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Abstract

A common problem that arises in image processing is that of performing inverse filter-
ing on an image that has been blurred. Methods for doing this have been developed,
but require fairly accurate knowledge of the magnitude of the Fourier transform of
the blurring function and are sensitive to noise in the blurred image. It is known that
a typical image is defined completely by its region of support and a sufficient number
of samples of the phase of its Fourier transform. We will investigate a new method
of deblurring images based only on phase data. It will be shown that this method is
much more robust in the presence of noise than existing methods and that, because
no magnitude information is required, it is also more robust to an incorrect guess of
the blurring filter. Methods of finding the region of support of the image will also be
explored.
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Chapter 1

Introduction

Two-dimensional deconvolution is a problem of great practical interest. Images taken

with a digital camera can be blurred by a number of sources, and often this blurring

can be modeled as the convolution of the original image with a blurring function.

Therefore, to obtain the original image from the degraded one requires a deconvolu-

tion. Many methods of doing this have been developed, each with its own strengths

and weaknesses.

Most of these methods rely on Fourier domain techniques. That is, they divide the

Fourier transform of the degraded image by some function of the Fourier transform

of the blurring function. This leads to two weaknesses in particular. First, because a

blurring function is a lowpass signal, deconvolution in the frequency domain requires

the high frequencies to be divided by very small numbers. Typical images are also

lowpass signals, so this tends to amplify the noise in the image. Second, these methods

rely on accurate knowledge of the blurring function.

These weaknesses can be addressed by exploiting the fact that a typical image can

be represented by only the phase of its Fourier transform and its region of support.

This implies that only the phase of the Fourier transform of the image needs to be

corrected and allows deconvolution to be performed by subtraction rather than divi-

sion, thus mitigating the noise amplification problem. It also only requires knowledge

of the phase of the Fourier transform of the blurring function, which may be easier

to estimate in some situations than both the phase and the magnitude.
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In this thesis, we will explore the strengths and weaknesses of doing deconvolu-

tion based on phase. In Chapter 2, the necessary background information will be

presented, including the details of the deconvolution problem, a discussion of sev-

eral existing deconvolution methods, and the algorithm by which an image can be

reconstructed from only the phase of its Fourier transform and its region of support.

In Chapter 3, we will examine the performance of phase-based deconvolution

in the presence of noise. The effect of changing several parameters of the phase-

based reconstruction algorithm will be explored and phase-based deconvolution will

be compared to other methods.

In Chapter 4, we will look at the performance of phase-based deconvolution when

the blurring function is not known perfectly. The situations in which it is easier to

estimate the phase of the Fourier transform of the blurring function than the entire

Fourier transform of the blurring function will be explained. Again, the effect of

changing the parameters of the phase-based reconstruction algorithm will be explored,

and phase-based deconvolution will be compared to other methods.

In Chapters 3 and 4, the region of support of the image will be assumed known.

In Chapter 5, we will discuss and compare several methods for obtaining the region

of support of the image if it is not known.

Finally, in Chapter 6, we will conclude the thesis and suggest possible future work.
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Chapter 2

Background

This chapter will be divided into two parts. First, the image restoration problem will

be explained, including a summary of some of the most common methods currently

used to solve this problem. Then, a discussion of the magnitude retrieval problem

will be presented. The way in which the magnitude retrieval problem relates to the

image restoration problem is the topic of this thesis, and will be elaborated on in the

next chapter.

2.1 Image Restoration

Image degradation is typically modeled as a degradation system followed by additive

noise [2]. Mathematically, this can be written as

g(n1, n2) = f(n1, n2) ∗ b(n1, n2) + v(n1, n2) (2.1)

or, in the frequency domain,

G(ω1, ω2) = F (ω1, ω2)B(ω1, ω2) + V (ω1, ω2) (2.2)

where f(n1, n2) is the original image, b(n1, n2) is the degradation system, often some

sort of blurring filter, v(n1, n2) is additive noise, which is known only in a statisti-
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cal way, and g(n1, n2) is the degraded image. Capital letters indicate the Fourier

transforms of the respective sequences.

The goal of image restoration is to use g(n1, n2) and available information about

f(n1, n2), b(n1, n2), and v(n1, n2) to compute some f̂(n1, n2) that is an approximation

of f(n1, n2). This notation will be used throughout.

There are many variations on Eq. 2.1. For example, the additive noise could

actually be data dependent, as in the case of Poisson noise, which is common in

astronomical images [3]. It may be that the noise is not additive, but multiplicative,

which is seen in infrared radar images [9]. However, one of the most common types

of noise is signal independent additive white Gaussian. This fits the model of Eq. 2.1

and can come, at least approximately, from many sources, including the read out

noise of A/D converters [3].

The blurring term, b(n1, n2), can also come from many sources. A few of the

most common include lens misfocus, atmospheric turbulence, and uniform linear mo-

tion [9] [2]. Note that, in writing Eqs. 2.1 and 2.2, it was implicitly assumed that

the blurring function was linear and space invariant. This is not always the case, but

is approximately true for a large class of degradations and simplifies the restoration

computations considerably [2]. Therefore, this assumption will remain in place.

A host of methods currently exist to solve the image restoration problem, each

with particular strengths and weaknesses. A few of the most common will now be

explained. This list is not meant to be exhaustive, but representative of the kinds of

algorithms available.

Inverse Filtering : Inverse filtering involves the computation of

F̂ (ω1, ω2) =
G(ω1, ω2)

B(ω1, ω2)
(2.3)

If B(ω1, ω2) is known perfectly and has no zeros, and if there is no noise, inverse

filtering will produce exactly the correct answer. However, in the presence of noise,

the noise can be amplified, and the result can become visually unacceptable [2].

Variations on inverse filtering include thresholded inverse filtering, where a maximum

16



value for
∣∣ 1
B(ω1,ω2)

∣∣ is set to avoid this problem [9] and the use of the “pseudoinverse”

filter, which handles the problem of zeros in B(ω1, ω2) by setting F̂ (ω1, ω2) equal to

zero at those points [7]. There are also iterative spatial domain methods to compute

the deconvolution, and these can be stopped short of convergence or used to impose

additional constraints (for example, non-negativity) on the final result [11].

It is worth emphasizing here that inverse filtering and its variations are a some-

what different class of algorithm from those explained below. Inverse filtering solves

the problem of blurring, but makes no attempt to account for noise. The methods

explained below were all designed with a specific noise model in mind and can be

considered simultaneously deblurring and de-noising algorithms.

Wiener Filtering : Wiener filtering consists of the computation of

H(ω1, ω2) =
1

B(ω1, ω2)

|B(ω1, ω2)|2

|B(ω1, ω2)|2 + Sv(ω1, ω2)/Sf (ω1, ω2)
(2.4)

where Sv(ω1, ω2) and Sf (ω1, ω2) are the power spectral densities of the noise and sig-

nal, respectively. The image is then restored by taking the inverse Fourier transform

of F̂ (ω1, ω2) = H(ω1, ω2)G(ω1, ω2). The Wiener filter is often called the linear least

mean squared error filter because it is a linear system and minimizes E{[f(n1, n2)−

f̂(n1, n2)]
2} [2]. Whether this is the correct quantity to minimize will depend on the

application.

Unlike inverse filtering, Wiener filtering will not tend to amplify the noise. This

can be seen by looking at Eq. 2.4. At frequencies where the noise is large relative to

the signal, H(ω1, ω2) will be small, and at frequencies where the noise is small relative

to the signal, H(ω1, ω2) will be large. However, Wiener filtering relies on knowledge

of the power spectral densities of the signal and noise, and these may not be known

precisely, if at all. Therefore, in practice, the approximation of Sv(ω1,ω2)
Sf (ω1,ω2)

= K where

K is some constant is often used [2].

There are many variations on the Wiener filter, including the parametric Wiener

filter, which can give the user more control over the amount of smoothing done, and

adaptive Wiener filters, which can account for spatial variance in the statistics of the
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noise or image. These can give better results at the cost of more fine-tuning by the

user or, in the case of adaptive Wiener filters, more computation [9].

Constrained Least Mean Squared Error Filter : Also known as the regularized

filter, the constrained least mean squared error filter is an important variation of the

Wiener filter that gives the minimum mean squared error solution under a constraint

of minimizing the second derivative of the restored image. In this case, the deblurring

filter is given by

H(ω1, ω2) =
1

B(ω1, ω2)

|B(ω1, ω2)|2

|B(ω1, ω2)|2 + γ|P (ω1, ω2)|2
(2.5)

where P (ω1, ω2) is the Laplacian operator, which serves as an approximation for the

second derivative, and γ is a Lagrange multiplier. An optimum γ for given noise

statistics can be found iteratively. Constraining the second derivative in this way

tends to make the restored image smoother. This filter also has the advantage of not

requiring any knowledge of the statistics of the signal or noise besides the mean and

variance of the noise, which are used in the iteration to find γ [2].

Richardson-Lucy Iteration: The Richardson-Lucy iteration relies on a probabilis-

tic interpretation of blurring. It treats the value of each pixel in f(n1, n2) as a count

of the number of events that happened there. It assumes the blurring function is

normalized, so that the total count of events in f(n1, n2) matches the total count of

events in g(n1, n2). Then, it uses Bayes’s theorem to find the probability of an event

at a particular f(n1, n2) given an event at a particular g(n1, n2) and given the blurring

function. It can be shown that the maximum likelihood solution to this problem can

be found with the following iteration. (Note that the one-dimensional case is given

for simplicity. The extension to two dimensions is straightforward.)

f0(i) =

∑
n f(n)

I
(2.6)

fr+1(i) = fr(i)
c∑
k=i

b(k − i+ 1)g(k)∑d
j=a b(k − j + 1)fr(j)

(2.7)

where I is the size of f(n), J is the size of b(n), a = max(1, k−J+1), d = min(k, I),
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and c = i+ J − 1 [13].

Note that Eq. 2.7 is equivalent to

fr+1(n) = fr(n)

(
b(n)⊗ g(n)

b(n) ∗ fr(n)

)
(2.8)

where ⊗ indicates correlation and ∗ indicates convolution [1].

The Richardson-Lucy iteration presents several advantages. It finds the maximum

likelihood solution to the deconvolution problem subject to the constraint that the

result be non-negative, and there is nothing in Eq. 2.7 which requires b(n1, n2) to be

spatially invariant. Furthermore, bad pixels can be masked by simply not including

them in the calculations [3]. However, if there is noise, the Richardson-Lucy iteration

must be stopped short of convergence, or it will attempt to fit the noise too closely

and produce unacceptable errors [10]. It is not a trivial matter to determine at what

point the iteration should be stopped, and, depending on the features of the image,

the optimal stopping point may be different for different regions [3].

There are many other image restoration methods. For example, several wavelet-

based techniques have recently been developed [8] [12]. The purpose of this section is

not to give an exhaustive list of all possible algorithms. As will be explained in more

detail in the next chapter, phase-based deconvolution is strictly an inverse filtering

method. It will be compared to some image restoration methods not to imply that it

should be used as a restoration system, but to demonstrate how robust it is.

2.2 Magnitude Retrieval

The magnitude retrieval problem consists of reconstructing the magnitude of the

Fourier transform of a signal given only the phase of the Fourier transform of that

signal. Because any signal can be convolved with a zero-phase system and produce a

different output with the same Fourier transform phase but a different magnitude, it

is not, in general, possible to do this.

However, it can be shown that if the Z-transform of the signal does not have any
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zeros in conjugate-reciprocal pairs or on the unit circle, and if the region of support

of the signal is known (that is, the signal is zero outside of some known range), then

the signal is uniquely defined by the phase of its Fourier transform to within a scale

factor [4].

These conditions can be extended to the case of multi-dimensional signals, and,

furthermore, it can be shown that almost all two-dimensional signals satisfy the Z-

transform domain constraints [4]. In addition, the phase of the continuous Fourier

transform need not be known. The phase of a sufficiently large discrete Fourier trans-

form (DFT) is also enough to uniquely identify the signal. In this case, a sufficiently

large DFT for an image that is N1xN2 pixels would be at least (2N1 − 1)x(2N2 − 1)

points [4].

There is a closed-form solution to the problem of computing a spatial domain

signal from the phase of its DFT. However, this requires the inversion of prohibitively

large matrices when the signals are reasonably sized images. Fortunately, there is also

an iterative algorithm which alternately imposes the spatial domain constraints and

the frequency domain constraints [4]. Specifically, it is as follows, where x(n1, n2) is

the signal to be reconstructed and X(k1, k2) is its DFT:

1. Start with an initial guess of the magnitude of X(k1, k2). Call this Y ′0(k1, k2).

This can be anything–a constant, random values, the magnitude of the DFT of

similar images, etc. The algorithm will converge from any starting point.

2. Compute Yr+1(k1, k2) = |Y ′r (k1, k2)|ejθX(k1,k2), where θX(k1, k2) is the known

phase of X(k1, k2).

3. Compute yr+1(n1, n2) = IDFT[Yr+1(k1, k2)].

4. Set y′r+1(n1, n2) = yr+1(n1, n2) inside the known region of support, and zero

everywhere else.

5. Compute Y ′r+1(k1, k2) = DFT[y′r+1(n1, n2)].

6. Repeat steps 2-5 until convergence is reached.
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This algorithm has been proven to converge to the correct solution, provided

the uniqueness constraints are met [4]. This algorithm works with general two-

dimensional signals. In the special case of images, when the values of the spatial

domain signal are known to be positive, step 4 can be modified to set y′r+1(n1, n2) =

|yr+1(n1, n2)| inside the region of support, and the algorithm will still converge [14].
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Chapter 3

Performance in the Presence of

Noise

3.1 Effect of Noise on Phase

The relationship between white Gaussian noise in the spatial domain and phase errors

in the Fourier transform of a signal is quite complicated. Any particular sample of

the Fourier transform is a function of all the spatial domain samples, leading to a

large covariance matrix. Furthermore, in the case of real, finite-length signals, such as

images, the real and imaginary parts of the Fourier transform are not independent,

but related by the Hilbert transform. Finally, the phase is the arctangent of the

imaginary part divided by the real part, which is a nonlinear operation. This makes

it very difficult to perform any theoretical analysis of the phase of white noise, even

before the signal has been added to it.

Furthermore, because the noise model being considered is additive, the phase of

the signal and the phase of the noise do not interact in a straightforward way. Instead,

the phase of the noisy signal is given by

θG(ω1, ω2) = tan−1

(
Im{F (ω1, ω2)}+ Im{V (ω1, ω2)}
Re{F (ω1, ω2)}+Re{V (ω1, ω2)}

)
(3.1)

where G(ω1, ω2) is the Fourier transform of the noisy signal, θG(ω1, ω2) is the phase
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of G(ω1, ω2), F (ω1, ω2) is the Fourier transform of the original signal, and V (ω1, ω2)

is the Fourier transform of the noise.

Qualitatively, this means that, where the real or imaginary parts of F (ω1, ω2) are

large relative to V (ω1, ω2), the effect of the noise on the phase will be small, and

where the real or imaginary parts of the signal are small relative to the noise, the

effect on the phase will be large.

3.2 Characterization of Phase-Based Deconvolu-

tion

For the same reasons it is difficult to perform a theoretical analysis of spatial domain

noise on the Fourier transform of a signal, it is also difficult to analyze what noise

in the phase of the Fourier transform of a signal will do to the reconstructed signal.

However, noise in the phase does not seem to change the fact of convergence of the

algorithm to some solution. What this convergent solution is depends on the size

of the internal DFT used by the iteration and the starting point of the iteration.

Additionally, the question remains whether the convergent solution is the best repre-

sentation of the original image, or whether it would be better to stop the iteration at

some intermediate point, as is the case with the Richardson-Lucy iteration.

In this section, we will first explain the experimental setup used to produce the

reported results. We will then examine the effect of the number of iterations, the

effect of the size of the internal DFT used in the iteration, and the effect of the

starting point of the iteration.

3.2.1 Experimental Setup

These experiments were performed assuming the basic model of image degradation

held. That is,

g(n1, n2) = f(n1, n2) ∗ b(n1, n2) + v(n1, n2) (3.2)
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where many different images were used for f(n1, n2), b(n1, n2) was an 11x11-point

Gaussian filter with σ = 5, and v(n1, n2) was zero-mean Gaussian white noise with

differing variances. The images used are shown in Fig. 3-1. These cover a variety of

image characteristics, and the results can be considered representative. Note that,

while the original image aspect ratios have been preserved in Fig. 3-1, the original

sizes have not. For example, the original cameraman image was 256x256 pixels, while

the original liftingbody image was 512x512 pixels, even though these two appear to

be the same size in Fig. 3-1. Also, Fig. 3-1a, 3-1c, and 3-1i are shown at 75% their

true resolution for copyright reasons. (See Appendix A for image credits.)

In this chapter, the blurring function and the region of support were assumed

known. The effect of loosening these assumptions will be addressed in subsequent

chapters.

The quality metric used was a variation of mean squared error, computed as

e =
1

N1N2

N1−1∑
n1=0

N2−1∑
n2=0

(
f(n1, n2)− kf̂(n1, n2)

)2
(3.3)

where k is a scale factor computed to minimize the error, and is given by

k =

∑N1−1
n1=0

∑N2−1
n2=0 f(n1, n2)f̂(n1, n2)∑N1−1

n1=0

∑N2−1
n2=0

(
f̂(n1, n2)

)2 (3.4)

This metric, which will be referred to as optimal scaling mean squared error (OS-

MSE), was chosen because phase-based reconstruction is only accurate to within a

scale factor. It should be noted that the original image would not typically be available

in practice, and so k would have to be estimated. It should also be noted that this

error measure is not necessarily an absolute indicator of visual quality, and so sample

images will be provided throughout to demonstrate the kinds of artifacts present in

the restored images.

Unless stated otherwise, the initial guess of the magnitude of the restored image

used by the phase-based reconstruction iteration was simply a constant. In some

cases, the phase-based reconstruction iteration led to an intermediate spatial domain
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(a) moon (358x537 pixels) (b) bag (189x250 pixels) (c) pout (240x291 pixels)

(d) cameraman (256x256
pixels)

(e) liftingbody (512x512
pixels)

(f) tire (232x205 pixels)

(g) circuit (272x280 pixels) (h) westconcordorthophoto
(364x366 pixels)

(i) rice (256x256 pixels)

(j) cell (191x159 pixels) (k) coins (300x246 pixels) (l) eight (308x242 pixels)

Figure 3-1: Original images
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image with such small pixel values that the quantization of double precision floating-

point numbers became a problem. To avoid this, a check was placed in the iteration

to multiply the reconstructed image by a large constant if it ever became too small.

Since phase-based reconstruction only gives the result to within a scale factor, this

would not change the final result. The alternative would be to compute and scale by

k at each iteration. This was not done to avoid introducing any dependence on the

original f(n1, n2) into the iteration.

3.2.2 Effect of the Number of Iterations

To find the optimal number of iterations, the original image was degraded as described

previously and the phase-based reconstruction algorithm was allowed to run for a

certain number of iterations. The OS-MSE between the resulting restored image and

the original was computed and saved. This was repeated for several different amounts

of noise, for different DFT sizes, and for each image.

In almost every case, more iterations improved the quality of the restored image

in the OS-MSE sense until convergence was reached. The results for the tire image

with an internal DFT size of twice the image size, shown in Fig. 3-2, were typical.

Convergence was found to occur between 500 and 1,000 iterations in general, with the

notable exception being the moon image, which was still improving after even 10,000

iterations.

It should be emphasized that there is no theoretical guarantee of convergence in

the presence of noise, but all the experiments in this chapter did indeed find some

convergent solution except the moon image, which also seemed to be converging even

though the experiments were not run long enough to actually reach convergence.

The few cases in which more iterations did not always lead to a lower OS-MSE

were the bag, westconcordorthophoto, and coins images at low noise values and the

cell image at high noise values. In the case of the bag, westconcordorthophoto, and

coins images, the visual quality of the convergent solutions was similar to that of

the preconvergent solutions, and which was considered the better restoration would

probably be a matter of application.
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Figure 3-2: OS-MSE as a function of noise variance and number of iterations for the tire image.
Internal DFT size was twice the image size.

There are several things to note about this analysis. First, the kind of artifacts

that appeared in the convergent solution, namely horizontal and vertical lines, was

similar across all images. A few examples are shown in Fig. 3-3. The preconvergent

solutions showed varying artifacts, but graininess was common. As convergence was

reached, these artifacts tended to be diminished and the horizontal and vertical lines

became better defined. In some cases, the convergent solution appeared somewhat less

sharp than the preconvergent solution. A few examples of this are shown in Figs. 3-4

and 3-5. In these and all subsequent restored images, only the region of support of

the original image is shown–the degraded image was slightly larger because of the

blurring.

From these results, it is reasonable to conclude that, in general, phase-based

deconvolution performs best when run to convergence. Even when this is not the
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(a) liftingbody, restored (b) cell, restored

Figure 3-3: Example of artifacts present in the restored image when the algorithm was run to
convergence. Noise variance was 1.

(a) 500 iterations (b) 1000 iterations (c) 2000 iterations

Figure 3-4: An illustration of the effect of number of iterations on artifacts when stopping short
of convergence was optimal. As the number of iterations increases, the lines surrounding the coins
decrease and the image becomes less sharp. In this case, the restored image has a slightly higher
OS-MSE as the number of iterations increases, but the visual quality is not clearly worse. Noise
variance was 10−1.5.
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(a) 50 iterations (b) 100 iterations (c) 500 iterations

Figure 3-5: An illustration of the effect of number of iterations on artifacts when convergence was
optimal. As the number of iterations increases, the graininess decreases and the horizontal and
vertical lines become more pronounced. Noise variance was 1.

case in the OS-MSE sense, it may be in the visual quality sense, and any gains to be

had by stopping short of convergence are small.

3.2.3 Effect of the Size of the DFT

In the absence of noise, there is one correct solution, and the phase-based reconstruc-

tion iteration will converge to that solution regardless of the size of the internal DFT,

provided it is at least twice the image size, as required by the uniqueness theorem. In

the presence of noise, however, a solution that satisfies both the spatial and frequency

domain constraints simultaneously may not exist. In this case, convergence indicates

a point has been found such that the spatial and frequency constraints are being vio-

lated circularly. That is, a frequency domain solution, when corrected with the given

phase, produces a spatial domain solution, that, when corrected with the given region

of support, has a Fourier transform equal to the original frequency domain solution,

and the progress of the algorithm stops. If this is the situation, then the size of the

DFT used by the phase-based reconstruction algorithm could change the solution to

which the reconstruction algorithm converges.

This does seem to be the case in practice. The images were restored with DFT

sizes of 2, 3, 4, and 5 times the corrupted image size. These tests produced no clear

winner among the DFT sizes, though in general a DFT size of twice the image size

did somewhat worse than the others, and a size of five times the image size often did
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Figure 3-6: OS-MSE as a function of noise variance and DFT size for the cameraman image. Here
“dft size 2” indicates the internal DFT size was twice the degraded image size, “dft size 3” indicates
three times the degraded image size, and so forth. Results are the convergent solution.

somewhat better. However, the differences were only slight, and it seems there is not

much to be gained by changing the DFT size.

The cameraman image was typical, and the results are shown in Figs. 3-6 and 3-7.

Fig. 3-6 shows the OS-MSE values of the convergent solutions of each DFT size, and

Fig. 3-7 shows the actual images. Careful inspection does indicate that a size of 3,

4, or 5 times the image size is somewhat better than twice the image size, but the

gains are small. Nevertheless, phase-based deconvolution is computationally intensive

regardless of the DFT size and will be most useful in situations where computational

power is not an issue. This being the case, there is no reason not to use a larger DFT

to capture whatever gains are available.
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(a) DFT size: twice the image size (b) DFT size: three times the image size

(c) DFT size: four times the image size (d) DFT size: five times the image size

Figure 3-7: Illustration of the effect of DFT size on visual quality. Noise variance was 1.

3.2.4 Effect of the Starting Point

Although the previous experiments were performed with a constant as the initial guess

of the image magnitude, there is no reason this must be the case. In the absence of

noise, the algorithm will eventually converge to the correct solution from any non-zero

starting point, and, in the presence of noise, the starting point may affect the solution

to which the iteration converges. A constant is one convenient choice, but there are

other natural options. For example, the starting point could be the magnitude of the

degraded image.

Experiments performed from this starting point gave, in general, very similar

convergent results to those produced by the previous experiments. Improvements
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achieved by changing the starting point were slight, and which starting point was

better was a function of both the image being restored and the noise level with which

it was corrupted, with no clear pattern emerging.

The exception to this rule was the moon image, where the results obtained by

starting with the degraded image were much better than those obtained by starting

with a constant. This is likely because the phase-based reconstruction algorithm did

not reach convergence from either starting point. It was frequently the case that the

preconvergent solutions obtained by starting with the degraded image were better

than those obtained by starting with a constant, even though the convergent results

were similar and the starting point did not seem to affect how many iterations were

required for convergence.

The general trends that held when the starting point was a constant also held

when the starting point was the degraded image. That is, the convergent solution

was typically the best and an internal DFT size of at least three times the degraded

image size frequently did better than an internal DFT size of only twice the degraded

image size. There were, however, several situations in which these general rules did

not hold. For example, in some of the images, at high noise values, fewer iterations

became better than the convergent solution. This is likely because the phase was

sufficiently noisy and the initial guess of the magnitude was sufficiently accurate

that attempting phase-based reconstruction of the magnitude actually produced a

magnitude that was more corrupted than the original. The liftingbody image was

representative of this class, and results are shown in Fig. 3-8.

This was further confirmed by experiments in which the original, undegraded

image magnitude was used as the starting point. In this case, fewer iterations always

gave a better result. A particularly dramatic example of this was the bag image. The

results are shown in Fig. 3-9. Again, this is reasonable–a correct initial magnitude

can only be corrupted by a noisy phase during reconstruction. (Interestingly, the

convergent solution was comparable to that obtained when starting with a constant

or the degraded image.)

From this, it is reasonable to conclude that, if the phase-based reconstruction
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Figure 3-8: OS-MSE as a function of noise variance and number of iterations for the liftingbody
image when the iteration was initialized with the degraded image magnitude. The internal DFT
size was twice the image size.

iteration is run to convergence, the starting point doesn’t matter. However, if a

sufficiently accurate initial guess of the magnitude is paired with a sufficiently noisy

phase, there are some gains to be had by stopping before convergence, though what

is “sufficiently accurate” and “sufficiently noisy” will have to be determined in an

ad-hoc manner and may require some trial and error. Additionally, if, because of

computing constraints, the iteration cannot be run to convergence, starting with the

degraded image will likely give a better result and is the recommended procedure.

In light of this, the remainder of this chapter will continue to use results obtained

from a constant initial magnitude. Though in certain situations some ad-hoc im-

provements may be possible, these will not be explored. The focus of the discussion

is on what can be achieved based on phase information, and starting with a constant

both eliminates the need for magnitude information and provides a consistent starting
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Figure 3-9: OS-MSE as a function of noise variance and number of iterations for the bag image
when the iteration was initialized with the undegraded image magnitude. The internal DFT size
was twice the image size.

point for all images.

3.3 Comparison to Other Methods

Phase-based deconvolution is, strictly speaking, an inverse filtering technique and

not an entire image restoration system. That is to say, it makes no attempt to

account for or correct noise in the image. Therefore, the proper comparison is to

other inverse filtering techniques. However, phase-based deconvolution has proven

to be so robust in the presence of noise that it can also be compared to full image

restoration algorithms that do account for noise.

The methods included in these comparisons are not an exhaustive list of the

possibilities–there are far too many algorithms. The comparisons provided are only
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meant to serve as a dramatic demonstration of the result that phase-based deconvolu-

tion is extremely robust to noise. They do not imply that phase-based deconvolution

should be used as an image restoration system.

In all cases, the phase-based reconstruction iteration was initialized with a con-

stant and run to convergence with an internal DFT that was five times the degraded

image size.

3.3.1 Comparison to Inverse Filtering Techniques

There were three “inverse filtering” methods considered, namely:

Direct Inverse Filtering, simply the inverse DFT of the N1xN2 point DFT of the

degraded image divided by the N1xN2 point DFT of the blurring filter, where the

degraded image was N1xN2 pixels.

Thresholded Inverse Filtering, where the inverse filter was limited to have a mag-

nitude of no more than 1, 000 at all points.

No Processing, where no processing was performed on the degraded image.

Phase-based deconvolution performed much better than either direct or thresh-

olded inverse filtering in all cases, and was usually better than doing no processing,

though at high noise levels the moon, pout, liftingbody, cell, and eight images were

slightly better left alone. (The moon image had not reached convergence when the

test ended, and so further improvement was probably possible if it had been allowed

to run for more iterations.)

The results for the cameraman and eight images were typical and are shown in

Fig. 3-10. Visual artifacts in the camerman image are shown in Fig. 3-11.

3.3.2 Comparison to Image Restoration Techniques

The results of phase-based deconvolution will now be compared with the results given

by several methods of image restoration as a further demonstration of phase-based

deconvolution’s robustness in the presence of noise. The methods used are

Wiener Filtering, with the power spectral densities of the noise and signal assumed
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Figure 3-10: Comparison of deconvolution methods

to be constants, so that Sv(ω1,ω2)
Sf (ω1,ω2)

was just the noise to signal ratio. Noise statistics

were assumed known and the noise to signal ratio was estimated from the corrupted

image.

Regularized Filtering, with the noise statistics assumed known and the Laplacian

operator used for smoothing.

Richardson-Lucy Iteration, taking into account white noise, with the noise statis-

tics assumed known. The original (undegraded) image was used to determine the

first local minimum in OS-MSE as a function of the number of iterations for each

situation, and that number of iterations was used for that situation.

In general, phase-based deconvolution did better than Wiener filtering and was

comparable to the Richardson-Lucy iteration and regularized filtering in the OS-MSE

sense at low noise values. It tended to do somewhat worse than the other methods

at high noise values. The results for the liftingbody, cameraman, and bag images,

shown in Fig. 3-12, were representative.

Visual quality tracked OS-MSE fairly well in this test, but different restoration

methods produced different artifacts, and which artifacts were considered most un-

pleasant would probably depend on the application. The cameraman image was

typical, and some sample images are shown in Fig. 3-13.

It is worth emphasizing again that, unlike phase-based deconvolution, all other

methods require some knowledge of the noise statistics. Because other methods try to
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(a) no processing (b) direct inverse filtering

(c) thresholded inverse filtering (d) phase-based deconvolution

Figure 3-11: Cameraman image deconvolved with several different methods. Noise variance was
10−2.

correct for the presence of noise and phase-based deconvolution does not, phase-based

deconvolution is most competitive at high signal to noise ratios and becomes worse

as the noise increases.

Additionally, it should be noted that the original image was used to determine

how long the Richardson-Lucy iteration should run. In practice, the original image

would not be available and the number of iterations would have to be estimated. This

means that results from that iteration will not typically be quite as good as shown

here.
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Figure 3-12: Comparison of restoration methods

3.4 Summary

In this chapter, we have shown that phase-based deconvolution is robust to the pres-

ence of noise. When initialized with a constant, the phase-based reconstruction it-

eration performs best when run to convergence, though there are minor exceptions

to this rule. Larger internal DFT sizes also tend to perform better. There are some

ad-hoc gains possible if a “noisy enough” phase is paired with an “accurate enough”

estimate of the magnitude and the iteration is stopped short of convergence, but these

may be hard to realize in practice. Phase-based deconvolution performs much better

than other deconvolution methods in the presence of noise, and is competitive with

restoration methods at low noise levels.
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(a) degraded (b) direct inverse filtering

(c) Wiener filtering (d) regularized filtering

(e) Richardson-Lucy iteration (f) phase-based deconvolution

Figure 3-13: Cameraman image restored with several different methods. Noise variance was 1.
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Chapter 4

Performance with Imperfect

Knowledge of the Blurring

Function

4.1 Attributes of Blurring Functions

Blurring functions are, by definition, two-dimensional lowpass filters. Additionally,

a large class of blurring functions are symmetric (for example, those caused by lens

misfocus [9]), and so their phases are limited to 0 or π. Among such functions, the

Fourier transforms are sync-like. For example, the 512x512-point Fourier transform of

an 11x11-point Gaussian filter with σ = 5 (the blurring function used in the previous

chapter) is shown in Fig. 4-1.

It is generally the case with such functions that the number of points in the filter

determines the width of the main lobe, while the shape, or taper, of the filter merely

changes the height of the side lobes. This has significant implications for the phase

of the Fourier transforms of such filters. Specifically, the phases of two filters that

are the same size will be very similar regardless of their respective tapers. This is

illustrated dramatically in Fig. 4-2, which shows an 11x11-point Guassian filter with

σ = 5, an 11x11-point averaging filter, and the difference between the phases of their
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Figure 4-1: Fourier transform of an 11x11-point Gaussian filter with σ = 5

Fourier transforms.

In practice, situations arise in which the blurring function is not known perfectly,

but a reasonable guess can be obtained. Because of the similarity in phase across

many different blurring functions of the same size, it seems likely that phase-based

deconvolution will be fairly robust to imperfect knowledge of the blurring function.

In the remainder of this chapter, we will characterize the performance of phase-

based deconvolution when the blurring function is known imperfectly and compare

phase-based deconvolution to other deconvolution and restoration methods.

4.2 Characterization of Phase-Based Deconvolu-

tion

4.2.1 Experimental Setup

The experimental setup in this chapter will be similar to that described in Chapter 3.

Initially, the additive noise will be assumed to be zero so the effects of an incorrect
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(a) 11x11-point Gaussian filter with σ = 5 (b) 11x11-point averaging filter

(c) Difference in the angles of the 512x512-point Fourier
transforms of the two filters. Blue regions indicate the angles
were the same, while red indicates they differed by π.

Figure 4-2: Comparison of the phases of two lowpass filters

guess of the blurring function can be seen clearly. Noise will be added in again at the

end of the chapter to increase the realism of the model.

The reference images of Fig. 3-1 will still be used and the blurring function will

still be the 11x11-point Gaussian filter with σ = 5. As in Chapter 3, the region of

support will be assumed known and the error criterion will be the optimal scaling

mean squared error defined in Eqs. 3.3 and 3.4.

There will be two deblurring functions considered: An 11x11-point averager and

a 9x9-point averager. These were chosen because an averager, being a constant over

its region of support, is the simplest blurring function possible, and therefore would
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be a natural initial guess of an unknown blurring function. Comparing the results

obtained with these two averagers will also serve to highlight the relative importance

of the size of the blurring function and the relative unimportance of its taper to

phase-based deconvolution.

All blurring and deblurring functions considered will be centered at the origin. Any

shift in the blurring function away from the origin merely introduces a linear phase

term, which, assuming it is known, can be easily accounted for after deconvolution.

As in Chapter 3, the effect of the number of iterations, size of the internal DFT,

and starting point will be considered in turn. It is necessary to run these experiments

again because in Chapter 3 the errors in the phase were of random size and direction,

having the greatest effect on those frequencies for which the signal to noise ratio

of the degraded image was low. In contrast, when the errors in phase are due to

imperfect knowledge of the blurring function, they will be fewer but more dramatic

(those phases which are wrong will be wrong by π) and occur in a pattern determined

by the blurring and deblurring functions. There is, therefore, no particular reason to

expect the results of Chapter 3 to hold.

4.2.2 Effect of the Number of Iterations

As with noisy signals, there is no theoretical guarantee of convergence when the

deblurring filter is not the same as the blurring filter. However, all the experiments in

this chapter did exhibit convergent behavior. Unlike the results obtained from signals

corrupted with additive white Gaussian noise, however, the convergent solution was

not always the optimal solution.

When the deblurring filter was an 11x11-point averager, the preconvergent solu-

tions were often sharper than the convergent solutions, though they were also grainier

and had more pronounced ringing. Whether the effect of the increased sharpness or

the effect of the increased graininess and ringing dominated depended on the image

being restored. In the case of the moon, pout, liftingbody, circuit, coins, and eight

images, the convergent solution was the best in the OS-MSE sense. For the other

images, there was a preconvergent solution, typically around a few hundred iterations,
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Figure 4-3: OS-MSE as a function of number of iterations and DFT size for the bag image when the
deblurring function was an 11x11-point averager

that was at least slightly better than the convergent solution in the OS-MSE sense.

The bag image was the most dramatic example of a preconvergent solution being

better than a convergent solution, and results are shown in Figs. 4-3 and 4-4. (The

effects of different DFT sizes will be discussed in the next subsection, and only the

curve corresponding to an internal DFT size of twice the image size in Fig. 4-3 need

be considered here.) The results for the cameraman image were more typical and are

shown in Figs. 4-5 and 4-6. The liftingbody image was representative of the images

for which the convergent solution was the best, and results are shown in Fig. 4-7.

When the deblurring filter was a 9x9-point averager, there was an optimal pre-

convergent solution for the pout, cell, coins, eight, and tire images. As expected, in

all cases the results were worse than what was obtained when using an averager of

the correct size. The liftingbody image was representative of those images for which

the convergent solution was optimal, and the results are shown in Fig. 4-8.
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(a) degraded image (b) restored with 100 itera-
tions (best solution)

(c) restored with 1000 itera-
tions (convergent solution)

Figure 4-4: Illustration of the artifacts produced in the bag image as the phase-based reconstruction
iteration converged when the blurring filter was an 11x11-point Gaussian, σ = 5 and the deblurring
filter was an 11x11-point averager. In this example, a preconvergent solution is optimal. Internal
DFT size was twice the image size.
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Figure 4-5: OS-MSE as a function of number of iterations and DFT size for the cameraman image
when the deblurring function was an 11x11-point averager
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(a) degraded image (b) restored with 300 itera-
tions (best solution)

(c) restored with 1500 itera-
tions (convergent solution)

Figure 4-6: Illustration of the artifacts produced in the cameraman image as the phase-based recon-
struction iteration converged when the blurring filter was an 11x11-point Gaussian, σ = 5 and the
deblurring filter was an 11x11-point averager. In this example, a preconvergent solution is optimal.
Internal DFT size was twice the image size.
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Figure 4-7: OS-MSE as a function of number of iterations and DFT size for the liftingbody image
when the deblurring function was an 11x11-point averager
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Figure 4-8: OS-MSE as a function of number of iterations and DFT size for the liftingbody image
when the deblurring function was a 9x9-point averager

These results lead to several observations. First, if the texture of the original

image is unknown, it will be difficult to determine to what extent the graininess in

the restored image (in either the convergent or preconvergent solutions) is an artifact

of restoration. Therefore, it may be difficult to know when to stop the iteration for an

optimal result. Relatedly, this may be a situation in which OS-MSE is not necessarily

an accurate indicator of visual quality. The “correct” balance of image sharpness and

graininess or ringing is really a matter of application, and so OS-MSE is only a coarse

indicator of quality.

Nevertheless, when the deblurring filter was the correct size, both the precon-

vergent and convergent restored images were much sharper and showed much more

detail than the blurred image itself. This indicates that it would be reasonable, when

dealing with uncertainty in the taper of the blurring function, to run the phase-based
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deconvolution algorithm for a few different numbers of iterations (including one that

produces the convergent solution) and choose the result that looks the best. While

this procedure is unlikely to produce the optimal solution in the OS-MSE sense, it is

very likely to give a result that is better than the degraded image.

4.2.3 Effect of the Size of the DFT

When the deblurring filter was either an 11x11-point or a 9x9-point averager, the size

of the DFT used by the iteration did not have much of an effect on the final result.

As a general trend, a larger DFT size was slightly better, and the most dramatic

jump was from a DFT size of twice the degraded image size to a DFT of three or

more times the image size, as illustrated in Figs. 4-7 and 4-8. The corresponding

restored images when the deblurring filter was an 11x11-point averager are shown in

Fig. 4-9. Careful inspection does reveal some slight variations in the ringing patterns,

but, above a DFT size of twice the image size, it is difficult to say which is the best

solution, though by OS-MSE, quality does improve with size in this case.

Again, phase-based deconvolution is computationally intensive regardless of the

DFT size and will be most useful in situations where computational power is not an

issue. This being the case, there is no reason not to use a larger DFT size to capture

whatever gains are available.

4.2.4 Effect of the Starting Point

Experiments performed with the degraded image as the starting point for the phase-

based deconvolution iteration yielded some interesting results when the deblurring

filter was an 11x11-point averager. In every case but the cell image, more iterations

led to a lower error, so the convergent solution was always the best. Additionally, for

any given internal DFT size, the iteration converged to the same solution whether it

was initialized with a constant or with the degraded image. These two observations

together indicate the potential gains from stopping the iteration early when it is

started with a constant cannot be realized when it is started with the degraded image.
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(a) DFT size: twice the image size (b) DFT size: three times the image size

(c) DFT size: four times the image size (d) DFT size: five times the image size

Figure 4-9: Illustration of the effect of DFT size on visual quality when the deblurring filter was an
11x11-point averager. Images correspond to the the convergent solutions.
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Figure 4-10: OS-MSE as a function of number of iterations, DFT size, and starting point for the bag
image. Starting points used are a constant (“init const”) and the degraded image magnitude (“init
deg”). The deblurring filter was an 11x11-point averager. Notice how, for any given DFT size, the
solutions converge to the same answer, regardless of starting point.

These features are illustrated in Fig. 4-10. Because the convergent solutions are the

same and the preconvergent gains are unavailable when starting with the degraded

image, there seems to be no advantage to doing so.

When the correct image magnitude was used as the starting point, it was almost

always the case that a low number of iterations (about 100 or less) gave the best

results. This is likely the same effect seen with the deconvolution of noisy images: An

“accurate enough” estimate of the magnitude is only corrupted by attempting phase-

based reconstruction with a “noisy enough” phase. Interestingly, the convergent

solutions were again the same as those obtained when starting with a constant, though

convergence was typically reached much sooner. This is illustrated in Fig. 4-11.

Results were similar when the deblurring filter was a 9x9-point averager, but, when

the degraded image magnitude was used as the starting point, fewer iterations were

better for the cell and eight images, and the optimal number of iterations depended
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(a) bag
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(b) westconcordorthophoto

Figure 4-11: OS-MSE as a function of number of iterations, DFT size, and starting point for the
bag and westconcordorthophoto images. Starting points used are a constant (“init const”) and the
original image magnitude (“init orig”). The deblurring filter was an 11x11-point averager.
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Figure 4-12: OS-MSE as a function of number of iterations and DFT size for the liftingbody image.
The starting point was the degraded image magnitude and the deblurring filter was a 9x9-point
averager.

on the DFT size for the pout and liftingbody images, as shown in Fig. 4-12. (This

was also seen in the liftingbody image when the deblurring filter was an 11x11-point

averager and the undegraded image magnitude was used as the initial magnitude.)

Again, the convergent solutions always matched what was obtained when the initial

magnitude was a constant.

When the deblurring filter was a 9x9-point averager and the starting point was

the magnitude of the undegraded image, a low number of iterations (a few hundred or

less) was almost always best. The one exception was the cameraman image, which im-

proved with increasing iterations until convergence was reached. Again, the iteration

converged to the same value as it did when the initial magnitude was a constant.

These results indicate that, if the algorithm is run to convergence, the starting

point doesn’t matter. However, there are gains to be had if an “accurate enough”
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estimate of the magnitude is used as the starting point and the iteration is stopped

short of convergence. What constitutes “accurate enough” is difficult to say, but it

often must be better than the degraded image itself, and so such an estimate is not

likely to be available and the iteration should simply be started with a constant initial

value.

4.3 Comparison to Other Methods

As in Chapter 3, phase-based deconvolution will now be compared first with other

inverse filtering techniques and then with image restoration techniques. In all cases,

the phase-based deconvolution iteration was initialized with a constant and used an

internal DFT size of five times the size of the degraded image. Because there were

situations in which stopping the iteration short of convergence was advantageous,

both the best (to within 100 iterations) and the convergent solution will be presented

in the comparisons.

4.3.1 Comparison to Inverse Filtering Techniques

The same inverse filtering methods considered in Chapter 3 will be used here, namely

inverse filtering, thresholded inverse filtering (which prevents the inverse filter from

exceeding a magnitude of 1, 000), and doing no processing. The results of this com-

parison when the deblurring filter was an 11x11-point averager are shown in Fig. 4-13.

The results for a 9x9-point averager are shown in Fig. 4-14.

From these results, it can be seen that phase-based deconvolution was much more

robust to errors in the deblurring function than either direct or thresholded inverse

filtering, and was almost always an improvement on doing nothing, regardless of

whether the iteration was run to convergence or stopped at an optimal point before.

As expected, when the deblurring filter was a 9x9-point averager, the results of

phase-based deconvolution were worse than when the deblurring filter was an 11x11-

point averager. However, even in this case the restored image was often better than

the degraded image.

54



bag cameraman cell circuit coins eight liftingbody pout rice tire westconcord moon
0

2000

4000

6000

8000

10000

12000

14000

16000

18000

image

O
S

−
M

S
E

 

 
inverse
limited inverse
no processing
phase−based (best)
phase−based (convergent)

(a) Comparison of inverse filtering techniques
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(b) Fig. 4-13a rescaled to highlight phase-based deconvolution

Figure 4-13: Comparison of inverse filtering techniques when the blurring filter was an 11x11-point
Gaussian with σ = 5 and the deblurring filter was an 11x11-point averager
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(a) Comparison of inverse filtering techniques
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(b) Fig. 4-14a rescaled to highlight phase-based deconvolution

Figure 4-14: Comparison of inverse filtering techniques when the blurring filter was an 11x11-point
Gaussian with σ = 5 and the deblurring filter was a 9x9-point averager
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4.3.2 Comparison to Image Restoration Techniques

Again, the same image restoration algorithms used in Chapter 3 will be used here,

namely Wiener filtering, regularized filtering, and the Richardson-Lucy iteration. In

this case, there arises some ambiguity in what to use for the noise parameters input to

the Wiener and regularized filters. There is no noise in the degraded image. However,

there is some “noise” in the restoration in the incorrect guess of the blurring function.

This noise is difficult to describe without knowledge of the correct blurring function,

which obviously isn’t available. Therefore, it is incorrect to say there is no noise

when using the Wiener and regularized filters, but what is correct to say instead is

ambiguous.

For the purposes of these experiments, the noise used was simply Gaussian noise

with a low, arbitrary variance. This is certainly not the right answer. However, it

did achieve the desired effect of causing the Wiener and regularized filters to behave

as though there was some low level of noise in the system. The performance of these

algorithms could likely be improved with a better description of the noise, but a better

description of the noise is equivalent to better knowledge of the blurring filter, which

is assumed to be unavailable.

The Richardson-Lucy iteration required no such guesses because, as a probabilistic

method based on Poisson processes, it does not rely directly upon the noise statistics

as do Wiener and regularized filtering.

The results of this comparison when the deblurring filter was an 11x11-point

averager are shown in Fig. 4-15. These results demonstrate that phase-based decon-

volution does as well as or better than any of the restoration methods in almost all

cases. The only exceptions were the cell image and the moon image.

The cell image was a bit of an anomaly. The artifacts present in any of the

restorations of this image were not significantly different from the artifacts present in

any of the restorations of the other images, but, in the case of the cell image, these

artifacts seem to have affected OS-MSE differently. To a lesser extent, this also seems

to have been the case for the moon image. The restored cell and cameraman images
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Figure 4-15: Comparison of restoration techniques when the blurring filter was an 11x11-point
Gaussian with σ = 5 and the deblurring filter was an 11x11-point averager

are shown in Figures 4-16 and 4-17, respectively, and the artifacts are representative

of what was present in the other images.

In Fig. 4-16, the result of the Richardson-Lucy iteration was no different from the

blurred image. This was also the case with the eight and pout images, and in no case

did the Richardson-Lucy iteration, which does seem to be very sensitive to errors in

the deblurring function, run for more than 25 iterations.

As can be seen from these examples, there is some variety present in the artifacts

caused by different restoration methods. However, phase-based deconvolution, espe-

cially when run only to the optimal solution, does generally produce the sharpest,

clearest image.

The results when the deblurring filter was a 9x9-point averager, which are shown in

Fig. 4-18, were more ambiguous. In comparing Figs. 4-18 and 4-15, it is interesting to

note that not only did phase-based deconvolution get worse, but the other restoration

methods also often got better, implying the 9x9-point averager was in some sense a

better guess of the overall blurring function than the 11x11-point averager or that

the given noise was a better guess of the resulting error.
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(a) degraded image (b) Wiener filtering (c) regularized filtering

(d) Richardson-Lucy iteration (e) phase-based deconvolution
run to convergence

(f) phase-based deconvolution
stopped at an optimal number
of iterations

Figure 4-16: Cell image restored with several different methods when the blurring filter was an
11x11-point Gaussian with σ = 5 and the deblurring filter was an 11x11-point averager

The camerman image was representative of the artifacts caused by the different

restoration methods and is shown in Fig. 4-19. Although the OS-MSEs of the images

restored with regularized filtering, the Richardson-Lucy iteration, and phase-based

deconvolution are very similar, the artifacts are quite different. Which is really the

“best” solution is a matter of application. The image obtained with phase-based

deconvolution was typically sharper than the others, but at the cost of the ringing

artifacts shown in Fig. 4-19d.

These results indicate that phase-based deconvolution should certainly be used

when the size of the blurring function is known accurately but the taper is not. If the

size of the blurring function is not known, phase-based deconvolution may still have

some advantages depending on the application and the preferences of the viewer.
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(a) degraded image (b) Wiener filtering (c) regularized filtering

(d) Richardson-Lucy itera-
tion

(e) phase-based deconvolu-
tion run to convergence

(f) phase-based deconvolu-
tion stopped at an optimal
number of iterations

Figure 4-17: Cameraman image restored with several different methods when the blurring filter was
an 11x11-point Gaussian with σ = 5 and the deblurring filter was an 11x11-point averager
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Figure 4-18: Comparison of restoration techniques when the blurring filter was an 11x11-point
Gaussian with σ = 5 and the deblurring filter was a 9x9-point averager
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(a) Wiener filtering (b) regularized filtering

(c) Richardson-Lucy iteration (d) phase-based deconvolution run to
convergence (best solution)

Figure 4-19: Cameraman image restored with several different methods when the blurring filter was
an 11x11-point Gaussian with σ = 5 and the deblurring filter was a 9x9-point averager

4.4 Noise

4.4.1 Characterization of Phase-Based Deconvolution

When white Gaussian noise was added to the blurred image before it was deconvolved

with the incorrect deblurring function, the results depended on the amount of noise

added. For low noise values (what constituted “low” noise varied from one image

to the next), results were similar to the noisless case. That is, for those images

where stopping short of convergence was advantageous in the noisless case, it was

also generally advantageous in the low noise case, and for those where it wasn’t
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advantageous in the noiseless case, it wasn’t ever advantageous in the low noise case.

However, the gains tended to be smaller and to disappear completely as the noise

increased. In all cases but the cell image, there was some noise level above which the

convergent solution was always the best. Additionally, larger DFT sizes tended to do

slightly better than smaller ones.

These results indicate that, in general, the phase-based reconstruction iteration

should be run to convergence when the blurring function is known imprecisely and

the image is noisy. This solution may not be optimal in the OS-MSE sense, but it

will likely be close. This eliminates the difficult problem of determining the correct

stopping point.

4.4.2 Comparison to Other Methods

In this comparison, the phase-based deconvolution iteration was run to convergence

with an internal DFT size of five times the image size. The regularized and Wiener

filters were constructed using only the known additive white Gaussian noise statistics,

and the Richardson-Lucy iteration was run for a locally optimal number of iterations,

as in previous comparisons. The moon image was not included because of the very

large number of iterations required to achieve convergence for phase-based deconvo-

lution of that image.

In comparison to other methods, phase-based deconvolution generally performed

quite well when the deblurring filter was an 11x11-point averager and the noise was

low. Again, what “low” meant varied from one image to the next, but a noise vari-

ance of about 1 was a typical cutoff point. At higher noise values, other restoration

methods, and sometimes even doing no processing, became better. The results for

the liftingbody image were typical, and are shown in Fig. 4-20.

It is interesting that regularized and Wiener filtering become more accurate as

the noise increases. This is likely because regularized and Wiener filters require the

noise statistics. The parameters associated with higher noise levels probably provide

a more accurate description of the “noise” due to the incorrect deblurring function.

As in the noiseless case, different restoration methods produce different artifacts,
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(b) comparison of deconvolution methods,
zoomed in for detail
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(c) comparison of restoration methods

Figure 4-20: Illustration of how phase-based deconvolution of the liftingbody image compares to
some existing methods when the deblurring filter was an 11x11-point averager and there was noise

and so OS-MSE is only a rough indicator of visual quality, and what image is really

the “best” may vary based on application. The visual results for the liftingbody

image with a noise variance of 10 are shown in Figure 4-21.

Results were similar when the deblurring filter was a 9x9-point averager, though

the noise level at which phase-based deconvolution became worse than the other

methods was generally lower, and sometimes there was no noise level at which phase-

based deconvolution was better than the Richardson-Lucy algorithm. Results for the

liftingbody image are shown in Fig. 4-22.

As before, the artifacts produced by different methods are quite different, and

so there will be an element of subjectivity in choosing which is really the “best”

restoration. Examples of these different artifacts for the liftingbody image are shown
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(a) no processing (b) direct inverse filtering (c) Wiener filtering

(d) regularized filtering (e) Richardson-Lucy iteration (f) phase-based deconvolution

Figure 4-21: Liftingbody image restored with several different methods when the blurring filter was
an 11x11-point Gaussian with σ = 5, the deblurring filter was an 11x11-point averager, and there
was additive white Gaussian noise with variance 10

in Fig. 4-23.

These results confirm what was found in the noiseless case and when the deblurring

filter was correct: Phase-based deconvolution performs best relative to other methods

when the signal to noise ratio is high and when the size of the blurring function is

known.

4.5 Summary

When the size of the blurring function is known but its taper is not, phase-based de-

convolution does very well. Although the optimal solution may require the iteration

to be stopped before convergence, the convergent solution is also generally acceptable.

A larger internal DFT size also tends to do somewhat better than a smaller one, and

the algorithm converges to the same solution regardless of the starting point. At low
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(b) comparison of deconvolution methods,
zoomed in for detail
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(c) comparison of restoration methods

Figure 4-22: Illustration of how phase-based deconvolution of the liftingbody image compares to
some existing methods when the deblurring filter was a 9x9-point averager and there was noise

noise levels, phase-based deconvolution, run to either the optimal or the convergent

solution, produced results that were almost always better than those obtained by

the other deconvolution and restoration methods. At high noise levels, phase-based

deconvolution performed much better than direct or thresholded inverse filtering, but

became less competitive with the restoration methods, consistent with what was ob-

served in the previous chapter. When the size of the blurring function was not known

accurately, the results were generally similar, except that phase-based deconvolution

did not perform as well, and so the noise threshold at which it became worse than

the restoration methods was lower.

65



(a) direct inverse filtering (b) thresholded inverse filtering (c) Wiener filtering

(d) regularized filtering (e) Richardson-Lucy iteration (f) phase-based deconvolution

Figure 4-23: Liftingbody image restored with several different methods when the blurring filter was
an 11x11-point Gaussian with σ = 5, the deblurring filter was a 9x9-point averager, and there was
additive white Gaussian noise with variance .1
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Chapter 5

Obtaining the Region of Support

Experiments performed so far have assumed that the region of support (ROS) of the

image was known. This may not always be a good assumption. For example, a typical

astronomical image could consist of a star or other bright object on a black field. In

such a situation, the region of support would have to be determined in some way.

This chapter will look at three images: A white circle on a black field, a white

circle with a gray halo on a black field, and a variation on the moon image in which

the moon itself has been kept, but the background has been made black. (Though

the background of the moon image shown in Fig. 3-1a appears to be black, it is really

several shades of very dark gray–the background pixels have low values, but are not

exactly zero.) These images are shown in Fig. 5-1. Fig. 5-1c is shown at 75% of the

original resolution for copyright reasons.

This chapter will proceed as follows. First, several methods of obtaining the ROS

will be outlined. Then, the performance of these methods will be compared in the

cases of perfect knowledge of the blurring function and no noise, perfect knowledge

of the blurring function and additive white Gaussian noise, and imperfect knowledge

of the blurring function and no noise. Finally, the results will be summarized.
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(a) circle (256x256 pixels) (b) circle halo (256x256 pixels) (c) black moon (358x537 pix-
els)

Figure 5-1: Original images used in the region of support experiments

5.1 Description of Methods

Three possible methods of obtaining the ROS will be investigated here. First, the ROS

may simply be assumed to be the ROS of the degraded image. Second, morphological

processing may be performed on the degraded image to obtain the ROS, and, finally,

markers can be put in the degraded image to set the ROS to be known. Each of these

methods will now be discussed in detail.

5.1.1 ROS from the Degraded Image

In this case, the first and last nonzero values in the degraded image will be assumed

to indicate the ROS, which will then be adjusted to account for the increased region

of support caused by the convolution with the blurring function. That is, if an 11x11-

point blurring function that is symmetric around zero is used, and the first nonzero

pixel in the degraded image occurs at, for example, index 3, the region of support

will be assumed to start at index 8. In the presence of noise, this is very likely to

give regions of support that are much larger than the correct ones, but it is not likely

to give regions of support that are much smaller than the correct ones. It will be
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explained in the next subsection why this is desirable.

5.1.2 ROS from Morphological Processing

When determining the ROS, it is important to note that the image is blurred before

it is corrupted by additive noise. That is, the noise will not be blurred. This can be

exploited by performing the morphological opening operation on the degraded image,

where the function used to perform the opening operation is simply the same size as

the blurring function. This will eliminate most of the noise outside the ROS, which

will not be contiguous groups of pixels as the features degraded by the blurring func-

tion will be. Then, the ROS can be determined from the morphologically processed

picture. Furthermore, the area outside the determined ROS can be set to zero, thus

eliminating much of the noise in the image.

Binary morphological processing requires a threshold to be set above which all

values are considered to be one and below which all values are considered to be zero,

and so the question of what this threshold ought to be must be addressed. A higher

threshold is more likely to eliminate noise, but may also eliminate low signal values,

and thus give a ROS that is too small, and a lower threshold is more likely to include

noise, but is less likely to eliminate signal, and thus give a ROS that is too large.

Experiments to determine the effect of a wrong guess of the ROS indicate that it

is much more harmful to guess too small than too large. The black moon results were

representative and are shown in Fig. 5-2. These results are for the case of no noise

and perfect knowledge of the blurring function. The only “unknown” was the ROS.

As suggested by these results, the threshold was set very low in all following exper-

iments. Specifically, it was set to 1% of the standard deviation of the noise. This value

was determined experimentally and is somewhat arbitrary. In practice, when quanti-

zation has been performed (it was not in these experiments to avoid confounding the

results), a threshold value of one or two would probably be acceptable.

As with measuring the ROS from the degraded image, the size of the blurring

function is used to adjust the results obtained from morphological processing.
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Figure 5-2: OS-MSE as a function of number of iterations and ROS error for the black moon image.
ROS error is measured in pixels too large on every side.

5.1.3 ROS with Markers

A third method of determining the ROS is to add markers at the edges of the image.

The procedure is as follows: First, select a shape to use as a marker. In these

experiments, a 10x10 white square was selected, but this is not the only option.

Second, blur the marker with the assumed blurring function. Third, add the blurred

marker at the corners of the degraded image. The ROS is now known because it has

been artificially made to be the entire degraded image, after correcting for the size of

the blurring function as before. This is illustrated in Fig. 5-3.

This procedure is valid because convolution is linear. That is, the degraded image

g1(n1, n2) = f(n1, n2) ∗ b(n1, n2) (5.1)
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(a) degraded circle (b) marked, degraded circle (c) marked circle restored
with direct inverse filtering

Figure 5-3: Illustration of the procedure used in marking a blurry image with an unknown region of
support

is given. The degraded markers can be computed as

g2(n1, n2) = m(n1, n2) ∗ b(n1, n2) (5.2)

where m(n1, n2) represents the undegraded markers (in this case, m(n1, n2) is simply

a black image of the same size as the original image with a 10x10 white square in

each corner), and g2(n1, n2) is the resulting degraded markers. The marked, degraded

image is then

g(n1, n2) = g1(n1, n2) + g2(n1, n2) (5.3)

= f(n1, n2) ∗ b(n1, n2) +m(n1, n2) ∗ b(n1, n2) (5.4)

= (f(n1, n2) +m(n1, n2)) ∗ b(n1, n2) (5.5)

And so the deconvolution of g(n1, n2) with b(n1, n2) will simply yield the sum of the

original image and the markers. The markers are known, and so the original image

can easily be obtained.

5.2 Comparison of Methods

The performance of the three methods described will now be compared in three

situations: The absence of noise and perfect knowledge of the blurring function, the
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presence of noise and perfect knowledge of the blurring function, and the absence of

noise and imperfect knowledge of the blurring function.

For the purposes of these experiments, “convergence” of the phase-based recon-

struction algorithm will be defined as the point at which the OS-MSE changes by less

than .1 between a hundred iterations of the algorithm.

The algorithm will be stopped after the application of the frequency domain con-

straints. The issue hasn’t arisen before because, in previous chapters, the entire image

was included in the region of support. However, here it becomes important to note

where the iteration is stopped. The justification for stopping after the application of

the frequency domain constraints is twofold. First, in the ideal case, the ROS would

be the only unknown. Therefore, when convergence is reached and the two constraints

are being violated circularly, it is reasonable to end with the correct constraint met

and the incorrect constraint violated. Second, letting the spatial constraints be vio-

lated will leave artifacts visible that would otherwise be set to zero, and this will give

some intuition about how the algorithm is trying to resolve the conflicting constraints.

5.2.1 No Noise, Perfect Knowledge of the Blurring Function

In this situation, all methods should, in theory, give perfect results. The only question

is how many iterations are required to achieve those results. However, in these exper-

iments, there were sometimes artifacts visible in the images even after “convergence”

had been reached. This is because the “convergence” defined here is not actually the

convergent solution of the algorithm. It merely indicates the point at which gains are

coming too slowly for continued running to be practical.

With morphological processing (which, in this situation, is the same as using

the ROS of the degraded image), the number of iterations required for convergence

depended on the image and, in the case of the circle and circle halo images, on the

DFT size. Also for those images, the OS-MSE of and artifacts in the “convergent”

solution depended on the DFT size. These results are illustrated in Figs. 5-4 and 5-5.

With markers, it took much longer to reach convergence. In the case of the circle

and circle halo images, the iteration had not converged after even 100,000 iterations,
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(a) circle
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(b) circle halo
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(c) black moon

Figure 5-4: OS-MSE as a function of number of iterations and DFT size when the ROS was obtained
by morphological processing

(a) DFT size: twice the image size (b) DFT size: five times the image size

Figure 5-5: Artifacts in “convergent” circle images. ROS determined (correctly) by morphological
processing.
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(a) circle
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(b) circle halo
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(c) black moon

Figure 5-6: OS-MSE as a function of number of iterations and DFT size when the ROS was obtained
by the use of markers

when it was stopped due to time constraints. For the black moon image, it did

converge, but only after over 10,000 iterations, an order of magnitude more than

required with morphological processing. These results are shown in Figs. 5-6 and 5-7.

Is should be noted that, while the markers have been left in the restored images in

Fig. 5-7, they were excluded in the calculation of the OS-MSE. The strong dependence

on DFT size seen when the ROS was obtained with morphological processing was not

visible here, though it may have become an issue in the circle and circle halo images

if the iteration had been allowed to continue running.
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(a) circle (b) circle halo (c) black moon

Figure 5-7: Artifacts in “convergent” images when markers were used to indicate the ROS. All
images were restored with a DFT size of five times the image size.

5.2.2 Noise, Perfect Knowledge of the Blurring Function

In the experiments that follow, a subtlety must be dealt with that has previously

been ignored. When adding white Gaussian noise to an image, it is possible to get

negative magnitudes at some pixels. Obviously, this is an unrealistic model. In

previous chapters, images have had sufficient non-zero content to render the issue

negligible, but it becomes relevant here. In this chapter, the noise clipping inherent

in any physical imaging system will be included in the model, and the degraded image

will be computed as

g(n1, n2) = max(f(n1, n2) ∗ b(n1, n2) + v(n1, n2), 0) (5.6)

where g(n1, n2) is the degraded image, f(n1, n2) is the original image, b(n1, n2) is the

blurring function, and v(n1, n2) is Gaussian noise.

When the ROS of the degraded image was used as the ROS, the results were very

poor. Generally, more iterations led to a lower OS-MSE, and the exceptions were not

dramatic. However, convergence was not always reached after even 100,000 iterations.

Larger DFT sizes, as seen previously, were also generally better, though which was

the best depended on noise level and image. Even in the best case, the restoration
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results were very poor.

When morphological processing was used to determine the ROS, the results were

much better. Morphological processing was always able to determine the ROS to

within a few pixels, which allowed much of the noise to be eliminated. The convergent

solution was the best in the case of the black moon image, but in the circle and circle

halo images, a few hundred iterations did somewhat better. The black moon image

is generally more representative of real images and is therefore the more interesting

result. As usual, the DFT size did not have a very significant impact, but larger was

generally a little better.

When markers were used to set the ROS, the results were not as good as those

obtained by morphological processing. The solution achieved after a few hundred

iterations tended to be better than the convergent solution, and, in the case of the

circle image, it was not clear whether the iteration actually would converge or just

get indefinitely worse. The solution changed only slightly with the DFT size, and

none of these solutions were at all competitive with morphological processing.

These results are summarized in Fig. 5-8, which shows the OS-MSE of the re-

stored black moon images using a DFT size of twice the degraded image size and

the convergent solution. A comparison of the artifacts is shown in Fig. 5-9. When

the degraded image’s ROS was used as the ROS, the types of artifacts present in

the restored image changed as the noise increased. This change, and not any real

improvement in quality, is responsible for the decrease in OS-MSE as noise increases.

The subjective visual quality of the these images was never acceptable. The results

for the moon image are representative for morphological processing. For markers and

using the degraded image, the results for the moon image were much better than they

were for either circle image.

Morphological processing is clearly the best option when there is noise present.

This is likely for two reasons. First, morphological processing puts the tightest bound

on the ROS. Even though this bound may be too tight when there is noise, a bound

slightly too tight does better than a bound much too loose and the effect of noise

dominates the effect of an incorrect ROS. Second, morphological processing allows
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Figure 5-8: Comparison of methods of determining the ROS of the black moon image in the presence
of noise

(a) ROS from degraded image (b) ROS from morphological
processing

(c) ROS from markers

Figure 5-9: Comparison of artifacts produced by different methods of obtaining the ROS. Noise
variance was 1.
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everything outside the estimated ROS to be set to zero, which eliminates much of the

noise. This noise reduction is not possible with the other methods.

5.2.3 No Noise, Imperfect Knowledge of the Blurring Func-

tion

There are two situations to be considered when knowledge of the blurring function

is imperfect. First, the size of the blurring function might be known. If this is the

case, the fact that the specific values of the blurring function are unknown will have

minimal impact on the estimated ROS, and results should be similar to those found

in Chapter 4. Second, the size of the blurring function may be unknown, in which

case the estimated ROS will be affected.

Experiments were performed to determine the performance of the three methods

of finding the ROS in this second case. Specifically, as in Chapter 4, the blurring

function was an 11x11-point Gaussian filter, σ = 5, and the deblurring filter was a

9x9-point averager.

As in the ideal case, using the ROS of the degraded image and obtaining the ROS

with morphological processing gave the same result, and the ROS in this case was

estimated to be one pixel larger than the actual ROS. This is as expected–the edges

of the blurred image were detected properly, but the size increase due to blurring was

incorrectly compensated for.

In all three images, morphological processing gave much better results than the

use of markers. In the circle and circle halo images, there were some gains to be had by

stopping the algorithm after a few hundred iterations, but the convergent solution was

also reasonable. How the DFT size affected the performance was different between

the two images, but a DFT size of five times the degraded image size was the best in

both cases.

When markers were used, the results were much worse. A few hundred iterations

gave the best solution (which was still worse than the convergent solution obtained

with morphological processing) and it was unclear whether the algorithm was going
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(a) ROS from morphological processing
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(b) ROS from markers

Figure 5-10: OS-MSE as a function of number of iterations and DFT size for the circle image when
the ROS and the size of the blurring function were unknown
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(a) ROS from morphological processing
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(b) ROS from markers

Figure 5-11: OS-MSE as a function of number of iterations and DFT size for the black moon image
when the ROS and the size of the blurring function were unknown

to converge or simply degrade the solution indefinitely. Different DFT sizes did yield

different results, but none were acceptable.

These results are summarized in Fig. 5-10, which shows the results using the ROS

obtained with morphological processing and the results using markers for the circle

image.

Using markers gave much better results with the black moon image, as shown in

Fig. 5-11. However, the OS-MSE of the result obtained by using markers was about

twice as high as that of the result from using morphological processing. The result

obtained using markers also took much longer to converge. The improvement from
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the circle image may be because the black field is not as large in the moon image,

and therefore using markers gives a tighter bound on the ROS in this case than in

the case of the circle image.

5.3 Summary

Three methods of obtaining the ROS were proposed in this chapter. First, the ROS

of the degraded image could be used. Second, the ROS could be obtained by morpho-

logical processing. Third, the ROS could be artificially defined by the use of markers.

Using a ROS obtained by morphological processing puts the tightest bound on the

ROS and also allows any noise outside the estimated ROS to be eliminated. The

results from this method converge much faster than the results from the other two

methods, and they also have the lowest OS-MSE. Therefore, the use of morphological

processing to find the ROS is recommended in all cases.
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Chapter 6

Conclusions and Future Work

An image degraded by blurring can be restored by correcting the phase of its Fourier

transform and using its region of support to iteratively reconstruct its magnitude.

This method was shown to be much more robust than existing inverse filtering meth-

ods in the presence of additive noise. In some situations, this method was shown to

be competitive even with image restoration methods, which rely on knowledge of the

noise statistics. It was also shown that this method is robust to imperfect knowledge

of the blurring function, particularly if the blurring function is zero phase and has a

known size.

If the region of support of the image is unknown, it can be found with tolerable

accuracy by using morphological processing on the degraded image. Again, this was

shown to be robust to noise and imperfect knowledge of the blurring function.

One significant advantage of phase-based deconvolution is that it does not attempt

to correct for noise, and therefore it may be particularly useful in situations where

the noise statistics are unknown, irregular, or spatially varying. Additional testing is

needed to see if this is, indeed, the case. Also, phase-based deconvolution has yet to

be characterized in the presence of noise that is not additive. Furthermore, it may

be possible to combine phase-based deconvolution with a noise reduction system to

achieve better results.

Experiments have shown that the performance of phase-based deconvolution could

be improved by incorporating accurate magnitude information. How to obtain such
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information and how to incorporate it to realize these improvements is also an open

question.

Finally, the experiments in this thesis were somewhat artificial because they took

discrete-space images and blurred them with a discrete-space filter. In reality, the

blurring will happen in continuous-space and then the continuous blurred image will

be sampled by a camera. When there is no aliasing, the discrete-space model used

here is valid. However, the effect of aliasing on phase-based deconvolution should be

explored to gain a more full understanding of how this method could be applied to real

images. In addition, images that are not on black fields will be windowed when cap-

tured with a digital camera. The effects of windowing on phase-based deconvolution

also have yet to be characterized.
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Appendix A

Photo Credits

1. bag, pout, tire, rice, coins, and eight: c©Mathworks, imdemo collection

2. cameraman: c©Massachusetts Institute of Technology

3. cell: Alan W. Partin, M.D., Ph.D., Johns Hopkins University School of Medicine

4. circuit: Steve Decker and Shujaat Nadeem, MIT, 1993

5. liftingbody: Public domain image, NASA, 1964-01-01, Dryden Flight Research

Center #E-10962, GRIN database #GPN-2000-000097

6. moon: c©Michael Myers

7. westconcordorthophoto: Massachusetts Executive Office of Environmental Af-

fairs, MassGIS
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