \text{ cm}, 30 \le y \le 110 \text{ cm}$ $\Delta z = 15.0 \text{ cm}, 0 \leq z \leq 30 \text{ cm}, 270 \leq z \leq 300 \text{ cm}$ $\Delta z = 16.0 \text{ cm}, 30 \leq z \leq 270 \text{ cm}$ y (cm) 9,0 6,0 m mesh points y mesh points $D\nabla\phi = 0$ x (cm) H D∇∳ x mesh points x mesh points Fig. C.3b. x-y Plane for Fig. C.3a. x-y Plane for $0 \le z \le 30$ cm, $270 \le z \le 300$ cm $30 \le z \le 270$ cm 5, for $30 \le z \le 110$ cm m = 6, for $110 \le z \le 190$ cm

Precursor Constants:

$\lambda_{1} = .08,$	$\beta_1 = .0064, \ \chi_{11} = 1.0$), $\chi_{21} = 0.0$
	Group 1	Group 2
v	1.0×10^{8}	4.4×10^{5}
x	1.0	0.0

Material Properties:

	<u>Material 1</u>	
	Group 1	<u>Group 2</u>
$\Sigma_{ m tr}$.2246	.8375
Σ_{a}	.009434	.07345
ν	2.571	2.441
Σ_{f}	.002437	.05112
$\Sigma_{J \rightarrow J+1}$.01872	0.0

	<u>Material 2</u>	
	Group 1	<u>Group 2</u>
$\Sigma_{ m tr}$.2264	.8445
Σ _a	.009223	.06737
ν	2.584	2.442
$\Sigma_{\mathbf{f}}$.002236	.04557
$\Sigma_{J \rightarrow J+1}$.01893	0.0

Material 3

	<u>Group 1</u>	Group 2
Σ _{tr}	.1971	.8685
Σ_{a}	.0001984	.007207
ν	0.0	0.0
$\Sigma_{\mathbf{f}}$	0.0	0.0
$\Sigma_{J \rightarrow J+1}$.03010	0.0

Material 4

	<u>Group 1</u>	<u>Group 2</u>
Σ _{tr}	.1487	.5490
Σ _a	.0003288	.004677
ν	0.0	0.0
$\Sigma_{\mathbf{f}}$	0.0	0.0
$\Sigma_{J \rightarrow J+1}$.01798	0.0

Material 5

(Same as Material 1)

Material 6

(Same as Material 1)

Material 7

(Same as Material 1)

Initial Condition:

Critical k_{eff}: 1.28041608

Appendix D THE COMPUTER PROGRAM 3DKIN

The computer program used to conduct the three-dimensional numerical experiments for this thesis has been named 3DKIN. It is written entirely in Fortran IV for IBM System 360 computers. It can be easily converted to run on any computer with a Fortran IV compiler, however.

The program 3DKIN is described in the several sections of this appendix. It is intended that the description given here be adequate for this appendix to serve as a user's manual for the code. A more detailed description would be necessary for anyone wishing to make modifications to the code, however.

Section D.1 discusses the methods used to obtain an initial steady state solution for a problem. Section D.2 then describes the organization of that part of the code used in a subsequent time-dependent calculation. The overlay structure used to reduce core storage requirements and the input/output devices necessary to run 3DKIN are presented in section D.3. A detailed description of the input information for 3DKIN follows in section D.4. Section D.5 lists the card images of the input data for 3DKIN for a sample problem.

D.1 Description of the Steady State Section

Several comments of a general nature concerning 3DKIN should be made before proceeding to the algorithms used to obtain the initial critical flux distribution and k_{eff} . The first concerns the overall organization of the code. It has been written in a modular fashion, where each subroutine or set of subroutines performs one task or several closely-related tasks. This facilitates the division of the code into segments for subsequent use of the overlay feature of OS/360. It also allows additional code options such as new geometries to be added to the code without severely altering existing subroutines.

The second comment concerns the use of directly-addressable core storage for the storage of program variables. The variable dimensioning feature of Fortran IV is used throughout the code. In the MAIN routine, a vector named A is placed in the labeled common area ARAY and given a length which corresponds to the total core area which the user desires to allot to program variable storage. Based on input parameters which describe the size of the problem to be considered, a subroutine called MEMORY computes a series of pointer variables. Each pointer variable indicates a location in A where the first member of a program array will be located. The remaining members of that array are then stored in successive locations in A.

The obvious advantage of this technique is that each program array is dimensioned to exactly the size necessary for each particular problem. Core storage is thus used very efficiently. In addition, the total amount of core storage allotted to program variable storage can be changed merely by recompiling the short MAIN routine after changing two statements.

For both the steady state and time-dependent parts of the code, the total core storage necessary to store program variables for each problem is computed. If this amount exceeds the amount allocated to

the vector A in MAIN, another attempt is automatically made to allot storage for program variables. This time, however, the flux and fission source vectors are stored on input/output devices for the steady state section, as are the fluxes and precursor concentrations for the time-dependent section. This greatly reduces the amount of core storage required and allows very large problems to be run.

The remainder of this section describes the program flow in the steady state section. The program entry point is in the MAIN routine. The MAIN routine zeroes out the entire A array and reads in the title card and second card for a particular problem. The second card contains the parameters which completely define the amount of storage required for that problem. Subroutine MEMORY is called to allocate storage for program variables and to determine whether or not input/output devices are required to store several large arrays. If these input/output devices are required, MAIN opens the datasets on these devices. Program control is then passed to subroutine CALLER, which calls the subroutines which control the various first overlay level segments.

Subroutine INPUT is called first to read in the remaining input data for the problem. Subroutine IOEDIT prints out an edited version of the problem description. The flux vector needed to start the iterative solution process is read in either from cards or from a dataset on an input/output device or is generated as a cosine in each dimension. Subroutine FLUXIN performs whichever of these options is requested.

The iterative solution process is controlled by subroutine SSTATE. To detail the form of this iterative process, several equations need to

be restated. The time-dependent equation for the group g flux at all points has been given in Eq. (1.4) as

$$\frac{d\vec{\psi}_g}{dt} = \underline{D}_g \vec{\psi}_g + \sum_{g'=1}^{G} \underline{T}_{gg'} \vec{\psi}_{g'} + \sum_{i=1}^{I} \underline{F}_{gi} \vec{C}_i . \qquad (1.4)$$

To obtain the initial condition, the time derivative is set to zero. Further, given the definitions of χ_g and χ_{gi} in section 1.2, a weighted prompt fission spectrum, χ'_g , can be defined as

$$\chi'_{g} = (1-\beta)\chi_{g} + \sum_{i=1}^{I} \beta_{i}\chi_{gi}$$
 (D.1)

If χ'_g replaces χ_g in Eq. (1.4), the precursor concentration term in it can also be ignored for the steady state calculation.

Several additional matrices need to be defined. Let

$$\underline{T}_{gg'} = \underline{v}_{g} \underline{V}^{-1} (\chi'_{g} \underline{F}_{g'} + \underline{R}_{gg'}), \quad g' \neq g$$
(D.2a)

$$\underline{T}_{gg} = \underline{v}_{g} \underline{V}^{-1} (\chi'_{g} \underline{F}_{g} - \underline{\Sigma}_{g})$$
(D.2b)

$$\underline{\mathbf{D}}_{g} = \underline{\mathbf{v}}_{g} \underline{\mathbf{V}}^{-1} \underline{\mathbf{D}}_{g}' . \tag{D.2c}$$

Here, $\underline{v}_g = v_g \underline{I}$ and \underline{V} is the diagonal matrix of volumes associated with each mesh point. \underline{F}_g , is a diagonal matrix containing the v_g , Σ_{fg} , term for each mesh volume. The matrix \underline{R}_{gg} , is also diagonal and describes the scattering from group g' to g in each mesh volume. Finally, $\underline{\Sigma}_g$ contains the absorption and out-scattering terms for group g at each mesh volume.

The form of Eq. (1.4) to be solved for the initial condition becomes

$$\underline{\mathbf{v}}_{g}\underline{\mathbf{V}}^{-1}(\underline{\mathbf{D}}_{g}'-\underline{\mathbf{\Sigma}}_{g})\overline{\psi}_{g}+\underline{\mathbf{v}}_{g}\underline{\mathbf{V}}^{-1}\left(\sum_{g'\neq g}^{G}\underline{\mathbf{R}}_{gg'}\overline{\psi}_{g'}+\frac{\mathbf{x}_{g}'}{\mathbf{k}_{eff}}\sum_{g'=1}^{G}\underline{\mathbf{F}}_{g'}\overline{\psi}_{g'}\right)=\vec{0},$$

$$(1 \leq g \leq G). \qquad (D.3)$$

In 3DKIN, only downscattering is allowed so that $\underline{R}_{gg'} = \underline{0}$ for g' > g. Equation (D.3) can be reduced to

$$(-\underline{D}_{g}'+\underline{\Sigma}_{g})\vec{\psi}_{g} = \sum_{g'=1}^{g-1} \underline{R}_{gg'}\vec{\psi}_{g'} + \frac{\chi_{g}'}{k_{eff}} \sum_{g'=1}^{G} \underline{F}_{g'}\vec{\psi}_{g'}.$$
(D.4)

In 3DKIN, Eq. (D.4) is solved by a two-level iterative process. This is the standard inner iteration-outer iteration method.²⁷ Let the inner iteration index be m and the outer iteration index be ℓ . The inner iterations involve solving the equation

$$(-\underline{D}'_{g}+\underline{\Sigma}_{g})\vec{\psi}_{g}^{\ell+1} = \sum_{g'=1}^{g-1} \underline{R}_{gg'}\vec{\psi}_{g'}^{\ell+1} + \frac{\chi'_{g}}{\sigma^{\ell}}\vec{S}^{\ell}$$
(D.5)

for each group, starting with g=1. Here, \vec{S}^{ℓ} , the fission source vector, and σ^{ℓ} have been obtained from

$$\sigma^{\ell} = \frac{\left\| \begin{bmatrix} \mathbf{G} \\ \sum g \equiv 1 \end{bmatrix} \mathbf{F}_{g} \vec{\psi}_{g}^{\ell} \right\|_{1}}{\left\| \begin{bmatrix} \mathbf{G} \\ g \equiv 1 \end{bmatrix} \mathbf{F}_{g} \vec{\psi}_{g}^{\ell-1} \right\|_{1}}, \qquad (D.6)$$

$$\vec{S}^{\ell} = \frac{\mu}{\sigma^{\ell}} \sum_{g=1}^{G} \underline{F}_{g} \vec{\psi}_{g}^{\ell} + \frac{(1-\mu)}{\sigma^{\ell}} \sum_{g=1}^{G} \underline{F}_{g} \vec{\psi}_{g}^{\ell} .$$
(D.7)

Here, μ is an input fission source over relaxation parameter bounded by $1 \le \mu \le 2$. The outer iteration consists of the computation of σ^{ℓ} and an \vec{S}^{ℓ} , used to start a new set of inner iterations.

The inner iterations in 3DKIN are carried out by a one-line successive overrelaxation method. Lines of fluxes in the x-direction are overrelaxed successively across each z-plane of mesh points, starting with the bottom z-plane. An optimum overrelaxation parameter is computed for each group, using a method prescribed in Ref. 27. The iterative process continues on a particular group until convergence is obtained for that group, where convergence is defined as

$$\max_{\substack{l,j,k \\ l,j,k}} \left| \frac{\phi_{g,l,j,k}^{m} - \phi_{g,l,j,k}^{m-1}}{\phi_{g,l,j,k}^{m}} \right| \leq \epsilon_2.$$
(D.8)

The parameter ϵ is input by the user, as is a parameter m_{max} . If the condition (D.8) is not satisfied for $m \leq m_{max}$, the iterative process is stopped for that group automatically for that outer iteration.

As can be seen from Eq. (D.6), the L_1 norm is used as an indication of the total solution change during an outer iteration. In an attempt to speed convergence of the outer iterations, the fission source vector, \vec{S}^{ℓ} , is overrelaxed in a rather crude fashion. The entire iterative process is completed after the ℓ^{th} outer iteration if condition (D.8) has been satisfied for all groups during that outer iteration and if

$$|1.0 - \sigma^{\ell}| \le \epsilon_1 . \tag{D.9}$$

At this point, k_{eff} is computed from

$$k_{\text{eff}} = \prod_{n=1}^{\ell} \sigma^n .$$
 (D.10)

Before starting the iterative process just described, subroutine SSTATE calls subroutine SETUP1 to compute the necessary coefficients. SETUP1 uses subroutine COEF1 to do this.

SSTATE also calls subroutine ORPEST to compute the groupwise optimum overrelaxation parameters. SSTATE computes the fission and scattering source for each group during an outer iteration. Subroutine INNER0 or INNER1 is called to carry out the actual inner iterations for the groups. INNER0 is used if all program variables are stored in core, while INNER1 is used if the flux and fission source vectors are stored on input/output devices. SSTATE completes the outer iteration by computing a new estimate of σ and overrelaxing the fission source vector. It also tests for convergence of the outer iterations. Subroutine SSTOUT prints out a one-line symmary of each outer iteration and saves the converged fluxes if requested.

Two additional features of the steady state section of 3DKIN are worthy of note, although they are invisible to the user of 3DKIN. The first is an additional technique used to accelerate convergence of the inner iterations. Before the inner iterations are started for group g during outer iteration l+1, the quantities

$$\alpha_{1} = \left\| \sum_{g'=1}^{g-1} \underline{R}_{gg'} \vec{\psi}_{g'}^{\ell+1} + \frac{x'_{g}}{\sigma^{\ell}} \vec{S}^{\ell} \right\|_{1}$$

and

$$\alpha_2 = \left\| (-\underline{\mathbf{D}}'_g + \underline{\mathbf{\Sigma}}_g) \vec{\psi}_g^{\ell} \right\|_1$$

are computed. The vector $\vec{\psi}_g^{\ell}$ is multiplied by the ratio (α_1/α_2) , and

the result is used as an initial guess for the inner iterations for group g. This has the effect of scaling the initial guess so that the neutron balance is satisfied in an integral sense when the inner iterations are started. This so-called group rebalancing is carried out by subroutines GRBAL0 and GRBAL1, which are called by INNER0 and INNER1, respectively.

The second feature is the manner in which the coefficients for Eqs. (D.4) are stored in 3DKIN for the x-y-z geometry option. The manner in which planes are passed through the parallelepiped of interest to create the three-dimensional fine mesh has been presented in Appendix A. The only restriction placed on these planes at that time was that every boundary of a homogeneous material region must lie on a fine-mesh plane.

In 3DKIN, an additional restriction is introduced. Each of the fine-mesh planes which has a homogeneous material region boundary coincident on any part of it becomes a coarse-mesh plane. Between two successive coarse-mesh planes in a particular direction, all finemesh planes parallel to these coarse-mesh planes must be equidistant.

The reactor of interest is thus divided into a three-dimensional array of rectangular parallelepipeds by the coarse-mesh planes. These rectangular parallelepipeds are hereafter referred to as material regions. Within a given material region, only one material is present. Additionally, fine-mesh spacings are constant across that material region for each of the three directions.

Each material region has a total of 26 faces, edges, and corners associated with it. Thus, regardless of how many fine-mesh points lie

within or on its boundaries, only 27 sets of coefficients need to be computed and stored. The extra set is for all of the fine-mesh points which lie within the boundaries of the material region.

Because of the manner in which faces, edges, and corners are shared by more than one material region, however, an average of only 8 sets need to be associated with each material region. This assumes that the right, upper, and back outer boundaries of the parallelepiped as shown in Fig. A.1 have homogeneous Dirichlet boundary conditions.

In 3DKIN, a so-called problem region number is assigned to each set of coefficients. A three-dimensional array, called a problem region map, is created, with one entry per fine-mesh point. In this problem region map, all fine-mesh points which have the same set of coefficients are assigned the same unique problem region number. Coefficients are computed and stored by problem region number, and the problem region map is used to obtain the proper set of coefficients to be used at a particular fine-mesh point.

The advantages of this method are two-fold. No coefficients ever have to be recomputed during the entire steady state calculation, and each fine-mesh point has a set of coefficients correct for it. At the same time, the amount of storage necessary to contain the coefficients is reduced drastically over that required if a set of coefficients were computed and stored for each fine-mesh point.

D.2 Description of Time-Dependent Section

The program flow for the time-dependent section of 3DKIN is much less complicated than that for the steady state section. This is primarily due to the simplicity of the NSADE algorithm. When the initial condition has been computed, SSTATE returns program control to CALLER. CALLER calls subroutine FLUXTR, which writes the converged fluxes out on an input/output device. CALLER then calls subroutine TIMDEP, which controls the remainder of the timedependent section.

Subroutine TIMDEP first redefines several coefficients in each problem region. It then calls subroutine DELAYS, which reads the fluxes back in from the input/output device and computes the corresponding pointwise initial precursor concentrations. After zeroing out the frequency array and dividing the various $\nu \Sigma_{\rm f}$ values by the critical value of $k_{\rm eff}$, the main time-dependent loop in TIMDEP is entered.

Within this main loop, time is divided into a series of time zones. Within each time zone, a number of materials are allowed to have properties which undergo a step change at the beginning of the time zone and/or a ramp change throughout the time zone. Subroutine TIMINP reads in the data describing each of these time zones.

Within each time zone, subroutine CHANGE is called whenever necessary to recompute coefficients which vary with time. The coefficients are recomputed consistent with the problem region concept. Coefficients are recomputed only for those problem regions which have time-varying properties. For the case where all problem variables are stored in core, the initial $e^{\Omega h}$ transformation and forward sweep of the spatial mesh for all groups is performed in subroutine STEPA0 for each time step. Subroutine STEPB0 performs the reverse sweep and the second $e^{\Omega h}$ transformation for each time step. Subroutine FREQ0 computes the frequencies for the next time step according to Eq. (2.8). For the case where the fluxes and precursor concentrations are stored on input/output devices, subroutines STEPA1, STEPB1, and FREQ1 perform the same functions as their similarly-named counterparts.

At regular intervals, the fluxes at a number of specified test points are printed out. At the end of each time zone, the entire flux and precursor vector can be printed out if requested. These printouts are obtained from the subroutine TIMOUT.

D.3 Overlay Structure and Input/Output Devices for 3DKIN

Two levels of overlay are used in 3DKIN. There are a total of 11 segments. The overlay structure is shown in Fig. D.1.

Fig. D.1. Overlay Structure for 3DKIN

Card input to 3DKIN is read in on symbolic device 5, while output to the printer is on device 6. If the option where the fluxes are punched onto cards is requested, the card punch is specified as device 7.

Up to seven sequential datasets on different symbolic devices may be required by 3DKIN. These datasets may each be placed on a separate magnetic tape drive, or they may be placed on one or more disk drives. The disk drives are preferable because their use generally results in faster execution times.

If the option is requested where steady state fluxes are to be stored on an input/output device between runs, this dataset is placed on symbolic device 8. Additionally, symbolic devices 11 and 12 are required for every run in which a time-dependent calculation is to be made. These datasets are used for scratch purposes only.

If the problem is large enough to require that several program vectors be stored on input/output devices, symbolic devices 11 and 12 are required during the steady state calculation as well. The fluxes for each group are spooled back and forth from one to the other during the inner iterations for that group.

In addition, four more symbolic devices are required for scratch purposes for these large problems. During the steady state calculation, old and new fission source vectors alternate on devices 1 and 2. During the time-dependent calculation, the flux for the group used in the frequency calculation is saved from one time step to the next, alternately, on these two devices. Devices 3 and 4 alternate in storing the complete flux vector (and precursors as well during the time-dependent calculation) for both sections of the code. All of these seven datasets are written with unformatted write statements. Table D.1 summarizes the usage of these datasets.

	Logical I	Record Length	Number	Number of Records	
Device Number	Steady State	Time- Dependent	Steady State	Time- Dependent	When Used
1	L * J	L * J	К	К	IOPT = 1
2	L * J	L * J	К	К	IOPT = 1
3	L * J	L * J * (G+I)	K * G	K	IOPT = 1
4	L * J	L * J * (G+I)	K * G	K	IOPT = 1
8	L * J	L * J	K * G	K * G	When fluxes saved
11	L*J	L * J	К	K * G	Always
12	L*J	L * J	К	K * G	Always
				1	

Table D.1. Input/Output Symbolic Devices

The variables L, J, and K are the number of fine-mesh x-planes, y-planes, and z-planes, respectively. In order to minimize execution time, symbolic devices 1, 3, and 11 should be placed on different disk drives from symbolic devices 2, 4, and 12, respectively.

D.4 Description of Input for 3DKIN

The only geometry currently available in 3DKIN is x-y-z rectangular geometry, as shown in Fig. A.1. For both steady state and timedependent sections, the right, back, and top faces of the rectangular parallelepiped must have homogeneous Dirichlet boundary conditions. In the steady state section, the left, front, and bottom faces may each have homogeneous Dirichlet or Neumann boundary conditions specified, independent of what condition is specified for the other two faces. In the time-dependent section, however, the bottom face must always have the homogeneous Dirichlet condition. If only one face is to have a homogeneous Neumann condition, it must be the left face. If quartercore symmetry is desired, both left and front faces are specified to have a homogeneous Neumann boundary condition.

At the time that the input description of a problem is formulated, an estimate of the amount of core required for program variable storage can be made. Equation (D.11) gives the total number of double precision (64-bit) words required on an IBM System 360 computer in the vector A for each problem. The variables in the equation are defined in the input description.

For the steady state section,

For the time-dependent section,

Setting IOPT = 0 gives the minimum length of A required if all variables are to be stored in core. Likewise, setting IOPT = 1 gives the core storage requirement for the option where several vectors are stored on input/output devices.

Using the Fortran H compiler with optimization level 2 and the level 18.6 version of OS-MVT for the IBM 360/65, a total of 77,500 bytes are required to store 3DKIN in core, exclusive of the number of bytes allocated to the vector A. In addition, when the code is actually executed, some additional core is needed for input/output device buffers. With 46,000 8-byte words allocated to A and with about 12,000 bytes allocated to buffers, 3DKIN requires 458,000 bytes of core. A load module of this size was necessary to run Test Case 4 in Chapter 3.

What follows is a card-by-card description of the input for 3DKIN.

Card Type 1 FORMAT (20A4)

Columns 1-80: (ITITLE(I), I=1, 20). This is the alphanumeric problem title.

Card Type 2

FORMAT (2014)

<u>Columns 1-4: NNG</u>. This is the number of prompt neutron groups. <u>Columns 5-8: NDG</u>. This is the number of precursor groups. <u>Columns 9-12: NTG.</u> This is the number of the group to be used in the frequency calculation for the time-dependent section.

<u>Columns 13-16: NDNSCT</u>. This is the maximum number of downscatter groups for any of the neutron groups. No upscattering is allowed in 3DKIN.

<u>Columns 17-20: NMAT</u>. The code expects to read in a total of NMAT macroscopic cross-section sets. These sets are numbered consecutively, from 1 to NMAT.

<u>Columns 21-24, 25-28, 29-32: IM, JM, KM</u>. These variables give, respectively, the number of fine-mesh x-planes, y-planes, and zplanes. The outer boundary planes are included.

<u>Columns 33-36, 37-40, 41-44: IRM, JRM, KRM</u>. These variables indicate the number of coarse-mesh zones in the x-, y-, and zdirection, respectively.

<u>Columns 45-48, 49-52, 53-56: NXTP, NYTP, NZTP</u>. These are the number of x, y, and z points, respectively, that are to be used in printing out fluxes during the time-dependent calculation. Every IPRSTP steps, a total of NXTP*NYTP*NZTP points will have their flux values printed out.

<u>Columns 57-60: NSTEAD</u>. If NSTEAD = 0, only a time-dependent calculation will be performed. The input fluxes will be taken as the initial condition. If NSTEAD = 1, a steady state calculation will first be performed. If the solution converges within NOIT outer iterations, a time-dependent calculation will follow. If NSTEAD = 2, only a steady state calculation will be performed. <u>Columns 61-64: IFLIN</u>. If IFLIN = 0, the initial flux will be generated by 3DKIN as a cosine in each direction for each group. If IFLIN = 1, the initial fluxes are to be input on cards. If IFLIN = 2, the initial fluxes are to be read in as a sequential dataset from device 8.

<u>Columns 65-68: IFLOUT</u>. This variable applies only to the output of fluxes at the end of a steady state calculation. If IFLOUT = 0, no fluxes will be output. If IFLOUT = 1, the fluxes will be printed out. If IFLOUT = 2, the fluxes will be printed and also punched onto cards in a 5D16.10 format. If IFLOUT = 3, the fluxes will be printed and also written on device 8 as a sequential dataset. If IFLOUT = 4, the fluxes are only written on device 8.

<u>Columns 69-72: IGEOM</u>. This is the geometry indicator. At present, IGEOM = 1 gives x-y-z geometry, the only option available.

<u>Columns 73-76: IETIME</u>. If IETIME > 0, the outer iteration completed after accumulated computing time exceeds IETIME will be the last. The fluxes at that point are output as indicated by IFLOUT, and the program stops. If IETIME = 0, it is ignored.

Card Type 3 FORMAT (E16.10, 4X, 3E10.4, 3I4)

<u>Columns 1-16: EFFK</u>. This is the initial estimate of k_{eff} . If it is not in the range $.1 \le k_{eff} \le 10.0$, it is set to 1.0.

<u>Columns 21-30: ORFP</u>. This is the parameter used to overrelax the fission source vector, as in Eq. (D.7). It should be in the range $1.0 \le \text{ORFP} \le 2.0$.

<u>Columns 31-40: EPS1</u>. This is the eigenvalue convergence parameter, ϵ_1 , from Eq. (D.9).

<u>Columns 41-50: EPS2</u>. This is the flux convergence parameter, ϵ_{2} , from Eq. (D.8).

<u>Columns 41-44: NOIT</u>. This is the maximum number of outer iterations allowed in the steady state section. If convergence has not been obtained after NOIT outer iterations, the eigenvalue estimate is printed, the fluxes at that time are output as indicated, and the program is stopped. Provided the fluxes have been saved on cards or on device 8, the latest k_{eff} can be input to a new run with these fluxes and the calculation restarted.

<u>Columns 45-48: NIIT</u>. This is the maximum number of inner iterations per group per outer iteration.

<u>Columns 49-52: NPIT</u>. If the flux and fission source vectors are stored on input/output devices (IOPT=1), then the fluxes for a group are recomputed across each plane a total of NPIT times before going to the next plane during the inner iterations.

Card Type 3' FORMAT (8E10.4)

Use as many cards as are necessary.

<u>Columns 1-10, 11-20, ...: (OMEG(NG), NG=1, NNG)</u>. These are estimates of the overrelaxation parameters for the inner iterations. If any OMEG(NG) is in the range $.95 \le OMEG(NG) \le 1.05$, all of them will be computed by 3DKIN to be the optimum values. Once the optimum values are known, they can be input and the calculation thus avoided.

Card Type 4

FORMAT (I5, 5(15, E10.4)/5(15, E10.4))

One set of these cards is needed for each of the three directions. First set -

<u>Columns 1-5: NLBC</u>. This is the boundary condition at x = 0. NLBC = 0 indicates a zero flux (homogeneous Dirichlet) condition, while NLBC = 1 indicates a zero current (homogeneous Neumann) condition.

<u>Columns 6-10, 11-20; 21-25, 26-35; ... : (IBP(IR),HX(IR),IR=1,IRM)</u>. IBP(IR) is the right x fine-mesh plane number for the IRth x coarsemesh region. HX(IR) is the total x-width for that region in centimeters. Additional cards may be used for these pairs of boundary planes and widths. If the last card has five pairs on it, a blank card must follow it. Second set -

<u>Columns 1-5: NFBC</u>. This is the boundary condition at y=0. For the steady state section, it can be either 0 (zero flux) or 1 (zero current). It can be 1 only if NLBC = 1 for the time-dependent section.

<u>Columns 6-10, 11-20; 21-25, 26-35; ... : (JBP(JR), HY(JR), JR=1,</u> <u>JRM)</u>. These are the pairs of back fine-mesh y-planes and total ywidths for the y coarse-mesh zones.

Third set -

<u>Columns 1-5: NBBC</u>. This is the boundary condition at z=0. Either a 0 or a 1 can be used for a steady state calculation, but only a zero flux boundary condition is allowed here for the time-dependent calculation.

<u>Columns 6-10, 11-20; 21-25, 26-35; ...: (KBP(KR), HZ(KR),</u> <u>KR=1, KRM</u>). These are the pairs of upper fine-mesh z-planes and total z-widths for the z coarse-mesh zones.

Card Type 5

FORMAT (2014)

Use as many cards as necessary.

<u>Columns 1-4, 5-8,...: (IXTP(I), I=1, NXTP), (IYTP(I), I=1, NYTP),</u> (IZTP(I), I=1, IZTP). These are the points at which fluxes will be printed out every IPRSTP steps during the time-dependent calculation.

Card Type 6 FORMAT (2014)

One set of cards is required for each coarse-mesh z-region. Use as many cards as necessary for each set, with 20 values on each card.

<u>Columns 1-4, 5-8,...</u>: ((MMAP(IR, JR, KR), IR=1, IRM), JR=1, JRM). These are the material numbers assigned to each material region in the KRth coarse-mesh z-region.

Card Type 7 FORMAT (6E12.6)

<u>Columns 1-12, 13-24, ...: (V(NG), NG=1, NNG</u>). These are the group velocities in cm/sec.

Card Type 8 FORMAT (6E12.6)

<u>Columns 1-12, 13-24, ...: (XI(NG), NG=1, NNG</u>). This is the prompt fission spectrum.

A set of NNG card type 9's and as many card type 10's as are necessary is input as a package for each material NM, $1 \le NM \le NMAT$. The sets start with material 1 and proceed consecutively to material NMAT.

<u>Card Type 9</u> FORMAT (4E12.6) <u>Columns 1-12: XNU(NM, NG)</u>. This is v for group NG. from group 1 to group NNG.

Card Type 10

FORMAT (6E12.6)

Card Type 11 FORMAT (6E12.6)

One or more card type 11 is required for each precursor group. Begin on a new card for each precursor group.

Columns 1-12: ALAM(ND). This is the λ for precursor group ND in sec⁻¹.

<u>Columns 13-24: BETA(ND</u>). This is β for each precursor group ND.

<u>Columns 25-36, 37-48, ...: (XIP(NG, ND), NG=1, NNG)</u>. This is χ_{gi} for all groups g, $1 \le g \le NNG$, for precursor group ND.

Card Type 12 FORMAT (5E16.10)

These cards are needed only if IFLIN = 1. There are a total of NNG * KM sets of card type 12's required then. Each set begins on a new card and contains the fluxes for one z-plane and one group. The sets are arranged from plane 1 to plane KM for each group, with those for group 1 coming first.

Columns 1-16, 17-32, ...: ((PSI(NG, I, J, K), I=1, IM), J=1, JM). These are the fluxes at all points on z-plane KR for group NG.

For a time-dependent calculation, a set of one card type 13, NNG*ISTPCH card type 14's, and NNG*ILINCH card type 15's are needed for each time zone.

Card Type 13

FORMAT (615, 3E12.5)

<u>Columns 1-5: LASZON</u>. If >0, this is the time zone number. If LASZON = 0, this is the last time zone for this problem.

<u>Columns 6-10: ISTPCH</u>. If ISTPCH = 0, no step change in any material properties will occur at the beginning of this time zone. If ISTPCH > 0, then a total of ISTPCH materials have one or more properties which undergo step changes at the beginning of this time zone.

<u>Columns 11-15: ILINCH</u>. ILINCH indicates the total number of materials in which one or more properties will vary as a linear function of time over this time zone.

<u>Columns 16-20: IPRSTP</u>. During the time-dependent calculation, the fluxes at NXTP*NYTP*NZTP points are printed out every IPRSTPth step.

Columns 21-25: ICHHT. This variable is not used at present.

<u>Columns 26-30: IFLOUT</u>. If IFLOUT = 0, fluxes at only the test points are printed out at the end of this time zone. If IFLOUT = 1, the entire flux and precursor vector is printed out at the end of this time zone.

<u>Columns 31-42: HMIN</u>. The value of h (= $\Delta t/2$) to be used throughout this time zone is given here in sec. Columns 43-54: HMAX. This variable is not used at present.

<u>Columns 55-66: TEND</u>. This is the time at the end of this time zone in sec. It should be an integer multiple of Δt .

Card Type 14 FORMAT (I5, 5X, 5E12.5)

For each material which has a property undergoing a step change, the NNG card type 14's are ordered by group, from group 1 to group NNG. There is a total of NGG*ISTPCH card type 14's in a time zone set.

<u>Columns 1-5: MNSCH(I)</u>. This is the material number for which this change takes place.

<u>Columns 11-22: DELSFS(MN, NG</u>). This is the step change in SIGF(MN, NG) for this time zone.

<u>Columns 23-34: DELSRS(MN, NG)</u>. This is the step change in SIGR(MN, NG) for this time zone.

<u>Columns 35-46: DELSTS(MN, NG</u>). This is the step change in SIGT(MN, NG) for this time zone.

<u>Columns 47-58: DELS1S(MN, NG</u>). This is the step change in SIGS(MN, NG, 1) for this time zone.

<u>Columns 59-70: DELS2S(MN, NG</u>). This is the step change in SIGS(MN, NG, 2) for this time zone. It is necessary only if NDNSCT ≥ 2 .

The MN above corresponds to the value of MNSCH(I) for this card. At the present time, this option is limited to problems having 4 groups or less. Also, the maximum number of materials which can be changed in each time zone is five. However, both of these limitations can be changed by altering several COMMON statements in the code.

FORMAT (I5, 5X, 5E12.5)

For each material which has a property undergoing a linear variation, the NNG card type 15's are ordered by group, from group 1 to group NNG. There are a total of NNG * ILINCH card type 15's in a time zone set.

<u>Columns 1-5: MNLCH(I)</u>. This is the material number for which this change takes place.

<u>Columns 11-22: DELSFL(MN, NG)</u>. This is the total amount by which SIGF(MN, NG) is to vary over this time zone.

<u>Columns 23-34: DELSRL(MN, NG</u>). This is the total amount by which SIGR(MN, NG) is to vary over this time zone.

<u>Columns 35-46: DELSTL(MN, NG</u>). This is the total amount by which SIGT(MN, NG) is to vary over this time zone.

<u>Columns-47-58: DELS1L(MN, NG</u>). This is the total amount by which SIGS(MN, NG, 1) is to vary over this time zone.

<u>Columns 59-70: DELS2L(MN, NG</u>). This is the total amount by which SIGS(MN, NG, 2) is to vary over this time zone. It is required only if NONSCT ≥ 2 .

The MN above corresponds to the value of MNLCH(I) for this card. The limitations concerning number of groups and number of materials apply to card type 15 as they do to card type 14.

Card Type 16 FORMAT (I4)

<u>Columns 1-4</u>: If the number 9999 is placed in these 4 columns, this problem is the last problem in this computer run. If any sequence of numbers other than 9999 is placed here, another problem may be placed immediately after this card. Each problem must have a complete set of input data.

D.5 Input for Sample Problem

On the pages that follow, the data for running a problem on 3DKIN are presented in card image format. This sample problem is actually the data for Test Case 2. For the steady state calculation, the initial flux guess is generated by 3DKIN. A total of 120 outer iterations are allowed. The time-dependent calculations set to run out to .3 seconds with a Δt of .001 second. This problem requires about two hours of running time on an IBM 360/65.

FIRST THREE LINES NOT 3DKIN INPUT RIGHT DIGIT OF EACH NUMBER IS OVER COLUMN THESIS CASE 3: 3-D VERSION OF TWIGLE PROBLEM WITH HALF CORE SYMMETRY 3 11 21 21 1.4000D 001.0000D-091.0000D-08 200 10 1.0 1.0 1.0 42.4000D 01 83.2000D 01 112.4000D 01 183.2000D 01 212.4000D 01 83.2000D 01 144.8000D 01 42.4000D 01 212.4000D 01 181.1200D 02 42.4000D 01 11 16 19 11 19 1.000000D 072.000000D 05 0.0 1.0 2.400000D 003.500000D-031.000000D-022.380952D-01 2.400000D 001.000000D-011.500000D-018.333330-01 1.000000D-020.0 2.400000D 003.500000D-031.000000D-022.380952D-01 2.400000D 001.000000D-011.500000D-018.333333D-01 1.000000-020.02.400000D 001.500000D-038.000000D-032.564103D-01 2.400000D 003.000000D-025.000000D-026.6666667D-01 1.000000D-020.08.000000D-027.500000D-031.000000D 000.0 15.00000D-045.00000D-042.00000D-01 0.00000D 00 0.00000D 00 0.00000D 00 0.00000D 00 0.00000D 00 0.00000D 00-0.00450D 00 0.00000D 00 0.00000D 00 0.00000D 00 02.50000D-042.50000D-042.10000D-01 15.00000D-045.00000D-043.00000D-01

ł.

PAGE 141

Appendix E

SOURCE LISTING OF 3DKIN

* * * * * * * * *	STATUS	OF 3DKIN	AS OF JU	LY 28, 1971	*****
ALL FEAT	URES DI	F 3DKIN AS	S DESCRIB	ED IN APPENDI	X D HAVE BEEN
TESTED AND AR	E WORK	ING EXCEPT	FOR THE	FOLLOWING IT	EMS:
1. THER	E IS A	BUG SOME	HERE IN	THE STEADY ST	ATE SECTION FOR
THE	OPTION	WHERE FLU	JX AND FT	SSIDN SOURCE	VECTORS ARE
STOR	LED ON	INPUT/OUT	PUT DEVIC	ES (IOPT=1).	
2. THE	SUBROUT	TINES FOR	THE TIME	-DEPENDENT SE	ECTION WHICH
PERF	ORM TH	E FORWARD	AND BACK	WARD SWEEP AN	ID CALCULATE
NEW	FREQUE	NCIES WHEN	N IOPT=1	(STEPAL.STEPE	1. FREDI) HAVE
NOT	BEEN TI	HOROUGHLY	TESTED A	ND ARE NOT IN	ICLUDED IN THIS
LIST	ING.				
3. THE	QUARTE	R-CORE SY	METRY OP	TIDN (NLBC=1,	NFBC=1) FOR THE
TIME	E-DEPEN	DENT SECTI	ION HAS A	BUG IN IT.	

VARIABLE DIMENSIONING IS USED THROUGHOUT 3DKIN. SPACE FOR ALL ARRAYS IS ALLOCATED IN THE VECTOR A IN LABELLED COMMON ARAY. A NUMBER OF POINTERS ARE COMPUTED IN SUBROUTINE MEMORY WHICH INDICATE THE LOCATIONS IN A WHERE EACH OF THE FIRST ELEMENTS OF THE ARRAYS ARE STORED. THE POINTERS ARE NAMED SO THAT EACH CONSISTS OF THE LETTER L PREFIXED TO THE ARRAY NAME.

MAIN PROGRAM FOR 3DKIN .	0000010	
IMPLICIT REAL+8 (A-H,O-Z)	0000020	
INTEGER#2 MMAP,NPRMP	0000030	
COMMON/INT3/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	0000040	
1NFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	0000050	
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IDPSI, IDDUMP,	0000060	
3IOFN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	0000070	
4NTIT,IETIME, IFLDUT, IMX, JMX, KMX, IOSC1, IDSC2, NGX	0000080	
COMMON/POINT/LV,LXI,LXIM,LXNU,LSIGF,LSIGR,LSIGT,LSIGS,LALAM,LBETA,	0000090	
1LXIP,LX,LY,LZ,LHX,LHY,LHZ,LIBP,LJBP,LKBP,LDD1,LDD2,LDD3,LDD4,LDD5,	000100	
2LDD6,LDD7,LV0,LMMAP,LNPRMP,LPSI,LP1,LP2,LP3,LFR0,LFRN,LF0,LFN,LSRC	0000110	
3,LWA,LGA,LSDLN,LOMEG,LXFISS,LXINSC,LXREM,LXLEK,LTOT,LPSO,LW,LPO,LW	0000120	
	PAGE	1.43

C 0 C С С C

0 С С

C c c С C C C 0 0 0 0 0 0

C
41	0000121
COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4.	0000130
I TEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	0000140
COMMON/ARAY/A(46000)	0000150
CALL ETIME	0000160
IASIZE=46000	0000170
99 DO 100 I=1, IASIZE	0000180
A(I)=0.0D0	0000190
100 CONTINUE	0000200
IOPSI=8	0000210
IODUMP=10	0000220
IDFN=1	0000230
IDFO=2	0000240
IOPN=3	0000250
IDPO=4	0000260
IOSC1=11	0000270
IOSC 2=12	0000280
C READ CARD 1	0000290
READ(5,1000)(ITITLE(I),I=1,20)	0000300
1000 FORMAT(20A4)	0000310
WRITE(6,1010)(ITITLE(I),I=1,20)	0000320
1010 FORMAT(1H1,10X,2044)	0000330
C READ CARD 2	0000340
READ (5,102) NNG, NDG, NTG, NDNSCT, NMAT, IM, JM, KM, IRM, JRM, KRM, NXTP, NY TP	0000350
1,NZTP,NSTEAD,IFLIN,IFLOUT,TGEOM,IETIME	0000360
1020 FORMAT(2014)	0000370
WRITE(5,1030)NNG,NDG,NTG,NDNSCT,NMAT,IM,JM,KM,IRM,JRM,KRM,NXTP,	0000380
1NYTP,NZTP,NSTEAD,IFLIN,IFLOUT,IGEOM,IETIME	0000390
1030 FORMAT(11X,2014)	0000400
NPRG=8+IRM+JRM+KRM	0000410
NTO G=NNG+NDG	0000420
IMX=IM-1	0000430
JMX=JM-I	0000440
KMX=KM-1	0000450
NGX = NNG-1	0000451
TIME=1.0D+10	0000460
	PAGE 144

	IF(IETIME.NE.O)TIME=IETIME	0000470
	IMEM=1	0000480
•	CALL MEMORY (IMEM)	0000490
	IF(IMEM.EQ.5) GO TO 999	0000500
	IF(IDPT.EQ.0) GD TO 110	0000510
	REWIND IDEN	0000520
	REWIND IDED	0000530
	REWIND IOPN	0000540
	REWIND IOPO	0000550
	REWIND LOSCI	0000560
	REWIND LOSC2	0000570
110	CALL CALLER	0000580
	READ(5.1040) INDIC	0000590
	ITEMP4=9999	0000600
1040	FORMAT(14)	0000610
- ;-	IF(INDIC.NE.ITEMP4)GO TO 99	0000620
	IF(INDIC.EQ.ITEMP4)WRITE(6.1050)	0000630
1050	FORMAT(1HO.1OX. !LAST CASE COMPLETED!)	0000640
999	STOP	0000650
	END	0000660

PAGE 145

SUBROUTINE MEMORY(IMEM)	MEMODOLO
IMPLICIT REAL+8 (A-H,D-Z)	MEM00020
INTEGER#2 MMAP,NPRMP	ME M00030
COMMON/POINT/LV,LXI,LXIM,LXNU,LSIGF,LSIGR,LSIGT,LSIGS,LALAM,LBE	A. MEMO0040
1LXIP, LX, LY, LZ, LHX, LHY, LHZ, LI BP, L JBP, LKBP, LDD1, LDD2, LDD3, LDD4, LDI	05.MEM00050
2LDD6,LDD7,LV0,LMMAP,LNPRMP,LPSI,LP1,LP2,LP3,LFR0,LFRN,LF0,LFN,L	SRCMEMOOOGO
3, LWA, LGA, LSOLN, LOMEG, LXFISS, LXINSC, LXREM, LXLEK, LTOT, LPSO, LW, LPO,	LWMEM00070
41	MEM00071
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC.	MEM00080
INFBC, NB3C, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	MEM00090
2IZTP(5), NST FAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOP SI, IODU	1P.MEM001.00
3IDFN, IDFO, I DPN, I DPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	MEM00110
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	MEM00120
COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	MEM00130
ITEMP5, TEMP6, XFISST, XFISSD, ALAMN, ALAMO, TIME, FLXCON, BETAT	MEM00140
GD TD(100,200), IMEM	MEM00150
100 IOPT=0	MEM00160
LV=]	MEM00170
LXI=LV+NNG	MEM00180
LXIM=LXI+NNG	MEM00190
LXNU=LXIM+NNG	MEM00200
LSIGF=LXNU+NMAT*NNG	ME M00210
LSIGR=LSIGF+NMAT+NNG	MEM00220
LSIGT=LSIGR+NMAT*NNG	ME M00230
LSIGS=LSIGT+NMAT*NNG	MEM00240
LALAM=LSIGS+NMAT+NNG*NDNSCT	MEN00250
LRETA=LALAM+NDG	MEM00260
LXIP=LBETA+NDG	MEM00270
LX=LXIP+NNG *NDG	MEM00280
LY=LX+IM	ME M00290
LZ=LY+JM	MEM00300
LHX=LZ+KM	MEM00310
LHY=LHX+IR4	ME M00320
LHZ=LHY+JRM	MEM00330
LIBP=LHZ+KRM	ME M00340
LJBP=LIBP+(IRM+1)/2	MEM00350
	PAGE 146

/

-

I KRD-I IRDA(IDMA1)/2	HENDODIO
	MEM00390
	MEM00300
	MEMODADO
	MEMOO420
	HEM00420
	MEMOO(3)
	ME MOU431
LIVER METEL MARTYLIKM TJKM TKKM TOJ/ 4 Nov compute those dointede unich may hady with todt.	ME M00450
NUW COMPUTE THOSE PUINTERS WHICH MAY VARY WITH 10PT 110 IDCT-INDDWDA/IN±IM±VM423//	雨た回び0400 MEM00470
101 -1007.4/1 - 1007.4/1 + 10+ M+MANNCATONT	
LFI-LFSIT(I=10FI/FINFJMFKMFYNOF10FI 102-10141WF1MFT00T4(1_T00T) -	
$\frac{102-102+100}{100}$	MEMODEDO
LFD=LF2+1M+10F1+(1=10F1) (EDD=LD2+1M+10DT+(1=10F1)	MEMUUSUU
LFKU=LF3 + 1M + JM + 1UF1 + (1-1UF1) LFRN=LF3 0 + (1 - 1007) + 1M + 1M + KM + 1007	MEM00510
LFKN=LFKUF11=1UF1)+1M+JM+KM+1UF1 180-1504441 10071+1M+UH+VM+1007	MEM00520
LFU=LFRN+(1=10F)}+1M+JM+KM+10F}	ME M00530
	ME M00540
LSKU=LFN+1==JM=1UP1+(1=1UP1)	MEMO0550
	MEM00560
	MEM00570
	MEM00580
	MEM00590
LXFISS=LUMEG+NNG	MEM00600
LXINSC=LXFISS+NNG	MEM00610
LXREM=LXINSC+NNG	MEM00620
LXLEK=LXREM+NNG	MEM00630
LTDT=LXLEK+NNG	MEM00640
IF(IASIZE-LTOT)120,140,140	MEM00650
120 IOPT=IOPT+1	MEM00660
IF(IOPT.GT.1)GO TO 130	MEM00670
GD TD 110	MEM00680
130 IMEM=5	MEM00690
WRITE(6,1000)IASIZE,LTOT	ME M00700
	PAGE 147

-

•

1 000	FORMAT(1H ,10X,16,2X, WORDS ALLOTTED, ',2X,16,2X, 'WORDS	NEEDED,CORE	MEM00710
	1 CAPACITY EXCEEDED!)		MEM00720
	GD TD 300		MEM00730
140	WRITE(6,1010)IASIZE,LTOT		MEM00740
1010	FORMAT(1H ,10X,16,2X, WORDS ALLOTTED, ,2X,16,2X, WORDS	USED!)	MEM00750
	GO TO 300		MEM00760
C E	BRANCH TO HERE TO COMPUTE DIMENSION POINTERS THAT CHANGE	FOR	ME M00770
C K	INETICS CALCULATION	ł	MEM00780
200	LPI=LPSI+(1-IOPT)*IM*JM*KM*NTOG+IOPT		MEM00790
	LP2=LP1+IM*JM*NTOG#IOPT+(1-IOPT)	ļ	ME M00800
	LP3=LP2+IM*JM*NTOG*IOPT+(1-IOPT)	S	MEM00810
	LPSO=LP3+IM*JM*NTOG*IOPT+(1-IOPT)	1	ME M00820
	LW=LPSO+(1-IOPT)+IM+JM+KM+IOPT	1	4EM00830
		!	MEM00840
	LW1=LPO+IM*JM*IOPT+(1-IOPT)	1	MEM00850
	LTOT=LW1+IM*JM*IOPT+(1-IOPT)	1	4E4 86
	IF(IASIZE-LTOT)210,230,230	1	MEM00870
210	INPT=IOPT+L		ME M00880
	IF(INPT.GT.1)GD TO 220	1	MEM00890
	GD TO 200	1	MEM00900
220	TMEM=5	1	MEM00910
	WRITE(6,1000)IASIZE,LTDT		MEM00920
	GD TO 300	(MEM00930
230	WRITE(6,1010)IASIZE,LTDT	ļ	MEM00940
300) RETURN	1	ME M00950
	END	1	MEM00960

PAGE 149

i

	SUBROUTINE CALLER	CAL00010
	IMPLICIT REAL*8 (A-H,O-Z)	CAL00020
	INTEGER*2 MMAP, NPRMP	CAL00030
	COMMON/POINT/LV,LXI,LXIM,LXNU,LSIGF,LSIGR,LSIGT,LSIGS,LALAM,LBETA	+CAL00040
	1LXIP,LX,LY,LZ,LHX,LHY,LHZ,LIBP,LJBP,LKBP,LDD1,LDD2,LDD3,LDD4,LDD5	,CAL00050
	2LDD6,LDD7,LV0,LMMAP,LNPRMP,LPSI,LP1,LP2,LP3,LFR0,LFRN,LF0,LFN,LSR	CCALOOO60
	3,LWA,LGA,LSOLN,LOMEG,LXFISS,LXINSC,LXREM,LXLEK,LTOT,LPSO,LW,LPO,L	WCAL00070
	41	CAL00071
	COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	CAL00080
	INFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	CAL00090
	2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), ND IT, NIIT, NPIT, IJP SI, I ODUMP	,CAL00100
	3 IOFN, I JF 0, I OPN, IOPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	CAL00110
	4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	CAL00120
	COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	CAL00130
	1TEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	CAL00140
	COMMON/ARAY/A(1)	CAL00150
0	CALL INPUT FOR REMAINDER OF INPUT DATA	CAL00160
	CALL INPUT(A(LV),A(LXI),A(LXNU),A(LSIGF),A(LSIGR),A(LSIGT),	CAL00170
	1 A(LSIGS), A(LALAM), A(LBETA), A(LXIP), A(LX), A(LY), A(LZ), A(LHX),	CAL00180
	2A(LHY), A(LHZ), A(LIBP), A(LJBP), A(LKBP), A(LMMAP), A(LOMEG), NNG, NDG,	CAL00190
	3NDNSCT, NMAT, IM, JM, KM, IRM, JRM, KRM)	CAL00200
С	CALL EDIT TO PRINT OUT EDITED VERSION OF PROBLEM DESCRIPTION	CAL00210
	CALL IDEDIT(A(LV),A(LXI),A(LXNU),A(LSIGF),A(LSIGR),A(LSIGT),	CAL00220
	1A(LSIGS), A(LALAM), A(LBETA), A(LXIP), A(LX), A(LY), A(LZ), A(LHX),	CAL00230
	2A(LHY), A(LHZ), A(LIBP), A(LJBP), A(LKBP), A(LMMAP), A(LOMEG), NNG, NDG,	CAL00240
	3NDNSCT, NMAT, IM, JM, KM, IRM, JRM, KRM)	CAL00250
C	CALL FLUXIN TO INPUT INITIAL FLUX GUESS	CAL00260
	CALL FLUXIN(A(LPSI),A(LP1),NNG,IM,JM,KM)	CAL00270
С	CALL SSTATE TO COMPUTE COEFFICIENTS, SET UP PROBLEM REGIONS, AND	CAL00280
С	COMPUTE STEADY STATE FLUXES(IF REQUESTED)	CAL00290
	CALL SSTATE(A(LV),A(LXI),A(LXIM),A(LXNU),A(LSIGF),A(LSIGR),	CAL00300
	1A(LSIGT);A(LSIGS);A(LALAM);A(LBETA);A(LXIP);A(LX);A(LY);A(LZ);	CAL00310
	2A(LHX),A(LHY),A(LHZ),A(LIBP),A(LJBP),A(LKBP),A(LDD1),A(LDD2),	CAL00320
	3A(LDD3), A(LDD4), A(LDD5), A(LDD6), A(LDD7), A(LVO), A(LMMAP), A(LNPRMP)	+CAL00330
	4A(LPSI), A(LP1), A(LP2), A(LP3), A(LFR0), A(LFRN), A(LFO), A(LFN), A(LSRC	ICAL00340
	5,A(LWA);A(LGA);A(LSOLN);A(LOMEG);A(LXFISS);A(LXINSC);A(LXREM);A(L	XCAL00350
		PAGE 149
	N N	

	6LEK), NNG, NDG, NDNSCT, NMAT, IM, JM, KM, IRM, JRM, KRM, NPRG, NGX)	CAL00360
	IF(ITEMP.NE.4)GO TO 200	CAL 00370
	IF (NST EAD. EQ.2) GD TO 200	CAL 00380
	WRITE(6,1000)	CAL 0.0390
	1000 FORMAT(1H1,///,10X, 'PROCEEDING INTO TIME-DEPENDENT CALCULATION')	CAL 00400
С	CALL FLUXTE TO WRITE FLUXES OUT ON LOSCI FOR PASSAGE TO TIMDEP	CAL00410
	CALL FLUXTR(A(LPSI),A(LP2),NNG,IM,JM,KM)	CAL00420
C	CALL MEMORY TO REBUILD STORAGE FOR TIME-DEPENDENT CALCULATION	CAL00430
	IMEM=2	CAL00440
	CALL MEMORY (IMEN)	CAL00450
	IF(IMEM.EQ.5)GO TO 200	CAL00460
С	CALL TIMDEP TO PERFORM TIME-DEPENDENT CALCULATION	CAL00470
	CALL TIMDEP(A(LV), A(LXI), A(LXIM), A(LXNU), A(LSIGF), A(LSIGR),	CAL 00480
	LA(LSIGT), A(LSIGS), A(LALAM), A(LBETA), A(LXIP), A(LX), A(LY), A(LZ), A(L	HCAL 00490
	2X) • A(LHY) • A(LHZ) • A (LIBP) • A (LJBP) • A (LKBP) • A (LDD1) • A (LDD2) • A (LDD3) •	CAL 0.0500
	3A(LDD'), A(LDD5), A(LDD6), A(LDD7), A(LVO), A(LMMAP), A(LNPRMP), A(LPST)	CAL00510
	4,A(LP1),A(LP2),A(LP3),A(LPS0),A(LW),A(LP0),A(LW1),NNG,NDG,NTGG.	CAL 00520
	5NDNSCT, NMAT, IM, JM, KM, IRM, JRM, KRM, NPRG, NGX)	CAL 00530
С	NOW RETURN TO MAIN	CAL 00540
	200 RETURN	CAL 00550
	END	
		UAL 00200

t

.

SUBROUTINE ETIME IMPLICIT REAL*8 (A-H,D-Z) INTEGER TNDW,TSTART,TREL,TID CALL TIMING(TSTART,TID) RETURN ENTRY ETIMEF(TI) CALL TIMING(TNDW,TID) TREL=TNDW-TSTART IF(TREL.LT.0)TREL=TREL+8640000 TI=TREL/6000. RETURN END

ET 100010 ET 100020 ET 100030 ET 100040 ET 100050 ET 100050 ET 100070 ET 100080 ET 100090 ET 100100 ET 100110 ET 100120

SUBROUTINE INPUT(V,XI,XNU,SIGF,SIGR,SIGT,SIGS,ALAM,BETA,XIP,X,Y,Z,	INP00010	
1HX, HY, HZ, IBP, JBP, KBP, MMAP, DMEG, NNGV, NDGV, NDN SCV, NMATV, IMV, JMV, KMV,	INP00020	
2IRMV, JRMV, KRMV)	INP00030	
IMPLICIT REAL+8 (A-H,O-Z)	INP00040	
INTEGER*2 MMAP, NPRMP	INP00050	
COMMON/INTS/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	INP00100	
1NFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	INP00110	
2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUMP,	INP00120	
3IOFN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	INP00130	
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	INP00140	
COMMON/FLOTE/EFFK, DR FP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	INP00150	
LTEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	INP00160	
DIMENSION V(NNGV),XI(NNGV),XNU(NMATV,NNGV),SIGF(NMATV,NNGV),	INP00170	
1 SIGR (NMA TV, NNGV), SIGT (NMATV, NNGV), SIGS (NMATV, NNGV, NDNSCV), AL AM(NDG	INP00180	
2V);BETA(ND3V);XIP(NNGV;NDGV);X(IMV);Y(JMV);Z(KMV);HX(IRMV);	INP00190	
3HY(JRMV),HZ(KRMV),IBP(IRMV),JBP(JRMV),KBP(KRMV),MMAP(IRMV,JRMV,	INP00200	
4KRMV), DMEG(NNGV)	INP00210	
00 100 I=1,5	INP00220	
IXTP(I)=0	INP00230	
IYTP(I)=0	INP00240	
IZTP(I)=0	INP00250	
100 CONTINUE	INP00260	
C READ IN REMAINDER OF TIME-INDEPENDENT INFORMATION	INP00270	
C ONLY EFFK IS USED IF NSTEAD=0	INP00280	
C READ CARD 3	TNP00290	
READ(5,1000)EFFK,ORFP,EPS1,EPS2,NOIT,NIIT,NPIT	INP00300	
1000 FORMAT (D16.10,4X,3D10.4,3I4)	INP00310	
WRITE(6,1010)EFFK, DRFP, EPS1, EPS2, NDIT, NIIT, NPIT	INP00320	
1010 FORMAT(11X, D16.10, 4X, 3D10.4, 314)	INP00330	
READ(5,1001)(DMEG(NG),NG=1,NNG)	INP00340	
1001 FORMAT(8E10.4)	INP00350	
WRITE(6,1002)(DMEG(NG),NG=1,NNG)	INP00360	
1002 FORMAT(11X,8E10.4,/(10X,8E10.4))	INP00370	
C READ CARDS 4	INP00380	
105 READ(5,1020)NLBC,(IBP(IR),HX(IR),IR=1,IRM)	INP00390	
1020 FORMAT(15,5(15,E10.4)/5(15,E10.4))	INP00400	
	PAGE	152

WRITE(6,1030)NLBC,(IBP(IR),4X(IR),IR=1,IRM)	INP00410
1030 FURMAT(11X, 15, 5(15, E10.4)/((0X, 5(15, E10.4)))	INP00420
REAU(5,102))NFBC,(JBP(JR),HY(JR),JR=1,JRM)	INP00430
WRITE(6,1030)NFBC,(JBP(JR),HY(JR),JR=1,JRM)	INP00440
READ(5, 1020) NBBC, (KBP(KR), HZ(KR), KR=1, KRM)	INP00450
WRITE(6,1030)NBBC, (KBP(KR), HZ(KR), KR=1, KRM)	INP00460
GENERATE WESH SPACINGS AND MESH PLANE DISTANCES FROM DRIGI	N INPO0470
IS=1	INPO0480
ISS=2	INP00490
DO 120 IR=1, IRM	INP00500
HX(IR)=HX(IR)/(IBP(IR)-IS)	INP00510
IS=IBP(IR)	INP00520
DO 110 I=ISS,IS	INP00530
110 X(I)=X(I-1)+HX(IR)	INP00540
120 ISS=IBP(IR)+1	INP00550
IS=1	INP00560
ISS=2	INP00570
D3 140 JR=1, JRM	TNP00580
HY(JR)=HY(JR)/(JBP(JR)-IS)	TNP00590
IS=JBP(JR)	TNP00600
DO 130 J=ISS,IS	TNP00610
130 Y(J) = Y(J-1) + HY(JR)	TNP00620
140 ISS=JBP(JR)+1	INP00630
IS=1	INPO0640
ISS=2	TNP00650
DO 160 KR=1,KRM	TNP00660
HZ(KR) = HZ(KR)/(KBP(KR) - IS)	INP00670
IS=KBP(KR)	INPOD680
DD 150 K=ISS.IS	TNP00690
150 Z(K) = Z(K-1) + HZ(KR)	INP00700
160 ISS=KBP(KR)+1	
C READ TEST POINTS FOR KINETICS CALCULATIONS CARD 5	
READ(5.1040)(IXTP(I).I=1.NXTP).(IYTP(I).I=1.NVTP).(ITTD)	T). T=1.N7TIN000720
1P)	1791 - 1991 21 197 007 30 TND00740
WRITE(6.1050)(IXTP(1).1=1.NETP), (IVTP(1).1=1.NVTD) = (1770	17) T-1, N7TND00760
1TP 3	
	PAGE 105

C READ IN MATERIAL REGION MAP CARDS 6	INP00770
DO 170 KR=1;KRM	INP00780
READ(5,1040)((MMAP(IR,JR,KR),IR=1,IRM),JR=1,JRM)	INP00790
WRITE(6,1050)((MMAP(IR, JR, KR), IR=1, IRM), JR=1, JRM)	INPO0800
170 CONTINUE	INP00810
1040 FORMAT(2014)	INPOOB20
1050 FORMAT(11X,2014)	INP00830
C READ VELOCITIES CARD 7	INP00840
READ(5,1060)(V(NG),NG=1,NNG)	INP00850
WRITE(6,1070)(V(NG), NG=1, NNG)	INP 00860
1060 FORMAT(6E12.6)	INP00870
1070 FORMAT(11X,6E12.6/(10X,6E12.6))	INP00880
C READ FISSION SPECTRUM CARD 8	1NP00890
READ(5,1060)(XI(NG),NG=1,NNG)	INP00900
WRITE(6,1070)(XI(NG),NG=1,NNG)	INP00910
C READ MATERIAL PROPERTIES	INP00920
DD 190 NM=1, NMAT	INP00930
C READ CARD 9	INP00940
DD 180 NG=1,NNG	INP00950
READ(5,106))XNU(N4,NG),SIGF(NM,NG),SIGR(NM,NG),SIGT(NM,NG)	INP00960
180 WRITE(5,1070)XNU(NM, NG),SIGF(NM, NG),SIGR(NM, NG),SIGT(NM, NG)	INP00970
C READ CARD 10	INP00980
READ(5,1060)((SIGS(NM,NG,NDNSC),NDNSC=1,NDNSCT),NG=L,NNG)	INP00990
WRITE(6,1070)((SIGS(NM,NG,NDNSC),NDNSC=1,NDNSCT),NG=1,NNG)	INP01000
190 CONTINUE	INP01010
C READ PRECURSOR DATA CARD 11	INP01020
DD 200 ND=1, NDG	INP01030
READ(5,1060)ALAM(ND),BETA(ND),(XIP(NG,ND),NG=1,NNG)	INP01040
WRITE(6,1070)ALAM(ND),BETA(ND),(XIP(NG,ND),NG=1,NNG)	INP01050
200 CONTINUE	INP01060
RETURN	INP01070
END	INP01080

PAGE 154

ł

SUBROUTINE IDEDIT(V.XI.XNU.SIGE.SIGE.SIGT.SIGS.ALAM.BETA.XTP.X.	Y.71NP00010
1.HX.HY.H7.TRP.IRP.KRP.MMAP.OMEG.NNGV.NDGV.NDNSCV.NNATV.TMV.IMV.	KNVINPOOO20
2. TRMV. IPMV. KRVI	TNPAGO20
TNDITCTT DEALHO /A_LL C_7 \	14F00050
INFLIGIT KEALTO (ATTICE)	1000040
INTEGERTZ AMAP, NYKMY	INP00050
COMMUN/INIG/IASIZE, NNG, NDG, NIUG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	INP00100
INFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	INP00110
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IDPSI, IODU	MP, INPOOL20
3IDFN,IDFO,IOPN,IOPD,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	INP00130
4NTIT, JETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IDSC2, NGX	INP00140
COMMON/FLOTE/EFFK. JR FP. EPS1. EPS2. TEMP. TEMP1. TEMP2. TEMP3. TEMP4.	TNP00150
1 TEMP5. TEMP5. XETSST. XETSSO. ALAMN. ALAMO. TIME. ELXCON. BETAT	TNP00160
DIMENSION VINNEVIATI (NNEV) ANNI (NMATVANNEV) ASTEE(NMATVANEV)	TNP00170
1 STGR (NMATV, NNCV), STGT (NMATV, NNGV), STGS (NMATV, NNGV, NDNCCV), ALAM	NDCINDOOLOO
2V1 2 ETAI MORNA VIOLANCV MOCHTAVINOV VIJIOS (MAMIN VINOV VIDICIA I VI 2V1 2 ETAI MORNA VIDIANCV MOCHTAVINOV VIJIOS (MAMIN VINOV VIDICIA I VIDICIA VID	
$\frac{2}{2} = \frac{2}{2} = \frac{2}$	
<pre>>HY(JRTV);HL(KKMV);1BP(1KMV);JBP(JKMV);KBP(KKMV);MMAP(1RMV;JKMV;</pre>	INP00200
4KRMV), DMEG(NNGV)	INP00210
WRITE(6,1000)(ITITLE(I),I=1,20)	INP00220
1000 FORMAT(1H1,10X,'3DKIN RUN FOR',2X,20A4)	INP00230
C WILL ADD REST OF EDITING ROUTINE LATER	INP00240
RETURN	INP00250
END	INP00260

l

SUBROJTINE FLUXIN(PSI,P1,NNGV,IMV,JMV,KMV)	FLU00010
IMPLICIT REAL+8 (A-H,O-Z)	FL U00020
INTEGER*2 MMAP, NPRMP	FLU00030
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, K	(RM.NLBC. FLU00080
INFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5),	[YTP(5), FLU00090
2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NDIT, NIIT, NPIT, IC	JPSI, IODUMP, FLU00100
310FN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, 1	ITEMP5, FLU00110
4NTIT, IETIME, IFLDUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	FLU00120
COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3	3, TEMP4, FLU00130
ITEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCON, BETAI	FL U00140
DIMENSION PSI(NNGV, IMV, JMV, KMV), P1(IMV, JMV)	FLU00150
ITEMP=IFLIN+1	FLU00160
ITEMP1=IOPT+1	FLU00170
PI=3.14159265358979D0	FLU00180
TWD=2.000	FLU00190
GD TD(100,300,400), I TEMP	FLU00200
BRANCH HERE FOR SINE FLUX GUESS	FLU00210
100 DD 200 NG=1, NNG	FLU00220
D3 200 $K=1, KM$	FLU00230
IF (NBBC.EQ.1)GD TD 110	FLU00240
TEMP1=DSIN((K-1)*PI/(KM-1))	FLU00250
GD TO 120	FLU00260
110 TEMP1=DCOS((K-1)*PI/(TWO*(KM-1)))	FLU00270
120 IF(K.EQ.KM)TEMP1=0.0D0	FLU00280
DO 190 J=1, JM	FLU00290
IF(NFBC.EQ.1)GD TO 130	FLU00300
TEMP2=DSIN((J-1)*PI/(JM-1))	FLU00310
G9 T0 140	FLU00320
130 TEMP2=DCDS((J-1)*PI/(TWD*(JM-1)))	FLU00330
140 IF(J.EQ.JM)TEMP2=0.0D0	FLU00340
DO 180 I=1,IM	FLU00350
IF(NLBC.EQ.1)GD TO 150	FLU00360
TEMP3=DSIN((I-1)*PI/(IM-1))	FLU00370
GD TO 160	FLU00380
150 TEMP3=DCOS((I-I)+PI/(TWO*(IN-1)))	FLU00390
160 IF(I.EQ.IM)TEMP3=0.0D0	FLU00400
	PAGE 156

	IF(ITEMP1.EQ.2)GO TO 170	FLU00410
	PSI(NG,I,J,K)=TEMP1*TEMP2*TEMP3	FLU00420
	GD TO 180	FLU00430
170	P1(I,J)=TEMP1*TEMP2*TEMP3	FLU00440
180	CONTINUE	FLU00450
190	CONTINUE	FLU00460
	IF(ITEMP1.EQ.1)GO TO 200	FLU00470
	WRITE(IOPN) P1	FLU00480
200	CONTINUE	FLU00490
	GO TO 999	FLU00500
D B	RANCH HERE FOR FLUXES INPUT ON CARDS	FLU00510
300	DD 340 NG=1, NNG	FLU00520
	D3 340 K=1,KM	FLU00530
	GD TO(310,320),ITEMP1	FLU00540
310	READ(5,100)((PSI(NG,I,J,K),I=1,IM),J=1,JM)	FLU00550
	IF(K.LT.KM)GO TO 330	FLU00560
	DD 315 J=1, JM	FLU00570
	DO 315 I=1,IM	FLU00580
315	PSI(NG,I,J,KM)=0.000	FLU00590
	GD TO 330	FLU00600
320	READ(5, 1000)((P1(I, J), I=1, IN), J=1, JN)	FLU00610
	IF(K.LT.KM)GD TD 325	FLU00620
	DD = 324 J = 1, JM	FLU00630
	DD 324 I=1,IM	FLU00640
324	P1(I,J)=0.0D0	FLU00650
325	WRITE(IDPN)P1	FLU00660
330	CONTINUE	FLU00670
340	CONTINUE	FLU00680
1000	FORMAT(5016.10)	FLU00690
• •	GD TO 999	FLU00700
C BI	RANCH HERE FOR FLUXES INPUT ON TAPE	FLU00710
400	DD 440 $NG=1$, NNG	FLU00720
	DD 440 K=1,KM	FLU00730
	GU TU(410,420), ITEMP1	FLU00740
410	READ(13PSI)((PSI(NG, I, J, K), I=1, IM), J=1, JM)	FLU00750
	IFIK.LI.KMIGO TO 430	FLU00760
		PAGE 157

	DO 415 J=1, JM
	DO 415 $I=1, IM$
41.5	PSI(NG, I, J, KM) = 0.000
	GD TD 430
420	READ(IOPSI)P1
	IF(K.LT.KM)GO TO 425
	DO 424 J=1, JM
	DO 424 $I=1, IM$
424	P1(T,J)=0.000
425	WRITE(IDPN)P1
430	CONTINUE
440	CONTINUE
999	IF(ITEMP1.EQ.2)REWIND IOPN
	RETURN
	END

.

4

FLU00770 FLU00780 FLU00800 FLU00810 FLU00820 FLU00830 FLU00840 FLU00850 FLU00850 FLU00860 FLU00870 FLU00890 FLU00900 FLU00910

SUBROUTINE SSTATE(V,XI,XIM,XNU,SIGF,SIGR,SIGT,SIGS,ALAM,BETA,XIP	XSST00010
1,Y,Z,HX,HY,HZ,IBP,JBP,KBP,DD1,DD2,DD3,DD4,DD5,DD6,DD7,V0,MMAP,NPF	RMSST00020
2P, PSI, P1, P2, P3, FR3, FRN, F0, FN, SRC, WA, GA, SOLN, OMEG, XFISS, XINSC, XRE	M, SST00030
3XLEK, NNGV, NDGV, NDNSCV, NMATV, IMV, JMV, KMV, IRMV, JRMV, KRMV, NPRGV, NGX	V)SST00040
IMPLICIT REAL*8 (A-H,O-Z)	SST00050
INTEGER*2 MMAP, NPRMP	SST00060
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	SST00110
INFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	SST00120
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUM	P,SST00130
3IDEN, IDEO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	SST00140
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	SST00150
COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	SST00160
1TEMP5,TEMP5,XFISST,XFISSO,ALAMN,ALAMO,TIME,FLXCON,BETAT	SST00170
DIMENSIDN V(NNGV),XI(NNGV),XIM(NNGV),XNU(NMATV,NNGV);	SST00180
1 SIGF (NMATV, NNGV), SIGR (NMATV, NNGV), SIGT (NMATV, NNGV), SIGS (NMATV, NNG	GVSST00190
2,NDNSCV);ALAM(NDGV);BETA(NDGV);XIP(NNGV,NDGV);X(IMV),Y(JMV);Z(KM	V)SST00200
3,HX(IRMV),HY(JRMV),HZ(KRMV),IBP(IRMV),JBP(JRMV),KBP(KRMV),DD1(NP	RGSST00210
4V, NNGV), DD2 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV), DD5 (NPRG)	V,SST00220
5NNGV),DD6(NPRGV,NNGV),DD7(NPRGV,NGXV,NDNSCV),MMAP(IRMV,JRMV,KRMV),SST00230
6NPRMP(IMV,JMV,KMV),PSI(NNGV,IMV,JMV,KMV),P1(IMV,JMV),P2(IMV,JMV)	, SST00240
7P3(IMV, JMV); FRO(IMV, JMV, KMV), FRN(IMV, JMV, KMV), FO(IMV, JMV), FN(IMV	JSST00250
BMV), SRC(IMV, JMV, KMV), WA(IMV), GA(IMV), SOLN(IMV), OMEG(NNGV), XFISS(NNSST00260
9GV),XINSC(NNGV),XREM(NNGV),XLEK(NNGV),VD(NPRGV)	SST00270
WRITE(6,1000)(ITITLE(I),I=1,20)	SST00280
1000 FORMAT(1H1,10X, SSTATE ENTERED FOR , 2X, 20A4)	SST00290
C CALL SETUPI TO COMPUTE PROBLEM REGION NUMBERS, GENERATE NPRMP(I,J,	K)SST00300
C AND COMPUTE COEFFICIENTS	SST00310
CALL SETUPI(V,XI,XNU,SIGF,SIGR,SIGT,SIGS,X,Y,Z,HX,HY,HZ,IBP,JBP,	SST00320
1KBP, D01, DD2, DD3, DD4, DD5, DD5, DD7, V0, MMAP, NPRMP, NNG, NDG, NDNSCT, NMA	T,SST00330
2IM, JM, KM, IRM, JRM, KRM, NPRG, NGX)	SST00340
C SWITCH FLUX TAPE DESIGNATIONS	SST00350
ITEMP=IJPO	SST00360
10PO=10PN	SST00370
IOPN=ITEMP	SST00380
ITEMP=4	SST00390
ONE=1.0D0	SST00392
	PAGE 159

	HALF=0.5DO	SST00393
	BETAT=0.0D0	SST00394
	D9 80 ND=1, NDG	SST00395
	80 BETAT=BETAT+BETA(ND)	SST00396
	DO 85 NG=1, NNG	SST00400
	85 XIM(NG)=XI(NG)*(1.)DO-BETAT)/EFFK	SST00410
	IF(NSTEAD.EQ.O) GO TO 540	SST00420
	DO 90 NG=1, NNG	SST00430
	IF(OMEG(NG).LT95.OR.OMEG(NG).GT.1.05)GO TO 90	SST00440
	GD TO 95	SST00450
	90 CONTINUE	SST00460
	GD TD 99	SST00470
	95 CALL ORPEST(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,P	SI, SST00480
	1P1, P2, P3, FRD, FRN, FD, FN, SRC, WA, GA, SOLN, DMEG, XFISS, XINSC, XREM	SST00490
	2XLEK, NNG, NMAT, IM, JM, KM, IRM, JRM, KRM, NPRG)	SST00500
С	COMPUTE POINT FISSION SOURCE	SST00510
	99 DO 140 NG=1, NNG	SST00520
	XFISS(NG)=0.000	S\$T00530
	VOLB=DNE	SST00531
	VOLF=DN5	SST00532
	VOLL=ONE	SST00533
	IF(NBBC.EQ.1)VOLB=HALF	SST00534
	DD 140 K=1,KM	SST00540
	IF(K.GT.1)VOLB=ONE	SST00541
•	IF(NFBC.EQ.1)VOLF=HALF	SST00542
	IF(IOPT.EQ.0) GO TO 100	SST00550
	READ (IDPO)P2	SST00560
	IF(K.EQ.KM) GD TO 140	SST00570
	100 DO 130 J=1, JMX	SST00580
	IF(J.GT.1)VOLF=ONE	SST00581
	VOLC=VOLF+VOLB	SST00582
	IF(NLBC.EQ.1)VOLL=HALF	SST00583
	DO 130 I=1, IMX	SST00590
	IF(I.GT.1)VOLL=ONE	SST00591
	VDLD=VOLL+VOLC	SST00592
	NPR=NPRMP(I,J,K)	SST00600
		PAGE 160

IF(IOPT.EQ.1) GO TO 110	SST00610
FRO(I,J,K)=FRO(I,J,K)+DD6(NPR,NG)*PSI(NG,I,J,K)	SST00620
XFISS(NG)=XFISS(NG)+DD6(NPR,NG)*PSI(NG,I,J,K)*VOLD	SST00630
GO TO 120	SST00640
IF FISSION SOURCE ON I/O, STORE TEMPORARILY IN SRC(I,J,K)	SST00650
110 SRC(I,J,K)=SRC(I,J,K)+DD6(NPR,NG)*P2(I,J)	SST00660
XFISS(NG)=XFISS(NG)+DD6(NPR,NG)*P2(I,J)*VOLD	SST00670
120 CONTINUE	SST00680
130 CONTINUE	SST00690
140 CONTINUE	S\$T00700
XFISST=0.0D0	SST00710
TEMP=0.000	SST00720
IF(EFFK.LT.0.1.OR.EFFK.GT.10.0)EFFK=1.0D0	SST00730
ALAMN=DNE	SST00740
DO 150 NG=1, NNG	SST00750
150 TEMP=TEMP+XFISS(NG)	SST00760
DO 160 NG=1, NNG	SST00770
TEMP2=0.0D0	SST00772
DO 155 ND=1, NDG	SST00773
155 TEMP2=TEMP2+XIP(NG,ND)*BETA(ND)/EFFK	SST00775
XIM(NG)=XI(NG)*(1.0D0-BETAT)/EFFK	SST00780
XFISS(NG)=(XIM(NG)+TEMP2)*TEMP	SST00790
160 XFISST=XFISST+XFISS(NG)	SST00800
IF(IOPT.EQ.O) GO TO 180	S\$T00810
DD 170 K=1,KM	SST00820
170 WRITE (IDF0)((SRC(I,J,K),I=1,IM),J=1,JM)	SST00830
REWIND IOFO	SST00840
REWIND IOPO	SST00850
C OUTER ITERATION LOOP STARTS HERE	SST00860
180 NJITT=0	SST00870
190 CONTINUE	SSTOOBBO
NTIT=0	SST00890
NG=1	SST00900
FLXCON=0.0D0	SST00910
200 CONTINUE	SST00920
C ZERD SOURCE AND ADD IN FISSION SOURCE	SST00930
	PAGE 161

		TEMP=0.0D0	SST00931
		D3 205 ND=1, NDG	SST00932
	205	TEMP=TEMP+XIP(NG,ND) * BETA(ND) / EFFK	SST00933
		DJ 240 K=1,KM	SST00940
		IF(IOPT.EQ.0) GO TO 210	SST00950
		READ(IOFO) FO	SST00960
		IF(K.EQ.KM) GD TD 240	SST00970
	210	DD 230 J=1, JMX	SST00980
		D3 230 $I = 1 + I M X$	SST00990
		SRC(I, J, K) = 0.000	SST01000
		IF(IOPT.FQ.0) GO TO 220	SST01010
		SRC(I,J,K)=SRC(I,J,K)+(XIM(NG)+TEMP)*FD(I,J)	SST01020
		GO JO 230	SST01030
	220	SRC(I,J,K)=SRC(I,J,K)+(XIM(NG)+TEMP)*FRD(I,J,K)	SST01040
		IF(NG.EQ.1)FRN(I,J,K)=0.000	SST01.050
	230	CONTINUE	SST01060
	240	CONTINUE	SST01070
		IF(IDPT.EQ.1) REWIND IDFO	SST01080
0	A	DD IN SCATTERING SOURCES	SST01090
		ITEMP1=NG-NDNSCT	SST01100
		IF(ITEMP1.GE.1) GD TO 250	SST01110
		ITEMP1=1	SST01120
	250	ITEMP2=NG-1	SST01130
		IF(ITEMP2.LE.NDNSCT)GO TO 250	SST01140
		ITEMP2=NDNSCT	SST01150
_	260	IF(ITEMP1.GE.NG) GO TO 310	SST01160
C	SC	CATTERING SOURCE TO GROUP NG FROM GROUP ITEMP1	SST01170
	270	DD 300 K=1, KM	SST01180
		TF(IDPT.EQ.1) READ(IOPN)P2	SST01190
		IF(K.EQ.KM)GD TD 300	SST01200
		DD 290 J=1, JMX	SST01210
		DO 290 I=1, IMX	SST01220
		NPR=NPRMP(I,J,K)	SST01230
		1F(10PT-EQ-1) GO TO 280	SST01240
		SRULI, J, KJ=SRULI, J, KJ+DD7(NPR, ITEMP1, ITEMP2) *PSI(ITEMP1, I, J, K)	SST01250
		GU 10 290	SST01260

	280 SRC(I,J,K)=SRC(I,J,K)+DD7(NPR,ITEMP1,ITEMP2)+P2(I,J)	SST01270	
	290 CONTINUE	SST01280	
	300 CONTINUE	SST01290	
	310 ITEMP1=ITEMP1+1	SST01300	
	ITEMP2=ITEMP2-1	SST01310	
	IF(ITEMP1.LT.NG)GO TO 270	SST01320	
3	SOURCE NOW CALCULATED I/O DEVICE TOPO READY TO READ IN FIRST PLANE	SST01330	
С	FOR GROUP NG IF IOPT=1	SST01340	
	TEMP=0.0D0	SST01350	
	VOL B=ONE	SST01351	
	VOLF=ONE	SST01352	
	VOLL=ONE	SST01353	
	IF (NBBC.EQ.1)VOLB=HALF	SST01354	
	DD 320 K=1, KMX	SST01360	
	IF(K.GT.1)VOLB=ONE	SST01361	
	IF(NF3C.EQ.1)VOLF=HALF	SST01362	
	DD 320 J=1, JMX	SST01370	
	IF(J.GT.1)VOLF=ONE	SST01371	
	VOLC=VOLB+VOLF	SST01372	
	IF(NLBC.EQ.1)VOLL=HALF	SST01373	
	DD 320 I=1,IMX	SST01380	
	IF(I.GT.1)VOLL=ONE	SST01381	
	TEMP=TEMP+SRC(I,J,K) *VOLC*VOLL	SST01390	
	320 CONTINUE	SST01.400	
	XINSC(NG)=TEMP-XFISS(NG)	SST01410	
0	NOW PERFORM INNER ITERATIONS FOR GROUP NG	SST01420	
	ITEMP5=1	SST01430	
	IF(NOITT.GT.O.AND.FLCOND.LT.1.0D-5)ITEMP5=5	SST01435	
	IF(IOPT.EQ.1) GD TD 330	SST01440	
	CALL INNERO(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,P1,	SST01450	
	1P2,P3,F0,SRC,WA,GA,SOLN,OMEG,XFISS,XINSC,XREM,XLEK,NNG,NMAT,IM,	SST01460	
	2JM,KM,IRM,JRM,KRM,NPRG,NG)	SST01470	
	IF(TEMP3.GT.FLXCON)FLXCON=TEMP3	SST01480	
	GD TO 400	SST01490	
	330 CALL INNERL(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,P1,	SST01500	
	1P2,P3,F0,SRC,WA,GA,SOLN,OMEG,XFISS,XINSC,XREM,XLEK,NNG,NMAT,IM,	SST01510	
		PAGE 1	63

	2 JM, K M, I R M, J R M, K R M, N P R G, N G)	SST01520
	IF(TEMP3.GT.FLXCON)FLXCON=TEMP3	SST01530
	REWIND IDSC1	SST01540
	DD 340 ITEMP4=1,NDNSCT	SST01550
	D9 340 K=1,KM	SST01560
	BACK SPACE IDPN	SST01570
340	CONTINUE	SST01580
C I	OPN HAS NOW BEEN POSITIONED TO COMPUTE SCATTERING SOURCE FOR NEXT	SST01590
C G	ROUP. IDSCL CAN BE USED TO DETAIN FLUXES FOR COMPUTING FN	SST01600
	DO 380 K=1,KM	SST01610
	READ(IDSC1)P2	SST01620
	IF(K.EQ.KM)GD TO 380	SST01630
	IF(NG.GT.1)GO TO 360	SST01640
	DO 350 J=1, JMX	SST01650
	DD 350 I=1,IMX	SST01660
	NPR=NPRMP(I,J,K)	SST01670
350	SRC(I,J,K)=DD6(NPR,NG)=P2(I,J)	SST01680
-	N 69 TO 380	SST01690
360	READ(IDFN)FN	SST01700
	DD 370 J=1, JMX	SST01710
	DD 370 I=1,IMX	SST01720
	NPR=NPRMP{I,J,K}	SST01730
370	SRC(I,J,K)=FN(I,J)+DD6(NPR,NG)*P2(I,J)	SST01740
380	CONTINUE	SST01750
	IF(NG.GT.1)REWIND IOFN	SST01760
	DD 390 K=1,KM	SST01770
	WRITE(IDFN)((SRC(I,J,K),I=1,IM),J=1,JM))	SST01780
390	CONTINUE	SST01790
	REWIND IDSCI	SST01800
	REWIND IOFN	SST01810
	GD TO 420	SST01820
400) DO 410 K=1,KMX	SST01830
	DD 410 $J=1, JMX$	SST01.840
	DO 410 I=1, IMX	SST01850
	NPR=NPRMP(I,J,K)	55101860
410) FRN(I,J,K)=FRN(I,J,K)+DD6(NPR,NG)*PSI(NG,I,J,K)	SST01870
		PAGE 164

420	NG=NG+1	SST01880
	IF(NG.LE.NNG) GD TD 200	SST01890
C N	DW ONE OUTER ITERATION HAS BEEN CONPLETED	SST01900
C N	EW FISSION SOURCE IS STORED IN SRC IF IOPT=1	SST01910
	FLCON3=FLXCON	SST01920
	XFISSD=XFISST	SST01930
	TEMP 5=0.000	SST01940
	TEMP6=0.0D0	SST01950
	VOLB=ONE	SST01951
	VOL F=ONE	SST01952
	VOLL=ONE	SST01953
	IF(NBBC.EQ.1)VOLB=HALF	SST01954
	IF(IDPT.FQ.1) GD TD 450	SST01960
	DD 430 K=1,KMX	SST01970
	IF(K.GT.1)VOLB=ONE	SST01971
	IF(NFBC.EQ.1)VDLF=HALF	SST01972
	DD 430 J=1, JMX	SST01980
	IF(J.GT.1)VOLF=DNE	SST01981
	VOLC=VOLB*VOLF	SST01982
	TF(NL3C.EQ.1)VOLL=HALF	SST01983
	DO 430 I=1,IMX	SST01990
	IF(1.GT.1)VOLL=ONE	SST01991
	VOLD=VOLC+VOLL	SST01992
	TEMP5=TEMP5+FRN(I,J,K)*VOLD	SST02000
	FRN(I,J,K)=FRO(I,J,K)+ORFP*(FRN(I,J,K)-FRO(I,J,K))	SST02010
430	TEMP6=TEMP6+FRN(I,J,K)*VOLD	SST02020
	TEMP=TEMP5/TEMP6	SST02030
	D3 440 K=1, KMX	SST02040
	DD 440 J=1, JMX	SST02050
	D3 440 I=1, IMX	SST02060
440	FRD(I,J,K)=TEMP*FRN(I,J,K)	SST02070
	GD TD 490	SST02080
450	D3 460 K=1,KMX	SST02090
	IF(K.GT.1)VOLB=ONE	SST02091
	IF(NFBC.EQ.1)VOLF=HALF	SST02092
	READ(IDFD) FO	SST02100
		PAGE 165

	DD 460 J=1.JMX		SST02110
	IF(J.GT.1)VOLF=ONE		SST02111
	VOLC=VOLB*VOLF		SST02112
	IF (NL3C.EQ.1)VOLL=HALF		SST02113
	D3 460 I=1. IMX		SST02120
	IF(I.GT.1)VOLL=DNE		SST02121
	VOLD=VOLC*VOLL		SST02122
	TEMP5=TEMP5+SRC(I+J+K)*VOLD		SST02130
	SRC(1, J, K)=FO(1, J)+DRFP*(SRC(1, J, K)+FO(1, J))		SST02140
460	TEMP6=TEMP6+SRC(I, J, K)+VOLD		SST02150
	TEMP=TEMP5/TEMP6	×.	SST02160
	DD 480 K=1.KMX		SST02170
	D3 470 J=1, JMX		SST02180
	DO 470 I=1. IMX		SST02190
470	FN(I,J) = SRC(I,J,K) + TEMP		SST02200
	WRITE(IDEN)EN		SST02210
480	CONTINUE		SST02220
	REWIND IOFO		SST02230
	REWIND IDEN		SST02240
	REWIND IOPO		SST02250
	REWIND IOPN		SST02260
490	XFISST=0.000		SST02270
	DD 500 NG=1, NNG		SST02280
	TEMP1=0.0D0		SST02281
	DD 495 ND=1, NDG		SST02282
495	TEMP1=TEMP1+BETA(ND) *XIP(NG,ND)/EFFK		SST02283
	XFISS(NG)=(XIM(NG)+TEMP1)*TEMP5		SST02290
500	XFISST=XFISST+XFISS(NG)		SST02300
	ALAMO=ALAMN		SST02310
	ALAMN=XFISST/XFISSD		SST02320
	DD 510 NG=1,NNG		SST02330
	XFISS(NG)=XFISS(NG)/ALAMN		SST02340
510	XIM(NG)=XIM(NG)/ALAMN		SST02350
	XFISST=XFISST/ALAMN		SST02360
C	ONVERGENCE TESTS	l	SST02370
	NGD TD=1		SST02380
			PAGE 166

C

	NDITT=NDITT+1	SST02390
	IF(IETIME.EQ.0)GD TO 520	SST02400
	CALL ETIMEF(TEMP)	SST02410
	IF(TEMP.GT.TIME)NGDTO=2	SST02420
	520 IF(NOITT.GE.NOIT)NGOTO=3	SST02430
	IF{DABS(1.)DO-ALAMN}.LE.EPS1.AND.FLXC)N.LE.EPS2)NGOTO=4	SST02440
С	COMPUTE NEW K-EFFECTIVE	SST02450
	EFFK=0.0D0	SST02460
	TEMP=0.0D0	SST02470
	DO 530 NG=1, NNG	SST02480
	EFFK=EFFK+XIM(NG)	SST02490
	530 TEMP=TEMP+XI (NG)	SST02500
	EFFK=(TEMP/EFFK)*(1.0D0-BETAT)	SST02510
С	SWITCH 1/D DEVICES	SST02520
	ITEMP1=IOPN	SST02530
	IOPN=IOPO	SST02540
	IDPO=ITEMP1	SST02550
	ITEMP1 = I OFN	SST02560
	IDFN=IDFO	SST02570
	IDFO=ITEMP1	SST02580
0	IF IDPT=1, LATEST FLUXES ON IDPO AND LATEST FISSION SOURCE ON IDFO	SST02590
C	CALL STEADY STATE ITERATION PRINT MONITOR	SST02600
	CALL SSTOUT(PSI, P2, NNG, IM, JM, KM, NGOTO, NDITT)	SST02610
C	IF NGDTD=1, LOOP TO 190 TO BEGIN ANOTHER OUTER ITERATION	SST02620
C	IF NGOTJ=2, HAVE EXCEEDED RUNNING TIME	SST02630
0	IF NGOTD=3, HAVE REACHED MAX. NO. OF OUTER ITERATIONS	SST02640
С	IF NGOTD=4, HAVE ACHIEVED CONVERGENCE, CAN GD ON TO TIME-DEP CALC.	SST02650
	ITEMP=NGOTO	SST02660
	GD TO (190,540,540,540),NGOTO	SST02670
	540 CONTINUE	SST02680
	RETURN	SST02690
	END	SST02700

SUBROUTINE DRPEST(X, Y,Z, HX, HY, HZ, DD1, DD2, DD3, DD4, DD5, MMAP, NPRMP,	DRP00010	
1PSI, PL, P2, P3, FRD, FRN, FD, FN, SRC, WA, GA, SDLN, DMEG, XFISS, XINSC, XREM,	DRP00020	
2XLEK, NNGV, NMATV, IMV, JMV, KMV, IRMV, JRMV, KRMV, NPRGV)	DRP00030	
IMPLICIT REAL*8 (A-H, D-Z)	DR P00040	
INTEGER*2 MMAP, NPRMP	ORP00050	
COMMON/INTS/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	DRP00100	
INFRC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	DR P00110	
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUM	P. DRP00120	
310FN,IOFO,IOPN,IOPO,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	DR P001 30	
ANTIT,TETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	DRP00140	
CDMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	ORP00150	
1.TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCDN, BETAT	DRP00160	
DIMENSION X(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV),	DRP00170	
1 DD1 (NPRGV, NNGV), D32 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV),	DRP00180	
2DD5(NPRGV,NNGV),MMAP(IRMV,JRMV,KRMV),NPRMP(IMV,JMV,KMV),	DR P 001 90	
3PSI(NNGV,IMV,JMV,KMV),P1(IMV,JMV),P2(IMV,JMV),P3(IMV,JMV),	JRP00200	
4FRD(IMV,JMV,KMV),FRN(IMV,JMV,KMV),FD(IMV,JMV),FN(IMV,JMV),	ORP00210	
5SRC(IMV, JMV, KMV), WA(IMV), GA(IMV), SOLN(IMV), OMEG(NNGV), XFISS(NNGV), OR PO0220	
6XINSC(NNGV), XREM(NNGV), XLEK(NNGV)	DRP00230	
SAVE NIIT AND NPIT	DRP00240	
ITEMP1=NIIT	DRP00250	
ITEMP2=NPIT	DRP00260	
ITEMP5=5	0RP00270	
INITIALIZE SRC	DRP00280	
DD 100 K=1,KM	DRP00290	
D3 100 J=1, JM	DRP00300	
D3 100 I=1, IM	DR P00310	
$100 \ SRC(I_{+}J_{+}K)=0.000$	OR P00320	
DD 260 NG=1, NNG	DRP00330	
STORE INITIAL FLUXES FOR GROUP NG IN FRO IF IDPT=0	DRP00340	
IF(IOPT.EQ.1)GO TO 120	ORP00350	
D9 110 K=1,KM	ORP00360	
DO 110 J=1, JM	ORP00370	
DO 110 I=1, IM	DRP00380	
110 FRD(I, J, K)=PSI(NG, I, J,K)	OR P00390	
GD TO 140	DR P00400	
	PAGE	168

С

120 REWIND IDSC1	DRP00410
DO 130 K=1, KM	DRP00420
READ(IDPD)P2	DRP00430
WRITE(IDSCL)P2	DR P00440
130 CONTINUE	JRP00450
O NOW INITIALIZE SOME PARAMETERS	DRP00460
140 NPIT=1	DRP00470
NIIT=5	3RP00480
DMEGBU=0.000	DRP00490
OMEGBL=0.000	OR P 00500
ICT=0	JRP00510
ALAMES=0.0D0	DRP00520
150 CONTINUE	JRP00530
IF(IDPT.EQ.1)GD TO 170	DR P00540
D0.160 K = 1, KM	ORP00550
$D3 \ 160 \ J=1, JM$	ORP00560
DO 160 $I=1, IM$	ORP00570
160 $FRN(I, J, K) = PSI(NG, I, J, K)$	3RP00580
CALL INNERO(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,	ORP00590
1PJ, P2, P3, FD, SRC, WA, GA, SOLN, DMEG, XFISS, XINSC, XREM, XLEK, NNG, NMAT,	0RP00600
2IM, JM, KM, IRM, JRM, KRM, NPRG, NG)	ORP00610
GO TO 180	DR P00620
170 CALL INNERL(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,PSI,	DR P00630
1P1, P2, P3, FD, SRC, WA, GA, SDLN, DMEG, XFISS, XINSC, XREM, XLEK, NN G, NMAT,	ORP00640
2 IM, JM, KM, IRM, JRM, KRM, NPRG, NG)	ORP00650
180 NIIT=1	0RP00660
ICT=ICT+1	DRP00570
IF(ICT.LE.1)GD TO 150	DRP00680
C COMPUTE LAMBDA(M)	DRP00690
TEMP5=0.0D0	ORP00700
TEMP6=0.000	ORP00710
IF(IOPT.EO.1)GD TD 200	ORP00720
DO 190 K=1,KM	DRP00730
DD 190 J=1, JM	0RP00740
DO 190 I=1, IM	3RP00750
TEMP5=TEMP5+PSI(NG,I,J,K)*PSI(NG,I,J,K)	TRP00760
	PAGE 169

•

	TEMP6=TEMP5+PSI(NG+I+J+K)*FRN(I+J+K)	DR P00770
190	CONTINUE	OR P00780
	G7 T0 230	JRP00790
200	REWIND IDSC2	0RP00800
	REWIND LOSCI	JRP00910
	D7 220 K=1.KMX	DRP00820
	READ(IOSCI)P?	DRP00830
	READ (IDSC2) P1	JRP00840
	DO 210 J=1, JM	DRP00850
	DD 210 I=1. IM	DRP00860
	TEMP5=TEMP5+P2(I,J)*P2(I,J)	28P00870
510	TEMP6=TEMP6+P1(I,J)*P2(I,J)	OR P 00 8 8 0
220	CONTINUE	0RP00890
230	ALAMES=TEMP5/TEMP5	OR P00900
	TEMP4=DABS(1.0D0-1.0D0/TEMP4)	DRP00910
	TEMP1=DABS(1.0D0-1.0D0/TEMP1)	ORP00920
	ALAMES=DABS(1.0D0-ALAMES)	ORP00930
	OMEGBU=2.000/(1.000+DSQRT(TEMP4))	DRP00940
	OMEGBL=2.000/(1.000+DSQRT(TEMP1))	DRP00950
	OMEGM=2.0D0/(1.0D0+DSQRT(ALAMES))	DRP00960
	IF(DA3S(OMEGBU-DMEGBL).LE.((2.0D0-DMEGM)/1.0D1))GD TO 240	DRP00970
	IF(ICT.LT.15)GD TO 150	DRP00980
C N	OW STORE DMEGM AS DMEG(NG)	<u>OR P00990</u>
240	OMEG(NG)=OMEGM	DRP01000
C S	TORE INITIAL FLUXES BACK INTO PSI IF IOPT=0	<u> 08 P01010</u>
	IF(IDPT.EQ.1)GD TD 260	DRP01020
	D3 250 K=1,KM	DRP01030
	DO 250 J=1, JM	ORP01040
	DO 250 I=1, IM	DRP01050
	PSI(NG,I,J,K)=FRD(I,J,K)	DRP01060
250	FRO(I, J, K) = 0.000	DRP01070
260	CONTINUE	DRP01080
	IF(IDPT.EQ.1)REWIND IOPO	0RP01090
	WRITE(6,1000)(DMEG(NG),NG=1,NNG)	JRP01100
1000	FORMAT(1HO,10X,'OPTIMUM DMEGAS NOW COMPUTED'//(10X,6E15.8))	JRP01110
	NIIT=ITEMP1	DRPO1120
		PAGE 170

NPIT=ITEMP2 RETURN END

DRP01130 DRP01140 DRP01150

PAGE 171

ł

SUBROUTINE SSTOUT(PSI,P2,NNGV,IMV,JMV,KMV,NGOTD,NOITT)	SST00010	
IMPLICIT REAL*8 (A-H,O-Z)	SST00020	
INTEGER*2 MMAP,NPRMP	SST00030	
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	SST00080	
1 NFBC, NBBC, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	SST00090	
2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NOIT, NIIT, NPIT, IJPSI, IODUMP,	SST00100	
3IDFN, IDFD, IOPN, IDPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	SST00110	
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IDSC2, NGX	SST00120	
COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	SST00130	
TEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	SST00140	
DIMENSION PSI(NNGV, IMV, JMV, KMV), P2(IMV, JMV)	SST00150	
TEMP1=DABS(1.0D0-ALAMD/ALAMN)	SST00160	
CALL ETIMEF(TEMP)	SST00170	
IF(NOITT.GT.1)GO TO 100	SST00180	
WRITE(6,1020)	SST00190	
1010 FORMAT(1H0,//,53X, OUTER ITERATION SUMMARY,/)	SST00200	
WRITE(6, 1020)	SST00210	
1020 FORMAT(1H ,11X, 'OUTER IT.',5X, 'NO. OF INNER',6X, 'TOTAL COMP.',7X,	SST00220	
1 'REL. FLUX', 9X, 'LAMBDA', 27X, 'ESTIMATED')	SST00230	
WRITE(6,1030)	SST00240	
1030 FORMAT(1H ,12X, "NUMBER", 9X, "ITERATIONS", 7X, "TIME(MIN.)", 6X, " CONVE	SST00250	
<pre>IRGENCE', 6X, 'CONVERGENCE', 8X, 'LAMBDA', 9X, 'K-EFFECTIVE',/)</pre>	SST00260	
100 WRITE(6, 1040 INDITT, NTIT, TEMP, FLXCON, TEMP1, ALAMN, EFFK	SST00270	
1040 FORMAT(1H ,13X,14,13X,14,11X,F8.3,6X,3D17.9,1X,F16.12)	SST00280	
IF(NGJTJ.EQ.1)GD TJ 220	SST00290	
WRITE(6,1050)	SST00300	
1050 FORMAT(1H0,10X, STEADY STATE ITERATIONS TERMINATED)	SST00310	
IF(NGJTJ.EQ.2)WRITE(6,1060)	SST00320	
1060 FORMAT(1H ,15X, 'INSUFFICIENT TIME REMAINING FOR ANOTHER ITERATION'	SST00330	
1)	SST00340	
IF(NG)TO.EQ.3)WRITE(6,1070)	SST00350	
1070 FORMAT(1H ,15X, MAXIMUM NUMBER OF DUTER ITERATIONS EXCEEDED!)	SST00360	
IF(NG)T).EQ.4)WRITE(6,1080)	SST00370	
1080 FORMAT(1H ,15X, CONVERGENCE HAS BEEN ACHIEVED)	SST00380	
IF IFLOUT = 0; RETURN	SST00390	
IF(IFLOUT.EQ.0)GD TD 220	SST00400	
	PAGE	172

C II	= IFLOUT = 1, 2, DR 3, PRINT FLUXES	SST00410
	IF(IFLOUT.EQ.4)GD TO 180	SST00420
	WRITE(6,1090)(ITITLE(I),I=1,20)	SST00430
1090	FORMAT(1H1,///,10X, 'FINAL FLUXES FOR THE RUN ',20A4)	SST00440
	JME = JM	SST00450
	IF(JM.GT.50)JME=50	SST00460
	ITEMP2=50/JME	SST00470
	JMS=1	SST00480
	DO 170 NG=1, NNG	SST00490
	D3 160 K=1, KM	SST00500
	IF(K.GT.1.3R.NG.GT.1)WRITE(5,1100)	SST00510
1100	FORMAT(1H1,/)	SST00520
	WRITE(6,1110)NG,K	SST00530
1110	FORMAT(1H0,10X, FLUXES FOR GROUP ', 12, ', PLANE '12)	SST00540
	IF(IOPT.EQ.1)READ(IOPO)P2	SST00550
	JMS=1	SST00560
	JME = JM	SST00570
	IF(JM.GT.50)JME=50	SST00580
	ITEMP2=50/JME	SST00590
	TTEMP5=ITEMP2	SST00591
	DO 140 I=1, IM, 10	SST00600
	IS=I	SST00610
	IE=I+9	SST00620
	JF(TE.GT.IM)IE=IM	SST00630
	IF((I-1)/10.LT.ITEMP5)GD TO 110	SST00640
	WRITE(6,1100)	SST00650
	ITEMP5=ITEMP5+50/ITEMP2	SST00660
110	WRITE(6,1120)(ITEMP3,ITEMP3=IS,IE)	SST00670
1120	FORMAT(1H0,3X,'J / I',2X,17,9112)	SST00680
	DO 130 ITEMP3=JMS, JME	SST00690
	J=JME+1-ITEMP3	SST00700
	IF(IOPT.EQ.1)GD TO 120	SST00710
	WRITE(6,1130)J,(PST(NG,II,J,K),II=IS,IE)	SST00720
1130	FORMAT(1H , 2X, 12, 6X, 1P10D12.5)	SST00730
	GD TO 130	SST00740
120	WRITE(6,1130)J,(P2(II,J),II=IS,IE)	SST00750
		PAGE 173

130	CONTINUE	SST00760
	IF(JME.GE.JM)GD TO 140	SST00770
	JMS=JME+1	SST00780
	JNE=JMS+49	SST00790
	IF (JME.GT.JM)JME=JM	SST00800
	WRITE(6,1100)	SST00810
	GO TO 110	SST00820
140	CONTINUE	SST00930
	IF(IFLOUT.NE.2)GO TO 160	SST00840
	TF(IOPT.EQ.1)GD TO 150	SST00850
	WRITE(7,1140)((PSI(NG,I,J,K),I=1,IM),J=1,JM)	SST00860
1140	FORMAT(5D16.10)	SST00870
	GO TO 1.60	SST00880
150	WRITE(7,1140)((P2(I,J),1=1,IM),J=1,JM)	SST00890
160	CONTINUE	SST00900
170	CONTINUE	SST00910
	IF(IOPT.EQ.1)REWIND IOPD	SST00920
	IF(IFLOUT.LT.3)GD TO 220	SST00930
180	REWIND IOPSI	SST00940
	DD 210 NG=1, NNG	SST 00950
	D3 200 K=1,KM	SST00960
	IF(IOPT.EQ.1)GO TO 190	SST00970
	WRITE(I)PSI)((PSI(NG,I,J,K),I=1,IM),J=1,JM))	SST00980
	GO TO 200	SST00990
190	READ(IDPO)P2	SST01000
	WRITE(IDPSI)P2	SST01010
200	CONTINUE	SST01020
210	CONTINUE	SST01030
	IF(IOPT.EQ.1)REWIND IOPO	SST01040
	REWIND IOPSI	SST01050
220	RETURN	SST01.060
	END	SST01070

	SUBROUTINE SETUP1(V,XI,XNU,SIGF,SIGR,SIGT,SIGS,X,Y,Z,HX,HY,HZ,IB	P,SET00010
	1 JBP, KBP, DDL, DD2, DD3, DD4, DD5, DD6, DD7, V3, MMAP, NPRMP, NNGV, NDGV, NDNS	C VSET00020
	2,NMATV,IMV,JMV,KMV,IRMV,JRMV,KRMV,NPRGV,NGXV)	SET00030
	IMPLICIT REAL+8 (A-H,O-Z)	SET00040
	INTEGER#2 MMAP, NPRMP	SET00050
	COMMON/INTS/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	SET00100
	lNFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	SET00110
	2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUM	P,SET00120
	3IOFN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	SET00130
	4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	SET00140
	COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	SET00150
	1 TEMP5, TEMP5, XFISST, XFISSO, AL AMN, ALAMO, TIME, FLXCON, BETAT	SET00160
	DIMENSION V(NNGV),XI(NNGV),XNU(NMATV,NNGV),	SET00170
	1 SIGF (NMATV, NNGV), SIGR (NMATV, NNGV), SIGT (NMATV, NNGV), SIGS (NMATV, NN	GVSET00180
	2,NONSCV),X(IMV),Y(JMV),Z(KMV),VO(NPRGV),	SET00190
	3HX(IRMV), HY(JRMV), HZ(KRMV), IBP(IRMV), JBP(JRMV), KBP(KRMV), DD1(NPR	GVSET00200
	4,NNGV), DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4(NPRGV, NNGV), DD5(NPRGV	NSET00210
	5NGV), DD5(NPRGV, NNGV), DD7(NPRGV, NGXV, NDNSCV), MMAP(IRMV, JRMV, KRMV)	• SET00220
	5NPRMP(IMV,JMV,KMV)	SET00230
	DIMENSION HD(6),MN(8)	SET00240
	DD 102 NM=1,NMAT	SET00250
	DO 102 NG=1, NNG	SET00260
	DO 101 NDN=1,NDNSCT	SET00270
	SIGR(NM,NG) = SIGR(NM,NG) + SIGS(NM,NG,NDN)	SET00280
	101 CONTINUE	SET00290
	102 CONTINUE	SET00300
0	START WITH NESTED DO LOOPS OVER MATERIAL REGIONS	SETOD310
	ITEMP1=1	SET00320
	DD 560 KR=1,KRM	SET00330
	ITEMP2=1	SET00340
	DD 550 JR=1,JRM	SET00350
	ITEMP3=1	SET00360
	DO 540 IR=1,IRM	SET00370
7	HOMOGENEOUS REGION	SET00380
	NPR=4+IRM+JRM+{2+ <r-1}+2+irm+{2+jr-1}+2+ir< td=""><td>SET00390</td></r-1}+2+irm+{2+jr-1}+2+ir<>	SET00390
	KF=KBP(KR)-1	SET00400
		PAGE 175

,

		KS=KBP(KR-1)+1
		IF (KR.EQ.1) KS=2
		JE=JBP(JR)-1
		IS= 180/ 18-1 141
		15/10 EA 11 #C-3
		IE=IBP(IR)-I
		IS=I8P(IR-1)+1
		IF(IR.E2.1) IS=2
		ITEMP5=1
		NPRP=NPR
		G3 T0 500
	110	HD(1) = H7(KR)
	. .	HD(2) = HD(1)
		ND(\$)-NY(7))
		HU(6)=HU(5)
		DD 120 ITEMP4=1,8
		MN(ITEMP4)=MMAP(IR,JR,KR)
	120	CONTINUE
		GD TO 530
С	L	DWER LEFT EDGE
	1.30	NPRP=NPR-4*IRM*JRM-1
		TS=TS-1
		IF=IS
		KC=KC-1
	140	HD(1)=HZ(KK)
		HU(Z)=HZ(KR-1)
		IF(KR.EQ.1)HD(2)=HD(1)
		HD(5)=HX(IR)
		HD(6)=HX(1R-1)
		IF(IR.EQ.1)HD(6)=HD(5)
		MN(1) = MMAP(IR, JR, KR-1)

SET00410 SET00420 SET00430 SET00440 SET00450 SET00460 SET00470 SET00480 SET00490 SET00500 SET00510 SET00520 SET00530 SET00540 SET00550 SET00560 SET00570 SET00580 SET00590 SET00600 SET00610 SET00620 SET00630 SET00640 SET00650 SET00660 SET00665 SET00670 SET00680 SET00690 SET00700 SET00710 SET00720 SET00730 SET00740 SET00750 PAGE 176

```
IF(KR.EQ.1)MN(1)=MN(5)
    MN(4) = MN(1)
    MN(6) = MMAP(IR-1, JR, KR)
    IF(IR_{EQ_{1}})MN(6)=MN(5)
    MN(7) = MN(6)
    MN(2) = MMAP(IR-1, JR, KR-1)
    IF(KR.EQ.1)MN(2)=MN(6)
    IF(IR.EQ.1)MN(2)=MN(1)
    MN(3) = MN(2)
    GD TO 530
 LEFT SIDE
150 NPRP=NPR-1
    KE = KBP(KR) - 1
    KS = KS + 1
    ITEMP5=3
    GD TD 500
160 HD(2) = HD(1)
    MN(4) = MN(8)
    MN(1) = MN(5)
    MN(2) = MN(6)
    MN(3) = MN(7)
    GO TO 530
  LEFT FRONT EDGE
170 NPRP=NPR-2+IRM-1
    JS=JS-1
    JE=JS
    ITEMP5=4
    GD TD 500
180 MN(8) = MMAP(IR, JR-I, KR)
     IF(JR \cdot EQ \cdot 1) MN(8) = MN(5)
    MN(4) = MN(8)
    MN(7) = MMAP(IR-1, JR-1, KR)
    IF(IR.ED.1)MN(7)=MN(8)
    IF(JR.EQ.1)MN(7)=MN(6)
    MN(3) = MN(7)
    HD(4)=HY(JR-1)
```

0

SET00760 SET00770 SET00780 SET00790 SET00800 SET00810 SET00820 SET00830 SET00840 SET00850 SET00860 SET00870 SET00880 SET00890 SFT00900 SET00910 SET00920 SET00930 SET00940 SET00950 SET00960 SET00970 SET00980 SET00990 SET01000 SET01010 SET01020 SET01030 SET01040 SET01050 SET01060 SET01070 SET01080 SET01090 SET01100 SET01110 **PAGE 177**

IF(JR.E2.1)HD(4)=HD(3)		SET01120
GO TO 530		SET01130
C LOWER FRONT EDGE		SET01140
190 KS=KS-1		SET01150
KE=KS		SET01160
IS=IS+1		SET01170
1E=18P(1R)-1		SET01180
NPRP=NPR-4+IRM+JRM-2+IRM		SET01190
ITEMP5=5		SET01200
GO TO 500		SET01210
200 HD(2)=HZ(KR-1)		SET01220
IF(KR.EQ.])HD(2)=HD(1)		SET01230
HD(6)=HD(5)		SET01240
MN(6)=MN(5)		SET01260
MN(1)=MMAP(IR, JR, KR-1)		SET01270
IF(KR.EQ.1)MN(1)=MN(5)		SETOL280
MN(2)=MN(1)		SET01290
MN(7)=MN(8)		SET01300
MN(4)=MMAP(IR,JR-1,KR-1)		SET01310
IF(KR.EQ.1)MN(4)=MN(8)		SET01320
IF(JR.EQ.1)MN(4)=MN(1)		SET01330
MN(3)=MN(4)		SET01340
GD TD 530		SET01350
C LOWER FRONT LEFT CORNER		SET01360
210 NPRP=NPR-4+IRM+JRM-2+IRM-1		SET01370
IS=IS-1		SET01380
1E=1 S		SET01390
ITEMP5=6		SET01400
GD TO 500		SET01410
220 HD(6)=HX(IR-1)	•	SET01420
IF(IR.EQ.1)HD(6)=HD(5)		SF T01430
MN(6)=MMAP(IR-1,JR,KR)		SET01440
IF(IR.EQ.1)MN(6)=MN(5)		SET01450
MN(2)=MMAP(IR-1,JR,KR-1)	1	SET01460
IF(IR.EQ.1)MN(2)=MN(1)	,	SET01470
IF(KR.EQ.1)MN(2)=4N(6)		SET01480
		PAGE 178
		•

```
MN(7) = MMAP(IR-I, JR-I, KR)
      IF(IR.EQ.1)MN(7)=MN(8)
      IF(JR.EO.1)MN(7)=MN(6)
      MN(3) = MMAP(IR-1, JR-1, KR-1)
      IF(IR.E0.1)MN(3)=MN(4)
      IF ( JR. EQ. 1) MN(3) = MN(2)
      IF(KR_EQ_1)MN(3)=MN(7)
      G7 T0 530
0
    FRONT SIDE
  230 NPRP=NPR-2*IRM
      IS = IS + 1
      IE=IBP(IR)-1
      KS = KS + 1
      KE = KBP((R) - 1)
       ITEMP5=7
      GD TO 500
  240 HD(2)=HD(1)
      HD(6) = HD(5)
      MN(4) = MN(8)
      MN(7) = MN(8)
      MN(3) = MN(8)
      MN(6) = MN(5)
       MN(1) = MN(5)
      MN(2) = MN(5)
      GD TD 530
C
    BOTTOM SIDE
  250 NPRP=NPR-4*IRM*JRM
      KS = KS - 1
      KE=KS
       JS=JS+1
       JE=JBP(JR)-1
       ITEMP5=8
      GD TD 500
  260 HD(2) = HZ(KR-1)
      IF(KR.EQ.1)HD(2)=HD(1)
      HD(4) = HD(3)
```

• ·

SET01490 SET01500 SET01510 SET01520 SET01530 SET01540 SET01550 SET01560 SET01570 SET01580 SET01590 SET01600 SET01610 SET01620 SET01630 SETOL640 SET01650 SET01660 SET01670 SET01680 SET01690 SET01700 SET01710 SET01720 SET01730 SET01740 SET01750 SET01760 SET01770 SET01780 SET01790 SET01800 SET01805 SET01810 SET01820 SET01830 **PAGE 179**

(
	MN(8)=MN(5)	SET01840
	MN(7)=MN(6)	SET01850
	MN())=MMAP(IR, JR, KR-1)	SET01860
	IF(KR.EQ.1)MN(1)=MN(5)	SET01870
	MN(2) = MN(1)	SET01880
	MN(3)=MN(1)	SET01890
	MN(4) = MN(7)	SET 01 900
	GO TO 530	SETOIOIO
500	DJ 520 K=KS.KE	SET01920
	00 520 J=JS+JE	SET 01920
	D0 510 I=IS.IE	SETOIOS
	NPRMP(I.J.K)=NPRP	SET 01940
510	CONTINUE	SET 01 750
520	CONTINUE	SET01980
-20	G0 T0 (110.140.160.180.200.220.240.260) TTENDS	SET01970
530	CALL ERFELLINGLOGICOULOUPERCUERCULOUPERCHIS	3017 V0 65701000
	INNG.NDNSCT.NNAT.NDPC.HD.NN.NDPD.NCY1	SET0200
	C1 T0 (130.150.170.100.210.230.260.540) (TEMDE	SET02000
540	CONTINUE	SE102010
550	CONTINUE	SE102020
55U 540		SET02030
200		SET02040
		SET02050
	EUD	SET02060

SUBROUTINE COEF1(XNU,SIGF,SIGR,SIGT,SIGS,DD1,DD2,DD3,DD4,DD5,	COE00010	
1 DD6, DD7, VO, NNGV, NDNSCV, NMATV, NPRGV, HD, MN, NPRP, NGXV)	CDE00020	
IMPLICIT REAL*8 (A-H,O-Z)	CDE00030	
INTEGER#2 MMAP, NPRMP	CDE00040	
COMMON/INT3/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	CDE00090	
1NFBC, NBBC, NDNSCT, NPRG, I JPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	C0E00100	
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOP SI, I ODUMP	P,CDE00110	
3TOFN, IDFO, IDPN, IDPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5.	C0E00120	
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	CDE00130	
COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	C0E00140	
1TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCON, BETAT	CDE00150	
DIMENSION XNU(NMATV, NNGV), SIGF(NMATV, NNGV), SIGR(NMATV, NNGV), SIGT(NCDE00160	
1 MATV, NNSV), SIGS(NMATV, NNGV, NDNSCV), DD1(NPRGV, NNGV),	CJE00170	
2DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4(NPRGV, NNGV), DD5(NPRGV, NNGV),	CDE00180	•
3DD6(NPRGV, NNGV), DD7(NPRGV, NGXV, NDNSCV), VD(NPRGV)	CDE00190	
DIMENSION HD(6),MN(8)	CDE00200	
LOOP OVER ALL GROUPS	CDE00210	
TEMP=12001	CDE00220	
TEMP1=8.0D0	CDE00230	
NPR=NPRP	CDE00240	
VO(NPR)=((HD(1)+HD(2))*(HD(3)+HD(4))*(HD(5)+HD(6)))/TEMP1	CJE00241	
DD 110 NG=1, NNG	CDE00250	
DD1(NPR,NG) = ((HD(3) + HD(2)/SIGT(MN(1),NG))+(HD(3) + HD(1)/SIGT(MN(5)	+CDE00260	
1NG))+(HD(4)+HD(2)/SIGT(MN(4),NG))+(HD(4)+HD(1)/SIGT(MN(8),NG)))/(HCD E00270	
2D(5) *TEMP)	CDE00280	
DD2(NPR,NG)=((HD(5)+HD(2)/SIGT(MN(1),NG))+(HD(6)+HD(2)/SIGT(MN(2)	+CDE00290	
1NG))+(HD(6)+HD(1)/SIGT(MN(6);NG))+(HD(5)+HD(1)/SIGT(MN(5),NG)))/(HCDE00300	
2D(3)*TEMP)	COE00310	
DD3(NPR,NG) # ((HD(4) # HD(5)/SIGT(MN(7),NG))+(HD(4) # HD(5)/SIGT(MN(8)	,CDE00320	
1NG))+(HD(3)*HD(5)/SIGT(MN(5);NG))+(HD(3)*HD(6)/SIGT(MN(6),NG)))/(HCDE00330	
2D(1) *TEMP)	CDE00340	
DD4(NPR, NG) # DD1(NPR, NG)+DD2(NPR, NG)+DD3(NPR, NG)+((HD(3) + HD(2)/SIG	STCDE00350	
1 (MN(2);NG))+(HD(4)+HD(2)/SIGT(MN(3);NG))+(HD(4)+HD(1)/SIGT(MN(7);	NCDE00360	
2G))+(HD(3)*HD(1)/SIGT(MN(6),NG)))/(HD(6)*TEMP)+((HD(6)*HD(2)/SIGT	(CDE00370	
3MN(3),NG))+(HD(5)+HD(2)/SIGT(MN(4),NG))+(HD(5)+HD(1)/SIGT(MN(8),N	IGCDE00380	
4))+(HD(5)*HD(1)/SIGT(MN(7),NG)))/(HD(4)*TEMP)+((HD(5)*HD(3)/SIGT(MCDE00390	
	PAGE 1	81

5N(1),NG))+(HD(3)*HD(6)/SIGT(MN(2),NG))+(HD(4)*HD(6)/SIGT(MN(3),NG	1CDE00400
6)+(HD(4)+HD(5)/SIGT(MN(4),NG)))/(HD(2)+TEMP)	CDE00410
DD5(NPR,NG)=DD4(NPR,NG)+(HD(5)+HD(3)+HD(2)+SIGR(MN(1),NG)+HD(6)+H	DC0E00420
1(3) +HD(2) +SIGR(MN(2), NG) +HD(6) +HD(4) +HD(2) +SIGR(MN(3), NG) +HD(5) +H	DCDF00430
2(4)*HD(2)*SIGR(MN(4),NG)+HD(5)*HD(3)*HD(1)*SIGR(MN(5),NG)+HD(6)*H	000500440
3(3) + HD(1) + SIGR(MN(6) + HD(6) + HD(4) + HD(1) + SIGR(MN(7) + NG) + HD(5) + HD(5) + HD(6) + HD(7) +	00000000000
4(4) *HD(1) *SIGR(MN(8) .NG))/TEMP1	CDE00450
DD6(NPR, NG) = (HD(5) + HD(3) + HD(2) + SIGE(MN(1), NG) + XNULLMN(1), NG) + HD(6)	±C3E00400
1 + D(3) + HO(2) + SIGE(MN(2), NG) + SUE(MN(2), NG) + HO(4) + HO(2) + SIGE(MN(2), NG) + SIGE(MN(2), SIGE(MN(2), SIG) + SIG) + SIG(MN(2), SIG) + SIG(MN(2), SIG) + SIG(MN(2), SIG) + SIG(MN(2), SIG) + SIG) + SIG(MN(2), SIG(MN(2), SIG) + S	
2(3), N2) + YNII (MN(3) (NC) + UD(5) + UD(6) + UD(2) + CTCC (MN(6)) + NC) + VNI(MN(6))	NC0E00400
	NCJE00490
	100500
4/+31GF("N(5),NG)+ANU(MN(B),NG)+HU(B)+HU(A)+HU(1)+SIGF("N(7),NG)+X	NCUE00510
5U(MN(7);NG)+HD(5)*HD(4)*HD(1)*SIGF(MN(8);NG)*XNU(MN(8);NG))/TEMP1	CDE00520
IF(NG.EQ.NNG)GD TO 110	CDE00521
DO 100 NDN=1,NDNSCT	CDE00530
DD7(NPR, NG, NDN)=(HD(5)+HD(3)+HD(2)+SIGS(MN(1), NG, NDN)+HD(6)+HD(3)	*CDE00540
1HD(2)*SIGS(MN(2),NG,NDN)+HD(6)*HD(4)*HD(2)*SIGS(MN(3),NG,NDN)+HD(5002000940
2)+HD(4)+HD(2)+STGS(NN(4))NG_NDN)+HD(5)+HD(3)+HD(1)+STGS(NN(5)-NG	
30N) 4HD (5) #HD (3) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #HD (1) #STCS(MN(4) :NC . NON) AHD (4) #HD (4) #	
6(7), N ² , NNI 4 $10/5$, $6(0)$ (4) 4 100 (1) (4) (10)	
	CUE00580
IOU CONTINUE	COE00590
110 CONTINUE	CDE00600
RETURN	CDE00610
END	0000000

SUBROUTINE INNERO(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,	INN00010
1PSI, PL, P2, P3, FD, SRC, WA, GA, SOLN, DMEG, XFISS, XINSC, XREM, XLEK,	INN00020
2NNGV,NMATV,IMV,JMV,KMV,IRMV,JRMV,KRMV,NPRGV,NG)	INN00030
IMPLICIT REAL*8 (A-H,O-Z)	INN00040
INTEGER*2 MMAP,NPRMP	INN00050
COMMON/INTG/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	INN00100
1NFBC, NB3C, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	INN00110
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NO IT, NIIT, NPIT, IOPSI, IODUMP	INN00120
3IOFN,IOFO,IOPN,IOPO,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	INN00130
4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	INN00140
COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	INN00150
1TEMP5,TEMP5,XFISST,XFISSO,ALAMN,ALAMO,TIME,FLXCON,BETAT	INN00160
DIMENSION X(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV),	INN00170
1 DD1 (NPRGV, NNGV), DD2 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV),	INNO3180
2DD5(NPRGV,NNGV),MMAP(IRMV,JRMV,KRMV),NPRMP(IMV,JMV,KMV),	INN00190
3PSI(NNGV,IMV,JMV,KMV),P1(IMV,JMV),P2(IMV,JMV),P3(IMV,JMV),	1NN00200
4SRC(IMV, JMV, KMV), WA(IMV), GA(IMV), SDLN(IMV), DMEG(NNGV), XFISS(NNGV),	INN00210
5XINSC(NNGV),XREM(NNGV),XLEK(NNGV)	INN00220
IF(ITEMP5.EQ.5)GO TO 90	INN00230
CALL GRBALD(DD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFISS,XINSC,	INN00240
1XREM,XLEK,NNG,IM,JM,KM,NPRG,NG)	INN00250
90 NIT=0	INN00260
START WITH BOTTOM PLANE	INN00270
100 CONTINUE	INN00280
XNL BC=NL BC	INN00290
TEMP1=0.0D0	INN00300
TEMP4=1.0D+50	INN00310
K=1	INN00320
IF(NBBC.EQ.0)GD TD 200	INN00330
J=1	INN00340
IF(NFBC.EQ.0)GO TO 140	INN00350
NPR=NPR4P(1,1,1)	INN00360
WA(1) = -2.0D0 + DD1(NPR, NG) + XNLBC/DD5(NPR, NG)	INN00370
GA(1)=((SRC(1, J, K)+2.0D0*(DD2(NPR, NG)*PSI(NG, 1, 2, 1)+DD3(NPR, NG)*P	SINN00380
11(NG,1,1,2)) * XNL8C) / DD5(NPR,NG)	INN00390
DO 110 $I=2, IMX$	INN00400

Ç

NPR=NPRMP(I,1,1)	INN00410	
NPRX=NPRMP(I-1,1,1)	INN00420	
TEMP=1.0D0/(DD5(NPR,NG)+DD1(NPRX,NG)*/A(I-1))	INN00430	
WA(I)=-DD1(NPR,NG)*TEMP	INN00440	
110 GA(I)=(SRC(I,J,K)+2.000*(DD2(NPR,NG)*PSI(NG,I,2,1)+DD3(NPR,NG)*	PSIINN00450	
1(NG,I,1,2))+DD1(NPRX,NG)*GA(I-1))*TEMP	INN00460	
SDLN(IM) = 0.0D0	INN00470	
DD 120 II=1, IMX	INN00480	
I=IM-II	INN00490	
120 SOLN(I) = GA(I) - WA(I) + SOLN(I+1)	TNN00500	
DO 130 I=1, IM	TNN00510	
TEMP2=PSI(NG,I,1,1)	TNN00520	
PSI(NG,I,1,1)=TEMP2+OMEG(NG)*(SOLN(I)-TEMP2)	INN00530	
IF(PSI(NG,I,1,1).GT.0.0D0)GD TD 125	TNN00540	•
PSI(NG, I, 1, 1) = 0.000	TNN00550	
GD TO 130	TNN00560	
125 TEMP3=TEMP2/PSI(NG, I, 1, 1)	INN00570	
IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	TNN00580	
IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INN00590	
130 CONTINUE	TNN00600	
140 DD 180 $J=2, JMX$	INN00610	
NPR=NPRMP(1, J, 1)	INN00620	
NPRY=NPRMP(1, J-1, 1)	TNN00630	
WA(1)=-2.000*DD1(NPR,NG)*XN_BC/DD5(NPR.NG)	TNN00640	
GA(1)=((SRC(1, J, K)+DD2(NPRY, NG)+PSI(NG, 1, J-1, 1)+DD2(NPR, NG)+PSI	(NGINN00650	
1,1,J+1,1)+2,0D0+D03(NPR,NG)+PSI(NG,1,J,2))+XNLBC)/DD5(NPR,NG)	TNN00660	
DO 150 I=2, IMX	TNN00670	
NPR = NPR + P(I, J, I)	TNN00680	
NPRX = NPRMP(I-1, J, 1)	INN00690	
NPRY=NPRMP(1, j-1, 1)	TNN00700	
TEMP=1.0D0/(DD5(NPR,NG)+DD1(NPRX,NG)+WA(I-1))	TNN00710	
WA(I)=-DD1(NPR,NG)+TEMP	TNN00720	
150 GA(I)=(SRC(I,J,1)+DD2(NPRY,NG)*PSI(NG,I,J-1,1)+DD2(NPR,NG)*PSI(NG.INNO0730	
11, J+1, 1)+2.0 D0+DD3(NPR, NG)+PSI(NG, I, J, 2)+DD1(NPRX.NG)+GA(I-1))+	TEMINNO0740	
2P	INN00750	
SDLN(IM)=0.0D0	TNN00760	
	PAGE	184

/

DO 160 II=1,IMX	INN00770
I=IM-II	INN00780
160 SOLN(I)=GA(I)-WA(I)+SOLN(I+1)	INN00790
D3 170 I=1,IM	INN00800
TEMP2=PSI(NG,I,J,1)	INN00810
PSI(NG,I,J,1)=TEMP2+OMEG(NG)*(SOLN(I)-TEMP2)	INN00820
IF(PSI(NG,I,J,1).GT.0.0D0)30 TO 165	INN00830
PSI(NG,I,J,1)=0.000	INN00840
GD TO 170	INN00850
165 TEMP3=TEMP2/PSI(NG,I,J,1)	INN00860
IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN00870
IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INNOOBBO
170 CONTINUE	INN00890
180 CONTINUE	INN00900
DJ 190 I=1, IM	I NN0091 0
190 $PSI(NG, I, JM, 1) = 0.000$	INN00920
S NOW COMPUTE FOR THE REST OF THE PLANES	INN00930
200 DJ 300 K=2, KMX	INN00940
IF(NFBC.EQ.0) GO TO 240	INN00950
J=1	INN00960
NPR=NPRMP(1,1,K)	INN00970
NPRZ=NPRMP(1,1,K-1)	INN00980
WA(1)=-2.000*DD1(NPR,NG)*XNLBC/DD5(NPR,NG)	INN00990
GA(1)=((SRC(1,1,K)+2.000+DD2(NPR,NG)+PSI(NG,1,2,K)+DD3(NPR,NG)+	PSIINNO1000
1(NG,1,1,K+1)+DD3(NPRZ,NG)*PSI(NG,1,1,K-1))*XNLBC)/DD5(NPR,NG)	INNOLOLO
DD 210 I=2, IMX	INN01020
NPR=NPRMP(I,1,K)	INN01030
NPRX=NPRMP(I-1,1,K)	INNO1040
NPRZ=NPRMP(I,1,K-I)	INN01050
TEMP=1.0D0/(DD5(NPR,NG)+DD1(NPRX,NG)+WA(I-1))	INN01060
WA(I)=-DD1(NPR,NG)*TEMP	INNO1070
210 GA(I)=(SRC(I,1,K)+2.0D0+DD2(NPR,NG)+PSI(NG,I,2,K)+DD3(NPR,NG)+P	SI (INNO1080
1NG, I, 1, K+1)+DD3(NPRZ, NG)*PSI(NG, I, 1, K-1)+DD1(NPRX, NG)*GA(I-1))*	TEMINNOLO90
2P	INNOL100
SOLN(IM)=0.000	INNOIIIO
DO 220 II=1, IMX	INN01120
	PAGE 185

I=IM-II	TNN01130
220 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)	TNN01140
DD 230 I=1,IM	TNN01150
TEMP2=PSI(NG,I,1,K)	TNN01160
PSI(NG,I,1,K)=TEMP2+OMEG(NG)*(SOLN(I)-TEMP2)	TNN01170
IF(PSI(NG,I,1,K).GT.0.0D0)G0 TO 225	TNN01180
PSI(NG, I, I, K) = 0.000	TNN01190
GD TO 230	TNN01200
225 TEMP3=TEMP2/PSI(NG,I,1,K)	TNN01210
IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN01220
IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	TNN01230
230 CONTINUE	TNN01240
240 DD 280 J=2, JMX	INN01250
NPR=NPRMP(1, J,K)	INN01260
NPRY=NPRMP(1,J-1,K)	TNN01270
NPRZ=NPRMP(1,J,K-1)	TNN01280
WA(1)=-2.000+DD1(NPR,NG)+XNLBC/DD5(NPR.NG)	TNN01290
GA(1)=((SRC(1, J, K)+DD2(NPR, NG)*PSI(NG, 1, J+1, K)+DD2(NPRY.	NG) * PST (NGTNNO1300
1,1,J-1,K)+DD3(NPR, NG)*PSI(NG,1,J,K+1)+DD3(NPRZ,NG)*PSI(N	G.1.J.K-1)INN01310
2)*XNLBC)/DD5(NPR,NG)	INN01320
DD 250 I=2, IMX	INN01330
NPR=NPRMP(I,J,K)	INN01340
NPRX=NPRMP(I-1,J,K)	INN01350
NPRY=NPRMP(I,J-1,K)	INN01360
NPRZ=NPRMP(I,J,K-1)	INN01370
TEMP=1.0D0/(DD5(NPR, NG)+DD1(NPRX, NG)+WA(I-1))	INN01380
WA(I)=-DD1(NPR,NG)*TEMP	INN01390
250 GA(I)=(SRC(I,J,K)+DD2(NPR,NG)+PSI(NG,I,J+1,K)+DD2(NPRY,N	G)*PSI(NG.INNO1400
11, J-1, K) + DD3 (NPR, NG) * PSI (NG, I, J, K+1) + DD3 (NPR Z, NG) * PSI (NG	•I • J • K-1) + I NN01410
2DD1(NPRX,NG) +GA(I-1)) +TEMP	INN01420
SOLN(IM)=0.0D0	INN01430
DD 260 II=1, IMX	INN01440
I=IM-II	INN01450
260 SOLN(I)=GA(I)-WA(I) + SOLN(I+1)	INN01460
DO 270 I=1,IM	INN01470
TEMP 2=PSI(NG,I,J,K)	INN01480
	PAGE 186

		PSI(N3,I,J,K)=TEMP2+OMEG(N3)*(SOLN(I)-TEMP2)	INN01490
		IF(PSI(NG,I,J,K).GT.0.0D0)33 TO 265	INN01500
		PSI(NG+I+J+K)=0.000	INN01510
		GO TO 270	INN01520
	265	TEMP3=TEMP2/PSI(NG,I,J,K)	INN01530
		IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN01540
		IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	TNN01550
	270	CONTINUE	INN01560
	280	CONTINUE	TNN01570
		DD 290 I=1, IM	INN01580
	290	PSI(NG, I, JM, K) = 0.000	TNN01590
	300	CONTINUE	INN01600
C	CC	DMPLETE MESH NOW SWEPT	TNN01610
C	N	DW COMPUTE LARGEST RESIDUAL	TNN01620
		TEMP2=DABS(1.0D0-TEMP1)	INN01630
		TEMP3=DABS(1.000-TEMP4)	TNN01640
		IF(TEMP2-TEMP3)320.320.310	TNN01650
	310	TENP3=TEMP2	TNN01660
	320	NTIT=NTIT+1	TNN01670
		NIT=NIT+1	INNOI680
		IF(NIT.GE.NIIT)GD TO 330	TNN01690
		IF(TEMP3.GT.EPS2)GO TO 100	INN01700
	330	CONTINUE	INN01710
		RETURN	I NN01720
		END	TNN01730

	SUBROUTINE GRBALO(DD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFISS,	GR 800010
	1XINSC, XREM, XLEK, NNGV, IMV, JMV, KMV, NPRGV, NG)	GR 800020
	IMPLICIT REAL+8 (A-H,O-Z)	GR800030
	INTEGER*2 MMAP,NPRMP	GR800040
	COMMON/INT3/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	GR 800090
	1NFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	GR 800100
	2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NO IT, NIIT, NP IT, IJP SI, IODUMP	,GR800110
	3IOFN,IDFO,IOPN,IOPD,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	GRB00120
	4NTIT,IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	GR 800130
	COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	GR 800140
	ITEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCDN, BETAT	GR 800150
	DIMENSION DD1(NPR3V, NNGV), DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4(NPR	GGR 800160
	1V, NNGV), DD5(NPRGV, NNGV), NPRMP(IMV, JMV, KMV), PSI(NNGV, IMV, JMV, KMV),	GRB00170
	2P1(IMV,JMV),P2(IMV,JMV),P3(IMV,JMV),XFISS(NNGV),XINSC(NNGV),	GR 8001 80
	3XREM(NNGV), XLEK(NNGV)	GR 800190
	XREM(NG)=0.000	GR 800200
	XLEK(NG)=0.000	GR800210
	ONE=1.000	GR 800211
	HALF=0.5D0	GR 800212
	VOL B=ONE	GR800213
	VOLF=DNE	GR800214
	VOLL=ONE	GRB00215
	IF(NB3C.EQ.1)VOLB=HALF	GR 800216
	DO 230 K=1,KMX	GR800220
	IF(K.GT.1)VOLB=DNE	GRB00221
	IF(K.EQ.1.AND.NBBC.EQ.0) GO TO 230	GR 800230
	IF(K.NE.2)GD TO 120	GRB00240
	100 IF (NBBC. EQ.1)GD TD 120	GR800250
0	COMPUTE LEAKAGE FOR BOTTOM PLANE	GR800260
	IF (NFBC.EQ.1)VDLF=HALF	GR800261
	DD 110 J=1,JMX	GR 800270
	IF(J.GT.1)VOLF=DNE	GRB00271
	IF(NLBC.EQ.1)VOLL=HALF	GRB00272
	DD 110 I=1, IMX	GR 800280
	IF(I.GT.1)VOLL=ONE	GRB00281
	NPR=NPRMP(I,J,1)	GR 800290

	XLEK(NG)=XLEK(NG)+DD3(NPR,NG)*PSI(NG,I,J,2)*VOLF*VOLL	GRB00300
	110 CONTINUE	GR 800310
С	COMPUTE FRONT LEAKAGE	GR800320
	120 IF(NFBC.EQ.1) GO TO 140	GR800330
	IF(NLBC.EQ.1)VOLL=HALF	GR 800331
	DO 130 I=1,IMX	GR800340
	IF(I.GT.1)VOLL=ONE	GRB00341
	NPR=NPRMP(I,1,K)	GR800350
	130 XLEK(NG)=XLEK(NG)+DD2(NPR,NG)*PSI(NG,I,2,K)*VOLU*VOLB	GR800360
C	COMPUTE LEFT LEAKAGE	GR 800370
	140 IF(NLBC.EQ.1) GO TO 160	GR800380
	IF(NFBC.EQ.1)VOLF=HALF	GR800381
	D3 150 J=1, JMX	GR800390
	IF(J.GT.1)VOLF=ONE	GR800391
	NPR=NPRMP(1,J,K)	GR 800400
_	150 XLEK(NG)=XLEK(NG)+DD1(NPR,N3)*PSI(NG,2,J,K)*VDLF*VDLB	GR800410
С	COMPUTE RIGHT LEAKAGE	GR800420
	160 IF (NFBC.EQ.1)VOLF=HALF	GR800421
	D3 170 $J=1, JMX$	GR800430
	IF(J.GT.1)VOLF=ONE	GR800431
	NPR=NPRMP(IMX,J,K)	GR800440
_	170 XLEK(NG)=XLEK(NG)+DD1(NPR,NG)*PSI(NG,IMX,J,K)*V3LF*V0LB	GR800450
0	COMPUTE BACK LEAKAGE	GR 800460
	IF(NLBC.EQ.1)VOLL=HALF	GR800461
	DO 180 I=1, IMX	GR 8 00470
	IF(I.GT.1)VOLL=ONE	GR800471
	NPR=NPRMP(I,JMX,K)	GR800480
	180 XLEK(NG) = XLEK(NG) + DD2(NPR, NG) * PSI(NG, I, JMX, K) * VDLL * VDLB	GR800490
	IF(NFBC.EQ.1)VOLF=HALF	GR800491
	DD 200 J=1, JMX	GR800500
	IF(J.GT.1)VOLF=ONE	GR 800501
	VOLC=VOLB*VOLF	GR800502
	IF(NLBC.EQ.1)VOLL=HALF	GR800503
	DJ 190 I=1, IMX	GR 800510
	IF(I.GT.1)VOLL=ONE	GR800511
	VOLD=VOLL*VOLC	GR800512
		PAGE 189

		NPR=NPRMP(I+J,K)	GR800520
	190	XREM(NG)=XREM(NG)+(DD5(NPR,NG)+DD4(NPR,NG))*PSI(NG,I,J,K)*VOLD	GR 800530
	200	CONTINUE	GR800540
		IF(K.LT.KMX) GD TD 230	GR800550
С	CC	DMPUTE TOP LEAKAGE	GR800560
		IF(NFBC.EQ.1)VOLF=HALF	GR800561
		DO 220 J=1, JMX	GR 800570
		IF(J.GT.1)VDLF=ONE	GRB00571
		IF(NLBC.EQ.1)VOLL=HALF	GR800572
		DD 210 I=1,IMX	GR 800580
		IF(I.GT.1)VOLL=ONE	GR800581
		NPR=NPRMP(I,J,KMX)	GR800590
	210	XLEK(NG)=XLEK(NG)+DD3(NPR,NG)*PSI(NG,I,J,KMX)*VOLL*VOLF	GR 800600
	220	CONTINUE	GR800610
	230	CONTINUE	GR 800620
		TEMP=(XFISS(NG)+XINSC(NG))/(XLEK(NG)+XREM(NG))	GR800630
		DD 250 K=1, KMX	GRB00640
		D9 250 J=1, JM	GR 800650
		D3 240 I=1, IM	GR800660
	240	PSI(NG,I,J,K)=TEMP*PSI(NG,I,J,K)	GR800670
	250	CONTINUE	GR800680
		XREM(NG)=TEMP=XREM(NG)	GR800690
		XLEK(NG)=TEMP=XLEK(NG)	GR 800700
		RETURN	GR800710
		END	GR800720

SUBROUTINE INNERI(X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD5,MMAP,NPRMP,	INN00010
1PST, P1, P2, P3, FD, SRC, WA, GA, SOLN, OMEG, XFISS, XINSC, XREM, XLEK,	INN00020
2NNGV, NMATV, IMV, JMV, KMV, IRMV, JRMV, KRMV, NPRGV, NG)	INN00030
IMPLICIT REAL+8 (A-H, D-Z)	INN00040
INTEGER#2 MMAP,NPRMP	INN00050
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	INN00100
1NFBC,NB3C,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	INNOOLLO
2IZTP(5),NSTEAD,IFLIN,IGEOM,ITITLE(20),NOIT,NIIT,NPIT,IOPSI,IODUNP,	INN00120
3IDFN, IDFO, IDPN, IDPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	INN00130
4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	INNO0140
COMMON/FLOTE/EFFK, JRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	INN00150
1TEMP5, TEMP5, XFISST, XFISSO, AL AMN, ALAMO, TIME, ELXCON, BETAT	INN00160
DIMENSION X(IMV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV),	INN00170
1DD1(NPRSV, NNGV), DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4(NPRGV, NNGV),	INN00180
2DD5(NPRGV,NNGV),MMAP(IRMV,JRMV,KRMV),NPRMP(IMV,JMV,KMV),	INN00190
3PSI(NNGV,INV,JMV,KMV),P1(IMV,JNV),P2(IMV,JMV),P3(IMV,JMV),	INN00200
4SRC(IMV, JMV, KMV), WA(IMV), GA(IMV), SOLN(IMV), OHEG(NNGV), XFISS(NNGV),	INN00210
5XINSC(NNGV), XREM(NNGV), XLEK(NNGV)	INN00220
IF(ITEMP5.EQ.5)GD TO 90	INN00230
CALL GRBAL1(DD1,DD2,DD3,DD4,DD5,NPRMP,PS1,P1,P2,P3,XFISS,XINSC,	INN00240
1XREM,XLEK,NNG,IM,JM,KM,NPRG,NG)	INN00250
90 NIT=0	INN00260
XNLBC=NLBC	INN00270
START WITH BOTTOM PLANE	INN00280
100 CONTINUE	INN00290
REWIND IOSCI	INN00300
REWIND IDSC2	INN00310
TEMP1=0.0D0	INN00320
TEMP4=1.0D+50	INN00330
K=1	INN00340
READ(IDSC1)P1	INN00350
READ(I3SCI)P2	INN00360
IF (NBBC. EQ. D)GD TD 200	INN00370
DO 185 NP=1, NPIT	INN00380
IF(NP.LT.NPIT)GO TO 105	INN00390
TEMP1=0.0D0	INN00400

TEMP4=1.0D+50	INN00410	
105. J=1	INN00420	
IF (NFBC.EQ.0)GD TJ 140	INN00430	
NPR=NPRMP(1,1,1)	INN00440	
WA(1)=-2.0D0+DD1(NPR,NG)+XNLBC/DD5(NPR,NG)	INN00450	
GA(1)=((SRC(1, J,K)+2.0D0*(DD2(NPR,NG)*P1(1,2)+DD3(NPR,NG)*P2(1,1)	JINN00460	
1)*XNLBC)/DD5(NPR,NG)	INN00470	
DO 110 I=2,IMX	INN00480	
NPR=NPRMP(I,1,1)	INN00490	
NPRX=NPRMP(I-1,1,1)	INN00500	
TEMP=1.0D0/(DD5(NPR,NG)+DD1(NPRX,NG)+WA(I-1))	INN00510	
WA(I)=-DD1(NPR,NG)*TEMP	INN00520	
110 GA(I)=(SRC(I,1,1)+2.0D0*(DD2(NPR,NG)*P1(I,2)+DD3(NPR,NG)*P2(I,1))	INN00530	
1+DD1(NPRX,NG)*GA(I-1))*TEMP	INN00540	
SDLN(IM)=0.000	INN00550	
DO 120 II=1, IMX	INN00560	
I=IM-II	INN00570	
120 SOLN(I)=GA(I)-WA(I)*SOLN(I+1)	INN00580	
DO 130 I=1,IM	INN00590	
TEMP2=P1(I,1)	INN00600	
P1(I,1)=TEMP2+DMEG(NG)+(SOLN(I)→TEMP2)	INN00610	
IF(P1(I,1).GT.0.0D0)G0 T0 125	INN00620	
$P1(I_{+}I) = 0.0D0$	INN00630	
GD TO 130	INN00640	
125 TEMP3=TEMP2/P1(I,1)	INN00650	
IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN00660	
IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INN00670	
1.30 CONTINUE	INN00680	
140 DO 180 $J=2, JMX$	INN00690	
NPR=NPRMP(1, J, 1)	INN00700	
NPRY=NPRMP(1,J-1,1)	INN00710	
WA(1)=-2.0D0+DD1(NPR,NG)+XNLBC/DD5(NPR,NG)	INN00720	
GA(1)=((SRC(1,J,1)+DD2(NPRY,NG)*P1(1,J-1)+DD2(NPR,NG)*P1(1,J+1)+	INN00730	
12.000*DD3(NPR,NG)*P2(1,J))*XNLBC)/DD5(NPR,NG)	INN00740	
DD 150 I=2, IMX	INN00750	
NPR=NPRMP(I,J,1)	INN00760	
	PAGE	192

	NPRX=NPRMP(I-1,J,1)	INN00770
	NPRY=NPRMP(I, J-1, 1)	INN00780
	TEMP=1.0D0/(DD5(NPR, NG)+DD1(NPRX, NG] +WA(I-1))	INN00790
	WA(I)=-DD1(NPR,NG)*TEMP	INN00800
	150 GA(I)=(SRC(I,J,1)+DD2(NPRY,NG)*P1(I,J-1)+DD2(NPR,NG)*P1(I,J+1)+	INN00810
	12.0D0*DD3(NPR, NG)*P2(I, J)+DD1(NPRX, NG)*GA(I-1))*TEMP	INN00820
	SDLN(IM) = 0.000	INN00830
	DO 160 II=1,IMX	INN00840
	I=IM-II	INN00850
	160 $SOLN(I) = GA(I) - WA(I) + SOLN(I+1)$	TNN00860
	DD 170 I=1.IM	INN00870
	TEMP2=PI(I,J)	INN00880
	P1(I,J)=TEMP2+DMEG(NG)*(SDLN(I)-TEMP2)	INN00890
	IF(P1(I,J).GT.0.000)GO TO 165	INN00900
	P1(I,J)=0.0D0	INN00910
	GD TO 170	INN00920
	165 TEMP3=TEMP2/P1(I,J)	INN00930
	IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN00940
	IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INN00950
	170 CONTINUE	INN00960
	180 CONTINUE	INN00970
	1.85 CONTINUE	INN00980
	TEMP5=TEMPL	INN 00990
	TEMP6=TEMP4	INN01000
	190 P1(I,JM)=0.000	INNOLOLO
- :	NOW COMPUTE FOR THE REST OF THE PLANES	INN01020
	200 DO 310 K=2,KMX	INN01030
	READ(IDSC1)P3	[NN01040
	DJ 295 NP=1,NPIT	INNO1050
	IF(NP.LT.NPIT)GD TD 205	INN01060
	TEMP1=0.000	INN01070
	TEMP4=1.0D+50	INNO1080
	205 J=1	INN01090
	IF(NFBC.EQ.0) GD TD 240	INNOI100
	NPR=NPRMP(1,1,K)	INN01110
	NPR7=NPRMP(1,1,K-1)	INN01120
		PAGE 193

	WA(1)=-2.0D0*DD1(NPR,NG)*XNLBC/DD5(NPR,NG)	INN01130
	GA(1)=((SRC(1,1,K)+2.0D0*DD2(NPR,NG)*P2(1,2)+DD3(NPR,NG)*P3(1,1)+	INN01140
	1DD3(NPRZ,NG) *P1(1,1)) *XNLBC)/DD5(NPR,NG)	INN01150
	DO 210 I=2, IMX	TNN01160
	NPR=NPRMP(I,1,K)	INN01170
	NPRX=NPRMP(I-1,1,K)	INN01180
	NPRZ=NPRMP(I,1,K-1)	INN01190
	TEMP=1.0D0/(DD5(NPR, NG)+DD1(NPRX, NG)+WA(I-1))	INN01200
	WA(I)=-DD1(NPR,NG)*TEMP	INN01210
210	GA(I)=(SRC(I,1,K)+2.0D0+DD2(NPR,NG)+P2(I,2)+DD3(NPR,NG)+P3(I,1)+	INN01220
	1DD3(NPRZ,NG) + P1(I,1) + DD1(NPRX,NG) + GA(I-1)) + TEMP	INN01230
	SOLN(IM) = 0.000	TNN01240
	DO 220 II=1,IMX	INN01250
	I=IM-II	INN01260
220	SOLN(I)=GA(I)-WA(I)*SOLN(I+1)	INN01270
	DD 230 I=1,IM	INN01280
	TEMP2=P2(I,1)	INN01290
	P2(I,1)=TEMP2+DMEG(NG)+(SDLN(I)-TEMP2)	INN01300
	IF(P2(I,1).GT.0.0D0)G0 TO 225	INN01310
	P2(I,1)=0.0D0	INN01320
	GD TO 230	TNN01330
225	TEMP3=TEMP2/P2(I,1)	INN01340
	IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN01350
	IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INN01360
230	CONTINUE	INN01370
240	DO 280 J=2, JMX	INN01380
	NPR=NPRMP(1,J,K)	INN01390
	NPRY=NPRMP(1,J-1,K)	INNO1400
	NPRZ=NPRMP(1,J,K-1)	INN01410
	WA(1)=-2.0D0+DD1(NPR,NG)+XNLBC/DD5(NPR,NG)	INN01420
	GA(1)=((SRC(1, J, K)+DD2(NPR, NG)+P2(1, J+1)+DD2(NPRY, NG)+P2(1, J+1)+	INN01430
	1.DD3(NPR, NG) * P3(1, J) + DD3(NPRZ, NG) * P1(1, J)) * XNLBC) / DD5(NPR, NG)	INN01440
	DO 250 I=2, IMX	INN01450
	NPR=NPRMP(I, J,K)	INN01460
	NPRX=NPRMP(I-1,J,K)	INN01470
	NPRY=NPRMP(I,J-1,K)	INN01480
		546F

,

	NPRZ=NPRMP(I,J,K-1)	INN01490
	TEMP=1.0D0/(DD5(NPR, NG)+DD1(NPRX, NG)+WA(I-1))	INN01500
	WA(I)=-DD1(NPR,NG)+TEMP	INN01510
	250 GA(I)=(SRC(I,J,K)+DD2(NPR,NG)*P2(I,J+1)+DD2(NPRY,NG)*P2(I,J+1)+	INN01520
	1DD3(NPR, NG) * P3(I, J) + DD3(NPRZ, NG) * P1(I, J) + DD1 (NPRX, NG) * GA(I-1)) * T	EMINNO1530
	2P	INN01540
	SDLN(IM) = 0.0D0	INN01550
	DO 260 II=1, IMX	INN01560
	I=IM-II	INN01570
	260 SOLN(I)=GA(I)-WA(I)+SOLN(I+1)	INN01580
	D3 270 I=1, IM	INN01590
	TEMP2=P2(I,J)	INN01600
	P2(I,J) = TEMP2 + DMEG(NG) + (SDLN(I) - TEMP2)	INN01610
	IF(P2(I,J).GT.0.0D0)G0 T0 255	INN01620
	P2(1,J)=0.0D0	INN01630
	GO TO 270	INN01640
	265 TEMP3=TEMP2/P2(I,J)	INN01650
	IF(TEMP1.LT.TEMP3)TEMP1=TEMP3	INN01660
	IF(TEMP4.GT.TEMP3)TEMP4=TEMP3	INN01670
	270 CONTINUE	INN01680
	280 CONTINUE	INN01690
	DD 290 I=1, IM	INN01700
	290 P2(I,JM)=0.000	INN01710
	295 CONTINUE	INN01720
0	TEST MIN AND MAX FLUX RATIO FOR THIS PLANE	INN01730
	IF(TEMP1.GT.TEMP5)TEMP5=TEMP1	INN01740
	IF(TEMP4.LT.TEMP6)TEMP6=TEMP4	INN01750
	WRITE(IDSC2)P1	INNO1760
	DD 305 J=1, JM	INN01770
	DD 305 I=1,IM	INN01780
	P1(I,J)⇒P2(I,J)	INN01790
	305 P2(1,J)=P3(1,J)	INN01800
	310 CONTINUE	INNOIBIO
С	COMPLETE HESH NOW SWEPT	INNO1820
	WRITE(IDSC2)P1	INN01830
	WRITE(IDSC2)P2	INN01840
		PAGE 195

0	SWITCH DATASET DESIGNATIONS	INN01850
	ITEMP4=IDSC2	INN01860
	IOSC2=IOSC1	INN01870
	IOSC1=ITEMP4	INN01880
C	NOW COMPUTE LARGEST RESIDUAL	INN01890
	TEMP1=TEMP5	TNN01900
	TEMP4=TEMP6	INN01910
	TEMP2=DABS(1.0D0-TEMP1)	TNN01920
	TEMP 3=D4 BS(1.0D0-TEMP4)	INN01930
	IF(TEMP2-TEMP3)330,330,320	TNN01940
	320 TEMP3=TEMP2	TNN01950
	330 NTIT=NTIT+1	TNN01960
	NIT=NIT+1	TNN01970
	IF(NIT.GE.NIIT)GD TO 340	TNN01980
	IF(TEMP3.GT.EPS2)GD TO 100	TNN01990
5	INNER ITERATION CONVERGES. WRITE FLUXES ON TOPN	TNN02000
	340 CONTINUE	INN02010
	REWIND LOSCI	TNN02020
	IF(ITEMP5.EP.5)GD TO 360	TNN02020
	DJ 350 K=1.KM	TNN02040
	READ (IDSCI)P2	TNN02040
	WRITE(TOPN)P2	TNN02050
	350 CONTINUE	TNN02030
	360 RETURN	
	FND	
		INNUZUYU

i.

SUBROUTINE GRBALL(DD1,DD2,DD3,DD4,DD5,NPRMP,PSI,P1,P2,P3,XFIS	S. GRB00010
1XINSC, XREM, XLEK, NNGV, IMV, JMV, KMV, NPRGV, NG)	GR 800020
IMPLICIT REAL+8 (A-H,O-Z)	GR800030
INTEGER#2 MMAP,NPRMP	GRB00040
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLB	C. GR 800090
1NFBC, NBBC, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5)	• GR 800100
2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NOIT, NIIT, NPIT, IDPSI, IO	DUMP.GRB00110
3IJFN, IJFD, IDPN, IDPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	GRB00120
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	GRB00130
COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4	• GRB00140
1 TEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	GR 800150
DIMENSION DD1(NPRGV, NNGV), DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4	(NPRGGR BOO 160
IV, NNGV), DD5 (NPRGV, NNGV), NPRMP(IMV, JMV, KMV), PSI (NNGV, IMV, JMV, K	MV), GR800170
2P1(IMV, JMV), P2(IMV, JMV), P3(IMV, JMV), XFISS(NNGV), XINSC(NNGV),	GRB00180
3XREM(NNGV), XLEK(NNGV)	GR 800190
XREM(NG)=0.000	GR800200
XLEK(NG)=0.0D0	GR800210
REWIND IOSCI	GR800220
REWIND IDSC2	GRB00230
ONE=1.0D0	GRB00231
HALF=0.5D0	GR800232
VOLB=DNE	GR 800233
VOLF=ONE	GR 800234
VOLL=ONE	GR B00235
IF(NBBC.EQ.1)VOLB=HALF	GR 800236
D3 230 K=1, KMX	GRB00240
READ(IOPO)P2	GR800250
WRITE(IDSC2)P2	GR 800260
IF(K.GT.1)VOLB=DNE	GRB00261
IF(K.EQ.1.AND.NBBC.EQ.O) GO TO 230	GR800270
IF(K.NE.2)GD TD 120	GR800280
100 IF(NBBC.EQ.1)GO TO 120	GR 800290
C COMPUTE LEAKAGE FOR BOTTOM PLANE	GRB00300
IF(NFBC.EQ.I)VOLF=HALF	GR 800301
DO 110 $J=1, JMX$	GR800310
IF(J.GT.1)VOLF=ONE	GRB00311

~

	IF(NLBC.EQ.1)VOLL=HALF	GRB00312
	DO 110 I=1, IMX	GR800320
	IF(I.GT.1)VOLL=ONE	GR 800321
	NPR=NPRMP(I,J,1)	GR800330
	XLEK(NG)=XLEK(NG)+DD3(NPR,NG)+P2(I,J)+VOLF+VOLL	GR800340
	110 CONTINUE	GR800350
0	COMPUTE FRONT LEAKAGE	GR800360
	120 IF(NFBC.EQ.1) GD TO 140	GR800370
	IF(NLBC.EQ.1)VOLL=HALF	GR800371
	DO = 130 I = 1, IMX	GR 800380
	IF(I.GT.1)VOLL=ONE	GR800381
	NPR=NPRMP(I,1,K)	GR800390
	130 XLEK(NG)=XLEK(NG)+DD2(NPR,NG)*P2(I,2)*VOLL*VOLB	GR800400
C	COMPUTE LEFT LEAKAGE	GRB00410
	140 IF(NLBC.EQ.1) GD TD 160	GR 800420
	IF (NFBC.EQ.1)VDLF=HALF	GR800421
	DO 150 J=1, JMX	GRB00430
	IF(J.GT.1)VOLF=DNE	GR 800431
	NPR=NPRMP(1,J,K)	GR800440
	150 XLEK(NG)=XLEK(NG)+DD1(NPR,NG)*P2(2,J)*VOLF*VOLB	GR800450
C	COMPUTE RIGHT LEAKAGE	GR800460
	160 IF (NFBC.EO.1)VOLF=HALF	GR800461
	DO 170 $J=1, JMX$	GR 800470
	IF(J.GT.1)VOLF=ONE	GR 800471
	NPR=NPRMP(IMX,J,K)	GR800480
	170 XLEK(NG)=XLEK(NG)+DD1(NPR,NG)+P2(IMX,J)+VOLF+VOLB	GR 800490
C	COMPUTE BACK LEAKAGE	GR800500
	IF(NLBC.EQ.1)VOLL=HALF	GR800501
	DO 180 I=1,IMX	GR800510
	IF(1.GT.1)VOLL=ONE	GR800511
	NPR=NPRMP(I,JMX,K):	GR 800520
	180 XLEK(NG)=XLEK(NG)+DD2(NPR,NG)+P2(I,JMX)+VOLL+VOLB	GR800530
	IF (NFBC.EQ.1)VOLF=HALF	GR 800531
	D3 200 J=1, JMX	GR 800540
	IF(J.GT.1)VOLF=ONE	GR800541
	VOLC=VOLB+VOLF	GR800542
		PAGE 198

	IF(NLBC.EQ.1)VOLL=HALF	GR 800543
	DO 190 I=1,IMX	GR 800550
	IF(I.GT.1)VOLL=ONE	GR 800551
	VOLD=VOLL*VOLC	GR B00552
	NPR=NPRMP(I,J,K)	GR 800560
19	D XREM(NG) = XREM(NG) + (DD5(NPR, NG) + DD4(NPR, NG)) + P2(I, J) + VOLD	GR 800570
20	O CONTINUE	GR 800580
	IF(K.LT.KMX) GD TD 230	GR800590
C (COMPUTE TOP LEAKAGE	GR800600
	IF(NF3C.EQ.1)VDLF=HALF	GR 800601
	DD 220 J=1, JMX	GR B0061 0
	IF(J.GT.1)VOLF=ONE	GRB00610
	IF(NLBC.EQ.1)VOLL=HALF	GR 800612
	DO 210 I=1, IMX	GR 800620
	IF(I.GT.1)VOLL=ONE	GR800621
	NPR=NPRMP(I,J,KMX)	GR800630
21	D XLEK(NG) = XLEK(NG) + DD3(NPR,NG) + P2(I,J) + V3LL + V0LF	GRB00640
22	O CONTINUE	GR 800650
23	D CONTINUE	GR800660
	READ(IOPO)P2	GR800670
	WRITE(IJSC2)P2	GR 8006 80
	REWIND IDSC2	GR 800690
	TEMP=(XFISS(NG)+XINSC(NG))/(XLEK(NG)+XREM(NG))	GR800700
	DD 260 K=1,KM	GR800710
	READ(IOSC2)P2	GR800720
	DD 250 J=1, JM	GR800730
	DO 250 I=1,IM	GR800740
25	D P2(I,J)=TEMP=P2(I,J)	GRB00750
	WRITE(IJSC1)P2	GR800760
260	DICONTINUE	GR 800770
	XREM(NG) = TEMP + XREM(NG)	GR800780
	XLEK(NG)=TEMP*XLEK(NG)	GR800790
	RETURN	GR 8 00 8 0 0
	END	GR800810

1

	SUBROUTINE FLUXTR(PSI,P2,NNGV,IMV,JNV,KMV)	FLU00010
	IMPLICIT REAL*8 (A-H,O-Z)	FLU00020
	INTEGER*2 MMAP, NPRMP	FLU00030
	COMMON/INTS/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC.	FL U00040
	1NFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5).	FLU00050
	2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IOP SI, IODUM	P-FLU00060
	3IJFN, IJFO, IDPN, IDPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5.	FLU00070
	4NTIT, IET IME, IFLOUT, IMX, JMX, KMX, IDSC1, IDSC2, NGX	FLU00080
	COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	FLU00130
	TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCON, BETAT	FLU00140
	DIMENSION PSI(NNGV, IMV, JMV, KMV), P2(IMV, JMV)	FLU00150
C 1	ILL USE IDSCI TO BUILD FLUXES FOR TRANSMITTAL TO TIMDEP	FL U00160
	REWIND IOSC1	FLU00170
	IF(IDPT.EQ.1)GD TD 200	FLU00180
	D3 100 K=1,KM	FLU001.90
	DD 100 NG=1, NNG	FLU00200
	WRITE(I3SC1)((PSI(NG,I,J,K),I=1,IM),J=1,JM)	FLU00210
100	CONTINUE	FLU00220
	REWIND IOSCI	FLU00230
	GD TD 300	FLU00240
200	DICONTINUE	FLU00250
	K=0	FLU00260
210) K=K+ <u>1</u>	FLU00270
	ITEMP2=K-1	FLU00280
	IF(ITEMP2.EQ.0)GO TO 230	FLU00290
	DD 220 ITEMP=1,ITEMP2	FLU00300
	READ(IDPO)	FLU00310
220	D CONTINUE	FLU00320
230	DO 250 ITEMP=1,NNG	FLU00330
	READ(IDPD)P2	FLU00340
	WRITE(IJSC1)P2	FLU00350
	IF(ITEMP.EQ.NNG)GD TO 250	FLU00360
	DO 240 ITEMP3=1+KMX	FLU00370
	READ(IDPD)	FLU00380
240	CONTINUE	FLU00390
250	CONTINUE	FLU00400
		PAGE 200

REWIND IOPO IF(K.LT.KM)GO TO 210 REWIND IOSC1 300 RETURN END

.

-

FLU00410 FLU00420 FLU00430 FLU00440 FLU00450

PAGE 201

٩

SUBROUTINE TIMDEP(V,XI,XIM,XNU,SIGF,SIGR,SIGT,SIGS,ALAM,BETA,XIP, TIMODO10 1X,Y,Z,HX,HY,HZ,IBP,JBP,KBP,DD1,DD2,DD3,DD4,DD5,DD6,DD7,VO,MMAP,NPRTIMO0020 2MP.PSI.P1.P2.P3,PSD.W.PD.W1,NNGV,NDGV,NTOGV,NDNSCV,NMATV,IMV,JMV,KTIM00030 3MV, IRMV, JRMV, KRMV, NPRGV, NGXV) TIM00040 IMPLICIT REAL+8 (A-H.O-Z) TIM00050 INTEGER*2 MMAP.NPRMP TIM00060 COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC. TI M00070 INFBC, NB3C, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5), TIM00080 2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IDPSI, IDDUMP, TIMO0090 310FN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5, TIM00100 4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX TIM00110 COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4, TIM00160 ITEMP5, TEMP6, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT TIM00170 COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5), TIMO0180 **1ISTEP, ICHHT** TIM00190 COMMON/TIMELO/T, HT, HMIN, HMAX, TSTART, TEND, DELSES(5,4), DELSES(5,4), TIMOO200 1DELSTS(5,4); DELS1S(5,4); DELS2S(5,4); DELSFL(5,4); DELSRL(5,4); TIM00210 2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4) T1M00220 DIMENSION V(NNGV), XI(NNGV), XIM(NNGV), XNU(NMATV, NNGV); TIM00230 1SIGF(NMATV, NNGV), SIGR(NMATV, NNGV), SIGT(NMATV, NNGV), SIGS(NMATV, NNGVIN00240 2,NDNSCV);ALAM(NDGV);BETA(NDGV);XIP(NNGV,NDGV);X(IMV);Y(JMV);Z(KMV)TIM00250 3.HX(IRMV).HY(JRMV).HZ(KRMV), IBP(IRMV), JBP(JRMV), KBP(KRMV), DD1(NPRGTIM00260 4V, NNGV), DD2 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV), DD5 (NPRGV, TIMO0270 5NNGV), DD6(NPRGV, NNGV), DD7(NPRGV, NGXV, NDNSCV), MMAP(IRMV, JRMV, KRMV), TIMO0280 6NPRMP(IMV, JMV, KMV), PSI(NTOGV, IMV, JMV, KMV), P1(NTOGV, IMV, JMV); TI M00290 7P2(NT3GV, IMV, JMV), P3(NT0GV, IMV, JMV), PSO(IMV, JMV, KMV), W(IMV, JMV, KMVTIM00300 8, PO(IMV, JHV), W1(IMV, JHV), VD(NPRGV)TI M00310 IF(IOPT.EQ.0) GO TO 100 TIM00320 REWIND INPO TIM00330 REWIND IOPN TI M00340 REWIND IDED TIM00350 REWIND IDFN TIM00360 100 DO 105 NPR=1.NPRG TIM00365 DD 105 NG=1, NNG TIM00370 $DD4(NPR, NG) \neq 0.5D0 \neq DD4(NPR, NG)$ TIM00375 $DD5(NPR, NG) \neq DD5(NPR, NG) - DD4(NPR, NG) - XIM(NG) \neq DD6(NPR, NG)$ TIM00380

	105 CONTINUE	TIM00390
5	CALL DELAYS TO COMPUTE INITIAL DELAYED NEWTRON PRECURSOR DENSITIES	TIM00400
C	AND READ FLUXES FROM IOSC1	TIM00410
	CALL DELAYS (ALAM, BETA, XIP, DD6, VD, NPRMP, PSI, PZ, PSD, PD, NNG, NDG, NTOG	,TIM00420
	INMAT, IM, JM, KM, NPRG)	TIM00430
	DO 120 ND=1, NDG	TIM00431
	DD 110 NG=1, NNG	TIM00432
	110 XIP(NG, VD)=XIP(NG, ND)*ALAM(VD)	TIM00433
	120 ALAM(ND)=ALAM(ND)/2.000	TIM00434
5	ZERD FREQUENCY VECTOR	TIM00440
	D3 130 K=1,KM	TIM00450
	DO 130 J=1, JM	TIM00460
	03 130 I=1,IM	TIM00470
	130 W(I, J, K) = 0.000	TIM00480
	TSTART=0.000	TIM00490
	ISTEP=0	TIM00500
С	START LOOP HERE OVER TIME ZONES BY CALLING TIMINP	TIM00510
	200 CALL TIMINP	TIM00520
	NFLAGI=1	TIM00530
	IF(ISTPCH.GT.O)CALL CHANGE(XIM,XNU,SIGF,SIGR,SIGT,SIGS,HX,HY,HZ,	TI M00540
	118P, JBP, KBP, DD1, DD2, DD3, DD4, DD5, DD6, DD7, MMAP, NNG, NDN SCT, NMAT, IM, J	MTIM00550
	2,KM, IRM, JRM, KRM, NPRG, NFL AG1, NGX}	TI M00560
	T=TSTART	TIM00570
	HT=HMIN	TIM00580
	NFLAG2=1	TIM00590
	IF(ISTEP.EQ.O)CALL TIMOUT(PSI,P2,W,W1,NTOG,IM,JM,KM,NFLAG2)	TIM00600
	210 IF(IOPT.EQ.1)GO TO 230	TI M00610
	CALL STEPAD(V,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DD1,DD2,DD3,DD4,DD	5TIM00620
	1,DD6,DD7,V3,NPRMP,PSI,W,NNG,NDG,NTUG,NDNSCT,IM,JM,KM,IRM,JRM,KRM,	TIM00630
	2NPRG,NGX)	TI N00640
	CALL STEPBO(V,XIM,ALAM,BETA,XIP,X,Y,Z,HX,HY,HZ,DD1+DD2,DD3+DD4,DD	511M00650
	1,006,007,V3,NPRMP,PSI,W,NNS,NDG,NTUG,NDNSCT,IM,JM,KM,IRM,JKM,KRM,	TIMUU66U
	ZNPRG, NGX)	T1M00670
	CALL FREQUEPSI # PSU # W # NIUG # LM # JM # KM }	
		I I MUUDYU
	DS ZZO J=I,JM	

	DD 220 I=1,IM	TIM00710	
	220 PSD(I,J,K) = PSI(NTG,I,J,K)	TIM00720	
	GO TO 250	TIM00730	
	230 CONTINUE	**TENP**	
0	230 CALL STEPAL (V, XIM, ALAM, BETA, XIP, X, Y, Z, HX, HY, HZ, DD1, DD2, DD3, DD4,	TIM00740	
C	1 DD5, DD6, DD7, NPRMP, P1, P2, P3, W, PD, W1, NNG, NDG, NTOG, NDNSCT, IM, JM, KM,	TIM00750	
С	2 IRM, JRM, KRM, NPRG)	TIM00760	
C	CALL STEPBI(V, XIM, ALAM, BETA, XIP, X, Y, Z, HX, HY, HZ, DD1, DD2, DD3, DD4,	TIM00770	
С	1 DD5, DD5, DD7, NPRMP, P1, P2, P3, W, PD, W1, NNG, NDG, NTDG, NDNSCT, IM, JM, KM,	TI M00780	
C	2IRM, JRM, KRM, NPRG)	TIM00790	
С	CALL FREQ1(P2,PD,W,W1,NTOG,IM,JM,KM)	TIM00800	
	250 T=T+2.0D0+HT	TIM00810	
	ISTEP=ISTEP+1	TIM00820	
	NFLAG1=2	TIM00830	
	NFLAG2=0	TIM00840	
	IF(ILINCH.GT.O)CALL CHANGE(XIM,XNU,SIGF,SIGR,SIGT,SIGS,HX,HY,HZ,	TIM00850	
	1 IBP, JBP, KBP, DD1, DD2, DD3, DD4, DD5, DD6, DD7, MMAP, NNG, NDNSCT, NMAT, IM, JI	TI M00860	
	2,KM, IRM, JRM, KRM, NPRG, NFLAGI, NGX)	TIM00870	
	IF(DABS(T-TEND).LT.1.OD-10)NFLAG2=1	TIM00880	
	IF(NFLAG2.EQ.1.OR.MOD(ISTEP, IPRSTP).EQ.O)CALL TIMOUT(PSI,P2,W,W1,	TIM00890	
	1NTDG, IM, JM, KM, NFLAG2)	TIM00900	
	IF(ICHHT.EQ.1)CALL TALTER	TIM00910	
	CALL ETIMEF(TEMP)	TIM00920	
	IF(TEMP.LT.TIME)GD TO 270	TIM00930	
	NFLAG2=2	TI M00940	
	LASZON=1	TIM00950	
	CALL TIMOUT(PSI,P2,W,W1,NTOG,IM,JM,KM,NFLAG2)	TIM00960	
	GD TO 280	TIM00970	
	270 IF(NFLAG2.EQ.0)GD TO 210	TIM00980	
	TSTART=T	TIM00990	
	IF(LASZON.GT.0)GD TO 200	TIM01000	
	280 IF(IOPT.EQ.0)GO TJ 300	TIM01010	
	REWIND 10F0	TI M01020	
	REWIND IOFN	TI M01030	
	REWIND TOPO	TIM01040	
	REWIND IOPN	TIM01050	
		PAGE 20)4

REWIND IDSC1 REWIND IDSC2 300 RETURN END

1

.

TIM01060 TIM01070 TIM01080 TIM01090

PAGE 205

ł

SUBROUTINE TIMINP	TIM00010	
IMPLICIT REAL+8 (A-H,D-Z)	TIM00020	
INTEGER*2 MMAP, NPRMP	TIM00030	
COMMON/INTS/IASIZE, NNG, NDG, NTDG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	TIM00040	
1NFBC, VBRC, VDNSCT, NPRG, IDPT, VTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	TIM00050	
21ZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IDPSI, IODUMP,	TIM00060	
310FN, 13FO, 10PN, 10PD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	TIM00070	
4NTIT, JETIME, IFLOUT, IMX, JMX, KMX, JOSC1, JOSC2, NGX	TI M00080	
COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	TIM00130	
1TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCDN, BETAT	TIM00140	
COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5),	TIM00150	
LISTEP, ICHHT	TIM00160	
COMMON/TIMELO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4),	TI M00170	
1 DEL STS (5,4), DEL S1 S (5,4), DEL S2 S (5,4), DEL S FL (5,4), DEL S RL (5,4),	TIM00180	
2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	TIM00190	
READ IN FIRST TIME ZONE DESCRIPTION CARD (CARD TYPE 13)	TIM00200	
100 READ(5,100) LASZON, I STPCH, IL INCH, IPRSTP, ICHHT, IFLOUT, HMIN, HMAX, TEN	TIM00210	
10	TIM00211	
1000 FORMAT(615,3012.5)	TIM00220	
IF(ISTEP.GT.0)WRITE(6,1010)	TIM00230	
1010 FORMAT(1H1,//)	TIM00240	
IF(LASZ)N.GT.0)GD TO 110	TIM00250	
LTMZON=LTMZON+1	TIM00260	
GD TO 120	TIM00270	
110 LTMZON=LASZON	TIM00280	
120 WRITE(6,1020)LTMZDN	TIM00290	
1020 FORMAT(1H0,//,15X, 'EDITED INPUT FOR TIME ZONE', 13,//)	TIM00300	
WRITE(6, 1030)LASZON, ISTPCH, ILINCH, IPRSTP, ICHHT, IFLOUT, HMIN, HMAX, TE	TIM00310	
1ND	TIM00311	
IF ISTPCH GT O, READ IN STEP CHANGE INFORMATION	TIM00320	
IF(ISTPCH.EQ.0)GD TD 140	TIM00330	
DD 130 MN=1, ISTPCH	TIM00340	
DO 130 NG=1, NNG	TIM00350	
READ(5,1040)MNSCH(MN),DELSFS(MN,NG),DELSRS(MN,NG),DELSTS(MN,NG),	TIM00360	
1DELSIS(MN,NG),DELS2S(MN,NG)	TIM00370	
WRITE(6, 1050)MNSCH(MN), DELSFS(MN, NG), DELSRS(MN, NG), DELSTS(MN, NG),	TIM00380	
	PAGE	206

1DELS1S(MN,NG),DELS2S(MN,NG)	TIM00390	
130 CONTINUE	TI M00400	
1030 FORMAT(11X,615,3D12.5)	TIM00410	
1040 FORMAT(15,5X,5D12.5)	TIM00420	
1050 FORMAT(11X, 15, 5X, 5D12.5)	TIM00430	
140 IF(ILINCH.EQ.0)GO TO 160	TIM00440	
DO 150 MN=1,ILINCH	TIM00450	
DO 150 NG=1, NNG	TIM00460	
READ(5,104))MNLCH(MN),DELSFL(MN,NG),DELSRL(MN,NG),DELSTL(MN,NG),	TIM00470	
1DELS1L(MN,NG), DELS2L(MN,NG)	TI M00480	
WRITE(6,1050)MNLCH(MN),DELSFL(MN,NG),DELSRL(MN,NG),DELSTL(MN,NG),	TIM00490	
1DELS1L(MN,NG),DELS2L(MN,NG)	TI M00500	
150 CONTINUE	TIM00510	
C NOW PRINT OUT EDITED INFORMATION	T1M00520	
160 WRITE(6,1060)HMIN, HMAX, TEND	TIM00530	
1060 FORMAT(1H0,10X, MIN. TIME STEP(SEC) = ',D12.6, MAX. TIME STEP(SEC	TIM00540	
1)= ',D12.6,' ZONE END TIME(SEC)= ',D12.6)	TIM00550	
IF(ISTPCH.EQ.0)GD TD 180	TI M00560	
WRITE(6,1070)ISTPCH	TIM00570	
1070 FORMAT(1H0,10X, STEP CHANGES IN', 12, MATERIALS IN THIS TIME ZONE	TIM00580	
1)	TIM00590	
WRITE(6,1080)	TIM00500	
1080 FORMAT(1H0,55X, TOTAL CHANGE (IN CM-1) IN CROSS-SECTIONS ,/11X,	TIM00610	
1 "MATERIAL", 4X, "GROUP", 70X, "SCATTERING", /, 35X, "FISSION", 10X,	TIM00620	
2"ABSORPTION", 8X, "TRANSPORT", 10X, "G TO G+1", 10X, "G TO G+2",/)	TIM00630	
DD 170 MN=1, ISTPCH	TIM00640	
DO 170 NG=1, NNG	TIM00650	
WRITE(6,1090)MNSCH(MN),NG,DELSFS(MN,NG),DELSRS(MN,NG),DELSTS(NN,NG	TIM00660	
1), DELSIS(MN, NG), DELS2S(MN, NG)	TIM00670	
170 CONTINUE	TIM00680	
1090 FORMAT(1H ,14X,12,7X,12,2X,5(4X,D14.7))	TI M00690	
180 IF(ILINCH.EQ.0)GD TO 200	TI M00700	
WRITE(6,1100)ILINCH	TIM00710	
1100 FORMAT(1H0,10X, RAMP CHANGES IN , 12, MATERIALS IN THIS TIME ZONE	TI M00720	
1*}	TIM00730	
WRITE(6,1080)	TIM00740	
	PAGE	207

DO 190 MN=1,ILINCH	TIM00750
DD 193 NG=1,NNG	TI M00760
WRITE(6,1090)MNLCH(MN), NG, DELSFL(MN, NG), DELSRL(MN, NG), DEL	LSTL (MN, NGT IM00770
1), DELS1L(MN, NG), DELS2L(MN, NG)	TIM00780
190 CONTINUE	TIM00790
200 WRITE(6,1110)	TIM00800
1110 FORMAT(1H0,//,10X, 'BEGIN TIME-DEPENDENT CALCULATION FOR	THIS ZONE'TIMOOB10
3.)	TIM00820
RETURN	TIM00830
END	T1M00840

.

1

SUBRUUTINE TALTER	TAL 00010
IMPLICIT REAL+8 (A-H,O-Z)	TAL00020
INTEGER*2 MMAP,NPRMP	TAL00030
COMMON/INTS/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	TAL00040
1NFBC,NBBC,NDNSCT,NPRG,IDPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	TAL00050
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUMF	,TAL00060
3IOFN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	TAL00070
4NTIT, IET IME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	TAL00080
COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4.	TAL 00130
ITEMP5, TEMP6, XFISST, XFISSD, AL AMN, ALAMO, TIME, FLXCON, BETAT	TAL00140
COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5).	TAL00150
LISTEP, ICHHT	TAL00160
COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4).	TAL 00170
1DEL STS(5,4), DEL S1S(5,4), DEL S2S(5,4), DEL SFL(5,4), DEL SRL(5,4),	TAL00180
2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	TAL 00190
THE FOLLOWING LOGIC ASSURES THAT HT IS AN INTEGER MULTIPLE OF TIME	TAL 00200
ZONE LENGTH	TAL00210
TEMP5=(TEND-TSTART)/(2.0D0+HT)	TAL 00220
ITEMP5=TEMP5	TAL 00230
TEMP6=ITEMP5	TAL 00240
IF((TEMP5-TEMP6).LT.1.00-11)G0 T0 110	TAL 00250
1000 FORMAT(1HO, 15X, ******INPUT HMIN (=HT) IS NOT AN INTEGER MULTIPLE	DTAL 00260
1F TIME ZONE LENGTH+++++)	TAL 00270
HT=(TEND-TSTART-2.0D0+HT)/(TEMP6-1.0D0)	TAL 00280
WRITE(6,1000)	TAL 00290
WRITE(6.1010)HT	TAL 00300
1010 FORMAT(1H +15X. THT HAS BEEN CHANGED TO "+D20-13. " SECONDS AND WIT	ITAL 00310
1 BE HELD FIXED AT THAT VALUE 1)	TAI 00320
110 ICHHT=0	TAL 00330
RETURN	TAI 00340
END	TAL 00350

C C

		SUBROUTINE DSIMQ(A,B,N,KS)	SI00010
0	TI	HIS SUBROUTINE HAS BEEN TAKEN FROM THE IBM SCIENTIFIC	S100020
С	S	UBROUTINE PACKAGE AND CONVERTED TO DOUBLE PRECISION	\$100030
		IMPLICIT REAL+8 (A-H,D-Z)	S I 00040
		DIMENSION A(1), B(1)	SI00050
С			SI00060
0		FORWARD SOLUTION	SI00070
С			S100080
		TOL=0.0	S100090
		KS=0	SI00100
		JJ=−N	SI00110
		D0 65 J=1,N	\$100120
		JY=J+1	S100130
		JJ=JJ+N+1	SI00140
		BIGA=0	\$100150
		I-LI=TI	S100160
		$DD = 30 I = J_{\gamma}N$	SI 00170
С			SI00180
С		SEARCH FOR MAXIMUM CDEFFICIENT IN COLUMN	SI00190
С			S100200
		IJ=IT+I	SI00210
		IF(DABS(BIGA)-DABS(A(IJ))) 20,30,30	SI 00220
	20	BIGA=A(IJ)	S100230
		IMAX=I	S100240
	30	CONTINUE	SI00250
C			S100260
C		TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIX)	SI00270
С			\$100280
		IF(DABS(BIGA)-TOL) 35,35,40	SI00290
	35	KS=1	SI00300
		RETURN	S100310
С			\$100320
C		INTERCHANGE ROWS IF NECESSARY	S100330
С			S I 00340
	40	. I1≠J+N≠(J→2)	SI00350
		IT=IMAX-J	SI00360
			PAGE 210

		DO 50 K=J.N		S100370
		I1=I1+N		S100380
		12=11+IT		SI00390
		SAVE=A(I1)		SI00400
		A(11) = A(12)		S100410
		A(12)=SAVE		SI00420
C				SI00430
С		DIVIDE EQUATION BY LEADING COEFFICIENT		S100440
С				SI 00450
	50	A(I1)=A(I1)/BIGA		SI00460
		SAVE=B(IMAX)		S100470
		B(IMAX)=B(J)		S100480
		B(J)=SAVE/BIGA		SI00490
С				S100500
C		ELIMINATE NEXT VARIABLE		S100510
C				S100520
		IF(J-N) 55,70,55		SI00530
	55	IQS=N*(J-1)		SI00540
		00 65 IX=JY,N		S100550
		IXJ=IQS+IX		SI00560
		IT=J+IX		S100570
		D3 60 JX=JY, N		S100580
		$I \times J \times = N + (J \times - 1) + I \times$		S100590
		JJX=IXJX+IT		S100600
	60	{		SI00610
	65	B(IX)=B(IX)+(B(J)+A(IXJ))°		SI00620
C				SI00630
C		BACK SOLUTION		SI00640
C				S100650
	70	NY=N-1	•	S100660
		IT=N+N		S100670
		NO 80 J=1,NY		S100680
		IA=IT-J		SI00690
		IB=N-J	1	SI00700
		IC=N	1	S100710
		DN 80 K=1,J		SI00720
				PAGE 211

.

B(IB)=B(IB)-A(IA)*B(IC) IA=IA-N 80 IC=IC-1 RETURN END

SI00730 SI00740 SI00750 SI00760 SI00770

.

1

.

•

.

SUBROUTINE TIMOUT(PSI,P2,W,d1,NTOGV,IMV,JMV,KMV,NFLAG2)	TIM00010	
IMPLICIT REAL#8 (A+H, O-Z)	TIM00020	
INTEGER#2 MMAP, NPRMP	TIM00030	
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	TIM00040	
1NFBC, NBBC, NDNSCT, NPRG, IOPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	TIM00050	
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IDPSI, IODUMP	,TIM00060	
3IOFN, IDFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	TIM00070	
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	TI M00080	
COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	TIM00130	
1TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMO, TIME, FLXCON, BETAT	TIM00140	
COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5),	TIM00150	
1ISTEP, ICHHT	TIM00160	
COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4),	TI M00170	
1 DEL STS(5,4), DELS1S(5,4), DELS2S(5,4), DELS FL(5,4), DELSRL(5,4),	TIM00180	
2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	TIM00190	
DIMENSION PSI(NTOGV, IMV, JMV, KMV), P2(NTOGV, IMV, JMV), W(IMV, JMV, KMV)	TI M00200	
1W1(IMV,JMV)	TIM00210	
CALL ETIMEF(TEMP)	TIM00220	
WRITE(6,1000)	TIM00230	
1000 FORMAT(1H1,//)	TIM00240	
IF(ISTEP.GT.0)GO TO 100	TIM00250	
WRITE(6,1010)(ITITLE(I),1=1,20)	TIM00260	
1010 FORMAT(1H ,10X, 'INITIAL FLUXES FOR THE PROBLEM ',20A4)	TIM00270	
ISSAVE=ISTEP	TIM00280	
100 WRITE(6, 1020) ISTEP, T, HT, TEMP	TIM00290	
1020 FORMAT (1H0, 5X, *STEP NUMBER*, 14, 2X, *TRANS IENT TIME (SEC) #* ,1PD14.7	TI M00300	
1,2X, 1/2 TIME STEP(SEC) = ',1PD14.7,2X, 'ELAPSED CPU TIME(MIN) =',	TIM00310	
20PF10.4)	TIM00320	
IF(ISTEP.EQ.0)GD TO 230	TI M00330	
C WRITE OUT FREQUENCIES AT TEST POINTS	TIM00340	
WRITE(6,1030)	TIM00350	
1030 FORMAT(1H0,/,15X, FREQUENCIES AT TEST POINTS +,/)	TIM00360	
DO 130 K=1, NZTP	TIM00370	
IF(K.GT.1)GO TO 110	TIM00380	
WRITE(6,1040)(IXTP(I),I=1,NXTP)	TIM00390	
1040 FORMAT(1H ,24X, J / I',7X,5(I3,15X))	TIM00400	
	PAGE	213

110	WRITE(6,1050)IZTP(K)	TIM00410
1050	FORMAT(1H0,12X, PLANE ', I2)	TIM00420
	DO 120 JJ=1,NYTP	TIM00430
	J=NYTP+1-JJ	TIM00440
	WRITE(5,1060)IYTP(J), (W(IXTP(I),IYTP(J),IZTP(K)),I=1,NXTP)	TI M00450
120	CONTINUE	TIM00460
1060	FORMAT(1H ,22X,13,2X,5(4X,1PD14.7))	TIM00470
130	CONTINUE	TIM00480
	IF(IFLOUT.GT.O.AND.NFLAG2.GT.O)GO TO 220	TIM00490
C GC	D HERE FOR WRITING OUT FLUXES AT TEST POINTS ONLY	TIM00500
	IF((NZTP*(NYTP+2)).GT.26)WRITE(6,1000)	TIM00510
	WRITE(6,1070)	TIM00520
1070	FORMAT(1H0,/,15X, FLUXES AT TEST POINTS',/)	TIM00530
	LINECT=(NZTP*(NYTP+2))+14	TIM00540
	IF((NZTP*(NYTP+2)).GT.26)LINECT=10	TI M00550
C 11	F IDPT=1,ASSUME NEW FLUXES ON IDPD AND THAT IDPD IS REWDUND	TIM00560
	KS=1	TIM00570
	DD 210 K=1,NZTP	TIM00580
	IF(K.GT.1)GD TO 140	TIM00590
	WRITE(6,1040)(IXTP(I),I=1,NXTP)	TIM00600
140	IF(IOPT.EQ.0)GO TO 170	TIM00610
	KD=JZTP(K)-KS	TIM00620
	IF(KD.E2.0)GO TO 160	TIM00630
	DD 150 ITEMP3=1,KD	TIM00640
	READ(IOPO)	TIM00650
150	CONTINUE	TIM00660
160	READ(IDPD)P2	TIM00670
170	DD 200 NG=1.NNG	TIM00680
	ND=NG-NNG	TI M00690
	IF (NG.LE.NNG)WRITE(6,1080)IZTP(K),NG	TIM00700
	IF(NG.GT.NNG)WRITE(6,1090)IZTP(K),ND	TIM00710
1080	FORMAT(1H0,12X, PLANE ', I2, ', NEUTRON GROUP ', I2)	TIM00720
1.090	FORMAT(1H0,12X, 'PLANE ', 12,' , PRECURSOR GROUP ', 12)	TIM00730
	03 190 JJ=1,NYTP	TIM00740
	J=NYTP+1-JJ	TIM00750
	IF(IDPT.EQ.0)GD TO 180	TIM00760
		DACE

	WRITE(6,1060)IYTP(J), (P2(NG,IXTP(I),IYTP(J)),I=1,NXTP)	TIM00770
	GD TO 190	TIM00780
180	WRITE(6,1050)IYTP(J),(PSI(NG,IXTP(I),IYTP(J),IZTP(K)),I=1,NXTP)	TIM00790
190	CONTINUE	TIM00800
	LINECT=LINECT+NYTP+2	TIM00810
	IF((LINECT+NYTP+2).LE.60)G3 TO 200	TI M00820
	WRITE(6,1000)	TI M00830
	WRITE(6,1070)	TIM00840
	WRITE(6,1040)(IXTP(I),I=1,NXTP)	TIM00850
	LINECT=7	TIM00860
200	CONTINUE	TIM00870
	KS=IZTP(K)	TIM00880
210	CONTINUE	TIM00890
	GO TO 290	TIM00900
C	RANCH HERE FOR COMPLETE FLUX DUMP	T1M00910
220	WRITE(6,1000)	TIM00920
	WRITE(6,1100)(ITITLE(I),I=1,20)	TIM00930
1100	FORMAT(1HO,10X, FLUXES FOR THE PROBLEM, 20A4)	TIM00940
230	DD 280 K=1, KM	TI M00950
	IF(IOPT.EQ.1)READ(IOPO)P2	TT M00960
	DD 280 NG=1,NTOG	TIM00970
	ND=NG-NNG	TIM00980
	IF(K.GT.1.OR.NG.GT.1)WRITE(5,1110)	T1M00990
1110	FORMAT(1H1,/)	TIM01000
	IF(NG.LE.NNG)WRITE(6,1120)K,NG	TIM01010
	IF(NG.GT.NNG)WRITE(6,1130)K,ND	TIM01020
1120	FORMAT(1H0,10X, "NEUTRON FLUXES FOR PLANE ', I2, ', GROUP ', I2)	TIM01030
1130	FORMAT(1H0,10X, PRECURSOR CONC. FOR PLANE ', I2, ', GROUP ', I2)	TIM01040
	JMS=1	TIM01050
	JME=JM	TI MO1060
	IF(JM.GT.50)JME=50	TIN01070
	ITEMP2=50/JME	TIM01080
	ITEMP4=ITEMP2	TIM01090
	DD 270 I=1, IM, 10	TIMOLIOO
	IS=I	TIMOIIIO
	IE=I+9	TIMOLIZO
		PAGE 215

•

.
	IF(IE.GT.IM)IE=IM	TIM01130
	IF((I-1)/10.LT.ITEMP4)G0 TJ 240	TIM01140
	WRITE(6,1110)	TIM01150
	ITEMP4=ITEMP4+ITEMP2	TIM01160
240	WRITE(6,1140)(ITEMP3,ITEMP3=IS,IE)	TIM01170
1140	FORMAT(1H0, 3X, J / 1, 2X, 17, 9112)	TIM01180
	WRITE(6,1150)	TIM01190
1150	FORMAT(1H, 3X)	TIM01200
	DD 260 ITEMP3=JMS, JME	TIM01210
	J=JME+1-ITEMP3	TIM01220
	IF(IOPT.EQ.1)GO TO 250	TIM01230
	WRITE(6,1150)J,(PSI(NG,II,J,K),II=IS,IE)	TIM01240
1160	FORMAT(1H , 2X, 12, 6X, 1P10D12.5)	TIM01250
	GD TD 260	TIM01260
250	WRITE(6,1150)J,(P2(NG,II,J),II=IS,IE)	TIM01270
260	CONTINUE	T1M01280
	IF(JME.GE.JM)GD TD 270	TIM01290
	JMS=JME+1	TIM01300
	JME=JMS+49	TIM01310
	IF(JME.GT.JM)JME=JM	TIM01320
	WRITE(6,1110)	TIM01330
	GD TD 240	TIM01340
270	CONTINUE	TIM01350
280	CONTINUE	TIM01360
	CALL ETIMEF(TEMP)	TIM01370
	WRITE(6,1180)TEMP	TIM01380
1180	FORMAT(1H0,10X, FLUX PRINTOUT COMPLETED, ELAPSED TIME(MIN) =	•,F10TIM01390
	1.4)	TIM01400
	IF(NFLAG2.EQ.2)WRITE(6,1170)	TIM01410
1170	FORMAT(1H1,10X, "HAVE USED ALLOTTED CPU TIME")	TIM01420
290	CONTINUE	TIM01430
	IF(IOPT.EQ.1)REWIND IOPO	TIM01440
	RETURN	TIM01450
	END	TIM01460

-

	SUBROUTINE CHANGE(XIM, XNU, SIGF, SIGR, SIGT, SIGS, HX, HY, HZ, IBP, JBP, KB	PSET00010
1	1, DD1, DD2, DD3, DD4, DD5, DD6, DD7, MMAP, NNGV, NDNSCV, NMATV, IMV, JMV, KMV,	SET00020
•	2 IRMV, JRMV, KRMV, NPRGV, NFLAG1, NGXV)	SET00030
	IMPLICIT REAL+8 (A-H,O-Z)	SET00040
	INTEGER*2 MMAP, NPRMP	SET00050
	COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL BC,	SET00060
1	LNFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP(5), IYTP(5),	SET00070
2	2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NDIT, NIIT, NPIT, IDPSI, IODUMP	SET00080
	3IOFN,IOFO,IOPN,IOPO,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	SET00090
4	4NTIT,IETIME,IFLDUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	SET00100
	COMMON/FLOTE/EFFK, ORFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	SET00150
	ITEMP5, TEMP5, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	SET00160
	COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5),	SET00170
	LISTEP, ICHHT	SET00180
	COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4),	SET00190
•	1DELSTS(5,4); DELS1S(5,4), DELS2S(5,4); DELSFL(5,4); DELSRL(5,4);	SET00200
	2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	SET00210
	DIMENSION XIM(NNGV), XNU(NMATV, NNGV), SIGF(NMATV, NNGV), SIGR(NMATV,	SET00220
	INNGV), SIGT(NMATV, NNGV), SIGS(NMATV, NNGV, NDNSCV), HX(IRMV), HY(JRMV),	SET00230
	2HZ(KRMV), IBP(IRMV), JBP(JRMV), KBP(KRMV), DD1(NPRGV, NNGV), DD2(NPRGV,	SET00240
•	3NNGV), DD3(NPRGV, NNGV), DD4(NPRGV, NNGV), DD5(NPRGV, NNGV), DD6(NPRGV,	SET00250
4	4NNGV), DD7(NPRGV, NGXV, NDNSCV), MMAP(IRMV, JRMV, KRMV)	SET00260
	DIMENSION HD(6), MN(B)	SE T00270
	TEMP=1.2D1	SET00280
	TEMP1=8.0D0	SET00290
F	IRST ALTER CROSS SECTIONS	SET00300
	IF(NFLAG1.EQ.2)GD TD 110	SET00310
	ITEMP1=ISTPCH	SET00320
	TEMP2=1.0D0	SET00330
	GO TO 120	SET00340
119	ITEMP1=ILINCH	SET00350
	TEMP2=2.0D0+HT/(TEND-TSTART)	SET00360
120	D3 600 ITEMP2=1,ITEMP1	SET00370
	IF(NFLAG1.EQ.2)GD TO 150	SET00380
130	NM=MNSCH(ITEMP2)	SET00390
	MM=ITEMP2	SET00395
		DACE

n n**išk**ini i redniš fito opanio provinski je jeko pristi ka poslavni i dvita pri poslavni i posla

C

		DD 140 NG=1, NNG	SET00400
		SIGF(NM,NG)=SIGF(NM,NG)+DELSFS(MM,NG)	SET00410
		SIGR(NM, NG) = SIGR(NM, NG)+DELSRS(MM, NG)+DELSIS(MM, NG)+DELS2S(MM, NG)	SET00420
		SIGT(NM,NG)=SIGT(NM,NG)+DELSTS(MM,NG)	SET00430
		SIGS(NM,NG,1)=SIGS(NM,NG,1)+DELSIS(MM,NG)	SET00440
		IF(NDNSCT.LT.2)GD TO 140	SET00450
		SIGS(NM, NG, 2)=SIGS(NM, NG, 2)+DELS2S(MM, NG)	SET00460
	140	CONTINUE	SET00470
		GO TO 170	SET00480
	150	NM=MNLCH(ITEMP2)	SET00490
		MM=ITEMP2	SET00495
		DO 160 NG=1, NNG	SET00500
		SIGF(NM,NG) # SIGF(NM,NG) + TEMP 2* DELSFL(MM,NG)	SET00510
		SIGR(NM,NG) #SIGR(NM,NG)+TEMP2*(DELSRL(MM,NG)+DELS1L(MM,NG))	SET00520
		SIGT(NM,NG) = SIGT(NM,NG) + TEMP2 = DELSTL(MM,NG)	SET00530
		SIGS(NM,NG,1)=SIGS(NM,NG,1)+TEMP2+DELS1L(MM,NG)	SET00540
		IF(NDNSCT.LT.2)GO TO 160	SET00550
		SIGR(NM,NG)=SIGR(NM,NG)+TEMP2=DELS2L(MM,NG)	SET00560
		SIGS(NM, NG, 2)=SIGS(NM, NG, 2)+TEMP2+DELS2L(MM, NG)	SET00570
	160	CONTINUE	SET00580
0	L	OOP DVER MATERIAL REGIONS, CHANGING COEFFICIENTS WHENEVER MMAP(IR,	JSET00590
С	R	• KR) = NM	SET00600
	170	D3 550 KR=1, KRM	SET00610
		DO 540 JR=1, JRM	SET00620
		DD 530 IR=1,IRM	SET00630
		IF(MMAP(IR, JR, KR).NE.NM)GD TO 530	SET00640
0	Ht	DMOGENEOUS REGION	SET00650
		NPR=4+IRM+JRM+(2+KR-1)+2+IRM+(2+JR-1)+2+IR	SET00660
		ITEMP5=1	SET00670
		NPR P=NPR	SET00680
		HD(1)=HZ(KR)	SET 00690
		HD(2)=HD(1)	SET00700
		HD(3)=HY(JR)	SET00710
		HD(4)=HD(3)	SET00720
		HD(5)=HX(IR)	SE T00730
		HD(6)=HD(5)	SET00740

.

PAGE 218

.

	DD 180 ITEMP4=1,8	
	MN(ITEMP4)=MMAP(IR, JR, KR)	
	180 CONTINUE	
	GD TO 500	
5	LOWER LEFT EDGE	
•	200 NPRP=NPR-4+IRM+JRM-1	
	ITEMP5=2	
	HD(1) = HZ(KR)	
	HD(2)=HZ(KR-1)	
	IF(KR.EQ.1)HD(2)=HD(1)	
	HD(5)=HX(IR)	N CONTRACTOR OF CONTRACTOR
	HD(6)=HX(IR-1)	
	IF(IR.EQ.1)HD(6)=HD(5)	
	MN(1)=MMAP(IR, JR, KR-1)	
	IF(KR.EQ.1)MN(1)=MN(5)	
	MN(4)=MN(1)	
	MN(6)=MMAP(IR-1,JR,KR)	
	IF(IR.EQ.1)MN(6)=MN(5)	
	MN(7)≠MN(6)	
	MN(2)=MMAP(IR-1,JR,KR-1)	
	IF(KR.EQ.1)MN(2)=MN(6)	
	IF(IR.EQ.1)MN(2)=MN(1)	-
	MN(3)=MN(2)	
	GD TO 500	
0	LEFT SIDE	
	210 NPRP=NPR-1	·
	ITEMP5=3	
	HD(2)=HD(1)	
	MN(4)=MN(8)	
	MN(1)=MN(5)	
	MN(2)=MN(6)	
	MN(3)=MN(7)	·
	GO TO 500	
0	LEFT FRONT EDGE	
	220 NPRP=NPR-2*IRM-1	•
	ITEMP5=4	

1.1.4

SET00750 SET00760 SET00770 SET00780 SET00790 SET00800 SET00810 SET00820 SET00830 SET00840 SET00850 SET00860 SET00870 SET00880 SET00890 SET00900 SET00910 SET00920 SET00930 SET00940 SET00950 SET 00960 SET00970 SET00980 SET00990 SET01000 SET01010 SET01020 SET01030 SET01040 SET01050 SET01060 SET01070 SET01080 SET01090 SET01100 PAGE 219

MN(8)=MMAP(IR,JR-1,KR)	SET01110
IF(JR.EQ.1)MN(8)=MN(5)	SET01120
MN(4) = MN(8)	SET01130
MN(7)=MMAP(IR-1,JR-1,KR)	SET01140
IF(IR.E2.1) MN(7)=MN(8)	SET01150
TF(JR.EQ.1)MN(7)=MN(6)	SET01160
MN(3) = MN(7)	SET01170
HD(4)=HY(JR-1)	SETOLIBO
IF(JR.EQ.1)HD(4)=HD(3)	SET01190
GD TO 500	SET01.200
LOWER FRONT EDGE	SET01210
230 NPRP=NPR-4+IRM+JRM-2+IRM	SET01220
ITEMP5=5	SET01230
HD[2]=HZ[KR-1]	SET01240
IF(KR.EQ.1)HD(2)=HD(1)	SET01250
HD(6)=HD(5)	SET01260
MN(6)=MN(5)	SET01270
MN(1)=MMAP(IR,JR,KR-1)	SET01280
IF(KR.EQ.1)MN(1)=MN(5)	SET01290
MN(2)=MN(1)	SET01300
MN(7)=MN(8)	SET01310
MN(4)=MMAP(IR,JR-1,KR-1)	SET01320
IF(KR.EQ.1)MN(4)=MN(8)	SET01330
IF(JR.EQ.1)MN(4)=MN(1)	SET01340
MN(3) = MN(4)	SET 01 3 50
GO TO 500	SET01360
LOWER FRONT LEFT CORNER	SET01370
240 NPRP=NPR-4+IRM+JRM-2+IRM-1	SET01380
ITEMP5=5	SET01390
HD(6)=HX(IR-1)	SET01400
IF(IR.EQ.1)HD(6)=HD(5)	SET01410
MN(6)=MMAP(IR-1,JR,KR)	SET01420
IF(IR.EQ.1)MN(6)=4N(5)	SET01430
MN(2)=MMAP(IR-1,JR,KR-1)	SET01440
IF(IR.EQ.1)MN(2)=MN(1)	SET01450
IF(KR.EQ.1)MN(2)=MN(6)	SET01460
	PAGE 220

.

C

0

-

•

MN(7)=MMAP(IR-1,JR-1,KR)		SET01470
IF(IR.EQ.1)MN(7)=MN(8)		SET01480
IF (JR. EQ. 1) MN(7) = MN(6)		SET 01 490
MN(3)=MMAP(IR-1,JR-1,KR-1)		SET01500
IF(IR.EQ.1)MN(3)=MN(4)		SET01510
IF(JR.EQ.1)MN(3)=MN(2)		SET01520
IF(KR.EQ.1)MN(3)=MN(7)		SET01530
GO TO 500		SET01540
C FRONT SIDE		SET01550
250 NPRP=NPR-2*IRM		SET01560
ITEMP5=7		SET01570
HD(2)=HD(1)		SET01580
HD(6)=HD(5)		SET01590
MN(4)=MN(8)		SET01600
MN(7)=MN(8)		SET01610
MN(3)=MN(8)		SET01620
MN(6)=MN(5)		SET01630
MN(1)=MN(5)		SET01640
MN(2)=MN(5)		SET01650
GD TO 500		SET01660
C BOTTOM SIDE		SET01670
260 NPRP=NPR-4+IRM+JRM		SET01680
ITEMP5=8		SET01.690
HD(2)=HZ(KR-1)		SET01700
IF(KR.EQ.1)HD(2)=HD(1)		SET01710
HD(4)=HD(3)		SET01720
MN(8)=MN(5)		SET01730
MN(7)=MN(6)		SET01740
MN(1)=MMAP(IR,JR,KR-1)		SET01750
IF(KR.EQ.1)MN(1)=MN(5)		SET01760
MN(2)=MN(1)		SET01770
MN(3)=MN(1)		SET01780
MN(4)=MN(1)		SET01790
GJ TD 500	1	SET01800
C BOTTOM RIGHT EDGE (9)	,	SET01810
270 IF(IR.EQ.IRM)GD TO 360		SET01820

	NPRP=NPR-4*IRM*JRM+1	SETO1830
	ITEMP5=9	SET01.840
	HD(5)=HX(IR+1)	SETOL850
	MN(5)=MMAP(IR+1,JR,KR)	SET01860
	MN(8)=MN(5)	SET01870
	MN(1)=MMAP(IR+1,JR,KR-1)	SET01880
	IF(KR.EQ.1)MN(1)=MN(5)	SET 01 890
	MN(4)=MN(1)	SET01900
	GO TO 500	SET01910
С	FRONT BOTTOM RIGHT CORNER (10)	SET01920
	280 NPRP=NPR-4+IRM+JRM-2+IRM+1	SET01930
	ITEMP5=10	SET01940
	IF(JR.EQ.1)GO TO 285	SET01950
	HD(4)=HY(JR-1)	SET 01 960
	MN(7)=MMAP(IR,JR-1,KR)	SET01970
	MN(3)=MMAP(IR, JR-1, KR-1)	SET01980
	MN(8)=MMAP(IR+1,JR-1,KR)	SET01990
	MN(4)=MMAP(IR+1,JR-1,KR-1)	SET02000
	IF(KR.NE.1)GO TO 285	SET02010
	MN(3)=MN(7)	SET02020
	MN(4)=MN(8)	SET02030
	285 GD TO 500	SET02040
C	FRONT RIGHT EDGE	SET02050
	290 NPRP=NPR-2*IRM+1	SET02060
	HD(2)=HD(1)	SET02070
	ITEMP5=11	SET02080
	IF(KR.EQ.1)GO TO 295	SET02090
	MN(4)=MN(8)	SET02100
	MN(3)=MN(7)	SET02110
	MN(1)=MN(5)	SET02120
	MN(2) = MN(6)	SET02130
	295 GD TO 500	SET02140
C	FRONT TOP RIGHT CORNER (12)	SET02150
	300 IF(KR.EQ.KRM)GD TD 320	SET02160
	NPRP=NPR+4+IRM+JRM-2+IRM+1	SET02170
	ITEMP5=12	SET02180

HD(1)=HZ(KR+1)	SET02190
MN(6)=MMAP(IR,JR,KR+1)	SET02200
MN(5)=MMAP(IR+1, JR, KR+1)	SET02210
MN(B) = MMAP(IR+1, JR-1, KR+1)	SET02220
MN(7)=MMAP(IR, JR-1, KR+1)	SET02230
IF(JR.NE.1) GO TO 305	SET02240
MN(8)=MN(5)	SET02250
MN(7)=MN(6)	SET02260
305 GD TO 500	SET02270
TOP RIGHT EDGE (13)	SET02280
310 NPRP=NPR+4*IRM*JRM+1	SET02290
ITEMP5=13	SET02300
IF(JR.EQ.1)GO TO 315	SET02310
HD(4)=HD(3)	SET02320
MN(7)=MN(6)	SET02330
MN(8)=MN(5)	SET02340
MN(4)=MN(1)	SET02350
MN(3)=MN(2)	SET02360
315 GD TO 500	SET02370
RIGHT SIDE (14)	SET02380
320 NPRP=NPR+1	SET02390
ITEMP5=14	SET02400
IF(KR.NE.KRM)GD TO 325	SET02410
IF(JR.EQ.1)GO TO 325	SET02420
HD(4)=HD(3)	SET02430
MN(4)=MN(1)	SET02440
MN(3)=MN(2)	SET02450
325 MN(8)=MN(4)	SET02460
MN(5)=MN(1)	SET02470
MN(7)=MN(3)	SET02475
MN(6)=MN(2)	SET02480
HD(1)=HD(2)	SET02490
GD TO 500	SET02500
BACK BOTTOM RIGHT CORNER (15)	SET02510
330 IF(JR.EQ.JRM)GO TO 420	SET02520
NPRP=NPR-4+IRM+JRM+2+IRM+1	SET02530

C

0

C

ITEMP5=15	SET02540
HD(3)=HY(JR+1)	SET02550
MN(5)=MMAP(IR+1,JR+1,KR)	SET02560
MN(6)=MMAP(IR,JR+1,KR)	SET02570
MN(2)=MN(6)	SET02580
MN(1)=MN(5)	SET02590
IF (KR. EQ. 1) GO TO 335	SET02600
HD(2)=HZ(KR-1)	SET02610
MN(2)=MMAP(IR, JR+1, KR-1)	SET02620
MN(1)=MMAP(IR+1,JR+1,KR-1)	SET02630
MN(3)=MMAP(IR,JR,KR-1)	SET02640
MN(4)=MMAP(IR+1;JR,KR-1)	SET02650
335 GO TO 500	SET02660
BACK RIGHT EDGE (16)	SET02670
340 NPRP=NPR+2#IRM+1	SET02680
ITEMP5=16	SET02690
IF(KR.EQ.1)GO TO 345	SET02700
HD(2)=HZ(KR)	SET02710
MN(1)=MN(5)	SET02720
MN(2)=MN(6)	SET02730
MN(3)=MN(7)	SET02740
MN(4)=MN(8)	SET02750
345 GO TO 500	SET02760
BACK TOP RIGHT CORNER (17)	SET02770
350 IF(KR.EQ.KRM)GO TO 370	SET02775
NPRP=NPR+4+1RM+JRM+2+IRM+1	SET02780
ITENP5=17	SET02790
HD(1)=HZ(KR+1)	SET02800
MN(5)=NMAP(IR+1, JR+1, KR+1)	SET02810
MN(6)=MMAP(IR, JR+1, KR+1)	SET02820
MN(7)=MMAP(IR,JR,KR+1)	SET02830
MN(8)=MMAP(IR+1,JR,KR+1)	SET02840
GD TD 500	SET02850
BACK TOP EDGE (18)	SET02860
360 IF(JR.EQ.JRM)GO TO 420	SET02865
IF (KR.EQ.KRM)GO TO 370	SET02870

С

C

C

NPRP=NPR+4+IRM+JRM+2+IRM	SET02875
ITEMP5=18	SET02880
IF(IR.NE.IRM)GD TO 365	SET02890
HD(1)=HZ(KR+1)	SET02900
HD(2)=HZ(KR)	SET 02910
HD(3)=HY(JR+1)	SET 02920
MN(2)=MMAP(IR,JR+1,KR)	SET02930
MN(3)=MMAP(IR,JR,KR)	SET02940
MN(6)=MMAP(IR,JR+1,KR+1)	SET02950
MN(7)≓MMAP(IR,JR;KR+1)	SET 02960
365 MN(1)=MN(2)	SET 02970
MN(4)=MN(3)	SET02980
MN(5)=MN(6)	SET 02990
MN (8)=MN (7)	SET03000
HD (5) = HD (6)	SET03010
GD TO 500	SET03020
BACK SIDE (19)	SET03030
370 NPRP=NPR+2*IRM	SET03040
ITEMP5=19	SET03050
IF(IR.NE.IRM.AND.KR.NE.KRM)GD TO 375	SET03060
MN(2)=MMAP(IR,JR+1,KR)	SET03062
MN(3)=MMAP(IR,JR,KR)	SET03064
HD(2)=HD(1)	SET03066
HD(3)=HY(JR+1)	SET03068
HD(5)=HD(6)	SET03070
MN(4)=MN(3)	SET03080
MN(1)=MN(2)	SET03090
375 HD(1)=HZ(KR)	SET03100
MN(5)=MN(1)	SET03110
MN(6)=MN(2) °	SET03120
MN(7) ≠ MN(3) :	SET03130
MN (8) = MN (4)	SET03140
GO TO 500	SET03150
BACK BOTTOM EDGE (20)	SET03160
380 NPRP=NPR-4+IRM+JRM+2+IRM	SET03170
ITEMP5=20	SET03180

C

C

	IF(KR.EQ.1)GO TO 385
	HD(2)=HZ(KR-1)
	MN(1)=MMAP(IR, JR+1, KR-1)
	MN(2)=MN(1)
	MN(3)=MMAP(IR,JR,KR-1)
	MN(4)=MN(3)
	385 GD TO 500
С	BACK BOTTOM LEFT CORNER (21)
	390 NPRP=NPR-4*IRM*JRM+2*IRM-1
	ITEMP5=21
	IF(IR.EQ.1)GO TO 395
	HD(6)=HX(IR-1)
	MN(6)=MMAP(IR-1,JR+1,KR)
	MN(7)=MMAP(IR-1,JR,KR)
	MN(3)=MN(7)
	MN(2)=MN(6)
	IF(KR.EQ.1)GO TO 395
	MN(3)=MMAP(IR-1,JR,KR-1)
	MN(2)=MMAP(IR-1,JR+1,KR-1)
_	395 GD TO 500
C	BACK LEFT EDGE (22)
	400 NPRP=NPR+2*IRM-1
	ITEMP5=22
	IF(KR.EQ.1)GU TU 405
	MN(1) = MN(5)
	MN (2) = MN (6)
	MN(3)≠MN(7) >
	HU(2)=HU(1)
-	403 60 10 300 RACK TOD 1 EET CODNED (22)
j.	DALK TUP LEFT LUKNER (25)
	HIU ITINKOEWONAMIGU IJ DDU Nodo-Nodaletone idmažitom-t
	HTENDS=22
	110MF7467 40/114447/88411
	MNISIAMWAD(TD. IDA1.KDA1)
	ディイントー コンサイト ていたのい エアクシンショント

-

.

.

. •

1

.

SET03190 SET03200 SET03210 SET03220 SET03230 SET03240 SET03250 SET03260 SET03270 SET03280 SET03290 SET03300 SET03310 SET03320 SET03330 SET03340 SET03350 SET03360 SET03370 SET03380 SET03390 SET03400 SET03410 SET03420 SET03430 SET03440 SET03450 SET03460 SET03470 SET03480 SET03490 SET03500 SET03510 SET03520 SET03530 SET03540

MN(6)=MN(5) SET03 MN(7)=MN(8) SET03 IF(IR.EQ.1)GD TD 415 SET03 MN(6)=MMAP(IR-1,JR+1,KR+1) SET03 MN(7)=MMAP(IR-1,JR,KR+1) SET03 415 GD TD 500 SET03 C TOP LEFT EDGE (24) SET03	560 570 580 590 600 610 620 630 635 640 650
MN(7)=MN(8) SET03 IF(IR.EQ.1)GD TD 415 SET03 MN(6)=MMAP(IR-1,JR+1,KR+1) SET03 MN(7)=MMAP(IR-1,JR,KR+1) SET03 415 GD TD 500 SET03 C TOP LEFT EDGE (24) SET03	570 580 590 600 610 620 630 635 640 650
IF(IR.EQ.1)GD TD 415 SET03 MN(6)=MMAP(IR-1,JR+1,KR+1) SET03 MN(7)=MMAP(IR-1,JR,KR+1) SET03 415 GD TD 500 SET03 C TOP LEFT EDGE (24) SET03	580 590 600 610 620 630 635 640 650
MN(6)=MMAP(IR-1,JR+1,KR+1) SET03 MN(7)=MMAP(IR-1,JR,KR+1) SET03 415 GD TD 500 SET03 C TOP LEFT EDGE (24) SET03	590 600 610 620 630 635 640 650
MN(7)=MMAP(IR-1,JR,KR+1) SET03 415 GD TD 500 SET03 C TOP LEFT EDGE (24) SET03	600 610 620 630 635 640 650
415 GD TO 500 SET03 C TOP LEFT EDGE (24) SET03	610 620 630 635 640 650
C TOP LEFT EDGE (24) SET03	620 630 635 640 650
	630 635 640 650
420 IF(KR.EQ.KRM)GO TO 530 SET03	635 640 650
NPRP=NPR+4+1RM+JRM-1 SET03	640 650
TTEMP5=24 SET03	650
IF(IR.NE.IRM.AND.JR.NE.JRM)GD TO 425 SET03	
HD(1)=HZ(KR+1) SET03	660
HD(2)=HZ(KR) SET03	665
HD(5)=HX(IR) SET03	670
MN(8)=MMAP(IR,JR,KR+1) SET03	680
MN(4)=MMAP(IR,JR,KR) SET03	690
MN(7)=MN(8) SET03	700
MN(3)=MN(4) SET03	705
IF(IR.EQ.1)GO TO 425 SET03	710
HD(6)=HX(IR-1) SET03	720
MN(7)=MMAP(IR-1,JR,KR+1) SET03	730
MN(3)=MMAP(IR-1,JR,KR) SET03	740
425 HD(3)=HD(4) SET03	750
MN(1)=MN(4) SET03	760
MN(2)=MN(3) SET03	770
MN(5)=MN(8) SET03	780
MN(6)=MN(7) SET03	790
GO TO 500 SETO3	800
C FRONT TOP LEFT CORNER SETO3	810
430 NPRP=NPR+4+IRM+JRM-2+IRM-1 SET03	820
ITEMP5=25 SET03	830
IF(JR.EQ.1)GO TO 435 SET03	840
HD(4)=HY(JR-1) SET03	850
MN(4)=MMAP(IR, JR-1, KR) SET03	860
MN(8)=MMAP(IR, JR-1, KR+1) SET03	870

	MN(3)=MN(4)	SET03880
	MN(7)=MN(8)	SET03890
	IF(IR.EQ.1)GO TO 435	SET03900
	MN(3)=MMAP(IR-1,JR-1,KR)	SET03910
	MN(7)=MMAP(IR-1,JR-1,KR+1)	SET03920
	435 GD TD 500	SET03930
C	TOP FRONT EDGE	SET03940
	440 NPRP=NPR+4+IRM+JRM-2+IRM	SET03950
	ITEMP5=26	SET03960
	IF(IR.EQ.1)GO TO 445	SET03970
	HD(6)=HD(5)	SET03980
	MN(2)=MN(1)	SET03990
	MN(3)=NN(4)	SET04000
	MN (6) = MN (5)	SET04010
	MN(7)=MN(8)	SET04020
	445 GD TO 500	SET04030
C	TOP SIDE (27)	SET04040
	450 NPRP=NPR+4+IRM+JRM	SET04050
	ITEMP5=27	SET04060
	IF(JR.EQ.1)GO TO 455	SET 04070
	HD(4)=HD(3)	SET 04080
	MN(4)=MN(1)	SET04090
	MN(3)=MN(2)	SET04100
	MN(7)=MN(6)	SET04110
	MN(8)=MN(5)	SET04120
	455 GO TO 500	SET04130
C	BRANCH HERE TO COMPUTE COEFFICIENTS	SET04140
	500 NRP=NPRP	SET04150
	TEMP 3= 1.0D0	SET04160
	DO 520 NG=1, NNG	SET04170
	DD1 (NRP, NG) # ((HD(3) +HD(2)/SIGT(MN(1), NG))+(HD(3) +HD(1)/SIGT(MN(5)	SET04180
	1NG}}+(HD(4) *HD(2)/SIGT(MN(4);NG}}+(HD(4) +HD(1)/SIGT(MN(8);NG}))*	SET04190
	2(TEMP3/(HD(5)*TEMP))	SET04200
	DD2(NRP,NG) = ((HD(5) + HD(2)/SIGT(MN(1),NG))+(HD(6) + HD(2)/SIGT(MN(2)	SET04210
	1NG) J+(HD(6) +HD(1)/SIGT(MN(6),NG) J+(HD(5) +HD(1)/SIGT('MN(5),NG)))+	SET04220
	2(TEMP3/(HD(3)*TEMP))	SET04230

DD3(NRP, NG) = ((HD(4) *HD(5)/SIGT(MN(7), NG))+(HD(4) *HD(5)/SIGT(MN(8), SET04240 1NG))+(HD(3) *HD(5)/SIGT(MN(5), NG))+(HD(3) *HD(6)/SIGT(MN(6), NG)))* SET04250 2(TEMP3/(HD(1)*TEMP)) DD4(NRP, NG) *DD1(NRP, NG)+DD2(NRP, NG)+DD3(NRP, NG)+(((HD(3) *HD(2)/SIGSET04270 1T(MN(2), NG))+(HD(4) *HD(2)/SIGT(MN(3), NG))+(HD(4) *HD(1)/SIGT(MN(7), SET04280))

2NG))+(HD(3)*HD(1)/SIGT(MN(6),NG)))/(HD(6)*TEMP)+((HD(6)*HD(2)/SIGTSET04290 3(MN(3),NG))+(HD(5)*HD(2)/SIGT(MN(4),NG))+(HD(5)*HD(1)/SIGT(MN(8),NSET04300 4G))+(HD(6)*HD(1)/SIGT(MN(7),NG)))/(HD(4)*TEMP)+((HD(5)*HD(3)/SIGT(SET04310 5MN(1),NG))+(HD(3)*HD(6)/SIGT(MN(2),NG))+(HD(4)*HD(6)/SIGT(MN(3),NGSET04320 6))+(HD(4)*HD(5)/SIGT(MN(4),NG)))/(HD(2)*TEMP))*TEMP3 DD4(NRP,NG)*0.5D0*DD4(NRP,NG) SET04340

DD5(NRP, NG) = D04(NRP, NG)+(HD(5)*HD(3)*HD(2)*SIGR(MN(1), NG)+HD(6)*HDSET04350 1(3)*HD(2)*SIGR(MN(2), NG)+HD(6)*HD(4)*HD(2)*SIGR(MN(3), NG)+HD(5)*HDSET04360 2(4)*HD(2)*SIGR(MN(4), NG)+HD(5)*HD(3)*HD(1)*SIGR(MN(5), NG)+HD(6)*HDSET04370 3(3)*HD(1)*SIGR(MN(5), NG)+HD(6)*HD(4)*HD(1)*SIGR(MN(7), NG)+HD(5)*HDSET04380 4(4)*HD(1)*SIGR(MN(8), NG))*(TEMP3/TEMP1)

DD6(NRP, NG) = (HD(5) + HD(3) + HD(2) + SIGF(MN(1), NG) + XNU(MN(1), NG) + HD(6) + SET044001 HD(3) + HD(2) + SIGF(MN(2), NG) + XNU(MN(2), NG) + HD(6) + HD(2) + SIGF(MNSET044102 (3), NG) + XNU(MN(3), NG) + HD(5) + HD(4) + HD(2) + SIGF(MN(4), NG) + XNU(MN(4), NSET044203 G) + HD(5) + HD(3) + HD(1) + SIGF(MN(5), NG) + XNU(MN(5), NG) + HD(6) + HD(3) + HD(1SET044304) + SIGF(MN(6), NG) + XNU(MN(6), NG) + HD(6) + HD(6) + HD(1) + SIGF(MN(7), NG) + XNSET044405U(MN(7), NG) + HD(5) + HD(4) + HD(1) + SIGF(MN(8), NG) + XNU(MN(8), NG)) + (TEMP3SET044506/TEMP1)

DD5(NRP,NG)=DD5(NRP,NG)-XIM(NG)+DD6(NRP,NG)

IF(NG.EQ.NNG)GD TD 520

DO 510 NDN=1,NDNSCT

DD7(NRP, NG, NDN)=(HD(5)*HD(3)*HD(2)*SIGS(MN(1),NG, NDN)+HD(6)*HD(3)*SET04490 1HD(2)*SIGS(MN(2),NG, NDN)+HD(6)*HD(4)*HD(2)*SIGS(MN(3),NG, NDN)+HD(5SET04500 2)*HD(4)*HD(2)*SIGS(MN(4),NG, NDN) +HD(5)*HD(3)*HD(1)*SIGS(MN(5),NG, NSET04510 3DN)+HD(5)*HD(3)*HD(1)*SIGS(MN(6),NG, NDN)+HD(6)*HD(4)*HD(1)*SIGS(MNSET04520 4(7),NG, NDN)+HD(5)*HD(4)*HD(1)*SIGS(MN(8),NG, NDN))*(TEMP3/TEMP1) SET04530 510 CDNTINUE 520 CDNTINUE 5

1,350,360,370,380,390,400,410,420,430,440,450,530),ITEMP5 SET04570

530 CONTINUE

PAGE 229

SET04470

SET04471

SET04480

SET04580

540 CONTINUE 550 CONTINUE 600 CONTINUE RETURN END

.

÷

SET04590 SET04600 SET04610 SET04620 SET04630

	SUBROUTINE DELAYS(ALAM, BETA, XIP, DD6, VD, NPRMP, PSI, P2, PSD, PD, NNGV, N	DDEL00010
	1 GV, NTOGV, NM ATV, IMV, J MV, KMV, NPRGV)	DEL00020
	IMPLICIT REAL*8 (A-H,O-Z)	DEL 00030
	INTEGER*2 4MAP,NPRMP	DEL00040
	COMMON/INTG/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	DEL00050
	1NFBC,NB3C,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	DEL00060
	2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUMP	,DEL00070
	3IOFN,IJFO,IOPN,IOPO,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	DEL00080
	4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	DEL00090
	COMMON/FLOTE/EFFK, DRFP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	DEL00140
	1TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMO, TIME, FLXCON, BETAT	DEL00150
	COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5);	DEL00160
	1ISTEP, ICHHT	DEL00170
	COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4),	DEL00180
	1DELSTS(5,4);DELS1S(5,4);DELS2S(5,4);DELSFL(5,4),DELSRL(5,4);	DEL00190
	2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	DEL00200
	DIMENSION_ALAM(NDGV),BETA(NDGV),XIP(NNGV,NDGV),DD6(NPRGV,NNGV),	DEL00210
	1NPRMP(IMV,JMV,KMV),PSI(NTOGV,IMV,JMV,KMV),P2(NTOGV,IMV,JMV),	DEL00220
	2PSO(IMV, JMV, KMV), PO(IMV, JMV), VO(NPRGV)	DEL00230
	IF(IOPT.EQ.1)GO TO 200	DEL00240
	DO 180 K=1,KM	DEL 00250
	DD 110 NG=1, NNG	DEL00260
	READ(IDSC1)((PSI(NG,I,J,K),I=1,IM),J=1,JM)	DEL00270
	IF(NG.NE.NTG)GD TD 110	DEL00280
	D9 100 J=1, JM	DEL00290
	DO 100 $I=1, IM$	DEL00300
10	DO PSD(I, J, K) = PSI(NTG, I, J, K)	DEL00310
11	LO CONTINUE	DEL00320
	NDL=NNG+1	DEL00330
	D' 170 J=1, JM	DEL00340
	DO 170 I=1, IM	DEL00350
	IF(K.EQ.KM)GO TO 150	DEL00360
	NPR=NPRMP(I,J,K)	DEL00370
	TEMP=0.0D0	DEL00380
	DO 120 NG=1, NNG	DEL00390
12	20 TEMP=TEMP+DD6(NPR,NG)+PSI(NG,I,J,K)	DEL00400

•

TEMP=TEMP/(EFFK+VO(NPR))	DEL00405
DO 140 NG=NDL,NTOG	DEL00410
ND=NG-NNG	DEL00420
IF(J.EQ.JM.OR.I.EQ.IM)GD TO 130	DEL00430
PSI(N3,I,J,K)≓BETA(ND)*TEMP/ALAM(ND)	DEL 00440
GD TO 140	DEL00450
130 PSI(NG,I,J,K)=0.0D0	DEL00460
140 CONTINUE	DEL00470
GO TO 170	DEL00480
150 DO 160 NG=NDL,NTOG	DEL00490
160 PSI(NG,I,J,KM)=0.0D0	DEL00500
170 CONTINUE	DEL00510
180 CONTINUE	DEL 00520
GO TO 300	DEL00530
C BRANCH HERE IF IOPT=1	DEL00540
200 DD 280 K=1,KM	DEL00550
DO 210 NG=1, NNG	DEL00560
READ(IOSC1)((P2(NG,I,J),I=1,IM),J=1,JM)	DEL00570
210 CONTINUE	DEL00580
WRITE(IDFD)((P2(NTG,I,J),I=1,IM),J=1,JM)	DEL00590
NDL=NNG+1	DEL00600
00 270 J=1, JM	DEL00610
DO 270 I=1, IM	DEL00620
IF(K.EQ.KM)GO TO 250	DEL00630
NPR=NPRMP(I,J,K)	DEL00640
TEMP=0.0D0	DEL00650
DD 220 NG=1, NNG	DEL 00660
220 TEMP=TEMP+DD6(NPR,NG)+P2(NG,I,J)/(EFFK+VO(NPR))	DEL00670
DO 240 NG=NDL,NTOG	DEL00680
ND=NG-NNG	DEL00690
IF(I.EQ.IM.DR.J.EQ.JM)GD TD 230	DEL00700
P2(NG,I,J)=BETA(ND)+TEMP/ALAM(ND)	DEL00710
GD TD 240	DEL00720
230 P2(NG, I, J)=0.0D0	DEL00730
240 CONTINUE	DEL00740
GD TO 270	DEL00750
	PAGE 232

250 DO 260 NG=NDL,NTOG 260 P2(NG,I,J)=0.0D0 270 CONTINUE WRITE(IDPO)P2 280 CONTINUE REWIND IDPO REWIND IDPO 300 REWIND IDSC1 RETURN END

DEL00760 DEL00770 DEL00780 DEL00790 DEL00800 DEL00810 DEL00820 DEL00830 DEL00840 DEL00850

•

.

1

SUBROUTINE STEPAO(V, XIM, ALAM, BETA, XIP, X, Y, Z, HX, HY, HZ, DD1, DD2, DD3,	STE00010	
1 DD4, DD5, DD5, DD7, VO, N PRMP, PSI, W, NNGV, NDGV, NTOGV, NDNSCV, I MV, JMV, KMV,	STE00020	
2IRMV, JRMV, KRMV, NPRGV, NGXV)	STE00030	
IMPLICIT REAL+8 (A-H,C-Z)	STE00040	
INTEGER#2 MMAP,NPRMP	STE00050	
COMMON/INT3/IASIZE,NNG,NDG,NTOG,NMAT,IM,JM,KM,IRM,JRM,KRM,NLBC,	ST E00060	
1NFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	STE00070	
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUMP,	STE00080	
3IDFN,IDFD,IOPN,IDPD,ITEMP,ITEMP1,ITEMP2,ITEMP3,ITEMP4,ITEMP5,	STE00090	
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IDSC2, NGX	STE00100	
COMMON/FLOTE/EFFK, OR FP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	STE00150	
ITEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMO, TIME, FLXCON, BETAT	STE00160	
COMMON/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5),	STE00170	
1 ISTEP, ICHHT	STE00180	
COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4),	STE00190	
1DEL STS(5,4); DEL SIS(5,4); DEL S2S(5,4); DEL SFL(5,4); DELS RL(5,4);	STE00200	
2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	STE00210	
DIMENSION V(NNGV), XIM(NNGV), ALAM(NDGV), BETA(NDGV), XIP(NNGV, NDGV),	STE00220	
1X(IHV),Y(JMV),Z(KMV),HX(IRMV),HY(JRMV),HZ(KRMV),DD1(NPRGV,NNGV),	STE00230	
2DD2 (NPRGV, NNGV), DD3 (NPRGV, NNGV), DD4 (NPRGV, NNGV), DD5 (NPRGV, NNGV),	STE00240	
3D36(NPRGV, NNGV), DD7(NPRGV, NGXV, NDNSCV), NPRMP(INV, JMV, K4V),	STE00250	
4PSI(NTOGV, IMV, JMV, KMV), W(IMV, JMV, KMV), VO(NPRGV)	STE00260	
DIMENSION CC(4,4), DD(4)	STE00270	
FIRST TRANSFORM ALL POINTS	STE00280	
D3 110 K=2, KMX	STE00290	
DD 110 J=1, JMX	STE00300	
DD 110 I=1,IMX	STE00310	
TEMP1=DEXP(W(I,J,K)+HT)	STE00320	
DO 100 NG=1, NNG	STE00330	
100 PSI(NG,I,J,K)=TEMP1*PSI(NG,I,J,K)	STE00340	
110 CONTINUE	STE00350	
NOW SET STARTING I, J, AND K INDICES ASSUMING NO SYMMETRY BOUNDARIES	STE00360	
IS=2	STE00370	
JS=2	STE00380	
KS=2	STE00390	
HINV=1.0D0/HT	STE00400	
	PAGE	234

500	DJ 850 K=KS, KMX	STE02370	
	IF(NF8C.EQ.0)GO TO 660	STE02380	
	DD 620 NG=1, NNG	STE02390	
	TEMP=1.0D0/(V(NG)+HT)	STE02400	
	D0 550 J=1,2	STE02410	
	D0 550 I=1,2	STE02420	
	NPR=NPRMP(I,J,K)	STE02430	
	II=2*(J-1)+I	STE02440	
	DD(II) = 0.000	STE02450	
	DD 523 NGP=1,NTOG	STE02460	
	IF(NGP.GT.NNG)GO TO 510	STE02470	
	IF(NGP.EQ.NG)GD TD 520	STE02480	
	DD(II)=DD(II)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K)	STE02490	
	GO TO 520	STE02500	
510	ND=NGP-NNG	STE02510	
	DD(II)=DD(II)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR)	STE02520	
520	CONTINUE	STE02530	
	DO 530 NDN=1,NDNSCT	STE02540	
	ITEMP1=NG-NDN	STE02550	
	IF(ITEMP1.LE.O)GD TD 530	STE02560	
	DD(II)=DD(II)+DD7(NPR,ITEMP1,NDN)+PSI(ITEMP1,I,J,K)	STE02570	
530	CONTINUE	STE02580	
	PTEM=TEMP+VO(NPR)	STE02581	
	DD(II) + DD(II) + (PTEM-DD4(NPR, NG)) + PSI(NG, I, J, K) + DD1(NPR, NG) + PSI(NG	STE02590	
	11+1, J, K) + DD2(NPR, NG) * PSI(NG, I, J+1, K) + DD3(NPR, NG) * PSI(NG, I, J, K+1) +	STE02600	
	2DD3(NPRMP(I, J, K-1), NG)*PSI(NG, I, J, K-1)	STE02610	
	DD 540 ITEMP2=1,4	STE02620	
540	CC(II, ITEMP2)=0.000	STE02630	
	CC(II,II)=(TEMP+W(I,J,K)/V(NG))+VO(NPR)+DD5(NPR,NG)	STE02640	
550	CONTINUE	STE02650	
	NPR=NPRMP(1,1,K)	STE02660	
	CC(1,2)=-DD1 (NPR,NG)	STE02670	
	CC(1,3)=-DD2(NPR,NG)	STE02680	
	CC(2,4)=-DD2(NPRMP(2,1,K),NG)	STE02690	
	CC(3,4)=-DD1(NPRMP(1,2,K),NG)	STE02700	
	CC(2,1)=CC(1,2)	STE02710	
		PAGE	235

CC(3,1)=CC(1,3)	STE02720
CC(4,2)=CC(2,4)	STE02730
CC(4,3)=CC(3,4)	STE02740
C CALL DSIMQ TO SOLVE SYSTEM	STE02750
NEQ=4	STE02760
CALL DSIMQ(CC,DD,NEQ,ISING)	STE02770
D0 560 J=1,2	STE02780
D0 560 I=1,2	STE02790
II=2*(J-1)+I	STE02800
560 PSI(NG,I,J,K)=DD(II)	STE02810
DD 620 $I=3, IMX$	STE02820
DD 570 II=1,4	STE02830
570 DD(II)=0.000	STE02840
NPRY=NPRMP(I,I,K)	STE02850
DD 610 J=1,2	STE02860
NPR=NPRMP(I,J,K)	STE02870
DD 590 NGP=1,NTDG	STE02880
IF(NGP.GT.NNG)GD TD 580	STE02890
IF(NGP.EQ.NG)GD TO 590	STE02900
DD(J)=DD(J)+XIM(NG)+DD6(NPR,NGP)+PSI(NGP,I,J,K)	STE02910
GO TO 590	STE02920
580 ND=NGP-NNG	STE02930
DD(J)=DD(J)+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR)	STE02940
590 CONTINUE	STE02950
DO 600 NDN=1,NDNSCT	STE02960
ITEMP1=NG-NDN	STE02970
IF(ITEMP1.LE.O)GO TO 600	STE02980
DD(J)=DD(J)+DD7(NPR,ITEMP1,NDN)*PSI(ITEMP1,I,J,K)	STE02990
600 CONTINUE	STE03000
PTEM=TEMP*VO(NPR)	STE03001
DD(J)=DD(J)+(PTEM-DD4(NPR,NG))+PSI(NG,I,J,K)+DD1(NPR,NG)+PS	I (NG, I+STE03010
1 I, J, K)+DD2(NPR, NG)*PSI(NG, I, J+1, K)+DD1(NPRMP(I-1, J, K), NG)*P	SIING, ISTE03020
2-1, J, K)+DD3(NPR, NG) * PSI(NG, I, J, K+1)+DD3(NPRMP(I, J, K-1), NG)*	PSI(NG,STE03030
3I, J, K-1)	STE03040
610 DD(J+2)=(TEMP+W(I,J,K)/V(NG))+VO(NPR)+DD5(NPR,NG)	STE03051
TEMP5=DD(3)+DD(4)+(DD2(NPRY,NG)++2.0D0)	STE03060
	PAGE 235

、

PS1(NS,I,I,K)=(DD(1)*DD(4)*DD(2)*DD2(NPRY,NG))/TEMPS STE03070 PS1(NS,I,I,K)=(DD(2)*DD(3)*DD(1)*DD2(NPRY,NG))/TEMPS STE03090 D0 STE03100 STE03100 D0 G50 J=1,2 STE03110 D0 G50 J=1,2 STE03110 D0 G50 J=1,2 STE03110 D0 G60 VD=1,NNG STE03130 NG=ND+NNG STE03150 STE03150 D1 G40 VD=1,NNG STE03160 G30 STE04100 STE03160 G40 VD=1,NNG STE03160 G50 CINTINUE STE03180 G40 PS1(NS,I,J,K)=((HINV-ALAM(ND))*PS1(NGP,I,J,K) STE03200 1 STE0320 STE0320 G50 CONTINUE STE0320 JS=3 STE0320 JS=1,NNG <th></th> <th></th> <th></th>			
PS1(NS,1,2,K)=(DD(2)*DD(3)*DD(1)*DD2(NPRY,NG))/TEMP5 STE03080 620 CONTINUE STE03100 D0 650 J=1,2 STE03100 D0 650 J=1,4 STE03100 D0 650 J=1,4 STE03120 D0 640 ND=1,NDG STE03130 NG=ND=NNG STE03140 STE03160 TEMP1=0.0DD STE03150 STE03160 D1 630 NG=ND=1,NNG STE03160 STE1=TEMP1+BETAIND1*DD5(NPR,NGP)*PS1(NGP,I,J,K) STE03160 STE03170 TEMP1=TEMP1+BETAIND1*DD5(NPR,NGP)*PS1(NG,I,J,K)+TEMP1)/(HINV+ALAN(ND)STE03190 STE03200 1) STE03200 STE03220 640 D3 R40 J=SS3 650 CONTINUE STE03220 1 JS=3 STE03220 650 D3 R40 J=SS20 650 D3 R40 STE03230 IF(NL9C.#C0.016D TD 760 STE03200 STE03250 D0 TEMP=1.000/(VING)*HT1 STE03200 D0 D1 I=1,2 STE03260 ND <td></td> <td>PSI(N3,I,L,K)=(DD(1)*DD(4)+DD(2)*DD2(NPRY,N3))/TEMP5</td> <td>STE03070</td>		PSI(N3,I,L,K)=(DD(1)*DD(4)+DD(2)*DD2(NPRY,N3))/TEMP5	STE03070
620 CDNTINUE STE03090 D0 650 J=1,2 STE03100 D0 650 J=1,2 STE03100 D0 650 J=1,2 STE03100 D0 640 VD=1,NRG STE03120 D0 640 VD=1,NRG STE03130 NG=ND+NNG STE03160 TEMP1=TEMP1+BETA(ND)*D05(NPR,NGP)*PSI(NGP,I,J,K) STE03160 630 TEMP1=TEMP1+BETA(ND)*D05(NPR,NGP)*PSI(NGP,I,J,K) STE03170 TEMP1=TEMP1+STE(THINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 640 D*SI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 1) STE03220 STE03220 650 CDNTINUE STE03220 STE03220 JS=3 STE03220 STE03220 650 D0 840 J=JS,JMX STE03220 STE03220 JS=3 STE03220 STE03220 00 70 00 R40 J=JS,JMX STE03220 STE03220 If(NLBC,EQ.0)GO TD 760 STE03220 STE03220 D0 700 D0 StE03220 STE03220 STE03220 D0 710 I=1,2 STE03280 STE03220 NPRX=VPRMP1[,J,K] STE03300 STE03300 D0 710 I=1,2 STE03300 STE03300 <td></td> <td>PSI(NG,I,2,K)=(DD(2) + DD(3) + DD(1) + DD2(NPRY,NG))/TEMP5</td> <td>STE03080</td>		PSI(NG,I,2,K)=(DD(2) + DD(3) + DD(1) + DD2(NPRY,NG))/TEMP5	STE03080
D0 650 J=1,2 STE03100 D0 650 J=1,1 MX STE03100 NPR=NPRMP(I,J,K) STE03120 D0 640 ND=1,NDG STE03130 NG=ND+NNG STE03140 TEMP1=0,0D0 STE03150 D0 630 NGP=1,NNG STE03160 630 TEMP1=TEMP1+BETA(ND)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03160 640 NG,G,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 1) STE03220 650 CDNTINUE STE03220 1) STE03220 650 D3 840 J=JS,JMX STE03220 660 D3 840 J=JS,JMX STE03220 670 D0 (T1)=0.000 STE03220 720 NG=1,NNG STE03220 720 NG=1,NNG STE03220 720 NG=1,NNG STE03200 720 NG=1,NNG STE03300 720 NG=1,NNG STE03200 721 J=1,4 STE0320 730 D0 (T1)=0.000 STE03310 760 D0 (STE03300	620	CONTINUE	STE03090
D0 650 1=1, IMX STE03110 NPR=NPRMP[I], J,K) STE03120 D0 640 VD=1, NDG STE03130 NG=ND+NNG STE03150 D1 630 NGP=1,NNG STE03150 D1 630 NGP=1,NNG STE03150 d1 ste03170 TEMP1=TEMP1/EFFK4V0(NPR)) STE03170 TEMP1=TEMP1/IEFFK4V0(NPR)) STE03170 1) 640 PSI(NS,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 1) 650 CDNTINUE STE03220 660 D0 840 J=JS,JMX STE03220 G60 D0 840 J=JS,JMX STE03220 IF(NLBC,EQ.0)GD TD 760 STE03230 IF(NLBC,EQ.0)GD TD 760 STE03230 IF(NLBC,EQ.0)GD TD 760 STE03240 D0 670 II=1,4 STE03250 TEMP=1.000/(VING)*HT) STE03260 D0 670 II=1,4 STE03270 670 D0(II)=0.00 STE03280 NPR=NPRMP[1,J,K) STE03270 D0 710 II=1,2 STE03270 D0 710 II=1,2 STE03270 D0 710 II=1,2 STE03280 NPR=NPRMP[1,J,K] STE03300 IF(NCP.EQ.NGIGD TD 680 STE03320 IF(NCP.EQ.NGIGD TD 680 STE03320 IF(NCP.EQ.NGIGD TD 680 STE03320 STE03320 STE03330 IF(NCP.EQ.NGIGD TD 680 STE03320 STE03330 STE03350 D0 f10 I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 G0 TD 690 STE03370 D0(I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 G0 TD 690 STE03370 D0(I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03390 D0 710 NDN=1,NDNSCT STE03390 D0 710 NDN=1,NDNSCT STE03420 PAGE 237		DD 650 J=1,2	STE03100
NPR=NPRMP(I,J,K) STE03120 DD 660 VD=1,NDG STE03130 NG=ND+NNG STE03150 DD 660 VD=1,NNG STE03160 630 NGP=1,NNG STE03170 TEMP1=TEMP1+ETAIND)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03170 TEMP1=TEMP1/(EFFK*V0(NPR)) STE03200 640 PSI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 1) STE03220 STE03210 650 CONTIVUE STE03220 STE03220 JS=3 STE03220 STE03220 660 D3 840 J#JS,JMX STE03220 STE03220 IF(NLBC.E0.010G TD 760 STE03260 D0 D0 670 II=1.000/(V(NG)*HT) STE03260 D0 D0 670 II=1.4 STE03220 STE03220 MPRX=NPRMP(I,J,K) STE03280 STE03220 NPRX=NPRMP(I,J,K) STE03300 STE03320 NPRX=NPRMP(I,J,K) STE03320 STE03320 IF(NCP.ECT.NNGIGD TD 680 STE03370 STE03		DO 650 I=1, IMX	STE03110
DD 640 VD=1,NDG STE03130 NG=ND+NG STE03140 TEMP1=0.000 STE03150 DD 630 NGP=1,NNG STE03150 DD 630 NGP=1,NNG STE03160 630 TEMP1=TEMP1/(EFFK*VO(NPR)) STE03190 1) STE03200 640 PSI(NG,I,J,K)=((HINV-ALAM(VD))*PSI(NG,I,J,K)+TE*P1)/(HINV+ALAM(ND)STE03190 1) STE03200 650 CONTINUE STE03210 JS=3 STE03210 JS=3 STE03220 660 DD 840 J=JS,JMX STE0320 TEMP=1.000/(V(NG)*HT) STE0320 DO 720 NG=1,NNG STE03250 TEMP=1.000/(V(NG)*HT) STE03260 DD 670 I1=1,4 STE03260 DD 670 I1=1,4 STE03250 DD 710 I1=1,4 STE03260 DD 710 I1=1,4 STE03250 DD 710 I1=1,4 STE03260 DD 710 I1=1,4 STE03260 DD 710 I1=1,4 STE03260 DD 710 J1=1,2 STE03300 NPRX=NPRMP(1,J,K) STE03300 NPRX=NPRMP(1,J,K) STE03310 DD 690 NGP=1,NT0G STE03320 IF(NGP.EG.NG)GD TD 680 IF(NGP.EG.NG)GD TD 690 DD (I)=DD(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J+K) STE03360 GO T0 690 DD 710 VGP=1,NDSCT STE03370 DD (I)=00G TD 700 STE03340 DD (I)=NDNSCT STE0340 TEMP1+NG-NDN IF(ITEMP1+LE.0)GD TD 700 PAGE 237		NPR=NPRMP(I,J,K)	STE03120
NG=ND+NNG STE03140 TEMP1=0.0D0 STE03150 D1 630 NGP=1.NNG STE03160 630 NGP=1.NNG STE03160 630 NGP=1.NNG STE03160 630 NGP=1.NNG STE03160 630 NGP=1.NNG STE03170 TEMP1=TEMP1/EFFK*V0(NPR) STE03180 640 PSI(NS,I,J,K)=I(HINV-ALAM(ND))*PSI(NGP,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 1) STE03200 650 CONTINUE STE03210 JS=3 STE03220 660 D3 840 J=JS,JMX STE03220 10 TE(NLBC.EQ.0)GO TO 760 STE03240 D3 720 NG=1,NNG STE03220 670 D0(11=0.000 STE03220 670 D0(11=1,4 STE03220 670 D0(11=1,4 STE03270 670 D0(11=1,4 STE03200 NPR=NPRMP(1,J,K) STE03320 D0 670 II=1,2 STE03320 NPR=NPRMP(1,J,K) STE03320 D0 710 I=1,2 STE03310 NPR=NPRMP(1,J,K) STE03320 D1 F(NGP.EC.NG)GO TD 680 STE03330 IF(NGP.EC.NG)GO TD 690		DD 640 ND=1,NDG	STE03130
TEMP1=0.000 STE03150 D1 630 NGP=1,NNG STE03160 630 NGP=1,NNG STE03170 TEMP1=TEMP1/EEFK*V0(NPR)) STE03170 640 PSI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 1 STE03200 650 CONTINUE STE03220 650 D3 840 J=JS,JMX STE03220 660 D3 840 J=JS,JMX STE03200 D0 720 NG=1,NNG STE03220 D0 670 II=1,A STE03260 D0 670 II=1,4 STE03270 D0 710 I=1,2 STE03200 NPRX=NPRMP(1,J,K) STE03300 D7 690 NGP=1,NT0G STE03310 D7 690 NGP=1,NT0G STE03320 IF(NGP.E0.NG)GO TD 680 STE03320 IF(NGP.E0.NG)GO TD 680 STE03330 IF(NGP.E0.NG)GO TD 680 STE03340 D0 11+DD(11+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03350 G0 T0 690 STE03370<		NG=ND+NNG	STE03140
D0 630 NGP=1,NNG STE03160 630 TEMP1=TEMP1+BETA(ND)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03170 TEMP1=TEMP1/(EFFK*V0(NPR)) 640 PSI(NS,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 1) STE03200 650 CONTINUE STE03220 660 D3 840 J=JS,JMX STE03220 660 D3 840 J=JS,JMX STE03220 660 D7 0 G=1,NNG STE03240 D0 720 NG=1,NNG STE03250 TEMP=1,0D0/(V(NG)*HT) STE03260 D0 670 II=1,4 670 D0(II)=0,0D0 STE03270 670 D0(II)=0,0D0 STE03270 670 D0(II)=0,0D0 STE03270 D0 710 I=1,2 STE03280 NPRX=NPRMP(I,J,K) STE03280 NPR=NPRMP(I,J,K) STE03290 D0 690 NGP=1,NT0C STE03300 NPR=NPRMP(I,J,K) STE03300 IF(NGP,GT,NG)GD TD 680 IF(NGP,GT,NG)GD TD 680 IF(NGP,GT,NG)GD TD 680 STE03330 IF(NGP,GT,NG)GD TD 680 STE03330 IF(NGP,GT,NG)GD TD 680 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE03330 STE0330 ST		TEMP 1=0.000	STE03150
630 TEMP1+TEMP1+BETA(ND) +DD6(NPR, NGP) +PS1(NGP, I, J,K) STE03170 TEMP1=TEMP1/(EFFK+V0(NPR)) STE03180 640 PS1(NG, I, J, K)=((HINV-ALAM(ND)) +PS1(NG, I, J,K) +TEMP1)/(HINV+ALAM(ND) STE03190 1) STE03200 650 CONTINUE STE03220 660 DD 840 J=JS, JMX STE03230 IF(NL8C, EQ.0JGD TD 760 STE03240 DD 720 NG=1, NNG STE03250 TEMP=1.0D0/(V(NG)+HT) STE03260 DD 670 II=1,4 STE03260 DD 670 II=1,4 STE03270 670 DD(II)=0,0D0 STE03280 NPRX=NPRMP(I,J,K) STE03280 NPRX=NPRMP(I,J,K) STE03290 DD 710 I=1,2 STE03290 DD 710 I=1,2 STE03290 DD 710 I=1,2 STE03200 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 IF(NGP.GT.NNG)GD TD 680 STE03300 DD(I)=DD(I)+XIM(NG)+DD6(NPR,NGP)+PSI(NGP,I,J,K) STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIM(NG)+D16(NPR,NGP)+PSI(NGP,I,J,K) STE03360 690 GONTINUE STE03390 DD 700 NDN=1,NDNSCT STE03390 DD 700 NDN=1,NDNSCT STE03410 IF(ITEMP1.LE.0)GD TD 700 PAGE 237		DD 630 NGP=1,NNG	STE03160
TEMP1=TEMP1/(EFFK+V0(NPR)) STE03180 640 PS1(NS,I,J,K)=((HINV-ALAM(ND))*PS1(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 STE03200 650 C3NTINUE STE03210 JS=3 STE03220 660 D3 640 J=JS,JMX STE03230 If(NLBC.EQ.0)GD TD 760 STE03240 D3 720 NG=1,NNG STE03250 TEMP1.000/(V(NG)*HT) STE03260 D0 670 II=1,4 STE03270 670 D0(II)=0.0D0 STE03280 NPRX=NPRMP(1,J,K) STE03280 D0 710 I=1,2 STE03280 NPRX=NPRMP(1,J,K) STE03200 D0 710 I=1,2 STE03200 NPR=NPRMP(I,J,K) STE03300 D0 710 I=1,2 STE03290 D0 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03300 D0 690 NGP=1,NTDG STE03310 D0 690 NGP=1,NDG STE03320 IF(NGP.6C.NG)GD TD 680 STE03330 IF(NGP.6C.NG)GD TD 690 STE03350 G0 T0 690 STE03350 G0 T0 690 STE03360 680 ND=NGP=NNG STE03370 D0 (I)+XIP(NG,ND)*PSI(NGP,I,J+K)*V0(NPR) STE03390	630	TEMP1=TEMP1+BETA(ND) *DD6(NPR, NGP)*PSI(NGP, I, J,K)	STE03170
640 PSI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190 1) STE03200 650 CONTINUE STE03210 JS=3 STE03220 660 D3 840 J+JS,JMX STE03230 IF(NLBC.EQ.0)GO TO 760 STE03250 TGMP=1.000/(V(NG)*HT) STE03250 D0 670 II=1,4 STE03270 670 D0(I)=0.000 STE03260 NPRX=NPRMP(1,J,K) STE03280 NPRX=NPRMP(1,J,K) STE03290 D0 710 I=1,2 STE03290 D0 710 I=1,2 STE03290 D0 710 I=1,4 STE03290 NPR=NPRMP(1,J,K) STE03310 D7 690 VGP=1,NT0G STE03310 D7 690 VGP=1,NT0G STE03320 IF(NGP.EQ.NG)GD TD 680 IF(NGP.EQ.NG)GD TD 680 IF(NGP.EQ.NG)GD TD 680 STE03350 GD T0 690 STE03350 GD T0 690 STE03350 GD T0 690 STE03370 D0(I)=D0(I)+XIM(NG,ND)*PSI(NGP,I,J,K) STE03390 STE03380 680 ND=NGP=NNG STE03370 D0(I)=D0(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR) STE03390 D0 700 VDN=1,NDNSCT ITEMP1*NG=NDN IF(ITEMP1*LE.0)GD TD 700 PAGE 237		TEMP1=TEMP1/(EFFK*VO(NPR))	STE03180
1) STE03200 650 CDN TIVUE STE03210 JS=3 660 D3 840 J=JS, JMX STE03220 660 D7 20 NG=1, NNG STE03230 TF(NLBC.EQ.0)GD TD 760 STE03250 D0 720 NG=1, NNG TEMP=1.0D0/(V(NG)*HT) STE03260 ND 670 II=1,4 670 DD(1)I=0.000 STE03280 NPRX=NPRMP(1,J,K) STE03280 NPRX=NPRMP(1,J,K) STE03290 DD 710 I=1,2 NPR=NPRMP(1,J,K) STE03300 NPR=NPRMP(1,J,K) STE03310 D0 690 NGP=1,NTOG IF(NGP.GT.NNGIGD TD 680 IF(NGP.GT.NNGIGD TD 680 IF(NGP.GT.NNGIGD TD 680 STE03330 IF(NGP.GT.NNGIGD TD 690 D0 (I)=DD(1)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 680 ND=NGP-NNG D0 (I)=DD(1)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT IF(MPI=NG-NDN IF(ITEMP1.LE.0)GD TD 700 PAGE 237	640	PSI(NG,I,J,K)=((HINV+ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND)STE03190
650 CONTINUE STE03210 JS=3 STE03220 660 D3 840 J#JS, JMX IF(NLBC.EQ.DIGD TD 760 STE03240 D3 720 NG=1, NNG STE03250 TEMP=1.000/(VING)#HT) STE03260 D0 670 II=1,4 STE03270 670 D0(II)=0.000 STE03270 NPR*=NPRMP(I,J,K) STE03280 D0 710 I=1,2 NPR*=NPRMP(I,J,K) STE03200 D0 F103280 NPR=NPRMP(I,J,K) STE03290 D0 710 I=1,2 NPR=NPRMP(I,J,K) STE03310 D0 590 NGP=1,NT0G IF(NGP.GT.NNGIGD TD 680 STE03320 IF(NGP.GT.NNGIGD TD 680 STE03330 IF(NGP.EQ.NGIGD TD 690 STE03350 G0 T0 590 STE03350 G0 T0 690 STE03350 G0 T0 590 STE03360 680 ND=NGP-NNG STE03370 D0 T1=D(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 T00 STE03400 IF(MPI=NG-NDN STE03410 IF(ITEMP1_LE.0)GD TD 700 STE03420	1		STE03200
JS=3 STE03220 660 D3 840 J±JS, JMX STE03230 IF(NLBC.EQ.0)G0 TD 760 STE03240 D3 720 NG1 STE03250 TEMP=1.000/(V(NG)*HT) STE03260 STE03270 D0 670 D1=1,4 STE03270 670 D0 (II)=0.000 STE03280 STE03280 NPR=NPRMP(1,J,K) STE03290 STE03290 D0 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03310 STE03320 D7 10 I=1,2 STE03320 NPR=NPRMP(I,J,K) STE03330 STE03320 D0 700 KSTE03320 STE03320 IF(NGP.6T-NNG)GO TD 680 STE03330 STE03340 D0 G0 TD 690 STE03350 STE03350 G0 TD 690 STE03370 STE03380 STE03380 680 ND=NGP-NNG STE03390 STE03390 D0(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03390 STE03390 690 CONTINUE STE03400 STE03400 D0	650	CONTINUE	STE03210
660 D3 840 J±JS,JMX STE03230 IF(NLBC.EQ.0)GD TD 760 STE03240 D3 720 NG=1,NNG STE03250 TEMP=1.000/(V(NG)*HT) STE03260 STE03270 D0 670 II=1,4 STE03280 NPRX=NPRMP11,J,K) STE03290 STE03290 D0 710 I=1,2 STE03300 NPRX=NPRMP11,J,K) STE03310 STE03320 D0 690 STE03320 IF(NGP.GT.NNG)GO TD 680 STE03330 STE03330 IF(NGP.GT.NNG)GO TD 680 STE03330 STE03330 IF(NGP.GT.NNG)GO TD 680 STE03330 STE03350 G0 TD 690 STE03330 STE03350 G0 TD 690 STE03350 STE03350 G0 TD 690 STE03370 STE03370 D0(I)=D0(I)+XIM(NG)+DD6(NPR,NGP)+PSI(NGP,I,J,K)+VD(NPR) STE03380 STE03380 680 ND=NGP-NNG STE03390 STE03390 D0(I)=D0(I)+XIP(NG,ND)+PSI(NGP,I,J,K)+VD(NPR) STE03390 STE03400 690 CONTINUE STE03400 STE034		JS=3	STE03220
IF(NLBC.EQ.0)GD TD 760 STE03240 D3 720 NG=1,NNG STE03250 D0 710 NG=1,NNG STE03260 D0 670 II=1,4 STE03270 670 D0(II)=0.0D0 STE03280 NPRX=NPRMP(1,J,K) STE03290 D0 710 I=1,2 STE03200 NPR=NPRMP(I,J,K) STE03200 D0 700 710 I=1,2 STE03200 NPR=NPRMP(I,J,K) STE03300 D0 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNG)GO TD 680 STE03320 IF(NGP.EQ.NG)GO TD 690 STE03330 D0 (I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 G0 T0 690 STE03370 G0 T0 690 STE03370 B0(I)=D0(I)+XIM(NG)*DD5(NPR,NGP,I,J,K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 IF(MP1=NG-NDN STE03400 IF(ITEMP1+LE.0)GD TD 700 PAGE 237	660	D9 840 J=JS, JMX	STE03230
D3 720 NG=1,NNG STE03250 TEMP=1.0D0/(V(NG)*HT) STE03260 D0 670 II=1,4 STE03270 670 D0(II)=0.0D0 STE03280 NPRX=NPRMP(1,J,K) STE03290 D0 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03300 D0 690 NGP=1,NT0G STE03310 D0 690 NGP=1,NT0G STE03320 IF(NGP.GT.NNG)GD TD 680 STE03320 IF(NGP.GT.NNG)GD TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 D0 1)=D0(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03360 G0 T0 690 STE03370 D0(I)=D0(I)+XIM(NG,ND)*PSI(NGP,I,J,K)*V0(NPR) STE03360 680 ND=NGP-NNG STE03370 D0(I)=D0(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*V0(NPR) STE03380 690 CONTINUE STE03400 D0 700 NDN=1,NDNSCT STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237 PAGE 237		IF(NLBC.EQ.0)GD TD 760	STE03240
TEMP=1.0D0/(V(NG)*HT) STE03260 DD 670 II=1,4 STE03270 670 D0(II)=0.0D0 STE03280 NPRX=NPRMP(1,J,K) STE03290 DD 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03300 DD 690 NGP=1,NTDG STE03310 DD 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNGIGD TD 680 STE03330 IF(NGP.GT.NNGIGD TD 690 STE03330 DD (I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 GD TD 690 STE03350 GD TD 690 STE03360 B0(I)=D0(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03360 GD TD 690 STE03370 GD TD 690 STE03370 GD TD 690 STE03370 GD TD 1=D0(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 680 ND=NGP-NNG STE03390 DD(I)=D0(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 690 CONTINUE STE03400 DD 700 NDN=1,NDNSCT STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237 PAGE 237		D3 720 NG=1, NNG	STE03250
DD 670 II=1,4 STE03270 670 DD(II)=0.0D0 STE03280 NPRX=NPRMP(I,J,K) STE03290 DD 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03300 DD 690 NGP=1,NTDG STE03310 DD 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNG)GD TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 DD(I)=DD(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03350 GD T0 690 STE03370 GD T0 690 STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 680 ND=NGP-NNG STE03390 D0(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03390 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1=NG-NDN STE03400 IF(ITEMP1=LE=0)GD TD 700 PAGE 237		TEMP=1.0D0/(V(NG)+HT)	STE03260
670 DD(II)=0.0D0 STE03280 NPRX=NPRMP(1,J,K) STE03290 DD 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03310 DD 690 NGP=1,NTDG IF(NGP.GT.NNG)GO TD 680 STE03320 IF(NGP.EQ.NG)GO TD 690 STE03330 D0(I)=DD(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J,K) STE03350 GD T0 690 STE03360 680 ND=NGP-NNG D0(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03360 690 CONTINUE D0 700 ND=1,NDNSCT ITEMP1+NG-NDN STE03400 IF(ITEMP1+LE+0)GD TD 700 STE03420 PAGE 237 PAGE 237		DD 670 II=1,4	STE03270
NPRX=NPRMP(1,J,K) STE03290 D0 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03310 D0 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNG)GD TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 D0(I)=DD(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03350 GD T0 690 STE03360 680 ND=NGP-NNG STE03370 D0(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1=NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420	670	DD(II)=0.0D0	STE03280
D0 710 I=1,2 STE03300 NPR=NPRMP(I,J,K) STE03310 D0 690 NGP=1,NT0G STE03320 IF(NGP.GT.NNG)GD TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 D0(I)=D0(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J,K) STE03350 G0 TD 690 STE03360 680 ND=NGP-NNG STE03370 D0(I)=D0(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VD(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1*LE*0)GD TD 700 PAGE 237		NPRX=NPRMP(1,J,K)	STE03290
NPR=NPRMP(I,J,K) STE03310 D0 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNG)GD TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 DD(I)=DD(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J+K) STE03350 GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J+K)*VD(NPR) STE03380 690 CONTINUE STE03390 DD 700 NDN=1,NDNSCT STE03400 ITEMP1=NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 PAGE 237		DO 710 I=1,2	STE03300
D0 690 NGP=1,NTDG STE03320 IF(NGP.GT.NNG)GO TD 680 STE03330 IF(NGP.EQ.NG)GD TD 690 STE03340 DD(I)=DD(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J+K) STE03350 GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J+K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 PAGE 237		NPR=NPRMP(I,J,K)	STE03310
IF (NGP.GT.NNG)GD TD 680 STE03330 IF (NGP.EQ.NG)GD TD 690 STE03340 DD(I)=DD(I)+XIM(NG)*DD5(NPR,NGP)*PSI(NGP,I,J+K) STE03350 GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J+K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1=NG-NDN STE03410 IF (ITEMP1.LE.O)GD TD 700 STE03420 PAGE 237 PAGE 237		DO 690 NGP=1,NTDG	STE03320
IF (NGP.EQ.NG)GD TD 690 STE03340 DD(I)=DD(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J+K) STE03350 GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J+K)*VO(NPR) STE03380 690 CONTINUE STE03390 DD 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF (ITEMP1.LE.O)GD TD 700 STE03420 PAGE 237		IF(NGP.GT.NNG)GO TO 680	STE03330
DD(I)=DD(I)+XIM(NG)*DD6(NPR,NGP)*PSI(NGP,I,J+K) STE03350 GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J+K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237		IF(NGP.EQ.NG)GD TD 690	STE03340
GD TD 690 STE03360 680 ND=NGP-NNG STE03370 DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J;K)*VO(NPR) STE03380 690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237		DD(I)=DD(I)+XIM(NG)+DD6(NPR,NGP)+PSI(NGP,I,J,K)	STE03350
680 ND=NGP-NNG DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J;K)*VD(NPR) STE03370 STE03380 690 CONTINUE DO 700 NDN=1;NDNSCT ITEMP1*NG-NDN IF(ITEMP1.LE.0)GD TD 700 STE03400 STE03410 STE03420 PAGE 237		G0 T0 690	STE03360
DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J;K)*VO(NPR) STE03380 690 CONTINUE STE03390 DD 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237	680	ND=NGP+NNG	STE03370
690 CONTINUE STE03390 D0 700 NDN=1,NDNSCT STE03400 ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237		DD(I)=DD(I)+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR)	STE03380
D0 700 NDN=1,NDNSCT STE03400 ITEMP1=NG=NDN STE03410 STE03420 IF(ITEMP1=LE=0)GD TD 700 STE03420 PAGE 237	690	CONTINUE	STE03390
ITEMP1*NG-NDN STE03410 IF(ITEMP1.LE.0)GD TD 700 STE03420 PAGE 237		DO 700 NDN=1,NDNSCT	STE03400
IF(ITEMP1.LE.O)GD TD 700 STE03420 PAGE 237		ITEMP1 = NG-NDN	STE03410
PAGE 237		IF(ITEMP1.LE.O)GD TD 700	STE03420
			PAGE 237

DD(T)-DD(T) ADD7(NDD TTEND1 NDN)+DCT(TTEND1 T. LY)	STE03430	
DULIJEDJLIJEDUJLNEK O I LEMELO NUNJEFSILIJEM ELO IOVJE 700. CONTINUE	51203450	
	51203440	
PIEMEICMPTYUUNPR/ DD/T_DD/T_(DTEN_DDA/NDD.NC\\±DST[NC.T.I.V_DD\{NDD.NC\±DST[NC.T.	STE03450	
11 - 1	STED2460	
119J9KJTUDZ(NFK9NOJTFS1(NO919JTJ9KJTUDZ(NFKMF(19JTJ4KJ9NOJTFS1(NO91 2 14J / MAADD2(NFK9NOJTFS1(NC, F, 1, KA1)ADD2(NDDMD(T, 1, K-1), NC)#DS1(NO91	STE03400	
	STEDJATO	
JIIJJATIJ 71 A. ADVITAJAITEMAAUITULEKSINAAVAINDAJADAJADASIMDA, NEV.	STE03400	
TEMPE-DD(2)+DD(4)-(DD)/NDDV/NC)++2 (DD)/NFR/ND/	STED3EDD	
1 EMP3= 00131 + 00141 = 1 0011 MPRA + NG/ = 74 + 0007 001/MC 1 = 1 = 7 N= (00/11 + 00/61400/31 +001/MD2 Y - 4011 / TEMDS	STE03500	
PSI(NG)[]JJK (= (DD(),) + DD(+) + DD(2) + DD() (NFK A) NG / / / (ENFS	STE03510	
TOLING # 2 # J# N # 1 DUL 2 # DUL 3 # DUL 1 # DUL 1 # DUL 1 # N # N # N # N # N # N # N # N # N #	STE03520	
720 CUNTINUE DD 750 1-1 2	STEOSSO	
	STENSEN	
DO 760 ND=1.NDC	STED3560	
	STE03570	
TEMD1+0 000	STE03580	
n 730 NCD=1 NNC	STE03590	
720 TEMD1 #TEMD1 ARETA(ND) ADDA(NDR_NGD) ADS [(NGD_T_L_K)	STE03600	
TEND 1=TEND1/(EFFK±VO(NDR))	STE03610	
760 DST (NG, T, J, K)=((HTNV+ALAM(ND))=PST (NG, T, J, K) +TEMP1)/(HTNV+ALAM(ND)	STE03620	
	STE03630	
	ST F03640	
	STE03650	
760 DO 830 I=IS. IMX	STE03660	
NPR=NPRMP(T+.1.K)	STE03670	
NPRX=NPRMP(T-T.J.K)	STE03680	
NPRY=NPRMP(1,J-1,K)	STE03690	
NPR7=NPRMP(I.J.K-I)	STE03700	
DD 800 NG=1 . NNG	STE03710	
TEMP=1.0D0/(V(NG)+HT)	STE03720	
TEMP1=0.0D0	STE03730	
DD 780 NGP=1.NTOG	STE03740	
IF(NGP.GT.NNG)GO TO 770	STE03750	
IF(NGP.EQ.NG)GD TD 780	STE03760	
TEMP1=TEMP1+XIM(NG) *DD6(NPR,NGP) *PSI(NGP,I,J,K)	STE03770	
	PAGE 2	38

-

GD TO 780	STE03780
770 ND=NGP-NNG	STE03790
TEMP1=TEMP1+XIP(NG,ND)*PSI(NGP,I,J;K)*VO(NPR)	STE03800
780 CONTINUE	STE03810
DD 790 NDN=1,NDNSCT	STE03820
ITEMP1=NG-NDN	STE 03830
IF(ITEMP1.LE.O)GO TO 790	STE03840
TEMP1=TEMP1+DD7(NPR, ITEMP1, NDN)*PSI(ITEMP1, I, J,K)	STE03850
790 CONTINUE	STE03860
PTEM=TEMP+VO(NPR)	STE03861
PSI(NG,I,J,K)=((PTEM-DD4(NPR,NG))*PSI(NG,I,J,K)+DD1(NPR,NG)*PSI	INGSTE03870
1,I+1,J,K)+DD1(NPRX,NG)*PSI(NG,I-1,J,K)+DD2(NPR,NG)*PSI(NG,I,J+1	,KISTE03880
2+DD2(NPRY, NG)*PSI(NG, I, J-1, K)+DD3(NPR, NG)*PSI(NG, I, J, K+1)+DD3(N	IPRZSTE03890
3,NG)*PSI(NG,I,J,K-1)+TEMP1)/((TEMP+W(I,J,K)/V(NG))*VO(NPR)+DD5(NPRSTE03900
4,NG)]	STE03901
800 CONTINUE	STE03910
DO 820 ND=1, NDG	STE03920
NG=ND+NNG	STE03930
TEMP1=0.000	STE03940
DO 810 NGP=1,NNG	STE03950
810 TEMP1=TEMP1+BETA(ND) *DD6(NPR,NGP)*PSI(NGP,I,J,K)	STE03960
TEMP1=TEMP1/(EFFK*VO(NPR))	STE03970
820 PSI(NG,I,J,K)=((HINV+ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM)	ND)STE03980
1)	STE03990
830 CONTINUE	STE04000
840 CONTINUE	STE04010
850 CONTINUE	STE04020
RETURN	STE04030
END	STE04040

ţ

SUBROUTINE STEPBO(V, XIM, ALAM, BETA, XIP, X, Y, Z, HX, HY, HZ, DO1, DD2	•DD3• STE00010
1DD4, DD5, DD6, DD7, VO, N PRMP, PSI, W, NNGV, NDGV, NTDGV, NDNSCV, I MV, JM	V,KMV,STE00020
2 IRMV, JRMV, KRMV, NPRGV, NGXV)	STE00030
IMPLICIT REAL*8 (A-H,O-Z)	STE00040
INTEGER#2 MMAP,NPRMP	STE00050
COMMON/INTG/IASIZE, NNG, NDG, NTOG, NMAT, IM, JM, KM, IRM, JRM, KRM, NL	BC, STE00060
INFBC, NBBC, NDNSCT, NPRG, IDPT, NTG, NXTP, NYTP, NZTP, IXTP (5), IYTP (5), STE00070
2IZTP(5), NSTEAD, IFLIN, IGEDM, ITITLE(20), NOIT, NIIT, NPIT, IDPSI, I	ODUMP,STE00080
3IOFN, IOFO, IOPN, IOPO, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5	• STE00090
4NTIT, IETIME, IFLOUT, IMX, JMX, KMX, IOSC1, IOSC2, NGX	STE00100
COMMON/FLOTE/EFFK, OR FP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP	4, STE00150
1 TEMP5, TEMP6, XFISST, XFISSO, ALAMN, ALAMO, TIME, FLXCON, BETAT	STE00160
COMMON/TIMINT/LASZON,ISTPCH,ILINCH,IPRSTP,MNSCH(5),MNLCH(5),	STE00170
1 ISTEP, ICHHT	STE00180
COMMON/TIMELO/T, HT, HMIN, HMAX, TSTART, TEND, DELSFS(5,4), DELSRS(5,4); STE00190
1DELSTS(5,4); DELS1S(5,4); DELS2S(5,4); DELSFL(5,4); DELSRL(5,4);	STE00200
2DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	STE00210
DIMENSION V(NNGV), XIM(NNGV), ALAM(NDGV), BETA(NDGV), XIP(NNGV, N	DGV), STE00220
1X(IMV);Y(JMV),Z(KMV);HX(IRMV);HY(JRMV);HZ(KRMV);DD1(NPRGV,NN	GV) - STE00230
2DD2(NPRGV, NNGV), DD3(NPRGV, NNGV), DD4(NPRGV, NNGV), DD5(NPRGV, NN	GV), STE00240
3DD6(NPRGV, NNGV), DD7(NPRGV, NGXV, NDNSCV), NPRMP(IMV, JMV, KMV),	STE00250
4PSI(NTOGV,IMV,JMV,KMV),W(IMV,JMV,KMV),VO(NPRGV)	STE00260
KE=KMX-1	STE00270
JE=JMX-T	STE00290
IF (NFBC.EQ.1)JE=JMX-2	STE00300
HINV=1.0D0/HT	STE00310
IE=IMX-1	STE00320
DO 340 KK=1,KE	STE00330
K=KM-KK	STE00340
DO 220 JJ=1+JE	STE00350
U U − M U = U	STE00360
DO 210 II=1,IE	STE00370
I=IM-II	STE00380
NPR=NPRMP(I,J,K)	STE00390
NPRX=NPRMP(I-1,J,K)	STE00400
NPRY=NPRMP(I,J-1,K)	STE00410
	PAGE 240

.

	NPRZ=NPRMP(I.J.K-1)	STE00420	
	DD 160 NG=1 + NNG	ST E00430	
	TEMP=1.0D0/(V(NG)+HT)	STE00440	
110	TEMP1=0.0D0	STE00450	
	DO 130 NGP=1,NTOG	STE00460	
	IF(NGP.GT.NNG)GD TD 120	STE00470	
	IF(NGP.EQ.NG)GD TO 130	STE00480	
	TEMP1=TEMP1+XIM(NG) + DD6(NPR, NGP) + PSI(NGP, I, J, K)	STE00490	
	GD TO 130	STE00500	
120	ND=NGP-NNG	STE00510	
	TEMP1=TEMP1+XIP(NG,ND)=PSI(NGP,I,J,K)=VD(NPR)	STE00520	
130	CONTINUE	STE00530	
	DO 140 NDN=1,NDNSCT	ST E00540	
	ITEMP1=NG-NDN	STE00550	
	IF(ITEMP1.LE.O)GD TO 140	STE00560	
	TEMP1=TEMP1+DD7(NPR,ITEMP1,NDN)*PSI(ITEMP1,I,J,K)	STE00570	
140	CONTINUE	STE00580	
	PTEM=TEMP*VO(NPR)	STE00581	
	IF(1.EQ.1)GO TO 150	STE00590	
	TEMP2=PSI(NG,I,J,K)	STE00600	
	PSI(NG, I, J, K)=((PTEM-DD4(NPR, NG))+TEMP2+DD1(NPR, NG)+PSI(NG, I+1, J,	KSTE00610	
1	1)+DD1(NPRX,NG)*PSI(NG,I-1,J,K)+DD2(NPR,NG)*PSI(NG,I+J+L,K)+DD2(NF	RSTE00620	
	2Y, NG) * PSI (NG, I, J-1, K) + DD3(NPR, NG) * PSI (NG, I, J, K+1) + DD3(NPRZ, NG) * PS	ISTE00630	
	3(NG, I, J, K-I)+TEMP1)/((TEMP+W(I, J,K)/V(NG))*VO(NPR)+DD5(NPR, NG))3	ST E00640	i.
	IF(1.GT.2)GO TO 160	STE00650	
	IF(NLBC.EQ.0)GO TO 160	STE00660	
	I=1	STE00670	
	NPR=NPRMP(1;J,K)	STE00680	
	GO TO 110	STE00690	
150	`PSI{NG+1',J,K)={{PTEM+DD4{NPR,NG}}*PSI{NG+1,J,K}&DD1{NPR,NG}*{PSI{	NSTE00700	
]	LG,2,J,K)+TEMP2)+DD2(NPR,NG)*PSI(NG,1,J+1,K)+DD2(NPRMP(1,J-1,K),NG	JSTE00710	
Ĩ	2*PSI(NG,1,J+1,K)+DD3(NPR,NG)*PSI(NG,1,J,K+1)+DD3(NPRMP(1,J,K-1),N	IGSTE00720	
1	3)*PSI(NG,1,J,K-1)+TEMP1)/((TEMP+W(I,J,K)/V(NG))*VO(NPR)+DD5(NPR,N	IGSTE00730	
4	4)) ·	STE00731	
	NPR=NPRMP(2, J,K)	STE00740	
	I=2	STE00750	
		PAGE	241

160	CONTINUE	STE00760	
	DO 200 ND=1, NDG	STE00770	
	NG=ND+NNG	STE00780	
170	TEMP1=0.0D0	STE00790	
	DD 180 NGP=1,NNG	STE00800	
180	TEMP1=TEMP1+BETA(ND) +DD6(NPR,NGP)+PSI(NGP,I,J,K)	STE00810	
	TEMP1=TEMP1/(EFFK+VO(NPR))	STE00820	
	PSI(NG,I,J,K)=((HINV-ALAM(ND))*PSI(NG,I,J,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(NG,I,K)+TEMP1)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND))*PSI(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV+ALAM(ND)/(HINV/(HINV+ALAM(ND)/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(HINV/(H	STEOD830	
•	1)	STE00840	
	IF(I.EQ.1)GD TO 190	STE00850	
	IF(1.GT.2)GD TO 200	STE00860	
	IF (NLBC.EQ.0)GD TO 200	STE00870	
	I=1	STE00880	
	NPR=NPR4P(1,J,K)	STE00890	
	GD TO 170	STE00900	
190	I=2	STE00910	
	NPR=NPR4P(2,J,K)	STE00920	
200	CONTINUE	STE00930	
210	CONTINUE	STE00940	
220	CONTINUE	STE00950	
	IF(NFBC.EQ.0)GD TD 340	STE00960	
	DD 300 NG=1, NNG	STE00970	
	TEMP=1.0D0/(V(NG)+HT)	STE 00980	
	DO 290 II=1,IE	STE00990	
230	TEMP2=PSI(NG,I,1,K)	STE01000	
	DD 270 JJ=1,2	STE01010	
	J=3-JJ	STE01020	
	NPR=NPRMP(I,J,K)	STE01030	
	NPRX=NPRMP(I-1,J,K)	STE01040	
	NPRY=NPRMP(I,1,K)	STE01050	
	NPRZ=NPRMP(I,J,K-1)	STE01060	
	TEMP 1=0.0D0	STE01070	
	D3 250 NGP=1,NT0G	STE01080	
	IF(NGP.GT.NNG)GD TD 240	STE01090	
	IF(NGP.VE.NG)TEMP1=TEMP1+DD6(NPR,NGP)=PSI(NGP,I,J,K)	STE01100	
	IF(NGP.EQ.NNG)TEMP1=TEMP1=XIM(NG)	STE01110	
		PAGE 2	242

GD TO 250	STE01120
240 ND=NGP-NNG	STE01130
TEMP1=TEMP1+XIP(NG,ND)*PSI(NGP,I,J,K)*VO(NPR)	STE01140
250 CONTINUE	STE01150
TEMP3=PSI(NG.I.2.K)	STE01160
PTEM=TEMP*VO(NPR)	STE01161
IF(I.EQ.1)GD TD 260	STE01170
PSI(NG,I,J,K)=((PTEM-DD4(NPR,NG))*PSI(NG,I,J,K)+DD1(NPR,NG)*PSI(N	IGSTEO1180
1, I+1, J, K)+DD1(NPRX, NG)*PSI(NG, I-1, J, K)+DD2(NPR, NG)*PSI(NG, I, J+1, K)	(ISTE01190
2+DD2(NPRY.NG)*TEMP2+DD3(NPR, NG)*PSI(NG, I, J, K+1)+DD3(NPRZ, NG)*PSI(NSTE01200
3G+1+J+K-1)+TEMP1)/((TEMP+W(I,J+K)/V(NG))*VO(NPR)+DD5(NPR,NG))	STE01210
TEMP2=TEMP3	STE01220
GD TO 270	STE01230
260 PSI(NG, I, J, K)=((PTEM-DD4(NPR, NG))*PSI(NG, I, J, K)+DD1(NPR, NG)*(TEMP	4STE01240
1+PSI(NG,2,J,K))+DD2(NPR,NG)*PSI(NG,1,J+1,K)+DD2(NPRY,NG)*TEMP2+	STE01250
2003(NPR, NG) * PSI(NG, 1, J, K+1) + 003(NPRZ, NG) * PSI(NG, 1, J, K-1) + TEMP1)/	STE01260
3((TEMP+W(1, J,K)/V(NG))*VD(NPR)+DD5(NPR,NG))	STE01270
TEMP4=TEMP5	STEO1280
TEMP2=TEMP3	STE01290
270 CONTINUE	STE01300
IF(I.EQ.2)GD TO 280	STE01310
IF(I.NE.3)GD TO 290	STE01320
TEMP4=PSI(NG+2+2+K))	STE01330
TEMP5=PSI(NG,2,1,K)	STE01340
GO TO 290	STE01350
280 I=1	STE01360
GD TO 230	STE01.370
290 CONTINUE	STE01380
300 CONTINUE	STE01390
DD 330 II=1, IMX	STE01400
I=IM-II	STE01410
DB 330 JJ=1,2	STEOLAZO
J=3-JJ	STEDI430
NPR=NPRMP(I,J,K)	STE01440
DO 320 ND=1, NDG	STE01450
NG=ND+NNG	STE01460
	PAGE 243

	TEMP1=0.0D0	STE01470
	DO 310 NGP=1,NNG	STE01480
	310 TEMP1=TEMP1+BETA(ND) *DD6(NPR, NGP)*PSI(NGP, I, J, K)	STE01490
	TEMP1=TEMP1/(EFFK+VO(NPR))	STE01500
	320 PSI(NG, I, J, K)=((HINV-ALAM(ND))*PSI(NG, I, J, K)+TEMP1)/(HINV+A)	LAM(ND)STE01510
	1)	STE01520
	330 CONTINUE	STE01530
	340 CONTINUE	STE01540
0	NOW CARRY OUT EXP(W+H) TRANSFORMATION	STE01550
	350 DD 370 K=2,KMX	STE01560
	DD 370 $J=1, JMX$	STE01570
	DD 370 I=1, IMX	STE01580
	TEMP1=DEXP(W(I,J,K)+HT)	STE01590
	DD 360 NG=1, NNG	STE01600
	360 PSI(NG,I,J,K)=TEMP1+PSI(NG,I,J,K)	STE01610
	370 CONTINUE	STE01620
	RETURN	STE01630
	END	STE01640

l

.

SUBROUTINE FREQO(PSI, PSO, W, NTOGV, IMV, JMV, KMV)	FRE00010
IMPLICIT REAL+8 (A-H,O-Z)	FRE00020
INTEGER+2 MMAP,NPRMP	FRE00030
COMMON/INTS/IASIZE, NNG, NDG, NTDG, NMAT, IM, JM, KM, IRM, JRM, KRM, NLBC,	FRE00040
1NFBC,NBBC,NDNSCT,NPRG,IOPT,NTG,NXTP,NYTP,NZTP,IXTP(5),IYTP(5),	FRE00050
2IZTP(5), NSTEAD, IFLIN, IGEOM, ITITLE(20), NOIT, NIIT, NPIT, IOPSI, IODUM	P.FRE00060
3IDFN, IDFO, I DPN, IOPD, ITEMP, ITEMP1, ITEMP2, ITEMP3, ITEMP4, ITEMP5,	FRE00070
4NTIT,IETIME,IFLOUT,IMX,JMX,KMX,IOSC1,IOSC2,NGX	FRE00080
COMMON/FLOTE/EFFK, DR FP, EPS1, EPS2, TEMP, TEMP1, TEMP2, TEMP3, TEMP4,	FRE00130
1 TEMP5, TEMP5, XFISST, XFISSD, ALAMN, ALAMD, TIME, FLXCDN, BETAT	FRE00140
CDMMDN/TIMINT/LASZON, ISTPCH, ILINCH, IPRSTP, MNSCH(5), MNLCH(5),	FRE00150
1 ISTEP, ICHHT	FRE00160
COMMON/TIMFLO/T, HT, HMIN, HMAX, TSTART, TEND, DEL SFS(5,4), DEL SRS(5,4)	, FRE00170
1DELSTS(5,4);DELS1S(5,4);DELS2S(5,4);DELSFL(5,4);DELSRL(5,4);	FRE00180
2 DELSTL(5,4), DELS1L(5,4), DELS2L(5,4)	FRE00190
DIMENSION PSI(NTOSV, IMV, JMV, KMV), PSO(IMV, JMV, KMV), W(IMV, JMV, KMV)	FR 800200
TEMP5=1.0D0/(2.0D0+HT)	FRE00210
COMPUTE FREQUENCIES	FRE00220
DD 120 K=2,KMX	FRE00230
DD 120 J=1, JMX	FRE00240
DD 120 I=1, IMX	FRE00250
IF(PS3(I,J,K).LT.1.0D-30)GD TO 110	FRE00260
TEMP4=PSI(NTG,I,J,K)/PSO(I,J,K)	FRE00270
IF(DABS(1.0D0-TEMP4).LT.1.0D-08)G0 T0 110	FRE00280
W(I, J, K) = TEMP5 * DLOG (TEMP4)	FRE00290
GD TO 120	FRE00300
110 $W(I_{y}J_{y}K) = 0.000$	FRE00310
120 CONTINUE	FRE00320
RETURN	FRE00330
END	FRE00340

ł

.

5