
Beyond Locality-Sensitive Hashing

by

Ilya Razenshteyn

M.S., Moscow State University (2012)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Science in Computer Science and Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

c○ Massachusetts Institute of Technology 2014. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2014

Certified by. .
Piotr Indyk

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by .
Leslie A. Kolodziejski

Chairman, Department Committee on Graduate Students

2

Beyond Locality-Sensitive Hashing

by

Ilya Razenshteyn

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2014, in partial fulfillment of the

requirements for the degree of
Master of Science in Computer Science and Engineering

Abstract

We present a new data structure for the 𝑐-approximate near neighbor problem (ANN)
in the Euclidean space. For 𝑛 points in R𝑑, our algorithm achieves 𝑂𝑐(𝑛

𝜌 + 𝑑 log 𝑛)
query time and 𝑂𝑐(𝑛

1+𝜌 + 𝑑 log 𝑛) space, where 𝜌 ≤ 0.73/𝑐2 + 𝑂(1/𝑐3) + 𝑜𝑐(1). This
is the first improvement over the result by Andoni and Indyk (FOCS 2006) and the
first data structure that bypasses a locality-sensitive hashing lower bound proved by
O’Donnell, Wu and Zhou (ICS 2011). By known reductions we obtain a data structure
for the Hamming space and ℓ1 norm with 𝜌 ≤ 0.73/𝑐+𝑂(1/𝑐3/2) + 𝑜𝑐(1), which is the
first improvement over the result of Indyk and Motwani (STOC 1998).

Thesis Supervisor: Piotr Indyk
Title: Professor of Electrical Engineering and Computer Science

3

4

Acknowledgments

The biggest thank you goes to my research advisor Piotr Indyk. Piotr is a unique blend

of a brilliant researcher and extremely friendly, supportive and passionate personality.

When I first met Piotr in Moscow in December 2011, I could not dream that he would

become my advisor. I am truly looking forward to working with Piotr during (at least)

the rest of my PhD studies. Thank you Piotr!

Second, let me thank my undegraduate advisors Maxim Babenko and Alexander

Shen for showing me beauty of Theoretical Computer Science.

This thesis is based on a paper [4] that is a joint work with Alex Andoni, Piotr

Indyk and Nguyen Le Huy. I would like to thank Alex, Piotr and Huy for being

excellent collaborators with very “hands-on” approach to working on problems. It

was incredible pleasure to work with you.

Thanks to Akamai for their fellowhip that supported me during the first year of

my studies at MIT. Thanks to Google Research for the internship during Summer

2013, and particularly to my mentors Silvio Lattanzi and Vahab Mirrokni.

I would like to thank my friends from MIT. I can not think of more comfortable

and friendly environment. In particular, Theory Group changed my attitude to social

life quite a lot. Let me specifically mention Artūrs Bačkurs, Rati Gelashvili, Gautam

“G” Kamath, Sepideh Mahabadi and Adrian Vladu (Artūrs, Gautam and Sepideh also

helped me immensely by selflessly proofreading the the first version of the paper this

thesis is based on). I would like to thank Luke Schaeffer for allowing me to include

his proof of Lemma 2.3.7.

Thanks to Silvio Micali for being a great academic advisor. Registration days

with Silvio always leave me reflecting on what I would like to do after graduation.

Thank you to administrative assistants Joanne Hanley, Linda Lynch, Nina Olff and

Rebecca Yadegar for doing a great job fighting bureaucracy and paperwork.

Finally, I would like to express deep gratitude to my parents Lyudmila and Petr,

my sister Eleonora, and my wife Oksana for their love.

5

6

Contents

1 Introduction 9

1.1 Intuition behind the improvement . 12

1.2 Roadmap . 13

2 Approximate Near Neighbor 15

2.1 Preliminaries . 15

2.2 The case of low diameter . 18

2.2.1 Sphere . 18

2.2.2 Spherical shell . 23

2.2.3 Ball . 24

2.3 The general case . 26

2.3.1 Intuition . 27

2.3.2 Construction . 28

2.3.3 Analysis . 29

2.3.4 Computing 𝜌0 . 33

2.3.5 Choosing distance scales . 34

2.3.6 Performance . 37

2.3.7 The resulting data structure 38

2.3.8 Quasi-linear time preprocessing 39

3 Conclusions and open problems 41

7

8

Chapter 1

Introduction

The near neighbor search problem is defined as follows: given a set 𝑃 of 𝑛 points in a

𝑑-dimensional space, build a data structure that, given a query point 𝑞, reports any

point within a given distance 𝑟 to the query (if one exists). The problem is of major

importance in several areas, such as data mining, information retrieval, computer

vision, databases and signal processing.

Many efficient near(est) neighbor algorithms are known for the case when the

dimension 𝑑 is “low” (e.g., see [20], building on [7]). However, despite decades of effort,

the current solutions suffer from either space or query time that are exponential in

the dimension 𝑑. This phenomenon is often called “the curse of dimensionality”. To

overcome this state of affairs, several researchers proposed approximation algorithms

for the problem. In the (𝑐, 𝑟)-approximate near neighbor problem (ANN), the data

structure is allowed to return any data point whose distance from the query is at

most 𝑐𝑟, for an approximation factor 𝑐 > 1. Many approximation algorithms for the

problem are known, offering tradeoffs between the approximation factor, the space

and the query time. See [2] for an up to date survey.

From the practical perspective, the space used by an algorithm should be as close

to linear as possible. If the space bound is (say) sub-quadratic, and the approxima-

tion factor 𝑐 is a constant, the best existing solutions are based on locality-sensitive

hashing [13, 12]. The idea of that approach is to hash the points in a way that the

probability of collision is much higher for points which are close (with the distance

9

𝑟) to each other than for those which are far apart (with distance at least 𝑐𝑟). Given

such hash functions, one can retrieve near neighbors by hashing the query point and

retrieving elements stored in buckets containing that point. If the probability of colli-

sion is at least 𝑝1 for the close points and at most 𝑝2 for the far points, the algorithm

solves the (𝑐, 𝑟)-ANN using 𝑛1+𝜌+𝑜(1) extra space and 𝑑𝑛𝜌+𝑜(1) query time1, where

𝜌 = log(1/𝑝1)/ log(1/𝑝2) [12]. The value of the exponent 𝜌 depends on the distance

function and the locality-sensitive hash functions used. In particular, it is possible to

achieve 𝜌 = 1/𝑐 for the ℓ1 norm [13], and 𝜌 = 1/𝑐2 + 𝑜𝑐(1) for the ℓ2 norm [3].

It is known that the above bounds for the value of 𝜌 are tight. Specifically, we

have that, for all values of 𝑐, 𝜌 ≥ 1/𝑐− 𝑜𝑐(1) for the ℓ1 norm2 [22]. A straightforward

reduction implies that 𝜌 ≥ 1/𝑐2 − 𝑜𝑐(1) for the ℓ2 norm. Thus, the running time of

the simple LSH-based algorithm, which is determined by 𝜌, cannot be improved.

Results In this thesis we show that, despite the aforementioned limitation, the

space and query time bounds for ANN can be substantially improved. In particular,

for the ℓ2 norm, we give an algorithm with query time 𝑂𝑐(𝑛
𝜂 + 𝑑 log 𝑛) and space

𝑂𝑐(𝑛
1+𝜂 + 𝑑 log 𝑛), where 𝜂 ≤ 0.73/𝑐2 + 𝑂(1/𝑐3) + 𝑜𝑐(1) that gives an improvement

for large enough 𝑐. This also implies an algorithm with the exponent 𝜂 ≤ 0.73/𝑐 +

𝑂(1/𝑐3/2) + 𝑜𝑐(1) for the ℓ1 norm, by a classic reduction from ℓ1 to ℓ2-squared [17].

These results constitute the first improvement to the complexity of the problem since

the works of [13] and [3].

Techniques Perhaps surprisingly, our results are obtained by using essentially the

same LSH functions families as described in [3] or [13]. However, the properties of

those hash functions that we exploit, as well as the overall algorithm, are different. On

a high-level, our algorithms are obtained by combining the following two observations:

1. After a slight modification, the existing LSH functions can yield better values

1Assuming that each hash function can be sampled and evaluated in 𝑛𝑜(1) time, stored in 𝑛𝑜(1)

space, that distances can be computed in 𝑂(𝑑) time, and that 1/𝑝1 = 𝑛𝑜(1).
2Assuming 1/𝑝1 = 𝑛𝑜(1).

10

of the exponent 𝜌 if the search radius 𝑟 is comparable to the diameter3 of the

point-set. This is achieved by augmenting those functions with a “center point”

around which the hashing is performed. See Section 1.1 for an intuition why this

approach works, in the (somewhat simpler) context of the Hamming distance.

2. We can ensure that the diameter of the point-set is small by applying standard

LSH functions to the original point-set 𝑃 , and building a separate data structure

for each bucket.

This approach leads to a two-level hashing algorithm. The outer hash table par-

titions the data sets into buckets of bounded diameter. Then, for each bucket, we

build the inner hash table, which uses (after some pruning) the center of the minimum

enclosing ball of the points in the bucket as a center point. Note that the resulting

two-level hash functions cannot be “unwrapped” to yield a standard LSH family, as

each bucket uses slightly different LSH functions, parametrized by different center

points. That is, the two-level hashing is done in a data-aware manner while the stan-

dard LSH functions are chosen from a distribution independent from the data. This

enables us to overcome the lower bound of [22].

Many or most of the practical applications of LSH involve designing data-aware

hash functions ([32, 26, 31, 30, 19, 28], to name a few). Unfortunately, not many rig-

orous results in this area are known. The challenge of understanding and exploiting

the relative strengths of data-oblivious versus data-aware methods has been recog-

nized as a major open question in the area (e.g., see [1], page 77). Our results can be

viewed as a step towards that goal.

Related work In this thesis we assume worst case input. If the input is generated

at random, it is known that one can achieve better running times. Specifically, assume

that all points are generated uniformly at random from {0, 1}𝑑, and the query point

is “planted” at distance 𝑑/(2𝑐) from its near neighbor. In this setting, the work of

[6, 10, 16, 25] gives an exponent of 1
ln 4·𝑐 ≈

0.73
𝑐

.

3In the analysis we use a notion that is weaker than the diameter. However, we ignore this detail
for now for the sake of clarity.

11

Even better results are known for the problem of finding the closest pair of points

in a dataset. In particular, the algorithm of [9] for the random closest pair has an

exponent of 1 + 1
2𝑐−1

.4 More recently, [29] showed how to obtain an algorithm with

a runtime exponent < 1.79 for any approximation 𝑐 = 1 + 𝜀 in the random case.

Moreover, [29] also gives an algorithm for the worst-case closest pair problem with a

runtime exponent of 2− Ω(
√
𝜀) for 𝑐 = 1 + 𝜀 approximation.

There are also two related lines of lower bounds for ANN. First, the work of [21]

showed that LSH for Hamming space must have 𝜌 ≥ 1/(2𝑐)−𝑂(1/𝑐2)−𝑜𝑐(1), and [22]

improved the lower bound to 𝜌 ≥ 1/𝑐− 𝑜𝑐(1). Second, [23, 24] have given cell-probe

lower bounds for ℓ1 and ℓ2, roughly showing that any randomized ANN algorithm

for the ℓ1 norm must either use space 𝑛1+Ω(1/(𝑡𝑐)) or more than 𝑡 cell-probes. We

note that the LSH lower bound of 𝜌 ≥ 1/(2𝑐) from [21] might more naturally predict

lower bounds for ANN because it induces a “hard distribution” that corresponds to

the aforementioned “random case” . In contrast, if one tries to generalize the LSH

lower bound of [22] into a near neighbor hard distribution, one obtains a dataset with

special structure, which one can exploit (and our algorithm will indeed exploit such

structure). In fact, the LSH lower bound of [21] has been used (at least implicitly) in

the data structure lower bounds from [23, 24].

1.1 Intuition behind the improvement

We give a brief intuition on why near neighbor instances with bounded diameter are

amenable to more efficient LSH functions. For simplicity we consider the Hamming

distance as opposed to the Euclidean distance.

Assume that all input points, as well as the query point, are within the Hamming

distance of 𝑠 from each other. By shifting one of the data points to the origin, we can

assume that all points have at most 𝑠 non-zeros (i.e., ones). Consider any data point

𝑝 and the query point 𝑞. To make calculations easier, we assume that both 𝑝 and 𝑞

4Note that a near neighbor search algorithm with query time 𝑛𝜌 and space/preprocessing time
of 𝑛1+𝜌 naturally leads to a solution for the closest pair problem with the runtime of 𝑛1+𝜌.

12

have exactly 𝑠 ones.

The “standard” LSH functions for the Hamming distance project the points on

one of the coordinates selected uniformly at random. For two points 𝑝 and 𝑞 this

results in a collision probability of 1− ‖𝑝− 𝑞‖1/𝑑, which is 1− 𝑟/𝑑 and 1− 𝑐𝑟/𝑑 for

points within the distance of 𝑟 and 𝑐𝑟, respectively. The probability gap of 1 − 𝑥

vs. 1 − 𝑐𝑥 leads to the exponent 𝜌 equal to 1/𝑐 [13]. To improve on this, we can

instead use the min-wise hash functions of [5]. For those functions, the probability

of collision between two points 𝑝 and 𝑞 is equal to |𝑝∩𝑞|
|𝑝∪𝑞| , where ∪ and ∩ denote the

union and intersection of two Boolean vectors, respectively. Since we assumed that

‖𝑝‖1 = ‖𝑞‖1 = 𝑠, we have

|𝑝 ∩ 𝑞|
|𝑝 ∪ 𝑞|

=
‖𝑝‖1 + ‖𝑞‖1 − ‖𝑝− 𝑞‖1
‖𝑝‖1 + ‖𝑞‖1 + ‖𝑝− 𝑞‖1

=
2𝑠− ‖𝑝− 𝑞‖1
2𝑠 + ‖𝑝− 𝑞‖1

=
1− ‖𝑝− 𝑞‖1/(2𝑠)

1 + ‖𝑝− 𝑞‖1/(2𝑠)

As a result, the collision probability gap for distances 𝑟 and 𝑐𝑟 becomes 1−𝑥
1+𝑥

vs.
1−𝑐𝑥
1+𝑐𝑥

. This leads to 𝜌 that is lower than 1/𝑐.

1.2 Roadmap

In Section 2.2 we show how to get an improved exponent for the case, when all the

points and queries lie in a ball of radius 𝑂(𝑐𝑟). We achieve this in three steps: we

gradually move from a sphere to a spherical shell, and then to a ball. This Section

culminates in Lemma 2.2.8.

In Section 2.3 we utilize the above “low-diameter” family and show how to solve

the general case of ANN achieving the improved improved exponent. We carefully

partition R𝑑 in a hierarchical manner on different distance scales. The main technical

result we obtain is Theorem 2.3.8. Then the data structure for ANN follows almost

immediately (Theorem 2.3.9). The preprocessing time we obtain is quasi-quadratic,

13

but we can reduce it to quasi-linear at the expense of increasing the exponent to

0.87

𝑐2
+ 𝑂

(︂
1

𝑐3

)︂
+ 𝑜𝑐(1).

See the discussion in Section 2.3.8 for more details.

14

Chapter 2

Approximate Near Neighbor

2.1 Preliminaries

In the text we denote the ℓ2 norm by ‖ · ‖. When we use 𝑂(·), 𝑜(·), Ω(·) or 𝜔(·)

we explicitly write all the parameters that the corresponding constant factors depend

on as subscripts. Our main tool will be hash families ℋ on a metric space. We can

identify a hash function with a partition of the space. For a partition 𝒫 and a point

𝑝 we denote 𝒫(𝑝) the corresponding part of 𝒫 . If 𝒫 is a partial partition of a subset

of the space, then we denote
⋃︀
𝒫 the union of all pieces of 𝒫 . By 𝑁(𝑎, 𝜎2) we denote

a standard Gaussian with mean 𝑎 and variance 𝜎2. We denote the closed ball with

center 𝑢 ∈ R𝑑 and radius 𝑟 ≥ 0 by 𝐵(𝑢, 𝑟).

Definition 2.1.1. The (𝑐, 𝑟)-approximate near neighbor problem (ANN) with failure

probability 𝑓 is to construct a data structure over a set of points 𝑃 in metric space

(𝑋,𝐷) supporting the following query: given any fixed query point 𝑞 ∈ 𝑋, if there

exists 𝑝 ∈ 𝑃 with 𝐷(𝑝, 𝑞) ≤ 𝑟, then report some 𝑝′ ∈ 𝑃 such that 𝐷(𝑝′, 𝑞) ≤ 𝑐𝑟, with

probability at least 1− 𝑓 .

Remark: note that we allow preprocessing to be randomized as well, and we mea-

sure the probability of success over the random coins tossed during both preprocessing

and query phases.

Definition 2.1.2 ([12]). For a metric space (𝑋,𝐷) we call a family of hash functions

15

ℋ on 𝑋 (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive, if for every 𝑥, 𝑦 ∈ 𝑋 we have

∙ if 𝐷(𝑥, 𝑦) ≤ 𝑟1, then Prℎ∼ℋ[ℎ(𝑥) = ℎ(𝑦)] ≥ 𝑝1;

∙ if 𝐷(𝑥, 𝑦) ≥ 𝑟2, then Prℎ∼ℋ[ℎ(𝑥) = ℎ(𝑦)] ≤ 𝑝2.

Remark: for ℋ to be useful we should have 𝑟1 < 𝑟2 and 𝑝1 > 𝑝2.

Definition 2.1.3. Ifℋ is a family of hash functions on a metric space 𝑋, then for any

𝑘 ∈ N we can define a family of hash function ℋ⊗𝑘 as follows: to sample a function

from ℋ⊗𝑘 we sample 𝑘 functions ℎ1, ℎ2, . . . , ℎ𝑘 from ℋ independently and map 𝑥 ∈ 𝑋

to (ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ𝑘(𝑥)).

Lemma 2.1.4. If ℋ is (𝑟1, 𝑟2, 𝑝1, 𝑝2)-sensitive, then ℋ⊗𝑘 is (𝑟1, 𝑟2, 𝑝
𝑘
1, 𝑝

𝑘
2)-sensitive.

Theorem 2.1.5 ([12]). Suppose there is a (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive family ℋ for (𝑋,𝐷),

where 𝑝1, 𝑝2 ∈ (0, 1) and let 𝜌 = ln(1/𝑝1)/ ln(1/𝑝2). Then there exists a data structure

for (𝑐, 𝑟)-ANN over a set 𝑃 ⊆ 𝑋 of at most 𝑛 points, such that:

∙ the query procedure requires at most 𝑂(𝑛𝜌/𝑝1) distance computations and at

most 𝑂(𝑛𝜌/𝑝1 · ⌈log1/𝑝2 𝑛⌉) evaluations of the hash functions from ℋ or other

operations;

∙ the data structure uses at most 𝑂(𝑛1+𝜌/𝑝1) words of space, in addition to the

space needed to store the set 𝑃 .

The failure probability of the data structure can be made to be arbitrarily small con-

stant.

Remark: this theorem says that in order to construct a good data structure for

the (𝑐, 𝑟)-ANN it is sufficient to have a (𝑟, 𝑐𝑟, 𝑝1, 𝑝2)-sensitive family ℋ with small

𝜌 = ln(1/𝑝1)/ ln(1/𝑝2) and not too small 𝑝1.

We use the LSH family crafted in [3]. The properties of this family that we need

are summarized in the following theorem.

16

Theorem 2.1.6 ([3]). Suppose that 𝑑 → ∞ and 𝑐 > 1. There exists an LSH family

ℋ for R𝑑 that is (1, 𝛽𝑐, 𝑝1, 𝑝2(𝛽))-sensitive for every 𝛽 ≥ 1, where ̃︀𝑝1 = exp(−𝑂(𝑑1/4))

and ̃︀𝜌(𝑐, 𝛽) =
ln(1/𝑝1)

ln(1/𝑝2(𝛽))
≤
(︂

1 + 𝑂

(︂
ln 𝑑

𝑑1/4

)︂)︂
· 1

(𝛽𝑐)2
.

Moreover, a function from ℋ can be sampled in time exp(𝑂(
√
𝑑 ln 𝑑)), stored in space

exp(𝑂(
√
𝑑 ln 𝑑)) and evaluated in time exp(𝑂(

√
𝑑 ln 𝑑)).

We use Johnson-Lindenstrauss dimension reduction procedure.

Theorem 2.1.7 ([14], [8]). For every 𝑑 ∈ N and 𝜀, 𝛿 > 0 there exists a distribu-

tion over linear maps 𝐴 : R𝑑 → R𝑂(log(1/𝛿)/𝜀2) such that for every 𝑥 ∈ R𝑑 one has

Pr𝐴[‖𝐴𝑥‖ ∈ (1 ± 𝜀)‖𝑥‖] ≥ 1 − 𝛿. Moreover, such a map can be sampled in time

𝑂(𝑑 log(1/𝛿)/𝜀2).

Combining Theorem 2.1.5, Theorem 2.1.6, Theorem 2.1.7 one has the following

corollary.

Corollary 2.1.8. There exists a data structure for (𝑐, 𝑟)-ANN for ℓ𝑑2 with preprocess-

ing time and space 𝑂𝑐(𝑛
1+1/𝑐2+𝑜𝑐(1) + 𝑛𝑑) and query time 𝑂𝑐(𝑑𝑛

1/𝑐2+𝑜𝑐(1)).

Proof. Using THeorem 2.1.7, we can reduce 𝑑 to 𝑂𝑐(log 𝑛) by increasing probability

of error by an arbitrarily small constant and degrading in terms of 𝑐 slightly. Then,

we just plug Theorem 2.1.6 into Theorem 2.1.5.

We use the following standard estimate on tails of Gaussians (see, e.g., [15]).

Lemma 2.1.9 ([15]). For every 𝑡 > 0

1√
2𝜋
·
(︂

1

𝑡
− 1

𝑡3

)︂
· 𝑒−𝑡2/2 ≤ Pr𝑋∼𝑁(0,1)[𝑋 ≥ 𝑡] ≤ 1√

2𝜋
· 1

𝑡
· 𝑒−𝑡2/2.

Finally, let us state Jung’s theorem.

Theorem 2.1.10 (see, e.g., Exercise 1.3.5 in [18]). Every subset of R𝑑 with diameter

∆ can be enclosed in a ball of radius ∆/
√

2.

17

2.2 The case of low diameter

In this section we build an LSH family for a ball of radius 𝑂(𝑐) with 𝜌 ≈ (1−Ω(1))/𝑐2.

To accomplish this, we proceed in three steps.

First, we show how to handle a sphere of radius 𝑂(𝑐). This requires a new parti-

tioning procedure that is somewhat reminiscent of the one used by Karger et al [15]

for approximate coloring of a graph. Second, we treat a spherical shell of radius 𝑂(𝑐)

and width 𝑂(1). We reduce this case to the case of sphere by normalizing lengths of

points involved. Finally, we build an LSH family for the whole ball. The argument

goes by cutting the ball into spherical shells of constant width. The second and the

third steps are quite straightforward (albeit somewhat technical).

2.2.1 Sphere

In this section we show how to build a good LSH family 𝒢1 for a unit sphere 𝑆𝑑−1 ⊂ R𝑑.

The construction is similar to the rounding scheme for SDP relaxation for graph

coloring developed by Karger, Motwani and Sudan [15]. The partitioning process

parametrized by a positive real number 𝜀 > 0 can be summarized by the following

pseudocode (see Algorithm 1). In principle, the sampling process can be infinite,

Algorithm 1 Partitioning of a sphere
𝒫 ← ∅
while

⋃︀
𝒫 ̸= 𝑆𝑑−1 do

sample 𝑤 ∼ 𝑁(0, 1)𝑑

𝑆 ←
{︁
𝑢 ∈ 𝑆𝑑−1 | ⟨𝑢,𝑤⟩ ≥ 𝜀

√
𝑑
}︁
∖
⋃︀
𝒫

if 𝑆 ̸= ∅ then
𝒫 ← 𝒫 ∪ {𝑆}

end if
end while

but for a moment, let us not worry about efficiency issues, and compute collision

probabilities instead.

Let 𝑢, 𝑣 ∈ 𝑆𝑑−1 be two points on the sphere with angle 𝛼 = ∠(𝑢, 𝑣) between them.

18

Let us understand the probability Pr𝑔∼𝒢1 [𝑔(𝑢) = 𝑔(𝑣)]. If 𝜀
√
𝑑 ≥ 2, then we have

Pr𝑔∼𝒢1 [𝑔(𝑢) = 𝑔(𝑣)]

=
Pr𝑤∼𝑁(0,1)𝑑

[︁
⟨𝑢,𝑤⟩ ≥ 𝜂𝑐 · 𝜀

√
𝑑 and ⟨𝑣, 𝑤⟩ ≥ 𝜂𝑐 · 𝜀

√
𝑑
]︁

Pr𝑤∼𝑁(0,1)𝑑

[︁
⟨𝑢,𝑤⟩ ≥ 𝜂𝑐 · 𝜀

√
𝑑 or ⟨𝑣, 𝑤⟩ ≥ 𝜂𝑐 · 𝜀

√
𝑑
]︁

=
Pr𝑋,𝑌∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜀

√
𝑑
]︁

Pr𝑋,𝑌∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑 or cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜀

√
𝑑
]︁

∈ [1; 2] ·
Pr𝑋,𝑌∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜀

√
𝑑
]︁

Pr𝑋∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑
]︁

⊆
[︁√

2𝜋;
√

15𝜋
]︁
· 𝜀
√
𝑑 ·

Pr𝑋,𝑌∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜀

√
𝑑
]︁

𝑒−𝜀2𝑑/2
,

(2.1)

where the second step is by spherical symmetry of Gaussians, and the last step is by

Lemma 2.1.9 and 𝜀
√
𝑑 ≥ 2.

The next two claims give almost tight estimates on

Pr𝑋,𝑌∼𝑁(0,1)

[︁
𝑋 ≥ 𝜀

√
𝑑 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜀

√
𝑑
]︁
.

Claim 2.2.1. For every 𝜉 > 0 and 0 ≤ 𝛼 < 𝜋 one has

Pr𝑋,𝑌∼𝑁(0,1) [𝑋 ≥ 𝜉 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜉] ≤ 1√
2𝜋
· 𝑒

−𝜉2·(1+tan2 𝛼
2
)/2

𝜉 ·
√︁

1 + tan2 𝛼
2

.

19

Proof. We have

Pr𝑋,𝑌∼𝑁(0,1) [𝑋 ≥ 𝜉 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜉]

≤ Pr𝑋,𝑌∼𝑁(0,1) [(1 + cos𝛼) ·𝑋 − sin𝛼 · 𝑌 ≥ 2𝜉]

= Pr𝑋∼𝑁(0,1)

[︁√︀
2(1 + cos𝛼) ·𝑋 ≥ 2𝜉

]︁
= Pr𝑋∼𝑁(0,1)

[︁
𝑋 ≥ 𝜉 ·

(︁
1 + tan2 𝛼

2

)︁]︁
≤ 1√

2𝜋
· 𝑒

−𝜉2·(1+tan2 𝛼
2
)/2

𝜉 ·
√︁

1 + tan2 𝛼
2

,

where the second step is by 2-stability of Gaussians and the last step is due to

Lemma 2.1.9.

Claim 2.2.2. For every 𝜉 > 0 and 0 ≤ 𝛼 ≤ 𝛼0 ≤ 𝜋/2 such that 𝜉 · tan 𝛼0

2
≥ 2 one

has

Pr𝑋,𝑌∼𝑁(0,1) [𝑋 ≥ 𝜉 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜉] ≥ 1

4𝜋
· 𝑒

−𝜉2·(1+tan2
𝛼0
2
)/2

𝜉2 · tan 𝛼0

2

.

Proof. We have

Pr𝑋,𝑌∼𝑁(0,1) [𝑋 ≥ 𝜉 and cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜉]

≥ Pr𝑋,𝑌∼𝑁(0,1)

[︀
𝑋 ≥ 𝜉 and 𝑌 ≤ −𝜉 · tan 𝛼

2

]︀
= Pr𝑋∼𝑁(0,1) [𝑋 ≥ 𝜉] · Pr𝑌∼𝑁(0,1)

[︁
𝑌 ≥ 𝜉 · tan

𝛼

2

]︁
≥ Pr𝑋∼𝑁(0,1) [𝑋 ≥ 𝜉] · Pr𝑌∼𝑁(0,1)

[︁
𝑌 ≥ 𝜉 · tan

𝛼0

2

]︁
≥ 1

4𝜋
· 𝑒

−𝜉2·(1+tan2
𝛼0
2
)/2

𝜉2 · tan 𝛼0

2

,

where the first step follows from 𝛼 ≤ 𝜋/2. Indeed, since in this case sin𝛼, cos𝛼 ≥ 0,

we have

cos𝛼 ·𝑋 − sin𝛼 · 𝑌 ≥ 𝜉 ·
(︁

cos𝛼 + sin𝛼 · tan
𝛼

2

)︁
= 𝜉.

The last step follows from Lemma 2.1.9, the inequality 𝜉 · tan 𝛼0

2
≥ 2 and the bound

𝛼0 ≤ 𝜋/2 (the latter is used to conclude that 𝜉 ≥ 2 as well).

20

Now combining (2.1), Claim 2.2.1 and Claim 2.2.2, we get the following estimates

on collision probabilities.

Claim 2.2.3. If 𝜀
√
𝑑 ≥ 2 and 0 ≤ 𝛼 < 𝜋 then

ln
1

Pr𝑔∼𝒢1 [ℎ(𝑢) = ℎ(𝑣)]
≥

𝜀2𝑑 · tan2 𝛼
2

2
+

ln
(︀
1 + tan2 𝛼

2

)︀
2

− ln 3.

If 0 ≤ 𝛼 ≤ 𝛼0 ≤ 𝜋/2 and 𝜀
√
𝑑 · tan 𝛼0

2
≥ 2 then

ln
1

Pr𝑔∼𝒢1 [ℎ(𝑢) = ℎ(𝑣)]
≤

𝜀2𝑑 · tan2 𝛼0

2

2
+ ln

(︁
𝜀
√
𝑑 · tan

𝛼0

2

)︁
+

ln 8𝜋

2
.

The next Claim is essentially a restatement of the one above, but with low order

terms being hidden. This version is more convenient to use.

Claim 2.2.4. There exist absolute constants 𝛿0, 𝐶 > 0 such that for every 𝜀, 𝛼0, 𝛿 > 0,

𝑑 ∈ N with 𝛿 ≤ 𝛿0, 𝛼0 ≤ 𝜋/2, 𝜀
√
𝑑 · tan 𝛼0

2
≥ 𝐶 ·

√︁
ln(1/𝛿)

𝛿
we have

ln

⎛⎜⎝ inf
𝑢,𝑣∈𝑆𝑑−1

∠(𝑢,𝑣)≤𝛼0

Pr𝑔∼𝒢1 [𝑔(𝑢) = 𝑔(𝑣)]

⎞⎟⎠
−1

∈ (1± 𝛿) ·
𝜀2𝑑 · tan 𝛼0

2

2
.

Also, for every 𝛼1 with 𝛼0 ≤ 𝛼1 < 𝜋 we have

ln

(︃
inf 𝑢,𝑣∈𝑆𝑑−1

∠(𝑢,𝑣)≤𝛼0

Pr𝑔∼𝒢1 [𝑔(𝑢) = 𝑔(𝑣)]

)︃−1

ln

(︃
sup 𝑢,𝑣∈𝑆𝑑−1

∠(𝑢,𝑣)≥𝛼1

Pr𝑔∼𝒢1 [𝑔(𝑢) = 𝑔(𝑣)]

)︃−1 ≤ (1 + 𝛿) ·
(︂

tan 𝛼0

2

tan 𝛼1

2

)︂2

.

Finally, we conclude with a good LSH family for a sphere that is efficient. Basi-

cally, it is a modification of 𝒢1, but we stop sampling after not too many iterations.

Claim 2.2.5. Suppose that 𝑑 → ∞, 1/2 ≤ 𝜂 ≤ 𝜂0 for a constant 𝜂0 and 𝑐 ≥ 𝑐0 for

an absolute constant 𝑐0 > 0. There exists an LSH family 𝒢2 for a sphere of radius 𝜂𝑐

21

that is (1, 𝛽𝑐, 𝑝1, 𝑝2(𝛽))-sensitive for every 𝛽 ≥ 1, where 𝑝1 = exp(−Θ𝜂0,𝑐(
√
𝑑)) and

𝜌(𝛽) =
ln(1/𝑝1)

ln(1/𝑝2(𝛽))
≤
(︂

1 + 𝑂𝜂0,𝑐

(︂
ln 𝑑√
𝑑

)︂)︂
· 𝐹2(𝜂, 𝑐, 𝛽),

where

𝐹2(𝜂, 𝑐, 𝛽) ≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐4

)︂
.

as 𝑐→∞.

Moreover, a function from this family can be sampled in time exp(𝑂𝜂0,𝑐(
√
𝑑)),

stored in space exp(𝑂𝜂0,𝑐(
√
𝑑)) and evaluated in time exp(𝑂𝜂0,𝑐(

√
𝑑)).

Proof. We instantiate 𝒢1 with 𝜀 = 𝑑−1/4. Using the notation of Claim 2.2.4, we have

tan2 𝛼0

2
=

1

4𝜂2𝑐2 − 1
(2.2)

and

tan2 𝛼1

2
=

𝛽2𝑐2

4𝜂2𝑐2 − 𝛽2𝑐2
. (2.3)

As a result, we have 𝛼0 = Ω𝜂0,𝑐(1), so, we can take 𝛿 from Claim 2.2.4 to be 𝑂𝜂0,𝑐

(︁
ln 𝑑√
𝑑

)︁
.

Then, using (2.2), (2.3) and Claim 2.2.4, we conclude that we can achieve

𝑝1 = exp(−Θ𝜂0,𝑐(
√
𝑑))

and

𝐹2(𝜂, 𝑐, 𝛽) =
4𝜂2 − 𝛽2

𝛽2(4𝜂2𝑐2 − 1)
≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐4

)︂
.

In the last step, 𝑂(·)-notation should be understood as 𝑐→∞.

Now let us address the issue of efficiency. We modify 𝒢1 as follows. Instead of

sampling vectors until we cover the whole sphere, we just sample 𝑇 vectors and stop.

Clearly, in order not to spoil guarantees that we have proved about 𝒢1 it is sufficient

to choose 𝑇 so that

Pr [we cover the whole sphere after 𝑇 samples] ≥ 1− exp(−Ω𝜂0,𝑐(𝑑)).

22

It is not hard to see using union bound over a sufficiently fine net and tail bounds

for Gaussians and Chi-squared random variables that we can set 𝑇 = exp(𝑂𝜂0,𝑐(
√
𝑑))

(for 𝜀 = 𝑑−1/4).

2.2.2 Spherical shell

Now let us consider the case of a spherical shell: that is, we will be working with a

set {︀
𝑢 ∈ R𝑑 | ‖𝑢‖ ∈ [𝜂𝑐− 1; 𝜂𝑐 + 1]

}︀
for a constant 𝜂. We reduce this case to the sperical case by normalizing the lengths

of all vectors involved.

Claim 2.2.6. If 𝑢, 𝑣 ∈ R𝑑, ‖𝑢− 𝑣‖ = 𝑑 and ‖𝑢/‖𝑢‖ − 𝑣/‖𝑣‖‖ = ̃︀𝑑, then

̃︀𝑑2 =
𝑑2 − (‖𝑢‖ − ‖𝑣‖)2

‖𝑢‖‖𝑣‖
.

Claim 2.2.7. Suppose that 𝑑→∞, 1/2− 1/𝑐 ≤ 𝜂 ≤ 𝜂0 + 1/𝑐 for a constant 𝜂0 and

𝑐 ≥ 𝑐0 for an absolute constant 𝑐0 > 0. There exists an LSH family 𝒢3 for a spherical

shell with radii 𝜂𝑐 − 1 and 𝜂𝑐 + 1 that is (1, 𝛽𝑐, 𝑝1, 𝑝2(𝛽))-sensitive for every 𝛽 ≥ 1,

where 𝑝1 = exp(−Θ𝜂0,𝑐(
√
𝑑)) and

𝜌(𝛽) =
ln(1/𝑝1)

ln(1/𝑝2(𝛽))
≤
(︂

1 + 𝑂𝜂0,𝑐

(︂
ln 𝑑√
𝑑

)︂)︂
· 𝐹3(𝜂, 𝑐, 𝛽),

where

𝐹3(𝜂, 𝑐, 𝛽) ≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐3

)︂
.

as 𝑐→∞.

Moreover, a function from this family can be sampled in time exp(𝑂𝜂0,𝑐(
√
𝑑)),

stored in space exp(𝑂𝜂0,𝑐(
√
𝑑)) and evaluated in time exp(𝑂𝜂0,𝑐(

√
𝑑)).

Proof. We first normalize a point to lie on the sphere of radius 𝜂𝑐, and then we hash

it using a family 𝒢2 from Claim 2.2.5.

23

Modifying the proof of Claim 2.2.5 slightly (using Claim 2.2.6), we have

tan2 𝛼0

2
≤ 1

4(𝜂𝑐− 1)2 − 1

and

tan2 𝛼

2
≥ 𝛽2𝑐2 − 4

4(𝜂𝑐 + 1)2 − 𝛽2𝑐2 + 4
.

Overall, we can set

𝐹3(𝜂, 𝑐, 𝛽) ≤ 4(𝜂𝑐 + 1)2 − 𝛽2𝑐2 + 4

(𝛽2𝑐2 − 4)(4(𝜂𝑐− 1)2 − 1)
≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐3

)︂
.

2.2.3 Ball

Finally, we are able to handle the case of a ball of radius 𝜂𝑐 for a constant 𝜂.

Lemma 2.2.8. Suppose that 𝑑→∞, 1/2−1/𝑐 ≤ 𝜂 ≤ 𝜂0 for a constant 𝜂0 and 𝑐 ≥ 𝑐0

for an absolute constant 𝑐0 > 0. There exists an LSH family 𝒢4 for a ball of radius

𝜂𝑐+1 that is (1, 𝛽𝑐, 𝑝1, 𝑝2(𝛽))-sensitive for every 𝛽 ≥ 1, where 𝑝1 = exp(−𝑂𝜂0,𝑐(𝑑
2/3))

and

𝜌(𝛽) =
ln(1/𝑝1)

ln(1/𝑝2(𝛽))
≤
(︂

1 + 𝑂𝜂0,𝑐

(︂
1

𝑑1/6

)︂)︂
· 𝐹4(𝜂, 𝑐, 𝛽),

where

𝐹4(𝜂, 𝑐, 𝛽) ≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐3

)︂
.

as 𝑐→∞.

Moreover, a function from this family can be sampled in time exp(𝑂𝜂0,𝑐(
√
𝑑)),

stored in space exp(𝑂𝜂0,𝑐(
√
𝑑)) and evaluated in time exp(𝑂𝜂0,𝑐(

√
𝑑)).

Proof. The main idea is to discretize the ball and then apply Claim 2.2.7. The

following pseudocode (Algorithm 2) shows how to partition a ball 𝐵(0, 𝜂𝑐+ 1) ⊆ R𝑑.

The bounds on space and time for this family are immediate. Indeed, we have

𝑂𝜂0,𝑐(1) “slices” and 𝑘(𝑠) = 𝑂𝜂0,𝑐(𝑑
1/6) for every slice (in line 20).

24

Algorithm 2 Partitioning of a ball
1: 𝒫 ← ∅
2: ̃︀𝑝1 ←∞
3: for 𝑠← 1 . . . ⌈𝜂𝑐⌉ do
4: if 2(𝑠 + 1) ≥ 𝑐 then
5: Let 𝑝1(𝑠) be 𝑝1 from Claim 2.2.7 for a shell with radii 𝑠− 1 and 𝑠 + 1
6: if 𝑝1(𝑠) < ̃︀𝑝1 then
7: ̃︀𝑝1 ← 𝑝1(𝑠)
8: end if
9: end if

10: end for
11: Let 𝜎 be a random permutation of integers from 1 to ⌈𝜂𝑐⌉
12: for 𝑖← 1 . . . ⌈𝜂𝑐⌉ do
13: 𝑠← 𝜎(𝑖)
14: 𝑅(𝑠)← 𝐵(0, 𝜂𝑐) ∖

⋃︀
𝒫

15: if 𝑅(𝑠) ̸= ∅ then
16: if 2(𝑠 + 1) < 𝑐 then
17: 𝒫 ← 𝒫 ∪ {𝑅(𝑠)}
18: else
19: Let 𝑘(𝑠) be the smallest positive integer such that 𝑝1(𝑠)

𝑘(𝑠) ≤ ̃︀𝑝1𝑑1/6
20: Let 𝒫 ′ be a partition of 𝑅(𝑠) according to 𝑔 ∼ 𝒢𝑘(𝑠)3 , where 𝒢3 is a

family from Claim 2.2.7 for a shell with radii 𝑠− 1 and 𝑠 + 1
21: 𝒫 ← 𝒫 ∪ 𝒫 ′

22: end if
23: end if
24: end for

25

Let us prove the bound on 𝑝1. Suppose we have two points 𝑢, 𝑣 ∈ 𝐵(0, 𝜂𝑐 + 1)

with ‖𝑢 − 𝑣‖ ≤ 1. Then, there exists 𝑠 such that 𝑠 − 1 ≤ ‖𝑢‖, ‖𝑣‖ ≤ 𝑠 + 1. With

probability Ω(1) both 𝑢 and 𝑣 will lie in 𝑅(𝑠) (here we use that we sample a random

permutation 𝜎). Conditioned on this event, the probability of collision is at least

𝑝1(𝑠)
𝑘(𝑠). Thus, overall,

𝑝1 ≥ Ω(1) · ̃︀𝑝1𝑑1/6+1 = exp(−𝑂𝜂0,𝑐(𝑑
2/3)).

Moreover, for every 𝑠 with 2(𝑠 + 1) > 𝑐 we have

𝑝1(𝑠)
𝑘1(𝑠) ∈ 𝑝

1±𝑂𝜂0,𝑐(𝑑
−1/6)

1 . (2.4)

Now let us prove the desired bound on 𝜌(𝛽). Suppose that 𝑢, 𝑣 ∈ 𝐵(0, 𝜂𝑐) with

‖𝑢 − 𝑣‖ ≥ 𝛽𝑐, where 𝛽 ≥ 1. If 𝑢 and 𝑣 do not lie simultaneously in one 𝑅(𝑠), then

we are done. Otherwise, suppose that 𝑢, 𝑣 ∈ 𝑅(𝑠). Obviously, 2(𝑠 + 1) ≥ 𝑐, so we

partition 𝑅(𝑠) using Claim 2.2.7. From (2.4) and Claim 2.2.7, we have

𝜌(𝛽) ≤
(︂

1 + 𝑂𝜂0,𝑐

(︂
1

𝑑1/6

)︂)︂
· 𝐹3(𝑠/𝑐, 𝑐, 𝛽).

Since 𝐹3(𝑠/𝑐, 𝑐, 𝛽) ≤ 𝐹3(𝜂, 𝑐, 𝛽), we indeed can take

𝐹4(𝜂, 𝑐, 𝛽) = 𝐹3(𝜂, 𝑐, 𝛽) ≤
(︂

1− 𝛽2

4𝜂2

)︂
· 1

(𝛽𝑐)2
+ 𝑂

(︂
1

𝑐3

)︂
.

2.3 The general case

We now describe our near neighbor data structure. It is composed of several inde-

pendent data structures, where each one is a hierarchical hashing scheme, described

next. We will conclude with proving our main theorem for ANN search.

First, we provide some very high-level intuition.

26

2.3.1 Intuition

The general approach can be seen as using LSH scheme composed of two levels: the

hash function is 𝑓 = (𝑓ℎ, 𝑓𝑔) chosen from two families 𝑓ℎ ∈ ℋ⊗𝑘′ , 𝑓𝑔 ∈ 𝒢⊗𝑙
4 for some

𝑘′, 𝑙, where ℋ is the “ball carving LSH” from Theorem 2.1.6, and 𝒢4 is the “low-

diameter LSH” from Lemma 2.2.8. In particular, the hash function 𝑓𝑔(𝑝) will depend

on the bucket 𝑓ℎ(𝑝) and the other dataset points in the bucket 𝑓ℎ(𝑝). Intuitively,

the “outer level” hash function 𝑓ℎ performs a partial standard LSH partitioning (with

𝜌 ≈ 1/𝑐2), but also has the role of improving the “geometry” of the points (namely,

the points in a buckets roughly will have a bounded diameter). After an application

of 𝑓ℎ, the pointset (inside a fixed bucket) has bounded diameter, allowing us to use

the improved “low-diameter” partitioning (“inner level”), with 𝜌 < 1/𝑐2.

In more detail, first, let us recall the main idea of the proof of Theorem 2.1.5.

Suppose that ℋ is, say, a family from Theorem 2.1.6. Then, we choose 𝑘 to be an

integer such that for every 𝑝, 𝑞 ∈ R𝑑 with ‖𝑝− 𝑞‖ ≥ 𝑐 we have

Prℎ∼ℋ⊗𝑘 [ℎ(𝑝) = ℎ(𝑞)] ≈ 𝑛−1. (2.5)

Then, by Theorem 2.1.6, we have for every 𝑝, 𝑞 ∈ R𝑑 with ‖𝑝− 𝑞‖ ≤ 1

Prℎ∼ℋ⊗𝑘 [ℎ(𝑝) = ℎ(𝑞)] ≈ 𝑛−1/𝑐2 .

Now suppose we hash all the points using a function ℎ ∼ ℋ⊗𝑘. For a query 𝑞

the average number of “outliers” in a bin that corresponds to 𝑞 (points 𝑝 such that

‖𝑝−𝑞‖ > 𝑐) is at most 1 due to (2.5). On the other hand, for a data point 𝑝 such that

‖𝑝 − 𝑞‖ ≤ 1 the probability of collision is at least 𝑛−1/𝑐2 . Thus, we can create 𝑛1/𝑐2

independent hash tables, and query them all in time around 𝑂(𝑛1/𝑐2). The resulting

probability of success is constant.

The above analysis relies on two distance scales: 1 and 𝑐. To get a better algorithm

for ANN we introduce the third scale: 𝜏𝑐 for 𝜏 > 1 being a parameter. First, we hash

all the points using ℋ⊗𝑘′ (where 𝑘′ ≈ 𝑘/𝜏) so that the collision probabilities are

27

roughly as follows.

Distance 1 𝑐 𝜏𝑐

Probability of collision 𝑛−1/(𝜏𝑐)2 𝑛−1/𝜏2 𝑛−1

Now we can argue that with high probability any bucket has diameter 𝑂𝜏 (𝑐). This

allows us to use the family from Lemma 2.2.8 for each bucket and set probabilities of

collision as follows.

Distance 1 𝑐

Probability of collision 𝑛−(1−Ω𝜏 (1))·(1−1/𝜏2)/𝑐2 𝑛−1+1/𝜏2

Due to the independence, we expect overall collision probabilities to be products

of “outer” collision probabilities from the first table and “inner” probabilities from the

second table. Thus, in total, we have the following probabilities.

Distance 1 𝑐

Probability of collision 𝑛−(1−Ω𝜏 (1))/𝑐2 𝑛−1

Then we argue as before and achieve

𝜌 ≈ 1− Ω𝜏 (1)

𝑐2
.

This plan is not quite rigorous for several reasons. One of them is we do not

properly take care of conditioning on the event “all buckets have low diameter”. Nev-

ertheless, in this section we show how to analyze a similar scheme rigorously. Also,

in the actual construction we use more than two levels.

2.3.2 Construction

Suppose we want to solve (𝑐, 1)-ANN in R𝑑 for an 𝑛-point subset 𝑃 . First, by applying

Johnson–Lindenstrauss Lemma (Theorem 2.1.7) we can assume that 𝑑 = Θ𝑐(log 𝑛).

Thus, all quantities of order exp(𝑜(𝑑)) are 𝑛𝑜𝑐(1).

Our data structure consists of a hierarchy of partitions of R𝑑. Let 𝑙 be a positive

integer parameter. We build partitions 𝒫0, 𝒫1, . . . , 𝒫𝑙−1, where 𝒫𝑖 is a refinement of

28

𝒫𝑖−1. Also, we prune our pointset. Namely, 𝑃0 = 𝑃 , then, for every 𝑖, before building

𝒫𝑖 we prune 𝑃𝑖−1 and obtain 𝑃𝑖. We want the following conditions to hold:

∙ for every 𝑝 ∈ 𝑃𝑙−1 and 𝑞 ∈ R𝑑 ∖𝐵(𝑝, 𝑐) we have

Pr [𝒫𝑙−1(𝑝) = 𝒫𝑙−1(𝑞)] ≤ 1

𝑛
; (2.6)

∙ for every 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝐵(𝑝, 1) we have

Pr [𝑝 ∈ 𝑃𝑙−1,𝒫𝑙−1(𝑝) = 𝒫𝑙−1(𝑞)] ≥ 1

𝑛𝜌0
, (2.7)

where 𝜌0 ≈ 0.73/𝑐2.

Let us present pseudocode for partitioning/pruning (Algorithm 3). We denote

ℋ, ̃︀𝑝1 and ̃︀𝜌(𝑐, 𝛽) according to Theorem 2.1.6. We use 𝒢4(𝜂), 𝑝1(𝜂) and 𝜌(𝜂, 𝑐, 𝛽)

according to Lemma 2.2.8. The partitioning process uses distance scales 𝜏1𝑐, . . . ,

𝜏𝑙−1𝑐, where 𝜏1 > 𝜏2 > . . . > 𝜏𝑙 = 1, which we will show how to choose later. Also, it

will be crucial to choose “tensoring powers” ̃︀𝑘, 𝑘1, . . . , 𝑘𝑙−1 carefully.

Note that we can always find a ball required by line 12. This follows from Theo-

rem 2.1.10.

2.3.3 Analysis

For the sake of uniformity we define 𝒫−1 =
{︀
R𝑑
}︀

being a trivial partition.

To analyze the partitioning process let us introduce the following notation:

∙ for 0 ≤ 𝑖 ≤ 𝑙 − 1 and 𝛽 ≥ 1 we denote

𝑈(𝑖, 𝛽) = sup
𝑝∈𝑃𝑖

𝑞∈R𝑑∖𝐵(𝑝,𝛽𝑐)

Pr [𝒫𝑖(𝑝) = 𝒫𝑖(𝑞)] ;

∙ for 0 ≤ 𝑖 ≤ 𝑙 − 1 denote

𝐿(𝑖) = inf
𝑝∈𝑃

𝑞∈𝐵(𝑝,1)

𝑖∏︁
𝑗=0

Pr [𝒫𝑗(𝑝) = 𝒫𝑗(𝑞) | 𝒫𝑗−1(𝑝) = 𝒫𝑗−1(𝑞), 𝑝 ∈ 𝑃𝑗] .

29

Algorithm 3 Hierarchical partitioning of R𝑑

1: Let 𝒫0 be the partition of R𝑑 induced by ℎ ∼ ℋ⊗̃︀𝑘
2: 𝑃0 ← 𝑃
3: for 𝑖← 1 . . . 𝑙 − 1 do
4: 𝒫𝑖 ← ∅
5: 𝑃𝑖 ← ∅
6: for 𝑅 is a part of 𝒫𝑖−1 do
7: 𝑃 ′ ← {𝑝 ∈ 𝑃𝑖−1 | 𝑝 ∈ 𝑅}
8: while ∃𝑝, 𝑝′ ∈ 𝑃 ′ with ‖𝑝− 𝑝′‖ > 𝜏𝑖𝑐 do
9: 𝑃 ′ ← 𝑃 ′ ∖ {𝑝, 𝑝′}

10: end while
11: if 𝑃 ′ ̸= ∅ then
12: Let 𝑢 be the center of a ball of radius 𝜏𝑖𝑐/

√
2 that covers 𝑃 ′

13: Let 𝒫 ′ be a partition of 𝐵(𝑢, 𝜏𝑖𝑐/
√

2 + 1)∩𝑅 according to 𝒢4(𝜏𝑖/
√

2)𝑘𝑖

14: 𝒫𝑖 ← 𝒫𝑖 ∪ 𝒫 ′

15: if 𝑅 ∖
⋃︀
𝒫 ′ ̸= ∅ then

16: 𝒫𝑖 ← 𝒫𝑖 ∪ {𝑅 ∖
⋃︀
𝒫 ′}

17: end if
18: 𝑃𝑖 ← 𝑃𝑖 ∪ 𝑃 ′

19: else
20: 𝒫𝑖 ← 𝒫𝑖 ∪ {𝑅}
21: end if
22: end for
23: end for
24: return 𝒫𝑙−1

30

In words, 𝑈(𝑖, 𝛽) is an upper bound for the probability that a point 𝑝 ∈ 𝑃𝑖 collides

in 𝒫𝑖 with a point 𝑞 ∈ R𝑑 such that ‖𝑝− 𝑞‖ ≥ 𝛽𝑐. Similarly, 𝐿(𝑖) is a lower bound for

the product of collision probabilities at different levels for points 𝑝 ∈ 𝑃 and 𝑞 ∈ R𝑑

such that ‖𝑝− 𝑞‖ ≤ 1.

We can upper bound 𝑈(·, ·) and lower bound 𝐿(·) pretty easily as follows.

Claim 2.3.1.

𝑈(𝑖, 𝛽) ≤ ̃︀𝑝1̃︀𝑘/̃︀𝜌(𝑐,𝛽) · 𝑖∏︁
𝑗=1

𝑝1(𝜏𝑗/
√

2)𝑘𝑗/𝜌(𝜏𝑗/
√
2,𝑐,𝛽)

Proof. We have

𝑈(𝑖, 𝛽) = sup
𝑝∈𝑃

𝑞∈R𝑑∖𝐵(𝑝,𝛽𝑐)

Pr [𝑝 ∈ 𝑃𝑖,𝒫𝑖(𝑝) = 𝒫𝑖(𝑞)]

= sup
𝑝∈𝑃

𝑞∈R𝑑∖𝐵(𝑝,𝛽𝑐)

Pr [∀ 0 ≤ 𝑗 ≤ 𝑖 𝑝 ∈ 𝑃𝑗,𝒫𝑗(𝑝) = 𝒫𝑗(𝑞)]

≤ sup
𝑝∈𝑃

𝑞∈R𝑑∖𝐵(𝑝,𝛽𝑐)

𝑖∏︁
𝑗=0

Pr [𝒫𝑗(𝑝) = 𝒫𝑗(𝑞) | 𝒫𝑗−1(𝑝) = 𝒫𝑗−1(𝑞), 𝑝 ∈ 𝑃𝑗]

≤ ̃︀𝑝1̃︀𝑘/̃︀𝜌(𝑐,𝛽) · 𝑖∏︁
𝑗=1

𝑝1(𝜏𝑗/
√

2)𝑘𝑗/𝜌(𝜏𝑗/
√
2,𝑐,𝛽),

where the third step is by “Markov property” of our partitioning process, and the last

step is by Theorem 2.1.6 and Lemma 2.2.8.

Now let us lower bound 𝐿(·).

Claim 2.3.2.

𝐿(𝑖) ≥ ̃︀𝑝1̃︀𝑘 · 𝑖∏︁
𝑗=1

𝑝1(𝜏𝑗/
√

2)𝑘𝑗

Proof. This is a straightforward implication of Theorem 2.1.6 and Lemma 2.2.8.

Definition 2.3.3. We denote 𝑈 ′(𝑖, 𝛽) the upper bound on 𝑈(𝑖, 𝛽) from Claim 2.3.1

and 𝐿′(𝑖) the lower bound on 𝐿(𝑖) from Claim 2.3.2.

Now it is time to choose ̃︀𝑘, 𝑘1, . . . , 𝑘𝑙−1. We choose the powers so that we have

𝑛 ·𝑈 ′(𝑖, 𝜏𝑖+1) ≤ 𝐿′(𝑖+ 1)/2𝑖+1 for every 0 ≤ 𝑖 ≤ 𝑙− 2. Namely, we first fix ̃︀𝑘 to be the

31

smallest positive integer so that 𝑛 · 𝑈 ′(0, 𝜏1) ≤ 𝐿′(1)/2. Then, we similarly fix 𝑘1 to

achieve 𝑛 ·𝑈 ′(1, 𝜏2) ≤ 𝐿′(2)/4 etc. Finally, we fix the smallest possible 𝑘𝑙−1 such that

𝑛 · 𝑈 ′(𝑙 − 1, 1) ≤ 1.

Now we can immediately claim (2.6).

Claim 2.3.4. For every 𝑝 ∈ 𝑃𝑙−1 and 𝑞 ∈ R𝑑 ∖𝐵(𝑝, 𝑐) we have

Pr [𝒫𝑙−1(𝑝) = 𝒫𝑙−1(𝑞)] ≤ 1

𝑛
.

Proof. This follows from the definition of 𝑈(·, ·), Claim 2.3.1 and the condition 𝑛 ·

𝑈 ′(𝑙 − 1, 1) ≤ 1.

Now we relate (2.7) and 𝐿′(𝑙 − 1). For this we need the following key result.

Claim 2.3.5. For every 𝑝 ∈ 𝑃 and 1 ≤ 𝑖 ≤ 𝑙 − 1 we have

Pr [𝑝 /∈ 𝑃𝑖 | 𝑝 ∈ 𝑃𝑖−1] ≤ 𝑛 · 𝑈 ′(𝑖− 1, 𝜏𝑖).

Proof. If 𝑝 was not pruned until step 𝑖 − 1, and then got pruned and did not make

it into 𝑃𝑖, the only reason for this could be that there exists 𝑝′ ∈ 𝑃𝑖−1 ∩ 𝐵(𝑝, 𝜏𝑖𝑐)

such that 𝒫𝑖−1(𝑝) = 𝒫𝑖−1(𝑝
′). Then by union bound, the definition of 𝑈(·, ·) and

Claim 2.3.1 we get the result.

Suppose that 𝑝 ∈ 𝑃 and 𝑞 ∈ 𝐵(𝑝, 1).

Claim 2.3.6. For every 0 ≤ 𝑖 ≤ 𝑙 − 1

Pr [𝑝 ∈ 𝑃𝑖,𝒫𝑖(𝑝) = 𝒫𝑖(𝑞)] ≥ 𝐿′(𝑖)

2𝑖
.

Proof. The proof is by induction on 𝑖. For 𝑖 = 0 we have

Pr [𝑝 ∈ 𝑃0,𝒫0(𝑝) = 𝒫0(𝑞)] = Pr [𝒫0(𝑝) = 𝒫0(𝑞)] ≥ 𝐿(0) ≥ 𝐿′(0).

32

Now assume that 𝑖 > 0. Then

Pr [𝑝 ∈ 𝑃𝑖,𝒫𝑖(𝑝) = 𝒫𝑖(𝑞)]

= Pr [𝑝 ∈ 𝑃𝑖,𝒫𝑖(𝑝) = 𝒫𝑖(𝑞), 𝑝 ∈ 𝑃𝑖−1,𝒫𝑖−1(𝑝) = 𝒫𝑖−1(𝑞)]

≥ Pr [𝒫𝑖(𝑝) = 𝒫𝑖(𝑞) | 𝑝 ∈ 𝑃𝑖−1,𝒫𝑖−1(𝑝) = 𝒫𝑖−1(𝑞)]

· Pr [𝑝 ∈ 𝑃𝑖−1,𝒫𝑖−1(𝑝) = 𝒫𝑖−1(𝑞)]− Pr [𝑝 /∈ 𝑃𝑖 | 𝑝 ∈ 𝑃𝑖−1]

≥ 𝐿′(𝑖)

2𝑖−1
− 𝑛 · 𝑈 ′(𝑖− 1, 𝜏𝑖) ≥

𝐿′(𝑖)

2𝑖
,

where the third step follows from the assumption of induction, the definition of 𝐿(𝑖),

Claim 2.3.2 and Claim 2.3.5. The last step follows from the choice of powers ̃︀𝑘 and

𝑘𝑗.

2.3.4 Computing 𝜌0

In order to get the value 𝜌0 in (2.7) by Claim 2.3.6 it is sufficient to lower bound

𝐿′(𝑙 − 1). To recall,

𝐿′(𝑖) = ̃︀𝑝1̃︀𝑘 · 𝑖∏︁
𝑗=1

𝑝1(𝜏𝑗/
√

2)𝑘𝑗

and

𝑈 ′(𝑖, 𝛽) = ̃︀𝑝1̃︀𝑘/̃︀𝜌(𝑐,𝛽) · 𝑖∏︁
𝑗=1

𝑝1(𝜏𝑗/
√

2)𝑘𝑗/𝜌(𝜏𝑗/
√
2,𝑐,𝛽).

We choose ̃︀𝑘 to be the smallest integer such that 𝑛 · 𝑈 ′(0, 𝜏1) ≤ 𝐿′(1)/2, then we

choose 𝑘1 to be the smallest integer such that 𝑛 · 𝑈 ′(1, 𝜏2) ≤ 𝐿′(2)/4 etc. Finally, we

choose 𝑘𝑙−1 to be the smallest integer such that 𝑛 ·𝑈 ′(𝑙− 1, 1) ≤ 1. Let us denote 𝛼0,

𝛼1, . . . , 𝛼𝑙−1 the following real numbers:

𝑛−𝛼𝑖 =

⎧⎪⎨⎪⎩̃︀𝑝1
̃︀𝑘, if 𝑖 = 0,

𝑝1(𝜏𝑖/
√

2)𝑘𝑖 , otherwise.

33

The moment of reflection on the definitions of 𝐿′(·), 𝑈 ′(·, ·), on the choice of ̃︀𝑘 and

𝑘𝑗, and on Theorem 2.1.6 and Lemma 2.2.8 reveals that

𝛼𝑖 =

(︂
1 + 𝑂𝜏1,𝑐,𝑙

(︂
1

𝑑1/6

)︂
+ 𝑂𝜏1,𝑙

(︂
1

𝑐

)︂)︂
· 𝛽𝑖

𝑐2
,

where 𝛽𝑖 is the solution of the following linear system: for every 0 ≤ 𝑖 ≤ 𝑙−1 we have

𝜏 2𝑖+1𝛽0 +
𝑖∑︁

𝑗=1

2𝜏 2𝑖+1𝜏
2
𝑗 𝛽𝑗

2𝜏 2𝑗 − 𝜏 2𝑖+1

= 1.

So, using Claim 2.3.6, we get that in (2.7) we can achieve

𝜌0 =

(︂
1 + 𝑂𝜏1,𝑐,𝑙

(︂
1

𝑑1/6

)︂
+ 𝑂𝜏1,𝑙

(︂
1

𝑐

)︂)︂
·
∑︀𝑙−1

𝑖=0 𝛽𝑖

𝑐2
,

where 𝛽0 = 1
𝜏21

and for every 1 ≤ 𝑖 ≤ 𝑙 − 1

𝛽𝑖 =
2𝜏 2𝑖 − 𝜏 2𝑖+1

2𝜏 2𝑖 𝜏
2
𝑖+1

·

(︃
1−

𝜏 2𝑖+1

𝜏 21
−

𝑖−1∑︁
𝑗=1

2𝜏 2𝑖+1𝜏
2
𝑗 𝛽𝑗

2𝜏 2𝑗 − 𝜏 2𝑖+1

)︃
. (2.8)

2.3.5 Choosing distance scales

The problem of getting a good 𝜌0 in (2.7) is thus reduced to the following optimization

question. For a given 𝑙 choose 𝜏1 > 𝜏2 > . . . > 𝜏𝑙 = 1 so to minimize
∑︀𝑙−1

𝑖=0 𝛽𝑖 subject

to (2.8). For a general 𝑙 this is a challenging optimization problem, but let us try

to see what we can get for some interesting cases. First, if 𝑙 = 1, then there is

nothing to solve. We immediately get 𝛽0 = 1. The first non-trivial case is 𝑙 = 2,

which corresponds to a two-level partitioning. In this case, we have one variable 𝜏1

to optimize over, and from (2.8) we get

𝛽0 + 𝛽1 =
1

𝜏 21
+

2𝜏 21 − 1

2𝜏 21
·
(︂

1− 1

𝜏 21

)︂
.

It is immediate to see that 𝛽0 + 𝛽1 is minimized, when 𝜏1 =
√

2, and in this case we

have 𝛽0 + 𝛽1 = 7
8
. Then, for 𝑙 ≥ 3 the complexity of the optimization problem goes

34

up very quickly. There are we are only able to obtain numerical results, which are

summarized in the following table.

𝑙 𝜏1 𝜏2 𝜏3 𝜏4 𝜏5 𝜏6 𝜏7
∑︀𝑙−1

𝑖=0 𝛽𝑖

1 1 1

2
√

2 1 7/8 = 0.875

3 1.76 1.22 1 0.828

4 2.07 1.43 1.15 1 0.803

5 2.35 1.61 1.30 1.12 1 0.787

6 2.61 1.79 1.43 1.23 1.09 1 0.777

7 2.86 1.95 1.56 1.34 1.19 1.08 1 0.769

In the same time, since we do not really care about a particular value of 𝑙 (as long

as it is constant), we can consider a very large 𝑙 and choose 𝜏𝑖’s suboptimally. Let us

choose 𝜏𝑖 =
√︀

𝑙/𝑖. In this case we get 𝛽𝑖 = 𝛾𝑖/𝑙, where 𝛾0 = 1 and for every 𝑖 ≥ 1 we

have

𝛾𝑖 =
𝑖 + 2

2
·

(︃
𝑖

𝑖 + 1
−

𝑖−1∑︁
𝑗=1

2𝛾𝑗
2𝑖− 𝑗 + 2

)︃
.

Observe that this sequence does not depend on 𝑙.

One can compute 𝛾𝑖 for quite large values of 𝑖 and observe that it converges pretty

rapidly to a real number between 0.72 and 0.73 (and so does 1
𝑙
·
∑︀𝑙−1

𝑖=0 𝛾𝑖). In particular,

for 𝑙 = 40 we get
∑︀𝑙−1

𝑖=0 𝛽𝑖 < 0.73 with this choice of thresholds. Next we prove that

lim𝑖→∞ 𝛾𝑖 = 1
ln 4
≈ 0.721 (which implies

∑︀𝑙−1
𝑖=0 𝛽𝑖 → 1

ln 4
). The proof is due to Luke

Schaeffer [27].

Lemma 2.3.7.

lim
𝑖→∞

𝛾𝑖 =
1

ln 4

Proof. We have for every 𝑖 ≥ 0

𝑖∑︁
𝑗=0

2𝛾𝑗
2𝑖− 𝑗 + 2

= 1.

35

Let us substitute 2𝛾𝑖 = 1
ln 2

+𝜀𝑖. We need to show that lim𝑖→∞ 𝜀𝑖 = 0, where for every

𝑖 ≥ 0

𝐻2𝑖+2 −𝐻𝑖+1

ln 2
+

𝑖∑︁
𝑗=0

𝜀𝑗
2𝑖− 𝑗 + 2

= 1, (2.9)

where 𝐻𝑛 is the 𝑛-th harmonic number. It is known that

𝐻𝑛 = ln𝑛 + 𝛾 +
1

2𝑛
+ 𝑂

(︂
1

𝑛2

)︂
, (2.10)

where 𝛾 is Euler’s constant. Substituting (2.10) into (2.9), we get

𝑖∑︁
𝑗=0

𝜀𝑗
2𝑖− 𝑗 + 2

=
1

4𝑖 ln 2
+ 𝑂

(︂
1

𝑖2

)︂
.

Thus,
1

4 ln 2
+ 𝑂

(︂
1

𝑖

)︂
≤

𝑖∑︁
𝑗=0

𝜀𝑗 ≤
1

2 ln 2
+ 𝑂

(︂
1

𝑖

)︂
. (2.11)

Now we subtract (2.9) from itself for 𝑖 and 𝑖− 1:

𝐻2𝑖+2 + 𝐻𝑖 −𝐻𝑖+1 −𝐻2𝑖

ln 2
+

𝜀𝑖
𝑖 + 2

+
𝑖−1∑︁
𝑗=0

𝜀𝑗

(︂
1

2𝑖− 𝑗 + 2
− 1

2𝑖− 𝑗

)︂
= 0. (2.12)

By (2.11), the third term of (2.12) is 𝑂(1/𝑖2). The first term of (2.12) is

𝐻2𝑖+2 + 𝐻𝑖 −𝐻𝑖+1 −𝐻2𝑖

ln 2
=

1

ln 2
·
(︂

1

2𝑖 + 2
+

1

2𝑖 + 1
− 1

𝑖 + 1

)︂
= 𝑂

(︂
1

𝑖2

)︂
.

But this means that the second term of (2.12) is also 𝑂(1/𝑖2). Thus, 𝜀𝑖 = 𝑂(1/𝑖).

One can ask: how optimal are thresholds 𝜏𝑖 =
√︀
𝑙/𝑖? It turns out that if 𝑙 →∞,

then these thresholds are indeed optimal. This follows from three simple observations.

First,
∑︀𝑙−1

𝑖=0 𝛽𝑖 is monotone with respect to adding thresholds (adding threshold can

not possibly hurt). Second, the sum is continuous as a function of 𝜏𝑖’s. Third,

for any subset of real numbers larger than 1, we can approximate them arbitrarily

well simultaneously with numbers
√︀
𝑙/𝑖 for some 𝑙. We omit proofs here, since this

optimality is not needed for our main result.

36

2.3.6 Performance

In this section we analyze the performance of Algorithm 3. To recall, we assume that

𝑑 = Θ𝑐(log 𝑛) by Johnson-Lindenstrauss Lemma (Theorem 2.1.7).

We take 𝑙 = 40 and by the results of Section 2.3.5, we can achieve

𝜌0 ≤
0.73

𝑐2
+ 𝑂

(︂
1

𝑐3

)︂
+ 𝑜𝑐(1)

in (2.7).

It is easy to see that lines 1 and 13 of Algorithm 3 are executed 𝑂(𝑛) times, so

overall space the whole partition can be stored in is 𝑛1+𝑜𝑐(1) (by Theorem 2.1.6 and

Lemma 2.2.8). Preprocessing time can be easily made 𝑛2+𝑜𝑐(1). Indeed, lines 1 and 13

take time 𝑛1+𝑜𝑐(1) in total, line 12 takes time 𝑛1+𝑜𝑐(1) by an algorithm from [11]. So,

the bottleneck is the pruning in lines 8–10, which can be easily done in time 𝑛2+𝑜𝑐(1).

Finally, we can observe that it is possible to locate a query point 𝑞 ∈ R𝑑 in the

partition 𝒫𝑙−1 and, moreover, enumerate all the points 𝑝 ∈ 𝑃𝑙−1 such that 𝒫𝑙−1(𝑝) =

𝒫𝑙−1(𝑞) in time 𝑛𝑜𝑐(1) plus constant time per point reported. For this, we store the

hierarchy using a trie, where in each node we have a hash table.

We summarize this discussion in the following Theorem.

Theorem 2.3.8. Suppose that 𝑐 > 1. Let 𝑃 ⊆ R𝑑 be a pointset with |𝑃 | = 𝑛 and

𝑑 = Θ𝑐(log 𝑛). Then, in time 𝑛2+𝑜𝑐(1) we can build a random partition 𝒫 of R𝑑 and a

subset 𝑃 ′ ⊆ 𝑃 such that for every 𝑞 ∈ R𝑑:

∙ for every 𝑝 ∈ R𝑑 ∖𝐵(𝑞, 𝑐) we have

Pr [𝑝 ∈ 𝑃 ′,𝒫(𝑝) = 𝒫(𝑞)] ≤ 1

𝑛
;

∙ for every 𝑝 ∈ 𝐵(𝑞, 1) we have

Pr [𝑝 ∈ 𝑃 ′,𝒫(𝑝) = 𝒫(𝑞)] ≥ 1

𝑛𝜌0
,

37

where

𝜌0 ≤
0.73

𝑐2
+ 𝑂

(︂
1

𝑐3

)︂
+ 𝑜𝑐(1).

Moreover, in the same time we build a data structure that can be used to locate a point

𝑞 ∈ R𝑑 in 𝒫 and report all the points 𝑝 ∈ 𝑃 ′ such that 𝒫(𝑝) = 𝒫(𝑞) in time 𝑛𝑜𝑐(1)

plus constant per point reported. The data structure takes 𝑛1+𝑜𝑐(1) space to store.

2.3.7 The resulting data structure

To get from Theorem 2.3.8 to a data structure for (𝑐, 1)-ANN for ℓ𝑑2, we essentially

repeat the argument from [12].

Theorem 2.3.9. There exists a data structure for (𝑐, 1)-ANN for ℓ𝑑2 with

∙ preprocessing time 𝑂𝑐(𝑛
2+𝜌0 + 𝑛𝑑 log 𝑛),

∙ space 𝑂𝑐(𝑛
1+𝜌0 + 𝑑 log 𝑛),

∙ query time 𝑂𝑐(𝑛
𝜌0 + 𝑑 log 𝑛),

where

𝜌0 ≤
0.73

𝑐2
+ 𝑂

(︂
1

𝑐3

)︂
+ 𝑜𝑐(1).

Proof. The dimension reduction step takes time 𝑂𝑐(𝑛𝑑 log 𝑛) by Theorem 2.1.7. After

that we can apply Theorem 2.3.8. In order to make the probability of success constant

we build and query 1/𝑄 independent copies of the data structure from Theorem 2.3.8,

where 𝑄 = 𝑛𝜌0 and 𝜌0 is the value from Theorem 2.3.8.

Note that the above bound on the query time is in expectation, but it is also

possible to modify the algorithm slightly to get a worst-case bound. The algorithm

still iterates over 1/𝑄 data structures but stops after looking at 3/𝑄 + 1 points

without finding an approximate near neighbor. The expected number of points the

algorithm has to look at that are not an approximate near neighbor is at most 1/𝑄. By

Markov’s inequality, with probability at least 2/3, the algorithm doesn’t look at more

than 3/𝑄 points that are not an approximate near neighbor. In each data structure,

38

the probability that the algorithm fails to find an approximate near neighbor is at

most 1−𝑄. Thus, the probability it fails in all 𝑄 tables is at most (1−𝑄)1/𝑄 ≤ 1/𝑒.

Overall, with probability at least 1− 1/3− 1/𝑒, the algorithm finds an approximate

near neighbor without looking at more than 3/𝑄 + 1 points.

2.3.8 Quasi-linear time preprocessing

In Theorem 2.3.8 the preprocessing time is 𝑛2+𝜌0+𝑜𝑐(1). The reason is the pruning

procedure in Algorithm 3 (lines 8–10). We can get rid of it at the expense of increasing

𝜌0. Namely, we do not do the expensive pruning, and instead we choose an arbitrary

point from 𝑃 ′ as a center, and cut off all the points that are further than 𝜏𝑖𝑐 from it.

Then, we proceed as before, but sample a function from 𝒢4(𝜏𝑖) instead of 𝒢4(𝜏𝑖/
√

2).

The analysis remains the same, except Claim 2.3.1 and Claim 2.3.2, where we

replace 𝜏𝑖/
√

2 with 𝜏𝑖 everywhere. Thus, (2.8) changes to

𝛽𝑖 =
4𝜏 2𝑖 − 𝜏 2𝑖+1

4𝜏 2𝑖 𝜏
2
𝑖+1

·

(︃
1−

𝜏 2𝑖+1

𝜏 21
−

𝑖−1∑︁
𝑗=1

4𝜏 2𝑖+1𝜏
2
𝑗 𝛽𝑗

4𝜏 2𝑗 − 𝜏 2𝑖+1

)︃

and choosing 𝜏𝑖 =
√︀
𝑙/𝑖 as before, we get

∑︀𝑙−1
𝑖=0 𝛽𝑖 = 1

𝑙

∑︀𝑙−1
𝑖=0 𝛾𝑖, where 𝛾0 = 1 and

𝛾𝑖 =
𝑖 + 4

4
·

(︃
𝑖

𝑖 + 1
−

𝑖−1∑︁
𝑗=1

4𝛾𝑗
4𝑖− 𝑗 + 4

)︃
.

This sequence seemingly converges to a real number between 0.86 and 0.87, and the

following Lemma can be proved similarly to Lemma 2.3.7.

Lemma 2.3.10.

lim
𝑖→∞

𝛾𝑖 =
1

4 ln 4
3

(and thus
𝑙−1∑︁
𝑖=0

𝛽𝑖 →
1

4 ln 4
3

≈ 0.869)

39

For instance, taking 𝑙 = 146 we obtain

𝜌0 ≤
0.87

𝑐2
+ 𝑂

(︂
1

𝑐3

)︂
+ 𝑜𝑐(1).

40

Chapter 3

Conclusions and open problems

In this thesis we showed that data-dependent space partitioning can be beneficial for

the Approximate Near Neighbor data structures.

One can ask the following natural question: can one improve our bounds on

the exponent? We strongly suspect that the answer is positive. The first step might

be to look at the following random instance. We consider a sphere of radius 𝑐𝑟/
√

2

and sample 𝑛 points on it at random. This way we obtain our dataset 𝑃 . To generate

a query, we choose a random point 𝑝 ∈ 𝑃 and plant a point in 𝐵(𝑝, 𝑟). It can be

shown that Lemma 2.2.8 gives the exponent around 1/(2𝑐2) for this case. It might be

natural to try to improve it.

The second immediate question is what are the limitations of data-dependent

partitioning? On one extreme, we can compute Voronoi diagram of 𝑃 , which has

exponential complexity, but partitions R𝑑 perfectly. What are the other possibilities?

The third question is can we perform instance-by-instance analysis of some

partitioning scheme? For example, it would be great to introduce a parameter of

an instance and prove that the exponent 𝜌0 we can achieve in (2.7) depends on this

parameter.

41

42

Bibliography

[1] Frontiers in Massive Data Analysis. The National Academies Press, 2013.

[2] Alexandr Andoni. Nearest Neighbor Search: the Old, the New, and the Impossi-
ble. PhD thesis, Massachusetts Institute of Technology, 2009.

[3] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approx-
imate nearest neighbor in high dimensions. In Proceedings of the 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS ’2006), pages
459–468, 2006.

[4] Alexandr Andoni, Piotr Indyk, Huy L. Nguyen, and Ilya Razenshteyn. Beyond
locality-sensitive hashing. In Proceedings of the 25th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA ’2014), pages 1018–1028, 2014.

[5] Andrei Z. Broder. Filtering near-duplicate documents. Proceedings of the 1st
International Conference on Fun with Algorithms (FUN ’1998), 1998.

[6] Andrea Califano and Isidore Rigoutsos. FLASH: a fast look-up algorithm for
string homology. In Proceedings of the 1st International Conference on Intelligent
Systems for Molecular Biology (ISMB ’1993), pages 56–64, 1993.

[7] Kenneth L. Clarkson. A randomized algorithm for closest-point queries. SIAM
Journal on Computing, 17(4):830–847, 1988.

[8] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures and Algorithms, 22(1):60–65,
2003.

[9] Moshe Dubiner. Bucketing coding and information theory for the statistical
highdimensional nearest-neighbor problem. IEEE Transactions on Information
Theory, 56(8):4166–4179, 2010.

[10] Daniel H. Greene, Michal Parnas, and F. Frances Yao. Multi-index hashing for
information retrieval. In Proceedings of the 35th Annual IEEE Symposium on
Foundations of Computer Science (FOCS ’1994), pages 722–731, 1994.

[11] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric algorithms
and combinatorial optimization. Springer-Verlag, 1988.

43

[12] Sariel Har-Peled, Piotr Indyk, and Rajeev Motwani. Approximate nearest neigh-
bor: towards removing the curse of dimensionality. Theory of Computing,
8(1):321–350, 2012.

[13] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-
moving the curse of dimensionality. In Proceedings of the 30th ACM Symposium
on the Theory of Computing (STOC ’1998), pages 604–613, 1998.

[14] William B. Johnson and Joram Lindenstrauss. Extensions of Lipschitz mappings
into a Hilbert space. In Conference in modern analysis and probability (New
Haven, Connecticut, 1982), volume 26 of Contemporary Mathematics, pages 189–
206. 1984.

[15] David R. Karger, Rajeev Motwani, and Madhu Sudan. Approximate graph
coloring by semidefinite programming. Journal of the ACM, 45(2):246–265, 1998.

[16] Richard M. Karp, Orli Waarts, and Geoffrey Zweig. The bit vector intersec-
tion problem (preliminary version). In Proceedings of the 36th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’1995), pages 621–630,
1995.

[17] Nathan Linial, Eran London, and Yuri Rabinovich. The geometry of graphs and
some of its algorithmic applications. Combinatorica, 15(2):215–245, 1995.

[18] Jiří Matoušek. Lectures on Discrete Geometry. Springer, 2002.

[19] James McNames. A fast nearest-neighbor algorithm based on a principal axis
search tree. IEEE Transactions on Pattern Analysis and Machine Intelligence,
23(9):964–976, 2001.

[20] Stefan Meiser. Point location in arrangements of hyperplanes. Information and
Computation, 106(2):286–303, 1993.

[21] Rajeev Motwani, Rina Panigrahy, and Assaf Naor. Lower bounds on locality
sensitive hashing. SIAM Journal on Discrete Mathematics, 21(4):930–935, 2007.

[22] Ryan O’Donnell, Yi Wu, and Yuan Zhou. Optimal lower bounds for locality sen-
sitive hashing (except when q is tiny). In Proceedings of Innovations in Computer
Science (ICS ’2011), pages 275–283, 2011.

[23] Rina Panigrahy, Kunal Talwar, and Udi Wieder. A geometric approach to lower
bounds for approximate near-neighbor search and partial match. In Proceed-
ings of the 49th Annual IEEE Symposium on Foundations of Computer Science
(FOCS ’2008), pages 414–423, 2008.

[24] Rina Panigrahy, Kunal Talwar, and Udi Wieder. Lower bounds on near neighbor
search via metric expansion. In Proceedings of the 51st Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’2010), pages 805–814, 2010.

44

[25] Ramamohan Paturi, Sanguthevar Rajasekaran, and John H. Reif. The light bulb
problem. Information and Computation, 117(2):187–192, 1995.

[26] Ruslan Salakhutdinov and Geoffrey E. Hinton. Semantic hashing. International
Journal of Approximate Reasoning, 50(7):969–978, 2009.

[27] Luke Schaeffer. Personal communication, 2014.

[28] Robert F. Sproull. Refinements to nearest-neighbor searching in 𝑘-dimensional
trees. Algorithmica, 6(1-6):579–589, 1991.

[29] Gregory Valiant. Finding correlations in subquadratic time, with applications to
learning parities and juntas. In Proceedings of the 53rd Annual IEEE Symposium
on Foundations of Computer Science (FOCS ’2012), pages 11–20, 2012.

[30] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial partition
trees are adaptive to intrinsic dimension? In Proceedings of the 25th Conference
on Uncertainty in Artificial Intelligence (UAI ’2009), pages 565–574, 2009.

[31] Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. In Pro-
ceedings of 22nd Annual Conference on Neural Information Processing Systems
(NIPS ’2008), pages 1753–1760, 2008.

[32] Jay Yagnik, Dennis Strelow, David A. Ross, and Ruei-Sung Lin. The power of
comparative reasoning. In Proceedings of 13th IEEE International Conference
on Computer Vision (ICCV ’2011), pages 2431–2438, 2011.

45

	Introduction
	Intuition behind the improvement
	Roadmap

	Approximate Near Neighbor
	Preliminaries
	The case of low diameter
	Sphere
	Spherical shell
	Ball

	The general case
	Intuition
	Construction
	Analysis
	Computing 0
	Choosing distance scales
	Performance
	The resulting data structure
	Quasi-linear time preprocessing

	Conclusions and open problems

