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ABSTRACT

The methodology used in the PL-MOD code has been extended
to include the time-dependent behavior of the fault tree components.
Four classes of components are defined to model time-dependent
fault tree leaves. Mathematical simplifications are applied to
predict the time-dependent behavior of simple modules in the
fault tree from its input components' failure data.

The extended code, PL-MODT, handles time-dependent problems
based on the mathematical models that have been established. An
automatic tree reduction feature 1is also incorporated into this
code. This reduction is based on the Vesely-Fussell importance
measure that the code calculates. A CUT-OFF value is defined
and incorporated into the code. Any module or component in the
fault tree whose V-F importance is less than this value will
automatically be eliminated from the tree. In order to benchmark
the PL-MODT code, a number of systems are analyzed. The results
are in good agreement with other codes, such as FRANTIC and
KITT. The computation times are comparable and in most of the
cases are even lower for the PL-MODT code compared to the others.

In addition, a Monte-Carlo simulation code (PL-MODMC) is
developed to propagate uncertainties in the failure rates of the
components to the top event of a fault tree. An efficient sorting
routine similar to the one used in the LIMITS code is employed
in the PL-MODMC code. Upon modularization the code proceeds and
propagates uncertainties in the failure rates through the tree.
Large fault trees such as the LPRS fault tree as well as some
smaller ones have been analyzed for simulatlion, and the results
for the LPRS are in fair agreement with the WASH-1400 predictions
for the number of simulations performed.

The codes PL-MODT and PL-MODMC are written in PL/1 language
which offers the extensive use of the list processing tools.
First experience indicates that these codes are very efficient
and accurate, specifically for the analysis of very large and
complex fault trees.

This work was performed under the financial sponsorship
by U.S. NRC, whose support is gratefully acknowledged.
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1. INTRODUCTION TO THE MODULAR DECOMPOSITION APPROACH

1.1 Introduction

The method of modular decomposition of fault trees has
recently become very attractive and has been proven to be a very
efficient and reliable technique for the analysis‘of large fault
trees [1] in the framework of the PL-MOD code written in PL/1
language.

The methodology employed by PL-MOD to modularize a fault tree
consists of piecewise collapsing and modularizing portions of
the tree. As a consequence, at the intermediate stages of this
process some nodes are eliminated from the tree whlile others
undergo changes in the type and number of inputs they have. In
the next section some of the mathematigal concepts used in the
PL-MOD as well as the method utilized in the code are presented.

1.2 Modularization Technique: Its Mathematical Formulation and
Its Application in the Code PL-MOD

Birnbaum and Esary [1l] define a module as follows:

"A module of a system is a subset of basic components

of the system which are organized into some substructure
of their own and which affect the system only through
the performance of their substructure. Rephrasing,

a module is an assembly of components which can itself
be treated as a component of the system."

The coherent structure theory plays an important role in the
analysis of systems using the modular concept. Coherent binary

systems are systems whose performance improves as the performance



of their components improves. A coherent system is a system

(C,¢) for which

o (%) fﬁﬁz) whenever x < y il.e., x5 < Yy (1.2.1)

¢(9) = 0, where Q = (0, 0,...,0); (1.2.2)
(1.e., a state where all components fail)

¢(1) = 1, where 1 = (1,1,...,1) (1.2.3)

(i.e., where all components perform).
Let C = (01’02""’Cn) be a set of basic events, then
y = (yl,y2,.,.,y ) 1s the vector of basic event
e n
outcomes, and the Boolean structure function ¢(y) determines the

state of the system (i.e., the top event in the fault tree).

1 if the top event occurs
o(y) =
0 otherwise.

For the AND and OR gates, the vector will be defined as

follows:
n
¢ (Y) = JqeV 0eeey, = V. (1.2.4)
AND ‘¥ 195 n J]; i
n
b (¥) =1 - (1-y1)(1-y,)...(1-y,) = 31; Vi (1.2.5)

respectively.

A component C, is inessential to a system (C,¢) if the

i
performance of fhe component can have no effect on the performance

of the structure, i.e., if

¢(li,§) = ¢(oi,§) for all (-+i,x) (1.2.6)



where

(li,§) = (Xl"'”Xi-l’l’xi+l""’xn)’

(04,%)

|
—~
»
-
-

""Xi—l’o’xi+l""’xn)’

(.‘i,_x’.) = (Xl’...’Xi—l’xi+l’...’xn).

Since 1inessential components can be detected from a system
without any effect, we will generally assume that all components
in the fault tree are essential and thus avoid some complications

in the theory. Therefore, we always assume

¢(li3§) > (Oi,2§) for all ('ia§) (1'2-7)

A cut set of a coherent binary system (C,¢) is a set of components
Qe C such that ¢(QQ,;Q’)=O where Q° is the complement of Q (i.e.,
C=QUQ”"), and QQ,;Q are the component performance vectors for
which xi=0 when CieQ and xi=l when CieQ’. A cut set Q is a minimal
cut 'set of (C,¢) if there is no cut set P such that Pc<Q.

The path sets of the same system (C,¢) are in fact the cut
sets of coherent system (C,¢D), where ¢D(§) =1-¢(1-3x). (1.2.8)
¢(§) is called the Dual Structure Function of the system (C,¢).

From the above definitions for a coherent function and'by
using the definition of a module, one can find [1] the structure
function of the system using its modules.

Consider a subset A of components such that AcC C. A is a
modular set of (C,¢) if

0(0) = ot 5 ) = iy, (5,5t (1.2.9)

where (A’XA) is a coherent binary system, and Y is the



structure function of a coherent binary system whose components are
those CieA’. When A is a modular set we say that (A4,X,) is a
module of (C,9). The application of this definition for a

fault tree is demonstrated for the sample faylt tree given in
Figure 1.2.1. From what has been discussed so far in this

section, the modules of the fault tree can be easily obtained.

They are as follows:

(A={a,b,c}, = aU b vyec)

Xp
where a Ub denotes the union of a and b

(A={d,e,f}. =dUeUF)

Xp
(A={a,b,c,d,e,f}, XA=(aIJbIJc)[1(dIJeIJf))
where (a”){1(b”) denotes the intersection of a° and b~

(A={g,h,1i}, XA=(gIJhIIi)

(A={a,b,c,d}, XA=((aIJbIJc)[1d))

One of the useful representations of a Boolean function is

its pivotal decomposition about one of its coordinates, i.e.,

¢(x) = x;.6(1;,%) + (1-x,)¢(0,,%) (1.2.10)

If (A,XA) is a module of (C,¢), then from Eq. (1.2.9) we obtain

-

6(x) = x, (xH¥(L, ")+ [1-x,(xM 7 vo,5* ) (1.2.11)
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FIGURE 1.2.1

SAMPLE SUB-TREE I WITH NO REPLICATIONS




The method that is utilized in the PL-MOD code is based
upon the definitions for the modularization given above. For
example, the fault tree given in Figure 1.2.1 in which there
are no replicated components is analyzed below by assuming
that:

1. All the branches are independent, i.e., every intermediate
gate event 1n the tree is modularizable.

2. The logic functilon ¥ (§A) assoclilated with each gate is
either "prime" or "s%mple" having no inputs from other
"simple" gates of the same type.
Thus, the fault tree of Figure 1.2.1 can be changed into another
configuration as shown in Figure 1.2.2 which demonstrates the
finest modular representation of Figure 1.2.1 and is obtained by
coalescing gates Gl and G2. Its modular structure is given by
the following set of recursive equations:

A1={A3’AN’A5} ¢(§)=XA1=XA3'XAH'XA5

A3={a,b,c}, Xy =aUbuUec
3

Au={d,e,f}, =dyey f

XAq

A5={g,h,i}, xA5=gU hy i
Suppose that the fault tree in Figure 1.2.1 has a replicated

component as is shown in Figure 1.2.3. Then the following modules

are obtained:



®
Gl
GB-}-VG&.!. G5
a b ¢ d e °?

FIGURE 1.2.2

09

FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE I



Gl

G2

Lo
"0

G3

FIGURE 1.2.3

SAMPLE SUB-TREE II WITH REPLICATIONS

= C

G5



A3={a,b}, XA3=a Ub

Au={d,e,f}, =dUeUf

XAu
Ag=lg,1}, x, =g U1
5
Furthermore, these modules together with the replicated event,
r, will become the input to a higher order prime gate as shown in
Figure 1.2.4.
A A A
- 3 .04 75y
¢(x) = (x.,% 7,x Hx 7)

with the following modular minimal cut sets

S

1 = (1,0,1,0)

S (0,1,1,1)

2
It must be stressed here that the algorithm given by
Chatterjee [2] was devised for deriving the modular composition
of a fault tree given the minimal cut set structure description of
the tree. 1In complete contrast with thils, the modularization
algorithm used in PL-MOD (Figure 1.2.5) derives the modular
composition of a fault tree directly from its diagram description.
It is important to realize that the modular minimal cut sets which
are derived from the above algorithm are compact representations
of the usual basic event minimal cut sets.
Once the modular structure of a fault tree has been obtained,
the quantitative evaluation of reliability and importance para-

meters of the tree are efficiently performed. In particular, the
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FIGURE 1.2.4

FINEST MODULAR REPRESENTATION OF SAMPLE SUB-TREE II
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INPUT TREE CREATE | CREATE

MODULE DEPENDENT
| SUBMODULE
CONNECT INTER- CHECK 1IF >
DEPENDENT NODES MODULE IS| NO
PROPER :

FIND ALL GATES

HAVING NO GATE YES
INPUTS
3
CHECK IF "GATELESS" NODE| ., |
IS INPUT TO A NODE OF |—>
THE SAME TYPE (+ OR -) [— CHECK L MODULE
, CONTAINS DEPEND-| NO
i YES ENT SUBMODULES
COALESCE GATELESS NODE I YES
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REDUCE # OF GATE INPUTS e obotE | Y
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\ A

LOOK FOR NEW GATELESS
NODES

CREATE SUPER- |
COMPONENT

T

ATTACH SUBMODULE OR
SUPERCOMPONENT TO
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OF GATE INPUTS TO

v
CHECK IF SUPER-
COMPONENT CON- NO
TAINS ALL THE
TREE COMPONENTS

ROOT-NODE BY ONE

v  YES

END

FIGURE 1.2.5

FAULT TREE MODULARIZATION ALGORITHM
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probabllity of the occurrence of the top event is obtained by
means of a series of recursive calculations requiring the
evaluation of the probability expectation value of each of the
modules combined in the tree.

With respect to the importance measure, Olmos [3] has shown
how the Vesely-Fussell importance can be applied for modules and
how the importance of basic events can be easily computed from
a knowledge of the modular structure of the fault tree by
successively using recursive modular equations (see Chapter 3) and
the modular importance chain rule.

PL-MOD is written in PL/1 language, because it provides
several features normally found only in assembler or list processing
languages. The essence of 1list processing 1s the ability to
dynamically allocate blocks of core storage to link these blocks
together into a structure to store and retrieve data from the
blocks. It should be noticed that list processing for complicated
data structures such as those required by PL-MOD are very
difficult if not impossible to achieve through manipulations
using FORTRAN.

From the foregoing evidence the computational advantages
of PL-MOD to analyze and to evaluate fault trees in a modular
manner are:

a) The probabilities of the occurrence for the top and

intermediate gate events are efficiently computed by
evaluating these modular events in the same order in

which they are generated;
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b) The modular and component importance measures are easily
computed by starting at the top tree event and successively
using a modular importance chain rule.

¢c) For complex fault trees necessitating the use of minimal
cut-set upper bounds for their quantification, sharper
bounds will result by using minimal cut-set upper bounds
at the level of modular gates.

The efficiency and the accuracy of the PL-MOD method has

been demonstrated in reference [3] where PL-MOD has been tested

against MOCUS.
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2. TIME DEPENDENT FAULT TREE ANALYSIS

2.1 Introduction

L 4

The use of modularization techniques in fault tree analysis
provides an efficient and fast method to determine the unavaila-
bilities of the modules and the top tree event. The modulariza-
tion technique is specifically advantageous for the analysis of
fgult trees comprised of components with time-dependent behaviors.
This is because the time-dependent evaluation involves many
calculations of the same kind at different time steps.

In this study, four different classes of components-are
considered to be used in the PL-MOD code for evaluating the fault
tree. The four classes of components are:

1. Time -independent or constant unavailability components

(i.e., A = constant).

2. Nonrepairable components in which the falilure rates are
time independent.

3. Repairable components, failure of which is immediately
detected (revealed faults). The failure and repair
rates are time independent for this class of components.

by, Repairable components, failure of which is detected
upon inspection (periodically tested components).

A detailed discussion of these four classes of components 1s
provided in Sections 2.2 through 2.5. Subroutine NUMERO in the
original PL-MOD code 1s altered such that it can handle these
four classes of components mentioned above. A detailed discussion

of these changes is presented in Section 2.9 in order to clarify
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method utilized in the code. The new code is named PL~-MODT,
and the abbreviation, T, stands for the transient features of
the code.

In the PL-MODT code, all features of the PL-MOD code are
essentlally kept the same. The new code 1is able to handle very
large fault trees with time-dependent components as well as small
trees in an efficient, fast, and economical way. During this
development, an attempt has been made to incorﬁorate most of the
important features of the present time-dependent codes such as
KITT [ 6 1 and FRANTIC [ 4 1] into PL-MODT. These features
will be discussed in more detail later in this chapter.

PL-MODT has been benchmarked against the KITT and the
FRANTIC codes, and the results obtained indicate that the code
PL-MODT is adequate for time-dependent calculations. Examples

of this benchmark analysis are presented in Section 2.10.

2.2 Class 1 Components: Time Independent Components

A time-independent leaf (component) in a fault tree takes
into account the presence of failures whose probability of
occurrence does not change during the component's operation.
These failures can occur essentially because of eilther a natural
phenomenon such as earthquake, flood, tornado, etc., or a
physical phenomenon such as operator faults, airplane crash, etc.
The occurrence of these faults has‘g specific likelihood which

is not time dependent. For example, if a fault tree leaf could
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be in n-different failed states given that there exists only one

non-failed state, then a Markovian model can be formulated such

as the one shown in Figure 2.2.1.

Figure 2.2.1 A Markovian model for time independent
components

Each of these n falled states could be one of the failure
modes of the time—independent component. For example, faults
caused by an operator fault, alrplane crash, or by a missile
produced from a turbine failure are three different mutually
exclusive faults occupying three failed states of the components.

In Figure 2.2.1, different transition probabilities are
given by a, B, and 6. Thefefore, the probability that the
component 1s in its non-failed state can be calculated as follows.

The transition matrix A is given by Eq. (2.2.1) below:



NF Fl F2 ce Fn
NF a B B, Bn 1
Fl 5l aq o ... O
&= ?2 ?2 ° i All =zeros
:All zZeros }
Fn én a, (2.2.1)

If P = [Pyg PFl.... PFn], then the solution of the
equation P . A = P would provide a discrete value for P

NF

which is also a time-independent value for the probability

that the leaf 1s in its non-failed state. The following

example is given below makes the above discussion more clear.
Example: Figure 2.2.2 shows different transition probabi-

lities for a component with one non-failed state and two failed

states. The problem is to calculate the likelihood that the

component is in its non-failed state.

NON-
FAILED
STATE

F, F,

Figure 2.2.2 A Markovian model.
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The transition matrix A for this example is given as:

NF F F

1 2
NF [ % ¥ X

A= Fi | %
Fr | % %

Therefore, the matrix equation has the following form:

[p P ] A=T[P P p 1

Fy 2

NF F NF

1

Solving the above equation one finds the matrix P
P=10% o %]

and thus PNF = %

2.3 Class 2 Components: Nonrepairable Components

For the class 2, 3, and 4 components, the total unavailability
can be divided into two separate parts: first, the probability
that at an initial time (t = 0) the component K is down (unavailable);
second, the probability that during the operation, component K

becomes unavailable. Therefore, one can write

A(t) = (1-vi)Kw(t) + viKa(t)
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where
Vi = probability that K is down at t=0
Av(t) = probability that K is down at t=t given that
K was up at t=0
Ka(t) = probability that K is down at t=t given that

k was down at t=0

For.class 2, 3, and 4 components, we assume that Vi=0 which
is a valid assumption most of the time for most of the components.
Therefore, it is assumed that K(t)=K§(t).
In the code PL-MODT the unavailability equations are formulated
in terms of K&(t) since this reduces the amount of calculations.
The value of Kv(t) for any class 2 component for a mission
time t may be calculated exactly by the expression

6
I, = l-exp[- [ % h(t) at] (2.3.1)
£
1

where h(t) hazard rate (instantaneous rate)

t

stated time duration of the mission which begins

at time t and ends at t2.

Eq. (2.3.1) is the general form of the unavailability and does
not contain any approximation. However, since the hazard rate
h(t) is time variant, the unavailability should be calculated
through times of break-in as well as wear-out. Generally, data
are not available to give a good description of the hazard rate

through a component's lifetime. Also, it has been demonstrated
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that for most components, there is a long period of useful
life wherein the hazard rate is relatively constant. Under these

assumptions, Egq. (2.3.1l) can be approximated as
Kv(t) = l-exp[-At] (2.3.2)

where A 1s the constant component falilure rate which is a
characteristic of the exponential distribution. We will see later
in Section 2.4 that for a special case, class 3 components can

be reduced to class 2 and therefore Eq. (2.3.2) should be
obtainable from class 3 unavallability equations. Equation (2.3.2)
has been adopted in PL-MODT to calculate the unavailability of

non-repairable components.

2.4 Class 3 Components: Repairable Components

For this class of components, 1t is assumed again that
K(t)=K&(t). For calculating K&(t) it would be more convenient

to use a Markovian approach by using a constant faillure rate

1y,

A(hr—l) and a constant repair rate u(hr~ Figure 2.4.1 presents

a Markovian model for this class of components

N

Figure 2.4.1 A Markovian model for repairable components
(revealed faults)



22

It is assumed that the transition rates A and y have a
probability density function f(t) and g(t),respectively. Assuming
that state 1 is the UP state, and state 2 is the DOWN state, then

Pl2( T) = probability that the component K goes from 1 to 2
in the time interval At(t to t + At).

Therefore
P, = At + 0(At2 + .... ) (2.4.1)
higher order terms
Similarly, P = At (2.4,.2)

21

Using Egs. (2.4.1) and (2.4.2) we can determine the transition

matrix A as follows:

1 2
y 1-AAt AAE
P’ = (2-)4-3)
2 AT 1-ult

By subtracting 1 from the diagonal elements of the matrix P

one 1s able to find the identity matrix.

1 2
1
=-AAt AAT
> - (2.4.4)
o HAt -uAt

From the identity matrix P we get the transition matrix which

reads

A = | (2.4.5)



23

To evaluate P2(t) = K&(t) the Laplace transform is applied.
S+ -A

(SI - A) = (2.4.6)
-u S+u

The inverse of the matrix, Eq. (2.4.6), is calculated as

follows
S+yu A
S(S+r+u) S(S+A+p)
(SI-a)71=
U S+A
SZS+A+u5 S(S+r+u)
u A A A
A+u A+u A+u TA+p
1 1
=5 + Y (2.4.7)
+A+
S\ A Stitu B N
A+ A+u “A+u A+U

Taking the inverse of Eq. (2.4.7) we can evaluate K&(t)

M A A A
At+u Atu A+u Atu
-(A+u)t
P(t)= + e (2.4.8)
L TS W —u _u
Atu Atu Atu Atu
From Eq. (2.4.8) it follows that
- -(A+
T (t) = Py(t) = '{i? (1-e~(AFRIE) (2.4.9)

Equation (2.4.9) approaches an asymptotic value of

= - _A
Av(t) albv=n (2.4.10)

as the time t gets large.
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Equation (2.4.10) could be reformulated as follows:

= (2.4.11)
r

=
o3
[
H
()]
D
"
>
[

mean time between failures (MTBF)

=+

and T

" = mean time to repair (MTTR)

Sometimes Eq. (2.4.10) is given in the following form:
A = ﬁr‘*'_l (2-“.12)

Equation (2.4.9) can be used to determine unavailability of
non-repairable components. It 1s known that for non-repairable
components the repair rate 1is zero because no repair 1is.conducted
which corresponds to Tr= ©, Therefore, by setting u=0 in
Eq. (2.4.9), it reduces to the form given by Eq. (2.3.2), i.e.,
E(£)=1-e7*F,

Equation (2.4.9) is used in the code PL-MODT to determine the

unavailability of components and some simple modules created

during the fault tree modularization.

2.5 Class U4 Components: Periodically Tested Components

Suppose that the component k is inspected at the times t

1°
tg""’tn' If k is found to be failed, it will therefore be
repaired.
en = time geeded to inspect an intact component at the
n-th inspection.
Tn = time needed to repair a failed component at the n-th

inspection; and
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en + T = time needed to inspect a failed component at the
n-th inspection.

In that case,

+ T -
en r1<tn+1 tn

Assuming that the times tn are known (inspection times), then the

unavailability for any time t given tnf<t <t could be calculated.

n+l

If _ '

X, = tn - tn-l - en_l for n>1

A . -'rn -1 and

X, = tl

Then, the unavailability at different times tl, t2,...,tn would be

Av(tl) = F(xl)
B (t5) + F(xy)F(y)+[1-F(xq)IF(x,) = F(x,)-[F(x,)-F(y,)IF(x;)

(1-F (x,) +[F(x,) -F(y,) IF(x )} F(x3)

F(x3)=[F(x3)=F(y3) IF(x,) +[F(x5)-F(y ) ILF(x,)-F(y,) IF(x,)

e~ 3

-_— - n_j
Av(tn) = (-1)" “F(x,) H [F(xk) F(yk)] (2.5.1)

3=1 I k=3+1

Equation (2.5.1) can be considerably simplified, and in the

particular case of equal inspection time and inspection period,
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that is:
Inspection inte = - = - = = - =
P rval t2 tl t3 ,t2 ceee tn tn—l n
Inspection period = 61 = 62 = ... = 0_ =098
(Duration) n
Repair period = Tl =T, T L. =T =T
(Duration) 2 n
Equation (2.5.1) becomes
_ n n-J
A (t ) = F(n-8) ] [F(n-6-t)-F(n-6)] + [F(t{)-F(n-6)]
J=1
[F(n-0-t)-F(n-9) 1771 (2.5.2)
Equation (2.5.2) can be written as follows:
- — min_ayl=[F(n-6)-F(n-6-1)1"
Av(tn) F(n e) l+F(n-®-F(n—9-T) ¥
[F(t,)-F(n-8)I[F(n-6-1)-F(n-8) 177" (2.5.3)

Since F(n-6)-F(n-6-t) in Egq. (2.5.3) is usually very small, then

Egq. (2.5.3) can be approximated by

Ny = : F(n-e)
Lm A, (t,) = 1+F(n-86)-F(n-6-1) (2.5.4)

n->o

To calculate the unavailability as a function of time, we can

apply the theorems of the sum of the probabilities and of the

conditilional probability. Therefore one can write

A () = A (¢ )6 (t ,t) + [1-B (¢ )]a(t ,t) (2.5.5)
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where

a{tn,t) = probability that the component k is down at

time t given k was up at tn and,
B(t ,t) = probability that component k is down at time t
n given k was down at tn.

Therefore,

a(tn,t) = l(t—tn) - l(t-tn-en) + F(t—tn—en) (2.5.6)
and : .

B(tn,t) = l(t—tn)-l(t-tn—en —tn)+F(t—tn-en-rn) (2-5-7)
where

l(t—tn) is a unit step function given as follows:

{ 1 for x>0,

0 for x<0_

1(x) =

Now if PF(t) = l-exp[—kt] where A is the constant failure rate

of the component, after some approximations [2] we obtain

_ (+ _¢E-mn\q
K, (t) = 1-e~(E-mIRSTE 1y =577, (2.5.8)
Where 1
r(= 5
= n-6,n-96 2_T_ + _____q —_ 2
reff = (———+n n) 21 3 ] n2 (2.5.9)
1, _ 1
F(a) = gamma function of g and,
q = Ln(3—LneA) and, (2.5.10)
m=1, 2, ... ,n

Figure 2.5.1 shows the unavailability calculated by Egq. (2.5.8)
for one inspection interval and the following data for a specific

periodically tested component

6= 1.5 hrs, 1= 19 hrs, n= 720 hrs, 3 = 3x10'6hr‘1
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FIGURE 2.5.1

UNAVAILABILITY OF A COMPONENT AS A FUNCTION OF TIME
USING EQ. (2.5.8)
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It should be noted here that Eq. (2.5.8) can be put into a
simpler form. For instance, take

t-mn 3
-5 5

(1 -e part of Equation (2.5.8)

For typical values of g, n, and 6, this part of the equation
approaches one about the end of the inspection period (i.e., for
t>mn+6). This results, however,in an unavailability equation as

follows

K&(t) = ]-e~(t-mn)ieff

Therefore, if this approximation i1s used for the operating times
t>mn+6, some computing time can be saved. Thus, for only a

small fraction of time 6, the complete Eq. (2.5.8) will be used
whereas for the rest of the test interval the simplified form

can be applied. (Note 6 is always in the order of a few hours and
n is in the order of several days or even a few months.) The
simplified form of Eq. (2.5.8) is not incorporated into PL-MODT
yet, but it 1s recommended to use this equation instead of

Eq. (2.5.8) for t>mn+6 in the future.

Equation (2.5.8) provides the unavailability of a periodically
tested component with equal test intervals. It is known, however,
that most of the time the first test interval 1s longer than the
subsequent ones and, therefore, Eq. (2.5.8) is not quite adequate
for this interval. Eq. (2.5.8) must be modified such that the
longer test interval can be handled. Specifically at t=0 we have
’

KV(O)=0 and n= n, for the first test interval, with Ny=ng=...n =n
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for subsequent ones. A new form of Eq. (2.5.8) is actually utilized
in the PL-MODT code for the first test interval by changing

t+t+6 and setting m=1, and n=n, . Therefore, Eq. (2.5.8) becomes

- ~(t+8-n,)Aeff t;;l + 1)

E, (t) = 1-e N3 . [1-e ] © (2.5.11)
1

Also, it should be noticed that in the PL-MODT the second term

in Eq. (2.5.9) is approximated as follows
2[1-r(i{ J16/n2 = 0.2 x 8/n2 (2.5.12)

This approximation will save substantial amounts of computation
time and will not changé the computed unavailabilities since
6/n2 is small compared to the first term of Eq. (2.5.9).

Override probability®* P can be accounted for in Eq. (2.5.8)
by simple multiplying Kv(t) during the inspection period (6) by
the override probability P. Therefore,

Avo(t) =4 (t) . P (2.5.13)

where P is given by

-xeff.n)

P=gq  + (1-q,) (1-e (2.5.14)

and Qo= override unavaillability.
Eq. (2.5.14) can be derived by using Eq. (2.5.8) to calculate

the unavailability at the end of the test interval. The effect of

#0verride unavailability is the probabllity that a component cannot
function properly during its inspection period if it is demanded.
Therefore, with an override unavailability equal to one, the component
is totally unavailable during the inspection interval.
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incorporating an override probability is also shown in Figure 2.5.1
for qo=0.6. The overall effect 1is a reduction in the average
unavaillability of the component and thus an increase in the system

availability.

2.6 General Time Dependent Relations for the Evaluation of Fault
Trees by Using the Modular Concept

Take a module with a set {ml, My oees mn}. The structure

function for this module will be

cylt) = BLo (t), 0,(8),...,0 (£)] (2.6.1)
where

ci(t) = omi(t) (L=1, 2,...,n) also,

0 =

[l when module 1 has occurred at time t
i

0 otherwise
The expectation value of Eq. (2.6.1) is as follows
he(t) = E {o,(t)} (2.6.2)

Similar to the steady state analysis, for a simple AND gate

M, Q} we have

module in which M = {Ml,M2,..., n

n
h (t) = E{o,(t)} =h_ (t)h_ (t)...h_ (t) =T h_ (t)
o M 1 % m 1=1 9%
(2.6.3)

Similar expressions can be derived for an OR gate module,

namely for a set M
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M= {Ml, M2,ooo, Mn’U}

n
h, (t) = 1-[1-h_ (t)1[1-h_ (t)]...(1-h_ (t)] = h, (t) 2.6.4

For higher order modules, we have the following relationship

N. )
K .

oM(t) = fJi ;1; oi(t) (2.6.5)
= €

J
where Nk=number of modules and components connected to a higher

order module or the top event.

Using the minimal cut-set upper bound‘formula, one obtains

Ny Ny
hg(t) = 1] T n, (8) % §  TT h (%) (2.6.7)
J=1 iekj i J=1 iek‘j i

which is simply the union of modules and components which are

attached to a higher order module or the top event.

2.7 General Relations for Time Dependent Simple Modules Consisting
of Only Repairable Components (Class 3 Components)

The unavailability of a repairable component as given by
Egs. (2.4.9) and (2.4.10) can be used to derive an approximate
failure rate A and a mean dead time t for simple AND and OR gates.
A simple AND gate or module 1s a module consisting of only
simple component inputs. From Eq. (2.4.10) by employing the common

assumption that Airi<<l, one obtains

B (6) = F) a1y (2.7.1)
where )
h.(t) = unavailability of the component i input to a module.

1
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Once these basic relationships have been established, the
next step 1is to find the failure and repair rates of the module.

The primary event in an AND module can occur in the time
interval t to t+dt, with the remaining events having already
occured at time t, or the second primary event can occur in the
time interval t to t+dt, with the remaining events having already
occured at time t, or.... Keeping these observations in mind,

the following equation is obtained

n n
£f(t) = pr{FuR} = ] F.(t)xr,.datTTF.(t) (2.7.2)
2. i J T
J=1 i=1
i¥]
where n = number of components input to the AND gate
F(t) = 1-F(t)
f(t) = probability density function (p.d.f.) of an AND gate.

The p.d.f. can also be obtained as follows: If a cumulative
probability density function (c.p.d.f.) for an AND gate is designated

as H(t), then
— n —
H(t) =TT F,(¢) (2.7.3)
i=1

By substituting Eq. (2.7.3) into Eq.(2.7.2), the following expression

results

(2.7.4)

n
f(t) = jZle(t)xj x
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Since F_(t) is close to unity dnd the remaining terms are very

J
small, Eq. (2.7.4) can be approximated as

£(t) ¢ H(t) § —d— (2.7.5)

By substituting Eqs. (2.7.1) and (2.7.3) into Egq. (2.7.5),
the following result is obtained:
n

2 1
TT Aty Jz (2.7.6)

f(t):f: —
i=1 =1 13

By using the general hazard rate formula, it is possible to

calculate A for the AND gate as

]

(t

pa—

3

ACE) (2.7.7)

where

R(t)

"

reliability of the AND gate.

R(t) may be approximated by R(t)=l since the numerator is small.

Therefore, Eq. (2.7.7) reduces to the following form AAND(t)=f(t)
or, from Eq. (2.7.6),
n no4
Aanp = JJ; AiTy 121 T (2.7.8)

Similarly, by using the definition of the mean dead time for

a simple gate, it follows that

(6) = grepids (2.7.9)
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Therefore, the mean dead time for a simple AND gate can be obtained

from the definition in Eq. (2.7.9)

n
g];vkiti |
Tanp ~© f% f% ? - (2.7.10)
(L =TT At )CTT Al =)
1=1 i1 =1 1 1 j=1 TJ
. n
Since A, T,<<1l, it can be assumed that (1-'rrxiri)=1 and thus

i=1
Eq. (2.7.10) can be written as follows

!
TAND - Tm o (2.7.11)

I+
J=1 J
In a similar way, 5ne can obtain the value of A(t) and t(t)
for OR gates. The first primary event in an OR gate can occur in
the time interval t to t+dt with the remaining events not having
cccurred at time t,or the second primary event can occur in the
time interval t to t+dt with the remaining events not having

occurred at time t or,....

-Similar to Eq. (2.7.2), the following equation results.
n n
g(t).dt = } G.(t)xjdt TT 6, (¢) (2.7.12)
j=1 Y 1=1
1#]

Applying the same approximations made for Eq. (2.7.2), Eq.

(2.7.12) can be reduced to the following form

n
g(t) = L(t) § A, (2.7.13)
j=1 7
where n n _
L(t) = TTey(t)=1- ] G, (%)
i=1 i=1
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From Equation (2.7.13) it follows that

n n .
Ay = g = (1= 7 A,1,) J A (2.7.14)
OR LT S A

Using a definition similar to that in Eq. (2.7.9) for the

dead time,
- I(t)
o) = Ty A
n ? )
By approximating A, T, as AL T then T follows as
ggi i“i =1 1 i? OR
n
121 ATy
TorR *© ? 2 ? (2.7.15)
(1- AT A
SR =S

n
A special case in which (1- Z_Aiti)z i1s close to unity
i=1
would result in very simple forms fOP;AOR and ToR® namely,

n
A = Z A (2.7.16)
OR 121 i
e ) )
T = AT, A (2.7.17)
OR =7 1 1 / 121 i

The values obtained for A and Tt for simple AND and OR
modules can be further investigated. For example, take Egs. (2.7.8)
and (2.7.11) for an AND module. If we were to approximate this
module behaving as a simple component, with the same approximation
stated in Eq. (2.7.1), it follows that the unavailability of the

module is given by
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Iy = A

n
AND = Manp ¢ Tanp T ;Egliti (2.7.18)

Equation (2.7.18) can also be obtained by using the asymptotic
unavallabilities of individual input components to this AND gate.

Similarly, from Egs. (2.7.16) and (2.7.17) it follows that

=
|

n
or = Yor * TorR = Z ATy (2.7.19)

which 1s again the exact asymptotic unavailabillity of this OR
module.

Equations (2.7.18) and (2.7.19) show that the approximation
of assuming that a simple module behaves as a simple component
would have no effect whatsoever on the simple module's asymptotic
unavailability, if and only if A . T << 1.

The above discussion indicates that within a certain range of
time, Eq. (2.4.9) could be used to determine the unavailability of
the module. By examining many typical simple modules, 1t has been
found that the approximation of assuming that modules would behave
as components will not provide an adequate value for the unavaila-
bility of the module for times t < 21. Figure 2.7.1 shows a
comparison between the exact unavailability of a typical simple AND
module with two input components; Table 2.7.1 summarizes the

parametric characteristics of these input components.
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Table 2.7.1

Component Input to a Simple AND Module

Input Component Failure Rate (hr-l) Mean Dead Time (hr)
1 3 x 10'“ 00
2 2 x 107° 150
Therefore,
_ 5.1 -6 . -1
AAND = 9 x 10 X Z5 1.5 x 10 hr
T = L = 60 hrs
AND 1 + 1
100 150

2.8 General Relationships for a Time-Dependent Simple Module
Consisting of Only Non-Repairable Components (Class 2 Components)

For a non-repairable component, the unavailability is given
by Eq. (2.3.2). For a simple component i, the unavailability
would be

Fo(6) = 1 - oAt (2.8.1)

For small values of Ait we can approximate Eq. (2.8.1) as
Fi(t) = A;t. Therefore, by using Eq. (2.6.3) one obtains under

these circumstances

1

n n-
AAND(t) = (ﬂ];xi)t (2.8.2)

where n = number of inputs to the AND gate. For the case of an
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OR gate, A is derived by using Eq. (2.6.4)

OR

A =

OR Ai (2.8.3)

I~ s

1=1

Treating an OR module as a simple domponent will result in
exactly the same unavailabllities and no approximation is involved
by using Eq. (2.8.3). Treating an AND gate as a simple component
by using Eq. (2.8.2) is possible only if Xit is small, namely,
Ait<0.l. ‘In that case, Eq. (2.8.2) provides the failure rate of
a simple AND module. Therefore, for t>0.l/>\i the approximation is

no longer valid and the general equation

o]

A(t) = T7T Fi(t) must be used.
i=1

Table 2.8.1 summarizes the formulas discussed in this section.

2.9 Description of the PL-MODT Code

The original PL-MOD code consists of only Class 1 components,
and therefore it is only able to evaluate timeFindependent components.
The other three classes of components have been incorporated into the
PL-MOD code, and thus the extended version is called PL-MODT, which
also comprises all the other features of the PL-MOD code. The
incorporation of Class 2,3, and 4 components is performed in five
separate steps.

Step 1 includes the development of subroutine SHOHREH, which
evaluates time-dependent unavailability of fault trees consisting

of only non-repairable components (Class 2 components).
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Table 2.8.1

Failure Characteristics of Simple Modules
Having Repairable or Non-repairable Component Inputs

Type of Repairable Components ' Non-repairable
Module * Components
A T A
n n n
1 1 n-1
TTact. } I =— ( ¥oaL\t
AND 1=1 1 1 )21 Ty § oL 1=1
T
i=1 "1
)
ALT.
n L7101 n
OR b oA, 123 I A
i n i
i=1 z A i=1
[ §
i=1
m k
m* k ko kZ_ iUl"iTi m o/ k o1
K-0-N L\ TTagmy) L7 m K K [ (TTAg)e
k=1\i=1 i=1 1 T (TT amt ) 1 i=1\i=1
& 11} e, T, )
k=1\i=1 i=1 "1
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Step 2 includes the development of subroutine CECA which
evaluates time-dependent unavailability of fault trees consisting
of only repairable components (Class 3 components).

Step 3 includes-the development of subroutine SHARAREH which
evaluates time-dependent unavailability of fault trees consisting
of only periodically tested components (Class U4 components).

Step 4 consists of a further development of the old NUMERO
subroutine to enable it to calculate the average unavailability over
the period of system operation. In addition, the o0ld subroutines
PLUS and EXPECT were modified to allow the code the treatment of
unavailabilities which are close to one. This seems necessary for
Class 4 components during the component inspection period, where
unavailabilities are usually close to 1.

Step 5 comprises the development of the SHARAREH subroutine
such that the PL-MODT code contains the ability to handle large
fault trees consisting of a combilnation of different classes of
components with different time-dependent behaviors.

These five steps are discussed in full detail in the follqwing

sections.

2.9.1 Developments Included in Step 1

In the SHOHREH procedure, the value of the unavailability for
simple AND modules 1s calculated at different time steps
(DEL9T(1,j)) by using Egs. (2.8.2) and (2.3.2) up to a time ¢t
where t=0.1/XA and A is the largest failure rate of the components
on the module. After the time t, the components are considered

individually and therefore only Eq. (2.3.2) is used.
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For the simple OR modules, the unavallabllity 1is calculated
by using Egs. (2.8.3) and (2.3.2). No limitation exists for the
OR module and thus Egs. (2.8.2) and (2.3.2) are used for the entire
operational period.
The total number of time steps in each time interval mesh 1s

calculated by

- _AUN(1,I) .
TIE(1,I) = pEror(i,Iy °3
where AUN(1,I) is the duration in which the time step

DELQT(1,I) is applied and,
bEL9T(l,I) is the time step for the I-th mesh interval.

At each TIE(1,I) time step, first the unavailability values
are calculated for the various modules and components of the
fault tree using Eq. (2.3.2). Next, these unavailabilities are
assigned to the arrays STATE(1l,I) and STATD(1,I). Finally, the
subroutines EXPECT, DOT, PLUS, MINUP, and IMPORTANCE are called
respectively to calculate the top event and higher order module's
unavailability as well as the Vesely-Fussell importance measures.
The same procedure is applied for all of the other time interval
meshes (AUN(1,1), AUN(1,2),...,AUN(1,N)). At the end, the mean
unavailability is calculated when the time exceeds T= ? AUN(1,I)
and the program stops. =

As explained before, for each time 1interval mesh there exists
a corresponding time step DELOT(1,I) and, therefore, a corresponding

number of time steps TIE(1,I). Thus, the total number of

unavailability values calculated for the top event would be
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TIE TIE(1,I)

1

]
It 2

I

where N = total number of time interval meshes used.

2.9.2 Developments Included in Step 2

In the second step, the CECA subroutine was developed. Similar
to the SHOHREH subroutine, different time interval meshes along
with thelr corresponding time steps are used. These values are
stored in the allocated arrays AUN(1,I) and DELY9T(1,I). Four
other arrays--STSTS, STATT, STATTE, and STATED--are allocated to
store the failure and repalr rates of free and replicated
components, respectively.

At the beginning of the operation, the approximations
discussed in Section 2.8 of this chapter are not applicable due
to the small unavailability values and, therefore, the unavailabilities
of replicated and free components must be calculated directly by
using Eq. (2.4.9). As time progresses the components approach
their asymptotic unavailability values and, therefore, when the
unavailability errors are small enough (usually when t=31), the
code automatically uses the approximations summarized in Table 2.8.1.
As discussed before, these formulas.asymptotically approach the
exact unavallability for simple modules.- |

Unavailabillity values calculated at each time step will be again
assigned to the STATE (1,I) and STATD(1l,I) arrays. After calling
subroutines EXPECT, DOT, PLUS, MINUP and IMPORTANCE, the top event

and higher order module's unavailability will be calculated. When
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no time interval meshes remain, the average unavailability will be
determined by using the procedure incorporated into the NUMERO

subroutine. This will be discussed in Section 2.9.4.

2.9.3 Developments Included in Step 3

In this step, the SHARAREH subroutine is developed for
periodically tested components. In this subroutine the use of
different mesh intervals plays an important role in the
accurate determination of the top event unavailability. For
example, during the inspection period, very small time step meshes
must be used in order to calculate the detailed behavior of the
system within this interval, which usually results in large system
unavailabilities during this short time interval. (See examples
presented in Section 2.10.)

The arrays STATT and STATD are allocated to store the failure
rates of free and replicated components respectively. The arrays
ETTA and ETTAD are used to store the test interval, TTETA and
TTETAQ to store the inspection period, whereas TAVV and TAVVD are
employed to store the repair duration.

The values of A_,. and g from Egs. (2.5.9) and (2.5.10) are

ff
calculated for each ffee and replicated component and are stored in
the arrays STATTE and STATTED, QUUE and QUUED, respectively for
free and replicated components. At each time step, a special
proéedure is employed to determine the value of m in Eq. (2.5.8).

This value provides the specific test interval that should be

used. For m=l, the code will use 'Eq. (2.5.11), since it indicates
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that the component is in 1ts first test interval; For m>1,
Eq. (2.5.8) will be used under the assumption that tﬁe subsequent
test intervals are identical (i.e;, only the filrst test interval
differs from the others).
The unavailabilities calculated at each time step are assigned
to the arrays STATE(1l,I) and STATD(1,I) in order to calculate
the top and higher order module unavailabllities. For periodically
tested components, no approximations such as those discussed in
Section 2.7 can be applied; since 1t seems that no correlation
exists between a simplé modulé inspection and repair duration
and its input components' parameters (i.e;, n, 9; T, and A).
Finally, the average unavaillability dﬁring each test 1nterval
is calculated in the NUMERO procedure. If the override unavaila-
bility has a value less than unity, and if the time step is within
the inspection period of the component, then the value of the
predicted unavailability will be multiplied by a value called

POORD, where POORD is the override probability.

POORD = q_ + (1 - q_)(1 - e~terr - M

q, = override unavailability

Therefore, the arrays STATE(1,I) and STATD(1,I) will change to the
following form.

STATE(1,I) POORD ¥ STATE(1,I) and

]

STATD(1,I)

POORD * STATD(1,I)
where STATE(1,I) and STATD(1,I) are calculated by Egq. (2.5.8).
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2.9.4 Developments Included in Step U

In the fourth step, the NUMERO subroutine is further
extended to calculate the average unavailability of the top
event. For this'purpose, the following assumption 1s made.

After the unavailabilities of two successive time steps are found
for the top event, it 1s assumed that the unavailability changes
linearly between these two points. Therefore, the unavailability
as a function of time for the top event.of a specific fault tree
can be calculated for different time steps by the PL-MODT. For
the special case of a fault tree of only periodically tested

components, the top event unavailability behaves as shown in

Figure 2.9.1.

Figure 2.9.1: Unavallability as a Function of Time
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The total area under the curve in Figure 2.9.1 is calculated by
adding the area occupied by each time step interval, and using the
linear unavailability approximation between the two time steps.
The total area is then divided by the operating time t, where
T= % AUN(1,I) to get the average unavailability of the system.
i—lIn the PL-MOD version of the code, the approximation states
in Eq. (2.6.7) is used to calculate the union of all components and
modules attached to a higher order module or the top event.  In
the time-~dependent version of the code, this approximation is no
longer appropriate, since sometimes we are dealing with unavaila-~-
bilitiles ranging from 0.2 to 1, which precludes the use of the
minimal cut-set upper bound formula, Eq. (2.6.7). Thus, the

general form Nk
hg(t) = _|:L T h, (%)
J=1 ie:k'j i
1s incorporated into the subroutines PLUS and MINUP. However,
1f the unavailabilities input to a higher order module or the top
event are individually smaller than 0.2, then the program is
constructed such that the old versions of subroutines PLUS and
MINUP are used. As an example, part of the changes stated
above are presented here.
* IF REX< 0.2 THEN GO TO ZACH;

(NOTE: ZACH will follow the old PLUS subroutine, and REX
is unavailability calculated for the module.)
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IF (PROP.LIM=1 € PROP.TIL(1)=0) THEN GO TO SLUA;
DO J=1 TO PROP. LIM;

REX=REX* ( 1-STATE (L, PROP.TIL(J)));

END;

SLUA: IF (PROP.MIM=1 € PROP.PIM(1)=NULL) THEN GO TO SLUB;
DO J=1 TO PROP.MIN;

IF (PROP.PIM(J)-*PROP.HOST= =NULL) THEN DO;
PR=PROP.PIM(J)-» PROP.HOST;

REX=REX*(1-PER.REL(1));

END;

ELSE REX=REX*(1-PROP.PIM(J)>PROP.REL(1));

END;

SLUB: REX=1-REX;

ZACH: .....

The dummy variable REX and other similar variables are
declared on FLOAT DECIMAL (16) so that the result from subtraction

of small unavailabilities from 1 will not be truncated.

2.9.5 Developments Included in Step 5

In the last step, the SHARAREH subroutine is further developed
in order to combine different classes of time-dependent components.
This enables the code to treat any combination of repairable, non-
repairabie and periodically tested components in a fault tree.

This specific problem is solved by adding a zero test interval

condition option for those components which are not periodically

tested (i.e., ETTA(1l,I)=ETTAD(1,I)=0). If the zero test interval



50

condition arises, then the computer code willl automatically apply
Eq. (2.4.9) and thus will not evaluate Egs. (2.5.8) through
(2.5.11).

It should be noted here that in the case of non-repairable
components, Eq. (2.4.9) reduces to Eq. (2.3.2) with the repair
rate equal to zero (i.e., u= 0). Therefore, for a non-repairable
component we have ETTA(1,I) =ETTAD(1,I)=TTETA(1l,I)=TTETAD(1,I)=0.
This results in an equation of the form given by Eqg. (2.3.2).

One final note discusses the usefulness of the subroutines
SHOHREH and CECA. Since the SHARAREH subroutine can handle not
only periodically tested components but also repairable (revealed
fault) and non-repairable compoennts, then there is seemingly no
need for the subroutines SHOHREH and CECA. However, it should be
pointed out here that the use of SHOHREH and CECA subroutines
saves computation time due to approximation incorporated into them.
Additionally, no procedure exists in these subroutines which would
recognize the class of each component at each individual time step.
Furthermore, if the fault tree components are only of one class,
then the corresponding subroutine should be used to save
computation time, although the unavailabilities will naturally be
the same by using the SHARAREH subroutine. A variable ESF is
used in the PL-MODT code to determine which subroutine is going
to be used. For ESF=1, all components are considered to have
steady-state point value unavailability (i.e., Class 1 components).
For ESF=2,all components are considered to be repairable (revealed

fault) components (i.e., Class 3 components). Finally, for ESF=4
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all components are periodically tested components (i.e., Class U

components) or a combination of the above-mentioned classes of

components.

2.10 Examples

In order to more easily comprehend the meaning of the input

description, four examples are given in this sectlon.

2.10.1 Low Pressure Recirculation System (LPRS)
for PWRs (Class 1)

This system is part of the Emergency Core Cooling Recilrcula-
tion System and consists of the contalnment pump and two pumps in
parallel redundancy. Figure 2.10.1 shows a simplified flow
diagram and Figure 2.10.2 shows its associated reduced fault tree.

It should be referred to in connection with the following discussion.
All values with the exceptlon of V24 and V25 are aligned for

injection into the cold legs. V2M and/or V should be open in

25
order to start the LPRS and close V2. These valves, whether
locally or remotely operated, are all manually operated. Details
of the system as well as its fault tree can be taken from

WASH-1400 [3].

The LPRS unavaillability estimates are given in WASH-1400 as

follows:
WASH _ -2
Qmed = 1.3 x 10
WASH _ -3
Qlower 4.4 x 10
QWASH = 2.7 x 10-2

upper
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where the lower and upper bounds were evaluated by a Monte-Carlo
simulation by using the minimal cut-set approach. The point
estimates for single and double faillures, test and maintenance

as well as common mode failures are:

Qsingle = 1.1 x 107°

Qgoypre = 2-7 x 107

Uest & main = 1.0 x 107"

Qommoy = 6-0 x 1073
respectively.

This system has been analyzed by PL-MOD to determine the
point estimate probability for the occurrence of the top event
and the Vesely-Fussell importance of the components. The reduced
fault tree contains a total of 61 non-replicated basic events,

4 replicated events and 2 replicated modular gates.

The point unavailability computed by PL-MOD using the

modular approach 1is
Q = 4.83 x 1073

The total computation time for this example was 0.46 sec.
and included the modularization, the evaluation of the top event
probability and the determination of the importance measure for

all components and modules in the fault tree.
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2.10.2 Auxiliary Feedwater System - A Comparison Between
PL-MODT and FRANTIC (Class 1)

The Aux-Feed System is shown in Figure 2.10.3 and described
in detail in [4]. As can be seen from the figure, the system
consists of two diesels in parallel with a pump and two valves.
The pump and valves are in series. The block diagram used in
FRANTIC. [4] is a simplified version of the one shown in WASH-1400.
It is assumed that the components of the system are periodically
tested. The data are summarized in Table 2.10.1.

Figure 2.10.4 compares the results for the point unavail-
ability computed by the two codes FRANTIC and PL-MODT. It should
be noticed that PL-MODT gives slightly lower values for the
unavailability for the system during the operation time. During
the inspection time of valve 1, pump and valve 2, and diesel 4
(720 < £t < T721.5) both codes give essentially the same answer.
However, for the repair time interval, a larger difference appears
as can be seen from Figure 2.10.5. This is mainly due to the
fact that the analytical equation in PL-MODT gives lower values
for the unavailability. This difference vanishes as the end of
the inspection period is approached. Thereafter, both codes
predict about the same value for the unavailability as depicted
in Figure 2.10.5. To evaluate unavailabilities shown in Figure
2.10.5, a finer time step mesh was used.

PL-MODT treats the group: valve 1, pump and valve 2, as
a module and therefore the unavailability of thilis module will be

given automatically in the output. Therefore, the unavailability
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Figure 2.10.3

Block Diagram of the Aux-Feed System

Valve - Pump Valve

Diesel

<:::E::::}
Diesel

0




TABLE 2.10.1
THE COMPONENT INPUT DATA FOR THE CODES FRANTIC AND PL-MODT

~

Component Component name Failure . Test First Test Inspection Repair (q_.)
Number Rate_, (1) Interval (n) Interval , Duration(8) Dura=. .- Override.
(x10 ) (days) q.T. ' (hours) tion(n) Unavail-
: ' (hours) ability
1 Valve 0.3 30 30 1.5 ' T 1.0
2 Valve 0.3 30 30 1.5 7 1.0
3 Pump 3 30 -~ 30 , 1.5 19 1.0
Yy Diesel b2 60 30 1.5 21 1.0
5 Diesel 42 60 60 1.5 21 1.0 ©



,~Figﬁq¢ 2.10.4
T T T
'

| PERIODS

~PLMODT

|
X
!
!

¢ | e
ceoll 4 4 L] . -10 [ of

105710 20 30 40 5060 70 '°720 72l 750
HOURS

' COMPARISON BETWEEN THE TIME -DEPENDENT UNAVAI
| ABILITIES FOR THE AUX-FEED SYSTEM AS CALC
BY, FRANTIC AND PL-MODT




61

for each branch could automatically be obtained from the same
computer run for unavailability calculations of the top event.

The CPU time for PL-MODT was 0.57 seconds for modularizing
the fault tree and calculating the unavailabilities for 40 time
steps as well as the importances for components and modules.

As the number of components increases and more inspected
components become involved, the differences during the repair
time should vanish. This will become more apparent in the next
example.

2.10.3 Example of a Simple Electric Circuit Using FRANTIC
and PL-MODT

Figure 2.10.6 shows a simple electric system which has been
discussed in [5]. The purpose of the system is to provide light
by the bulb when the switch is closed, the relay 1 contacts
closed and the contacts of relay 2 ( a normally closed relay) are
opened. Should the contacts of relay 1 open, the light will go
out and the operator will immediately open the switch which in
turn causes the contacts of the relay 2 to close which restores
the light. In what follows, operator failures, wiring failures
as well as secondary failures will be neglected. The fault tree
for this system is shown in Figure 2.10.7.

Failure fates, repalr times and test peéiods for the various
components are summarized in Table 2.10.2. No replicated

component or module exists in this system.
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TABLE 2.10.2

INSPECTION PARAMETERS FOR THE CIRCUIT EXAMPLE

Component # Failure Inspection First (Days) Repair Override Test 1(days)

gigi Time (hrs) $i?e Inter- Time (hrs) gg?gi%;— Interval
1 2.0x10™" . 1.0 7 2.0 1.0 7
2 2.8x107° 0.5 7 1.0 1.0 14
3 2.8x107° 1.0 7 1.5 1.0 1.
4 3.2x1073 0.5 7 2.0 1.0 7
5 4.1x10™" 0.5 14 1.5 1.0 - 21
6 3.2x10'” 1.0 28 1.5 1.0 : 28
7 2.8x10°3 0.5 - 14 2.0 1.0 21
8 2.8x1073 1.0 14 1.5 1.0 14
9 4.5x1073 0.5 7 2.5 1.0 7
10 4.5x1073 1.5 7T 3.0 1.0 7

9
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In order to enable FRANTIC to analyze this system, the
system's unavailability function must be provided as input.
This function was found to be

QS={ 1.0-(1-Q(1)) { 1-[(1-Q(2))(1-Q(4)) (1-Q(7))(1-Q(8))*

%¥(1-Q(9))(1-Q(10))J[1-(1-Q(3))(1-Q(6))(1-Q(5))}}

Naturally, for PL-MODT the fault tree was directly inputted
because there is no need for a system function. As output,

PL~-MODT gives the four following modules.

Module #4: components 5, 6, and 3
Module #3: components 4, 7, 8, 9, 10, and 2
Module #2: modules 4 and 3

Module #1: component 1 and module 2

Figure 2.10.8 compares the output of both éodes for one complete
period of 28 days. As can be seen, the results are overall in
very close agreement during the operational period. Differences are
attributed to the fact that for this example the fallure rates
are comparatively high,and the FRANTIC prediction, by using a linear
approximation for the unavallability, at large times would not
be valid. . |

Again, during the inspection period both codes give essentially
the same results. However, for the repair period (see Figure
2.10.9) differences show up again which were observed already in

Example 2.10.2. It should be noticed that these differences are
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not as pronounced as in Example 2.10.2 because more components
are involved in the present example.

The CPU time for PL-MODT was 0.98 seconds for modularizing
the tree, evaluating the unavailabilities for components, modules
and the top event for 32 time steps and for determining the
importances for various components and modules.

For the same tree and data, FRANTIC needed 1.12 seconds
alone for calculating the system unavailability ovér the period
of 180 days and to determine the mean unavailability of the
system over this period. However, it should be noted here that
PL-MODT would be an efficient and convenient code for evaluating
large fault trees consisting of periodically tested components.
Examples 2.10.2 and 2.10.3 showed that the code is also fairly
fast for evaluating small fault trees as compared to other

state-of-the-art computer codes.

2.10.4 Comments and Discussion

2.10.4.1 Differences Between FRANTIC and PL-MODT

The obvious difference between the éwo codes 1s that
whereas PL-MODT is capable of analyzing large fault trees and
evaluating them at the same time, the use of FRANTIC i1s mainly
confined to the analysis of small systems for which the system
unavailability function is known in advance. This off-line
approach is not only time consuming but has the additional

disadvantage that the user may introduce spurious errors.
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In case that a system, for example, the Aux-Feed system,
is to be evaluated in more detail than each valve, pump, and
diesel would be further developed down to the level of subcom-
ponents which are periodiéally tested. For this purpose,
PL-MODT is especially suited.

The analysis of computer storage and CPU statistics for

PL-MODT is underway.

2.10.4.2 Comments on the Vesely-Fussell Importance Measure

PL-MODT enables the user to select the option for the
determination of the V.F. importance in steady-state and transient
evaluations. As an example, Figure 2.10.10shows the importance
of the pump in the Aux-Feed system as a function of time. The
importance stays about constant through the operational period.
After a sudden increase in system unavallability due to the
testing of the pump, the valves, and the diesel, the importance
of the pump sharply decreases and increases again, once the
inspection has been finished. Thereafter, it remains fairly
constant during repair and operation. The opposite behavior can
be seen in Figure 2.10.11 for the valves. The reason for this
behavior is that the combination of valve 1, pump and valve 2
constitutes a prime module which is directly connected to the
top event and thus its total lmportance is 1 over the whole
operational period. The same holds for dilesels 4 and 5. As a
result, any increase in pump importance is accompanied at the

same time by a decrease in valve importance.
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2.10.5 Comparison Between PL-MODT ‘and PREP & KITT-1
(Class 2 and 3)

This comparison 1is based upon an eXample considered in
Ref. [6]. The associated fault tree is shown in Figure 2.10.12.
It has been analyzed and evaluated by PL-MODT for the data
summarized in Table'2.lO.3“by assuming all components show a
time-dependent failuré behavior bﬁt are'non-repairablé.

Figure 2.10.13 comparés the resﬁlts of the two codes. Those
for PREP & KITT are taken from [6]. For the first 3000 hrs,
PL-MODT calculates unavailabilities which are higher than those
computed by PREP & KITT. Thereaftér, the trend reverses and
PREP & KITT gives higher valués; Which code comes closer to
the exact answer can only be answered by benchmarking these
codes against a code which employs the Markovian approach.

The computation time for PL-MODT was ‘0.64 seconds for
modularizing the tree, finding the unavailabilities for
system, components and modules for 10 time steps; Advantage
was taken of the fact that PL-MODT is capable of handling
directiy K-out-of-N gates. Therefore, the two 2/3 gates were
inputted, rather than analyzed by the code. This approach
naturally saves computér storage and computation time.

The same fault tree in Figure 2.10;12 was used to evaluate
the top event unavailability for the case that components 1
to 6 in Figure 2.10.12 are repalrable and 7 to 10 are

non-repairable. The following data were used (Table 2.10.4).
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_ FIGURE 2.10.12
FAULT TREE EXAMPLE GIVEN IN [6]

TOP
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TABLE 2.10.3
PRIMARY FAILURE RATES FOR SAMPLE FAULT TREE SHOWN IN FIGURE 2.10.12

Primary Failure Index ‘A(hr’1>

1 : 2.6 . 10'6,

2.6 . 107°
3 2.6 . 1070
4 3.5 . 107
5 3.5 . 107°
6 3.5 . 107°
7 3.5 . 10'6
8 5.0 . 1078
9 8.0 . 1070

10 8.0 . 10~
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TABLE 2.10.4

FAILURE AND REPAIR RATES FOR SAMPLE TREE IN FIGURE 2.10.12

Primary Failure Index (hr-l) ' (hf'1)

1 2.6 x 107° 4.1 x 1072
2 2.6 x 107° 4.1 x 1072
3 2.6 x 107° 4.1 x 1072
4 3.5 x 107° 1.66 x 107t
5 3.5 x 107° 1.66 x 107t
6 3.5 x 107° 1.66 x 107%
7 5.0 x 107° 0

8 5.0 x ]_O"6 0

9 8.0 x 107° 0
10 8.0 x 1070 0

First PREP & KITT were used to compare its results with PL-MODT.
Next, FRANTIC results were used for the same example. The results
are shown in Figure 2.10.14

Small differences exist due to different approximations used
in these codes. However, these three codes give essentially the
same asymptotic values for unavailabilities. The job run time for
PL-MODT to calculate the top event unavailability for 15 time

steps was 0.62 seconds.
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3. REDUCTION OF LARGE FAULT TREES BASED ON THE
VESELY-FUSSELL IMPORTANCE MEASURES

3.1 Introduction

In this chapter the fault tree reduction method which is
incorporated into the PL-MODT code is discuSsed; This reduction.
method is based on thé Vesely-Fussell importance measures which
are calculated by the code. A value called cut-off value 1is
inputted and any higher order module, simple module, or componént
which has an importance less than this value is eliminated;

The remaining part of the original fault tree is the reduced
version. Essentially, it must have all of the characteristics
of the original fault tree. The reduced version of the tree

is very useful for further assessment of the fault tree, such

as low order cut-set generation, test and maintenance considera-
tion, common cause analysis,..., etc.; In the following
sections, some discussions are provided to clarify the method

of reduction and the cut-off range to be used.

3.2 Importance Measures and the Use of PL-MOD to Calculate
the V-F Importance Measures

The code PL-MOD is able to calculate the importance
measures for large fault trees very effectively and economically.
Olmos and Wolf [1] have developed V-F importance measures to

calculate importance of higher order modules in a fault tree.
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For example, a higher order module is shown in Figure
3.2.1. To evaluate the V-F importance of modules such as

the one shown in Figure 3.2.1, 1t follows that

NJ
li ‘H
O, = B(O,, 05000, O_)= o} (3.2.1)
M 17 72 S og=1 iek, 1

(1=1, 2, ... , n)
The probability that module ci will contribute to the

failure of its parent module ¢ given that the parent module

has failed is given by §
J
IZFO i P(sk(cl, Tosenes on) = 1) (3.2.2)
>3 P(B(ol, Gosenrs on) = 1)
now
P(B(oys Opseves 0)) = h (3.2.3)

oM

and Eq. (3.2.1) implies that Bi is given by

J
Ny
J -
By = ggl 2112 ) (3.2.4)
jek,

Thus, the V.F. importance for module j with fespect to the

top event will be J
N
k
P(( T g,) = 1)
2=1 2ek
2
V.F. _ _V.F. _ Jeky (3.2.5)
Ie 0. Ia M i
b J' b h
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Cut-sets

™ - (Yyy 5eeesty ) IX'F' = 1V-Foy w
T 1 n My M nM

K, = (0, 0,...1..0..

: 1 =1,2,....n

K, = (0,...L..L..0)

Figure 3.2.1: " HIGHER ORDER PRIME GATE SUPER-MODULE
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In the code PL-MOD the subroutine IMPORTANCE is constructed

to evaluate the Vesely-Fussell importance (IV'F

") for every
modﬁlar and basic component in the fault tree. IMPORTANCE
provides these quantities by starting from the top event and
taking the top event importance to be equal to 1 (i.e.,

I¥6g' = 1), and by proceeding then to higher order modules,
simple modular and finally basic components of the fault tree.

For a simple AND module it follows from the foregoing that

IZ:F' = Iﬁ'F' (1=1, 2,..., n)
1
and
IX:F' = 1y°7 (1=1, 2,..., n)
1

For a simple OR module we have

P,

IZ F. _ I%'F S5 (i=1, 2,..., n)
i M

V.F. V.F. PMi .

o= nfFe oL e, 2,0, 0
3 M

For the case of higher order modular gates, the following

equations are used in the IMPORTANCE subroutine

) P(kj)

Jsr, ek
VP I%.F. 17 (3.2.6)
Ty P(M)
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) P(kj)
. j,Miekj

i P(M)

(3.2.7)

The numerator of Egs. (3.2.6) and (3.2.7) is calculated
in the IMPORTANCE subroutine, whereas all other probabilities
are already calculated in the EXPECT subroutine.

The pressure tank system [1] will be analyzed here to show
the procedure for V.F. Importance calculations. Figure 3.2.2
shows the pressure tank system and Figure 3.2.3 shows its
fault tree. This fault tree consists of 13 free components and
one replicated component with no replicated module. Failure
data for the fault tree in Figure 3;2.3 are given in Table 3.2.1.
The different modules which exist in the pressure tank system
fault tree are presented in Figure 3.2.3. To calculate the
importance measures, the following calculations
are performed in three steps. It should bé recalled that all
probabilities are calculated in the EXPECT subroutine prior

to the use of the IMPORTANCE subroutine.

STEP 1 Irop = 1
V.F F -1
I'°7° = r = 2.49937 x 10
r P(TOP)
37
V-F - L - 7.500625 x 107}
1 P (TOP)
P, P
M), "M
VP o fVFe o B 5 Ly ug887 x 10720
L 5 P(TOP)
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MODULES IN THIS TREE

GATE CORRESPONDING TYPE OF COMPONENTS AND TOP EVENT
TO A MODULE MODULE MODLES ATTACHED
TO THE MODULE
9 SYMMETRIC 11,12, AND I3 Gl
4 NESTED Mg
| OR SIMPLE 1,2, 3,4.
MODULE 30001
5 NESTED 56,7,8,9 AND IO (1) (2)
G2
G3 _
©

/3

e.
y G4 2
G5
| A @ @
' G7
G6
| (3000D)

® ©® ®

® 30001

Figure 3.2.3: ppessure Tank Rupture Fault Tree and Associated Modules
(Failure Rate for Component l,k_l = 1x10-8 hr-1;
21l others A .= 1x1072 hr-1 )
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TABLE 3.2.1
- PRESSURE TANX RUPTURE FAULT TREE rAILURE PROBABILITY DATA

Basic Event 1 Event Description ' Fallure Rate
) (Per Loading Cyele!
1 Pressure Tank Faulure : 10-8
2 Secondary failure of Pressure Tank
Due to Improper Selection 10-5
3 Secondary fallure of Pressure Tank
Due to out-of-tolerance conditions 10-5
[} K2 relay contacts faill to open 10-5
5 S1 switch secondary failure | 10-5
6 S1 switch contacts fall to open 10-5
7 External reset actuation force remains
on switch S1 10-5
8 K1 relay contacts fail to open 10-5
9 . Timer dces not "time-off"_d&e~to
improper settlng 10-5
10 Timer relay contacts fall to open 10-5
11 Pressure swiltch not actuated by sensor
1 10-5
12 Pressure swilfch not actuated by sensor :
2 10-5
13 Pressure switch not actuated by sensor
3 10-5
Replicated Event 1 Event Description - Fallure Rate
(Per Loading Cycle
(3000)1 Common Cause failure among 10-5

relays X;,K, and timer T



p
IX'F' - IE'F'ﬁj; = 2.49937 x 107"
1 Pm
1
V.F. V.P. V.F. V.F.107°
I = ad T e T e T = 2.49937 x 10
1 Fm
1
STEP 2
Iy F = ) P = 449887 x 10710
9 b "
V.F. _ V.F. _ V.F. _ _V.F. _ V.F. _ V.F. _
I Iy Iy Iq I - 1/;
= I&'F’ %9—— = 7.49812 x 10~%%
5 M
5
STEP 3
[V.F. _ [V.F. _ [V.F. _ [V.F. 4 2(107) % _ 99921 x 10
11 - Lo 13— In -
9 PM9

Therefore, if we were to reduce this fault tree based on

the above calculations for a cut-off value of 10'“, we should

perform the following procedure.

STEP 1
IX'F’ = 2.49937 x 10~ KEPT
(since larger than 10‘”)
IX'F' = 7.500625 x 10™1 KEPT
1 ;
rreFeoo 1P = 49887 x 1070
u 5 :

CANCELED

-1

10
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Therefore, M, and components 5, 6, 7, 8, 9, and 10 will be

9
automatically canceled

IX'F‘= 2.49937 x 10~} KEPT
IX'F' = Ig'F9 = IX’F’ = 2.49937 x 10”1 KEPT

From this discussion, the reduced version of the fault tree
in Figure 3.2.3 is given in Figure 3.2.4. Naturally, the same
procedure 1s adopted to reduce large faﬁlt trees by the use of
the IMPORTANCE subro@tine in the PL-MOD code. The method

applied is presented in the next section.

3.3 Use of the Code PL-MOD to Reduce Large Fault Trees

As discussed in Section 3.2, the subroutine IMPORTANCE in
PL-MOD provides the V-F importance measures for all of the fault
tree components as well as simple and higher order modules. This
subroutine is modified to a new form such that it accounts for the
cut-off value to exclude those components and modules that have
V-F importances less than this prescribed value. For any further
evaluation, the new reduced form of the fault tree could be used.

Obviously, the cut-off value plays an important role in
the reduction strategy. That 1is, different values of the cut-off
value result in different reduced fault trees. Therefore, a
great deal of attention must be paid to the selection of the cut-off
value in order to achieve a desired and accurate form of the

reduced fault tree.
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TOP EVENT ‘

TOP EVENT

Il

+ \a

Figure 3.2.4

Reduced Fault Tree for the Pressuﬁe Tank Rupture for an
Importance Cut-Off Value of 1x10-
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The new form of the IMPORTANCE subroutine is linked with
the code PL-MODT, so that for futuré developments of the code,
the reduced version of fault trées will be used by the code to
evaluate time-dependént behavior of the fault tree.

In the modified form of thé IMPORTANCE subroutine, the top
event importance will bé set équal to 1. Starting from the top
event it proceeds to thé bottom. First, V-F impoftances of the
higher modules and replicatéd events that are connected to the
top event are calculated; Next, the code automatically removes
all modules and replicatéd events whose V-F importances are less
than the prescribed cut-off value. Each higher order module
which 1s removed contains some other modules and free components
that are attached to them. Thérefore; there is no need to
compute the V-F importance of any of these attached members of
the removed higher order modules because their importances
are always equal to or less than that of the parent module which
by itself 1s lower than the cut-off value. If, however, the
higher order module is not removed because of its importance
being higher than the cut-off value, the code will proceed to
calculate importances of simple modules and components attached to
it, and to automatically remove components and simple modules
with importance low enough to be cancelled.

Therefore, starting from the top event of an unreduced
fault tree, all of the branches of the tree with low importances
will be cut. Those lower order branches and leaves which show
low importances compared to the cut-off value will be cancelled.

The pruned tree is the reduced version of the original tree.
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The pruning process is performed by setting the variable
STATE(2,I) which is the measure of the V-F importance for
components equal to zero. If the module is reduced, then auto-
matically all components I connected to this module are cancelled
(i.e., STATE(2,I) = 0).

For example, the removal of a simple AND module proceeds

as follows:

IF(fROP.LIM=lE:PROP.TIL(1)=O) THEN DO;
PROP.REL(2)=0
GO TO EME 1;
(To calculate the importance of the NOT gate if any)
END;
ELSE PROP.REL(2)=PER.REL(2)
IF(PROP.REL(2) < CUT-OFF) THEN PROP.REL(2)=0;
DO IT=1 TO PROP.LIM;
STATE(Z,PROP.TIL(IT))=PROP.REL(2);

END;

Therefore, all of the components input to the AND gate will
have an importance which is either equal to zero (i.e., cancelled)

or equal to the importance of the AND module.
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3.4 Reductions of LPRS and HPIS Fault Trees

In order to demonstrate the reduction process, the reduced
fault tree of the Low Pressure-Recirculation System presented in
Appendix II of WASH-1400 is further reduced by using different
values for the cut-off liﬁit. The maximum change in the top
event occurrence for the following range of cut-off values
].0_2 cut-off lO"Ll has been observed not to exceed 1% from its

published version, i.e.,

P§$85&e3 (1% 0.01) Punreduced

For example, for the LPRS with 6 replicated and 61 non-replicated
components, the results for the various reduced versions which
follow from the application of the different cut-off values are

summarized in Table 3.4.1.

TABLE 3.4.1

Percentage Change in the Top Event Occurrence of
Reduced Trees of LPRS for Different Cut-off Values

Percentage
Cut-off No. of Free Com- No. of Replicated Com- Change in the
Value ponents Remained Components Remained Top Event
1072 43 5 No change
1074 37 5 No change
1073, 20 4 No change

1072 12 2 1.1%
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It becomes obvious from Table 3.4.1 that for cut-off values
in the range of J_O"'5 to lO"3 no change in the top event occurs
and, therefore, one can safely ﬁse the upper bound (i.e., 10-3)
for the cut-off value in order to get the most reduced tree,
thereby saving computation time. Even the use of J.O_2 for the
cut-off provides a still reasonable fault tree for the LPRS
which results in a change of only 1.1% compared to the originally
published version. Investigation of the reduced fault trees
showed that they have essentially the samé low order cut-sets
as the original fault tree, unless components of a low order
cut-set have very low probabilities so that they result in a
small V-F importance.

It is very important to understand that a component
with low probability or unavailability will not necessarily
result in a low V-F importance. For example, for the pressure

tank example Component 1 is found to have

IX‘F = 2.49937 x 10~" anad
V.F. _ “11
17-75 = 7.49812 x 10

However, Pl=10' and =10-5, and, therefore, even though

P5s_10
the replicated event has a probability of occurrence which is
by 3 orders of magnitude less than that of components 5 through 10,

its importance is .7 orders of magnitude larger. This means that
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any reduction process which 1s solely based on the orders of
event probabilities. does not necessarily result in a meanlngful
reduced fault tree. To have the same order of magnitude for the
i@portance of the replicated event one needs to reduce the

15

probability of the replicated component down to Pr=10' which

»

results in

V.F

AR 2.49937 x 10”11

From the abdve discussion it follows that the reductlon
schemes in the code PL-MODT do not only provide an excellent
objective engineering judgment to réducé a fault tree, but it
is also instrumental in improving the désign objectivés of the
system under consideration.

The same kind of study 1is performed for the HPIS and for
a cut-off value of 1073. The HPIS fault tree consists of 142
free and 13 replicated components. The reduction process resultéd
in 53 free and 9 replicated components. The top event
remained unchanged and the low order cut-sets are almost the same.

Since there are no calculations or iterations involved in
the reduction procedure, the computer cost increase is negligibly
small compared to the modularization process. For example,
for the LPRS fault tree, the CPU time fo£ modularization and
evaluation by the PL-MODT amounts to 0.46 seconds where 1t is
about 0.47 seconds if a reduction with cut-off value equal to 10"2

is requested in addition to the above calculations. Although the

saving does not bécome apparent for this steady-state example, it
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should be pointed out that a substantial saving will result if
one uses the reduced version for time-dependent fault tree

analysis and Monte-Carlo simulations.
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4, INCORPORATION OF A MONTE-CARLO SIMULATION
PACKAGE INTO THE CODE PL-MOD

4,1 Introduction

It is a well-known fact that the Monte-Carlo simulation always
involves many calculations of the same kind. That is to say that
in order to calculafe the top event of a fault tree, several
hundred to several thousand simulations have to be performed
on the accuracy desired. Each top event probability corresponds
to a specific set of possible components' failure data. The
code PL~-MOD provides the modular cut-sets which in turn are very
simple and efficient to use for the top event calculations.

The codes SAMPLE [3] and LIMITS [2] are two examples of
codes which have recently been used for Monte-Carlo simulations.
The SAMPLE code has been used in WASH-1400 to calculate reliability
bounds. Both codes require & system function as input to identify
the logical dependencies in the systems that are being analyzed.

For very large fault trees, construction of this equation is a
difficult process and most of the time serious errors may result
from mistakes during the construction of this function. Therefore,
for large fault trees it would seem more comfortable to use the
fault tree itself as an input rather than the system equation
derived»;rom the cut-sets of the fault tree.

The code PL-MOD is used to calculate the modular cut-sets
and the NUMERO subroutine in this code 1s modified such that it

can handle fault trees consisting of steady-state components with
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some uncertainties associated with their faililure rates. The new
code is called PL-MODMC, where MC stands for the Monte-Carlo
package added to the PL-MOD code.

The failure rates of the components are assumed to be
log-normally distributed. The same sorting routine which has
been used in the code LIMITS is adopted here since it has been
demonstrated that it is very fast and efficient. However, an
efficient PL/1 random number generation is developed and used»in
PL-MODMC. This random number generator was found to be very
simple and fast. The output of the PL-MODMC consists of the top
event probability for any arbitrary set of confidence limits.
Also, mean and point unavailabilities along with the top event
standard deviation are also calculated. The minimum probability
and maximum error for each confidence level will also be provided
by PL-MODMC.

4,2 Mathematical Concepts of the Monte-Carlo Method in Fault
Tree Analysis

As was discussed in the previous chapters, fixed values for
.failure rates and other data are commonly referred to as point
values. In a probabilistic approach, because of the variations
and uncertainties in the failure rates and other parameters, these
quantities should be treated as random variables.

In the code PL-MODMC, the lognormal distribution serves as
the basis of the uncertainty propagation. However, the use of

other distributions in the code should be easily established.
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The log-normal distribution 1s found to be more adequate and
convenient to be used in fault tree analysis because the raw
input data are sparse and the assessed ranges are large, having
wldths of one or two orders of magnitude. Also, examinations of
the existing data showed that the log-normal distribution gives
an adequate empirical fit.

The random variable t has a log-normal distribution if its
logarithm follows a normal distribution. The distribution is
skewed to the right. For example, having a possible range
between t/f and t.f (f is a factor) for a log-normal distribution,
this range transfers to logt i logf which is a description of
normally distributed data. Therefore, the log-normal dilstribution
describes data which vary by factors. On the other hand, the
normal distribution describes data which vary by additive or
subtractive increments.

Most of the failure data can vary by factors. For-examp}e,

6

a failure rate estimated at 10 -~ could vary from 10”7 to 1072 which

is (10‘6/10) to (10'6

X10). The log-normal distribution has two
parameters: u specifying the distribution scale and o specifying
its shape. The probability density function (P.d.f) for a
log-normal distribution is given by:

(Int - u)°

1 exp-[—————ﬁ———ﬂg t>0 (4.2.1)
2m o 20

£(t) =

From Eq. (4.2.1) the following parameters can be calculated:
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2
Mode (the most probable value): to = eM™ 0

Median: to 5 = e¥ or in terms of the upper and lower bounds
Co.5 T\ Xu XL
2
Mean: t = %% ,2

Variance: v = e2U+°2[(e°2—l)]

The Monte-Carlo technique by itself is.very simple. Once
the log-normal distribution parameters are known for all of the
components of a fault tree, these values are then used to compute
a point value for the top event probability using the cut-sets
which have been provided by the analysis of the fault tree.

The procedure 1s repeated for a large number of trials and the
results are sorted to obtain an estimate of the system unavaila-
bility distribution.

One of the important factors in a Monte-Carlo simulation
is 1ts accuracy. The accuracy of an estimated distribution by
sampling is discussed in [4].

It is known that

pr(|X(P),- P | <e) = erf(\'__*i_z_) + R (&.2.2)
where
X (P) = M/N

N is the number of trials; M is the number of successes.

, N
t = el —
pa
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the p parameter of a binomial distribution

= ] - P
R = error associated with the probability measure which
is given by
2 | _(3
| < 2 /2, 0.2+0.25 |P—q] (2)yNpq

+ e (4.2.3)
2

——

¢2ﬂNpq Npq
2

t -
erf(t) = error function of a variable t=|% fo e ©.du

For example, pr(| X (0.95) - 0.951) < 0.01) means the

probability that X lies between the probability limits of

0.95
0.94 and 0.96. In other words, the value of X is associated with
a confidence interval of P+e, with a probability of erf (~E— + R),
and as can be seen it is not dependent on the distributionziut on
the confidence level.

In the code PL-MODMC, the value of € is calculated by
subtracting the smallest confidence level from zero. For example,
if the smallest confidence level is 0.5% (i.e., the largest

confidence level is 99.5%), then the accuracy is €=0.5. Therefore,

the minimum probability would be

t
erf(——) - max(R)
R

For a large sample size N, it follows that

1.36
pr(lt. - t_ | < == ) = 0.95
%5 = %l < [

where ts is the estimated distribution fractile, and tp is the
corresponding exact cumulative distributlion value of the underlying

population from which the sample was pickedlrandomly. For example,
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for a sample size of 2000 we will be 95% sure that the estimated
distribution deviates by not more than 0.03 from the exact

distribution.

4.3 The PL/1 Random Numbers Generator Used in the Code PL-MODMC

The task is to generate random numbers for the calculation
of samples from the components' failure rate distributions. A
PL/1 random number generétor has been developed for this purpose
and implemented into the PL-MODMC. The numbers generated by
this generator are normally deviating about a specified wvalue
which the user must provide as an input. The Central Limit
Theorem is applied to generate normal random numbers. Then, each
of these random numbers is used to calculate the failure rates
from specified log-normal distributions. The PL/1 listing of

this random number generator procedure is given below.

RAND: PROCEDURE OPTIONS (MAIN);

DECLARE (IY,A,IY1,X) FLOAT DECIMAL(16);
DECLARE CEIL BUILTIN;

GET LIST (N,X,M);

IY=X/0.499977;

IY1=1Y;

DO WHILE (M>0);

A=0;

DO I=1 TO N;
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IY1=CEIL (IY1l);
IY=TY-TIY1+1;
A=A+TY;
IY1=IY*65539;
IY=IY1;
END;
PUT DATA (A)(SKIP (2), F(12,5));
M=M-1;
END;
END RAND;

This random number generator is very fast, primarily
because it is written in PL/1 language. The variable N denotes
the approximation of the Central Limit Theorem. The variable X
is any odd-starting number to generate random numbers. Finally,
the variable M is the total nqmber of random numbers to be generated.
The computation time for generating 4000 random numbers by using

the above procedure is 0.026 sec. of CPU time.

4,4 Description of the Code PL-MODMC

As was discussed before, the code PL-MODMC 1s developed
to incorporate the capability of a Monte-Carlo simulation using
the modular cut-sets that the code PL-MOD generates. In the
modified form of the code, the subroutines IMPORTANCE and STATE-IN
are not used. Therefore, the code PL-MODMC does not perform any

importance calculations and automatic fault reductions. However,
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it is acknowledged that it would be much simpler if the code
would automatically reduce the tree and then perform a Monte-Carlo
simulation. This option is not incorporated into the code yet,
but it is hoped that it will be incorporated during the future
research activities. This would not only reduce the computation
time, but would also provide almost the same top event probability
for different confidence levels of the original unreduced tree.
The Monte-Carlo code PL-MODMC has been developed in two
steps:
Step 1 1includes the development of the MONTCA subroutine.
Step 2 1includes some minor changes in the NUMERO and EXPECT

subroutines.

4.4.1 Step 1

The subroutine MONTCA consists of a special procedure to
choose failure rate samples from each component log-normal
distribution. First, any arbitrary combination of confidence
levels is given by the user, and an array will be allocated to
store them. Also, the total number of trials is provided by the
user. Then, the computer calculates the maximum error and the
minimum probabilities for each confidence level by using Egs.
(4.2.2) and (4.2.3). |

Second, a speclal procedure enables the code to use point
values of the fallure rates to calculate the top event probability

(Class 1 components in the PL-MODT code).
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Third, the Monte-Carlo simulation starts by using the median
and spread values given by the user whichare stored in the
allocated array MEDIAN(I) and FEN2(I), respectively.

Finally, the following procedure similar to that of the

SAMPLE code 1is employed:

DO I=1 TO VEN;

[(VEN is the total number of replicated and non-replicated
events, i.e., VEN=FUN+DUN; ]

IF (MEDIAN(I)=0) THEN FEN1(I)=0;

ELSE FEN1(I)=LOG(MEDIAN(I));

IF (FEN2(I)»=0) THEN

FEN2(I)=LOG(FEN2(I))/k.64;

END;

XP1=SQRT(12/N);

(N is the same variable described in Sec. 4.3)
ALLOCATE TOP-P;

(to store different top event probabilities that are

calculated in the EXPECT subroutine)

RANDOM GENERATOR
procedure follows here

XP1=XP1¥*(AA-0.5¥N)¥FEN2(I)+FEN1(I);

(AA calculated by the random number generator, it is
identical to the variable A described in Section 4.3)

IF (XP1=0) THEN MEDIAN (I)=0;

ELSE MEDIAN(I)=EXP(XP1);



106

At this point, the values calculated at each trial will be
assigned to the STATE and STATD arrays which are ALLOCATED

before as follows:

DO K=1 TO FUN;

STATE (1,K)=MEDIAN(X);

‘END;

DO N=1 to DUN;
J=N+FUN;

STATE (1,N)=MEDIAN(J);

END;

At this stage, the modified subroutine EXPECT is called to
calculate the top event probability from the modular cut-sets
by using the data obtained in the trials for the component
unavailabilities that are stored in the MEDIAN array. Therefore,

it follows:

CALL EXPECT;
TOP-P (ASACH)=REY;
ASACH=ASACH+1;
where REY is the top event probability that 1s assigned to
this variable in the EXPECT subroutine. When ASACH exceeds the
total number of trials requested by the user, the code calculates
the mean value and the standard deviation of the top event

probability from the TOP-P(ASACH).
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At the end, the same sorting routine as utilized in the
LIMITS code is used in the PL-MODMC with some changes to allow
its formulation in PL/1 language. This sorting method has an
empirical computer time requirement directly proportional to
nl'226. The method does not take up any additional computer
core memory. When the sorting process 1s finished, the spread

factors for the top event are calculated by simply using the

following equations.

P
F, o= 20 (4.4.1)
P05
" P
F, = 2 (4.4.2)
Pey

where POB’ PSO’ and P95 are the top event probabllities which are
calculated in the sorting process for 5%, 50% (which is also the
median value for the top event) and 95% confidence levels. The
Monte-Carlo calculation ends by printing the top event probabilities
for different confidence levels along with the mean values,

standard deviations, median values, 5% and 95% error factors

(spread values), and the point unavailability.

b, 4,2 Step 2
The subroutine EXPECT is used in PL-MODMC to calculate the

top event probabillity for each trial. The same form of the
EXPECT subroutine that is used in the PL-MODT has been modified

to be used in this code.
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The new form of EXPECT is designed such that there is no
printout of probabilities for modules and the top event at the
end of each trial.. Rather, only top events will be stored in
the TOP-P (ASACH) array. Also, some features are added to the
subroutine to utilize all spaces used to store different variables
that are not necessary for a.Monte-Carlo calculation, such as
probabilities or different higher-order modules that are auto-

matically calculated in each trial by the EXPECT subroutine.

4.5 Examples

Two examples are provided in fhis section: first, the same
reduced fault tree given in the LIMITS code [2] for a Reactor
Protection System; second, the LPRS fault tree given in WASH-1400
is used to calculate the probability of the top event for different
confidence levels.

For the reduced fault tree of the Reactor Protection System
(Figure 4.5.1), the CPU times for the three codes LIMITS, SAMPLE,
and PL-MODMC are found and presented in Figure 4.5.2. The
probabilities calculated by the PL-MODMC agree well with the
other two codes. The results for the fault tree in Figure 4.5.1
and failure data in Table 4.5.1 are given in Table 4.5.2. Slight
differences from those given in [2] and in Table 4.5.2 are because
of the different techniques that are employed. For instance,
random numbers are generated by slightly different techniques.

It should be noticed that CPU time 1s comparatively higher

for PL-MODMC than for the LIMITS code. This is because of the
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RPS Failure
to Trip for
Small LOCA
IEDOGO1F
1CB0004C 1CBO0OSD | 1cBo004D IcBOOOSC
O G o
ITM0025Q  ICB0O0O03X ITM0025Q ITM0025Q - 1CB000O2X 1TM0025Q
even # odd # even # odd #

IEDOOO1F:  Failure of suff. no. of rods to drop when power is removed.
ICB0O004C: Breaker BYA fails closed
ICBO005D:  Breaker RTA fails to open
ICBO00SC: Breaker BYB fails closed
ICB0004D: Breaker RTB fails to open
ICBO003X: Breaker BYA closed due to test and maintenance
ICB0002X: Breaker BYB closed due to test and maintenance
I1TM0025Q

(odd #): Train 'A' logic fault
ITM0025Q

(even #): Train 'B' logic fault

Figure 4.5.1: Reduced Fault Tree of the Reactor Protectioﬁ
System for a PWR (21,
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Failure Fault Exposure|{ Unavail- Error
Event -1 ) L
Rate (Hr. °) Time (Hr.) ability q; Factor
IEDO0O1F 1.7x107° 10
1CB0004C 1.0x1078 360 3.6x107% 3
1CB00OSD 1.0x1073 3
1CBO0OSC 1.0x10°8 360 1.0x1073 3
1CB0004D 3.6x107% 3
1CB0003X 6.1x10°3 4
1CB0002X- 6.1x1073 4
1TM0025Q
0dd # 9.7x107% 10
Even # 9.7x107 10

Table 4.5.1: Failure Data for the Reactor Protection

' System of a Pressurized Water Reactor [2]
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fact that the calculation time of PL-MODMC includes the modulari-
zation and the minimal modular cut-set generation. Therefore,

the curves in Figure 4.5.2 do not represent a real comparison
between PL-MODMC and the other two codes. Although the modulariQ
zation needs only a small fraction of the time consumed in the
PL-MODMC, the CPU time is primarily due to the establishment of
several structures and calling some subroutines at each individual
trial. A more honest comparison between the codes would be
obtained by adding the CPU time consumed by the fault tree analysis
code such as MOCUS to calculate the cut-sets prior to the use
of LIMITS or SAMPLE codes to the CPU times consumed by the LIMITS
and SAMPLE codes.

From the discussion above, it becomes apparent that the use
of the code PL-MODMC for a Monte-Carlo analysis of very large
fault trees may be very economical. It has also been found that
the CPU time in PL-MODMC is more sensitive to the number of
trials rather than the size of the tree.

The LPRS fault tree with 61 free components and 6 replicated
components were input into the PL-MODMC and 1200 trials were
simulated. The results are presented in Table 4.5.3. The
computation time including the modularization is 52 seconds.

In general, the results agree well with those given in WASH-1400

as can be seen by the comparison presented in Table 4.5.4.



Table M.5.3:> LLPRS Top Event Unavailability for 1200 Trials Using PL-MODMC

7.909754E-03
221611 MEDILAN PROB=1,243022E-02

MEAN PROD= 1. 410070E~02 STANDARD DEVIATION=

ERKOR FACTOR(5%)= 2.13365 FERROR FACTOR (95%)=

CONFIDENCE LEVEL PROBAB ILITY MAX ERROR M1IN PROBABILITY

N.50000 3.575392E-03 1.893921E-01 7.656468E=-01
1. 00000 4.353750E-03 1.22a§11g-o1 7.222902E-01
2.50000 5. 138319E-03 8.370483 E-02 5.5126 48 E=01
5.00000 5.825788E~03 6.371158E-02 4. 1987 62E-01
10.00000 6.662294E-03 4.763011£-02 3.150179E-01
15.00000 7.35276 1E-03 4.019815E-02 2.677403E-01
20. 00000 #.052737E-03 3.585986E-02 2.4) 4665E-01
30.00000 9.505350E-)3 3.1133463-02' 2.112458E-01
49.00000 1.096696E~02 2.891828E-02 1.8 2517 E~01
50. 00000 1.243022E-02 2.810337E-02 1.945992E~01
60.00990 1.385169E-02 2.891828E-02 1.982517E-01
70. 00000 1.53 1348 E-02 3.113346E-02 2. 112458 E-01
80.00000 1.868913E-02 3.585986E~02 2.U4665E=01
85.C0000 2.036301E-02 4.0198158-02 2.677403E-01
90.00000 2. 358368E-02 4.763011E-02 3.150179E-01
95.00000 2.754679E-02 6+371158E-02 4, 1987 62L=01
97.50000 3.381504E-02 8.370483 E-02 5.512648E=01
99, 00000 3.927734E-02 1.224911E=0 1 7.222902E-01
39.59000 u.923805E-§2 1.693921E-01 7.656468E-01

WTT
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TABLE 4.5.4

Comparison of the LPRS Fault Tree Simulation Using PL-MODMC
And the Results Calculated by the SAMPLE Code in WASH-1400

Confidence Level WASH-1400 (SAMPLE) PL-MODMC
50% 1.3 x 1072 1.24 x 1072
5% 4.4 x 1073 5.82 x 1073
2 2

95% 3.1 x 10~ 2.75 x 10~



(1]

(21

£31.

[4]

(5]
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5. CONCLUSIONS AND RECOMMENDATIONS

During this research period, the code PL-MOD has been
extended to include some additional features such as time-
dependent basic events, automatic fault treé reduction, and
Monte-Carlo simulation.

The original algorithm to derive a fault tree'é modular
composition directly from its diagram was already reported by
Olmos and Wolf [1]. The procedure consists of piecewise collapsing
and modularizing portions of the tree, until eventually the
fault tree structure is described as a set of modular equations
recursively relating the top tree event to its basic component
inputs. The structural representation of fault trees containing
replicated events was shown to necessitate the use of higher-
order gate modules. A Boolean vector representation was chosen
to express the family of minimal cut-sets corresponding to a
higher-order gate. The code PL-MOD is written in PL/1 in order
to take advantage of the list processing capabilities available
in this computer language. For instance, extensive use is made
of based structure pointer variables and dynamlic storage allocation.
Moreover, the manipulation of Boolean state vectors, which
requires the treatment of higher-order modular structures, is
conveniently performed by using bit-string variables.

In a second step, the code PL-MODT has been developed to

handle time-dependent events and automatic fault tree reductlon
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based on the importance measures of different modules and com-
ponents in the tree. Four classes of components are used to
include the time-dependent behavior of basic free and replicated

components. These classes of components are as follows:

a) Class 1 components, which are components with a finite
time-independent probabilility of occurrence.

b) Class 2 components, which are non-repairablé components
where the failure rates are time-independent.

¢) Class 3 components, which are repairable components
where the failure and repair rates are time-dependent.

d) Class 4 components, which are repairable components,

whose fallures are detected upon periodic inspection.

The code PL-MODT employs the same modularization algorithm
utilized in the code PL-MOD, but includes the aforementioned
four classes of components. Various approximations are employed
in this code to make the time-dependent calculations fast and
economical. Some useful features such as the calculétion of the
mean unavailability and the option of different time step mesh
sizes during different periods in 1life have been lncorporated
into PL-MODT. The upper bound cut-set probability approximation
is changed to the prediction of exact values, which enables the
PL-MODT code now to handle large unavallabiltiy values (i.e.,

unavailabilities close to 1).
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It is found that the PL-MODT calculations are performed
efficiently, economically, and accurately; Bénchmarking tests
against the codes KITT and FRANTIC have clearly demonstrated
these advantages. It should be.noticed that the use of the
KITT and FRANTIC codes is not as straightforward as the application
of PL-MODT because prior to the use of KITT, the code PREP
must be employed 1in order to find low-order cut-sets of the
fault tree. Similarly, in FRANTIC, a system equation (QS) has
to be supplied by the user which indicates the logical dependencies
of input components. This equation usually becomes quite compli-
cated for large fault trees. In contrast to these procedures,
in PL-MODT only the fault tree structure and components' failure
characteristiés are inputted. Thus; appreciable savings in
computation time and manpower result when large fault trees are
to be analyzed by PL-MODT.

A reduction scheme of a tree is incorporated into the PL-MODT
code to provide an objective judgment for the reduction of a
large fault tree, such that the probability of occurrence of the
top event is essentially maintained. For this purpose, the
cut-off value is defined. It provides a criterion for eliminating
those modules and components whose importances are lower than this
prespecified value. In the reduction analysis of fault trees such
as for the LPRS and the Hfis, it is found that cut-off values 1n
the range of 1072 to 1073 provide the simplest and yet still
accurate reduced versions of the trees. It is demonstrated that

the use of the reduced version of a large fault tree enhances the
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understanding and processing of the tree for further analysis
(i.e., Monte-Carlo analysis, time-dependent analysis, etc.).

Due to uncertainties associated with the failure data of
fault tree components, it is important to implement a Monte-Carlo
analysis to propagate input uncertainties up to thé top-evént;
For this purpose, the code PL-MODMC was developed. It enables
the user to work with large fault trees. The code has been bench-
marked against the well-known SAMPLE code and the recently
developed LIMITS code. The comparis&n showed good agreement for
the sample cases considered. The codes SAMPLE and LIMITS require
the generation of fault tree cut-sets prior to their Monte-Carlo
simulations (i.e., using either the codes PREP or MOCUS), whereas
PL-MODMC uses the modular minimal cut-sets that are already
generated before calling the MONTCA subroutine which is described
in Chapter 4.

Although the codes PL-MOD, PL-MODT, and PL-MODMC have been
proven to be valuable tools for various aspects of fault tree
analysis and evaluation, they all have~the same restriction in
common to only handle replicated modular gates, i.e., replicated
gates representing a supercomponent event independent from all
other gates in the tree. However, in general, replicated gates
may exist which do not represent only a supercomponent event. A
study has been recently initiated to eliminate this restriction.
Its removal will significantly enhance the capabilities of the
code. It is recommended that after the removal of the afore-
mentioned restriction the following features be incorporated

into the code.
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i) Generation of all simple minimal cut-sets from the
fault tree's modular cut-sets of up to an order specified by the
user. Appendix B summarizes the efforts undertaken in this
direction thus far. The comparison with the specially designed
fault tree analysis code, FTAP (UCB), is indeed very encouraging.

ii) Application of these simple cut-sets to generate the
system equatioﬁ (QS) and incorporation of this equation into the
PL-MODT and PL-MODMC codes to save computation time, especially
for PL-MODMC.

iii) Common cause analysis should be effectively performed by
the modular decomposition approach. For instance, by generating
different modular tree representations associated with postulated
common cause failure modes being considered, one would be able to
access the contribution of the common cause failure to the top
event.

iv) Derivation and implementation of a unique and meaningful
importance measure for periodically tested components. This
would avoid the abrupt change in the unavailability in the transi-
tion between the different periods experienced by using the V-F
importance measure.

v) Extension and application of the Monte-Carlo simulation
to timefdependent problems, where repair rates and test intervals
are considered to be random variables in addition to the failure
rates. Here, the modular decomposition approach offers unique

savings in computation time because it operates on numbers of
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modular cut-sets which are by orders of magnitude smaller than the
number of minimal cut-sets commonly applied. Thus, realistic

uncertainty propagation for time-dependent problems seems to be

in reach in the near future.
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APPENDIX A

USERS MANUAL FOR THE CODES PL-MODT AND PL-MODMC

A.1 Introduction

This manual describes the input for the code PL-MOD [1] for
the modular fault tree analysis and steady state reliability
analysis as well as for the extended version PL-MODT [2] which
.accounts for time-dependent processes and automatic fault tree
reduction now without using the concept of minimal cut-sets.

Both versions use the language PL/1 and the most recent IBM
PL/1 compiler with optimization on the 370/168. For these
reasons, the effectiveness and operation of these codes seem to
be highly system—dependent;

It should be pointed out that PL-MODT is merely an extension
of the PL-MOD code, and thus relies upon the same modularization
procedure. The user has the option to either select a steady
state or time-~dependent calculation once the modules have been
determined by the code. Therefore, this manual is equally
applicable for the original version and for the most recent one.
In Section A.2 input to the code PL-MODT is presented, and in
Section A.3 input to the code PL-MODMC is described.

In what follows, each card group is identified by a special
name in order to more easlly comprehend the meaning of this group.
Furthermore, the variable names and their meanings are.given.
Special notes will provide extra information where needed to support

the user in setting up his own problem.
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The input to the code is FORMAT free. The only requirement
is that the data, when punched on the same card, be separated
by at least one blank space or a comma.

To make the manual more clear at the end (Section A.l4),
some sample problems are presented, showing different inputs for

PL-MODT and PL-MODMC codes.

A.2 Description of the Code PL-MODT

1. :Ca8rd groups I through VIII describe fault tree logic following
these card groups. Any one of the following card group sets
described in Parts 3 through 5 plus the card group in Part 2
could be used.

2. Card groups IX and X are control cards for the type of time-
dependent analysis to be used.

3. Card groups X through XIII are for the analysis of Class 1

components (time-independent PL-MOD case).

b, Card groups XIV through XVIII are for the analysis of Class 2
components.

5. Card groups XIX through XXIITI are for the analysis of Class 3
components.

6.  Card groups XXIV'through XXVIII are for the analysis of Class U

components, or a combination of the three time-dependent
components.

7. Card group XXIX is the reduction option card.



126

~ INPUT DESCRIPTION

Title Card

CARD GROUP I: TITLE CARD

No. of Variable * Variable
1 TITLE

"Entry
A set of characters en-
closed by a single quote

marks

NOTE: Number of characters mﬁst bé equal to or less than

71.
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Calculated Options

CARD GROUP II:

RELIABILITY PARAMETER OPTION

of Variable

No.

Variable Entry
DEL Number of items to be

éomputed if DEL = 1
only reliabllities or
unavaillabilities are
calculated.

IF DEL = 2
reliabilities and import-

ances are calculated.

NOTE: When periodically tested or repairable (revealed

fault) components are considered, it is recommended

to set DEL=1 because the importance measure buillt

into the code seemingly loses 1its meaning under

these conditions.

When automatic reduction of the tree is desired,

the value of DEL must be equal to 2 (i.e., DEL=2).
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" Fault Trée Charactéristids~

CARD GROUP III:  ° GATES
' No. of Variable ' Variable " Entry
1 . GUM Total number of fault

treé‘gates

NOTE: GUM includes all AND, OR, and k-out-of-N gates
but excludes replicatéd gates (modules). The
réplicatéd gates in the original tree will be

considered as a replicatéd component or module.
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CARD .GROUP_IV:  REPLICATED MODULES
' No. of Variable - Yariable ' ‘Eﬁtfz>
1 < _RMOD Total number of replicated

modﬁles

= 0 for no replications

NOTE: RMOD does not include replicatéd components.
However, replicated componénts-may be repre-
sented in a replicated module, i.e., component

is replicated within this module.
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CARD GROUP V: TREE STRUCTURE

No. of Variable

1
2

NOTE:

Ivariable ‘ ) ' - Entry
I Gate number
AGIN(I)  Total number of gate inputs

" to gate number I
ALIL(I) Total number of leafs
which ‘are input to gate
number I
ALIR(I) Total number of replicated’
leafs which are input to
gaté'numbef I

= 0 no replicated leaf

I=1,2, ..., GUM

I includes all gates and associated modules,

"i.e., replicated or non-replicated modules in

the tree.
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REPLICATED: MODULES

CARD GROUP VI:

No. of Variab le

1

NOTE:

Nine

* Variable . Entry
TRIM(I) Name of replicated leaf

associated with a module

TRIN(I) Number of replicated gate

I=1, 2, ..., RMOD |
If RMOD = Q on card groﬁp IV: thénvéard group
VI is to be skipped. If replicated gates exist
then TRIM(I) = A9BCD, |

whére'

A : Total number of occﬁrrences‘of the

specific réplicated module

+9:: Replication of gate or médule

BCD : Number of replicated components asso-

ciated with this module in the fault

tree.
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CARD GROUP VII: 'REPLICATED'LEAVES

No. of Variablé ) - “Variable ‘ ;fEntry

1 NOR Total number of replicated
leaf inputs
= 0 no replicated leaf

inputs
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~ CARD GROUP VIII: ___GATE STRUCTURE

' No. of Variable ° Variable - Entry
1 . NAME Gate Number
2 | VALUE = 1 for AND gate
| | = 2 for OR gate

= KON for K-out-of N
~ gate

3. _ GIN Total number of gate

| inputs to this gate
L | PIT(I) I—th_gaﬁé input

I=1,2,...,6IN For GIN = 0, then
| ~ PIT(I) = 0
5 :LIL Total number of free
leaf inputs
6 TIL(I) I-th free leaf input
| I = 1,2,..:,LIL Fof LIL = 0, then
| TIL(I) = O
7 ' LIR - Total number of repli-
cated leaf ihputs
8 - TIR(I) I-th replicated leaf
input
I=1,2,...,LIR For LIR = 0, then

TIR(I) = O
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NOTE: LIT(I) = AOBCD
wheré A: total number of occurrences of this

component

BCD:. number of replicated component

For dual replicated componénts:

LIR(I) = AIBCD  when ON

= A2BCD when OFF
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CARD GROUP_IX: ' EVALUATION OPTION
" No. of Variable ' Variable Eﬁtrz
1 FOX =0 numerical evaluation

is not desired

1 numerical evaluation

is desired

NOTE: If FOX = 0, then all of the following card
groﬁps can be déléted,' |
If the former version, PL-MOD is to be run,
only card groups XI, XII and XIII should be
uséd. after this card grdup.k
If PL-MODT is ﬁo be run;'card group X must

be'inclﬁdéd and the procédure thereafter.
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CARD GROUP X: CALCULATION OPTION

No. of VariableA Variable ) ' - Entry
1 ESF = 1 for steady state

calculation

2 for time-dependent

calculation of non-re-

pairable components

3 for time-dependent
calculation of repair-

able components

4 for time-dependent
calculation of perio-
dically tested compo-
nents, or the combina-
" tion of periodically
tested components and
time-~dependent non-re-
pairable or repairable
hontested components.
NOTE: For ESF=1, only card groups XI, XII, XIII and XXIX are
needed in what follows.
For ESF=2, only card groups XIV, XV, XVI, XVII, XVIII
and XXIX are needed.
For- ESF=3, only card groups XIX, XX, XXI, XXII; XXIII,
and XXIX .are needed.
(cont.) |
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CARD GROUP X: CALCULATION OPTION (cont.)

For ESF = 4, only card groups XXIV, XXV, XXVI,
XXVII, XXVIII and XXIX are needed.

If none of these options is desired, any
number other than 1, 2, 3, 4 suffices, and
all of the following card groups should be
deleted.
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" CARD GROUP XI:  LEAF INPUT

"No. of Variable '~ Variable Entry
1 4 FUN - Total number of free

leaf inputs
2 © DUN Total number of repli-
' cated leaf inputs |
= 0, no replicated com-

"ponents or modules.
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CARD GROUP XII:  COMPONENT RELIABILITY

- No. of Variable . Variable _ " Entry
1 , I Number of free component

I=1,2, ... FUN
2 STATE(1,I) Probability of occurrence
of the I-th free input



‘CARD GROUP XIII:
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REPLICATED COMPONENT RELTABILITY

No. of Variable

1 .

'vériébié - Entry
I Number of réplicated compo-
nént
STATD(lgl) Probability associated with
the I-th replicated component
= 0 1f I-th component is
assocliated with a repli-

cated module
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CARD GROUP XIV:  TIME STEP CHANGES

No. of Variable “Variable - Entry
1 - - MOH Number of regions where

timé step size changes
= 1 for no changes in time

step size

NOTE: This card groﬁp mﬁst be sﬁpplied,for ESF = 2

(seé card group X).
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' CARD GROUP XV: TIME STEP: INPUT

" No. of Variébie . Variable
1 ~ " DEIST(1,I)
2 T . AUN(1,I)

I =1,2,...,M0H

Time step associated with
the I-th region
Time interval for which

time step size is applied

NOTE: This card group mﬁst.be shpplied for ESF = 2

(séé‘card groﬁp X).
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CARD GROUP XVI: ° LEAF INPUT

Nou of Verisble  Variale - Entry
1 FUN Total number of free leaf
inpuﬁs
2  puN . Total number of replicated

leaf inputs
= 0 no replicated compo-

nents or modules

NOTE: This card group must be supplied for ESF = 2

(seé card group X).
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' CARD GROUP XVII: ' FREE COMPONENT FATLURE RATE

' No. of Variable . Variable ~ Entry

1 ' I Number of free component
2 STATT(1,T) Failure rate;k(hr'l) asso-

clated with the I-th free

component

- NOTE: _This card group must be supplied for ESF = 2

(see card groﬁp X).
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CARD GROUP XVIII: : REPLICATED COMPONENT FATLURE RATE

No. ‘of Variable * Variable  Entry

1 ' - I " Number of replicated com-
ponent
2 | STATS(1,I)  Failure rate A(hr T) asso-

ciated with the I-th repli-

catéd component

= 0 1f I is a replicated
component assqciated,
withva replicated

module.

NOTE: This card group must be supplied for ESF = 2

(seé card group X).
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TIME STEP CHANGES

No. of Variable

NOTE:

1

Variagble

MOH

Entry

Number of regions where
time step size changes.
= 1 for no changes in

time step size.

This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP XX: TIME STEP INPUT

No. of Variable Variable Entry
1 DEL9T(1,I) Time step associated with

the Ith region

2 AUN(1,I) Time step interval for
I=1, 2,...,M0H which time step size is

applied

NOTE: This card group must be supplied for ESF=3 (see

card group X).
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CARD GROUP XXI: LEAF INPUT

No. of Variable | Variable
S FUN
.2 DUN
NOTE:

- Entry

Total number of free

leaf inputs

Total number of replicated
leaf inputs
= 0 no replicated

components or modules

This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP. XXII: FREE COMPONENT FAILURE AND REPATIR RATES

No. of Variable | Variable | . Entry
1 _ ' I Number of free components
2 STATT(1,I) Failure rate A(hr ')

associated with the

Ith free componeht

3 STATTE(1,I) Repalr rate u(hr 1)
associated with the Ith

free component

NOTE: This card group must be supplied for ESF = 3

(see card group X).
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CARD GROUP XXIII: REPLICATED COMPONENT FAILURE AND REPAIR
RATES

No. of Variable Variable  Entry
1 ' I Number of replicated
component
2 STATS(1,I)  Failure rate A(hr %)

associated with the
Ith replicated component'
=0 if T is a replicated
component associated
with a module.
3 STATED(1,I) - Repair rate u(hr‘l)
associated with the Ith

replicated component

NQTE: If STATS(1,I)=0 (i. e., the component I is assoclated
with a replicated module), then STATED(1,I)=1.
This card group must be supplied'for ESF = 3 (see

card group X).
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CARD GROUP XXIV: ’TIMEVSTEP CHANGES

' No. of Variable

1

NOTE:

Vﬁfiable
MOH

This card group mﬁst

(see card group X).

Number of regions where
time step size changes
= 1 for no changes in

time step size

be supplied for ESF = 4
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" CARD GROUP TIME STEP INPUT
No. of Variable " Variable
1 | DELYT(1, I)
2 AUN (1,I)

I~1,2,...M0H

" Entry
Time step associated with

the I-th region
Time interwval for which

time stép‘size is applied

NOTE: This card group must be supplied for ESF = 4

(séé card groﬁp X).
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- LEAF TNPUT
No. of Variable Variable
1 FUN
~
2 DUN

NOTE:

" Entry

" Total number of free leaf

“inputs

Total number of replicated
leaf inputs
= 0 no replicated compo-

nents or modules

This card group must be supplied for ESF = 4

(see card group X).



154

CARD ‘GROUP XXVII: FREE COMPONENT TEST DATA

" No. of Variables " Varlables |  Entry
1 | . I : Number of free component
2 STATT(1,I) Failure rate A(hr 1) asso-

ciated with I-th free compo-

_ "nent -
3 ETTA(1,I) Time between inspections -
(hrs).

h .TTETA(I,I) Inspection ﬂime (hrs).
5 TAVV(l;I) ‘Repairctimé (hrs).'
6 FTRTM(1,I) Time of first inspection

| (hrs).
7 QUZR(1,I1) Override probability

NOTE: If the component is not inspected, then ETTA(1,I) = O,
TTETA(1,I) = 0, TAVV(1l,I) = 0, FIRT(1,I) = 0, and
QUZR(1,I) = 0. In this case the component will be con-

sidered as belng a nonrepairable one. If the component

is repairable but not tested (revealed fault), then ETTA(1,I)

=0, TTETA(l,I)=repair rate (hr'l), TAVV(1,I)=0,
FIRT(1,I)=0 and QUZR (1,I)=0.
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' CARD GROUP XXVITI: REPLICATED COMPONENT TEST DATA

No. of Variable ~ Variable Entry
‘1 I Numberwofwreplicated~compo-~v
nent ]
2 STATS(1,I) Failure rate;k(hr-l) asso-

clated with this component

3 ETTAD(1,T) Time between inspections

| (hrs)

N TTETAD | Inspection time (hrs).

5 TAVV(1,I) Repalr time (hrs).

6 FIRTMD(l;I) Time of first inspection
(hrs). ‘

7 QUZR(l,I) Override probability

NOTE:" If the component is not inspected then ETTAD(1,I)

0, TTETAD(1,I) = 0, TAVVD(1l,I) = 0, FIRTMD(1,I)
= 0, and QUZRD(1,I) = 0.

If the component 1is associated with a repli-
cated module then STATS (1,I) = 0, ETTAD(1,I) = 0,
TTETAD(1,I) = d,TAVVD(l,I) = 0, FIRTMD(1,I) = O,
and QUZRD(l;I) = 0. In this case the component
is considered as being a nonrepairable one.

If the component is repairable but not testéd
(revealed fault), then ETTAD(1,I)=0, TTETAD(1,I)

=repair rate (hr '), TTETAD(1,I)=0, TAVVD(1,I)

=0,FIRTMD(1,I)=0, and QUZRD(1l,I)=o.
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CARD GROUP XXIX: REDUCTION OPTION CARD
No. of Variable Variable Entry
1 CUT-OFF The cut-off value.

NOTE:

Any component héving
an importance less than
this value will be can-
celled from the fault

tree.

If DEL=1, then this card group is not needed since no
importance calculation is performed.

If DEL=2 and CUT-OFF=0, then no reduction process will be
performed. Only the importances of modules and components
in the fault tree will be calculated.

If DEL=2 and CUT-OFF>0, then the reduction procedure will

be followed.
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A.3 Description of the Code PL-MODMC

1. Card groups I through VIII arerthe same for the codeé PL-MODT
and PL-MODMC. These card groups are described in Section A.Z2
of this manual.

2. Card groups VIII through XIITI are input data for a Monte-Carlo

simulation.
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CARD GROUP IX: CONFIDENCE LEVEL:DATA

No. of Variable " Variable Entry
1 ROM Total number of different

confidence levels that the

top event probability should-

] be evaluated for.
2 I Number of confidence level.
3 CONPNT(I) Confidence level (e.g.,

I=1,2,...,ROM CONPNT(I)=40 means the

I-th confidence level is 40%.

NOTE: 1In this code, the accuracy 1s equal to the lowest confidence

level (CONPNT(1l)), i.e., i1f CONPNT (1)=0.5, then accuracy=0.5.
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CARD GROUP X: " RANDOM GENERATOR INITIATING NUMBER
No. of Variable Variable Entry

1 IPP .Any odd number to start

generating random numbers.
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CARD GROUP XI: SIMULATION CONTROL CARD
No. of Variable Variable Entry
1 FUN Total number of free leaf
inputs
2 DUN Total number of repli-
cated leaf inputs=0 for no
replicated component
or module.
3 NRAND Total number of trials to
be used in the simulation
4 NTERM Number of terms to be

used in the Central

Limit Theorem approximation
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FREE COMPONENT FAILURE AND ERROR SPREAD DATA

No. of Variable

NOTE:

FEN2(I)=0.

Variable
I

MEDIAN (I)

I=1,2,...,FUN

FEN2(I)

I=1,2,...,FUN

Entry

Number of free component.

L

associated with the I-th

Failure rate A(hr

free component

Error factor associated with

the I-th free component

If MEDIAN(I)=0, then FEN2(I) must be equal_to zero, i.e.,



CARD GROUP XIITI:
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REPLICATED COMPONENT FATILURE RATE

AND ERROR SPREAD DATA

of Variable Variable

MEDIAN(J)

J=FUN+1,...,VEN

FUN2(J)
J=FUN+1,...,VEN

J=I+FUN

Entry

Number of replicated

component

Failure rate A(hr'l)
associated with the I-th

replicated component

Error factor associated
with the I-th replicated

component

If MEDIAN(I)=0, then FEN2(I) must be equal to zero,

i.e., FEN2(I)=0

VEN=FUN+DUN
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A.4 Sample Fault Tree

For a fault tree given in Figure A.4.1, the input data are
provided as follows:

The input data are given for this fault tree for the four
classes of components and also for the Monte-Carlo simulation of
the tree.

Table A.l presents input data for the logic of the tree.
Therefore, this part of the data is the same for both PL-MODT
and PL-MODMC.

Table A.2 presents the rest of the input data following data
set given in Table A.l1, if the tree consists of only Class 1
components (i.e., PL-MOD steady state case).

Table A.3 presents the rest of the input data following data
set given in Table A.1, if the tree consists of only Class 2
components.

Table A.4 presents the rest of the input data following data
set given in Table A.1l, 1f the tree consists of only Class 3
components.

Table A.5 presents the rest of input data following data set
in Table A.1l, if the tree consists of Class 4 components, or
combination of different time-dependent classes of components.

Table A.6 presents the rest of input data following data set
given in Table A.1l, if the tree 1s to be simulated by the Monte-

Carlo code.
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FIGURE A.1 SAMPLE FAULT TREE
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'SAMPLE PROB_FM! TABLE A.1
2 2A 1
1 2 1 0 GENERAL DATA SET REPRESENTING
2 1 0 1 THE LOGIC OF THE TREE
3 0 2 0
« 1 1 1
5 1 2 ¢
6 2 0 O
7 1 1 0
21 0 1
9 0 2 1
1n- 0 2 0
11 2 2 0
12 1 n 1
13 0 1 1
14 2 0 O
s 1 0o 1
1 0 3 U
17 1 o 1
18 2 0 0
19 1 09 1
20 1 1 1
21 0 2 0
22 1 1 1
23 2 0 0
24 0 1 1
25 1 9 1
26 0o 2 1
29002 1
7
1 1 2 2 4 1 14 0 0
2 2 1 3 0 0 1 22006
3 2 0 0 2 15 17 0 0
4 2 1 S 1 153 1 °?lnos
S 293 ! 6 2 18 19 0 0
6 2 2 7 8 0 0 0 o0
7 1 1 9 1 22 o0 0
g8 1 1 10 0 0 1 2000t
9 2 0 0 2 20 21 1 2no0f
In 2 0 0 2 23 24 0 0
111 2 12 14 2 1 2 0 0
12 2 1 13 0 0 Y 2100)
‘13 1 0 0 1 5 1 29002
14 2 2 15 17 0 0 o0 0
1s 1 1 16 0 0 1 22001
16 2 6 0 3 3 4 5 0 0
17 1 1 18 0 0 1 29002
18 1 2 19 22 0 0o o0 o
16 2 1 20 0 0 1 21004
20 1 1 21 1 3 1 20003
21 2 0 0 2 -85 11 0 0
22 2 1 23 1 7T 1 20005
23 1 2 24 25 0 0 o0 ¢
24 2 0 U 1 10 1 20003
25 2 1 e5 0 0 1 22004

1 0 0 2 12 13 1 200u5

N\
)]



~ CLNITNPHWN '-"23'-‘

2
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b ot fd ot et fud ot
DO VNI AP W

)\V)

N UL W~ NN
P W —

7

1.05-01
1.0E-02
1.0E-02
l1.06-02
1.0E-01
1.0E-03
n.5£-03
0.5E-03
2006—05
2.0F-04
2.0FE-04
6.1E-04
AelF-04
Re 1"—"0‘1'
+6E-902
«6E-02
3.0E-01
3.0E-01
2-55"04
2.55-04
2504
2+5E-04
leDE=0Z
1.02-91
0
1.CE-02
1.5€~03
1.5€-~-03
1.26-01
1.26-01

1.0E-03
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TABLE A.2

DATA SET FOLLOWING TABLE A.l FOR ONLY
CLASS 1 COMPONENTS (PL-MOD CASE)



nNo—~ W
o

~ N W
Y

e QDO DWW N

)

NS P WY

180

249

720

7
IQOE-OI
1.0E-01
lQOE-OZ
l1.0E-02
1.0E-02

1.0E-01

1.0€-03

0.5E~03

0.5E-03
2.0E-05
2.0E=0%
ZOOE-OQ
6.1E‘04
6-15-04

8.15-04

RE-02
«HE=02
3.0E-01

3.08-01 -

2055-04
2.5FE-04
2.5E-04
2.5E-04
1.05'02
1.0E-901
0
1.0e-02
1.5e-03
1.56-03
1.2E-01
l1.22-01

1005“03

167
TABLE A.3

DATA SET FOLLOWING TABLE A.1 FOR ONLY
CLASS 2 COMPONENTS



OO NOWN P W~V W
9O I

b
\) =t

t

b b et ot Yot prad st
VDVNIITNPW

n
=2

24
720
7
1.0E-01
1.0E-01
IOOE-OZ
loOE“OZ
1.0E-02
1.0E-01
1.06-03 -
0.5£-~03
0.,5E-03
2.0E-05
ZQOE-OQ
2.06—04
6.1E-04
6.1E-04
801E'04
«HE-~02
y6E‘02,
3.0£-01
3.0E-01
2.5E-04
2.5F=-04
2.5E'04
2.5E‘04
1.0E~-02
1.0E-01
0
1.05-02
105E“03
1.56-03
1.2E-01
1.25“01

1.0E-03

1.05-01
LQOE“OI
IQOE-QI
1.05‘01
IQOE‘OI

: 1025'01

IOZE-OI
1.25-01
1.2E8-01
l.08=-02
1005-92
1005“02
1005-02
l.0E~-02
l.0E~0Y
1.05'01
1.05-01
SIOE-OI
l.02-01
1.05-01
1.05“01
1005-02
1005902
1005“02
1.0E~1
0
l.02-01
1.05—01
1005“01
1.05-01
IQOE'OI
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TABLE A.l4

DATA SET FOLLOWING TABLE A.1l FOR ONLY
CLASS 3 COMPONENTS



12
1
24
2
36

24

~N 0

O @

10

1?2
13
14
15
16
17
13
19
20

21

240

360

1440
;
1.0E-01
1.0E-01
1.0E-02
1.06-02
1.0E-02
1.06-01
1.0E-03
0.5E-03
0.5£-03
2.0E-05
2.05-04
2.0E-04
6e1E-064
6e1E~04
Be1E-04
L6E-02

?.OE-OI

3. OE—OI

2055“04’
2.5E~04

2055'—04
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DATA SET FOLLOWING TABLE A.1 FOR ONLY CLASS 4 COMPONENTS
OR COMBINATION OF ALL TIME-DEPENDENT CLASSES OF COMPONENTS

360 2 1S5 360 1
400 3 18 700 |
720 1.5 19 1440 1
150 1 10 150 |
1200 S 25 1200 .5
600 1 20 6A00 |
720 1.5 19 1800 0.5
120 1 12 120 |
450 3 12.5 6060 1
720 1 22 72n 1
300 2.5 20 300 0.l

0 1.06-01 0 0 O
0 0 0 0 o
0 1.5€-01 0 O o0
720 1 12 720 1

400 2 15 400 1
0 0 0 0 0

120 1

840 2.6 20 1440 0.5
140 1.5 19 230 )
7200 1.5 12 8%0 1}

TABLE A.5



TABLE A.5 (CONT.)

2 ¢ 0 0 0 0 0
3 1.0E-0¢2 450 2 16 720 1
4 1.58-03 0 0 0 0 0

S 1.5£-03 1440 3 28 1440 1
5 1,2£-01 720 1.5 19 720 Al

7 1.25-01 440 1.5 20 430 ]
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21
1 0.5 21 32,5455 10 6 15720 8 25 9 30 10 40 11 50 12 60 13 70 14 75
1S 80 15 8> 17 99 18 95 19 97.5 20 99 21 2Y.5
1331 '
26 7 5000 12
1.02-01 14
T1,0E-01 5
1.0E-02 3
1.05-02
1.0E-02
1‘05-01
1.0E-03
0.5€~03
0.55-03
?.0E-05
?QOE-O‘.'
20504
A 1E=-04
6.15-04
RQIE-O“‘
+B6E-02
065-02
?-0€—Ol
BCOC_-OI
?2.55-04
ZQSE-O“
2.5E-04
1.0E-02
1,06-01
0 .
1.06~-02
1.55-03
1.57=-03
1.,72£-01
1.2E-01
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AVIA VA VIR VIR V)
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(&)
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NF NP Wi e
N

(92}

TABLE A.6

DATA SET FOLLOWING TABLE A.1 FOR A MONTE-CARLO SIMULATION
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APPENDIX B

MIN-CUT-SET GENERATION OF COMPLEX FAULT TREES BY USING PL-MODT

B.1l Introduction

It was found that in large fault trees, some replicated
components exist within a replicated module that are repeated
elsewhere in the fault tree. As was discussed in Chapter 5,
the code PL-MODT is actually not able to handle automatically
this type of fault tree. Therefore, a method was developed to
qualitatively solve this problem with PL-MODT and hence to
generate minimal simple cut-sets.1

In essence, this method consists of a treatment of higher-
order modules of the fault tree as supercomponents by neglecting
the presence of replications outside the domain of the replicated
module. The replacement of these replicated modules by a
replicated component will provide a basis for starting the
analysis. For example, the SNM fault tree [2], which is used
as an example, is solved in the next section. It was found that
there are four replicated modules that can be replaced by an
imaginary supercomponent. After this replacement, the original
fault tree becomes substantiaily smaller with only 26 replicated

and non-replicated events being present. The modular cut-sets

lSimple cut-sets consist of only simple components and not
modules.
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can simply be found by PL-MODT for the original tree as wéll as
the superevents (i.e., the replicated modules). Dﬁe to the
replacement of replicated modules, it was discovered that some
replicated components will appear only once within the original
fault tree or replicated modules (i.e;; replication presents
elsewhere in the tree, but repeated only one time within the
replicated module's domain); This special-casé was treated by

simply connecting a replicated pair to the top event of the

module via an arbitrary OR gate. Figuré B.1l demonstrates this

procedure.

New top event
of the repli-
cated module

/2\
OR

01ld top event
of the repli-
cated module

AND

- - -

FIGURE B.1
ADDITION OF A REPLICATED PAIR TO A FAULT TREE
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This enables the PL-MODT code to find the modular cut-sets
of the replicated module with an additional order one cut-set
consisting of only the replicated component R that 1is eliminated
from the list of cut-sets. The rest of the cut-sets are the exact
modular cut-sets of the replicated module.

These modular cut-sets are then used to genérate simple cut-sets.
The method is very simple. Modular cut-sets are‘only composed of
some replicated component 1nphts and some simple OR and AND modules.
An OR simple module of 10 component inputs consists of 10 order one
cut-sets, and an AND simple module of 10 component inputs consists of
only 1 order ten cut-set. By removing each module in the modular
cut-sets by its associated simple cut-sets, one is able to find all
of the simple cut-sets in the replicated module. This procedure cannot
presently be performed by the code, and thus some of the lower-order
cut -—sets of the replicated modules were found by hand off-line.

The modular cut-sets of the original tree are used to determine
the simple minimal cut-sets. These modular cut-sets consist of
replicated modules (i.e., the superevents whose simple cut-sets
are found before), replicated components and simple modules.

In a similar way, by assigning corresponding cut-sets from the
replicated modules and from the simple modules, one is able to
generate all of the cut-sets of the fault tree.

Replicated events which are repeated outside the domain of
the replicated module are found in some of the cut-sets of the

tree. These replicated components would appear more than one
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time within some of the generated simple cut-sets and, therefore,
the presence of only one of them is sufficient whereas the rest
of them must be eliminated from the cut-sets.

Finally, from these simple cut-sets only minimal cut-sets
should be selected by using the same procedure which is already
applied in the codes PL-MOD and PL-MODT to find minimal modular
cut-sets.

The method described above has been applied to determine the
cut-sets of the SNM fault tree and some of the simple cut-sets
are derived. These cut-sets are presented in Table B.1l2.

To generate all of the cut-sets, the problem becomes frivial and
the use of computer is hardly recommended; A subroutine 1is

therefore necessary to be incorporated into the PL-MODT code for
the generation of cut-sets. The cut-sets found in Table B.1l2 are

the lowest-order cut-sets in the SNM fault tree.

B.2 Example

The code PL-MODT was used in order to find the modular

minimal cut-sets for the Test Bed Design Fault Tree for SNM Diversion

at Pump Washout Line [2]. This fault tree consists of 125 gates,

95 simple components and 18 replicated components. Also, 9

replicated gates (modules) were presented. (See Figure B.2, Page 205).
First, higher order modular cut-sets were found. These cut-

sets contain;éome modules that contaln many cut-sets of lower

order. Second, minimal cut-sets for these higher-order modules

were found. Therefore, combination of these cut-sets would

provide probably most of the presented simple cut-sets.
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Table B.1l identifies different components in this fault
tree. In order to simplify the cut-sets, Table B.2 gives the
identification of higher order modules that are presented in
this fault tree; then Table B.3 lists all of the modular minimal
cut-sets in terms of those higher modules in Table B.Z2.

In Table B.4 are listed minimal cut-sets presented in the

module GlSﬂ

TABLE B. U4

MINIMAL CUT-SETS FOR THE MODULE 15

Cut-Set No. 1 -2
1 7
2 Rll
3 9
4 8
5 6 R13

In Table B.5 we have identified the components and modules
presented in the higher-order module 50 (GSO)' The cut-sets for

this higher-order module are listed in Table B.6. Note that the
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TABLE B.1l
DESCRIPTION OF THE COMPONENTS IN THE TEST BED DESIGN

FAULT TREE, IN PL-MODT AND FTAP

PL-MODT FTAP PL-MODT = FTAP PL-MODT  FTAP PL-MODT  FTAP
1 ANODEl 31 NOMCCAS 61 TGTTKFIL 91 GBOFAIL
2  CBE1lHIT 32 MDCCASIT 62 V7130 92 GBOSLOW
3  TPEQMM 33 MDCCASHI 63 PRMODE 93 GARFAIL
4 CBEEBHIT 34 MDCCASIR 64 MPU709 94 GARSLOW
5  CBEEAHIT 35 MDCCASIT 65 V7190 95 T7221545
6  SRCB 36 ADV200MT 66 T701GT45 R, SRMSOLN
7  ALARMLX 37 ADV1KGMT 67 V7220 R, SRDUEST
8  ALARMIR 38 SRMDW 68 LS7221IR Rq T722LT15
9  ALARMIT 39 TDR2-G 69 LS7221IT Ry APM-AL

10 GgFAIL13 4o SRMDS 70 LST22CIR  Rg CCASOK
11  GAMBO1LX 41 CBE2RHIT 71 LST22CIT  Rg AMP-AR
12 GAMBO1HI 42 CBE2LHIT 72 V7010 R, AMP-BO
13  GAMBO1IR 43 GAMBO2HI 73 TLEVEL-1  Rg TDR1-G
14 GAMBO1IT Ly GAMBO2LX T4 SENSLOWM Ry TPNESM
15 SRGAMBO1 45 GAMBO21IR 75 TK1FILL Ry, TPNETM
16  CSNMRMAA L6 GAMBO2IT 76 DPCELLIR R;;  CDLI

17  GCCASF L7 SRGAMBO2 77 DPCELLIT R;, SRLST701
18  GgCCASLOW 48 RDCCASLX 78 TGTPROMD Ry TDR3~G
19  aLccas 49 RDCCASHI 79 T722GT45 Ry,  MC1-OPO
20 AA-DHIT 50 RDCCASIT 80 LABFALSE Ry SRLS722
21  SRCDALRM 51 RDCCASIR 81 SENSLOWP Ry,  TT7O1LT15
22 CDALRMLX 52 MC2-0PO 82 TLTLAB Ri7 ANODE1 4
23  CDALRMIR 53 SRRDCCAS 83 T7011545 R;g  ASUBHNO
24 CDALRMIT 54 APM-B1 84 TGTLAB

25  ACCAS 55 AFILLCON 85 LS701IR

26  WEIGHTOR 56 ANODET706 86 LS701IT

27  WEIGHTIT 57 CONAT706 87 LST01CIR

28  WEIGHTIR 58 V290 88 LS701CIT

29  WEGT3 59 CV436IR 89 T722GT15

30 SRWEIGHT 60 CVU436IT 90 T701GT15
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RESPONSE IN AREA AR
WHEN ADV/MAN CROSSES
PM - AR

Table B,?2
HIGHER ORDER MODULE OF THE TEST BED DESIGN
FAULT TREE
Name of the module, )
replicated component, Corresponding Corresponding
or simple component name in the ori- name in the
No. 1in PL-MODT R ginal fault tree FTAP
. M oY o8
1 G24 MPU2 _——
M ’ ——
2 G50 MPUS -—-
3 e INADEQUATE RESPONSE ——-
FROM MC SYSTEM WHEN
CRASH BAR EEB IS
HIT
M
y G81 INADEQUATE GUARD -




TABLE B.3

ORIGINAL TREE MODULAR MINIMAL-CUT-SETS

Cut Set

No. 1 2 3 } 5 6 7 8 9 10| 11| 12| 13| 14
1 Ry | Byo | G2y | 1
2 Ry | Ry | Gso | Ry | 2 G | 1
3 Ry [ Ry | G50 | Fao | 2 Gis | 1 |
D R, | Rg | B | 950 | R | 10 | 16 2 13
5 R; | R | By | G0 | Rg | 10 | 16 > 1%
6 R, | Rg | R, | Gg | Rg | 10 | 16 > 12
7 Rz | R | ®7 | Gs0 | B | 10 | 16 7 1T
B R7 | R | ®7 | %50 | B | Faz | 10 |26 >
g Ro | B | 7 | oo | B | Rag | 10 |26 715

10 Ko | Rg | ®7 | %o | B0 | 2 | G5 | 5 | %1 | ?

1T R. | R¢ | &7 | %50 | C25 | a1 | °  [Ge1 | © [T | ™

17 R. | Rg | B7 | Os0 | Fax | Faz | ®15 | 5 [ Gar | T | 7T | %2 | ™7

13 Ri7 Rg R7 G50 G15 5 Ggq ly 41 b2 b6 45 43 Ly

6LT
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TABLE B.5

IDENTIFICATION OF DIFFERENT MODULES IN THE PRIME MODULE G50

PL-MODT THE ORIGINAL TREE

M58 INADEQUATE MC RESPONSE WHEN VALVE
722-1 OPEN

M62 INADEQUATE MC RESPONSE TO CHANGE
IN PU MASS IN TANK 1, MPUTKl (-1)

M67 INADEQUATE MC RESPONSE WHEN VALVE

701-1 OPEN
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MINIMAL CUT-SETS FOR MODULE 50
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Table
(cont

B.6

-)

MINIMAL CUT-SETS FOR MODULE 50

Cut-Set No.
<> Hg Hyg Ry3 89 Fyp Ry 8% Mg
26 Rg Rqg Rl3 70 Ry, R, BF Mgq
27 R8 R18 R13 71 R12 R2 of MSO
28 R8 R18 R13 65 R15 R2 o4 MSO
29 Rg Rjg R13 86 R15 R, B34 Meg
30 Rg FRyg Fy3 O7 Ryg By B4 Mgg
31 R8 R18 R13 ofs} R15 R2 o4 MSO
32 M58 M67 M62 MSO +<Contains 64 simple cut-sets
33 Rg M67 Mg R15 MSO +Contains 16 simple cut-sets
34 Rg M58 Mgs Rqys MSO «Contains 16 simple cut-sets
35 R13 M58 M67 R1 78 MSO <Contains 16 simple cut-sets
36 R18 R13 M58 M67 R2 o4 M5O+Contains 16 simple cut-sets
37 R18 M58 M67 0 81 &2 M50+Contains 16 simple cut-sets

TOTAL SIMPLE CUT-SETS

175 X 2 = 350
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following components are always required to fail in order to
have the failure of module 50:(MPU5), 55, 56, 57, 54, 58, 61,
63, 62, 64, 65, 67, 72, 73, and (59 or 60). We call, for
simplicity, all of these components module 50 (M50).

Cut-sets in Table B.6 are on the order of between 14 and 20.
It should be noted that the total number of cut-sets for the
higher-order module (GSO) is 350. For the modules 58, 62 and 67,
the cut-sets are given in Table B.7. All of the cut-sets are
on an order of 1 (e.g., failure of each component 68, 69, 60, or

71 would cause the failure of the module 58).

TABLE B.T7

CUT-SETS FOR MODULES 58, 62, and 67

Module
1 2 3 4
Cut-Set
Order
M58 68 69 70 71
M62 74 75 76 77
M67 85 86 87 88

For higher-order module G81 the cut-sets were found. Table B.8
gives an identification of components in the cut-sets and their
corresponding name in the fault tree. Table B.9 lists all of the

cut-sets for this prime module.
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TABLE B.S8

IDENTIFICATION OF DIFFERENT MODULES IN THE PRIME MODULE 81

PL-MODT THE ORIGINAL TREE
M4 NO RESPONSE FROM MC SYSTEM
Mg NO MC RESPONSE FROM MC SYSTEM
WHEN VALVE 701 OPEN
M, NO MC RESPONSE FROM ESTIMATION

WHEN VALVE 722 OPEN

TABLE B.9

CUT-SETS FOR THE MODULE 81

Cut-sets
I Ris Ry, 79 86 R T
2 R15 R12 79 66 Rl 2
3 RlS R12 79 66 R2 1
i Rl5 Ris 79 66 R, 2
5 Mll M8 MlO < Containing 112 cut-sets
6 R
7 Ri; M4 M,y * Containing 28 cut-sets
8 Ris Mll Mg 79 «Containing 20 cut-sets
9 RlS Rl2 80 95 79
10 R15 Ry5 81 95 79
S 11 Ryg L 82 95 79
12 Ry Ry5 Th 95 79
13 . R15 Rio 70 95 79
14 R15 Rio 7 95 79
15 R15 Rio 75 95 79

TOTAL SIMPLE CUT-SETS 160




185

As can be seen from Table B.9, the total number of cut-sets
for higher-order module 81 is 180 simple cut-sets. These cut-sets
are of an order between 1 and 6.

Now, from Table B.3 all of the simple cut-sets for modular
cut-sets 2 through 13 could be found by simply assigning the
corresponding simple cut-sets of different modules from Tables
B.4, B.6, and B.9. The total number of simple cut-sets in these
12 modular cut-sets is 1,265,600.

For the first modular cut-set in Table B.3, we have to find
simple cut-sets for the module qu' These cut-sets were found
and Table B.10 describes different components of these cut-sets
and their corresponding name in PL-MODT. Table B.11l lists all of
the cut-sets presented in the module qu, based on the names of
the modules given in Table B.10. As could be seen from Tables

B.10 and B.11l, all of the cut-sets contain module G which by

50
itself has 350 different cut-sets (see Table B.6). Some other
higher-order modules are also contalned in most of the cut-sets
in Table B.1ll. Therefore, a very high rough estimate of the
number of simple cut-sets in Table B.1ll could be about 6 million.
By assigning different simple cut-sets of moduleGZLl into the
first modular cut-set in Table B.3, we would be able to find the
rest of the cut-sets for the fault tree.

It should be noticed, however, that not all of these simple
cut-sets are minimal for the modular cut-set number 1. Therefore,

it is not possible to estimate the exact number of minimal simple

cut-sets in this fault tree. In the future development of the
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PL-MODT code, the comblnation of these tables will be done by.

computer and nonminimal cut-sets will be eliminated automatically.
By the combination of Tables B.4, B.6, B.9 and B.1ll, we have

found some of these simple cut-sets. These cut-sets are listed

in Table B.12.



TABLE B.1l0
IDENTIFICATION OF COMPONENTS IN THE MODULE 24

Module Number

as Listed in Type‘of Components in this
Table B.11 Module Module

1 AND R5

2 AND Rlu

3 AND R13

4 AND R15

5 AND R12

6 AND Rll

7 AND G78’ GSO’ R7, R9
8 OR 48, 49, 50, 51

9 OR 31, 32, 33, 34, 35
10 - -
11 - -

12 AND 52, 53

13 AND 36, 38, 39

14 AND 37, 40

15 AND 19, 20

16 AND 25

17 OR 17, 18

10 - -

19 OR 22, 23, 24

20 OR 26, 27, 28

21 OR Rl’ R2

22 OR 68, 69, 70, 71
23 OR 85, 86, 87, 88
20 OR T4, 75, T6, 77
25 AND 21 _

26 AND 30, Rg, 29

27 AND 39

28 AND 90

(CONTINUED)
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Table B.10
(cont.)

IDENTIFICATION OF COMPONENTS IN THE MODULE 24

Module Number

as Listed in Type of Components in this
Table B.1ll Module Module

29 AND R3

30 | AND R16

32 OR 80, 81, 82
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TABLE B.11
(Next 14 Pages)

LISTS OF ALL THE MIN-CUT-SETS IN THE PRIME MODULE G

o

24

(In this table, different components of each cut set are
numbered according to those modules listed in Table B.10.)
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SOME SIMPLE

TABLE B.12

CUT-SETS OF THE ORIGINAL FAULT TREE

8

10

11 12 13 14 15 16 17 18 19 20 21 22

23
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56

57

54

58

59 [61 {63 |62 |69 |65 |67 |72 [73 [Ry;

55

56

57

54

58

60 |61 |63 |62 |69 {65 |67 {72 |73 Rll

10

55

56
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60 |61 |63 |62 |69 |65 |67 |72 |73 Ri4

10

55

56

57
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58

59 161 |63 |62 |69 |65 |67 |72 |73 R;q

17

Ry 55

56
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61

63 162 |69 (65 |67 |72 |73 |R 10 | 16| 2

11

13

17

Ro 55

56
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54

58

59
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63 162 |69 |65 |67 |72 |73 [R

11R9 10 l§ 2

14

f17

R 55

56

57

54

58

60

61

63 |62 |69 |65 |67 |72 |73 |R 10 | 16 2

11

14

Only 4 simple cut-sets of an order 20 exists.
These cut-sets are listed above.
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