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Abstract

Functional MRI is a fast brain imaging technique which measures the spatio-temporal
neuronal activity. The development of automatic statistical analysis techniques which
calculate brain activation maps from JMRI data has been a challenging problem due
to the limitation of current understanding of human brain physiology. In previous
work a novel information-theoretic approach was introduced for calculating the ac-
tivation map for JMRI analysis [Tsai et al , 1999]. In that work the use of mutual
information as a measure of activation resulted in a nonparametric calculation of the
activation map. Nonparametric approaches are attractive as the implicit assumptions
are milder than the strong assumptions of popular approaches based on the general
linear model popularized by Friston et al [19941. Here we show that, in addition to
the intuitive information-theoretic appeal, such an application of mutual information
is equivalent to a hypothesis test when the underlying densities are unknown. Fur-
thermore we incorporate local spatial priors using the well-known Ising model thereby
dropping the implicit assumption that neighboring voxel time-series are independent.
As a consequence of the hypothesis testing equivalence, calculation of the activation
map with local spatial priors can be formulated as mincut/maxflow graph-cutting
problem. Such problems can be solved in polynomial time by the Ford and Fulkerson
method. Empirical results are presented on three JMRI datasets measuring motor,
auditory, and visual cortex activation. Comparisons are made illustrating the differ-
ences between the proposed technique and one based on the general linear model.

Thesis Supervisor: John W. Fisher
Title: Research Scientist, Laboratory for Information and Decision Systems
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Chapter 1

Introduction

Functional magnetic resonance imaging (JMRI) is a recently developed fast brain

imaging technique which takes a series of 3D MR images of the brain in real time.

Since an JMRI signal represents the change of the blood oxygenation level induced by

neuronal activity, it is used to detect the regions of the brain activated by a specific

cognitive function. It is a very promising functional imaging technique. Not only can

it measure dynamic neuronal activity with a spatial resolution equivalent to that of

positron emission tomography (PET), the current standard for functional analysis,

but it also has several advantages over PET such as a higher temporal resolution,

an absence of radioactive compounds, and a relatively low cost. It is clinically used

to detect the causes of behavioral malfunctions or the effects of tumors in certain

locations of the brain. It is also of interest to cognitive scientists because of its

possibility to reveal secrets of human brain.

Functional MRI measures neuronal activity indirectly through the blood oxy-

genation level dependent (BOLD) response. Since the underlying physiology is not
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Chapter 1. Introduction

thoroughly understood, automated statistical analysis of the JMRI signal is a chal-

lenging problem. Conventional methods of detecting activated regions include direct

subtraction, correlation coefficient, and the general linear model [1]. Direct sub-

traction and correlation coefficient assume a linear relationship between the protocol

and fMRI temporal response, while the general linear model assumes that the JMRI

temporal response is a linear combination of basis signals such as the protocol, car-

diovascular response, and others.

In contrast to the above linear techniques, mutual information measures non-

linear relationships beyond second order statistics [2]. With this as a motivation,

Tsai et al [2] propose a novel information theoretic approach for calculating JMRI

activation maps, where activation is as quantified by the mutual information between

the protocol signal and the JMRI time-series at a given voxel. In that work, it is em-

pirically shown that the information-theoretic approach can be as effective as other

conventional methods of calculating brain activation maps.

In this thesis, we extend the ideas first proposed in Tsai et al . Specifically,

we incorporate a spatial prior using Markov Random Fields (MRF). Additionally, in

support of the MRF approach, we reinterpret mutual information (MI) in the context

of hypothesis testing. This allows for a fast Maximum a Posteriori (MAP) solution

of the JMRI activation map.

Figure 1.1 gives an overview of this thesis where our contributions are illus-

trated by the branches in the diagram. Starting from our previous work [2] on the

information theoretic approach, Arrow (1) indicates the mathematical interpretation

of the previous work to enable the extension to the Bayesian framework. Motivated

by the work of Descombes [3], we apply an MRF prior to the JMRI analysis in the

Bayesian framework as illustrated by Arrow (2). The method developed by Greig

16



Proposed use of MI
in JMRI analysis

Proposed use of MRF Tsai et al [2]

in JMRI analysis (1)

Descombes et al [3] (2)

Formulation of

MAP problem

Reduction to
minimum cut problem (3) ,
Greig et al [4]

Finding the exact solution

of the MAP problem

Figure 1.1: Overview of this thesis.

et al [4] is then applicable to the MAP problem we have formulated. This link is

denoted by Arrow (3). This method solves the MAP problem exactly in polynomial

time by reducing the MAP problem to minimum cut problem in flow network.

1.1 Contributions

As stated, there are two contributions of this thesis. The first is the interpretation

of MI in the context of hypothesis testing. This enables the second and primary

contribution: formulation of JMRI analysis as a MAP estimation problem which

subsequently leads to an exact solution of the MAP problem in JMRI analysis by

solving a minimum cut problem.

1.1. Contributions 17



Chapter 1. Introduction

Information Theoretic Approach: Nonparametric Detection

The use of MI as a statistic can be naturally interpreted in the hypothesis testing

context, which will be demonstrated in Chapter 3. The natural hypothesis testing

problem is to test whether the JMRI signal is independent of the protocol signal.

We will show that the likelihood ratio can be approximated as an exponential of the

mutual information estimate. This reveals that our information theoretic approach is

asymptotically equivalent to a likelihood ratio test for the nonparametric hypothesis

testing problem. Therefore, it suggests that the information theoretic approach has

high detection power considering Neyman-Pearson lemma.

Bayesian Framework with a Spatial Prior and Its Exact Solu-

tion

It is well accepted that there are spatial dependencies in fMRI data. This spatial in-

formation can be exploited by modeling voxel-dependency with an Ising prior which

is a binary Markov Random Field with the nearest neighborhood system. Since the

likelihood ratio can be approximated in terms of the estimated mutual information,

the Ising prior is easily combined with the information theoretic approach. Inter-

estingly, the resulting MAP problem derived from the Ising prior and approximated

likelihood ratio function was found to be solvable by Greig's method [4] which reduces

the MAP problem to minimum cut problem in network flow graph. The significance

of this reduction is that it gives an exact solution to the MAP problem with an Ising

prior in polynomial time.

18



1.2. Organization

Analysis of Kernel Size with Regard to JMRI Analysis

The estimation of MI involves the use of a Parzen density estimator. A fundamental

issue in the use of the Parzen estimator is the choice of a regularizing kernel size

parameter. We propose and evaluate an automated way of choosing this kernel size

parameter for estimating MI in JMRI analysis.

1.2 Organization

The remainder of this thesis is organized as follows. Chapter 2 provides background

on the physiology of fMRI, various JMRI signal analysis techniques including the

general linear model (GLM), and the information theoretic approach proposed by Tsai

et al [2]. In Chapter 3, we present a mathematical interpretation of the information

theoretic approach in the hypothesis testing context. This will then be combined with

Markov random field prior casting the problem in a Bayesian framework in Chapter 4.

In Chapter 5, we present experimental results of the method developed in this thesis,

discuss its significance, and compare it with conventional methods such as the general

linear model. We conclude with brief summary of the work and directions for future

research in Chapter 6.

19
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Chapter 2

Background

This chapter introduces preliminary knowledge on fMRI, our previous information

theoretic approach, and statistical concepts such as detection and Markov random

fields (MRF) which are used in Chapter 3 and Chapter 4. In Section 2.1, we describe

the current understanding of JMRI and the challenges in JMRI signal analysis. In

Section 2.2, we discuss several conventional methods with an emphasis on the general

linear model which is the current standard. The information theoretic approach

of Tsai et al is presented in Section 2.3. We conclude with a brief introduction to

binary hypothesis testing theory in Section 2.4 and Markov Random Field theory in

Section 2.5.

21



Chapter 2. Background

Neuronal ( Blood (2) fMRI
Activity Oxygenation Signal

Figure 2.1: Route from neuronal activity to JMRI signal.

2.1 A Brief Discussion of fMRI

In this section, we provide background on JMRI such as the physiology of human

brain relevant to fMRI, the physical meaning of JMRI signal, and common experi-

ment design. In addition, the limitation and challenges of JMRI signal analysis are

presented.

2.1.1 Characteristics of fMRI Signals

An JMRI signal is a collection of 3D brain images taken periodically (for example,

every 3 seconds) while a subject is performing an experimental task in the imaging

device. The obtained JMRI signal is thus a 4 dimensional discrete-space-time signal,

which can be denoted by X(i, j, k, t). The significance of the JMRI signal can be

explained as follows and is depicted in Figure 2.1. The item of interest is the neuronal

activity in the brain associated with a particular task. This activity is not directly

measurable but is related to the blood oxygenation level which can be measured with

JMRI.

Neuronal activity results in oxygen consumption to which the body reacts with

a highly localized oxygen delivery and overcompensates for the oxygen consumption.

As a result, a substantial rise in oxyhemoglobin is seen, where the rise in relative

oxyhemoglobin is maximal after 4-10 seconds [5]. This phenomena is called hemo-

22



dynamic response. The hemodynamic response is a delayed and dispersed version of

neuronal activity limiting both the spatial and temporal resolution of the imaging.

JMRI measures the change of blood oxygenation level. Specifically the dif-

ference in T2 (transverse or spin-spin decay time constant) between oxygenated(red)

blood and deoxygenated(blue) blood. The signal from a long T2 substance (such as

red blood) is stronger than that from a short T2 substance (such as blue blood) and

so a locality with red blood appears brighter than a locality with blue blood [61.

The observed JMRI signal is thus called a blood oxygenation level dependent (BOLD)

signal.

There is uncertainty in both the hemodynamic response and the imaging pro-

cess. Not only may different parts of brain exhibit different hemodynamic behavior,

but noise is also introduced during imaging process. Therefore, the fMRI signal is

reasonably modeled as a stochastic process.

A fundamental objective is to design an experiment that allows us to detect

which regions of the brain are functionally related to a given stimulus. The typical

approach is the so called block experimental design. In this method, a subject is

asked to perform a task for a specific time (for example, 30 seconds) and then to rest

for another period of time. This procedure is then repeated several times. As a result

of the block experimental design, each voxel of the brain has its own JMRI signal

called the JMRI temporal response. The idea is to compare the observed temporal

response of that voxel during the task state and the temporal response during the

rest state. If there is significant difference between those two, the voxel is considered

to be activated during the experiment.

All data used in this thesis has following formats:

2.1. A Brief Discussion of fMRI 23



Chapter 2. Background

" The image is taken every 3 seconds for 180 seconds resulting in 60 images.

" Each image has 64 by 64 by 21 voxels.

" The lengths of the task and rest states are both 30 seconds.

2.2 Conventional Statistical Techniques of fMRI

Signal Analysis

In this section, we describe several popular techniques for JMRI analysis. In all

the methods, the decision of the activation state of voxel (i, J, k) is made based on

X(i, j, k, .), the discrete-time temporal response of that voxel.

Direct Subtraction

The direct subtraction method tests whether the mean intensity of the temporal

response during the task state is different from the mean intensity of the temporal

response during the rest state. Student's t-test is typically used to test this with the

following statistic:

Xon off (2.1)

on + Nof f
Non-1 Nof f-1

where Xon and xoff are the sets of JMRI temporal responses corresponding to the

task state and the rest state respectively, con and of f are the averages of the set XOn

and x 0 ff, Non and Nq f are the cardinalities of the sets, and o2 and o2 are the

24



2.2. Conventional Statistical Techniques of fMRI Signal Analysis

variances of the sets respectively.

This test is widely used because it is simple to understand and implement.

However, this only tests whether or not the 2 source distributions have the same

mean and furthermore optimality of the test only holds for Gaussian distributions.

Cross correlation

This method calculates the cross correlation between the fMRI temporal response

X(i, j, k,-) and a reference signal designed to reflect the change of task and rest

states. The cross correlation between two signals (xi) and (y.) are given by

_E (x_ii- )(y_ - )
pzy = '~i-jj 2 ~y (2.2)

By Schwartz inequality, -1 < pxy < 1 and a high Jpxyl means a tight linear rela-

tionship exists between the fJMRI temporal response and the reference signal thereby

suggesting activation of the voxel considered. The weak point of this method is that

the performance depends on an accurate reference signal which is difficult to model

due to the lack of knowledge on the characteristics of the JMRI temporal response.

Kolmogorov-Smirnov

The idea in the Kolmogorov-Smirnov test is similar to that of the direct subtraction

method. The major distinction of this method is that it is nonparametric so it

does not make an assumption that JMRI signal is Gaussian. Specifically, this test

25



decides whether the two sets of data corresponding to the task state and the rest

state respectively, were drawn from same distribution or two different distributions.

This test calculates a kind of distance between two empirical distributions' obtained

from two data sets as follows:

Dnn = sup IFn,.n(x) -Fnf ( ) (2.3)
x

where Fn,0n(x) and Fn,,ff(x) are the empirical distributions obtained from the two

sets Xon and xoff.

Under the condition that Xon U x 0ff are independent identically distributed

(i.i.d.), this statistic has the property that "Pr{Dnn < r } equals the probability in

a symmetric random walk that a path of length 2n starting and terminating at the

origin does not reach the points ±r. [7, pages 36-39]"

General Linear Model

In the general linear model, a subspace representing an active response and a subspace

representing a nuisance signal are designed, then the voxel is declared to be active if

significant power of the observed JMRI temporal response is in the subspace of the

active response. In this section, this approach is presented mathematically.

Let Y1, ... , Y, be observed JMRI temporal response of a certain voxel. This

'Empirical distribution is defined as follows:
Fn(x) = [ number of observations < x among X1,... , Xn]

26 Chapter 2. Background



2.2. Conventional Statistical Techniques of fMRI Signal Analysis

method assumes the linear model

Yt

Yn /

Xli

Xt1

Xn1

Xi

... Xti

... Xni

... X1L

... XtL

... XnL

I, 1

L N )

±

/

et

en )

or more compactly,

Y =X+e

= X 1 9X2]

2

SX 1 1 + X 2 02 + e

(2.4)

(2.5)

(2.6)

where e... . , en are i.i.d. according to N(O, U2 ) and - is unknown, X1 is a matrix

whose range is a subspace of interest, X 2 is a matrix whose range is a nuisance

subspace, and X = [XI9X 2] is a design matrix whose columns are the explanatory

time series.

Before proceeding, let us define some notation.

. p = rank(X)

0 P2 = rank(X 2 )

27
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Chapter 2. Background

SPx = X(XTX)-IXT: a projection matrix of X

* Px2 : a projection matrix of X 2

" S(/) IY -PxY| 2

" S(02) = - Px 2YH12

Since (I - Px)Y = (I - Px)e and (I - PX2 )Y = (I - Px 2)(X1131+ e),

S(O) = |(I - Px)Y|| 2

S(132) - S(f)

(I - Px)e||

= eT(I -PX) 2e

eT(I -Px)e

= yT(I - P)Y -yT(I - p)Y

= yT(pX - P)y

= (X 101 + e)T(Px - Px 2 )(X 1 3 1 + e)

where the properties of projection matrix, Pj = Px and PxT = Px, were used.

In the general linear model, the hypothesis testing problem is as follows:

Ho : 1 = 0

H, : /h # 0.

(2.7)

(2.8)

28



2.2. Conventional Statistical Techniques of fMRI Signal Analysis

The Statistic is

s(32)-S(3)

F = -P2 .(2.9)S(O)
n-p

Property 2.2.1. F is distributed according to an F-distribution with degree of free-

dom p - P2 and n - p and noncentrality parameter d2 = ||XI31/3-|| 2, i.e. F ~

F -,_ n-P_ (-; d 2)

Proof. It is sufficient to show that S(3)/c. 2 is a central x 2 random variable with

degree of freedom n - p and (S(0 2) - S(/))/0. 2 is a noncentral x 2 random variable

with degree of freedom p - P2 and noncentrality parameter d2 = HX11/U-H2 2 This

can be seen as follows:

Let us make an orthogonal matrix Q such that the first P2 columns are an

orthonormal basis for Range(X 2) and the first p columns are an orthonormal basis

for Range(X). Then the projection of Y on Range(X) is found by considering Y

Qz = I" qizi. Then

PxY = z.,= Q I ZQ[I, -]Q
0 0 0 0

Thus
I 0

Px Q h QT.
L0 0

Similarly,

Px 2  Q 2 0 ]T.
0 0

2See Appendix A for definitions of the F and x2 distributions.
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Thus

S(3)/0.2 =e(I _ 2  (_ /) [ 0
0

is the sum

S(3)/o. 2 is

of n - p independent random variables drawn from N(0, 1). Therefore,

a central x 2 random variable with degree of freedom n - p. Similarly

0 0

(S(3 2) - S(Q))/0.2 T (X1/3 1 + e)/r)T 0 P-P2

0 0

0

0 (Q T(X1/1 + e)/u)

0

is a sum of p - P2 independent random variables drawn from N(pi, I), where p =

[1... p]T - QTX1/o3-/. Therefore, (S(0 2 ) - S())/u.2 is a noncentral x 2 random

variable with degree of freedom p - P2 and noncentrality parameter d2 = flX11/U-| 2.

2.3 Information Theoretic Approach

This section presents the information theoretic approach to JMRI analysis developed

by Tsai et al [2]. In this method, mutual information is used to quantify the degree

of dependency between an fMRI temporal response and a protocol signal. This is

attractive in that MI can capture nonlinear dependencies which cannot be detected

by the traditional methods that assume a linear Gaussian structure for the JMRI signal

or measure linear dependency. Furthermore, this nonparametric approach makes few

assumptions on the structure of the JMRI temporal response. Instead of making

strong functional assumptions, it treats the signal as stochastic entity and learns its

underlying distribution from the observed data.

30 Chapter 2. Background
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2.3. Information Theoretic Approach 31

voxel ..- SXIu=
temporal
response .-- s=

task task task

protocol U: rest rest
timeline 0

0 sec. 30 sec. 60 sec. 90 sec. 120sec. 150sec. 180 sec.

Figure 2.2: Illustration of the protocol time-line, Sxiu=o, and Sxlu=1 .

This method is voxelwise in that it decides whether a voxel is activated based

solely on the temporal response of that voxel without considering the temporal re-

sponse of neighboring voxels. Specifically, the probability density function (pdf) of

the JMRI signal for each voxel, and hence its entropy, are all estimated independently.

The MI between each voxel and the protocol signal is then estimated and used as a

statistic for the decision on activation. Estimating the pdf for each voxel is neces-

sary considering that different parts of brain have different behaviors when they are

activated. However, this does not take the spatial dependency into account.

2.3.1 Calculation of Brain Activation Map by MI

In order to calculate the MI between a protocol signal and voxel signal, we let

X(-, -,-, ={X(i, j, k, t)11 < t < n} denote the observed JMRI signal, where i, j, k

are spatial coordinates and t is a time coordinate. Each voxel (i, J, k) has an associ-

ated discrete-time temporal response, X 1, ... , X, , where Xt is defined as X(i, j, k, t)

for notational convenience.

Figure 2.2 illustrates the protocol time-line and an associated temporal re-

sponse. Sxlu o denotes the set of X2 's where the protocol is 0 while Sxlu i denotes

the set of Xi's where the protocol is 1. It is implicitly assumed in this approach

that Sxlu=[o,l] are i.i.d. according to pxlu=[o,1](x). We treat the protocol U as a dis-
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-JV IU=1

0.5 0.5

pX : marginaft(U) = 1 bit

I(X; U) < 1 bit

Figure 2.3: Illustration of pxju=opxju=1,px, and pu

crete random variable taking 0 and 1 with equal probability. Figure 2.3 shows this

situation. In this case, the MI between X and U is as follows:

I(X; U) = H(U) - H(UIX)

- h(X) - h(XIU)
1 1

- h(X) - -h(XIU = 0) - --h(XIU = 1)
2 2

1 1
= h(px(-)) - -h(pxlu=o(-)) - -h(pxiu=1(-))

(2.10)

(2.11)

(2.12)

(2.13)

where H(U) is the entropy of the discrete random variable U and h(X) is the dif-

ferential entropy of the continuous random variable X. It is an elementary informa-

tion theory fact that H(U) < 1 bit and that 0 < H(UIX) < H(U) consequently

0 < I(X; U) < 1. Thus, MI is a normalized measure of dependency between X and

U with a high mutual information near 1 bit indicating that the voxel is activated.
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2.3. Information Theoretic Approach

2.3.2 Estimation of Differential Entropy

The differential entropy of random variable X is estimated as follows:

h(X) -jpx(x)logpx(x)dx (2.14)

= -E[log px(X)] (2.15)

- log px(X) (Weak law of large numbers) (2.16)
n

1

- log fx(X ) (Parzen density estimator) (2.17)
n

= log i k(Xi - Xj,-) (2.18)

where fix(XZ) is the Parzen density estimator [8], defined as

fx(x) = k(x - Xj,) (2.19)

1Zk (x-X 3 >
-- k. (2.20)n o- a a )

The kernel k(x) must be a valid pdf (a double exponential kernel' in our case). We

will use k(x, -) and lk(f) interchangeably for notational convenience.

Eqs. (2.18) - (2.20) show that the estimate of entropy is affected by the choice

of u-, which is commonly called the kernel size, bandwidth, or smoothing parameter.

A larger kernel size necessarily produces a "flatter" more "spread out" pdf estimate

Px(x), as is directly evident from (2.20). This "flatter" pdf can be shown to directly

lead to larger entropy estimates. Therefore, too large kernel size leads to overestima-

3 k(x, -) = 2eo
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tion of entropy going to oo in the extreme case of a -* 00. On the other hand, the

estimate of the pdf approaches a set of impulses located at each data point Xj, as the

kernel size goes to zero. In this case, the estimate of entropy goes to -oc. Therefore,

the estimate of entropy can take value from -oo to oc as the kernel size changes.

Since we estimate entropy from at most 60 data points in our application, the

choice of the kernel size becomes more important. Intuitively, the kernel size should

be large if the underlying pdf px has high variance or the number of data points is

small. This suggests that the kernel size should be calculated from the actual data

since the data has information on how sparse px is.

A principled way to do this is to use kernel size that maximizes the likelihood

of the data in terms of the estimate of the pdf as follows:

&ML argmaxlog fix(Xi) (2.21)

= arg max logn k(Xi - Xo (2.22)

However, in this case, the maximum likelihood (ML) kernel size is trivially

zero, which makes the log likelihood infinite. This motivates using the Parzen window

density estimator with leave-one-out (2.23) as kx(x). The ML kernel size in terms of

the Parzen density estimate with leave-one-out is defined as follows:
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Px(X) = 1 Z k(X - Xj, c-) (2.23)

&ML arg max log j x (Xi) (2.24)

= arg max log 1 k(X - Xj,). (2.25)
J:Ai

Thus, our entropy estimator is

h(X)= min -kn log n k(Xi - Xj,). (2.26)

This entropy estimator with the leave-one-out method was discussed by Hall et al

[9], where a motivation for using the kernel size that minimizes the entropy estimate

is given. Further discussion on this entropy estimator is given in Section 3.3.

Figure 2.4 shows an example of the Parzen window density estimates of an

activated voxel and a non-activated voxel. Figure 2.4(a) shows the Parzen estimate of

two conditional pdf's Pxluvo and Pxlu=1 of a voxel declared to be activated. Visually

it is clear that these two pdf's are very distinct and thus the JMRI signal is highly

affected by the state of protocol signal. In contrast, the two conditional pdf's of a

non-activated voxel shown in Figure 2.4(b) are very similar implying that the voxel

response and stimulus are practically independent.

Figure 2.5 is generated from actual JMRI data to show how the choice of

the kernel size affects the estimates of the entropy and the mutual information.

Figure 2.5(a) and Figure 2.5(c) are zoomed-up versions of Figure 2.5(b) and Figure 2.5(d)

respectively. The solid curves represent the entropy h(X) and the dashed curves rep-
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resent the conditional entropy h(XfU) in Figure 2.5(a) and Figure 2.5(b). The dashed

vertical line denotes the ML kernel size defined by (2.25). The solid vertical lines de-

note the domain inspected for the minimum of h(X).4 Figure 2.5(c) and Figure 2.5(d)

gives important information on the stability of the estimate of MI. We know that true

MI, I(X; U) is between 0 and 1. You can see that there is a region where the esti-

mate of MI is far below 0 or far above 1. In this example, the ML kernel size is in

the region where the estimate of the mutual information is fairly stable. In contrast,

small kernel sizes, as evidenced in the figure, give a highly variable estimate of the

mutual information. This example also illustrates how choosing a kernel size which

maximizes estimated MI could lead to an excessively small kernel size and hence a

high variance estimate.

2.3.3 Preliminary Results

Figure 2.6 shows an JMRI image of the 10th coronal slice obtained from a motor

cortex experiment. In this block protocol experiment, the subjects move their right

hands during the task block (a period of 30 seconds) and rests during the rest block

(also 30 seconds). White spots are voxels declared active by each analysis method.

For the conventional methods (DS, CC, GLM), thresholds were chosen based on the

prior expectation that activation will be primarily in the motor cortex. In the MI

approach, 0.7 bit was used as a threshold of MI in Figure 2.6(d). At this point, it is

hard to tell that which method is best since the ground truth is unknown. However,

this can serve as preliminary evidence that MI is comparable to the other methods.

4One can use several techniques to search the minimum. Appendix B describes our method.
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(a) Parzen pdf estimate of an activated voxel (b) Parzen pdf estimate of an non-activated voxel

Figure 2.4: Estimates of pdf's
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Nonparametric Entropy
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Figure 2.5: Illustration of the effect of kernel size
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2.3. Information Theoretic Approach

(a) DS (b) CC

(c) GLM (d) MI

Figure 2.6: Comparison of JMRI analysis techniques. Detections are denoted as white
pixels.
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2.4 Binary Hypothesis Testing

This section presents background on binary hypothesis testing, which will be exten-

sively used in Chapter 3.

2.4.1 Bayesian Framework

Let the prior model be PO = Pr(H = HO) and P = Pr(H = HI) and the measure-

ment model be pY1H(yHo) and pYH(ylH1). Let us define the following performance

criterion. Ci,: Cost of saying H = Hi when in truth H = Hj. Then the problem is to

determine the decision rule y --+ H(y) that minimizes the expected cost. Using stan-

dard statistical decision theory and assuming a diagonal cost matrix, Ci 1- 6i,

this results in

H,

Pr(HIy) Pr(Holy) (2.27)

Ho

which is called the Maximum a Posteriori (MAP) rule.
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2.4.2 Neyman-Pearson Lemma

Proposition 2.4.1 (Neyman-Pearson lemma). [10] Let X 1,... , X, be observa-

tions for a binary hypothesis testing. For T > 0, define a decision region for H H1

An(T ) = XIHO) > T

Let P; = Pr(An(T|Ho), P = Pr(An(T)|Hi), be the corresponding probability of

false alarm and probability of detection corresponding to decision region A,. Let

Bn be any other decision region with the associated PF and PD. If PF < Pp, then

PD < PD'

Proof. See [10, page 305]. El

2.5 Markov Random Fields

Markov random field models have been widely used in various engineering problems,

especially in image processing problems. In particular, MRFs can be used to smooth

an image while preserving the distinctness of an edge [3]. As mentioned before, we will

use an Ising model as a spatial prior to implement the idea that the brain activation

map has a degree of regularity or smoothness.

Following the description of Geman and Geman [11], let us briefly introduce

MRFs.
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2.5.1 Graphs and Neighborhoods

Let S = {si, s2, .. . , SN} be a set of sites and g = {gs, s E S} be a neighborhood

system for S where g, is the set of neighbors of site s.

should satisfy following:

. s 9s

0 s E g, @ r E 9s

The neighborhood system

Then, {S, 9} is an adjacency-list representation [12, pages 465-466] of an

undirected graph (V, E). A subset C C S is a clique if every pair of distinct sites in

C are neighbors; C denotes the set of cliques.

2.5.2 Markov Random Fields and Gibbs Distributions

Let X = {XS, s E S} denote a family of random variables indexed by S, where

X s c A, A = {0, 1, 2,... , L - 1}. Let Q be the set of all possible configurations:

Q = {w : (x,,,... , XSN) :XSi EA, i < N}

Definition 2.5.1. X is an MRF with respect to g if P(X = w) > 0 for all w G Q;

P(X = XsIXr = Xr, r $ s) = P(X, = xs|Xr = x, r e Gs)

for every s C S and (x 8,... ,XSN)EQ.

Thus, in an MRF each point X,, its neighborhood !, conveys all the relevant
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information from the other r E S - {s}.

Definition 2.5.2. Gibbs distribution relative to {S, G} is a probability measure -F on

Q with

7r (w) = I e-U(w)/T
z

where U, called the energy function, is of the form

U(w) = E Vc (w)
CEC

and

Z e-U(w)/T

is a normalizing constant. Here, VC, called the potential, is a function on Q with the

property that Vc(w) depends only on those coordinates x, of w for which s G C.

Proposition 2.5.1 (Hammersley-Clifford). Let g be a neighborhood system. Then

X is an MRF with respect to g if and only if ir(w) = P(X = w) is a Gibbs distribution

with respect to g.

The Ising prior used in Chapter 4 is represented as a Gibbs distribution, which

is equivalent to an MRF by the Hammersley-Clifford theorem.

2.5. Markov Random Fields 43
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Chapter 3

Interpretation of the Mutual

Information in fMRI Analysis

In the previous work [21, the mutual information between the protocol and fMRI

signals is used to detect an activated voxel. This is motivated by the idea that the

larger the dependency between an JMRI signal and protocol signal, the more likely

the voxel is activated. However, the use of mutual information in this context is

heuristic with little statistical interpretation.

In this chapter, we specify a binary hypothesis testing problem where the null

hypothesis is that an JMRI signal is independent of the protocol signal indicating the

voxel is not activated and vice versa. The hypothesis testing problem is motivated

naturally from the property of mutual information, namely the mutual information

quantitatively measures the amount of dependency between two random variables.

Interestingly, it turns out that in the previous detection method, thresholding the

estimate of the mutual information is an asymptotic likelihood ratio test for that
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Chapter 3. Interpretation of the Mutual Information in fMRI Analysis

hypothesis testing model. Therefore, the information theoretic detection method ap-

proximates the optimal test in the sense of Neyman-Pearson lemma. Furthermore,

this enables the extension of incorporating a spatial prior within a Bayesian frame-

work, which is discussed in Chapter 4.

3.1 Nonparametric Hypothesis Testing Problem

In this section, a hypothesis testing problem for the JMRI analysis is specified and the

likelihood ratio for the hypothesis testing is approximated using estimates of pdf's.

Remember that SxIu2=o and SxIu=1 are partition of the time series {X1,... , X,

such that {X 1,... , X}= Sxlu=o u Sxlu=1 , Sxlu=o n Sxl 1 = 0, and lSxu=ol=

ISxIU _I = .

Assumption 3.1.1. The following conditions are assumed on the X:

" (a) Xi E Sxiu o are i.i.d. and Xi G SxCu=1 are i.i.d.

" (b) Xi E Sxlu o and Xi G Sxlu=1 are independent.

We propose a mathematical model for two hypotheses, namely, HO: the voxel

is not activated and H1 : the voxel is activated. When the voxel is not activated, the

fMRI signal X is not related to the state of the protocol U. The following hypothesis

testing model implements this idea. In this hypothesis testing, the decision will be
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3.1. Nonparametric Hypothesis Testing Problem

made based on the observation of Xi's in Sxl=o and Xi's in SxiU=1.

Ho: px,u pxpu, i.e. pxlu=o = pxlu=1 (Independent)

H, : px,u # pxpu, i.e. pxlu=o # pxlu= (Dependent)

(3.1)

(3.2)

Now, the above hypothesis testing model can be interpreted as follows consid-

ering Assumption 3.1.1:

" If HO is true, Xi E Sxlu=o U Sxiu=1 are i.i.d. by Assumption 3.1.1. Thus, there

exists px such that X 1,... , X,, are i.i.d. according to px.

" If H1 is true, there exists pxlu=o and pxlu=1 such that Xi E Sxl=o i PXjU=O

and X. C SxI= i pxju=1, where the marginal pdf px is px = (Pxiu=o +

Pxlu=1)/2.

" Note that we consider pxpxuvo, and pxlu=1 to be unknown without making

any parametric restrictions on the form of these density functions.

The likelihood of (X 1 , . . . , X,) given that HO is true is

PXIHo(X1, . . . , X,|Ho) = 1px (Xi). (3.3)

The likelihood of (X 1,... , X,,) given that H1 is true is

- p(SxjU=o H1)p(SxjU 1 |H1) by Assumption 3.1.1 (b)

pxlu=o(Xt)
Xt GSx IU=O

R
Xt ESxIU=1

Px1U=1(Xt)

by Assumption 3.1.1 (a).

(3.4)
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Chapter 3. Interpretation of the Mutual Information in fMRI Analysis

If the likelihood ratio

pXIH1 (X1,.

PXIHo (X1, . , XIHo)
(3.5)

fi px (Xi)

can be calculated, we can use it as a statistic for an optimal test as a result of the

Neyman-Pearson lemma. Suppose we know the densities pxju=o, pxui=1, and px.

Then the log likelihood ratio is related to I(X; U) as follows:

x F ESXly Pxlu=o(Xt) XtESXIlU=1 PxjU=1(Xt)
log px(Xi)

S log px 1Ui=1(Xt) - logpx(Xi)
xtesxuil

n2 1 1n Ilog pxu=oXt) + 2 if21 
2~iuo x~xjs=11

TX|U XtSx= X|U XtESxop(X

- n I ,log PX (Xi)
Sx y O USxt =1|

I- n - ) _ n-- h(XU =O)--h(XU=
2 2

nI(X; U).

log pxlu=1(Xt)

1) + nh(X) (Weak law of large numbers)

(3.6)

A natural question is if we can approximate the log likelihood ratio using estimates

of pdf's. We address this question in Section 3.2.

We note that in the case when U is binary with equal probability, the mutual

E log pxiu=o(Xt) +
xtEsxiU=o
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3.2. Nonparametric Likelihood Ratio

information can be simplified as follows:

1 1
I(X; U) = h(X) - -h(XU =0) - -h(XIU = 1)

2 2

_ _ J pxlu=o + Pxlu=. log pxdx
j 2

+ I J pxlu= log pxluodx + pxju=1 log pxlu=1 dx

=- fpxlu= log u~odx + - jpxu=1 log PxVJ21dx
2 PX 2 PX
1 1

= -D(pxju=O||px) + -D(pxju=i|px) (3.7)
2 2

where D(-11-) is the Kullback-Leibler divergence and can be loosely interpreted as

a distance between 2 pdf's. This is another view of the mutual information in the

context of hypothesis testing.

It is interesting to note that this hypothesis testing model is more general

than that of the direct subtraction method, where the null hypothesis E[XIU = 0] 

E[XIU = 1] only considers means.

3.2 Nonparametric Likelihood Ratio

In the previous section, some arguments on the log likelihood ratio were made assum-

ing the densities were known. In our case, we do not assume that all of the densities

are known. Thus we replace the densities px and pxju with estimates Px and Pxlu.

Let X1,... , X, be i.i.d. according to unknown px(x). We are going to calcu-

late an approximation of the likelihood of the sequence, px ... ,xn(XI, .. . , Xn) which

will be used to calculate an approximation of the likelihood ratio mentioned in (3.5).
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The likelihood of the sequence, px1 ,...,xY,(X1,... , Xn) is

n

Px1,...,xn(x1,. . ,xn) Sfpx (xt)
t=1

= exp( logpx(xt))

= exp(ylog 3x(xt) + log )Xt)
# 4 PX (Xt)

n E
t

log Px (Xt)
PX(xt )

where h(X) = -1 E logfx(xt)

Let f(x) = 1 Et,6(x - xt) denote a train of impulses at data points and k(x)

be the kernel used in fix(x). Then,1

Px(X) - Ek(x-xt) = ( 6(x -x)) * k(x) f * k(x).
n a ti n t

We make following approximation on the term in (3.8).

- log
n

Px(Xt)

px(xt) =1 f * k(x)d
f(x)log dPx)

f * k(x) log
f * k(x)d

PxX
- D(fxlpx).

(3.9)

(3.10)

(3.11)

(3.12)

The difference between (3.10) and (3.11) is that the impulse train f(x) in the

integrand was replaced by a smoothed version, f*k(x). Note that the area under k(x)

is exactly 1 and area of the impulse is also 1. Thus, if log f*k~x) is smooth, i.e. slowly

'In this section, we use the standard form of Parzen window density estimator instead of the
leave-one-out method for the purpose of analysis.

(3.8)
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varying relative to the size of the kernel k(x) then (3.11) is a good approximation of

(3.10). Therefore, (3.8) can be approximated as follows:

n

Px1 ,...,x . , . , Xn) (3.13)= fPx(Xt)
t=1

e-n[h(X)+D(px Ipx)] (3.14)

This is an extension of the notion of typicality in that for a "typical" sequence,

its likelihood is approximately enk(x). Furthermore, this reminds us the well-known

theorem of the method of types [10, page 281] since fix behaves like the type of

the sequence. Intuitively, the term e-nD(xIIpx) indicates that the larger the distance

between the empirical distribution and the true distribution, the lower the likelihood

of the sequence.

Proposition 3.2.1. Assume that (3.14) is true, then the likelihood ratio can be ap-

proximated as follows:

PXIH(X1,... , X jH1)

PxIHO(XI,., XnlHo)

where -y = [D(Pxju=o||pxju=O) + D(Pxuj|pxjUz)] - D(Px||px).

Proof.

P~xHO(X1,... , XnHO) = px (Xi) by (3.3)

~ e-n[h(X)+D(ox|px)]

xtEsxu=o
pxlu~o(Xt) H-

xtcsxU=1

pxIu=I(Xt) by (3.4)

~ e-i[h(xjU=O)+D(Pz O11px =O)] -[h(XjU=1)+D(PXjuj 1Ipxlui )] by (3.14)
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Chapter 3. Interpretation of the Mutual Information in fMRI Analysis

Thus the likelihood ratio is

PXJH1 (X1, . . . , Xn JH1)

PX Ho (XI,. ... , XnIHO)
~ n[h(x )--h(xIU=O)--kh(x|U=1)+D(px||px )-kD$\=|P|U0- xU=|p|=

_ en(I(X;U)--)

This proposition shows how the true likelihood described in (3.5) can be ap-

proximated using estimates of the pdf's when the underlying pdf's are unknown.

-y = [D(Pxiuyo|pxiu=o) + D(Pxlu~l_|pxlu1=)] - D(Px 1px) can be considered as the

unestimated residual term in this estimation. Let us discuss the properties of -y. One

property of -y is that it is nonnegative because of the convexity of Kullback-Leibler

divergence since px = }pxlu=o + }pxlu=u and Px = Ipx,=o + jpxU=1. 2 Another

property of -y is that it is unknown since it is a function of both true pdf's and

estimates of pdf's.

Since -y is unknown, we choose a nonnegative value for -y when we use this ap-

proximation of the likelihood ratio. This corresponds to choosing a suitable threshold

of the estimate of the mutual information in our previous approach. Then our in-

formation theoretic approach, where a voxel is declared to be active if the estimated

mutual information of the voxel is above a positive threshold, can be viewed as an

asymptotic likelihood ratio test for the hypothesis testing problem. Considering that

likelihood ratio test is optimal in the sense of the Neyman-Pearson lemma mentioned

in Section 2.4, we can say that the test based on the estimate of the mutual informa-

tion is close to an optimal test for this hypothesis testing problem.

2For the case of leave-one-out method, fix ~ !fxlu=o + }pxlu=1.
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A Simple Example Comparing Nonparametric MI with the

Kolmogorov-Smirnov Test

It is interesting to note that the Kolmogorov-Smirnov test deals with the same

hypothesis testing problem specified in (3.1) and (3.2). For this hypothesis test-

ing, the Kolmogorov-Smirnov test is conventionally used. Proposition 3.2.1 com-

bined with the Neyman-Pearson lemma suggests that our information theoretic test

is likely to outperform the conventional Kolmogorov-Smirnov test. As an exam-

ple, we made a problem of discriminating two close pdf's, po = N(x; -2, 1) and

p, = 0.9N(x; -2, 1) + 0.1N(x; 2, 1). Figure 3.1 shows the empirical ROC for the case

when the tests are based on the observation of two sets of 30 i.i.d samples. For each

choice of a threshold, rough estimates of probability of detection, PD was obtained

from 100 Monte Carlo trials with each one basing the estimates of po and pi on 30

data points draw from the true respective distributions. For each Monte Carlo trial,

if the calculated statistic was above the threshold, it added to the count of detection.

PF is estimated in a similar fashion but drawing the two sets of samples from the

single pdf po. As expected, Figure 3.1(b) and (c) show that the test based on MI

performs better than the KS test in this problem.

3.3 Nonparametric Estimation of Entropy

This section discusses the effect of using the ML kernel size formulated in (2.25).

Since this section is somewhat of an aside, readers can continue to Chapter 4 without

loss of understanding.
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).13

05

-5-.2 1 0 2 4

(a) two pdf's; po and pi (b) ROC of MI test (c) ROC of K-S test

Figure 3.1: Empirical ROC curves for the test deciding whether two pdf's are same
or not

Empirical results presented by Hall et al [9] suggest that entropy estimators in

the form of - - E3 log ni , k(Xi - Xj, -) are likely to overestimate the unknown

entropy. The result favors the use of the ML kernel size since the ML kernel size

minimizes the entropy estimate.

3.3.1 Estimation of Entropy and Mutual Information

We first explain why our entropy estimator based on Parzen pdf estimator is likely to

overestimate the unknown entropy. By the law of large numbers, our entropy estimate

o1 ..2 o. GA os a. 07 os os

.3 -

.2 - --

1 .. 3 -5 Q
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3.3. Non parametric Estimation of Entropy 55

can be approximated as

= fix(Xi)

- px (x) log Px (x)dx

- px (x) log px (x)dx +

h(X) + D(pxljfx)

px (x) log Px W dx
I PX(x)

> h(X).

Note that D(pxfIjfx) appears because we use fix instead of px while Xi is drawn from

Px.

On the other hand, our estimate of the mutual information I(X; U) is likely

to underestimate I(X; U). This can be understood as follows:

I(X; U) =N(X) - h(XIU = 0) - h(xIU = 1)
2 2

1
~h(X ) + D(px||px ) - -jh(X|U =0) + D(px~u=o||pxiv=0))

1
2 I(h(XIU - 1) + D(pxju~i_|ixiu=i))

1
I(X; U) + D(pxlpx) - -(D(pxju_0||Pxju=0) + D(pxju=1||Pxju=1))

2

< I(X; U)

where the inequality comes from the convexity of Kullback-Leibler divergence.

h(X)

(3.15)
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Interpretation of the Mutual Information in fMRI Analysis

3.3.2 Lower Bound on the Bias of the Entropy Estimator

Let us begin with providing background on the mean of the Parzen density estimator

P(x) = T'( , k(x - Xj).

E[P(x)] E[ k(x - X)]

= E[k(x - X)]

= k(x - y)px(y)dy

= px (x) * k(x) (3.16)

and thus the pdf estimate is clearly biased for any kernel that is not the Dirac impulse.

Lemma 3.3.1. For any fixed -,

E[h(X)] > h(X) + D(p||E[P]) > h(X).
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Proof.

=K0 1

k(Xi - Xj, o-)]

~I Sk(
n i

Xi - Xj, -)]

og n-1 k(Xi - Xj, o-)Xi]]

Y

I

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

p(x)log p(x) dx
p * k(x)

where the inequality comes from Jensen's inequality, E[log Y] < log E[Y]. D

Consequently,

inf E[h(X)] > h(X) +inf D(plE[p]) > h(X).

Note that this does not show that the bias of the entropy estimator using the ML

kernel size is positive, since or was fixed, i.e. independent of the data. The following

conjecture is stronger argument than the Lemma 3.3.1.

E[h(X)] =-E[ log

=- E[log

=- E[E[l
n

-E[E[log n k(X - Xj, -) lXi]]

> -E[log E[ nk(X1 - Xj, a-) IX1]]
j#1

-E[log E[k(X 1 - X 2, u-) X1]]

-E[log(p * k(X 1 ))] by (3.16)

- Jp(x) log(p * k(x))dx

p(x) log dx +
p(x)

= h(X) + D(pllp * k)

= h(X) + D(p IE[[p]) by (3.16)
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Chapter 3. Interpretation of the Mutual Information in fMRI Analysis

Conjecture 3.3.1.

E[min Z log E k(Xi - Xj, -)] > h(X)
0'>0 n n -1

If this conjecture is true, the ML kernel size is the kernel size which achieves

the minimum bias. However, the verification of this conjecture is beyond the scope

of this thesis.

3.3.3 Open Questions

How to choose the kernel shape and size which minimizes the mean square error,

E[(h(X) - h(X))2

is still an open question. Another question is whether an unbiased estimator of h(X)

exists. Our conjecture is that there is no such estimator, considering that there is no

unbiased estimator of pdf px(x) [13].
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Chapter 4

Bayesian Framework Using the

Ising Model as a Spatial Prior

In the research in [2], activated voxels are detected without considering the spatial

dependency among neighboring voxels. However, we know a priori that activated

regions are localized and neighboring voxels are likely to have the same activation

states. In this chapter, this knowledge is incorporated in our information theoretic

approach by using an Ising model, a simple Markov random field (MRF), as a spatial

prior of the binary activation map. This enables the removal of isolated spurious

responses to be done automatically.

Descombes et al [3] also use such an MRF, specifically Potts model', as a

spatial prior of a ternary activation map. However, the MRF prior model is combined

with a heuristic data attachment term in place of the likelihood ratio. The main

'Potts model is an M-ary (M > 3) Gibbs field with the same lattice structure as Ising model.
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component of the data attachment term is a potential for the Gibbs field designed

to enforce the idea that a voxel is likely to be activated if the norm of the estimated

hemodynamic function is above a threshold. In addition, they use simulated annealing

to solve the estimation problem which is an energy minimization problem with no

guarantee of an exact solution.

In contrast, our method uses the asymptotic likelihood ratio developed in

Chapter 3 as a principled data attachment term. Furthermore, the MAP estimation

problem in this method can be reduced to a minimum cut problem in a flow network,

which can be solved in polynomial time by the well-known Ford-Fulkerson method.

This reduction from MAP estimation of the binary image to a minimum cut problem

was found by Greig [4]. Using Greig's result, the Ising model can be efficiently

incorporated in the JMRI analysis.

4.1 Ising Model

The Ising model captures the notion that neighboring voxels of an activated voxel are

likely to be activated and similarly for nonactivated voxels. Specifically, let y(i, j, k)

be a binary activation map such that y(i, j, k) = 1 if voxel (i, j, k) is activated and

0, otherwise. Then this idea can be formulated using an Ising model as the prior

probability of the activation map y(-,-,-). Let Q = {w : Lu {,l 1}NxN 2 xN 3 } be the

set of all possible [0-1] configurations and let w(i, j, k) be a component of any one

sample configuration w(, -,

The Ising prior on y(., -, -) penalizes every occurrence of neighboring voxels
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(i,j+1,k)

Figure 4.1: Lattice structure of the Ising model

with different activation states as follows:

w) e-U()z Z = e-U(W)

WE-Q

U(w)

+ w(i, j, k) e (i,Zj,3k 1)),I (4.1)

where /3 > 0. Note that in the summation in (4.1), each pair of adjacent voxels is

counted exactly once.
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(i, J, k + 1)

O1 L1.1
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Chapter 4. Bayesian Framework Using the Ising Model as a Spatial Prior

4.2 Formulation of Maximum a Posteriori Detec-

tion Problem

As in [3], we assume that

p(X (--, , -)Y(-, -, -)) = p(X (Z, j, k, -)IY(i, j, k)).
i,j,k

That is, conditioned on the activation map, voxel time-series are independent. The

MAP estimate of the activation is then

Y(.,-,-) arg max p(Y = y(., -, .))p(X(-, *, -, -)Y(-, , -) = y(-, ,))
y(-,-,-)

= arg max p(Y = y(-,-, -))J[p(X(i, j, k, )Y(i, j, k) = 1)y(*',')

p(X(,Y j, k, -) )Y(i,, k) = 0)1-y()kj,k)1

argymaxogp. y(, ± + y(i7j, k) log p(X(i, j, k, -)JY(i, j, k) = 0)

i,j,k i,j,k

+ Y(ij, k) D Y(i, j + 1, k) + Y(i, j, k) e Y(i, j, k + 1)), (4.2)

where AI in =Y(ijk)1,X U) - Y) is the log-likelihood ratio atp,~ p(X (ij, k, )Y(i,J, k) =O) -r(,,k (X; isth)ai

voxel (i, j, k) and 4I,k(X; U) is the mutual information estimated from time-series

X(i, j, k, -). The previous use of MI as the activation statistic fits readily into the

MAP formulation. Note that HO and H1 in Chapter 3 correspond to Y(i, j, k) = 0

and Y(i, j, k) = 1 respectively.
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There are 2N" possible configurations of y(-, -, -) (or equivalently elements of the set

Q) where N, = N1 N2N3 is the number of voxels. It has been shown by Greig et al [4]

that this seemingly NP-complete problem can be solved exactly in polynomial time

(order N,) by reducing the MAP estimation problem to the minimum cut problem

in a flow network [4]. Greig et al accomplished this by demonstrating that under

certain conditions, the binary image MAP estimation problem (using an MRF prior)

can be reduced to the minimum cut problem of a network flow. Consequently, the

methodology of Ford and Fulkerson for such problems can be applied directly. We are

able to employ the same technique as a consequence of demonstrating the equivalence

of MI to the log-likelihood ratio of a binary hypothesis testing problem.

This approach has several advantages over simulated annealing. In simulated

annealing, it is difficult to make concrete statements about the final solution with

regard to the optimization criterion, since it may be a local minimum. However, if

we know the exact solution of the optimization criterion, we can ignore issues of local

minima and solely consider the quality of optimization criterion [4]. Specifically, we

can explore the effect of varying parameter 3 of the prior and obtain some intuition

on it.

In this section, we describes how the reduction of the MAP problem to the

mincut problem is possible based on the Greig's work. For notational convenience, let

us use a 1 dimensional spatial coordinate i instead of 3 D spatial coordinate (i, j, k).

Let y = (yi,... , ym) denote the brain activation map where y, takes on 0 or 1 and m

is the number of voxels.
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Chapter 4. Bayesian Framework Using the Ising Model as a Spatial Prior

* The prior on Y is

p(Y = y) = exp[- S3 (yi - yj)2 ]
z<J

where /3j is 3 if i and j are neighbors and 0, otherwise.

. The likelihood ratio is

P(Xi(-)IYi = 1)
p( Xi( -)|Y- =0)

- en(Ii(X;U>)

The MAP problem is

= arg max p(y)
2r~1

- argmaxlogp(y)
y

p(X (-)IYi = 1)Yip(Xi(-)IYi = 0)I-Yi

+5mbp(Xi(-)|Y = 1)+ yi log xHIY 1
p(Xll(-)|Yi =0)

- arg max5
y

Azy?- 5 ij(y - yj)2

where Ai = lnp(xjI)/p(xjj0) = n(Ii(X; U) - -y) is the log-likelihood ratio at voxel i.

4.3.1 Preliminaries of Flow Networks

Here we repeat some definitions from [12], which are essential to understand how the

flow network can be designed such that minimum capacity cut is the solution of the

MAP problem.

Definition 4.3.1 (flow network). A flow network G = (V, E) is a directed graph

with two special vertices, a source s and a sink t in which each edge (u, v) c E has a

Y

(4.3)
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nonnegative capacity c(U, v) > 0 and c(u, v) = 0 if (u, v) E.

Definition 4.3.2 (flow). A flow in G is a real-valued function f : V x V -~ R that

satisfies the following three properties:

" Capacity constraint: For all u, v E V, we require f(u, v) < c(u, v).

" Skew symmetry: For all u,v E V, f (u,v) = -f (v,u).

" Flow conservation: For all u c V - {s, t}, EVEV f(u, v) 0.

Definition 4.3.3.

* The value of a flow is defined as |f = VEv f (s, v), that is, the total net flow

out of the source.

0

0

f (X, Y) = f (X, y)
xGX yeY

c(X, Y) = c(X, y)
xEX yY

" The residual capacity: cf(u,v) = c(uv) - f(u,v)

" The residual network of G induced by f is Gf = (V, Ef), where Ef = {(u,v) e

V x V : cf(u,v) > 0}.

Definition 4.3.4 (cut). A cut (S, T) of flow network G = (V, E) is a partition of

V into S and T =V - S such that s e S and t E T.

Definition 4.3.5 (cut capacity). If f is a flow, then the net flow across the cut

(S,T) is defined to be f(S,T). The capacity of the cut (S,T) is c(S,T).
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c(s, i) = Az

8

(a) when Ai > 0

c(i, t) = -Ai

i

i

1 Oj

c(j,i) = 3
(c) when i and j are neighbors

Figure 4.2: Constructing a capacitated network

4.3.2 Reduction of the binary MAP problem to the Mini-

mum Cut Problem in a Flow Network

In this section, we discuss how the minimum capacity cut corresponds to the solution

of the MAP problem elaborating Greig's work [4].

We form a capacitated network composed of m + 2 vertices, which consist of

a source s, a sink t, and the m voxels, as follows:

. As illustrated in Figure 4.2(a), if the log-likelihood ratio A, = 17(X; U) - - >

f(i, t) < -Ai

(b) when Ai < 0

t

c(i, j) = 3

j
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0, i.e. the estimate of the mutual information of the ith voxel is above the

threshold, then there is a directed edge (s, i) from s to voxel i with capacity

c(s, i) Ai = n(i(X; U) - -y). A directed edge (s, i) implies that c(i, s) = 0

because if there is no edge in the flow network, the capacity is zero. Then

f(s, i) < A. by the capacity constraint and -f(s, i) f(i, s) < c(i, s) = 0 by

skew symmetry and the capacity constraint. Thus, 0 < f(s, i) < A2.

" As illustrated in Figure 4.2(b), if Ai < 0, i.e. the ith voxel has an estimate

mutual information less than or equal to the threshold, then there is a directed

edge (i, t) from i to t with capacity c(i, t) = -At - n(i(X; U) - -y). Similarly,

0 < f(i, t) < -A,.

" As illustrated in Figure 4.2(c), if voxel i and voxel j are neighbors, then there

is an undirected edge (i, j), i.e. two directed edges (i, j) and (j, i) between two

internal vertices (voxels) i and j with capacity c(i, j) c(j, i) =3.2 And the

flows must satisfy f (i,j) c(i,j) , -f (i, j) = f(j, i) c(j,i) =< - -#

f (i,j) < 0.

Note that the resulting flow network has information relevant to the MAP

problem. Voxels with a positive log-likelihood ratio are connected to the source node.

The higher the mutual information of such a voxel, the higher the capacity of the edge

from the source to the voxel. Similarly, voxels with a negative log-likelihood ratio are

connected to the sink node with a capacity such that the less likely the voxel is to be

active, the higher the capacity from the voxel to the sink. The prior is implemented

as undirected edges between neighboring voxles. Cutting such edges corresponds to

the occurence of two neighboring voxels with different activation states. Suppose we

have an activation map y = (y..... , yin) and make a corresponding cut of the set of

2the parameter of the Ising prior
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nodes, i.e. a partition of the nodes into two sets where the source node is in one set

and the sink node is in the other such that active voxels are in the set with source

node and nonactive voxels are in the other set. Then, for the cut, the cut capcity is

sum of the capacities of the edges where cutting is applied. Intuitively, high capacity

between two nodes means high bonding power between the two nodes and cutting an

edge of high capacity results in high penalty thus making cutting such an edge less

desirable. A more formal description showing the equivalence of the minimum cut to

the MAP estimate is as follows.

For any binaryimagey= (y,... ,ym) let S= {s}U{i : y = 1} and T= {i

yi = 0} U {t} be the corresponding cut. Then the corresponding cut capacity is

C(y) = C(S, T) = Ec(i, j)
iES jcT

S c(si) + c(i,t) + c(i,j)
iET icS i;yi=1 j;yj=0

= Z(1 -yi)c(s,i) + yic(i, t) + S Si
Zyi=1 j;y =0

Note that c(s, i) = max(O, A,) since there is an edge (s, i) if and only if AZ > 0 as

illustrated in Figure 4.2(a). Thus, EZ c(s, i)(1 -yi) E (1 -y ) max(0, A.). Similarly,

Zs c(i, t)y, = 2 yl max(0, -Ai). Because /3j = 3j, we have that

2 y
i;yi~ yj =0 Zy =0 j;yj=1

= 2 j(yj yj)2. (4.6)

(4.4)

(4.5)
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Therefore,

C(y) Z(1 - y2) max(O, Az) + y max(O, -Ai) + Z ij(y, - yj)2 (4.7)
2 t<j

Finally, arg miny C(y) is the MAP solution specified by (4.3), since

C~~~~y)~~~ Zy1iK: Z1~i~iA Z 3ij(y_ _y) 2
C(y) = y 2 2 + (1-yi) 2 +Zy

i<j

= - S y,+ i5 yj - yj)2 + terms independent of y. (4.8)

Note that Greig's method can be applied to an optimization problem if and

only if it can be cast in the form of (4.3). As a consequence, this method can solve

not only problems with Ising model but also problems with more complex lattice

structures as long as the prior has only terms of pairwise interaction, i.e. doubleton

potential, and Y is binary. Furthermore, it has been proven that the optimization

problem is NP-hard if the Y takes on more than two values [14].

Illustrating Example

Figure 4.3 illustrates the cut that achieves the minimum cut capacity in a simple

flow network. You can consider nodes a and b as voxels with mutual information

estimates above the threshold and c as a voxel with mutual information estimate

below the threshold.

As a special case, when 3 0, the minimum cut capacity is trivially 0 and

the cut is shown in Figure 4.3(a). This situation corresponds to the case when there

is no prior and consequently voxel a and b are declared to be active and c is declared
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5

a

b -'' O t
2

C c 9

(a) 0 < < 7

5

a

'2

C c 9

(b) 7 < /

Figure 4.3: Examples of the cuts that minimize cut capacities

to be nonactive. Increasing beta up to 7 does not change the cut.

If =- 8, for instance, the minimum cut capacity is 7 as shown in Figure 4.3(b),

and all the voxels are declared to be nonactive. This is because node c is connected

to sink node with high capacity and nodes a and b are tied to node c with the high

capacity 3.



4.3.3 Solving Minimum Cut Problem in Flow Network: Ford

and Fulkerson Method

The binary activation map which minimizes the cut capacity can be calculated by the

Ford and Fulkerson method which finds the flow that maximizes the net flow from

source to sink. The following lemmas and proposition relate the cut to the flow.

Lemma 4.3.1. [12] Let f be a flow in a flow network G with source s and sink t,

and let (S,T) be a cut of G. Then, the net flow across (S,T) is f(S,T) =|fI

Proof. See [12, page 592] for the proof.

Lemma 4.3.2. [12] The value of any flow f in a flow network G is bounded from

above by the capacity of any cut of G.

Proof. See [12, page 592] for the proof.

Proposition 4.3.1 (Max-flow min-cut theorem).

If f is a flow in a flow network G = (V, E) with source s and sink t, then the

following conditions are equivalent:

1. f is a maximum flow in G

2. the residual network Gf contains no path from s to t.

3. If I c(S, T) for some cut (S, T) of G.

Proof. We repeat the proof of [12, page 593].

El

El

[12]
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(1) > (2): Suppose that f is a maximum flow in G but that Gf has an

augmenting path p. Let's define a function fp : V x V -+ R by

Cf(p) if (u, v) is on p,

fp(u, v) = -c(p) if (v, u) is on p,

0 otherwise.

where cf(p) = min{cj(u, v) : (u, v) is on p}. Then, the flow sum f + f, is a flow

in G with value strictly greater than if 1 contradicting the assumption that f is a

maximum flow.

(2) r= (3): Suppose Gf has no path from s to t. Let S {v c V : there

exists a path from s to v in Gf} and T = V - S. Then the partition (S, T) is a cut,

since s E S and t ( S. For Vu E S and Vv E T, f(u, v) = c(u, v), since otherwise

(u, v) E Ef and v E S. Thus If I = f(S, T) = c(S, T) by Lemma 4.3.1.

(3) # (1): By Lemma 4.3.2, IfI < c(S, T) for all cuts (S, T). The condition

IfI = c(S, T) thus implies both that f is a maximum flow in G and that c(S, T) is a

minimum cut capacity.

Description of the Ford-Fulkerson Method

We use the Ford-Fulkerson method to solve the max-flow problem. Figure 4.4 de-

scribes the Ford-Fulkerson method. As a result of the max-flow min-cut theorem,

this method also finds the min-cut of a given flow network.

When the method finishes calculating the maximum flow, the residual network
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4.3. Exact Solution of the MAP Problem

Gf gives the minimum cut as follows. We make two sets S = {v E V : there exists a

path from s to v in Gf} and T = V - S. Then the partition (S, T) is the minimum

capacity cut considering the proof of (2) == (3) and (3) 4 (1) of the max-flow min-cut

theorem.

In implementing the Ford-Fulkerson method, we use the breadth-first search

(BFS) to find a path p from s to t in the residual network Gf. The computation time of

the Ford-Fulkerson method in our fMRI application depends mainly on the number

of voxels whose MI estimates are above -y, i.e. the voxels connected to the source

because the BFS starts from the source and searches over all the nodes connected to

the source. Note that most of the voxels have low MI estimates and are connected

to sink node t since the protocol is designed to activate a localized region of brain

such as the motor cortex, auditory cortex, or visual cortex. This makes the BFS (the

bottleneck of our algorithm) fast. However, if -y is low, for example 0.4 bit, then BFS

part of the algorithm can become extensive.

It is interesting to note that if 1i(X; U) > + , i.e. A, > 63, then voxel Z must

be active by inspection of (4.3). Suppose, k voxels among 6 neighboring voxels of voxel

i are nonactive. Then when y, = 1, (4.3) has A, - k/ and other terms independent

of y.. When y= 0, (4.3) has -(6 - k)o and terms independent of y-. The condition

At > 6/3 thus implies that At - k3 - {-(6 - k)3} = Ai + (6 - 2k)/ > At - 6/ > 0 and

consequently yi = 1. Similarly, if hi(X; U) < y - L, i.e. A. < -63, the voxel i must

be nonactive. We have not used this information in the Ford-Fulkerson method but

it may be exploited as the initialization of the method.
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(Ford-Fulkerson(G, s, t)

while there exists a path p from s to t in the residual network Gf

icj (p) +- min{cf (u, v) :(a, v) is in p}

for each edge (u, v) in p

f [Uv] <- f [u,v] + c(p)

f [v, U- -f [u,v]

end

Figure 4.4: Flow chart of the Ford-Fulkerson method

for each edge (u, v) E E[G]

f [u, v] <- 0

f [v, U] +- 0
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Chapter 5

Experimental Results

This chapter presents the results of the MAP detection method developed in Chapter 3

and Chapter 4 which simultaneously detects active voxels and removes isolated spu-

rious responses. With traditional techniques, activation decisions at each voxel are

independent of neighboring voxels. Spurious responses are then removed by ad hoc

techniques (e.g. morphological operators). The weakness of this technique is that

a morphological operator does not consider the evidence in the data. In contrast,

via the Ising prior, our method does consider the evidence in the data when remov-

ing spurious responses. Section 5.1 demonstrates this idea. The performance of our

novel method is then compared with conventional methods such as the GLM and

Kolmogorov-Smirnov test. The direct comparison of the performance of these meth-

ods in JMRI analysis is difficult without absolute ground truth. To deal with this

difficulty, the experiments are designed to demonstrate the relative modeling capacity

of each standard approach to our new approach. In Section 5.2 and Section 5.3, an

artificial ground truth is constructed from which ROC curves showing the relative

modeling capacity are generated. More discussion on the comparison of the GLM
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and our method is made in Section 5.4

5.1 Effect of Ising Prior

In this section, we present experimental results on three JMRI data sets. The

protocols are designed to activate the motor cortex (via ball-squeezing protocol), au-

ditory cortex (via word association protocol), and visual cortex (via visual stimulation

with alternating checkerboard pattern), respectively. Each data set contains 60 whole

brain acquisitions taken three seconds apart. Figure 5.1, Figure 5.2 and Figure 5.3

are the result of MAP segmentation for different values of 3 for the motor cortex,

auditory cortex, and visual cortex experiments respectively.

In the 10th slice of Figure 5.1(a), there are many isolated voxels declared to be

active when 3 is set to 0. Most of these isolated voxels were removed in Figure 5.1(b)

while retaining the main part of motor cortex by increasing 4 to 1. Further increasing

/ to 2 in Figure 5.1(c), removes more of the remaining isolated spurious responses.

To discuss the effect of the Ising prior quantitatively, let us start by repeating

(4.2).

Y(.,.,.) = argm x n(Ii,j,k(X; U) - -Y)y(i, j, k) - 0 Z(y(i, j, k) D y(i + 1, j, k)
i,j,k i,j,k

+ y(i, j, k) e y(i, + 1, k) + y(i, j, k) T y(i, j, k + 1)) (5.1)

An intuitive understanding of the relationship of -y and 0 is obtained from (5.1)

as follows. If 3 = 0, then there is no prior and the method reduces to MI with

independent voxels. For/3 :i 0 the interpretation is not as simple, but we can consider
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5.1. Effect of Ising Prior

9th slice; beta is 0

9th slice; beta is 1

9th slice; beta is 2

10th slice; beta is 0

(a) 0 = 0
10th slice; beta is 1

(b) O = 1
10th slice; beta is 2

11th slice; beta is 0

11th slice; beta is 1

11th slice; beta is 2

(c) / = 2

Figure 5.1: 9th, 10th, and 11th slices of the motor cortex experiments for different
values of / and -y = 0.6 bit. Detections are denoted as white pixels.
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8th slice; beta is 0

8th slice; beta is 1

8th slice; beta is 2

9th slice; beta is 0

(a) 3 = 0
9th slice; beta is 1

(b) 0 = 1
9th slice; beta is 2

10th slice; beta is 0

10th slice; beta is 1

10th slice; beta is 2

(c) 0 = 2

Figure 5.2: 8th, 9th, and 10th slices of the auditory cortex experiments for different
values of 13 and y = 0.6 bit. Detections are denoted as white pixels.
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a special case. Suppose all the neighbors of a voxel are declared to be active (in our

case there are six neighbors for every voxel), then the effective MI activation threshold

-y for that voxel has been reduced by 6/3/n. By this, the Ising prior makes it more

likely to fill the hole in activation map. Conversely, if all of the neighbors are inactive

then the effective threshold is increased by the same amount. For these experiments,

n = 60 and a change of 3 by 1 equates to a 0.1 nat (0.14 bit) change in the MI

activation threshold for the special cases described. The value of / that affects the

effective threshold of MI by 1 bit can be considered too large for a voxel surrounded

by all active voxels or all nonactive voxels. That case corresponds to / = 10 ln 2 ~ 7.

A good example of this idea is seen in Figure 5.2. One can see an isolated

detection (white spot) at the center of the 9th slice in Figure 5.2(a) with its time

series and pdf's displayed in Figure 5.4(a). The estimate of mutual information of

that voxel is 0.656 bit, which is higher than the threshold -y = 0.6 bit. Since the voxel

is surrounded by voxels declared non-active, increasing / by 1 acts like increasing -y

to 0.74 bits. Thus the voxel is removed in Figure 5.2(b). On the other hand, the only

detection of 10th slice in Figure 5.2(a) whose time series and pdf's are displayed in

Figure 5.4(b) has mutual information estimate 0.845 bit. In this case, even increasing

/ by 2 does not remove the voxel. If all the neighbors of the voxel were declared non-

activated, that change of / would correspond to increasing -y to 0.88 bit and removal

of the voxel. However, the voxel is connected to the active voxel in slice 9, so in this

case, the effective change of -y is 50/n = 0.167 nat = 0.240 bit and the voxel survives

the increase of 0. Therefore, we can say intuitively that changing / behaves like

changing the threshold -y in a way which is adaptive to the state of its neighborhood.

Figure 5.3 shows the effect of the Ising prior for the case of the visual cortex

experiments. The two detections in the 3rd slice of Figure 5.3(b) disappear when / in-

creases to 1 in Figure 5.3(c). Their time series and pdf's are displayed in Figure 5.5(a)
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1st slice; beta is 0

1st slice; beta is 0.5

1st slice; beta is 1

2nd slice; beta is 0

(a) / = 0
2nd slice; beta is 0.5

(b) 0 = 0.5
2nd slice; beta is 1

3rd slice; beta is 0

3rd slice; beta is 0.5

3rd slice; beta is 1

(c) / = 1

Figure 5.3: 1st, 2nd, and 3rd slices of the visual cortex experiments for different values
of / and -y = 0.6 bit. Detections are denoted as white pixels.

and (b). On the other hand, the isolated voxel in the 1st slice of Figure 5.3 survives

the case /3 = 1 since its estimate of mutual information is 0.987 bit. The associated

time series and pdf's are displayed in Figure 5.5(c).
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5.1. Effect of Ising Prior

voxel(34,34,9) of auditory experiment; mi=0.65638 bit ; F=24.2206

0 10 20 30 40 0 60

x 10' voxel(34,34,9) of auditory experiment; mi=0.65638 bit F=24.2206
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(a) the isolated voxel in the 9th slice

12

10

8

4

x 1t voxel(34,16,10) of auditory experiment; mi=0.84564 bit ; F=1 28.8748

8500 9000 9500 10000 10500

(b) the active voxel in the 10th slice

Figure 5.4: Time series and pdf's of the voxels of interest; The auditory cortex
experiments
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Experimental Results

X 104 voxel(38,28,3) of visual experiment; mi=0.73219 bit ; F=69.4006 104 voxel(39,37,3) of visual experiment; mi=0.71089 bit ; F=85.8755

2.46
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2.45 F

2.4

0 10 20 30 40 50 60 0 10 20 30 40 50 60

2.

1.

0.

2.25 2.3 2.35 2.4 2.45 2.5 2.55
X 104

(a) the voxel in the left half of the 3rd slice

X 104 voxel(34,28,1) of visual experiment; mi=0.9864 bit ; F=128.8494
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(c) the isolated vox(
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Figure 5.5: Time series of the voxels of interest; The visual cortex experiments
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5.2 ROC Curve Assuming Ground Truth

In this section, we compare the MAP detection method with other conventional meth-

ods such as the GLM and Kolmogorov-Smirnov test. The problem here is that the

ground truth is unknown. One possible comparison is to observe ROC curves assum-

ing that one method gives the truth. In the absence of known ground truth, this is

an indirect way of gauging the relative modeling capacities of these methods. Note

that these ROC curves do not necessarily indicate absolute performance.

Figure 5.6 shows the activation maps assumed as truth. Note that the isolated

voxel in the top left of the 10th slice, the so called sympathetic response, is expected to

be active in motor cortex experiments and is included in the assumed truth. Figure 5.7

shows the ROC curves that compare the GLM, MI, KS, and MI &MRF methods for

the case of motor cortex experiments. The assumed truth used to generate Figure 5.7

is determined as follows. We start with the activation map obtained by the MAP

method (MI & MRF) with / = 1 and -y = 0.6 bit. Then we chose the threshold of the

GLM such that the number of activated voxels is same as that of the MAP result. The

same thing is done for the MI case. These three activation maps, obtained from GLM,

MI and MI & MRF are used as the assumed truth in Figure 5.7(a), Figure 5.7(b) and

Figure 5.7(c) respectively.

Let us describe how the ROC curve is generated. As an example, see Figure 5.7(a),

which is the ROC curve for MI when GLM is assumed as the truth. Each choice of

the threshold of MI gives a corresponding activation map, from which PF and PD

are calculated relative to the assumed truth from the the GLM. If MI detects a voxel

that is not detected by GLM, it is regarded as a false alarm. Similarly, if MI detects

a voxel that is detected by GLM, it is regarded as a detection. In this way, the
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probabilities of false alarm and detection are calculated for each choice of threshold

of MI. Figure 5.7(b) and Figure 5.7(c) are generated in the same way. Note that the

ROC curve for MI & MRF contains a small number of (PD, PF) pairs, which are

generated from each pair of (0, -y) from the set {(/,-y)i3 0, 0.5, 1, 1.5, 2 and y =

0.5, 0.6, 0.7 bit}.

Now let us discuss the results. Figure 5.7(a) suggests that if the GLM gives the

true activation map, MI performs better than KS and MI & MRF works as well as MI.

This is empirical evidence that MI is more robust than KS, which is also supported

by the result of Chapter 3. Figure 5.7(b) shows that the KS test is better than the

GLM if MI gives the true activation map. This is the consequence of the similarity

between MI and KS in that KS test solves the same hypothesis testing problem as

MI. As expected, MI & MRF is close to the ideal ROC curve. Figure 5.7(c), where

MI & MRF is taken as truth, can be understood in the same way as Figure 5.7(b).

Finally, Figure 5.7(d) overlays the ROC for MI in Figure 5.7(a) and the ROC for

GLM in Figure 5.7(b). This shows that the MI method reliably captures what the

GLM considers activated, but that the GLM does not reliably capture what the

MI considers activated. This also suggests the existence of phenomena that are not

modeled simply by the GLM basis functions.1 Perhaps additional bases can be chosen

to correct this; however, this presumes that they are known in advance. Despite the

simple basis, this demonstrates to some degree the broader modeling capacity of the

nonparametric approach. Furthermore, this also demonstrates that the MI approach

can uncover "new" phenomenology, which might later inspire other bases.

It is difficult to repeat the same analysis for the visual and auditory cortex

experiments due to the nature of the protocols. In particular, we expect very few

'In the case of the GLM, we used a simple design matrix where the basis for the subspace of
interest is a square wave like the protocol signal and the basis for a nuisance subspace is a DC wave.
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(a) GLM; 9th slice

(d) MI; 9th slice

(g) MI & MRF; 9th slice

(b) GLM; 10th slice

(e) MI; 10th slice

(h) MI & MRF; 10th slice

(c) GLM; 11th slice

(f) MI; 11th slice

(i) MI & MRF; 11th slice

Figure 5.6: The assumed truth obtained from GLM, MI, and MI & MRF

activations, so PD is hard to gauge.
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ROC curve assuming GLM gives truth
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Figure 5.7: Comparison of GLM, MI, KS, and MI & MRF via ROC curves with an
assumed truth in motor cortex experiments
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5.3. Using Dilated Activation Maps as Assumed Truth

P value 10-1 10-2 10-3 10-4 10- 10-6 10 - 10-8 10-9 10-10
F statistic 2.79 7.09 12.02 17.46 23.42 29.92 36.98 44.65 52.97 61.98

Table 5.1: P value and corresponding F statistic with degree of freedom (1,58)

5.3 Using Dilated Activation Maps as Assumed

Truth

Another way of constructing an artificial truth is to construct an activation map by

setting a very high threshold for GLM or MI and to perform a dilation operation

for the activation map. This has both a biological and statistical motivation. First,

dilation is motivated by prior knowledge from brain studies of the local nature of some

cognitive functions in the human brain [15], particularly cortical activity. Second,

we use imperfect statistical tests but high thresholds have high confidence. Thus

we can get approximate ground truth by combining these two ideas. We do this

because in some sense this approximates model mismatch. However, this is only an

approximation and does not suffice for actual ground truth, which is in general too

difficult to obtain.

Two kinds of dilation are used in this experiment. The first one dilates the

activation map by including 6 nearest neighbors of all active voxels2 . The second one

dilates the activation map by including 27 neighbors within a cube whose center is an

active voxel. Figure 5.8 shows ROC curves when the assumed truth is dilated with 6

neighbors and Figure 5.12 shows the case of dilation with 27 neighbors.

The threshold in Figure 5.8 was chosen such that the number of activated

voxels is one third of that in the case of Figure 5.7 ( 1/3 of 43 voxels ~zz- 14 voxels). This

2This of course closely matches the Ising model, so it will not be a surprise if MI & MRF performs
well.
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corresponds to an MI threshold of 0.96 bit and an F threshold of 141.3 for GLM3 . Thus

the dilation operation constructs a main localized region of the activation. Figure 5.9

shows the activation map from GLM before the dilation with 6 neighbors and the

resulting "ground truth" after the dilation. Due to using a very high threshold before

dilation, the sympathetic area is not in the assumed ground truth in this case.

Figure 5.8(a) compares the ROC curves of MI, KS, GLM and MI & MRF

assuming the dilated activation map obtained from GLM is truth. In the low prob-

ability of false alarm regime, GLM is better than MI while MI is better than GLM

when PF > 2* 103. MI looks better than KS in general. The most interesting point

is that MI & MRF outperforms the GLM even though the truth was constructed

from GLM. Though dilation has a role in making MI & MRF look better, this result

is evidence of the viability of MI & MRF considering that GLM is assumed true. In

addition, as will be shown, this improvement carries over to the 27-neighbor dilation

as well.

Let us further discuss Figure 5.8(a) comparing the point (PF, PD) = (0.0011, 0.5147)

from MI & MRF and the point (PF, PD) (0.0011, 0.4853) from GLM. These two

points demonstrate that MI & MRF performs better than GLM at PF= 0.0011. The

point (PF,PD) (0-0011,0.5147) of MI & MRF corresponds to the pair (3,iY) =

(1, 0.5 bit) and the point of GLM corresponds to an F-threshold= 62.37. There are 5

voxels which are detected correctly with respect to the assumed truth by MI & MRF

with the (f, -y) pair but not detected by GLM with the F-threshold. Figure 5.11

shows the temporal response of those voxels with protocol signal overlaid and there is

clear structure related to the protocol signal suggesting that those voxels are active.

In Figure 5.8(b) where a dilated MI map is assumed as truth, GLM and MI

3 This is very high considering that its P value is below 10-10. See Table 5.1.
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5.4. Comparison with GLM

are equally good and better than KS. Not surprisingly, MI & MRF works best in this

setting. Figure 5.8(c) is an overlay of the ROC curve of MI in Figure 5.8(a) and that

of GLM in Figure 5.8(b). The overall impression is that MI is better than GLM. This

may be more of an indication that for strongly active voxels GLM is a good model.

Figure 5.10 shows the method used to construct assumed truth via dilation

with 27 neighbors, where the threshold is chosen such that the number of activated

voxels are one tenth of that in the case of Figure 5.7 (1/10 of 43 voxels ~ 4 voxels).

This corresponds to an MI threshold of 1 bit and an F threshold of 217.8 for GLM.

Again, the sympathetic area is not included in the assumed truth.

The resulting ROC curves are given in Figure 5.12. In the case of Figure 5.12(a),

performance is in the order of MI & MRF, GLM, MI and KS. Again, MI & MRF still

looks the best even though the truth was constructed from GLM. In Figure 5.12(b),

performance is in the order of MI & MRF, MI, KS and GLM. The overlaid version

Figure 5.12(c) also shows that MI is more robust than GLM. In other words, MI has

a higher modeling capacity than GLM.

5.4 Comparison with GLM

This section presents another way to compare the activation map computed by three

methods: GLM, nonparametric MI, nonparametric MI with an Ising prior.

We first apply the GLM method to each data set. The coronal slice exhibiting

the highest activation for each data set is shown in the first column of Figure 5.13 with

the GLM activation map overlaid in white for each data set. The F-statistic threshold
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ROC curve assuming dilated(6 neighbors) GLM gives truth ROC curve assuming dilated(6 neighbors) MI gives truth
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Figure 5.8: Comparison of GLM, MI, KS, and MI & MRF via ROC curves with an
assumed truth in motor cortex experiments; dilation with 6 neighbors
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(a) 9th slice (b) 10th slice

(d) 9th slice (e) 10th slice

Figure 5.9: The activation map from GLM; (a), (b),
(e), and (f) are after dilation with 6 neighbors

(c) 11th slice

(f) 11th slice

and (c) are before dilation; (d),
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(a) 9th slice (b) 10th slice (c) 11th slice

(d) 9th slice (e) 10th slice (f) 11th slice

Figure 5.10: The activation map from GLM; (a), (b), and (c) are before dilation; (d),
(e), and (f) are after dilation with 27 neighbors
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ROC curve assuming dilated(27 neighbors) GLM gives truth ROC curve assuming dilated(27 neighbors) MI gives truth
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Figure 5.12: Comparison of GLM, MI, KS, and MI & MRF via ROC curves with an
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5.4. Comparison with GLM

(a) GLM: 10th slice (b) MI: 10th slice; -y = 0.50 bits (c) MI with prior: 10th slice

(d) GLM: 9th slice

(g) GLM: 2nd slice

(e) MI: 9th slice; y = 0.58 bits

(h) MI: 2nd slice; -y 0.53 bits

Figure 5.13: Comparison of JMRI analysis results from
experiments

(f) MI with prior: 9th slice

(i) MI with prior: 2nd slice

motor, auditory and visual

for GLM is set such that the visual inspection of the activation map is consistent with

our prior expectation for the number of activated voxels which corresponds to a p-

value of 10-'0. In the next column of the figure, the same slices are shown using MI

to compute the activation map. In this case, the MI threshold -y was set such that all

of the voxels detected by the GLM were detected by MI. Consequently, Figures 5.13

(b), (e) and (h) contain additional activations when compared to GLM. Some of these

additional activations are spurious and some are not. Finally, the Ising prior is applied

to the MI activation map with / = 1. An intuitive argument on the relationship of -y

and 0 was given previously.
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(a) motor (b) auditory (c) visual

Figure 5.14: Temporal responses of voxels newly detected by the MI with the Ising
prior method

Comparison of Figures 5.13 (b), (e) and (h) to Figures 5.13 (c), (f), and (i)

shows that many of the isolated activations are removed by the Ising prior, but some

of the new MI activations remain. Figure 5.14 shows the temporal responses of the

voxels with the lowest GLM score which are detected by MI with an MRF prior but

not by GLM. Examination of these temporal responses (with protocol signal overlaid)

reveals obvious structure related to the protocol signal.

A reasonable question is whether this result is due to an unusually high thresh-

old set for GLM. In order to address this, we next lower the GLM threshold such that

the voxels of Figure 5.14 are detected by GLM. We then consider regions of the re-

sulting activation map where new activations have appeared in Figure 5.15. The

activations of Figure 5.15(a) and Figure 5.15(b) (motor cortex experiments and audi-

tory cortex experiments), would be considered spurious in light of the region in which

they occur. The result for Figure 5.15(c) is not so clear as these activations are most

likely spurious, but might possibly be related to higher-ordered visual processing.
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GLM

(a) motor 14th slice

(a) motor 14th slice

(b) auditory 20th slice

MI with Ising prior

(b) auditory 20th slice

(c) visual 4th slice

(c) visual 4th slice

Figure 5.15: Comparison of JMRI Analysis results from motor, auditory and visual
experiments with lowered GLM threshold

5.4. Comparison with GLM 97
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Chapter 6

Conclusions

In Section 6.1 of this chapter, we briefly summarize the major part of the work demon-

strated in Chapter 3, Chapter 4, and Chapter 5 mentioning the contributions of this

thesis. We then summarize the remaining issues that the thesis does not address and

suggest possible extensions of this work.

6.1 Brief Summary

In this thesis, we develop an fMRI signal analysis algorithm that detects activated

voxels due to specific experimental stimuli and simultaneously removes spurious iso-

lated responses. Specifically, we combine a previously developed information theoretic

approach [2] with an MRF prior within a Bayesian framework and used Greig's [4]

efficient algorithm to solve the MAP problem exactly.
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6.1.1 Nonparametric Hypothesis Testing

The mutual information between the JMRI signal and the protocol signal suggests

a hypothesis testing problem which tests if two random variables are independent.

Under this hypothesis space, we derive a relationship between the likelihood ratio

and the mutual information, and show that the test using an estimate of mutual

information is close to likelihood ratio test, which is optimal by Neyman-Pearson

lemma. This theoretical interpretation of the use of MI by Tsai et al [2] allows the

extension to the Bayesian framework.

Using the nonparametric estimate of mutual information, or equivalently Kullback-

Leibler divergence, is an alternative solution for the hypothesis testing problem which

tests whether two sets of data are drawn from same distribution, for which Kolmogorov-

Smirnov test is conventionally used. Information theoretic quantities like entropy and

mutual information are used in this way for various hypothesis testing problems.

6.1.2 Applying MRF to JMRI Analysis

Using the MRF prior in JMRI analysis is not new as Descombes et al [3] propose

using it for JMRI signal restoration and detection of active voxels. However, in that

approach, the data attachment term, which is also modeled as an MRF, is heuristic

in that it is not a rigorous likelihood ratio. Consequently, the formulation of the

hypothesis testing problem is not rigorous within the Bayesian framework.

In contrast, applying an MRF prior to the information theoretic method in

this thesis is rather straightforward due to the result of Chapter 3. Furthermore, the
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resulting MAP problem meets the conditions for using Greig's method [4] making the

exact solution of the MAP problem possible in polynomial time.

6.1.3 Experimental results

We present the activation map, which is the exact solution of the MAP estimation

problem with the Ising prior. The experimental results show that this method can

remove isolated responses effectively within a rigorous framework. This has an ad-

vantage over using morphological operator in that it considers the evidence in the

data as well as the spatial dependency.

We also compare our approach with the GLM method. While JMRI analysis

of patient data is always faced with the difficulty that exact truth is unknown, our

results indicate that the MI approach with spatial priors is able to detect "true"

activations with a significantly smaller number of spurious responses. However, more

validation is necessary.

6.2 Extensions

This thesis proposes and reports on the use of MI and a MRF prior for analyzing

JMRI data. The work here focuses on the development of the theoretical foundation

of this analysis, and we have made several simplifying assumptions in the process.

In the following subsections, we briefly discuss how some of these restrictions can be

relaxed as avenues of further research.
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More Complex Graph Structure in Prior model

As stated in Chapter 4, the method of applying the MRF to JMRI analysis can

be extended to any prior model allowing graph structures more complex than the

Ising model as long as the prior is a binary Gibbs field whose energy is composed of

only doubleton potentials. Taking advantage of this, one may extend this model to

take advantage of other priors that incorporate existing knowledge of the anatomical

structure of the brain. For example, it is generally known that the auditory cortex is

related to the temporal lobe though these two lie in disjoint regions. We expect that

an appropriate graphical model can take such structure into account.

Issues on Nonparametric Estimation of Entropy

For sample sets of limited size, such as in the case for fMRI data, the nonparametric

estimate of entropy is significantly affected by the choice of kernel parameters. The

area of kernel width selection is a broad and active branch of research in nonparamet-

ric statistics whose results can be applied here. While the kernel shape also, impacts

estimator performance, its impact is significantly less than kernel width.

On the Structure of JMRI Temporal Response

We assume that Sxluyo and Sxlu=1 are i.i.d. in Assumption 3.1.1. This assumption

is useful in estimating entropy and mutual information. It is natural to consider the

impact of relaxing this assumption. The JMRI temporal response then is modeled as

a stochastic process and as a consequence, the entropy rate of a stochastic process
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arises instead of the entropy of a random variable. An example of nonparametric

treatment of stochastic processes can be found in [16].
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Appendix A

X2 and F Distribution

The definitions of x 2 and F distribution are quoted from [17].

Definition A.0.1 (Central x2). The distribution of the sum Y =_ X is cen-

tral x 2 when the Xn are i.i.d. N(O,1) random variables. The density for y is

1 ((N/ 2 )-e -y/ 2  >
y (N/2)2N/2 0

We say that Y is a central x2 random variable with N degrees of freedom.

Definition A.0.2 (Noncentral x 2). When the independent random variables X,

in the sum Y = ( 1N X2 are distributed according to N( p, 1), then the distribution

of Y is noncentral X2 with noncentrality parameter d2  N 2

Definition A.0.3 (Central F). Let Y : x and Z XN-p denote independent central

X2 random variables with respective degrees of freedom p and N - p. The ratio

Y

FN= p
N-p
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is called an F-statistic, and the distribution of F is called an F-distribution. The

density function for F is

PF(f) Ir(N/2)[p/(N - p)]p/ 2  fp/ 2 -1

F(p/2)F[(N -p)/2] [1 + (p/(N-p))f]N/2 -

Definition A.0.4 (Noncentral F). When Y: x is replaced by noncentral x2 ran-

dom variable Y : (d2 ) in the definition of central F distribution, the distribution of
y

the ratio F = P is called noncentral F-distribution.
N-p

pF(f) = d 2 /2 (d2/2 )n I(N/2 + n) P p/ 2 +n p/2-1+n f > 0.
_EO n! F(p/2 + n)F[(N - p)/2] N - p [1 + (p/(N - p))f ]N/ 2 +n -

Appendix A. xV2 and F Distribution106



Appendix B

Finding Maximum Likelihood

Kernel Size

In this appendix, we present the mathematical specifics necessary in finding the ML

kernel size for the cases of a Gaussian and double-exponential kernel.

B.1 Gaussian Kernel

1 2
= e 2,2

v2irc
1

0=

(B.1)

10 2

2)= -U ,o-( 1 B2
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The likelihood of the data in terms of density estimate is

L = f(XI) = f(_

log L

Ek(xi - x, or))

= log( 1 k(i--x,o)).

(B.3)

(B.4)
J:Ai

Then the score function with respect to the kernel size is

ak(x-
0o-

E 1 1pAxi) n - I ':~

= [p4)n2-1

- X, o-)j

k~x,- x, a (x -

j 0i

Calculation of the score function requires O(n 2 ) time. Using this score function and

the root search method, the ML kernel size can be found as a root of S = 0 if the

score function is concave

B.2 Double Exponential Kernel

= e ~

1
= 2 k(x, a-)c(rx

(B.7)

1 k X 1
- -)= -k(x, o-)(- -1) (B.8)

'The concavity of the score function is not proved, but it is supported by empirical results.

_ & log L
Ou (B.5)

(B.6)
- 1)]

k(x, -)

k (x, a-)
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B.2. Double Exponential Kernel

Then the score function with respect to the kernel size is

1 1

P(xi) n - 1

P(xi) n - I

z
S:

a9k(x
- xj, -)]

-k(x, - xj , o-) (I 2 Xj1-o

(B.9)

- 1) (B.10)

Again, calculation of the score function requires 0(n2 ) time.

_ OlogL
S =
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