
MIT Open Access Articles

A Survey of Binary Covering Arrays

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Lawrence, Jim, Raghu N. Kacker, Yu Lei, D. Richard Kuhn, and Michael Forbes. "A
Survey of Binary Covering Arrays." Electronic Journal of Combinatorics, Volume 18, Issue 1
(2011).

As Published: http://www.combinatorics.org/ojs/index.php/eljc/article/view/v18i1p84

Publisher: Electronic Journal of Combinatorics

Persistent URL: http://hdl.handle.net/1721.1/89799

Version: Final published version: final published article, as it appeared in a journal, conference
proceedings, or other formally published context

Terms of Use: Article is made available in accordance with the publisher's policy and may be
subject to US copyright law. Please refer to the publisher's site for terms of use.

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/89799

A Survey of Binary Covering Arrays

Jim Lawrence

George Mason University, Fairfax, VA 22030
lawrence@gmu.edu

Raghu N. Kacker

National Institute of Standards and Technology, Gaithersburg, MD 20899
raghu.kacker@nist.gov

Yu Lei

University of Texas at Arlington, Arlington, TX 76019
ylei@cse.uta.edu

D. Richard Kuhn

National Institute of Standards and Technology, Gaithersburg, MD 20899
d.kuhn@nist.gov

Michael Forbes
Massachusetts Institute of Technology, Cambridge, MA 02139

miforbes@mit.edu

Submitted: Jun 21, 2010; Accepted: Mar 31, 2011; Published: Apr 7, 2011

Mathematics Subject Classifications: 05B20, 05B30

Abstract

Binary covering arrays of strength t are 0–1 matrices having the property
that for each t columns and each of the possible 2t sequences of t 0’s and 1’s,
there exists a row having that sequence in that set of t columns. Covering
arrays are an important tool in certain applications, for example, in software
testing. In these applications, the number of columns of the matrix is dictated
by the application, and it is desirable to have a covering array with a small
number of rows. Here we survey some of what is known about the existence of
binary covering arrays and methods of producing them, including both explicit
constructions and search techniques.

the electronic journal of combinatorics 18 (2011), #P84 1

1. Introduction.

An n × k, (v1, . . . , vk)-valued covering array of strength t, where n, t, and k are
integers satisfying n ≥ 1 and 1 ≤ t ≤ k, and (v1, . . . , vk) is a vector of k integers vj ≥ 2,
is a matrix of size n × k such that

• entries in column j come from a set Vj of “parameter values” of cardinality vj , and
• each n × t submatrix having columns indexed by elements of a set Λ ⊆ {1, . . . , k},

where |Λ| = t, contains all of the different
∏

j∈Λ vj possible rows that can be formed
by choosing the entry with index j ∈ Λ from the j-th set of parameter values.

Suppose Λ = {j1, . . . , jt} ⊆ {1, . . . , k}, where j1 < j2 < . . . < jt. We call the pair
(Λ, x), x = (xj1 , . . . , xjt

) being a vector whose entries are indexed by Λ, a t-tuple. If
y = (y1, . . . , yk) is a vector of length k, we say that y covers the t-tuple (Λ, x) provided
that yj = xj when j ∈ Λ. A covering array has the property that each t-tuple whose
entries come from the corresponding parameter sets is covered by some row of the array.

Although much work has been done concerning the more general case, this paper
will be almost exclusively concerned with the 2-valued (binary) case, in which vj = 2
for 1 ≤ j ≤ k. A (v1, . . . , vk)-valued covering array, where the vj ’s are all equal to v,
vj = v for 1 ≤ j ≤ k, will be termed a v-valued covering array.

A covering array of strength t = 2 is sometimes called a pairwise covering array.
Such arrays have proven useful in a variety of settings. The use of such arrays in
applications is possible thanks to a variety of software for their construction. When a
higher strength is desired, the problem of construction of the covering arrays becomes
more difficult, and the development of software for this is at a less advanced stage.

There are many settings in which covering arrays may be useful. An early use of
covering arrays (framed in terms of a “piercing” set of vertices of the cube) was that
of Nečiporuk [65], where a result was established and used to bound the complexity
of certain Boolean gating circuits. We describe a couple of other applications in the
following subsection. Additional applications may be found in [7], [11], [16], [18], [33],
[53], [54], [79], [80], and [86].

Some applications for covering arrays. Covering arrays are useful in a method of
software or hardware testing, proposed in [25] and elsewhere. Suppose a certain com-
puter program requires as input the values of k parameters, where the j-th parameter
has vj possible values (1 ≤ j ≤ k). An n × k, (v1, . . . , vk)-valued covering array of
strength t can be used to provide n tests, one for each row of the array, such that, for
each choice of t of the parameters and any choice of values for those t parameters, at
least one of the tests provides those values for that set of t parameters. Certainly, if
not all possible inputs are tested, then the program may contain errors that are not
detected; however there is evidence to suggest that in most cases errors are the result of
interactions among a small number of the parameter values; see Kuhn, Reilly [53] and
Kuhn, Wallace, Gallo [54]. Furthermore, testing all of the possible parameter settings is
often not feasible because of the great number of them. For example, in the binary case
in which v1 = . . . = vk = 2, the total number of possible parameter settings is n = 2k.
If instead we choose, for each possible set of t parameters and each of the 2t possible
settings of these t parameters, a test providing these values, we will have n = 2t

(

k
t

)

the electronic journal of combinatorics 18 (2011), #P84 2

tests, which is much smaller than 2k when k is large compared to t. It is nevertheless
much larger than the smallest number n of tests that will do, which is (for t fixed and
large k) on the order of a constant multiple of log(k). (See Section 4.3.)

We are led to consider the following two closely related questions. Given k, t,
and (v1, . . . , vk), how can an n × k (v1, . . . , vk)-valued covering array of strength t
be constructed, if it is desired that n be “not too large” and that the computational
difficulty be “not too great”? Given k, t, and (v1, . . . , vk), what is the smallest value
of n such that there exists such a covering array? These two questions may seem to
be almost identical; but there is actually quite a big difference. We will see in Section
5 that many algorithms exist and indeed have been implemented to answer the first
question to a degree that is often adequate; but, as we will see in Section 3, the answer
for the second is known only in a very few cases.

Covering arrays and their relatives have also found use in a number of other appli-
cations. One of these, specific to binary covering arrays, concerns a problem having to
do with hypercube computers (see Becker and Simon [5], Graham, Harary, Livingston,
and Stout [41]). In such a computer, for some k, there are 2k processors corresponding
to the 2k vertices of a k-dimensional cube, which are connected by links according to the
pattern dictated by the edges of the cube. The analysis of the question, “What if some
of the processors fail?” leads to problems concerning covering arrays. In particular, the
question, “If n processors fail, what is the largest dimension of a (cubical) face of the
k-cube that is nevertheless guaranteed to have all processors functioning?” leads to the
same mathematical question concerning the minimum possible value of n as that for
the software testing application. Given that the answer is less than a positive integer
s, there is a set of n vertices of the k-cube that has nonempty intersection with each
s-dimensional face of the cube, and these vertices form the rows of an n × k covering
array of strength t = k − s. For given k and t (and s), we want to know the least
possible value of n.

There is a big difference in the two examples with respect to the way in which
covering arrays are involved. In the software-testing example, a small number of tests,
that is, of rows of the matrix, is preferable, since this means that the testing can be
done more quickly. In the hypercube computer example, one wants assurance that a
larger number is necessary, since this is an indication that the computer will be less
susceptible to failure.

It is possible for a (somewhat) happy ending in both cases. In the software-testing
application, the parameter t may be considered to be fixed, and in this case the smallest
n is comparable to log(k). If, in the hypercube computer example, one is happy with
the assurance that some s-dimensional face will remain operational, then with s = k− t
constant, n increases exponentially as 2k.

For a quite different application, Hartman [44] has applied covering arrays to a
problem considered by Lim and Alpern [57] and Gal [39], namely, the problem of “blind
dyslectic synchronized robots on a line.” In this problem, there are k robots, R1, . . . , Rk,
on a line, initially placed (in some order) at positions 1, 2, . . . , k. Blindness here means
that a robot can sense the presence of another only by touch; dyslectic means that the

the electronic journal of combinatorics 18 (2011), #P84 3

robots do not have a common sense of right and left on the line. Each robot can move on
the line until it meets another. One wishes to determine the minimum over all possible
strategies of the maximum over all possible starting permutations of the robots, of the
time by which they can arrive at the same point. Hartman shows that this value is
⌈k/2⌉ + ⌈log2 k⌉ + 1, by making use of a bound described in 3.2.1, below.

For given small values of k = s + t and t, Table 1 records the smallest number of
rows (n, denoted by CAN(k, t)) in a binary covering array having those parameters,
when this is known. When a range is given, the numbers represent lower and upper
bounds on the smallest number of rows. This table is included to aid in the exposition.
Much more thoroughgoing tables may be found at the website of Colbourn [28], from
which many of the upper bounds in the table were derived; and we note that the upper
bounds for the intervals in the lower right corner of this table represent recent results
and will probably change again soon!

The tables of [28] do not include actual covering arrays (and we have not inde-
pendently verified in all cases that covering arrays of the indicated sizes exist). For an
extensive collection of actual covering arrays with relatively few rows, visit the webpage
[87], and follow the link to the covering array library. Also, covering arrays are available
at the website of Nurmela [67], and covering arrays can be downloaded, by request, from
the website maintained by Torres-Jimenez [81]. The website of Torres-Jimenez includes,
in particular, covering arrays yielding all of the upper bounds in Table 1.

s\t 1 2 3 4 5 6
0 2 4 8 16 32 64
1 2 4 8 16 32 64
2 2 5 10 21 42 85
3 2 6 12 24 48–52 96–108
4 2 6 12 24 48–54 96–116
5 2 6 12 24 48–56 96–118
6 2 6 12 24 48–64 96–128
7 2 6 12 24 48–64 96–128
8 2 6 12 24 48–64 96–128
9 2 7 15 30–32 60–64 120–128
10 2 7 15–16 30–35 60–79 120–179

Table 1. Values of CAN(s + t, t).

In Section 2 we describe several ways of “looking at” covering arrays, including
alternative terminology and definitions that have been used. Section 3 gives the values
of CAN that are known exactly, including descriptions of the arguments and covering
arrays that have been used to establish the lower and (equal) upper bounds. Sec-
tion 4 describes the lower and upper bounds on values of CAN. Section 5 describes
methods used in construction of covering arrays. Section 6 briefly addresses issues of

the electronic journal of combinatorics 18 (2011), #P84 4

computational complexity for some problems related to the existence and construction
of covering arrays.

We do not survey the extensive collection of software available for constructing
covering arrays. For such a survey see the paper by Grindal, Offutt, and Andler [43].

2. Various Formulations.

The phrase “covering array” was used in the paper by Sloane [75], to contrast these
arrays with “orthogonal arrays,” and this terminology is now common. An orthogonal
array having parameters n, t, k, v, and λ ≥ 1 is an n× k matrix with entries from a set
of v elements, having the property that given any set of t columns each of the possible
assignments of values to the corresponding parameters occurs the same number λ times.
Here, λ ≥ 1. When such an array exists, it is a v-valued n×k covering array of strength
t; and when additionally λ = 1, it is easily seen to be a covering array for which n is
minimized. In the binary case this fact is of little value, since such orthogonal arrays
exist only in case k = t or t + 1. However, orthogonal arrays for which λ is larger do
have some relevance in the binary case; see section 4.1. Also, some methods exist to
indirectly construct binary covering arrays by utilizing orthogonal arrays for which the
parameter v is larger than 2.

There are several operations that can be performed on a covering array that yield
covering arrays. The rows may be permuted. The columns may be permuted; in this
case, a (v1, . . . , vk)-valued covering array yields a covering array, but with the indices
of the vi’s similarly permuted – no change, when the vi’s are equal. In any column, the
values may be permuted; for example, in the binary case, in any column, the 0’s and
1’s may be switched. These operations determine equivalence relations on collections of
covering arrays.

Covering arrays can be viewed in different ways. As described above, the columns
may be given labels associated with parameters, the entries in each column being among
the values that the corresponding parameter can have, and each row corresponds to a
setting of the parameters for a “test.” Alternatively, if the rows are labeled by the
elements of a set, each column determines a partition of the set into those row-labels for
which the entries in the column are the same. The resulting family of partitions is then
“t-wise qualitatively independent”; this is covered in more detail in section 2.2, in the
binary case. Also, in the binary case, each row of the covering array C may be viewed
as a vertex of the k-dimensional cube, [0, 1]k. Then the rows form a set of vertices of
the cube having the property that, under orthogonal projection to any t-dimensional
face F of the cube, the image of the set equals the set of vertices of F . This can be
generalized to arbitrary sets of values, and the characteristic property is often called
“t-surjectivity.” See section 2.1. Again, in the binary case, viewing the set of rows as
a set of vertices of the cube [0, 1]k, it is not hard to see that each face F ′ of the cube
having dimension k − t must contain at least one of these vertices; so the notion of
a “(k − t)-face transversal” is yet another equivalent to that of a covering array. See
section 2.1.

the electronic journal of combinatorics 18 (2011), #P84 5

2.1. The notion of a t-surjective mapping; transversals of s-faces. Let

X =
k

∏

i=1

Vi,

where, for 1 ≤ j ≤ k, Vj is the set of vj possible values for the j-th parameter. Given a
nonempty set Λ = {i1, . . . , it} ⊆ {1, 2, . . . , k}, where 1 ≤ i1 < i2 < · · · < it ≤ k, let

XΛ =
∏

i∈Λ

Vi

so that in particular X[k] = X , and let πΛ : X → XΛ be the projection

πΛ

(

(x1, . . . , xk)
)

= (xi1 , . . . , xit
).

If T is a subset of X , we call the set T a t-surjective set if, for each set Λ ⊆ [k] having
cardinality t, the image πΛ(T) equals XΛ; that is, the restriction of the function πΛ to
T , πΛ|T : T → XΛ, is surjective. The covering arrays of strength t are precisely the
matrices whose rows form the elements of a t-surjective set.

Covering arrays under the name t-surjective arrays have been studied in [20] in the
binary case, and in [19], and elsewhere.

In the binary case, we take the set of parameter values to be {0, 1}. Then X =
{0, 1}k, and XΛ = {0, 1}Λ, for Λ ⊆ [k]. We may consider the set {0, 1}k as a subset of the
real vector space Rk. It is the set of vertices of the k-dimensional cube [0, 1]k. It is easy
to describe the t-surjective sets in geometrical terms, making use of this cube. Given an
integer s such that 0 ≤ s ≤ k, we will call a set T of vertices of the cube [0, 1]k an s-face
transversal if, for each s-dimensional face F of the cube, F ∩ T 6= ∅. The nonempty
faces of this cube are precisely the inverse images π−1

Λ (v), where Λ ⊆ {1, . . . , k} and
v ∈ {0, 1}Λ is a vertex of [0, 1]Λ. The dimension of the face π−1

Λ (v) is k − |Λ|. If T is
a t-surjective subset of {0, 1}k, then, for Λ of cardinality t, since the restriction of the
mapping πΛ to T is surjective, for each v ∈ {0, 1}Λ, T must contain at least one element
of π−1

Λ (v); that is, T must have a point in common with the face π−1
Λ (v), which is an

arbitrary face of dimension k − t. Therefore T is a transversal of the set of (k − t)-
dimensional faces of the cube. Let s denote the difference k − t, so that s + t = k. A
set T of elements of {0, 1}k is t-surjective if and only if it is an s-face transversal.

Johnson and Entringer, in [46], have considered the equivalent question of the
maximum cardinality of subsets of the k-cube that do not contain the set of vertices of
any s-face. Such a set is the complement (with respect to the set of the vertices of the
k-cube) of an s-face transversal. Therefore, if the largest size of such a set is µ, then
CAN(k, k − s) = 2k − µ, so the problem of determining CAN(k, t) is equivalent to the
problem of determining µ, where s = k − t.

the electronic journal of combinatorics 18 (2011), #P84 6

2.2. Qualitative independence. Let S denote a set having n elements. Two subsets
A and B of S are termed qualitatively independent if none of the sets A ∩ B, Ā ∩
B, A ∩ B̄, and Ā ∩ B̄ (where Ā and B̄ denote the complements of A and B in S)
is empty. Intuitively, this means that knowledge of whether or not an element x is
in A does not indicate whether or not it is in B (and vice-versa). This notion was
introduced by Marczewski [59], and it is described in Rényi’s book [68]. It extends in
the obvious fashion to collections of more than two sets: A collection of sets A1, . . . , At

is qualitatively independent if each of the 2t intersections X1∩X2∩· · ·∩Xt, where each
Xi is either Ai or Āi, is nonempty.

Let A1, . . . , Ak be subsets of [n] such that each family of t of these sets is quali-
tatively independent. Such a family of sets is called t-independent. Let C denote the
n × k matrix for which the (i, j)-th entry is 1 if i ∈ Aj , and 0 otherwise. The j-th
column of C is then the indicator vector of Aj . Since each t of the sets form a qualita-
tively independent family, each t columns of C form a matrix in which each of the 2t

possible vectors of 0’s and 1’s occurs at least once; that is, C is a binary covering array
of strength t.

Problem 1. Let t and k for which 1 ≤ t ≤ k be given. What is the least value of n
such that there exists a binary n × k covering array of strength t?

This minimum value is CAN(k, t). We also denote the set of binary n× k covering
arrays of strength t by CA(n, k, t); then CAN(k, t) is the smallest number n such that
CA(n, k, t) 6= ∅.
Problem 1′. Given n and t, what is the largest number k such that there exist k
subsets of [n], each t of which are qualitatively independent?

We denote this maximum by CAK(n, t). Clearly CAK and CAN are related:

CAN(k, t) = min{n : CAK(n, t) ≥ k}

and
CAK(n, t) = max{k : CAN(k, t) ≤ n}.

Therefore, if either CAK or CAN is known for all values of the parameters, then the
values for the other can be determined.

Covering arrays which are not necessarily binary can be studied similarly, using the
notion of qualitative independence of families of partitions, rather than of subsets, of a
set. This notion is also described in [68]. Covering arrays are then families of partitions,
each t of which are qualitatively independent.

the electronic journal of combinatorics 18 (2011), #P84 7

3. Known Values of CAN(k, t).

The infinite extensions of the first three rows and the first two columns of Table
1 are known precisely, as are the thirteen other exact values given in the table. Thus,
the values of CAN(k, t) have been determined when either t ≥ k − 2 or t ≤ 2. Other
than these, that is, for k ≥ 3 and 3 ≤ t ≤ k − 3, only thirteen values are known.
They are: CAN(6, 3) = CAN(7, 3) = . . . = CAN(11, 3) = 12, CAN(12, 3) = 15, and
CAN(7, 4) = CAN(8, 4) = . . . = CAN(12, 4) = 24. (See section 3.3.) For other values of
t and k, we must settle for intervals delineated by lower and upper bounds for CAN(t, k).

3.1. Some basic results.

3.1.1. Some simple but useful inequalities are:
(a) CAN(k + 1, t) ≥ CAN(k, t),
(b) CAN(k + 1, t + 1) ≥ 2 CAN(k, t), and
(c) CAN(k, t) ≥ 2t.

For (a), note that if T ⊆ {0, 1}k+1 is an (s + 1)-face transversal in [0, 1]k+1, then
the image π[k](T) is an s-face transversal in [0, 1]k, so CAN(k + 1, t) ≥ CAN(k, t). For

(b) note that each facet of [0, 1]k+1 is itself a cube of dimension k, and any s-face
transversal of [0, 1]k+1 must contain an s-face transversal of any two opposite facets, so
CAN(k + 1, t + 1) ≥ 2 CAN(k, t).

Also, (c) holds, since, for any t-surjective set S, the projection of S to a t-face must
consist of all of the 2t vertices of that face.

3.1.2. We have
(a) CAN(k, 1) = 2 for each k ≥ 1,
(b) CAN(k, k) = 2k for each k ≥ 1, and
(c) CAN(k, k − 1) = 2k−1 for each k ≥ 2.

It is clear that each (k − 1)-face (facet) of the cube contains either the zero vector
or the vector of 1’s, so (a) holds.

For (b), notice that if S is a k-surjective set, each vertex of the cube [0, 1]k must
be in S, so S must consist of all 2k vertices of [0, 1]k.

Let S be the set of vertices x = (x1, . . . , xk) ∈ {0, 1}k of [0, 1]k for which
∑

i xi is
even. Then it is easy to see that S is a (k − 1)-surjective set having 2k−1 elements, so
that CAN(k, k − 1) ≤ 2k−1. The reverse inequality is 3.1.1(c) with t = k − 1.

Suppose that A is an element of CA(n1, k − 1, t) and B ∈ CA(n2, k − 1, t − 1).
Then

(

A 0
B 1

)

,

where the 0 represents the column vector of length n1 having each entry 0 and the
1 represents the column vector of length n2 having each entry 1, is an element of
CA(n1 + n2, k, t). This construction yields the following inequality. (See Theorem 2(i)
of [41]. Theorem 3 of that paper presents a generalization.)

3.1.3. CAN(k + 1, t) ≤ CAN(k, t) + CAN(k, t − 1).

The following inequality is a further strengthening of 3.1.3. It appears as the binary
case of the first inequality of Theorem 3.2 of [30].

the electronic journal of combinatorics 18 (2011), #P84 8

3.1.4. CAN(k + 1, t) ≤ CAN(k, t) + 2CAN(k − 1, t − 2).

3.2. The cases t = 2 and s = 2. The following statement was established in different
ways in several papers independently, around 1970.

3.2.1. We have CAN(k, 2) = n, where n is the least positive integer such that
(

n−1
⌈n

2 ⌉
)

≥ k.

We describe one of the proofs. Letting k =
(

n−1
⌊n

2 ⌋
)

, it is possible to construct an

example showing CAN(k, 2) ≤ n, as follows. Construct an n × k matrix M . The first
row consists of 0’s; the remainder of M is the (n− 1)×k matrix consisting of the

(

n−1
⌈n

2 ⌉
)

possible columns having ⌈n
2 ⌉ 1’s and otherwise 0’s.

When n is even, the argument showing that if CA(n, k, 2) 6= ∅ then k ≥
(

n−1
⌊n

2 ⌋
)

,

already described in [68], is simple and involves Sperner’s Lemma [77]; in [48], when n
is odd, a more difficult argument shows that the Erdős-Ko-Rado Theorem [34] may be
used, replacing Sperner’s Lemma. We state these two results.

Sperner’s Lemma. Let C be a collection of subsets of a set of cardinality m such that
no element of C is a subset of another. Then the number of elements of C is at most
(

m
⌊m

2 ⌋
)

. The collection C consisting of all subsets having exactly ⌊m
2 ⌋ elements achieves

this bound.

Erdős-Ko-Rado Theorem. Let C be a family of subsets of {1, . . . , a} each having b
elements, where b ≤ a

2
. Suppose that A, B ∈ C implies A∩B 6= ∅. Then C has at most

(

a−1
b−1

)

elements. For a collection C achieving the bound, one may take all of the subsets
S ⊆ {1, . . . , a} such that |S| = b and 1 ∈ S.

For proofs and generalizations of both of these theorems as well as of the LBYM
Inequality mentioned later, see [42].

We give the argument first in the case of n even. Suppose T is a 2-independent
family of k subsets of {1, . . . , n}. Then no element of the family T ∗ = T ∪ T ′ consisting
of the elements of T and their complements is a subset of a different element. Therefore,
by Sperner’s Lemma, 2k ≤

(

n
n
2

)

. Then k ≤ 1
2

(

n
n
2

)

=
(

n−1
n
2

)

, which is
(

n−1
⌈n

2 ⌉
)

.

In case n is odd, letting T and T ∗ be as above, one has that the collection of
elements of T ∗ having cardinality less than n

2 has cardinality k and has the property
that no two elements have empty intersection. Katona [48] then shows that, in the
extremal case, it may be assumed that the elements of this set are all of cardinality
n−1

2
. Therefore the Erdős-Ko-Rado Theorem applies and yields k ≤

(n−1
n−1

2 −1

)

, which

equals
(

n−1
⌈n

2 ⌉
)

.

This result was discovered by several people independently, at about the same time.
Rényi’s book [68] contains this result, both for n even and n odd; for n even, the proof
is given, and it is noted that Katona has a simple solution, using the Erdős-Ko-Rado
Theorem, for n odd. (See problem P.1.8 of [68].) Katona’s solution appears in [48].
The result was also obtained by Bollobas [10], Brace and Daykin [12], and Kleitman
and Spencer [50]. Schönheim [71] proves a result that easily implies the result in case
n is odd (the more difficult case): Given k subsets of a set with 2m elements, with

the electronic journal of combinatorics 18 (2011), #P84 9

no one containing another and with no two having empty intersection, the inequality
k ≤

(

2m
m−1

)

holds. This implies 3.2.1 when n is odd, since, if C is a 2-independent family
of subsets of {1, . . . , n}, then upon replacing each set C ∈ C which has n as an element
by its complement, one obtains a family of subsets of {1, . . . , n − 1} such that none is
contained in another and no two have nonempty intersection. Brace and Daykin [12]
prove both of these results, and study many related statements.

3.2.2. We have CAN(k, k − 2) = ⌊2k/3⌋. The (k − 2)-face transversal T having this
cardinality is unique, up to symmetries of the cube.

As proven by Tang and Chen [79], the inequality CAN(k, k− s) ≤ 2k/(s +1) holds
for all integers s and k such that 0 ≤ s < k. To see this, notice that vert([0, 1]k) is the
union of the s + 1 pairwise-disjoint sets S0, . . . , Ss, where Sj consists of those elements
x = (x1, . . . , xk) of {0, 1}k such that x1 + · · ·+ xk is congruent to j modulo s + 1. Each
set Sj is an s-face transversal. Clearly, at least one of the sets must have cardinality at
most 2k/(s + 1). For a refinement of this bound see 4.4.2.

To establish that ⌊2k

3
⌋ is a lower bound when s = 2 is more difficult. In this case,

it is necessary to show that no 2-face transversal has fewer than ⌊2k

3 ⌋ vertices of the
k-cube. Kostočka [51] and Johnson and Entringer [46], independently, each give a proof

that CAN(k, k − 2) = ⌊2k

3 ⌋ by induction on k, simultaneously showing the uniqueness
up to symmetry of the minimizing example.

3.3. The other thirteen values. The thirteen known values of CAN not covered
already are dictated by the values already described, the inequalities of 3.1.1(a) and
(b), an upper bound on CAN(12, 4) which is the result of the existence of an element
of CA(24, 12, 4), and the result that CAN(12, 3) = 15.

An array in CA(24, 12, 4) was first produced by an exhaustive search procedure
described in Yan and Zhang [85]. It appears in Table 2. Subsequently, Colbourn and
Kéri [29] discovered a simple construction for such an array.

An element of CA(15, 12, 3) was found by Nurmela [66] using the method of “tabu
search”; so CAN(12, 3) ≤ 15. The inequality CAN(12, 3) ≥ 15 is due to Colbourn, Kéri,
Rivas Soriano, and Schlage-Puchta [30], by exhaustive search. That paper also contains
results on complete enumeration of the optimal covering arrays in several small cases.

4. Bounds on CAN.

In this section, we describe upper and lower bounds that have been obtained for
the numbers CAN(k, t) (or equivalently, lower and upper bounds on CAK(n, t)).

4.1. Lower bounds on CAN. When we move to the right in Table 1, the entry at
least doubles, according to 3.1.1(b). Therefore we have the following inequality.

4.1.1. For t ≥ t0, CAN(k, t) ≥ 2t0CAN(k − t0, t − t0).

In Table 1, most of the lower bounds can be obtained by letting t0 = t− 2 in 4.1.1.
This inequality indicates a connection between covering arrays and orthogonal

arrays. When equality holds in 4.1.1, there is an element C of CA(n, k, t), where

the electronic journal of combinatorics 18 (2011), #P84 10

1 2 3 4 5 6 7 8 9 10 11 12
1 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 1 0 0 0 1 1 1 1 1
3 0 0 1 0 0 1 1 0 0 1 1 1
4 0 0 1 1 1 0 1 0 1 0 0 1
5 0 1 0 0 1 0 1 1 0 0 1 1
6 0 1 0 1 0 1 1 0 1 0 1 0
7 0 1 1 0 0 1 0 1 1 0 0 1
8 0 1 1 1 0 0 1 1 0 1 0 0
9 1 0 0 0 1 1 0 0 1 0 1 1

10 1 0 0 1 0 1 1 1 0 0 0 1
11 1 0 1 0 0 0 1 1 1 0 1 0
12 1 0 1 1 0 1 0 0 1 1 0 0
13 1 1 0 0 0 0 1 0 1 1 0 1
14 1 1 0 1 1 0 0 1 1 0 0 0
15 1 1 1 1 0 0 0 0 0 0 1 1
16 1 1 1 0 1 1 1 0 0 0 0 0
17 0 0 0 0 1 1 1 1 1 1 0 0
18 0 0 1 1 1 1 0 1 0 0 1 0
19 0 1 0 1 1 1 0 0 0 1 0 1
20 0 1 1 0 1 0 0 0 1 1 1 0
21 1 0 0 1 1 0 1 0 0 1 1 0
22 1 0 1 0 1 0 0 1 0 1 0 1
23 1 1 0 0 0 1 0 1 0 1 1 0
24 1 1 1 1 1 1 1 1 1 1 1 1

Table 2. An Element of CA(24, 12, 4).

n = 2t0CAN(k − t0, t − t0). In each n × t0 submatrix of C, each t0-tuple must occur
exactly λ = CAN(k − t0, t − t0) times. That is, C is an n × k orthogonal array of
strength t0 having λ = CAN(k − t0, t − t0) and n = 2t0λ. This fact can be used in
conjunction with a bound for orthogonal arrays due to Friedman [38] in the binary case
(and generalized in Bierbrauer [6] for arbitrary v) to show that only the first two rows
of Table 1 end in an infinite sequence having each entry twice the preceding entry.

Bierbrauer-Friedman Bound (in the binary case): Suppose there is a binary n × k
orthogonal array of strength t. Then n ≥ 2k(1 − k

2(t+1)
).

For example, this bound shows that there is no binary 6 · 26 × 11 orthogonal ar-
ray of strength 6 (for which λ would be 6), so it follows from the remark above that
CAN(11, 8) > 6 · 26.

Kleitman and Spencer [50] derive two lower bounds on CAN. For the stronger of
these, they make use of the LBYM Inequality.

the electronic journal of combinatorics 18 (2011), #P84 11

The LBYM Inequality. Let H denote a family of subsets of S, no one containing
another, where |S| = m. For 0 ≤ j ≤ m, let hj denote the number of sets in H having
cardinality j. Then

m
∑

j=0

hj
(

m
j

) ≤ 1.

The name of the inequality honors its four independent discoverers. See the original
papers, Lubell [58], Bollobas [9], Yamamoto [84], and Meshalkin [62]; for the result and
extensions, see section 4 of [42], where it is called the LYM Inequality. (At least, at
the present time, only four discoverers are known to us! We obtained the reference to
[9], and the name, from [49]. It is an often-noted curious fact that it is not unusual
for mathematical results to have multiple discoverers, as is the case for the LBYM
Inequality, as well as for 3.2.1 and 3.2.2.)

The stronger bound of Kleitman and Spencer is as follows.

4.1.2. If a binary covering array with parameters n, k, and t exists, where n is a
multiple of 2t−1, then

(

k

t − 2

)

≤
(

n
n

2t−1 + 1

)

/(2t−3

(n
2t−2

n
2t−1 + 1

)

).

To establish this bound, they argue as follows. Let F denote a t-independent family
of k subsets of {1, . . . , n}. Let F ∗ denote the collection consisting of the elements of
F and their complements. Kleitman and Spencer show that if Bi (1 ≤ i ≤ t − 2)
are elements of F ∗ and if B1 ∩ · · · ∩ Bt−2 is of cardinality σ, then at least half of
the (⌊σ

2
⌋ + 1)-element subsets of this intersection are contained in no other element

of F ∗. Let H denote the collection of subsets H of {1, . . . , n} which are contained in
precisely t − 2 of the elements of F ∗, say, B1, . . . , Bt−2, and such that |H| = ⌊σ

2
⌋ + 1,

where σ = |B1 ∩ . . . ∩ Bt−2|. Clearly no set in H contains another. Let hi denote the
number of elements of H having cardinality i. Let xp denote the number of intersections
B1 ∩ · · · ∩ Bt−2 having cardinality p. One has h⌊p/2⌋+1 ≥ 1

2xp

(

p
⌊p/2⌋+1

)

. Therefore, by

the LBYM Inequality,

1 ≥
∑ 1

2
xp

(

p

⌊p/2⌋ + 1

)

/

(

n

⌊p/2⌋ + 1

)

.

Also,
∑

xp =

(

k

t − 2

)

2t−2

and
∑

pxp
∑

xp
=

n

2t−2
.

By linear programming the inequality of 4.1.2 follows.

the electronic journal of combinatorics 18 (2011), #P84 12

The other (weaker) bound of Kleitman and Spencer, given that a binary covering
array with parameters n, k, and t exists, is

(

k

t − 1

)

≤
⌊ n

2t−1 ⌋
∑

j=0

(

n

j

)

.

A comparable bound given under the same circumstance in problem P1.8(c) of Rényi’s
book is

k ≤ t − 2 +
1

2

(⌊n/2t−2⌋
⌊1

2⌊n/2t−2⌋⌋

)

.

Each of these can be used to obtain the fact that, for t fixed, there is a constant ct > 0
such that CAN(k, t) ≥ ct log2(k). The best (largest) such constant currently known is
obtained from 4.1.2. See 4.3.3.

4.2. Upper bounds on CAN. We include a brief discussion of the upper bounds of
Table 1.

Some of the earliest construction techniques for covering arrays are from Roux [70].
One such construction yields the following inequality, from which several of the upper
bounds for CAN(k, 3) are derived.

4.2.1. CAN(2k, 3) ≤ CAN(k, 3) + CAN(k, 2).
To see this, note that if A is a binary covering array in CA(n1, k, 2) and B ∈

CA(n2, k, 3) then
(

A A
B J − B

)

(where J is a matrix of 1’s) is an element of CA(n1 + n2, k, 3).
Sloane [75] has noted that an element of CA(16, 14, 3) can be obtained from a

Hadamard matrix of order 16, by removing two columns. Therefore, CAN(14, 3) and
CAN(13, 3) are bounded above by 16.

The upper bounds in the last two columns are consequences of work of Colbourn,
Kéri, Rivas Soriano, and Schlage-Puchta [30] and Torres-Jimenez and Rodriguez-Tello
[82]. Many of the relevant covering arrays were found by simulated annealing. These
bounds rather spectacularly improve upon those that appeared in an earlier version of
the table.

Upper bounds not in the range covered by the table result from examples produced
by various methods, many of which are discussed in Section 5.

4.3. The order of magnitude of CAN as a function of k. We would certainly like
to know the values of

ct = lim inf
(CAN(k, t)

log2 k

)

and

dt = lim sup
(CAN(k, t)

log2 k

)

.

the electronic journal of combinatorics 18 (2011), #P84 13

Positive lower bounds on the numbers ct and upper bounds on the dt’s were given by
Kleitman and Spencer, in [50]. With these numbers we have, for each t, as k goes to
infinity,

4.3.1. (ct − o(1)) log2(k) ≤ CAN(k, t) ≤ (dt + o(1)) log2(k)

and

4.3.2. 2(1
dt

−o(1))m ≤ CAK(m, t) ≤ 2(1
ct

+o(1))m ;

indeed, ct, dt are the “best possible” numbers satisfying this, in that if ct is replaced
by a larger number or if dt is replaced by a smaller number in the above, then the
appropriate inequality is no longer valid.

Below, expressions for the bounds for the ct’s and dt’s sometimes involve the “en-
tropy function” H(α). For α between 0 and 1, the entropy function H(α) is

H(α) = lim
m→∞

1

m
log2

(

m

⌊αm⌋

)

= −
(

α log2(α) + (1 − α) log2(1 − α)
)

.

We may write
(

m
⌊αm⌋

)

= 2m(H(α)+o(1)). For the genesis of the entropy function in

information theory and its use in combinatorics, see section 5 of Spencer [76].

For t > 2, as noted by Kleitman and Spencer [50], it is not known whether or not
ct and dt are equal, so there results the following problem.

Problem 2. Does limk→∞
CAN(k,t)

log2 k
exist?

The following inequality follows from 4.1.2.

4.3.3. ct ≥ t−2
H(1

2t−1)− 1

2t−2
.

These lower bounds on the ct’s from Kleitman-Spencer [50] haven’t been improved
upon.

4.3.4. Suppose the entries of an n × k matrix of 0’s and 1’s are chosen independently
with equal probabilities of 0 and 1. Then the probability that the matrix is not in
CA(n, k, t) is at most 2t

(

k
t

)

(1 − 1
2t)

n.

For a given t columns and a given t-tuple involving those columns, the probability
that the t-tuple fails to occur in those columns is (1 − 1

2t)
n. There are 2t such t-tuples

and
(

k
t

)

sets of t columns. The inequality follows from this. This argument, or the
equivalent counting argument, has been given many times, as in Section 5 of Hartman
[44], Kleitman and Spencer [50], and, perhaps first, in Nečiporuk [65].

the electronic journal of combinatorics 18 (2011), #P84 14

4.3.5. From 4.3.4 it follows that

CAN(k, t) ≤ t

log2

(

2t

2t−1

) log2(k)

and therefore that

dt ≤
t

log2

(

2t

2t−1

) .

Writing

log2(
2t

2t − 1
) =

1

loge 2
loge

1

1 − 1
2t

and expanding as an infinite series

1

loge 2
(

1

2t
+

1

2

1

22t
+

1

3

1

23t
+ · · ·),

we see that the upper bound given for dt is less than t2t loge 2, and this is a good
approximation for the given upper bound when t is large.

By restricting the choice of the columns of the matrix in the above argument to
have ⌊n

2 ⌋ 1’s, Roux [70] was able to improve the upper bound when t = 3.

4.3.6. d3 ≤ 4

4 − 2H(γ)− (2 − γ)H(1
2−γ

)
,

where γ = 1
2 (3 −

√
5).

This bound was also obtained in Graham, Harary, Livingston, and Stout [41].

Godbole, Skipper and Sunley [40] improved upon the upper bound for dt when
t > 3. They used a simple argument involving the Lovász Local Lemma (Erdős and
Lovász, [35]) enabling them to cut a factor of 1

t off of the previous bound.

4.3.7. dt ≤
t − 1

log2

(

2t

2t−1

) .

We describe the argument of [40].

The Symmetric Version of the Lovász Local Lemma. Let A1, . . . , Am be events
in a probability space such that Pr[Ai] ≤ p for each i. Suppose that each Ai is indepen-
dent of all but d of the others. If the product ep(d+1) is at most 1, then Pr[

⋃

i Ai] 6= 1
(where here e is the base of the natural logarithm, e ≈ 2.71828.)

Let Aj be the event that the j-th set of t columns fails to contain one of the 2t

t-tuples of 0’s and 1’s. The probability of this is at most 2t(1− 1
2t)

n; let p = 2t(1− 1
2t)

n.

the electronic journal of combinatorics 18 (2011), #P84 15

Also it is clear that any set of t of the columns is disjoint from
(

k−t
t

)

other such sets,

so we may take d =
(

k
t

)

−
(

k−t
t

)

− 1. Then it is not difficult to show that for n =
t−1

log2

(

2t

2t−1

) log2(k)(1 + o(1)), one has ep(d + 1) ≤ 1, so that the result follows by the

Lovász Local Lemma.

Table 3 contains decimal approximations for the best of the known lower bounds
for the ct’s and the upper bounds for the dt’s, when t ≤ 6, as given above in 4.3.3, 4.3.6,
and 4.3.7. The values (ct = dt = 1) for the case t = 2 are determined by 3.2.1.

t 2 3 4 5 6

ct 1 3.21 6.81 14.1 29
dt 1 7.6 32.2 87.3 220

Table 3. Bounds for the ct’s and dt’s.

4.4. The order of magnitude of CAN(s+t, t) as a function of t. We have seen that
CAN(k, t) is bounded by a constant multiple of log k when t is held constant. When
s = k − t is fixed, CAN(s + t, t) exhibits exponential growth, since CAN(s + t, t) ≥ 2t,
as in 3.1.1(c).

4.4.1. The sequence CAN(s,0)
2s , CAN(s+1,1)

2s+1 , CAN(s+2,2)
2s+2 , . . . is increasing and bounded

above by 1
s+1 .

The monotonicity here follows from 3.1.1(b). The upper bound is the binary case
of a result of Tang and Chen [79]. See the argument following 3.2.2. It would certainly
be nice to know the limit.

Problem 3. What is

lim
t→∞

CAN(s + t, t)

2s+t
?

We have no evidence that the answer is not 1/(s + 1); see also Problem 4, below.
Alon, Krech, and Szabó [4] study the maximum number p of colors in a coloring of

the vertices of the k-cube such that each s-face has at least one vertex of each color. Such
a coloring is called an s-polychromatic coloring. They show that as k goes to infinity,
p approaches 1

s+1 . They also show that for any p < 2s

2s there is an s-polychromatic

coloring of the k-cube with k ≈ 1
2
e2s/2sp. Consequently, for any ǫ > 0 and k ≤ 1

2
e2(1−ǫ)s

,
CAN(k, k − s) ≤ 2s

2ǫs 2k.

Define a function B(k, s, m) as follows:

B(k, s, m) =
∑

j≡mmod(s+1),

0≤j≤k

(

k

j

)

.

the electronic journal of combinatorics 18 (2011), #P84 16

Then B(k, s, m) gives the number of vectors in {0, 1}k for which the sum of the entries
is congruent to m modulo s + 1. For any m, the set of such vectors is an s-face
transversal. Therefore, CAN(s + t, t) ≤ B(s + t, s, m) for each m = 0, 1, . . . , s. We
denote the minimum by Bmin(k, s):

Bmin(k, s) = min
m

B(k, s, m).

It can be shown that it is achieved when m = ⌊k−s−1
2

⌋. This minimum has been studied
by Johnson, Grassl, McCanna, and Székely [47]. One has the following bound on values
of CAN.

4.4.2. For any s, t,
CAN(s + t, t) ≤ Bmin(s + t, s),

where, letting σ = 0 if t is even and σ = 1 if t is odd,

Bmin(k, s) =
2k

s + 1
+

2k+1

s + 1

⌊ s
2 ⌋

∑

j=1

(−1)j cosk+σ(
jπ

s + 1
).

For example, for s = 3, we get

Bmin(t + 3, 3) =

{

2t+1(1 − 2(
√

2
2)3+t) t odd,

2t+1(1 − 2(
√

2
2)4+t) t even.

These numbers may also be computed by the following recursive construction.
Start with the vector of binomial coefficients: X0 = (

(

s
0

)

,
(

s
1

)

, . . . ,
(

s
s

)

). Given Xj =
(x0, . . . , xs), let Xj+1 = (x0 + x1, x1 + x2, . . . , xs + x0). Then Bmin(k, s) is the mini-
mum of the entries of Xk−s. For example, to compute Bmin(9, 3), we have

X0 = (1, 3, 3, 1),

X1 = (4, 6, 4, 2),

X2 = (10, 10, 6, 6),

X3 = (20, 16, 12, 16),

X4 = (36, 28, 28, 36),

X5 = (64, 56, 64, 72),

X6 = (120, 120, 136, 136);

so Bmin(9, 3) is 120, the minimum entry in X6.

Problem 4. Does there exist, for each fixed s ≥ 1, an integer ts such that for t ≥ ts,
CAN(s + t, t) = Bmin(s + t, s)?

This question is open for s ≥ 3.

the electronic journal of combinatorics 18 (2011), #P84 17

5. Methods of Finding Covering Arrays.

In this section, we give a brief overview of computational methods for finding
covering arrays. Our interest is in the methods used. These methods include both
constructions and search techniques. For a recent survey of software making use of
many of these methods, see Grindal, Offutt, Andler [43]. Note that many of the papers
to which we refer concern more general situations than the case of binary covering arrays.
Most methods we discuss have been used primarily on cases in which the strength t is
small, for which relatively small covering arrays exist.

Given k and t, exhaustive search can be used to find n×k covering arrays of strength
t, with n as small as possible, and thereby to compute CAN(k, t). The method of Yan
and Zhang [85], which incorporated several techniques to speed up the search process,
found the covering array of Table 2. Another exhaustive search method, presented in the
recent paper of Bracho-Rios, Torres-Jimenez, and Rodriguez-Tello [13], uses branch-and-
bound techniques and has yielded good results. However, exhaustive search techniques
become impractical for finding n × k covering arrays, even when k is still quite small.
Therefore methods which produce small but not necessarily smallest covering arrays
become desirable. We report on several such methods in what follows. It is difficult to
judge with any accuracy how close these methods come to actually producing covering
arrays of smallest size. Indeed Nayeri, Colbourn, and Konjevod [64] report good results
with a method which starts with small covering arrays determined by various methods
and attempts to produce smaller covering arrays having the same number of columns
by changing a few values in order to make possible the elimination of some of the rows.

5.1. Incremental construction methods. Various methods for building up an array
a little at a time have been tried. Sherwood [73] used the following approach. The
covering array is constructed one row at a time by choosing at each iteration a row
which maximizes the number of previously uncovered t-tuples that are covered. Using
4.3.4, this technique can be shown to produce covering arrays for which the number of
rows satisfies the bound of 4.3.5. The iterative step, finding a row that maximizes the
number of newly covered t-tuples, appears to be computationally difficult; indeed, it is
NP-hard; see Problem H in Section 6. Therefore, although this method is useful well
beyond the range of usefulness of exhaustive search, it is practical only when k is fairly
small.

Another method, described in Cohen, Dalal, Fredman, and Patton [25], also finds
covering arrays one row at a time, but circumvents the difficulty of finding the mini-
mizing row by using a heuristic greedy technique with randomness to choose the new
row. Because it uses a heuristic to find the new row, it can’t be guaranteed to produce
arrays for which the number of rows is within the bound of 4.3.5. However it can pro-
duce covering arrays for somewhat larger values of k for which the number of rows is
comparatively small.

Instead of adding one row at a time, Lei and Tai [56], [78] suggest beginning with a
covering array with fewer columns and at each iteration performing two steps to achieve
a covering array with an additional column. In the first step a new column is added.
The column is chosen to maximize the number of new t-tuples covered. (In the t = 2

the electronic journal of combinatorics 18 (2011), #P84 18

case originally considered, this is done by an effective polynomial-time procedure.) In
the second step, rows are added as necessary to complete the coverage, obtaining a
new covering array having one more column. The original algorithm was described for
pairwise coverage (t = 2). The general case is considered in Lei, Kacker, Kuhn, Okun,
Lawrence [55] and Forbes, Lawrence, Lei, Kacker, Kuhn [36]. As was the case for the
previous method, there is no guarantee that the covering array produced will have a
number of rows within the bound of 4.3.5, but it can produce covering arrays for k fairly
large in which the number of rows is comparatively small.

5.2. Heuristic search techniques. Various heuristic search techniques have been
tried for the problem of finding small covering arrays.

Nurmela [66] uses tabu search to attempt to find covering arrays in CA(n, k, t).
Tabu search is a heuristic search technique in which a tabu list is used to avoid cycling
and broaden the searched region. In Nurmela’s setup, the search space is the set of
n× k matrices of 0’s and 1’s and the cost function is the number of uncovered t-tuples.
A move consists of changing precisely one entry in such a way as to cover a specified
uncovered t-tuple. (In the initial stage this may not be possible, in which case several
changes are made.) The tabu list contains the last T entries that have been changed,
so that changing any of these is disallowed. The move is chosen randomly from those
that achieve the minimum cost that are not on the tabu list. Values of T in the range
1, . . . , 10 were found to be useful. Nurmela’s covering arrays can be found at the website,
[67]. For another use of tabu search for covering arrays, see Walker and Colbourn [83].

Simulated annealing is a heuristic search technique modeled in analogy to the an-
nealing process for solids as studied in statistical mechanics. It involves a cost function
defined on the search space of feasible solutions, a method of producing neighbors of a
given feasible solution, and a current temperature τ , which is reduced as the method
progresses, until an equilibrium situation results. At each stage, a neighboring solution
to the current solution is produced at random. It immediately replaces the current
solution provided that its cost is lower. If its cost is higher, the following process is used
to decide whether or not the neighboring solution will replace the current solution. A
number δ is chosen at random uniformly from the interval [0, 1]. If δ ≤ e−∆/τ , where ∆
is the increase in the value of the cost function, then the neighboring solution becomes
the current solution. This is known as Metropolis’s criterion. The function e−∆/τ is
analogous to Boltzmann’s probability of statistical mechanics.

Simulated annealing for covering arrays has been studied in Cohen, Colbourn, Gib-
bons, and Mugridge [23], where the cost function was the number of uncovered t-tuples
and the temperature τ was decreased by a constant factor near 1 at each iteration. In
Cohen, Colbourn, and Ling [24], this approach was used in combination with a con-
struction technique. More recently, Torres-Jimenez and Rodriguez-Tello [82] have used
simulated annealing, successfully determining a number of binary covering arrays of
strengths t = 3 to 5. In [69], the same authors studied a memetic algorithm built upon
their work with simulated annealing and enlisted this algorithm in the search for cov-
ering arrays. Memetic algorithms perform heuristic searches using rules based loosely
upon evolutionary theory.

the electronic journal of combinatorics 18 (2011), #P84 19

Several other heuristic search techniques, including hill climbing, ant crawl, great
flood, and genetic algorithms have been tried. See [43] for references.

Incidentally we note that, motivated by the difficulties involved in verifying that
large arrays are covering arrays, Avila-George, Torres-Jimenez, Hernandez, and Rangel-
Valdez [2] introduce an algorithm utilizing grid computing to do this.

5.3. Methods using codes and similar constructions. The first constructive
method which, for fixed t, produced n×k covering arrays of strength t with n bounded
by a constant multiple of log k was obtained by Alon in [1] utilizing error-correcting
codes. This solved a problem of Kleitman and Spencer [50]. Although the constant was
sufficiently large to make his arrays impractical for applications, Alon’s method is the
prototype for the use of perfect hash functions. (See below.)

Sloane [75], also using codes, concentrated on the binary, strength 3 case. An
(m, d, k) binary code is a matrix of size m× k having entries from {0, 1} such that each
pair of rows disagree in at least d entries. The code is called intersecting if each pair
of rows have the common value 1 in at least one entry. Intersecting codes are closely
related to covering arrays of strength three. Sloane showed (Theorem 3 of [75]) that,
given a binary intersecting code, one obtains a covering array of strength 3 by adding
a row consisting of 0’s and a row consisting of 1’s. The paper [75] also announces
a polynomial-complexity algorithm for constructing binary n × k covering arrays of
strength 3 having n bounded by about 12.3 log2(k). This is asymptotically a smaller
value of n than is currently achieved by other known methods; the coefficient 12.3 is
larger than Roux’s bound d3 ≤ 7.6 of Table 3, but smaller than the Kleitman-Spencer
bound d3 ≤ 15.6 of 4.3.5.

Roux’s result 4.2.1 by itself is a practical method for constructing arrays of strength
3 which yields small arrays when k is not large, as we have noted above in Section 4.2.
In general this method yields covering arrays for which n exceeds that produced by
Sloane’s method, being asymptotic to 1

2 (log2(k))2. Recall that, given an n1×k covering
array of strength 3 and an n2 × k covering array of strength 2, Roux’s construction
yields an n × 2k covering array of strength 3, where n = n1 + n2. We know that
CAN(k, 2) ≈ log2(k), so if f(k) denotes the size of the best covering array produced by
recursive use of this method, then f(2k) ≈ f(k) + log2(k). From this it follows that,
with k = 2ℓ, f(k) ≈ (ℓ− 1) + (ℓ− 2) + · · ·+ 1 =

(

ℓ
2

)

, so that f(k) ≈ 1
2
(log2 k)2 for large

k.

A matrix of size r × s having entries from a set of m symbols is called perfectly
t-hashing, where t ≤ s, if for every set of t columns there is a row in which the t entries
are distinct. Viewing each row as determining a function from the set {1, . . . , s} to the
set of m symbols, the condition is that for each subset T of {1, . . . , s} of cardinality t, the
restriction of one of the functions to T is injective. If A is an n1×N perfectly t-hashing
array with entries from an m-element set S and B is an n2×m binary covering array of
strength t whose columns correspond to the elements of S then the n1n2 × N array C
obtained from A by replacing each symbol by the corresponding column of B is a binary
covering array of strength t. Perfect hash families derived from error-correcting codes
have been used in this way by many authors. See, for example, Cohen and Zémor [26].

the electronic journal of combinatorics 18 (2011), #P84 20

In Matirosyan and Trung [60], use of perfect hash families yields an improvement over
a bound of Godbole, Skipper, and Sunley [40] of which 4.3.7 is the (binary) case v = 2,
when v > 2. Recently, matrices satisfying somewhat weaker conditions than those
required by the property of perfectly t-hashing have been found useful in constructing
covering arrays. Colbourn and Torres-Jimenez [32] have considered generalizations in
which rows of the matrix can have entries from sets of different sizes, and have derived
covering arrays (including many in the binary case) that improve upon the sizes of
previously-known arrays.

Much work was motivated by Naor and Naor [63] which in Proposition 8.1 noted
that k-wise δ-independent probability spaces yield binary covering arrays strength t,
when δ is at most 2−t. Alon, Bruck, Naor, Naor, and Roth [3] applied expander graphs
to this problem. See also Bierbrauer and Schellwat [8].

The “squaring construction,” theorem 7.4 of Hartman [44], is based upon a con-
struction involving Turán’s theorem of graph theory. Given a binary covering array of
strength t having k columns and n rows (an element of CA(n, k, t)), it yields an element

of CA(qn, k2, t), where q = ⌊ t2

4 ⌋ + 1.
Colbourn, Martirosyan, Trung, and Walker [31] give many recursive constructions.

See the survey [27], where Colbourn describes many more construction methods.
Sherwood, Martirosyan, and Colbourn [74] describe a condition that determines

whether or not a matrix consisting of permutations of the vectors in a finite field is a
covering array. They make use of this condition and perfect hash families to produce
covering arrays of strengths t = 3, 4. Walker and Colbourn [74] use permutation vectors
together with tabu search to find covering arrays.

Colbourn and Kéri [29] study the relationship between binary covering arrays and
existentially closed graphs. A t-existentially closed graph is a graph such that, whenever
sets A, B form a partition of a set of t vertices of the graph, there is a vertex v not in
A∪B such that each vertex in A is adjacent to v, while no vertex of B is adjacent to v.
The adjacency matrix of a t-existentially closed graph with k vertices is an element of
CA(k, k, t). Several constructions of t-existentially closed graphs are noted. They also
introduce a bipartite analogue of this notion which relates in a similar way to elements
of CA(n, k, t), where n need not equal k.

5.4. Probabilistic methods and derandomization. For any fixed p (0 < p ≤ 1),
letting n be an integer larger than (t(1+ log2(k))+ log2(1/p))/ log2(2

t/(2t −1)), choose
the entries of an n× k array C by coin flipping. Then, using 4.3.4, the probability that
C is a covering array of strength t is more than 1 − p.

This idea can be used, one-row-at-a-time. Let D be an arbitrary set of t-tuples,
which perhaps could be the set of t-tuples which remain uncovered thus far, and let x
be an element of {0, 1}k, chosen “at random, by coin-flipping.” Each t-tuple of D is
covered by exactly 2k−t such tests x, so the probability that such a t-tuple is covered
by x is 2−t. Therefore, the expected number of t-tuples covered by x is |D|/2t. This
implies that there certainly exist tests x which cover at least |D|/2t elements of D. If a
reasonable method of choosing such a test x is devised, then, starting with D consisting
of all the t-tuples, of which there are

(

k
t

)

2t, the cardinality of the uncovered t-tuples

the electronic journal of combinatorics 18 (2011), #P84 21

is multiplied by a factor of 1 − 1
2t at each step, and is reduced to less than one (and

therefore to zero) in no more than t(log2(k) + 1)/ log2((2
t + 1)/2t) steps.

The parallelizable method described in Kuhn [52] relies on this probability bound;
it chooses a number of possible choices for the next test, from among which the best
candidate is chosen. The possible choices are selected by use of a random number
generator augmented by a method of “modular incrementing” to get additional tests at
little computational cost.

Bryce and Colbourn [14] have devised a deterministic algorithm that produces
covering arrays which achieve the Kleitman-Spencer bound 4.3.5 on CAN(k, t). This
method is of polynomial complexity, for t fixed. It is described in the v-valued, strength
t = 2 case in [14], and in [15] for higher strengths. Suppose that we are producing the
covering array as above, so that D is the set of thus-far uncovered t-tuples. We wish
to choose a new test that covers many t-tuples from D. We would certainly like to do
as well as one would “expect” to do by picking the entries at random; and it is indeed
possible to do this deterministically. Consider the experiment of choosing a random
test T . Let X denote the random variable that gives the number of tuples of D left
uncovered by T . Given a partly-filled-in test T ′, let E(X |T ′) denote the conditional
expectation of X given that the chosen test T extends T ′. If T ′ is the test having no
entries, then this conditional expectation is the number of the Kleitman–Spencer bound;
if T ′ is a complete test, then there is no randomness left, and the number is simply the
number of tuples of D which remain uncovered. Given any partially-filled-in test T ′

and entry T ′(i) as yet undetermined, we consider extending the test. We can extend
the test either by choosing 0 for the new value (call the result T0) or by choosing 1 (call
this T1). Then E(X |T ′) = 1

2
E(X |T0)+ 1

2
E(X |T1), so one of the two latter expectations

is at most as large as E(X |T ′). Therefore it is possible to choose a value for T ′(i) that
does not increase the expected value. Letting T ′′ denote the extension, T0 or T1, that
achieves this, we have E(X |T ′′) ≤ E(X |T ′).

It follows that if we start with the partial test with no entries, we can fill in the
entries one-at-a-time, in any order, while never increasing this expected value; and in
the end, we have a covering array satisfying the Kleitman-Spencer bound. Since it is not
difficult to compute this expected value, this is a feasible approach. In actual practice,
the expected values decrease, so that the result is usually a covering array of strictly
smaller size than the smallest guaranteed by 4.3.5.

It would be nice to have a similar method which could provably achieve the stronger
bound 4.3.7 of Godbole, Skipper, and Sunley [40]. This might involve the determination
of a method to “derandomize” the use of the Lovász Local Lemma.

Problem 5. Find a deterministic algorithm which provably finds covering arrays for
which the number of rows satisfies the Godbole, Skipper, Sunley bound and which runs
with polynomial complexity.

the electronic journal of combinatorics 18 (2011), #P84 22

6. Computational Complexity.

In this section we describe several decision problems related to the production
of “small” covering arrays. The computational complexity for each problem is briefly
discussed. We do not attempt to survey the computational complexity of the many pub-
lished methods for finding covering arrays. The main objective is to correct a prevalent
misconception concerning complexity and covering arrays.

Many articles contain statements of the form “Determining CAN(k, t) is NP-
complete” and “Determining the smallest n for which there exists a v-valued, pairwise
(strength t = 2) covering array with k columns and n rows is NP-complete,” either
without reference or referring to [72] or [56]. In fact, Seroussi and Bshouty [72] prove
the NP-completeness of a more general decision problem - see Problem G, below. Also,
in [56] it is stated that “the problem of generating a minimum test set for pairwise
testing is NP-complete”; however the proof of this is erroneous, since the “pair-cover
problem” as described in that paper fails to match up correctly with the problem of
finding strength t = 2 covering arrays. These problems of determining NP-completeness
seem to be open.

Problem A.
INPUT: Positive integers n, k, t with t ≤ k. (The input requires O(log2(nkt))
space.)
OUTPUT: “Yes” if CA(n, k, t) 6= ∅; “No” otherwise.

It is not known whether or not an algorithm of polynomial complexity exists for the
problem. It is not known whether or not the problem is in NP. Exhibiting an element
of CA(n, k, t) requires exponential time/space; the number of entries in such a matrix
is not bounded by a polynomial in the input size, log2(nkt). For this reason, the next
problem may be of more interest.

Problem B. (The “unary” version of the preceding.)
INPUT: The numbers n, k, t in unary notation; equivalently for our purposes, an
n × k matrix of 0’s.
OUTPUT: “Yes” if CA(n, k, t) 6= ∅; “No” otherwise.

This problem is in the class NP: If CA(n, k, t) 6= ∅ then an element C in this set confirms
this. It is not known whether or not there is an algorithm of polynomial complexity, or
whether or not this problem is NP-complete.

The situation is the same for the versions of the above in which t > 2 is fixed. In
particular, for t = 3, we have the following two problems.

Problem C.
INPUT: Positive integers n, k.
OUTPUT: “Yes” if CA(n, k, 3) 6= ∅; “No” otherwise.

(For complexity comments, see Problem A.)

Problem D.
INPUT: Positive integers n, k, given in unary notation.

the electronic journal of combinatorics 18 (2011), #P84 23

OUTPUT: “Yes” if CA(n, k, 3) 6= ∅; “No” otherwise.

(For complexity comments, see Problem B.)

In the non-unary case, one might ask if there is a good algorithm to determine
whether or not CAN(k, t) lies in a given range. In this regard we include the following
two problems.

Problem E.

INPUT: Positive integers k, t with t ≤ k.

OUTPUT: “Yes” if CA(n, k, t) 6= ∅, where n =
⌊ t log2 k

log2

(

2t

2t−1

)

⌋

; “No” otherwise.

The algorithm is easy: The output is always “Yes,” according to 4.3.5. The algorithm
of Bryce and Colbourn [14] described in section 5.4 yields such a covering array in time
polynomial in k + t. (Of course, no algorithm could produce, in the sense of filling in
the entries, such a covering array in time polynomial in log2(kt), since the number of
entries in such an array is not bounded by a polynomial in log2(kt).)

Problem F.

INPUT: Positive integers k, t with t ≤ k.

OUTPUT: “Yes” if CA(n, k, t) 6= ∅, where n =
⌊ (t−1) log2 k

log2

(

2t

2t−1

)

⌋

; “No” otherwise.

This time the output should be “Yes,” when k is large enough (for fixed t), according
to 4.3.7; however, no algorithm is known which produces a covering array of the given
size in time polynomial in k + t.

The following problem is considered in Seroussi and Bshouty [72].

Problem G. (Problem TS(n, t) of [72].)

INPUT: A positive integer k and a list (R1, . . . , Rw) of subsets of {1, . . . , k}, each
having cardinality t. (The integers n and t are fixed, with t ≥ 1, n ≥ 2t.

OUTPUT: “Yes” if there exists a set S ⊆ {0, 1}k of cardinality at most n such
that the projection πRj

(S) of S to the coordinates represented by Rj equals {0, 1}t

(surjective), for each j.

The problem TS(2t, t) is NP -complete, for each t ≥ 2: It is shown in [72] that the
problem is in the class NP ; that the 3-coloring problem of graph theory is equivalent
to TS(4, 2); and that the problem TS(4, 2) reduces to TS(2t, t), for each t > 2.

For recent progress on a further generalized version of Problem G, see Cheng [22].

Finally, the following concerns a sub-problem which arises in algorithms for con-
structing covering arrays one-row-at-a-time.

Problem H.

INPUT: Positive integers m, t and an n × k matrix A with entries in {0, 1}.
OUTPUT: “Yes,” if it is possible to extend A by one row and cover at least m
t-tuples not originally covered.

This problem is NP-complete. See Colbourn, [27].

the electronic journal of combinatorics 18 (2011), #P84 24

7. Notes and Acknowledgments.

We have restricted our attention to the binary case. Much research has been done
on generalizations involving v-valued arrays, and on (v1, . . . , vk)-valued arrays. Such
work has largely been omitted from the present report.

Other more general questions are possible as well, even in the binary case. We
mention a couple of these.

If, instead of requiring that in each set of t columns of the array all of the possible
2t vectors occur (at least once), we insist that they occur at least λ times, we might
ask for the minimum number of rows of such an array. This question was considered by
Frankl in [37]. See Katona [49] for recent results, and Bulutoglu and Margot [17] for an
even more recent use of integer programming techniques on such problems.

Meagher and Stevens [61] have considered the following question. A graph G having
as its vertices the columns of the array is given, and it is required that for each pair of
adjacent (in the graph) columns, all of the four possible 0-1 patterns appear. Given G,
what is the smallest possible number of rows in such an array? Clearly it is not more
than CAN(k, 2), and it is shown in [61] that strict inequality is possible.

Colbourn, Kéri, Rivas Soriano, and Schlage-Puchta [30] have introduced the notion
of a radius covering array. The definition (in the binary case) involves, in addition to
n, k, and t, a parameter r < t, and for each t-tuple, it is required that there exist a row
of the array that agrees with that t-tuple in all but r entries. For r = 0 this reduces
to the standard definition of a covering array. They give several methods to construct
such arrays and describe results of their use.

We greatly appreciated comments on a prior version of this paper by Charles Col-
bourn and Renée Bryce. The current version also benefited from several very helpful
reports by referees, as well as from a conversation with Noga Alon about covering arrays.

References.

[1] N. Alon, Explicit construction of exponential-sized families of k-independent sets.
Discret. Math. 58 (1986), 191–193.

[2] H. Avila-George, J. Torres-Jimenez, V. Hernandez, and N. Rangel-Valdez, Verifica-
tion of general and cyclic covering arrays using grid computing. Data Management
in Grid and Peer-to-Peer Systems, Third International Conference, Globe 2010.

[3] N. Alon, J. Bruck, J. Naor, M. Naor, and R. Roth, Construction of asymptotically
good, low-rate error-correcting codes through random graphs. IEEE Trans. on Inf.
Theory 38 (1992), 509–516.

[4] N. Alon, A. Krech, and T. Szabó, Turàn’s theorem in the hypercube. SIAM J.
Discret. Math. 21 (2007), 66–72.

[5] B. Becker and H. U. Simon, How robust is the n–cube? Inform. and Comput. 77

(1988), 162–178.

[6] J. Bierbrauer, Bounds on orthogonal arrays and resilient functions. J. Comb. Des.
3 (1995), 179–183.

the electronic journal of combinatorics 18 (2011), #P84 25

[7] J. Bierbrauer and H. Schellwat, Almost independent and weakly biased arrays:
efficient constructions and cryptologic applications. Adv. in Cryptol., CRYPTO
2000, Lect. Notes in Comput. Sci. (2000), 533–543.

[8] J. Bierbrauer and H. Schellwat, Weakly biased arrays, almost independent arrays,
and error-correcting codes. Codes and Association Schemes (Piscataway, NJ, 1999),
33–46, DIMACS Ser. Discret. Math. Theor. Comput. Sci., 56, Amer. Math.
Soc., Providence, RI, 2001.

[9] B. Bollobas, On generalized graphs. Acta Math. Hung. 16 (1965), 447–452.

[10] B. Bollobas, Sperner systems consisting of pairs of complementary subsets. J. Comb.
Theory A 15 (1973), 363–366.

[11] S. Y. Boroday and I. S. Grunskii, Recursive generation of locally complete tests.
Cybern. and Syst. Anal. 28 (1992), 20–25.

[12] A. Brace and D. E. Daykin, Sperner type theorems for finite sets. In Combinatorics
(Proc. Conf. on Comb. Math.), ed. D. J. A. Welsh and D. R. Woodall, Oxford,
1972, 18–37.

[13] J. Bracho-Rios, J. Torres-Jimenez, and E. Rodriguez-Tello, A new backtracking
algorithm for constructing binary covering arrays of variable strength. MICAI 2009:
Advances in Artificial Intelligence, Lect. Notes in Comput. Sci. 5845 (2009), 397–
407.

[14] R. C. Bryce and C. J. Colbourn, The density algorithm for pairwise interaction
testing. J. Softw. Test., Verification, and Reliab. 17 (2007), 159–182.

[15] R. C. Bryce and C. J. Colbourn, A density-based greedy algorithm for higher
strength covering arrays. J. Softw. Test., Verification, and Reliab. 19 (2009), 37–
53.

[16] R. C. Bryce, A. Rajan, and M. P. E. Heimdahl, Interaction testing in model-based
development: effect on model coverage. Proc. of Thirteenth Asia-Pacific Softw. Eng.
Conf., Bangalore, India (APSEC ’06) (2006), 258–269.

[17] D. A. Bulutoglu and F. Margot, Classification of orthogonal arrays by integer pro-
gramming. J. Stat. Plan. and Inference 138 (2008), 654–666.

[18] K. Burr and W. Young, Combinatorial test techniques: table-based automation,
test generation, and code coverage. Proc. of the Int. Conf. on Softw. Test. Anal.
and Rev., October 1998, 503–513.

[19] P. Busschbach, Constructive methods to solve the problems of s-surjectivity, conflict
resolution, coding in defective memories. Report 84D005, École Nationale Supér.
Télécomm., Paris, 1984.

[20] A. K. Chandra, L. T. Kou, G. Markowsky, and S. Zaks, On sets of Boolean n–
vectors with all k-projections surjective. Acta Inform. 20 (1983), 103–111.

[21] M. A. Chateauneuf and D. L. Kreher, On the state of strength-three covering arrays.
J. Comb. Des. 10 (2002), 217-238.

the electronic journal of combinatorics 18 (2011), #P84 26

[22] C Cheng, The test suite generation problem: optimal instances and their implica-
tions. Discret. Appl. Math. 155 (2007), 1943–1957.

[23] M. B. Cohen, C. J. Colbourn, P. B. Gibbons, and W. B. Mugridge, Constructing
test suites for interaction testing. In Proc. of Int. Conf. on Softw. Eng. (ICSE 2003),
Portland, Oregon, May, 2003, 38–49.

[24] M. B. Cohen, C. J. Colbourn, and A. C. H. Ling, Constructing strength three
covering arrays with augmented annealing. Discret. Math. 308 (2008), 2709–2722.

[25] D. M. Cohen, S. R. Dalal, M. L. Fredman, and G. C. Patton, The AETG system:
an approach to testing based on combinatorial design. IEEE Trans. on Softw. Eng.
24 (1997), 437–444.

[26] G. D. Cohen and G. Zémor, Intersecting codes and independent families. IEEE
Trans. on Inf. Theory 40 (1994), 1769–1780.

[27] C. J. Colbourn, Combinatorial aspects of covering arrays. Le Matematiche (Cata-
nia) 59 no. 1-2 (2004), 125–172.

[28] C. Colbourn, CA tables for t = 2, 3, 4, 5, 6.
http://www.public.asu.edu/ccolbou/src/tabby/catable.html .

[29] C. J. Colbourn and G. Kéri, Binary covering arrays and existentially closed graphs.
Lect. Notes in Comput. Sci. 5557 (2009), Coding and Cryptography, 22–33.

[30] C. J. Colbourn, G. Kéri, P. P. Rivas Soriano, and J.-C. Schlage-Puchta, Cover-
ing and radius-covering arrays: construction and classification. Discrete Applied
Mathematics 158 (2010), 1158–1180.

[31] C. J. Colbourn, S. S. Martirosyan, T. V. Trung, and R. A. Walker, II, Roux-
type constructions for covering arrays of strengths three and four. Des., Codes and
Cryptogr. 41 (2006), 33–57.

[32] C. Colbourn and J. Torres-Jimenez, Heterogeneous hash families and covering ar-
rays. Contemporary Mathematics 523 (2010), 3–15.

[33] S. Dunietz, W. K. Ehrlich, B. D. Szablak, C. L. Mallows, and A. Iannino. Applying
design of experiments to software testing. Proc. Int. Conf. on Soft. Eng. (ICSE ’97)
October 1997, 205–215.

[34] P. Erdős, C. Ko, and R. Rado, Intersection theorems for systems of finite sets. Q.
J. Math. Oxf. Ser. (2), 12 (1961), 313–318.

[35] P. Erdős and L. Lovász, Problems and results on 3-chromatic hypergraphs and
some related questions. In Infinite and Finite Sets, ed. A. Hajnal, et al., Colloq.
Math. Soc. J. Bolyai 11, North Holland, 1975.

[36] M. Forbes, J. Lawrence, Y. Lei, R. Kacker, and R. Kuhn, Refining the In-Parameter-
Order strategy for constructing covering arrays. NIST J. Res. 113 (2008), no 5,
287–297.

[37] P. Frankl, An extremal problem of coding type. Ars Comb. 1, (1976) 53–55.

[38] J. Friedman, On the bit extraction problem. In 33rd IEEE Symposium on the
Foundations of Computer Science, 1992, 314–319.

the electronic journal of combinatorics 18 (2011), #P84 27

[39] S. Gal, Rendezvous search on a line. Oper. Res. 47 (1999), 974–976.

[40] A. P. Godbole, D. E. Skipper, and R. A. Sunley, t-covering arrays: upper bounds
and Poisson approximations. Comb., Probab., and Comput. 5 (1996), 105–117.

[41] N. Graham, F. Harary, M. Livingston, Q. F. Stout, Subcube fault-tolerance in
hypercubes. Inf. and Comput. 102 (1993), no. 2, 280–314.

[42] C. Greene and D. J. Kleitman, Proof techniques in the theory of finite sets. In MAA
Stud. in Math., vol. 17, Stud. in Comb., ed. G.-C. Rota, Math. Assoc. of America,
1978, pp. 22–79.

[43] M. Grindal, J. Offutt, and S. F. Andler, Combination testing strategies: a survey.
J. Softw. Test., Verification, and Reliab. 15 (2005), 167–199.

[44] A. Hartman, Software and hardware testing using combinatorial covering suites. In
Graph Theory, Combinatorics and Algorithms: Interdisciplinary Applications, eds.
M. C. Golumbic and I. B. Hartman, Springer, 2005, pp. 237–266.

[45] A. S. Hedayat, N. J. A. Sloane, J. Stufken, Orthogonal Arrays, Theory and Appli-
cations. Springer, 1999.

[46] K. A. Johnson and R. Entringer, Largest induced subgraphs of the n-cube that
contain no 4-cycle, J. Comb. Theory, B 46 (1989), 346–355.

[47] K. A. Johnson, R. Grassl, J. McCanna, and L. A. Székely, Pascalian rectangles
module n, Quaest. Math. 14 (1991), 383–400.

[48] G. O. H. Katona, Two applications (for search theory and truth functions) of
Sperner type theorems. Periodi. Math. Hung. 3 (1973), 19–26.

[49] G. O. H. Katona, Strong qualitative independence. Discret. Appl. Math. 137(2004),
87–95.

[50] D. J. Kleitman and J. Spencer, Families of k-independent sets, Discret. Math. 6

(1973), 255-262.

[51] E. A. Kostočka, Piercing the edges of the n-dimensional unit cube. (Russian.)
Diskret. Analyz. Vyp. 28 Metody Diskretnogo Analiza v Teorii Grafov i Logiceskih
Funcii (1976), 55–64, 79.

[52] D. R. Kuhn, An algorithm for generating very large covering arrays. NISTIR 7308
(2006); available at:
http://nvl.nist.gov/pub/nistpubs/ir/2006/ir7308.pdf.

[53] D. R. Kuhn and M. Reilly, An investigation of the applicability of design of exper-
iments to software testing. Proc. 27th Annu. NASA Goddard/IEEE Softw. Eng.
Workshop, October 2002, 91–95.

[54] D. R. Kuhn, D. Wallace, and A. Gallo, Software fault interactions and implications
for software testing. 14-th IEEE Int. Conf. and Workshop on the Eng. of Computer-
based Syst., 2007.

[55] Y. Lei, R. Kacker, R. Kuhn, V. Okun, and J. Lawrence, IPOG: a general strategy
for t-way software testing. Proc. of the 14-th Annu. IEEE Int. Conf. on the Eng.
of Computer-based Syst., 2007.

the electronic journal of combinatorics 18 (2011), #P84 28

[56] Y. Lei and K. C. Tai, In–parameter order: A test generation strategy for pairwise
testing. In Proc. Third IEEE High Assurance Syst. Eng. Symp., 1998, 254–261.

[57] W. S. Lim and S. Alpern, Minimax rendezvous on the line. SIAM J. Control and
Optim. 34 (1996), 1650–1665.

[58] D. Lubell, A short proof of Sperner’s theorem. J. Comb. Theory 1 (1966), 299.

[59] E. Marczewski, Indépendance d’ensembles et prolongement de mesures. Colloq.
Math. 1 (1948), 122–132.

[60] S. Martirosyan and T. van Trung, On t-covering arrays. Des., Codes and Cryptogr.
32 (2004), 323–339.

[61] K. Meagher and B. Stevens, Covering arrays on graphs. J. Comb. Theory B 95

(2005), 131–151.

[62] L. D. Meshalkin, A generalization of Sperner’s theorem on the number of subsets
of a finite set. Theor. Probab. Appl. 8 (1963), 203-204.

[63] J. Naor and M. Naor, Small bias probability spaces: efficient constructions and
applications. SIAM J. Comput. 22 (1993), 838–856.

[64] P. Nayeri, C. J. Colbourn, and G. Konjevod, Randomized postoptimization of cov-
ering arrays. Proc. Int. Workshop on Comb. Algorithms (IWOCA2009), Lect. Notes
in Comput. Sci. 5874 (2009), 408–419.

[65] É. I. Nečiporuk, Complexity of gating circuits which are realized by Boolean matri-
ces with undetermined elements (Russian). Dokl. Akad. Nauk SSSR, 163 (1965),
44–42. Translated in Sov. Phys. - Dokl., Cybern. and Control Theory 10 (1966),
591–593.

[66] K. Nurmela. Upper bounds for covering arrays by tabu search. Discret. Appl. Math.
138 (2004), 143–152.

[67] K. Nurmela, Upper bounds for covering arrays by tabu search (webpage):
http://www.tcs.hut.fi/∼kjnu/covarr.html.

[68] A. Rényi, Foundations of Probability, Holden-Day, 1970.

[69] E. Rodriguez-Tello and J. Torres-Jimenez, Memetic algorithms for constructing
binary covering arrays of strength three. LNCS 5975, pp. 86-97, 2010

[70] G. Roux, k–proprietes dans les tableaux de n colonnes: cas particulier de la k–
surjectivite et de la k–permutivite, Ph.D. Thesis, Universite de Paris, 1987.

[71] J. Schönheim, On a problem of Purdy related to Sperner systems. Can. Math. Bull.
17 (1974), 135–136.

[72] G. Seroussi, N. H. Bshouty, Vector sets for exhaustive testing of logic circuits. IEEE
Trans. on Inf. Theory, 34 (1988), 513–522.

[73] G. Sherwood, Effective testing of factor combinations. In Proc. of the Third Int.
Conf. on Softw. Test., Anal., and Rev. (STAR94), Washington, D.C., Software
Quality Eng., 1994.

[74] G. B. Sherwood, S. S. Martirosyan, and C. J. Colbourn, Covering arrays of higher
strength from permutation vectors. J. Comb. Des. 14 (2006), 202–213.

the electronic journal of combinatorics 18 (2011), #P84 29

[75] N. J. A. Sloane, Covering arrays and intersecting codes. J. Comb. Des. 1 (1993),
no. 1, 51–63.

[76] J. Spencer, Nonconstructive methods in discrete mathematics. In MAA Stud. in
Math., vol. 17, Stud. in Comb., ed. G.-C. Rota, Math. Assoc. of America, 1978,
pp. 142–178.

[77] E. Sperner, Ein Satz über Untermenge einer endlichen Menge. Math. Z. 27 (1928),
544–548.

[78] K. C. Tai and Y. Lei, A test generation strategy for pairwise testing. IEEE Trans.
on Softw. Eng. 28 (2002), 109–111.

[79] D. T. Tang and C. L. Chen, Iterative exhaustive pattern generation for logic testing.
IBM J. Res. Dev. 28 (1984), 212–219.

[80] D. T. Tang and L. S. Woo, Exhaustive test pattern generation with constant weight
vectors. IEEE Trans. Comput. 32 (1983), 1145–1150.

[81] J. Torres-Jimenez, home page, with link to covering array repository:
http://www.tamps.cinvestav.mx/∼jtj.

[82] J. Torres-Jimenez and E. Rodriguez-Tello, Simulated annealing for constructing
binary covering arrays of variable strength. WCCI 2010, IEEE World Congress on
Computational Intelligence, July, 18-23, Barcelona, Spain.

[83] R. A. Walker II and C. J. Colbourn, Tabu search for covering arrays using permu-
tation vectors. J. Stat. Plan. and Inference 139 (2009), 69–80.

[84] K. Yamamoto, Logarithmic order of free distributive lattices. J. Math. Soc. Japan
6 (1954), 343-353.

[85] J. Yan and J. Zhang, A backtracking search tool for constructing combinatorial
test suites. J. Syst. and Softw. 81 (2008), 1681–1693.

[86] C. Yilmaz, M. B. Cohen, and A. Porter, Covering arrays for efficient fault charac-
terization in complex configuration spaces. ACM SIGSOFT Softw. Eng. Notes 29

(2004), 45–54.

[87] Webpage for Automated and Combinatorial Testing of Software at the National
Institute of Standards and Technology:
http://csrc.nist.gov/groups/SNS/acts/index.html.

the electronic journal of combinatorics 18 (2011), #P84 30

