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ABSTRACT

The methodology used in the PL-MOD code has been extended
to include the time-dependent behavior of the fault tree components.
Four classes of components are defined to model time-dependent
fault tree leaves. Mathematical simplifications are applied to
predict the time-dependent behavior of simple modules in the
fault tree from its input components' failure data.

The extended code, PL-MODT, handles time-dependent problems
based on the mathematical models that have been established. An
automatic tree reduction feature is als.o incorporated into this
code. This reduction is based on the Vesely-Fussell importance
measure that the code calculates. A CUT-OFF value is defined
and incorporated into the code. Any module or component in the
fault tree whose V-F importance is less than this value will
automatically be eliminated from the tree. In order to benchmark
the PL-MODT code, a number of systems are analyzed. The results
are in good agreement with other codes, such as FRANTIC and
KITT. The computation times are comparable and in most of the
cases are even lower for the PL-MODT code compared to the others.

In addition, a Monte-Carlo simulation code (PL-MODMC) is
developed to propagate uncertainties in the failure rates of the
components to the top event of a fault tree. An efficient sorting
routine similar to the one used in the LIMITS code is employed
in the PL-MODMC code. Upon modularization the code proceeds and
propagates uncertainties in the failure rates through the tree.
Large fault trees such as the LPRS fault tree as well as some
smaller ones have been analyzed for simulation, and the results
for the LPRS are in fair agreement with the WASH-1400 predictions
for the number of simulations performed.

The codes PL-MODT and PL-MODMC are written in PL/l language
which offers the extensive use of the list processing tools.
First experience indicates that these codes are very efficient
and accurate, specifically for the analysis of very large and
complex fault trees.

This work was performed under the financial sponsorship
by U.S. NRC, whose support is gratefully acknowledged.
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1. INTRODUCTION TO THE MODULAR DECOMPOSITION APPROACH

1.1 Introduction

The method of modular decomposition of fault trees has

recently become very attractive and has been proven to be a very

efficient and reliable technique for the analysis of large fault

trees [1] in the framework of the PL-MOD code written in PL/1

language.

The methodology employed by PL-MOD to modularize a fault tree

consists of piecewise collapsing and modularizing portions of

the tree. As a consequence, at the intermediate stages of this

process some nodes are eliminated from the tree while others

undergo changes in the type and number of inputs they have. In

the next section some of the mathematical concepts used in the

PL-MOD as well as the method utilized in the code are presented.

1.2 Modularization Technique: Its Mathematical Formulation and
Its Application in the Code PL-MOD

Birnbaum and Esary [1] define a module as follows:

"A module of a system is a subset of basic components
of the system which are organized into some substructure
of their own and which affect the system only through
the performance of their substructure. Rephrasing,
a module is an assembly of components which can itself
be treated as a component of the system."

The coherent structure theory plays an important role in the

analysis of systems using the modular concept. Coherent binary

systems are systems whose performance improves as the performance
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of their components improves. A coherent system is a system

(C,$) for which

$(x) < (y) whenever x < y i.e., x < y
41+ +-+ 1-

$ (0) = 0, where 0 = (0, 0,...,0

(i.e., a state where all components

(1.2.1)

(1.2.2)

fail)

= 1, where 1 =

(i.e., where all components perform).

Let C = (C,,C,.. .,C ) ben

y = (y ,yy ) is the

and the Boolean structure

a set of basic events,

vector of basic event

function $(y) determines

then

the

state of the system (i.e., the top event in the fault

$ ( = if the top event 
occurs

10 otherwise.

For the AND and OR gates, the vector will be defined as

follows:

$AND (

$OR >

= l 2 '''n =

n

i=1

= 1 - (n- y)(l-y9.. .(l-yn)

respectively.

A component C is inessential to a system (C,$ ) if the

performance of the component can have no effect on the performance

of the structure, i.e., if

= $(o ,x) for all (-i,x)

outcomes,

(1.2.3)

tree).

(1.2.4)

(1.2.5)yi
n

i=1

);

$( x) (1.2.6)
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where

(1 ,x) = (x1 ,...,x 1 ,x 1 1'''' xn

(0 , ) = (xJ5 5 ,..., ,0,x i+1''''' n '

(*i,3) = (x ,... X , + ' Xn *

Since inessential components can be detected from a system

without any effect, we will generally assume that all components

in the fault tree are essential and thus avoid some complications

in the theory. Therefore, we always assume

$(1 ,x) > (O ,x) for all (-i,x) (1.2.7)

A cut set of a coherent binary system (C,$) is a set of components

QGC such that $( 9,1Q)= 0 where Q' is the complement of Q (i.e.,

C=QU Q'), and Q ,4 are the component performance vectors for

which x.=O when C.EQ and x.=l when C EQ'. A cut set Q is a minimal

cut set of (C,$) if there is no cut set P such that PCQ.

The path sets of the same system (C,$) are in fact the cut

sets of coherent system (C,$D ), where D(x) = 1 - 4- ). (1.2.8)
D

$(x) is called the Dual Structure Function of the system (C,$).

From the above definitions for a coherent function and by

using the definition of a module, one can find [1] the structure

function of the system using its modules.

Consider a subset A of components such that A C C. A is a

modular set of (C,$) if

A A' A )xA'- 129$(x) = $(x , ) = T[XA(-x),x ] (1.2.9)

where (AxA) is a coherent binary system, and T is the
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structure function of a coherent binary system whose.components are

those C EA'. When A is a modular set we say that (A,XA) is a

module of (C,$). The application of this definition for a

fault tree is demonstrated for the sample faqlt tree given in

Figure 1.2.1. From what has been discussed so far in this

section, the modules of the fault tree can be easily obtained.

They are as follows:

(A={a,b,c}, XA= aU b U c)

where a Ub denotes the union

(A={d,e,f}. XA=d Ue Uf)

(A={a,b,c,d,e,f}, XA= (a Ub Uc)f

where (a')fl(b') denotes the

(A={g,h,i}, XA=(g Uh Ui)

of a and b

(d Ue U f))

intersection of aA and b

(A={a,b,c,d}, XA=( (a Ub Uc)[ld))

One of the useful representations of a Boolean function is

its pivotal decomposition about one of its coordinates, i.e.,

$(x) = x .*(1 ,x) + (1-x )$(O x) (1

If (AXA) is a module of (C,$), then from Eq. (1.2.9) we obtain

$x) = XA A ) A(l,') + [1-XA )] T(0,x ) (1

.2.10)

.2.11)
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G1

G2

GJG4

G3 +

a b c

FIGURE 1.2.1

SAMPLE SUB-TREE I WITH NO REPLICATIONS
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The method that is utilized in the PL-MOD code is based

upon the definitions for the modularization given above. For

example, the fault tree given in Figure 1.2.1 in which there

are no replicated componepts is analyzed below by assuming

that:

1. All the branches are independent, i.e., every intermediate
gate event in the tree is modularizable.

A
2. The logic function X ( ) associated with each gate is

either "prime" or "simple" having no inputs from other
"simple" gates of the same type.

Thus, the fault tree of Figure 1.2.1 can be changed into another

configuration as shown in Figure 1.2.2 which demonstrates the

finest modular representation of Figure 1.2.1 and is obtained by

coalescing gates G and G Its modular structure is given by

the following set of recursive equations:

A1 ={A 3 ,A 4 ,A 5  *(=XA =XA3-XA*XA5

A 3 ={a,b,c}, XA3=au b U c

A 4={d,e,f}, XA4=dU eU f

A5 ={g,h,i}, XA 5=gU hu i

Suppose that the fault tree in Figure 1.2.1 has a replicated

component as is shown in Figure 1.2.3. Then the following modules

are obtained:
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G3 4 G4 +

a b c d e f g h i

FIGURE 1.2.2

FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE I
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Gl

G2 G i 5

gri

G 3

e I

a b r

FIGURE 1.2.3

SAMPLE SUB-TREE II WITH REPLICATIONS



9

A3={a,b}, XA 3=a Ub

A 4={d,e,f}, XA =dUe U f

A5 ={g2'}3 XA 5=g Ui

Furthermore, these modules together with the replicated event,

r, will become the input to a higher order prime gate as shown in

Figure 1.2.4.

A(x A A A5 )

with the following modular minimal cut sets

S = (1,0,1,0)

S= (0,1,1,1)

It must be stressed here that the algorithm given by

Chatterjee [2] was devised for deriving the modular composition

of a fault tree given the minimal cut set structure description of

the tree. In complete contrast with this, the modularization

algorithm used in PL-MOD (Figure 1.2.5) derives the modular

composition of a fault tree directly from its diagram description.

It is important to realize that the modular minimal cut sets which

are derived from the above algorithm are compact representations

of the usual basic event minimal cut sets.

Once the modular structure of a fault tree has been obtained,

the quantitative evaluation of reliability and importance para-

meters of the tree are efficiently performed. In particular, the



G4

a b

10

6

G

d e f

FIGURE 1.2.4

FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE II

r

G

g i.
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INPUT TREE

CONNECT INTER-
DEPENDENT NODESI

FIND ALL GATES
HAVING NO GATE

INPUTS

CHECK IF
IS INPUT
THE SAME

"GATELESS" NODE NO
TO A NODE OF
TYPE (+ OR -)

YES

COALESCE GATELESS NODE
WITH ITS ROOT-NODE &
REDUCE # OF GATE INPUTS
TO ROOT-NODE BY ONE

LOOK FOR NEW GATELESS
NODES

ATTACH SUBMODULE OR
SUPERCOMPONENT TO
ROOT-NODE & REDUCE #
OF GATE INPUTS TO
ROOT-NODE BY ONE

CREATE CREATE
SMODULE DEPENDENT

SUBMODULEI
CHECK IF -.--.-
MODULE IS NO
PROPER'

I_ YES

CHECK IF MODULE
CONTAINS DEPEND- NO
ENT SUBMODULES

YES

GENERATE MODULE
MINIMAL CUT-SET
REPRESENTATION

CREATE SUPER-
COMPONENT

CHECK IF SUPER-
COMPONENT CON- NO
TAINS ALL THE
TREE COMPONENTS

YES

END

FIGURE 1.2.5

FAULT TREE MODULARIZATION ALGORITHM

'I
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probability of the occurrence of the top event is obtained by

means of a series of recursive calculations requiring the

evaluation of the probability expectation value of each of the

modules combined in the tree.

With respect to the importance measure, Olmos [3] has shown

how the Vesely-Fussell importance can be applied for modules and

how the importance of basic events can be easily computed from

a knowledge of the modular structure of the fault tree by

successively using recursive modular equations (see Chapter 3) and

the modular importance chain rule.

PL-MOD is written in PL/l language, because it provides

several features normally found only in assembler or list processing

languages. The essence of list processing is the ability to

dynamically allocate blocks of core storage to link these blocks

together into a structure to store and retrieve data from the

blocks. It should be noticed that list processing for complicated

data structures such as those required by.PL-MOD are very

difficult if not impossible to achieve through manipulations

using FORTRAN.

From the foregoing evidence the computational advantages

of PL-MOD to analyze and to evaluate fault trees in a modular

manner are:

a) The probabilities of the occurrence for the top and

intermediate gate events are efficiently computed by

evaluating these modular events in the same order in

which they are generated;
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b) The modular and component importance measures are easily

computed by starting at the top tree event and successively

using a modular importance chain rule.

c) For complex fault treees necessitating the use of minimal

cut-set upper bounds for their quantification, sharper

bounds will result by using minimal cut-set upper bounds

at the level of modular gates.

The efficiency and the accuracy of the PL-MOD method has

been demonstrated in reference [3] where PL-MOD has been tested

against MOCUS.
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2. TIME DEPENDENT FAULT TREE ANALYSIS

2.1 Introduction

The use of modularization techniques in fault tree analysis

provides an efficient and fast method to determine the unavaila-

bilities of the modules and the top tree event. The modulariza-

tion technique is specifically advantageous for the analysis of

fault trees comprised of components with time-dependent behaviors.

This is because the time-dependent evaluation involves many

calculations of the same kind at different time steps.

In this study, four different classes of components are

considered to be used in the PL-MOD code for evaluating the fault

tree. The four classes of components are:

1. Time-independent or constant unavailability components
(i.e., A = constant).

2. Nonrepairable components in which the failure rates are
time independent.

3. Repairable components, failure of which is immediately
detected (revealed faults). The failure and repair
rates are time independent for this class of components.

4. Repairable components, failure of which is detected
upon inspection (periodically tested components).

A detailed discussion of these four classes of components is

provided in Sections 2.2 through 2.5. Subroutine NUMERO in the

original PL-MOD code is altered such that it can handle these

four classes of components mentioned above. A detailed discussion

of these changes is presented in Section 2.9 in order to clarify



method utilized in the code. The new code is named PL-MODT,

and the abbreviation, T, stands for the transient features of

the code.

In the PL-MODT code, all features of the PL-MOD code are

essentially kept the same. The new code is able to handle very

large fault trees with time-dependent components as well as small

trees in an efficient, fast, and economical way. During this

development, an attempt has been made to incorporate most of the

important features of the present time-dependent codes such as

KITT [ 6 ] and FRANTIC [ 4 1 into PL-MODT. These features

will be discussed in more detail later in this chapter.

PL-MODT has been benchmarked against the KITT and the

FRANTIC codes, and the results obtained indicate that the code

PL-MODT is adequate for time-dependent calculations. Examples

of this benchmark analysis are presented in Section 2.10.

2.2 Class 1 Components: Time Independent Components

A time-independent leaf (component) in a fault tree takes

into account the presence of failures whose probability of

occurrence does not change during the component's operation.

These failures can occur essentially because of either a natural

phenomenon such as earthquake, flood, tornado, etc., or a

physical phenomenon such as operator faults, airplane crash, etc.

The occurrence of these faults has a specific likelihood which

is not time dependent. For example, if a fault tree leaf could

16
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be in n-different failed states given that there exists only one

non-failed state, then a Markovian model can be formulated such

as the one shown in Figure 2.2.1.

NON-

SATES FAILED a,, a2'' C
STATES STATES 2

... * n F1,21,-,n

Figure 2.2.1 A Markovian model for time independent
components

Each of these n failed states could be one of the failure

modes of the time-independent component. For example, faults

caused by an operator fault, airplane crash, or by a missile

produced from a turbine failure are three different mutually

exclusive faults occupying three failed states of the components.

In Figure 2.2.1, different transition probabilities are

given by a, 6, and 6. Therefore, the probability that the

component is in its non-failed state can be calculated as follows.

The transition matrix A is given by Eq. (2.2.1) below:
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NF F F2 ' F

NF al 62 ' 0 n

F 6 0 ...

A = F 60 a
- 2 2 2 All zeros

All zeros
Fn 6n an (2.2.1)

If P = [PNF PF '''' F ], then the solution of the
1 n

equation P . A = P would provide a discrete value for PNF

which is also a time-independent value for the probability

that the leaf is in its non-failed state. The following

example is given below makes the above discussion more clear.

Example: Figure 2.2.2 shows different transition probabi-

lities for a component with one non-failed state and two failed

states. The problem is to calculate the likelihood that the

component is in its non-failed state.

/2

NON-
FA ILED
STATE

1/4 NF 1/2

/2 4

FA IL FAIL
/2STATE S TATE 1/2

F F2
Figure 2.2.2 A Markovian model.
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The transition matrix A for this example is given as:

NF F F2

A =

NF ;2

F 2

F 2 (2

'2

0

0

2

Therefore, the matrix equation has the following form:

SvNF t bove Fe2 quatin[on NF fnF t maFr 2 

Solving the above equation one finds the matrix P

P = [ 4 k]

and thus PNF 2

2.3 Class 2 Components: Nonrepairable Components

For the class 2, 3, and 4 components, the total unavailability

can be divided into two separate parts: first, the probability

that at an initial time (t = 0) the component K is down (unavailable);

second, the probability that during the operation, component K

becomes unavailable. Therefore, one can write

T(t) = (1-Vi)w(t) + V id(t)
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where

V. = probability that K is down at t=0

1 (t) = probability that K is down at t=t given that
K was up at t=O

Ad (t) = probability that K is down at t=t given that
k was down at t=O

For class 2, 3, and 4 components, we assume that V.=0 which

is a valid assumption most of the time for most of the components.

Therefore, it is assumed that T(t)=v(t)'

In the code PL-MODT the unavailability equations are formulated

in terms of 1 (t) since this reduces the amount of calculations.

The value of v(t) for any class 2 component for a mission

time t may be calculated exactly by the expression

t
Tv= 1-exp[- f 2 h(t) dt] (2.3.1)

t1

where h(t) = hazard rate (instantaneous rate)

t = stated time duration of the mission which begins
at time t and ends at t2 '

Eq. (2.3.1) is the general form of the unavailability and does

not contain any approximation. However, since the hazard rate

h(t) is time variant, the unavailability should be calculated

through times of break-in as well as wear-out. Generally, data

are not available to give a good description of the hazard rate

through a component's lifetime. Also, it has been demonstrated
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that for most components, there is a long period of useful

life wherein the hazard rate is relatively constant. Under these

assumptions, Eq. (2.3.1) can be approximated as

T (t) = 1-exp[-Xt] (2.3.2)

where X is the constant component failure rate which is a

characteristic of the exponential distribution. We will see later

in Section 2.'4 that for a special case, class 3 components can

be reduced to class 2 and therefore Eq. (2.3.2) should be

obtainable from class 3 unavailability equations. Equation (2.3.2)

has been adopted in PL-MODT to calculate the unavailability of

non-repairable components.

2.4 Class 3 Components: Repairable Components

For this class of components, it is assumed again that

A(t)=A (t). For calculating K (t) it would be more convenient

to use a Markovian approach by using a constant failure rate

X(hr 1) and a constant repair rate y(hr~ ). Figure 2.4.1 presents

a Markovian model for this class of components

UP DOWN
STATE STATE

Figure 2.4.1 A Markovian model for repairable components
(revealed faults)
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It is assumed that the transition rates A and y have a

probability density function f(t) and g(t),respectively. Assuming

that state 1 is the UP state, and state 2 is the DOWN state, then

P1 2 ( T) = probability that the component K goes from 1 to 2
in the time interval At(t to t + At).

Therefore

P12 = XAt + O(At + .... ) (2.4.1)

higher order terms

Similarly, P2 1 = PAt (2.4.2)

Using Eqs. (2.4.1) and (2.4.2) we can determine the transition

matrix A as follows:

1 2

1 /-xAt XAt

P (2.4.3)

2 t

By subtracting 1 from the diagonal elements of the matrix P

one is able to find the identity matrix.

1 2
1 (-xAt XAt

P = (2.4.4)

2 yiAt -

From the identity matrix P we get the transition matrix which

reads

A (2.4.5)2)-
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To evaluate P2 (t) = K v(t) the Laplace transform is applied.

(SI - A)
S+X -X

=(-y S+yP
(2.4.6)

The inverse of the matrix, Eq. (2.4.6), is calculated as

follows

(SI-A) -=

S(S+X+p)

S1
S(S++y)+

S(S+X+p)

S+X
S(S+x+y)

y Ay
_ A +

+ 1
S+X+pi (2.4.7)

/,y

Taking the inverse of Eq. (2.4.7) we can evaluate Kv (t)

-(x+y)t
P(t)= + e

_PL A
A+yi A+y

X

~_kt i

Azy

(2.4.8)

A+y

From Eq. (2.4.8) it follows that

K (t) = P (t) -XA (1-e-(X+y)t)
v 2 - - +y

Equation (2.4.9) approaches an asymptotic value of

T (t) = X
v X+y

(2.4.9)

(2.4.10)

as the time t gets large.
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Equation (2.4.10) could be reformulated as follows:

Tr
v +T r

(2.4.11)

0 = -=mean time between failures (MTBF)

and T - - mean time to repair (MTTR)

Sometimes Eq. (2.4.10) is given in the following form:

(2.4.12)K = r+1
r

Equation (2.4.9) can be used to determine unavailability of

non-repairable components. It is known that for non-repairable

components the repair rate is zero because no repair is.conducted

which corresponds to Tr= c. Therefore, by setting y=0 in

Eq. (2.4.9), it reduces to the form given by Eq. (2.3.2), i.e.,

A (t)=l-e-tv

Equation (2.4.9) is used in the code PL-MODT to determine the

unavailability of components and some simple modules created

during the fault tree modularization.

2.5 Class 4 Components: Periodically Tested Components

Suppose that the component k is inspected at the times ti,

t2,...,tn. If k is found to be failed, it will therefore be

repaired.

e = time needed to inspect an intact component at the
n-th inspection.

T = time needed to repair a failed component at the n-th
n inspection; and

where
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n + Tn= time needed to inspect
n-th inspection.

In that case,

on +T <tn+1 - tn

a failed component

Assuming that the times tn are known (inspection times),

unavailability for any time t given tn < t < tn+1

If
X tn -t n-1

- T
ny n Xn

x =1

- 0n-1

- 1

for n>l

could be

then the

calculated.

and

Then, the unavailability at different times t. would be

v (t1 )= F(x1 )

Tv(t2) + F(x1)F(y2)+[l-F(x1)]F(x2)

Tv(t 3) {F(x2)-[F(x 2 )-F(y 2 )]F(xl)} F

{l-F(x2)+[F(x 2 )-F(y2) ]F(x 1 )}

F(x2 )-[F(x 2 )-F(y 2) ]F(x 1

(y3 ) +

F(x 3) =

= F(x3)-[F(x3 )-F(y 3 )F(x 2 )+[F(x 3 )-F(y3)][F(x2)-F(y2)]F(x1 )

n .jn
I (-l)n-JF(x.) H [F(x )-F(y )]

j=l i k=j+l k k

Equation (2.5.1) can be considerably simplified, and in the

particular case of equal inspection time and inspection period,

at the

)

T (t ) (2.5.1)

,- t2,...,tn
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that is:

Inspection interval = t2 - t =
t3 -- t2 = . -

Inspection period
(Duration)

Repair period
(Duration)

Equation

e1  2

T =C =1 2

(2.5.1) becomes

= F(n-6)
n

j=1

n-j
[F(n-e-t)-F(n-e)] + [F(t )-F(n-e)]

Equation (2.5.2) can be written as follows:

K (t ) = F(n-)l[F(n)F(n-T)]
v n l+F(n-)-F(n-e-T) +

[F(t1 )-F(fl-6)][F(nl-6-T)-F(fl-6)]n-1i

Since F(n-6)-F(n-6-T) in Eq. (2.5.3) is usually very small,

Eq. (2.5.3) can be approximated by

lim K(t ) - F(TI-e )
nlim Kv n l+F(n-e)-F(n-6-T)

To calculate the unavailability as a function of

apply the theorems of the sum of the probabilities and of the

conditional probability. Therefore one can write

y (t) = T (t n) S (tn ,t)

- tn-1 =11

n

T =n

6

T

K (tn)

(2.5.2)

( 2..5.3)

then

(2.5.4)

time, we can

=tn

[F(n-6-t)-F(n-6) ]n-1

+ [1-T (t n)]a (t , t) (2.5.5)
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a(tn ,t )n

(n 't

= probability that the component k is down at
time t given k was up at t and,

= probability that component k is down at time t
given k was down at t.

n
Therefore,

a(tn It) = 1(t-t n) -(t-t n- 6n) + F(t-t n~ 6n)

S(t nt) = l(t-tn)-l(t-tn-en -Tn)+F(t-t n-n-Tn

1(t-tn)

1 1

(2.5.6)

(2.5.7)

is a unit step function given as follows:

for x>0+

for x<0_

Now if F(t) = 1-exp[-At] where X is the constant failure rate

of the component, after some approximations [2] we obtain

A t) = 1-e-(t-mn)Xeff l-(t-mg)q (2.5.8)

e

Xeff = -+2-_+ ) 1 2
p() 1q n

( ) = gamma function of 1 and,
q q

q = L n(3-L n e) and,

(2.5.9)

(2.5.10)

m=l1, 2,... ,n

Figure 2.5.1 shows the unavailability calculated by Eq. (2.5.8)

for one inspection interval and the following data for a specific

periodically tested component

6 = 1.5 hrs, T= 19 hrs, n = 720 hrs, x = 3x10 hr~1

where

and

where

wher



28

z

0-4

10-

I-5. UNAVAILABILITY WITHOUT
OVERRIDE PROBABILITY
( i.e.,q go=l)

- - - - - UNAVAILABILITY WITH
OVERRIDE PROBABILITY
( i.e., go= 0.6)

I 1 1 1 1 i
0.1 0.5 I 10 100 100

HOURS

FIGURE 2.5.1

UNAVAILABILITY OF A COMPONENT AS A FUNCTION OF TIME
USING EQ. (2.5.8)



29

It should be noted here that Eq. (2.5.8) can be put into a

simpler form. For instance, take

(t-mn q
[1 - e 6 ] part of Equation (2.5.8)

For typical values of q, n, and 0, this part of the equation

approaches one about the end of the inspection period (i.e., for

t>mn+6). This results, howeverin an unavailability equation as

follows

A (t) = 1-e-(t-mn)Xeff

Therefore, if this approximation is used for the operating times

t>mn+e, some computing time can be saved. Thus, for only a

small fraction of time e, the complete Eq. (2.5.8) will be used

whereas for the rest of the test interval the simplified form

can be applied. (Note 6 is always in the order of a few hours and

n is in the order of several days or even a few months.) The

simplified form of Eq. (2.5.8) is not incorporated into PL-MODT

yet, but it is recommended to use this equation instead of

Eq. (2.5.8) for t>mn+6 in the future.

Equation (2.5.8) provides the unavailability of a periodically

tested component with equal test intervals. It is known, however,

that most of the time the first test interval is longer than the

subsequent ones and, therefore, Eq. (2.5.8) is not quite adequate

for this interval. Eq. (2.5.8) must be modified such that the

longer test interval can be handled. Specifically at t=O we have

Sv(O)0=O and n= n for the first test interval, with n2 3=* ' n
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for subsequent ones. A new form of Eq. (2.5.8) is actually utilized

in the PL-MODT code for the first test interval by changing

t-t+6 and setting m=l, and ri=n . Therefore, Eq. (2.5.8) becomes
t-n+1

v (t) = 1-e-(t+6-l )Xeff ( + 1 )] (2.5.11)
(t - l-e (2

Also, it should be noticed that in the PL-MODT the second term

in Eq. (2.5.9) is approximated as follows

2[1- ]e/n2 = 0.2 x 6/n2  (2.5.12)

This approximation will save substantial amounts of computation

time and will not change the computed unavailabilities since

/n2 is small compared to the first term of Eq. (2.5.9).

Override probability* P can be accounted for in Eq. (2.5.8)

by simple multiplying v(t) during the inspection period (6) by

the override probability P. Therefore,

Tv (t) = Tv (t) . P (2.5.13)

where P is given by

P = q0 + (1-q )(1-e (2.5.14)

and q= override unavailability.

Eq. (2.5.14) can be derived by using Eq. (2.5.8) to calculate

the unavailability at the end of the test interval. The effect of

*Override unavailabil-ity is the probability that a component cannot
function properly during its inspection period if it is demanded.
Therefore, with an override unavailability equal to one, the component
is totally unavailable during the inspection interval.
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incorporating an override probability is also shown in Figure 2.5.1

for q =0. 6 . The overall effect is a reduction in the average

unavailability of the component and thus an increase in the system

availability.

2.6 General Time Dependent Relations for the Evaluation of Fault
Trees by Using the Modular Concept

Take a module with a set {m 1, m2 , ... , m}.

function for this module will be

a M2(t) = m[1(t), y2(t),...,m(t)]

where

The structure

(2.6.1)

a i(t) = ami(t) (1 = 1, 2,...,n) also,

1 when module i has occurred at time t

0 otherwise

The expectation value of Eq. (2.6.1) is as follows

ha(t) = E a M(t)} (2.6.2)

Similar to the steady state analysis, for a simple AND gate

module in which M = {MM 2,...,M n, Q} we have

n
h (t) = E{aM(t)} = h (t)-h (t)...h (t) = h h (t)

12 m i=l i

(2.6.3)

Similar expressions can be derived for an OR gate module,

namely for a set M
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M = {M M2, ... Mn'U

n
h (t) = 1-[1-h (t)]a ... (1-h n h i(t) (2.6.4)

1 2 n i=1

For higher order modules, we have the following relationship

aM(t) =

Nk

H T ai(t)
j=1 iek

(2.6.5)

where N k=number of modules and components connected to a higher

order module or the top event.

Using the minimal cut-set upper bound formula, one obtains

I

Nk
h (t) ,=ll iT

j=l ick.
h (t)

Nk

jTT
jl Ek.

which is simply the union of modules and components which are

attached to a higher order module or the top event.

2.7 General Relations for Time Dependent Simple Modules Consisting
of Only Repairable Components (Class 3 Components)

The unavailability of a repairable component as given by

Eqs. (2.4.9) and (2.4.10) can be used to derive an approximate

failure rate A and a mean dead time T for simple AND and OR gates.

A simple AND gate or module is a module consisting of only

simple component inputs. From Eq. (2.4.10) by employing the common

assumption that X T <<l, one obtains

(t) = FiQiF1X (2.7.1)

where

H.(t) = unavailability of the component i input to a module,

h (t)
i.

(2.6.7)
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Once these basic relationships have been established, the

next step is to find the failure and repair rates of the module.

The primary event in an AND module can occur in the time

interval t to t+dt, with the remaining events having already

occured at time t, or the second primary event can occur in the

time interval t to t+dt, with the remaining events having already

occured at time t, or.... Keeping these observations in mind,

the following equation is obtained

n n
f(t) = pr{F IR} = 1 F.(t)A 1.dt]]~F.(t) (2.7.2)

J=l j i=1 1

ihj

where n = number of components input to the AND gate

F(t) = l-F(t)

f(t) = probability density function (p.d.f.) of an AND gate.

The p.d.f. can also be obtained as follows: If a cumulative

probability density function (c.p.d.f.) for an AND gate is designated

as f(t), then

n
H(t) =f]~.(t) (2.7.3)

i=l

By substituting Eq. (2.7.3) into Eq.(2.7.2), the following expression

results

n H(t)
f(t) = F.(t)X. x (2.7.4)

j=1 (t)
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Since F.(t) is close to unity and the remaining terms are very

small, Eq. (2.7.4) can be approximated as

n
f(t) < i9(t) Iko J=1 F .*(t)

By substituting Eqs. (2.7.1) and (2.7.3) into Eq. (2.7.5),

the following result is obtained:

n n
f(t) = f = TTXiTi (

i=l j=1 j

By using the general hazard rate formula, it is possible to

calculate A for the AND gate as

A(t) = f(t)

where

2.7.6)

2.7.7)

R(t) = reliability of the AND gate.

R(t) may be approximated by R(t)~l since the numerator is small.

Therefore, Eq. (2.7.7) reduces to the following form AAND(t)=f(t)

or, from Eq. (2.7.6),

nI

AAND TT Xi 1
i=1 i=1l

(2.7.8)

Similarly, by using the definition of the mean dead time for

a simple gate, it follows that

T(t) = (t) (2.7.9)T~t) H(t) A(t)

(2.7.5)
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Therefore, the mean dead time for a simple AND gate can be obtained

from the definition in Eq. (2.7.9)-

n

11F1 XiTi
TANDn n n n (2.7.10)

(1 -TT )(TT.T )
i=1 i=1 j=1 j

n
Since X T <<1, it can be assumed that (1-TTX T )~l and thus

i=1
Eq. (2.7.10) can be written as follows

TAND= n (2.7.11)

j=1 j

In a similar way, one can obtain the value of A(t) and T(t)

for OR gates. The first primary event in an OR gate can occur in

the time interval t to t+dt with the remaining events not having

occurredat time tor the second primary event can occur in the

time interval t to t+dt with the remaining events not having

occurred at time t or,....

-Similar to Eq. (2.7.2), the following equation results.

n n
g(t).dt = IG(t)X dt 1TG (t) (2.7.12)

j=1 1" i=l
i*j

Applying the same approximations made for Eq. (2.7.2), Eq.

(2.7.12) can be reduced to the following form

n
g(t) = L(t) X. (2.7.13)

j=1 j

where n n
L(t) = TTG (t)~l- 3(t)

1=1 l
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From Equation (2.7.13) it follows that

n n
AOR g i i

Using a definitiont similar to that in Eq. (2.7.9) for the

dead time,

T(t) = L ( t)

n n

(2.7.14)

By approximating H Xi as X A T,, then TOR follows as

T OR
i=l

Xi i

(2.7.15)n 2 n2
X1 A T

j=1 =

A special case in which (1-
n 2

AkiT1 ) is close to unity
1=

would result in very simple forms for A OR and TOR, namely,

n
AOR X i

i=1

n n
TOR= AT /

i=1l=
X i

The values obtained for A and T for

(2.7.16)

(2.7.17)

simple AND and OR

modules can be further investigated. For example, take Eqs. (2.7.8)

and (2.7.11) for an AND module. If we were to approximate this

module behaving as a simple component, with the same approximation

stated in Eq. (2.7.1), it follows that the unavailability of the

module is given by

and
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n
A AND = AAND ' AND i i (2.7.18)

Equation (2.7.18) can also be obtained by using the asymptotic

unavailabilities of individual input components to this AND gate.

Similarly, from Eqs. (2.7.16) and (2.7.17) it follows that

n
A OR = AOR ' TOR xi ( 2.7.19)

which is again the exact asymptotic unavailability of this OR

module.

Equations (2.7.18) and (2.7.19) show that the approximation

of assuming that a simple module behaves as a simple component

would have no effect whatsoever on the simple module's asymptotic

unavailability, if and only if A .T << 1.

The above discussion indicates that within a certain range of

time, Eq. (2.4.9) could be used to determine the unavailability of

the module. By examining many typical simple modules, it has been

found that the approximation of assuming that modules would behave

as components will not provide an adequate value for the unavaila-

bility of the module for times t < 2T. Figure 2.7.1 shows a

comparison between the exact unavailability of a typical simple AND

module with two input components; Table 2.7.1 summarizes the

parametric characteristics of these input components.
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Table 2.7.1

Component Input

Input Component

2

to a Simple AND Module

Failure Rate (hr~ )

3 x 10~4

2 x 10-5

Mean Dead Time (hr)

100

150

Therefore,

A 9 x 10-5 x 1 1.5 x 10-6 hr-l
AAND=xO x l. x 0 h

1
TAND 1 1 60 hrs

100 150

2.8 General Relationships for a Time-Dependent Simple Module
Consisting of Only Non-Repairable Components (Class 2 Components)

For a non-repairable component, the unavailability is given

by Eq. (2.3.2). For a simple component i, the unavailability

would be

(2.8.1)F (t) = 1 - e

For small values of X t we can approximate Eq. (2.8.1) as

Fi(t) ~ A .t. Therefore, by using Eq. (2.6.3) one obtains under

these circumstances

n
AAND (t) = (T )tn-1

i=1
(2.8.2)

where n = number of inputs to the AND gate. For the case of an
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OR gate, AOR is derived by using Eq. (2.6.4)

n
AOR 1 (2.8.3)

i=l

Treating an OR module as a simple 6omponent will result in

exactly the same unavailabilities and no approximation is involved

by using Eq. (2.8.3). Treating an AND gate as a simple component

by using Eq. (2.8.2) is possible only if X t is small, namely,

X t<0.1. In that case, Eq. (2.8.2) provides the failure rate of

a simple AND module. Therefore, for t>0.1/Xi the approximation is

no longer valid and the general equation

n
A(t) = TT Fi(t) must be used.

i=l

Table 2.8.1 summarizes the formulas discussed in this section.

2.9 Description of the PL-MODT Code

The original PL-MOD code consists of only Class 1 components,

and therefore it is only able to evaluate time-independent components.

The other three classes of components have been incorporated into the

PL-MOD code, and thus the extended version is called PL-MODT, which

also comprises all the other features of the PL-MOD code. The

incorporation of Class 2,3, and 4 components is performed in five

separate steps.

Step 1 includes the development of subroutine SHOHREH, which

evaluates time-dependent unavailability of fault trees consisting

of only non-repairable components (Class 2 components).
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Table 2.8.1

Failure Characteristics of Simple Modules
Having Repairable or Non-repairable Component Inputs

Repairable Components'

T

Non-repairable
Components

A

(n n(=1  i1 i1

n

m* k k 1

n

i=1l

n

Ix i 

n

i= 1

m k

k=l i=l IT -
m k 1 i l iiii~ m -I I Ti

k=1 i= i=l i

* m = kCN k!(N-k)!

Type of
Module

A

( n
i=lAND

OR

K-0-N

n
A
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Step 2 includes the development of subroutine CECA which

evaluates time-dependent unavailability of fault trees consisting

of only repairable components (Class 3 components).

Step 3 includes-the development of subroutine SHARAREH which

evaluates time-dependent unavailability of fault trees consisting

of only periodically tested components (Class 4 components).

Step 4 consists of a further development of the old NUMERO

subroutine to enable it to calculate the average unavailability over

the period of system operation. In addition, the old subroutines

PLUS and EXPECT were modified to allow the code the treatment of

unavailabilities which are close to one. This seems necessary for

Class 4 components during the component inspection period, where

unavailabilities are usually close to 1.

Step 5 comprises the development of the SHARAREH subroutine

such that the PL-MODT code contains the ability to handle large

fault trees consisting of a combination of different classes of

components with different time-dependent behaviors.

These five steps are discussed in full detail in the following

sections.

2.9.1 Developments Included in Step 1

In the SHOHREH procedure, the value of the unavailability for

simple AND modules is calculated at different time steps

(DEL9T(1,j)) by using Eqs. (2.8.2) and (2.3.2) up to a time t

where t=0.1/X and X is the largest failure rate of the components

on the module. After the time t, the components are considered

individually and therefore only Eq. (2.3.2) is used.
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For the simple OR modules, the unavailability is calculated

by using Eqs. (2.8.3) and (2.3.2). No limitation exists for the

OR module and thus Eqs. (2.8.2) and (2-3.2) are used for the entire

operational period.

The total number of time steps in each time interval mesh is

calculated by

TIE(lI) = AUN(1,I)
* DEL9T(1,I)'

where AUN(l,I) is the duration in which the time step
DELqT(1,I) is applied and,

DEL9T(1,I) is the time step for the I-th mesh interval.

At each TIE(1,I) time step, first the unavailability values

are calculated for the various modules and components of the

fault tree using Eq. (2.3.2). Next, these unavailabilities are

assigned to the arrays STATE(l,I) and STATD(l,I). Finally, the

subroutines EXPECT, DOT, PLUS, MINUP, and IMPORTANCE are called

respectively to calculate the top event and higher order module's

unavailability as well as the Vesely-Fussell importance measures.

The same procedure is applied for all of the other time interval

meshes (AUN(1,l), AUN(l,2),...,AUN(l,N)). At the end, the mean
N

unavailability is calculated when the time exceeds T= Z AUN(1,I)
I=1

and the program stops.

As explained before, for each time interval mesh there exists

a corresponding time step DEL9T(l,I) and, therefore, a corresponding

number of time steps TIE(l,I). Thus, the total number of

unavailability values calculated for the top event would be
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N
TIE = X TIE(lI)

I=1

where N = total number of time interval meshes used.

2.9.2 Developments Included in Step 2

In the second step, the CECA subroutine was developed. Similar

to the SHOHREH subroutine, different time interval meshes along

with their corresponding time steps are used. These values are

stored in the allocated arrays AUN(l,I) and DEL9T(1,I). Four

other arrays--STSTS, STATT, STATTE, and STATED--are allocated to

store the failure and repair rates of free and replicated

components, respectively.

At the beginning of the operation, the approximations

discussed in Section 2.8 of this chapter are not applicable due

to the small unavailability values and, therefore, the unavailabilities

of replicated and free components must be calculated directly by

using Eq. (2.4.9). As time progresses the components approach

their asymptotic unavailability values and, therefore, when the

unavailability errors are small enough (usually when t~3T), the

code automatically uses the approximations summarized in Table 2.8.1.

As discussed before, these formulas asymptotically approach the

exact unavailability for simple modules..

Unavailability values calculated at each time step will be again

assigned to the STATE (1,I) and STATD(l,I) arrays. After calling

subroutines EXPECT, DOT, PLUS, MINUP and IMPORTANCE, the top event

and higher order module's unavailability will be calculated. When
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no time interval meshes remain, the average unavailability will be

determined by using the procedure incorporated into the NUMERO

subroutine. This will be discussed in Section 2.9.4.

2.9.3 Developments Included in Step 3

In this step, the SHARAREH subroutine is developed for

periodically tested components. In this subroutine the use of

different mesh intervals plays an important role in the

accurate determination of the top event unavailability. For

example, during the inspection period, very small time step meshes

must be used in order to calculate the detailed behavior of the

system within this interval, which usually results in large system

unavailabilities during this short time interval. (See examples

presented in Section 2.10.)

The arrays STATT and STATD are allocated to store the failure

rates of free and replicated components respectively. The arrays

ETTA and ETTAD are used to store the test interval, TTETA and

TTETAD to store the inspection period, whereas TAVV and TAVVD are

employed to store the repair duration.

The values of eff and q from Eqs. (2.5.9) and (2.5.10) are

calculated for each free and replicated component and are stored in

the arrays STATTE and STATTED, QUUE and QUUED, respectively for

free and replicated components. At each time step, a special

procedure is employed to determine the value of m in Eq. (2.5.8).

This value provides the specific test interval that should be

used. For m=1, the code will use Eq. (2.5.11), since it indicates
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that the component is in its first test interval. For m>l,

Eq. (2.5.8) will be used under the assumption that the subsequent

test intervals are identical (i.e., only the first test interval

differs from the others).

The unavailabilities calculated at each time step are assigned

to the arrays STATE(lI) and STATD(1,I) in order to calculate

the top and higher order module unavailabilities. For periodically

tested components, no approximations such as those discussed in

Section 2.7 can be applied, since it seems that no correlation

exists between a simple module inspection and repair duration

and its input components' parameters (i.e., , 0, T, and X).

Finally, the average unavailability during each test interval

is calculated in the NUMERO procedure. If the override unavaila-

bility has a value less than unity, and if the time step is within

the inspection period of the component, then the value of the

predicted unavailability will be multiplied by a value called

POORD, where POORD is the override probability.

POORD = q + (1 - q0 )(1 - e~ eff ' )

q = override unavailability

Therefore, the arrays STATE(lI) and STATD(l,I) will change to the

following form.

STATE(l,I) = POORD * STATE(lI) and

STATD(1,I) = POORD * STATD(1,I)

where STATE(l,I) and STATD(1,I) are calculated by Eq. (2.5.8).
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2.9.4 Developments Included in Step 4

In the fourth step, the NUMERO subroutine is further

extended to calculate the average unavailability of the top

event. For this purpose, the following assumption is made.

After the unavailabilities of two successive time steps are found

for the top event, it is assumed that the unavailability changes

linearly between these two points. Therefore, the unavailability

as a function of time for the top event of a specific fault tree

can be calculated for different time steps by the PL-MODT. For

the special case of a fault tree of only periodically tested

components, the top event unavailability behaves as shown in

Figure 2.9.1.

Figure 2.9.1: Unavailability as a Function of Time
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The total area under the curve in Figure 2.9.1 is calculated by

adding the area occupied by each time step interval, and using the

linear unavailability approximation between the two time steps.

The total area is then divided by the operating time t, where
N

T= I AUN(l,I) to get the average unavailability of the system.
i=l

In the PL-MOD version of the code, the approximation states

in Eq. (2.6.7) is used to calculate the union of all components and

modules attached to a higher order module or the top event.. In

the time-dependent version of the code, this approximation is no

longer appropriate, since sometimes we are dealing with unavaila-

bilities ranging from 0.2 to 1, which precludes the use of the

minimal cut-set upper bound formula, Eq. (2.6.7). Thus, the

general form N

h (t) = TT hr.(t)
j=1 isk. i

is incorporated into the subroutines PLUS and MINUP. However,

if the unavailabilities input to a higher order module or the top

event are individually smaller than 0.2, then the program is

constructed such that the old versions of subroutines PLUS and

MINUP are used. As an example, part of the changes stated

above are presented here.

IF REX<0.2 THEN GO TO ZACH;

(NOTE: ZACH will follow the old PLUS subroutine, and REX
is unavailability calculated for the module.)
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IF (PROP.LIM=l e PROP.TIL(l)=0) THEN GO TO SLUA;

DO J=l TO PROP. LIM;

REX=REX*(l-STATE(L,PROP.TIL(J)));

END;

SLUA: IF (PROP.MIM=l e PROP.PIM(1)=NULL) THEN GO TO SLUB;

DO J=1 TO PROP.MIM;

IF (PROP.PIM(J)-+-PROP.HOST, =NULL) THEN DO;

PR=PROP.PIM(J)->-PROP.HOST;

REX=REX*(l-PER.REL(l));

END;

ELSE REX=REX*(l-PROP.PIM(J)+i-PROP.REL(l));

END;

SLUB: REX=1-REX;

ZACH: .....

The dummy variable REX and other similar variables are

declared on FLOAT DECIMAL (16) so that the result from subtraction

of small unavailabilities from 1 will not be truncated.

2.9.5 Developments Included in Step 5

In the last step, the SHARAREH subroutine is further developed

in order to combine different classes of time-dependent components.

This enables the code to treat any combination of repairable, non-

repairable and periodically tested components in a fault tree.

This specific problem is solved by adding a zero test interval

condition option for those components which are not periodically

tested (i.e., ETTA(l,I)=ETTAD(l,I)=0). If the zero test interval
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condition arises, then the computer code will automatically apply

Eq. (2.4.9) and thus will not evaluate Eqs. (2.5.8) through

(2.5.11).

It should be noted here that in the case of non-repairable

components, Eq. (2.4.9) reduces to Eq. (2.3.2) with the repair

rate equal to zero (i.e., y= 0). Therefore, for a non-repairable

component we have ETTA(l,I) =ETTAD(1,I)=TTETA(1,I)=TTETAD(1,I)=0.

This results in an equation of the form given by Eq. (2.3.2).

One final note discusses the usefulness of the subroutines

SHOHREH and CECA. Since the SHARAREH subroutine can handle not

only periodically tested components but also repairable (revealed

fault) and non-repairable compoennts, then there is seemingly no

need for the subroutines SHOHREH and CECA. However, it should be

pointed out here that the use of SHOHREH and CECA subroutines

saves computation time due to approximation incorporated into them.

Additionally, no procedure exists in these subroutines which would

recognize the class of each component at each individual time step.

Furthermore, if the fault tree components are only of one class,

then the corresponding subroutine should be used to save

computation time, although the unavailabilities will naturally be

the same by using the SHARAREH subroutine. A variable ESF is

used in the PL-MODT code to determine which subroutine is going

to be used. For ESF=1, all components are considered to have

steady-state point value unavailability (i.e., Class 1 components).

For ESF=2,all components are considered to be repairable (revealed

fault) components (i.e., Class 3 components). Finally, for ESF=4
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all components are periodically tested components (i.e., Class 4

components) or a combination of the above-mentioned classes of

components.

2.10 Examples

In order to more easily comprehend the meaning of the input

description, four examples are given in this section.

2.10.1 Low Pressure Recirculation System (LPRS)
for PWRs (Class 1)

This system is part of the Emergency Core Cooling Recircula-

tion System and consists of the containment pump and two pumps in

parallel redundancy. Figure 2.10.1 shows a simplified flow

diagram and Figure 2.10.2 shows its associated reduced fault tree.

It should be referred to in connection with the following discussion.

All values with the exception of V24 and V25 are aligned for

injection into the cold legs. V2 4 and/or V25 should be open in

order to start the LPRS and close V 2. These valves, whether

locally or remotely operated, are all manually operated. Details

of the system as well as its fault tree can be taken from

WASH-1400 [3].

The LPRS unavailability estimates are given in WASH-1400 as

follows:

QWASH 1.3 x 10-2
med

QWASH 4.4 x 10-3
lower

Q WASH= 2.7 x 10-2
upper
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V30

Containment
Sump

Figure 2.10.1: Simplified Flow Diagram LPRS
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where the lower and upper bounds were evaluated by a Monte-Carlo

simulation by using the minimal cut-set approach. The point

estimates for single and double failures, test and maintenance

as well as common mode failures are:

Qsingle = 1.1 x 10-5

Qdouble = 2.7 x 10-3-

Qtest & main = 1.0 x 10~

Qcommon = 6.0 x 10-3

respectively.

This system has been analyzed by PL-MOD to determine the

point estimate probability for the occurrence of the top event

and the Vesely-Fussell importance of the components. The reduced

fault tree contains a total of 61 non-replicated basic events,

4 replicated events and 2 replicated modular gates.

The point unavailability computed by PL-MOD using the

modular approach is

Q = 4.83 x 10-3

The total computation time for this example was 0.46 sec.

and included the modularization, the evaluation of the top event

probability and the determination of the importance measure for

all components and modules in the fault tree.
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2.10.2 Auxiliary Feedwater System - A Comparison Between
PL-MODT and FRANTIC (Class 4)

The Aux-Feed System is shown in Figure 2.10.3 and described

in detail in [4]. As can be seen from the figure, the system

consists of two diesels in parallel with a pump and two valves.

The pump and valves are in series. The block diagram used in

FRANTIC.[4] is a simplified version of the one shown in WASH-1400.

It is assumed that the components of the system are periodically

tested. The data are summarized in Table 2.10.1.

Figure 2.10.4 compares the results for the point unavail-

ability computed by the two codes FRANTIC and PL-MODT. It should

be noticed that PL-MODT gives slightly lower values for the

unavailability for the system during the operation time. During

the inspection time of valve 1, pump and valve 2, and diesel 4

(720 < t < 721.5) both codes give essentially the same answer.

However, for the repair time interval, a larger difference appears

as can be seen from Figure 2.10.5. This is mainly due to the

fact that the analytical equation in PL-MODT gives lower values

for the unavailability. This difference vanishes as the end of

the inspection period is approached. Thereafter, both codes

predict about the same value for the unavailability as depicted

in Figure 2.10.5. To evaluate unavailabilities shown in Figure

2.10.5, a finer time step mesh was used.

PL-MODT treats the group: valve 1, pump and valve 2, as

a module and therefore the unavailability of this module will be

given automatically in the output. Therefore, the unavailability
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Figure 2.10.3

Block Diagram of the Aux-Feed System

Valve Pump Valve



TABLE 2.10.1

THE COMPONENT INPUT DATA FOR THE.CODES FRANTIC AND PL-MODT

Component
Number

Component name

Valve

Valve2

3

4

5

Pump

Diesel

Diesel

Failure
Ratei
(x10 )

0.3

0.3

3

42

42

Test
Interval

(days)
(n)

30

30

30

60

60

First Test
Interval
q.T. '

30

30

30

30

60

Inspection
Duratior'6,)
(hours)

1.5

1.5

1.5

1.5

1.5

Repa-1r
Dura-
tion(n)
(hours)

7

7

19

21

21,

(q )
Ovgrride
Unavail-
ability

1.0

1.0

1.0

1.0

1.0 "D
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for each branch could automatically be obtained from the same

computer run for unavailability calculations of the top event.

The CPU time for PL-MODT was 0.57 seconds for modularizing

the fault tree and calculating the unavailabilities for 40 time

steps as well as the importances for components and modules.

As the number of components increases and more inspected

components become involved, the differences during the repair

time should vanish. This will become more apparent in the next

example.

2.10.3 Example of a Simple Electric Circuit Using FRANTIC
and PL-MODT

Figure 2.10.6 shows a simple electric system which has been

discussed in [5]. The purpose of the system is to provide light

by the bulb when the switch is closed, the relay 1 contacts

closed and the contacts of relay 2 ( a normally closed relay) are

opened. Should the contacts of relay 1 open, the light will go

out and the operator will immediately open the switch which in

turn causes the contacts of the relay 2 to close which restores

the light. In what follows, operator failures, wiring failures

as well as secondary failures will be neglected. The fault tree

for this system is shown in Figure 2.10.7.

Failure rates, repair times and test periods for the various

components are summarized in Table 2.10.2. N1o replicated

component or module exists in this system.



62

Light
bulb

Power
- supply I

Circuit
path A

Circuit
path B

Power
supply 3

Circuit
path C

Switch

Figure 2.10. 6: Sample System for Mutually Exclusive. Events

0

Power
supply 2

umm"
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8

Figure 2.10.7 :

9 10

Fault Tree for Sample System in Figure 2.10. 6



TABLE 2.10.2

INSPECTION PARAMETERS FOR THE CIRCUIT EXAMPLE

Component #

1

2

3

4

5

6

7

8

9

Failure
rat

2.0x10 4

2.8x10-5

2.8x10-5

3.2x10- 3

4.1x10~4

3.2x10~4

2.8x10-3

2.8x10- 3

4.5x10-3

Inspection
Time (hrs)

. 1.0

0.5

1.0

0.5

0.5

1.0

0.5

1.0

0.5

First (Days)
Time Inter-
val

7

7

7

7

14

28

14

14

7

Repair
Time (hrs)

2.0

1.0

1.5

2.0

1.5

1.5

2.0

1.5

2.5

Override-
Unavail-
ability

1.0

1.0

1.0

1.0

1.0

1.0

1.0

1.0

Test 1(days)
Interval

7

14

7

21

28

21

14

7

1.5 7 3.010 4 .5x10- 3 1.0 7
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In order to enable FRANTIC to analyze this system, the

system's unavailability function must be provided as input.

This function was found to be

QS= { 1. 0-,(1-Q(l) ) {'1-[ (1-Q(2) )(1-Q(4) )(1-Q(7) )(1-Q(8))

*(l-Q(9))(l-Q(10))][l-(1-Q(3))(l-Q(6))(l-Q(5))}}

Naturally, for PL-MODT the fault tree was directly inputted

because there is no need for a system function. As output,

PL-MODT gives the four following modules.

Module'#4: components 5, 6, and 3

Module #3: components 4, 7, 8, 9, 10,. and 2

Module #2: modules 4 and 3

Module #1: component 1 and module 2

Figure 2.10.8 compares the output of both codes for one complete

period of 28 days. As can be seen, the results are overall in

very close agreement during the operational period. Differences are

attributed to the fact that for this example the failure rates

are comparatively highand the FRANTIC prediction,by using a linear

approximation for the unavailability, at large times would not

be valid.

Again, during the inspection period both codes give essentially

the same results. However, for the repair period (see Figure

2.10.9) differences show up again which were observed already in

Example 2.10.2. It should be noticed that these differences are
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During Its Operation as Calculated by FRANTIC and PL-MODT

100

10-

0

z

IO-4 L
0



\I. i



68

not as pronounced as in Example 2.10.2 because more components

are involved in the present example.

The CPU time for PL-MODT was 0.98 seconds for modularizing

the tree, evaluating the unavailabilities for components, modules

and the top event for 32 time steps and for determining the

importances for various components and modules.

For the same tree and data, FRANTIC needed 1.12 seconds

alone for calculating the system unavailability over the period

of 180 days and to determine the mean unavailability of the

system over this period. However, it should be noted here that

PL-MODT would be an efficient and convenient code for evaluating

large fault trees consisting of periodically tested components.

Examples 2.10.2 and 2.10.3 showed that the code is also fairly

fast for evaluating small fault trees as compared to other

state-of-the-art computer codes.

2.10.4 Comments and Discussion

2.10.4.1 Differences Between FRANTIC and PL-MODT

The obvious difference between the two codes is that

whereas PL-MODT is capable of analyzing large fault trees and

evaluating them at the same time, the use of FRANTIC is mainly

confined to the analysis of small systems for which the system

unavailability function is known in advance. This off-line

approach is not only time consuming but has the additional

disadvantage that the user may introduce spurious errors.
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In case that a system, for example, the Aux-Feed system,

is to be evaluated in more detail than each valve, pump, and

diesel would be further developed down to the level of subcom-

ponents which are periodically tested. For this purpose,

PL-MODT is especially suited.

The analysis of computer storage and CPU statistics for

PL-MODT is underway.

2.10.4.2 Comments on the Vesely-Fussell Importance Measure

PL-MODT enables the user to select the option for the

determination of the V.F. importance in steady-state and transient

evaluations. As an example, Figure 2.10.10shows the importance

of the.pump in the Aux-Feed system as a function of time. The

importance stays about constant through the operational period.

After a sudden increase in system unavailability due to the

testing of the pump, the valves, and the diesel, the importance

of the pump sharply decreases and increases again, once the

inspection has been finished. Thereafter, it remains fairly

constant during repair and operation. The opposite behavior can

be seen in Figure 2.10.11 for the valves. The reason for this

behavior is that the combination of valve 1, pump and valve 2

constitutes a prime module which is directly connected to the

top event and thus its total importance is 1 over the whole

operational period. The same holds for diesels 4 and 5. As a

result, any increase in pump importance is accompanied at the

same time by a decrease in valve importance.
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2.10.5 Comparison Between PL-MODT 'and PREP & KITT-1
(Class 2 and 3)

This comparison is based upon an example considered in

Ref. [6]. The associated fault tree is shown in Figure 2.10.12.

It has been analyzed and evaluated by PL-MODT for the data

summarized in Table 2.10.3 by assuming all components show a

time-dependent failure behavior but are non-repairable.

Figure 2.10.13 compares the results of the two codes. Those

for PREP & KITT are taken from [6]. For the first 3000 hrs,

PL-MODT calculates unavailabilities which are higher than those

computed by PREP & KITT. Thereafter, the trend reverses and

PREP & KITT gives higher -values. Which code comes closer to

the exact answer can only be answered by benchmarking these

codes against a code which employs the Markovian approach.

The computation time for PL-MODT was -0.64 seconds for

modularizing the tree, finding the unavailabilities for

system, components and modules for 10 time steps. Advantage

was taken of the fact that PL-MODT is capable of handling

directly K-out-of-N gates. Therefore, the two 2/3 gates were

inputted, rather than analyzed by the code. This approach

naturally saves computer storage and computation time.

The same fault tree in Figure 2.10.12 was used to evaluate

the top event unavailability for the case that components 1

to 6 in Figure 2.10.12 are repairable and 7 to 10 are

non-repairable. The following data were used (Table 2.10.4).
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FIGURE 2.10,12 -
FAULT TREE EXAMPLE GIVEN IN [6]

I
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TABLE 2.10.3

PRIMARY FAILURE RATES FOR SAMPLE FAULT TREE SHOWN IN FIGURE 2.10.12

Primary Failure Index )(hr

1 2.6 . 10- 6

2 2.6 . 10- 6

3 2.6 . 10-6

4 3.5 - 10-5

5 3.5 . 10-5

6 3.5 . 10-5

7 3.5 . 10-6

8 5.0 . 10-6

9 8.0 . 10-6

8.0 . 10-610
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TABLE 2.10.4

FAILURE AND REPAIR RATES FOR SAMPLE TREE IN FIGURE 2.10.12

Primary Failure Index

1

2

3

4

5

6

7

8

9

10

(hr 1 )

2.6 x 1o-6

2.6 x 10 6

2.6 x 10 6

3.5 x 10-5

3.5 x 10- 5

3.5 x 10 -5

5.0 x 10-6

5.0 x 10-6

8.0 x 1o-6

8.0 x lo-6

-(hr~)

4.1 x 1o-2

4.1 x 10- 2

4.1 x 10-2

1.66 x 101

1.66 x 10~

1.66 x 1

0

0

0

0

First PREP & KITT were used to compare its results with PL-MODT.

Next, FRANTIC results were used for the same example. The results

are shown in Figure 2.10.14

Small differences exist due to different approximations used

in these codes. However, these three codes give essentially the

same asymptotic values for unavailabilities. The job run time for

PL-MODT to calculate the top event unavailability for 15 time

steps was 0.62 seconds.
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HOURS
COMPARISON OF THE TIME-DEPENDENT UNAVAILABILITIES OF
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AND PL-MODT
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3. REDUCTION OF LARGE FAULT TREES BASED ON THE
VESELY-FUSSELL IMPORTANCE MEASURES

3.1 Introduction

In this chapter the fault tree reduction method which is

incorporated into the PL-MODT code is discussed. This reduction

method is based on the Vesely-Fussell importance measures which

are calculated by the code. A value called cut-off value is

inputted and any higher order module, simple module, or component

which has an importance less than this value is eliminated.

The remaining part of the original fault tree is the reduced

version. Essentially, it must have all of the characteristics

of the original fault tree. The reduced version of the tree

is very useful for further assessment of the fault tree, such

as low order cut-set generation, test and maintenance considera-

tion, common cause analysis,..., etc.. In the following

sections, some discussions are provided to clarify the method

of reduction and the cut-off range to be used.

3.2 Importance Measures and the Use of PL-MOD to Calculate
the V-F Importance Measures

The code PL-MOD is able to calculate the importance

measures for large fault trees very effectively and economically.

Olmos and Wolf [1] have developed V-F importance measures to

calculate importance of higher order modules in a fault tree.
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For example, a higher order module is shown in Figure

3.2.1. To evaluate the V-F importance of modules

the one shown in Figure 3.2.1, it follows that

NJ

l' 1 a''., n TTk=1 iki

(i=l, 2, . , n)

The probability that module

failure of its parent module am,

a will contribute

given that

to the

the parent module

has failed is given by

P(aS.k (al' 02,..., 0 )

a %0 W 0 n)

(3.2.3)1' a2,..., a n)) = ha

and Eq. (3.2.1) implies that is given by

Njk

2, 2,

the V.F. importance for module j with respect to the

top event will be

V.F.
6,a

V.F.
aM

= 1)

(3.2.5)

such as

(3.2.1)

VF
ISO

now

= 1)

= 1)
(3.2.2)

Thus,

(3.2.4)

N k

P(( HT1 ad)
k=1 kk9

jck
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In the code PL-MOD the subroutine IMPORTANCE is constructed

to evaluate the Vesely-Fussell importance (I V.F. for every

modular and basic component in the fault tree. IMPORTANCE

provides these quantities by starting from the top event and

taking the top event importance to be equal to 1 (i.e.,

IV.F. = 1), and by proceeding then to higher order modules,TOP

simple modular and finally basic components of the fault tree.

For a simple AND module it follows from the foregoing that

I (i=1, 2,..., n)C.

and

IV.F. F. (i=l, 2,..., n)

For a simple OR module we have

V.F V. P
I ' = I ' ' . (i=1, 2,..., n)

I ~M

I V.F. I V.F. M (i=1, 2, ... , n)

For the case of higher order modular gates, the following

equations are used in the IMPORTANCE subroutine

I P(k

IV.F. = V.F. j.,r ek k 326
S = (3.2.6)
r M P(Mv)



83

P(k)

IV. _ = V.F. jM e kf j (3.2.7)M. =M P(M)

The numerator of Eqs. (3.2.6) and (3.2.7) is calculated

in the IMPORTANCE subroutine, whereas all other probabilities

are already calculated in the EXPECT subroutine.

The pressure tank system [1] will be analyzed here to show

the procedure for V.F. importance calculations. Figure 3.2.2

shows the pressure tank system and Figure 3.2.3 shows its

fault tree. This fault tree consists of 13 free components and

one replicated component with no replicated module. Failure

data for the fault tree in Figure 3.2.3 are given in Table 3.2.1.

The different modules which exist in the pressure tank system

fault tree are presented in Figure 3.2.3. To calculate the

importance measures, the following calculations

are performed in three steps. It should be recalled that all

probabilities are calculated in the EXPECT subroutine prior

to the use of the IMPORTANCE subroutine.

STEP 1 VF= 1
TOP

IV.F. r =2.49937 x 1 01
r P(TOP)

M
IV.F. M 1 = 7.500625 x 101
N 1  P(TOP)

P P

I 'V.F. IV ' = MP M5 = 4.49887 x 10-10
MN M5 P(TOP)
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MODULES IN THIS TREE
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)

I . I



86

TABLE 3.2.1

PRESSURE TANK RUPTURE FAULT TREE FAILURE PROBABILITY DATA

Basic Event i

1

2

3

4

5

6

7

8

9

10

11

12

13

Event Description Failure Rate .
(Per Loading Cycle,

Pressure Tank Faulure

Secondary failure of Pressure Tank
Due to Improper Selection

Secondary failure of Pressure Tank
Due to out-of-tolerance conditions

K2 relay contacts fail to open

Si switch secondary failure

S1 switch contacts fail to open

External reset actuation force remains
on switch Sl

K1 relay contacts fail to open

Timer does not time-off " due to
improper setting

Timer relay contacts fail to open

Pressure switch not actuated by sensor
1

Pressure switch not actuated by sensor
2

Pressure switch not actuated by sensor
3

Replicated Event i

(3000)1

10-8

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

10-5

Event Description - Failure Rate
(Per Loading Cycle

Common Cause failure among 10-5
relays KI13K2 and timer T



V.F. V.F. 1 -4
1 =M V = 2.49937 x 10'

1 M

IV.F. V.F.
2 3

V.F. = IV.F.10-5 - 2.49937 x 10~
4 M1 PM 

V.F.
M 9

V.
M4

= 4.49887 x 10-10

V.F. . F FV.F. ..F. I VF. = IV.F.

5 6 7 8 9 10

IV F.
M5

10-5 = 7.49812 x 10~
~M5

STEP 3

'= I 'V. = I. F. V.F. x 2(10-5) 2 _ 2.99924 x 10-101 11 12 13 M N9 M2.924x1

Therefore, if we were to reduce this fault tree based on

the above calculations for a cut-off value of 10~ , we should

perform the following procedure.

STEP 1

I V F. = 2.49937 x 10~ KEPT

(since larger than 10~ )

I. '
N 1

= 7.500625 x 10~ KEPT

I V.F = IV.F.
M14 M 5

= 4.49887 x 10-10 CANCELED

STEP 2

.L
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Therefore, M and components 5, 6, 7, 8, 9, and 10 will be

automatically canceled

IV.F. 2.4993.7 x 10~4 KEPT1

I V' IV.F. F V.F. = 2.49937 x 10 KEPT

From this discussion, the reduced version of the fault tree

in Figure 3.2.3 is given in Figure 3.2.4. Naturally, the same

procedure is adopted to reduce large fault trees by the use of

the IMPORTANCE subroutine in the PL-MOD code. The method

applied is presented in the next section.

3.3 Use of the Code PL-MOD to Reduce Large Fault Trees

As discussed in Section 3.2, the subroutine IMPORTANCE in

PL-MOD provides the V-F importance measures for all of the fault

tree components as well as simple and higher order modules. This

subroutine is modified to a new form such that it accounts for the

cut-off value to exclude those components and modules that have

V-F importances less than this prescribed value. For any further

evaluation, the new reduced form of the fault tree could be used.

Obviously, the cut-off value plays an important role in

the reduction strategy. That is, different values of the cut-off

value result in different reduced fault trees. Therefore, a

great deal of attention must be paid to the selection of the cut-off

value in order to achieve a desired and accurate form of the

reduced fault tree.
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Figure 3.2.4

Reduced Fault Tree for the Pressure Tank Rupture for an
Importance Cut-Off Value of lx10-
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The new form of the IMPORTANCE subroutine is linked with

the code PL-MODT, so that for future developments of the code,

the reduced version of fault trees will be used by the code to

evaluate time-dependent behavior of the fault tree.

In the modified form of the IMPORTANCE subroutine, the top

event importance will be set equal to 1. Starting from the top

event it proceeds to the bottom. First, V-F importances of the

higher modules and replicated events that are connected to the

top event are calculated. Next, the code automatically removes

all modules and replicated events whose V-F importances are less

than the prescribed cut-off value. Each higher order module

which is removed contains some other modules and free components

that are attached to them. Therefore, there is no need to

compute the V-F importance of any of these attached members of

the removed higher order modules because their importances

are always equal to or less than that of the parent module which

by itself is lower than the cut-off value. If, however, the

higher order module is not removed because of its importance

being higher than the cut-off value, the code will proceed to

calculate importances of simple modules and components attached to

it, and to automatically remove components and simple modules

with importance low enough to be cancelled.

Therefore, starting from the top event of an unreduced

fault tree, all of the branches of the tree with low importances

will be cut. Those lower order branches and leaves which show

low importances compared to the cut-off value will be cancelled.

The pruned tree is the reduced version of the original tree.
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The pruning process is performed by setting the variable

STATE(2,I) which is the measure of the V-F importance for

components equal to zero. If the module is reduced, then auto-

matically all components I connected to this module are cancelled

(i.e., STATE(2,I) = 0).

For example, the removal of a simple AND module proceeds

as follows:

IF(PROP.LIM=le PROP.TIL(1)=0) THEN DO;

PROP. REL(2) =0

GO TO EME 1;

(To calculate the importance of the NOT gate if any)

END;

ELSE PROP.REL(2)=PER.REL(2)

IF(PROP.REL(2) <CUT-OFF) THEN PROP.REL(2)=0;

DO IT=l TO PROP.LIM;

STATE(2,PROP.TIL(IT))=PROP.REL(2);

END;

Therefore, all of the components input to the AND gate will

have an importance which is either equal to zero (i.e., cancelled)

or equal to the importance of the AND module.
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3. 4 Reductions of LPRS and HPIS Fault Trees

In order to demonstrate the reduction process, the reduced

fault tree of the Low Pressure-Recirculation System presented in

Appendix II of WASH-1400 is further reduced by using different

values for the cut-off limit. The maximum change in the top

event occurrence for the followIng range of cut-off values

10-2 cut-off 10~ has been observed not to exceed 1% from its

published version, i.e.,

(1 -+ 0.01) punreduced

For example, for the LPRS with 6 replicated and 61 non-replicated

components, the results for the various reduced versions which

follow from the application of the different cut-off values are

summarized in Table 3.4.1.

TABLE 3.4.1

Percentage Change in the Top Event Occurrence of
Reduced Trees of LPRS for Different Cut-off Values

Percentage
Cut-off No. of Free Com- No. of Replicated Com- Change in the
Value ponents Remained Components Remained Top Event

10-5 43 5 No change

10~4 37 5 No change

10~ 3 20 4 No change

10-2 12 2 1.1%
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It becomes obvious from Table 3.4.1 that for cut-off values

in the range of 10-5 to 10-3 no change in the top event occurs

and, therefore, one can safely use the upper bound (i.e., 10-3

for the cut-off value in order to get the most reduced tree,

thereby saving computation time. Even the use of 10-2 for the

cut-off provides a still reasonable fault tree for the LPRS

which results in a change of only 1.1% compared to the originally

published version. Investigation of the reduced fault trees

showed that they have essentially the same low order cut-sets

as the original fault tree, unless components of a low order

cut-set have very low probabilities so that they result in a

small V-F importance.

It is very important to understand that a component

with low probability or unavailability will not necessarily

result in a low V-F importance. For example, for the pressure

tank example Component 1 is found to have

IV.F. = 2.49937 x 10~ and
r

IV.F. = 7.49812 x 10111510

-8 -5However, P,=10 and P =10-, and, therefore, even though
1 5-10

the replicated event has a probability of occurrence which is

by 3 orders of magnitude less than that of components 5 through 10,

its importance is _7 orders of magnitude larger. This means that
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any reduction process which is solely based on the orders of

event probabilities. does not necessarily result in a meaningful

reduced fault tree. To have the same order of magnitude for the

importance of the replicated event one needs to reduce the

probability of the replicated component down to P =10-15 whichr.

results in

IV.F. = 2.49937 x 10ll
r

From the abdve discussion it follows that the reduction

schemes in the code PL-MODT do not only provide an excellent

objective engineering judgment to reduce a fault tree, but it

is also instrumental in improving the design objectives of the

system under consideration.

The same kind of study is performed for the HPIS and for

a cut-off value of 10 3. The HPIS fault tree consists of 142

free and 13 replicated components. The reduction process resulted

in 53 free and 9 replicated components. The top event

remained unchanged and the low order cut-sets are almost the same.

Since there are no calculations or iterations involved in

the reduction procedure, the computer cost increase is negligibly

small compared to the modularization process. For example,

for the LPRS fault tree, the CPU time for modularization and

evaluation by the PL-MODT amounts to 0.46 seconds where it is

about 0.47 seconds if a reduction with cut-off value equal to 10-2

is requested in addition to the above calculations. Although the

saving does not become apparent for this steady-state example, it
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should be pointed out that a substantial saving will result if

one uses the reduced version for time-dependent fault tree

analysis and Monte-Carlo simulations.
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4. INCORPORATION OF A MONTE-CARLO SIMULATION
PACKAGE INTO THE CODE PL-MOD

4.1 Introduction

It is a well-known fact that the Monte-Carlo simulation always

involves many calculations of the same kind. That is to say that

in order to calculate the top event of a fault tree, several

hundred to several thousand simulations have to be performed

on the accuracy desired. Each top event probability corresponds

to a specific set of possible components' failure data. The

code PL-MOD provides the modular cut-sets which in turn are very

simple and efficient to use for the top event calculations.

The codes SAMPLE [31 and LIMITS [2] are two examples of

codes which have recently been used for Monte-Carlo simulations.

The SAMPLE code has been used in WASH-1400 to calculate reliability

bounds. Both codes require a system function as input to identify

the logical dependencies in the systems thatare being analyzed.

For very large fault trees, construction of this equation is a

difficult process and most of the time serious errors may result

from mistakes during the construction of this function. Therefore,

for large fault trees it would seem more comfortable to use the

fault tree itself as an input rather than the system equation

derived from the cut-sets of the fault tree.

The code PL-MOD is used to calculate the modular cut-sets

and the NUMERO subroutine in this code is modified such that it

can handle fault trees consisting of steady-state components with
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some uncertainties associated with their failure rates. The new

code is called PL-MODMC, where MC stands for the Monte-Carlo

package added to the PL-MOD code.

The failure rates of the components are assumed to be

log-normally distributed. The same sorting routine which has

been used in the code LIMITS is adopted here since it has been

demonstrated that it is very fast and efficient. However, an

efficient PL/i random number generation is developed and used in

PL-MODMC. This random number generator was found to be very

simple and fast. The output of the PL-MODMC consists of the top

event probability for any arbitrary set of confidence limits.

Also, mean and point unavailabilities along with the top event

standard deviation are also calculated. The minimum probability

and maximum error for each confidence level will also be provided

by PL-MODMC.

4.2 Mathematical Concepts of the Monte-Carlo Method in Fault
Tree Analysis

As was discussed in the previous chapters, fixed values for

failure rates and other data are commonly referred to as point

values. In a probabilistic approach, because of the variations

and uncertainties in the failure rates and other parameters, these

quantities should be treated as random variables.

In the code PL-MODMC, the lognormal distribution serves as

the basis of the uncertainty propagation. However, the use of

other distributions in the code should be easily established.
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The log-normal distribution is found to be more adequate and

convenient to be used in fault tree analysis because the raw

input data are sparse and the assessed ranges are large, having

widths of one or two orders of magnitude. Also, examinations of

the existing data showed that the log-normal distribution gives

an adequate empirical fit.

The random variable t has a log-normal distribution if its

logarithm follows a normal distribution. The distribution is

skewed to the right. For example, having a possible range

between t/f and t.f (f is a factor) for a log-normal distribution,

this range transfers to logt + logf which is a description of

normally distributed data. Therefore, the log-normal distribution

describes data which vary by factors. On the other hand, the

normal distribution describes data which vary by additive or

subtractive increments.

Most of the failure data can vary by factors. For-example,

a failure rate estimated at 10-6 could vary from 10~ to 10-5 which

is (10- 6/10) to (10- 6x10). The log-normal distribution has two

parameters: y specifying the distribution scale and a specifying

its shape. The probability density function (P.d.f) for a

log-normal distribution is given by:

1 (Lrat - y)2
f(t) = exp-[ 2  ; t>0 (4.2.1)

(2. t l 2 a

From Eq. (4.2.1) the following parameters can be calculated:
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2
Mode (the most probable value): t =ep~a

m

Median: t0.5 = e' or in terms of the upper and lower bounds

t0.5 = Xu'XL

Mean: t = ey /2

Variance: v = e2p+a2 [(e2 -1)

The Monte-Carlo technique by itself is very simple. Once

the log-normal distribution parameters are known for all of the

components of a fault tree, these values are then used to compute

a point value for the top event probability using the cut-sets

which have been provided by the analysis of the fault tree.

The procedure is repeated for a large number of trials and the

results are sorted to obtain an estimate of the system unavaila-

bility distribution.

One of the important factors in a Monte-Carlo simulation

is its accuracy. The accuracy of an estimated distribution by

sampling is discussed in [4].

It is known that

pr(IX(P) - P I < P) = erf( t ) + R (4.2.2)

where

X (P) = M/N

N is the number of trials; M is the number of successes.

t = E
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P = the p parameter of a binomial distribution

q= 1 - p

R = error associated with the probability measure which
is given by

-t 2/2 0.2+0.25 P- - pq
iR| < e + 0 pq + e (4.2.3)

2Np q Npq 2

erf(t) = error function of a variable t= f7 0 e .du

For example, pr([-X (0.95) - 0.951) < 0.01) means the

probability that X0.95 lies between the probability limits of

0.94 and 0.96. In other words, the value of X is associated with

a confidence interval of P+e, with a probability of erf (-- + R),

and as can be seen it is not dependent on the distribution but on

the confidence level.

In the code PL-MODMC, the value of e is calculated by

subtracting the smallest confidence level from zero. For example,

if the smallest confidence level is 0.5% (i.e., the largest

confidence level is 99.5%), then the accuracy is E=0.5. Therefore,

the minimum probability would be

erf(-) - max(R)

For a large sample size N, it follows that

pr(Its - tPI < 1.36 ) = 0.95

p N

where t is the estimated distribution fractile, and tp is the

corresponding exact cumulative distribution value of the underlying

population from which the sample was picked randomly. For example,
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for a sample size of 2000 we will be 95% sure that the estimated

distribution deviates by not more than 0.03 from the exact

distribution.

4.3 The PL/1 Random Numbers Generator Used in the Code PL-MODMC

The task is to generate random numbers for the calculation

of samples from the components' failure rate distributions. A

PL/1 random number generator has been developed for this purpose

and implemented into the PL-MODMC. The numbers generated by

this generator are normally deviating about a specified value

which the user must provide as an input. The Central Limit

Theorem is applied to generate normal random numbers. Then, each

of these random numbers is used to calculate the failure rates

from specified log-normal distributions. The PL/1 listing of

this random number generator procedure is given below.

RAND: PROCEDURE OPTIONS (MAIN);

DECLARE (IY,A,IYl,X) FLOAT DECIMAL(16);

DECLARE CEIL BUILTIN;

GET LIST (N,X,M);

IY=X/0.499977;

IYl=IY;

DO WHILE (M>0);

A=0;

DO I=1 TO N;
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IYl=CEIL (IYl);

IY=IY-IYl+l;

A=A+IY;

IYl=IY*65539;

IY=IYl;

END;

PUT DATA (A)(SKIP (2), F(12,5));

M=M-l;

END;

END RAND;

This random number generator is very fast, primarily

because it is written in PL/l language. The variable N denotes

the approximation of the Central Limit Theorem. The variable X

is any odd-starting number to generate random numbers. Finally,

the variable M is the total number of random numbers to be generated.

The computation time for generating 4000 random numbers by using

the above procedure is 0.026 se c. of CPU time.

4.4 Description of the Code PL-MODMC

As was discussed before, the code PL-MODMC is developed

to incorporate the capability of a Monte-Carlo simulation using

the modular cut-sets that the code PL-MOD generates. In the

modified form of the code, the subroutines IMPORTANCE and STATE-IN

are not used. Therefore, the code PL-MODMC does not perform any

importance calculations and automatic fault reductions. However,
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it is acknowledged that it would be much simpler if the code

would automatically reduce the tree and then perform a Monte-Carlo

simulation. This option is not incorporated into the code yet,

but it is hoped that it will be incorporated during the future

research activities. This would not only reduce the computation

time, but would also provide almost the same top event probability

for different confidence levels of the original unreduced tree.

The Monte-Carlo code PL-MODMC has been developed in two

steps:

Step 1 includes the development of the MONTCA subroutine.

Step 2 includes some minor changes in the NUMERO and EXPECT

subroutines.

4.4.1 Step 1

The subroutine MONTCA consists of a special procedure to

choose failure rate samples from each component log-normal

distribution. First, any arbitrary combination of confidence

levels is given by the user, and an array will be allocated to

store them. Also, the total number of trials is provided by the

user. Then, the computer calculates the maximum error and the

minimum probabilities for each confidence level by using Eqs.

(4.2.2) and (4.2.3).

Second, a special procedure enables the code to use point

values of the failure rates to calculate the top event probability

(Class 1 components in the PL-MODT code).
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Third, the Monte-Carlo simulation starts by using the median

and spread values given by the user whichare stored in the

allocated array MEDIAN(I) and FEN2(I), respectively.

Finally, the following procedure similar to that of the

SAMPLE code is employed:

DO I=1 TO VEN;

[VEN is the total number of replicated and non-replicated
events, i.e., VEN=FUN+DUN;]

IF (MEDIAN(I)=0) THEN FEN1(I)=0;

ELSE FENl(I)=LOG(MEDIAN(I));

IF (FEN2(I)-i=0) THEN

FEN2(I)=LOG(FEN2(I))/1.64;

END;

XPl=SQRT(12/N);

(N is the same variable described in Sec. 4.3)

ALLOCATE TOP-P;

(to store different top event probabilities that are
calculated in the EXPECT subroutine)

RANDOM GENERATOR
procedure follows here

XPl=XPl*(AA-0.5*N)*FEN2(I)+FEN1(I);

(AA calculated by the random number generator, it is
identical to the variable A described in Section 4.3)

IF (XPl=0) THEN MEDIAN (I)=0;

ELSE MEDIAN(I)=EXP(XPl);
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At this point, the values calculated at each trial will be

assigned to the STATE and STATD arrays which are ALLOCATED

before as follows:

DO K=1 TO FUN;

STATE (1,K)=MEDIAN(K);

END;

DO N=1 to DUN;

J=N+FUN;

STATE (1,N)=MEDIAN(J);

END;

At this stage,.the modified subroutine EXPECT is called to

calculate the top event probability from the modular cut-sets

by using the data obtained in the trials for the component

unavailabilities that are stored in the MEDIAN array. Therefore,

it follows:

CALL EXPECT;

TOP-P (ASACH)=REY;

ASACH=ASACH+l;

where REY is the top event probability that is assigned to

this variable in the EXPECT subroutine. When ASACH exceeds the

total number of trials requested by the user, the code calculates

the mean value and the standard deviation of the top event

probability from the TOP-P(ASACH).
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At the end, the same sorting routine as utilized in the

LIMITS code is used in the PL-MODMC with some changes to allow

its formulation in PL/1 language. This sorting method has an

empirical computer time requirement directly proportional to

nl.22 6 . The method does not take up any additional computer

core memory. When the sorting process is finished, the spread

factors for the top event are calculated by simply using the

following equations.

P
F -=5 (14.4.1)

1 
0 5

P
F2 - 95 (4.4.2)

P50

where P0 5, 50, and P95 are the top event probabilities which are

calculated in the sorting process for 5%, 50% (which is also the

median value for the top event) and 95% confidence levels. The

Monte-Carlo calculation ends by printing the top event probabilities

for different confidence levels along with the mean values,

standard deviations, median values, 5% and 95% error factors

(spread values), and the point unavailability.

4.4.2 Step 2

The subroutine EXPECT is used in PL-MODMC to calculate the

top event probability for each trial. The same form of the

EXPECT subroutine that is used in the PL-MODT has been modified

to be used in this code.
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The new form of EXPECT is designed such that there is no

printout of probabilities for modules and the top event at the

end of each trial. Rather, only top events will be stored in

the TOP-P (ASACH) array. Also, some features are added to the

subroutine to utilize all spaces used to store different variables

that are not necessary for a.Monte-Carlo calculation, such as

probabilities or different higher-order modules that are auto-

matically calculated in each trial by the EXPECT subroutine.

4.5 Examples

Two examples are provided in this section: first, the same

reduced fault tree given in the LIMITS code [2] for a Reactor

Protection System; second, the LPRS fault tree given in WASH-1400

is used to calculate the probability of the top event for different

confidence levels.

For the reduced fault tree of the Reactor Protection System

(Figure 4.5.1), the CPU times for the three codes LIMITS, SAMPLE,

and PL-MODMC are found and presented in Figure 4.5.2. The

probabilities calculated by the PL-MODMC agree well with the

other two codes. The results for the fault tree in Figure 4.5.1

and failure data in Table 4.5.1 are given in Table 4.5.2. Slight

differences from those given in [21 and in Table 4.5.2 are because

of the different techniques that are employed. For instance,

random numbers are generated by slightly different techniques.

It should be noticed that CPU time is comparatively higher

for PL-MODMC than for the LIMITS code. This is because of the
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ITMOO25Q
even #

IED0001F:
ICB0004C:
ICB0005D:
ICB0005C:
ICB0004D:
ICB0003X:
ICB0002X.:
ITMOO25Q
(odd #):
ITM0025Q
(even #):

ICB0003X ITMOO25Q ITM0025Q
odd # even #

ICB0002X ITMOO25Q
odd #

Failure of suff.. no. of rods to drop when power
Breaker BYA fails closed
Breaker RTA fails to open
Breaker BYB fails closed
Breaker RTB fails to open
Breaker BYA closed due to test and maintenance
Breaker BYB closed due to test and maintenance

Train 'A' logic fault

Train 'B' logic fault

is removed.

Figure 4.5.1: Reduced Fault Tree of the Reactor Protection
System for a PWR [2].
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Table 4.5.1: Failure Data for the Reactor Protection

System of a Pressurized Water Reactor [2]

Failure Fault Exposure Unavai.1- Error
Event -

Rate (Hr.) Time (Hr.) ability q, Factor

IEDO00F 1.7X10-5  10

ICB0004C 1.0X10-6  360 3.6X10~4  3

ICB0005D 1.0X10- 3  3

ICB0005C 1.0X10-6  360 1.X10-3  3

ICB0004D 3.6X10~4  3

ICB0003X 6.1X10-3 4

ICB0002X. -6.1X10 3  4

ITMOO25Q

Odd # 9.7X10~4  10

Even # 9.7X10~4 10
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fact that the calculation time of PL-MODMC includes the modulari-

zation and the minimal modular cut-set generation. Therefore,

the curves in Figure 4.5.2 do not represent a real comparison

between PL-MODMC and the other two codes. Although the modulari-

zation needs only a small fraction of the time consumed in the

PL-MODMC, the CPU time is primarily due to the establishment of

several structures and calling some subroutines at each individual

trial. A more honest comparison between the codes would be

obtained by adding the CPU time consumed by the fault tree analysis

code such as MOCUS to calculate the cut-sets prior to the use

of LIMITS or SAMPLE codes to the CPU times consumed by the LIMITS

and SAMPLE codes.

From the discussion above, it becomes apparent that the use

of the code PL-MODMC for a Monte-Carlo analysis of very large

fault trees may be very economical. It has also been found that

the CPU time in PL-MODMC is more sensitive to the number of

trials rather than the size of the tree.

The LPRS fault tree with 61 free components and 6 replicated

components were input into the PL-MODMC and 1200 trials were

simulated. The results are presented in Table 4.5.3. The

computation time including the modularization is 52 seconds.

In general, the results agree well with those given in WASH-1400

as can be seen by the comparison presented in Table 4.5.4.
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TABLE 4.5. 4

Comparison of the LPRS Fault Tree Simulation Using PL-MODMC
And the Results Calculated by the SAMPLE Code in WASH-1400

Confidence Level WASH-1400 (SAMPLE) PL-MODMC

1.3 x 10- 2

4. 4 x 10-3

3.1 x 10-2

1.24 x 10-2

5.82 x 10-3

2.75 x 10-2

50%

5%

95%
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5. CONCLUSIONS AND RECOMMENDATIONS

During this research period, the code PL-MOD has been

extended to include some additional features such as time-

dependent basic events, automatic fault tree reduction, and

Monte-Carlo simulation.

The original algorithm to derive a fault tree's modular

composition directly from its diagram was already reported by

Olmos and Wolf [1]. The procedure consists of piecewise collapsing

and modularizing portions of the tree, until eventually the

fault tree structure is described as a set of modular equations

recursively relating the top tree event to its basic component

inputs. The structural representation of fault trees containing

replicated events was shown to necessitate the use of higher-

order gate modules. A Boolean vector representation was chosen

to express the family of minimal cut-sets corresponding to a

higher-order gate. The code PL-MOD is written in PL/l in order

to take advantage of the list processing capabilities available

in this computer language. For instance, extensive use is made

of based structure pointer variables and dynamic storage allocation.

Moreover, the manipulation of Boolean state vectors, which

requires the treatment of higher-order modular structures, is

conveniently performed by using bit-string variables.

In a second step, the code PL-MODT has been developed to

handle time-dependent events and automatic fault tree reduction
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based on the importance measures of different modules and com-

ponents in the tree. Four classes of components are used to

include the time-dependent behavior of basic free and replicated

components. These classes of components are as follows:

a) Class 1 components, which are components with a finite

time-independent probability of occurrence.

b) Class 2 components, which are non-repairable components

where the failure rates are time-independent.

c) Class 3 components, which are repairable components

where the failure and repair rates are time-dependent.

d) Class 4 components, which are repairable components,

whose failures are detected upon periodic inspection.

The code PL-MODT employs the same modularization algorithm

utilized in the code PL-MOD, but includes the aforementioned

four classes of components. Various approximations are employed

in this code to make the time-dependent calculations fast and

economical. Some useful features such as the calculation of the

mean unavailability and the option of different time step mesh

sizes during different periods in life have been incorporated

into PL-MODT. The upper bound cut-set probability approximation

is changed to the prediction of exact values, which enables the

PL-MODT code now to handle large unavailabiltiy values (i.e.,

unavailabilities close to 1).



119

It is found that the PL-MODT calculations are performed

efficiently, economically, and accurately. Benchmarking tests

against the codes KITT and FRANTIC have clearly demonstrated

these advantages. It should be noticed that the use of the

KITT and FRANTIC codes is not as straightforward as the application

of PL-MODT because prior to the use of KITT, the code PREP

must be employed in order to find low-order cut-sets of the

fault tree. Similarly, in FRANTIC, a system equation (QS) has

to be supplied by the user which indicates the logical dependencies

of input components. This equation usually becomes quite compli-

cated for large fault trees. In contrast to these procedures,

in PL-MODT only the fault tree structure and components' failure

characteristics are inputted. Thus, appreciable savings in

computation time and manpower result when large fault trees are

to be analyzed by PL-MODT.

A reduction scheme of a tree is incorporated into the PL-MODT

code to provide an objective judgment for the reduction of a

large fault tree, such that the probability of occurrence of the

top event is essentially maintained. For this purpose, the

cut-off value is defined. It provides a criterion for eliminating

those modules and components whose importances are lower than this

prespecified value. In the reduction analysis of fault trees such

as for the LPRS and the HPIS, it is found that cut-off values in

the range of 10-2 to 10-3 provide the simplest and yet still

accurate reduced versions of the trees. It is demonstrated that

the use of the reduced version of a large fault tree enhances the
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understanding and processing of the tree for further analysis

(i.e., Monte-Carlo analysis, time-dependent analysis, etc.).

Due to uncertainties associated with the failure data of

fault tree components, it is important to implement a Monte-Carlo

analysis to propagate input uncertainties up to the top -event.

For this purpose, the code PL-MODMC was developed. It enables

the user to work with large fault trees. The code has been bench-

marked against the well-known SAMPLE code and the recently

developed LIMITS code. The comparison showed good agreement for

the sample cases considered. The codes SAMPLE and LIMITS require

the generation of fault tree cut-sets prior to their Monte-Carlo

simulations (i.e., using either the codes PREP or MOCUS), whereas

PL-MODMC uses the modular minimal cut-sets that are already

generated before calling the MONTCA subroutine which is described

in Chapter 4.

Although the codes PL-MOD, PL-MODT, and PL-MODMC have been

proven to be valuable tools for various aspects of fault tree

analysis and evaluation, they all have the same restriction in

common to only handle replicated modular gates, i.e., replicated

gates representing a supercomponent event independent from all

other gates in the tree. However, in general, replicated gates

may exist which do not represent only a supercomponent event. A

study has been recently initiated to eliminate this restriction.

Its removal will significantly enhance the capabilities of the

code. It is recommended that after the removal of the afore-

mentioned restriction the following features be incorporated

into the code.
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i) Generation of all simple minimal cut-sets from the

fault tree's modular cut-sets of up to an order specified by the

user. Appendix B summarizes the efforts undertaken in this

direction thus far. The comparison with the specially designed

fault tree analysis code, FTAP (UCB), is indeed very encouraging.

ii) Application of these simple cut-sets to generate the

system equation (QS) and incorporation of this equation into the

PL-MODT and PL-MODMC codes to save computation time, especially

for PL-MODMC.

iii) Common cause analysis should be effectively performed by

the modular decomposition approach. For instance, by generating

different modular tree representations associated with postulated

common cause failure modes being considered, one would be able to

access the contribution of the common cause failure to the top

event.

iv) Derivation and implementation of a unique and meaningful

importance measure for periodically tested components. This

would avoid the abrupt change in the unavailability in the transi-

tion between the different periods experienced by using the V-F

importance measure.

v) Extension and application of the Monte-Carlo simulation

to time-dependent problems, where repair rates and test intervals

are considered to be random variables in addition to the failure

rates. Here, the modular decomposition approach offers unique

savings in computation time because it operates on numbers of
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modular cut-sets which are by orders of magnitude smaller than the

number of minimal cut-sets commonly applied. Thus, realistic

uncertainty propagation for time-dependent problems seems to be

in reach in the near future.
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APPENDIX A

USERS MANUAL FOR THE CODES PL-MODT AND PL-MODMC

A.1 Introduction

This manual describes the input for the code PL-MOD El] for

the modular fault tree analysis and steady state reliability

analysis as well as for the extended version PL-MODT [21 which

.accounts for time-dependent processes and automatic fault tree

reduction now without using the concept of minimal cut-sets.

Both versions use the language PL/1 and the most recent IBM

PL/l compiler with optimization on the 370/168. For these

reasons, the effectiveness and operation of these codes seem to

be highly system-dependent.

It should be pointed out that PL-MODT is merely an extension

of the PL-MOD code, and thus relies upon the same modularization

procedure. The user has the option to either select a steady

state or time-dependent calculation once the modules have been

determined by the code. Therefore, this manual is equally

applicable for the original version and for the most recent one.

In Section A.2 input to the code PL-MODT is presented, and in

Section A.3 input to the code PL-MODMC is described.

In what follows, each card group is identified by a special

name in order to more easily comprehend the meaning of this group.

Furthermore, the variable names and their meanings are given.

Special notes will provide extra information where needed to support

the user in setting up his own problem.
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The input to the code is FORMAT free. The only requirement

is that the data, when punched on th.e same card, be separated

by at least one blank space or a comma.

To make the manual more clear at the end (Section A.4),

some sample problems are presented, showing different inputs for

PL-MODT and PL-MODMC codes.

A.2 Description of the Code PL-MODT

1. Jard groups I through VIII describe fault tree logic following

these card groups. Any one of the following card. group sets

described in Parts 3 through 5 plus the card group in Part 2

could be used.

2. Card groups IX and X are control cards for the type of time-

dependent analysis to be used.

3. Card groups X through XIII are for the analysis of Class 1

components (time-independent PL-MOD case).

4. Card groups XIV through XVIII are for the analysis of Class 2

components.

5. Card groups XIX through XXIII are for the analysis of Class 3

components.

6. Card groups XXIV through XXVIII are for the analysis of Class 4

components, or a combination of the three time-dependent

components.

7. Card group XXIX is the reduction option card.
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INPUT DESCRIPTION

Title Card

CARD GROUP I: TITLE CARD

No. of Variable

1

.Variable

TITLE

Entry

A set of characters en-

closed by a single quote

marks

NOTE: Number of characters must be equal to or less than

71.
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Calculated Options

CARD GROUP II: RELIABILITY PARAMETER OPTION

No. of Variable Variable Entry

DEL Number of items to be

computed if DEL = 1

only reliabilities or

unavailabilities are

calculated.

IF DEL = 2

reliabilities and import-

ances are calculated.

NOTE: When periodically tested or repairable (revealed

fault) components are considered, it is recommended

to set DEL=l because the importance measure built

into the code seemingly loses its meaning under

these conditions.

When automatic reduction of the tree is desired,

the value of DEL must be equal to 2 (i.e., DEL=2).
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Fault Tree Characteristics

CARD GROUP III: GATES,

No. of Variable Variable

GUM

Entry

Total number of fault

tree gates

NOTE: GUM includes all AND, OR, and k-out-of-N gates

but excludes replicated gates (modules). The

replicated gates in the original tree will be

considered as a replicated component or module.
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CARD .GROUP IV::

No. of Variable

1

REPLICATED MODULES

Variable

RMOD

'Entry

Total number of replicated

modules

= 0 for no replications

NOTE: RMOD does not include replicated components.

However, replicated components may be repre-

sented in a replicated module, i.e., component

is replicated within this module.
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CARD GROUP V: TREE STRUCTURE

No. of' Variable

2

3

4

Vartable

AGIN(I)

ALIL(I)

ALIR(I)

Entry

Gate number

Total number of' gate inputs

to gate number I

Total number of leafs

which :are input to gate

number I

Total number of replicated

leafs which are input to

gate number I

= 0 no replicated leaf

NOTE: I=1, 2, ... ,GUM

I includes all gates and associated modules,

i.e., replicated or non-replicated modules in

the tree.
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CARD GROUP VI: REPLICATED 14ODULES

No. of Variable Variable - ntry

TRIM(I) Name of replicated leaf

associated with a module

2 TRIN(I) Number of replicated gate

NOTE: I m 1, 2, ... , RMOD

If RMOD = 0 on card group IV, then card group

VI is to be skipped. If replicated gates exist

then TRIM(I) m A9BCD,

where

A : Total number of occurrences of the

specific replicated module

Nine -9: Replication of gate or module

BCD : Number of replicated components asso-

ciated with this module in the fault

tree.
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CARD GROUP, VII: REPLICATED LEAVES

No. of Variable

1

Variable

NOR

Entry

Total number of replicated

leaf inputs

= 0 no replicated leaf

inputs
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CARD GROUP VIII: GATE STRUCTURE

No. of Variable . Variable

NAME

VALUE

GIN

PIT(I)

I = 1,2,.. I

LIL

Gate Number

= 1 for AND.gate

= 2 for OR gate

= KON for K-out-of N

gate

Total number of gate

inputs to this gate

I-th gate input

For GIN = 0, then

PIT(I) = 0

Total number of free

leaf inputs

TIL(I)

I = 1,2,...,LIL

LIR

TIR(I)

I-th free leaf input

For LIL = 0, then

TIL(I) = 0

Total number of repli-

cated leaf inputs

I-th replicated leaf

input

I = 1,2,...,LIR For LIR = 0,then

TIR(I) = 0

Entry

2 .

3.

5

6

7

8
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NOTE: LIT(I) = AOBCD

where A: total number of occurrences of this

component

BCD: number of replicated component

For dual replicated components:

LIR (I) = AlBCD when ON

= A2BCD when OFF
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Numer ical Evaluations

CARD GROUP IX: EVALUATION OPTION

No. of Variable * Variable

FOX = 0 numerical evaluation

is not desired

1 numerical evaluation

is desired

NOTE: If FOX = 0, then all of the following card

groups can be deleted.

If the former version, PL-MOD is to be run,

only card groups XI, XII and XIII should be

used After this card group.

If PL-MODT is to be run, card group X must

be included and the procedure thereafter.

Entry
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CARD GROUP X: CALCULATION OPTION

No. of Variable Variable Entry

ESF 1 for steady state

calculation

= 2 for time-dependent

calculation of non-re-

pairable components

3 for time-dependent

calculation of repair-

able components

4 for time-dependent

calculation of perio-

dically tested compo-

nents, or the combina-

tion of periodically

tested components and

time-dependent non-re-

pairable or repairable

nontested components.

NOTE: For ESF=l, only card groups XI, XII, XIII and XXIX are

needed in what follows.

For ESF=2, only card groups XIV, XV, XVI, XVII, XVIII

and XXIX are needed.

For- ESF=3, only card groups XIX, XX, XXI, XXII, XXIII,

and XXIX are needed.

(cont.)
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CARD GROUP X: CALCULATION OPTION (cont.)

For ESF = 4, only card groups XXIV, XXV, XXVI,

XXVII, XXVIII and XXIX are needed.

If none of these options is desired, any

number other than 1, 2, 3, 4 suffices, and

all of the following card groups should be

deleted.

a
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CARD GROUP XI:

No. of Variabl

1

2

LEAF INPUT

Variable

FUN

DUN

Entry

Total number of free

leaf inputs

Total number -of repli-

cated leaf inputs

= 0,. no replicated com-

ponents or modules.
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CARD GROUP XII: COMPONENT RELIABILITY

No. of Variable

1

: Variable ~ Entry

Number of free component

I =1, 2, ... FUN

STATE(1,I)~ Probability of occurrence

of the I-th free input

2
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CARD GROUP XIII: REPLICA!TBD COMPONENT RELIABILITY

No. of Variable Va'riable

I

STATD(1, I)

Number of replicated compo-

nent

Probability associated with

the I-th replicated component

= 0 if I-th component is

associated with a repli-

cated module

1

2

Entry
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CARD * GROUP XIV: TIME STEP CHANGES

No*. of Variable

1

Variable

MOH

Ent ry

Number of regions where

time step size changes

= 1 for no changes in time

step size

NOTE: This card group must be supplied. for ESF = 2

(see card group X).
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CARD GROUP XV: TIME 4TEF- INPUT

No. of Variable

1

Variable

DEL9 T (1,1I)

Entry

Time step associated with

the I-th region

AUN (1, 1)

I = 1,2,...,MOH

Time interval for which

time step size is applied

NOTE: This card group must be supplied for ESF = 2

(see card group X).

2
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CARD GROUP XVI: LEAE-,'INPUT

6No. of Variable

1

2

Variab le

FUN

DUN

Entry

Total number of free leaf

inputs

Total number of replicated

leaf inputs

= 0 no replicated compo-

nents or modules

NOTE: This card group must be supplied for ESF = 2

(see card group X).



144

CARD GROUP XVII: FREE COMPONENT FAILURE RATE

No. of Variable

1

2

: Variable

STATT (1,1)

Entry

Number of free component

Failure rate X(hr~) asso-

ciated with the I-th free

component

NOTE: This card group must be supplied for ESF = 2

(see card group X).
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CARD GROUP XVIII: REPICATED COMPONENT FAILURE RATE

No. of Variable

2

* Variable

STATS(1,I)

Entry

Number of replicated com-

ponent

Failure rate X(hr~) asso-

ciated with the I-th repli-

cated component

= 0 if I is a replicated

component associated;

with a. replicated

module.

NOTE: This card group must be supplied for ESF = 2

(see card group X).
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CARD GROUP XIX: TIME STEP CHANGES

No. of Variable

- 1

Variable

MOH

Entry

Number of regions where

time step size changes.

= 1 for no changes in

time step size.

NOTE: This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP XX: TIME STEP INPUT

No. of Variable

1

Variable

DEL9T(1,I)

Entry

Time step associated with

the Ith region

AUN (1, I) Time step interval for

1=1, 2,...,MOH which time step size is

applied

NOTE: This card group must be supplied for ESF=3 (see

card group X).

2
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CARD GROUP XXI: LEAF INPUT

No. of -Variable

'o 1

Variable

FUN

Entry

Total number of free

leaf inputs

2 DUN Total number of replicated

leaf inputs

= 0 no replicated

components or modules

NOTE: This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP. XXII: FREE COMPONENT FAILURE AND REPAIR RATES

No. of -Variable

1

2

3

Variable

I

STATT(1,I)

STATTE(1,I)

Entry

Number of free components

Failure rate X(hr~)

associated with the

Ith free component

Repair rate y (hr~)

associated with the Ith

free component

NOTE: This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP XXIII: REPLICATED COMPONENT FAILURE AND REPAIR
RATES

No. of Variable

1

2

3

Variable

I

STATS(1, I)

STATED(1,I)

Entry

Number of replicated

component

Failure rate A(hr )

associated with the

Ith replicated component

=0 if I is a replicated

component associated

with a module.

Repair rate y(hr~ )

associated with the Ith

replicated component

NOTE: If STATS(l,I)=0 (i. e., the component I is associated

with a replicated module), then STATED(1,I)=1.

This card group must be supplied for ESF = 3 (see

card group X).
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CARD GROUP XXIV: TIME STEP CHANGES

No. of Variable

1

Variable

MOH

Entry

Number of regions where

time step size changes

1 for no changes in

time step size

NOTE: This card group must be supplied for ESF = 4

(see card group X).
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CARD GROUP TIME 'STEP INPUT

No. of Variable

1

- Variable

DEL9T(1, I)

Entry

Time step associated with

the I-th region

AUN (1,I)

S1,2,.. 0.MOH

Time interval for which

time step size is applied

NOTE: This card group must be supplied for ESF =

(see card group X).

2
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CAOD GROUP XXVI LEAF TNPUT

No. of Variable Variable

FUN Total number of free leaf

input s

DUN Total number of replicated

leaf inputs

= 0 no replicated compo-

nents or modules

NOTE: This card group must be supplied for ESF - 4

(see card group X).

1

2

~ Entry
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CARD GROUP XXVII: FREE :COMPONENT TEST DATA

No. of Variables

2

3

4

5

6

7

Variables

. I

STATT (1,I)

ETTA(1,I)

TTETA(1,I)

TAVV(1,I)

FIRTM(1,I)

QUZR(1,I)

Entry

Number of free. component

Failure rate A(hr~) asso-

ciated with I-th free compo-

nent

Time between inspections

(hrs).

Inspection time (hrs).

Repair-!time (hrs).

Time of first inspection

(hrs).

Override probability

NOTE: If the component is not inspected, then ETTA(1,I) = 0,

TTETA(1,I) = 0, TAVV(1,I) = 0, FIRT(1,I) = 0, and

QUZR(lI) = 0. In this case the component will be con-

sidered as being a nonrepairable one. If the component

is repairab-le but not tested (revealed fault), then ETTA(1,I)

=0, TTETA(1,I)=repair rate (hr~ ), TAVV(l,I)=0,

FIRT(1,I)=O and QUZR (1,I)=0.
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CARD GROUP XXVIII: REPLICATED COMPONENT TEST DATA

Variable Variable

I

No. of

2

3

Entr

Number- of replicated compo-

nent

Failure ra-te X(hr~) asso-

ciated with this component

Time between inspections

(hrs)

Inspection time (hrs).

Repair time (hrs).

Time of first inspection

(hrs).

Override probability

. NOTE: If the component is not inspected then ETTAD(1,I)

= 0, TTETAD(1,I) = 0, TAVVD(1,I) = 0, FIRTMD(1,I)

= 0, and QUZRD(1,I) = 0.

If the component is associated with.a repli-

cated module then STATS (1,I) = 0, ETTAD(1,I) = 0,

TTETAD(1,I) = 0,TAVVD(1,I) = 0, FIRTMD(1,I) = 0,

and QUZRD(l,I) 0. In this case the component

is considered as being a nonrepairable one.

If the component is repairable but not tested

(revealed fault), then ETTAD(1,I)=0, TTETAD(1,I)

=repair rate (hr~ ), TTETAD(1,I)=0, TAVVD(1,I)

=0,FIRTMD(1,I)=0, and QUZRD(1,I)=o.

STATS(l,I)

ETTAD(1,I)

TTETAD

TAVV (1,I)

FIRTMD(l,I)

QUZR(1,I)

4

5

6

7
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CARD GROUP XXIX: REDUCTION OPTION CARD

No. of Variable

1

Variable

CUT-OFF

Entry

The cut-off value.

Any component having

an importance less than

this value will be can-

celled from the fault

tree.

NOTE: If DEL=l, then this card group is not needed since no

importance calculation is performed.

If DEL=2 and CUT-OFF=O, then no reduction process will be

performed. Only the importances of modules and components

in the fault tree will be calculated.

If DEL=2 and CUT-OFF>O, then the reduction procedure will

be followed.
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A.3 Description of the Code PL-MODMC

1. Card groups I through VIII are the same for the codes PL-MODT

and PL-MODMC. These card groups are described in Section A.2

of this manual.

2. Card groups VIII through XIII are input data for a Monte-Carlo

simulation.
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CARD GROUP IX:

No. of Variable

CONFIDENCE LEVEL DATA

Variable

ROM

I

CONPNT(I)

I=l,2,...,ROM

Total number of different

confidence levels that the

top event probability should-

be evaluated for.

Number of confidence level.

Confidence level (e.g.,

CONPNT(I)=40 means the

I-th confidence level is 40%.

NOTE: In this code, the accuracy is equal to the lowest confidence

level (CONPNT(l)), i.e., if CONPNT (1)=0.5, then accuracy=0.5.

1

I

Entry

2

3
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CARD GROUP X: RANDOM GENERATOR INITIATING NUMBER

No. of Variable Variable

.Any odd number to start

generating random numbers.

IPP

Entry
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CARD GROUP XI:

No. of Variable

1

2

SIMULATION CONTROL CARD

Variable

FUN

DUN

3

14

NRAND

NTERM

Entry

Total number of free leaf

inputs '

Total number of repli-

cated leaf inputs=0 for no

replicated component

or module.

Total number of trials to

be used in the simulation

Number of terms to be

used in the Central

Limit Theorem approximation



FREE COMPONENT FAILURE AND ERROR SPREAD DATA

No. of Variable Variable

I

MEDIAN (I)

I=1,2, e. ,FUN

FEN2(I)

I=1,2,...,FUN

Number of free component.

Failure rate X(hr~ )

associated with the I-th

free component

Error factor associated with

the I-th free component

NOTE: If MEDIAN(I)=0, then FEN2(I) must be equal.-to zero, i.e.,

FEN2(I)=0.

2

Entry

3

CARD GROUP XII:
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CARD GROUP XIII: REPLICATED COMPONENT FAILURE
AND ERROR SPREAD DATA

No. of Variable Variable

1 I

2

3

NOTE: 1

MEDIAN(J)

J=FUN+l,.. .,VEN

FUN2(J)

J=FUN+l,.. .,VEN

Number of replicated

component

Failure rate A(hr~ )

associated with the I-th

replicated component

Error factor associated

with the I-th rbeplicated

component

J=I+FUN

2. If MEDIAN(I)=O, then FEN2(I) must be equal to

i.e., FEN2(I)=O

3. VEN=FUN+DUN

RATE

Entry

zero,
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A. 4 Sample Fault Tree

For a fault tree given in Figure A.4.1, the input data are

provided as follows:

The input data are given for this fault tree for the four

classes of components and also for the Monte-Carlo simulation of

the tree.

Table A.1 presents input data for the logic of the tree.

Therefore, this part of the data is the same for both PL-MODT

and PL-MODMC.

Table A.2 presents the rest of the input data following data

set given in Table A.1, if the tree consists of only Class 1

components (i.e., PL-MOD steady state case).

Table A.3 presents the rest of the input data following data

set given in Table A.1, if the tree consists of only Class 2

components.

Table A.4 presents the rest of the input data following data

set given in Table A.1, if the tree consists of only Class 3

components.

Table A.5 presents the rest of input data following data set

in Table A.1, if the tree consists of Class 4 components, or

combination of different time-dependent classes of components.

Table A.6 presents the rest of input data following data set

given in Table A.1, if the tree is to be simulated by the Monte-

Carlo code.
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II

G12
G14

G17

G1s

1G22

G20

G23
I

4

G5

G6

G8

GIO

FIGURE A.1 SAMPLE FAULT TREE
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'SAAPLt. PROB Eg,

2 26 10
12 1 0 1
2 0 2

4 1 1 1
5 1 2 0
62 0 0

7 1 1 0
1 1 0 1
9, 0 2 1
10 0 2 0

11 2 2 0
12 1 0 1
13 0 1 1
14 2 00
1C 1 1
14 ) 3 0

17 1 0 1
18 2 0 0
19 1 _0 1
20 1 1 1
21 0 2 0
22 1 1 1
23 2 0 0
24 . 1 1
2c 1 0 1
26 0 2 1

7

1 1 2 4 1 14 0 0
2 2 1 3 0 0 1 22006
3 2 0 0 2 1 17 0 0
4 2 1 5 1 15 1 7 1n006
5 203 1 1 2 18 19 0 0
6 2 2 7 8 0 0 0 0
7 1 1 1 22 0 0
8 1 1 10 0 0 1 20007
9 2 0 0 2 20 21 1 2000
10 2 0 0 2 23 24 0 n
11 1 2 12 14 2 1 2 0 0
12 2 1 13 0 0 1 21001
13 1 0 0 1 6 1 29002
14 2 2 15 17 0 0 0 0
15 1 1 16 0 0 1 22001
16 2 0 -0 3 3 4 5 0 0.
17 1 1 1 0 0 1 29002
189 1 ? 19 22 0 0 0 0.
19 P 1 20 0 0 1, ~21004
29 1 1 1 2 1 1 20003
21 2 0 0 2 - 11 0 0
1? ? 1 23 1 7 1 21000
23 1 2 24 25 0 0 0 0
24 2 0 1 1 10 1 20003
2 P 2 1 26 0 0 1 2?004
26 1 0 0 2 12 1 2 00
1

TABLE A.1

GENERAL DATA SET REPRESENTING
THE LOGIC OF THE TREE
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TABLE A.27

1 . E-0 1
DATA SET FOLLOWING TABLE A.1

CLASS 1 COMPONENTS (PL-MOD

14

2
3
4
5
6
7

9
10
11
12
13
14

17
18
19
20
21
22 2
23
24
1
2.
3
4
5
6
7

FOR ONLY
CASE)

0
1 .OE-02
1.5E-03
1.5E-03
1 .2E-O1

1.01E-03

1
12

.OF-01

-10 -2
.0E-02

.OE-01

.OE-03
).5F-03
.5E-03
2. 0E-05
2.0F-04
2.0E-04
6. 1E-04
6. 1F-04
8. 1-04
.6E-02
.6E-02
3.OE-01
3.OE-O1
2.SE-04

2.-5 E- -0 t
2.5E-04
1 .E-02
.OE-011
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TABLE A .3

3
1 A
24
36
2&
1
2
3
4
5
6
7

9
10
11
17
13
14

2o17

14
20
21
2?2

23
?4
1
2
3
4

6
7

DATA SET FOLLOWING TABLE A.1 FOR ONLY
CLASS 2 COMPONENTS

.OE-02

.5E-03

.5E-03
.'2F-01
.2E-01

1 .OE-03

180
240
720
7

1.OE-01
1.OE-01
1.OE-02
1 .0E-02
1.OE-02
1.0E-011 .OF-031.0E-03
0.5E-03
0.5E-03
2.0E-05
2.0F-04
2.0F-04
6.1E-04
6. 1E-04

. 1E-04.
.6E-02
.6F-02
3 .0E-01
3.OE-01
2.SE-04
2.5E-04
2.5E-04
?.5E-04
1 .0E-02

1.0E-01
0
1
1
1
1
1
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TABLE A.43

2
2
24

1
2
3
4
5
6
7
8
9

11)

12?
13
14
15
16
17
18
19
20
21
22
23
24
1
2
3
4
5
6
7

DATA SET FOLLOWING TABLE A.1 FOR ONLY
CLASS 3 COMPONENTS

24
720
7

1.OE-01
1.OE-01
1 .OE-02
1.0E-02
1.OE-02
1.OE-01
1.OE-03
0.5E-03
0.SE-03

2.OE-05
2.OE-04
2.OE-04
6.1E-04
6. IE-04
8.1E-04
.6E-02
.6E-02.
3.0FE-01
3.OE-01
2.5E-04
2.5F-04
2.5E-04
2.5E-04
1.OE-02

1.OE-01
0
1.0E-02
1.5E-03
1.5E-03
I .2E-01
1.2E-01

1.OE-03

;* -() I ~
1*. 0E-0 1
I-.0E-o1

1.OE-01
1.OE-01
1.2E-o1
1.2E-Ol

1.2E-01
1 .2E-'01
1 .0E-02
1.OE-02?
1.0E-02
1 .OE-02
1.OE-02
1.0E-0I

1.0E-01'

1.oE-01
1.OE-01
5.OE-01
1 .OE-011.0E-02

1.0 E-02
1.OE-02
1.oE-i

0
I.OE-01
1. fE-01

5.0 E-0 11 0 LE- 01

1 .OE-01
1.OE-0I
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5

12 240

15

24 360

2 8

3As 1440

24 7

169

TABLE A.5

DATA SET FOLLOWING TABLE A.1 FOR ONLY CLASS 4 COMPONENTS
OR COMBINATION OF ALL TIME-DEPENDENT CLASSES OF COMPONENTS

1 1.OE-01 360 2 15 360 1

2 1.OE-01 400 3 18 700 1

3 1.OE-02 720 1.5 19 1440 1

4 1.OE-02 150 1 10 150 1

5 1.0E-02 1200 5 25 1?00 .5

6 1.OE-01 600 1 20 60o 1

7. 1.OE-03 720 1.5 19 800 0.5

8 0.5E-03

9 0.5E-03

10 ?.0E-05

11 2.0E-04

1? 2.0E-04

13 6.1E-04

14 6.1E-04

19 8.1E-0 4

16 .6E-02

17 .6E-02

120 1 12- 120 1

450 3 12.5 6001

720 1 22 72n 1

300 2.5 20 300 0.1

0 1.OE-01 0 0 0

0 0 0 0 0

0 1.5E-01 0 0 0

720 1 12 720 1

400 2 15 400 1

0 a 0 0 0

19 3.OE-01. 120 1 12 120 1

19 3.OF-01

20 2.5E-04

21 2.5F-04

2P 2.5E-04

0 n 0 0 0

840 2.6 20 144 0.5

140 1.5 19 230 1

7?0 1.5 12 840 1
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TABLE A.5 (CONT.)
23 2.5E-04

24 1.OE-02

1 1.OE-01

2 0:

3 1.0E-02

4 1.'5E-.-03

5 1.5E-03

') 1.2E-01

7 1.2F-01

1.OE-03

0 1.OE-02 0 0 0

720 1.5 19 1440 1

0 0 0 0 0

0 0 0 0 0

450 2 16 720 1

0 0 0 0 0

1440 3 28 1440 1

720 1.5 19 720

440 1.5 20 440



171

1 f.6 ? 1 .3
15; 80 16 8
13313
24 7 5000
1 1.AE-0]

? 1.('E-01
3 1.OE-02
4 1.0F-02
53 1.OE-02
6 1 .0E-01
7 1.OE-03
- 0.5E-03
9 0.5E-03
1 n- ?2.0E97- 05
11 ?.OE-04
1 ? ;? . *0 - 04

13 -1 4,.1EF-04
14 6.IE-04
1 R.1E-04
16 .6E-02
17 .E-02
1 3.oE-01
10 3.Oc-01
2n ?. 5-0 4
21 2.c;.
?? ?.5E-04
23 2.5E-04
24 1.0E-O02
I 1,OE-01
20
3 1.OE-02
4 .E-03
5 1.-03

p 1.2p-01
7 1.2E- '1

2.5 4 5 5 10 6
17 9'1 18 95 1 9

15 7 20 8 25 c .0 10 40 11
97.5 20 99 21 9'.5

50 12 60 13 70 14 75

0
3
5
3

2
5

TABLE A.6

DATA SET FOLLOWING TABLE A.1 FOR A MONTE-CARLO SIMULATION

12

5
3
10
7
5
3
8
5
10
10
8

3
7
l.U
5
10
6

6
8
6
2
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APPENDIX B

MIN-CUT-SET GENERATION OF COMPLEX FAULT TREES BY USING PL-MODT

B.1 Introduction

It was found that in large fault trees, some replicated

components exist within a replicated module that are repeated

elsewhere in the fault tree. As was discussed in Chapter 5,

the code PL-MODT is actually not able to handle automatically

this type of fault tree. Therefore, a method was developed to

qualitatively solve this problem with PL-MODT and hence to

generate minimal simple cut-sets. 1

In essence, this method consists of a treatment of higher-

order modules of the fault tree as supercomponents by neglecting

the presence of replications outside the domain of the replicated

module. The replacement of these replicated modules by a

replicated component will provide a basis for starting the

analysis. For example, the SNM fault tree [2], which is used

as an example, is solved in the next section. It was found that

there are four replicated modules that can be replaced by an

imaginary supercomponent. After this replacement, the original

fault tree becomes substantially smaller with only 26 replicated

and non-replicated events being present. The modular cut-sets

1 Simple cut-sets consist of only simple components and not
modules.
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can simply be found by PL-MODT for the original tree as well as

the superevents (i.e., the replicated modules). Due to the

replacement of replicated modules, it was discovered that some

replicated components will appear only once within the original

fault tree or replicated modules (i.e., replication presents

elsewhere in the tree, but repeated only one time within the

replicated module's domain). This special .case was treated by

simply connecting a replicated pair to the top event of the

module via an arbitrary OR gate. Figure B.1 demonstrates this

procedure.

New top event
of the repli-
cated module

+ OR

R
Old top event
of the repli-
cated module

*AND

I a

FIGURE B.1 1

ADDITION OF A REPLICATED PAIR TO A FAULT TREE
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This enables the PL-MODT code to find the modular cut-sets

of the replicated module with an additional order one cut-set

consisting of only the replicated component R that is eliminated

from the list of cut-sets. The rest of the cut-sets are the exact

modular cut-sets of the replicated module.

These modular cut-sets are then used to generate simple cut-sets.

The method is very simple. Modular cut-sets are only composed of

some replicated component inputs and some simple OR and AND modules.

An OR simple module of 10 component inputs consists of 10 order one

cut-sets, and an AND simple module of 10 component inputs consists of

only 1 order ten cut-set. By removing each module in the modular

cut-sets by its associated simple cut-sets, one is able to find all

of the simple cut-sets in the replicated module. This procedure cannot

presently be performed by the code, and thus some of the lower-order

cut -sets of the replicated modules were found by hand off-line.

The modular cut-sets of the original tree are used to determine

the simple minimal cut-sets. These modular cut-sets consist of

replicated modules (i.e., the superevents whose simple cut-sets

are found before), replicated components and simple modules.

In a similar way, by assigning corresponding cut-sets from the

replicated modules and from the simple modules, one is able to

generate all of the cut-sets of the fault tree.

Replicated events which are repeated outside the domain of

the replicated module are found in some of the cut-sets of the

tree. These replicated components would appear more than one
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time within some of the generated simple cut-sets and, therefore,

the presence of only one of them is sufficient whereas the rest

of them must be eliminated from the cut-sets.

Finally, from these simple cut-sets only minimal cut-sets

should be selected by using the same procedure which is already

applied in the codes PL-MOD and PL-MODT to find minimal modular

cut-sets.

The method described above has been applied to determine the

cut-sets of the SNM fault tree and some of the simple cut-sets

are derived. These cut-sets are presented in Table B.12.

To generate all of the cut-sets, the problem becomes trivial and

the use of computer is hardly recommended. A subroutine is

therefore necessary to be incorporated into the PL-MODT code for

the generation of cut-sets. The cut-sets found in Table B.12 are

the lowest-order cut-sets in the SNM fault tree.

B.2 Example

The code PL-MODT was used in order to find the modular

minimal cut-sets for the Test Bed Design Fault Tree for SNM Diversion

at Pump Washout Line [21. This fault tree consists of 125 gates,

95 simple components and 18 replicated components. Also, 9

replicated gates (modules) were presented. (See Figure B.2, Page 205).

First, higher order modular cut-sets were found. These cut-

sets contain some modules that contain many cut-sets of lower

order. Second, minimal cut-sets for these higher-order modules

were found. Therefore, combination of these cut-sets would

provide probably most of the presented simple cut-sets.
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Table B.1 identifies different components in this fault

tree. In order to simplify the cut-sets, Table B.2 gives the

identification of higher order modules that are presented in

this fault tree; then Table B.3 lists all of the modular minimal

cut-sets in terms of those higher modules in Table B.2.

In Table B.4 are listed minimal cut-sets presented in the

module G1 5.

TABLE B.4

MINIMAL CUT-SETS FOR THE MODULE 15

Cut-Set No. 1 2

1 7

2 R

3 9

4 8

5 6 R13

In Table B.5 we have identified the components and modules

presented in the higher-order module 50 (G50 ). The cut-sets for

this higher-order module are listed in Table B.6. Note that the
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TABLE B.1

DESCRIPTION OF THE COMPONENTS IN THE TEST BED DESIGN
FAULT TREE, IN PL-MODT AND FTAP

PL-MODT FTAP PL-MODT~ FTAP PL-MODT FTAP PL-MODT FTAP

1
2

3
4

5
6

7
8

9
10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

ANODEl

CBElHIT

TPEQMM

CBEEBHIT

CBEEAHIT

SRCB

ALARMLX

ALARMIR

ALARMIT

GFAIL13

GAMB01LX

GAMB01HI

GAMB01IR

GAMB01IT

SRGAMB01

CSNMRMAA

GCCASF

GCCASLOW

ALCCAS

AA-DHIT

SRCDALRM

CDALRMLX

CDALRMIR

CDALRMIT

ACCAS

WEIGHTOR

WEIGHTIT

WEIGHTIR

WEGT3

SRWEIGHT

31

32

33
34

35
36
37
38
39
40

41

42

43
44

45
46

47
48

49

50

51

52

53
54

55
56
57
58
59
60

NOMCCAS

MDCCASIT

MDCCASHI

MDCCASIR

MDCCASIT

ADV20OMT

ADVlKGMT

SRMDW

TDR2-G

SRMDS

CBE2RHIT

CBE2LHIT

GAMB02HI

GAMB02LX

GAMB02IR

GAMB02IT

SRGAMB02

RDCCASLX

RDCCASHI

RDCCASIT

RDCCASIR

MC2-OPO

SRRDCCAS

APM-Bl

AFILLCON

ANODE706

CONAT706

V290

CV436I R

CV436IT

61

62

63
64

65
66
67
68
69

70

71

72

73
74
75
76
77
78
79
80

81

82

83
84

85
86

87
88
89
90

TGTTKFIL

V7130
PRMODE

MPU709

V7190
T701GT45

V7220
LS7221R

LS7221T

LS722CIR

LS722CIT

V7010
TLEVEL-1

SENSLOWM

TKlFILL

DPCELLIR

DPCELLIT

TGTPROMD

T722GT45

LABFALSE

SENSLOWP

TLTLAB

T7011545

TGTLAB

LS701IR

LS701IT

LS701CIR

LS701CIT

T722GT15

T701GT15

91

92

93
94

95

Ri

R2

R 3
R4 0

R 5

R6

R 7
R8
R 9

R1 0
R17
R12

R 13
R14

R 15
R16

R 17
R18

GBOFAIL

GBOSLOW

GARFAIL

GARSLOW

T7221545

SRMSOLN

SRDUEST

T722LT15

APM-AL

CCASOK

AMP-AR

AMP-BO

TDR1-G

TPNESM

TPNETM

CDLI

SRLS701

TDR3-G

MCl-OPO

SRLS722

T701LT15

ANODEl4

ASUBHNO
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Table B.2

HIGHER ORDER MODULE OF THE TEST BED DESIGN
FAULT TREE

Name of the module,
replicated component, Corresponding Corresponding
or simple component name in the ori- name in the

No. in PL-MODT ginal fault tree FTAP

1 G  MPU2

M

2 G M MPU5

3 GM INADEQUATE RESPONSEFROM MC SYSTEM WHEN
CRASH BAR EEB IS
HIT

4 G INADEQUATE GUARD ---
G81  RESPONSE IN AREA AR

WHEN ADV/MAN CROSSES
PM - AR



TABLE B.3
ORIGINAL TREE MODULAR MINIMAL-CUT-SETS

Cut Set
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

1 R R10  G24 1

2 R R G50  R 2 1
4 B7  50 90 15

3 R Ry 7 50 R10 2 G 15 1

4 R 17  R6  R7 G50 Rg 10 16 2 13

5 R 1 7  R6  R7  G5 0  R9 10 16 2 14

6 R 7  R6  R7 G50 R9 10 16 2 12

7 R 1 7  R6  R 7  50 R 10 16 2 11

R 1 7  R6  7 5 0  R9  R 10 16 2

9 R 7 R6  R7 G50 R9 R13 10 16 2 15

10 R 1 7  R6  R G50 R0 2 15 5 81

11 R 1 7  R6  R G50 G15 G 5 G81 4 42

12 R 1 7  R6  R G 7 5 0  R R13 G15 5 G81 4 41 42 47

13 R17 6 7 50 G15 5 G81 4 41 42 46 45 43 44

H
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TABLE B. 5

IDENTIFICATION OF DIFFERENT MODULES IN THE PRIME MODULE G5 0

PL-MODT THE ORIGINAL TREE

N5 8  INADEQUATE MC RESPONSE WHEN VALVE
722-1 OPEN

M6 2  INADEQUATE MC RESPONSE TO CHANGE
IN PU MASS IN TANK 1, MPUTK1 (-1)

M6 7  INADEQUATE MC RESPONSE WHEN VALVE
701-1 OPEN
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TABLE B.6
MINIMAL CUT-SETS FOR MODULE 50

Cut-Set No.

J

]

]

I

I

2

5

50 R8

0 11
714 R1 5 R1 2

50 R8  75 R1 5 R1 2

50 R8  76 R1 5 R1 2 1

50 R8  1 3 R1 5 R1 2 R1  78

50 R8  R1 8 R1 3 R1 5 R1 2 R2  
84

50 R8  R1 8 R15 R1 2 80 81 82

50 R8  R18 68 R1 2 80 81 82

50 R8  R1 8 69 R1 2 80 81 82

50 R8  R18 70 R12 80 81 82

50 R8  R 18 85 R15 80 81 82

50 R8  R18 86 R1 5 80 81 82

50 8  R18 87 R15 80 81 82

50 R8  R18 88 R15 80 81 82

50 R8  R18 71 R12 80 81 82

50 R8  R1 3 85 R15 1  78

50 8  R1 3 86 R15  1 78

50  8  R1 3 87 R15 R 1  78

50 R8  R1 3 88 R15 R1 78

50 8R 1368R12R2850 R8  13 68B 12 R2 8

50 R8  R1 3 69 R12 H 2  84

50 R 8  R13 , 70 R 12 R 2  84

50 H8  R1 3 71 R12 84
50 8 13 RI R 12

8 18  1 3 68 R1 2  2  8 50

(CONT.)
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Table B.6
(cont.)

MINIMAL CUT-SETS FOR MODULE 50

Cut-Set No.

25

26

27

28

29

30

31

32

33

34

35

36

37

R
8

R 8

R8

~ 
8

-
8

R
8

S
8

R
8

R
8

R
1 3

R18

R1 8

R1 8 R13

R1 8 R1 3

R R1 3

R1 8 R1 3

H1 8 H1 3

R1 8 R13

R1 8 R13

M67 M 62
M67 M6 2

M 58 M6 2

M 58 M67

R1 3 M58

M5 8 M6 7

69

70

[1

d85

d6

87

M50
R
15

R1 2

R 
1

M
67

80o

R12

R 12

R 12

R1 5

R
15

R
15

R1 5

2 450

R2 04 M50

R2 84 M50

R2 54 M50

R2 d4 M50

R 2 84 M 50

R 2 84 M 50

+-Contains 64

-Contains 16

-Contains 16

M50  +-Contains 16

64 M5 0+-Contains 16

82 M50-+Contains 16

TOTAL SIMPLE CUT-SETS 175 X 2 = 350

M50

M50

78

R
2

81

simple cut-sets

simple cut-sets

simple cut-sets

simple cut-sets

simple cut-sets

simple cut-sets
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following components are always required to fail in order to

have the failure of module 50:(MPU5), 55, 56, 57, 54, 58, 61,

63, 62, 64, 65, 67, 72, 73, and (59 or 60). We call, for

simplicity, all of these components module 50 (M50).

Cut-sets in Table B.6 are on the order of between 14 and 20.

It should be noted that the total number of cut-sets for the

higher-order module (G 50) is 350. For the modules 58, 62 and 67,

the cut-sets are given in Table B.7. All of the cut-sets are

on an order of 1 (e.g., failure of each component 68, 69, 60, or

71 would cause the failure of the module 58).

TABLE B.7

CUT-SETS FOR MODULES 58, 62, and 67

Module

1 2 3 4
Cut-Set
Order

M58  68 69 70 71

M62 74 75 76 77

M67 85 86 87 88

For higher-order module G the cut-sets were found. Table B.8

gives an identification of components in the cut-sets and their

corresponding name in the fault tree. Table B.9 lists all of the

cut-sets for this prime module.
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TABLE B.8

IDENTIFICATION OF DIFFERENT MODULES IN THE PRIME MODULE 81

PL-MODT THE ORIGINAL TREE

M 1NO RESPONSE FROM MC SYSTEM

Ma NO MC RESPONSE FROM MC SYSTEM
WHEN VALVE 701 OPEN

M 10 NO MC RESPONSE FROM ESTIMATION
WHEN VALVE 722 OPEN

TABLE B.9

CUT-SETS FOR THE MODULE 81

Cut-sets

1 R1 5  R1 2  79 66 R1  1

2 R1 5  R1 2  79 66 R1  2

3 R1 5  R1 2  79 66 R2  1

4 R1 5  R 1 2  79 66 R2  2

5 M11  M8  M 10  Containing 112 cut-seto

6 R

7 R15 M 1M10+ Containing 28 cut-sets

8 R1 2  M11  M8  79 +-Containing 28 cut-sets

9 R1 5  R1 2  80 95 79

10 R15 R12 81 95 79

11 R1 5  R1 2  82 95 79

12 R1 5  R1 2  74 95 79

13 . 15 R1 2  76 95 79

14 R1 5  R1 2  77 95 79

15 R1 5  R1 2  75 95 79
TOTAL SIMPLE CUT-SETS 180
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As can be seen from Table B.9, the total number of cut-sets

for higher-order- module 81 is 180 simple cut-sets. These cut-sets

are of an order between 1 and 6.

Now, from Table B.3 all of the simple cut-sets for modular

cut-sets 2 through 13 could be found by simply assigning the

corresponding simple cut-sets of different modules from Tables

B.4, B.6, and B.9. The total number of simple cut-sets in these

12.modular cut-sets is 1,265,600.

For the first modular cut-set in Table B.3, we have to find

simple cut-sets for the module G2 4. These cut-sets were found

and Table B.10 describes different components of these cut-sets

and their corresponding name in PL-MODT. Table B.11 lists all of

the cut-sets presented in the module G2 4, based on the names of

the modules given in Table B.10. As could be seen from Tables

B.10 and B.11, all of the cut-sets contain module G50 which by

itself has 350 different cut-sets (see Table B.6). Some other

higher-order modules are also contained in most of the cut-sets

in Table B.11. Therefore, a very high rough estimate of the

number of simple cut-sets in Table B.11 could be about 6 million.

By assigning different simple cut-sets of module 24 into the

first modular cut-set in Table B.3, we would be able to find the

rest of the cut-sets for the fault tree.

It should be noticed, however, that not all of these simple

cut-sets are minimal for the modular cut-set number 1. Therefore,

it is not possible to estimate the exact number of minimal simple

cut-sets in this fault tree. In the future development of the
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PL-MODT code, the combination of these tables will be done by.

computer and nonminimal cut-sets will be eliminated automatically.

By the combination of Tables B.4, B.6, B.9 and B.11, we have

found some of these simple cut-sets. These cut-sets are listed

in Table B.12.



TABLE B.10

IDENTIFICATION OF COMPONENTS IN THE MODULE 24

Module Number
as Listed in Type of Components in this
Table B.11 Module Module

1 AND R5

2 AND R

3 AND R13
4 AND R15
5 AND R12
6 AND R

7 AND G,7 8 G5 0 , R , R9
8 OR 48, 49, 50, 51

9 OR 31, 32, 33, 34, 35
10 -- --

11 -- --

12 AND 52, 53

13 AND 36, 38, 39
14 AND 37, 40

15 AND 19, 20

16 AND 25

17 OR 17, 18

18 -- --

19 OR 22, 23, 24

20 OR 26, 27, 28

21 OR R1 , R2

22 OR 68, 69, 70, 71

23 OR 85, 86, 87, 88
24 OR 74, 75, 76, 77
25 AND 21

26 AND 30, R8, 29

27 AND 89

28 AND 90

(CONTINUED)
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Table B.10

(cont.)

IDENTIFICATION OF COMPONENTS IN THE MODULE 24

Module Number
as Listed in Type of Components in this
Table B.11 Module Module

29 AND R3
30 AND R16
31 AND R18

32 OR 80, 81, 82
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TABLE B.11
(Next 14 Pages)

LISTS OF ALL THE MIN-CUT-SETS IN THE PRIME MODULE G

(In this table, different components of each cut set are
numbered according to those modules listed in Table B.10.)
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 7 8 9 15 17 19 21

2 1 7 8 9 16 17 20 21

3 1 2 7 8 13 15 17 19 21

4 1 2 7 8 13 16 17 20 21

5 1 2 3 7 8 14 15 17 19 21

6 1 2 3 7 8 14 16 17 20 21

7 1 6 7 9 15 17 21

8 1 6 7 9 16 17 20 21

9 1 2 6 7 13 15 17 21

10 1 2 6 7 13 16 17 20 21

11 1 2 3 6 7 14 15 17 21

12 1 2 3 6 7 14 10 17 20 21

13 1 2 3 7 9 12 15 17 19 21

14 1 2 3 7 9 12 16 17 20 21

15 1 2 3 7 12 13 15 17 19 21

16 1 2 3 7 12 13 16 17 20 21

17 1 2 3 7 12 14 15 17 19 21

18 1 2 3 7 12 14 16 17 20 21

19 1 7 8 9 15 18 19 22 23 24

20 1 7 8 9 16 18 20 22 23 24

21 2 7 7 13 13 15 18 19 22 23 24

22 1 2 7 8 13 16 18 20 22 23 24

23 1 2 3 7 8 14 15 18 19 22 23 24
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

47 1 2 3 7 8 9 10 16 17 21

48 1 2 3 7 12 14 15 18 22 23 24 25

49 1 2 7 8 9 16 17 21 26

50 1 2 7 8 9 16 18 22 23 24 26

51 1 2 7 8 13 16 17 21 26

52 1 2 7 8 13 16 18 22 23 24 26

53 1 2 3 7 8 14 16 17 21 26

54 1 2 3 7 8 14 16 18 22 23 24 26

55 1 2 6 7 9 16 17 21 26

56 1 2 6 7 9 16 18 26

57 1 2 6 7 13 16 17 21 26

58 1 2 6 7 13 16 18 26

59 1 2 3 6 7 14 16. 17 21 26

60 1 2 3 6 7 14 16 18 26

61 1 2 3 7 9 12 16 17 21 26

62 1 2 3 7 9 12 16 18 22 23 24 26

63 1 2 ~3 7 12 13 16 17 21 26

64 1 2 3 7 12' 13 16 18 22 23 24 26

65 1 2 3 7 12 14 16 17 21 26

66 1 2 3 7 12 14 16 18 22 23 24 26

67 1 4 7 8 9 15 17 19 27

68 1 3 4 7 8 9 15 17 25 27

69 1 4 7 8 9 14 15 18 27
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

70 1 2 4 7 8 9 16 17 26 27

71 1 2 4 7 8 13 15 17 19 27

72 1 2 3 4 7 8 13 15 17 25 27

73 1 2 4 7 8 13 16 17 20 27

74 1 2 4 7 8 13 16 17 26 27

75 1 2 3 4 7 8 14 15 17 19 27

76 1 2 3 4 7 8 14 15 17 25 27

77 1 2 3 4 7 8 14 16 17 20 27

78 1 2 3 4 7 8 14 16 17 26 27

79 1 4 6 7 9 15 17 27

80 1 4 6 7 9 16 17 20 27

81 1 2 4 6 7 9 16 17 26 27

82 1 2 4 6 7 13 15 17 27

83 1 2 4 6 7 13 16 17 20 27

84 1 2 4 6 7 13 16 17 26 27

85 1 2 3 4 6 7 14 15 17 27

86 1 2 3 4 6 7 14 16 17 20 27

87 1 2 3 4 6 7 14 16 17 26 27

88 1 2 3 4 7 9 12 15 17 19 27

89 1 2 3 4 7 9 12 15 17 25 27

90 1 2 3 4 7 9 12 16 17 20 27

91 1 2 3 4 7 9 12 16 17 25 27
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

92 1 2 3 4 7 12 13 15 17 19 27

93 1 2 3 4 7 12 13 15 25 27 17

94 1 2 3 4 7 12 13 16 17 27

95 1 2 3 4 7 12 13 16 17 26 27

96 1 2 3 4 7 12 14 15 17 27 19

97 1 2 3 4 7 12 14 15 17 25 27

98 1 2 3 4 7 12 14 16 17 20 27

99 1 2 3 4 7 12 14 16 17 26 27

100 1 5 7 8 9 15 17 28 19

101 1 3 5 7 8 9 15 17 25 28

102 1 5 7 8 9 16 17 20 28

103 1 2 5 7 8 9 16 17 26 28

104 1 2 5 7 8 13 15 17 28

105 1 2 3 5 7 8 13 15 17 25 28

106 1 2 5 7 8 13 16 17 20 28

107 1 2 5 7 8 13 16 ~17 26 28

108 1 5 7 8 14 15 17 19 28

109 1 2 3 5 7 8 14 15 17 25 28

110 1 2 3 5 7 8 14 16 17 20 28

111 1 2 3 5 7 8 14 16 17 26

112 1 5 6 7 9 15 17 28

113 1 5 6 7 9 16 17 20 28
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1 3 3 4 5 6 7 8 9 10 11 12 13 14 15 16

114 1 2 5 6 7 9 16 17 26 28

115 1 2 5 6 7 13 15 17 28

116 1 2 5 6 7 13 16 17 20 28

117 1 2 5 6 7 13 16 17 26 28

118 1 2 3 5 6 7 14 15 17 28

119 1 2 3 5 6 7 14 16 17- 20 28

120 1 2 3 5 6 7 14 16 17 26 28

121 1 2 3 5 7 9 12 15 17 19 28

122 1 2 3 5 7 9 12 15 17 25 28

123 1 2 3 5 7 9 12 16 17 20 28

124 1 2 3 5 7 9 12 16 17 26 28

125 1 2 3 5 7 12 13 15 17 19 28

126 1 2 3 5 7 12 13 15 17 25 28

127 1 2 3 5 7 12 13 16 17 20 28

128 1 2 3 5 7 12 13 16 17 26 28

129 1 2 3 5 7 12 14 15 17 19 28

130 1 2 3 5 7 12 14 15 17 28 25

131 1 2 3 5 7 12 14 16 17 20 28

132 1 2 3 5 7 12 14 16 17 26 28

133 1 4 7 8 9 15 18 19 23 24 29

134 1 3 4 7 8 9 15 18 23 24 25 29

135 1 4 7 8 9 16 18 20 23 24 29
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

136 1 2 4 7. 8 9 16 18 23 24 26 29

137 1 2 4 7 8 13 15 18 19 23 24 29

138 1 2 3 4 7 8 13 15 18 23 24 25 29

139 1 2 4 7 8 13 16 18 20 23 24 29

140 1 2 4 7 8 13 16 18 23 24 26 29

141 1 2 3 4 7 8 14 15 18 19 23 24 29

142 1 2 3 4 7 8 14 15 18 23 24 25 29

143 1 2 3 4 7 8 14 16 18 20 23 24 29

144 1 2 3 4 7 8 14 16 18 23 24 26 29

145 1 2 3 4 7 9 12 15 18 19 23 24 29

146 1 2 3 4 7 9 12 15 18 23 24 25 29

147 1 2 3 4 7 9 12 16 18 20 23 24 29

148 1 2 3 4 7 9 12 16 18 23 24 26 29

149 1 2 3 4 7 12 13 15 18 19 23 24 29

150 1 2 3 4 7 12 13 15 18 23 24 25 29

151 1 2 3 4 7 12 13 16 18 20 23 24 29

152 1 2 3 4 7 12 13 16 18 23 24 26 29

153 1 2 3 4 7 12 14 15 18 19 23 24 29

154 1 2 3 4 7 12 14 15 18 23 24 25 29

155 1 2 3 4 7 12 14 16 18 23 24 20 29

156 1 2 3 4 7 12 14 16 18 23 24 26 29

157 1 5 7 8 9 15 18 14 22 24 30
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

158 1 3 5 7 8 9 15 18 22 24 25 30

159 1 3 4 5 7 8 9 15 18 24 25 29 30

160 1 5 7 8 9 16 18 20 22 24 30

161 1 4 5 7 8 9 16 18 20 24 29 30

162 1 2 5 7 8 9 16 18 22 24 26 30

163 1 2 4 5 7 8 9 16 18 24 26 29 30

164 1 2 5 7 8 13 15 18 22 24 30 19

165 1 2 4 5 7 8 13 15 18 19 24 29 30

166 1 2 3 5 7 8 13 15 18 12 24 25 30

167 1 2 3 4 5 7 8 13 15 18 24 25 29 30

168 1 2 5 7 8 13 16 18 20 22 24 25 29 30

169 1 2 4 5 7 8 13 16 18 20 24 29 30

170 1 2 5 7 8 13 16 18 22 24 26 30

171 1 2 4 5 7 8 13 16 18 24 26 29 30

172 1 2 3 5 7 8 14 15 18 19 22 24 30

173 1 2 3 4 5 7 8 14 15 18 19 24 29 30

174 1 2 3 5 7 8 14 15 18 22 24 25 30

175 1 2 3 4 5 7 8 14 15 18 24 25 29 30

176 1 2 3 5 7 8 14 16 18 20 22 24 30

177 1 2 3 4 5 7 8 14 16 18 20 24 29 30

178 1 2 3 5 7 8 14 16 18 22 24 26 30

179 1 2 3 4 5 7 8 14 16 18 24 26 29 30
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

180 1 2 3 5 7 9 12 15 18 19 22 24 30

181 1 2 3 4 5 7 -9 12 15 18 19 24 29 30

182 1 2 3 5 7 9 12 15 18 22 24 25 30

183 1 2 3 4 7 9 12 15 18 24 25 5' 29 30

184 1 2 3 5 7 9 12 16 18 20 22 24 30

185 1 2 3 4 5 7 9 12 16 18 20 24 29 30

186 1 2 3 4 5 7 9 12 -16 18 22 24 26 30

187 1 2 3 4 5 7 9 12 16- 18 24 26 29 30

188 1 2 3 5 7 12 13 15 18 19 22 24 30

189 1 2 3 4 5 7 12 13 15 18 19 24 29 30

190 1 2 3 5 7 12 13 15 18 22 24 25 30

191 1 2 3 4 5 7 12 13 15 18 24 25 29 30

192 1 2 3 5 7 12 13 15 18 20 22 24 30

193 1 2 3 4 5 7 12 13 16 18 20 24 29 30

194 1 2 3 5 7 12 13 16 18 22 24 26 30

195 1 2 3 4 5 7 12 13 16 18 24 26 29 30

196 1 2 3 5 7 12 14 15 18 19 22 24 30

197 1 2 3 4 7 12 14 15 18 19 24 29 5 30

198 1 2 3 5 7 12 14 15 18 22 24 25 30

199 1 2 3 4 5 7 12 14 15 18 24 25 29 30

200 1 2 3 5 7 12 14 16 18 20 22 24 30

201
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1

202 1

203 1

204 1

205 1

206 1

207 1

208 1

209 1

210 1

211 1

212 1

213 1

214 1

215 1

216 1

217 1

218 1

219 1

220 1

221 1

222 1

223 1

5

5

7

5

15

9

9

8

9

8

8

7

16

9

9

8

9

8

8

7

13

8

8

6 7 8 9

7 12 14 16

12 14 16 18

7 12 14 16

18 19 22 31

15 18 19 22

15 18 19 23

9 15 18 19

15 18 22 23

9 15 18 22

9 15 18 23

8 9 15 18

19 20 22 23

16 18 20 22

16 18 20 23

9 16 18 20

16 18 22 26

9 16 18 22

9 16 18 23

8 9 16 18

15 18 19 22

13 15 18 19

13 15 18 19

10

18

22

18

32

30

29

29

25

25

25

25

31

30

29

29

21

26

26

26

31

22

23

11

20

24

24

31

31

30

31

30

29

29

32

31

31

30

32

30

29

29

32

30

29

12

24

26

26

32

32

31

32

31

31

30

32

32

31

31

31

30

31

31

32

32

32

13 14 15 16

29 30

30

29 30

32

32

32

31 32

32

32

32

31
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1

224 1

225 1

226 1

227 1

228 1

229 1

230 1

231 1

232 1

233 1

234 1

235 1

236 1

237 1

238 1

239 1

240 1

241 1

242 1

243 1

244 1

245 1

5

7

8

7

7

5

13

8

8

7

13

8

8

7

8

7

7

5

8

7

7

5
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6 7 8 9

8 13 15 18

13 15 18 22

8 13 15 18

8 13 15 18

7 8 13 15

16 18 21 22

13 16 18 20

13 16 18 20

8 13 16 18

16 18 22 23

13 16 18 22

13 16 18 23

8 13 16 18

14 15 18 19

8 14 15 18

8 14 15 18

7 8 14 15

14 15 18 22

8 14 15 18

8 14 15 18

7 8 14 15

14 16 18 20

10 11 12

19 29 30

23 25 31

22 25 30

23 25 29

18 25 29

23 31 32

22 30 31

23 29 31

20 29 30

26 31 32

25 29 30

26 29 31

26 29 30

22 23 31

19 22 30

19 23 29

18 20 29

23 25 31

22 24 30

23 25 29

18 25 29

22 23 31

13 14 15 16

31 32

32

31 32

31 32

30 31 32

32

32

31 32

31

32

31 32

32

31 32

31 32

30 31 32

32

31 32

31 32

30 31 32

32
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1 2 3 4 5 6 7 8 9

246 1 2 3 5 7 8 14 16 18

247 1 2 3 4 7 8 14 16 18

248 1 2 3 4 5 7 8 14 16

249 1 2 3 7 8 14 16 18 22

250 1 2 3 5 7 14 16 18 22

251 1 2 3 4 7 8 14 16 18

252 1 2 3 4 5 7 8 14 16

253 1 2 3 7 9 12 15 18 19

254 1 2 3 5 7 9 12 15 18

255 1 2 3 4 7 9 12 15 18

256 1 2 3 4 5 7 9 12 15

257 1 2 3 7 9 12 15 18 22

258 1 2 3 5 7 9 12 15 18

259 1 2 3 4 7 9 12 15 18

260 1 2 3 4 5 7 9 12 15

261 1 2 3 7 9 12 16 18 20

262 1 2 3 5 7 9 12 16 18

263 1 2 3 4 7 9 12 16 18

264 1 2 3 4 5 7 9 12 16

265 1 2 3 7 9 12 16 18 22

266 1 2 3 5 7 9 12 16 18

267 1 2 3 4 7 9 12 16 18

10 11

20 22

20 23

18 20

23 26

26 30

23 26

18 26

22 23

19 22

19 23

18 19

23 25

22 25

23 25

18 25

22 23

20 22

20 23

18 20

23 26

22 30

23 26
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

268 1 2 3 4 5 7 9 12 16 18 26 29 30 31 32

269 1 2 3 7 12 13 15 18 19 22 23 31 32

270 1 2 3 5 7 12 13 15 18 19 22 30 31 32

271 1 2 3 4 7 12 13 15 18 19 23 29 31 32

272 1 2 3 4 5 7 12 13 15 18 19 29 30 31 32

273 1 2 3 7 12 13 15 18 22 23 25 31 32

274 1 2 3 5 7 12 13 15 18 22 25 30 31 32

275 1 2 3 4 7 12 13 15 18 23 25 29 31 32

276 1 2 3 4 5 7 12 13 15 18 25 29 30 31 32

277 1 2 3 7 12 13 16 18 20 22 23 31 32

278 1 2 3 5 7 12 13 16 18 20 22 30 31 32

279 1 2 3 4 7 12 13 16 18 23 29 31 32 20

280 1 2 3 4 5 7 12 13 16 18 20 29 30 31. 32

281 1 2 3 7 12 13 16 18 22 23 26 31 32

282 1 2 3 5 7 12 13 16 18 22 26 30 31 32

283 1 2 3 4 7 12 13 16 18 23 26 29 31 32

284 1 2 3 4 5 7 12 13 16 18 26 29 30 31 32

285 1 2 3 7 12 14 15 18 19 22 23 31 32

286 1 2 3 5 7 12 14 .15 18 19 22 30 31 32

287 1 2 3 4 7 12 14 15 18 19 23 29 31 32

288 1 2 3 4 5 7 12 14 15 18 19 29 30 31 32

289 1 2 3 7 12 14 15 18 22 23 25 31 32
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1

290 1

291 1

292 1

293 1

294 1

295 1

296 1

297 1

298 1

299 1

5 6

7 12

7 12

5 7

12 14

7 12

7 12

5 7

12 14

7 12

7 12

7 8 9

14 15 18

14 15 18

12 14 15

16 18 20

14 16 18

14 16 18

12 14 16

16 18 22

14 16 18

14 ~ 16 18

10

22

23

18

22

20

20

18

23

22

23

11

25

25

25

23

22

23

20

26

26

26

12

30

29

29

31

30

29

29

31

30

29

300 1 2 3 4 5 7 12 14 16 18 26 29 30 31 32

13

31

31

30

32

31

31

30

32

31

31

14 15 16

32

32

31 32

32

32

31 32

32

32



TABLE B.12

SOME SIMPLE CUT-SETS OF THE ORIGINAL FAULT TREE

Cut-
Set
No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

1 R4 R7 R 2 1 55 56 57 54 58 59 61 63 62 69 65 67 72 73 R

2 R4 R7 R9  2 1 55 56 57 54 58 60 61 63 62 69 65 67 72 73 R

3 R4 R7 Ri 2 1 55 56 57 54 58 60 61 63 62 69 65 67 72 73 R

c4 R4 R7 R1  2 1 55 56 57 54 58 59 61 63 62 69 65 67 72 73 R

5 R 1 7R6 R 7 55 56'57 54 58 59 61 63 62 69 65 67 72 73 R 1 1R9 10 16 2 13

6 R 1 7R6 R 7 55 56 57 54 58 59 61 63 62 69 65 67 72 73 R  R9 10 16 2 14

7 R 7R6 R7 55 56 57 54 58 60 61 63 62 69 65 67 72 73R 11 9 10 16 2 14

Only 4 simple cut-sets of an order 20 exists.
These cut-sets are listed above.

'Pua
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TEST BED DESIGN
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