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Abstract

A labeled set partition is a partition of a set of integers whose arcs are labeled
by nonzero elements of an abelian group A. Inspired by the action of the linear
characters of the unitriangular group on its supercharacters, we define a group
action of An on the set of A-labeled partitions of an (n + 1)-set. By investigating
the orbit decomposition of various families of set partitions under this action, we
derive new combinatorial proofs of Coker’s identity for the Narayana polynomial and
its type B analogue, and establish a number of other related identities. In return,
we also prove some enumerative results concerning André and Neto’s supercharacter
theories of type B and D.

1 Introduction

A set partition is formally a set of nonempty, pairwise disjoint sets, which we always
assume consist of integers and which we refer to as blocks. We call a pair of integers (i, j)
an arc of a set partition if i and j occur in the same block and j is the least element of
the block greater than i. Let Arc(Λ) denote the set of arcs of a set partition Λ.

We write Λ ` X and say that Λ is a partition of a set X if Λ is a set partition
the union of whose blocks is X . The standard representation of a partition Λ ` X is
then the directed graph with vertex set X and edge set Arc(Λ), drawn by listing the
elements of X in order with the corresponding arcs overhead. For example, the set
partitions Λ = {{1, 3, 4, 7}, {2, 6}, {5}} and Γ = {{1, 7}, {2, 3, 4, 6}, {5}} have standard
representations

Λ = • • • • • • •
1 2 3 4 5 6 7

and Γ = • • • • • • •
1 2 3 4 5 6 7

(1.1)

since Arc(Λ) = {(1, 3), (2, 6), (3, 4), (4, 7)} and Arc(Γ) = {(1, 7), (2, 3), (3, 4), (4, 6)}. A set
partition Λ is noncrossing if no two arcs (i, k), (j, l) ∈ Arc(Λ) have i < j < k < l, which
means that no arcs cross in its standard representation.
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This paper investigates a group action on set partitions which are labeled in the
following sense. Given an additive abelian group A, an A-labeled set partition is a set
partition Λ with a map Arc(Λ) → A \ {0}, denoted (i, j) 7→ Λij. This is essentially the
definition of a colored rhyming scheme as studied in [31], except that we require the colors
to form the set of nonzero elements of an abelian group. For each nonnegative integer n,
we define

Π(n,A) := the set of A-labeled partitions of [n] := {i ∈ Z : 1 ≤ i ≤ n},
NC(n,A) := the set of A-labeled noncrossing partitions of [n],

L(n,A) := the set of A-labeled partitions of [n] with consecutive integer blocks.

Note that an A-labeled partition Λ ` [n] belongs to L(n,A) if and only if every arc of Λ
has the form (i, i+ 1) for some i ∈ [n− 1]. We begin by defining an operation of L(n,A)
on Π(n,A).

Definition 1.1. Given α ∈ L(n,A) and Λ ∈ Π(n,A), define α + Λ as the A-labeled
partition of [n] whose standard representation is obtained by the following procedure:

• List the numbers 1, 2, . . . , n and draw the labeled arcs of both α and Λ overhead.

• Whenever two arcs coincide, add their labels and replace the pair with a single arc.

• Whenever two distinct arcs share an endpoint, delete the shorter arc.

• Finally, remove any arcs labeled by zero.

For example,(
•
a

•
b

•
c

•
d

•
1 2 3 4 5

)
+

 •−a• e

•
f

• •
1 2 3 4 5

 = •
0

•
b+e

•
f

c • d •
1 2 3 4 5

= •
0

•
b+e

•
f

• •
1 2 3 4 5

= • •
b+e

•
f

• •
1 2 3 4 5

for a, b, c, d, e, f ∈ A \ {0} with b 6= −e.

The operation + gives L(n,A) the structure of an abelian group isomorphic to An−1

which acts on both Π(n,A) and NC(n,A). This action has several interesting properties
and serves as a useful tool for providing succinct combinatorial proofs of some notable
identities. The following is a motivating example. In studying some enumerative problems
associated with a class of lattice paths, Coker [17] derived, using generating functions and
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the Lagrange inversion formula, the equivalence of two expressions for the rank generating
function of the lattice of noncrossing partitions of type An. This amounted to the identity

n∑
k=0

1

n+ 1

(
n+ 1

k

)(
n+ 1

k + 1

)
xk =

bn/2c∑
k=0

Ck
(
n

2k

)
xk(1 + x)n−2k, (1.2)

with Ck = 1
k+1

(
2k
k

)
denoting the kth Catalan number. Somewhat earlier, Riordan included

in his book [30] a similar equation involving the rank generating function of the lattice of
noncrossing partitions of type Bn:

n∑
k=0

(
n

k

)2

xk =

bn/2c∑
k=0

(
2k

k

)(
n

2k

)
xk(x+ 1)n−2k. (1.3)

We obtain a simple combinatorial proof of (1.2) from Definition 1.1 by noting that when
x = |A|−1, the terms in the left sum count the elements of NC(n+1,A) with n−k blocks,
while the terms in the right sum count the elements of NC(n + 1,A) whose L(n + 1,A)-
orbits have size |A|n−2k. The second identity (1.3) follows by the same argument applied
to a certain family of “type B” A-labeled set partitions; see the remarks to Theorems 3.4
and 6.7 below.

Remark. Two recent papers have supplied combinatorial proofs for (1.2) and (1.3) using
quite different methods. In [16], Chen, Yan, and Yang prove (1.2) by inspecting a weighted
version of a bijection between Dyck paths and 2-Motzkin paths; in [15], Chen, Wang,
and Zhang prove (1.3) by enumerating certain weighted type B noncrossing partitions.
Algebraic proofs of these identities are much easier to come by: as pointed out by Christian
Krattenthaler, (1.2) and (1.3) are respectively the special cases (a, b) = (−n,−n− 1) and
(a, b) = (−n,−n) of the quadratic transformation formula

2F1(a, b; 1 + a− b;x) =
2F1

(
a
2
, a

2
+ 1

2
; 1 + a− b; 4x

(1+x)2

)
(1 + x)a

(1.4)

for the hypergeometric function [21, Eq. 2.11(34)]. This more general identity has been
known since at least 1881, when it appeared in an equivalent form as [22, Eq. (36)].

Definition 1.1 is motivated by the representation theory of Un(Fq), the group of n×n
unipotent upper triangular matrices over a finite field with q elements. In detail, the
Fq-labeled partitions of [n] naturally index the supercharacters of Un(Fq), a certain fam-
ily of complex characters whose constituents partition the set of the group’s irreducible
characters and which have a number of other notable properties (see [39] for a concise
overview). Given λ ∈ Π(n,Fq), let χλ denote the associated supercharacter (see Section
7 below for an explicit definition). The correspondence λ 7→ χλ then defines a bijec-
tion from L(n,Fq) to the set of linear characters of Un(Fq), and if α ∈ L(n,Fq) and
λ ∈ Π(n,Fq) then the product of the characters χα and χλ is precisely χα+λ (see [39,
Corollary 4.7]). If general, if λ, µ ∈ Π(n,Fq) then the product of χλ and χµ is a linear
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combination
∑

ν∈Π(n,Fq) c
ν
λµχν for some nonnegative integers cνλµ. Finding a combinatorial

rule to determine these coefficients is an open problem, notably studied in [25].
We organize this article as follows. In Section 2 we reexamine Definition 1.1 in slightly

greater detail and introduce a few useful conventions. We carry out a careful analysis
of the labeled set partition orbits under our action in Section 3, and use this to give
combinatorial proofs of several identities in the style of (1.2) and (1.3). Sections 4 and
5 introduce type B and D analogues for the family of labeled set partitions studied in
Section 3, and in Section 6 we undertake a similar orbit analysis to prove analogues
of our classical identities in these other types. In Section 7, we explore the connection
between our methods and the supercharacters of the unitriangular group more closely. In
particular, we provide explicit, succinct definitions of André and Neto’s supercharacters
of type B and D, and compute the sizes of several natural families of these characters.

2 Two equivalent definitions

In this preliminary section we note two equivalent characterizations of the operation +
presented in Definition 1.1, and show how this operation leads to another proof of the
rank symmetry of the lattice of noncrossing partitions. We begin with the following
observation, whose derivation from Definition 1.1 is a straightforward exercise.

Observation 2.1. Given α ∈ L(n,A) and Λ ∈ Π(n,A), let

S = {(j, j + 1) ∈ Arc(α) ∩ Arc(Λ) : αj,j+1 + Λj,j+1 = 0},
T = {(j, j + 1) ∈ Arc(α) : (i, j + 1) /∈ Arc(Λ) and (j, `) /∈ Arc(Λ) for all i, `}.

Then α + Λ is the element of Π(n,A) with arc set (Arc(Λ)− S) ∪ T and labeling map

(α + Λ)jk =


αjk + Λjk, if (j, k) ∈ Arc(α) ∩ Arc(Λ)− S,
αjk, if (j, k) ∈ T ,
Λjk, otherwise.

This observation makes clear that α + Λ differs from Λ only in its arcs of the form
(j, j+1). Such arcs are never involved in crossings, and so the action of L(n,A) on Π(n,A)
preserves NC(n,A); i.e., α + Λ ∈ NC(n,A) for all α ∈ L(n,A) and Λ ∈ NC(n,A).

There is a useful bijection from Π(n,A) to the set of n× n matrices over A which are
strictly upper triangular and have at most one nonzero entry in each row and column.
The matrix or rook diagram of Λ ∈ Π(n,A) is the n × n matrix with the entry Λij in
position (i, j) for each (i, j) ∈ Arc(Λ) and zeros elsewhere. A set partition is noncrossing
if and only if there is no position above the diagonal in its associated matrix which is both
strictly south of a nonzero entry in the same column and strictly west of a nonzero entry
in the same row. Likewise, a set partition belongs to L(n,A) if and only if its matrix has
nonzero positions only on the superdiagonal {(i, i+ 1) : i ∈ [n− 1]}. This fact shows that
we may also equivalently define the operation + as follows:
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Observation 2.2. If α ∈ L(n,A) and Λ ∈ Π(n,A) then α + Λ is the element of Π(n,A)
produced by the following procedure:

1. Add the matrices of α and Λ to form a matrix M over A.

2. Replace with zero any nonzero positions (i, i+ 1) on the superdiagonal of M which
lie strictly below a nonzero position in the same column or strictly to the left of a
nonzero position in the same row.

3. Define α + Λ to be the element of Π(n,A) associated to the modified matrix M .

This formulation of Definition 1.1 most clearly illustrates that the addition + makes
L(n,A) into an abelian group acting on Π(n,A): the group is just the additive group of
n× n matrices over A whose nonzero entries are all on the superdiagonal.

Let Π(n) and NC(n) denote the sets of ordinary and noncrossing (unlabeled) partitions
of [n]. We may view the elements of Π(n) and NC(n) as A-labeled set partitions by
taking A = F2 to be a finite field with two elements. These sets are partially ordered by
refinement : Γ ≤ Λ if each block of Γ ` [n] is contained in some block of Λ ` [n]. This
partial order makes Π(n) and NC(n) into graded lattices with height n− 1 according to
the rank function rank(Λ) = n − |Λ|. The lattice NC(n) in particular has a number of
remarkable properties and an extensive literature (see [5] for a survey).

As a first application of the action of L(n,A) on Π(n,A), we note that the map

Λ 7→ {{1, 2, . . . , n}}+ Λ

defines an involution of the set of (F2-labeled) partitions of [n]. We denote the image
of Λ ` [n] under this involution by Λ+; the latter partition has the following explicit
definition, which makes sense even for partitions of sets other than [n].

Definition 2.3. Given a set X ⊂ Z and a partition Λ ` X , let Λ+ be the partition of
X with arc set (Arc(Λ) − S) ∪ T , where S = {(i, i + 1) : i ∈ Z} and T is the set of
pairs (i, i+ 1) in X ×X with the property that i and i+ 1 are respectively maximal and
minimal in their blocks of Λ.

For example, we have {{1, 4, 5}, {2, 3}, {6, 7}, {8}}+ = {{14}, {2}, {3}, {5, 6}, {7, 8}}.
Our main point in presenting this involution is simply to note that it gives another proof
of the fact that the lattice NC(n) is rank symmetric.

Proposition 2.4. The map Λ 7→ Λ+ is rank inverting on NC(n). That is, if Λ ∈ NC(n)
has k blocks, then Λ+ ∈ NC(n) has n+ 1− k blocks.

The involution is not order reversing on NC(n), since for example

{{1}, {2, 3}, {4}}+ = {{1, 2}, {3, 4}} 6> {{1, 4}, {2}, {3}} = {{1, 4}, {2, 3}}+.

Also, the property |Λ+| = n+ 1− |Λ| may fail if Λ ` [n] is not noncrossing.

the electronic journal of combinatorics 19 (2012), #P28 5



Proof. Fix Λ ∈ NC(n) with k blocks. If {n} is a block of Λ and Λ′ ∈ NC(n − 1) is the
set partition formed by removing this block, then Λ+ is given by adding n to the block of
n− 1 in (Λ′)+. Hence the number of blocks of Λ+ is the same as the number of blocks of
(Λ′)+, which by induction is (n− 1) + 1− (k − 1) = n+ 1− k as desired.

Suppose the block of n in Λ has more than one element. In this block, n is the largest
element; let m be the second largest so that (m,n) ∈ Arc(Λ). Let A be the noncrossing
partition of [m] with arc set Arc(Λ)∩{(i, j) : 1 ≤ i < j ≤ m} and let B be the noncrossing
partition of [n − 1] \ [m] with arc set Arc(Λ) ∩ {(i, j) : m < i < j < n}. Observe that
A ∪ B is then a partition of [n − 1], and that because Λ is noncrossing, adding n to the
block of m in A ∪B recovers Λ.

If m = n− 1 then |A| = k and B = ∅ and Λ+ = A+ ∪ {{n}}, so the number of blocks
of Λ+ is 1+|A+| = 1+(n−1)+1−|A| = n+1−k by induction. Alternatively, if m < n−1
then Λ+ is formed by adding n to the block of m in A+ ∪B+. Thus the number of blocks
of Λ+ is |A+ ∪B+| = m+ 1− |A|+ (n− 1−m) + 1− |B| = n+ 1− |A| − |B| = n+ 1− k,
again by induction.

3 Identities for classical set partitions

In this section we examine the action of L(n,A) on Π(n,A) and NC(n,A) in greater
detail. To begin, we note that shifting the matrix of a set partition one column to the
right corresponds to an injective map

shift : Π(n,A)→ Π(n+ 1,A)

which assigns Λ ∈ Π(n,A) to the A-labeled set partition of [n+1] with arc set {(i, j+1) :
(i, j) ∈ Arc(Λ)} and labeling map (i, j + 1) 7→ Λij. For example,

shift

(
•
a

•
b

•
c

• •
1 2 3 4 5

)
= •

a

•
b

•
c

• • •
1 2 3 4 5 6

for a, b, c ∈ A \ {0}. The map shift increases the number of blocks of a set partition by
one, and its image consists of all A-labeled partitions of [n+ 1] with no blocks containing
both i and i + 1 for some i ∈ [n]; following [13], we call such set partitions 2-regular.
The right inverse of shift (defined on the matrix of a set partition by deleting the first
column and last row then setting all diagonal entries to zero) is precisely the “reduction
algorithm” presented in [13]; see also [23].

We say that a set partition of [n] is feasible if each of its blocks has at least two
elements and poor if each of its blocks has at most two elements. The matrix of a feasible
set partition has a nonzero entry in either the ith row or ith column for each i ∈ [n], while
the matrix of a poor set partition never has a nonzero entry in both the ith row and ith
column. From these considerations, it is straightforward to deduce the following lemma.

Lemma 3.1. The following restrictions of shift are bijections:
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(1) {Feasible partitions of [n]} →

{
2-regular partitions Λ ` [n+ 1] such that

1 + maxB 6= minB′ for all blocks B,B′ ∈ Λ

}
.

(2) {Poor noncrossing partitions of [n]} → {2-regular noncrossing partitions of [n+ 1]}.

To count feasible and poor set partitions, we introduce the polynomials

Fn(x) :=
∑

Feasible Λ∈Π(n)

x|Arc(Λ)| and Mn(x) :=
∑

Poor Λ∈NC(n)

x|Arc(Λ)|.

We can write Fn(x) =
∑n

k=0

{{
n
k

}}
xn−k where

{{
n
k

}}
is the associated Stirling number of the

second kind [19], which counts the number of feasible set partitions of [n] with k blocks
and is listed as sequence [33, A008299]. The numbers Fn(1) themselves give sequence [33,
A000296].

Letting Cn := 1
n+1

(
2n
n

)
as in the introduction, we have the following slightly more

explicit expression forMn(x). The functionsMn(x) are sometimes called Motzkin poly-
nomials (see [33, A055151]) and Mn(1) is the nth Motzkin number [33, A001006].

Proposition 3.2. Mn(x) =

bn/2c∑
k=0

Ck
(
n

2k

)
xk for n ≥ 0.

Proof. Poor noncrossing set partitions of [n] with k arcs are in bijection with pairs (S,Λ),
where S is a 2k-subset of [n] and Λ is a noncrossing partition of [2k] with k blocks of size
two. There are

(
n
2k

)
choices for S and Ck choices for Λ (see [35, Exercise 6.19o]).

To state the main theorem of this section, we require one last piece of notation. Define
Cov(Λ) for a set partition Λ to be the set of arcs (i, j) ∈ Arc(Λ) with j = i+ 1; in other
words,

Cov(Λ) = Arc(Λ) ∩ {(i, i+ 1) : i ∈ Z}.

Fix two additive abelian groups A and B, and let Π(n,A,B) denote the set of labeled
partitions Λ ∈ Π(n,A⊕ B) with

Λij ∈

{
A \ {0}, if (i, j) ∈ Arc(Λ) \ Cov(Λ),

B \ {0}, if (i, j) ∈ Cov(Λ).
(3.1)

We define NC(n,A,B) analogously, as the set of noncrossing elements of Π(n,A,B). Note
that the group L(n,B) acts on these sets by +, and that we may view shift as a map
Π(n,A)→ Π(n+ 1,A,B).

When |A| = x+ 1 and |B| = y+ 1, the cardinalities of Π(n,A,B) and NC(n,A,B) are
given respectively by the polynomials

Bn(x, y) :=
∑

Λ∈Π(n)

x|Arc(Λ)\Cov(Λ)|y|Cov(Λ)| and Nn(x, y) :=
∑

Λ∈NC(n)

x|Arc(Λ)\Cov(Λ)|y|Cov(Λ)|.
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We will derive more explicit expressions for these functions in a moment. In the mean
time, let Bn(x) := Bn(x, x) and Nn(x) := Nn(x, x). These simpler polynomials have the
formulas

Bn(x) =
n∑
k=0

{
n

k

}
xn−k and Nn(x) =

n∑
k=0

N(n, k)xn−k,

where
{
n
k

}
and N(n, k) are the Stirling numbers of the second kind and the Narayana

numbers, defined as the number of ordinary and noncrossing set partitions of [n] with
k blocks (equivalently, with n − k arcs). We note the well-known formula N(n, k) =
1
n

(
n
k

)(
n
k−1

)
for n > 0 and adopt the convention

{
0
k

}
= N(0, k) = δk.

Remarks. Of course, Bn(1) is the nth Bell number andNn(x) is the Narayana polynomial,
whose values give the Catalan numbers when x = 1 and the little Schröder numbers when
x = 2. The polynomials Bn(x) and Nn(x) are by definition the rank generating functions
of the graded lattices Π(n) and NC(n), though they have several alternate interpretations:

(i) As noted in [10, 18], when x is a positive integer, {Bn(x)}∞n=0 and {Nn(x)}∞n=0 are
the unique sequences respectively fixed by the operators

R ◦ BINOMIAL ◦ · · · ◦ BINOMIAL︸ ︷︷ ︸
x times

and R ◦ INVERT ◦ · · · ◦ INVERT︸ ︷︷ ︸
x times

,

where R(a0, a1, a2, . . . ) := (1, a0, a1, a2, . . . ) and BINOMIAL and INVERT are the
sequence operators defined in [10].

(ii) As mentioned in the introduction, the Fq-labeled partitions of [n] index the super-
characters of the unitriangular group Un(Fq). There are Bn(q − 1) distinct super-
characters of Un(Fq), of which Nn(q − 1) are irreducible; see Section 7.

(iii) If G is a finite group then B2k(|G|) is the dimension of the G-colored partition
algebra Pk(x;G) defined in [11] and studied (in the case G = Z/rZ) in [28].

The following theorem shows that Bn(x) counts the L(n+1,B)-orbits in Π(n+1,A,B)
while Mn(x) counts the L(n+ 1,B)-orbits in NC(n+ 1,A,B).

Theorem 3.3. For n ≥ 1, the correspondence Λ 7→ {α + shift(Λ) : α ∈ L(n,B)} is a
bijection

Π(n− 1,A)→ {L(n,B)-orbits in Π(n,A,B)} ,
{Poor elements of NC(n− 1,A)} → {L(n,B)-orbits in NC(n,A,B)} .

Furthermore, the cardinality of the L(n,B)-orbit of shift(Λ) is |B|s, where s is the number
of singleton blocks of Λ ∈ Π(n− 1,A).
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Proof. It is clear from our discussion of the action + that each L(n,B)-orbit in Π(n,A,B)
contains a unique 2-regular element and which is consequently of the form shift(Γ) for a
unique Γ ∈ Π(n−1,A). This shows that the first map is a bijection; the second map is also
because shift(Γ) is noncrossing if and only if Γ is poor and noncrossing, as a consequence
of Lemma 3.1.

If Λ = shift(Γ), then Arc(α) ∩ Arc(Λ) = ∅ for all α ∈ L(n,B), and one sees directly
from Definition 1.1 that the L(n,B)-orbit of Λ has size |B|s where s is the number of
superdiagonal hooks {(i, j + 1) : i < j} ∪ {(j, k) : j < k} for j ∈ [n − 1] which contain
no nonzero entries in the matrix of Λ. Consulting the definition of shift , we find that
the hook containing (j, j + 1) belongs to this set if and only if {j} is a singleton block of
Γ.

The following theorem uses the previous result to derive two equivalent formulas for
each of the polynomials Bn(x, y) and Nn(x, y).

Theorem 3.4. If n is a nonnegative integer then the following identities hold:

(1) Bn+1(x, y) =
n∑
k=0

(
n

k

)
Bk(x)yn−k =

n∑
k=0

(
n

k

)
Fk(x)(y + 1)n−k.

(2) Nn+1(x, y) =
n∑
k=0

(
n

k

)
Mk(x)yn−k =

bn/2c∑
k=0

Ck
(
n

2k

)
xk(y + 1)n−2k.

Proof. In each part, the terms in first sum counts partitions whose matrices have n − k
nonzero entries on the superdiagonal {(i, i + 1) : i ∈ [n]}, while the terms in the second
sum count partitions whose L(n+ 1,B)-orbits have the same fixed size. Thus the sums in
each part are necessarily equal to each other and to Bn+1(x, y) in (1) and Nn+1(x, y) in
(2).

In detail,
(
n
k

)
Bk(x)yn−k is the number of elements of Π(n + 1,A,B) whose matrices

have n − k nonzero entries on the superdiagonal since there are
(
n
k

)
yn−k choices for the

entries and their positions, and since deleting the rows and columns containing these
positions produces the matrix of shift(Λ) for an arbitrary Λ ∈ Π(k,A). On the other
hand,

(
n
k

)
Fk(x)(y + 1)n−k is the number of elements of Π(n+ 1,A,B) whose L(n+ 1,B)-

orbits have size (y + 1)n−k by Theorem 3.3, since there are
(
n
k

)
Fk(x) distinct A-labeled

set partitions of [n] with n− k singleton blocks.
Likewise,

(
n
k

)
Mk(x)yn−k is the number of elements of NC(n+ 1,A,B) whose matrices

have n − k nonzero entries on the superdiagonal since deleting the rows and columns
containing these positions produces the matrix of shift(Λ) for an arbitrary poor Λ ∈
NC(k,A). By Theorem 3.3, the number of elements of NC(n+ 1,A,B) whose L(n+ 1,B)-
orbits have size (y+1)n−k is equal to the number of poor elements of NC(n,A) with n−k
singleton blocks, which is the product of

(
n

n−k

)
with the number of partitions in NC(k,A)

whose blocks all have size two. The latter number is clearly 0 if k is odd, and is equal to
xk/2 times the leading coefficient of Mk(x) if k is even.

Remarks. Both parts of the theorem deserve a few comments.

the electronic journal of combinatorics 19 (2012), #P28 9



(i) Setting y = 0 in the first part shows that Bn(x) is the binomial transform of Fn(x);
i.e., Bn(x) =

∑
k

(
n
k

)
Fk(x) (see [27, Lemma 5.2] for a combinatorial proof). Setting

x = y in (1) yields Bn+1(x) =
∑n

k=0

(
n
k

)
Bk(x)xn−k, an identity noted several places

previously [24, 31], which is equivalent to the standard recurrence formula for the
Touchard polynomials.

(ii) We may rewrite the second part as the equation

bn/2c∑
i=0

n−2i∑
j=0

1

n+ 1

(
n+ 1

i+ 1

)(
n− i
j

)(
n− i− j

i

)
xiyj =

bn/2c∑
k=0

Ck
(
n

2k

)
xk(y + 1)n−2k.

Chen, Deutsch, and Elizalde give a combinatorial proof of this identity using a
correspondence between plane trees and 2-Motzkin paths [14, Theorem 9]. Setting
x = y in part (2) produces Coker’s identity (1.2) mentioned in the introduction and
taking x = y = 1 recovers Touchard’s classical identity Cn+1 =

∑
k Ck
(
n
2k

)
2n−2k.

As one consequence of the theorem, we employ the inclusion-exclusion principle to
compute alternate formulas counting the invariant elements in Π(n,A,B) and NC(n,A,B).

Corollary 3.5. For each integer n ≥ 0, the following identities hold:

(1)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kBk+1(x, y) = Fn(x).

(2)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kNk+1(x, y) =

{
xn/2Cn/2, if n is even,

0, if n is odd.

Remark. Setting x = y in part (2) recovers one of the three identities given by Mansour
and Sun in [26, Theorem 1.1]. This equation with x = y = 1 appeared earlier as [12,
Proposition 2.2] and has been studied in a number of places; Chen, Wang, and Zhao
provide a nice bibliography in the discussion preceding [15, Theorem 2.4].

Proof. Given a subset S ⊂ [n], let XS and YS denote the unions of the L(n,B)-orbits
of shift(Λ) for all partitions Λ in Π(n,A) and NC(n,A), respectively, which contain the
singleton {i} as a block for each i ∈ S. It is straightforward to compute from Theorems
3.3 and 3.4 that

|XS| = (y + 1)|S|Bn−|S|+1(x, y) and |YS| = (y + 1)|S|Nn−|S|+1(x, y).

The inclusion-exclusion principle now affords our result since by Theorem 3.3 the sets of
L(n,B)-invariants in Π(n + 1,A,B) and NC(n + 1,A,B) are the respective complements
of
⋃
i∈[n]X{i} and

⋃
i∈[n] Y{i}.
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4 A short digression on nonnesting partitions

In the next section we introduce type B and D analogues for the sets Π(n,A) and NC(n,A).
Before studying these new families of set partitions, it will be useful to prepare the way
with some requisite notation.

To this end, we recall that a set partition Λ is nonnesting if no two arcs (i, l), (j, k) ∈
Arc(Λ) have i < j < k < l. Visually, this means that no arc “nests” beneath another
in Λ’s standard representation. Let [±n] = {±1,±2, . . . ,±n} and write −Λ for the set
partition whose blocks are −B for B ∈ Λ. Now define

NN(n) := the set of nonnesting partitions of [n],

NNB(n) := the set of nonnesting partitions Λ of [±n] with Λ = −Λ.

The elements of NN(n+1) and NNB(n) can be viewed as the type An and Bn instances of
a more general object called a “nonnesting partition” with many interesting properties.
We direct the reader to [5, 6] for a more detailed exposition, as here we shall only discuss
a few basic facts.

To begin, there is a close relationship between NN(n) and NC(n): the number of
nonnesting and noncrossing set partitions of [n] are equidistributed by type [6, Theorem
3.1], where the type of a set partition is the partition of the number n whose parts are
the sizes of the set partition’s blocks. The following simple bijection uncross : NN(n)→
NC(n) is not type-preserving but will be of some use later. We define this by the algorithm
below (see also [5, Section 5.1]):

1. Given any set partition Λ, let A = Arc(Λ).

2. While A has at least one pair of crossing arcs: choose two arcs (i, k), (j, l) ∈ A with
i < j < k < l and replace A with (A− {(i, k), (j, l)}) ∪ {(i, l), (j, k)}.

3. Define uncross(Λ) as the noncrossing set partition of [n] with arc set A.

Note that this algorithm makes sense for any partition of a finite set of integers. The
procedure locally converts each crossing to a nesting in the standard representation of Λ;
i.e.,

is locally replaced with

so that, e.g., uncross (14|25|36) = 16|25|34 and uncross(Λ) = Γ in (1.1). This observation
makes clear that the algorithm’s output has no dependence on the order in which the
pairs of crossing arcs are chosen in the second step. Thus uncross gives a well-defined
map Π(n)→ NC(n), the important properties of which are the following:

• uncross(Λ) has the same number of blocks as Λ.

• uncross defines a bijection from NN(n)→ NC(n).

• uncross defines a bijection NNB(n)→ {Noncrossing Λ ` [±n] with Λ = −Λ}.
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The first property is clear since uncross(Λ) has the same number of arcs as Λ; the sec-
ond property is well-known; and the third follows from the second since uncross(−Λ) =
−uncross(Λ).

We see from this discussion that NN(n) has N(n, k) elements with k blocks and Cn
elements in total. The following observation lists analogous statistics for NNB(n).

Lemma 4.1. NNB(n) has
(
n
k

)2
elements with 2k or 2k + 1 blocks, and

(
2n
n

)
elements in

total.

Proof. The involution on set partitions of [±n] induced by the map

i 7→

{
i− n− 1, if i ∈ [n]

i+ n+ 1, if − i ∈ [n]

gives a bijection from NNB(n) to what Athanasiadis [6] calls the Bn-partitions associated
to the nonnesting partitions of type Bn. Hence the lemma is simply a restatement of [6,
Corollary 5.8].

Recall that a Dyck path with 2n steps is a lattice path beginning at (0, 0) and ending
at (n, 0) which uses only the steps (1, 1) and (1,−1) and which never travels below the
y-axis. It is well-known that the set Dn of Dyck paths with 2n steps has cardinality
|Dn| = |NC(n)| = |NN(n)| = Cn, and there is an especially simple bijection NN(n)→ Dn.
Namely, we associate to a nonnesting set partition Λ ∈ NN(n) the unique path in Dn
whose valleys (the points which simultaneously end a downstep (1,−1) and begin an
upstep (1, 1)) are the points (j + i − 1, j − i − 1) for (i, j) ∈ Arc(Λ). Intuitively, this is
the path tracing the upper boundary of the squares in the matrix of Λ which are south
or west of nonzero entries.

Call a Dyck path with 2n steps symmetric if the path is symmetric about the vertical
line x = n. The order-preserving bijection [±n]→ [2n] induces an inclusion of NNB(n) in
NN(2n), and it clear that with respect to this identification, the bijection NN(2n)→ D2n

just mentioned restricts to a bijection from NNB(n) to the set of symmetric Dyck paths
with 4n steps. Hence:

Lemma 4.2. There are
(

2n
n

)
symmetric Dyck paths with 4n steps.

5 Analogues in other types

We are now prepared to discuss two analogues for our “classical” notion of a labeled set
partition. In detail, given a nonnegative integer and an additive abelian group, we define
ΠB(n,A) (respectively, ΠD(n,A)) as the set of A-labeled set partitions Λ of {0} ∪ [±n]
(respectively, [±n]) with the property that

(i, j) ∈ Arc(Λ) if and only if (−j,−i) ∈ Arc(Λ) and Λij + Λ−j,−i = 0. (5.1)
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We write ΠB(n) := ΠB(n,F2) and ΠD(n) = ΠD(n,F2) for the corresponding sets of unla-
beled set partitions.

The condition (5.1) implies that Λ has no arcs of the form (−i, i) and hence that
|Arc(Λ)| is even, and that if B is a block of Λ then −B is also a block. If Λ ∈ ΠB(n,A)
then exactly one block B ∈ Λ contains zero and has B = −B, while if Λ ∈ ΠD(n,A) then
every block B ∈ Λ has B 6= −B. For example, the elements of ΠB(2,A) are

• • • • •
−2 −1 0 +1 +2

•
a

• • •
−a
•

−2 −1 0 +1 +2
• •

a

•
−a
• •

−2 −1 0 +1 +2

•
a

• •
−a

• •
−2 −1 0 +1 +2

•
a

•
−a

• • •
−2 −1 0 +1 +2

•
a

•
b

•
−b
•
−a
•

−2 −1 0 +1 +2

and the elements of ΠD(2,A) are

• • • •
−2 −1 +1 +2

•
a

• •
−a
•

−2 −1 +1 +2
•

a

•
−a

• •
−2 −1 +1 +2

for a, b ∈ A \ {0}.
We have three reasons to suggest these sets as the type B and D analogues of Π(n,A).

First and possibly foremost, ΠB(n,Fq) and ΠD(n,Fq) are the natural indexing sets for the
supercharacters defined in [1, 2, 3] of the the Sylow p-subgroups of the Chevalley groups
of type Bn and Dn over Fq (where p is the odd characteristic of Fq); see Section 7 below
for an explicit definition. Thus, in analogy with our techniques in Section 3, we can use
the multiplicative action of the linear characters of these groups on their supercharacters
to define a combinatorial action of a subset of ΠB(n,A) or ΠD(n,A) on itself. From an
analysis of the orbits of this action, we may then attempt to derive identities in the style
of Theorem 3.4.

The papers [1, 2, 3] also define a set of supercharacters for the Sylow p-subgroups of
the finite Chevalley groups of type Cn, which should motivate the definition of a third
family of labeled set partitions ΠC(n,A). We omit this family from the present work
because its investigation fits less naturally into our exposition and seems not to yield any
really new identities.

A second explanation for our notation comes from the following observation. The
order-preserving bijections {0} ∪ [±n] → [2n + 1] and [±n] → [2n] induce inclusions
ΠB(n,A) ↪→ Π(2n + 1,A) and ΠD(n,A) ↪→ Π(2n,A), and we define the matrix of Λ in
ΠB(n,A) or ΠD(n,A) to be the matrix of the corresponding set partition in Π(2n+ 1,A)
or Π(2n,A). If C is the field of complex numbers and

so′(n,C) := {X ∈ sl(n,C) : X +X† = 0}, where (X†)ij := Xn+1−j,n+1−i,

then the map assigning a set partition to its matrix gives a bijection from Π(n + 1,C),
ΠB(n,C), and ΠD(n,C) to the sets of strictly upper triangular matrices with at most one
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nonzero entry in each row and column in sl(n+1,C), so′(2n+1,C), and so′(2n,C), which
we may regard as the complex simple Lie algebras of types An, Bn, and Dn.

Finally, we mention that the unlabeled partitions Π(n + 1) and ΠB(n) are naturally
identified with the intersection lattice of the Coxeter hyperplane arrangements of type An
and Bn (see [29]). The set ΠD(n) is not similarly related to the intersection lattice of the
type Dn Coxeter hyperplane arrangement, however.

The sets of noncrossing elements of ΠB(n,A) and ΠD(n+1,A) are both in bijection with
NC(n,A), so it will be fruitful to introduce a different kind of “noncrossing” partition to

investigate. To this end, for X ∈ {B,D}, we let ÑCX(n,A) denote the subset of ΠX(n,A)
consisting of A-labeled set partitions Λ with the following “noncrossing” property:

If there are (i, k), (j, l) ∈ Arc(Λ) such that i < j < k < l then (i, k) = (−l,−j).

As usual, we write ÑCX(n) := ÑCX(n,F2) to indicate the corresponding sets of un-
labeled set partitions. This set generalizes NC(n,A) in the following sense: one may
define NC(n,A) as the subset of Λ ∈ Π(n,A) such that if (i, k), (j, l) ∈ Arc(Λ) and
Γ ∈ Π(n,A) then {(i, j), (j, k), (k, l)} 6⊂ Arc(Γ). The same definition with Π(n,A) re-

placed by ΠX(n,A) gives ÑCX(n,A). Alternatively, Theorem 7.3 below provides a repre-

sentation theoretic characterization of ÑCX(n,A) in terms of its associated set of super-
characters.

As with Π(n), the sets ΠB(n) and ΠD(n) are partially ordered by refinement, and
graded by the rank functions

rank(Λ) :=

{
n− (|Λ| − 1)/2, for Λ ∈ ΠB(n),

n− |Λ|/2, for Λ ∈ ΠD(n).

Both ΠB(n) and ΠD(n) are meet semilattices since any collection of elements {Λi} has a
greatest lower bound given by the partition whose blocks are the nonempty intersections of
the form

⋂
iBi where each Bi ∈ Λi. However, of the two, only ΠB(n) possesses a greatest

element and is therefore a lattice. The meet of any collection of elements in ÑCX(n) also

lies in ÑCX(n) for X ∈ {B,D}, and it follows that ÑCB(n) is likewise a graded lattice

(with height n) while ÑCD(n) is only a graded meet semilattice (with height n− 1).

Remark. To any Coxeter system (W,S) there corresponds a lattice of noncrossing par-
titions, defined as the interval between the identity and any fixed Coxeter element in the
absolute order of W . There is a large body of literature on this subject; see [5] for a useful
survey. The noncrossing partition lattice of the Coxeter system of type An−1 coincides
with NC(n), and the lattices of types Bn and Dn, which we might as well denote by
NCB(n) and NCD(n), may be realized combinatorially as subposets of ΠB(n). However,

NCB(n) and NCD(n) are neither obviously related to ÑCB(n) and ÑCD(n) (though there
are connections between them), nor preserved by the group action defined below, so the

somewhat more obscure sets ÑCB(n) and ÑCD(n) are better suited to our purposes.
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Write LX(n,A) to denote the type X analogue of L(n,A): viz., the set of labeled
partitions Λ ∈ ΠX(n,A) whose blocks consist of consecutive integers or, equivalently,
which have Arc(Λ) = Cov(Λ). We define α + Λ for α ∈ LX(n,A) and Λ ∈ ΠX(n,A)
exactly as in Definition 1.1, only with L(n,A) and Π(n,A) replaced by LX(n,A) and
ΠX(n,A). For example, if

α = •
a

•
b

•
c

•
−c
•
−b
•
−a
•

−3 −2 −1 0 +1 +2 +3
and Λ = •

t

• •
−t

• • • •
−3 −2 −1 0 +1 +2 +3

for a, b, c, d, e, t ∈ A \ {0} then we have

α + Λ = •

t

•
b

•

−t

• •
−b
• •

−3 −2 −1 0 +1 +2 +3

Note that we may alternately characterize α + Λ as in Observation 2.1, or in terms of
the matrices of α ∈ LX(n,A) and Λ ∈ ΠX(n,A) as in Observation 2.2. As before, the
operation + makes LX(n,A) into an abelian group (isomorphic to An if X = B and to
An−1 if X = D) acting on ΠX(n,A), and it is evident from our definitions that this action

preserves ÑCX(n,A).
Recall the definition in Section 2 of Λ+ for an arbitrary set partition Λ. If we view

unlabeled set partitions as F2-labeled, then this definition amounts to the formulas

Λ+ = {{−n, . . . ,−1, 0, 1, . . . , n}}+ Λ, for Λ ∈ ΠB(n),

Λ+ = {{−n, . . . ,−1}, {1, . . . , n}}+ Λ, for Λ ∈ ΠD(n).

Hence Λ 7→ Λ+ defines an involution of both ΠX(n) and ÑCX(n) (as sets, not lattices) for
X ∈ {B,D}. The following analogue of Proposition 2.4 uses this involution to show that

the lattice ÑCB(n) is rank symmetric.

Proposition 5.1. The map Λ 7→ Λ+ is rank inverting on ÑCB(n). That is, if Λ ∈ ÑCB(n)

has 2k + 1 blocks, then Λ+ ∈ ÑCB(n) has 2(n− k) + 1 blocks.

Remark. The lattice of type Bn noncrossing partitions is also rank symmetric; in fact,
it is self-dual and locally self-dual [5, 29]. The lattice ÑCB(n) fails to possess any of these
stronger properties when n ≥ 4.

Proof. Observe that the definition of uncross(Λ) make sense for Λ ∈ ΠB(n), although the
set partition uncross(Λ) ` {0}∪[±n] may no longer belong to ΠB(n). It is straightforward

to check that Λ+ ∈ ÑCB(n) if Λ ∈ ÑCB(n) and that Λ and Λ+ have the same crossings,
which are always pairs of arcs of the form (−i, j), (−j, i) for i, j ∈ [n]. It follows that
uncross(Λ)+ = uncross(Λ+). Since uncross preserves the number of blocks in a set
partition and since both uncross and the involution + commute with natural inclusion
ÑCB(n) ↪→ Π(2n+ 1), our result is a consequence of Proposition 2.4.

the electronic journal of combinatorics 19 (2012), #P28 15



As a corollary, we similarly compute the number of blocks in Λ+ for Λ ∈ ÑCD(n).

Corollary 5.2. If Λ ∈ ÑCD(n) then

|Λ+| =

{
2n+ 2− |Λ|, if −1 is the greatest element of its block in Λ,

2n− |Λ|, otherwise.

Proof. Let ϕ : ÑCD(n) → ÑCB(n) be the injective map which adds the singleton block

{0} to Λ ∈ ÑCD(n); i.e., ϕ(Λ) = Λ∪{{0}}. It is easy to see that if −1 is not the greatest

element of its block in Λ ∈ ÑCD(n), so that Λ has arcs of the form (−1, i), (−i, 1) for
some 1 < i ≤ n, then ϕ(Λ+) = ϕ(Λ)+. In this case |Λ+| = 2n + 2 − |Λ| by the previous

proposition applied to ϕ(Λ) ∈ ÑCB(n). On the other hand, if −1 is the greatest element
of its block in Λ, then ϕ(Λ)+ is formed from ϕ(Λ+) by adding the arcs (−1, 0) and (0, 1).
Hence ϕ(Λ)+ has two fewer blocks than ϕ(Λ+), so we now obtain |Λ+| = 2n − |Λ| from
the previous proposition applied to ϕ(Λ).

Fix two additive abelian groups A and B and define ΠX(n,A,B) and ÑCX(n,A,B) for

X ∈ {B,D} as the subsets of ΠX(n,A ⊕ B) and ÑCX(n,A ⊕ B) consisting of labeled set
partitions Λ satisfying (3.1). Note as in Section 3 that + defines an action of LX(n,B) on

ΠX(n,A,B) and ÑCX(n,A,B). Mirroring our previous notation, we define polynomials

BX
n (x, y) :=

∑
Λ∈ΠX(n)

x
|Arc(Λ)|

2 (y/x)
|Cov(Λ)|

2 and NX
n (x, y) :=

∑
Λ∈ÑCX(n)

x
|Arc(Λ)|

2 (y/x)
|Cov(Λ)|

2 ,

and let BX
n (x) := BX

n (x, x) and NX
n (x) := NX

n (x, x).
Clearly BB

n (x) =
∑n

k=0

{
n
k

}
B
xn−k where

{
n
k

}
B

denotes the number of set partitions in

ΠB(n) with 2k + 1 blocks. The numbers
{
n
k

}
B

coincide with the Whitney numbers of
the second kind W2(n, k) studied in [8, 9] and appear as sequence [33, A039755]. On the
other hand, since the blocks of set partitions in ΠD(n) comes in pairs ±B, the preimage
of Λ ∈ Π(n) under the surjection ΠD(n) → Π(n) induced by the absolute value map
[±n]→ [n] contains 2n−|Λ| = 2|Arc(Λ)| elements, all having 2|Arc(Λ)| arcs. Hence

BD
n (x) = Bn(2x), for all n ≥ 0. (5.2)

These formulas show that {BB
n (1)}∞n=0 = (1, 2, 6, 24, 116, 648, 4088, . . . ) gives the sequence

of Dowling numbers [33, A007405] while {BD
n (1)}∞n=0 = (1, 1, 3, 11, 49, 257, 1539, . . . ) gives

sequence [33, A004211].
The following result generalizes the recurrence Bn(x) =

∑
k

(
n
k

)
Bk(x) noted in the

first remark to Theorem 3.4. The first identity is due essentially to Spivey [34], who
proved it in the special case x = 1 (the general proof is not much different from the short
combinatorial argument in [34]).

Proposition 5.3. The following recurrences hold for integers m,n ≥ 0:
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(1) Bm+n(x) =
m∑
j=0

n∑
k=0

xm+n−j−kjn−k
(
n

k

){
m

j

}
Bk(x).

(2) BB
m+n(x) =

m∑
j=0

n∑
k=0

xm+n−j−k(2j + 1)n−k
(
n

k

){
m

j

}
B

Bk(2x).

Proof. We only prove (2) as the proof of (1) is similar. Let Y = {±(m + k) : k ∈ [n]}
and suppose A has x + 1 elements. We may construct the elements of ΠB(m + n,A) in
the following manner. First choose a partition Γ in ΠB(m) with 2j + 1 blocks; there are{
m
j

}
B

choices for this. Next, select a 2(n − k)-element subset S ⊂ Y with S = −S and

distribute the elements of S among the blocks of Γ so that the resulting partition Γ′ has
Γ′ = −Γ′; there are

(
n
k

)
choices for S and (2j + 1)n−k possible distributions, since once

we have chosen the blocks to contain the positive elements of S the blocks containing
the negative elements are uniquely determined. Now, label the 2(m + n− j − k) arcs of
Γ′ by nonzero elements of A so that Γ′ satisfies (5.1); there are xm+n−j−k such labelings.
Finally, choose an A-labeled partition of Y \ S satisfying (5.1) and concatenate this with
Γ′ to form an element of ΠB(m + n,A); there are BD

k (x) choices for this partition. Each
element of ΠB(m+n,A) arises from exactly one such construction, so summing the product
xm+n−j−k(2j+1)n−k

(
n
k

){
m
j

}
B
Bk(2x) over all possible values of j and k yields BB

m+n(x).

Likewise, we compute NX
n (x) by recalling the definition in the previous section of

uncross(Λ) for a set partition Λ. Modifying this construction slightly, for Λ ∈ ΠB(n), we
define uncrossB(Λ) to be the set partition of [±n] formed by removing zero from its block
in uncross(Λ). For example,

uncrossB

(
• • • • • • •
−3 −2 −1 0 +1 +2 +3

)
= • • • • • •
−3 −2 −1 +1 +2 +3

We note the following properties of these maps in the present context.

Lemma 5.4. The maps

uncrossB : ÑCB(n)→ {Noncrossing set partitions Λ ` [±n] with Λ = −Λ}

uncross : ÑCD(n)→

{
Noncrossing set partitions Λ ` [±n] with Λ = −Λ which

have an even number of blocks B such that B = −B

}

are bijections. Furthermore, if Λ ∈ ÑCB(n) has 2k+1 blocks then uncrossB(Λ) has either
2k or 2k + 1 blocks.

Note that uncross(Λ) has the same number of blocks as Λ for any set partition Λ.

Proof. Given Λ ` [±n] with Λ = −Λ, let X = {(−i1, i1), . . . , (−i`, i`)} be the set of arcs
of the form (−i, i) ∈ Arc(Λ), where i1 < · · · < i`, and define Y as the set of arcs

Y =

{
{(−i2k, i2k−1), (−i2k−1, i2k) : k ∈ [ `

2
]}, if ` is even,

{(−i1, 0), (0, i1)} ∪ {(−i2k, i2k+1), (−i2k+1, i2k) : k ∈ [ `−1
2

]}, if ` is odd.
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Let Λ′ be the set partition of {0} ∪ [±n] with arc set (Arc(Λ) − X ) ∪ Y , and when ` is
even, let Λ′′ be the set partition of [±n] with arc set (Arc(Λ)− X ) ∪ Y . Then Λ 7→ Λ′ is
the two-sided inverse of the first map in the lemma, while Λ 7→ Λ′′ is the two-sided inverse
of the second map. The last remark concerning the numbers of blocks follows from the
fact that uncrossB(Λ) partitions a set with one less element than Λ, yet has either equally
many or one fewer arcs than Λ.

The first identity in the following proposition is an immediate consequence of the
previous lemma and Lemma 4.1. The second part follows from the first, given the fact
that ND

n+1(x) = NB
n (x)+nxNn(x), an identity which we will prove in a more general form

as Corollary 6.8.

Proposition 5.5. NB
n (x) =

n∑
k=0

(
n

k

)2

xk and ND
n+1(x) =

n∑
k=0

(
n

k

)(
n+ 1

k

)
xk for n ≥ 0.

Remark. This result shows that NB
n (x) is the Narayana polynomial of type Bn; i.e., the

rank generating function of the lattice of noncrossing partitions of type Bn introduced in
[29]. By contrast, ND

n (x) is not the Narayana polynomial of type Dn; however, the latter
polynomial is equal to ND

n (x) + xNB
n−1(x) − xNn−1(x) for n ≥ 1 (see [7, Theorem 1.2]).

These observations imply that NB
n (1) =

(
2n
n

)
and ND

n+1(1) =
(

2n+1
n

)
are central binomial

coefficients.

6 Identities in types B and D

To apply the methods of Section 3 to our new constructions, we begin by defining the
appropriate analogue of the map shift : Π(n,A)→ Π(n+ 1,A).

Shifting the matrix of a set partition in ΠB(n,A) (respectively, ΠD(n,A)) one column
to the right yields the matrix of a set partition in ΠD(n + 1,A) (respectively, ΠB(n,A)),
and corresponds to two injective maps which, with slight abuse of notation, we again
denote by shift :

shift : ΠD(n,A)→ ΠB(n,A) and shift : ΠB(n,A)→ ΠD(n+ 1,A).

Explicitly:

• If Λ ∈ ΠD(n,A) then shift(Λ) ∈ ΠB(n,A) has arc set {(f(i), f(j) + 1) : (i, j) ∈

Arc(Λ)} and labeling map (f(i), f(j) + 1) 7→ Λij, where f(x) :=

{
x, if x < 0,

x− 1, if x > 0.

• If Λ ∈ ΠB(n,A) then shift(Λ) ∈ ΠD(n + 1,A) has arc set {(g(i), g(j) + δj + 1) :
(i, j) ∈ Arc(Λ)} and labeling map (g(i), g(j) + δj + 1) 7→ Λij, where g(x) :={
x− 1, if x ≤ 0,

x, if x > 0.
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One checks without difficulty that these definitions do in fact give set partitions belonging
to ΠB(n,A) and ΠD(n+ 1,A). For example,

shift

 •
a

•
b

•
−b

• •
−a
•

−3 −2 −1 +1 +2 +3

 = •
a

•
b

•

−b

• •
−a

• •
−3 −2 −1 0 +1 +2 +3

and

shift

 •
a

•
b

•

−b

• •
−a

• •
−3 −2 −1 0 +1 +2 +3

 = •
a

•

b

•

−b

• •

−a

• • •
−4 −3 −2 −1 +1 +2 +3 +4

which becomes obvious after noting that the matrices of the three set partitions are

0 a
0 b

0 −b
0

0 −a
0

0 a
0 b

0 −b
0

0 −a
0

0

0 a
0 b

0 −b
0

0 −a
0

0
0

It is straightforward to see that the map shift defines bijections

ΠD(n,A)→ {2-regular elements of ΠB(n,A)},
ΠB(n,A)→ {2-regular elements of ΠD(n+ 1,A)},

(6.1)

where, as previously, a set partition is 2-regular if none of its blocks contain two consecu-
tive integers i and i+1. Consequently we may view shift as a map ΠD(n,A)→ ΠB(n,A,B)
and ΠB(n,A)→ ΠD(n+ 1,A,B).

We define the feasible and poor elements of ΠB(n) or ΠD(n) exactly as for Π(n). In
addition, we say that a set partition is B-feasible if none of its blocks contain exactly one
nonzero element and B-poor if none of its blocks contain more than two nonzero elements.
Observe that these notions are distinct from “feasible” and “poor” only for elements of
ΠB(n). The following lemma, in analogy with Lemma 3.1, describes the action of shift on
these sets of interest.

Lemma 6.1. The following restrictions of shift are bijections:

(1)
{

Feasible elements of ΠD(n,A)
}
→

{
2-regular partitions Λ ∈ ΠB(n,A) such that

1 + maxB 6= minB′ for all blocks B,B′ ∈ Λ

}
.
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(2)
{

B-feasible elements of ΠB(n,A)
}
→
{

2-regular partitions Λ ∈ ΠD(n + 1,A) with

1 + maxB 6= minB′ for all blocks B,B′ ∈ Λ

}
.

(3)
{

Poor elements of ÑCD(n,A)
}
→
{

2-regular elements of ÑCB(n,A)
}

.

(4)
{

B-poor elements of ÑCB(n,A)
}
→
{

2-regular elements of ÑCD(n+ 1,A)
}

.

Proof. Parts (1) and (2) follow from the intuitive definition of shift on matrices after
noting that

• A partition Λ in ΠD(n,A) (respectively, ΠB(n,A)) is feasible (respectively, B-feasible)
if and only if its matrix has a nonzero entry in either the ith row or ith column for
each i ∈ [2n] (respectively, for each i ∈ [2n+ 1] \ {n+ 1}).

• A partition Λ in ΠB(n,A) (respectively, ΠD(n+ 1,A)) is 2-regular and has the prop-
erty that 1 + maxB 6= minB′ for all blocks B,B′ ∈ Λ if and only if its matrix has
no nonzero entries on the superdiagonal but has at least one nonzero entry in the
superdiagonal hook {(i, j+1) : i < j}∪{(j, k) : j < k} for each i ∈ [2n] (respectively,
for each i ∈ [2n+ 2] \ {n+ 1}).

Parts (3) and (4) follow from similar considerations.

For X ∈ {B,D}, we let FX
n (x), F̃B

n (x), MX
n (x), and M̃B

n(x) denote the polynomials

FX
n (x) =

∑
Feasible Λ∈ΠX(n)

x
|Arc(Λ)|

2

F̃B
n (x) =

∑
B-feasible Λ∈ÑCB(n)

x
|Arc(Λ)|

2

and

MX
n (x) =

∑
Poor Λ∈ÑCX(n)

x
|Arc(Λ)|

2

M̃B
n(x) =

∑
B-poor Λ∈ÑCB(n)

x
|Arc(Λ)|

2 .

The next few results provide more explicit formulas for these functions.
To begin, observe that in analogy with (5.2), we have

FD
n (x) = Fn(2x), for all n ≥ 0. (6.2)

In a different direction, note that a poor set partition in ΠB(n) must contain the singleton
{0} as a block, and removing this block defines a bijection from the set of poor elements
of ΠB(n) to the set of poor elements of ΠD(n). The first equality in the next proposition
derives from this fact.

Proposition 6.2. MB
n(x) =MD

n (x) =

bn/2c∑
k=0

(
2k

k

)(
n

2k

)
xk.

Remark. The numbers {MB
n(1)}∞n=0 = (1, 1, 3, 7, 19, 51, 141, . . . ) are the central trinomial

coefficients [33, A002426], defined as the coefficient of xn in (1 + x+ x2)n.
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Proof. Since a poor element of ΠD(n) with 2k arcs has 2(n − k) singleton blocks which
come in pairs {i}, {−i}, we have MD

n (x) =
∑

k

(
n
k

)
|Xk|xk where Xk is the set of poor

partitions in ÑCD(k) whose blocks all have size two. By Lemma 5.4, the map uncross
defines a bijection Xk → Yk, where Yk is the set of noncrossing set partitions Λ ` [±k]
with Λ = −Λ which have k blocks of size two and an even number of blocks of the form
{−i, i}. To prove the proposition it suffices to show that Yk is empty if k is odd and that
|Y2k| =

(
2k
k

)
.

Since the elements of Yk are noncrossing and invariant under negation, the blocks of
a partition Λ ∈ Yk which are not of the form {−i, i} are of the form {i, j} with i, j > 0 or
i, j < 0. Hence, removing all blocks of Λ ∈ Yk which contain negative integers (and then
shifting indices) produces a noncrossing partition of [k− `] whose blocks all have size two,
where ` is the number of blocks of Λ of the form {−i, i}. Since ` is always even, if k is
odd then no such partitions exist and |Yk| = 0.

Let Zk be the set of all noncrossing set partitions of [2k] whose blocks all have size two.
Given Λ ∈ Zk, let ϕ(Λ) ∈ Dk be the Dyck path whose ith step is (1, 1) if i is the smaller
of the two elements in its part of Λ and (1,−1) otherwise. One checks that ϕ : Zk → Dk
is a well-defined bijection (one recovers Λ by numbering the steps of ϕ(Λ) from 1 to 2k
and placing the pairs of numbers indexing each upstep (1, 1) and the following downstep
(1,−1) at the same height in blocks), and it is clear that if we view Y2k as a subset of Z2k,
then ϕ restricts to a bijection from Y2k to the set of symmetric elements of D2k. Hence
|Y2k| =

(
2k
k

)
by Lemma 4.2, as required.

Inspecting the formulas for Mn(x) and MB
n(x) in Propositions 3.2 and 6.2 yields the

following trivial but useful corollary.

Corollary 6.3. MB
n+2(x) =MB

n+1(x) + 2(n+ 1)xMn(x) for n ≥ 0.

We now turn our attention to the polynomials F̃B
n (x) and M̃B

n(x) counting B-feasible
and B-poor noncrossing partitions in ΠB(n,A).

Proposition 6.4. The following identities hold for n ≥ 0:

(1) F̃B
n (x) = FB

n (x) + Fn(2x) =
n∑
k=0

(
n

k

)
Fk(2x)xn−k.

(2) M̃B
n(x) =MB

n(x) + nxMn−1(x) =

dn/2e∑
k=0

(
n

k

)(
n+ 1− k

k

)
xk.

Remark. We have F̃B
n (1) = Bn(2) since splitting the block containing 0 into single-

tons and then removing {0} defines a bijection from the set of B-feasible elements of
ΠB(n) to ΠD(n); this also follows from the first remark to Theorem 3.4. The numbers

{M̃B
n(1)}∞n=0 = (1, 1, 2, 5, 13, 35, 96, . . . ) count the directed animals of size n + 1 [33,

A005773].
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Proof. A B-feasible element of ΠB(n) is either feasible or contains {0} as a block, and re-
moving the block {0} gives a bijection from the partitions of the latter kind to the feasible
elements of ΠD(n). We obtain the second equality in (1) by noting that

(
n
k

)
Fk(2x)xn−k

is the number of B-feasible elements of ΠB(n) in which 0 belongs to a block with exactly
2k + 1 elements.

For part (2), we observe that M̃B
n(x) = MB

n(x) +
∑n

k=1 M̃B
n,k(x) where M̃B

n,k(x) is

the sum of x
|Arc(Λ)|

2 over all B-poor set partitions Λ ∈ ÑCB(n) which possess {−k, 0, k}
as a block. In such partitions, all remaining blocks are subsets of either {1, 2, . . . , k − 1},
{−1,−2, . . . ,−k + 1}, or [±n] \ [±k]. The blocks contained in the first two of these
sets are reflections of each other and determine a poor element of NC(k − 1), while the

blocks contained in [±n] \ [±k] determine a poor element of ÑCD(n− k). It follows that

M̃B
n,k(x) = xMk−1(x)MB

n−k(x).

By considering whether the blocks of ±(n + 2) in a poor element of ÑCD(n + 2,A)
are singletons or contain a second element in [±(n + 1)], one obtains the recurrence
MB

n+2(x) = MB
n+1(x) + 2x

∑n
k=0Mk(x)MB

n−k(x) for n ≥ 0. Subtracting the expression

in Corollary 6.3 from this equation shows that
∑n

k=1 M̃B
n,k(x) = nxMn−1(x), which then

gives the formula in (2).

The following corollary will be of use in the proof of Theorem 6.7.

Corollary 6.5. The following identities hold for n ≥ 0:

(1) There are
(

2n
n

)
elements of ÑCD(2n) whose blocks all have size two.

(2) There are no elements of ÑCD(2n+ 1) whose blocks all have size two.

(3) There are
(

n
bn/2c

)
B-poor elements of ÑCB(n) with no nonzero singleton blocks.

Proof. All blocks of an element of ÑCD(n) have size two if and only if the partition has
exactly n arcs; hence, the number counted in part (1) is the coefficient of xn/2 inMD

n (x).

An element of ÑCB(n) is B-poor and has no nonzero singleton blocks if and only if either
the partition contains {0} as a block such that removing this block produces an element

of ÑCD(n) whose blocks all have size two, or if the partition has n + 1 arcs. Hence the
number counted in part (2) is the sum of the number in (1) and the coefficient of x(n+1)/2

in M̃B
n(x).

Serving as an analogue for Theorem 3.3, the following result shows that Bn(2x) and

MB
n(x) count the LB(n,B)-orbits in ΠB(n,A,B) and ÑCB(n,A,B), while BB

n (x) and

M̃B
n(x) count the LD(n+ 1,B)-orbits in ΠD(n+ 1,A,B) and ÑCD(n+ 1,A,B).

Theorem 6.6. Let n be a positive integer.
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(1) The correspondence Λ 7→ {α + shift(Λ) : α ∈ LB(n,B)} is a bijection

ΠD(n,A)→
{

LB(n,B)-orbits in ΠB(n,A,B)
}
,{

Poor elements of ÑCD(n,A)
}
→
{

LB(n,B)-orbits in ÑCB(n,A,B)
}
.

Furthermore, the cardinality of the LB(n,B)-orbit of shift(Λ) is |B|s/2, where s is
the number of singleton blocks of Λ ∈ ΠD(n,A).

(2) The correspondence Λ 7→ {α + shift(Λ) : α ∈ LD(n,B)} is a bijection

ΠB(n− 1,A)→
{

LD(n,B)-orbits in ΠD(n,A,B)
}
,{

B-poor elements of ÑCB(n− 1,A)
}
→
{

LD(n,B)-orbits in ÑCD(n,A,B)
}
.

The cardinality of the LD(n,B)-orbit of shift(Λ) is |B|bs/2c, where s is the number
of singleton blocks of Λ ∈ ΠB(n− 1,A).

In part (2), bs/2c is half the number of nonzero singleton blocks of Λ ∈ ΠB(n− 1,A).

Proof. The proof is quite similar to that of Theorem 3.3. Let X ∈ {B,D}. As in the
earlier proof, the definition of + implies that each LX(n,B)-orbit in ΠX(n,A,B) contains
a unique 2-regular element, and this suffices by (6.1) and Lemma 6.1 to show that the
maps in (1) and (2) are bijections.

If α ∈ LX(n,B) then (i, i+1) ∈ Arc(α) if and only if (−i−1,−i) ∈ Arc(α) and the pair
of arcs (i, i+1), (−i−1,−i) have opposite labels. Also, if α ∈ LD(n,B) then (−1, 1) never
belongs to Arc(α). Consequently, from our definition of + via Observation 2.2, it follows
that if Λ belongs to ΠD(n,A) (respectively, ΠB(n−1,A)) then the orbit of shift(Λ) has size
|B|s/2, where s is the number the superdiagonal hooks {(i, j+ 1) : i < j}∪{(j, k) : j < k}
for j ∈ [2n] (respectively, for j ∈ [2n − 1] \ {n}) containing no nonzero entries in the
matrix of shift(Λ). In both cases, the intuitive definition of shift implies that s is the
(even) number of nonzero singleton blocks in Λ.

We may now prove the type B and D analogue of Theorem 3.4.

Theorem 6.7. If n is a nonnegative integer then the following identities hold:

(1) BB
n (x, y) =

n∑
k=0

(
n

k

)
Bk(2x)yn−k =

n∑
k=0

(
n

k

)
Fk(2x)(y + 1)n−k.

(2) BD
n+1(x, y) =

n∑
k=0

(
n

k

)
BB
k (x)yn−k =

n∑
k=0

(
n

k

)
F̃B
k (x)(y + 1)n−k.

(3) NB
n (x, y) =

n∑
k=0

(
n

k

)
MB

k (x)yn−k =
n∑
k=0

(
2k

k

)(
n

2k

)
xk(y + 1)n−2k.

the electronic journal of combinatorics 19 (2012), #P28 23



(4) ND
n+1(x, y) =

n∑
k=0

(
n

k

)
M̃B

k (x)yn−k =
n∑
k=0

(
n

k

)(
k

bk/2c

)
xdk/2e(y + 1)n−k.

Proof. As in the proof of Theorem 3.4, if |A| = x+ 1 and |B| = y + 1, then in each part,

the terms in first sum counts partitions (in ΠB(n,A,B), ΠD(n+ 1,A,B), ÑCB(n,A,B), or

ÑCD(n+1,A,B), respectively) whose matrices have the same number of nonzero entries on
the superdiagonal, while the terms in the second sum count partitions whose LB(n,B)- or
LD(n+ 1,B)-orbits have the same fixed size. Checking the details of this assertion−using
Corollary 6.5, Equation (6.1), Lemma 6.1, and Theorem 6.6−is entirely analogous to the
proof of Theorem 3.4, and we leave this exercise to the reader. The sums in each part are
thus necessarily equal to each other and to BB

n (x, y) in (1), BD
n+1(x, y) in (2), NB

n (x, y) in
(3), and ND

n+1(x, y) in (4).

Remark. We may rewrite part (3) as the following identity, first proved in a different
way by Chen, Wang, and Zhao [15, Theorem 2.5]:

n∑
i=0

bn−i
2
c∑

j=0

(
n

i

)(
n− i
j

)(
n− i− j

j

)
xjyi =

bn/2c∑
k=0

(
2k

k

)(
n

2k

)
xk(y + 1)n−2k.

Setting x = y here recovers the identity (1.3) mentioned in the introduction, and taking
x = y = 1 gives

(
2n
n

)
=
∑

k

(
n
2k

)(
2k
k

)
2n−2k, a type B analogue for Touchard’s formula for

the Catalan numbers noted by Simion [32].

Substituting the expressions forMk(x) and M̃B
k (x) given in Corollary 6.3 and Propo-

sition 6.4 into parts (3) and (4) of the preceding result, while noting the second part of
Theorem 3.4, leads to the next corollary.

Corollary 6.8. The following identities hold for n ≥ 0:

(1) NB
n+1(x, y) = (y + 1)NB

n (x, y) + 2nxNn(x, y).

(2) ND
n+1(x, y) = NB

n (x, y) + nxNn(x, y).

This brings to light some redundancy in our identities. The first part provides a way
to derive (1.2) from (1.3) in the introduction, and the second part shows that the equality
of the two expressions in part (4) of Theorem 6.7 follows by taking an appropriate linear
combination of part (2) of Theorem 3.4 and part (3) of Theorem 6.7.

As a second corollary, we have this analogue of Corollary 3.5.

Corollary 6.9. If n is a nonnegative integer then the following identities hold:

(1)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kBB

k (x, y) = Fn(2x).

(2)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kBD

k+1(x, y) = F̃B
n (x).
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(3)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kNB

k (x, y) =

{(
n
n/2

)
xn/2, if n is even,

0, if n is odd.

(4)
n∑
k=0

(−1)n−k
(
n

k

)
(y + 1)n−kND

k+1(x, y) =

(
n

bn/2c

)
xdn/2e.

Remark. Setting x = y in part (3) produces the result given by Chen, Wang, and Zhao
as [15, Theorem 3.1]. Setting x = y = 1 in this equation gives an identity attributed
to Dawson [30, Page 71], for which Andrews [4, Theorem 5.4] gives a proof using basic
hypergeometric functions.

Proof. The proof is almost the same as that of Corollary 3.5. In short, letting given a
subset S ⊂ [n], let XS and YS denote the unions of the LB(n,B)-orbits of shift(Λ) for

all partitions Λ in ΠD(n,A) and ÑCD(n,A), respectively, which contain the singletons
{i} and {−i} as blocks for each i ∈ S. By Theorem 6.6 the sets of LB(n,B)-invariants in

ΠB(n,A,B) and ÑCB(n,A,B) are the respective complements of
⋃
i∈[n]X{i} and

⋃
i∈[n] Y{i}.

Using Theorems 6.6 and 6.7 and the inclusion-exclusion principle to count the elements
in these unions affords parts (1) and (3) upon setting x = |A| − 1 and y = |B| − 1.

One proves parts (2) and (4) in the same way, by considering the analogous sets X ′S
and Y ′S given by the unions of the LD(n + 1,B)-orbits of shift(Λ) for all partitions Λ

in ΠB(n,A) and ÑCB(n,A), respectively, which contain the singletons {i} and {−i} as
blocks for each i ∈ S.

We conclude this section by noting the following recurrences forNn(x, y) andNB
n (x, y),

which are easy consequences of the preceding results but which are difficult to deduce
otherwise.

Corollary 6.10. For n ≥ 2, the following recurrences hold:

(1) (n+ 1)Nn(x, y) = (y + 1)(2n− 1)Nn−1(x, y) + (4x− (y + 1)2) (n− 2)Nn−2(x, y).

(2) nNB
n (x, y) = (y + 1)(2n− 1)NB

n−1(x, y) + (4x− (y + 1)2) (n− 1)NB
n−2(x, y).

Remark. Sulanke provides bijective proofs of part (1) in the increasingly general cases
x = y ∈ {1, 2} [36]; x = 1 [37, Proposition 1.1]; and x = y [38].

Proof. After substituting the right-most expressions in Theorem 3.4 and Theorem 6.7 for
Nn(x, y) and NB

n (x, y) into these equations, the theorem is equivalent to easily checked
identities involving binomial coefficients and Catalan numbers.

7 Connections to representation theory

Fix a finite field Fq with with order q and odd characteristic p > 0. Given positive integers
m,n, we write Fm×nq for the set of m×n matrices over Fq. For any matrix X ∈ Fm×nq , let
X† ∈ Fn×mq denote the backwards transposed matrix defined by (X†)ij = Xn+1−j,m+1−i.
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For each positive integer n, let Un(Fq) denote the group of n × n upper triangular
matrices over Fq whose diagonal entries are all equal to one, and let UB

n(Fq) ⊂ U2n+1(Fq)
and UD

n (Fq) ⊂ U2n(Fq) be the subgroups of elements fixed by the involution g 7→ (g−1)†.
Explicitly, this means:

Un(Fq) =
{
x ∈ Fn×nq : xii = 1 and xji = 0 for i, j ∈ [n] with i < j

}
,

UB
n(Fq) =


 x xu xz

0 1 −u†
0 0 (x−1)†

 : x ∈ Un(Fq), u ∈ Fn×1
q , z ∈ Fn×nq , z† + z + uu† = 0

,
UD
n (Fq) =

{(
x xz
0 (x−1)†

)
: x ∈ Un(Fq), z ∈ Fn×nq , z† + z = 0

}
.

The groups Un+1(Fq), UB
n(Fq), and UD

n (Fq) are isomorphic to the Sylow p-subgroups of
the Chevalley groups An(q), Bn(q), and Dn(q).

Finding a general classification of the irreducible representations of these and related
groups for all n and q is a well-known wild problem. However, in the past two decades a
series of researchers led by C. A. M. André have defined and studied useful supercharacter
theories for these groups, with many notable combinatorial properties. Introduced by
Diaconis and Isaacs [20], a supercharacter theory of a finite group G is a set S of complex
characters of G, called supercharacters, such that (i) every irreducible character of G is a
constituent of exactly one character χ ∈ S; and (ii) S has the same cardinality as K, the
coarsest partition of G with the property that each character χ ∈ S is constant on each
set K ∈ K. This definition leads naturally to the idea of a “supercharacter table” and
other analogues of notions from character theory.

While the groups Un(Fq), UB(Fq), and UD(Fq) in fact have many different superchar-
acter theories, each has one in particular whose supercharacters are naturally indexed by
Fq-labeled set partitions of an appropriate type. We endeavor here to briefly describe
these supercharacter theories, with the goal of lending representation theoretic meanings
to some of the objects examined in the previous sections.

For a reference to the following material, see [39]. We may define the supercharacters
of Un(Fq) by an explicit formula. Fix a nontrivial homomorphism θ : Fq → C× from the
additive group of the field to the complex numbers. There is an equivalence relation on
Un(Fq) defined by setting x ∼ y if and only if there are g, h ∈ Un(Fq) with g(x− 1)h =
y − 1. The matrices

xΓ := 1 +
∑

(i,j)∈Arc(Λ)

Λijeij ∈ Un(Fq), for Γ ∈ Π(n,Fq),

with eij denoting an n×n elementary matrix, are representatives of the equivalence classes
of this relation, which we call superclasses. For each Λ ∈ Π(n,Fq), let χΛ : Un(Fq) → C
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be the function which is constant on superclasses with the formula

χΛ(xΓ) =


∏

(i,l)∈Arc(Λ)

qc(i,l;Γ)θ (ΛijΓij) ,
if {(i, j), (j, k)} ∩ Arc(Γ) = ∅ for all i, j, k

with i < j < k and (i, k) ∈ Arc(Λ),

0, otherwise,

(7.1)
for Γ ∈ Π(n,Fq), where c(i, l; Γ) := l − i − 1 − |{(j, k) ∈ Arc(Γ) : i < j < k < l}| and
where Γij is defined to be zero if (i, j) /∈ Arc(Γ).

In the sequence of papers [1, 2, 3], André and Neto introduce an analogous set of
supercharacters for the groups UB

n(Fq) and UD
n (Fq). One may succinctly define these as

restrictions of certain χΛ’s. To state this clearly, let halve(Λ) for Λ ∈ ΠB(n,Fq) be the
labeled set partition in Π(2n + 1,Fq) given by removing all arcs (i, j) with i + j > 0
from Λ and then applying the natural embedding of Fq-labeled partitions of [±n]∪{0} in
Π(2n + 1,Fq). We define halve(Γ) ∈ Π(2n,Fq) for Γ ∈ ΠD(n,Fq) by the same operation;
i.e., remove all arcs (i, j) with i+ j > 0 from Λ and then apply the natural embedding of
Fq-labeled partitions of [±n] in Π(2n,Fq). For example,

halve

 •
a

•
b

•
−b

• •
−a
•

−3 −2 −1 +1 +2 +3

 = •
a

•
b

• • • •
1 2 3 4 5 6

for a, b ∈ F×q . Now, for Λ ∈ ΠB(n,Fq) and Γ ∈ ΠD(n,Fq) we let χB
Λ : UB

n(Fq) → C and

χD
Γ : UD

n (Fq)→ C denote the restricted functions

χB
Λ := Res

U2n+1(Fq)

UB
n(Fq)

(
χhalve(Λ)

)
and χD

Γ := Res
U2n(Fq)

UD
n (Fq)

(
χhalve(Γ)

)
.

The significance of these functions derives from the following theorem.

Theorem 7.1. When q is odd, the sets of functions

{χΛ : Λ ∈ Π(n,Fq)}, {χB
Λ : Λ ∈ ΠB(n,Fq)}, and {χD

Λ : Λ ∈ ΠD(n,Fq)}

are supercharacter theories of the groups Un(Fq), UB
n(Fq), and UD

n (Fq). These theories
have Bn(q − 1), BB

n (q − 1), and Bn(2q − 2) distinct supercharacters, respectively.

In particular, this means the functions χΛ, χB
Λ, and χD

Λ are characters. When q is
even, {χΛ} is still a supercharacter theory of Un(Fq). The methods used to show that the
second two sets are supercharacter theories, however, depend on odd characteristic.

Proof. That {χΛ : Λ ∈ Π(n,Fq)} is a supercharacter theory of Un(Fq) is well-known;
see [39]. Our definition of the supercharacters {χB

Λ : Λ ∈ ΠB(n,Fq)} and {χD
Λ : Λ ∈

ΠD(n,Fq)} differs from the one given by André and Neto in [1, 2, 3], but is equivalent by
[2, Proposition 2.2]. Hence it follows from the main conclusions of [1, 2, 3] that both sets
are supercharacter theories.
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The formula for χΛ shows that L(n,Fq), LB(n,Fq), and LD(n,Fq) index the linear su-
percharacters (i.e., those with degree 1) of Un(Fq), UB(n,Fq), and UD(n,Fq), respectively.
These supercharacters exhaust the set of all linear characters for Un(Fq) and UB

n(Fq), but
not for UD

n (Fq). In addition, it is not difficult to check that the product of a supercharac-
ter with a linear supercharacter remains a supercharacter, and that, as mentioned in the
introduction, we have

χαχΛ = χα+Λ, χB
α′χ

B
Λ′ = χB

α′+Λ′ , and χD
α′′χ

D
Λ′′ = χD

α′′+Λ′′

for α ∈ L(n,Fq), α′ ∈ LB(n,Fq), α′′ ∈ LD(n,Fq) and Λ ∈ Π(n,Fq), Λ′ ∈ ΠB(n,Fq),
Λ′′ ∈ ΠD(n,Fq). As a consequence, we may state the following.

Corollary 7.2. The supercharacter theories of Un(Fq), UB
n(Fq), and UD

n (Fq) in Theorem

7.1 have Fn−1(q − 1), Fn(2q − 2), and F̃B
n−1(q − 1) supercharacters, respectively, which

are invariant under multiplication by all linear supercharacters.

We conclude with a result which gives a representation theoretic interpretation of the
sets ÑCB(n,A) and ÑCD(n,A) introduced in Section 5.

Theorem 7.3. With respect to the supercharacter theories in Theorem 7.1, the following
properties hold:

(1) The map Λ 7→ χΛ defines a bijection from NC(n,Fq) to the set of irreducible su-
percharacters of Un(Fq). More generally, the groups Un(Fq), UB

n−1(Fq), UD
n (Fq) all

have exactly Nn(q − 1) distinct irreducible supercharacters.

(2) The map Λ 7→ χB
Λ defines a bijection from ÑCB(n,Fq) to the set of supercharacters

of UB
n(Fq) not equal to the restriction of any reducible supercharacter of U2n+1(Fq).

(3) The map Λ 7→ χD
Λ defines a bijection from ÑCD(n,Fq) to the set of supercharacters

of UD
n (Fq) not equal to the restriction of any reducible supercharacter of U2n(Fq).

Proof. The first sentence in part (1) is noted in several places; e.g., [39]. To show that
Nn(q− 1) also counts the irreducible supercharacters of UB

n+1(Fq) and UD
n (Fq), it suffices

to show that χB
Λ is irreducible if and only if Λ ∈ ΠB(n,Fq) is noncrossing and χD

Λ is
irreducible if and only if Λ ∈ ΠD(n,Fq) is noncrossing. We only address the type B case
as the proof in type D is similar.

Given integers −n ≤ i < j ≤ n with i 6= −j and t ∈ F×q , let χB
i,j,t denote the

supercharacter of UB(n,Fq) indexed by the labeled set partition in ΠB(n,Fq) with just
two arcs (i, j), (−j,−i) labeled by t,−t. From the original construction in [3, Section 2],
it follows that χB

Λ =
∏

i,j,t χ
B
i,j,t, where (i, j) ranges over all (i, j) ∈ Arc(Λ) with i+ j ≤ 0

and t ∈ F×q is the associated label. Moreover, if 0 ≤ j < i ≤ n and

H =

{
g ∈ UB(n,Fq) :

gn+1−i,k = 0 if n+ 1− i < k ≤ n,

gn+1−j,l = 0 if n+ 1− j < l ≤ n+ 1

}
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then, as defined in [3], χB
−i,j,t is the character induced from the linear character τ of H

defined by τ : g 7→ θ(tgn+1−i,n+1+j). In this situation, one checks that the formula for τ
also defines a linear character of the group

K =

{
g ∈ UB(n,Fq) :

gn+1−i,k = 0 if n+ 1− i < k ≤ n and k 6= n+ 1− j,
gn+1−j,l = 0 if n+ 1− j < l ≤ n+ 1

}
) H

whence it follows by Frobenius reciprocity and Mackey’s theorem that χB
−i,j,t has a proper

constituent (given by inducing τ from K). This discussion shows that if Λ ∈ ΠB(n,Fq)
has an arc of the form (−i, j) where i, j > 0, then χB

Λ is reducible.
If halve(Λ) has any crossing arcs then χB

Λ is reducible since it is the restriction of a
reducible character. It is straightforward to see that if Λ ∈ ΠB(n,Fq) has no arcs (−i, j)
with i, j > 0, then halve(Λ) is noncrossing if and only if Λ is noncrossing. In view of the
previous paragraph, it follows that χB

Λ is irreducible only if Λ ∈ ΠB(n,Fq) is noncrossing.
If Λ is noncrossing then {n + i + 1} is a singleton block of halve(Λ) for each i ∈ [n]. In
this case, define Λ′ ∈ Π(n + 1,Fq) as the labeled set partition formed from halve(Λ) by
removing the blocks {n+i+1}, and let N be the normal subgroup of matrices g ∈ UB

n(Fq)
such that g − 1 has all zeros in the first n + 1 columns and in the last n + 1 rows. The
formula for χhalve(Λ) then shows that χB

Λ is obtained by inflating the supercharacter χΛ′ of
the quotient Un+1(Fq) ∼= UB(n,Fq)/N . Since Λ is noncrossing, Λ′ is noncrossing, so both
χΛ′ and χB

Λ are irreducible. It follows that χB
Λ is irreducible if and only if Λ ∈ ΠB(n,Fq)

is noncrossing, as required.
To prove (b), say that two partitions Λ,Λ′ ∈ Π(2n+ 1,Fq) are equivalent if Λ′ can be

obtained from Λ by replacing an arc (i, j) ∈ Arc(Λ) labeled by t with the arc (2n + 2 −
j, 2n+2−i) labeled by −t; here, the arc (i, j) can be replaced only if (2n+2−j, 2n+2−i)
does not already belong to Arc(Λ). If we extend this to define an equivalence relation
on Π(2n + 1,Fq), then it follows from the combination of [2, Proposition 2.2] and [39,
Corollary 4.7] that a supercharacter χB

Γ for Γ ∈ ΠB(n,Fq) is equal to the restriction of χΛ

if and only if Λ ∈ Π(2n+ 1,Fq) belongs to the equivalence class of halve(Γ). In turn, it is
easy to check that the equivalence class of halve(Γ) contains only noncrossing elements if
and only if every pair of crossing arcs in Arc(Γ) has the form (i, j), (−j,−i); i.e., if and

only if Γ ∈ ÑCB(n,Fq). The proof of (c) is similar.

Corollary 7.4. The polynomials NB
n (q− 1) and ND

n (q− 1) count the supercharacters of
UB
n(Fq) and UD

n (Fq) which are not equal to the restriction of any reducible supercharacter
of U2n+1(Fq) and U2n(Fq), respectively.
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