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We introduce a class of continuum shell structures, the Buckliball,
which undergoes a structural transformation induced by buckling
under pressure loading. The geometry of the Buckliball comprises a
spherical shell patterned with a regular array of circular voids. In
order for the pattern transformation to be induced by buckling, the
possible number and arrangement of these voids are found to be
restricted to five specific configurations. Below a critical internal
pressure, the narrow ligaments between the voids buckle, leading
to a cooperative buckling cascade of the skeleton of the ball. This
ligament buckling leads to closure of the voids and a reduction of
the total volume of the shell by up to 54%, while remaining sphe-
rical, thereby opening the possibility of encapsulation. We use a
combination of precision desktop-scale experiments, finite element
simulations, and scaling analyses to explore the underlying me-
chanics of these foldable structures, finding excellent qualitative
and quantitative agreement. Given that this folding mechanism
is induced by a mechanical instability, our Buckliball opens the pos-
sibility for reversible encapsulation, over a wide range of length
scales.

Jitterbug ∣ deployable structure

Advances in fabrication technology are enabling functional
origami-like structures at the nano- and microscales (1–3),

including encapsulation using hollow shell structures (4–7). In
engineering, these structures are receiving increasing attention
for their promising role as vehicles for drug delivery (8), material
synthesis agents (9), optical devices (10), and sensors (11). An
interesting avenue is the introduction of gating (also known as
actuation) mechanisms into such capsules by incorporating
functional elements into their structural layout toward tunable
encapsulation. Coupling conventional actuation mechanisms at
the microscale (including electromagnetic, piezoelectric, thermal,
electrochemical, rheological) with buckling may lead to unique or
more efficient functional modes of deformation (12, 13). As an
example, the Venus flytrap combines a swelling mechanism with
buckling behavior to increase the speed of leaf motility (14, 15).
Also, an active microhydrogel device was recently designed for
dynamic actuation using a swelling-induced elastic instability (16).

There are a few existing hollow shell structures which have
gating mechanisms, albeit not driven by buckling. Viruses are an
ubiquitous class of such examples in nature. Their capsids possess
a spherical shell structure that encloses and transports viral
nucleic acids (17, 18) and can undergo reversible structural trans-
formations by which gated holes can open or close under pH
changes (18). This transformation occurs due to the expansion of
the vertices of the truncated icosahedral structure of the virus,
resulting in 60 hole openings. Using this deployable capability,
viruses have been used as protein cages for encapsulation (19).
In order to describe the virus swelling/shrinking behavior, Kovács
et al. investigated the possible geometric compatibility with poly-
hedral models (20, 21).

The Jitterbug, introduced by R. Buckminster Fuller in the
1960s, is another example of a hollow shell structure satisfying
geometric compatibility for gating holes. It enables the morphing

between an octahedron and a cuboctahedron (22), thereby im-
parting flexibility to otherwise rigid grid structures. Since then, a
number of studies have generalized the understanding of Jitter-
bug-like motion (face rotations at the vertices) through polyhedral
transformations (23–25). These provide a robust set of rules for
the design of spherical deployable structures that can fully close
into their collapsed state. A popular commercial toy, Hoberman’s
Twist-o (Hoberman Associates) (26) which comprises a rigid net-
work of struts connected by rotating hinges (Fig. 1A), also morphs
from an open grid shell into a collapsed configuration. One draw-
back of these configurations toward practical applications is that
the deformation is localized at the vertices of the polyhedra and a
large number of hinges and rotating elements is required to
achieve the intended motion.

Here, motivated by these opportunities for augmented motion
and deformation of structures, we explore buckling as a possible
gating mechanism for structured spherical shells. Our shells are
patterned with a regular array of circular voids and loaded by
reducing the internal pressure. Below a critical pressure, the nar-
row ligaments between the voids buckle, leading to a cooperative
buckling cascade of the skeleton of the ball. We exploit this pat-
tern transformation that leads to closure of all the holes, which is
analogous to a structural negative Poisson’s ratio effect previously
studied in two dimensions (27), but now on a three-dimensional
structure. Because our patterned shell has a geometry reminis-
cent of a buckyball (28) and, moreover, it can be activated by
buckling, we name it the Buckliball. We first show the results of
a combination of desktop-scaled experiments (Fig. 1B) and finite
element (FE) simulations (Fig. 1C) on encapsulation through
pressure-induced buckling of spherical shells. For the sake of ex-
perimental convenience and accurate control, we choose pressure
as the actuation mechanism for the Buckliball. Consequently,
thin membranes covering the holes are introduced in our samples
to enable us to readily load the structure. Because the numerical
results reveal that the characteristic deformation modes are only
marginally affected by the presence of the membranes, for the sake
of generality we then focus on the skeleton of the Buckliball with-
out membranes over the voids and identify the underlying mechan-
ical ingredients. Finally, through a scaling analysis, we provide a
master curve for design guidelines of this class of structures.

Experimental Results
Inspired by the construction andmotion of the rigid toy in Fig. 1A,
we have made use of rapid prototyping techniques to fabricate
a continuum version of the spherical grid shell made of a soft
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silicone-based rubber (Vinylpolysiloxane with Young’s modulus,
E ¼ 784 kPa). The geometry of the spherical elastomeric struc-
ture (inner radius Ri ¼ 22.5 mm) comprises a shell (wall thick-
ness t ¼ 5 mm) that is patterned with a regular array of 24
circular voids that are slightly tapered (17 and 14 mm maximum
and minimum diameter, respectively). The voids are distributed
in groups of three on each one-eighth of the sphere. A thin mem-
brane (thickness h ¼ 0.4� 0.1 mm) covering all the holes is
introduced, to make the structure airtight, which provides the
continuum shell with a means of pressure-induced actuation. This
thin membrane allows for an isotropic loading through a distrib-
uted pressure difference between the inside and outside of the
structure. More details of the manufacturing and experimental
procedures are given in Materials and Methods.

The experiments are performed under conditions of imposed
volume using a motorized syringe pump (see Materials and
Methods). When the internal pressure is larger than the external
pressure, the structure inflates like a balloon. Conversely, upon
reduction of the internal pressure (see Materials and Methods),
the behavior is qualitatively different. First, the thin membranes
snap-buckle and invert their curvature inward. Subsequently,
beyond a critical pressure, the narrow ligaments between the
holes buckle on the spherical surface, leading to a cooperative
buckling cascade of the skeleton of the ball. During this process,
the initially circular holes evolve into an elliptical shape and even-
tually become fully closed. The sequence of progressive deformed
shapes is shown in Fig. 1B. It is interesting to note that this
final pattern closely resembles the recent work of Li et al. (29)
reporting a surface wrinkling pattern of a core-shell soft sphere
by volumetric shrinkage, although the structural details of the two
systems are fundamentally different.

In order to monitor the rotation of the narrow ligaments, four
black dots are marked at the center of each strut (on the top of
the shell’s surface) and then tracked with digital imaging. In
Fig. 2A, we plot the averaged trajectory of these four dots (solid
black line) which show that each ligament rotates clockwise by
approximately 75° until the holes are nearly closed. In addition,
we image the shell’s projection from above, as its internal pres-
sure is reduced, and monitor its outer radius. Fig. 2B (solid black
line) presents the dependence of the measured pressure p and the
nominal outer radial strain u∕Ro, where Ro is the initial outer
radius and u is the outer radial displacement. Two distinct re-
gimes are identified: (i) a linear regime with positive structural
stiffness for small deformations and (ii) a postbuckling regime
with negative structural stiffness.

Because the structure is made of an elastomeric material,
the process is fully reversible/repeatable, and upon a decrease
in pressure difference, the structure recovers to its original con-
figuration, albeit with hysteresis. Note that all the deformation
occurs on a spherical surface with progressively decreasing di-
mensions, thereby preserving the original spherical geometry.

An abrupt out-of-sphere buckling (snap buckling), which is highly
sensitive to imperfections (30, 31), can occur instead of our in-
tended on-sphere buckling, if the geometry and dimension of the
spherical shells are not accurately designed.

Finite Element Analysis
We proceed by performing FE simulations to explore the encap-
sulation behavior of the proposed shell structure. Because the ex-
periments are performed at imposed volume, volume-controlled
conditions are used in the simulations. More details of the FE
simulations are given in Materials and Methods and the SI Text.
We present a sequence of the progressive collapse of a Buckliball
obtained using FE simulations (Fig. 1C), which is in remarkable
qualitative agreement with experiments (Fig. 1B) for the same
geometric and material parameters. Moreover, there is excellent
quantitative agreement between experiments and simulations, on
the rotation of the shell ligaments (Fig. 2A).

In order to consider the variation of the measured membrane
thickness of the experimental specimen (set by the resolution of
the manufacturing process), simulations were performed with
three different membrane thicknesses (i.e., h ¼ 0.3, 0.4, 0.5 mm).
Simulations for these three values of the membrane thickness
do not show a pronounced difference on the deformed shapes,
but they do, however, slightly affect the critical buckling pressure
due to the additional structural stiffness associated with thicker

Fig. 1. Sequence of progressively deformed shapes. (A) Hoberman’s Twist-o,
a commercial toy, compressed by hand. (B) Buckliball, made of silicone-
based rubber, pressurized by a motorized syringe pump. (C) Finite element
simulations for the Buckliball. (Scale bars: 3 cm.)
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Fig. 2. Experimental and numerical results for the Buckliball. Note that
each set of data reported in the figure is obtained from a single test, and
all the numerical results are obtained using finite element modeling
(FEM). (A) Average rotation of the ligament traced by four black dots which
are marked on the top of the shell’s surface (Inset). The error bars represent
the standard deviation for these four ligaments rotations. (B) Relation be-
tween the differential pressure of the ball and the nominal outer radial strain
(defined by the measured outer radial displacement divided by the initial
outer radius). The horizontal error bar for the radial strain is obtained from
image processing analysis, and the vertical error bar for the pressure is ob-
tained from pressure measurement reading duringmultistep volume control.
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membranes. Still, for the dependence of the applied pressure
on the outer radial strain presented in Fig. 2B, all three sets
of simulation results are in good agreement with the experimental
results in the linear regime. Excellent agreement between experi-
ments and simulation is found for h ¼ 0.5 mm, even though the
effect of the membrane thickness becomes more pronounced at
the onset of buckling. Note that this small discrepancy is attributed
to limitations in the accuracy of the membrane thickness due to the
fabrication process (see Materials and Methods).

Given theexcellent qualitative andquantitative agreement found
between experiments and simulations, we now proceed by focusing
primarily on the FE simulation results to further explore the para-
meter space of the system and probe the underlying mechanical
ingredients of this buckling-induced pattern transformation.

Mechanical Ingredients
Thus far, we have demonstrated proof-of-concept of the Buckli-
ball through a combination of experiments and FE simulations,
for the on-sphere buckling induced by pressure. Moreover, the
above numerical results suggest that the characteristic deforma-
tion modes are only marginally affected by the presence of the
membrane, given that the membrane thickness is considerably
smaller than any other length scale in the system.

Therefore, for the sake of generality and to seek understanding
of the essential features of the proposed encapsulationmechanism,
we proceed by focusing on the Buckliball without membranes cov-
ering the holes. The original total force previously acting on the
Buckliball with membranes covering the holes is now redistributed
on the inner surface of the skeleton alone (i.e., Buckliball without
membranes covering the holes).

We now investigate the two principal mechanical ingredients:
geometric compatibility and gating mechanism. In particular, we
first concentrate on the arrangement of holes to uncover other
possible configurations that also lead to the desired encapsula-
tion behavior, in addition to the one mentioned above (Fig. 1),
and then focus on predicting the buckling loads and modes. To
help us refer to the specific deformation modes of the spherical
shells, we use the terms “expanded” and “folded status” to de-
scribe the configurations of the ball with open (undeformed) and
closed holes (past the instability), respectively.

Arrangement of the Holes. The set of rules for geometric com-
patibility of Jitterbug-like polyhedra has been investigated pre-
viously (23, 24), and Verheyen has reported the complete list of
Jitterbug-like transformations (25). In light of these studies, we
also explore the hole arrangement on our spherical shells through
polyhedra. Here, we consider continuum spherical shells where all
the center-to-center distance of adjacent holes are identical so that
all ligaments undergo the first buckling mode in an approximately
uniform manner, restricting the number of the possible candidates
from the complete list of Verheyen.

In order for all the ligaments between neighboring circular
holes to undergo a uniform first buckling mode, the folded status
should meet the following requirements: (a) The same shaped
holes should be equally distributed on the spherical shells, and
(b) all the circular holes should close uniformly and completely.
Mathematically, these mechanical constraints can be rephrased
as follows: The skeleton of the Buckliball should (a′) be a convex
uniform polyhedra, excluding the dihedral symmetry group (i.e.,
Platonic/Archimedean solids, ref. 32), which are vertex transitive
and have regular faces, and (b′) have a quadrilateral vertex figure.
There are only five polyhedra which meet the above require-
ments: octahedron, cuboctahedron, rhombicuboctahedron, icosi-
dodecahedron, and rhombicosidodecahedron, which can produce
(upon face rotations at the vertices) the square-type holes of 6,
12, 24, 30, and 60, respectively. These, and only these, ensure that
all the ligaments in the expanded status undergo the first buckling
mode uniformly.

In Fig. 3, we present schematic diagrams of the five possible
polyhedra on the expanded (Fig. 3A) and folded (Fig. 3C) status.
In the figure, the blue-shaded faces of the polyhedra represent
the solid parts of the corresponding physical structure and the
white faces of the expanded status represent the holes that under-
go the transformation. As an example, an octahedron in the
folded status can be expanded into a cuboctahedron through face
rotations at the vertices, thereby producing six holes, which cor-
responds to the number of vertices of the octahedron. Note that
the cuboctahedron in the expanded status is the famous Jitterbug
introduced by Fuller (22) mentioned above.

In connection with the polyhedra models of expanded status,
three-dimensional representations of the initially expanded sphe-
rical shells (Fig. 3B) can be obtained by introducing circular voids
such that two neighboring holes create a narrow ligament at the
vertex location of the corresponding polyhedron. Fig. 3D also
shows the on-sphere buckled shapes for all five possible arrange-
ments of the folded status of spherical shells, which are obtained
through buckling analysis using FE simulations.

Buckling of the Ligaments. Having identified the geometrical con-
straints of the Buckliball configurations, we now explore the de-
sign parameters that lead to the desired gating mechanism for
activation under pressure, through simultaneous buckling of all
ligaments on a spherical surface. For a given hole configuration,

Fig. 3. Geometric compatibility for the arrangement of circular holes on the
Buckliballs, restricted to five specific configurations (shown in each row).
(A) Expanded Buckliball-related polyhedra: The blue-shaded area corresponds
to solid regions and the white area corresponds to holes. (B) Expanded
undeformed Buckliballs. (C) Folded Buckliball-related polyhedra. (D) Folded
Buckliballs, which are buckled under inward pressure. Two of the solids in
A (i.e., expanded status of the folded rhombicuboctahedron and rhombicosi-
dodecahedron) have nonflat faces for the holes. Those two structures are
transformed into polyhedra in their folded status by closing the nonflat holes.
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the proposed spherical shells have two dimensionless design para-
meters: the ratio of the shell thickness to the inner radius,

τ ¼ t
Ri

; [1]

and the ratio of the void volume to the intact shell volume,

ψ ¼ N
2

�
1 − cos

�
ϕ − α
2

��
; [2]

where N is the number of holes for the corresponding polyhe-
dron, α is the angle which defines the narrowest width of the liga-
ment, and ϕ is the angle between two vectors that originate at the
shell center and terminate at two neighboring vertices of a folded
polyhedron (see Fig. 4 A and B). Because the void’s center in
the expanded polyhedron is placed at the vertex locations of
the folded polyhedron, ϕ also represents the angle relating the
center-to-center distance between two adjacent circular voids
in the expanded polyhedron (see SI Text for details). Note that
both N and ϕ are fixed for a particular hole configuration and
the possible pairs for the five configurations mentioned above

are hN; ϕi ¼ h6; π
2
i, h12; π

3
i,

D
24; cos−1

�
3þ2

ffiffi
2

p
5þ2

ffiffi
2

p
�E

, h30; π
5
i, andD

60; cos−1
�

9þ4
ffiffi
5

p
11þ4

ffiffi
5

p
�E

. The two additional design parameters

hτ; ψi prescribe the dimensions of the narrow ligaments which
undergo buckling, thereby setting the threshold of the activation.

As observed in the experiments, the narrowest cross-section of
ligament in the expanded status of the spherical shells governs the
behavior of the on-sphere buckling of the ball. For this on-sphere
buckling to happen, the second moment of area along the radial
axis should be smaller than that along the perpendicular axis—
i.e., Irr ≤ Iθθ (see Fig. 4B). The dimension of the narrowest cross-
section of ligament is determined by τ and α, so that the restrict-
ing condition on the second moment of area reads

ðτ2 þ 3τþ 3Þ2
ðτþ 2Þ2ðτ2 þ 2τþ 2Þ ¼

9α sinα
16ð1 − cosαÞ ; [3]

where α is given by Eq. 2. Together, Eqs. 2 and 3 provide a rela-
tion between the two design parameters hτ; ψi, which is set by the
particular hole arrangement alone—i.e., hN; ϕi. As examples, in
Fig. 4 C and D, we plot (dotted marked line) the design boundary
set by Eqs. 2 and 3 for the spherical shells with 12 and 24 holes,
respectively. Above this line, the Buckliballs are activated
through the intended on-sphere buckling mode, whereas below
it, other out-of-sphere (snap) buckling modes occur.

Comparison with FE Simulations. To assess our predictions on the
effect of the hole arrangement and design parameters on liga-
ment buckling, we perform a parametric study using FE simula-
tions for the buckling analysis. FE models of the initially
expanded spherical shells, for the five possible hole arrange-
ments, are presented in Fig. 3B, to which an inward pressure is
applied. For all five configurations, we perform a series of FE
simulations on the design parameters hτ; ψi. Representative
results for shells with 12 and 24 holes are presented in Fig. 4 C
and D as contour maps. In these phase diagrams, regions where
out-of-sphere (snap) buckling occurs are represented in white. In
the shaded regions where encapsulation (i.e., on-sphere buckling)
occurs, the color in the contour plots represents the associated
critical buckling pressure for onset of on-sphere buckling (nor-
malized by the Young’s modulus E), given by the adjacent color
bar. Representative examples of the calculated final on-sphere
buckled shapes for all five possible arrangements on the folded
status are also presented in Fig. 3D.

For a given hole configuration, this parametric study reveals
that thicker shells and higher void volume fraction are preferable
to make the Buckliball buckle on sphere. We highlight that the
contour map boundary between the regions of on-sphere and
out-of-sphere buckling is in good agreement with our criterion
of design parameters (dashed marked line) based on the second

Fig. 4. (A) Representative ligament (Center) extracted from the Buckliball, and a simplified curved column model (Right). (B) Narrowest cross-section of the
ligament. (C and D) Phase diagram of the two design parameters hτ ¼ t∕Ri; ψi. The color-shaded region indicates on-sphere buckling and the white region
represents the out-of-sphere buckling. The magnitude of the critical pressure for the onset of the on-sphere buckling is shown as a contour map with the
adjacent color bar; (C) for 12 holes and (D) for 24 holes. The dotted marked lines indicate the analytical criterion from Eq. 3, based on the second moment of
area. (E) Linear approximation of the normalized effective width of the ligament (α ¼ we∕Ri , see [8]) in terms of effective solid volume fraction ðψc − ψÞ. This
linear approximation is valid up to the width ratio of α ≈ 0.15. (F) Master curve obtained from the buckling of the simplified ligament shapes. Regardless of the
hole arrangements, the normalized critical pressure (ρ ¼ p∕E) for the onset of on-sphere buckling has a distinctive relation with the two design variables hτ; ψi,
ρ ≈ Aτðψc − ψÞ2, with the prefactor A ¼ 0.556 and a coefficient of determination of R2 ¼ 0.998.
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moment of area of the narrowest cross-section of the ligaments.
Because our criterion does not consider the ligament curvature
(which can favor the out-of-sphere buckling), it may provide a
slightly less conservative design space of the buckling for encap-
sulation, which is, nonetheless, still in good agreement with the
FE simulation results.

In addition, we explored the effect of geometric defects
(unavoidable during fabrication) and performed an additional set
of simulations accounting for imperfections, as summarized in the
SI Text. These simulations demonstrate that the on-sphere buckling
of the Buckliball leading to the desired encapsulation feature is
robust and not affected by moderate levels of imperfections.

Design Master Curve for Encapsulation
We now provide a single master curve for the rational design of
the Buckliball toward encapsulation applications. Thus far we
have shown that, despite their complex overall geometry, the be-
havior of our Buckliballs is primarily governed by the geometry of
the narrow ligaments of the shell. We proceed by considering the
narrowest part of the ligament shown in Fig. 4A. Using the force
equilibrium at each individual ligament, we can obtain an approx-
imate relation between the compressive load C acting on its two
ends and the pressure p applied to its inner surface,

C ≈R2
i αp; [4]

which is valid for small values of α (i.e., large porosity) because
we employ the linear approximation sinα ≈ α (see SI Text for
derivation).

To simplify our analysis, the shape of the selected part of the
narrow ligament is further approximated by a curved column with
dimensions t, Le, and we (see schematic diagram in Fig. 4A).
Here, the effective width of the ligament (we) and the effective
column length (Le) are defined as

we ¼ Riα and Le ¼ βRiχ; [5]

where χ is the angle between two vectors which originate at the
shell center and terminate at the center of the two neighboring
solid parts of a expanded polyhedron (see Fig. 4A), and β ∈ ð0; 1�
is a prefactor relating the ligament length to the effective
column length. Note that the angle χ is fixed for a particular
hole configuration. The possible pairs hN; χi for the five configura-
tions are h6; cos−1ð1

3
Þi, h12; cos−1ð 1ffiffi

3
p Þi,

D
24; π

4
and cos−1

� ffiffi
2
3

q �E
,D

30; cos−1
� ffiffiffiffiffiffiffiffiffiffiffi

5þ2
ffiffi
5

p
15

q �E
, and h60; cos−1

� ffiffiffiffiffiffiffiffiffi
3þ ffiffi

5
p
6

q �
and cos−1

� ffiffiffiffiffiffiffiffiffi
5þ ffiffi

5
p
10

q �
reflecting that Buckliballs with 24 and 60 holes have two types
of ligaments with slightly different lengths. Substituting we and
Le (Eq. 5) into Euler’s buckling equation for a single ligament
yields

Ccr ¼
π2Etw3

e

12L2
e

≈
π2EtRiα3

12β2χ 2
: [6]

Combining this critical buckling load for a single ligament
(Eq. 6) with the pressure-induced compressive load applied to
the ligaments (Eq. 4), we obtain an expression for the normalized
buckling pressure (denoted by ρ ¼ pcr∕E) in terms of τ and α,

ρ ≈
π2

12β2χ 2
τα2: [7]

The angle α defining the narrowest width of the ligament is a
nonlinear function of void volume fraction ψ, as shown in Eq. 2,
which upon Taylor’s series expansion allows us to express the an-
gle α as a linear function of ψ near ψc :

α ≈
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ψcðN − ψcÞ
p ðψc − ψÞ; [8]

where ψc denotes a critical void volume fraction, beyond which
the narrowest thickness of the ligaments vanishes (i.e., α ¼ 0 in
Eq. 2) and the spherical shell loses structural integrity. The spe-
cific hole arrangement, alone, sets the value of ψc (see Eq. 2). In
Fig. 4E we plot the angle α as a function of ðψc − ψÞ, which con-
firms the validity the linear approximation in [8] for structures
characterized by large values of porosity (i.e., small α).

Finally, substituting [8] into [7] provides a relation between the
normalized buckling pressure ρ and the two design parameters τ
and ψ,

ρ ≈Aτðψc − ψÞ2; [9]

where the coefficient A ¼ π2½3β2χ 2ψcðN − ψcÞ�−1 is a weak
function of hole arrangement. In Fig. 4F we plot ρ versus Aðψc −
ψÞ2 for all of the numerical runs (over 250) from the five hole
configurations, including the previous parametric study (Fig. 4 C
and D). All of the data collapse onto a linear master curve with
a prefactor of A ¼ 0.556 (coefficient of determination R2 ¼
0.998), which confirms our predictions in [9]. In addition, from
the identified value of the prefactor A, we can inversely calculate
the prefactor β for all the five hole configurations, finding that its
mean value is hβi ¼ 0.839.

Despite the a priori complex geometry of the Buckliball, this
master curve indicates that, regardless of the hole arrangement,
the encapsulation behavior of the ball is indeed dictated by the
buckling of ligaments of the shells. Our analysis provides us
with two practical guidelines for the design of the Buckliball.
The first (Eq. 3 shown in Fig. 4 C andD) sets the shell dimensions
required for buckling-induced encapsulation. Secondly, the mas-
ter curve ([9] shown in Fig. 4F) provides an estimation for the
critical buckling pressure for actuation of the Buckliball with
given dimensions and for a particular hole arrangement. During
this design procedure, the fabrication constraint can be explored
by checking the smallest dimension of the ball, which is the nar-
rowest cross-section of ligament ([8] shown in Fig. 4E) for the
given porosity and hole arrangement.

Conclusion
We have introduced the Buckliball, a class of continuum elastic
shells structures, which exhibits encapsulation through folding
that is induced by buckling under pressure loading. An important
advantage of our system is that it is made of a single continuum
structure, which eliminates the need for a large number of hinges
and rotating elements required in typical foldable/deployable
structures. We chose pressure as the actuation mechanism and
concentrated on macroscopic length scales for the sake of experi-
mental convenience and accurate control. We then focused our
analysis on the loading of the Buckliball’s skeleton without mem-
branes to aim for further generality of the results.

Our combined experimental, numerical, and theoretical ap-
proach allowed us to rationalize the underlying mechanical ingre-
dients and yielded a series of simple design guidelines, including
a master curve, for buckling-induced encapsulation. Moreover,
because the folding mechanism exploits a mechanical instability
that is general, our study raises the possibility for reversible,
tunable, and controllable encapsulation, over a wide range of
length scales. Recent developments in microscale fabrication
open exciting opportunities for miniaturization of the Buckliball,
for example, using projection microstereo lithography (33) or
galvanic exchange-coupled Kirkendall growth (34) to produced
patterned hollow particles. Our study therefore opens avenues
for encapsulation at the microscale using other forms of loading,
such as bilayer structures (e.g., unshrinkable outer ball attached
to shrinkable inner ball) having swelling/shrinking actuation

5982 ∣ www.pnas.org/cgi/doi/10.1073/pnas.1115674109 Shim et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115674109/-/DCSupplemental/pnas.1115674109_SI.pdf?targetid=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115674109/-/DCSupplemental/pnas.1115674109_SI.pdf?targetid=STXT


under various external stimuli including pH, temperature, and
water content, toward practical applications.

Materials and Methods
Materials. A silicone-based rubber (Elite Double 32; Zhermack) was used to
cast the experimental specimen. The material properties were measured
through tensile testing, up to the true strain of ϵ ¼ 0.6. No hysteresis was
found during loading and unloading. The constitute behavior was accurately
captured by a Yeoh hyperelastic model (35), whose strain energy is
U ¼ ∑3

i¼1 Ci0ðĪ1 − 3Þ i þ ðJ − 1Þ2i∕Di where C10 ¼ 131, C20 ¼ 0, C30 ¼ 3.5 kPa,
and D1 ¼ D2 ¼ D3 ¼ 38.2 GPa−1. Here, Ī1 ¼ tr½devðFTFÞ�, J ¼ det½F�, and F is
the deformation gradient. Two of the Yeoh model parameters are related
to the conventional shear modulus (G0) and bulk modulus (K0) at zero strain:
C10 ¼ G0∕2, D1 ¼ 2∕K0:

Spherical Shell Specimen. A mold was fabricated using a 3D printer (Elite
Printer; Dimension) to cast one-half of a spherical shell. After demolding,
two halves were joined using the same polymer as adhesive agent. Note that
the continuum shell and the thin membrane are constructed as a single piece.
The coordinates of the holes were obtained from the vertices of the corre-
sponding polyhedron, and the geometry of each hole was designed such that
the hole portion is cut out from the spherical shell by a cone whose vertex is
at the center of the sphere. A thin membrane located at the inner radius
covered all the holes, thereby making the shell airtight. In order to extract
the air from the shell, a 2-mm inlet was introduced at the shell’s base and
connected to the syringe through silicone tubing. The ball dimensions were
as follows: inner radius Ri ¼ 22.5 mm, shell thickness t ¼ 5 mm, membrane
thickness h ¼ 0.4� 0.1 mm, void volume fraction ψ ¼ 0.6. Note that the var-
iation of the measured membrane thickness reflects the resolution (0.1 mm)
of the 3D printer used to make the molds. In addition, we introduced tapered
fillets (between the membranes and the skeleton) to the samples to prevent
the membranes from being damaged during the demolding procedure (the
fillet radius is 1.0 mm), and we applied extra material both to the hemisphe-
rical joints to connect two hemispheres and to the thin membranes to make
them airtight, so increasing the stiffness of the samples.

Pressure Testing and Analysis. The pressure-driven experimental setup
was comprised of a syringe (BD 60CC Irrigation Syringe; Becton Dickinson),

a syringe pump (NE-1000 Single Syringe Pump; New Era Pump Systems,
Inc.), a pressure gauge (MPXV4115VC6U-ND; Digi-Key), silicone tubing
(51135K84; McMaster-Carr), and a camera (D90; Nikon). During the withdra-
wal of the syringe pump (average rate of 0.1 mm3∕s), pictures taken with the
camera and pressure values were digitized (0.1 Hz acquisition rate). The total
duration of an experimental run was approximately 10 min. The rotation of
the spherical shell was monitored by tracking four black dots on top of the
shell. In parallel, the outer radius of the shell was estimated by measuring its
projected area. Both the rotation of the ligaments and the change of the
shell diameter were analyzed by digital image processing using Matlab.

Numerical Simulations. The commercial FE software Abaqus FEA was used for
both buckling and postbuckling analysis. The Abaqus/Standard solver was
employed for all the simulations—i.e., for both buckling and postbuckling
analysis. For the buckling analyses of the Buckliball without membranes cov-
ering the holes, models were built using quadratic solid elements (Abaqus
element type C3D10MH with a mesh sweeping seed size of 2.5 mm) and
the analyses were performed under pressure loading. For the postbuckling
analysis, the membrane covering the holes was included in the model and the
simulations were performed under volume-controlled conditions. Both the
skeleton and the membranes were modeled using quadratic solid elements
(element type C3D10MH with a mesh sweeping seed size of 2.5 mm). To
perform the simulation under volume-control conditions, the Buckliball
was modeled as a spherical shell filled with fluid employing hydrostatic fluid
elements (F3D3 with a mesh sweeping seed size of 1.25 mm). The fluid was
assumed to be compressible air having a density of 1.204 kg∕m3 at 20 °C, and
its volume was progressively reduced during simulations. More details on the
FE simulations are provided in the SI Text.

ACKNOWLEDGMENTS. We are grateful to Zorana Zeravcic for helpful discus-
sions, and to Harvard School of Engineering and Applied Sciences Academic
Computing for their support. This work has been partially supported by the
Harvard Materials Research Science and Engineering Center under National
Science Foundation Award DMR-0820484 and by the MIT-France program.
K.B. acknowledges startup funds from the School of Engineering and Applied
Sciences, Harvard and the support of the Kavli Institute at Harvard University.
P.M.R. acknowledges startup funds from the Departments of Mechanical
Engineering and Civil and Environmental Engineering, MIT.

1. Ocampo JMZ, et al. (2003) Optical actuation of micromirrors fabricated by the micro-
origami technique. Appl Phys Lett 83:3647–3649.

2. Li XL (2008) Strain induced semiconductor nanotubes: From formation process to
device applications. J Phys D Appl Phys 41:193001.

3. van Honschoten JW, et al. (2010) Elastocapillary fabrication of three-dimensional
microstructures. Appl Phys Lett 97:014103.

4. Caruso F, Caruso RA, Möhwald H (1998) Nanoengineering of inorganic and hybrid
hollow spheres by collodial templating. Science 282:1111–1114.

5. Peyratout CS, Dahne L (2004) Tailor-made polyelectrolyte microcapsules: From multi-
layers to smart containers. Angew Chem Int Edit Engl 43:3762–3783.

6. Suh WH, Jang AR, Suh YH, Suslick KS (2006) Porous, hollow, and ball-in-ball
metal oxide microspheres: Preparation, endocytosis, and cytotoxicity. Adv Mater
18:1832–1837.

7. Shiomi T, et al. (2009) Synthesis of a cagelike hollow aluminosilicate with vermiculate
micro-through-holes and its application to ship-in-bottle encapsulation of protein.
Small 5:67–71.

8. Zhu YF, et al. (2005) Stimuli-responsive controlled drug release from a hollow meso-
porous silica sphere/polyelectrolyte multilayer core-shell structure. Angew Chem Int
Edit Engl 44:5083–5087.

9. Ren N, et al. (2004) Mesoporous microcapsules with noble metal or noble metal oxide
shells and their application in electrocatalysis. J Mater Chem 14:3548–3552.

10. Hao E, et al. (2004) Optical Properties of Metal Nanoshells. J Phys Chem B
108:1224–1229.

11. Martinez CJ, Hockey B, Montgomery CB, Semancik S (2005) Porous tin oxide nano-
structured microspheres for sensor applications. Langmuir 21:7937–7944.

12. Kornbluh R, Peirine R, Pei Q, Oh S, Joseph J (2000) Ultrahigh strain response of field-
actuated elastomeric polymers. Proc SPIE 3987:51–64.

13. Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39.
14. Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus flytrap snaps.

Nature 433:421–425.
15. Skotheim JM, Mahadevan L (2005) Physical limits and design principles for plant and

fungal movements. Science 308:1308–1310.
16. Lee H, Xia C, Fang NX (2010) First jump of microgel; actuation speed enhancement by

elastic instability. Soft Matter 6:4342–4345.
17. Baker TS, Olson NH, Fuller SD (1999) Adding the third dimension to virus life cycles:

Three-dimensional reconstruction of icosahedral viruses from cryo-electron micro-
graphs. Microbiol Mol Biol Rev 63:862–922.

18. Speir JA, Munshi S, Wang G, Baker TS, Johnson JE (1995) Structures of the native and
swollen forms of cowpea chlorotic mottle virus determined by X-ray crystallography
and cryo-electron microscopy. Structure 3:63–78.

19. Douglas T, Young M (1998) Host-guest encapsulation of materials by assembled virus
protein cages. Nature 393:152–155.

20. Kovács F, Tarnai T, Fowler PW, Guest SD (2004) A class of expandable polyhedral struc-
tures. Int J Solids Struct 41:1119–1137.

21. Kovács F, Tarnai T, Guest SD, Gowler PW (2004) Double-link expandohedra: A mechan-
ical model for expansion of a virus. Proc R Soc London A Math Phys 460:3192–3202.

22. Fuller RB (1982) Synergetics: Explorations in the Geometry of Thinking (MacMillan,
New York).

23. Stuart RD (1963) Polyhedral and Mosaic Transformations (Student Publications of the
School of Design, North Carolina State University, Raleigh, NC).

24. Clinton JD (1971) Advanced structural geometry studies. Part 2: A geometric trans-
formation concept for expanding rigid structures. (NASA, Washington, DC) Report
CR-1735.

25. Verheyen F (1989) The complete set of Jitterbug transformers and the analysis of their
motion. Comput Math Appl 17:203–250.

26. Hoberman C (1990) Reversibly expandable doubly-curved truss structure. US Patent
4942700.

27. Bertoldi K, Reis PM, Willshaw S, Mullin T (2009) Negative Poisson’s ratio behavior
induced by an elastic instability. Adv Mater 22:361–366.

28. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: Buckminster-fullerene.
Nature 318:162–163.

29. Li B, Cao YP, Feng XQ, Gao H (2011) Surface wrikling patterns on a core-shell soft
sphere. Phys Rev Lett 106:234301.

30. Hutchinson JW (1967) Imperfection sensitivity of externally pressurized spherical
shells. J Appl Mech 34:49–55.

31. Carlson RL, Sendelbeck RL, Hoff NJ (1967) Experimental studies of the buckling of com-
plete spherical shells. Exp Mech 7:281–288.

32. Cromwell PR (1997) Polyhedra (Cambridge Univ Press, Cambridge, UK).
33. Sun C, Fang N, Wu DM, Zhang X (2005) Projection micro-stereolithography using

digital micro-mirror dynamic mask. Sens Actuators A Phys 121:113–120.
34. González E, Arbiol J, Puntes VF (2011) Carving at the nanoscale: Sequential galvanic

exchange and Kirkendall growth at room temperature. Science 334:1377–1380.
35. Yeoh OH (1993) Some forms of the strain energy function for rubber. Rubber Chem

Technol 66:754–771.

Shim et al. PNAS ∣ April 17, 2012 ∣ vol. 109 ∣ no. 16 ∣ 5983

EN
G
IN
EE

RI
N
G

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1115674109/-/DCSupplemental/pnas.1115674109_SI.pdf?targetid=STXT


Supporting Information
Shim et al. 10.1073/pnas.1115674109
SI Text
Derivation of Equation for Void-Volume Fraction, Eq. 2. To clarify the
derivation of Eq. 2 in the main manuscript, we focus on the
simplest case of the Buckliball with six voids (Fig. S1), although
the argument is general and applicable to all other four config-
urations.

We start by deriving the relation between the angles (ϕ, θ and
α) used in Eq. 2 of the main manuscript. We define ϕ as the angle
between two vectors, which originate at the shell center and ter-
minate at two neighboring vertices of a folded polyhedron (see
the schematic diagram in Fig. S1A). Because the void’s center
in the expanded polyhedron (i.e., cuboctahedron for this specific
case) is placed at the vertex locations of the folded polyhedron
(i.e., octahedron for this specific case), ϕ also represents the an-
gle relating the center-to-center distance between two adjacent
circular voids in the expanded polyhedron. In addition, we define
α as the angle that sets the narrowest width of the ligament
(Fig. S1B), and θ as the angle that sets the diameter of the void
(Fig. S1B). From geometry, we obtain

θ ¼ ϕ − α: [S1]

Secondly, we calculate the volume of the intact spherical shell:

V shell ¼
4

3
π½R3

o −R3
i �; [S2]

where Ri and Ro denote the inner and outer radius of the shell,
respectively.

We now need to calculate the volume of a single void on the
spherical shell (Fig. S1D). Because each void is defined by a cone
of opening angle θ and vertex located at the center of the sphere
(Fig. S1C), its volume is given by

V void ¼ 2

3
π½R3

o − R3
i �
�
1 − cos

�
θ

2

��
: [S3]

Finally, combining Eqs. S1–S3, we obtain the following expres-
sion for the void-volume-fraction,

ψ ¼ NV void

V shell
¼ N

2

�
1 − cos

�
ϕ − α
2

��
; [S4]

which corresponds to Eq. 2 in the main manuscript.

Phase Diagrams of Design Parameters hτ,ψi. We present additional
phase diagrams of design parameters for shells with 6, 30, and 60
holes, which are not included in Fig. 4 of the main manuscript
because of the page limitation.

Because the experiments suggest that the narrowest cross-
section of ligament in the expanded status of the spherical shells
governs the on-sphere buckling behavior of the balls, by compar-
ing the second moment of area along two axes (i.e., Irr ≤ Iθθ) we
obtain a relation between the two design parameters hτ; ψi (Eqs. 2
and 3 in the main manuscript). The corresponding phase bound-
ary is plotted as a marked line in Fig. S2. In addition, to assess our
predictions, we perform a series of finite element simulations
where we investigate the buckling of Buckliball characterized
by different pairs of the design parameters hτ; ψi. The phase dia-
grams for shells with 6, 30, and 60 holes are presented in Fig. S2.
In these phase diagrams, regions where out-of-sphere (snap)
buckling occurs are represented in white. In the shaded regions

where encapsulation (i.e., on-sphere buckling) occurs, the color
in the contour plots represents the associated critical buckling
pressure for onset of on-sphere buckling (normalized by the
Young’s modulusE), given by the adjacent color bar. We find that
the contour map boundary between the regions of on-sphere and
out-of-sphere buckling is in good agreement with our analytical
prediction based on the second moment of area of the narrowest
cross-section of ligament.

Derivation of Equation for Pressure-Compression Relation, [4]. We
proceed by presenting a detailed derivation of the scaling in
[4] in the main manuscript (Eq. [8] in this document). We start
by considering a single ligament and simplify its geometrical de-
scription using a curved column with uniform width (we ¼ Riα)
and effective column length (Le ¼ βRiχ) (Fig. S3). In the main
manuscript, [4] can be obtained from the force equilibrium
along the radial direction for the simplified curved column. To
simplify the derivation, let’s orient the column so that the radial
direction at the center of its width coincides with the x axis of
the Cartesian coordinate (see Fig. S3, Right). Introducing a sphe-
rical coordinate system (r > 0, θ ∈ ½0; π�, φ ∈ ½0; 2πÞ) so that
x ¼ r sin θ cosφ, y ¼ r sin θ sinφ, and z ¼ r cos θ, the component
along the x direction (i.e., the radial direction) of the pressure
p, denoted by Fp

x , can be obtained as

Fp
x ≈

Z
θ¼π

2
þα

2

θ¼π
2
−α
2

Z
φ¼βχ

2

φ¼−βχ
2

ðp sin θ cosφÞR2
i sin θdθdφ

≈ pR2
i ½αþ sinα� sin

�
βχ
2

�
: [S5]

Because the component along the x direction of the compressive
force C, denoted by FC

x , is given by

FC
x ¼ 2C sin

�
βχ
2

�
; [S6]

force equilibrium in the x direction (i.e., Fp
x ¼ FC

x ) yields

pR2
i ½αþ sinα� ¼ 2C: [S7]

For large values of porosity α → 0, so that we can use the
approximation sinα ≈ α, and Eq. S7 reduces to

C ≈R2
i αp; [S8]

which corresponds to [4] in the main manuscript.

Postbuckling Analysis: Finite Element Simulations.Because the buck-
ling analysis performed using Abaqus/Standar solver reveals that
linear continuum elements lead to strong mesh-size dependent
behavior, we built all the models using quadratic continuum
elements (C3D10MH: a quadratic hybrid-continuum element
with a 10-node modified tetrahedron having one additional vari-
able relating to pressure) for both the thin membranes and the
skeleton (thicker parts) of the shells.

Note that continuum elements are also used for the mem-
brane, to resolve issues of compatibility between the quadratic
continuum elements and linear shell elements for large-strain
formulations. Although Abaqus/Standard provides various con-
ventional thin shell element types, only few shell elements are
suitable for large-strain analysis (1); these are linear thin shell
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element (e.g., S3(R), S4(R), etc.) and quadratic thick shell ele-
ments (e.g., SC8(R), etc.), which are also called continuum shell
elements. Both element types have a compatibility issue with
quadratic continuum element types ofC3D10M(H) and therefore
we decide to use continuum elements for both the thin mem-
branes and the thicker parts of the shells.

To perform the postbuckling analysis under volume-controlled
conditions, the Buckliball was modeled as a spherical shell filled
with fluid for which we used hydrostatic fluid elements (F3D3
with a mesh sweeping seed size of 1.25 mm). The fluid has been
assumed to be compressible air having a density of 1.024 kg∕m3

at 20 °C and its volume has been progressively reduced during
the simulations. Because Abaqus/Standard provides only linear
hydrostatic fluid elements (element type F3D3), the mesh for
the fluid elements was designed such that four fluid elements
(i.e., four F3D3 elements) are attached to a single face of the
quadratic solid element (i.e., C3D10MH). In addition, implicit
dynamic analysis were performed using Newmark algorithm with
β ¼ 0.276 and γ ¼ 0.550 (such conditions are achieved by setting
α ¼ −0.05, “

�DYNAMIC;ALPHA ¼ −0.05”). Note that this
damping is purely numerical and is different from the material
damping (2). The kinetic energy was monitored during simula-
tions and observed to be less than 3.0% of the strain energy,
ensuring quasi-static conditions.

A mesh sweeping seed size of 2.5 mm was chosen for the solid
elements, resulting in hydrostatic fluid elements of size that is
roughly half the size of the solid elements due to the above-
mentioned mesh design procedure. For example, the model used
for the postbuckling analysis of the Buckliball with membrane
thickness h ¼ 0.5 mm has 15,469 C3D10MH elements and 8,704
F3D3 elements (Fig. S4A). Fig. S4C shows the results of the post-
buckling analysis performed under volume-controlled conditions,
which are presented in the main manuscript. The computational
cost of the simulation was remarkably high; a single postbuckling
analysis under volume control took 40 h using 48 central processing
units. This extremely high computational cost for the volume-
control simulations hindered further investigation on the effect
of mesh size and numerical damping parameter.

For the sake of computational convenience, the accuracy of
the mesh used in the volume-control simulations was ascertained
performing several simulations under pressure-controlled condi-
tions, whose computational cost is found to be less than one-fifth
of that of the volume-controlled simulations. Therefore, models
with sweeping mesh sizes of up to 1.0 mm were built and tested
(see Fig. S4B).

For the static analysis under pressure-controlled conditions, a
stabilized scheme using artificial damping was employed because
the postbuckling behavior of the Buckliball covered by a thin
membrane is characterized by two different types of sequential
unstable buckling events (i.e., local snap-buckling events in the
thin membranes followed by a global buckling mode of the ske-
leton). Note that the Abaqus/Standard solver provides an auto-
matic stabilization with artificial damping; where viscous forces
of the form Fv ¼ cM �v are added to the global equilibrium equa-
tions; here, c is a damping factor, M � is an artificial mass matrix
calculated with unit density, and v is the nodal velocity vector.
We choose an option where the damping factor c is determined
in such a way that the dissipated energy for a given increment
is 0.02% of the extrapolated strain energy, which is the default
value by using the Abaqus keyword “

�STATIC; STABILIZE ¼
0.0002”. When we reduce the damping factor below 0.02%, the

simulation stops before capturing the local snap-buckling of
membranes. Thus, the damping factor of 0.02% is the smallest
value with which the numerical simulations were still able to cap-
ture the correct postbuckling behavior. More details on this auto-
matic stabilization scheme are presented in ref. 3.

Comparison of the results from the volume-controlled simula-
tions (with mesh sweeping size of 2.5 mm shown in Fig. S4C) and
pressure-controlled simulations (with mesh sweeping size of
1.0 mm shown in Fig. S4D) shows good agreement in terms of
initial linear response and critical buckling pressure. These re-
sults confirm that the mesh size used in the volume-controlled
simulations is fine enough to accurately predict the onset of buck-
ling and postbucking behavior. Moreover, although the pressure-
controlled simulations were unable to capture the experimentally
observed softening that follows immediately after the onset of
buckling, this feature was accurately predicted by the volume-
controlled simulations.

Effect of Geometric Imperfections. We have performed an addi-
tional set of simulations to explore the imperfection sensitivity
of buckling for the Buckliball, focusing on the Buckliball with
24 voids. The Buckliball had an inner radius Ri ¼ 22.5 mm, shell
thickness t ¼ 5 mm, void-volume fraction ψ ¼ 58.7%, and the
voids were not covered by a membrane. For this given Buckliball
design, we introduced imperfections in the form of different void
size and misplaced void location on the sphere when compared to
their geometrically exact set by the underlying polyhedron. We
explored the response of structures with stochastically displaced
and sized voids of amplitude a ¼ 1%t, 5%t, 10%t, and 15%t (i.e.,
t ¼ 5 mm). Note that, for imperfections of magnitude larger than
15%t, the narrowest width of ligament vanishes so that the Buck-
liball loses structural integrity. Five configurations are generated
and tested for each value of a, totaling 20 sets of simulations for
both buckling and postbuckling analysis. The dependence of the
critical buckling load as a function of a is presented in Fig. S5,
showing that the critical pressure tends to decrease as the mag-
nitude of imperfection increases. In addition, representative
snapshots from the postbuckling analysis are shown in Fig. S6.
For the cases with a ¼ 1%t and 5%t, the pressure at the onset
of buckling is found to be only marginally affected by imperfec-
tion (less than 1%) and all five configurations show a nearly per-
fect on-sphere buckling leading to the desired encapsulation
behavior, and therefore only one representative snapshot is re-
ported (Fig. S6 A and B). On the other hand, various postbuckled
shapes are observed for the cases of a ¼ 10%t and 15%t and three
representative snapshots are presented for each case (Fig. S6 C
and D). As the magnitude of imperfection increases, the width
of the ligaments of the Buckliball is strongly affected by the
imperfections, so that the deformation tends to localize within
the narrowest ligaments. For a ¼ 10%t, all five Buckliballs show
the desired encapsulation postbuckling behavior, albeit with
postbuckled shapes that can deviate from a sphere (Fig. S6C).
Moreover, the pressure at buckling is reduced by roughly 7%.
Finally, for a ¼ 15%t, the imperfection is found to strongly affect
the response of the structures so that only one configuration out
of five shows an encapsulation postbuckling behavior (Fig. S6D)
and the critical pressure is now reduced by approximately 15%.

This additional set of simulations demonstrates that the encap-
sulation mechanism of the Buckliballs is robust and not affected
by geometric imperfections up to a ¼ 10%t.

1. Abaqus (2008) Abaqus Analysis User’s Manual, Ver 6.8 (Dassault Systèmes Simulia
Corp., Providence, RI), Sect 28.6.

2. Abaqus (2008) Abaqus Theory Manual, Ver 6.8 (Dassault Systèmes Simulia Corp.,
Providence, RI), Sect 2.4.

3. Abaqus (2008) Abaqus Analysis User’s Manual, Ver 6.8 (Dassault Systèmes Simulia

Corp., Providence, RI), Sect 7.1.
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Fig. S1. Schematics illustrating (A) ϕ, (B) αand θ, (C) a cone describing the hole on the spherical surface, and (D) the volume of each hole.

Fig. S2. Phase diagram of the two design parameters hτ; ψi. The color-shaded region indicates on-sphere buckling and the white region represents the out-of-
sphere buckling. The magnitude of the critical pressure for the onset of the on-sphere buckling is shown as a contour map with the adjacent color bar; (A) for 6
holes, (B) for 30 holes, and (C) for 60 holes.
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Fig. S3. Representative ligament extracted from the Buckliball and simplified curved column used in its buckling analysis.

Fig. S4. (A and B) Meshed Buckliball with sweeping mesh size of (A) 2.5 mm and (B) 1.0 mm. (C and D) Dependence of the differential pressure of the ball
on the nominal outer radial strain. Simulation results using finite element modeling (FEM), which are denoted by marked color lines, are obtained from
(C) volume-controlled and (D) pressure-controlled conditions.

Fig. S5. Effect of imperfections on the normalized critical buckling pressure ρ ¼ p∕E. Blue square marks correspond to the mean value of five configurations
and the size of error bar corresponds to the one-standard deviation. In addition, the black horizontal line represents the normalized critical buckling pressure
for Buckliball without imperfections.
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Fig. S6. Representative snapshots from the postbuckling analysis; (A) a ¼ 1%t and (B) a ¼ 5%t. All five configurations remain spherical after buckling and
show the encapsulation features. (C) For a ¼ 10%t, all five configurations show encapsulation features although after buckling their shapes significantly
deviate from a sphere. (D) For a ¼ 15%t, only one configuration shows encapsulation features (Left), whereas all the others lead to irregularly collapsed
shapes (Center and Right).
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