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Abstract

Most modern era software-enabled, electro-mechanical systems are becoming more
complex as we demand more performance and better lifecycle properties (e.g. robustness)
from them. As a consequence system development projects are becoming increasingly
challenging and are falling behind in terms of schedule and cost performance.

The complexity of technical systems depends on the quantity of different elements and their
connectivity, i.e.,, complexity means a measurable system characteristic. There are three
main dimensions of complexity that emerged in the context of system design and
development: (1) Structural Complexity; (2) Dynamic Complexity and (3) Organizational
Complexity. Structural complexity pertains to the underlying system architecture or more
generally, the enabling infrastructure. Dynamic complexity refers to the complexity of the
system behavior or process running on the underlying infrastructure. Organizational
Complexity relates to the system development process and the organizational structure of
the development team.

This dissertation primarily focuses on developing a theoretical framework for structural
complexity quantification of engineered systems and subsequently a complexity-based
design paradigm of interconnected, complex engineered system.

There are four distinct thematic parts in this dissertation: (i) theoretical development of the
proposed structural complexity metric, including the metric’s qualification as a valid
complexity measure based on its mathematical properties; (ii) empirical validation of the
proposed complexity metric based on simple experiments and application of the
methodology to compute structural complexity of complex engineered systems like jet
engines and advanced printing systems; (iii) systemic implications from a complexity
management standpoint, including introduction of complexity budgeting for system
development and linking actual complexity to human perception of complexity through the
notion of complicatedness, and (iv) extension of the proposed metric to system-of-systems
and a computational framework for measuring dynamic complexity.

The topological complexity metric, C; is shown to clearly distinguish between system
architectural regimes (e.g., centralized, hierarchical, transitional and distributed). The ball
and stick experiment empirically establishes the super-linear relationship between
structural complexity (X) and development effort (Y) with exponent, b=1.48.

Thesis Supervisor: Olivier L. de Weck
Professor of Aeronautics and Astronautics and Engineering Systems
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Chapter 1

Introduction

Today’s large-scale engineered systems are becoming increasingly complex
due to numerous reasons including increasing demands on performance, and
improved lifecycle properties. As a consequence, large product development
projects are becoming increasingly challenging and are falling behind in terms of
schedule and cost performance. For example, in 13 aerospace projects reviewed by
the US Government Accountability Office (GAO) since 2008, large development cost
growth of about 55% was observed. The fundamental tenet of this thesis is that such
large development cost overruns can largely be attributed to our current inability to
characterize, quantify and manage system complexity [DARPA report, 2011]. With
increasing complexity of engineered systems, typically the associated Life Cycle Cost
(LCC) also increases [Sheard and Mostashari, 2009].

The complexity of today’s highly engineered products and systems is rooted
in the interwoven web defined by its components and their interactions. Today'‘s
engineered systems are hard to design and maintain since they are complicated as
well as complex. Modern systems are complicated in the sense that they typically
exceed the bounds of human understanding in a sense that they are so large or
detailed that no single individual can understand how they work [Sturtevant 2013].
Only collectively as teams and organizations of individuals are we able to bring
these systems into being. By complex, we mean that interactions between parts can
result in unexpected behavior that is difficult to anticipate and which can threaten
safe and reliable operations. One of the defining features of complex systems is that
they are often interconnected in ways that enable unanticipated behavior to emerge

as a result of unanticipated interactions between system components. Because of
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this emergent behavior, the whole often does not behave in a manner that would
follow directly from the independent functioning of its constituent parts. Keeping
complexity under control is paramount as overly complex systems carry a variety of
costs and risks. They are more expensive to design, harder to maintain, and can be
more prone to unanticipated failure.

System complexity can add value as well in terms of enhanced performance
and robustness. Over the last century, increasingly complex machines and
infrastructures have provided new capabilities that were previously unimaginable.
Examples are the human landings on the Moon between 1962-1972 (Project Apollo)
as well as the recent complete decoding of human DNA using sequencing machines.
While complexity can be costly, a higher complexity system may very well be worth
the price of this additional complexity if the added functionality and improved
performance gains outweigh the negatives. A natural tradeoff therefore exists
between enabling valuable functionality or performance characteristics while
keeping complexity under control.

Complexity across different regions of the same system can vary widely. In
the continuous battle to constrain and channel the behavior of a large system so that
complexity is appropriately managed, development of appropriate complexity
quantification techniques is of primary interest in the context of large, complex
system development efforts. In the context of system/product design, the challenge
of quantification and efficient management of system complexity is a central theme.

The difficulty is that we require a clear definition for complexity, particularly
one that is measurable and objective. By objective, we mean that two observers
tasked with quantifying complexity using identical inputs will arrive at an identical -
or at least similar conclusion. An appropriate summary of the issue is reflected in
the assertion “I can't define it for you, but I know it when I see it.” [Corning 1998]. A
root cause in this lack of unified definitions is that there are in fact several types of
complexity.

There are different facets of complexity and it is therefore important to
specify which one of these is the focus of this thesis. In the context of a complex

engineered system design and development effort, we can categorize the associated
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complexities into (i) internal and (ii) external. There are three main dimensions of
internal complexity that emerge from existing literature in the context of system
design and development - (1) Structural Complexity; (2) Functional or
Dynamic Complexity and (3) Organizational Complexity [Malik F. 2003, Weber C.
2005, Riedl 2000, Lindemann 2009]. These three aspects of complexity are

described in fig. 1.1 below with arrows showing their observed correlations
[Lindemann 2009].

Functional
Complexity

Q
S
)
%%, e
3 59" 3
<7 © O o3
~ — = =
%O— o®
5 €
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= ~

-~ Team structure, interaction ~>._
*a Structural

Complexity Complexity

Organizational

Develop system, dev. effort

NRE ($)

Fig. 1.1: Interplay among three main dimensions of complexity in system/product development
context. NRE stands for the Non-Recurrent Engineering Cost/Effort.

Functional or dynamic complexity is driven by the requirements that the
system must satisfy and how they are satisfied. The functional or dynamic
complexity is driven by what the system does (i.e. its functions as well as the chosen
concept). A system is deemed dynamically complex if its external
behavior/dynamics is difficult to describe and predict effectively. Since the system
behavior is described over an operational envelope of the system, dynamic
complexity is an implicit function of this envelope. If changes in the operational
envelope impacts system behavior significantly, the dynamic complexity is likely to
change significantly as manifestation of changes in system behavior over the current

operational envelope. Please note that the system behavior is often bounded by the
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underlying system architecture and therefore, dynamic complexity possesses a
strong positive correlation with structural complexity. There are two primary
sources of dynamic complexity: (i) interactivity among functional attributes and (ii)
uncertainties in their interactions.

There is strong interdependence between functional/dynamic and structural
complexity (they relate to the interplay between form and function). The functions
and behavior of the system are enabled by components. Structural complexity
characterizes the system architecture (i.e., the pattern of interactions amongst the
functionality enabling components).

A system is structurally complex if it has numerous components whose

interaction is difficult to describe or understand. Structural complexity relates to the
notion of the architecture of a system, which is a skeleton that connects the
components of the system. Therefore, in a sense, structural complexity represents
complexity determined by the form. Given a set of basic functions, there are multiple
forms that can perform that set of functions. An example is the function of slowing
food spoilage. Over millennia humans have developed numerous concepts for
achieving this particular function - cooling, freezing, irradiating, salting, canning and
vacuum-packing the food. Achieving the desired functionality and system behavior
with minimal structural complexity becomes an important criterion for down-
selection of design/architectural concept.
Designs that require more than 73 =~ 300 atomic components require teams of
designers which can be organized in different ways [de Weck et al, 2011].
Organizational Complexity therefore relates to the system development process and
the organizational structure of the development team. Organizational structure
often mirrors the system’s architecture and is thereby closely related to structural
complexity. The fig. 1.2 below describes a complexity typology for engineered
complex systems from a system design and development perspective.

The longer-term dynamic complexity includes external complexities that
stem from market dynamic, stakeholder mechanism, etc. and is not considered

hereafter in this thesis. In general, it has been observed that structural complexity
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strongly correlates with organizational complexity [Conway 1968; MacCormack et.

al, 2011] and also dynamic complexity [Riedl 2000, Lindemann et al., 2009].

Component
/ (Size)

L—2 Interfaces

W Structural
has / Complexity
Engineering System \
\ Arch.
had Topology
Dynamic
created via Complexity Interaction
»  (short-term) x Structure
/ \
I \
I : -
I Interaction
‘\ I Uncertainty
System Dev. Org. has \ ry
Organizational
Complexity

Fig. 1.2: Complexity Typology for Engineered Systems [adapted from Sheard and Mostashari, 2009].

The system functionality is enabled by the underlying system architecture.
The system architecture has significant impact on both traditional properties like
performance measures that can be observed in the short-term as well as longer-
term properties like the “ilities” [de Weck et al, 2012]. The system architecture
impacts the complexity of the system during its initial design phase, during
implementation and during the changes that will occur in its lifetime.

As we stretch the limits of efficiency and attempt to design more robust
systems, it tends to make the architecture more complex [Carlson and Doyle 2002].
While targeting to reduce complexity, ideally towards an unknown level of essential
complexity  [Crawley, 2007], is important, the addition of new
functionality/performance requirements generally drives complexity up [Doyle
2002; Dan Frey et al,, 2007]. Increased performance and robustness usually are the

upsides of increased complexity in engineered complex systems [Doyle 2002].
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The external complexities relates to facets that are usually not under control
of the system development organization. They typically include complexities
associated with funding mechanisms, market dynamics, political and institutional
complexities, etc. They are much larger in scope and usually tend to encompass very
large-scale projects [Sussman 2000]. In this thesis, we are primarily concerned with
the internal complexities that are largely under control of the development team or

organization entrusted with development of a particular engineered system.

1.1 Thesis Objectives and Contributions

The primary objective of this research is to develop a rigorous, quantifiable and
repeatable measure for structural complexity of an engineered complex system. This
work strives to bridge the current gap between the theoretical formulation of
complexity metrics and their practical applicability to real-world system
development. Such a complexity measure shall be computed and traced during the
course of system design and development. It can also become a key element of any
complexity-inclusive system optimization methodology/framework where different
system architectures can be traded for system complexity, in addition to
performance and lifecycle-driven measures. The proposed complexity metric is
expected to apply to a large class of cyber-physical systems.

The primary contributions of this thesis are summarized below and will be

discussed in greater detail in Chapter 8.

1. To develop a rigorous and quantitative structural complexity metric for
architecture evaluation and optimization, incorporating the fundamental
underlying characteristics of system architectures. This lends objectivity to
the process of system architecture selection and design.

2. To establish a relationship between the development cost/effort of a system
and the underlying structural complexity. Empirical validation of the
hypothesis that the cost/effort scales super-linearly with structural

complexity by performing a set of simple experiments involving assembly of
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molecular structures. Empirical evidence of such behavior is presented using
case studies across a realm of real-world engineered systems.

3. Introduce the notion of structural complexity distribution across the system
architecture and how this impacts strategic decisions in system development
efforts. Extend the structural complexity quantification to system of systems,
and describe the source of integrative complexity that cannot be attributed to
the individual systems.

4. Demonstrate extension of structural complexity estimation framework to
characterize short-term (governed by physics of the system) dynamic

complexity of physical systems.

1.2 Thesis Outline

A compact roadmap of the thesis is provided in fig. 1.3 below. The next chapter
introduces the notion of complexity as applied to engineering systems and provides
an analysis of the existing literature on this topic. Chapter 3 presents the
formulation of the structural complexity metric, its properties and associated
methodological framework used throughout the thesis. Chapter 4 illustrates the
empirical validation of the proposed structural complexity metric relating system
level observables like development cost and defects to structural complexity
respectively. Chapter 5 illustrates application of the metric to case studies across a
set of real-world engineered systems. Chapter 6 introduces the notion of structural
complexity distribution across the system architecture, including its relationship to
modularity and applications to System of Systems (SoS) and how this impacts
strategic decisions in system development efforts. Chapter 7 presents extensions of
the methodology to develop a related dynamic complexity metric, which looks only
at the functional and behavioral aspects of the system. Finally, Chapter 8 concludes

the thesis with a summary, contributions, and suggestions for future work.
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Fig. 1.3: Thesis Roadmap.
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Chapter 2

Complexity in Engineered Systems

Today's engineered systems are hard to design and maintain since they are
complicated and they are complex. Modern systems are complicated in the sense that
they have far exceeded the bounds of a single human’s understanding in a sense that
they are so large or detailed that no single individual can understand how they
work. The complexity of today’s highly engineered products is rooted in the
interwoven web defined by its components and their interactions. Keeping
complexity under control is paramount as overly complex systems carry a variety of
costs and risks, and are more expensive to design, harder to maintain, and can be
prone to unanticipated failure.

The aspect of cost of complexity was mentioned by Norman Augustine
[Augustine,1997], where he commented - “In the year 2054, the entire defense

)

budget will purchase just one aircraft---”. He also predicted that, if the same trend
continues, by another 100 years, the entire GNP (i.e., Gross National Product) of the
US would buy only one fighter airplane (see fig. 2.1 below). This aspect was dealt in

detail in the RAND Corporation report [Arena et al., 2008].
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Fig. 2.1: Cost of fighter aircrafts against their year of entry into service. Assuming same cost
escalation pattern, the entire defense budget of the US will be spent on buying only one fighter

aircraft by 2054 and by 2150, it would require the entire GNP of the US.

This brought forth the impact of cost of complexity on the overall price
escalation for two fighter aircraft programs and showed the contribution of system
complexity to the overall price escalation (see fig. 2.2 below). The cost of complexity
was estimated by subtracting the sum of costs due to other cost drivers from the

total cost.

Contributors to Price Escalation from the F-15A (1975) to the F-22A (2005)
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Fig. 2.2: Complexity is a major source for price escalation for fighter aircrafts [RAND Corporation

report, Arena et al., 2008].

26



There are numerous other examples with most chronicled examples coming
from NASA and other government-funded programs [Butts and Linton, 2009]. There
have been instances of entire programs being cancelled due to cost escalation. Most
programs discussed in this report had a substantial enhancement in system’s
capabilities and also reported to have witnessed significant increase in complexity.
There is a hint of strong positive correlation between the functional capabilities and
complexity of systems, in line with predictions in the previous chapter. While
complexity can be costly, a higher complexity system may very well be worth the
price of this additional complexity if the performance and efficiency gains outweigh
the negatives. A natural tradeoff therefore exists between enabling valuable
functionality or performance characteristics while keeping complexity under
control. In order to constrain and actively manage the complexity, development of
appropriate complexity quantification technique is of primary interest.

Most modern era software-enabled, electro-mechanical products are
becoming more and more complex as we demand more performance and better
lifecycle properties (e.g. robustness) from them [Arthur 1993, Frey et al, 2007].
This point was argued for in the explicit case of aircraft engines [Frey et al, 2007]
and also in other natural, technological and biological systems [Carlson and Doyle,
2002]. As a consequence system development projects are becoming increasingly
challenging and are falling behind in terms of schedule and cost performance
[DARPA, 2011]. There is consensus that this is due to our poor understanding and
insufficient ability to measure and manage complexity [Arena et al, 2008; DARPA,
2011].

As discussed in the previous chapter, there are the three main dimensions of
complexity that emerged in the context of system design and development can be
grouped as (1) Structural Complexity; (2) Dynamic Complexity and (3)
Organizational Complexity [Malik F. 2003, Weber C. 2005, Riedl 2000, Lindemann
2009]. All three dimensions of complexity described above are positively correlated

among themselves [Conway 1968; MacCormack et. al, 2011, Riedl 2000, Lindemann
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et al., 2009]. This means that as one type of complexity increases, others tend to
follow suit.

In this research, we focus on Structural Complexity. Structural complexity
characterizes the system’s architecture. A system is structurally complex if it has
numerous components whose interactions are difficult to describe or understand.
Structural complexity relates to the notion of the architecture of a system, which is a
skeleton connecting the components of the system. Therefore, in a sense, structural
complexity represents complexity induced by the form or objects that compose the

system [Dori, 2002].

2.1 Why measure Complexity?

Two things that make today’s systems challenging to design and maintain are
that they are complicated and they are complex. By complicated, we mean that they
are so large or detailed that no single individual can fully understand how they
work. By complex, we often mean that interactions between parts can result in
unexpected behavior that is difficult to anticipate and which can threaten safe and
reliable operation [Sturtevant 2013]. This was not always the case. During the time
period since the beginning of the Industrial Revolution until the advent of complex
systems in the early twentieth century, many individuals running design and
manufacturing organizations were capable of fully understanding their processes
and products. During this “epoch of great inventions and artifacts” [de Weck et al,
2011], large hierarchically structured organizations grew by taking advantage of
differentiated labor and interchangeable parts [Smith, 1985].

The design process, however, remained in the hands of small groups of
people. Once a problem was understood, managers coped with the demands of
accomplishing a large task by dividing it until each sub-task was small enough for a
person or team to handle. Hierarchical control, division of task, and assembly of
standard parts led from Adam Smith to Ford‘s assembly line, and Edison's
electrification at the turn of the twentieth century. Then something began to change.

Systems such as the telephone network [Fagen et al. 1975] seemed to increasingly
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resist reductionist approaches. The process of designing and operating modern
machines began to change in fundamental ways [de Weck et al. 2011].

The technical knowledge required to complete a modern system's design is
much larger than could be learned by a single person over the course of a lifetime.
These systems have far exceeded the bounds of human understanding [Crawley
2007, Sussman 1999]. Complicated systems sometimes consist of large numbers of
components connected in different ways. Hundreds of engineers make intellectual
contributions to the design of these artifacts. As a result, it is no longer only the
organization, the product, and the production process that must be decomposed.
The design process itself must be subdivided and allocated to large groups of people
with different skills. Those charged with designing and evolving a complicated
system must grope for means of managing the structure of the design process (the
layout of teams and the communication channels between them) even though
everyone involved has only partial visibility [Sturtevant 2013]. It is often now
difficult for a group of engineers to really know if a flaw in the decomposition of the
design organization will lead them to miss opportunities to create a good technical
structure, or if the collective “unknown-unknowns” will wreak havoc on the end
result [Baldwin and Clark 1999].

A defining feature of complex systems is that of emergent behavior - the idea
that the whole often does not behave in a manner that logically follows from the
independent functioning of its parts [Sturtevant 2013]. The need to avoid or control
emergent behavior (to prevent defects or disasters) or the desire to find and exploit
it requires modern organizations to employ strategies, processes, and structures
beyond hierarchical reductionism. Some properties that we require in our complex
systems - such as safety - cannot be obtained by assigning responsibility to a single
group because they are systemic in nature [Leveson 2004]. Accidents often result
from unanticipated interactions between parts, not from problems identifiable
within individual components [Leveson 2004].

A major goal in complex engineered systems is to manage structural
complexity so as to keep the dynamic and emergent complexity of a system well

understood and under control. As we observe, the more complex the system, the
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more expensive is the design and implementation effort. Measuring and
understanding the complexity of a proposed system’s architecture is, however, very
important for the whole system development enterprise. There is a multitude of
reasons for worrying over and measuring complexity. Many complexity measures in
use today are based on anecdotal evidence or intuitive reasoning, due to a lack of
detailed, controlled experiments. There are quite natural reasons for this. Large
systems development projects are relatively rare and not easily repeatable, making
empirical (comparative) studies hard to perform. Consequently, there are no widely

agreed upon or standardized complexity measures for engineered systems.

2.2 Complexity and Development Cost:

According to Rechtin [Rechtin 2002], the more complex a system, the more
difficult it is to design, build and use, and, intuitively, the more difficult a task, the
more expensive it is, if not for any other reason than requiring access to select
experts or lots of time to complete all the task involved. Beyond simply requiring a
large amount of time for designing and integrating components, complex systems
present intricate topologies or patterns that challenge their designers and lead to
lower levels or productivity and higher error rates during development as will be
shown later in this thesis.

The systems architecting phase usually consumes only a very small amount
of the total development budget, but deciding the architecture determines most of
the total development cost. According to [Simmons et al. 2005] systems architecting
decisions are made after using often less than 1 percent of the total cost and they
define up to 80 percent of the total cost. This is because changing a system’s
architecture later during development is very expensive. Therefore, it is prudent to
try to avoid mistakes in systems architecting.

Measuring complexity, and trying to reduce complexity as much as possible
while still meeting functional requirements or performance targets, is one way of
avoiding mistakes. The same reasoning is found in [Muller 2005], where Muller

writes, “an enabling factor for an optimal result is simplicity of all technical aspects.
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Any unnecessary complexity is a risk for the final result and lowers the overall
efficiency”. Meyer [Meyer and Lehnerd 1997] argues that: “Reducing complexity
almost always reduces direct and indirect costs. Complexity fuels those costs, which
grow geometrically if not exponentially. Every additional part requires that it be made
or purchased requiring time, people, and capital. Greater complexity means more
purchase orders and more stockroom space”.

Furthermore, architectural complexity spills over to the organizational
design: “The complexity of architecture will be mirrored in the firm's organizational
complexity”. Liebeck (Boeing) also emphasizes the need to consider the whole
product system, not only the product itself - the more complex the product, the
more complex the supporting systems and the whole product system.

According to Lankford [Lankford 2003], if a subsystem is significantly more
complex that the other parts of the system, it is likely to be more problematic over
the entire development and maintenance process. This is especially true if resources
and attention are divided irrespectively of the distribution of complexity. Therefore,
given a measure of complexity, systems architects and product development
managers should strive for a more deliberate or possibly an even distribution of
complexity across the system. If this is not possible, they should devote extra
resources and attention to the more complex subsystems.

McCabe [McCabe and Butler 1989] state that measuring complexity of a
design is essential in being able to predict the cost and time needed to implement
the design. They say that before proceeding to implement the design, one must
understand the complexity of it. McCabe introduced cyclomatic complexity, which is
the number of linearly independent paths in a software code, as a measure of
software complexity. This metric has been generalized as a network-based
complexity metric, which measures the number of linearly independent cycles
present in the network. Let us think of a network with n nodes and m links. The
cyclomatic complexity for this simple, connected network is given as (m-n+1).

Understanding the complexity of design also gives us a hint, whether the
design as such is comprehensible for humans. Empirical studies on software

systems referred to in [McCabe and Butler 1989], show a strong positive correlation

31



between complexity and number of errors found in the implemented system (see

fig. 2.3 below).
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Fig. 2.3: Empirical data on error-rate vs. cyclomatic complexity for software systems [Chapman and

Soloman, 2012].

Measuring complexity of problematic subsystems gives an idea whether the
problems are inherent in the design or somewhere else (i.e., level of expertise or
experience of the development team in charge of a given subsystem). Complexity
measurement is also important, when developing new versions of existing products.
While trying to minimize complexity for a given level functionality and performance
is important, the addition of new functionality usually results in increased
complexity. Measuring complexity of an existing product is important and can be
done while updating design documentation at the end of product development
projects.

If complexity has increased significantly, trying to reduce it during
development of the succeeding versions is very important in a continuous
development process. A good example in this context is that of the Swiss
watchmaker, Swatch. The fig. 2.4 below shows how Swatch reduced the parts count
from 91 to 51 and number of assemblies from 55 to 29, eliminating 40 components

and 26 assembly operations over a generation of the same product.
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Fig. 2.4: The more traditional design with 91 parts and 55 assemblies vis-a-vis new Swatch design

with 51 parts and just 26 assemblies [Andreasen and Ahm, 1988].

The reduction in part count and associated architectural changes led to
effective complexity control and reduced production cost. In the new design,
components become more multifunctional and the number of interfaces has also
reduced. The individual components and the interfaces themselves were more
complex on average, but the overall complexity was contained with more
centralized architecture. One drawback of the new design was that the watch could

no longer be dismantled [Andreasen and Ahm, 1988].

2.3 Complexity and Emergence in Engineering Systems:

Complexity is blamed for many problems in system development.
Measurement of complexity of systems, which could in theory lead to understanding

and possibly control of complexity, is problematic in practice. Difficulty arises in
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part because “even students and scholars in complexity...use the word ‘complexity’
to describe different ideas and perceptions.” [Suh, 2005].

In other words, complexity is a semantically overloaded term. Sometimes
complexity implies a large number of components. More often the problem lies in
how those components are interconnected, because interconnections, and the
architectures derived from them, can create emergent patterns and/or unintended
behaviors. Such patterns and behaviors are collectively termed as emergent property
of the system and can lead to both, positive and negative consequences.

A good example of emergent property can be found in the World Wide Web
[Corning, 1998; Fisher, 2006]. World Wide Web is a layered system that provides
services globally [Fisher, 2006]. Internet Protocol (IP) routing in the Internet is a
particularly good example of an emergent global service. No IP router knows the
complete topology of interconnections for the Internet or even the configuration of
local interconnections in its own neighborhood. Because the configuration of links
among routers changes continuously, as does the available bandwidth on a given
link, routing tables always correspond to an earlier configuration. And yet, IP
routing is a reliable and efficient process that predictably gets messages from their
source to their intended destination. Each IP router along the path of a message
decides which of its immediate neighbor routers will constitute the next hop
without knowledge of routers or likely paths beyond that immediate neighbor. IP
routing, like most emergent services, must operate with incomplete, imprecise, and
outdated information; yet able to provide efficient and predictable functionality. IP
routing implementations do not guarantee optimal paths and in particular, they
generate paths whose lengths are strictly less than order n where n is the total
number of possible destinations. The Internet must be able to dynamically adapt to
accidents, user errors, equipment failures, natural disasters, and attacks by
intelligent adversaries. IP routing manages this tradeoff between performance and
adaptability in a way that, while adaptable and suboptimal, is always scalable and

affordable without risk of local routing errors cascading into system-wide failures.
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This contrasts with the electric power grid where issues of local and global
performance are often in conflict, leading at times to widespread power outages as
chronicled in literature [Buldyrev et al, 2010].

A good example of unintended behavior is often manifested in our
transportation systems, on ground or air transportation. Let us consider the
national highway system. Under light traffic, minor braking and acceleration among
the various vehicles go largely unnoticed. As traffic increases, this braking and
acceleration has a traffic wave effect through the entire system. Similar kind of
emergent behavior can be seen throughout most other engineered complex systems
(or in System-of-Systems), such as air traffic control, aircraft development,
automotive system development, and data-centric systems.

Another example is that of autonomous systems operating in the terminal
area of an airport. As the dynamic, integrated, and rapidly changing environment of
terminal area traffic fluctuates, the systemic interactions can lead to unpredictable
results from autonomous systems. This lack of predictability (and non-
determinism) causes a lack of trust and difficulty in certifying these systems. A
detailed account of emergent characteristics in different engineered complex
systems and in system of systems can be found in [Fisher, 2006].

Emergence in the context of system architecture is related to the internal
connectivity structure among components and is not just the number of connections
between components; it is also about how these connections are organized. It
relates to the internal organization or topology of the connectivity structure. Apart
from the examples of emergence described before, discontinuities are most
dramatically visible among nonlinear emergent properties. A physical example
occurs in the stalling of an aircraft. At small angles, the lift and (indirectly) altitude
of the aircraft increase with the inclination of the wing. At larger angles, however,
turbulence in front of the wing causes abrupt loss of lift [Anderson, 2010].

We can categorize emergence into (i) weak emergence and (ii) strong
emergence. Weak emergence describes new properties arising in systems as a result
of the interactions at an elemental level. But if, on the other hand, systems can have

qualities not directly traceable to the system's individual components, but rather to
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how those components interact, and one is willing to accept that a system
supervenes on its components, then it is difficult to account for an emergent
property's cause. These new qualities are irreducible to the system's constituent
parts [Laughlin 2005]. The whole is greater than the sum of its parts. This view of
emergence is called strong emergence.

The likelihood of emergence is embedded in the system architecture through
the connectivity information. It is about the extent of global connectivity
information that can be inferred from only the local connectivity information. It is a
topological property of the underlying system architecture and in a more general
setting, relates to a combination of topology and behavioral aspects of individual
components. In case of a centralized architecture or architecture with
replicated/symmetric structures we may be able to effectively reduce the system
and can still learn a lot about the architecture.

Sometimes the system itself may be well understood, but the problem of
developing the system is complex because of the number of teams, contractors or
the number of tasks in the development schedule, dependencies among these nodes,
or socio-political aspects of the development effort.

Complexity was identified as a major problem in the postwar effort when
large aerospace and computer systems required coordination of thousands of
engineers [Hughes, 1998]. Whatever the type of complexity (in fact, the type is
usually unspecified), the complexity of a system is correlated to: (a) product life
cycle costs; (b) difficulty of getting engineering changes implemented (in fact,
excessive complexity can generate changes which in turn further increase the
complexity of the system); (c) need for sophisticated manufacturing tools and
technologies; (d) difficulty in servicing (leading to new failure modes); (e) need for a
complex, and therefore costly, design process; etc.

In order to be able to understand or fix these problems, engineers need to
understand what complexity is and how to measure it. Thus the need for an

objective, quantitative and repeatable measure of structural complexity.
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2.4 Networks and Engineering Systems

System engineers have begun to lean heavily on the language and
mathematics of graphs and networks when describing engineering systems and
their properties. A monograph about system architecture released by MIT [Whitney
et al., 2004] employs the term network 40 times. This makes sense because many
important engineering systems, including the Internet, are really technical networks
[Mahadevan et al. 2006].

The monograph on system architecture tells us that, “some architectures can
be represented fairly completely as networks. In such cases, a lot can be determined
about their behavior from graph theory”. After all, if architecture is an “abstract
descriptions of entities... and [their] relationships”, then a network - defined by its
nodes and edges, is a natural corollary. In addition, the authors argue persuasively
that many of the properties we care to measure and manage over a system's
lifecycle including “robustness, adaptability, flexibility, safety, and scalability... might
be measured using network models of a particular architecture.”

Methods for complexity quantification should include the intricateness (i.e.,
having many complexly arranged elements that is comprehensible only with
painstaking effort) of the structural connectivity patterns observed in modern
engineered systems. For example, if the architectures are nearly “tree-like”, the
impact of internal structure could be nominal but that is certainly not true for
modern day, large-scale engineered systems that are becoming architecturally more

distributed.

(a) (b) (c) (d)
Fig. 2.5: Structural patterns with increasing topological complexity [Bounova, 2010] - (a) star
network, (b) tree architecture, (c) hierarchical architecture with cross-links; (d) network with local

hubs. Please refer to section 2.8 for details on topological complexity and how it is computed.
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We argue that any representative complexity metric should therefore
explicitly account for the underlying pattern in the underlying connectivity
structure.

Although there is an extensive literature on complexity, so far it is relatively
fragmented. Especially the structural complexity measures are often simplistic and
only account for the number of components (nodes) and interfaces (edges), but not
the complexity contributions due to the pattern of interconnections. As the density
of interactions increases there appears to be an additional contribution to structural
complexity due to the inherent patterns in the connectivity structure that is only
poorly understood.

In particular, the consideration of network structures describing the
connectivity information among system components, i.e., their structural
complexity, attracts attention in various scientific works because dependency-based
system structures affect system characteristics and behavior [Riedl 2000]. Ulrich &
Probst define a system as consisting of parts which are linked to each other; the
interaction between these parts influences the system’s behavior. Ulrich & Probst
further mention dynamics as an important system characteristic [Ulrich & Probst
2001].

The term “structure” is directly linked to the definition of a system. The
existence of elements and relations between them automatically results in a
structure. Typically, the structure is seen as an attribute of the system and in a way
describes an inherent order. In the context of product design, a specific focus is
product architecture, which describes the dependency structure within components
of a product [Ulrich & Eppinger, 1995].

During the conceptualization and design of any large-scale engineered
systems, it is very important to adopt an architecture that is as simple as possible,
while being robust and efficient. In addition, there are additional constraints like
usability, extensibility etc. It is often perceived that as we stretch the limits of
efficiency and attempt to design more robust system, we tend to make architectures

more complex [Doyle and Carlson, 2002].
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2.5 Complexity and Cognition

The inherent human cognitive ability manifests itself through perceived
complexity. Perceived complexity is an observer-dependent property that
characterizes an actor’s/observer’s ability to unravel, understand and manage the
system under consideration.

In contrast, actual complexity is an inherent system property. For example,
the complexity of an automobile’s automatic transmission or a software
application’s code may be hidden from a user and it is perceived to be less complex
tan it actually is. Conversely a system may be perceived to be more complex than it
actually is by a novice observer while an expert observer may perceive that same
system to be less complex based on abstractions he or she may have formed in mind
over time.

The observer-dependent quantity that was considered in the above case was
not really complexity, but perceived complexity. Therefore separating perceived
complexity from actual complexity improves the clarity by which systems can be
described, analyzed and certain classes of system observables (e.g., like predicted
development cost or the number of rework iterations) be predicted [Tang and
Salminen, 2001]. We can think of perceived complexity as a conduit through which
complexity manifests itself at the level of system-level observables like the system
development cost [Tang and Salminen, 2001]. Therefore, complexity can be a
desirable property if it happens to enable functionality, but remains distinct from
perceived complexity [Ramasesh and Browning, 2012].

The notion of perceived complexity provides insights to the cognitive aspects
of the observer and his/her ability to handle a certain level of complexity.
Development of a rigorous measure for complexity helps in studying the interaction

of complexity and human cognitive ability in a quantitative fashion.

2.6 Existing Measures of Structural Complexity
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The system’s architecting/engineering communities have developed several
approaches for empirically measuring complexity of engineered systems.

The term “structure” is typically understood as the network formed by
dependencies between system elements and it represents a basic attribute of each
system. Like the terms “system” and “structure”, many definitions can be found for
the term “structural complexity”, and a number of disciplines focus on its different
aspects.

Malik defined the quantity of different states a system can assume [Malik
2003], as an important characteristic of complexity. Malik also mentions that
complexity originates from interactions between elements and notes the
importance of combinatorics for the determination of system complexity. There is a
difference between the “complexity of technical systems” and the “complexity of
components” [Lindemann 2009].

The complexity of components or objects is characterized by the parameters
like quantity of variables, completeness of understanding about the objects that
make up the system, etc. The complexity of technical systems depends on the
quantity of different elements and their connectivity, i.e., complexity refers to a
measurable system characteristic. This internal product architecture can be
represented by complex networks, which are graph-theoretic representations of
complex systems. The nodes, representing components of the systems, are
connected by links if there exists a physical interaction between such components.
Physical interactions can be of four primary types including a direct physical
connection (typically transmitting forces and/or moments), transfer of energy,
transfer of matter and transfer of information. For complex engineered systems, the
origin of emergence lies in non-local connectivity that a component might have with
the rest of the architecture (local neighborhood of a component consists of its direct
connections to its immediate neighbors and might extend to second level
neighbors). Such understanding vanishes as the underlying architecture becomes
more distributed, leading to larger structural complexity.

Before we look at the existing complexity measures in the literature, let us

enumerate the general requirements for any sensible complexity metric. Edmonds
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[Edmunds 1999] requires that a complexity measure must not depend on the
observer. This means that complexity is an objective and measurable quantity that
depends only on the system being measured. Primarily aimed at software systems,
McCabe [McCabe and Butler 1989] presented an informal set of desired properties
of complexity metrics.

More formally, Weyuker [Weyuker 1988], developed a formal set of nine
required properties of complexity metrics that can be used as the set of basic
minimal properties that a valid complexity measure must satisfy. We follow
Weyuker’s criteria and start with additional set of four more informal properties,
designated as desirable properties, and then move on to state the set of nine formal
properties that are used to establish mathematical validity of complexity measures
in a more formal way (see fig. 2.6 below).

In general, a complexity metric should possess the following set of desirable

characteristics [Bashir and Thomson, 1999]:

e Objective and mathematically rigorous.

e C(Correlate intuitively with the difficulty of comprehending, constructing or
reconstructing the system.

e Related to the effort required to integrate the system.

e Of operational help in the context of system development.

All these properties are clearly meaningful. A complexity metric should intuitively
correlate with the difficulty of comprehending and the ability to construct or
reconstruct the design. It is difficult to qualify the extent of what "intuitively" means
in this context.

Looking at the diagrammatic representation in fig. 2.6, the property set 1 act
as the primary filter that establishes the construct validity of a complexity measure.
This addresses the first bullet point and the property set 2 addresses the last three
bullet points mentioned above. The property set 3 includes any domain specific
considerations, if any, and might lead to a modified version of the structural

complexity metric.
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Prop. Set 1 Property Set 1: theoretical construct (Weyuker’s Criteria)

Property Set 2: Practicability perspective — easy to apply;
ability to reasonably differentiate between system
architectures; applicable to a wide variety of engineered
systems; makes intuitive sense
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Fig. 2.6: Characteristics of any proposed complexity metric - a filtering diagram.

Weyuker’s criteria represent a formal set of necessary properties any valid
complexity metric must satisfy. Let A and B be two different systems and K(A)
denotes the complexity of system A:

1. There exist A and B such that K(A) differs from K(B), for a metric, which gives
the same value for all systems is useless.

2. There are only finitely many systems of complexity c, for the metric should have a
range of values. Too narrow range of values is not practical.

3. There are distinct systems A and B for which K(4) = K(B), for a metric which
gives each system unique value is not useful since such a metric would be a
simple bijective mapping of systems.

4. There are functionally equivalent systems A and B for which K(4) # K(B), for the
structure of the system determines its complexity.

5. For all A and for all B, K(A) is smaller than K(AUB), and K(B) is smaller than

K(AUB), for a system is more complex than the union of its subsystems.
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6. There exists A, B, and O such that, K(4) = K(B) and K(AL0) # K(BLO), for O
may interact with 4 in different manner than with B. Namely, the interfaces
between 4 and O may be more complex than the interfaces between B and O.

7. There are systems A and B such that B is a permutation of components of A and
K(4) # K(B), for changing the way connecting the components to each other, may
change the level of complexity.

8. If A is a renaming of B, then K(A) = K(B), for complexity does not depend on the
naming of the system. This relates to the property of invariance under isomorphic
transformation.

9. There exist A and B such that K(4) + K(B) is smaller than K(AUB), for putting
systems together creates new interfaces. This pertains to the notion of “a system is

greater than the sum of its parts”.

In addition to the above necessary conditions for any structural complexity
metric, there are additional conditions or the sufficiency conditions that any
proposed complexity metric should satisfy. They include aspects of computability
and empirical validation using data from the real-world. The metric should be
applicable across a wide swath of systems, for example, say nano-systems and even
socio technical systems. Please note that the characterization of factors influencing
structural complexity could be vastly different across different classes of systems.

In the context of system/product design, there were various indicators used as a
complexity measure in practice. The application of complexity metrics was initiated
with the use of cyclomatic complexity in software system design [McCabe 1976]. This
metric can be traced to the first Betti number in algebraic topology and graph theory
[Munkres, 1993]. This metric measures the number of linearly independent
loops/cycles in the system architecture (applied primarily to software systems) and

can be measured by counting the number of interfaces and the number of
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components. In the context of electro-mechanical systems, the most prevalent
indicator has been the number of components in the system [Meyer and Lehnerd,
1997].

Suh [Suh 2005] based his theory of complexity on semantic theory of
information. He defines “complexity as a measure of uncertainty in achieving the
specified functional requirements”. The idea is that the greater the information
needed to achieve the functional requirement, the greater is the information content
(of the functional requirements) and thus the greater the complexity.

Crawley [Crawley, 2007] defines complex systems as “having many interrelated,
interconnected, or interwoven elements and interfaces and a system which requires a
great deal of information to specify”. He emphasizes that complexity is an absolute
and quantifiable system property, which is not dependent on the observer. The
observer's cognitive limit of comprehension or ability to deal with complexity
defines the upper limit of acceptable/manageable complexity. If system is more
complex than the observer can comprehend within a specified period of time, the
system will be expensive and error-prone to architect, design and implement.
Crawley defines three complexity measures: the number of parts and their types,
the number of interconnections and their types and the sophistication of the
interconnections. Note that any interconnection of higher sophistication means
higher interface complexity. Thus, Crawley adds the idea that the quality or nature
of interfaces is important. In other word, some interfaces are more complex than
others. Simply counting the components and interfaces is not enough. Crawley
defines part as an element that cannot be taken apart, as the atomic unit of
measurement of complexity. A module is a collection of elements. Parts are
connected with interconnections, which are one of the four types: logical relational,
topological, implementation, or operational. Crawley also distinguishes between
essential, perceived, and actual complexity.

Essential complexity is the minimum amount of complexity, which is necessary
to deliver the required functionality. To best of our knowledge, there is currently no
method to a priori determine the essential complexity of a system, given a set of

functional requirements or performance targets.
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Perceived complexity is the complexity, which the observer perceives when
looking at a model of the system at a certain abstraction level.

Actual complexity is the amount of complexity that the system has and it is
therefore a system property. The actual complexity is never smaller than the
essential complexity and the difference is the excess complexity.

Although this framework makes intuitive sense, there exists some vagueness
around estimation of the essential complexity and more so with the definition of
perceived complexity, which is an observer dependent property.

As shown in fig. 2.7, the perceived complexity, an observer dependent property,
is mostly perceived to be less that both the actual and essential complexity. In fact,
one of the major reasons for persistent cost overruns on system development
programs is that budgets are frequently based on perceived complexity rather than
on actual complexity.

This is the sign of over-optimism [Sega et al., 2010] that we seem to be suffering
from where we always underestimate the actual complexity in the early/planning
stages. The fig. 2.7 below succinctly captures this view of system complexity and
shows how the actual complexity increases with the abstraction level during the

product development process.

Evolution of Actual and Perceived Complexity

Complexity Complexity
Actual Complexity > Essential Complexity
Actual Complexity > Perceived Complexity Actual Complexity > Essential Complexity

Essential Complexity > Perceived Complexity Actual Complexity > Perceived Complexity

Essential Complexity > Perceived Complexity

/ Limit of understanding

/ Actual Complexity

/ Limit of understandin
/ 9 //\ Actual Complexity

s Perceived Complexity -7 Perceived Complexity

Upstream System System Detail Chunk System Life-cycle Upstream System System Detail Chunk System Life-cycle
Architecting Design Design Implement Integration Architecting Design Design Implement Integration

Fig. 2.7: Evolution of complexity during development of a complex system - (a) once actual
complexity exceeds the limits of understanding of a single individual, we require a team of
individuals whose collective limit of understanding will be larger than the actual complexity of the
system; (b) for simpler systems, the actual complexity can still be within the limits of understanding
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of an individual. The difference between the actual and perceived complexity is a sign of over-
optimism [Sega et al, 2010].

There have been empirically developed measures of complexity based on
historical data [Bearden, 2000]. Such measures are usually based on a database of
similar systems and are not generalizable. In fact there is an inherent assumption
that there are no drastic changes in the class of system architectures across projects
considered and that a system whose complexity is to be quantified, falls between the
extreme low and high values in the database.

More recently, complexity metrics were developed using number of
components and the number of interactions [Jones et al., 2009]. Also there is a
relatively recent literature linking different structural aspects of the connectivity
structure, mostly pertaining to modularity and importance of individual nodes [Sosa

etal, 2003, 2005].

2.7 Critique of Existing Complexity Metrics

The complexity metrics developed to date have generated a large amount of
debate for a number of reasons. Some have highlighted the limitations of these types
of metrics. One limitation of complexity metrics is that we lack a clear explanation
for why some complexity metrics correlate with other system observables even
when they do. This is especially true for composite metrics. Because many metrics
lack an underlying theory, many believe that they are only crude indicators that are
often useless due to a lack of robustness or prescriptiveness. Another important
limitation of those traditional metrics is that they are local in nature and does not
account for the long-range, global properties that system’s structure implies. Such
metrics fail to capture the complexity and complicatedness created by inter-
component coupling patterns. They usually fail to satisfy the set of validation
criteria outlined by Weyuker. The table 2.1 shows a shortlist of prominent
complexity metrics and their comparison with respect to satisfaction of Weyuker’s
criteria and their computability (for any medium to large size graphs). The chosen

spectrum of complexity metrics covers a variety of structural aspects that they
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emphasize as shown in table 2.1 below. Note that the graph energy (introduced later
in section 2.8) satisfies Weyuker’s criteria while being computable for large graphs
(for details on proofs, please refer to chapter 3 of this thesis). This makes it a
fundamentally rigorous and practical complexity measure. It can be shown that any
affine transformation of this metric also satisfies the Weyuker’s criteria. The
dependence of computed graph energy on the level of abstraction, used to represent
a system, is found to be relatively weak in the print system case study (see chapter
5). The aspect of complexity gap due to difference in the level of abstraction for the

same system is discussed in chapter 6.

Table 2.1: List of existing complexity metrics showing their computability and whether they satisfy
Weyuker’s criteria. Graph Energy stands out as both computable and satisfies Weyuker’s criteria and

establishes itself as a theoretically valid measure (i.e., construct validity) of complexity.

Complexity Measure Computability Aspect emphasized Weyuker’s Criteria

Number of components Component development

[Bralla, 1986] v (count-based measure) X
Number of interactions v Interface development X
[Pahl and Beitz, 1996] (count-based measure)

Whitney Index [Whitney v Components and interface X
et al., 1999] developments
Number of loops, and X Feedback effects X

their distribution []

Nesting depth
[Kerimeyer and X Extent of hierarchy X
Lindemann, 2011]

Graph Planarity [Kortler Information transfer

et al., 2009] v efficiency X
CoBRA Complexity v Empirical correlation in X
Index [Bearden, 2000] similar systems
Automorphism-based Heterogeneity of network
Entropic Measures X structure, graph v
[Dehmer et al., 2009] reconfigurability
Matrix Energy / Graph v Graph Reconstructabality 4

Energy

A particular concern with the work done in the area of complexity estimation
is that less than one-fifth of the studies even attempted to provide some degree of
objective quantification of complexity [Tang and Salminen 2001]. The aspect of

empirical validation will be handled in chapter 4 and 5 that includes simple
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experiments and application of the framework to compute structural complexity of
real-world, large engineered complex systems.

The next section provides an overview of the structural complexity metric.
An objective and quantifiable measure of structural complexity is imperative for

systematic search and optimization of system architecture.

2.8 Overview of the proposed Structural Complexity Metric

As previously stated, there are three primary sources of structural
complexity (i.e., complexity of the physical embodiment of the system). They arise
from (i) the complexities of individual components alone; (ii) the complexities of
each pair-wise interaction; and (iii) effect of architecture or the arrangement of the
interfaces. Given the same number of interfaces, they can be arranged in a variety of
patterns. The number of interfaces alone does not dictate how they should be
arranged among themselves, given there are no additional system constraints.

The next step is about defining a functional form for the proposed structural
complexity metric, using the three primary sources of complexity mentioned above.

We use a functional form motivated by the relationship expressing the «
electron energy of organic molecular system. The energy can be expressed using the
Hamiltonian of the molecular system where the sources of energy can be shown to
come from (i) self-energy of the individual atoms in isolation; (ii) interaction energy
between neighboring atoms; and (iii) effect of the molecular structure (i.e.,, how
atoms are connected amongst themselves). We argue that any engineered system
can be represented by a number of components that are connected amongst
themselves in varying ways where each system component can be thought of as an
atom and with the interfaces between system components as inter-atomic
interactions. The molecular structure is replaced by the connectivity structure
amongst the system components.

The time-independent Schrodinger equation is a second-order partial

differential equation of the form:
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Hy =gy (2.1)

where y is the wave function of the system considered, H is the Hamiltonian

operator of the system considered, and ¢ is the energy of the system considered.
When applied to a particular molecule, the Schrodinger equation enables one to
establish their energies by solving eq. 2.1, which is an eigen-system problem of the
Hamiltonian operator, and also describe the behavior of the electrons.

According to the Huckel’s molecular orbital theory (HMO theory),
wave functions of a conjugated hydrocarbon with n carbon atoms are expanded in
an n-dimensional space of orthogonal basis functions, whereas the Hamiltonian

matrix is a square matrix of order n, defined as:

a ifi=j
[H];j = { B if the atoms i and j are chemically bonded

0 if there is no chemical bond between the atoms i and .

According to the HMO model, one needs to solve the eigen system problem of

an approximate Hamiltonian matrix of the form:
H=oal +BAG) (2.2

where o and f are certain constants, I, is the identity matrix of order n, and A(G) is
the adjacency matrix of the graph G on n vertices corresponding to the carbon-atom
skeleton of the underlying molecule. The absolute energy levels ¢ of the 7 electrons
are related to the singular values o, of the graph G (determined by the singular

values of the binary adjacency matrix, A) by the simple relation:

gl=a+po, (2.3

Using the HMO approximation, the form of total energy of all 7 electrons can

be expressed as:
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£, =ihi‘gi‘ (2.4)
i=1

where h; acts as weights associated to each energy level and is constrained by the

following relation amongst the weights:
h+h+.+h=n (2.5)
since the number of 7 electrons in the molecules is n.

The total 7 electron energy is bounded from above (see appendix A for

derivation):

n

gﬂﬁna+ﬁ(2h[](iaij (2.6)

i=1
[
n E(A)

where the sum of singular values of the binary adjacency matrix, E(A):ZGi is
i=1

defined as the graph energy or the matrix energy or the nuclear norm. We can write

inequality 2.6 as,

Mj 27)
n

£ Sl’lOC-l—l’lzﬁ(

Looking at the RHS of inequality 2.7, the first term, is the sum of self-energy
associated to each atom. The n”f3 term can be thought of as the upper bound of the
sum of interaction energy, where f3is a representative interaction energy between

atoms. Notice that the number of entries or the non-zero entries in the atomic
interaction part of the Hamiltonian matrix scales as n? where n is the number
carbon atoms in the molecule.

The remaining part of expression 2.7 is related to the arrangement of the
interactions, that is, the topology of interactions as manifested by the adjacency
matrix, A. This term differentiates between connectivity patterns even if other parts
of expression 2.7 remain identical.

We introduce a notion of configuration energy, & expressed as,
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[1]
|I

B(E(A)j 2.8)

where m is the number of pair-wise interfaces in the system.

The above configuration energy expresses the innate ability of the interacting
system to respond to the environment and a higher value indicates increasing
difficulty to manage the system. The notional configuration energy described above
can be thought of as the complexity associated to the system structure.

We term this quantity as the Structural Complexity of the system where a's

stand for component complexity while 'sstand for interface complexity. Assuming

¢ to be the average component complexity and [§ to be the average interface

complexity, we can express the structural complexity, C as,

E(4)
n

C—nOH—mﬁ( (2.9)

where m is the number of pair-wise interfaces in the system.

We propose the generic form of the Structural Complexity matric as,

C=C+CC,

—Zoc +[22ﬁu U](E(A)j (2.10)

i=l j=I1

where the first term Ci represents the sum of complexities, o, of individual
components alone, the second term has two factors: (i) the sum of all pair-wise

interaction complexities, Cz (local effect) with ﬁ,, representing individual pair-wise

interaction complexity and (ii) effect of architecture or the arrangement of the
interfaces C3 (global effect).

The above expression can be further generalized as,

C= Za +(ZZ[)’U ijE(A) (2.11)

=l j=1
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where we have used y = 1 as the scaling factor in eq. 2.10. It is possible to modify
n

the structural complexity metric by using different values of parameter,y . Such
modification can be used to control the impact of the connectivity structure on the
overall structural complexity metric.

In a nutshell, we use the functional form of the total 7 electron energy
expression for the conjugated hydrocarbons, based on the system Hamiltonian. We
can think about the complexity equivalents of energy in the structural complexity
expression. The component complexity, &, is the complexity equivalent of the self-
energy of each atom in isolation. Similarly, complexity equivalent of the interaction
energy is the interface complexity, ﬁ,, The effect of the connectivity or the network
structure among system components acts as a scaling factor and is captured as the

sum of singular values of the binary adjacency matrix (see fig. 2.8 below), defined

here as the graph energy, E(A).

1 if(i,j) € E

0 otherwise

S = = O
—_ 0 o =
==
S = = O

Fig. 2.8: Connectivity structure of a simple system as a simple graph and its associated adjacency

matrix.

The graph energy captures the impact of topological differences in the connectivity
structure and acts as a measure of topological complexity. Theoretical properties of
the topological complexity measure and their implications are described in rest of
the chapters in this thesis. It will be shown as a valid construct for measuring
complexity in chapter 3.

Later in chapter 7, we use the same functional form to compute dynamic
complexity. Dynamic complexity refers to the complexity of the dynamical behavior

of the system and is a form of complexity that stems from the underlying physics

52



and interrelationships that govern the performance of the system. We can view the
system behavior as a physical process and dynamic complexity is the complexity of
that physical process. While structural complexity is a measure of complexity of the
system architecture, the dynamic complexity develops due to uncertainties in the
system during its operation and the direct dependency structure amongst the
system responses. In this case, the interaction structure among the associated
behavioral responses of the system is represented using a network of interactions
among the behavioral responses of a system. In terms of complexity equivalents of
energy, the uncertainty in the dynamic behavior of an individual system response in
isolation over an operational envelope of the system maps to the self-energy of each
atom. The interaction uncertainty between a pair of system responses over the
operational envelope maps to the interface energy term while the effect of network
structure among system responses is captured by the graph energy of the binary
adjacency matrix of the system response network, similar to that shown in fig. 2.8,

where the nodes are the system responses.
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Chapter 3

Structural Complexity Quantification

The complexity of today’s highly engineered products is rooted in the
interwoven architecture defined by their components and their interactions. As
discussed in chapter 2, this can be modeled by graphs and associated adjacency
matrix. To evaluate a complex system and to compare it to other systems, numerical
assessment of its structural complexity is essential.

At the end of chapter 2, we presented an overview of the structural
complexity metric and introduced the functional form of the proposed metric.

In this chapter, we dive deeper and explore the proposed measure for
structural complexity, discuss its constituents and their important properties,
perform mathematical verification for the proposed metric and demonstrate its
applications.

As discussed in chapter 2, we adopt the following functional form for

estimating the structural complexity of an engineered complex system:
Structural Complexity, C = C +C,C,  (3.1)

The first term C1 represents the sum of complexities of individual components alone
(local effect) and does not involve architectural information. The second term has
two factors: (i) number and complexity of each pair-wise interaction, Cz (local
effect) and (ii) effect of architecture or the arrangement of the interfaces Cz (global
effect). Now, given the same number of interfaces these can be arranged in a variety

of patterns and the number of interfaces alone may not dictate how they should be
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arranged among themselves, given there are no additional system constraints.
Hence in this sense, we assume that Cz and C3 are mutually independent, therefore
the multiplicative model (see appendix A for details). This can be shown to be a
conservative assumption (see appendix B for detailed analysis).

The effect of system architecture captured in C3 represents a global, system
level effect that is not visible at the local level (i.e., component engineering or pair-
wise interface management) and cannot be obtained from ‘local’ information alone.
This quantity is not amenable to simple addition with its impact realized during
system integration. Also, Cz is likely to have profound impact on various aspects of
performance and other life-cycle properties. Similar functional forms are found in
quantum mechanical analysis of molecular systems (see appendix A for details)
where the system Hamiltonian is the matrix of importance [Gutman et al. 1998,

Sinha and de Weck 2012, 2013].

3.1 Functional form of the Structural Complexity Metric

As discussed in chapter2, the structural complexity metric is defined using

the following analytical form,

n n

C=C+C,C,= Za +[22ﬁ” ”JyE(A)

i=1 j=1

—Za +(2n,2[3,, U]E(A), usingyzl (3.2)
n

=1 j=1

%/—/ C
C] c, 3

The component complexities, &, are attached to individual compositional
elements of the system and therefore, local to each particular element alone. The

second term involves complexities due to pair-wise interfaces, ﬁ,, while the third

term, C3 reflects the effects of the underlying connectivity structure. This term is
defined as topological complexity, which generally scales with the challenges of

system integration. Higher topological complexity will likely lengthen system
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integration efforts significantly and it is a global property that is not visible locally
(i.e., during component or interface development).
The detailed reasoning for using the above functional form and the scaling

factor y can be found the appendices A and B. The implication of different terms of

the structural complexity measure is described in the fig 3.1 below.

((nm 04> als (ZZ/i Jym_.n

=1l =1 J=l
J L y — | )
T Y 1 Y
Components Interfaces \ Architecture
thinte r‘ 10 / \
/ \

# of components DSM

\\ Related to System Integration
} Related to interfoce design '\ Effort
| and mgmt \ (topological complexity)

Related to component engineernng \
\

\

Fig. 3.1: Constituents of different parts of the overall structural complexity metric and their
implications in the context of system development. Different components are differentiated using

different colors. DSM stands for Design Structure Matrix [Ulrich and Eppinger, 1995].

The structural complexity metric can be treated as an affine transformation

( )

of the topological complexity metric, C, = . Here E(A4) stands for graph energy

(discussed later in this chapter) and n stands for the number of system components

(i.e,, number of nodes).

Illustrative example: We present a small example of a hypothetical system
for demonstrating the mechanics of the method, using a hypothetical fluid flow
system as shown in Fig. 3.2 below. The associated binary adjacency matrix, A is
shown below and the graph energy is computed as, E(A) = 5.6. Now let us

differentiate among components and let the component complexity vector (i.e., oi’s)
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be {(controller=5); (pump=2);(valve=1); (filter=1);(motor=3)}. The sum of

component complexities C1 = 5+3+2+1+1 =12.

™
S = O O

-0 = O O
- 0O = O O

Fig. 3.2: (a) Sample system: it shows different connection types amongst components -
physical/mechanical connection (black); material/fluid flow (red); energy flow (green) and

information/control signal flow (blue); (b) binary adjacency matrix.

Let us use the following connection complexities: Bmech = 0.5 (black
interfaces), Pflow/energy = 1.0 (red and green interfaces respectively) and B = 1.0
(blue interface). Note that mechanical and information connections are bidirectional
(they are counted twice), while fluid and energy flows are unidirectional (counted
once). Therefore, the sum of connection complexities C2 = 2*5*0.5 + 1*5*1 + 2*1*1 =
12. The binary adjacency matrix is constructed such that any two components
(represented by rows of the adjacency matrix) are considered connected, if there is
at least one pair-wise connection of any kind between these components. If we use
v=1/n=1/5, the structural complexity is (12+12*(5.6/5)) = 25.44.

The same methodology was applied to two different jet engine architectures,
namely a dual spool turbofan and a geared turbofan engine. The specific details can
be found in [Sinha and de Weck 2012] and in chapter 5 of this thesis. The detailed
sensitivity analysis revealed that primary functionality generators (e.g., those
generating thrust) are significant contributors to component complexity while
supporting systems (e.g., lubrication systems, accessory gearbox, robust control
systems) are the primary contributors to topological complexity and have
significant impact on system integration efforts [Denman et al. 2011, Sinha and de
Weck 2012]. In practice, assignment of component and connection complexities

could be uncertain during the conceptual stage or even after the product
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architecture is finalized. In such cases, the resulting structural complexity will not
be a single number but a distribution, depending upon the distribution of individual
component and connection complexities. The detailed application examples will be
discussed later in chapter 5.

Now, we will look into the details of the three individual sources of structural
complexity and how to compute/estimate them. We start with the topological
complexity quantifier, C3 since this is a novel contribution of this thesis.
Subsequently, we will get into the detailed characterization of component and
interface complexities that are required to compute the structural complexity

metric.

3.2 Topological Complexity Metric, C3

Any engineered system can be represented with many components that are
linked to each other [Ulrich 1995, Lindemann et al. 2008]. The interaction between
these parts influences the behavior of the system. This system architectural pattern
leads to structural complexity of the system, which is associated with the difficulty
of describing the connectivity patterns and their individual complexities [Kinsner
2010]. System architecture is an abstract description of the compositional entities
and the interactions between those entities. The structure or configuration of the
system is necessitated by constraints and requirements that the system is mandated
to satisfy. This internal product architecture can be represented by complex
networks, which are a graph-theoretic representation of complex systems. The
nodes, representing components of the systems, are connected by links if there
exists a direct interaction between any pair of components [Sheard and Mostashari,
2010]. The complexity of technical systems depends on the heterogeneity and
quantity of different elements and their connectivity pattern, and is a measurable
system characteristic.

It is observed that low topological complexity implies centralized
architectures and that higher levels of topological complexity generally indicate

highly distributed architectures.
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It is often perceived that as we stretch the limits of efficiency and attempt to
design more robust systems, we tend to make architectures more complex. One such
example is the evolution of jet engine architecture [Frey et al, 2007] where
complexity rises to accommodate ever demanding and uncertain environments

while maintaining consistent performance levels.

3.2.1 Graph or Matrix Energy:

Let G be a finite and undirected simple graph, with vertex set V(G) and edge
set E(G). The number of vertices of G is n, and are labeled by v, v, ..., va . The
adjacency matrix A(G) of the graph G is a square matrix of size n, whose (i, j)-entry is
1 if the vertices v; and vj are adjacent and is zero otherwise [Li et al.,, 2012]. The
associated adjacency matrix A(G) is symmetric of size n with the diagonal elements
being all zeros (see fig. 3.2 below). The total number of edges in a graph is denoted
by m. The adjacency matrix described above has many other incarnations like
Design Structure Matrix (DSM) or N? diagram [Ulrich and Eppinger, 1995]
depending on the application area. DSM is the often-used terminology in the
engineering design community for the binary adjacency matrix [Ulrich and
Eppinger, 1995; Eppinger and Browning, 2012].

The topological complexity is defined as the matrix energy or graph energy of
the adjacency matrix. Please note that we follow the definition of matrix or graph
energy as defined in [Nikiforov, 2007] for the rest of this thesis.

Topological complexity originates from interaction between elements and

depends on the nature of such connectivity structure. The adjacency matrix 4e M

of a network is defined as follows:

_ {1 VG, )| # j) and (i, j) € A]

v 0 otherwise

where A represents the set of connected nodes and n being the number of

components in the system. The diagonal elements of A are zero. The associated

matrix energy [Nikiforov, 2007; Sinha and de Weck, 2013] or modified version of
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graph energy (referred to as graph energy in rest of this thesis) of the network is

defined as the sum of singular values of the adjacency matrix:

E(A)= zn:o;, where 0, represents i” singular value
i1

This definition is slightly modified version of original definition of graph
energy used in [Gutman, 1978] where graph energy is defined as the sum of
absolute eigenvalues of the adjacency matrix. This definition extends the
applicability of the metric to any simple graph, undirected and directed alike. In case
of a directed or mixed graph with combination of undirected and directed edges, the
original definition of graph energy will not work since the eigenvalues could become
complex.

The singular values of any matrix are always positive or zero and therefore,
the modified graph energy or the matrix energy works for any simple graph. In case
of undirected graphs, both definitions of graph energy converge since the singular
values are the absolute eigenvalues in case of symmetric matrices. For the rest of
this dissertation, we will refer to this modified version of graph energy as the graph
energy. Hence, the graph energy in this dissertation is the matrix energy applied to
the graph binary adjacency matrix (see appendices A and B for details).

The matrix energy also expresses the minimal effective dimension embedded
within the connectivity pattern represented through the binary adjacency matrix.
Notionally, this quantity encapsulates the “intricateness” of structural dependency
among components. Using singular value decomposition (SVD), we can express

matrix A as:
A=Y ouv =Y 0E (33
i=1 T i=1

where E; represents simple, building block matrices of unit matrix energy and unit
norm. Using this view, we observe that matrix energy or graph energy express the
sum of weights associated with the building block matrices required to represent or

reconstruct the adjacency matrix A.
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Other mathematical connections of matrix energy or the modified graph

energy relates to linear algebra and functional analysis - if the singular values of

matrix A are labeled 0 ,0.,...,0, and arranged in a non-increasing order, then the Ky

k
Fan k-norm of matrix A is Zai . For k =n, the Ky Fan k-norm is referred to as the Ky
i=1

Fan trace norm or nuclear norm. Evidently, the graph energy is simply the Ky Fan n-
norm of the adjacency matrix. This latter norm is widely studied in matrix theory

and functional analysis [Li et al., 2012]. The p-norm, also called Schatten p-norm,

n 1/p
defined as (Zcf’ ] , is another norm that is frequently used in analysis, where p is
i=1

areal number and p >1. Its special case is the Ky Fan trace norm (p = 1). Hence, the

graph energy can be viewed as the p-norm of the adjacency matrix for p = 1.

The matrix energy or the nuclear norm has also been used in matrix
reconstruction problem, where minimization of nuclear norm was shown to yield
the optimal matrix [Candes and Tao, 2009] and forms a basis for semi-definite
programming [Candes and Recht, 2009]. Recent research is exploring application of

compressive sensing [Candes and Tao, 2009] to networks [Jiang et al., 2013].

3.2.2 Properties of graph energy
With this basic definition in tow, let us look at some important properties of

the matrix or graph energy. The original graph energy [Li et al, 2012] is defined as:

E(A)=Z|A[| where A stands for i eigenvalue of the adjacency matrix. For
i=1

undirected graphs, the adjacency matrix A is symmetric and for symmetric matrices,

we have |1 | =0, where o, represents the i singular value of the adjacency

matrix. The modified version of graph energy introduced here is the sum of singular
values and coincides with the definition of the original graph energy metric defined

by Gutman [Li et al, 2012]. Since all diagonal entries are zero in A we can write,

i/% =0 (3.4
i=1
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Using the Frobenius norm, A| ‘F [Bernstein, 2009] of A, we have:

il =37,=30
33

i=1 j=1

2
aj| =2m (3.5

where m is the number of edges in the simple graph. Let us use the identity:

2
(2,1,) =D A +2 D A4,
i=1 i=1

I<i< j<n

= > AA=-m (36

1<i< j<n

In terms of singular values, we can write:

2
(ZG,} =Y0/+2 ) o0,
i=1 i=1

Ii<j<n

=2m+2) o0, (37

Ii<j<n

Linking singular and eigenvalues of the symmetric adjacency matrix A (i.e., for
undirected edges), we can write:

2 00;= 2 Mi”}ii‘z

I<i<j<n I<i<j<n

Y u}.‘

1<i<j<n

1i<j<n

= 2 GiGjstincem>0 (3.8)

I<i<j<n

Now, using eq. 3.7 and 3.8, we can find a lower limit for the sum of singular values of

the symmetric adjacency matrix A, representing the undirected edges:
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2
[Zaij =2m+2 ), 0,0,22m+2m
i=1

I<i<j<n
" 2
= (Zcij >4m
i=1
- (ZG] >0fm (3.9
i=1

Therefore, we obtain the following limit on the matrix or graph energy, E(4) = 20}

i=1

ZEx2m (3.10)

For connected graph, m=>(n—1) and therefore we can write: E22\/E. This
minimal graph energy is same as the graph energy of the centralized network where
a central node connects to all other nodes and those peripheral nodes are connected
only to the central nodes [Li et al., 2012].

Now, for any connected graph (valid for both, undirected and directed
graphs), the adjacency matrix is shown to be nonnegative and irreducible [Chung,
1997] and therefore, applying Perron-Frobenius theorem [Chung, 1997; Van
Mieghem, 2011], we have,

0,2 — = <k> [since A, = o, = spectral radius (A)]

=0,2(k) (3.1
where <k> is the average degree of the network. Hence the dominant

eigenvalue/singular value should be greater than the average degree <k> with

equality holding for complete graph. Therefore as the density of a network increase,
the dominant singular value increase (see fig. 3.3 below). This fact is corroborated

by simulation and this relationship is found to be linear.
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Wariation of dominant singular value
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Connection density

Fig. 3.3: The largest singular value increases linearly with the number of links in the ER random

network. The number of nodes were held constant at, n = 30 nodes.

Using the Cauchy-Schwarz inequality,

(EN‘,abJs(ia](ﬁ;bJ (.12

which holds for arbitrary real-valued numbers a;,b; with i=1,2,...,N. If we choose N

=n,a; =0, and b; = 1, we get the famous McClelland Inequality:

E<~N2mn  (3.13)
Now, for a connected graph, we must have n<2m . Using McClelland

inequality, £ <~+2mn , we get the following bound: E <2m.

Hence we have:

Wm<E<2m  (3.14)

The bounds in 3.14 assumed symmetric adjacency matrix and is therefore valid for
undirected graph only. In general, for engineered systems, we come across mixed
graphs that has both, directed and undirected links. In that case, we can express the
total number of entries in the adjacency matrix as sm where m is the number of

links and s€[1,2] is a parameter, expressing the relative number of undirected
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nodes in the mixed graph with s=1 for purely directed graph and s=2 for purely
undirected graph. Using a similar analytical procedure, we can show that (see

appendix G for the formal proof),

\2sm < E <sm (3.15)

Note that, relation 3.15 converges to 3.13 for s=2, the purely undirected graph
case.
We can derive useful bounds for the matrix or graph energy by invoking the

Cauchy-Schwarz inequality given by eq. 3.12 in different ways. Using the Cauchy-
Schwarz inequality above with N =n-1,a; =0, and b; = 1, then we obtain,

(E-0,)’ <(n-1)(2m-o0?)

= E<0,+\(n-1)2m-0?)  (3.16)

& 2m
Using the earlier relations: 262[ =2mand o, > —, the above relationship implies,
=l n

Eéz—m+\/(n—l)[2m—(2—mj] (3.17)
n n

Expressing in terms of average degree, the above inequality becomes:

ES<k>+\/(n—1)[2m—<k>2] (3.18)

with equality holding for complete graph (e.g., fully integral architecture).
The limiting form of the above relation can be expressed in the following

functional form for fixed n, (e.g., given matrix size):

f(m)=2m/ n+~J(n=D2m-Q2m/n)’1  (3.19

Let us maximize the function f(m) above where n is fixed. This allows us to

find the number edges, m* for a given number of nodes (alternatively, the graph
density) at which the graph energy is maximized. Applying the Kuhn-Tucker

optimality criteria [Pishkunov, 1976], we should have:
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@ _,
dm

2 (n—=1)(4m—-n") _0
m - p2\lm(n—1)(n* = 2m)

=

On algebraic simplification, we get,
8m(n* —2m)=(n—1)4m—-n>)’

=@m-n*)y =n’

n2(1+ij
2 3/2
m=2" _ Jn (3.20)

4 4
Using this value of m and inserting that in the second derivative, we observe
that the sufficiency condition for maximization is satisfied:
dzf__ (n-17n’
dm’  \h [(n=Dm(n? ~2m)]"

_ n*y(n—1) 1
[m(n®

- ) \/E 9 m)]3/2

n*y(n—1) 8 " <0
w2 | i @nedn-1)

Therefore, for the maximal limiting value of graph energy, we get:

1
n2(1+—j
"= — Jn ~0(n*)  (3.21)
n(1+\/;)

fo = — = o(n™?) (3.22)

m

For the general case of mixed graphs, the maximal limiting value of graph
energy remains the same, but the corresponding number of links becomes a

function of parameter s €[1,2] (see appendix G for formal proof),
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n2(1+Lj
R

m =
2s
o =2 o

Again, the number of links in a network is constrained by the number of
vertices in the network for a simple network (not allowing for multiple edges

between pair of vertices and enforcing symmetry):

m< n(n—1)

=2m<n(n-1)

Now, from the McClelland Inequality, E <~2mn, we arrive at the following graph

energy bound:

E<nVn-1 (3.23)

In addition, from eq. 3.18, 3.20 and 3.22, we can write:

E< "(”T*/;) (3.24)

Therefore, the maximal graph energy is bounded by n””:

E_<n” (3.25)

max

Now the energy of a complete graph, £, =2(n—1) and therefore does not

represent maximal graph energy for a network with fixed number of vertices. There

exists hyperenergetic graph G whose graph energy, E(G) > E..

Also for any connected graph, E = 2 \/E with equality holding for a
network with a hub and all other vertices connecting to the hub. In this case, there
are only two non-zero singular values and (n-2) zero singular values and therefore
the adjacency matrix ix highly rank deficient.

In general, we get the following graph energy bounds for a network with n

vertices:
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2J(n—-1)<E<

@ (3.26)

If we were to consider the case of mixed star graph, the above (i.e., star
graphs with a mix of directed and undirected graphs) bounds can be expressed as

(see appendix G for details),

s4/(n—1) SESH(H—T\/;)

Let us consider that case that graph energy, E is the same as that of the
complete graph where,

E=2(n-1) (3.27)

Using eq. 3.18 and 3.27, we can write:

2n—1)< <k>+\/(n—l)(n<k>—<k>2)
=>4(1—1)s<k>3(n—1) (3.28)
n

Note that the network density is defined as, ,u=<k>/(n—1). On substituting

u= <k>/(n— 1) in eq. 3.28, we have:

fcu<t (329
n

Hence, the average degree has to be greater than 3 (for any graph of size
more than 4) for having graph energy equal to that of complete graph for any given
number of vertices (e.g., given matrix size). The lower bound in 3.29 refers to a
smaller level of network density at which the graph energy reached the same level
as the fully connected graph with the same number of vertices. As the number of

vertices, n increases, this lower limit of network density decreases. The lowest
possible average degree,<k> at this density level has to be at least 4.

We define the density level at which graph energy equals that of the fully
connected state as the critical network density. Note that this is a generic result and
holds for any simple network, undirected or directed. The impact of asymmetric

adjacency matrix on structural complexity can be found in appendix F.
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3.2.3 Simulation results:

In this sub-section, we verify the bounds for graph energy developed above
with a series of numerical experiments. For a given network size, the percent
population is varied and for a given density of interdependencies, the entries are
filled randomly, while maintaining connectedness (i.e, there are no disconnected
component) of the graph. For a given number of interdependencies m, there are
multiple arrangements possible. Therefore the graph energy of instantiated graphs

exhibits a band of values for any fixed density of the network.

Wariation of graph energy for DSM of given size 45 Variation of AMI for DSM of given size
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Fig. 3.4: Variation of spectral properties with increasing graph density for Erdos-Renyi random,

undirected graphs - (a) the P point is where the graph energy becomes equal to that of the fully
connected network; (b) at the P point, the normalized graph energy, E(A)/ n is around 2; (c)
variation of largest singular value (red), graph energy less the largest singular value (green) and

graph energy (blue) and (d) at the P point, on average, the instantiated graphs attains rank-

sufficiency.
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The average, maximum and minimum values of graph energy are plotted
below. In all cases, 500 trials are run and the range of network density was divided
into 200 points on the interval [2/n,1], where n is the number of nodes in the

graph/network. One can observe from fig. 3.3 and fig. 3.4 (c) that the dominant

singular value, o, increases linearly with number of connections whiles the sum of

remaining singular values, (62+63+..+ G”) has a convex relationship with graph

density. If we define this as the combinatorial part of graph energy respectively,
then we can say that the combinatorial part of the energy shows a concave
relationship with connection density (e.g., maximum at the middle and diminishes at
the two extremes of connection density spectrum). The resulting total graph energy

is also concave function of connection density but is asymmetrical.

3.2.4 Notion of P point: Hypo and hyper energetic regimes
The matrix or graph energy regime for graphs with a given number of nodes,

can be divided into: (i) hyperenergetic and (ii) hypoenergetic. There does exist an
intermediate or transition regime between these two where the energy is higher
than that of the hypoenergetic regime but is smaller than the hyperenergetic one [Li
et al, 2012]. The hyperenergetic regime is defined by graph energy greater than or
equal to that of the fully connected graph:

E(A)=2(n-1)
The hypoenergetic regime is defined as:

E(A)<n

There is also a region termed strongly hypoenergetic where the graph energy
satisfies:

E(A)<(n-1)

Hence, in terms of topological complexity metric, the regimes are defined as:
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> 2(1 - lj =2 - hyperenergetic (3.30)

<1 - hypoenergetic

The intermediate or transitional energetic regime is the interval: 1< C, <2. Hence,

for graphs with topological complexity, C3 in this intermediate lie in the non-
hyperenergetic regime (similarly, they can be termed to lie in the hypo-energetic
regime).

In fig. 3.4 and 3.5, the point P denotes the transition point to hyperenergetic
graphs. The network densities that lie on the right of P point represents distributed
configuration (e.g., architecture). At this point the network becomes rank-efficient

on average.

i
1
i
1
: Distributed
|
[
1

Architecture; hyper-energetic
regime
| mmm e e e == = >
I
4

Hierarchical and centralized
Architecture

Fig. 3.5: P point separates the distributed architectural regime, defined by hyper-energetic graph

structures.

Let the critical density corresponding to point P be termed as critical density,

u, and critical average degree,<k>crbe the corresponding average degree of the

graph. They are related as:

:% (3.31)

cr

Above this density, the corresponding graph becomes hyperenergetic.

According to eq. 3.31, as the network size increase, the critical density reduces. This

in turn indicates a constant band of values for m_ and this quantity does not vary
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much with variation in network size and seem to lie within a relatively compact
interval of [5,7].

Based on extensive simulation studies (averaged over 10,000 instances at
each network density level) on ER random graphs with given number of vertices,
the variation of the critical density and corresponding critical average degree for
varying the graph size is shown in fig. 3.6 below. We can observe that as graph size
increase, the critical density reduces, but the critical average degree tends to remain
almost constant.

The P point shows very interesting features relating to interesting
characteristics of the graph. It appears that nearness to rank-sufficiency of the
network has important bearing on other network metrics as well (see appendix H
for details). Simulations indicate saturation in terms of relative improvement in
other network metrics like maximum diameter, average path length and other
network communicability indices.

Another interesting observation was made in an analytical study by [Valente
et al, 2004] regarding the resilience of general random networks against both,
targeted and random attack on nodes (see appendix H for details). Using analytical
methods, they estimated bounding envelopes of resilience against targeted nodal
failure vis-a-vis random nodal failure and found that the outward growth of the
envelope saturates beyond the average degree, <k> = 6. This again coincides with P
point on the graph density plot. It is interesting to note that the P point seem to
indicate a kind of transition region for network diameter beyond which it settles
down to a near constant value with increasing connection density (see appendix H
for details). This is an interesting finding and relates to the findings of an earlier
empirical study [Whitney et al, 1999] using a large and diverse set of engineered
products and systems showed that the average number of connections to any
component (i.e., average degree) was about 6 (see appendix G for additional details).

This is a very interesting empirical finding and backs up the analytical predictions.
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Fig. 3.6: Variation of critical density and corresponding average degree with increasing graph size.

DSM stands for Design Structure Matrix [Steward, 1981; Eppinger and Browning, 2012]

It appears that the P point might serve as an important system architecting
guideline for engineered, networked systems. We define the P point as a critical
point in the graph density space and derive interesting bounds related to the graph
density at this point (graph density at P point is called the critical density).

The average degree of non-hyperenergetic networks is less than this critical
value of average degree of network of given number of vertices.

Now, based on eq. 3.28, we can write:

k. 24(1-1)
n

u > 4 (3.32)
n

Therefore, at the critical density, the corresponding number of links, m_ is given as:

>2(n-1) (3.33)
The variation of graph energy with density is quadratic in nature and

therefore, neglecting statistical variations, we can model graph energy as:
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E=au’ +bu+c (3.34)
At u=0;we have E=0 => ¢ = 0. Hence, we get:
E=au’+bu (3.35)
Now let us use other boundary conditions. At ¢ =1 (fully connected graph), E = 2(n-
1)and at u=—, E=E  where Ec is the graph energy for a linear chain.
n

Using these conditions, we can express graph energy as:

n n

_8(n—-1)

E= 4n—1)-nE |’ E 3.36,
(n—2)[ (n=1)—nk,u +(n_2)[n @ (330
For maximal graph energy, E, we must have,
9%E_,
ou
|
nk, —8(1—-—)
= f (3.37)

2Nk, —4(n-1)]

As n — oo, we have,

1

M= (3.38)

2{1_4}

Ech
Now, since £, <2(n—1), we have
E, n—1
-1 2((”_13)) (3.39)
2[1_4] n
Ech

Combining eq. 3.38 and 3.39, we get:
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(n=1)
50y (40

From eq. 3.40, for any n, we can write:

1
Moo >3 (G4

This is a hard limit and can only be approached asymptotically. Hence the
maximum value of matrix or graph energy is attained at a density greater than 0.5.
As the network size increase, the density corresponding to maximal energy becomes

closer to 0.5.

3.2.5 Notion of Equi-energetic Graphs

Two non-isomorphic graphs [Cvetkovic et al, 1980] are said to be equienergetic if
they have the same matrix /graph energy. There exist finite pairs of graphs with
identical spectra, called cospectral graphs [Cvetkovic et al,, 1980]. All such cospectral
graphs are off course trivially equienergetic. There exist finite non-cospectral
graphs whose matrix or graph energy are equal and are therefore equienergetic. It
has been observed that there are only finite numbers of cospectral graphs and this
number tends to zero as the number of nodes, n increases [Li et al., 2012]. Also,
there exist finite non-cospectral, equienergetic graphs and that number goes to zero
with increasing number of nodes, n in the graph. Hence there could distinct graph
structures with the same graph energy and therefore, topological complexity. The
topological complexity for a graph structure is not unique and is therefore, not a

bijective mapping of systems.

3.2.6 Other important properties of graph energy

In this sub-section, we state a set of 12 important properties of graph energy
that are crucial to perform mathematical verification of the proposed complexity
metric using the Weyuker’s criteria. Here are the set of important properties of

matrix or graph energy:
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P.1 For hyperenergetic graphs, we have matrix or graph energy, C, 22. Also any

2
graph with the number of links, m > % is non-hypoenergetic [Li et al., 2012].

P.2 For hyperenergetic graphs, we must have, m >2(n—1). This is greater than twice

the necessary number of links to maintain connectivity (e.g., no disconnected

vertices).

P.3 Graphs with m <(2n—1) cannot be hyperenergetic [Li et al, 2012].
P.4 Trees or hierarchical structures are non-hyperenergetic.
P.5 Any graph with nonsingular adjacency matrix is non-hypoenergetic.

P.6 For any graph on n nodes with cyclomatic number, c=m—n+1, there exists a

constant y_ such that the graph energy is bounded [Wagner, 2012] as:

E(A)S4—n+7/c
T

=C(C,<

SN

+77C

P.7 For almost all graphs with n nodes, where n is sufficiently large, the graph

energy is bounded [Li et al.,, 2012] by:

1 1
[24—0(1)}1 <E(A)< 2+0(1) n

:>B+o(1)}n”<c3< %+o(l) n'?

Hence, for graphs with n nodes, where n is sufficiently large, the spread in

graph energy and the topological complexity metric are bounded by:

AE < B+ 0(1)}1” and AC, < B+ 0(1)}/2
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As we can observe, the spread could be quite large, given the number of
nodes or components in the system and varies as the square root of the number of

components (e.g., nodes).

P.8 Translating the resulting graph structures to system architectural patterns, we

associate typical topological complexity metric C, values to those forms:
Centralized Architecture — hypoenergetic, C, <1
Hierarchical | layered Architecture — transitional, 1< C, <2

Distributed Architecture — hyperenergetic, C, 22

“Distributed” Architecture

Hierarchical” Architecture Increasing Topological Complexity

(Ca)

Centralized architecture

Fig. 3.7: Spectrum of architectural patterns based on topological complexity metric.

P.9 There exists a finite number of connected n-vertex noncospectral, equienergetic

graphs for every n > 20 [Li et al, 2012].

P.10 Let A, B and C be square matrices of size n, such that A + B = C. Then
E(A)+E(B)=E(C)

This is termed the coalescence of two graphs - merging of two graphs without

introduction of an additional edge. Let A and B be two graphs with disjoint vertex
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sets, and u € A and v € B. Thus, merging the two graphs at a node, we have the
following relation:‘V(AoB)|=|V(A)‘+|V(B)‘—l. The graph Ao B is known as the

coalescence of A and B with respect to u and v. Hence, we can write A+ B= Ao B and
we have the following inequality:
E(A°oB)< E(A)+ E(B)

This inequality is not very relevant to most engineered complex systems, but
may be of importance for reconfigurable systems where a component adapts its
functionality based on the environment. Since reconfigurable systems can attain
different configurations over time and are suitable for classes of applications in
which their ability to undergo changes easily can be exploited to fulfill new
demands, allow for evolution, and improve survivability [Siddiqi and de Weck,
2008]. Examples include convertible car, reconfigurable modular robots, morphing

UAV’s (Unmanned Aerial Vehicle) [Siddiqi and de Weck, 2008],

A X

P.11 For a partitioned matrix A:{ v B }, where both A and B are square

matrices, we have:

E(A)= E(A)+ E(B)
Equality holds if and only if X, and Y are all zero matrices. This shows that
introduction of edges in the process of connecting two disparate graphs results in an
increase in graph energy and therefore increases the topological complexity. This is
a restricted version of the general pinching inequality [Horn and Johnson, 2000].
This inequality mathematically expresses that the system is more complex that its

constituent sub-systems - that is, the system is more complex than the sum of parts.

P.12 Let A be an n x n matrix partitioned into blocks such as the diagonal blocks 4,

are square:
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Al 1 AIZ AIN

AZ] A22 A2 N
A=

AN 1 AN 2 * * ANN

The following block diagonal matrix is called the pinching of A:

A, 0 .. 0
0 Ay

O(A) =
0 . .. Ay

Pinching reduces the matrix energy of A for every partitioned matrix and the
pinching inequality is stated as:
N
E(O(A) < E(A) = Y E(4,)< E(A)
i=1
Combining the previous result with P.11, we obtain the fundamental pinching
inequality:

N(N-1)

iE(Aﬁ)SE(A)SiE(AﬁH Y, E(4)

i#j=1
This inequality shows that the graph energy of the total aggregated system is

higher than the sum of graph energies of the constituent sub-systems.

3.2.7 Necessary properties of a valid complexity metric: Weyuker’s Criteria

Weyuker’s criteria represent a formal set of required properties any valid
complexity metric must satisfy. To check the construct validity of graph energy as
the complexity metric, we benchmarked this against the set of minimal required
properties prescribed as Weyuker’s criteria [Weyuker, 1988] and also compared
against some other complexity metrics that have been proposed in the existing
literature (see table 3.1) [Kinnunen, 2006; Lindemann et al., 2008].

As we can observe, the proposed topological complexity metric is fully

compliant with Weyuker’s criteria [Weyuker, 1988].
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Table 3.1: Benchmarking of matrix energy or graph energy against Weyuker’s criteria (i.e., a set of

nine criterion [Weyuker 1988]) and comparison with other proposed metrics of complexity.

w.C 1 23|45 6 7 8 |9

Metric
Number of components | v | vV |/ v X X v X
Number of links AN 2N 2 A DA B X oI X
# independent loops v X v |/ v X X v X
Degree of non-planarity | v v | V| Y X X v v X
Nesting depth v v | vV |V v X X v X
TopologicalComplexity | v | vV | V |V | V | V/ v |/

Now the structural complexity metric, as defined in eq. 3.1, is an affine
transformation of the proposed topological complexity metric. Therefore, it satisfies
the necessary conditions for any proposed structural complexity metric. We can
think of these necessary conditions, as exemplified by the Weyuker’s criteria, as
conditions for mathematical verification of the proposed complexity metric.

Below we prove that the proposed topological complexity metric fulfills the

Weyuker’s criteria and thereby, qualifies as a valid complexity metric.

Let A and B are two different systems and K(A) denotes complexity of system A:

1. There exist A and B such that K(A) differs from K(B), for a metric, which
gives the same value for all systems is useless.

Proof: Let us consider B is obtained by removing some edges of A. Hence system

B is the induced subgraph of system A and B = A-e. Depending on the level and

pattern of connectivity we have, E(A-e) < E(A) in general or E(A-e) > E(A) ifAisa

complete graph. There could be non-isomorphic, equienergetic graphs, but their

number is finite and tends to zero as we increase the graph sixe, n [Li et al,,

2012].

2.There exist only finitely many systems of complexity c, for the metric
should have a range of values.

Proof: As we have observed from the properties of matrix or graph energy, there

83



are finitely many equienergetic graphs of size n and their number tends to zero
as the graph size increases [Li et al, 2012]. Hence, the proposed graph energy

based topological complexity metric satisfies this criterion.

3.There exist distinct systems A and B for which K(A) = K(B), for a metric
which gives each system unique value is not useful since such a metric
would be a simple bijective mapping of systems.

Proof: There exist finite non-cospectral, equienergetic graphs and that number

goes to zero with increasing number of nodes, n in the graph. Hence there could

distinct graph structures with the same graph energy and therefore, equal

topological complexity. Hence, it is possible that there exist two distinct system

structures with identical topological complexity.

4. There exist functionally equivalent systems A and B for which K(A) # K(B),
for the structure of the system determines its complexity.

Proof: The function to form mapping is not unique as the same (or nearly
identical) functionality can be achieved using different system architectures.
They may use different concepts to achieve the same functionality. The
differences in their system structure yields distinct graph energy values and

therefore, have distinct topological complexities.

5. For all A and for all B, K(A) is smaller than K(AUB), and K(B) is smaller
than K(AUB), for a system is more complex than its subsystems.

Proof: This is a restatement of the graph energy property P.11. In P.11,
designating A=AuUB , we observe E(A)=E(A)+E(B). Hence, we have,
E(A)=E(A) and E(A)=E(B). In case of system structures formed by
coalescence of two graphs, we conclude that FE(AoB)>E(A) and
E(Ao B)= E(B) since with addition of nodes while keeping the basic system

structure constant leads to an increases of graph energy [Li et al., 2012].

6. There exists A, B, and M such that, K(A) = K(B) and K(AUM) # K(BUM), for
M may interact with 4 in different manner than with B. Namely, the
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interface structure between A and M may be more complex than
interfaces between B and M.

Proof: Let us consider the following system structure A, where A and M represent

subsystems and X represents the interfaces between the two:

T
X M

The above system structure can be represented in the following block matrix

S Y

= E(A)+ E(M)< E(A,) < E(A)+ E(M)+2E(X)

form:

= E(A,)= E(A)+ E(M)+A(X)

Hence, the resultant graph energy of the integrated system has an integrative
topological complexity component given by A(X).
Similarly, the system structure A, where B and M represent subsystems and Y

represents the interfaces between the two:

T
A= B Y
Y M

The above system structure can be represented in the following block matrix

SR

= E(B)+ E(M)< E(A,)< E(B)+ E(M)+2E(Y)

form:

= E(A,)= E(B)+ E(M)+A(Y)

In this case, the resultant graph energy of the integrated system has an

integrative graph energy/topological complexity component given by A(Y).
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Assuming E(A)= E(B), the difference in graph energy between A and A, is:
E(A) = E(A,)=AX)—A(Y)
Hence, the difference in their topological complexity depends on how the

individual subsystems interface with each other. Their topological complexities

can only be equal if the subsystem interfaces are identical.

7. There are systems A and B such that B is a permutation of components of
A and K(A)# K(B), for changing the way connecting the components to
each other, may change the level of complexity.

Proof: This criterion is satisfied due to property P.7 as the largest difference in

graph energy with same number of system components is bounded by

1
AE < {Z+o(l)}n”. The difference stems from the way nodes of the system are

connected to each other.

8. If A is a renaming of B, then K(A) = K(B), for complexity does not depend
on the naming of the system. This relates to the property of invariance
under isomorphic transformation.

Proof: By definition, the singular values of a matrix are independent of any

rearrangement of its rows and columns. The singular values are invariant to

isomorphic transformation. Therefore the graph energy, are invariant under

isomorphic transformation of the graph [Horn and Johnson, 1997].

9. There exist A and B such that K(A)+K(B) is smaller than K(AUB), for
putting systems together creates new interfaces. This pertains to the
notion of “system is greater than the sum of parts”.

Proof: This criterion is satisfied due to the pinching inequality described in P.11.

A X

v }, where both A and B are square

For a partitioned matrix A:{

matrices, we have: E(A) > E(A)+ E(B). Equality holds if and only if X, and Y are

all zero matrices. Hence, introduction of edges in the process of connecting two

disparate graphs results in an increase in total graph energy of the aggregated
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system and therefore increases the topological complexity. This inequality says
that the system is more complex that its constituent sub-systems - that is, the

system is larger than the sum of parts.

In addition, the complexity metric should satisfy sufficient conditions that might
include domain-specific considerations. It should be easily computable across a
wide swath of engineered complex systems and more importantly, empirically
validated using data from real-world, complex engineered systems.

The empirical validation is accomplished by establishing correlation between
the proposed measure of complexity and measurable programmatic quantities like
system development cost/effort. This validation is the focus of the next chapter (i.e.,

Chapter 4).

3.2.8 Graph Energy and its relationships to other metrics

The graph energy and by extension, the topological complexity metric, C3 are
instances of spectral metrics since they stem from the spectral properties of the
adjacency matrix, A of the underlying graph. Please note that matrix or graph energy
expresses the sum of weights associated with the building block matrices required
to represent or reconstruct the adjacency matrix A.

Another spectral metric connected to this viewpoint is the reconstructability
index, 0 of a graph that expresses how many dimensions of the n-dimensional space
are needed to exactly represent or reconstruct the graph [Liu et al, 2010, Van
Mieghem, 2011]. A parallel to this viewpoint is the graph reconstructability
viewpoint [Liu et al, 2010, Van Mieghem, 2011] and the ability to easily reconstruct
system structure can be viewed as the dual of topological complexity. Notice that,
for exact reconstruction, we have to exactly replicate each element of the adjacency
matrix. This requirement of exact reconstruction is in contrast to, for example,
image compression, where some image information might be lost.

A larger reconstructability index reflects a “simpler” graph that only needs a
few dimensions to describe. In other words, the higher the reconstructability index,

the easier it is to reconstruct the graph accurately from reduced information.
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Simulation studies indicated such dualism between graph energy and graph
reconstructability (see appendix E for detailed analysis). Minimum topological
complexity implies maximum reconstructability and vice-versa. The behavior of
graph reconstructability with increasing link density is dual of the graph energy
(refer to appendix E for details). The graph energy and the topological complexity
metric can be used to detect the change in system connectivity structure in the
Fabrikant model [Fabrikant et al, 2002] as it transitions from star networks to tree
with multiple hubs with identical number of nodes and edges (see appendix E).

The relationship between graph energy and structural resilience of the
underlying graph is explored in appendix H and relates it to the notion of P point
introduced earlier.

From extensive simulations, it was observed that before reaching the
topological complexity level of 2 (i.e., E(A)/n < 2), it takes failure of only 5% of
nodes on the average to bring down or disconnect the graph. For a specified
probability of nodal failure and permissible level of structural resilience, there is a
target level of topological complexity that is essential. It appears that networked
systems require a minimum complexity level to guard against network
disintegration and it appears that topological complexity at or beyond the P point
may provide a reasonable level of structural robustness against graph disintegration

(see appendix H for detailed description).

3.3 Estimation of Component Complexity

Having looked at the topological complexity, let us turn our attention to local
aspects of structural complexity, namely the component complexity, C1. While the
topological complexity component is domain-independent and only requires
consideration of a binary connectivity matrix of the system, estimation of
component complexity requires domain knowledge or domain-specific information.
Characterization of component complexity is based on the technical
design/development difficulty associated with the individual component alone, not

accounting for the complexity of its interfaces. The method of component
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complexity estimation varies depending on the level of fidelity and amount of data,
either historical or contextual. Here are some strategies for estimating component

complexity and their choice might be dictated by the availability of data.

(a) Estimation based on technological maturity: The implicit assumption here is
that the component complexity is proportional to the technological maturity or
readiness level (i.e., TRL). If a component and its underlying operating principles are
matured and mastered over time, than the component is termed less complex than
otherwise. This measure could be based on the widely used notion of component
TRL (i.e., Technology Readiness Level) or other similarly motivated measures as a
surrogate for component complexity.

We propose a component complexity scale on the interval [0, 5] and

computed from the component TRL [Sadin et al., 1988] level as:

max

TRLma - TRLmin

o.=5

1
X

( TRL —TRL j
i (3.42)

where TRL; stands for the TRL of the it component and the technological readiness

level is defined in [TRL ., TRL_  ]. Hence, eq. 3.42 converts a TRL scale to a

component complexity scale, with the component complexity scale being continuous
in general. In practice, this approach works well if the organization developing the
system is well versed with and rigorously assigns technological maturity levels for

components, following a consistent procedure. If we have a distribution for TRL;,

then ¢, is also a derived distribution. This is a relatively crude, macro-level measure

and its reliability has been questioned in the literature [Babuscia, 2012].

(b) Estimation of component complexity when no reliable data are available:
In this scenario, we do not have available data and not enough information to
meaningfully assign a maturity index. The only available option in such cases is
expert opinion. This is particularly applicable for any novel component that is used

for the first time. This method usually consists of (a) elicitation of expert opinion;
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and (ii) pooling/aggregation of expert opinions (in case of multiple experts, which is
usually the case).

As observed from fig. 3.8 below, expert opinion plays its role in providing
subjective probabilities when minimal information/knowledge is available. It is also
possible to devise a hybrid approach of combining expert opinion and available data

using Bayesian approaches [Babuscia, 2012].

Total Certainty = Complete information 1‘ All known
Objective Data /
Probabilities Knowledge
""""""""" Partial information ------------ T - Known unknowns
Subjective Ex'pe'rt
Probabilities Opinion
Total Uncertainty = No information l Unknown unknowns

Fig. 3.8: Expert opinion is the only option when minimal information is available. One can use a

hybrid approach with availability of additional data [Greenberg, 2013].

The final output component complexity is usually a probability distribution and
triangular distributions are generally used for this purpose due to their inherent

advantages as described in [Garvey 2000].

(i) Expert elicitation: Expert opinion elicitation is a structured approach to capture
subject matter expert’s (SME) knowledge base and convert that knowledge into
quantitative estimates. This is accomplished using a questionnaire-based survey or
similar procedures to converge on an estimated component complexity distribution.
The elicitation process consists of multiple cycles.

The triangular distribution is used as a subjective description of a population
for which there is only limited sample data. Triangular distribution is a bounded

distribution and is useful if the expert has a certain level of confidence in an
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“informed guess”, and in cases where the relationship between variables is known
but data is scarce, possibly because of the high cost of collection [Kotz and van Dorp,
2004].

It is based on knowledge of the minimum and maximum and an "informed

guess" as to the modal value [Garvey, 2000] (see fig. 3.9 below).

(H-L)

. 2(x-1)
f(x)_(M—L)(H—L)’ L<x<M
2= ycicnm
' (H- M) H~-L)

=0, otherwise

L M H

Fig. 3.9: A triangular pdf with most likely estimate M, minimum estimate L and maximum estimate H.

The triangular distribution can characterize skewedness in the distribution and the

mean and variance are given by,

_(L+M+H)
3
ol (P +M*+H*— LM - LH - MH)
B 18

(3.43)

These three values are specified by the subject matter expert (SME) to describe the
subjective probabilities. For these reasons, the triangle distribution has often been
called a "lack of knowledge" distribution [Garvey, 2000; Kotz and van Dorp, 2004].
In practice, it is often the case that SME’s can only prescribe some upper and
lower limits H* and L* with adequate confidence, but there exists extreme values H

and L, outside of those limits and with finite probabilities. Such a scenario is
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described in fig. 3.10 below. This is the usual scenario for expert elicitation in

practice.

J()
p(x>H)=s

L
*

L L M H H
Fig. 3.10: A triangular pdf with limit values (H*, L*) specified by SME with probabilities of actual

extreme values lying beyond those limits.

There is extensive literature on expert elicitation techniques [Young and
Young, 1995; O’Hagan, 1998; Greenberg, 2013]. There is a large swath of literature
in social science research dealing with expert opinion elicitation that also points to
the lack of consensus on the superiority of any particular elicitation technique

[O’'Hagan et al., 2006].

(ii) Aggregation/pooling of expert opinions: There are multiple techniques for
aggregating expert opinion [Cooke, 1991]. Any one of them could be employed for
this purpose, but we advocate using the simple aggregation technique based on
weights associated with each expert [Cooke 1991]. Goulet [Gaulet et al, 2009]
developed an R software package implementing Cooke’s convex combination of
expert opinions.

Regarding aggregation methods, mathematical compositions have been used
intensively [Babuscia, 2012]. Cooke developed the Cooke Classical Model, while
O’Hagan’s work [O’Hagan et al, 2006] describes different ways to exploit at
maximum expert opinion using Bayesian analysis, elicitation processes, subjective
probabilities, and expert’s cooperation. Clemen [Clemen and Winkler, 1999]

reviewed the principal techniques for expert aggregation: linear weighted
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combination, logarithmic combination, Cooke generalization, Bayesian approach,
and Mendel-Sheridan composition. Since there is not a clear winner, we advocate
using the simplest aggregation rule that is applicable under the scenario.

Another alternative approach for expert opinion aggregation is the Delphi
method. This method resolves the aggregation using an anonymous off-line
discussion-based approach, including iterations. This requires generation of a

relevant questionnaire and needs to be facilitated by a moderator [Ahn et al., 2013].

(c) Estimation using data analytics for system design: This is a bottom-up, first
principle approach to estimation of component complexity based on component
characteristics and leveraging existing data. Hence, there is an inherent assumption
about availability of historical and contextual data for similar components (or at
least some reasonable estimates). This approach is based on data analytics applied
to system design and development. Such approaches are becoming increasingly
prominent with introduction of concepts like additive manufacturing and design by
crowdsourcing [DARPA AVM, 2011]. In this approach, the complexity of a
component generally scales with the amount of information required to
define/replicate the component.

Application of this method involves developing a statistical model of the

form, o= f(X) relating a component characteristics vector, X to component

complexity, . Complexity cannot be measured physically using a measuring device,
but it is manifested through other observables like component development cost or
effort, y.

In this approach, the first and probably the most important step is defining the
component characteristics vector, X. Below, we suggest a list eight characteristics
that typically impact the complexity of any given component in an engineering

system development context.

1. Measure of performance tolerance, x1: Components with extremely tight
performance tolerance requirements tends to have increased complexity. As

performance tolerance increases, component complexity tends to decrease.
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Measure of performance level, xz: A higher level of component

performance introduces higher levels of complexity in components.

Component size indicator, x3: Component with larger ‘size’ tends to
increase its complexity. Here, size indicators would mean different things for
software components vis-a-vis hardware. Using a size indicator that is
representative in context is important. There may be cases where a smaller

size might reflect higher complexity (i.e., integrated circuits or chips).

Number of coupled disciplines involved, x4: If engineering a component
involves a number of disciplines (scientific or otherwise), its complexity
tends to increase. For example, components that concurrently fulfill
structural, fluidic and thermal functions tend to be more complex that

components that have only structural requirements to satisfy.

Number of variables and physical processes involved, xs5: An increased
number of different physical processes and associated variables tend to

move component complexity upwards.

Component reliability measure, xs: Components with high reliability often

mandates higher complexity.

Existing knowledge of operating principle, x7: This is an indicator in [0,1]
where 1 indicates complete knowledge of the operating principle of the
component. Existing knowledge about the operating principle reduces the

component’s complexity.

Extent of reuse/heritage indicator, xs: This is an also an indicator in [0,1]
where 1 indicates complete reuse of an existing component. Any extent of
reuse of an existing component reduces its design/developmental

complexity.
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Please note that the above list of component characteristics impacting
component complexity is only a suggested one and can be modified based on the
application and context to a certain degree. We believe this is a promising list in
specific case of engineered complex system design and development, but will
require further refinement.

The methodology developed here leverages the method developed by Bearden
[Bearden, 2000, 2004]. The component complexity measure uses a weighted, rank-
based measure. For a given component, each of the component characteristics listed
above are ranked based on a historical database for similar components. The

procedure for computing the rank for it component is described below:

Let, rj(" ) = percent rank wrt variable x;i) in the historical database

()
perf. tolerance rank ’im
perf. level rank rZA
component 'size' rank ’3(1)
RO = #coupled disciplines rank | _ r
#variable involved rank )
component reliability rank ,,6(1‘)
existing knowledge rank 0
extent of reuse/heritage rank ;U)
8

In order to compute the individual ranks, let us first divide the factors into
two groups: (i) LIH = Larger Is Higher - where larger value leads to higher
component complexity (i.e., positive correlation with complexity), and (ii) SIH =
Smaller Is Higher - where a smaller value maps to higher component complexity
(i.e., negative correlation with complexity). For the given factors, here is how their

ranks are computed,
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 sizedplx (p) < xW
0 = {plx(p)=x} fx e LI
‘ n " (3.44)
size{p|x. > x
_size{p|x;,(p)2x;"} i x eSIH
n

with LIH = {2,3,..,6}; STH = {1,7,8}

where n = #instances of ith component in the database. Please note that the size
characteristic can belong to either category, depending on the application area.

Then we assign weights to each component characteristic and compute the
component complexity value. To estimate the weights we have to build a statistical
model linking component development cost/effort to the same set of component

characteristics vector, X as shown below,
WO =hXD)+e (345

The model described in eq. 3.45 is usually developed using stepwise
regression technique [Mosteller and Tukey, 1977; Martinez and Martinez, 2007]. The

exact functional form #4(.) is obtained using statistical/econometric modeling

techniques and therefore dependent on available data. The polynomial model is
usually adopted for its simplicity and ease of interpretation. The weights used for
computing the component complexity are derived using the associated coefficients
from the above model linking development effort and complexity charateristics

vector:

representative coeff. of xi.”

(i) _
w'= A
/" min[representive coeff. of x"']

(3.46)

=weight associated to j" factor for i" component

The weighted, rank-based component complexity is computed by,
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= R— (3.47)
m

where m = size(R") = size of the X vector

where m = 8 since we have considered 8 component characteristics here.

Please note that the associated weights are always larger that one by
definition, and therefore, the component complexity metric could also be higher
than unity. This weighted measure assigns relative importance or contribution of
each component characteristic towards system development cost/effort and help
link component complexity to its development cost/effort in an implicit fashion.

There is also an alternative model that can be used to link the component
characteristic vector, X to its complexity, o . This involves relating the component
development cost/effort, y to component complexity, &, based on the historical

data. Let us assume that they are related as,
y=gla)+g (3.48)

Using eq. 3.45 and 3.48, we can arrive at the functional form, assuming the

functional inverse g~'(.) exists,

oa=g"h(X)+5
0
= f(X)+6 (3.49)

The above procedure is depicted pictorially in fig. 3.11 below.
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Y Xp) oa=g"'[hX)]

v

Fig. 3.11: Data analytics based, first principle approach for computing component complexity, &

from component characteristics vector, X.

Assuming the functional form between y and «, as obtained by Bearden

[Bearden 2004], V = ae™ , we can arrive at the following functional form linking

component complexity, & to component characteristics vector, X:

b

H_/

constant

o= lln[l}+lln[h()()]+6
a) b

=K+ %ln[h(X)] +5  (3.50)

This is an alternative form for computing component complexity based on
component characteristics using historical/contextual data. The suggested data
driven estimation method needs to be matured over time by application to
multitude of systems across different domains before it can achieve a level of fidelity
and maturity for large-scale industrial applications.

Please note that the data analytics driven estimation of component
complexity, « is still an estimate. We can assign an uncertainty band around this
estimate to derive a probabilistic distribution for component complexity. The likely

candidates are normal (e.g., Gaussian) or other symmetric distributions.
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3.4 Estimation of Interface Complexity

In order to compute the term C: in the structural complexity metric, we need
to define the interface complexity for each connection in the system connectivity
graph, G. Interface complexity is estimated based on (i) complexities of the
interfacing components, and (ii) characteristic properties related to the interface
type. Therefore, for an interface of type k, interfacing the (i,j)* components of a

system, the interface complexity can be represented as:
BY =g(c" o)  (3.5])

where o and o are the complexities of components i and j, respectively and c¥ is a
constant based on the interface type.

In the context of engineered complex system, table 3.2 lists the primary
interface types, including their sub-types [Tilstra, 2010; Tilstra et al, 2013]. In order
to be applicable across a large variety of systems, the interface types are extended
from the primary interfaces to its more detailed sub-types [Tilstra, 2010]. This list of
fine-grained interface sub-types is an extension of the general interactions
presented in the contemporary DSM literature [Eppinger and Browning, 2012; Suh
et al, 2010]. More details on application of this methodology can be found in

chapter 5.

Table 3.2: Various primary interfaces and their sub-types.

Primary Interface types Interface sub-types

{load transfer; translational;
Physical rotational; spatial; alignment;
positional proximity}

{fluid flow; flow of solids; mixture

Flow flow; plasma flow}

{mechanical; thermal; hydraulic;
elastic; pneumatic; electrical;
Energy magnetic; electromagnetic;
acoustic; chemical; biological;
human}

{control signal; status signal;

Information . . .
information processing}

99



Please note that all the sub-types listed above in table 3.2 may not be
applicable in a specific scenario. The underlying idea is to use a consistent
description of interfaces across systems that are being compared.

The relative complexity of the interfaces with respect to that of the
components can be estimated looking at the relative effort associated with
component vis-a-vis interface design. One of the essential function in systems
engineering and project management for product development is to predict and
track the relative effort for component design, interface control document definition
and systems integration. This requires consistent book keeping of development
efforts differentiating between component development and interface design.

It is crucial to express the interface complexities relative to the component
complexities such that they are not dimensionally mismatched. Dimensionally,
complexity of interface type k can be expressed in terms of component complexity

as,

BY = % (3.52)

Since it is also easier to express the interface development effort as a
function of the component development efforts, a simple and probably the most
practical functional form to express interface complexity appears to be the

following:

B = max(a,,0 ) (3.53)

iJ c(k)
where ¢ characterizes the interface type k and is independent of component
complexity. A large value of ¢*’ reduces the interface complexity. The obvious next

question is how to estimate the interface type factor, c*’. Here, we utilize the
available data on development cost/effort of interfacing components and that for
the interface. Let us consider an interface type k with multiple instances of such

interface types in a database.
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Let z("l, ; being the interface development cost for interface type k, connecting

components (i, /). If y, and y, represent the interfacing component development
costs, we express the estimated interface factor for interface type k as,
max(y,,y;)

Zk
(i.)

(3.54)

C(k) = mean
Uk

Now, we can also utilize available data to develop a bottom-up, first principle
approach to interface factor characterization. We again emphasize the importance
of the bottom-up model for interface factor and we propose a data analytics driven
approach to characterization of interface factor, similar to that of component
complexity.

As the first step, we define interface characteristic vector, X as,

magnitude of 'entity’ transfer X"

tolerance requirement indicator Xéi’j )

YD = knowledge of interface mechanism | X
wo # disciplines involved B XD
reliability requirement indicator x;i,j)

extent of reuse/standardization xé i)

The impact of six interface characteristics on the interface complexity is as

follows:

1. Magnitude of ‘entity’ transfer, x1: Interfaces that transfer a large ‘entity’ of

interest (e.g., force, energy, flow, signal) usually are more complex.

2. Interface tolerance requirement, xz: Interfaces with low tolerance

requirement often mandates higher interface complexity.
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3. Existing knowledge of interface mechanism, x3: This is an indicator in
[0,1] where 1 indicates complete knowledge of the operating principle of the

interface. Existing knowledge reduces the associated interface complexity.

4. Number of disciplines involved, x4: If designing an interface involves a
number of disciplines (scientific or otherwise), its complexity tends to
increase. Interfaces that transfer both heat and electrical signals are more

complex to develop that purely electrical interfaces.

5. Interface reliability requirement, xs: Interfaces with high reliability

requirement often mandate higher complexity.

6. Extent of reuse/standardization indicator: This is an also an indicator in
[0,1] where 1 indicates complete reuse/standardization of an interface. Any
extent of reuse of an existing interface reduces its complexity. Interface
standardization is a major issue in industry and ISO, ANSI and IEEE
standards are often extensively used to better manage interface complexity

over time.

Please bear in mind that the above list of interface characteristics is only a

suggested one and can be modified based on the context. For each instance of the

: . o . .| max(y,y;)
interface type k in the historical database, we can substitute the ratio | ——————
z
(i.)

for Ci and build a statistical model relating the interface characteristics vector,

X, and ¢,:

cp=h(X,)  (3.55

The model described in eq. 3.55 is developed using the stepwise regression

technique [Mosteller and Tukey, 1977]. The exact functional form 4(.) is dependent

on available data. The polynomial model is usually adopted for its simplicity and

ease of interpretation. In case of component complexity being available as a
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distribution and/or interface factor being defined as a distribution, the resulting

interface complexity, B becomes a distribution.

The specification of interface complexity distribution may become rather
involved and required application of algebra of random variable. Such an approach
requires use of integral transforms, like the Mellin transform to derive the resulting
probability distribution for interface complexity [Springer, 1979].

In cyber-physical systems, the interface complexities are usually much

smaller than the component complexities with ¢, being much larger than unity.

This may not be the case in other systems though. For example, it is quite
possible that interface complexity in novel biological systems might dominate the
component complexities. [t must be mentioned that other functional forms, like the
multiplicative model, can be used to characterize the interface complexity. While
maintaining the basic essence of eq. 3.50, we can write the multiplicative model for
interface complexity as,

B = poex, (3.56)

i,j

where p, is a coefficient that has to be estimated. The multiplicative model has

been used earlier for characterizing interfaces [Eppinger and Browning, 2012]. A
similar data-driven methodology described above can be used to estimate the

interface coefficient.

3.5 Analysis of the Structural Complexity Metric

We have described the details of individual terms of the structural
complexity metric. Now, let us look at the dimensional analysis of the structural
complexity measure and then a look at the interplay between the different

components and the resulting isocomplexity surface.

3.5.1 Order analysis for the proposed Structural Complexity metric

Let us define the averaged component and interface complexities as follows:
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R

(3.57)

SHENSIENEe
|

where n and m represents the number of component and the number of interfaces
respectively.

As described earlier, we can group system architectures broadly into three
regimes (a) centralized architectures (e.g., hypoenergetic C3 < 1), (b) tree and
hierarchical architectures (e.g., non-hypoenergetic 1 < C3z < 2), and (c) distributed
architectures (e.g., hyperenergetic C3 > 2).

(a) For centralized architectures: The component complexity dominates in this
regime and associated order can be described as follows:

C, =a0(n)

C,=BO(n)

c,c,=Bo(n)
The order of structural complexity metric in this regime is:

C=ao(n)+Bo(n")=0(n)  (3.58)

Hence, the structural complexity is of the same order as the number of
components in the system. A weighted sum of components in the system may yield a
good approximation of structural complexity.

(b) For hierarchical architectures: This is a balanced architectural form where

component and interaction structure contributions are of the same order.

C =a0(n)
C, =BO(n)
C,=0(1)
C,C, = BO(n)

The order of structural complexity metric in this regime is:

C=a0(n)+BOn)=0(n)  (3.59)
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Even in this case, the structural complexity is of the same order as the number of
components in the system, the difference being the relative contributions from
different terms in the structural complexity measure. A weighted sum of
components and interfaces in the system may yield a good approximation of
structural complexity.

(c) For distributed architectures: In this regime, the effect from system interaction

structure dominates over the component complexities as described below.

C, =a0(n)
C,=BOo(n*)
C3 — O(no‘s)

C,C,=Bo(n*)
The order of structural complexity metric in this regime is:
C=a0(n)+BO(n*™)=0(n>")  (3.60)

The structural complexity varies non-linearly with the number of
compositional elements of the system in this regime. This system architectural
regime is often associated with use of simpler component while the
interconnectivity accounting for much of the improved performance and life-cycle
properties.

A weighted sum of components and interfaces in the system is usually
insufficient to yield a good approximation of structural complexity. The relative
balance between component complexity and that arising from the interaction
structure is an interesting decision problem and directly relates to the relationship
between component engineering and system integration respectively.

Based on the above, one would predict that a new, component innovation-
centric system will start off with a more centralized architecture initially, but
additional requirements might mandate a departure towards a more hierarchical or
distributed architecture. It would be interesting to investigate the evolution of
different classes of systems (as part of a system archeology exercise) and see if the

above assertion holds true in general.
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3.5.2 Isocomplexity surface

Highly distributed architectures feature a high C3 value and thereby imply
high system integration effort. Note that Cz is only a part of the total structural
complexity as the total structural complexity is also dependent on component and
interface complexities.

For example, assume a total structural complexity budget of C = 100. We can
distribute this total complexity among its different components C, Cz and Cs. A finite
amount of overall structural complexity can be distributed across different
components of the complexity metric. Given a constant level of overall complexity,
topological complexity is contained to lower levels for a large swath (i.e.,, moderate
to high) of component and interface complexities (see fig. 3.12 below).

An isocomplexity surface is one in which different instantiations of a system
have the same total structural complexity but distributed differently within the

system.

4
Fig. 3.12: Profile of isocomplexity surface for n = 20 components, assuming, c; in [10,60]; c
in [12,40] and Structural Complexity held constant at C = 100. Different value of C only shifts

this profile.
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Lower interface complexities allow for larger topological complexity in the
system. There is an interesting tradeoff between (i) complex components and
simple architecture, or (ii) simpler components and more complex architecture.
Assuming we have both options open after considering other life-cycle
considerations like robustness etc., the first option calls for excellence in component
development and very high component reliability while the second option requires
expertise in system architecting and integration.

This may often be a strategic decision to be made by the development
organization, depending on its own capabilities and strengths. One of the main
outcomes of this thesis is a call for more deliberate complexity management within
large system/product development efforts. Part of the complexity management is
the establishment of an overall complexity budget, C, and the allocation of sub-
budgets to component, Cip, interface, Czp and topological complexity, Csp.

We will dive into this topic in more details in Chapter 6 of this thesis and link
complexity budget to value of the system, which suggests a way to estimate/allocate

a complexity budget based on the system value.

3.6 Sensitivity Analysis of the Structural Complexity

Metric

Another aspect of complexity management is to perform sensitivity analysis
for factors driving the structural complexity and we discuss this in this section.
Let us look at the sensitivity analysis for structural complexity, C. Consider

architecture 1 as the base architecture and architecture 2 as the new architecture.
Architecture 1, C = C, +C,C,
Architecture 2, C, = Cl* + C:C;

Assuming C > C,, the sensitivity is expressed as,
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A
Sensitivity = —
Y C

_(C=CH+(C,C-CC))
C, +C,C,

C2C3

C-C
~ ) assuming ( é c ] j% 0 in general  (3.61)
1+ !
C2C3

273
For the base architecture, if the interface effects dominate over component

*

C
complexity, then we have, (C—IJ <1 and we have,
273

C |\ C.
Sensitivity = 1—| =% || = 3.62
ensitivity [C ][Cj (3.62)

2

We observe from eq. 3.62 that component complexity does not play any role
in sensitivity calculation in this scenario. Now, if interface effects and component
complexities are comparable for the base architecture, then we have,

CC 1
Sensitivity = R(l){l - #} where, R(1) < 5 (3.63)

273
Comparing relations 3.62 and 3.63, we observe that as component
complexity increases and becomes comparable or dominant over the interface
effects, the resulting sensitivity to structural complexity decreases. Therefore,
dominance of component complexity tends to reduce the sensitivity of structural
complexity to architectural changes.
Looking at the above expressions for sensitivity of structural complexity, it

appears that architectures dominated by component complexities (i.e.,, C, > C,C,)

with minimal changes in interface complexity (i.e., C, zC;) helps dampen the

sensitivity of structural complexity. Now let us look at the sensitivity calculations

under specific circumstances.
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3.6.1 Sensitivity to compositional elements

Sensitivity analysis with respect to individual component complexities is
relatively straightforward as it follows the parametric sensitivity analysis procedure
since the underlying system architecture remains unchanged. In this case, the

underlying connectivity pattern remains the same and therefore, topological

complexity, C, remains constant. Using the multiplicative model B/ = c"oc,0x, for

the interface complexity, the analytical expression is derived below.

C=C+C,C,=) o+ CEZ@] =Y o+ QEZC(")aiaj
i i Jj i i Jj

9Cc _dC, . AC, . aC, AC, . AC aC
= +C,—+C,—2=—L+C,—2% ; since —=0 3.64
dor, do, ‘oo, oo, da, oo, BERPP (3.6

i

Assuming longer range (beyond immediate neighbor) interaction

sensitivities are negligible, we obtain

aC 0 oo

o .
—Ll=1+ L =1+ . 3.65
da, ;aai g‘aai (3.63)

where (i ~ j) indicates that they are connected to each other.

Assuming interface factor, ¢’ being independent of changes in complexity of
compositional elements, we obtain the following expression for sensitivity of

interface complexity to changes in compositional elements:

aCZ 2|: aac;k) (aiaj ) + C(k) %(aiaj ):|

aai B i~j i
= c<">i(aa) => | a 14+ % 9, (3.66)
py dor. V| & I a9, '
%,_/
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Notice the underlined normalized sensitivity term of immediate neighbor
element complexity. In other words, the sensitivity of total interface complexity to
component complexity also depends on all immediate neighboring components.
Putting everything together, we obtain the final expression for sensitivity of

structural complexity to compositional elements in the system:

ac | dor | o [ Jda.
—=|1+ L |+yE(A Mo | 1+ =2
Ja, gfaoci vE(A) ,Z,‘ / o, Ja,
i o | E(4 o [ do,

= 1+Zaa’ + Eq) 2 Yo, 1+a—’ a(xj (3.67)
i~J T R J i
%/_J

Notice that there is a term describing the architectural pattern involved, in addition
to a normalized sensitivity term involving immediate neighbor element complexity

(indicated by underlined terms in eq. 3.67).

3.6.2 Sensitivity to system architectural changes

Let us now look at the sensitivity of component deletion on the structural
complexity metric. This has a combinatorial effect as the underlying system
architecture is changed in addition to deletion of a single system component. Let us
consider a system architecture be represented as a simple graph G with n
components and m interactions and whose binary adjacency matrix is A.

Now the kth component (i.e., k™ node of graph G) is removed from the system
and this results in deletion of all interactions associated to this component.
However, it is assumed that this component deletion still maintains a connected
system (e.g., deletion does not lead to fragmentation of the overall system).

For simplicity, assume also that such deletions do not render the overall
system totally dysfunctional (but performance might partially degrade) [Agte et al,
2012]. In case of component removal leading to structural disintegration of the

system (i.e., system fragments into multiple disconnected fragments), the sensitivity
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for that component is set to a very large number, indicative of this behavior. We can
also employ the same strategy for absolutely necessary components of the system
(i.e,, components that cannot be removed else the system becomes dysfunctional)
from the system functionality stand point. We also assume that component deletion
does not result in any re-distribution of component and interface complexities while
maintaining at least limited functionality.

Please note that we are not imposing the multiplicative model for estimating
interface complexity here. Imposing the multiplicative model would result in a
slightly different mathematical expression, but essential characteristics remain the
same.

Under these assumptions, we can express the difference in structural

complexity due to removal of the kt" system component as below:

(F) (k)
CZ C3

AC=(C- )+ o 1= 2

effect of individual
component

n iﬁ'k_i_iﬁk' (k)
$¥p |EU e E(A
=l j=1 ﬁij

i=1 j=1 topological effect

effect of deleted interfaces

n

noon E(A) Zﬁi,k+§ﬁk,i ( n J[E(A(k))j
4 n—1

=, + 2.8, 1-[1-& (3.68)
ot L & - E(A
i=1 j=1 n zzﬁl] ( )
i=l j=1 topological effect

effect of deleted interfaces

Looking at the different terms of the above expression, we observe that for

any component, sensitivity to its deletion on structural complexity consists of three
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sources: (i) complexity of the deleted component itself (o), (ii) complexities of the
deleted direct interactions that were associated with the removed component, and
(iii) re-structuring of the underlying system architecture due to removal of the kth
component.

The only impact that organization of system elements has on the sensitivity
expression is through the changes in the topological complexity term after removal
of any system component. If removal of any component makes the system structure
less distributed than before, then the ratio of topological complexities in eq. 3.68

becomes smaller than unity.

3.7 Extension to System-of-Systems (SoS)

The system-of-systems (SoS) concept describes the large-scale integration of
many independent, self-contained systems in order to satisfy a requirement by
forming a large, integrated system (see fig. 3.13). System of systems problems are a
collection of trans-domain networks of heterogeneous systems that are likely to
exhibit operational and managerial independence, geographical distribution, and
emergent and evolutionary behaviors that would not be apparent if the systems and

their interactions are modeled separately [Maier, 1998].

rr r T It 1Y ' xr Network A

“Network B
Fig. 3.13: System-of-Systems (SoS) represented as layered, multi-domain networks

[Maier, 1998].

The proposed structural complexity metric can be extended to system-of-
systems (SoS). The mathematical form is quite similar to that observed in computing

the structural complexity of modular systems with individual systems acting as
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‘modules’. Here, the system of systems could be represented as a layered one with

each layer representing one individual system.

Fig. 3.13: 2D network representation of the SoS with 4 and B being their adjacency

matrices.

Here, network A has n components or nodes, while network B is
characterized by m components. The inter-system links are captured in the
rectangular, domain-mapping matrix K (see fig. 3.13). The adjacency matrix of the

resultant system-of-systems can be written as,

A-| 4 K 40 || 0 K

K" B 0 B K" 0

(n+m)*(n+m)
From the pinching inequality, we have
E(A)+E(B)<E(A)

Let us write,

E(A)= E(A)+ E(B)+A

The additional graph or matrix energy component, A originates from the inter-
system connectivity structure. The resultant structural complexity of the system-of-

systems can be expressed as,
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i=1 j=1 i=1 j=1 n+m
[Zzﬂ,, 335 ]{w}
e o (integrative complexity) (3.69)
(880-58m-$8m- 250 5

where o represents component complexities of comprising systems and J stands

for corresponding interface complexities.

Notice that there are inter-system interfaces, in addition to the usual intra-
system interfaces. From the above expression, we observe that the structural
complexity of the System-of-Systems (SoS) has an additional component, in addition
to contributions from the individual systems. This is termed as integrative
complexity and this drives the structural complexity of the SoS upwards (see eq.
3.69).

The integrative complexity arises due to two factors: (i) inter-system
interfaces; and (ii) connectivity structure of the inter-system interfaces,
characterized by A in eq. 3.69. This aspect can be shown clearly by defining the
following quantities, and recasting the above expression for structural complexity of

the SoS,
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CU= B+ DB
i=1 j=1 i=1 j=1

=YY+ 8" (3.70)
i=l j=1 i=l j=1

eff — add int
Cl =" +c,

Using the definitions in eq. 3.70 above, we can express the structural complexity eq.

3.69 as,

N

:Li“‘A éal;}(qw+C2im){E<A)Z+vE<B)}+(C;W+ Czim){ s }

i=1 i=1

C:[iaf+ia?]+(cgdd+C;“t)[E(A)+E(B)+A}

of
<

:(ia;‘+iaf]+(cgdd){E(A);E(B)}(C;m){E(A);E(B)} +(C§ﬁ»)[ o } 370)

i=1 i=1

integrative complexity

In the above expression, notice the factors C2int and A that leads to the integrative

complexity. Also, more simplistically, we can express eq. 3.71 as,

C=(iaf+iafj+(c;ff){E(A)+]€(3)+A}

N LN 8 o\ E(A)+ E(B) A
(ga[+§ai]+(c2 ){ - H1+E(A)+E(B)} (3.72)

Notice that the interface complexity term C;’ is bolstered by the additional

complexity of inter-system interfaces C2int and their topological counterpart A. A
practical challenge here is the characterization of the interface between individual
systems, Czi“‘. This poses significant challenge and uncertainty in estimation of

associated complexity and remains an open research question that needs to be

addressed in future.
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The above approach can be applied to different scenarios where one layer
could be the technical architecture while the other network layer refers to the
system development organization [Pasqual and de Weck, 2012; Sinha et al,, 2012]. A
similar multi-layer approach can be applied to other systems like healthcare,
transportation system architecture, etc. Please note that in each application
scenario, the implication and characterization of components and interfaces could

be vastly different.

Chapter Summary

This chapter lays the foundation for the complexity quantification framework
and the resulting metric developed in this thesis. The proposed structural
complexity metric involved component and interface complexities, in addition to
topological complexity and can be written as, C = C; + C2C3 following the
Hamiltonian form (see appendix A for details).

We have developed a measure for capturing the topological complexity of a
graph/network structure representing the physical architecture of the system. It is a
global measure that does not require anything more than just the existence of
connections between the components of the system. Important properties of the
proposed topological complexity measure were discussed with classification of
connectivity structures according to the proposed measure.

Lower and upper bounds were developed for the matrix or graph energy of
the system’s adjacency matrix. It was shown that the topological complexity
measure satisfies the Weyuker’s criteria. We also discussed about the dual nature of
graph energy and matrix reconstructability problem as well as the relationship
between graph energy and probabilistic resilience of networks, the details of which
can be found in appendices E and H respectively. The transition from non-
hyperenergetic to hyperenergetic regimes is characterized by the P point that heralds
the regime of distributed networks. Extensive simulations indicated that the state of
network at the P point provides an acceptable level of network resilience against

nodal failure.
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Different approaches for estimating component complexity, depending on
the availability of prior knowledge and data, were discussed. An estimation model
for interface complexity was proposed as a function of the complexities of
interfacing components and the type of interface.

We also performed an order analysis for structural complexity across
different regimes of the underlying system architecture and demonstrated that
structural complexity could be of the order of n2> for distributed architecture. Since
the structural complexity metric captured three constituent elements of complexity
emerging from different aspects of a system, understanding of their relative
contribution is important.

The iso-complexity surface involving these three dimensions of structural
complexity indicated aspects and implications of different trade-offs in the context
of engineered complex system design and development. Finally we investigated the
sensitivity of structural complexity measure under few different scenarios that
indicated the importance of topological complexity.

In addition to providing a foundational basis for this thesis, this chapter
introduces interesting questions and future research directions. As we open our
eyes to the increasing importance of networks and their contribution towards the
design of engineered complex systems, an interesting question is about leveraging
the strength of networks to provide improved functionality and better life-cycle
properties. Do distributed systems based on simpler components and higher
topological complexity meet the goals of future systems? What does this imply for
the typical system development expertise that has largely been based in effective
use of reductionism (e.g., designing systems with complex components arranged in
arelatively simple architectural pattern)?

The complexity vis-a-vis performance trade-off provides another interesting
area of study. It appears that increasing system complexity usually enhances its
performance but the curve tapers down beyond a certain level of complexity.
Assuming that there is no precipitous complexity, what increased complexity does
buy is enhanced performance, but the upside diminishes beyond a certain level of

complexity and any further complexity does not provide additional performance.
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This research suggests a relationship of diminishing return after topological
complexity level increases beyond the P point. Any guideline on characterizing the
level of complexity beyond which performance gains saturate, if any, would have
enormous practical implications for system design and development.

Subsequently, we developed the analytical expression for structural
complexity metric for system-of-systems (SoS). They have an additional
contribution to complexity, defined as integrative complexity, in addition to
contributions from the individual intra-system complexities. The integrative
complexity terms was shown to arise from the inter-system interfaces and the inter-

system connectivity structure.
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Chapter 4

Empirical Validation

Although defining measures of complexity has been a recurring theme in variety of
academic literature, a vast majority has been of theoretical in nature and less than
one-fifth of the studies even attempted to provide some degree of objective
quantification of complexity [Tang and Salminen, 2001]. This is understandable as
large system development projects are rare and definitely not repeatable, making
empirical/experimental studies hard to perform. This has posed a significant
roadblock to widespread adaptation of generic complexity quantification methods
exist for engineered systems.

While formulating the structural complexity metric in chapter 3, we
performed formal mathematical consistency check and verification using Weyuker’s
criteria. That only looked at the mathematical validity or the construct validity of the
proposed metric as a complexity measure. But in order to establish the proposed
metric as a valid and useful measure of structural complexity, both mathematical
verification and empirical validation based on real-world applications are necessary.

The first obstacle for empirical validation is the inability to directly measure
complexity. Therefore we have to depend on the indirect measures or well-accepted
manifestation of complexity in terms of other system observables. The most visible
of these system level observables is the system development cost/effort.

In this thesis, existence of a strong correlation between structural complexity
and system development cost/effort, after accounting for confounding effects, is
construed as empirical validation of the proposed complexity metric. The
underlying theme is that the structural complexity manifests itself through the

system development cost/effort. Below, we state the primary hypothesis relating
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structural complexity to system development cost/effort and the rest of this chapter

is aligned with this overarching hypothesis.

Hypothesis: System development cost/effort correlates super-linearly with Structural
Complexity (see figure 4.1).

Y=aXxb

Dev. Cost (y)

v

Structural Complexity (x)

Fig. 4.1: Predicted super-linear growth in development cost with increasing structural complexity.

We propose a single variable model using structural complexity, as a predictor of
cost/effort. The following functional form is chosen for simplicity, and the empirical

evidence supporting this form [Garvey, 2000; Bashir and Thomson, 2001]:

Y=aX’ 4.1)
where, Y = estimated design cost/effort; X = structural complexity. The parameters
{a,b} are estimated by the least squares method. The parameters vary from one data
set to another.

We start with illustrating supporting evidence from the literature, followed
by an experimental validation using natural experiments involving experimental
subjects building simple ball and stick models. Using the experimental data, we
perform rigorous statistical analysis and build a model relating structural
complexity to development effort. The methodology based on pseudo-jackknifing
technique [Mosteller and Tukey, 1977] applies to situations where the number of
observations is limited and increasing sample size is a costly option. We also
demonstrate the hierarchical nature of the process of model building where
fundamental observations are made at the level of individuals while the final model

is for the group of individuals under study.
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We subsequently discuss how and why observations made in experiments
involving simple ball and stick models can help us understand real-world
engineered complex systems development and discuss the generalizability aspect of
this empirical validation.

Finally, we comment on the parameters {a,b} in the above functional form
and discuss how they relate structural complexity to perceptive complexity or
complicatedness. Complicatedness is an observer-dependent property that
characterizes an actor’s/observer’s ability to unravel, understand and manage the
system under consideration. In contrast, complexity is an inherent system property
and a complex system may display different degrees of complicatedness depending
on the observer. We can think of complicatedness as a conduit through which
complexity manifests itself at the level of system-level observables like the system

development cost or effort [Tang and Salminen, 2001].

4.1 Empirical Evidence

We begin with a couple of instances of empirical evidence from literature in
support of the stated hypothesis. They represent simpler systems (e.g., family of
electrical drills) at one end [Wood et al. 2001] and highly complex satellite systems
at the other end [Wertz and Larson, 1996, Larson and Wertz, 1999, DARPA Report
2011]. The development costs and system architectural information were taken
from the existing literature [Wood et al. 2001, DARPA Report 2011].

The development costs and structural complexities are normalized with
respect to the respective minimum values within that product category. For
example, the development costs and structural complexities of each satellite are
each divided by the respective minimum values among the set of satellite programs
considered. In this case, Orsted satellite had the minimum structural complexity and
minimum development cost. Hence Orsted is mapped to point (1,1) on the
normalized complexity vs. development cost plot (see fig. 4.3(a)). This was done to
homogenize the representation since the reported development costs were masked

using normalization techniques. The system architectural details of three satellites
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can be found in the literature [Wertz and Larson, 1996, Larson and Wertz, 1999,
DARPA Report 2011]. The versatility (i.e., different mission profiles and functional
capabilities) and availability of data were the primary reason for choosing this set of
satellite systems (see appendix ] for further details).

In all cases, we assumed component complexities to have triangular
distribution with most likely estimated being the point estimates (see fig. 4.2
below).

In all satellite examples, the inequality (b-0m)>(0m-a) or (a+b)>2oam was
ensured while choosing the most optimistic and pessimistic values randomly. We
assumed heavy-tailed or right-skewed distributions in satellite examples. The most
optimistic values a and the most pessimistic values b were set based on the ranking
of point estimates of component complexities oum. We also assumed b/ou as 2 and
a/oum as 0.85 for the most complex component and the values were varied based on
the relative ranking of the component in terms of its complexity.

For all electric drill examples, we assumed symmetric triangular distribution
with most optimistic and pessimistic estimates being = 5 percent from the most

probable value. Hence, we have b/oum as 1.05, a/oim as 0.95 and (a+b)=20um.

1
I
I
I
1
I
I
1
I
I
1
Qa

a a b a

m

m b

Fig. 4.2: (a) Symmetric triangular pdf of component complexities used in electric drill example; (b)
right-skewed triangular pdf of component complexities [Garvey 2000] in case satellites.

For the satellite examples, we assume the most likely component complexity,
om to be one for all components with b=2 and a=0.85. Similarly for the electric drill
examples, we use oum =1 for all components with b=1.05 and a=0.95. We sample the
component complexities from the triangular distribution defined by the three
parameters and computed the structural complexity for each sample. The procedure

outlined in chapter 3 was followed for computing the distribution of structural
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complexities in all cases. Within each group of products, the structural complexities
are normalized as described before. Additional details about the procedure can be
found in appendix J.

We plot the mean structural complexity (normalized) as the representative
number (see fig. 4.3(a)) for the group of electric drills and satellites.

Subsequently, we present another evidence from a summer class [2012] at
MIT (ESD 39, 2012) that involved building toy vehicles using LEGO™. In this case,
subjects organized in teams, were made to build three different kinds of cars as
shown below using LEGO™ blocks. After the building process, we looked at the
average number of defects for each car type and found that the number of defects
increases with structural complexity in a super-linear fashion (see fig. 4.3(b)). The
structural complexities for the LEGO™ car variants were computed assuming all
component and interface to be of unit complexity. In this scenario, the development
effort would consist of fixing any defect that might exist and therefore the number of
defects (that needs to be fixed) serves as a proxy for the development effort. Please
note that no normalization was carried out in this example. In this case, 3 teams had

to build different variants of LEGO™ vehicles as shown in fig. 4.3(b):
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Fig. 4.3: (a) Empirical evidences of super-linear growth in development cost with increasing
structural complexity from the literature (after normalization) for a class of electric drills and
satellites, (b) Empirical evidence from building of toy vehicles using LEGO™ blocks showing super-
linear relationship between average number of defects in building categories of LEGO™ cars

(averaged over 3 teams for each car type) and structural complexity.

In all cases shown above, if we fit a power law as per our hypothesis, we obtain very
strong correlation (with R? as high as 0.98). The parameters of the model {a,b}

depend on the nature and category of systems.

4.2 Empirical Validation using Natural Experiments

Apart from such empirical evidence, we concentrated on conducting
experiments with human subjects to see if we observe a similar behavior. The
apparent behavior with three data points for each group of systems (i.e.,
screwdrivers, LEGO™ cars and Satellites) is consistent with our hypothesis, but to
obtain statistically significant results, we conducted simple experiments with a
group of nearly homogeneous subjects, using simple ball and stick models as
described in the following section. Although the experiments were clearly defined in
terms of the final goal, there were no additional controls in working details and
participants could choose any method or strategies in order to achieve the final goal
of building the skeleton molecular structure correctly. In this sense, these
experiments were closer to natural experiments.

In this section and throughout the chapter, we focus on explicit empirical

validation of the proposed structural complexity metric by exploring its correlation
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with system development time or effort. As has been highlighted elsewhere [Tang
and Salminen, 2001; Bashir and Thomson, 1999], there is not much publicly
available data to validate our hypothesis for large, real-world complex engineered
systems. Given the lack of available data, we choose to perform simple natural
experiments related to assembly of simpler structural models by human subjects.
We perform an experiment with a molecular modeling kit from Prentice Hall
[Prentice Hall Molecular toolkit, 1997], used in chemistry for constructing structure
of organic molecules. The atoms are the components, and the bonds between them
are the interfaces. Test subjects were required to correctly assemble structures
given this molecular kit and a 2D picture of the structure to be built. The order of
molecules was randomized for each test subject and for each molecule one would

start with the entire, fully dissembled kit.

4.2.1 Structural Complexity of ball and stick models

We picked a set of 12 ball and stick structures to be built by the subjects.
They were chosen such that they spanned a reasonable spectrum of structural
complexities while the expected build time is not too high. This was done keeping in
view of the availability of subjects for successfully conducting the experiments. All
the ball and stick models were based on molecular structures that could be built
from the molecular toolkit.

A sample of molecular structures used is shown in fig. 4.4 below.
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Fig. 4.4: Representative molecular structures build using a molecular kit - (counter-clockwise from
top left corner): ID 8 with 16 atoms (see table 4.1 below); ID 3 with 12 atoms; ID 10 with 27 atoms

and ID 12 with 46 atoms, respectively.

In all cases, we assumed o = 0.1 for all atoms, = 0.1 for all links and y=1/n
where n is the number of atoms in a given molecule (see the table 4.1 below). Each
molecular bond is treated as a bi-directional edge and the number of interfaces, m is
twice the number of molecular bonds. Also notice that the curved double bonds are
treated as a single interface between the atoms. This is because all atoms are used as
is and there is no perceptible difference observed in using different bond types (i.e.,
curved vs. straight bonds). Please note that the number of edges is computed
assuming each physical link is bi-directional. In table 4.1, please note that for the
most of the models, the ratio of the number of edges to the number of atoms (i.e.,

average degree), m/n can be expressed as 2(1—1/n) for most of the models and has

a value close to 2. If you look at just the average degree, the molecular structures are
closer to simple chains and binary trees, but their internal topological structure
could be more complicated (i.e., intricate) in cases, leading to higher topological
complexity (for example, see molecule no. 9). Any incorrect construction involved
rework and led to increasing total build time. Additional details about the molecules

and the experimental procedure can be found in appendix K.

Table 4.1: Details of the set of 12 ball and stick structures of varying structural complexities used for

the experiments.

129



Molecule No. n m C1 C2 (C3=E(A)/n (C2*C3 SC=C1+C2*C3

1 3 4 03 04 0.94 0.38 0.68
2 7 12 07 1.2 1.13 1.35 2.05
3 12 22 1.2 22 1.13 2.48 3.68
4 12 22 1.2 22 1.00 2.20 3.40
5 12 22 1.2 22 1.27 2.80 4.00
6 14 26 1.4 26 0.96 2.50 3.90
7 15 28 1.5 28 0.97 2.70 4.20
8 16 30 1.6 3 1.40 4.21 5.81
9 19 38 19 38 1.58 6.00 7.90
10 27 56 27 56 1.08 6.05 8.75
11 39 80 3.9 8 1.12 8.96 12.86
12 46 100 4.6 10 1.19 11.92 16.52

We also looked at the sensitivities of component and interface complexity
values and found no significant impact on the fundamental nature of the complexity
vs. development cost relationship. Notice that this is a natural experimental setting
and the idea is to mimic the real-world assembly process with the sequence in
which different subjects were given the molecular structures was randomized to

contain any significant learning effects.

4.2.2 Structural Complexity-Development Cost: A parametric model

With simple ball and stick model building experimental setup, it is easier to
contain and isolate other exogenous, confounding factors [Mosteller and Tukey,
1977].

We track the total build time for each structure as the observable
representing system development effort. Any incorrect assembly involves rework
and leads to increasing total assembly time. The overall experimental setup and

steps followed are listed below:

» For the experiment we choose 12 different structures to assemble. They
were all based on real molecules but that had no importance for our
experiment. Photographs were taken of the assembled structures from

angles such that the topology of the molecules was visible.
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» The experimental subject received an initial briefing including the
explanation of what will be expected from him. Before before started, they
were shown the molecular kit to familiarize themselves with the components

and the two different kinds of bonds, rigid and flexible.

» The subjects were given the completely unassembled kit and were shown a
picture of a molecule. Our test subjects consisted of 17 student volunteers
with largely similar backgrounds to keep the sample as homogeneous as
possible. To contain any influence of the learning effect, the order of

molecules was randomized.

» The volunteers were asked to assemble these structures as quickly as
possible and without error. The total build time, Ttotal = Tcognition + Tconstruction +
Trework Was recorded. We focused only on the total build time Tta and not its
individual constituents. When completed, the structure will be unassembled

and then the next picture was shown to the subject under study.

This experimental setup helps isolate the effect of structural complexity on the
system development cost/effort since components of dynamic and organizational
complexities are not present here. This helps us capture the effect of structural
complexity on development cost/effort by using a simple, single variable parametric
model. In order to smooth out the individual differences, we consider the averaged
build time for the group of 17 subjects for each ball and stick structure.

The parametric model is developed using regression analysis. The dependent
variable Y is the averaged build time for a ball and stick model and the sole
independent variable X is the structural complexity of the structure (pre-computed
as in table 4.1). The functional form is based on our primary hypothesis and given in
eq. 4.1, where the model parameters (a,b} are computed using the traditional least
square methodology. The degree of super-linearity or sub-linearity depends on the
value of exponent b. The growth of development cost is super-linear if b > 1 and sub-

linear if b<1. For the specific case of a linear relationship (i.e., b=1), we use a
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parametric relationship of the form, Y = a + bX, where X stands for structural
complexity and Y represents mean model build time.

Please note that the model parameters are dependent on the data set used to
build the parametric model and are themselves random variables. Their estimates
can vary depending on the data and this puts a practical restriction on their use.
They should not be used too far out of the data set range used to construct them at
the first place or when fundamentally novel systems are being developed for which
we have no significant historical data.

To obtain estimates of the equation parameters from the data and also
statistically validate the model, the pseudo-value jackknife technique [Mosteller and
Tukey, 1977] was used because of the small size of the data samples. The jackknife
technique is a statistical method used to ameliorate the problem of biased estimates
due to the small size of a sample. This is a form of cross-validation technique where
the sample set is randomly divided into two sets, one for model building and the
other to test the developed model’s redictive capability. This division of sample sets
are are performed exhaustively till all combinations are covered and the model
parameters are averaged quantities over all the instances.

In this technique, the desired calculation for all the data is made where the data
are divided into subsamples, and then, the calculation is made for each group of data
obtained by leaving out one subsample [Martinez and Martinez, 2007]. An outline of

the pseudo-value jackknife procedure is given below:

Pseudo-value jackknifing procedure: Let us represent the original samples as {x1,
X2,..., Xn} Where sample size is n. The it jackknife subsample is defined as the set of
original samples with the ith sample or data point removed. Hence the ith jackknife
subsample is given by the reduced sample set {x1, X2, ..., Xi-1, Xi+1,-.., Xn} Of size (n-1).
Let T be our statistic of interest and is represented as:

T=g(x,x,,..,X, ) (4.2)

For the ith jackknife subsample, the same statistic is represented as:

]-('_i) :g(xl,xza...,xi_l,xiﬂ,...,xn) (4_3)
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The jackknife pseudo-values are defined as:

T =nT-(n-DT_, 4.4)

We perform this operation, leaving one sample observation at a time and generate a
sequence of n jackknife subsamples.

The jackknife estimate of the statistic of interest is given by:

_ZT

T= 4.5)

n

The standard error of this pseudo-value jackknife estimate is defined as:

SE; = [n(n DZ( —T)} (4.6)

In our case, we estimated the model parameters {a,b} using the pseudo-valu
jackknifing procedure. All computations were performed in MATLAB™
environment. The final single variable parametric model relating development effort
(Y) to structural complexity (X) for this set of ball and stick model building activity

is given by:
Y =14.68X"7 4.7)

All statistical significance analysis assumed 95% confidence level. The most
interesting result perhaps is the exponent of the power law relation, b = 1.4775.
This suggests that effort increases super-linearly but is not quite quadratic with
increasing structural complexity. Please note here that the above model was built at
an aggregated level for the group of individuals and not for a given individual and
the model parameters for a specific individual will vary. Hence, the model
parameters {a = 14.68; b = 1.4775} are at the aggregated level and not at the level of
individuals.

Also note that the above model is a best fit and the model parameters {a,b} are
random variables themselves with their expected values given in eq. 4.7. A set of
statistical measures is used benchmark the model quality. To test the model quality,

the following criteria were used:
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e Coefficient of multiple determination (R?) - shows the extent of variance
accounted for by the independent variable with a high value (closer to 1)
indicates additional independent variables are not likely to improve the

model.

e The mean magnitude of relative error (MMRE) - measures the relative
estimation accuracy of the model and is defined as:

NI, -)/ v,

MMRE = =—— 4.8)

where yi is the actual building time of i** molecule and y, is the estimated

building time of it molecule and n is the number of ball and stick structures

build.

e Prediction at a given level (PRED) - measures the quality of prediction by
counting how many predictions that lie within a given range of their actual

values.

The methodological details can be found in [Conte et al., 1986]. A small MMRE
indicates that on the average, the model is a good predictor. According to the Purdue
Software Metrics Group [Conte et al, 1986], the model is considered to be
acceptable, if its MMRE is equal to 0.25 or less and [PRED (0.25)] > 0.75 [Conte et al,,
1986] in general. In other words, the model is said to be acceptable if mean relative
error is less that 0.25 and 75% of the predicted values are within 25% of their actual
values. We adopt the suggested values in this study for model quality checks. The

detailed results are listed below in table 4.2 and table 4.3:

Table 4.2: Results based on the single variable parametric model linking structural complexities of

the set of 12 ball and stick structures with development effort, averaged over 17 subjects.
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Serial No.  Structural Complexity Mean build time (sec) Estimated mean build time  Relative error (%)

1 0.68 12 8.25 31.22
2 2.05 54 42.40 21.47
3 3.68 113 100.72 10.87
4 3.40 96 89.63 6.63
5 4.0 126 113.85 9.64
6 3.9 100 109.50 9.50
7 4.2 117 122.45 4.66
8 5.81 181 197.64 9.19
9 7.90 300 311.43 3.81
10 8.748 427 361.80 15.27
11 12.86 605 639.30 5.67
12 16.52 932 925.58 00.69

Table 4.3: Model parameters and model quality measures.

Model functional form Y = axb
Model parameters {a, b} {14.68, 1.4775}
Coefficient of multiple determination (R?) 0.992
Mean magnitude of relative error (MMRE) 0.107
PRED (0.25) 0.9167
Significance test (parameters) t,=28.2, t, =30.67 (>t,= 2.131)
Significance of regression model (F test) f=124>f45,,5=4.54

For additional details at individual level, including the standard deviation for
each individual, please refer to appendix K.

We observe that the developed model demonstrates a vary high R? value
with MMRE of 0.1 (<0.25) and PRED(0.25) of 0.92 (>0.75), all indicating excellent
model quality as per the suggested guidelines [Conte et al, 1986]. The structural
complexity versus actual averaged build time recorded for ball and stick is plotted in

fig. 4.5 along with the predicted parametric model in eq. 4.7. Here, we used the mean
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build time of a group of 17 subjects for each ball and stick structure as the
dependent variable. We also carried out the significance test of model parameters
{a,b} and found them to be statistically significant following t-tests (see table 4.3
above). The functional form of the non-linear model adopted here was also found to
be highly significant (see table 4.3). A linear fit of the form Y = a + bX was found to
be inferior and failed the model quality test, performed using the metrics described

above.
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Fig. 4.5: Structural Complexity versus averaged build time in seconds for the set of 12 ball and stick
structures (square dots) with the fitted parametric model linking structural complexity to mean build

time (solid line).

We can also use a different measure of central tendency like median build
time. Using the median build time the individual level data and following the same
procedure, we get the model parameters {a=12.28; b=1.54} with R?=0.98; MMRE
=0.13; PRED(0.25)=0.83, which is not very different from those obtained for the
mean build time.

All statistical significance analysis assumed 95% confidence level. The most

interesting result is the exponent of the power law relation, b = 1.4775. This
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suggests that the system development effort increases super-linearly but is not
quite quadratic with increasing structural complexity [Sinha, Omer and de Weck,
2013].

We have focused primarily on a parametric model linking structural
complexity and average build time (as a measure of development effort) and choose
not to focus on the contribution of individual terms in the structural complexity
metric. The ball and stick models in this experiment were constrained by structure
of organic molecules, which have inherent architectural features. This restricts us
from spanning a similar range of values for each individual component in the
structural complexity metric. During the experimentation process, it was observed
that for very high Cz values (i.e., as C3value approached 2), the molecules became
very complex and lot of subjects gave-up building them due to the larger number of
errors that started creeping in. We used molecules for which we had complete data
(i.e., correctly constructed by all subjects or nearly all subjects).

Nevertheless, we can look at some observations from the experimental setup
to convince ourselves of the importance of individual terms in the structural
complexity metric. Since the dependence of the building time on component and
interface complexities is more clear and intuitive, we choose to look at the effect of
the topological complexity term, C3. Let us look at the 3 different ball and stick
models with identical component and interface complexities (see table 4.4 below),
but different molecular structure. We can observe here that the differences in their
build time can be account for by the differences in the topological complexity term,
C3. Similar observation can be made if we look at molecular structures 7 and 8 in
table 4.1 and 4.2. Their relative difference in component and interface complexities
are minimal while one has a much higher topological complexity, which explains the

much higher build time was observed.

Table 4.4: Components of structural complexity for a set of ball and stick models where the
contributions from component and interface complexities are the same while their molecular

arrangement (i.e., connection topology) varies.
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ID C, c, C, C=C,+CGC; Mean building time (sec)

3 1.2 2.2 1.13 3.68 113
4 1.2 2.2 0.96 3.40 96
5 1.2 2.2 1.27 4.0 126

Please note that the model, linking the build time to structural complexity is
nonlinear and therefore a formal, term-wise contribution analysis is not possible.

Instead, we used the experimental data and looked a how a parametric model of the

functional form Y =aX" will fit in case we use different sets of independent
variable, X . We followed the same jackknifing strategy and the results are
consolidated in table 4.5 below for different sets of independent variable as

described in the table.

Table 4.5: Model parameters and model quality measures for different predictive models.

Case Y X {a, b} Model Quality

1 Mean build time (sec) | C,+C,C, | {14.68,1.4775 | [R?=0.992; MMRE=0.107; PRED(0.25)=0.9167]

2 Mean build time (sec) GG {26.9, 1.43} [R2=0.985; MMRE=0.13; PRED(0.25)=0.9167]
3 Mean build time (sec) | E(A)=nC, | {1.781,1.558} [R2=0.983; MMRE=0.14; PRED(0.25)=0.8333]
4 Mean build time (sec) | C,+C, {16.6, 1.49} [R2=0.972; MMRE=0.16; PRED(0.25)=0.8333]
5 Mean build time (sec) (oh {79.6, 1.607} [R2=0.947; MMRE=0.174; PRED(0.25)=0.75]

As we can observe, our proposed functional form for structural complexity

metric yields the best overall model. Even if we assume C1 = 0 in all case, we have

X =C,C, and the model quality is very close for this experimental dataset. If we

assume C3 = 1 in all cases, we have X =C, +C, and although a good fit, the model

starts to lose some of its predictive capability. Also, detailed t-tests show reduced
significance levels for the model parameters for the experimental data considered
here. Note that the variation in model quality with reduced form of the structural
complexity metric is dependent on the data (i.e., type of systems being considered)
and given the availability of complete data, we should use the complete expression
for the structural complexity metric, developed in chapter 3 to get the best model

quality.
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Results from the ball and stick experiments indicate that the super-linearity
observed in the build time - structural complexity relationship not due to inherent
bias in the structural complexity metric (see appendix K for details). The reason for
this super-linear behavior is likely to be embedded in the human cognitive
capability and this aspect remains to be explored in future by combining with
cognitive scientists.

On the statistical modeling aspect, we have used the average build times at an
aggregated level. Please note that it is rather difficult to use this aggregated model at
an individual level and such multi-level, hierarchical modeling is complicated since
the functional model linking the build time/development effort and structural
complexity is nonlinear. In the following section, we discuss a formal linkage
between individual level model parameters and that at the aggregated level is
discussed in the following section in the context of multi-level or hierarchical

modeling.

4.2.3 Discussions on statistical modeling

In the previous section, we have worked towards and developed an aggregate level
relationship between Structural Complexity and system development cost/effort.
This section takes a deeper analytical look at treating the overall statistical modeling
process as an hierarchical or multi-level one, where the fundamental or lowest level
is the individual build time that feeds into the higher or aggregated level of group
level mean build time for each ball and stick structure (see fig. 4.6 below). There are
likely to be significant differences in individual build times for ball and stick models.
What might seem simpler to one individual can be difficult or even intractable for
someone else. Therefore, the build time curves at individual level may vary
significantly.

At complexity level x, of the jt ball and stick model, the corresponding build time of

ith subject is represented as yﬁ” . For each individual, the build time is modeled as:

yﬁ.” =ax+e (4.9

J
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where €, stands for the error term in the regression model for the ith individual. Let

there be n individuals building the same ball and stick structure with structural

complexity x;. Therefore, the mean build time for the jt ball and stick structure

with structural complexity x is represented as:

_ 2 T e
— _i=1 —_ i
=i n{izlaixj +28}

n

1 n
=— O{.xﬁ"
n\ < i

Generalizing from the above expression, we can write the mean build time for any

ball and stick structure with structural complexity x as:

yzl[i(xixﬁ“] (4.10)

At the aggregated level, we used the same mean build time y as the

dependent variable in eq. (4.1). Hence we can write y as in the aggregated model:

y=ax"+6 (4.11)
where 6 is the normally distributed error term. Combining eq. 4.10 and eq. 4.11, we

can link the aggregate or group level model to the individual level model:

l[Zaixﬂ" ) =ax"+68 (4.12)
n\ iz

The above eq. 4.12 relates aggregate level parameters {a,b} to individual
level parameters {;,fi}. This relationship between the layers of this hierarchical or

multi level representation is illustrated in fig. 4.6 below.
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Fig. 4.6: Aggregated level model building using individual level data.

Given the individual level data, we can estimate {o;,3i} for each of the subject
who participated in the experiment. For each ball and stick structure, we know the
computed structural complexity (see table 4.1). Using the information, one can
compute the best fit aggregate level parameters {a,b} using regression analysis.
Using this approach, we obtained the aggregate level parameters as {a=14.82;
b=1.484} with R? = 092 and as expected, observe that the values are not
significantly different from those obtained using a direct application of averaged
build time for each ball and stick structure.

This approach shows the depiction of individual level and aggregate level
data as a multi-level structured data and demonstrates a multi-level modeling
approach that explicitly brings about the differences in aggregated build time (y)
and individual level build time (y;) in a quantifiable form. This also brings in an
important reversed question. Can we estimate the individual level parameters, given
the aggregate level parameters? What is the process and a corresponding model that
links aggregated, group level parameters {a,b} to individual level parameters {o;,3i}?

We can express the individual level parameters using the aggregate level

parameters and may be an individual level predictor vector wias «, =% (a,b,u,) and
B.= hg(a,b,u,). Finding a representative individual level predictor vector uiis a very

different and challenging problem that should be investigated in league with social

and cognitive scientists.
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4.2.4 Comment on generalizability to engineered complex systems

An important question to raise here is about the generalizability of the
observed results to real-world, complex engineering system design and
development. Are the fundamental observations from this simple ball and stick
model building experiment translatable to complex engineering systems? If yes,
then to what extent does it translate and why?

We believe that the basic underlying observations about the functional form
of the structural complexity vs. system development effort do translate to the much
larger, real-world complex engineered systems [Bashir and Thomson, 1999].

We claim generalizability of the functional form found above and that the
super-linear form dependence with exponent b>1 will hold for large, real-world
engineered systems. We expect that the degree of super-linearity, as measured by
the exponent b, will only tend to increase for large, engineered systems. A glimpse of
this might be observed from the data shown earlier in the chapter (see section 4.1),
although we do not have a sample that is statistically significant for different
categories of engineered systems. This is an area for future research in systems
archeology.

Building ball and stick models does not have any dynamic aspect and the
individual-based building process takes away any organizational complexity. It is a
constructive activity, primarily involving visual and/or geometric information
processing and ability to decompose and recompose a given structure. This helps in
isolating from other confounding effects and understanding the effect of structural
complexity on the development cost/effort. A comparison of simple ball and stick
model building vis-a-vis complex engineered system development is shown in the

table below (see table 4.6):

Table 4.6: Compare and contrast Ball and Stick model building activity with real-world, engineered

complex system development.

Ball and Stick models Complex Engineered Systems

Constructional Yes Yes, but at a much larger scale and scope
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activity
Decision making Not much decision making Involves significant decision making activities
involved at different levels
Extent of team None. Individual activity Requires multiple people to collaborate with
activity implies no organizational or significant social complexity.
social complexity.
Cognitive aspects Primarily involves visual Involves detailed understanding of physical
involved understanding and ability to behavior, spatial and logical understanding
decompose and recompose. and interplay between system architecture
and its behavior.
Confounding Almost none. Focused entirely Different aspects of complexity [Sheard and
effects on structural complexity. Mostashari, 2010] are manifested, including
other exogenous factors.

Building ball and stick models is a highly distilled encapsulation of real-world
engineering system development activity and underlying effects observed here are
likely to magnify in case of engineering system development scenario, which contain

various exogenous factors influencing the development cost/effort.

4.2.5 Note on the Spread in build times and Structural Complexity

In the process of building simple ball and stick models, we observe
significant differences in individual model building times. The build time profiles
vary at the level of individual subjects (see appendix K for details). What is simpler
for one subject might turn out to be difficult or even intractable for another. In the
current ball and stick model building, the individual level variances in build times
are primarily dependent on: (a) cognitive capability of the individual; (b) ability to
efficiently accomplish the mechanical work.

We would expect the individual variance to be small for lower structural
complexity level, since for less complex systems it is easier to see the best way of
assembling it, errors and rework are unlikely and the time to understand and
process information is small. Conversely for a more complex structure, time for
cognitive processing and likely rework becomes larger and can lead to a larger
variance between individuals. To sum up, one would expect significant difference in
build times at individual level and that such variance will increase with increasing

structural complexity levels.
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To investigate this assertion, we build a response model relating the
maximum build time and minimum build time for each ball and stick model, to
structural complexity. Subsequently, we build a response model relating the
standard deviation of the build time for each model and structural complexity. It is
shown that the standard deviation of the build times increase super-linearly with
structural complexity. The collected data on the respective response variables and

structural complexity of ball and stick models are shown in table 4.7 below.

Table 4.7: Structural Complexity and corresponding maximum, minimum build times and the

standard deviation of build times for the experiments conducted where each model was build by 17

subjects.
Molecule No. Structural Max. build time Min. build time Build time Standard
Complexity (sec.) (sec.) Deviation (sec.)

1 0.68 18 8 2.97

2 2.05 98 34 17.93
3 3.68 216 77 41.55
4 3.4 205 47 40.83
5 4.0 276 63 53.16
6 3.9 135 66 36.41
7 4.2 187 78 42.61
8 5.81 387 86 76.47
9 7.9 543 159 121.17
10 8.75 775 215 178.74
11 12.86 1140 324 279.28
12 16.52 1496 350 356.88

Let us term the maximum development effort as Ymax and minimum
development effort as Ymin at a given level of structural complexity X. Based on the
experimental data, the following relationships linking Ymax and Ymin to structural

complexity, X were obtained:

Y =2331X"% (4.13)

Y =1822X"" (4.14)

Using eq. 4.13 and eq. 4.14, we define the ratio, 7 and find the following

relationship:
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Y
7= 128V (4.15)

mi

From the experimental data, we observe that the ratio maximum to
minimum build for a given ball and stick model increases with increasing level of
structural complexity, X.

Now, we turn our attention to the standard deviation of build times for each
model and relate that to the structural complexity of that model. For a given ball and

stick model, the structural complexity is X and let the build times for all the subjects
be given by the vector {Y}. Let )id be the standard deviation of the build times (i.e.,
standard deviation of the data vector {Y} ) for the given ball and stick model. Based
on the experimental data on ball and stick model building exercise, we obtain the

following relationship linking )i , to structural complexity, X
Y,=848x" (4.16)

with the following model quality statistics using the jackknifing technique: R?2=0.96;
MMRE =0.19; PRED(0.25)=0.75.

Hence, based on the experimental data, we observe that the standard
deviation of the build time for a given ball and stick model increases super-linearly
with increasing level of structural complexity, X. This is an otherwise intuitive

conclusion and is corroborated by the experimental data.

4.3 Complicatedness function

Let us take a relook at the relationship between development effort, Y and

structural complexity, X:

Y=aX"
Taking logarithm of both sides, we arrive at a linear model where variables are

expressed in the logarithmic scale:

In(Y)=1In(a)+bIn(X)  (4.17)
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Here In(a) is the intercept term and b represents the slope of the curve in

logarithmic scale. The parameters of the functional model emphasize very different
aspects associated to system development efforts. The parameter a characterize
work efficiency of the actor (i.e. ability to perform known/specified work
efficiently). The parameter b, on the other hand, relates to individual/group’s innate
cognitive ability to synthesize solutions and cognitive capability plays a big role.
This parameter becomes more significant at higher regimes of complexity and this
aspect is demonstrated segmenting the ball and stick model structural complexity
levels into low and high regimes as shown in table 4.8 below.

Let us define the cognitive demand ratio, s = b/In(a). We can see that
cognitive demand ratio s increased significantly from 0.34 in lower complexity
regime to 0.572 in higher complexity regime. This points at increased emphasis of
cognitive capability as we move from lower to higher complexity levels. At this
point, there is no algorithmic way of segmenting the complexity space into lower

and higher complexity regions and we adopt a more visual approach here.

Table 4.8: Model characteristics after segmenting the structural complexity levels into two levels and

changes in the cognitive demand ratio, s across the structural complexity regimes.

Model Characteristics Low SC (0,4) Higher SC (> 4)

Model parameters {a, b} {24.2,1.09} {14.08,1.497}

Coefficient of multiple

determination (R?) 0.96 0.99
Mean magnitude of relative
error (MMRE) 0.12 0.06
PRED (0.25) 0.8 10
s =b/In(a) 0.34 0.572

Notice that at the lower level of structural complexity (i.e, SC<4), the
parameter a, is larger and the work efficiency, rather than the cognitive ability, of

the subject gains importance with a lower value of the cognitive demand ratio, s. At
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higher complexity regime, higher cognitive demand (i.e., indicated by a higher
cognitive demand ratio, s) might reduce the work efficiency of the same individuals.

When s is smaller, then focusing on efficiency gains might pay off while high
value of s indicates growing relative importance of cognitive capability on problem
solving. This leads us to relate the parameter b, the slope of the straight line in log-
log plot, to the cognitive capability of an individual or at a group level. We define b
as complicatedness function of the actor (an individual or a group of individuals).

Please note that b < 1 implies sub-linear increase in development effort with
increasing complexity, which, in turn, implies smaller complicatedness function of
the development entity (i.e., system development team). It is possible to
influence/reduce the complicatedness function by different means, which we will
discuss later. This sub-linear behavior, if observed, means that the improvement in
cognitive ablity of the development team outstrips the growth in structural
complexity. Such behavior is highly unlikely in practice and may be due to a
fundamental limitation associated to human cognition. This is where complexity and
human cognitive ability meets.

Complicatedness is an observer-dependent property that characterizes an
actor’s / observer’s ability to unravel, understand and manage the system under
consideration. In contrast, complexity is an inherent system property and a complex
system may represent different degrees of complicatedness depending on the
observer. For example, the complexity of an automobile’s automatic transmission
may be hidden from a user and is perceived to be less complex. Therefore
separating complicatedness from complexity improves the clarity by which systems
can be described, analyzed and certain class of system observables (e.g,
development cost, extent of reworks) be predicted.

We can think of complicatedness as a conduit through which complexity
manifests itself at the level of system-level observables like the system development
cost [Tang and Salminen, 2001].

Complicatedness provides insights to the cognitive aspects of the observer

and his/her ability to handle a certain level of complexity. This also calls for future
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research in systems archeology and linking system development with cognition

science.

Chapter Summary

We looked at the empirical validation aspect of the proposed structural complexity
metric in this chapter using an experimental study in which subjects were asked to
built molecular models of varying structural complexity and their build times
recorded. The proposed complexity metric is shown to have a strong correlation
with the development effort/cost and satisfied one of the desirable properties of a
complexity metric listed in chapter 3. The primary observations from this empirical

study are as follows:

e The exponent of the power law relation between development cost and
structural complexity for the ball and stick model building exercise is, b =
1.4775. This suggests that effort increases super-linearly but is not quite
quadratic with increasing structural complexity. This parameter is related to

the complexity handling capability of the system development team.

e The ratio of maximum to minimum build time varies as the square root of
structural complexity for a given ball and stick structure. This result
demonstrates that the variance in build time increases with increasing

complexity levels.

e Demonstrated a multi-level modeling approach to build an aggregate level
from the individual level data model. Such a hierarchical methodology may
throw light in the hierarchical relation linking lower level parameters to

those at the aggregate level using an individual level variable.

e The notion of complicatedness or perceived complexity is an observer-
dependent property that manifests inherent structural complexity in terms
of the development effort. This is essentially related to the complexity

handling capability of the group/individual.
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Further empirical studies using historical system development project databases
are required to validate the proposed model for complicatedness function and
examine the human characteristics of adaptation and innovation for solving

problems of complex system design and development.
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Chapter 5

Applications and Case Studies

In this chapter, we explore application of the proposed methodology of
structural complexity quantification introduced in chapter 3. We demonstrate
application of structural complexity quantification to various engineered systems,
starting from simple ones and moving towards large, real-world systems. Impact of

uncertainty propagation on structural complexity is illustrated for each example.

5.1 Simple Examples

We illustrate calculation of structural complexity with uncertain component
complexity estimates for simpler systems. The propagation of uncertainty is
demonstrated in the context of structural complexity calculation and shows the
effect of right-skewedness on the resulting distribution. Before we get into the
details, the first step is to describe the system modeling approach followed in this

thesis for representing complex engineered systems.

5.1.1 System representation methodology

The first step in applying the developed methodology to complex systems is
to develop the product DSM of the system. The product DSM’s presented in this
chapter were based on the process developed by Suh and co-authors [Suh et al,
2010] and in Tilstra [Tilstra et al., 2013]. The connection types were generalized to
four primary categories (i.e.,, physical connection, mass flow, energy flow and
information/signal flow) as shown in table 5.1 below for most examples. Please note
that all four categories may not be present in a single system. Also note that the four

primary connection types can be further broken down (see table 3.2 in chapter 3)
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and the level of detail depends on system and associated variations in modeling of

interface complexities.

Table 5.1: Different Types of Interactions in a DSM

Connection Type Description Examples
Physical
Physical adjacency/connectedness Weld, Bolt, Socket, Wiring

between two components

Material/mass flow between
Mass Toner, Paper, NOHAD flow
two components

Energy/power transfer Electrical, Mechanical, Chemical
Energy
between two components energy
Data/signal exchange Diagnostics information to Ul,
Information
between two components Sensor signals

Each cell in the matrix at the intersection of a component-row and
component-column is divided into four sub-cells. The upper left sub-cell represents
a direct physical interaction between two components, typically involving a
mechanical connection, the transfer of motion or at a minimum indicating
immediate physical proximity. If the sub-cell is 1 such an interaction is present, if it
is 0 then there is no such interaction between the two specific components indicated
by the row and column, respectively. Likewise the other three sub-cells indicate
mass transfers (upper right sub-cell), energy transfers (lower left sub-cell) or
information transfers (lower right sub-cell), respectively. There are particular
specific aspects about different types of connections. For example, mass flow can
happen typically only across physical connections. Hence mass flow has an
underlying dependency on physical/ spatial connectivity between components and
mass flows are usually asymmetric. But the same is not true about the information
flow. The mass flow and energy flow usually happen across physical connections but
such interactions can occur in a “wireless” fashion as well (especially in case of
energy flow). In this fashion a “complete” DSM model of the system can be

developed. Once the basic DSM is built, one can go about reordering or partitioning
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the DSM to reveal the logical structure or architecture of the product. An example
system Design Structure Matrix (DSM) shows the main elements or sub-systems as
the rows and columns of a matrix. The connections between the elements are shown

as the off-diagonal elements.

A simple system

physical

connection A
—_—
“4—? mass flow B
energy flow Legend
i c Physical connection
information flow Mass flow
Energy flow
Block Diagram Design Structure Matrix Information flow

Fig. 5.1: Block Diagram (Left), DSM (Right) of a Simple System and Associated Legends

Figure 5.1 shows how to read a highly simplified DSM matrix for a simple
system composed of three components A, B and C. In this example component A
physically connects to B which in turn is connected to C. A mass flow occurs from B
to C, while energy is supplied from A to B and C, respectively. Additionally A and B
exchanges information with each other. Such a DSM forms the basic information
upon which the subsequent analysis is build. The aggregated DSM (i.e., binary
adjacency matrix) is built considering all four types of connections and if there is
any type of connection existing between two components, then they are considered

connected.

5.1.2 Structural Complexity calculation for simple fluid flow system

Let us start with the hypothetical fluid flow system described in chapter 3 to
illustrate the method (see fig. 5.2 below). The graph energy is E(A) = 5.6 and the
topological complexity, C3 = E(A)/n = 5.6/5 = 1.12. This illustrative example is
similar to that used in chapter 3 with differences in component and interface
complexities. Now let us differentiate among components and the most likely

component complexity vector is given in table 5.2 below.
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Fig. 5.2: (a) Sample system: it shows different connection types amongst components -
physical/mechanical connection (black); material/fluid flow (red); energy flow (green) and

information/control signal flow (blue); (b) binary adjacency matrix.

Table 5.2: Most likely component complexity for the hypothetical fluid flow system example.

Component | ID | Complexity
Controller 1 1.5
Pump 2 1.0
Valve 3 0.3
Filter 4 0.3
Motor 5 1.2

Please note that the above most likely component complexity is for
illustration purpose and only. We define the right-skewedness (or the lack of it) of
component complexity distribution using triangular distribution by using parameter
p and the following relationship linking the most likely, most optimistic and most

pessimistic estimates:

(b-—a )=pla, —a) (5.1)

The extent of skewedness is controlled by the parameter p with p = 1 indicating
symmetric distribution and p > 1, the extent of right-skewedness. In this example,
we have used p €[1.0; 3.0] and a €[0.80um; 0.90m]. This is usually the preferred
distribution when estimates are made using expert opinion elicitation [Garvey,

2000].
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Fig. 5.3: (a) Symmetric triangular pdf of component complexities; (b) right-skewed triangular pdf of
component complexities.

Different interfaces have their characteristic interface factor as shown in
table 5.3 and we use the model defined in chapter3, for computing the interface
complexity. The interface factor for kth interface type expresses the interface
complexity as a fraction of component complexity. For example, value of 0.10 means
that the interface is only 10% as complex as the interfacing components. A larger

value indicates interface complexity for the k* interface type/category.

Table 5.3: Interface factor used for different connection types.

Connection Interface factor, 1/¢®
type
Mechanical connection 0.05
Information/Control 0.15
Fluid flow 0.10
Energy 0.10

The interface table for this example is given in table 5.4.

Table 5.4: Interface table with interface factors.

Comp. 1 | Comp.2 | 1/c®
3 0.05
0.10
0.15
0.05
0.10
0.05
0.10
0.05
0.15
0.05
0.10

WWININININR|RP] P -
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Note that two connected components might have multiple types of interfaces
between them and they ought to be added up with a resultant interface factor 1/s

such that,
max(a,,o ) L1
= U J max(ai’aj)z E
k=1

1 (1 .
= —=>|—5 (3.2)

where k is the interface type and / is the number of interfaces between components
(i,j)- The resulting distributions for total component complexity, C1 and structural

complexity, C for the fluid flow system is shown in fig. 5.4 below.

35 4 4.5 5 5.5 6 6.5 5 55 6 6.5 7 7.5 8

Total Component Complexity, C; Structural Complexity Estimate, C
Fig. 5.4: Pdf of total component complexity and structural complexity respectively for the fluid flow
system. Both distributions show hint of right-skewedness.

The probability distribution function of both, total component and structural
complexity, show hint of right-skewedness with mean being marginally higher than
the median and the mode. This is shown pictorially in fig. 5.5. The 70-percentile
value is often prescribed as a representative value fro decision-making from a risk
perspective [Garvey, 2000].

Table 5.5: Structural Complexity of fluid flow system using most likely estimates of component

complexities and the mean, median and 70-percentile values from respective distributions. Here, Cwm.

stands for the Structural Complexity using most likely estimates.
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C, C, C, C C/Cyy,
Most Likely 43 1.11 1.12 5.543 1
Mean 4.58 1.2 112 5.93 1.07
Median 4.56 1.18 112 5.89 1.06
70 percentile 4.73 1.235 1.12 6.12 1.11
f(x)
Mode

I\ Median

|
I3l
Jid)
(|
13 )
(|
[
1 |
j<o) |
| S| |
L.l 1 - X

Fig. 5.5: Right-skewed probability density function with mode < median < mean.

Now let us turn our attention to a set of simpler real-world engineered products.

5.1.3 Black & Decker and Innovage Screwdrivers

Now we move on to describe application of structural complexity
quantification for two similar engineered products with the same functionality. Both
of these are electric screwdrivers, but developed by different entities with slightly
different mode of achieving the primary functionality. Here we have two simple
engineered systems to serve the same function and compare their structural
complexities. These two examples are based on the product dissection data in
Andrew Tilstra’s thesis [Tilstra, 2010]. The two products with labeled components

are shown in Fig. 5.6 and Fig. 5.7 respectively.
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Ring Gear, Housing

Brake Switch

Front Housing Boftoin Housing

Back Housing

Fig. 5.6: Black & Decker Alkaline Power Screwdriver [Tilstra, 2010].

Front Housing Bottom Housing

Fig. 5.7: Innovage powered screwdriver [Tilstra, 2010].

Figure 5.8 below shows the exploded view of labeled components of the Black &

Decker alkaline screwdriver.
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Negative Terminal Clip

L

Positive Terminal Clip

Planetary Gears Set2
Ring clip, Shaft
—

Brake Switch Spring

Carrier Sun

Ring clip
Washer, Ring clip
Planetary Gears Setl

Carrier Set2

Fig. 5.8: Components of the Black & Decker alkaline screwdriver [Tilstra, 2010].

The developed Product Design Structure Matrices (DSM) for these two
systems, based on [Tilstra, 2010], are shown in Fig. 5.9 (a) - (c). Notice that in both
cases, the average nodal connection (i.e., average nodal degree) per component is
around 5 (Innovage screwdriver has average degree of 5.09 and that of BD
screwdriver being 5.0).

The most likely component complexities were estimated using probabilistic
estimates [Garvey 2000] on a scale of [0,5]. In all cases, we assumed component
complexities to have triangular distribution with most likely estimated being the

point estimates (see Fig. 5.10 below).
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9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

8

7

Bit-1

0 0 0 00 0 O

0

Clip-2
Motor Gear - 3

0 0 0 0 0 O

0

Washer - 4
Planetary Gear Set1 -5

Carrier Sun -6
Planetary Gear Set2 - 7

Carrier Set2 -8
Ring Gear, Housing - 9

Ring Clip, shaft - 10

Shaft-11
Brake Gear - 12

Chuck - 13
Brake Switch - 14
Brake Switch Spring - 15

Ring Clip - 16
Washer, ring clip - 17

0 0 0 0 0 0 O

0

Motor - 18
Bottom Housing - 19

Battery Holder - 20
Series Terminal Clip - 21

Battery Plug - 22
Plug Terminals - 23

Series Terminal Plate - 24

AA Battery - 25
Negative Terminal Clip -26

0
0

Positive Terminal Clip - 27

Terminal Carrier - 28

Button - 29
Front Housing - 30

Back Housing - 31

Pin -32

The adjacency matrix or binary DSM of Black & Decker screwdriver with 32 components.

Fig. 5.9 (a)

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

8

7

Bit-1
Motor Plate - 2

Planets Set1 -3
Planet Carrier Sun - 4

Planets Set2 - 5
Brake Coupler Planet Carrier -6

0

Ring Gear Case -7

Coupler -8
Brake Drum -9

0 00 0 O

0

Brake Roller - 10

Shaft - 11
Spring Clip - 12

Washer - 13

Chuck - 14

Motor - 15
Motor Screws - 16

Bottom Housing - 17

Battery Holder - 18
Series Terminal Clip - 19

Battery Plug - 20
Plug Terminals - 21
Series Terminal Plate - 22

AA Battery - 23
Wire switch2motoe -24

Button - 25
Button Base - 26
Wire base2bat - 27

Battery Clip - 28

Back Housing - 29
Front Housing - 30

Pins - 31

The adjacency matrix or binary DSM of Innovage screwdriver with 31 components.

Fig. 5.9 (b)
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BD Screwdriver

Innovage Screwdriver
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Fig. 5.9 (c): The spy plots of the system connectivity structure for the two powered screwdrivers.

Presence of blue dot represents existence of connection between components.

The most optimistic values a and the most pessimistic values b were set
based on the ranking of point estimates of component complexities otm. The most
likely complexity estimates for two systems are shown in Fig. 5.11 below.

The optimistic and pessimistic estimates of component complexity
distributions can be characterized using eq. 5.1 with p €[1.0; 3.0] and a € [0.80u;
0.90im]. These numbers and associated ranges were chosen to align with the
component complexity numbers in fig. 5.11 below. In this example, higher most
likely estimates aligned with higher pessimistic estimates. This is a simple and
matured system and this fact is reflected in the component complexity numbers in
fig. 5.11.

In these simple systems, there are primarily three interface categories as

shown below with their interface factors in table 5.6. They are employed

consistently across these two products.
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Component Name
Bit-1
Clip-2
Motor Gear - 3
Washer - 4
Planetary Gear Setl -5
Carrier Sun - 6
Planetary Gear Set2 - 7
Carrier Set2 -8
Ring Gear, Housing - 9
Ring Clip, shaft - 10
Shaft- 11
Brake Gear - 12
Chuck - 13
Brake Switch - 14
Brake Switch Spring - 15
Ring Clip - 16
Washer, ring clip - 17
Motor - 18
Bottom Housing - 19
Battery Holder - 20
Series Terminal Clip - 21
Battery Plug - 22
Plug Terminals - 23
Series Terminal Plate - 24
AA Battery - 25
Negative Terminal Clip -26
Positive Terminal Clip - 27
Terminal Carrier - 28
Button - 29
Front Housing - 30
Back Housing - 31
Pin -32

Table 5.6: Interface factor used for different connection types.

0.17 0.18 0.19

a=0.17 a

Component Complexity (0 - 5)

0.22 0.23 0.24 0.25
b=0.25

Fig. 5.10: Sample pdf of complexity for housing component.

Component Name
Bit-1
Motor Plate - 2
Planets Set1-3
Planet Carrier Sun - 4
Planets Set2 - 5

Brake Coupler Planet Carrier -6

Ring Gear Case -7
Coupler -8
Brake Drum -9
Brake Roller - 10
Shaft - 11
Spring Clip - 12
Washer - 13
Chuck - 14
Motor - 15
Motor Screws - 16
Bottom Housing - 17
Battery Holder - 18
Series Terminal Clip - 19
Battery Plug - 20
Plug Terminals - 21
Series Terminal Plate - 22
AA Battery - 23
Wire switch2motoe -24
Button - 25
Button Base - 26
Wire base2bat - 27
Battery Clip - 28
Back Housing - 29
Front Housing - 30
Pins - 31

Innovage screwdrivers (on right) respectively.

Connection Interface factor, 1/¢™
type
Mechanical Connection 0.05
Electric Energy 0.10
Rotational Energy 0.10

Component Complexity (0 - 5)

Fig. 5.11: Most likely estimates of component complexity for (a) Black & Decker (on left), and (b)
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The propagation of component level uncertainties results in the probability
distributions of total component complexity, C1 and structural complexity as shown
in Fig. 5.12 below. Since the associated uncertainties are not very large, the
balancing effect of the law of large numbers leads to only marginal right-

skewedness in the distributions of aggregated complexity measures.

400 300

BD Screwdriver ] Innovage Screwdriver

9 9.5 10 10.5 1 1.5 12 12,5 13 95 10 10.5 1 1.5 12 12.5

Total Component Complexity, C; Total Component Complexity, C;

400 350

3501 BD Screwdriver B Innovage Screwdriver

17 18 19 20 21 22 23 24 018 19 20 21 22 23 24 25

Structural Complexity, C Structural Complexity, C

Fig. 5.12: Probability distribution of total component complexity and structural complexity

respectively for BD and Innovage screwdrivers. Both distributions show hint of right-skewedness.

The extent of right-skewedness can be observed from table 5.7 where we
have the median being smaller than the mean. Existence of right-skewedness
indicates that there are some component complexity values that are much higher

than the rest of the components. A higher degree of right skewedness indicates that
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the most likely estimates are more optimistic and will always underestimate the real
complexity estimate. Large right skewedness is often indicative of novelty associated
to the system being developed where actual complexity is likely to be
underestimated and is well documented in the literature [Garvey, 2000]. The extent
of right skewedness is to some extent rationalized due to the law of large numbers
that tends to drive the aggregated distribution toward the normal distribution. Since
these two products are quite standardized with very little novelty (novelty is usually
associated with higher complexity), the distribution of structural complexity is
rather narrow and the 70-percentile value is only about 10% higher that the most
likely estimate. This changes significantly for systems with significant novelty
(leading to enhanced component complexity and likely, either in components or in
interfaces or both. In all cases, the topological complexity, C3 is smaller than 2 and

therefore did not reach the corresponding P point (see chapter 3).

Table 5.7: Comparison of Structural Complexity of Black & Decker and Innovage screwdrivers.

Cl CZ C3 C Clnnovage
BD | Innovage | BD | Innovage | BD | Innovage | BD | Innovage /Cgp
Most Likely | 10.3 10.1 4.94 5.39 1.6635 1.723 18.58 19.39 1.04
Mean 10.99 10.78 537 5.84 1.6635 1.723 19.93 20.85 1.046
Median [ 1097 [ 1075 [ 535] 582 16635 | 1723 19.88 [ 20.79 1.046
70
) 11.17 10.95 5.48 5.97 1.6635 1.723 20.27 21.24 1.05
percentile

It is interesting to note that the Black & Decker screwdriver has higher
component complexity, while Innovage screwdriver has higher topological
complexity (also interface complexity). There is very little to choose from the two in
terms of their structural complexity, with or without considering uncertainty
propagation, as the difference is less than 5%. Even from the pricing perspective in
the market, they seem to be quite at par with average price of Innovage screwdriver
being slightly higher. But the differentiation in price does not seem to be significant

over multiple time periods.
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5.2 Printing System

Printing is a process for reproducing text and images, typically with ink on
physical paper using a printing system. It is an essential part of publishing and
transaction printing and is often carried out as an industrial process. There are
different methodologies/processes to enable printing and we are primarily focused
on the Xerographic process and systems that implement the process. Xerography is
the dry ink marking process underlying electrophotographic copiers and printers.
Xerographic systems have had commercial success for over 45 years and currently
drive a segment of the printing market valued at over $150 billion worldwide
[Hamby and Gross, 2004]. The xerographic process consists of: i) charge, ii) expose,
iii) develop, iv) transfer, v) fuse, and vi) clean (see fig. 5.13 below). The unifying
element in the xerographic process is the photoreceptor—the surface for image
generation and transportation that is conductive in the presence of light and
insulative otherwise. Photoreceptors typically take the form of either a drum or a
belt and must be capable of providing a consistent surface for image creation while
cycling through the xerographic process for hundreds of thousands of prints. Details
of these sub-processes can be found in the literature [Hamby and Gross, 2004].

5

2 Fusing
Exposure 6
\ 1 Cleanin, @@
. 2
/ Charging e

r el Q

@) g,
J Transfer

Development
Belt Photoreceptor

Paper

Fig. 5.13: Schematic diagram of a monochrome xerographic process [Hamby and Gross, 2004].

5.2.1 Printing System DSM Development
The first step in applying the developed methodology to complex systems is

to develop the product DSM of the system. The product DSM was developed
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following the process developed by Suh and co-authors [Suh et al, 2010]. The
connection types were generalized to four main categories (i.e., physical connection,
mass flow, energy flow and information/signal fow) as shown in table 5.1.

The systems considered for this study are tagged as: (1) New and (2) Old. The
New system is a higher end printing system compared to the Old. A view of these

two systems with associated DSMs, are shown in Fig. 5.14 and Fig. 5.15 respectively.

Fig. 5.15: Old Digital Printing System (Shown with High Capacity Feeder and Finisher) with its DSM
(Size 91x91).

The DSM was developed based on (i) system documentation; (ii) physical inspection
and selective disassembly; and (ii) opinions of subject matter experts. The new
printing system has significant functional advancements that include automatic
image quality correction technology and active environmental control of Ozone and
NOHAD [Suh et al., 2010].

There are challenges in mapping some connections between components for
printing systems, particularly with respect to wire harnesses and software
connections. If two components (e.g. PWBs) A and B are connected to each other

electrically using wire harness then we aggregated the harnesses within the
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components and assumed components A and B are directly connected. Information
flow between software components also raises an important representational
question. Now software typically resides in the memory of a processor or circuit
board. At the physical level, software actions are transformed into electrical signals
that flow over wires through the system. While we do represent the physical
connection between software and circuit board in the DSM, we also showed
information flow between software directly, for clarity of information flow. An
interesting situation, peculiar to flow modeling of printing systems is the question of
representing only intended interactions within the system (e.g. flow of paper, toner,
image information through the system) versus mapping both intended and
unintended flows. Examples of unintended flows are the intrusion of dirt into the
printing engine, leaking of toner, the generation of ozone in the printing engine or
the introduction of electronic noise into various sensor signals [Suh et al., 2010].
Only those unintended flows and interactions that the system would actively deal
with were modeled as a guideline.

After capturing these four types of connections, we can split the DSM in
terms of individual connection types or generate an aggregated DSM. For this
present study, we primarily focused on the physical DSM (i.e., contains physical
connections only, other type of connections are neglected) and the aggregated DSM.
The aggregated DSM is built considering all four types of connections and if there is
any type of connection existing between two components, then they are considered
connected. One can observe that aggregated DSM will always have number of
different kinds of connections. In graph-theoretic terminology, the physical DSM can
be considered to be as a spanning subgraph of the aggregated DSM. The New
printing system DSM (size 84 x 84) was available from the literature [Suh et al,
2010] and the Old printing system was decomposed to derive a finer DSM (size 91 x
91). The DSMs were built following the procedure outlined in the literature [Suh et
al, 2010]. The conventions outlined there (also earlier in this chapter) for modeling
certain types of connections, especially with respect to wire harnesses and mapping
of information flow across embedded software components were followed while

developing this DSM to ensure consistency. Due to available time constraint, it was
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decided to model just the xerographic subsystems in more detail. This meant the
ROS assembly; marking elements, fusing area and also paper path elements were

expanded in more details.

5.2.2 Structural Complexity Estimation

In all instances, we assumed component complexities to have triangular
distribution with most likely estimated being the point estimates as before. The
component complexities are assessed and reflect the internal complexity of the
individual components in the DSM. Due to unavailability of historical data with
adequate level of validity, the component complexities were determined by expert
review, using a scale [0,5] with 5 being the highest complexity level [Sinha and de
Weck, 2013].

In almost all cases, the triangular distribution representing component
complexity was right-skewed. For the new printing system, the optimistic and
pessimistic estimates of component complexity distributions obtained from the
experts could be well characterized by using eq. 5.1 with p €[1.0; 7.0] and a
€[0.80tm; 0.90um]. For the old printing system, the estimated ranges were well
characterized by p €[1.0; 4.0] and a €[0.850u; 0.950u]. Note that the pessimistic
estimates are much higher than the most likely estimates. This indicates existence of
significant external uncertainty, but with very low probability of occurrence. This is
indicative of fat-tailed distributions of factors that leads to uncertainty in
component complexity estimates.

In this example, higher most likely estimates align with higher pessimistic estimates.

The representative interface factors for the four interface types used were
determined based on the available programmatic data and are listed in table 5.8
below. For any type of interface, the interface factors listed below were averaged
over instances of the same type of interface. These numbers were used consistently

across the two printing systems.

Table 5.8: Interface factors used in modeling the two printing systems

167



Connection type Interface factor, 1/¢"
Physical Connection 0.07
Mass 0.10
Energy 0.15
Information 0.18

We compute the structural complexity for most likely values and list the
mean, median and 70 percentile values for structural complexity, C and also its

constituents (Cy, C2, C3). The values are listed in table 5.9 below.

Table 5.9: Comparison of Structural Complexity for two printing systems.

Cl CZ C3 C CNew
Old New | Old New Old New Old New /Couq
Most Likely | 110.2 169 55.68 | 102.78 1.36 1.804 185.93 354.42 1.9062
Mean 125.62 213.6 63.29 130.6 1.36 1.804 211.69 449.2 2.122
Median 12447 | 211.84 | 62.46 | 128.62 136 1.804 209.42 443.88 2.12
70
. 127 219 65.82 134.2 1.36 1.804 216.2 461.1 2.133
percentile

While using the most likely estimates indicates a 90% increase in structural
complexity for the new printing system, other representative measure of central
tendency like mean shows a little more than 200% increase in structural
complexity. If we use the 70-percentile measure as the representative value from a
risk management perspective [Garvey, 2000], the increase is about 213%. A higher,
right-skewed uncertainty characterization leads to even sharper increase in
structural complexity as we consider 70-percentile values for comparison, as
opposed to the most likely values for component complexity. Notice that the
topological complexity, C3 is much higher for the new print engine and it approaches
the P point value of 2 (see chapter 3) and the architecture tends to be more
distributed in nature.

Please note that these two printing systems were quite different from a
performance centric viewpoint with the new system is a much larger one a
significantly higher throughput and stricter performance regime, leading to highly
engineered components with more distributed architecture. This is the reason for

its significantly higher structural complexity. Higher complexity has led to
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significant and nonlinear increase in the development effort/cost, but the actual
numbers are of course highly confidential information and therefore not public
domain.

This methodology is now employed to compare two aircraft engine

architectures in the next section.

5.2.3 Effect of the system decomposition level on topological complexity

An important aspect in practical application of the structural complexity is
related to the effect the level of system representation or the level of decomposition
on the complexity metric. Between a coarse and a finer representation of the same
system, we have larger number of components and interfaces at a deeper/finer level
of system decomposition. But the basic structure remains nearly the same beyond a
level of decomposition that adequately describes and differentiates the system. If
the basic architectural patterns remain the same, the topological complexity metric
should remain approximately the same. In order to verify this, we use a coarser
decomposition of the older digital printing system (see fig. 5.15). This coarser
representation aggregated part of the xerographics subsystems. This included the
ROS assembly, marking elements, and also paper path elements. The difference in
terms of number of components modeled in each of these areas is best explained

using the table 5.10 below:

Table 5.10: Difference in coarse and finer Decomposition Levels

Functional Area | Coarse DSM (50x50) | Fine DSM (91x91)
ROS Assembly 4 10
Marking elements 16 38
Paper Path 7 12

The result is shown in table 5.11 below.

Table 5.11: Attributes of coarse and finer representations

DSM attribute | Coarse Representation | Finer representation

System size, N 50 91
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Graph Energy 67.67 123.73

Cs 1.3534 1.3597

From table 5.11, we can observe that the topological complexity metric, C3 is
almost constant across two architectural representations of the same digital
printing system. This shows that the topological complexity metric is robust against
levels of system decomposition of engineered systems. This is an important and
desirable characteristic of a complexity metric and a larger set of such studies would

be required to cement this claim across different classes of engineered systems.

5.3 Aircraft Engine

The underlying principle of a geared turbofan engine, referred here as the New
Architecture, is to further increase bypass ratio over current dual-spool design,
referred here as the OIld Architecture, in order to improve propulsive efficiency
(specific fuel consumption), decreasing noise and hopefully weight at the same time
[Riegler and Bichlmaier, 2007]. This can be achieved by reducing fan speed and
pressure ratio for high bypass ratio fans, and increasing low-pressure compressor
(LPC) and low-pressure turbine (LPT) speeds, thereby achieving very high
component efficiency. Propulsive efficiency of a turbofan engine is primarily
dependent on bypass nozzle jet velocity for a given flight condition. Propulsive
efficiency will be high when bypass jet velocity is low. This can be achieved by low
fan pressure ratio which requires a large fan diameter for a given thrust demand.
Therefore, the fan rotational speed has to be reduced to keep the fan tip speed
below the supersonic level. The final outcome of applying these design criteria is a
high bypass ratio turbofan engine with low thrust-specific-fuel-consumption (TSFC)
and lower specific thrust [Malzacher et al., 2006; Riegler and Bichlmaier, 2007].
Along with the low bypass jet velocity comes low jet noise, and because of the
correspondingly slow fan speed, the fan emitted sound pressure level and therefore
the noise level is low for the geared turbofan configuration or the New Architecture.

The two architectures compared are two potential embodiments of large
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commercial gas turbine aircraft engines. The comparison is of interest because of
the potential benefits of the geared turbofan architecture in fuel burn and noise.
The impact of this architecture on the organization, design and development
process would then stem from the differences in the relative complexity of the
architecture, as well as the organizational and process boundaries overlaid on the

architecture.

e I‘)l“/ e Core/Primary
< Mech Comp. —»  Comb

Airflow

Externals &
Mech. Comp.

II- Bypass Airflow

Fig. 5.16: Typical commercial gas turbine engine with major functional modules identified.

Both are axial flow, high bypass ratio gas turbine engines. Both engine architectures
fundamentally provide similar primary function like thrust generation to the

customer, though magnitude of maximum generated thrust are different (see Fig.

5.17 below).
Q
Pressurized Air

, Engine System Boundary i

Supporting Systems

Fig. 5.17: Three primary propulsion system delivered functions
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They arrive at that function through different architectural arrangement. In the
next sub-section, the Design Structure Matrix (DSM) construction procedure is

explained for these two cases.

5.3.1 Aircraft Engine DSM Development
The DSM was constructed for the two engines to allow comparison of the two
architectures. This then provides the following benefits [Ulrich, 1995]:
e Measurable framework for comparison of architecture between the GTF and
traditional turbofan platforms.
e Provide a platform to perform modularity analysis using the different
algorithms
e Provide a platform to overlay the architecture, modules and components on
the organizational structure, to determine how the architecture may impact

the design and development process through organizational interactions.

Development of a DSM for a complex system requires that a level of abstraction be
made. The level of abstraction must align with the analysis being performed [Suh et
al, 2010]. The DSM is created with an abstracted view of the components to provide
the ability to assess the system complexity as well as the organizational connectivity
between teams responsible for the design and development of the engine
components. Components for the DSM were selected based on their need for
inclusion as a result of the functional decomposition of the engine. While the
engines studied are designed for significantly different airframe applications, the
degree of abstraction of function allows comparison because of the similarity of the
product application. This need is met through addressing both the “scope” and
“granularity” of the matrix [Suh et al, 2010]. A balance is needed in having
sufficient detail to perform the required analysis, without making the DSM
generation process so cumbersome as to be a design and development process in
itself. This DSM generation method is reflected in the system level decomposition,

which can be seen to clearly apply equally to both platforms. Components
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represented in the DSM were selected based on this functional representation of the
system. Experience was that a matrix with approximately 75 to 85 components was
sufficient to represent complexity of a large scale printing system [Suh et al, 2010].
The DSM generation proceeded without limitation to the number of components.
We ended up with 73 components, which adheres the above guideline of
approximately 75 to 85 components. In the DSM constructed, the multiple airfoils
per stage, and multiple stages per module were simplified to one. Repeated features
in the architecture are not believed to add architectural complexity, and are not
included. For example, the bearing compartments were aggregated to provide the
rotor supporting function and connect the rotors (rotating) to the static (cases), as

well as provide all of the internal supporting functions (e.g., lubrication, sealing, and

power extraction) [James et al., 2011].

Bearing/Rotor |, — ~
| Support and S
| Compartment Wall | ~

e
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|Mainshaft Seals| | Bearings, Gears |

- — —

Fig. 5.18: Aggregation of a Typical Bearing Compartment

Computer Sensor Component

VS.

Computer

Component

Fig. 5.19: Example of Aggregation of Component Abstraction
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With the components that define the system architecture identified, the connectivity
of those components to map the value delivery internal to the machine was
populated through the matrix using connectivity mapping and encoding scheme.
The challenge in creating an effective DSM was to prune the component list to only
what was functionally required to represent the architecture of the engines for

comparison purposes [James et al., 2011].

5.3.2 DSM Encoding

Many DSM’s used to date are binary, and represent connectivity of the
components or process simply by indicating if a connection exists or not. In order to
develop a deeper understanding of the gas turbine engine, a more detailed approach
is taken using a “quad” connection structure is utilized [Suh et al, 2008]. This
provides the ability to analyze the network from different views, and to segregate
relationships based on connection type — which may have different impacts on the
design and development of the machine, and also will likely be represented by
different experts in the design process — which will aid in the investigation of the
architectural impact on the social layer interactions.

In addition, the different types of flows (core flow, bypass flow, fuel flow, oil
flow and secondary flow) are critical to understanding the energy flow through a
gas turbine engine, and this refinement is proposed in this thesis as a method of
adding further detail to the DSM. To capture the benefit of having this information
stored in the DSM, a scheme was developed to “encode” all of the information into a
single integer based on a 2" - 1encoding scheme.

The quad based DSM structure (mechanical connection, flow connection,
information, and energy) could then be generated in a spreadsheet such as Excel,
and then “encoded” into a square adjacency matrix of connections for network
analysis and visualization. Tools to facilitate the encoding and decoding of the
matrices were developed in Perl. In order to represent the different types of flows in
the DSM, each quantity to be represented was given an integer number of the

scheme 2" - 1. Each connection between components has one or more of the basic
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encoding types, with additional detail added by using the detail encoding in addition

to the basic encoding. The following scheme is used [James et al.,, 2011]:

Table 5.12: Basic encodings for the gas turbine engine DSM

n | Flag Flow Type Description

0 0 None No connection

1 1 Mechanical Physical coupling between components. This is by nature

symmetric.

2 3 Fluid Flow Flows of any fluid between two components

3 7 Information Information transfer between components. Generally
assumed to be electronic measurement for sensors, etc.

4 15 Energy Energy transfer of any energy type.

Table 5.13: Detail level encoding for the gas turbine engine DSM

n | Flag Flow Type Description
5 31 Gaspath flow Flow through the engine “core” which passes through
the compressors and turbines

6 63 Bypass flow Flow through the fan only, bypassing the engine core

7 127 Secondary Flow Air flow taken off of the gas path or bypass flows and
used for component cooling or pressurization

8 255 Fuel flow Fuel flows through the fuel system. Ends at the fuel

nozzles, exhaust products are considered gas path flow.

9 511 0il flow 0il flows through the lubrication system.

10 1023 Torque Transfer of torque between components

11 2047 Electrical Energy Transfer of electrical energy between components

12 4095 Chemical Energy Transfer of chemical potential energy between

components. Aides in visualization of energy transfer
pathways and conversion of chemical potential to

thermal energy.

13 8191 Thermodynamic Transfer of thermodynamic energy between

Energy components, including both pressure and temperature,

generally considered enthalpy. Used for gaspath flow
energy transfer.

14 | 16383 | Hydraulic Energy Transfer of pressure energy between components.

While this could be considered part of thermodynamic

energy, this is used for hydraulically actuated systems

that operate on pressure differentials.

The DSM’s were generated for both the engines with similar levels of
aggregation. The traditional turbofan DSM has 69 components, and the new
generation geared turbofan DSM has 73 components. The size of the two matrices is
close enough for comparison purposes, and since they were developed with the

same guidelines for aggregation this is believed to represent the architecture

properly for this purpose [James et al., 2011].
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icate the 5 modules found by applying
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the modularity metric [Girvan and Newman, 2002]

DSM of old architecture. The bordered partitions

Fig. 5.21
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applying the modularity metric [Girvan and Newman, 2002].

5.3.3 Structural Complexity Estimation

The two architectures represented above (see fig. 5.21 - 22) shows some

fundamental differences in density and connectivity. This is likely attributed to the

This

tegration of the geared turbofan, a smaller and modern engine.

n

higher

tructural complexity can be seen visually in a comparison of the two

Increase in s

DSM’s, and is also demonstrable through computed metrics.

Comparison of two engine architectures.

14

Table 5

Change

6%
20%
34%

28%

36%

2%
3%
21%

New Architecture

73
6.87%

361

4

3

4

326

48

60
105

Older Architecture

69
5.73%

269

338

240

47

58
87

#Components

Connection Density

#Connections (all)

#Components +

#Connections

Mechanical

Information

Energy

Flow
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Graph Energy, E(A) 104.4 123.3 18%
Topolog1ca2Complex1ty, 151 1.69 12%
3
Modularity Index (Q)
[Girvan and Newman, 0.43 (5 Modules) 0.35 (16 Modules) -20%
2002]

The DSM for the new architecture shows significantly more connectivity in
all areas measured, with a 20% increase in connection density of the DSM. The
individual connection types all increased in number, reflecting a more inter-
connected architecture. The largest increase, 36%, is found for the mechanical
connections. The increase in graph energy E(A) and the topological complexity Cs,
indicates that the system is more distributed than the traditional turbofan
architecture represented. The topological complexity measure is still far from the
critical value 2, characterized as the P point (see chapter 3).

The modularity analysis performed for both engine architectures using the
total connectivity of the DSM showed that there are many potential modules. Some
of the modules have relatively few components, because of their high relative
internal connectivity strength. There is a strong indication that the geared engine
architecture is more distributed and the modules are not very prominent (see fig.
5.21 and table 5.14) and have smaller size, in comparison to previous generation
dual-spool engine.

Apart from considering the connectivity structure, we have to estimate the
component and interface complexities in order to compute the overall Structural
Complexity for these two architectures. The component complexities are assessed
and reflect the internal complexity of the individual components in the DSM. Due to
unavailability of historical data with adequate level of validity, we resorted to an
expert opinion based estimation to come up with the most likely estimates of
component complexities, o . These were determined by expert review, using a scale
[0,5] with 5 being the highest complexity level. The experts were the senior
engineers associated with the engine development programs. In all cases, the
triangular distribution representing component complexity was right-skewed as

shown in Fig. 5.22 below.
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This is expected as experts tend to be more optimistic in general and their
most likely estimates are influenced by an inherent bias. There could be various
socio-political reasons that shape such behavior and are likely shaped by the
expert’s operating environment [Garvey, 2000]. In case of the new engine
architecture, the range of pessimistic estimates of component complexity for the
new engine architecture tended to be about 1.1 to 4 times that of the most likely
estimates, while the optimistic estimates were about 0.8 to 0.9 times that of the
most likely value. Such right-skewed estimates can be represented diagrammatically
as shown in fig. 5.23 below. There were cases where optimistic values were only
10% lower than the most likely estimate while the pessimistic value was 4 times the
most likely estimate.

This indicated a very high external uncertainty about certain novel
components used in the new engine architecture. There is a possibility of
significantly exceeding the most likely estimate, but the probability of such
occurrence is thin. It hints at existence of heavy-tailed, one-sided uncertainties that
influences component complexity. This leads to extreme values of component

complexity.

1
1
I
I
1
1
1
I
1
1
l
a

a m b

Fig. 5.23: Right-skewed triangular pdf: (b-0un) = p(0im-a) where a € [0.80tm ;0.90im] and p €[1.0; 15.0].

This means that b € [1.10tm; 4.00um]

Based on the data collected from experts, the following relationship linking

the three estimates (see eq. 5.3 below) required to define a triangular distribution
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can be well approximated by using the parameter ranges pe[1.0; 15.0] and

acl0.8c ; 0.90 ].

(b-a,)=pla,—a)

(5.3)

The range of values for parameter p reflects the range of values obtained for the

most pessimistic component complexity values.

For computing interface complexity, we used the following relation,

max (e, ,Ocj)

(5.4)

where 1/ ¢'*' stands for the interface factor for connections of type/category, k. For

the engine examples, the connection sub-types, as described before, are listed with

their corresponding interface factors in table 5.15 below. The above relationship

means that the interface complexity is only [1/c“’] times that of the maximum of

interfacing component complexities. For example, interface factor of 0.05 indicates

that the interface complexity is only 5% of the largest complexity of the interfacing

components. In this case study, we relied on expert opinion and additional

anecdotal data to come-up with these estimates since historical data were not

available. The same interface factors were used in computing the structural

complexity for both, the old and the new engine architecture.

Table 5.15: Interface factor for different connection sub-categories used in jet engine example.

Connection Interface factor, 1/e¢™
type/sub-type

Mechanical connection 0.05
Information/Control 0.20
Gaspath flow 0.25
Bypass flow 0.2
Secondary flow 0.10
Fuel flow 0.15
Oil flow 0.10
Electric energy 0.15
Chemical energy 0.25
Thermodynamic energy 0.25
Hydraulic energy 0.2
Rotational energy 0.15

180



The computed structural complexity numbers for the new engine
architecture are shown in table 5.16 below. Due to this highly asymmetric, right-
skewed distribution of component complexities, the total component complexity, C:
has a large right-skew. The total interface complexity, C; was computed using the
interface complexity computation eq. 5.2 in conjunction with interface factors from
table 5.13. Here the system connectivity is deterministic with C3 = 1.69. The
computed structural complexity therefore has a distribution that is also right
skewed to an extent. We compute the structural complexity for most likely values
and list the mean, median and 70 percentile values for structural complexity, C and

also its constituents (Ci, C2, C3). The values are listed in table 5.14 below.

Table 5.16: Structural Complexity and its constituents using most likely estimates of component
complexities and the mean, median and 70 percentile values from respective distributions for the

new engine architecture. Here, Cwu. is the Structural Complexity using most likely estimates.

C, C, (ON C C/Cy
Most Likely 188 184 1.69 499 1
Mean 244 240.4 1.69 650.3 1.30
Median 242 238.9 1.69 646.8 1.29
70 percentile 2479 246.2 1.69 663.94 1.33

In case of the old engine architecture, the uncertainties around most likely
estimates of component complexity were less striking with the most pessimistic
values being 10% to 100% higher than the most likely estimates. Also, higher
uncertainties were both sides (i.e., component with higher pessimistic value also
had a lower optimistic value than the most likely estimates). The parameter range
in case of the older engine architecture were p€[1.0; 5.0] and a €[0.8x ; 0.9 ].
Using eq. 5.3, we compute the ranges for the most pessimistic estimate,
be[l.lx ; 20 ]. Hence, in case of the old engine architecture, the range of
pessimistic estimates of component complexity varied between 1.1 to 2 times that of
the most likely estimates only. Compare this to the case of new engine architecture

where the variation was more than 3 times. This is expected due to the nature and
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novelty of components in the new engine architecture. The optimistic estimates
were still about 0.8 to 0.9 times that of the most likely value (see fig. 5.22).

In table 5.17 below, we compare the structural complexity for the two engine
architectures. While using the most likely estimates indicates a 42% increase in
structural complexity for the new engine architecture, other representative
measures of central tendency like mean and median shows more than 65% increase
in structural complexity. Using the 70-percentile measure as the representative
value, we observe an increase by factor of nearly two-thirds. This clearly reflects the
influence of higher, asymmetric uncertainty in quantifying component and interface
complexities. A higher, right-skewed uncertainty characterization leads to even
sharper increase in structural complexity as we consider 70-percentile values for
comparison, as opposed to the most likely values for component complexity. Higher
complexity has led to a nonlinear increase in the development effort/cost, but the

actual numbers are highly confidential and not publicly available.

Table 5.17: Comparison of Structural Complexity for two engine architectures. Here, Cw. is the

structural complexity based on most likely estimates.

C, C, C, C C/Cy
Cnew /Cold
Old | New | Old | New | Old | New | Old New | Old | New
Most Likely | 161 188 126 184 | 1.51 | 1.69 351 499 1 1 1.42
Mean 179 | 244 141 | 2404 | 1.51 | 1.69 392 6503 | 1.12 | 1.30 1.65

Median 178 | 242 139 | 2389 | 1.51 | 1.69 | 388 646.8 | 1.10 | 1.29 1.66

70 percentile | 181 [ 247.9 | 145 | 246.2 | 1.51 | 1.69 | 399.6 | 663.94 | 1.14 | 1.33 1.66

The detailed architectural analysis including the sensitivity analysis
procedure, outlined in chapter 3, reveals that primary functionality generators (e.g.,
generating thrust) are significant contributors to component complexity while
supporting systems (e.g., lubrication systems, accessory gearbox, robust control
systems) are the primary contributors to architectural complexity and having
significant impact on system integration efforts. Most of the rotating components

showed low sensitivity to the structural complexity. Supporting systems like the
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engine control system, lubrication system, and accessory gearbox are found to be

more sensitive to structural complexity.

Chapter Summary

In this chapter, application of the methodology, developed in chapter 3, was
demonstrated. The applications included simpler systems to very complex, current
generation aircraft engines. Basic inputs required before we can compute the
structural complexity included generation of the system connectivity structure
using the Design Structure Matrices (DSM), and estimation of component
complexity and interface factors.

Lack of historical data (or accessibility to the data) prevented us from
applying the data analytics based method of component and interface factor
estimation for the real-world case studies and as a result, expert opinion based
methodology were employed to achieve the goal. Application of the methodology
demonstrated the impact of uncertainty propagation in structural complexity
estimation. The right-skewedness of the component complexity distribution
manifested itself by magnifying the structural complexity as we go from most likely
value based estimate to mean value of the structural complexity distribution or the
70-percentile measure. Please note that the effect of right-skewedness actually
mellows down as we sum the component complexities (they are random variables).
This is manifestation of the law of large numbers.

In real-world engineered systems, there is significant possibility of exceeding
the projected complexity of components, while the optimistic estimates are likely to
be quite close to the projected (i.e., most likely) estimate of component complexity.
This hints at existence of significant external uncertainty, but with small probability
of occurrence. This makes us believe that there are external factors with fat-tailed
distributions that influences component complexity. This appears to be typical of
engineered complex systems and well supported by the data found in the existing
literature [Garvey, 2000]. The uncertainty propagation aspects have been

demonstrated empirically in this chapter. Given the analytical probability
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distribution functions for component and interface complexities, it is possible to
derive the probability distribution function for structural complexity.

The effect of the system decomposition level was investigated using a coarser
and a finer representation of the same digital printing system and showed that the
topological complexity metric remains nearly invariant to the system decomposition
level.

Also notice that in no engineered system covered herein, the topological
complexity measure, C3 reached the critical value of 2, characterized by the P point.
This meant that none of them lie within the topologically hyperenergetic regime
(see chapter 3). But some of them (e.g., the new print engine) could be seen
approaching that regime, which is predicted to represent significantly higher system
integration challenges and likely other associated effects including system

robustness against structural failure in system components.
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Chapter 6

Complexity Management and Systemic

Implications

In the previous chapters, we looked at the formulation and important
properties of the structural complexity metric; its theoretical verification and
empirical validation; and its application to large, real-world engineered complex
systems. In this chapter, we introduce the notion of complexity budgeting using
value function, look at the aspect of granularity of system representation and its
impact on structural complexity estimation, introduce the notion of distribution of
complexity across the system, including an analytical look at the relationship
between structural complexity and structural modularity and discuss the associated

systemic implications through some real-world examples.

6.1 Complexity Management

Until now we have looked computing structural complexity. Once we have a
quantification process and methodology in place, the next question is what to do
with this quantity. The structural complexity has to be estimated and tracked
throughout the system development activity and any deviation serves as an
indicator for possible overshooting in terms of programmatic parameters like cost
or effort.

From a programmatic perspective, one question that remains is about fixing
the desired level of complexity and how should we go about fixing a complexity
budget, similar in spirit to the mass budget or power budget used, for example, in

aerospace system development projects.
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We describe below a suggested methodology for fixing the complexity budget
for engineered system development, based on the value function that links system

performance and Non-Recurring Engineering cost (NRE).

6.1.1 Complexity Budget

Much like the mass or power budgets used in traditional engineering system
development, we can think about a notion of complexity budget. Complexity budget
refers to a level of complexity that is most beneficial for the project from a value
perspective where we gain performance while keeping NRE cost/effort within
prescribed/manageable limits.

The relationship between system performance and complexity can be

modeled using S-curve with parameters(n,k) as shown below,

P:Pmax[ ke J (6.1)

1+ kC"

Please note that the system performance is usually a composite measure, using a
linear combination of multiple performance parameters. The system performance
level is assumed to saturate at Pmax (see fig. 6.1). As can be seen by analyzing eq. 6.1,
higher n indicates higher rate of performance gain and saturation at a lower
complexity level, while lower k shifts the curve towards the right (see fig. 6.2). The
relative impacts of parametric variation in performance-complexity profile is
explained in fig. 6.2. Here, n is defined as the rate of performance gain and k is the
shift parameter. As seen in chapter 4, the NRE cost/effort can be well estimated by a

monotonically increasing, nonlinear curve,
NRE =aC" (6.2)
where (a,m) are the parameters (see fig. 6.1). Please note that, the parameter m is

defined as the rate of complexity penalty and captures associated complicatedness.
We define a value function, V that expresses the performance gain per unit

NRE expenditure. This is much like a price for enhanced performance and this price
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is being paid to counter increased complexity. Hence, we can interpret the value
function as the complexity price for performance gain. Once the performance gain
saturates, any increase in complexity is counter productive as we have to pay the
complexity penalty in terms of NRE, without extracting any performance benefits.

This leads to erosion in system value function.

P NRE

n NRE
p=p kC
" 1+ kCT

¢

Performance

1
t

) N S B

|
|
|
|
|
|
!
|
|
|
|
|
€ =
|
|
|
|
}
Ct

Complexity

Fig. 6.2: (i) Increasing n means higher rate of performance gain and performance saturation at a
lower complexity level; (ii) lower k shift the performance-complexity curve to the right, indicating

higher complexity level to attain the same performance level.

The effect of parameter m on the NRE in eq. 6.1 is shown in fig. 6.3 below. We can

interpret the exponent m as the rate of NRE penalty for increased complexity. As
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seen in Chapter 4, a smaller value of m indicates better complexity handling
capability (i.e., lower complicatedness). The other parameter, a acts as a scaling

factor.

—mmmem

NRE

- " Loweringm

Complexity

Fig. 6.3: Lower m value indicates smaller NRE for the same complexity level, indicating a lower rate
of NRE penalty for increased complexity. A lower m value indicates better complexity management
and lower perceptual complexity/ complicatedness for the development team (see chapter 4 for

details).

Now, using the above functional forms, the value function V can be written as,

(n—m)

vt _p [E) T

NRE ™\ a )| 1+kC"
\ﬁf_-/

N

(n—m)

We can observe that, for n < m, the value function decreases monotonically
for increasing complexity, C. If we compute its first derivative with respect to

complexity, we have

a__ S
dC (1+kC"y'CY

[ (m—n)+kmC" | (6.4)
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It is clear that d—Z <0 for n<m. The rate of decreasing value is higher for n <m and

can be seen in fig. 6.4. This means that, if this condition is satisfied, the value will
always decrease and it does not pay (from a system value standpoint defined here)
to increase the complexity level of the system.

The interesting case is when n>m, indicating that the initial rate for

performance gain outweighs the rate of NRE penalty for increased complexity.

Writing the optimality condition below, we compute the complexity level, C, for

value maximization,

dv

—=0
dC
SC(n—m—l)
:>*—2[(n—m)+kme]=0
(1+kC))
n—m B knC*n—l
C. 1+kC”
sc ="
" km
i
nor= " (6.5)

It can be shown that <0 (see appendix L for details), guaranteeing that the

2
Cc*

value function V is indeed maximized at C=C,. This result is graphically

demonstrated in fig. 6.4. This means that, in contrast to the previous case, there is

value enhancement in increasing the complexity up to a point. The corresponding

performance level P, is given by,
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= max(1—ﬂj (6.6)
n

Eq. 6.6 indicates that P, reaches P as n/m ratio increases. Large n/m

ratio indicates sharper performance gain with better complexity

handling/management capability. Also a smaller & combined with larger »/m ratio

leads to higher complexity level, C, at maximal value function.

The corresponding NRE value at this complexity level is given by,

m
n

NRE, =aC" = a(C,f’
)
\mJ_ (6.7)

This expression is more complicated as m/n ratio appears on the exponent, but a

S~~—

|3

larger n/ mratio usually leads to a smaller NRE.
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n<m

(ii) (iii)
Fig. 6.4: Plots showing the value-complexity curves for (i) 7 > m; (ii) n = m ; and (iii) n < m. For

n < m, the value function is monotonically decreasing with complexity

The maximized system value, V__ is given by,

_scr
"X ] 4 kC”

:(ﬂjgcf-m

n

€

_(n)s p (6.8)

A large n/m ratio and low k value usually helps attain a larger maximum value
function, V__ .

For any required level of system performance, P; to be achieved given the
Performance-Complexity and NRE-Complexity curves, we can trace NRE;¢q as the
expected NRE cost/effort as shown in fig. 6.5 below. If the budgeted NRE, NREpudget
is smaller than the estimated NREeq, then we have to look for ways to reduce the

value of exponent m and shift the NRE-Complexity curve. This calls for improved

192



complexity management strategies and this might prove to be unachievable under

the circumstances.

P NRE

NRE

req

NREbudget

!
!
!
!
!
|
!
!
!
!
!
!
|
!
!
!
!
!
!
!
|
\4

C G

Fig. 6.5: Trace the trade-space for a given system performance target, P; : (i) find the requisite
complexity, C: and (ii) find the NRE, to achieve the specified level of performance for a given NRE-
Complexity curve. If NREreg > NREpudget, then improved complexity management is mandated to lower

the m value and influence a shift in NRE-Complexity profile.

In such case, one needs to explore other options including compromising on the
system performance targets or to look for different system architectures for which a
higher rate of performance gain (i.e., exponent n in eq. 6.1) is achievable.

Now once we set a budget for structural complexity following the procedure
above, there are different ways to distribute this total structural complexity into its
three components. As discussed in chapter 3 under isocomplexity, there are trade-
offs based on complexity handling capabilities at the organizational level. For
example, an organization with excellent system integration capability might opt for
a complex or more distributed architecture with simpler components as opposed to
one with complex components and simpler architecture (requiring higher
component engineering capability), provided both forms are capable of achieving
the system goals. Also, there may be significant differences in terms of complexities
of individual components and one organization may be better equipped to handle it,
compared to a different organization. In general, complexity consolidated at the
component level gives an impression of reduced complexity (i.e., perceptive

complexity or complicatedness is reduced, not necessarily the actual complexity).
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We tend to perceive the overall interface design and management as more
complex, although individual interfaces may be much simpler than the connecting
components. It may be due to the higher number of interfaces and the ability to
understand/interpret their topological connectivity patterns. Why does this
happen? Is it due to the enhanced focusing on a fewer number of component that
might have high complexity? We believe this is where complexity management

meets the cognition science.

6.1.2 Complexity and Cognition

In the process of building simple ball and stick models (see chapter 4), we
observe significant differences in individual model building times. The build time
profiles vary quite significantly at the level of individual subjects. What is simpler
for one subject might turn out to be difficult or even intractable for another. One
would expect significant difference in build times at individual level and that such
variance will increase with increasing structural complexity levels and this was
validated using the experimental data in chapter 4.

This perceived complexity or Complicatedness is an observer-dependent
property that characterizes an actor’s / observer’s ability to unravel, understand
and manage the system under consideration. In contrast, complexity is an inherent
system property and a given system may represent different degrees of
complicatedness depending on the observer.

For example, the complexity of an automobile’s automatic transmission may
be hidden from a user and is perceived to be less complex. Therefore separating
complicatedness from complexity improves the clarity by which systems can be
described, analyzed and certain class of system observables (e.g., development cost,
extent of reworks) be predicted.

We can think of complicatedness as a conduit through which complexity
manifests itself at the level of system-level observables like the system development
cost [Tang and Salminen, 2001]. Complicatedness provides insights to the cognitive

aspects of the observer and his/her ability to handle a certain level of complexity.
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We list the five main factors affecting complicatedness as (i) complexity; (ii)
modularity or design encapsulation; (iii) novelty; (iv) cognitive capability and (v)

cultural/organizational effects. Effects of each of these five factors are as follows:

(i) Complexity: Complicatedness is the degree to which an actor or decision unit for
the system is able to manage the level of complexity presented by the system.
Assuming other factors being equal, complicatedness K can be written as a function
of complexity, K=g(C). We expect monotonicity of complicatedness with respect to

complexity and at C=0, K=0.

C*
Fig. 6.6: Complicatedness vs. complexity: two different behavioral patterns, both with knee points

defined by (C", K.

Intuitively, there is a level of complexity beyond which the observer can barely cope
with the system and the system complicatedness becomes unmanageable (see Fig.
6.6). Hence, K — oo for C > C".

(ii) Modularity or design encapsulation: Structural modularity or design
encapsulation is a means of containing the complicatedness of a system. A well-
architected system may hide inherent complexity in an effective fashion such that it
appears less complicated. A good design or architecture always presents a less
complicated system image to the actor’s or decision units [Tang and Salminen,
2001]. Design encapsulation (notice that it also leads to information hiding) helps
focusing attention on a subset of the system at a time. This is similar to “chunking”
of information to circumvent the human cognitive span limitation [Hirschi and Frey,

2002].
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(iii) Novelty: As an observer gains experience with a system, he/she starts
developing knowledge and intuition about the system. A user can get more exposure
with a system over time and deems it to be less complicated with passage of time,
although the internal system remains unaltered. This seems quite natural if we view
humans as adaptive systems. Humans continually update and adapt themselves as
additional knowledge becomes available to new boundaries / constraints are
discovered. This also applies in case of component or subsystem re-use in the new
system, which drives the complicatedness down.

(iv) Cognitive bandwidth: Some actor’s or decision units (i.e., group of individuals /
team) may relate better to a more complex system than other actor’s. This is
reflective of the innate cognitive capability of an individual or a group of individuals
to unravel the system, understand and manage the system. A high cognitive
bandwidth on the part of the decision unit helps reduce complicatedness of a system
for that decision unit.

(v) Cultural/organizational effects: This is a subtle factor. This factor includes
organizational culture and also more broad based societal cultures. Some
organizations or societies may have better ability to manage certain classes of
complexities better than others, and thereby reduce the complicatedness of the

system.

f System centric

Complexity

Modularity or design encapsulation

Complicatedness Novelty

Cognitive Capability / bandwidth

Cultural effects (org. and societal)

Fig. 6.7: List of factors influencing the complicatedness function or the perceived complexity - an
observer dependent property that links structural complexity to development cost. It is a

monotonically increasing function of structural complexity.
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Looking closely at the factors listed above, we observe that factors (i), (ii) and (iii)
are related to the system architecture and design, while cognitive bandwidth relates
to human ability to handle a given complexity (see fig. 6.7). One might argue that
cultural effects has more indirect influence through its impacts on factors (iii) and
(iv), but it has direct effect in terms of providing a more encouraging environment
for enhancing complexity handling capabilities.

Note on evolution of complexity handling capability: The complicatedness
versus structural complexity curve (see fig. 6.6) reflects the complexity handling
capability of an entity (i.e., an individual or a group). This curve suggests that the
complexity handling capability diminishes quickly as we move up the complexity
regime.

Beyond a certain level, complexity cannot be effectively handled. This
behavior conveys that human’s complexity handling capability is bounded. While
there seem to be a fundamental limit, are the individual complexity handling curves
as simple without any hint of human adaptation and innovation that in a sense
stretches this bound and alters the individual complexity handling capability?

Our initial experimental data with ball and stick models in chapter 4 suggest
that human complexity handling capability is indeed more complex and ability to
adapt and innovate leads to stretching of the bound as shown in fig. 6.8. This profile
is similar to what is observed in case of cities and how cities adapt and innovate and
avoid the apparent death trap [Bettencourt at al., 2007; Bettencourt and West,
2010] with explosion in population. As structural complexity level increases, the
individual adapts and by exploiting higher-level patterns. This, in turn, reduces the

complicatedness or perceived complexity for this individual (see fig. 6.8).
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Some individuals are able to
avoid ‘complexity trap’ while
other can’t — ability to ‘see’ or
‘infer’ implicit structures ...

* Avoid ‘complexity trap’ by Complicatedness
understanding higher level patterns -
individual cognitive ability!

* Significant reduction in perceptive
complexity or complicatedness -
p y p —

,,,,,,,,,,,,,,,,,,,,,,,,,,

Structural Complexity

Fig. 6.8: Complexity and Complicatedness - notion of complexity trap and regime changes in

perception of complexity at individual level.

We term is phenomena as avoidance of complexity trap. Note that this is a

preliminary observation and needs to be investigated in future.

6.1.3 Linking Structural Complexity to system development project duration
and scheduling

In chapter 4, we have developed an aggregate level regression-based model
linking structural complexity, C to the total development effort, E (expressed
through the averaged build time). The functional form of this relationship is given

below,

E=aC’® (6.9

Now we look for establishing an analytical relationship linking structural
complexity with system development project duration and scheduling. The existing
literature investigating regular patterns of effort utilization in research and
development of engineered systems reveals patterns that are independent of the
type of work and is fundamentally related to the way people solve problems
[Norden 1964; Putnam 1978; Bashir and Thomson 2001].

Norden developed a model describing the effort utilization, approximating

the entire project cycle based on a number of system development projects across
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different disciplines. This model links the estimated total development effort E to
the effort utilization in each time period y,:

y, =2Eate™™ (6.10)
where, y, is the effort spend during period ¢; E is the total development effort and o

is a “shape parameter” that depends on the time to reach the maximum effort
expenditure during the entire project cycle. The effort spend till time ¢ is computed

by integrating over eq. 6.10 and is given by:

y(t) = j ydt=E(l-e™)  (6.11)

Representative plots of y and y(¢) are shown in fig. 6.9 below. Note that the effort

spent during time period t tails out to infinity.
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Fig. 6.9: Plots of effort spend during a time period y: and cumulative effort spend y(t)

We can see that the Norden's model satisfies the essential boundary conditions with

t—>00

Y, =0y, = lim[ZEocte’o"2 } =0, and y(e0)= ].;yrdf = ET(2O€‘L’)e_MZdT =F.
0 0

-
=1

To compute the development effort spent at any point in time, we need to
estimate the shape parameter, o. It is related to the time of peak effort utilization

and found by maximizing y, :

a’yt

dt
=> 2Eae “ [1-2af*]=0
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The shape parameter, o. is related to the time ¢, of peak effort utilization as shown

below:

o=—  (6.12)

2¢2

Hence, the shape parameter o can be estimated based on the time-to-peak
development effort for similar class of development projects. As proposed by Bashir
and Thomson [2001], we can compute an effort spending rate measure, r from
historical system development projects of similar nature such that,

E
r=—

(6.13)

*

Here, the rate measure, r represents the average effort expenditure rate if the
development project were to be completed in time #,. Hence, r is a measure of
productivity. We can express the time-to-peak effort expenditure as a function of
Structural Complexity, C by linking eq. 6.9 and eq. 6.13. This is a power-law type

functional form, so prevalent in the cost and effort estimation literature [Garvey,

2000].

b
p=L£_aC =Gﬁcb (6.14)
r

r r

As shown before, Norden’s model is right-skewed and tails out to infinity. For

practical purposes, let us assume that project duration is given as ¢, such that,

Wi)=E  (6.15)

Now the effort spent during the last period can be expressed as the difference

between y(z,) and y(z,-1),

y(td)_y(td _1)
= E-E[l-e ]
— Ee T (6.16)
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Let us define a parameter, p as the fraction of effort spend during the last

period. Using eq. 6.16, we find the following expression for p:

_ effort spend during last period
P total effort

=W (6.17)
Taking natural logarithm of both sides in eq. (6.17), we get:

In(p) =—a(t, -1y

t,—1=

p (sincet,>1)

Using eq. 6.12 in the above expression, we arrive at the final expression for

estimated project duration is:

t =1+64In(1/ p*)  (6.18)

Using eq. 6.9 for ¢, in eq. 6.14, we derive en explicit relationship linking structural

complexity, C to the engineering system development project duration:

= 1+(ﬁJc” 1n£i2} (6.19)
r p

Here, we observe that the estimated development project duration is
dependent on Structural Complexity, C and involves estimation of four parameters
{a; b; 1; p}. The first two parameters are estimated from the development effort
versus structural complexity model, while the other two parameters are derived
from a set of historical projects of similar type. We can observe that the estimated
project duration also has a super-linear dependence on structural complexity for
b>1. This illustrates explicit dependence of project duration and scheduling on the
Structural Complexity of the engineered system being developed, leveraging

Norden’s model.
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6.1.4 Granularity of System Representation and the Complexity Gap

One interesting question in the area of engineering systems is about the level
of detail at which a system should be represented. This depends on the questions we
are trying to answer with the analysis. With respect to computation of structural
complexity, the question is about the ability to seamlessly move across different
levels of abstraction (i.e., system representation) and its impact on the estimates of
structural complexity as we move across levels of representation. In practice, it
appears that the hierarchical L3 (i.e., level 3 system decomposition) decomposition
is usually good enough for comparing different engineering systems with similar
end goals.

As we will see later in this chapter, the structural complexity evolves as we
have more details about the system architecture and then settles down once we
have the fundamental architecture captured (that tends to happen at L3

decomposition level). This is illustrated in fig. 6.10 below.

Maximum Stress

Structural Complexity
A

‘\Aggregated view

Evolution of Structural
Complexity

s

Coarse view

4

Fully expanded view

Evolution of computed
maximum stress

Level of System Decomposition

S
Ll

v

Level of discretization

Fig. 6.10: Evolution of maximum stress in a structure with increasing level of discretization in Finite

Element (FE) model is analogous to the evolution of structural complexity with increasing level of

system decomposition.

Another interesting theoretical question relates to the complexity gap. The
complexity gap is similar in spirit to the notion of information gap [Thomas and

Cover, 2006] in information theory.
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Let us consider a system using a finer level representation with binary

adjacency matrix, A since there are (n+m) components in the finer level

(n+m)x(n+m)
system representation. For the same system, assume that the finer level details are
abstracted above at a coarser level where we observe two subsystems with

adjacency matrices 4, ., 4 respectively and their interconnections are

2(mxm)

captured through rectangular matrices K o and K eny The complexity gap, ¢, if

any, is defined as the difference in the structural complexities computed using these
two representations of the same system.
At the finer level of decomposition, the binary adjacency matrix for the

system can be written as,

T I T N B
K, 4 0 4 K, 0
A B
=A+B
where,
) 4 0
= 4
2 0 K,
| K, 0

The system adjacency matrix, A is expressed here as the subsystem
adjacency matrices 4 and the inter-subsystem connectivity matrix B, which is a
bipartite matrix. The graph energy inequality (see chapter 3 for details) in terms of

graph energies of the subsystems and the bipartite matrix is given by,

E(A)< E(A)< E(A)+ E(B)
w E(A)+ E(A) < E(A) < E(A)+ E(A)+ E(B) (6.20)

The graph energy at the final level can be written as,
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E(A)=E(4)+ E(4)+A

=E(A)+ E(A)+ pE(B) where, p= €[0,1] (6.21)

A
E(B)
Let us assume that the sum of component complexity is C1 and the sum of

interface complexities is 3. The structural complexity at this finer level of

decomposition as,

SC=C +ﬁ(E(A)J (6.22)

m+

Now, notice that, the interface complexity can be expressed as the sum of interface

complexities of the subsystems and the inter-subsystem,

B=B+B,+B, (6.23)
Let us consider the finer level subsystems, brought-up at the coarser level.
The structural complexity at this level is the sum of structural complexities of the
individual subsystems plus the complexity stemming from the inter-subsystem
interactions. Using this representation, the aggregated structural complexity is

given as,

SC,.=(c, +C, )+ ﬁ{E(A)] ﬁz(%j+ﬁk(ﬂ3)]

m+n
CI

—C+ /3[ (‘41)] ﬁz(%}ﬁk(ﬂmj (6.24)

m+n
where C, and C 4 stands for the component complexities from the two subsystems.
1
The complexity gap, 6 is defined as the difference between the structural

complexities computed by eq. 6.22 and 6.24 and is given by,

§=5C-SC
agg
/3

:[ B )E(A)—%E(/L) Popay-Limm 62

n+m

Let us expand the first term on the RHS of eq. 6.25 using relation 6.21,
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( b jE(A):( b ]E(A1)+(nfm]E(A2)+p( b ]E(B)

n+m n+m n+m

( A, jE(A1)+( [j jE(A2)+p( B ]E(B)

n+m n+m

(ﬁ B, ]E(Al){ﬁ B, ]E%)
BJaafas (& o 2o )

Pl P als] e

Let us define, —=r>1 without loss of generality as we can always assign
m

=

graph 4 to the larger subsystem. Using the ratio, » €[l,0) and arranging terms

using 6.25 and 6.26, we can express the complexity gap as,
s =ﬁE(Al)[L—l}&E(Az){L—1}+p(L)E(3)—( A, JE(B)
+r m I+r +m n+m

2 afi (B2 ]
o e C R

E(B)( pB-B,)

n+m

(o - 5]
(-5 o)

+@ﬁ(p_&J

n+m
_E(4) r ) B E4) 1) B E® o B
on ﬁ[(l+r)_ﬂ}_ m ﬂKl+rJ ﬁ}_n+mﬂ[p ﬁ] (6.27)

In the above expression for complexity gap, d, the first term is positive if,
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(6.28)

For the second term to be positive, we must have,
L - N R (S
I1+r B I+ )\ B

1 B,
nr< Ll lih
B,

Combining relations 6.28 and 6.29, we have the following condition that guarantees

(6.29)

positivity of the first two terms,

By B+ B

r<

<
B,+B, B,

(6.30)

The third term is positive if,

p>% (6.31)

To simplify and operationalize better, let us introduce the triple

ﬁz ﬁk

(u,v,w) € (0,1) where u = %; v=—; w=—- and eq. 6.23 enforces the constraint,

B B

u+v+w=1. Using these ratios, we can express the conditions such that all terms in

the complexity gap, 6 expression, are positive,

u 1-v
l—u v (6.32)
p>w
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Let us consider the balanced case, » =1. Using relation 6.27 and assuming

6.32 holds, we get the complexity gap,

LEA) of | B LEA) o By EB) o By
5_5 ; ,B(l 2ﬁj+2 - [3(1 2ﬁj+n+mﬁ[p ﬁJ
:%E(};‘L)ﬁ(l 2u)+ ;E(’;jz)ﬁ(l_ZV)J,%ﬁ(p_w) (6.33)

>0 20

In general, we have p > w and therefore all the terms in 6.33 are greater than

zero and hence 6 >0, indicating the complexity gap is positive. In case, » — o, we

have v — 0. The complexity gap is expressed as,

_E(4) _E(4
n+m
_E(4
( )/3(1 —E(B)ﬁ(p—w) (6.34)
n+m

In general, we have p>w and therefore all the terms in 6.34 are greater than zero
and hence 6 >0, indicating the complexity gap is positive.
Using the triple (u,v,w) e (0,1), the complexity gap in eq. 6.27 can be written

as,

" m n+m
_E(4) ro E(4,) EB( r )
o ﬁ{LH’ u}_ E(A1)L+r v}+E(AI)(1+rJ(p W)} (6.35)

E(4,)

1

_ E(Al)ﬂ{ﬁ_u} E(Az)ﬁ[lir_v}+ EB) g, )

In the expression 6.35 above, please note that, r is a finite quantity of

order 1 (see the dimensional analysis in chapter 3) and could well be a small

E(B)

number depending on the actual topology of the subsystems. Now, is a small

number since the bipartite matrix, connecting the two subsystems is usually very

sparse (i.e., think of the subsystems as modules and B representing inter-module
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links). In addition, the set of ratios (p,r,u,v,w) are not independent, but correlated

to varying degrees with the constraint #+v+w=1. In general, inequalities 6.32 are
satisfied and all the terms on the RHS of eq. 6.35 remain positive, leading to a
positive complexity gap,6. This result is influenced by the existing correlations
among the ratios in eq. 6.35 and needs to be investigated in future for any non-
hypothetical exceptions.

The interpretation of the complexity gap is similar to the information gap,
which is always positive or zero [Thomas and Cover, 2006]. This gap can be
interpreted as follows: if a system is reconstructed at a higher level, using a lower
level information, there is a physical loss of information due to this reconstruction
and we can only get back a very well-approximated version (but not the exact
replica of the system). For example, let us think of a structural system. If we use the
details of lower level sub-structures in a higher, system level analysis, we lose some
details on localized load sharing mechanism [Engel, 2007] when compared to lower
level complete system model. This is essentially due to the load redistribution in the
structural system [Engel, 2007]. The extent of this redistribution of load and the
subsequent loss of information/detail depends on the details of the structural
system.

This is a fundamental principle in information theory [Thomas and Cover,
2006] and seems to be applicable to complexity gap as well and it is also physically
consistent. We believe that the positivity of the complexity gap could serve as a

crucial construct validity criterion for any proposed complexity metric.

6.2 Distribution of Structural Complexity

In this section, we look at the factors affecting distribution of complexity and
structural modularity. The distribution of structural complexity over the regions of
the system (i.e., subsystems) and its implications on system development are
discussed. It is shown that modularity and topological complexity are not
necessarily negatively correlated, and we can have architectural configurations

where both complexity and modularity increase, building upon a simple toy model
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involving two modules. Observations from large real-world engineered systems are

explained using the macro level predictions from the toy model.

6.2.1 Implication of complexity distribution on system development

Distribution of structural complexity across the system elements plays a very
significant role in achieving a set of system properties and often to programmatic
success of the system development project. Knowledge of overall system
architecture is absolutely critical to be able to quantify and track the complexity
during the system development activity. There may be subsystems that are
significantly more complex and respective development team should be able to
handle such high complexity in order to be successful. Therefore, knowledge of the
complexity distribution plays a crucial role in selection or composition of the
subsystem development team. We might view the system from a somewhat higher
level where the modules of subsystems are treated as super-components. Each
super-component has an internal system complexity (that represents complexity of

the super-component) and this fact should not be overlooked (see fig. 6.11 below).

Higher Level Lower Level

Fig. 6.11: A higher vis-a-vis a lower level architectural view of the same system. At higher level, we
have subsystems as nodes. At the lower level, it is broken down into components.
We cannot treat the complexity of this aggregated component the same way
as we would for a simple component. The total structural complexity is now
distributed within and across the subsystems. In order to extract information on the

complexity distribution over the entire system, we do need complete information
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about the internal structure of subsystems. This information is crucial for tracking
and management of large, engineered system development efforts. Implication of
the complexity distribution on system development effort and associated decision-

making can be best explored using simplified examples.

6.2.2 Structural Complexity and Modularity
Let us consider the following example of a system structure consisting of two

modules of subsystems as shown below.

Module 1 Module 2

A= 41 K E(A)=E(A)+E A
= 'Iél"i';l'z = E(A)= E(A)+ E(A4,)+

Let us represent the component and interface complexities as o and 3, we arrive at

the following expression for Structural Complexity:

o[ SarBar | EEn-S S0 £ 5058 e
i=1 i=1

i=l j=1 i=l j=1 i=1 j=1 i=l j=1

= Zaf ‘ +Zzaf 2j+[22ﬂif} +YYBE+Y B +222ﬁ§?]y(E<Al)+E(A2)+A)

i=l j=1 i=l j=1 i=l j=1 i=l j=1

- Yo' +(2121ﬁ:‘;ij<Al)]+[2af +[2222ﬁf; Jm@]

i=l j=1 i=l j=1

+(iiﬂf}]ﬂ(%)+[iiﬁf§JyE(f%H[iiﬂf}+iiﬁff+in22ﬂf} +"Zziﬂ,-’3)m

=l j=1 =1 j=1 =1 j=1 =1 j=1 =l j=1 =1 =1

+[iiﬁfj + iiﬁff ]}/E(AJ+ (iiﬁf + iiﬁff ij(Az), where y is a normalization factor

i=l j=1 i=l j=1 i=l j=1 i=l j=1
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Hence, we can write, Structural Complexity = sum of module structural complexities +
integrative structural complexity. Let us apply the above result to a modular system

structure with two modules:

E(A)=xE(A); E(A)=x,E(A); A=x,E(A)

where, x, + x,+x, =1

n 03
m = #interactions; Q= Zaf‘ + ZOCI,AZ

i=1 i=1

l’ll l’ll 7‘12 n2 "I )12 nz l’l]
A . A —_— . K [— . K —
zzﬁ’fl = N, 22'3112 =M Zzﬁi,; = y;m, Zzﬁw’z =ym
i J i J i Jj i J
where, y, +y,+y,+y, =1

Using the earlier derivation of structural complexity for two sub-system example,

we can write the structural complexity in this case as:

Structural Complexity, C = Q+ j/mE(A)[xly1 +x,y,+xy,+ X,y +x,+ (x1 +x, )(y3 +y, )]

=1

= Q+ymE(A) (6.36)

There is a conventional wisdom that complexity and modularity are
negatively correlated and increased modularity brings down the complexity. This is
definitely not a causal relation and what we actually have is a set of seven fractions -
{x1, x2, x3} and {y1, y2, ¥3, y4} that determines how the overall structural complexity
and modularity plays out. We can very well have increases in complexity alongside

an increase in modularity as shown below in fig. 6.12.

Increasing Modularity

Less complex More complex

v

Increasing Structural Complexity

Fig. 6.12: Topological Complexity and Structural Modularity are not necessarily negatively correlated.
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These seven parameters have only two constraints: x; +x, +x; =1 and
y,+¥y,+y,+y, =1. They shape how the overall complexity is distributed within and
across the modules and the associated structural modularity.

Now let us look at the computation of modularity index, given the set of
modules. Assume that the modules are somehow given to us and we need to
compute modularity index based on the given modules. Modularity index, Q is then
defined as the fraction of edges that fall within module 1 or 2, minus the expected
number of edges within module 1 and 2 for a random graph with same node degree
distribution as the given network [Newman, 2010].

Expanding this basic definition and after unpacking different terms involved,

we arrive at the final form of the modularity index for this two module system as,

2
Q:E(eii—af) where e, is the fraction of edges with both end vertices in the
c=1

same module i and g, is the fraction of edges with at least one end vertex inside

module i . Expanding the above for O, we arrive at the modularity index:

0= +y) - +3)+(,+,)]
:(y1+y2)+2(y2+y4)_2(y2+y4)2_1 (637)

Notice that there is no element of {x} vector in eq. 6.37 above. The elements of {x}
and {y} vectors are coupled through the topological complexity expression and
more precisely, through the equality constraint,
Xy, Xy, +xy,tx,y+x,+(x+x,)(y,+y,)=1 (see eq. 6.36). Otherwise, these are
free parameters that can be varied to traverse the structural complexity vs.
structural modularity space.

Here, we can observe that the expression of modularity does not depend on
how many nodes belong to each module and detailed topological features within
each module. Once the modules are ‘defined’, there is no role for topological features

within the modules in the modularity index expression. This is not the case for
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topological complexity though. It inherently captures the global effect of relative
module size (i.e., number of nodes within each module).

Numerical Example: Let us consider a graph with 100 nodes and 251 links with
only 1 link connecting the modules. Each module has 125 links each while 100
nodes are distributed between the two modules based on the ratio ni/n;. Otherwise,
the modules are random networks. The adjacency matrix of this modular network is
A. For comparison, we construct a random network B with the same number of
nodes and links (i.e., 100 nodes and 251 links). We perform a few simulation studies
to demonstrate the relationship between the topological complexity and structural
modularity.

Case 1: We vary the ratio ni/nz with ni+nz = 100 and the observed behavior is

shown in Fig. 6.13 below.
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Fig. 6.13: A high n1/n; value indicates increasing ‘centralization’ lead to reduced topological
complexity (red lines). The blue lines indicate the ratio of topological complexity of a random
network, A with same number of nodes and links to the topological complexity of our hypothetical
modular architecture, B. Here, N=n{ + n; =100, m;i=m;=125,k=1,m=m; + my + k=251.

We can observe that a relative centralization (as the size of module 1 grows much

bigger than that of module 2) brings down the overall structural complexity, but has
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no impact on the modularity index. This clearly negates the notion that reduced
topological complexity will drive down structural modularity and vice-versa. Also
note that the ratio, E(B)/E(A) has increased, indicating a relative increase in
topological complexity of a corresponding non-modular structure with the same

number of components and edges.

Case 2: Now we keep the module size constant and change the number of intra-
module connections. In this case, both modules have 50 components each. Here we
observe structural complexity decreasing as one module becomes dominant and the
architecture tends toward centralization. Interestingly, the modularity index also
decreases (see fig. 6.14 below). This shows a case where modularity and complexity
are positively correlated, as against the perceived notion that they are essentially

negatively correlated (i.e., increasing modularity leads to a decrease in complexity).
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Fig. 6.14: m1/m; gives the relative density of two modules. A high number indicates increasing
‘centralization’ leading to reduced structural complexity (red lines). The blue line indicates the ratio
of topological complexity of a random network with same number of nodes and links to the
topological complexity of our hypothetical modular architecture (based on an ensemble size of 50).
Based on this imposed modules, the modularity index, Q decreases from 0.5 to 0.38. Here, N = ny + n;
=100,n1=n2=50,k=1,m=m{+ my + k=251.
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This result clearly brings forth the point that topological (by extension
structural) complexity does not necessarily have an inverse relationship to
modularity. Note that ratio E(B)/E(A) has increased in this case as well, indicating a
relative increase in topological complexity of a corresponding non-modular
structure with identical number of components and edges.

In this section, we observed the following main points:

1. Structural Complexity and Modularity measure two different structural

aspects of the overall system architecture.

2. They are not necessarily negatively correlated as often presumed and we can
have systems where increased complexity can manifest alongside increased
modularity. Complexity encapsulated inside modules does not necessarily

imply reduction in overall complexity [Hirschi and Frey, 2002].

3. In case of simple, two-module system, we have 7 parameters that shape the
distribution of structural complexity and modularity of the system. They
form an under-constrained set of equations and many feasible solutions
exist. This, in theory, enables us to trade structural complexity with

modularity.

A highly modular architecture with very complex modules can result in a
complex architecture, but may still be desirable if system decomposability is of
primary importance. This fundamentally relates to the usefulness of using
reductionist strategies, which humans have reasonably mastered over the last
century, for developing a complex, engineered system. Increasing modularity helps
application of reductionist strategies while higher complexity makes reductionism

less applicable/effective.
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Fig. 6.15: Complexity-Modularity trade-space and their impact on effectiveness of reductionist

strategies for system development.

Looking at the above trade-space in fig. 6.15, the ideal quadrant is the low
complexity, high modularity zone. This is where reductionist strategies work the
best and one can use decomposition to better handle the system design and
development. Higher modularity can aid incremental evolvability of the system by

enabling exploration of the neighboring areas in the design space.

6.2.3 Why is modularity important?

Modularity is the degree to which a system's components may be separated
and recombined. Modularization or design encapsulation is not necessarily a means
of reducing intrinsic complexity of the system, but it is a means of effectively re-
distributing the total complexity across the system such that the Perceived
Complexity or Complicatedness [Tang and Salminen, 2001; Ramasesh and Browning,
2012] is contained. This aligns perfectly with our deep-rooted capability to ‘divide
and conquer’. Structural complexity is an intrinsic property of the system and
therefore observer-independent. Complicatedness is an extrinsic, observer-

dependent property of the system. The impact of intrinsic property of complexity is
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manifested in development cost through this intermediate, system-dependent

complicatedness function, as depicted in the fig. 6.16 below.

Structural Complexity System Development Cost

Complicatedness
Complicatedness is always measured

with respect to one / set of Observer
(s) or actor(s) at a given time

Fig. 6.16: Manifestation of Structural Complexity through the observable, system development
cost/effort.

This intermediate property of complicatedness brings in the aspect of human
cognition into the scheme of things and is intimately related to any observable from
a human executed activity. This is the sole reason for differences/spread in rating of
component complexities by different subject matter experts. Each expert’s view of
component complexities is likely to be a juxtaposition of both intrinsic complexity
and his/her own complicatedness function. This is what leads to the spread of
component complexity estimates obtained from expert opinion.

We, as humans, tend to behave as adaptive systems and adapt with extended
exposure and therefore, personal complicatedness function will also evolve with the
knowledge and the extent of exposure. We hope to find refuge under modularization
strategy as a mean of design encapsulation that aids the system development effort
by divide and conquer. This is likely to find a strong link with aspects of human
cognition in general. In future, it might be instructive to link product development

with human cognition and to investigate their interaction in a rigorous way.

6.3 Examples of Systemic Implication

The development of Boeing 787 (e.g., the Dreamliner) is a good example of
systemic implications that stem from complexity of the system and their
management [Heimsch, 2011; Cohan, 2011; Hiltzik, 2011; Zhao, 2012].

The Boeing Company announced in 2004 that it was embarking on an

ambitious commercial airplane development project in order to bring the 787
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Dreamliner to market. Boeing had launched its last major commercial airplane, the
777, a decade ago and was under pressure from Airbus, its primary competitor who
was stealing market share away from Boeing. Recognizing the need for speed to
market for the 787, along with increased quality standards and reduced production
costs, Boeing focused on an innovation strategy and decided to outsource about
70% of the design and manufacturing for this plane (see fig. 6.17 below) [Heimsch,
2011; Cohan, 2011].

The development was done at 17 different companies spread over 10
different countries worldwide and there was an implicit understanding or hope that
this strategy will be effective in persuading different countries / airlines to buy into
this initiative as they also have a share of the pie [Cohan, 2011; Hiltzik 2011].

Boeing felt that the 787 Dreamliner represented groundbreaking innovation,
with benefits that would resonate with customers and enable Boeing to regain its
leadership position and the 787’s composite material design, aerodynamics, fuel
efficiency and propulsion systems has redefined how commercial aircraft are

designed and manufactured, and will impact the broader aviation industry [Cohan,

2011; Cohan, 2008].
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Fig. 6.17: Boeing partnered with organizations from 10 different countries to share and manage the

risk while scouting for best in class technology.
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Recognizing that they may not have the internal expertise to design first in
class systems for every design element, Boeing sought out leaders for each of these
areas to bring the best together and build the 787. A major benefit of the 787 is its
fuel efficiency. Because of weight-saving fuselage design, which is 80% lightweight
carbon-fiber composite material, the 787 uses 20% less fuel than other planes its
size [Heimsch, 2011; Cohan, 2009]. The composite material is expected to last
longer than the aluminum alternative, which should result in lower maintenance
costs for the airlines. Additional benefits include more passenger legroom, cargo
space, significant noise reduction and much improved passenger ergonomics.

Historically, Boeing has outsourced much of its manufacturing, considering it
non-core to its operations. But Boeing has focused on owning its core design work,
viewing it as its competitive advantage. However, with the 787, Boeing opted to also
outsource much of the development work, recognizing that the detailed design and
production went hand in hand, and were needed to be done by the partner in order
to capitalize on their industry leading expertise [Zhao, 2012]. For the first time in
history, Boeing decided to outsource both the design and the manufacturing of the
787 to shift the economic risk to the suppliers [Cohan, 2011].

This was very aggressive outsourcing strategy that has never been pursued
by Boeing or any other aircraft developers. In this particular program, Boeing
adopted a risk-sharing partnership with suppliers where the tier 2 suppliers were
chosen by tier 1 suppliers and not by Boeing. The non-recurring development cost
was shared with the suppliers and Boeing bore only 45% of planned 787
development cost of about $10 billion. The detailed design of sub-systems was
entrusted with the suppliers. This might have led to masking of the detailed system
architecture from Boeing to an extent.

Unfortunately, the 787 development project was never successfully managed
and led to a 40 month delay in launching the first aircraft for operation (planned
duration of 64 months vis-a-vis ac actual duration of 104 months) and resulted in
significant cost overrun of more than $10 billion and erosion of brand value for

Boeing.
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Earlier, Boeing outsourced only the manufacturing and maintained tight
control over the system architecture and design (e.g., Boeing 777 development
program), providing those suppliers with extremely detailed specifications of what
each aircraft component should do [Zhao, 2012]. But by outsourcing both the design
and the manufacturing, Boeing lost control of the development process. This is to
say that Boeing had a view at the level of subsystems as shown in Fig. 6.7 (e.g., large
red nodes). This view completely hides what is inside the subsystems and there is
no way for Boeing to judge the total structural complexity of the system as it
evolved and thereby no information about the relative complexity sharing within
those subsystems.

If a subsystem or module starts to become too compley, it is possible that the
outsourcing partner does not have the adequate capability for handling that level of
complexity and this may jeopardize the overall system development effort [Hiltzik,
2011]. But following their strategy of outsourcing the detailed design, Boeing was
perhaps not in a position to even know about such events in a timely fashion, let
alone intervening on its own.

There is another lurking danger in following the approach of ‘outsource and
forget’. At the top level, there is a possibility to assign a lower complexity to the
subsystems as some details may not be available at that stage and anyway, there
might be a temptation to think that subsystems are “no longer my headache” as this
has been outsourced to another entity (see fig. 6.18 below). But it is the controlling
organization (e.g., Boeing Corporation in this case) that is ultimately responsible for
delivering system properties and that responsibility cannot be outsourced. It was
shown [Zhao, 2012] that the 787 development program and the risk-sharing
partnership mechanism that was put in place suffered from what is known as the
prisoner’s dilemma [Xu and Zhao, 2012]. This meant that what was best for each
individual firm did not align with what was best for the overall program. The OEM
(i.e., Original Equipment Manufacturer, that is Boeing in this case) was more
concerned about its own share of the development cost and apparently lost sight of

the lurking delays of the overall program. A closer control and monitoring with
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transparency into the detailed system architecture by the OEM was a necessary

enabler for success of such large engineering system development programs.

>
a

)
Structural
Complexity
a

Level of Detail

Fig. 6.18: Evolution of structural complexity in case of an evolving design. At top level, each node
actually represents a subsystem or module and their lower level details are shown on the left.
Complexity estimates are performed at each level of detail without considering the fact that at the top
level, we do not have component, but we have subsystems and we cannot treat them as simple
components. Doing that one might get the impression that structural complexity is only €4 while in
reality, it is C".

We can observe from fig. 6.18 that Boeing might have predicted complexity

as only C, but what they are responsible for is C*, which is much higher. It appears

that this lesson has been learnt and remedial actions are being taken. Boeing has
decided to have tight control over the system architecture and design for
development of future Dreamliner variants as exemplified by the flowing quote
from a senior Boeing executive - "We fully recognize that we made some mistakes in
that regard... on the 787-9, we are pulling more of the engineering back inside to try
and alleviate some of the issues we've had on the 787-8 ... " [Weber, 2009].

Such instances can also be found elsewhere like the space program. Consider
the case of the Columbia disaster (2003) and for that matter, the Challenger disaster
(1986). National Aeronautics and Space Administration (NASA) was the controlling
organization. But the detailed design, build and launch were performed by the
United Space Alliance partners that included Lockheed Martin, Boeing and many
others [Goldsmith and Eggers, 2004]. In both cases, it was found that NASA did not
have the capacity to assess the situation on its own. So NASA had to rely on the

conclusions from the contracted organizations only and had to act as mere
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communicator. Lack of complete knowledge of the overall system architecture had
left NASA in a rather unenviable position as it lost its ability to judge the system
properties independently [Goldsmith and Eggers, 2004]. This is also a likely
contributor to programmatic delays that have almost become a norm.

Significant increase in complexity of some subsystems often derails the
whole system development effort. The inability to track and manage such
complexity growth actively at both subsystem and system level, have led to
suboptimal result and sometimes complete programmatic failure. From the

discussion above, we could extract the following key points:

1. Knowledge, adequate visibility of the overall system architecture and
distribution of total complexity across different subsystems is absolutely
essential for matured complexity management capability. This leads to
eventual success of the system development activity. Implementation of
divide and conquer strategy at system architecture level has to be be kept

under tight control - never outsource this aspect of the system to partners.

2. Distribution of overall complexity is a critically important input to the ‘divide
and conquer’ strategy. It has a big impact on the ‘division’ of architecture into

chunks.

3. If there are subsystems that significantly more complex, the development
team should have the capability to handle this high complexity. Knowledge of
the relative subsystem complexities influence selection / composition of the
subsystem development team. To do this effectively, visibility to the overall
system architecture is absolutely critical. Any asymmetry in complexity
distribution is usually counter-productive unless there is asymmetry in

complexity management capabilities of responsible development teams.

4. In case of evolving system architecture, one should keep track of the overall
evolving architecture to make sure subsystem complexities are contained

within sustainable limits. If not, there might be a need to re-structure the
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subsystem development team to address the evolving reality. Otherwise,
expect negative surprises at the time of overall system integration. It is
imperative that every large-scale system development effort does active

complexity distribution and management.

The ability to embrace system complexity effectively requires good complexity
management. Good strategies for complexity management are imperative for
successful execution of complex system development. It is not only about managing
the entities (or nodes), but also about managing the network (or the interaction
structure amongst entities). Effective management at the entity level does not
translate to effective management of interaction structure. Effective complexity

management starts from choosing the system architecture.

Chapter Summary

In this chapter, we formulated a methodology for estimating a complexity
budget, similar to the notion of mass or power budgets in conventional systems
engineering. Since increased complexity often enables improved system
performance, we formulated a value function as amount of performance gain per
unit NRE penalty due to increased complexity. We found that there exists a
maximum system value if the rate of performance gain (with increasing complexity)
is greater than the rate of NRE cost/effort penalty due to the increased complexity.

In all other cases, the system value is found to decrease monotonically with
increasing complexity. We also addressed the issue of system representation and
introduced the notion of complexity gap, similar to the notion of information gap in
information theory. It was shown that this complexity gap is positive and plays a
role similar to the role played by information gap in information theory.

We also linked project duration and scheduling to structural complexity
using Norden’s model and shown that the estimated development project duration

varies super-linearly with structural complexity for any exponent greater than 1.
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We discussed the implication of complexity distribution on the system
development effort and looked at the interplay between structural complexity and
modularity. It is shown analytically and using simulation that complexity and
modularity represents two different structural properties associated to the system
architecture and need not be negatively correlated as widely believed. They can be
controlled using a set of parameters and influences the distribution of complexity
across the system architecture.

In this light, we argue that the importance of complete knowledge of the
overall system architecture is crucial for decision-making during the development
process and constitute a core capability for the primary development organization.
This capability is essential for complexity to be tracked and actively managed during
the process. It is argued that delivering the system properties is ultimately the
responsibility of primary system development organization with an appropriate
integrative mechanism where the overall system architecture remains visible and
cannot be outsourced to partners.

Complexity management has implications across the spectrum of human
endeavor, stretching from engineered system development to coordinating and

maintaining our healthcare systems, to name a few.
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Chapter 7

Dynamic Complexity Quantification

As we have discussed before, there are three primary dimensions of
complexity that emerged in the context of system design and development can be
grouped as (1) Structural Complexity; (2) Dynamic Complexity and (3)
Organizational Complexity [Sheard and Mostashari 2010].

Now, we turn our focus to estimation of dynamic complexity of an
engineered complex system. Dynamic complexity refers to the complexity of the
dynamical behavior of the system and we will focus primarily on the steady state
dynamics, but the methodology is extensible to include transient dynamics as well.
Dynamic complexity is a form of complexity that stems from the underlying physics
and interrelationships that govern the performance of the system. A highly
sophisticated or complex system can behave in a multitude of different ways or
modes with rather spontaneous switching of modes [Marczyk 2008]. In this context,
higher dynamic complexity implies increased ability to deliver surprises. High
dynamic complexity does not necessarily imply many interconnected components.

The dynamic complexity is implicitly a function of system’s operational
envelope. By operational envelope, we mean the environments under which the
system has to operate. For any system, a significant departure in the operational
envelope might alter its dynamic complexity, depending on the extent of deviation
in its behavior due to the altered operational envelope.

A Multi-input, multi-output (MIMO) system with very few components can be
extremely difficult to understand and control, largely due to the associated
interaction uncertainties between responses of the system. Apart from high

uncertainty in its behavioral responses, a system can have high dynamical
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complexity due to: (i) behavioral dependency structure, (ii) interaction uncertainty
between behavioral responses or both of them. Uncertainty in behavioral
relationships acts as a form of interaction complexity.

The interaction structure among the associated behavioral responses of the
system is represented using a network of interactions among the behavioral
responses of a system. We can view the system behavior as a physical process and
dynamic complexity is the complexity of that physical process. If this sense, process
complexity is a synonym for dynamic complexity. The structural complexity is a
measure of complexity of the system architecture, while dynamic complexity
develops due to uncertainties in the system during its operation and the direct
dependency structure amongst the system responses, in line with the definition put
forth by Frizelle and Woodcock [Frizelle and Woodcock, 1995] while characterizing
complexity of manufacturing systems.

In this chapter, we develop a dynamic complexity metric having a similar
mathematical structure to that of the structural complexity metric developed earlier
and apply the proposed dynamic complexity metric to different dynamical systems
for validation. Finally the dynamic complexity metric is applied to different
categories of jet engines as examples of large MIMO systems. The results
corroborate the positive correlation between structural complexity and dynamic

complexity, discussed earlier in this thesis (see chapter 1).

7.1 Dynamic Complexity

To successfully manage dynamic complexity throughout system design,
development, and deployment, a proper definition of dynamic complexity is
essential. In the context of engineered systems, dynamic complexity refers to
complexity inherent in the system and is influenced by physical laws. Therefore, we
can think of dynamic complexity as the complexity of physical processes governing
the system behavior. It is conjectured that higher dynamic complexity implies
increasing number of possible failure modes and the effort necessary to cause

failure decreases [Marczyk, 2008]. Dynamic complexity captures the notion of
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emergent behavior and nonlinear interaction phenomena characteristic of complex
engineered systems. Please bear in mind that it is a function of system behavior over
the operational envelope of the system.

Dynamic complexity is a function of three fundamental components: (i)
inherent uncertainty in system responses; (ii) inherent uncertainty in the pair-wise
dependency relationships among system responses; and (iii) dependency structure
among those system responses (see Fig. 7.1 below). The inherent uncertainty in
system responses can be further grouped into two kinds: (i) uncertainty in pair-wise
interaction of system responses; and (ii) uncertainty in system responses

themselves.
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Topology of informaton fow

- Uncertainty

(Noise content In nfomanon)

o

L" ‘,: I:.J’M ”\"‘\‘i ",

Fig. 7.1: Aspects of dynamic complexity for engineered complex systems [Marczyk, 2008].

Taking an information-theoretic view, we use Claude Shannon’s information
entropic measures [Cover and Thomas, 2006] for characterization of uncertainty in
system responses and also interaction uncertainties, details of which will be
elaborated in subsequent sections.

We use the same functional form as in the structural complexity metric (see
chapter 2 and 3) for estimating the dynamic complexity of an engineered complex

system:
Dynamic Complexity, C=C,+C,C, (7.1)

The individual terms have a different meaning as compared to those in the

structural complexity metric. Here the first term, Ci represents the sum of
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complexities of individual system responses. The second term has two factors: (i)
sum of complexities of each pair-wise interaction between system responses (C2)
and (ii) effect of the interaction structure among the system responses (C3).

We use information entropic measures to represent the complexities
associated to individual system responses and their pair-wise interactions. Before
we move further, let us introduce the information entropic measures that we will be

using in formulating the dynamic complexity metric.

7.1.1 Information Entropy

Information entropy or the Shannon information entropy, to be precise, is an
averaged measure of uncertainty of a random variable. Let Y represent a system
response, which is a random variable.
Case 1:

IfY is a discrete random variable, then entropy H(Y) is given by,

H(Y)=-Y p(»)[p(»)]

yesS

= ZP(y)h{

yes

1
7.2
p(y)} 72

where p(y) is the probability mass function and S is the support of random variable

Y, respectively. Comparing eq. 7.2 to the definition of the expectation operator E(.),

H(Y):E[ln( ! ﬂ (7.3)
p(y)

This form expresses the Shannon information entropy as averaged value of

we find,

1 . : -
[ln } Therefore, the information entropy is in a sense, an averaged measure of
ply

uncertainty associated to the random variable under consideration. The inherent
uncertainty associated to each behavioral response can be measured using the

Shannon information entropy. It is used as a surrogate measure of dynamic
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complexity of each individual behavioral response. Notice that this quantity does
not consider any relationship to other behavioral responses associated with the
system under consideration. The Shannon information entropy is a common
indicator of diversity or extent of emergence associated to a behavioral response, Y
[Cover and Thomas, 2006, Willcox et al., 2011].

Case 2:

For a continuous random variable Y with probability density function f(y), the

entropy (or the differential entropy) is given as,

h(Y)= —ff(y)ln[f(y)]dy (7.4)

where S represents the support set of the random variable Y.
In practice, we compute the above quantities numerically, using discretization. I that
case, the discretized information entropy and the differential entropy are related as

[Cover and Thomas, 2006],
H(Y*)=h(Y)-In(A) asA—0 (7.5)

where A is the bin size used in discretization of Y (see Fig. 7.2 below).

p(y)}

%.Ar‘—
\

>y

Fig. 7.2: Discretization of a continuous random variable [Cover and Thomas, 2006].

We define the complexity associated to individual system responses Y; as,
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o, =H(Y) (7.6)

7.1.2 Mutual Information

Mutual information is a measure of the amount of information that one
random variable contains about another random variable. Therefore, it is the
reduction in uncertainty of one random variable due to the availability of the
knowledge of the other. Let us consider two random variables Y; and Y; with a joint
probability mass function p(y;, y;) and marginal probability mass functions p(yi) and
p(y;)- The mutual information I(Y;; Yj) is the relative entropy between the joint
distribution p(y;, y;) and the product of the distributions, p(yi).p(y;)- In a sense, it is
the “distance” between the joint probability distribution p(y;, y;) and the product of
distributions p(yi).p(y;)- Mutual information is defined as:

p(y,y,)
I(Y;Y)= Ly )In| — 7.7
(:Y) ZZp(y y")“[p@,.).p(yj)] (7.7)

where S; and Sj represents the support of random variables Y; and Y;j respectively.

Also the joint information entropy of random variables Y; and Y; is defined as,

H(Y,Y)==3, 3 p(r.y)In p(3,.7)] (7.8)

V,€S; yl.eSj

We can express the mutual information in terms of the individual and joint

information entropy as follows:

10:7)= 2p<y,,,y,>ln{p(yf’yf)}

i p(y)-p(y,)
= > p(y,y)Inlp(y,.y )= X, p(v,y )Ilp(y)]= D, p(y,,y)In[p(y))]

=-H(Y,,Y,)= 3, p(y)In[p(y)]- 2 p(y )In[p(y))]

-H(T) ~H(Y))

=H(Y)+H(Y,)~ H(Y.Y)) (7.8)

The above expression is similar to set theoretic operations described using the Venn

diagram (see Fig. 7.3 below).
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H(Y.Y)

/ AN

H(Y) H(Y)

Fig. 7.3: Relationship between entropy and mutual information using Venn diagram [Cover and

Thomas, 2006].

The mutual information I(Yj; Yj) corresponds to the intersection of the information
entropy in Y; with the information entropy in Yj. Also notice that the mutual
information between two continuous random variables is independent of their
discretization,
1057 = 1Y) (7.9

In fact, mutual information is invariant under linear transformation and arbitrary
re-parameterization using invertible maps [Schlick, 2012] and therefore, is a robust
measure of statistical dependence. This is a helpful property from a numerical
perspective. In complex engineered systems, there are usually multiple behavioral
responses that are of primary interest. These responses may or may not be
correlated in a pair-wise sense. If any pair of behavioral responses is strongly
correlated, there is a pair-wise dependency between the responses and inherent
uncertainty of this interaction over the operational modes of the system influence
the dynamic complexity of the system. Mutual information expresses the amount of
uncertainty one can reduce for a response Yj, given the knowledge of response Y; for
two correlated responses. Therefore lower mutual information indicates higher
uncertainty for any pair-wise interaction. The pair-wise interaction complexity is

given as the inverse of mutual information. We define interaction complexity as,
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AU I
ﬁ(lﬂ.])_l(Y’Y)a lf‘I(Y,’Yj);tO

L

(7.10)

=0, otherwise

Hence, higher mutual information implies lower behavioral interaction complexity

and vice versa (see figure 7.4).

Fig. 7.4: Interaction complexity over the operational envelope: (a) higher interaction complexity, and

(b) lower interaction complexity [Marczyk 2008].

7.1.3 Interaction Structure

The interaction structure among the behavioral responses of a system is
represented via a graph in which the behavioral responses are the nodes (vertices)
of the graph. Links or edges of this graph represent pair-wise interaction between
behavioral responses. The generation of the binary (0/1) dependency structure
matrix of representative behavioral responses can be authored from the analytical
model if all relationships are very well understood (unlikely for a large complex
system); or correlation structure generated from studying the system at different
states (more applicable to large, complex system) or a combination of these two
methods. Here we opt for data-driven approach using correlation structure, where
data may be generated from simulation or observation (i.e., experiment). Generation
of the dependency structure matrix or the A matrix (i.e., connectivity map of
behavioral responses) hinges on the computation of correlation among behavioral
responses. The diagonal elements of the A matrix are zero. An example of this

behavioral dependency structure matrix or the A is shown below in fig. 7.5. There
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are 5 system responses labeled SR1 to SR5 and the corresponding A matrix is shown
below. This is same as the adjacency matrix applied to the system behavioral

domain where each node stands for a system response of interest.

SR2 ) )
SR1 01 1 10
1 0 0 1 1
SR3 A=1"1 0 0 1 0
1 1T 1 0 O

Y R4 | 01 0 0 0 |

Fig. 7.5: A hypothetical system with 5 system responses labeled SR1 to SR5 with the dependency
structure shown as a network and the corresponding A matrix. The interdependent system responses

are assumed to be bi-directional for illustration.

Obtaining the correlation structure, and subsequent generation of the A
matrix, is a very active research area [Kolar et al, 2013] and there are significant
recent methodological developments that help resolve existence of intricate,
nonlinear correlations from observed data [Feizi et al, 2013]. For details, please
refer to appendix M.

Once the dependency structure matrix is generated, next step is to compute a
measure of topological complexity of this dependency structure. This is essentially
the complexity of the correlation structure among the system responses observed
over the operational envelop of the system. We use the same fundamental notion of
topological complexity as in the case of developing the topological complexity
measure for the structural complexity metric (see chapter 3). The associated matrix

energy of A matrix is defined as the sum of its singular values ox:
E(4)=Y o0, (7.11)
k=1

The matrix energy also expresses the minimal effective dimension embedded
within the connectivity pattern represented through the binary dependency matrix.

Notionally, this quantity encapsulates the structure of dependency structure among
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the behavioral responses. Using singular value decomposition (SVD), we can express

matrix A as:
A=Y o,uv =Y 0E, (7.12)
k=1 T k=1

where Ey represents simple, building block matrices of unit matrix energy and unit
norm. Using this view, we observe that matrix energy or graph energy express the
sum of weights associated with the building block matrices required to represent or
reconstruct the binary dependency matrix A. In this context, it represents the
difficulty or complexity in understanding and thereby intervening in the operational
behavior of the system. It serves as an indicator/predictor of inherent structure in
the dependency relationships among behavioral responses [Recht et al., 2010].
Lower matrix energy implies that we can effectively reduce the system dimension
without greatly jeopardizing our understanding of the system behavior. Extent of
such understanding reduces as the dependency structure become more distributed,
leading to larger values of matrix energy and thereby increasing complexity.
Combining the individual terms in relation 7.1, we arrive at the final form of

dynamic complexity metric,

C= iH(YJ+(iiﬁ(f¢)A(u)](¥j 7.13)

2

where A is the binary (0/1) dependency matrix of n behavioral responses of the
system. Note that this functional form is identical to that of the structural
complexity metric, the difference being what the individual terms mean and how

they are estimated.

7.1.4 A notional example with two system responses

The uncertainties in system outputs/responses stems from the input
uncertainties in design variables and system parameters. The uncertainty in system
responses and their interactions are reflections of propagation of input

uncertainties. Let us consider a very simple interacting system with just two system
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responses, {Y1, Yz2}. Let X be the vector of all design variables and system parameters
that dictates the system behavior and the responses are linked to the input vector as

follows:

Y= X% Y= (X)) (714

Now the information entropic measures for the system responses are:

H(Y) == p(x)In[p(X)]dy,
== U p{£,(X)NALA (X))
= g[p{f,(X0}] (7.15)

Similarly, we can express,
H(Y))=glp{f,(X)}] (7.16)

As shown in eq. 7.8, computation of mutual information, /(Y;Y)) will require the

knowledge of joint probability distribution of the system responses, p(Y,,Y,), which

is a derived joint distribution involving the system vector, X. The interaction

complexity can be expressed as,

B =M pif, (X)), p{ifI(X)]] (7.17)

BOAA

For the simple system described here, the behavioral dependency matrix is,

EA) _

=> E(A)=2,n=2, C,=
n

1

The dynamic complexity for this simple system, in terms of input uncertainties can

be represented as,
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C=HY)+H(Y,)+p.1
=glp{ /(XM +glp{ LN+ ALp{ (XD} pUAL(XDF] (7.18)

It is quite clear that we have to depend on computation procedures for

computing the joint probability distribution and subsequently mutual information

and dynamic complexity. The computation procedure for dynamic complexity

calculation is detailed in the following section

7.2 Computational Procedure

For computation of information entropy of individual behavioral responses, its

probability density function is the primary input and is computed using the

procedure in [Botev et al. 2010]. For this study, we will not focus on the complexity

of individual behavioral responses. The generation of binary dependency structure

matrix A is based on the correlation structure amongst system responses and the

computational procedure is as follows:

1.

Identify main behavioral responses n and compute them for different
operational modes s over the entire operational envelope of the system. This
generates a s X n data matrix. Each entry of this data matrix is a number. The
behavioral response values are normalized to lie in the interval [0,1] before
performing the correlation analysis.

Compute p-values for testing the null hypothesis of no correlation. Each p-
value represents the probability of getting a correlation as large as the
observed value by random chance, when the true correlation is zero.
Consider a pair of responses (i, j). If p(i,j) is small, say less than 0.05, then the
correlation r(i,j) is significant. Extract the entire correlation structure using
the data from step 1.

In addition to statistical significance, a correlation is deemed important if
abs[r(i, j)] > threshold value. A practical threshold value to use is found to be

0.25 and has been used in all examples studied here. This is a parameter to
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be chosen before embarking on the correlation analysis and can vary across
different application areas.

4. The correlation structure thus computed could still have indirect
dependencies based on the observed data. That is, if two system responses
are not directly dependent, we can still get a false dependency if there is an
indirect path linking through other system responses. Extract the primary
correlation structure or the direct dependency structure by applying the
spectral de-convolution methodology described in [Feizi et al., 2013]. This
will give us a weighted behavioral dependency matrix, which is then
converted to a binary adjacency matrix in system behavioral space as defined
by the systems operational envelope (e.g., where nodes represent system
responses and edges reflect pair-wise dependencies between them). The
details of the adopted computational procedure can be found in the appendix
M.

5. Populate the behavioral dependency matrix, A with 0’s and 1’s. If significant
the correlation exists between response-pair (i, j) and deemed important

based on the filters used in step 2, assign A(i,j) = 1, otherwise A(i,j) =0.

Depending on data, one can use a combination of different correlation
coefficients (i.e., Pearson correlation, Spearman correlation). Pearson’s method
applies best for linear correlations while Spearman’s rank correlation works well
for nonlinear, but monotonic relationships among responses. Most often, both of
these methods lead to the same or very similar outcome with Pearson’s method
resulting in more conservative estimates. It is possible to include advanced methods
for correlation structure detection [Fan and Liu, 2013], depending on the problem
specific characteristics of data. Choice of correlation structure detection method has
no fundamental bearing on the overall methodology for dynamic complexity
computation procedure. Estimation of connectivity or dependency structure from
available data using correlation structure extraction is a growing research area with

significant computational methodological advances [Kolar et al, 2013]. Recent
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methodological developments using spectral approaches [Feizi et al., 2013] helps
decipher primary correlation structure from observed system behavioral data.

The computation process for mutual information hinges upon the computation
of joint probability distribution function for a pair of system responses under
consideration. This procedure is performed for all pairs of interacting behavioral
responses found in the dependency matrix. The joint probability distribution
function is constructed based on behavioral responses computed at different
operational modes over the entire operational envelope, and use the nonparametric
kernel density estimation approach. The advantage of the nonparametric approach
is that it offers a far greater flexibility in modeling a given dataset and, unlike the
classical parametric approach.

We use an adaptive kernel density estimation method based on the smoothing
properties of linear diffusion processes that leads to a simple and intuitive kernel
estimator with substantially reduced asymptotic bias and mean square error [Botev
et al. 2010]. Once the joint probability density function p(y;y;) has been
constructed, we compute the individual marginal density functions p(yi) and p(y;)
for the respective behavioral responses [Cover and Thomas 2006]. These
probability density functions are used to compute the mutual information I(Y;Y;j).
The interaction complexity is defined as the inverse of mutual information. The

procedure for computing interaction complexity is as follows:

e If (Y Y)) are statistically independent, A(i,j) = 0 and B(i,j) =0

1

e Otherwise, A(i,j)=1and B(i,j) =
w (L)) B, J) 10:7)

We demonstrate operationalization and validation of the proposed methodology
using examples of simple dynamical systems in the following subsection and finally
apply this methodology to more complicated examples of large jet engines with
different architectures. The same methodology can be extended to handle dynamic
complexity in transient regime where dynamic complexity becomes a time-

dependent quantity.
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7.3 Illustrative Examples

We present a set of simpler examples to demonstrating the mechanics of the
methodology and to validate the appropriateness of the proposed dynamic
complexity metric. We start with a simple dynamical system, a damped, driven
pendulum, to validate the methodology. Subsequently, we apply this methodology
on increasingly involved dynamical systems, starting with a double pendulum. In all
these simpler cases, we mostly have system responses that are all interacting to
each other (i.e, form a fully connected network of system responses). These
dynamical systems are simulated under non-chaotic and chaotic regimes [Taylor,
2005; Strogatz, 2001] and their dynamic complexity is computed under both
scenarios. For each dynamical system, it is intuitive that dynamics under chaotic
regime is more complex and any dynamic complexity metric should validate the
same. Also, as the dynamics of these systems are progressively more complex and
the dynamic complexity metric should reflect the same. We use these examples to
validate the proposed dynamic complexity metric.

In all cases, the levels of significance for each correlation component were set
to 0.99 (i.e, 99% level of significance). The threshold value for correlation

coefficient is fixed at 0.30 for all examples.

(a) Damped, driven pendulum

Let us consider a damped, driven pendulum of mass m and length/. The

setup is shown in fig. 7.6 below. The equation of motion about the pivot (see fig. 7.6)
can be written as, /6 =T" where I stands for the rotational moment of inertia and
I" stands for the net torque about the pivot. In this case, we have / =m/* and the
damping force is given by bv =510 . The driving force is assumed to be sinusoidal,

F(t)= F,sin(w t) with F, is the driving amplitude and w, is the driving frequency.
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Forced

- S motion

F(1)

Fig. 7.6: Damped, driven pendulum with forces acting on the bob.

The equation of motion of a damped, driven pendulum is given as:
mi* 6+ bI* 6+ mglsin® = IF, sin(e )

S0+ 2g+ Esing = “0sin(a )
[ ml

m
= 0+ 20+ 0] sinf =y sin(w ¢) (7.19)
where,

2p=2

m

8

(03 = 7

y=2o

mg

We can think of y as a normalized driving force amplitude. If y <1, the driving force

amplitude ( £, ) is smaller than the weight of the pendulum bob (mg ) and we expect
the motion to be small and periodic. For y >1, the driving force is higher than

weight of the pendulum, and we expect the ensuing motion to be large. We will see
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that a progressively larger value of y, while keeping all other parameters in eq. 7.19

fixed, may drive the system to the chaotic regime.

A geometric tool that we use for illustrating and differentiating between non-
chaotic and chaotic regimes is called the Poincare section. This is a way to visualize
the phase space of the dynamical system and provides glimpses into the trajectories
in a lower dimensional space. Think of placing a plane in space, perpendicular to the
plane of pendulum motion such the pendulum always crosses this plane. On this
plane, if we plot the phase space of the system, what we get is a Poincare section.
For the damped, driven pendulum example, the Poincare section can be obtained by
sampling at regular time intervals.

By manipulating the system parameters we can simulate its behavior in non-
chaotic region and in chaotic region. There are different operating conditions and
combinations of parameters that can lead to chaotic dynamics. In this example, we
keep the same initial conditions and set 23=0.5, ,=1 and w,=0.667. The
driving force amplitude, v is varied. In Fig. 7.7, the corresponding Poincare sections
[Taylor 2005] for ¥y =0.8 and y =1.2 are shown for illustration. As we can see, the
damped, driven pendulum shows periodic behavior at low y value and turns

chaoticat y=1.2.

Poincare section for damped, driven oscillator
. T : . :

Poincare section for damped, driven oscillator
T T T T T

“ ] 2 s 7 s 6 o i 2 s 7 5 s
0 0
Fig. 7.7: Poincare Section for (a) non-chaotic regime with ¥ = 0.8, and (b) chaotic regime with

Y =1.2 for damped, driven pendulum system.
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The periodicity of the solution for ¥ =0.8is visible in the Poincare section, plotted

above. At any given section (or any given time instance), the pendulum bob
possesses nearly identical phase-space (this can change somewhat for very high
damping values).

In this example, there are two system responses (i.e.,, »=2) that are related

and we have the binary behavioral dependency matrix, 4 :{ (1) (1) } with E(A4)=2

E(4)

n

and

=1. Under all cased considered here, the behavioral dependency remains

the same. We simulated the pendulum system at y =0.8;1.05;1.10 and 1.20 using

MATLAB™ with odel13 as the solver. We subsequently computed the dynamic

complexity of the system at each value of ¥ and the result is shown in table 7.1

below:

Table 7.1: Dynamic Complexity of damped, driven pendulum moving from non-chaotic (low driving

force) to chaotic regime (high driving force).

Y Dynamic Complexity
0.8 0
1.05 0.248
1.10 0.466
1.20 0.667

At low value of the driving force amplitude, the motion is small and periodic.
There is no uncertainty as such and we get a dynamical complexity that is zero. As
the motion starts to become larger, there is an increasing degree of non-periodicity
and that results in a small, but finite dynamic complexity. The dynamic complexity
increased by a factor of 2.8 as the system moved from the boundary of non-periodic

behavior (i.e., Y =1.05) to the chaotic region (i.e., ¥ =1.20). This corroborates with

our intuitive notion of complexity of the dynamical process observed [Taylor, 2005]
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and validates the proposed dynamic complexity metric, at least on this simple

dynamical system.

(b) Double pendulum

A planar double pendulum is a mechanical system with two simple
pendulums as shown in Fig. 7.8 below. Here, mi, L1, and 01 represent the mass,
length and the angle from the normal of the inner bob and m, Lz, and 8, stand for
the mass, length, and the angle from the normal of the outer bob. The position of

mass m1 is (x,,y,) and that of mass m; is (x,,y,). With the origin being the pivot

point at the top of the double pendulum, the positions of the two masses are given
as,

x, =L, sin6,

¥, =—L cos6,

x, =L sin@ + L sin0,

y,=—L cos6 — L, cos6,

In this example, we assign the following parameters and use the same for all

simulations,m, =m,=1;and L = L, =1.

Fig. 7.8: Undamped, double pendulum example [Roja, 2009].
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The equation of motion of a double pendulum in phase-space is given as:

M(t,y)y=f(t,y) (7.20)
where,
B 0 0 0 ]
M(t.y)= 0 (m +m))L, 0 mL,cos(y,—y,)
0 0 | 0
0 mLcos(y,~y,) 0 m,L,
)
—(m,+m,)gsin(y,)+m,L,y; sin(y, - y,)
f(t,y)=
Y4
—m,gsin(y,)—m L y;sin(y,— y,)

This dynamical system is capable of exhibiting chaotic behavior under
certain input conditions. The behavior of this double pendulum varies from non-
chaotic motion at low energies, to chaotic at intermediate energies, and back to non-
chaotic motion at high energies [Roja 2009]. Simulations show that the behavior of a
double pendulum is regular at low energies, chaotic at intermediate energies, and

back to regular at high energies. In figure 7.9 below, we plot the phase-space of the

second pendulum mass, m, corresponding to a quasiperiodic motion (i.e. nearly

periodic) and chaotic motion respectively. This can be achieved by varying the

initial condition. The quasiperiodic solution corresponds to y =[7,0.5,0,0.5] and the
chaotic solution corresponds to y=[x,0.5,7,0]. We use the quasiperiodic motion as

a representative non-chaotic solution.
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Fig. 7.9: Velocity profile of the second pendula mass m; for (a) non-chaotic and (b) chaotic
regimes respectively. They correponds to initial conditions y =[7,0.5,0,0.5] and

y=[r,0.5,7,0] respectively.

The variation in dynamic complexity for this double pendulum as it moves from

non-chaotic to chaotic regime is shown in the table below:

Table 7.2: Dynamic Complexity of a double pendulum

Regime Dynamic Complexity
Non-chaotic 3.2
Chaotic 10.4

The dynamic complexity increased by a factor of 3.25 as the system moves

from a non-chaotic to chaotic regime.

(c) Variations of Double pendulum on cart type systems

Now we consider variants of “double pendulum on cart” type systems with
increasingly complex dynamics. The first one is a simple double pendulum on cart as
shown in Fig. 7.10. The pendulums are considered as a point mass and we neglect
the inertial properties. Physically, the angles subtended by the pendulums (01,62)
are not coupled and can move independently. The mass of the cart is large as

compared to the masses of the pendulum. In subsequent simulations of the double

pendulum system shown in fig. 7.10, we use the following parameters: m = 20;

m=m,=1 and ZI:ZZ:I.
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(0]

Fig. 7.10: Double pendulum on a cart

The equation of motion in phase-space can be written in the form:

M(t,y)y = f(ty) (7.21)

where,
1 0 0 0 0
0 (my+m+m) 0 —-mlcos(y,) 0
M(t.y) = 0 0 1 0 0
E 0 —mlcos(y) 0 om0
0 0 0 0 1
0 —mzlzcos(ys) 0 0 0
Y
fc - mlllyj sin(yS) - mzlzyz sin(ys)
Y
fy)= !
—m, gl1 sin( y3)
Vs
—m,gl, sin( yS)

y=[u,1,6,,6,,0,,0,]




This dynamical system is also capable of exhibiting chaotic behavior under
some initial conditions. For the assigned set of parameters, we observed

quasiperiodic behavior for the initial condition, y=[0,0,0.2,0,0.28,0]. Simulating the

system, we extract the following binary dependency matrix,

0 01 01 1

0 001 01
100000
non—chaotic 0 1 0 0 0 O
I 000 00O
11000 0 |

The graph energy of this behavioral dependency matrix, £(A4 )=6.16.

non—chaotic

Now let us look at the chaotic regime observed for a different initial
condition. Chaotic regime was observed for the following initial condition,

y=[0,0,0.57,0,7,0.1] and subsequent simulation led to the following binary

dependency matrix if the system is operating under chaotic regime,

chaotic ~

—_ == O O
—_——= = O O O
—_— e = O D =
—_—O O = = =
S O O = = =
S O === =

The graph energy of this behavioral dependency matrix, £(4, .)=8.82. Notice

chaotic
that there are additional behavioral dependencies that have shown up. This is an
interesting observation and implies that there is enough evidence of additional
interdependency between system responses statistically in this operating region.
Similar behavior has been reported elsewhere in the literature [Gassmann, 1997].

The result for the double pendulum on cart is summarized in table 7.3 below:

Table 7.3: Dynamic Complexity of a double pendulum on cart

Regime Dynamic Complexity

Non-chaotic 14.37
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Chaotic 55.35

We observe a significant increase in dynamic complexity (by a factor of 3.85)
as the system turned chaotic, as one would expect. Notice that, the increase due to
topological differences in the response dependency network is only about 43%. This
means that the significant changes in dynamic complexity stems from increasing
uncertainty in the dynamics of the system as one would expect as move into a
chaotic regime.

The second variant is an inverted double pendulum on a cart. In this case, the
pendulums are moeled as rigid body and we no longer neglect the inertial
properties of the pendulums. The angles subtended by the pendulums (01,02) are
coupled in this setup (see Fig. 7.11 below).

This cart-pendulum systems is an example of an underactuated mechanical
system and has been studied extensively for investigating effectiveness of various
control schemes and demonstrating ideas emerging in the area of nonlinear control

[Xin, 2008; Bogdanov, 2004].

Fig. 7.11: Inverted Double pendulum on a cart [Bogdanov, 2004]

The equation of motion in phase-space can be written in the form:

M(t,y)y= f(t.y) (7.22)

where,
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1 0 0 0 0 0 ]
0 o, 0 ﬁcos(y3 ) 0 &COS()’S)
g 8
0 0 1 0 0 0
M@y)=| ﬁcos(y3) 0 a, 0 oycos(y;—ys)
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Characterization of the chaotic regime followed the procedure as in [Roja,
2009]. We used quasiperiodic regime as a representative non-chaotic region and

look at a weakly chaotic regime (based on the value of the Lyapunov exponent) as
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representative of the chaotic regime for this inverted double pendulum on cart

system. In subsequent simulations of the system shown in fig. 7.11, we use the
following parameters: f=0; m =m,=1and /, =/, =1. Hence, this is not a forced
motion of the inverted double pendulum system. For the assigned set of parameters,
we observed quasiperiodic behavior for the initial condition, y =[0,0,7,0.5,7,0].

Simulating the system, we extract the following binary dependency matrix,

non—chaotic

S = == O O
—_— o = O O O
S = O O O =
_ 0 O O = =
O OO = O =
S O = O = O

The graph energy of this behavioral dependency matrix, £(A4 )=28.29.

non—chaotic

The mildly chaotic regime was observed for the following initial condition,

y=[0,0,0.57,0,7,0.1] and subsequent simulation led to the following binary

dependency matrix if the system is operating under chaotic regime,

chaotic ~

_—_ O = = O
S O = O O
_ 0 = O O
—_—0 O = = O
—_o O O O =
O === O =

The graph energy of this behavioral dependency matrix, £(4, _)=8.37.

chaotic
Notice changes in the dependency structure of the system responses. In this case,
the differences were not as large as in the previous case, but note that the operating
region is only mildly chaotic with a comparatively smaller Lyapunov exponent.
Notice that, the topological difference in the response dependency network is

negligible and is only about 1%.

The result is summarized in table 7.4 below:

Table 7.4: Dynamic Complexity of an inverted double pendulum on cart
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Regime Dynamic Complexity

Non-chaotic 24.04

Chaotic 75.05

We observe a significant increase in dynamic complexity (by a factor of 3) as
the systems turned chaotic. This means that the significant changes in dynamic
complexity stems from increasing uncertainty in the dynamics of the system only as
the difference due to topology of dependency structure of the system responses is
minimal. Compared to the previous example, the extent and impact of uncertainty is
greater in this example.

If we look at different kinds of double pendulum systems in non-chaotic
regime, the dynamic complexity is found to increase as we move from simple double
pendulum to inverted double pendulum on cart (see table 7.5). This matches with

our intuitive understanding of evolution of dynamic complexity.

Table 7.5: Dynamic Complexity of dynamical systems in non-chaotic regime

Dynamical System Dynamic Complexity
Double pendulum 3.2
Double pendulum on cart 14.37
Inverted double pendulum on cart 24.04

Across the different dynamical systems considered, we observe that the
proposed dynamic complexity metric exactly matches with our intuitive view of
dynamic complexity for such systems. We also noticed that, within the same
physical system, the primary source of dynamic complexity here stems from the

interaction uncertainty.

7.4 Case Study: Dynamic Complexity of Aircraft Engines

A jet engine is an air-breathing reaction engine that discharges a fast moving
jet that generates thrust by jet propulsion. In general, most jet engines are internal

combustion engines [Mattingly, 1998]. Jet engine architectures considered here
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includes turbojets, turbofans and geared turbofans. We will now apply the
developed methodology on a set of aircraft engines with different architectures (i.e.,
turbojet, dual spool turbofan and a dual spool geared turbofan) to compute and
compare their dynamical complexities.

Early jet aircraft used turbojet engines (see Fig. 7.12(a)) that were relatively
inefficient for subsonic flight and noisy. Turbojets consist of an air inlet, an air
compressor, a combustion chamber, a gas turbine that drives the air compressor
and a nozzle. The air is compressed into the chamber, heated and expanded by the
fuel combustion and then allowed to expand out through the turbine into the nozzle
where it is accelerated to high speed to provide propulsion. Modern subsonic jet
aircraft use high-bypass turbofan engines that offer high speed with fuel efficiency
(see figure 7.12b). Modern high-bypass turbofans evolved from the two-spool axial-
flow turbojet engine, essentially by increasing the relative size of the low-pressure
(LP) compressor to the point where most of the air exiting the unit actually
bypasses the core (or gas-generator) stream passing through the main combustor.
Since most of the airflow through a high-bypass turbofan is low-velocity bypass
flow, even when combined with the much higher velocity engine exhaust, the net
average exhaust velocity is considerably lower compared to a pure turbojet. Jet
engine noise is a function of exhaust velocity and therefore turbofan engines are

significantly quieter than a turbojet of the same thrust.
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Fig. 7.12: (a) Turbojet, and (b) Dual-spool turbofan engine schematics.
The geared turbofan (GTF) engine concept has existed in smaller class turbofan

engines for several decades, but many engine manufacturers remained reluctant to
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invest in the technology until recently [Riegler et al. 2007] due to perceived
concerns about engine maintainability and system complexity, often on the part of
aircraft manufacturers or the airlines themselves. The underlying principle of the
GTF engine, shown in Fig. 7.13, is to further increase bypass ratio over current
designs in order to improve propulsive efficiency, decreasing noise and hopefully
weight at the same time. This can be achieved by reducing fan speed and pressure
ratio for high bypass ratio fans, and increasing low-pressure compressor (LPC) and
low-pressure turbine (LPT) speeds, thereby achieving very high component
efficiency. Propulsive efficiency of a turbofan engine is primarily dependent on
bypass nozzle jet velocity for a given flight condition. High propulsive efficiency can
be achieved by low fan pressure ratio which requires a large fan diameter for a
given thrust demand. Therefore, the fan rotational speed has to be reduced to keep
the fan tip speed below the supersonic level. The final outcome of applying these
design criteria is a high bypass ratio turbofan engine with low thrust-specific-fuel-
consumption (TSFC) and lower specific thrust. Along with the low bypass jet
velocity comes low jet noise and because of the correspondingly slow fan speed, the
fan emitted sound pressure level and therefore the noise level is low for the geared

turbofan (GTF) configuration.
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Fig. 7.13: Geared turbofan engine schematic.

The geared turbofan (GTF) engine boasts of significant performance benefits
involving reduced fuel burn, engine noise and emissions. The associated changes in

the engine architecture resulted in increased structural complexity [Sinha and de
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Weck 2012] with increasing criticality of supporting components like lubrication
systems. Here we look the dynamic complexity aspect of these three different jet
engine architectures and expect a larger dynamic complexity for the geared
turbofan configuration. We perform the comparative analysis over an operational
envelope or mission profile for a typical jet aircraft [Roskam, 1999]. The operational
envelope was chosen based on various environmental conditions under which the
aircraft will have to perform. They included operating under extreme environmental
conditions (e.g., operating in a desert climate, takeoff at very high altitude, etc) as
well as inlet temperature and pressure distortions. The mission profile was based
on a typical aircraft and jet engines with different configurations were used to
accomplish them. The profile included takeoff and a 2500 ft/min climb to 35000 ft
as well as a 2500 ft increase in altitude during cruise. The system responses
considered were a combination of overall system responses like TSFC, specific
thrust, engine mass-flow, NOx severity index in addition to internal thermodynamic
responses like pressure/temperature at each of the important stations along the
gas-path. The results are tabulated in table 7.6. All simulations were carried out
using GasTurb™ [Kurzke 1995] and based on the default engine examples provided
therein. To make the simulations consistent, we set the design points of all engines

to a Mach number of 0.82 and altitude of 36250 ft [Roskam 1999].

Table 7.6: Dynamic Complexity of different type of aircraft engines over an operational envelope

Engine Architecture Dynamic Complexity
Turbojet 342.05
Dual-spool Turbofan 857.77
Geared Turbofan 1341.9

We observe that the geared turbofan came out to be the most complex in
terms of dynamic complexity with pure turbojet being the simplest. If one looks
deeper at the numbers, it appears that the dual-spool turbofan is about 2.5 times
more dynamically complex than the pure turbojet and geared turbofan is about 1.6
times more dynamically complex than the low-bypass dual spool turbofans. The

geared turbofan is about 4 times more complex than the pure turbojets. This
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matches well with our intuitive feeling about dynamic complexities of these jet
engine architectures. The geared turbofan boasts of impressive performance gain
over current high-bypass dual spool turbofans [Riegler et al. 2007]. The geared
turbofan engine has significant architectural differences compared to the
conventional dual spool turbofan engine. The table 7.7 below shows the structural

and dynamic complexities of the dual-spool and geared turbofan engines.

Table 7.7: Comparison of structural and dynamic complexities for the 2-spool and geared turbofan

architectures.

2-spool Turbofan Geared Turbofan

Structural Complexity 351 499
Dynamic Complexity 857.77 1341.9

We can see that the structural complexity of the geared turbofan
architectures has increased by 42 % over the older dual-spool architecture. For the
same two architectures, we see a 56 % increase in dynamic complexity of geared
turbofan over the dual-spool architecture. The vastly improved performance gains
in case of the geared turbofan architecture does not come for free [Sinha and de
Weck 2012]. The improved performance has led to higher complexity, both
structural and dynamic. This result also corroborates the assertion that the

structural and dynamic complexities are positively correlated.

Chapter Summary

In this chapter, we formulated a dynamic complexity metric for engineered
systems. Dynamic complexity refers to the complexity of the dynamical behavior of
the system and stems from a combination of complexities due to system behavior
and system structure. The dynamic complexities of individual system responses
were based on their information content measured using Shannon entropy. The
pair-wise interaction complexities between system responses were measured based
on their mutual information. Lower mutual information signifies increased dynamic

complexity of the pair-wise interaction.
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We introduced the notion of matrix energy as a measure of topological
complexity of system behavioral architecture. Topological complexity metric also
shares properties similar to and found to correlate strongly with information-
theoretic complexity metrics for networks.

We demonstrated operationalization and validation of the proposed
methodology using examples of simple dynamical systems and to more complicated
examples of large jet engines with different architectures. Here we concentrate on
the dynamic complexity arising due to interactions among the behavioral responses.
These examples served as test bench for intuitive validation of the proposed
dynamic complexity. We demonstrated that the proposed dynamic complexity
measure matches with our intuitive view of dynamic complexity for these systems.
The geared turbofan architecture is shown to be about 56% more dynamically
complex than the current high-bypass turbofans.

Although the geared turbofan boasts of impressive performance gain over
current high-bypass dual spool turbofans, it does not come for free. The geared
turbofan engine has significant architectural differences compared to the
conventional dual spool turbofan engine and that has higher complexity, both
structural and dynamic.

In canonical dynamical systems, we observed three fold or higher increase in
dynamic complexity as the systems turned chaotic. Within the double pendulum
type systems in non-chaotic regime, the dynamic complexity is found to increase
steadily from simple double pendulum to inverted double pendulum on cart. We can
use the same methodology in a transient scenario where the dynamic complexity
becomes a function of time.

As conjectured from observations, increase in dynamic complexity correlate
with structural complexity quite strongly in case aircraft engines. We can view the
system behavior as a physical process. This physical process runs on top of an
infrastructure that is the underlying system architecture, enabling the process. The
structural complexity is related to this underlying infrastructure while dynamic
complexity is the complexity of the physical process. In general, a more complex

physical process would require a more complex infrastructure to run on and
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therefore one would expect the dynamic complexity (or process complexity) to
strongly correlate with structural complexity or the complexity of the infrastructure.

Going forward, we anticipate the proposed dynamic complexity metric to
help explore important questions related to growth of complexity and its impact on

engineered complex systems.
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Chapter 8

Conclusions and Future Work

Today’s large-scale engineered systems are becoming increasingly complex
due to numerous reasons including increasing demands on performance, and
improved lifecycle properties. As a consequence, large product development
projects are becoming increasingly challenging and are falling behind in terms of
schedule and cost performance. A complex engineered system is difficult to
describe and predict effectively. Keeping complexity under control is paramount as
overly complex systems carry a variety of costs and risks.

Over the last century, increasingly complex machines and infrastructures
have provided new capabilities that were previously unimaginable. While
complexity can be costly, a higher complexity system may very well be worth the
price of this additional complexity only if the performance gains outweigh the
negatives. A natural tradeoff therefore exists between enabling valuable
functionality or performance characteristics and keeping complexity under control.

To enable this tradeoff as part of system architecting, we ought to have a
rigorous and computable measure of complexity. In the context of a complex
engineered system design and development, we can categorize the associated
complexities into (i) internal and (ii) external. There are three main dimensions of
internal complexity that emerged in the context of system design and
development - (1) Structural Complexity; (2) Dynamic Complexity and (3)
Organizational Complexity.

In general, structural complexity strongly correlates with organizational

complexity [Conway 1968; MacCormack et. al, 2011] and dynamic complexity. In
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this thesis, the focus was on structural complexity quantification with a preliminary
development of dynamic complexity metric.

Structural complexity is characteristic of system architecture and is
dependent on the physical design of the system. Structural complexity relates to the
notion of the architecture of a system, which is a skeleton that connects the
components of the system and represents complexity induced by the form.

Dynamic complexity refers to the behavioral or functional complexity of the
system. A system is deemed dynamically complex if its external behavior/dynamics
is difficult to describe and predict effectively. We can view the system behavior as a
physical process that runs over an underlying infrastructure. This infrastructure is
nothing but the system architecture.

While structural complexity captures the complexity of the underlying
infrastructure, the dynamic complexity captures its behavioral or process
complexity. The system behavior (or the physical process) is bounded by the
underlying system architecture (or the underlying infrastructure) and therefore,
dynamic complexity possesses a strong positive correlation with structural
complexity.

We have not explicitly dealt the organizational complexity part, but using the
network representation, we can at least estimate its topological complexity directly.
Please note that external sources of complexity like those related to the
stakeholders, funding for the development effort, are not considered in this work.

The contributions of this thesis are discussed in the following section.

8.1 Thesis Contributions

In this thesis, we have formulated a rigorous, quantitative structural
complexity metric. In the process, a novel topological complexity metric capturing
the interaction structure amongst system components has been proposed and
shown to satisfy strict qualification criteria (i.e., Weyuker’s criteria). This
established a strong notion of construct validity. This thesis provides a

methodological framework for structural complexity calculation, including data-
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driven estimation of component and interface complexities, such that this metric is
tractable throughout the system development endeavor. The topological complexity
metric helped characterization of different architectural regimes. This helps open up
the trade-space for system architecture choices involving combination of complex
topology and simpler components vis-a-vis simpler topology with complex
components.

An empirical validation of the proposed metric using simple experiments
showed that the system development effort increased super-linearly with increase
in structural complexity. It is possible to have sub-linear development cost vs.
structural complexity relationship in theory if we have b<1, but is very unlikely to
have such a relationship in practice. Such a scenario indicates that the system
development entity’s cognitive capability outstrips the enhanced complexity of the
system. The exponent b reflects the perceived complexity or complicatedness. It is
an observer dependent property unlike structural complexity, which is a system
characteristic. Using the cognitive demand ratio s, it was observed that indeed the
cognitive demand at lower complexity regime is much smaller. This indicated that at
the lower regime of structural complexity, it might not be a prime driver of
developmental cost/effort. It is possible to influence complicatedness by external
means like advanced tools that aids cognitive capability and by introducing better
complexity management techniques. This is where complexity meets cognitive
science and systematic data collection on engineered system development in future
will aid human cognitive model building exercise.

Structural complexity estimation was applied to multiple real-world
engineered systems ranging from simple power screwdrivers to aircraft engines. It
was observed that most engineered systems considered here lies in a transitional
topological complexity regime with 1<C3<2. They all lie to the left of corresponding
P points. The impact of system decomposition level on the topological complexity
metric was investigated using a coarser (with 50 components) and finer (with 91
components) of the same digital printing system. The results showed near
invariance (within numerical tolerance) of the topological complexity metric to

system decomposition level for this example. On incorporating uncertainty in
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component and interface complexity estimation, a hint of right-skewedness in
structural complexity distribution was observed. This hints at
existence of external uncertainty, but with small probability of occurrence. This is
typical of engineered complex system development efforts and well supported by
empirical data [Garvey, 2000].

The notion of complexity budget was introduced in a vein similar to more
conventional notions of mass and power budgets for engineered systems. This
brings together the trade space comprising of complexity, performance and
development cost/effort. This work also contributes in the complexity - modularity
debate by showing they are not necessarily negatively related and increased
modularity can result in an increase of structural complexity and opens up the
complexity-modularity trade-space.

This thesis also brings up the notion of complexity gap that appears when we
attempt to represent a system at higher or coarse level of decomposition. This is
similar to the established notion of information gap/loss in information theory when
certain details are masked in order to abstract or simplify the system.

The notion of complexity budget is important as a practitioner’s view as this
is a methodical way to link complexity with observable quantities like performance
and development cost/effort.

Finally a corresponding dynamic complexity metric is proposed for complex
engineered systems that adapts the same functional form as the structural
complexity metric with component and interface complexities replaced by the
degree of uncertainty in specifying/estimating individual system responses and
their pair-wise interactions respectively. Effect of system behavioral structure is
captured by estimating the graph energy of the binary adjacency matrix in the
system behavioral space with each system response as a node and their possible
interaction as an edge. Application of the dynamic complexity metric to aircraft
engines shows strong positive correlation between structural and dynamic

complexities.
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8.2 Challenges and Limitations

This thesis is an attempt at formalizing a rigorous and repeatable structural
complexity quantification framework. There are still some challenges and associated
limitations before this framework can be instituted with adequate fidelity in real-
world, large engineered system development programs.

Since complexity cannot be observed physically using measuring devices
unlike mass, power etc, we verified and validated the proposed structural
complexity metric using construct validity based mathematical verification strategy
and empirical validation respectively. We leveraged Weyuker’s criteria for
mathematical verification and used simple experiments and a set of real-world
engineered systems for which data were available/gathered for empirical
validation.

The first and probably the foremost challenge in about availability and
obtaining data for a reasonably wide and heterogeneous spectrum of real-world,
engineered systems for reasonably exhaustive empirical validation of theoretical
predictions. This thesis applied the proposed methodology to a small set of real-
word engineered systems and also augmented the available data with simple
experiments for empirical validation purposes. A sustained effort in systems
archeology and structured data collection will help address part of the current
challenges that exist due to lack of validation data. Collection of historical data on a
given category of engineered systems is required to build a high fidelity structural
complexity vs. development cost model that can be used for quantitative prediction.

This will also address the issue of wider generalizability of the approach
across a larger swath of engineered complex systems. We argue here that the basic
super-linear nature of the relationship between development cost and structural
complexity will hold. The degree of super-linearity (expressed by parameter, b) is
expected to be only higher for increasing complex engineered systems, but with
variation in model parameters {a, b} that depends on additional factors.

Another limitation is the lack of structured data collection and warehousing

of system architectural data along with information at component and interface
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level for improved and quick estimation of structural complexity. For example,
development of PLM systems that maintains detailed system architectural
information and specific data on components and interfaces for extraction at any
point in time will aid in the complexity computation and tracking process troughout
the project/program lifecycle. This will reduce our reliance on expert opinion for
estimation of component and interface complexities. That being said, we must note
that expert opinion remains a very important source of information that should ve
leveraged for complexity estimation of novel components and interfaces, where
enough data may not exist. We can treat expert opinion as out primary belief which
is subsequently updated using available data (similar to a Bayesian updation) in
order to build component complexity models for engineered systems. Please note
that the proposed, bottom-up models for component and interface complexities are
preliminary suggestions and might require augmentation, depending on domain
specific features/requirements.

Similar data collection efforts are also required for operationalization of the
complexity budgeing approach where the historical complexity - performance
mapping for given category of systems can be leveraged to establish effective
complexity budget assignment and tracking during system development efforts,

similar to the traditional mass or power budgeting procedures.

8.3 Future Work

In order to address the challenges and limitations expressed above, we list a

number of avenues for future research.

Expanding the ball and stick experiment - Repeating the ball and stick
experiment with a larger and diverse pool of test subjects and an expanded set of
molecular structures, while attempting to disaggregate the total build time into (i)
physical assembly time; (ii) cognitive processing time; and (iii) rework. This could
be done via posterior video motion analysis, preferably in conjuction with cognitive

scientists, to understand the process of building on a finer level. A larger and diverse
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pool of test subjects could be segmented to understand the effect of human profiles

on complexity management capability.

Continued collection of real-world engineered systems for empirical
validation - This is evident from the preceeding discussion. Such systems
archeology efforts require extensive collaboration with industrial partners and help
develop (i) data-driven methods for estimating component and interface complexity
models; (ii) high fidelity quantitative guidance on development effort, given the
structural complexity. Such data collection efforts could leapfrog the application of
data analytics to engineering system development and might lead to statistically
significant causal models of system developmemt efforts (using frameworks like
Structural Equation Modeling) in future. In addition, it is predicted that the extent of
system integration challenges increase significantly if topological complexity metric,
C3>2. This is an area requiring empirical data to validate this theoretical prediction

for systems where C3>2.

Effect of System Decomposition level on the structural complexity metric -
Investigate the effect of system decomposition level on structural complexity metric
by using representations of the same system at different levels. We have shown that
the topological complexity remains invariant between two different levels of system
decomposition for a digital printing system. It is of important to develop application

specific guideline on the system decomposition level.

Structure-function interactions in networked systems - Exploration of trade-
offs that exists between system performance measures vis-a-vis system lifecycle
properties is of significant academic and practical significance. Does enhanced
reliability come at the expense of performance? Can we enhance both by leveraging
novel architectures? Does this improvement lead to added complexity or even that
can be contained?

Knowledge of such interactions will help establish apriori the level of
essential (or required) structural complexity of a system, given the set of required

functions or the target performance level. It appears that system complexity tends
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to enhance system performance, but the curve tapers down beyond a certain level of
complexity and saturates thereafter. Any guideline on characterizing the level of this
optimal complexity, beyond which performance gains saturate, has enormous
practical implications for system architecting and design.

This is also expected to help exploit novel system structures to conceive
systems that balance lifecycle properties (e.g., flexibility, complexity, reliability, etc)

with system performance.

Impact of human cognition on system complexity - Explore the link between
system complexity and cognitive requirements it imposes on system developers.
The system complexity is an inherent property of the system, while the perceptive
complexity or complicatedness is an observer dependent property and varies across
individuals. It appears that some individuals who can ‘see through’ architectural
patterns can handle complexity growth by managing their response to increased
system complexity. This has a direct organizational implication for resource
allocation strategies, given the knowledge of system complexity. This area requires

collaboration with cognitive scientists to glean out fundamental insights.

Complexity Management - In relation to development of complex engineered
systems, quantification of complexity is not the end goal, but containment of system
development cost, schedule and risks are. While complexity is an intrinsic system
property, its manifestation in terms of system observables like development cost is
dependent on an observer/actor dependent property called complicatedness or
perceptive complexity of the human actors who brings the system into reality. Study
of human or organizational complicatedness function is paramount in devising

efficient ways and means for better complexity management.

Complexity-inclusive system optimization framework - A complexity-inclusive
system design and optimization framework (Fig. 8.1 below) is an important next
step. Architectures are selected from a set of discrete, feasible set of architectures

during the optimization process. Within the generic framework, the optimal
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architectural topology computation involves network optimization problem with
binary (0/1) design variables.

Simulated Annealing (SA) based optimization strategy [de Weck, 2010] with
handling of multiple objectives [Jilla and Miller, 2004] provides an exhaustive
optimization strategy, but is not computationally efficient. Fundamentally, the
optimization framework described above requires three primary ingredients to be
successful as a comprehensive system architecting and design system, and they are:
(i) a rule-based system compositional feasibility engine; (ii) a library of system
components with their compositional logic (i.e., interfaces) described; and (iii) a
higher level performance/feasibility guarantee mechanism by leveraging the correct-
by-construction principles [Pinto et al., 2010], where the performance or feasibility
at lower or more detailed level can be guaranteed by a higher level, more abstracted

analysis.
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Fig. 8.1: A complexity-inclusive, system optimization framework.

This framework is likely to yield methods for network design under physical

constraints, which can be applied in general to any networked system.

Agent-based System Architecting and Development - In system architecting, can
we develop agent based modeling for developing complex engineered systems

where system components serve as agent? The agents are embedded with
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individual behavioral rules and interfaces between agents are defined by interfacing
rules. It appears that this could become achievable in future with application of
category theory [Giesa et al, 2012] that provides the mathematical foundation.
Architecting of networked complex systems in engineering can learn from similar
applications in the area of biological systems, where system optimization played a

critical role in architecting the system [Machado et al,, 2011].

Extension to System-of-Systems - The system-of-systems can be represented as
network of networks and structural complexity of such integrated systems can be
computed using the same mathematical structure. The specific topic of importance
is the techniques for estimating inter-system interfaces and bridge components that
span connections across individual systems. What are the factors that drive the

complexities of bridge components and the associated inter-system links?
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Appendix

A:  Origin of the functional form of Structural Complexity Metric

The earliest origin of graph energy can be traced back to the Huckel’s
molecular orbital theory (HMO theory) in 1940’s, where it formed a part of the
approximate solution of Schrodinger equation for a class of conjugate hydrocarbons.
The graph energy relates to the energy of the Hamiltonian system representing the
organic molecule [Li et al, 2012].

The time-independent Schrodinger equation is a second-order partial

differential equation of the form:

Hy =gy (4.1)
where y is the wave function of the system considered, H is the Hamiltonian

operator of the system considered, and ¢ is the energy of the system considered [Li
et al., 2012]. When applied to a particular molecule, the Schrodinger equation
enables one to establish their energies and also describe the behavior of the
electrons. For this, one needs to solve eq. A.1, which is an eigen-system problem of

the Hamiltonian operator. To have a feasible solution, one has to express v as a

linear combination of a finite number of basis functions. Then in Eq. A.1 the
Hamiltonian becomes a matrix, which is termed as the system Hamiltonian matrix.
In fig. A.1 below, the chemical formula of biphenylene—a typical conjugated
hydrocarbon is shown. It contains n = 12 carbon atoms over which the n = 12 r-

electrons form waves.
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Figure A.1: Biphenylene is a typical conjugated hydrocarbon. Its carbon-atom skeleton is
represented by the molecular graph G. The carbon atoms in the chemical formula H and the vertices

of the graph G are labeled by 1, 2, ..., 12.

In the HMO model, the wave functions of a conjugated hydrocarbon with n
carbon atoms are expanded in an n-dimensional space of orthogonal basis functions,
whereas the Hamiltonian matrix is a square matrix of order n, defined as:

o ifi=j
[H];; = ¢ B if the atoms i and j are chemically bonded

0  if there is no chemical bond between the atoms i and j.

Assume that the parameters o and 8 are assumed to be constants, equal for

all chemical atoms and chemical bonds respectively within this molecule. The

system Hamiltonian matrix of biphenylene, based on HMO, can be written as:

1000000000007 T0100010000007]
010000000000 10100000000 1
001000000000 010100000010
000100000000 001010000000
000010000000 000101000000
H—q|000001000000] 1100010000000
000000100000 000000010001
000000010000 000000101000
000000001000 000000010100
000000000100 000000001010
000000000010 001000000101
| 000000000001 | | 010000100010 |

In the general case within the HMO model, one needs to solve the eigen

system problem of an approximate Hamiltonian matrix of the form:
H=oal +BAG) (4.2
where o and f are certain constants, I, is the identity matrix of order n, and A(G) is

the adjacency matrix of the graph G on n vertices corresponding to the carbon-atom

skeleton of the underlying molecule.
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From eq. A.2, the absolute energy levels €, of the 7 electrons are related to

the singular values o, of the graph G (determined by the singular values of the

binary adjacency matrix, A) by the simple relation:

le|=a+po, (4.3

Using the HMO approximation, the form of total energy of all & electrons can be

expressed as:
€ = ihi|gi| (4.4)
i=1

where h; acts as weights associated to each energy level and is constrained by the

following relation amongst the weights:
h+h+..+h =n (A.5)
since the number of 7 electrons in the molecules is n. Using Eq. A.5 and Eq. A.3 in

Eq. A.4, we can write the total 7 electron energy content as:
e, =Y hle|=na+BY ho, (4.6
i=1 i=1

Using Cauchy-Schwarz inequality, we can write,

y ho, S(ihi](ioij (A.7)

Using inequality A.7 in A.6, we can write,

8”:na+ﬂihl_6[Sna+ﬁ(ihij(iaiJ (A.8)

i=1 i=1
H_/
n E(A)

where the sum of singular values of the binary adjacency matrix, E(A):ZGi is
i=1

defined as the graph energy or the matrix energy or the nuclear norm.

Using A.5 in A.8, we can write,

£ Sna+n2ﬁ(MJ (A.9)
n
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Now let us look at the RHS of inequality A.9 carefully. We can think of the
first term, no as the sum of self-energy associated to each atom. Notice that the
number of entries or the non-zero entries in the atomic interaction part of the
Hamiltonian matrix scales as n? where n is the number carbon atoms in the
molecule. This is the upper bound of the number of possible interactions.

Hence the »n°f term can be thought of as the upper bound of the sum of
interaction energy, where 3 is a representative interaction strength between atoms.
The actual sum of interaction energy can be expressed as (#interactions)*(strength
of interaction) and this quantity is bounded by »°B. The remaining part of
expression A.9 is related to the arrangement of the interactions, that is, the topology
of interactions as manifested by the adjacency matrix. This term differentiates

between connectivity patterns while other parts of expression A.9 remain identical,

as shown below.

E(A4) < E(4>)

Figure A.2: Two architectures having the same number of nodes and connections but are

differentiated based on their internal structure with E(4;) = 4.9 and E(4z) = 6.83.

We can therefore introduce a notion of configuration energy, = expressed as,
E=nd+ mB(Mj (4.10)
n

The above configuration energy expresses the innate ability of the interacting
system to respond to the environment and a higher value indicates increasing
difficulty to manage the system.

Any engineering system can be represented as networks where its

components represent the nodes and pair-wise connections between components
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represents the edges or interactions. The system architecture can be thought of as a
connected network of system components.

The notional configuration energy described above can be thought of as the
complexity associated to the system structure. The system behavior is not
considered explicitly here but how the system components are connected amongst
themselves. We term this quantity as the Structural Complexity of the system where

o's stand for component complexity while 3's stand for interface complexity.

Assuming & to be the average component complexity and [§ to be the

average interface complexity, we can express the structural complexity, C as,
C—nOH—mﬁ(E(A)] (A.11)
n

where m is the number of pair-wise interfaces in the system. The generic form of the

Structural Complexity matric is written as,

C=C+CC,

_Za +[ZZ[3UJ(E(A)] (4.12)

i=l j=l
We can further express A.12 as,

C= Za +[22ﬁ ij(A) (4.13)

=l j=1

1 :
where we have used y=— as the scaling factor. There are several other
n

justifications for choosing this scaling factor and are discussed next.

B: Linking binary adjacency matrix with weighted adjacency

matrix

The Structural Complexity metric, defined by expression A.12, effectively
decouples the complexities originating from pair-wise interfaces (Cz) and those due
only to the specific topological arrangement (i.e., existence/non-existence of

connection) amongst system components (Cz). The local characteristics of particular
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pair-wise interfaces are encoded within the C; term while the topological
implications of the underlying connectivity structure amongst components, a global
characteristic, is captured in term Cs.

An interesting aspect to investigate is the direct use of the sum of singular
values of the weighted adjacency matrix, instead of the binary adjacency matrix and
interface complexities in a decoupled form. Using the weighted adjacency matrix
removes the decoupled feature in expression A.12 and brings in a combined metric
instead of C2 and Csz. In what follows, we will show the relationship between
expression A.12 and one using the weighted adjacency matrix and analytically
demonstrates that the decoupled version is a conservative estimate over the

coupled version using the weighted adjacency matrix.

Let us define two square matrices 4, Be R" that are non-negative (i.e., [aj]

and [bij] = 0). They define the binary and weighted adjacency matrices respectively.

We can define these matrices as follows,

i

3 {1 iff i and j are connected

0 otherwise

(B.1)

b.:ro’ﬁavzl
ij

0 otherwise

From the above definition we can see that the weighted adjacency matrix, B
can also be the Hadamard product of matrices A and B. This is nothing but the
element-wise multiplication of two matrices of same size, which is also known as the

Schur product [Horn and Johnson, 1994]. We represent the Hadamard product as

AeB=[a,b, ] Vi, j. From B.1, we can write,

B=AoB (B.2)
Using the submultiplicative property of matrix norms of Hadamard products

[Horn and Johnson, 1994; Bernstein, 2009], we can write,
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iai(AoB)SGI(B)iai(A) (B.3)

where 0,(.) represents the it singular value witho (.) being the largest singular

n

value. Using the definition of nuclear norm, E(.)= ZGi(.), the above inequality can
i=1

be written as,

E(AoB)<0,(B)E(A)

B E(A°B)
=> F(A) = 70'1(8) (B.4)
Using B.2 in B.4, we observe,
E(B)
E(A4)= 70_1(3) (B.5)

Now, by definition, the sum of interface complexities is,
C,=2>b=lIBl,  (B6)
i=1 j=1
where || B||, is the Holder norm [Bernstein, 2009], defined as the sum of the

absolute values of entries of the matrix. Hence, we have,

B
c.c,=|B|, (Eff)j zuf (Ué)jE(B) 3.

Let us define a quantity, K as,

_ Bl
=— (B.8)
no (B)
Now, the weighted adjacency matrix B is a non-negative matrix since all its
elements are positive or zero. Therefore, by the Perron Frobenius theorem [Van
Mieghem 2011; Bernstein 2009], we have the following inequality involving the

largest singular value for any vector y,

T

o (B)22 B gy

T
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Equality is satisfied if y is the eigenvector corresponding to the largest eigenvalue of
B matrix. Since it is valid for any vector, we can assume y to be the vector of ones,

i.e, y=u=1.From B.9, we derive,

"Bu ||B
o)z 2 LB
uu n
B
> 1B o1 g
nGl(B)

Combining B.7 and B.10, we have,

||B||1(E(,f))zr<E<B) B.11

where kK <1. Observe from inequality B.10 that ¥k — 1 as the structure becomes
more distributed, but depends on the magnitude of the entries in B matrix. This
dependence can be shown by analyzing the degrees of the B matrix. We can express
K in terms of the weighted degrees using a variant of Peron Frobenius theorem. The
largest singular value of matric B? is the square of the largest singular value of
matrix B. Since B? is also a non-negative matrix, we can use Perron Frobenius

theorem that yields,

T p2
u Bu

[0,B)] 27 (B.12)
u u

where u is the vector of all ones. Now, u’u=n and now we have to express the

numerator on the RHS in B.12.
u'Bu=u"BBu=(B"u)" (Bu) (B.13)
Since u=1_, we have Bu= d, where d,, is a vector of row-sums of matrix B. Also

B'u= d, where d, is a vector of column-sums of matrix B. Hence, we can express
B.13 as,
u' B*u=(B"u)" (Bu)

T
in~ out

= 2 din K dout,k (B ] 4)
k=1
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where d  stands for the weighted out degree of node k. From elementary

statistics, we have,

z(dm ko dm )( out k out)

n

=3y, ~(3,)(@,)

=

cov(d ,d )=

in® " out

- idm,kdom’k = n[(cim )(d,,,)+ COV(dm,dom)J

7 COV( in’ out)
- = = B
where d =d, =d = u Combining B.14 and B.15 into B.12, we get,
n
uTBzu 72 COV(dm’ aut)
T = d 1 32
uu d
2
B covdd, ,d
N[EI) HREZONR,
n (I B, /ny

Applying B.16 in B.12, we get,

cov(d.
o (B)>(|| I J\/1+p where,p—M
(11, /n)

18l _ 1
nO'l(B) \/1+p

Using definition B.8, we have,

(B.17)

1
K< '—1+p

The quantity, p is therefore related to the degree of association between the

(B.18)

row-sum and column-sum vectors of weighted connectivity matrix B. A positive
covariance leads to a positive value of p, which leads to a reduced value of K. As

p—0, we have Kk —» 1 as the covariance between the row-sum and column-sum
vectors B matrix vanishes. Please note that the value of p will be negative is there

exist a high degree of dissociation between d, and d_,. In such a scenario, we could
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have k > 1. In case of symmetric adjacency matrix, we have B’ = B and that implies
VAR(d)

d, =d  =d and we obtain, p= P
(181}, /n)

m O

. Note that p is a non-negative quantity

by definition. The value of p depends on the degree of diversity in the weighted

degree distribution with even distribution of weighted degrees leading to x — 1.

From inequalities above, we can conclude that the product C,C, and E(B)

are of same order. Simulation studies indicate that the LHS in B.11 is greater than

E(B), but depends on the weights in the adjacency matrix, i.e., the complexities of

pair-wise interfaces. Hence, we conclude that the adopted decoupled version of
structural complexity metric and one using the weighted adjacency matrix are of the
same order and that the decoupled version is a conservative estimate over the

weighted adjacency matrix version. The relation B.11 shows another justification for

1
using the scaling factor of ¥ =—. Use of this scaling factor also aids classification of
n

network structures into different regimes (i.e., hyper or hypo energetic regimes that
maps to distributed and hierarchical topological forms).

The adopted decoupled version of the structural complexity metric also helps
distinguish sources of structural complexity originating from topological aspects
vis-a-vis those originating from individual pair-wise interfaces and component
complexities. The component complexities, o is attached to individual
compositional elements of the system and therefore, local to that particular element

alone. The second term involves complexities due to pair-wise interfaces, 8 while

the third term reflects the effects of the underlying connectivity structure. This term
is defined as topological complexity and signifies the challenges of system
integration. Higher topological complexity will likely lengthen system integration

efforts significantly and it is a global property that is not visible locally.

C:  Analogies to simple physical systems

The elastic network model has been used as a simple yet powerful tool for

normal mode analysis of biological and other advanced material system synthesis. A
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2D elastic network is represented as a set of random masses connected by random
springs (see fig. C.1). Such representation has been used to relate abstract complex

networks with a physical oscillator model [Estrada et al., 2012].

Fig. C.1: Random elastic network with masses connected by elastic springs. Since all interfaces are

bidirectional, the adjacency matrix is symmetric.

Let us consider every node has mass m and every link as a spring with the
spring constant k connecting two neighboring masses. Also assume that there is no
damping and no external forces are applied to the system. Hence we have a 2D
elastic network, where sites are indexed by i. With each site is associated a random
mass m, and with each link (i, j ) is associated a random spring constant k. The scalar
model is defined by the following harmonic Hamiltonian for the scalar
displacements u;(t). The harmonic Hamiltonian of the elastic network system can be
written as [Monthus and Garel, 2011],

Hlemu.2+12kAu(u.—u.)2 (C.1)
290 20, T
Here the adjacency matrix, A is symmetric since the springs are bidirectional and
hence its singular values equal its absolute eigenvalues.
If we look at the second term in eq. C.1, it is the potential energy due to the

assemblage of elastic springs and is linked to the network adjacency matrix. By

considering the it mass as the anchoring point and setting u, =0, we can write the

potential or the spring energy term as a quadratic form and the magnitude of total

spring energy can be written as,
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E, = :E:|l]}

1 1 1 1
- 5k;|,1iufui| = 5k2|/1i| = Ekzi:ai =KE(4)  (C2)
—_—

E(A)
Hence, from eq. C.2, we observe that the graph energy can be interpreted as

the magnitude of energy content of a connected assemblage of elastic springs.

D: Graph Energy and Proper Orthogonal Decomposition (POD)

Proper orthogonal decomposition (POD) is a procedure for finding the
dominant structures, expressed using proper orthogonal modes (POM), in an
ensemble of spatially or temporally distributed data. It has been applied to estimate
the dimensionality of a system, to build reduced order models, and to the
identification of non-linear systems. As defined and developed in this thesis, the
graph energy is same as the matrix energy, defined as the sum of singular values or
the nuclear norm of the matrix, applied to graphs/networks.

On the other hand, Proper orthogonal decomposition (POD) is a procedure
for extracting a basis for a modal decomposition from an ensemble of signals/data.
It possesses a very appealing property of optimality in posteriori data/signal
reconstruction. Here we will look at similarities between the process of POD and
graph energy and argue that graph energy plays the equivalent role of proper
orthogonal values (POV), which measures the relative energy of the system
contained in the associated POM [Kerschen and Golinval, 2002], and is therefore,
related to posterior topology reconstruction in the context of graphs/networks.

Proper Orthogonal Decomposition procedure is applied on a (mxn)data

matrix, X where m stands for the number of system responses variables (i.e.,

degrees of freedom) and n stands for the number of data samples. Then the POMs
are the eigenvectors of the covariance matrix, C = (1/n)XX" and the corresponding

eigenvalues are the proper orthogonal values (POVs). The POVs measures the
relative energy of the system contained in the associated POM [Kerschen and

Golinval, 2002].
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Let us look into details on how to compute the POMs and POVs. For any real

(mxn) data matrix X, there exists a real factorization, called the Singular Value
Decomposition (SVD):

X=Uzr’" (D.1)
where U is an (m X m)orthonormal matrix, whose columns form the left singular

vectors. £ is an (mxn) matrix with diagonal entries containing the singular values

0,20 .V is an (nXn)orthonormal matrix, whose columns form the right singular

vectors. The left singular vector U is expressed as the eigenvector of the matrix XX’
as shown below:
xx'=Uzyyz'u’
1
=UzU" (D.2)
Hence, the singular values of X are found to be the square roots of the

eigenvalues of XX . The left singular vectors of X is the eigenvector of XX and the

POMs, defined as the eigenvectors of the covariance matrix C=(1/n)XX", are the

left singular vectors of X. The POVs, defined as the eigenvalues of XX, are the
square of the singular values of X. Therefore, O'iZ(X ) represents a measure of energy

associated to the it" mode in the data and has the explicit meaning of vibration
energy associated to the i" mode in structural dynamics problems. The sum of the
POVS,ZG?(X ) can be interpreted as the total energy associated to the system or
i=1
data/signal.
POMs could be used to reconstruct a signal using a minimum number of
modes. The POMs are related to the vibration eigen-modes in the area of structural
dynamics and POD is an alternative way of modal analysis for extracting the mode

shapes of a structure [Kerschen and Golinval, 2002].
If we look at the data matrix X, the matrix XX is a (mX m) square matrix

representing the relationship embedded in the data/signal, where m represents the

system responses or the degrees of freedom of the system.
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This is in essence the exact replica of what the adjacency matrix A is in the
system connectivity domain. While describing the connectivity among the system
components, adjacency matrix describes the relationship among the system
components (i.e., degrees of freedom in system connectivity).

In the same light, the graph energy of the adjacency matrix A (i.e., sum of
singular values or the nuclear norm of the adjacency matrix) can be interpreted as
total energy associated to the systems connection topology. As opposed to the
physical meaning of the singular vectors in case of structural dynamics, we do not
know of any general physical meaning associated to the singular vector of the
adjacency matrix.

One can also look the relation linking the adjacency matrix A and the

unsigned incidence matrix, B: A+ A= BB" where A is the diagonal degree matrix
where each diagonal element is the degree associated to corresponding elements of

the system.
We can express BB" as the adjacency matrix A by setting the diagonal

elements of BB' to zero. In summary, what POD and POV are for data

reconstruction, the graph energy is for reconstruction of the connection topology.

E: Graph Energy and Network Reconstructability

The reconstructability index 6 of a network can be regarded as a spectral
metric of the graph that expresses how many dimensions of the n-dimensional space
are needed to exactly represent or reconstruct the graph [Liu et al. 2010, Van
Mieghem 2011].

A larger reconstructability index reflects a “simpler” graph that only needs a
few dimensions to describe. In other words, the higher the reconstructability index,
the easier it is to reconstruct the graph accurately from reduced information. Please
observe that matrix energy or graph energy express the sum of weights associated
with the building block matrices required to represent or reconstruct the adjacency

matrix A. This naturally leads us to the graph reconstructability viewpoint [Liu et al.
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2010, Van Mieghem 2011] and the ability to easily reconstruct system structure can
be viewed as the dual of topological complexity.

There is a close analytical link between Proper Orthogonal Decomposition
(POD) and graph energy (see appendix D for details). It can be shown that the graph
energy has a parallel in the Proper Orthogonal Values (POV) and the procedure of
network reconstructability is similar in spirit to the POD methodology for data
reconstruction.

In [Liu et al. 2010], the eigenvalue decomposition was used as the basis for
spectral perturbation analysis and was restricted to undirected graphs only whose
adjacency matrix is symmetric. Here, we follow a similar procedure but use singular
value decomposition as the basis and therefore the procedure works for both
undirected and directed graphs (see appendices E and F for detailed analysis). We

can express the adjacency matrix using the singular value decomposition as:

k kT k
—

k

A=UTV" =Y o,uv =D 0,E  (El)
k=1 k=1

The adjacency matrix can, therefore, be considered as a weighted sum of simple

building block matrices Ex of unit matrix energy where the associated weights are

the corresponding singular values. In terms of individual elements ¢, of matrix A,

we can write:

n

n n—0
a,=>0,[E],=>0,lE]+ Y olE]l (E2)
k=1 k=1 k=n—6+1
We define 0 as the reconstructability index. It is the maximum number of
singular values that can be removed from the spectrum of the graph without
affecting our ability to reconstruct it using the retained information. The minimum
number of singular values and associated singular vectors to be retained for exact

reconstruction is (n—8).

The fundamental idea here is to remove smaller singular values from the
spectrum of a graph and check whether the graph can still be exactly reconstructed

by exploiting the zero-one nature of the elements of the adjacency matrix. The
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spectral perturbation here considered consists of consecutively removing more
singular values from the spectrum, starting with the smallest singular value, until
we can no longer exactly reconstruct the adjacency matrix A. Notice that, for exact
reconstruction, we have to exactly replicate each element of the adjacency matrix.
This requirement of exact reconstruction is in contrast to, for example, image
compression, where some image information might be lost.

Now, after removing the smallest 6 singular values, the adjacency matrix

reduces to:

Notice that any individual entry in set of Ex matrices cannot be greater than
one. Now the individual elements of the original adjacency matrix and its reduced

version are related as:

a,=a,+ Y o,(E) (ES

k=n—06+1

The element-wise perturbation in the adjacency matrix is thus:

Elementwise perturbation = ‘aij - Ezl.j‘ = i o, (Ek )U (E.6)

k=n—0+1

Clearly, when 6 =0, we have 121(0) =A. For any other 6 >0, we have ;1(9) # A and

also A(e) is no longer a zero-one binary matrix. The removal of a part of the singular

value spectrum impacts the distribution of entries around 1 and 0 elements of the

adjacency matrix A. Let us take the mid-point of this range, 0.5 as the pivot. We

truncate the elements of matrix A(e) using the Heavyside’s step function, where
.1

xzh(a“——j
v2
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if x>0

h(x)= if x=0 (E.7)

1
1
2
0

if x<0
A graphical illustration of 4(x) is shown in fig. E.1 below.

Heaviside function: h(x)

| h(x)=0 hIEL/2 =1
—><— — ><—

X

I
|
:
0 0.5 1
Fig. E.1: Graphical representation of Heavyside’s function in one variable.

Pivoting around 0.5, the existing values of [Zij are transformed into

h(dy — %j as depicted below:

>l = x=a —l>0 ﬁh(d..—l)zl
2 v 2
~ 1 .1 .1
<— =>x=a—-——<0=hla ——=|=0 (E.8)
ij 2 i 9 i 9
1 1
=— = x=a.——=0=h d.—l -1
2 2 v2) 2

The new transformed matrix is Ay =H [;1(9)—%} with elements given by

1 : . . . .
gy = h(a[j _Ej It is a zero-one matrix, with the possible exception of elements
with value 0.5. One can notice that such elements with exact value 0.5 leads to

. . |
reconstruction error. For exact reconstruction, we should have ag:h(%_g .
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Now, @, can be either 0 or 1 for the adjacency matrix. Therefore, we get the

following conditions for exact reconstruction such that, A=A(9) where

~ 1 ) } 1
o™ H{A”’ _5} with a,,, = h(“if _EJ :

_ 1 n 1
1 then a, >§ :>k_nz_:;+16k(Ek)g < >
a.= .
e, . . EY
0 thena, < 3 = k_§,+16k(Ek)?f > =

Combining these two requirements, we obtain the following element-wise
perturbation for exact reconstruction,

1
<— =
2

> o,(E),

k=n—0+1

~ 1
a,—a, <§ (E.10)

Notice that this condition has to be satisfied for each element of the matrix. Hence,

the problem reduces to maximizing 6 such that the following inequality is satisfied:

n

>, o,(E,),

k=n—-0+1

1
<— E.11
5 (E.11)

In other words, there exist a 8 = 0, such that,
Aq =4 for 06,
Ag %4 for 6> 0,

Therefore, 6 is the maximum number of singular values that can be removed
from the original spectrum of the graph without affecting our ability to reconstruct
it using the retained information. The minimum number of singular values (with

associated singular vectors) to be retained for exact reconstruction is (n—0).

Finding an analytical solution is difficult due to existence of the matrix

<1, we have the following inequality relation,
ij

elements (Ek) Since ‘(Ek )ii
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i Gk(Ek)ij = z": |Gk|(Ek),~j s i o, (E12)

k=n—6+1 k=n—6+1 — k=n—0+1
<1

Combining this inequality with our basic matrix element level bound, we can

write the following bound for exact reconstruction:

( Z ij<% (E.13)

In general, this bound turns out to be very conservative and use of simulation
is the only worthwhile option for computing reconstructability of graphs.

Representative results from simulation studies are shown below (see fig.

‘ - @ - Histogram, p=0.069 )
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Fig. E.2: Probability density function of reconstructability index, f{6) for Erdos-Renyi random
graphs with 73 and 84 nodes respectively with different connection density p. For each p, 5000

samples were used.

The probability density function for the reconstructability index tends to
show left-skewed behavior - there is a finite possibility of a small reconstructability
index value for a random graph with given number of nodes and link density. In
other words, there is always some graph structure that embodies small
reconstructability (also large topological complexity according to P.7 in chapter 3).

We can normalize the reconstructability index by the number of nodes in the

graph and define the reconstructability coefficient, é:g The typical probability
n
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density function for the reconstructability coefficient is a scaled version of that for

the reconstructability index (see fig. E.2) and is shown in fig. E.3 below.
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Fig. E.3: Probability density function of reconstructability coefficient, f(é) for Erdos-Renyi

graphs with 73 and 84 nodes respectively with different connection density p.

Also, notice that the reconstructability coefficient has the most likely value of
around 0.6 or 60% in both cases. This means that for ER random graphs, on the
average, we need to keep about 60% of singular values and associated singular
vectors for exact reconstruction of the graph. Now, using simulation, let us look at
the relationship between topological complexity and graph reconstructability and
possible dualism between the two.

As we observed, the matrix energy or graph energy expresses the sum of
weights associated with the building block matrices required to represent or
reconstruct the adjacency matrix A. This naturally leads us to the graph
reconstructability viewpoint discussed above. We can view the ability to easily
construct system structure as the dual of topological complexity. Simulation studies
indicate such dualism between graph energy and graph reconstructability. Minimum
topological complexity implies maximum reconstructability (see fig. E.4 below). The
behavior of graph reconstructability with increasing link density is essentially the
inverse of the behavior observed earlier for graph energy. To explore this further,
we looked at their respective behavior on Fabrikant model [Fabrikant et al, 2002].

Upon normalizing both on a [0, |1]] scale, this dualism becomes quite prominent.
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8 profile for ER random graphs with 100 nodes
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Fig. E.4: Observed Dualism between topological complexity metric (i.e., matrix energy) and
reconstructabality index: (a) variation of reconstructability with link density for Erdos-Renyi random
graphs of size, n = 100 nodes; and (b) on Fabrikant networks [Fabrikant et al, 2002] with varying o.
The two quantities are normalized in [0,1] (for matrix energy) and [- 1,0] (for reconstructability

index) respectively for visualization.
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Fig. E.5: Variation of reconstructability for (a) random modular graphs with 100 nodes with 5%
inter-module links - reconstructability increases with number of modules; and (b) Random trees

with n = 100 nodes - reconstructability increases with parameter o [Fabrikant et al, 2002].

Similar behavior was also when witnessed when applied to random modular
graphs and random trees (see fig. E.5). Graph reconstructability increases as we
increase the number of modules. When applied to the same setting, the graph
energy reduces as we increase the number of modules. In case of Fabrikant’s model
(i.e, random trees), formation of locally central structures in lieu of global

centralization drives the network reconstructability down while increasing the
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topological complexity. Theoretical development linking graph energy and graph
reconstructability from its deck is still elusive and beyond the scope of this thesis,
but simulation studies indicate a strong dualism. A probabilistic analysis linking the

two and proof of such dualism properties remains an interesting area for future

exploration.
The variation of graph energy and topological complexity metric captures the
changes in connectivity structure for Fabrikant trees with given number of nodes,

starting with star networks, and morphing into tree’s with multiple hubs (closer to

pref. attachment type). This structural transition is accomplished by varying

parameter, o.
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Fig. E.6: Variation of graph energy for Fabrikant trees with 100 nodes and 99 edges with increasing
parameter, o.

If a is less than a particular constant, the resulting network is easily seen to
be a star. If « is larget than a certain constant but grows slower than Vn, where n is
the final number of points, then the resulting graph is almost certainly, obey a

power law type degree distribution with multiple local hubs as shown in fig. E.6.
300



F: Symmetric vis-a-vis asymmetric adjacency matrices - impact
on Structural Complexity

From chapter 3, the Structural Complexity is given by the expression
C=C+CC,

z(gg“j& w1

%f—/ C
C c, 3

where C, stands for the sum of component complexities, C,stands for the sum of

interface complexities, and C, stands for topological complexity and concerns only

the adjacency or connectivity matrix of the system.

From eq. F.1, we observe that the component and interface complexities in
the Structural Complexity metric are not directly impacted by the presence or
absence of symmetry in the binary adjacency matrix (assuming that the interface
complexities for bi-directional interface remains the same as for directed

interfaces). The only term in eq. F.1 that is impacted by the presence of asymmetry

in the adjacency matrix is the topological complexity, C, .

In any engineered systems all of the element-to-element connections are
neither completely undirected (i.e., bi-directional) or completely directed (i.e.,
unidirectional). Hence, the random graph that is representative of real engineered
systems is a mixed Erdos-Renyi (ER) random graph. The mixed ER graph is a
modification to the undirected ER graph in which a fraction of the links is directed.
While studying the impact of directness of links in the adjacency matrix, we have to
analyze for two different situations: (i) the number of links between the undirected
and mixed versions of the network is fixed; (ii) the number of links in the mixed
graph is larger than that of the undirected graph while keeping the number of non-
zero entries in the adjacency matrix remains constant.

In the first scenario, the mixed graph has the same number of links as in the
undirected graph. Now each undirected links gives rise to two interfaces since each

link is bi-directional. Hence the number of non-zero entries in the adjacency matrix
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for purely directed graph is half of the purely undirected graph. The total number of
links = #undirected links + #directed links. Let us define, ratio = (#directed

links)/(total number of links). Table F.1 shows the averaged value of the worst-case

difference, defined as {E(A4)— E(4,,

1X¢

.2)! E(A)}, for different values of the ratio.

Table F.1: The number of non-zero entries in mixed ER graph varies, depending on the value of ratio.
The worst-case difference between purely undirected vis-a-vis purely directed graphs reached as

high as 37.43 %. Worst case difference, averaged over 100 instances.

wpc‘)\::traciie #non-zeros in
Ratio E(A) E(A ixed) difference (Mg Myngir) at:::‘aa(:ti?xcy
(%)
0.1 168.14 155.45 7.54 (20, 180) 380
0.2 168.2 151.57 9.88 (40, 160) 360
0.3 168.27 144.46 14.15 (60, 140) 340
0.4 168.24 141.5 15.89 (80, 120) 320
0.5 168.18 137.18 18.43 (100, 100) 300
0.6 168.09 132.02 21.46 (120, 80) 280
0.7 168.26 125.43 25.45 (140, 60) 260
0.8 168.34 118.58 29.56 (160, 40) 240
0.9 168.15 113.2 32.68 (180, 20) 220
1.0 168.28 105.3 37.43 (200, 0) 200

As the value of ratio increases from 10% to 100%, the average worst-case
difference increases from about 7% to as high as 37%. This is expected as the having
less number of interfaces (i.e.,, number of non-zero entries in the adjacency matrix)
usually results in reduced topological complexity.

In fig. F.1 below, the average graph energy is plotted against the variation in
fraction of undirected edges in the mixed ER graph. The graph energy was plotted
after normalizing with respect to the graph energy of purely undirected ER graph.
Variation in density (with increasing number of links) does not impact this profile.
We observe that, even for mixed graphs with as high as 33% directed links, the

graph energy of is more than 90% of the corresponding pure, undirected ER graph
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with the same number of nodes and links. In most engineered systems, the number
of directed links as a fraction of the total number of links is well within this value. If
the number of directed links is within 20% of the total number of links, the error in
graph energy (by using the graph energy of the pure undirected ER graph) is within
5%.

Number of nodes = 100; Number of edges = 250

Number of nodes = 100; Number of edges = 400
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Fig. F.1: Variation of graph energy (normalized to 1) for mixed ER graphs without link adjustment for
(i) 100 nodes and 250 links; and (ii) 100 nodes with 400 links.

Simulation results show that the same behavior holds other, more esoteric

random graphs with specified degree distribution. Also, graph energy of the

A +A
symmetrized version of the mixed ER graph (i.e, 4, = unitize[w} where
(a“) =1iff (a“) +(a.‘) >0) lies within 4% of the graph energy of the

Y/ symm Y/ mixed It mixed

corresponding undirected ER graph.

Under the second scenario, the number of non-zero entries in the adjacency

matrix, A remains constant. In order to satisfy this constraint, let m,, be the total

number of links in the adjacency matrix of the mixed ER graph, Amixed. Hence the

number of directed links is rati0><meq and the number of undirected links is

(I-ratio)xm,, . Let m be the number of links in pure ER graph (i.e., undirected). The

total number of links in the mixed adjacency matrix can be computed as show

below,

303



nz._,= nZdA +nz
w

ER

undir

2m=ratioxm, + 2meq(1 — ratio)

eq

=3

2 —ratio

(F.2)

Following the same procedure as earlier, table F.2 shows the averaged value of the

worst-case difference, defined as {E(A4)— E(A4

mixe

ratio.

)/ E(A)}, for different values of the

Table F.2: Worst case difference, averaged over 100 instances. The number of non-zero entries in the

adjacency matrix is set to 200 for all cases. The worst-case difference is nearly constant at 4% for all

case, indicating invariance to the value of ratio under this scenario.

Average .
Equivalent #non-zeros
. worst case . .
Ratio E(A) E(A,ixed) difference (Mg, Mypgir) number of | in adjacency
(%) links (m,,,) matrix
0.1 168.14 161.1 4.187 (22, 189) 211 400
0.2 168.2 161 4.28 (44, 178) 222 400
0.3 168.27 160.88 4.39 (70, 165) 235 400
0.4 168.24 160.85 4.39 (100, 150) 250 400
0.5 168.18 160.78 4.40 (134, 133) 267 400
0.6 168.09 160.73 4.38 (172, 114) 286 400
0.7 168.26 160.68 4.50 (214, 93) 311 400
0.8 168.34 160.74 4.51 (266, 67) 333 400
0.9 168.15 160.61 4.484 (326, 37) 363 400
1.0 168.28 160.92 4.38 (400, 0) 400 400

As the value of ratio increases from 10% to 100%, the average worst-case

difference remains fairly constant at around 4%. This is expected as we always have

the same number of interfaces (i.e., number of non-zero entries in the adjacency

matrix) resulting in nearly the same level of topological complexity.
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G:  Graph Energy bounds for general asymmetric adjacency

matrices

We have shown important analytical bounds for graph energy in chapter 3
and assumed undirected graph, resulting in symmetric adjacency matrix. In case of
symmetric matrix, the singular values were equal to the absolute eigen values and
the singular vectors were directly related to signed eigen vectors.

This helped us leverage some well-established mathematical properties
related to the eigenvalues and establish bounds analytically. Here we will look at the
extension of such bounds for mixed graphs where the links are a mix of directed and
undirected ones.

Here, we focus on the bounds for graph energy for generalized asymmetric

adjacency matrices and show that, v2sm < E <sm, where m is the number of
edges/links in the simple graph.
In case of a mixed graph with both, directed and undirected links, the sum of

all the elements of the adjacency matrix is,

n n

141, =X,

i=1 j=1

a..
y

=sm (G.1)

where || 4| is the Holder norm [Bernstein, 2009], defined as the sum of the
absolute values of entries of the matrix and s €[1,2]. Here s=1 for purely directed

ER graph (i.e, all links are unidirectional) and s =2 for purely undirected ER graph

(i.e., all links are bidirectional). Using the Frobenius norm, A| ‘F [Bernstein, 2009],

we have:
- 2 _ 2 _
HAHF_ZIGi —z{z;aij—sm (G.2)
i= =l j=
Now, we can express the squares of the sum of the singular values as,

2
S0 ]-Soi2 3 oo,
i=1 i=1

1<i<j<n

=sm+2 Y 00, (G3)

I<i< j<n
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In eq. G.3, for the second term on the right hand side, we are not aware of any
closed form analytical bounds. We do have a lower bound of 2m if A is symmetric
(i.e., undirected graphs). Using extensive simulation (see fig. G.1 and G.2), we write

the following lower bound,

2 ) 00, 2sm (G.4)

I<i< j<n

Fig. G.1 and G.2 shows existence of the above bound for mixed ER graphs and
such bounds were found for other types of random graph (e.g., with specified degree
distributions). Combing the bound in G.4 with relation G.3, we obtain the following
lower bound for the graph energy of general mixed graphs with asymmetric

adjacency matrices,

2
(ZO}] >2sm
i=1
s E>2AN2sm (G.5)

Now, let us turn our attention to the upper bound. Using the Cauchy-Schwarz

inequality for arbitrary real-valued numbers a;, b; with i=1,2, ... ,N, we have

(S o35

If we choose N =n, a; =0, and b; = 1, we get,

E* <smn (G.6)
In order to have at least a connected graph, the following inequality should hold,
sm=n (G.7)

Utilizing G.7 in G.6, we can write,
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Combing relations G.5 and G.8, we arrive at the following bound for the graph

energy of general, asymmetric adjacency matrices with both, directed and

undirected edges,

N2sm < E<sm

(G.9)

Please note that for undirected graph, we have s=2 and we get back the

established bounds, 2\/;S E <2m. For purely directed graphs, we have s=1 and

the bounds are given by, V2m < E <m.
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Fig. G.1: Simulation results supporting (i) the bound in F.4 for mixed ER graphs with n = 100 nodes

and m = 200 links; (ii) the lower and (iii) the upper bound of graph energy, E(A) for asymmetric

adjacency matrices, modeling mixed ER graphs.
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Fig. G.2: Simulation results supporting (i) the bound in F.4 for mixed ER graphs with n = 100 nodes, s
= 1.5 with varying number of links, m; (ii) the lower and (iii) the upper bound of graph energy, E(A)

for asymmetric adjacency matrices with n = 100 nodes, s = 1.5 with varying number of links, m.

In general this bound was not found to be tight for any kind of generic random
graphs.
Now, using the Cauchy-Schwarz inequality again with N = n-1, ai =0, and b;
= 1, we obtain the following for mixed graphs with asymmetric adjacency matrices,
(E—O'l)2 <(n-— 1)(Sm—(712)
“E<G,+\(n-1)sm-0%)  (G.10)

N sm
Using the earlier relations: Zazi =sm and o, > —, the above relationship implies,
n

i=1
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Es@+\/(n—1)[sm—[%j] (G.11)
n n

The limiting form of the above relation can be expressed in the following

form for fixed n, (e.g., given matrix size):

f(m)=sm/ n++[(n=Dism—(sm/ny]  (G.12)
Let us maximize the function f(m) above where n is fixed. Applying the

Kuhn-Tucker optimality criteria [Pishkunov, 1976], we should have:

L/
dm

8. (n—1)(n" = 2sm) _0
n 2\/(n— Dsm(n® —sm)

On algebraic simplification, we get,
(n=1)(n" = 2sm)* = 4sm(n* — sm)
= Q2sm-n")Y =n

n2£1+LJ

2 3/2

m=2 T _ Jn (G.13)
2s 2s

Using the above result, we compute the corresponding value limiting graph
energy for the general case of asymmetric adjacency matrices with both, directed

and undirected links,
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n(1+\/;)

2

Therefore, for the maximal limiting value of graph energy in this case, we get:

o, 1 ]
n|l+—
- —( \/; = O(nz) (G.14)
2s

m

= ”(HT‘/;) ~0(n’?) (G.15)

fmax

Hence, using G.11 and G.15, we conclude that,

n(1+\/;)
- ST (G.16)

Therefore, the maximal graph energy is bounded by n*?,

E_<n” (G.17)

max

Hence, the maximal graph energy bound is not depended on the adjacency
matrix being symmetric (i.e., undirected graphs).

The results in this appendix extend the results derived analytically in chapter
3 in the special case of undirected graphs, to general asymmetric adjacency

matrices, representing graphs with both, directed and undirected links.
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H: P point and its role in System Architecture

The P point relates to a certain level of density of a simple graph. The graph
energy regime for graphs with a given number of nodes, can be divided into: (i)
hyperenergetic and (ii) hypoenergetic. The hyperenergetic regime is defined by graph

energy greater than or equal to that of the fully connected graph:

E(A)=2(n-1) (H.1)
There does exist an intermediate or transition regime between these two
where the energy is higher than that of the hypoenergetic regime but is smaller than
the hyperenergetic one [Liet al, 2012].

Hence, in terms of topological complexity metric, the regimes are defined as:

_ E(A) _ 2 2(1 - %j =2 - hyperenergetic
n

C

3

(H2)
<1 - hypoenergetic

The intermediate or transitional energetic regime is the interval: 1<C, <2. The P

point is the minimum level of density of the graph at which the equality in H.1 holds
and beyond this density level, almost all realizations of graphs with the given
number of nodes are hyperenergetic.

Based on extensive simulation studies on ER random graphs with 100
vertices and averaged over 1,000 instances at each network density level, the
variation of the critical density and corresponding critical average degree for
varying the graph size revealed that the critical density reduces with graph size, but
the critical average degree tends to remain nearly constant around 5.7. Similar
behavior was also observed for scale-free random graphs that yield a marginally
higher critical average degree of 6.4. We can say, for practical purposes, that the P
point is characterized by an average degree of 6. The average degree of non-
hyperenergetic networks is less than this critical value of average degree of network

of given number of vertices.
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In chapter 3, it was shown that the P point indicates transition to
hyperenergetic region in terms of graph energy. Interestingly, P point also coincides
the random graph becoming rank-sufficient (i.e., full-rank) on average. We define a

metric termed Rank Sufficiency Factor (RSF) as the normalized matrix rank,

RSF="
n

where r stands for the rank of the adjacency matrix. Fig. H.1 shows the relationship

between the topological complexity, C, and RSF. Notice that, on average, the RSF

saturates as we enter into the hyperenergetic regime with C, = 2.

C3 vs Rank Sufficiency Factor for ER graphs
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Fig. H.1: Variation of topological complexity, Cs3 and Rank Sufficiency Factor (RSF) for ER graphs with
n = 100 nodes and varying density, averaged over 1000 realizations at each density. The adjacency
matrix becomes rank-sufficient (i.e., full-rank) around C3 = 2, and this is defined as the P point. At this

point, the graph energy, E(A) becomes equal to that of the fully connected graph.

The P point shows very interesting features that relates to interesting
characteristics of the graph. It appears that nearness to rank-sufficiency of the
network has important bearing on other network metrics as well. Simulations

indicate approaching saturation in terms of improvement in other network metrics
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like maximum diameter, average path length (see fig. H.2) and other network
communicability indices.

It is interesting to note that the P point seem to indicate a kind of transition
region for network diameter beyond which it settles down to a near constant value
with increasing connection density. A lower diameter indicates that information can
pass between any two nodes with smaller hop distance. A somewhat similar
measure of how quickly information can flow within a network is given by the
mixing time of a network [Chen, 2004; Butler, 2008]. The P point is again in the knee
region of mixing time vs. density plots (see fig. H.2). Hence beyond the critical
density the mixing time remains almost constant but increases exponentially if the
density is reduced. So the P point acts like a transition point for both network

diameter and mixing time.

50

T 4511
20k 40+
3B
- o 30F
g £
= 25}
£
s 4} &
a = 0
=
il |
0t Diameter at P point 1
10} /
0 L f 1 5 P 1 " 7 T i 3
0 10 20 30 40 50 60 70 80 a0 100 0 10 20 30 40 50 60 70 80 90 100
Graph density (%) Graph density (%)

Fig. H.2: Saturation of various network metrics beyond the P point for ER graphs: (a) network
diameter; and (ii) mixing time. The P point appears to classify a knee region, beyond which we do not
gain from enhancement in other network metrics, although topological and structural complexity

keeps increasing.

Another interesting observation was made in an analytical study by [Valente
et al, 2004] regarding the resilience of general random networks against both,
targeted and random attack on nodes. They defined two metrics to measure the

resilience against nodal failures as defined below:

fa: fraction of targeted nodes before the giant component vanishes.

f: fraction of randomly deleted nodes before giant component vanishes.
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and studied the (fa vs. f;) envelope for general random graphs. The envelopes are
shown in fig. G.3 (b) and it appears that the outward growth of the envelope
saturates beyond the average degree, <k> = 6 (see fig. H.3). This again coincides

with P point on the graph density plot.
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Fig. H.3: Characterization of (a) the P point on graph energy vs. graph density plot, and (b) the
network resilience contour (fa vs. f;) for general random graphs [Valente et al., 2004] - beyond the

average degree <k> = 6, the is minimal outward growth of the network resilience envelope.

Graph Energy and Network Probabilistic resilience: Intuitively, a complex
network is robust if it keeps its basic functionality even under failure of some of its
components (e.g., nodes). The study of robustness in networks is important because
a thorough understanding of the behavior of certain classes of networks under
failures and attacks may help to protect important systems that serve the society
[Klau G.W. and Weiskircher R, 2005]. This section (i) describes robustness statistics
that explicitly consider the failure probabilities of system/network components and
are thus more appropriate to describe untargeted component failure, and (ii) link
that robustness statistic to the topological complexity of the system/network. The
probabilistic resilience of graph/network was proposed in [Najjar and Gaudiot,
1990] where the probability of disconnection through random node/vertex failures
was examined for a class of regular networks. They define the disconnection

probability of a network G as:
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P(G,i) = Pr[G disconnected exactly after i"nodal failure}

The concept of disconnection probability enables us to define probabilistic
resilience. Intuitively, a resilient graph/network should sustain a large number of
nodal failures until it becomes disconnected.

Let G be a network with n vertices/nodes. The probabilistic resilience is the
largest number of vertex/nodal failures such that G is still connected with
probability (1 - p):

S
PR(G,p):max{S|[2P(G,i)}$p} (H.3)
i=1
The normalized probabilistic resilience (NPR) relates PR(G,p) to the size of G:

PR(G,p)
n

NPR(G, p) = (H.4)

Hence, normalized probabilistic resilience (NPR) represents the fraction of failed
nodes that the graph can sustain without disconnection. Notice that disconnection
here means that the remaining nodes do not form a connected graph. There is no
concept of largest connected component as a measure of graph resilience. Analyzing
P(G,i) for regular graphs shows that the probabilistic resilience PR(G,p) grows with
the size of G. The normalized probabilistic resilience NPR(G,p) for such graphs,
however, decreases with the size if the degree of the network remains constant. It is
quite difficult to compute the probabilistic resilience for other complicated families
of graphs and P(G,i) can only be estimated. Due to its current analytical
intractability, simulation and probable heuristics are most likely approaches for
empirical evaluations. The probabilistic resilience can be used to describe system
disintegration under random component failure.

Applying the above procedure on a real-world aircraft engine Design
Structure Matrix (DSM) with 73 components [Sinha and de Weck, 2012] (see
chapter 5 for details), the distribution of probabilistic density for p = 0.1 is plotted in

fig. H.4 (a) below and the associated probability of disconnection is shown in fig. H.4

(b).
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Fig. H.4: For a representative gas turbine engine architecture: (a) PDF of probabilistic resilience for p

= 0.1, and (b) probability of disconnection as an integral of PDF.

Let us now turn our attention to effects that topological complexity might
have on probabilistic resilience of the underlying graph/network. We consider
Erdos-Renyi random graphs with 100 nodes and vary its connection density to
generate graphs of varying topological complexity metric, C3 = E(A)/n. Here E(A)
stands for the graph energy of the underlying network and n is the number of nodes
in the graph. Each point on fig. H.5 below signifies the fraction of nodal failures that
can be tolerated by a network at different topological complexity levels. At each link
density levels, the valued of NPR and topological complexities were averaged over
1000 instances of Erdos-Renyi random graphs with 100 nodes. At a given
topological complexity level, NPR is higher if we allow a higher p (i.e., probability of
being disconnected). For a given probability of disconnection (p), the NPR is
negligible at lower topological complexity levels. Beyond a topological complexity
level of around 2, the NPR starts to build up and keeps increasing steadily to a point

(i.e., C3 = 3.5) beyond which the graph almost impossible to disintegrate.
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Variation of NPR with E(A)/N for ER graphs
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Fig. H.5: Relationship between normalized probabilistic resilience (NPR) and topological complexity

C3=E(A)/n, where n is the number of nodes in the graph

Before reaching the topological complexity level of 2 (i.e, E(A)/n < 2), it
takes failure of only 5% of nodes on the average to bring down or disconnect the
graph. For a specified p value and permissible level of resilience, there is a target
level of topological complexity that is essential. It appears that networked systems

require a minimum complexity level to guard against network disintegration. But

does the P point (i.e., C, = E(A)/ n=2) provide adequate insurance against network

disintegration? From extensive simulations, it appears that topological complexity
at or beyond the P point may provide a reasonable level of structural robustness
against disintegration. On a more philosophical note, does the P point notionally
represent the edge of chaos in system architecture parlance, beyond which our usual
reductionist design strategies disintegrate?

These are interesting analytical observations regarding the P point and its
significance in network design. In an empirical study by [Whitney et al, 1999] using
a large and diverse set of engineered products and systems showed that the average
number of connections to any component (i.e., average degree) was about 6 (see fig.
H.4). This is a very interesting empirical finding and backs up the analytical

predictions. It appears that the P point might suggest an important system
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architecting guideline. If the system architecture is breaching this point, it is likely

that it needs to be re-visited.
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Fig. H.4: The average number of marks in engineered products and systems studied were found to be

about 6 [Whitney et al, 1999].

Please note that this is primarily a simulation based finding at this point and

requires more theoretical and empirical work in future.

I: System-of-Systems as network of networks

Most real-world networks are not isolated. In order to function fully, they are
interconnected with other networks, and this influences the dynamic processes
occurring over this network-of-networks. For example, power grids are almost
always coupled with communication networks. Power stations need communication
nodes for control and communication nodes need power stations for electricity.

Let us consider the simpler case of two interconnected systems, represented
as networks A1 and Az with n and m system components respectively. These two
systems are then connected with the bipartite system interconnection matrix, K.

Hence the individual binary system adjacency matrices A: and A; are (nXxn) and
(mxm) respectively. The system interconnection matrix or the Domain Mapping

Matrix (DMM), K is a binary rectangular (nx m) matrix.
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n nodes m nodes

Fig. 1.1: K matrix is a binary (7 X m) rectangular matrix and represents a bipartite network as that

connects two other networks.

The overall system-of-systems adjacency matrix A is a [(n+m)X(n+m)] binary

square matrix written as,

4 K
L4,
0
AZ

K
4
0

A=

+OK
K" 0

-
-  — 7
A B

= A+B

Note that all the constituent sub-matrices (4,,K,4,) are not independent. Given

matrices A; and K, the A; is obtained by unitizing the product K" 4 K . Utilizing the

properties of graph energy (see chapter 3), we can write the following graph energy

bounds for the system-of-systems (SoS):

E(A)< E(A) < E(A)+ E(B)
= E(4)+E(4,) < E(A) S E(4)+ E(4,)+ E(B)

2E(K)

S E(A)+ E(A)< E(A) S E(A)+ E(4)+2E(K)  (L1)

319



The graph energy of the SoS can be written as E(A)=E(A)+A=E(A)+ pE(B)
where p €[0,1]. The actual value and bounds on graph energy of SoS are sketched
below.

Topological Complexity

A

E(A)= E(A)+ pE(B)
EA+EB oo
E(A)frmmmmmmmm g S

J207)) s S T

v

Fig. 1.2: SoS graph energy and its bounds based on the graph energies of the constituent systems and

their bipartite interconnection matrix with p €[0,1].

The inequality (I.1) reiterates that the whole (i.e., SoS) is more complex than just the
sum of individual systems. The upper bound includes the topological complexity of
the bipartite, interconnection network, in addition to the additive complexity due to
the individuals systems. There has not been much academic work on investigating
spectra of interconnected networks, except some recent work [Wang et al.,, 2013]
that explored the relationship between epidemics spreading and the spectral radius
of the interconnected networks. It developed the spectral radius of matrix A in
terms of matrices A and B. We are not aware of any literature that looked at the
graph energy of system of systems connectivity matrix A in terms of matrices of
constituent subsystems and the bipartite domain mapping matrices. We have
explored the evolution of the graph energy of the system of systems by varying the
size of second constituent system A, while keeping the size of the other constituent
A1. We used a known network with n = 73 nodes as Aj, randomly generated the

mapping matrix K by varying m. The other constituent system has a related
connectivity matrix, A, given by unitizing the matrix K'4K. The simulation

results, averaged over 100 realizations of K and A; for different values of m, are
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shown below. If m<<n, then the topological complexity of the SoS is smaller. There is
a discrete jump across n=m, that is, when both the systems have one to one mapping

between their components and the bipartite network interconnection matrix

1
becomes, B = ! . This map to the balanced condition advocated by the

(2nx2n)

Axiomatic Design philosophy [Suh, 2000].
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Fig. 1.3: The variation in SoS graph energy, averaged over 100 realizations for each value of m, with
increasing size of the second individual system. The size of the first system if fixed at n = 73 nodes.
The SoS graph energy is small for m<<n, then increases steadily, but eventually decreases as m — n.
There is a discrete jump in SoS graph energy across n = m line (i.e., the SoS topological complexity

suddenly increases as m > n).

Let us consider the two networks represent (i) the physical architecture of
the system (with n nodes) and (ii) control architecture for that physical system
(with m nodes) and the K represent the association between the system components
and their associated control elements. If m<<n, then the control system could be
largely centralized while still accomplishing all the system requirements. The
topological complexity of such an overall system is smaller. If, on the other hand,

m>n indicates that each physical component on average, requires more than one
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control component for it to operate and the resulting nested complexity of the
overall system gets significantly higher. The balanced condition yields m = n,
indicating one-to-one mapping between the physical and control elements. This is a
much simpler situation topologically and also from an engineering perspective and
the one advocated by the Axiomatic Design literature, if that is otherwise feasible

from the economic or functional perspectives.

J: Computation of Structural Complexity for Satellites and drills

We compute the normalized development cost and normalized structural
complexity for a family of three electrical drills [Wood et al. 2001] and a set of three
complex satellite systems [Wertz and Larson, 1996, Larson and Wertz, 1999, DARPA
Report 2011]. The development costs and system architectural information were
taken from the existing literature [Wood et al. 2001, DARPA Report 2011].

The development costs and structural complexities are normalized with
respect to the respective minimum values within that product category. For
example, the development costs and structural complexities of each satellite are
each divided by the respective minimum values among the set of satellite programs
considered. In this case, Orsted satellite had the minimum structural complexity and
minimum development cost. Hence Orsted is mapped to point (1,1) on the
normalized complexity vs. development cost plot (see fig. ].2), and similarly the
development costs and structural complexities for the family of electric drills, the
normalization was with respect to the Skill Twist drill.

In all cases, we assumed component complexities to have triangular
distribution with most likely estimated being the point estimates.

For all electric drill examples, the number of components and interfaces are
listed in table J.1. The topological complexity was fixed (since the existence of

interfaces were fixed) and is listed in table J.1.

Table ].1: The number of system components and the interfaces in the structural graphs of the three

electric drills considered. The last column lists the topological complexity for the electric drills.
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Product #Components #interfaces C

Skill Twist 57 91 0.9
DeWalt Drill 56 134 0.95
B&D Drill 68 144 0.98

We assumed symmetric triangular distribution with most optimistic and
pessimistic estimates being + 5 percent from the most probable value (see fig. ].1).
Hence, we have b/om as 1.05, a/om as 0.95 and (a+b)=20m. For the electric drill
examples, we use oum =1 for all components with b=1.05 and a=0.95. We sample the
component complexities from the triangular distribution defined by the three
parameters and computed the structural complexity for each sample. The procedure
outlined in chapter 3 was followed for computing the distribution of structural
complexities in all cases. The chosen interface factors for different interface types
are listed in table ]J.3. Within this group of products, the structural complexities are
normalized as described before.

For the satellite systems, the choice was primarily driven by availability of
the relevant information about the structural graphs. Structural graphs of these
satellite systems were extracted from Wertz and Larson [Wertz and Larson, 1996].
Four different types of interactions have been considered while creating the
structural graph namely, matter, energy, force and information and their interface
factors can be found from table L.3. For this problem, we have chosen to analyze the
system in the component level of abstraction since all the chosen satellites look
almost identical at subsystem level of abstraction.

For the satellite examples, the number of components and interfaces are
listed in table ].2 below with their respective topological complexity (since the

existence of interfaces were fixed).

Table ].2: The number of system components and the interfaces in the structural graphs of the three

satellites considered. The last column lists the topological complexity for three satellite systems.
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Satellite #Components #interfaces C

Orsted 41 58 1.08
HETE 68 88 1.14
Clementine 86 156 1.42

Table ].3: Interface factor used for different connection types for al drill examples. The interface

factors were all scaled up by a factor of 2 in the satellite examples.

Connection Interface factor, 1/¢™
type
Mechanical connection 0.05
Information/Control 0.15
Fluid flow 0.10
Energy 0.10

In all satellite examples, the inequality (b-0m)>(0m-a) or (a+b)>2am was
ensured while choosing the most optimistic and pessimistic values randomly. The
most optimistic values a and the most pessimistic values b were set based on the
ranking of point estimates of component complexities oum. We also assumed b/oim as
2 and a/om as 0.85 for the most complex component and the values were varied
based on the relative ranking of the component in terms of its complexity. For the
satellite examples, we assume the most likely component complexity, om =1 for all

components with b=2 and a=0.85.
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Fig.].1: (a) Symmetric triangular pdf of component complexities used in electric drill example; (b)
right-skewed triangular pdf of component complexities [Garvey 2000] in case satellites.

We compute the mean structural complexity for each system and compute

the corresponding normalized mean structural complexities following the
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procedure described before. Fig. ].2 shows the mean normalized structural
complexity and normalized development cost for the group of electric drills and

satellites respectively.
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Fig.].2: Normalized development cost and normalized structural complexity for a class of electric

drills and satellites respectively.

The fig. ].2 hints at the super-linear relationship between the structural
complexity and development cost, where development costs increases super-

linearly with increasing structural complexity.

K: Experimental data from ball and stick model building
exercise

We perform the ball and stick model building experiment using the
molecular modeling kit from Prentice Hall [Prentice Hall Molecular toolkit, 1997],
for constructing structure of organic molecules. The atoms are the components, and
the bonds between them are the interfaces. Test subjects were required to correctly
assemble structures given this molecular kit and a 2D picture of the structure to be
built. The order of molecules was randomized for each test subject and for each
molecule one would start with the entire, fully dissembled kit. Notice that this is a
natural experimental setting and the idea is to mimic the real-world assembly
process with the sequence in which different subjects were given the molecular

structures was randomized to contain any significant learning effects.
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We picked a set of 12 ball and stick structures to be built by the subjects (see
fig. K.1 below). They were chosen such that they spanned a reasonable spectrum of
structural complexities while the expected build time is not too high. This was done
keeping in view of the availability of subjects for successfully conducting the

experiments.

o’ J 1
\(IEHLEJHOTOH 3RARY
ID: 8 ID: 9
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ID: 11

ID: 12

Fig. K.1: The 12 molecular structures build using a molecular kit as part of the experiment with

details on number of atoms and bonds depicted in table K.1 below.

In all cases, we assumed o = 0.1 for all atoms, = 0.1 for all links and y=1/n
where n is the number of atoms in a given molecule (see the table K.1 below). Each
molecular bond is treated as a bi-directional edge and the number of interfaces, 7 is
twice the number of molecular bonds. Also notice that the curved double bonds are
treated as a single interface between the atoms. This is because all atoms are used as
is and there is no perceptible difference observed in using different bond types (i.e.,
curved vs. straight bonds). Please note that the number of edges is computed
assuming each physical link is bi-directional. In table K.1, please note that for the
most of the models, the ratio of the number of edges to the number of atoms (i.e.,
average degree), m/n can be expressed as 2(1—1/n) for most of the models and has
a value close to 2. If you look at just the average degree, the molecular structures are
closer to simple chains and binary trees, but their internal topological structure
could be more complicated (i.e., intricate) in cases, leading to higher topological

complexity (for example, see molecule no. 9).
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Table K.1: Details of the set of 12 ball and stick structures of varying structural complexities used for

the experiments.

Molecule No. n m C1 C2 (C3=E(A)/n C2*C3 SC=C1+C2*C3
1 3 4 0.3 0.4 0.94 0.38 0.68
2 7 12 0.7 1.2 1.13 1.35 2.05
3 12 22 1.2 2.2 1.13 2.48 3.68
4 12 22 1.2 2.2 1.00 2.20 3.40
5 12 22 1.2 2.2 1.27 2.80 4.00
6 14 26 1.4 2.6 0.96 2.50 3.90
7 15 28 1.5 2.8 0.97 2.70 4.20
8 16 30 1.6 3 1.40 4.21 5.81
9 19 38 1.9 3.8 1.58 6.00 7.90
10 27 56 2.7 5.6 1.08 6.05 8.75
11 39 80 3.9 8 1.12 8.96 12.86
12 46 100 4.6 10 1.19 11.92 16.52

With simple ball and stick model building experimental setup, it is easier to
contain and isolate other exogenous, confounding factors [Mosteller and Tukey,
1977]. We track the total build time for each structure as the observable
representing system development effort. Any incorrect assembly involves rework
and leads to increasing total assembly time.

The experimental setup is described below:

e For the experiment we choose 12 different structures to assemble. They
were all based on real molecules but that had no importance for our
experiment. Photographs were taken of the assembled structures from

angles such that the topology of the molecules was visible.

e The experimental subject received an initial briefing including the
explanation of what will be expected from him. Before before started, they
were shown the molecular kit to familiarize themselves with the components

and the two different kinds of bonds, rigid and flexible.

e The subjects were given the completely unassembled kit and were shown a
picture of a molecule. Our test subjects consisted of 17 student volunteers

with largely similar backgrounds to keep the sample as homogeneous as
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possible. To contain any influence of the learning effect, the order of

molecules was randomized.

e The volunteers were asked to assemble these structures as quickly as
possible and without error. The total build time, Ttotal = Tcognition + Tconstruction +
Trework Was recorded. We focused only on the total build time Tota and not its
individual constituents. When completed, the structure will be unassembled

and then the next picture was shown to the subject under study.

This experimental setup helps isolate the effect of structural complexity on the
system development cost/effort since components of dynamic and organizational
complexities are not present here. This helps us capture the effect of structural
complexity on development cost/effort by using a simple, single variable parametric
model. In order to smooth out the individual differences, we consider the averaged
build time for the group of 17 subjects for each ball and stick structure.

From table K.2 below, notice that for almost all cases (except molecule ID 6), we
have mean build time > median build time. This is indicative of the long-tailed
distribution for the build time. This phenomenon is shown graphically in fig. K.2

below.
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Fig. K.2: Typical long-tailed probability distribution with finite instances of very high values of the

variable under consideration.

Table K.2: The Structural Complexity and the build time statistics for 17 test subjects who build the

set of 12 ball and stick structures.
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Molecule | Structural Max. build Min. build Mean build Median build Build time
No. Complexity | time (sec.) time (sec.) time (sec.) time (sec.) Standard
Deviation (sec.)
1 0.68 18 8 12 11 2.97
2 2.05 98 34 54 52 17.93
3 3.68 216 77 113 95 41.55
4 34 205 47 96 89 40.83
5 4.0 276 63 126 109 53.16
6 3.9 135 66 100 102 36.41
7 4.2 187 78 117 103 42.61
8 5.81 387 86 181 161 76.47
9 7.9 543 159 300 275 121.17
10 8.75 775 215 427 381 178.74
11 12.86 1140 324 605 552 279.28
12 16.52 1496 350 932 922 356.88

This observation indicates that there were test subjects who took much
longer to correctly build the ball and stick models, thereby driving the mean build
time higher. Regression-based parametric model development resulted in power-
law type model (i.e., Y = aXP) as the best functional form linking build time to the
structural complexity meric.

The ball and stick experiment is a very simple system building exercise with
system performance aspects being taken out of the equation. This exercise is about
building structural forms with given blue print. The ball and stick experiment is a
simplified experimental setup without additional constraints that appear in large
engineered system development efforts. Below we list the primary result from this
experiment and subsequent claim
Primary Result: The average build time, Y varies super-linearly with structural
complexity, X. The best parametric relationship is found to be, where {a=14.68,
b=1.4775} represent the model parameters for the experiments conducted using 17
subjects, building 12 ball and stick models. We assumed component complexity, a =
0.1 for all component (i.e.,, each atom) and interface complexity, § = 0.1 for all

interfaces (i.e., bonds).
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Claim: We claim generalizability of the functional form found above and that the
super-linear form dependence with exponent b>1 will hold for large, real-world
engineered systems.

Discussion: We have seen that the development effort (i.e., average build time used
as a proxy for development effort) increases super-linearly with structural
complexity. An important issue to consider is whether the structural complexity
metric has some inherent bias towards super-linearity or that the super-linearity is
primarily due to inherent human cognitive mechanisms. Let us look into the
possibility of inherent bias in the structural complexity metric in the light of ball and
stick experiment. We used the experimental data and apply the jackknifing
technique that incorporates cross-validation of the model in all cases. We analyzed
the individual attributes that constitute the structural complexity metric and in all
cases the power-law functional form yield the best model.

The graph energy is found to vary almost linearly with the number of atoms
with the exponent, b=0.999 suggesting that the relationship is almost linear for the
set of ball and stick models considered during the experimentation. With C;Cz as the
dependent variable (using component and interface complexities as 0.1), we find the
exponent, b=1.123 indicateing a mildly super-linear behavior. The structural
complexity, C is also shows an almost linear or mildly super-linear variation with
the number of atoms (see table below).

Table K.3: Parametric relationships between number of atoms (n), structural complexity metric and

their components for the ball and stick experiment.

Y X Parametric Parameters {a,b} Model Quality
Model
Graph Energy | n Y=axb {1.143, 0.999} [R2=0.96; MMRE=0.12; PRED(0.25)=0.9167]
C,C, n Y=axb {0.15, 1.123} [R2=0.96; MMRE=0.13; PRED(0.25)=0.9167]
C h Y=aXb {0.248, 1.08} [R2=0.98; MMRE=0.09; PRED(0.25)=1.0]

Now let us compare the functional relationships between structural complexity
metric and the number of atoms and also between structural complexity metric and

mean build time, as recorded from the ball and stick experiments:
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Table K.4: Parametric relationships between (i) structural complexity metric and the number of

atoms (n); (ii) mean build time and structural complexity metric for the ball and stick experiment.

Y X Parametric Model Parameters {a,b}
C n Y=aXb {0.248, 1.08}
Mean build time (sec.), t C Y=aXxb {14.68, 1.4775}

The degree of super-linearity in build time-structural complexity relationship is
much stronger with about 40% higher value of the exponent (see table K.4 above).

The architecture of organic molecules are locally centralized around carbon atoms
and an order analysis shows the structural complexity metric is of the order of

number of atoms: C = O(n) (see chapter 3), and the relationship above corroborates
the theoretical prediction. It would be interesting to observe the development effort
for systems with distributed architecture where C = O(n*). For such systems, we
predict significant system integration efforts and the development effort will likely

vary as, t=0(n") where ¢>2.5. Such findings will further strengthen the

argument for human cognitive limitation that leads to usually observed super-linear
relationship between development effort and structural complexity for engineered
complex system development.

Results indicate that the super-linearity observed in the build time -
structural complexity relationship is not due to inherent bias in the structural
complexity metric. The reason for this super-linear behavior is likely to be
embedded in the human cognitive capability and this aspect remains to be explored
in future by combining with cognitive scientists.

Existence of sub-linear behavior (i.e, b < 1) implies that enhancement in
cognitive capability outstrips growth in structural complexity. In theory, it is
possible to come up with component and interface complexity numbers that will
show linear (or even sub-linear) behavior. The situations under which we might
have b<1 is highly unlikely in practice and might be due to some fundamental

limitation of human cognition (as commented by cognitive psychologists). Future
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developments on cognitive models in the context of engineered complex system
development efforts might throw light on this observed super-linear behavior and if
there exists conditions under which the cognitive ability outstrips the level of

increased complexity, leading to sub-linear model with exponent, b<1.

L: Complexity budget and complexity-performance trade-space
As described in chapter 6, the system performance measure (note that it is

usually a composite measure, incorporating different aspects of system

performance), P and the Non-Recurring Engineering cost/effort (NRE) are modeled

as,

kC"
P=P L.1
ma"{1+kC"} @)

NRE = aC" (L.2)
where C stands for complexity, Pmax stands for limiting performance achievable and

(n,m,k,a) are the parameters that are usually determined from historical data or

through expert opinion.

The value function for the system architecture, V is defined as,

(n—m)
o b _p (K] <
NRE ™\ a )| 1+kC"
—_

N

(n—m)
B S{ 12 kC” } 3

Hence the value is basically in terms of performance per unit system development
cost/effort. In eq. L.3, please note that S is a constant and since complexity, C is a
number greater than one, the value function, V decreases monotonically if n < m.
The condition n>m yields interesting insights and leads to an optimal value
function for the system architecture due to the trade-off between the two rate

parameters (n,m). We assume that the limiting performance Pmax is achievable

before NRE becomes unbounded and n>m. In this case, for value optimality, we

must have,
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To check if this is a maximal solution, we compute the second derivative.

(L.4)

After tedious algebraic simplifications, using the symbolic mathematics package
Mathematica™, we arrive at the following expression for the second derivative at
C=C,

d2V| _—sz(n—m)
ac*|. - n

G,

crm? (L.5)

2

For n>m, we have <0 and V is maximized at C=C,. The corresponding

[e8

CZ
expression for Vmay is given by,
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Notice that the above quantities defined in L.4 and L.6 exists iff n > m.
Otherwise the value function, V is monotonically decreasing with respect to

complexity (see fig. L.1).
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n<m

C C

Fig. L.1: Value function, V is monotonically decreasing with respect to complexity, C if n < m.

Hence, a higher value of n/m ratio and a lower k leads to a more prominent
optimal value, Vimax. The role of lower value of k leads to a shift in the performance-
complexity profile and for a given exponent n, requires greater complexity to reach

a given target performance as shown in fig. L.2.
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Fig. L.2: Effect of lower k value is to shift the performance-complexity curve to the right. The same
level of performance target now requires higher complexity to be spent.

A larger value of n signifies quicker saturation of performance at a lower
level of complexity. In other words, higher complexity does not buy us increased
performance, but rather hurts due to increased NRE or cost/effort. A higher n/m
ratio can be thought of as rates of performance improvement and NRE penalty

respectively, with increase in complexity. Since performance improvement is
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bounded while NRE is not, the value function improves initially for high »/m ratio
and then starts to drop as performance improvement saturates.

Now, let us look at the optimal value for different n/m ratios, assuming

n>m. Let us define,
n
ryr=—
m

We can write the optimal value from L.6 as,

L
v zé(r_—lj f
max r k

For two different values of the ratio (7;,7,), we can express the ratio of the

corresponding optimal values as,

1 1
Vmax,2_ 7"1 rz_l lrz k 1}’1
Vmax,l - rZ k rl _1

- AL (L.7)

This expression is rather cumbersome to generalize easily and the ratio of optimal

value function depends on the specific values of the triple (#,7,,k). In general, a

larger n/m ratio and smaller k <1 leads to alarger V__ value.

M: Inferring adjacency matrix from system behavioral data

A significant challenge to inferring networks is that, both direct and indirect
dependencies arise together [Feizi et al, 2013]. While recognizing direct
relationships between variables connected in a network from observed data alone
we have to overcome the problem of correlation-based networks containing

numerous indirect relationships.
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To segregate direct dependencies from an observed correlation matrix
containing both direct and indirect effects, [Feizi et al., 2013] proposed a general
method based on network de-convolution. This method filters out the combined
effect of all indirect paths of arbitrary length exploiting matrix decomposition. Given
an observed matrix of correlations that might contain both direct and
indirect/longer range dependencies, the process of network de-convolution
recovers the original adjacency matrix that gave rise to the observed correlation
matrix.

Basic premise of this method is that all transitive/longer range dependencies
can be computed by summing this adjacency matrix and all its powers, which
convolves all direct and indirect paths at all lengths. For a weighted network where
edge weights represent the correlation strength (or mutual information) relating
two elements in the network, this method seeks to recognize the fraction of the
weight of each edge attributable to direct versus indirect contributions. Here, we
describe the basic methodology and algorithmic implementation in the context of
inferring the adjacency matrix from behavioral data. For details on robustness of the
method to noise and applicability to general asymmetric matrices, please refer to
[Feizi et al, 2013].

Suppose Gops represents the (nxn) matrix of observed dependencies: an

appropriately scaled matrix linking variables dependencies (nodes in the network)
with self-loops being excluded by setting its diagonal components to zero. This
appropriate scaling refers to a linear scaling of the input correlation matrix, based
on the largest absolute eigenvalue (or singular values for symmetric matrices) of the

un-scaled correlation matrix. The observed dependency matrix Gons captures both

direct and indirect effects: G,=G+G,,. , where G stands for the direct

dependency (ie., length 1) matrix and G, =G> +G’ +..+G*+..G"" with G*

indir
referring to indirect dependencies of length £ .
Assuming the size of the system to be large enough (i.e., »— ), we can

approximate the sum by the following infinite series:
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G,=G+G +.+G+...
=G(-G)" (M.1)

Note that, the observed dependency matrix is linearly scaled so that the

largest absolute eigenvalue of G is smaller than 1 (i.e, )Lk(G)| <1Vk) and eq. M.1

holds. Therefore, the effects of indirect dependencies decrease exponentially with
the length of indirect paths. From relation M.1, we can express the direct (i.e., length
1) dependency in terms of the linear scaled observed dependency matrix G, :
G, =G(I-G)"
G=G, (I-G)
=G6=G,([+G,)" (M.2)
Since the correlation matrices are symmetric by definition, the observed

dependency matrix, being a scaled version of the correlation matrix, have real

eigenvalues and singular values given by the magnitude of the eigenvalues. It can be
decomposed to its eigenvalues and eigenvectorsas G, =UX , U" where Uand X,

obs obs o0Ds
represents the matrix of eigenvectors and a diagonal matrix of eigenvalues of matrix

G , respectively.

obs
Based on the eq. M.2, the direct dependency matrix can be written as

G=UZXU" where the individual eigenvalues are related by:

)“k(Gobs)

4 (G)= 1+4.(G,, )

Vi<sk<n (M3

Note that eq. M.3 is only valid if ‘/’Lk(G)| <1 Vk.

This condition can be satisfied by linearly scaling the un-scaled observed

correlation matrix, G using a linear scaling factor a such that, G, =aG . The
eigenvalues of G, and G are related by 2,(G,,,)= alk(é) Vk . Using this in M.3, the

eigenvalues of G and G are related as:
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2,(G)

YT

Vi<k<n (M4

We have to choose the scale factor o¢>0 such that the condition

‘Zk(G)| <1Vk is satisfied. Since the correlation matrix is symmetric, its singular

values o, are related to its eigenvalues as o, :|/1k| Vk. Let us define the largest

absolute eigenvalue (i.e., the largest singular value) of the direct dependency matrix

G as B. Since the diagonal elements of the correlation matrix G are set to zero, its

smallest eigenvalue is negative and we have 0"1(@) = —ln(é). The same is true for

direct dependency matrix G . For the largest absolute eigenvalue, 3 to be less than

1, we should have:

_9(G) _ 1 [(1=8)5 ¢
l/a+61(é)sﬂ<l :az( 3 )O'I(G) (M.5)
and,
0,(G) 1 (4B ¢
l/a—cn(é)gﬁd :az[ 5 Jan(G) (M.6)

Combining eq. M.5 and eq. M.6, we have
1 max[(%jol(é); [%jan(é)} (M.7)

(04

We use a scaling factor & given as:

:maxK%Jcl(é);(%jon(é)} (M.8)

and the eigenvalues of the direct dependency matrix are given as:

| =

2,(G)

)« G ==
(G) 1/6+4(G)

Vi<sk<n (M9)

The direct dependency matrix is given by:
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AG) .. 0
G=U : ' ' U’ (M.10)
0 N (€))]
If B is small, higher order interactions play insignificant roles in observed
dependencies since they decay proportionally to 3" where k is the order of indirect

interaction. Choosing 3 close to one (i.e., considering higher order indirect inter-

actions) leads to higher performances in all de-convolution applications where we
assume that significant indirect, higher order interactions effects do manifest in our
observations. Based on our simulations, we recommend f>0.8 for most

applications in complex dynamical systems.

The binary adjacency matrix, A is computed by unitization operation:
.. 1if g(i,j)>¢€
ai. )= if g(i,)) .
0 otherwise

where we use £=10" as the threshold parameter. All computations performed in
chapter 7 followed the basic procedure of network de-convolution applied to the

observed correlation matrix and used the parameter values suggested herein.
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