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Abstract

Biological systems are extremely complex, and our ability to experimentally measure
interactions in these systems is limited by inherent noise. Technological advances
have allowed us to collect unprecedented amounts of raw data, increasing the need for
computational methods to disentangle true interactions from noise. In this thesis, we
focus on statistical methods to infer two classes of important biological interactions:
protein-protein interactions and the link between genotypes and phenotypes. In the
first part of the thesis, we introduce methods to infer protein-protein interactions from
affinity purification mass spectrometry (AP-MS) and from luminescence-based mam-
malian interactome mapping (LUMIER). Our work reveals novel context dependent
interactions in the MAPK signaling pathway and insights into the protein homeostasis
machinery. In the second part, we focus on methods to understand the link between
genotypes and phenotypes. First, we characterize the effects of related individuals
on standard association statistics for genome-wide association studies (GWAS) and
introduce a new statistic that corrects for relatedness. Then, we introduce a sta-
tistically powerful association testing framework that corrects for confounding from
population structure in large scale GWAS. Lastly, we investigate regularized regres-
sion for phenotype prediction from genetic data.

Thesis Supervisor: Bonnie Berger
Title: Professor of Applied Mathematics

3



4



Acknowledgments

This journey would not have been possible without the many people that have sup-

ported me throughout my time at MIT. First, I would like to thank my advisor, Bon-

nie Berger, for her guidance and her unwavering support. I would also like to thank

Alkes Price for welcoming me into his group meetings and journal clubs, for countless

interesting discussions about medical genomics, and for mentorship as I learned about

statistical genetics. My family and friends have supported me throughout my time

here. In particular, my heartfelt thanks go to:

Po-Ru Loh, for being an inspiration and exceptional friend. I will always be

grateful that I had the chance to work with someone so hard-working, careful,

considerate, and humble.

Mark Lipson, for our discussions about research and everyday life over our

weekly lunches.

Jian Peng, for teaching me that research is difficult even if it feels like it

shouldn’t be and that’s okay.

The rest of the members of the Berger lab, in particular Alex Levin, Irene

Kaplow, Leonid Chindelevitch, Deniz Yorukoglu, Fulton Wang and Sean Sim-

mons, for teaching me how to do research.

Patrice Macaluso, for keeping us sane and staving off chaos.

Mikko Taipale, for being an amazing collaborator and general academic badass.

Polina Golland, for welcoming me into her reading group and teaching me to ask

questions about the “trivial” things that usually turn out to confuse everyone.

Mark Behrens, for mentoring me through my short trip in Algebraic Topology

and for being understanding.

Lastly, I would like to thank my love, Holly Johnsen, who has been with me through

the best and the darkest times of this journey.

5



6



Contents

1 Introduction 11

1.1 Inferring protein-protein interactions . . . . . . . . . . . . . . . . . . 11

1.2 Statistical genetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

I Inferring protein-protein interactions 19

2 Proteomic and Functional Genomic Landscape of Receptor Tyrosine

Kinase and Ras to Extracellular Signal-Regulated Kinase Signaling 21

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.2.1 An RTK-Ras-ERK interaction network . . . . . . . . . . . . . 25

2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.4 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.1 RNAi screening . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.4.2 TAP and mass spectrometry . . . . . . . . . . . . . . . . . . . 35

2.4.3 Computational analysis of TAP-MS data . . . . . . . . . . . 37

2.4.4 Additional statistical analysis . . . . . . . . . . . . . . . . . . 38

2.4.5 Western blotting and coimmunoprecipitation . . . . . . . . . . 39

2.4.6 In vivo analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3 Incorporating quantitative mass spectrometry data in protein inter-

action analysis 53

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

7



3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.1 Sampling framework . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.2 Validation on three AP-MS data sets . . . . . . . . . . . . . . 61

3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.3.1 Characterization of methods . . . . . . . . . . . . . . . . . . . 62

3.3.2 Low rank plus sparse matrix framework . . . . . . . . . . . . . 64

3.3.3 Moving toward complexes . . . . . . . . . . . . . . . . . . . . 66

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.1 AP-MS data sets . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5.2 Validation data sets . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4 Inferring interactors from LUMIER using mixture models 71

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 LUMIER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.3.1 Spatial Bias Model . . . . . . . . . . . . . . . . . . . . . . . . 76

4.3.2 Background Luminescence Model . . . . . . . . . . . . . . . . 80

4.4 An application to mapping chaperone,

co-chaperone, and client interactions . . . . . . . . . . . . . . . . . . 80

4.4.1 Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.3 Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

II Statistical genetics 87

5 Mixed models with related individuals 89

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

8



5.1.1 MLM statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1.2 Expected statistics with unrelated individuals . . . . . . . . . 92

5.1.3 Expected statistics with related individuals . . . . . . . . . . . 93

5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2.1 Simulated genotypes and phenotypes . . . . . . . . . . . . . . 96

5.2.2 CARe genotypes . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.3 CARe phenotypes . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.3 Statistical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.1 MLM statistics . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.3.2 Two variance component MLM statistics . . . . . . . . . . . . 102

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6 Improving the Power of GWAS and Avoiding Confounding from

Population Stratification with PC-Select 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.1 MS dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.4.2 Statistical methods . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Phenotype prediction using regularized regression on genetic data

in the DREAM5 Systems Genetics B Challenge 117

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2.1 Dataset and challenge setup . . . . . . . . . . . . . . . . . . . 119

7.2.2 Preliminary ranking of predictors by correlation . . . . . . . . 120

7.2.3 Rank transformation to reduce phenotype outliers . . . . . . . 121

7.2.4 Basis expansion to boolean combinations of genotype variables 122

7.2.5 Regularized regression modeling . . . . . . . . . . . . . . . . . 123

7.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

9



7.3.1 Modest performance of all regression techniques on training

dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3.2 Effectiveness of rank transformation on phenotype 1 . . . . . . 126

7.3.3 Strong regularization in best-fit models . . . . . . . . . . . . . 126

7.3.4 High variance in performance on individual

cross-validation folds and test set . . . . . . . . . . . . . . . . 127

7.3.5 Official DREAM5 challenge results . . . . . . . . . . . . . . . 128

7.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

A Supporting Information for Incorporating quantitative mass spec-

trometry data in protein interaction analysis 137

B Supporting Information for PC-Select 145

B.1 Model performance as the number of top SNPs to include in the GRM

is varied. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

B.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

10



Chapter 1

Introduction

In this thesis, we focus on inferring two classes of important biological interactions:

protein-protein interactions (PPI) and the link between genotypes and phenotypes.

Biological systems are extremely complex and our ability to experimentally measure

interactions is limited by inherent noise. Computational methods can identify pat-

terns that are invisible to the human eye and disentangle true interactions from noise.

Throughout this thesis we draw on a wide range of statistical methods to achieve this

goal. In this chapter, we set the context for and summarize the main contributions

of this thesis.

1.1 Inferring protein-protein interactions

Proteins are the building blocks of cells, constituting most of the cell’s dry mass and

executing nearly all cell functions. However, proteins do not act alone; all proteins

interact with other molecules, from enzymes catalyzing chemical reactions to pro-

teins transmitting extracellular signals to change gene expression and protein levels.

The biological properties of a protein depend on its physical interactions with other

proteins. As such, an important way to begin characterizing the biological role of a

protein is to identify its binding partners. In the past two decades, significant effort

has been devoted to generating comprehensive PPI networks (e.g., [141, 61, 49, 51, 53])

to uncover the molecular basis of genetic interactions and provide functional roles for
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proteins.

These networks have been used as scaffolds to transfer known annotations to

uncharacterized proteins in our lab and others. For example, IsoRank [119] and

IsoRankN [80] predict functional orthologs across species by aligning PPI networks.

In signaling network reconstruction, perturbation studies are used to reveal the critical

components of the pathway. However, in many cases, these studies identify proteins

that are not directly part of the core pathway. Huang et al. [59] and Yeger Lotem

et al. [154] developed methods that use network flows and minimal trees in the PPI

network to organize these disparate proteins into functionally coherent pathways.

Before we can realize the benefits of a comprehensive PPI network, we first have

to generate the interaction network. Mapping protein-protein interactions is ex-

tremely time and labor intensive because of the sheer number of potential inter-

actions. Mass spectrometry or affinity purification mass spectrometry (AP-MS) and

yeast two-hybrid (Y2H) are two widely used high-throughput techniques for identi-

fying protein interactions. The first large-scale PPI networks were generated for the

model organism Saccharomyces cerevisiae, initially using yeast two-hybrid screens

(Y2H) [141, 61] and subsequently by AP-MS [49, 56]. Similarly, high throughput

approaches have been applied to comprehensively map the Drosophila melanogaster

interactome, initially using Y2H [51] and more recently by AP-MS [53].

Both approaches have advantages and disadvantages. Y2H tests pairs of proteins

by introducing them into a yeast cell with a reporter that detects an interaction.

Specifically, one protein is fused with a DNA binding domain and the other protein

is fused with a transcriptional activation domain and both proteins are expressed in

a yeast cell. If the two proteins interact, a reporter gene is transcribed. Y2H is a

binary interaction assay, so it may not detect interactions that rely on more than two

proteins (e.g. interactions between protein complexes) or other endogenous factors. A

typical AP-MS study consists of performing a set of experiments on several proteins

of interest, called bait proteins. In each experiment, the bait protein is epitope

tagged so that it can be easily purified. Any prey protein that interacts with the

bait protein is also pulled down with the bait protein. Finally, the resulting mixture

12



of bait and bound prey proteins is analyzed by mass spectrometry to determine the

identity of the interacting prey proteins. AP-MS is done in vivo, so interactions that

involve endogenous factors or multiple proteins can be detected. However, because it

simultaneously pulls down all interactors, interactors that are expressed at low levels

may not be detected reliably.

A third recently developed technique, luminescence-based mammalian interactome

mapping (LUMIER) [6] and its extension LUMIER with bait control (BACON) [133]

detect protein interactions that can be missed by standard interaction assays. LU-

MIER is a co-affinity purification assay that uses luminescence to measure interaction

strength. Renilla luciferase, an enzyme that emits light, is fused to prey proteins. In

each interaction test, the prey protein is coexpressed with a tagged bait protein. As in

AP-MS, the bait protein is affinity purified and any bound prey protein is pulled down

as well. Then, we can measure the luminescence to quantify the abundance of the

bound prey protein and determine if an interaction occurred. Because interactions

are interrogated in-vivo, we can detect interactions that involve additional protein

partners and interactions that are contingent on post-translation modifications.

However, in all cases, the raw data include many false positive and false negative

interactions, which are serious confounding factors in their interpretation. To address

these issues, we introduce computational methods to distinguish true interactions

from noise.

Combining a perturbation screen with PPIs to understand the

MAPK signaling pathway

As part of joint work with the Perrimon lab, we investigate the canonical MAPK

pathway by combining parallel genome-wide RNAi screens with PPI mapping. The

PPI mapping was done at baseline and following stimulation with insulin or epidermal

growth factor (EGF) to identify interactions that depended on the stimulus. We post-

processed the raw AP-MS data and identified context dependent interactions.
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Inferring protein interactions from noisy AP-MS data

We introduce a general method that can be used to extend existing PPI inference

methods to take advantage of semi-quantitative spectral count information that has

recently become widely available in affinity purification for mass spectrometry (AP-

MS) data sets. Our approach introduces a probabilistic framework that models the

statistical noise inherent in observations of co-purifications. We validate our approach

on three MS data sets and demonstrate improvement over state-of-the-art methods.

Our two key contributions are:

• A sampling framework for incorporating quantitative information into existing

PPI inference methods. We focus on matrix models for PPI inference, a class of

methods that has recently attracted significant research interest because of the

ability of matrix models to leverage the rich co-occurrence information in newer,

large-scale AP-MS experiments. With few exceptions, existing methods in this

class only analyze binary experimental data (in which each potential interac-

tion tested is deemed either observed or unobserved), neglecting quantitative

information available from AP-MS such as spectral counts. The framework

we propose represents quantitative data sets as ensembles of binary data sets,

allowing analysis of each member of the ensemble by direct application of a

previous method. The ensemble predictions can then be aggregated to produce

a robust prediction that we demonstrate improves performance.

• An in-depth discussion comparing the theoretical bases of existing approaches.

We further identify common aspects of established PPI inference methods that

may be key to their performance and suggest a common framework for future

investigation.

Inferring interactors from LUMIER using mixture models

We describe a novel method for determining significant protein interactions from raw

LUMIER data that corrects for spatial biases that occur in high-throughput LUMIER

screens. We apply this method to a large LUMIER screen with 60 preys and 800 baits
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to characterize chaperone, co-chaperone, and client interactions (Taipale, Tucker,

Peng, et al. “A quantitative chaperone interaction network reveals the architecture

of cellular protein homeostasis pathways” Cell, in press). We show that our method is

able to recover significantly more true interactions than previous methods. From this

data, we assemble a comprehensive network of chaperone, co-chaperone, and client

interactions that reveals new insights into co-chaperone specificity.

1.2 Statistical genetics

Recent technological advances in the past two decades have revolutionized our under-

standing of human diseases. The genetic architecture of diseases in humans ranges

from diseases that are caused by just a single genetic variants in a single gene to

multiple variants in multiple genetic loci contributing to disease risk and often inter-

acting with environmental factors. Most common diseases fall in the latter category of

complex genetic disease, necessitating large studies and sophisticated computational

methods. The Human Genome Project and the HapMap project have paved the way

for genome-wide association studies (GWAS) that have identified hundreds of loci

associated with complex diseases.

Genome-wide association studies scan through hundreds of thousands or even

millions of genetic variants, called genetic markers, to look for associations between

markers and a disease in a large sample of individuals. GWAS test all regions of the

genome in an approximately unbiased fashion, including non-coding regions. Results

from genome wide association studies have revealed that complex diseases are influ-

enced by genetic variants in non-coding regions as well as coding regions. Previous

study designs leveraged related individuals (e.g., sibling pairs), whereas GWAS can

be done with unrelated individuals allowing for large samples of tens or hundreds

of thousands individuals. This has allowed researchers to discover small effects and

to begin to disentangle the genetic factors driving complex diseases. In the past

decade, GWAS have had great success, including new findings for many complex dis-

eases: cancer, diabetes, obesity, inflammatory bowel disease (IBD), multiple sclerosis
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(MS), and others (National Human Genome Research Institute catalog of published

genome-wide association studies: http://www.genome.gov/26525384).

In GWAS, single nucleotide polymorphisms (SNP) are the most commonly used

genetic marker. SNPs are single DNA base pair changes, and we typically focus

on biallelic SNPs, those with two possible variants in the population. SNPs occur

throughout the genome and genotyping hundreds of thousands of SNPs in thousands

of individuals is cost effective, making them suitable for use in large-scale GWAS.

Fundamentally, GWAS search for correlations between SNP markers and the pheno-

type. The idea is not that the SNP markers themselves are causal, but rather that

the SNP markers are correlated with the causal variants. Nearby genetic variants

are inherently correlated (this correlation is called linkage disequilibrium) due to the

block inheritance of genetic material. GWAS attempt to cover the genome with a

sufficiently dense set of markers so that any causal variant is in reasonably high link-

age disequilibrium with a marker SNP. As such, the choice of the marker SNPs in

a GWAS is crucial to the success of the study. Ideally, SNPs are chosen such that

they have a high correlation with causal variants of the phenotype of interest, how-

ever we may not a priori know which regions are likely to contain causal variants.

The HapMap project has provided a comprehensive linkage disequilibrium map of

the entire human genome for multiple ethnicities. This information has been used to

judiciously select SNPs to provide coverage of the entire genome for most ethnicities.

Collecting a large number of individuals for a GWAS study is at odds with ensuring

the sample is genetically homogeneous, however systematic differences in ancestry

between samples, called population stratification, can cause spurious associations or

can obscure gene-disease relations. Genetic differences between populations (e.g.,

northern and souther European) occurs due to random genetic drift and although the

differences may be small and random, they can lead to confounding. For example, if

the cases and controls have different proportions of two populations, then spurious

associations may be identified. This arises because markers that are informative about

ancestry then contain information about case-control status.

Although GWAS have presented new opportunities, they have created numerous
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statistical and computational challenges. When testing hundreds of thousands of

markers for association with a phenotype on a sample of only tens of thousands of

individuals, many markers will appear to be highly correlated by chance and slight

model deviations can cause false positive associations. Statistical methods are neces-

sary to adjust for confounding effects such as population stratification without losing

power and to find ways to intelligently apply domain knowledge to maximize power.

Mixed models with related individuals

As GWAS sample sizes get larger, they inevitably contain increasing numbers of

related individuals. Mixed models are the state-of-the-art method for calculating

association statistics in GWAS and are generally thought to correct for relatedness.

Through extensive simulation and application to real genotypes and phenotypes, we

clarify when mixed models are properly calibrated and propose a solution when stan-

dard mixed models for GWAS fail.

Powerful methods to detect associations in human genome-

wide association studies

In recent years, there has been extensive research on mixed models to calculate GWAS

association statistics (e.g., [67, 66, 117, 168, 131, 101]). We introduce PC-Select, a

novel mixed model approach that addresses a serious concern in a recent state-of-

the-art method for computing mixed model association statistics (FaST-LMM Select

[84, 83]). While FaST-LMM Select significantly improves power over standard mixed

model and linear regression association statistics, a recent Perspective paper [153]

shows that FaST-LMM Select can significantly inflate statistics in the presence of

population stratification, leading to false positive associations. As population strati-

fication is a serious concern in many large-scale GWAS, this limitation precludes the

use of FaST-LMM Select in such studies. Our approach PC-Select overcomes this

limitation by including principal components as fixed effects in multiple steps of the

algorithm. As a result, we achieve comparable or superior power gains as FaST-LMM
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Select, both in the context of population stratification and in its absence, without

inflating statistics in the presence of population stratification.

Risk prediction from genotype and gene expression data

Association testing measures the predictive quality of a test marker, so is intimately

connected with phenotype prediction. Phenotype prediction from genomic data is a

burgeoning field in computational biology with great practical significance due to its

medical applications, e.g., predicting susceptibility to disease or response to treat-

ment. Along these lines, the 2010 Dialogue for Reverse Engineering Assessments and

Methods (DREAM) Systems Genetics B Challenge asked contestants to predict dis-

ease susceptibility of soybean plants to the plant pathogen Phytophthora sojae. We

describe a computational method for predicting phenotype from genotype or gene

expression data that won a best-performer award in the challenge. We provide a de-

tailed analysis of the applicability of regularized regression techniques to this problem,

finding that optimal regularized models pick out fewer than ten predictors (among

thousands or tens of thousands available) that achieve small but positive predictive

power.

Beyond bioinformatics, our work should also be of interest to the broader com-

munity of scientists and researchers that seek to provide objective evaluation of algo-

rithmic methods by establishing benchmarks and running contests. Many examples

of such initiatives exist; DREAM for instance was inspired in part by the Critical

Assessment of protein Structure Prediction (CASP) competition. On a larger scale,

the Netflix Prize contest spurred a great deal of scientific research (and public inter-

est) in machine learning. Careful contest design and choice of performance metrics

is essential to the success of such initiatives, however, and as such, a secondary focus

of our paper is an analysis of the DREAM5 SysGen B contest methodology, finding

in particular that the test set used created high variance in submission results.
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Chapter 2

Proteomic and Functional Genomic

Landscape of Receptor Tyrosine

Kinase and Ras to Extracellular

Signal-Regulated Kinase Signaling

Abstract

1Characterizing the extent and logic of signaling networks is essential to understand-
ing specificity in such physiological and pathophysiological contexts as cell fate de-
cisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based
RNA interference (RNAi) screens enable the inference of large numbers of genes that
regulate signaling pathways but these screens cannot provide network structure di-
rectly. We describe an integrated network around the canonical receptor tyrosine ki-
nase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, gen-
erated by combining parallel genome-wide RNAi screens with protein-protein inter-
action (PPI) mapping by tandem affinity purification/mass spectrometry. We found
that only a small fraction of the total number of PPI or RNAi screen hits was isolated
under all conditions tested and that most of these represented the known canonical
pathway components, suggesting that much of the core canonical ERK pathway is

1This chapter previously appeared in Science Signaling (2011) as “Proteomic and Functional
Genomic Landscape of Receptor Tyrosine Kinase and Ras to Extracellular Signal-Regulated Ki-
nase Signaling ” by Adam A. Friedman, George Tucker, Rohit Singh, Dong Yan, Arunachalam
Vinayagam, Yanhui Hu, Richard Binari, Pengyu Hong, Xiaoyun Sun, Maura Porto, Svetlana Paci-
fico, Thilakam Murali, Russell L. Finley, Jr., John M. Asara, Bonnie Berger, and Norbert Perrimon
[44]. I analyzed the mass spectrometry data to generate the protein interaction network and iden-
tified interactions that were context dependent.
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known. Because most of the newly identified regulators are likely cell-type and RTK-
specific, our analysis provides a resource for understanding how output through this
clinically relevant pathway is regulated in different contexts. We report in vivo roles
for several of the previously unknown regulators, including CG10289 and PpV, the
Drosophila orthologs of two components of the serine/threonine-protein phosphatase
6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked pro-
tein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II;
and Rtf1, a histone methyltransferase.

2.1 Introduction

Intracellular signaling mediated by growth factor-stimulated receptor tyrosine kinases

(RTKs), such as those activated by insulin or epidermal growth factor (EGF), acting

through Ras to extracellular signal-regulated kinases (ERKs) is required for meta-

zoan development and physiology. Mutations in genes encoding components of this

conserved signaling network, the RTK-Ras-ERK pathway, have been repeatedly iden-

tified as drivers in multiple malignancies. Understanding the hierarchical relationships

among pathway regulators can have profound clinical significance, as exemplified by

Kras genotype in determining responsiveness to inhibitors of the epidermal growth

factor receptor (EGFR) [68].

A complete understanding of cell signaling through this pathway requires identifi-

cation of (i) all components of the system, (ii) the quantitative contribution of these

components to various signaling outputs, and (iii) the hierarchical relationships, in-

cluding physical connections, between these components. Systematic functional ge-

netic approaches, such as genome-wide RNA interference (RNAi) screening used to

identify previously unknown signaling genes, are inferential in that they do not dis-

tinguish between direct and indirect effects. Large-scale protein-protein interaction

(PPI) mapping complements genetic studies by revealing physical associations, but

fails to reveal the function of interacting proteins or the functional consequences of the

interactions. Separate such systems-level functional genomic and interactome studies

in the past few years have revealed that signaling is likely propagated within large

networks of hundreds of proteins, and thus have challenged linear cascade models de-
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rived from traditional reductive approaches [43]. However, each systematic screening

approach performed separately suffers from inherent technical limitations of the meth-

ods used, leading to false negatives and positives, restricting the comprehensiveness

of pathway regulator discovery.

We have previously described an antibody-based, genome-wide RNAi screen as-

say for ERK activity in Drosophila cells following insulin stimulus [41]. This assay

relies on an antibody that recognizes phosphorylated Drosophila ERK (dpERK). We

showed specific examples from secondary screens of a small subset of genes that were

required downstream of insulin receptor, but not of the EGFR, for activation of ERK

in particular cell types, suggesting that many potential components of this pathway

may have been missed by a single primary screen [41]. Although multiple RTKs can

signal through Ras to ERK, their output is context-dependent despite the apparent

similarity in signal propagation through the core pathway [16, 74, 151].

A combined systematic approach using complementary functional genomic and

interactome technologies would be more likely to uncover direct regulators and more

completely describe the landscape of a signaling pathway [86]. We performed mul-

tiple genome-wide RNAi screens in parallel to generating a tandem affinity purifi-

cation/mass spectrometry (TAP/MS)-based PPI network surrounding the canonical

pathway components of the RTK-Ras-ERK signaling pathway, using data from cells

responding to insulin or EGF. Although we identified several previously unknown

pathway regulators, the functional genomic and interactome data sets suggest that

much of the core canonical pathway is complete.

2.2 Results

A functional genomic compendium of RTK-Ras-ERK signaling To comprehensively

discover genes that regulate ERK signaling output and to identify other specificity-

generating proteins, we conducted four systematic, cell-based RNAi screens for regu-

lators of EGF-stimulated ERK activation in two stable Drosophila cell lines expressing

EGFR, S2R+mtDER and Kc167mtDER ([44]: Figure S1A, B). These four screens
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combined with our two previously published screens performed with S2R+ cells that

were unstimulated (baseline) or stimulated with insulin [16] interrogated >20,000

dsRNAs targeting roughly 14,000 Drosophila genes. We compared all six primary

screens, divided into three groups by stimulus (insulin, EGF) and cell line (S2R+,

Kc) (Figure 2-1A). These screens uncovered 2,677 annotated genes, in addition to

756 unannotated predicted genes (Figure2-1A, [44]: Table S1). As expected, these

genes include most of the known canonical pathway-associated genes ([44]: Table S5).

We identified both EIF4AIII and mago ([44]: Table S1) as positive regulators in our

RNAi screen in Kc cells and these two genes were also found in an RNAi screen for

regulators of the mitogen-activated protein kinase (MAPK) pathway in Drosophila

S2 cells [4].

Gene Ontology (GO) annotation of the hits from the RNAi screens showed ex-

pected enrichment for processes controlled by RTK-Ras-ERK signaling, including tra-

cheal development, photoreceptor differentiation, imaginal disc morphogenesis, and

hematopoesis; genes controlling mitosis, neuronal differentiation, cell motility, fe-

male gamete generation, and SUMO binding were also enriched in the hits from the

RNAi screens ([44]: Table S2). The hits from the RNAi screens were also signifi-

cantly enriched for proteins conserved in humans and implicated in a human disease

(p < 3.5× 10−9 and 9.8× 10−4, respectively), implying that many of the newly iden-

tified regulators are also involved in mammalian MAPK signaling. Human orthologs

had stronger RNAi scores on average (p < 0.001), suggesting that genes with more

central roles in the pathway have been conserved.

We observed distinct subsets of genes isolated in the primary RNAi screens under

specific cell or RTK-stimulus contexts ([44]: S1C). We were also able to identify genes

that were common to both cell types under both stimulus conditions (Figure 2-1B).

These genes were quantitatively stronger regulators than the remaining hits ([44]:

S1D). Our systematic screens permitted global observation of the processes regulating

specificity; compared to all hits from the RNAi screens, those identified in the insulin

screen were enriched for cytoskeletal genes and cell cycle processes (p < 1.3×10−6 and

0.03, respectively), whereas transcriptional and peptidase activities were enriched in
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the EGF screen in Kc cells (p < 4× 10−4 and 0.02, respectively).

Distinct subsets of genes were specific to insulin or EGF signaling in either cell

type or were regulated by insulin or EGF in both cell types ([44]: Table S3). Signal-

ing downstream of the insulin receptor (InR) activates both ERK and Akt signaling

pathways; we confirmed that genes encoding components of the Akt-Tor pathway, in-

cluding InR itself, PTEN, Akt, Tor, and gig (Tsc2) were insulin-specific regulators of

ERK. This insulin-specific regulation of ERK and the Akt-Tor pathway is likely me-

diated through feedback from S6 kinase to InR [72]. (Note throughout the text where

different from the Drosophila gene or protein names, mammalian common names or

abbreviations of the proteins are shown after the names or abbreviations for these

components in Drosophila.) Other genes specifically associated with InR signaling

included PRL-1, encoding a phosphatase that can transform cells [162], the kinase-

encoding gene Tak1, and CG9468 and CG5346, which are genes predicted to encode

proteins with alpha-mannosidase and iron oxygenase activities, respectively. Genes

specifically associated with EGF signaling included EGFR itself, and those encoding

several components potentially involved in receptor localization, or downregulation,

or both, including Snap, encoding a protein required for vesicular transport, CG7324,

encoding a Rab guanosine triphosphatase (GTPase) activating protein, and RSG7,

encoding a putative heterotrimeric G protein subunit that also interacts with Snapin,

a component of the SNARE complex [60]. Because these genes were associated with

EGF signaling but not insulin signaling, this suggests that these are required for

EGFR but not InR localization.

2.2.1 An RTK-Ras-ERK interaction network

Many of the previously unknown regulators identified in the RNAi screens may act

indirectly through general cellular processes or through multiple levels of transcrip-

tional feedback. Furthermore, RNAi screens suffer from off-target effects even after

computational filtering and use of multiple RNAi reagents for each gene [39]. PPI

mapping provides an orthogonal representation of network regulators compared to

functional genomic approaches because it reveals physical associations. Although
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large-scale yeast two-hybrid (Y2H) screening can reveal potential PPIs with high ac-

curacy [157], and has been performed on a large scale for MAPK-related proteins [5],

Y2H cannot detect interactions that may rely on regulatory posttranslational modi-

fications that occur in endogenous signaling contexts. Large-scale TAP/MS has been

used to discover PPIs, most comprehensively in yeast [12, 47, 75] and in human cells

in pathway-oriented mapping of tumor necrosis factor (TNF) signaling [11], Wnt

signaling [41], and autophagy [7].

We used TAP/MS to capture the dynamic mini-interactome surrounding 15 well-

recognized, conserved canonical components of the RTK-Ras-ERK pathway: InR,

PDGF (platelet-derived growth factor)- and VEGF (vascular endothelial cell growth

factor)-receptor related (PVR), EGFR, the adaptors Drk (Grb2) and Dos (Gab), the

GTPase Ras85D, the Ras GTP exchange factor Sos, the cytoplasmic tyrosine ki-

nase Src42A, the GTPase-activating protein Gap1, the phosphatase Csw (Shp2), the

MAPK kinase kinase Phl (Raf), the MAPK kinase Dsor1 (MEK), the scaffolds Ksr

and Cnk, and the MAPK Rl (ERK). These 15 proteins served as the baits in the affin-

ity purification assay. The proteins and a control were expressed in S2R+ cells using

TAP vectors [143] and lysates prepared at baseline (unstimulated cells) or following

stimulation with insulin or EGF. Two or more biological replicates were performed

for each bait and condition. Interacting proteins were determined by tandem affin-

ity purification and microcapillary liquid chromatography/tandem mass spectrometry

(LC/MS/MS). 54,339 peptides were identified representing 12,208 proteins, encom-

passing an unfiltered network of 5,009 interactions among 1,188 individual proteins

([44]: Table S4). Among the most abundant proteins identified in replicate pull-downs

and absent in control preparations were other known RTK-Ras-ERK canonical pro-

teins. A network based on the observed interactions among these canonical proteins

recapitulates many of the known RTK-Ras-ERK signaling pathway interactions (Fig-

ure 2-1C), validating the sensitivity of our TAP/MS approach in robustly identifying

pathway interactors.

Raw TAP/MS data often contain sticky proteins found in control preparations.

To provide a ranked list of the most specific pathway interactors by filtering out these
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sticky proteins, we applied the Significance Analysis of Interactome (SAINT) method

to our PPI dataset [12]. Using a SAINT cutoff of 0.83 and false discovery rate (FDR)

of 7.2%, we generated a filtered PPI network of 386 interactions among 249 pro-

teins surrounding the canonical components of the RTK-Ras-ERK signaling pathway

(Figure 2-2 and [44]: Table S4). We evaluated our PPI network by comparing it

with various literature-derived physical interaction networks ([44]: Figure S2A, S2B).

For this network comparison, we generated a master physical interaction network

(MasterNet) composed of five different types of networks (see Materials and Meth-

ods). Our filtered network is significantly overrepresented in the MasterNet, with

29% overlap, compared to 17% for the excluded proteins; the canonical network has a

97% overlap with MasterNet. SAINT scores were highly correlated with appearance

in literature datasets, implying that the PPI network as filtered by SAINT represents

high-confidence pathway interactors ([44]: Figure S2C). Of the literature-derived net-

works, appearance in the Drosophila binary PPI dataset most closely correlated with

higher SAINT scores ([44]: Figure S2D).

We corroborated selected previously unknown interactions using traditional co-

immunoprecipitation techniques and quantitative Western blotting ([44]: Figure S3).

Among these, we verified an ERK interaction with the cyclin-dependent kinase cdc2c

(CDK2), as reported for mammalian cells [10], implying that ERK can directly regu-

late the cell cycle through this interaction. Many of the proteins that interacted with

multiple RTKs were adaptors ([44]: Table S4). A notable exception was CG10916,

which was one of the few common interactors of multiple RTKs (InR, PVR, and

EGFR) that was not an adaptor ([44]: Figure S3A, B). Thus, individual RTKs likely

recruit distinct complexes during signaling and may compete for a common set of

canonical interactors. As a negative regulator of ERK activation and a predicted

RING-domain-containing protein, CG10916 may be involved in receptor degradation

or downregulation of RTKs. We also found that some interactions below our con-

servative SAINT threshold of 0.83 could be verified by coimmunoprecipitation ([44]:

Figure S3C), suggesting the true size of the network may be larger than the cutoff

we chose.
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On the basis of GO classifications, we found that the filtered PPI network was en-

riched in genes encoding regulators of Ras signaling, signaling by the RTKs Sevenless

and Torso, and R7 photoreceptor differentiation, all processes known to involve ERK

activation, and also those encoding proteins associated with mitosis, the cytoskele-

ton, axis specification, oogenesis, kinase activity, and SUMO binding ([44]: Table

S2). Compared to the total filtered network, proteins interacting with Drk (Grb2)

were enriched for GO terms associated with epithelium development and cell fate

(p < 0.02 for both), but otherwise individual bait networks were representative of the

entire network. As with the RNAi hits, our filtered PPI network was enriched for

genes conserved in humans and in human diseases (p < 5.4×10−16 and p < 4.6×10−3,

respectively).

Feedback regulation is a mechanism of ensuring pathway robustness [127]. Sev-

eral studies have examined the transcriptional responses to RTK-Ras-ERK signaling

stimulation or perturbation in vivo [3, 38, 64]. We culled genes in these studies re-

sponsive to pathway modulation and overlaid them with our PPI dataset. We found

that the expression of 25% of the genes for these interactors was changed in response

to pathway modulation, a significantly enriched proportion (p < 2.4 × 10−9; [44]:

Table S4 and Figure 2-3A). These genes are strong candidates encoding mediators of

feedback regulation of RTK-Ras-ERK signaling. Among these were several ribosomal

genes (e.g., RpL6 RpL23A, RpL27, RpS18, RpS30) that exhibited reduced expression

in response to pathway activation (Figure 2-3A) and that were isolated as negative

regulators in the RNAi screens, implying feedback amplification through inhibition

of translational repression. These genes also had negatively correlated gene expres-

sion with their canonical pathway interactors in published gene expression studies

(Figure 2-3B).

During assembly of the RTK-Ras-ERK interactome, we identified complexes under

baseline, insulin-, and EGF-stimulated conditions to find pathway interactors and to

study the dynamics of complex assembly and disassembly using quantitative label-free

proteomics [73]. Previous systematic evaluation of dynamics in interactomes has been

limited to individual proteins; for example one study identified dynamic interactors
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of ERK [144]. Using the SAINT scores at baseline and stimulated conditions, we

assembled interactomes of proteins with a high probability of a dynamic interaction

with the canonical baits in response to insulin (Figure 2.4.6A) or EGF stimulation

(Figure 2.4.6B). We observed several expected interaction dynamics, including the

association of subunits of phosphatidylinositol 3-kinase (PI3K) with InR following

insulin stimulus, which likely occurs through the adaptor Chico (IRS) and association

of the adaptor Drk (Grb2) with EGFR following EGF stimulus ([44]: Table S4).

Our global analysis showed that proteins that interacted with the adaptor Dos were

more likely to associate than dissociate under insulin stimulus; whereas those that

interacted with Drk (Grb2) did not significantly change based on SAINT probabilities.

EGFR interactors dissociated when cells were stimulated with insulin. Upon EGF

stimulus, interactors with Cnk, Dsor1, Gap1, and Ksr all preferentially dissociated,

whereas Phl (Raf) interactors associated (Figure 2.4.6B).

An integrated map of RTK-Ras-ERK signaling We overlaid the functional genomic

data from our six systematic RNAi screens for ERK activation with the TAP/MS

network structural data (Figure 2-2). Nearly half of the proteins [119] of the filtered

PPI network were encoded by genes that scored in the RNAi screens, which repre-

sented a significant enrichment over the genome for regulators of this pathway (19%,

p < 7× 10−25) and was an overlap higher than achieved with a more directed RNAi

screening of TNFα pathway interactors [11]. Strikingly, 32% (38/119) of the inter-

acting proteins were isolated from RNAi screens in both cell types and following both

stimuli (Figure 2.4.6C), whereas if all of the hits from all of the RNAi screens were

counted, then only 8% were isolated from both cell types and stimuli.

Together, our RNAi and PPI experiments identified hundreds of previously un-

known RTK-Ras-ERK regulators, as well as a core network of genes that were iden-

tified with both methods. Because visualization, navigation, and comprehension of

complex networks of interacting proteins with functional data can be challenging, we

provide our resource of RTK-Ras-ERK interactome and functional genomic data as

browseable data files and in Cytoscape format, a graph layout and querying tool [27].

However, given the widespread importance of this pathway and to make the inte-
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grated network interactive and widely accessible, we also provide access to the data

using the Interaction Map (IM) Browser, an online network visualization tool for in-

teractive, dynamic visualization of PPIs [94]. Because integration of multiple data

sources improves the specificity and reliability of individual high-throughput data,

we merged our data with the Drosophila Interactions Database (www.droidb.org),

which contains previously determined PPIs from Y2H and other studies, a wealth of

Drosophila genetic interactions, and predicted conserved interactions, or interologs,

from yeast, worms, and humans [90]. Using these tools, the RTK-Ras-ERK network

can be searched, filtered, and overlaid with multiple genomic datasets.

Rtf1, TepIV, PPP6 complex, and CG6453 as regulators of ERK activation in

vivo Receptor tyrosine kinase signaling to ERKs regulates diverse processes during

Drosophila development. Among these, phenotypic alterations in the Drosophila eye

and wing are the most easily scored, because Ras activity promotes cell growth, cell

proliferation, cell survival, and differentiation into vein tissue downstream of EGFR

activity. Because most of our newly identified pathway-associated genes do not have

known alleles, we tested for phenotypes by expressing RNAi hairpins in Drosophila,

which can faithfully recapitulate known phenotypes [92, 32]. We tested for phenotypes

of multiple genes isolated in our screens by expressing hairpins from a library created

for transgenic RNAi, or in a few cases by cDNA overexpression, in the developing

wing disc (Figure 2-5, [44]: Figure S4, Table 2.1, and [44]: Table S5). Of the 84

genes tested, 48 (57%) had a phenotype in the wing. Consistent with systematic PPI

analyses in yeast [157], we found that proteins with a high degree (hubs) in MasterNet

were no more likely than proteins with a lower degree to result in a wing phenotype.

Surprisingly, we found that even genes that were identified both in RNAi screens

and in the PPI interaction network were no more likely than genes isolated from each

individually to score in wing phenotypes. One of the genes that was positive in both

the functional genomic screen and the interaction screen was CG6453, which encodes

a noncatalytic subunit of glucosidase II. The interaction between the CG6453 protein

with Raf had a high SAINT score and coimmunoprecipitation experiments confirmed

this interaction ([44]: Figure S3A). In the S2R+ EGFR RNAi screen, this gene was
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a negative regulator and we demonstrated that its depletion by RNAi resulted in

a growth and patterning defect (ectopic wing vein material) in the wing, which is

consistent with negative regulation of the pathway (Figure 2-5A). Although genes

encoding TepIV, the Drosophila homolog of a glycophosphatidylinositol-linked pro-

tein that is mutated in human cancers, and components of the protein phosphatase

PPP6 complex, its catalytic subunit PpV and regulatory subunit CG10289, were not

found in the RNAi screens, these proteins were positive in the interaction screen.

We confirmed their interactions with pathway components by coimmunoprecipitation

([44]: Figure S3A) and demonstrated that their knock down produced in vivo pheno-

types (Figure 2-5B and C). TepIV interacted with Ksr and, despite not scoring in our

RNAi screens and having a weak RNAi phenotype in cells, nevertheless modified the

RasN17 phenotype, consistent with a role as a positive regulator (Figure 2-5B). PpV

and CG10289 interacted with each other and Raf, and PpV depletion resulted in a

growth defect in the wing (Figure 2-5C). Finally, Rtf1, a histone methyltransferase,

was a weak interactor with multiple pathway components and was filtered out of the

final PPI network because of its SAINT score. However, the gene encoding this pro-

tein was identified as a negative regulator in our RNAi screens and we confirmed an

in vivo phenotype associated with increased dpERK (indicating increased activity) in

the wing (Figure 2-5D), showing that Rtf1 is a bona fide regulator of ERK activation.

2.3 Discussion

Dissection of oncogenic signaling pathways using functional genomics and proteomics

approaches facilitates understanding dynamic information processing and how these

pathways may be disrupted by mutations or targeted therapeutically [73]. By combin-

ing multiple, parallel genome-wide RNAi screens and TAP/MS interactome screens,

we have assembled an integrated network of RTK-Ras-ERK signaling with both PPI

interactions and functional information obtained in the same signaling environment.

This network provides a resource for subsequent hypothesis-driven, mechanistic in-

vestigation of hundreds of conserved regulators. Because high-throughput datasets
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are individually susceptible to multiple sources of technical and biological noise, confi-

dence in subsets of any given omics dataset can be increased by overlapping contrast-

ing experimental approaches. Most integrative efforts up to now have queried datasets

generated under disparate conditions and even different organisms. We found that

only a small fraction of the hits from interactome or functional screening were isolated

under all conditions tested, and most of these represented known canonical pathway

components. Many of the hits that were identified from each method individually also

showed evidence of activity in vivo. Comparing our studies to other studies of MAPK

regulators suggests that the complete landscape of proteins regulating RTK-Ras-ERK

signaling under specific conditions is likely to be larger than the conservative overlap-

ping network that we describe. In comparison to a Y2H screen for MAPK pathway

interactors, where > 600 interactions were identified [5], only 54 proteins overlapped

with our network, 30 (56%) of which also were positive in our RNAi screen, including

the proton transporter ATPsyn-beta (ATP5B), which was a negative regulator in our

RNAi screens. Of the 31 proteins from a study of dynamic ERK interactors that over-

lapped with our filtered dataset [144], 22 were encoded by genes positive in our RNAi

screens, but only one, heat shock protein 60 (HspD1), was pulled down by ERK itself

in our study. However, another 16 proteins interacted with Raf and 8 interacted with

Dsor (MEK). By considering the Raf-MEK-ERK cassette as a whole, the number of

overlapping interactions increased. Although these comparisons are limited by the

differences in Y2H and TAP/MS techniques, the population of regulators that can be

identified is probably highly technique- and condition-specific, and this work should

be seen as a first pass at identifying the universe of proteins regulating the output of

this pathway. We used PPI mapping and functional genomic methods to identify sev-

eral previously unknown regulators that also exhibited in vivo roles in RTK-Ras-ERK

signaling. Translation of cell culture regulators to in vivo phenotypes is challenging

due to lack of knowledge of the correct tissue in which to test for activity. Because

many of the newly identified regulators are likely cell-type and RTK-specific, we were

unable to identify phenotypes in the wing disc for many of these regulators. A large

number of genes positive in the RNAi screens was not identified in the PPI network,
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either due to false negatives, or because the encoding proteins modulate activity of

the pathway indirectly. A prime example of this latter category is Rtf1, a histone

methyltransferase knock down of which enhanced ERK activation in vivo. Rtf1 en-

hances Notch pathway activity [136] and the Notch pathway can inhibit ERK activity

[156], and thus Rtf1 may be a key mediator of Notch-ERK crosstalk. In contrast,

we identified another protein phosphatase 2A (PP2A) family member, the PPP6 or-

tholog PpV and its regulatory subunit CG10289, as interacting with Raf, but did

not identify the genes encoding these proteins in our RNAi screens. In mammals,

PPP6 components can interact with the inhibitor of nuclear factor B IB [11, 126] and

regulate the cell cycle in normal and pathological contexts. The role of the Ser/Thr

phosphatase PP2A in the Ras pathway has been principally described as a positive

regulator through dephosphorylation of Ser259 on Raf and Ser392 on Ksr (numbering

is based on human proteins), inducing 14-3-3 protein dissociation [93]; PPP6 may play

a similar role in Raf activation in specific in vivo contexts. Interestingly, CG6453,

a noncatalytic subunit of glucosidase II, was identified in the interaction screen and

was identified in the RNAi screens, indicating a high-confidence interactor. Although

its mechanism of regulating MAPK output remains unknown, it is consistent with

the growing recognition that metabolic and other genes previously thought to have

housekeeping roles, in fact, can have specific functions in signaling [145, 26]. Finally,

despite its interaction with intracellular Ksr, TepIV has homology with CD109, a

GPI-linked cell surface marker of T cells, endothelial cells, and activated platelets

that contains a protease inhibitor 2 macroglobulin domain [81]; CD109 is mutated in

7% of colorectal cancers [121] and may thus affect ERK output in these cancers. As

more human cancers are characterized through ongoing large-scale next-generation

sequencing, our dataset of regulators of RTK-Ras-ERK signaling will provide a re-

source for understanding the potential mechanistic contribution of somatic mutations

to cancer development.
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2.4 Materials and Methods

2.4.1 RNAi screening

Primary screening procedures were performed as published previously [16, 42]. We

derived a S2R+ cell line expressing DER (EGFR) from a metallothionein promoter

(S2R+mtDER) also expressing cyan fluorescent protein (CFP)-tagged Dsor1 (MEK)

and yellow fluorescent protein (YFP)-tagged Rl (ERK) [16]. We confirmed ERK

activation following secreted Spitz (sSpitz) (EGF in mammals) stimulus of both en-

dogenous and tagged ERK by Western blotting and high-throughput format, and con-

firmed assay sensitivity using dsRNAs targeting canonical components of the RTK-

Ras-ERK pathway. For primary screening in Kc167 cells, we used our previously

described cell line Kc167 expressing DER (EGFR) from a metallothionein promoter

(Kc mtDER) [16] and modified the high-throughput assay by using our Alexa647-

conjugated dpERK antibody normalized to DAPI staining of nuclei to quantify ERK

activity. Cells were stimulated with conditioned media containing sSpitz for 10 min

or 30 min. Secondary screens were performed as described [42] using S2R+ and

Kc cell lines with 25g/mL insulin or sSpitz-containing conditioned media. Briefly,

cell lines were seeded in plates pre-populated with resynthesized dsRNA amplicons

identified from the primary screen as InR- or EGFR-specific. Following stimulation,

cells were fixed and stained for dpERK as previously described. Primary screen hits

were pre-filtered for computationally-predicted off-target effects, which is generally

sufficient to reduce off-target noise to below assay noise [16]; however, any individual

dsRNA should be treated with caution until validated with multiple amplicons [33].

A Z-score threshold of +/-1.5 was used as the primary screen cutoff, and is an av-

erage of replicate screens under each condition. Full datasets and dsRNA sequence

information are available at the DRSC website (www.flyrnai.org).
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2.4.2 TAP and mass spectrometry

TAP expression vectors permitting low-level expression of tagged components in sta-

ble Drosophila cell lines using the metallothionein promoter have been previously

described [143]. For the bait proteins, we cloned InR, PVR, EGFR, Drk (Grb2),

Dos (Gab), Sos, Src42A, Gap1, Csw (Shp2), Ras85D, Phl (Raf), Dsor1 (MEK), Ksr,

Cnk, and Rl (ERK) into the C-terminal tag TAP vector and created stable cell lines

for each, as well as a control cell line for subtracting nonspecific interactors or con-

taminants. All cell lines except InR-TAP also expressed EGFR from an uninduced

metallothionein promoter (resulting in minimal low level expression) for induction

with sSpitz (EGF). 1 to 2 x 109 cells induced with 140 M CuSO4 overnight were

used for each lysis at the given condition. Cells were lysed as described [143] and in-

solution TAP was performed essentially as described [120], with the exception of final

washes and elution, which was performed in ammonium bicarbonate buffer without

detergent for LC-MS/MS analysis. At least two biological replicates were performed

for each bait and condition. Several micrograms of TAP immunoprecipitation from

each bait condition were reduced with 10 mM DTT at 55C, alkylated with 55 mM

iodoacetamide at room temperature, and then digested overnight with 2.5 g of modi-

fied trypsin (Promega) at pH 8.3 (50 mM ammonium bicarbonate) in a total of 200 L.

The digest was stopped with 5% trifluoroacetic acid (TFA) and cleaned of buffer and

debris using a C18 ZipTip (Millipore). 35 L of aqueous HPLC A buffer was added

to the C18 Ziptip elution (50% acetonitrile/0.1% TFA) was dried to 10 L to concen-

trate the sample and remove organic content. A 5 L aliquot was injected onto the

microcapillary LC/MS/MS system for sequencing. The microcapillary LC/MS/MS

setup consisted of a 75 m id x 10 cm length microcapillary column (New Objective

Inc., Woburn, MA) self-packed with Magic C18 (Michrom Bioresources, Auburn, CA)

operated at a flow-rate of 300 nL/min using a splitless EASY-nLC (Thermo Fisher

Scientific). The HPLC gradient was 3% B to 38% B over 60 minutes followed by

a 7 minute wash at 95% B. The column was pre-equilibrated with A buffer for 15

minutes at 0% B prior to the runs (A: 99% water/0.9% acetonitrile/0.1% acetic acid;
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B: 99% acetonitrile/0.9% water/0.1% acetic acid). The microcapillary LC system is

coupled directly to a LTQ Orbitrap XL mass spectrometer (Thermo Fisher Scientific,

San Jose, CA) operated in positive ion mode for data dependent acquisitions (DDA)

(Top 5: 1 FT survey scan followed by five scans of peptide fragmentation (MS/MS) in

the ion trap by collision-induced dissociation (CID) using helium gas. The spray tip

voltage was 2.8 kV and capillary voltage was 35 V. A single micro scan with a maxi-

mum inject time of 400 msec was used for the FT-MS scan in the Orbitrap and 110

msec was used for the MS/MS scans in the ion trap. Typically, between 3000-6000

MS/MS spectra were collected per run. The total number of LC/MS/MS runs col-

lected for this study was 94 and collected over a six-month period. All LC/MS/MS

runs were separated by at least one blank run to prevent column carryover. Raw

MS/MS spectra are available by request and are deposited in TRANCHE.

All collected MS/MS fragmentation spectra were searched against the reversed

dmel-all-translation protein database (FlyBase Consortium,) version 5.4 (41,644 pro-

tein entries, Jan, 2008) using the Sequest search engine in Proteomics Browser Soft-

ware (Thermo Scientific, San Jose, CA). Differential posttranslational modifications

including deamidation of QN (glutamine and asparagine) (+0.989 Da) and oxidation

of methionine (+15.9949 Da), common in vitro modifications that occur during sam-

ple processing were included in the database searches. From Sequest, protein groups

containing at least two unique identified peptides were initially accepted if they were

top ranked matches against the forward (target) dmel-all-translation protein database

and with a consensus score of greater or equal to 1.0. Individual peptides that were

not part of protein groups were accepted if they matched the target database and

passed the following stringent Sequest scoring thresholds: 1+ ions, Xcorr ≥ 1.9, Sf ≥

0.75, P ≥ 1; 2+ ions, Xcorr ≥ 2.0, Sf ≥ 0.75, P ≥ 1; 3+ ions, Xcorr ≥ 2.55, Sf ≥ 0.75,

P ≥ 1. After passing the initial scoring thresholds, all peptide hits not contained in

protein groups were then manually inspected to be sure that all b- (fragment ions re-

sulting from amide bond breaks from the peptides N-terminus) and y- ions (fragment

ions resulting from amide bond breaks from the peptides C-terminus) aligned with

the assigned sequence using tools (FuzzyIons and GraphMod) in Proteomics Browser
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Software (Thermo Fisher Scientific). A FDR rate of 1.84% for peptide hits and FDR

of 0.6% for protein hits was calculated based on the number of reversed database hits

above the scoring thresholds.

2.4.3 Computational analysis of TAP-MS data

We used the “significance analysis of interactome” (SAINT) algorithm to calculate

probability scores for interactions observed by MS. SAINT uses spectral count data

and constructs separate distributions for true and false interactions to derive the

probability of a bona fide protein-protein interaction. Because SAINT models spec-

tral counts with a unimodal distribution, we ran the algorithm separately for each

condition and combined the scores. Specifically, we assumed that each condition was

conditionally independent given the spectral count data and computed the probabil-

ity that the interaction was true in any condition. For proteins A and B in conditions

1 to n the combined score is computed as:

P (A↔ B any cond) = 1− P (A↔ no cond)

= 1− (1− P (A↔ B cond 1)) · · ·

(1− P (A↔ B cond n)),

where P (A ↔ B cond i) is the SAINT score for condition i. Some proteins were

not used as baits in all conditions, hence some interactions that were observed in one

condition could not be observed in another. In this case, we used the prior probability

of an interaction occurring in that condition as computed by the SAINT algorithm.

In the general setting, this would be the probability that a randomly chosen pair of

proteins interact, in other words (#interacting pairs of proteins)/(#pairs of proteins).

In our specific case, we are choosing a pair of proteins from proteins that are observable

in mass spectrometry, so we adjust the ratio accordingly to our specific setting.

Additionally, we computed pairwise dynamic difference scores between conditions

(the probability that an interaction is true in one condition but not the other) assum-

ing the conditions were conditionally independent given the spectral count data. To
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determine a high-confidence threshold, we constructed a set of true positive interac-

tions by overlapping our experimental interactions with BioGRID. This list contained

49 interactions between 114 proteins. We formed a true negative set by taking inter-

actions that were more than 3 hops away in the BioGRID protein interaction network.

A receiver operating characteristic (ROC) curve generated using this gold standard

list and generated using Fly binary and fly complex data is shown in [44]: Figure S2A

and B. We chose 0.83 as the cutoff to achieve a 7.2% FPR and 26.5% true positive

rate, which is comparable to the results achieved in [12].

2.4.4 Additional statistical analysis

Filtered binary interactions were graphed using the Cytoscape environment [27]. For

analysis of feedback regulation, three in vivo microarray studies were collated [3, 38,

64]. Microarray data from in vivo analysis of mesoderm [38] were reanalyzed to focus

on subgroups for RTK-Ras-ERK pathway only, excluding other pathway datasets.

Human orthologs were predicted using DIOPT, an integrative ortholog predic-

tion tool developed at Drosophila RNAi Screening Center [58] http://www.flyrnai.

org/cgi-bin/DRSC_orthologs.pl. The orthologs with the best prediction score, re-

flecting the number of methods from which the prediction was identified, were se-

lected. Potential human disease-related fly homolog information was obtained from

Homophila vs 2.1 [22]. Gene expression levels were obtained from DRSC (http:

//www.flyrnai.org/cgi-bin/RNAi_expression_levels.pl and cell line gene ex-

pression data was obtained from the modENCODE project [17]. The significance

of conserved genes, expressed genes, or disease-related genes was tested by calcu-

lating cumulative hypergeometric probability. The enrichment of GO annotations

for Molecular Function and Biological Process, as well as Panther pathway annota-

tion, was performed using online DAVID tool (http://david.abcc.ncifcrf.gov/

[30]. Hierarchical clustering and graphing was performed using the MultiExperiment

Viewer, Cluster, and Java TreeView programs [108, 110, 36].

MasterNet is a compilation of databases. (i) Fly binary PPI network: This net-

work was constructed by integrating experimentally identified binary PPIs (direct
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physical interactions) from major PPI databases, such as BioGrid [125], IntAct [2],

MINT [18], DIP [111]), and DroID [90]. The fly binary PPI network consists of

29,325 interactions between 8,161 proteins. The PPIs were downloaded from the

source databases in PSI-MI format [70] and the gene/protein identifiers were mapped

to FlyBase gene identifiers. (ii) Interolog binary PPI network: PPIs were predicted

on the basis of experimentally identified binary PPIs for human, mouse, worm, and

yeast. (iii) Interolog protein complexes network: PPIs were predicted from experi-

mentally identified protein complexes for human, mouse, worm, and yeast. Both the

interolog networks were compiled from BioGrid, IntAct, MINT, DIP, and HPRD [99]

databases. The PSI-MI files were downloaded from the source databases and the ex-

perimental identifier from interaction detection type field was used to sort the PPI as

either binary or complex. Using ortholog annotation from DIOPT database 129,090

PPIs between 5,954 proteins were mapped to fly. (iv) Kinase-substrate network:

For each experimentally verified phosphorylation site, the kinase that phosphorylates

that site was predicted using the NetPhorest program [89, 135]. The program uses

probabilistic sequence models of linear motifs to predict kinase-substrate relationship.

The fly kinase-substrate network consists of 26,736 interactions between 55 kinases

and 2,518 substrate proteins. (v) Domain-domain interaction network: Known and

predicted protein domain-domain interactions (DDI) were extracted from DOMINE

database [155], which includes 26,219 interactions inferred from Protein Databank

(PDB, www.pdb.org) entries and those that are predicted by 13 different computa-

tional approaches using Pfam domain definitions. For network integration, we con-

sidered only high-confidence DDIs as defined by DOMINE and those derived from

crystal structures.

2.4.5 Western blotting and coimmunoprecipitation

All Western blotting and co-immunoprecipitation procedures and antibodies used

were previously described [16]. Quantification of dpERK and total ERK (used as nor-

malization value) was performed using the LiCor detection system. Western blotting

and coimmunoprecipitation experiments were performed a minimum of two times.
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2.4.6 In vivo analysis

Stocks used for genetic analysis were obtained from Bloomington except where noted.

All HA-tagged cDNA constructs were cloned by PCR cloning using Phusion Poly-

merase (New England Biolabs) into pUAST. cDNA clones or libraries used as tem-

plates were as follows: Dco (LD04938), CG31666 (SD04616), Rack1 (RE74715),

CG1884 (cDNA library), and CG31302 (AT04807). Hairpins described in the text

were cloned into pWiz as described previously [118] using the following primers:

• CG7282: CACGCCCAGCTGTCAG, TTCACGTTCTCCAGTTTCTC

• CG3878: CAGCTCCGCAGTGCTCGTGT, AGTTGTCGTCGTCGGAGCTC

• CG1884: TCGGCTTGGGCACAAAC, AAGGACTTCGCCCTGGAT

• CG17665: GCAGAAGCAATAGCCGAATC, ATTTTCTCATCTGCCGCATC.

Other RNAi hairpins were designed using the attP targeted transgenic system for an

in vivo RNAi project (“TRiP” lines) as described [92], as well as RNAi lines from

Vienna Drosophila RNAi Center and NIG-Fly Japan stock center. Other fly lines:

y,w,hsFlp, MS1096-Gal4, UAS Ras1N17, ElpB1/CyO, apterous-Gal4, UAS-mCD8-

GFP/CyO. For dpERK staining, wing discs from third instar larvae were dissected in

cold PBS, fixed for 15 minutes in 4% formaldehyde, and washed in PBS+0.1%Triton.

Discs were stained using a rabbit antibody that recognizes dpERK (Cell Signaling).

Wings of the indicated genotype were mounted in a 1:1 mixture of Permount and

xylenes. A complete list of the hairpin lines used in this study is given in table S6.
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Figure 2-1: (Continued on the following page.)
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Figure 2-1: Parallel RTK-Ras-ERK genome-wide RNAi screens in Drosophila. (A)
Comparison of six RNAi screens grouped into three experimental categories based on
ligand stimulus or cell type, with number of annotated genes in each category. Note
S2R+ cells used for EGF stimulation express EGFR for robust ERK activation in
response to EGF; thus a baseline RNAi screen was performed in these cells in the ab-
sence of EGF in addition to the baseline performed previously in the EGFR-negative
S2R+ cells. The total gene set is enriched for genes with human orthologs and for
known components of the canonical signaling cassette. (B) 227 genes appeared in all
three groups, representing a common or global set of RTK-Ras-ERK regulators, which
included those encoding proteins in the canonical cascade (top array graph). Exam-
ples of other global regulators are shown in the lower array graph. Genes are listed
with by common abbreviation, with mammalian names listed in parentheses when
different than Drosophila. Color represents average Z-score in each primary RNAi
screen. (C) Many known canonical interactions are recapitulated by the TAP/MS
analysis, including those involving adaptors (Drk-Sos), the Phl activation complex
(Phl-Dsor1, Phl-Rl, Phl-Ksr, and Ksr-Cnk), and InR with the PI3K subunits p110
(PI3K92E) and p60 (p85 ortholog, PI3K21B). Red edges denote those found both
in our study and in MasterNet, a literature-based compilation of previously known
PPIs. The gray edge denotes those not found in MasterNet. Edge thickness represents
SAINT score. Circles represent prey; rectangles represent baits.
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Friedman Figure 2

Figure 2-2: TAP/MS PPI RTK-Ras-ERK signaling network. Filtered PPI map of
RTK-Ras-ERK signaling in Drosophila, including primary RNAi screen scores, if
present. Z-score RNAi result describes negative regulators (yellow) and positive
regulators (blue). Edge thickness denotes SAINT score, a measure of interaction
confidence. Red edges denote those found both in our study and in MasterNet, a
literature-based compilation of previously known PPIs. Edge thickness represents
SAINT score. Circles represent prey; rectangles represent baits. The size of the node
correlates with the number of RNAi screens from which the proteins were isolated.
See [44]: Table S4 for details of all node and edge parameters and names of the
proteins identified as pathway interactors.
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Friedman Figure 3

Figure 2-3: Additional analysis of the PPI network. (A) Nodes in the PPI network
that were also regulated by pathway output, as mined from in vivo transcriptome
analyses. Blue nodes were encoded by genes that were downregulated by pathway
output; yellow nodes were upregulated. (B) Correlation between expression of the
genes encoding the baits and preys. Orange edges denote interacting partners that
exhibited an inverse correlation in expression; blue edges denote interacting partners
that exhibited positive correlation in expression.
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Figure 2-4: Dynamics in the RTK-Ras-ERK signaling network. (A) Subset of to-
tal PPI network with a SAINT-based probability of dynamic interaction > 0.8 by
comparing baseline to insulin condition. (B) Subset of PPI network with dynamic
interactions under EGF stimulus. In both panels (A and B), orange lines indicate
protein association; blue lines denote dissociation. (C) “Core” network of PPIs that
were identified in all three RNAi screen sets. Edge thickness denotes SAINT score, a
measure of interaction confidence. Red edges denote those found both in our study
and in MasterNet, a literature-based compilation of previously known PPIs. Edge
thickness represents SAINT score. Circles represent prey; rectangles represent baits.
The size of the node correlates with the number of RNAi screens from which the
proteins were isolated. See [44]: Table S4 for details of all node and edge parameters
and names of the proteins identified as pathway interactors.
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Figure 2-5: In vivo analysis of newly identified regulators of RTK-Ras-ERK signaling
in Drosophila. (A) Knock down of CG6453 results in a growth defect in the wing.
CG6453-Phl interaction was isolated with a SAINT score of 0.99, and CG6453 had a
Z-score of 1.6 under EGF stimulus in S2R+ cells. (B) Knock down of TepIV enhances
the RasN17 loss of wing vein phenotype consistent with a role as a positive regulator.
TepIV had a SAINT probability of 1.0. (C) Knock down of the PPP6 subunit PpV
results in a growth defect in the wing. PpV had a SAINT score of 0.88 with Phl.
(D) Knock down of Rtf1 results in a growth defect in the wing and induces ectopic
dpERK staining in the wing disc. Rtf had a Z-score of 2.25 under insulin stimulus in
S2R+ cells.
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Symbol Name Wing Phenotype Maximum SAINT

Probability

Baseline S2R+ 10’ Insulin S2R+ Baseline S2R+mtDER 10’ EGF

S2R+mtDER

10’ EGF

Kcmt-

DER

30’ EGF KcmtDER Screen

uex unextended slight curling 1 0.32 -0.47 1.02 -2.7 0.1 0.06 E

CG6453 - slight curling 0.99 -0.94 0.94 0.51 1.6 0.85 0.28 E

brm brahma wing size re-

duced; slight

curling; wing

shape abnormal

0.89 -0.97 -2.46 -2.09 0.36 0.61 2.42 IEK

betaCop beta-coatomer

protein

nearly complete

loss of wing tissue

0.88 0.15 2.08 2.85 -3.86 0.27 -1.74 IEK

TepIV Thiolester con-

taining protein

IV

Enhancement of

Ras[N17] wing

vein phenotype

1

PpV Protein phos-

phatase V

nearly complete

loss of wing tissue

0.88

Dref DNA replication-

related element

factor

nearly complete

loss of wing tissue

0.78 0.2 -0.38 -0.6 -4.34 -0.76 0.11 E

kis kismet ecoptic wing vein

material

0.56 1.08 -1.97 0.71 0.46 0.32 2.56 IK

CG6907 - Enhancement of

Ras[N17] wing

vein phenotype

0.56 0.64 -5.67 -1.37 -3.82 -1.26 0.94 IE

ACC Acetyl-CoA car-

boxylase

”severely blis-

tered, misshapen,

and reduced wing

size”

0.56 -1.45 -2.89 -1.81 2.02 0.42 -0.58 IE

Chro Chromator ”severely blis-

tered, misshapen,

and reduced wing

size”

0.56 -1.2 -1.34 -1.51 -1.26 2.16 0.18 EK

CG3523 - slight curling 0.56 -0.28 2.1 1.07 -3.69 0.2 -0.96 IE
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cact cactus wing size re-

duced; ecoptic

and missing vein

material; Null

allele suppresses

Elp[B1] phe-

notype in eye;

Null allele sup-

presses tor[4021]

phenotype in

embryo

0.56 -1.5 -2.45 -0.73 -1.85 0.22 0.29 IE

Rtf1 Rtf1 ”severely blis-

tered, misshapen,

and reduced wing

size; enhanced

dpERK staining”

0.56 -0.95 2.25 1.22 0.45 0.2 1.37 I

sl small wing Ectopic wing

veins with

MS1096

0.53 1.61 1.19 -0.43 0.72 0.76 -1.03 I

dgt2 dim gamma-

tubulin 2

Enhancement of

Ras[N17] wing

vein phenotype

0.53 4.39 0.15 1.27 0.46 -0.52 -0.54 I

Caf1 Chromatin as-

sembly factor 1

subunit

”blistered, mis-

shapen, curled,

and reduced wing

size”

0 -2.29 -2.72 -0.34 -0.63 0.09 0.1 I

CG8963 - ecoptic wing vein

material

0 -0.18 -3.01 -0.67 -3.52 0.02 1.61 IEK

beta’Cop beta’-coatomer

protein

nearly complete

loss of wing tissue

0 -0.54 2.2 5.49 -3.14 -0.29 -0.72 IE

hyx hyrax nearly complete

loss of wing tissue

0 3.94 2.94 2.48 0.62 2.16 1.02 IEK

deltaCOP delta-coatomer

protein

”severely blis-

tered, misshapen,

and reduced wing

size”

0 0.18 1.69 1.3 -2.91 -0.31 -1.57 IEK
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alpha-

Tub85E

alpha-Tubulin at

85E

”severely blis-

tered, misshapen,

and reduced wing

size”

0 2.74 -2.83 1.88 -2 -0.21 0.14 IE

Arc42 Arc42 slight curling 0 1.82 -0.13 1.44 0.17 -0.59 -0.42 I

chinmo Chronologically

inappropriate

morphogenesis

wing size re-

duced; blistering;

upward curling;

cDNA overex-

pression lethal

with all drivers

tested

0 -0.44 -3.46 -2.01 -1.77 0.49 -0.03 IE

CG34422 - ”wing size re-

duced; slight

curling; pWiz

second hairpin

also results in

smaller, rough

wings”

0 -2.05 0.65 -1.99 0.19 0.77 1.44 IE

CG5844 - wing size re-

duced; loss of

wing vein mate-

rial

0 -3.41 -4.65 -1.71 -6.92 -1.92 -0.54 IEK

CG6854 - possible ec-

topic wing vein

material; En-

hancement of

Ras[N17] wing

vein phenotype

N/A 2.54 -0.81 -1.48 -2.84 0.74 1.7 IEK

Axn Axin possible ectopic

wing vein mate-

rial

N/A 2.75 -2.2 -0.29 0.41 2.56 1.81 IK

CG13298 - ”blistered,

curled, and

reduced wing

size; ectopic wing

vein material”

N/A 6.73 1.42 1.06 0.38 -1.19 -0.71 I
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Spc105R Spc105-related ”blistered, mis-

shapen, curled,

and reduced wing

size”

N/A -3.2 -1.71 -0.33 -3.1 0.83 0.21 IE

Spn42Dc Serpin 42Dc ecoptic wing

vein material;

Suppression of

Ras[N17] wing

vein phenotype

N/A 4.67 1.26 1.7 0.48 -0.43 0.02 IE

Cdc27 Cdc27 misshapen and

reduced wing size

N/A 3.11 -4.07 6.12 -6.57 -1.6 -2.16 IEK

wah waharan ”much smaller

wing with loss

of wing vein

material; Hairpin

wing phenotype

enhanced by

DER[DN] (dom-

inant negative);

Hairpin expres-

sion in eye results

in rough, smaller

eyes”

N/A -0.88 1.42 -0.61 -7.11 -1.86 -0.12 EK

Cap-G - nearly complete

loss of wing tissue

N/A 3.25 0.57 1.72 0.64 -0.18 1.07 IE

CG6984 - Enhancement of

Ras[N17] wing

vein phenotype

N/A 6.42 -0.83 -0.34 0.69 -0.27 -0.3 I

CG43073 - Overexpression

in wing results

in expanded A-P

axis and ectopic

wing veins

N/A -3.79 -2.58 -1.65 -6.08 -1.39 2.23 IEK

50



dco discs overgrown ”Overexpression

in wing results

in expanded

A-P axis and

thickened wing

veins, and sup-

presses RasN17

(dominant neg-

ative) wing vein

phenotype. Over-

expression in

the eye produces

a rough eye

phenotype.”

N/A 1.99 1.03 0.86 0.58 -0.19 0.22 I

Not1 Not1 ”severely blis-

tered, misshapen,

and reduced wing

size; pWiz second

hairpin expres-

sion in wing also

results in loss

of most tissue;

Overexpression

in wing results

in ectopic wing

veins; Hairpin

expression in eye

results in rough,

smaller eye”

N/A 1.61 -1.97 -3.28 -4.41 2.66 2.31 IEK

ago archipelago slight curling;

Enhancement of

Ras[N17] wing

vein phenotype

N/A 0.71 4.15 1.47 1.47 0.13 -0.53 I

fzy fizzy slight curling;

Suppression of

Ras[N17] wing

vein phenotype

N/A -0.76 -3.97 -1.47 -4.98 -0.51 1.24 IE
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Vha100-

5

Vacuolar H[+]

ATPase subunit

100-5

slight curling N/A 1.64 -1.12 -1.29 -2.07 1.53 0.08 IEK

CG6608 - slight curling N/A -0.25 -2.59 -0.35 -1.22 0.55 0.25 I

CoRest CoRest slight curling;

ectopiv wing

vein material;

Suppression of

Ras[N17] wing

vein phenotype

N/A 2.82 -3.13 1.3 -1.98 1.52 0.88 IEK

Vps4 Vacuolar protein

sorting 4

upward curling;

Suppression of

Ras[N17] wing

vein phenotype

N/A -0.64 -2.87 0.12 -5.01 -2.68 -3.6 IEK

aret arrest upward curling;

possible wing

vein defect

N/A -2.8 -6.28 -2.76 -5.98 0.48 5.45 IEK

CG17665 - wing size re-

duced; upward

curling; pWiz

and TRiP hair-

pin enhance

Ras[N17] wing

vein phenotype

N/A 1.99 0.65 0.77 -0.57 0.78 1 I

uri unconventional

prefoldin RPB5

interactor

wing size re-

duced; upward

curling; Suppres-

sion of Ras[N17]

phenotype

N/A -0.11 -3.65 -0.27 -2.21 -1.13 -1.02 IE

CG3332 - wing size re-

duced; upward

curling

N/A -0.02 -2.21 -0.53 -0.02 1.09 0.78 I

Table 2.1: In vivo analysis of PPI or RNAi screen hits. Shown are hits with wing pheno-

types of any kind. Bolded genes encode proteins identified in the PPI network, as well as

were positive hits in the RNAi screens. “N/A,” not identified in any TAP experiments;

PPIs with SAINT < 0.83 were removed as nonspecific. Values in primary screen categories

represent average Z-score for two replicates. Ras[N17], dominant-negative Ras; Elp[B1],

gain-of-function EGFR allele; tor[4021], a gain of function torso allele; MS1096, promoter

used to drive expression of the given transgene in the wing. All genes tested are listed in

[44]: Table S5.
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Chapter 3

Incorporating quantitative mass

spectrometry data in protein

interaction analysis

Abstract

1Comprehensive protein-protein interaction (PPI) maps are a powerful resource for
uncovering the molecular basis of genetic interactions and providing mechanistic in-
sights. Over the past decade, high-throughput experimental techniques have been
developed to generate PPI maps at proteome scale, first using yeast two-hybrid ap-
proaches and more recently via affinity purification combined with mass spectrometry
(AP-MS). Unfortunately, data from both protocols are prone to both high false pos-
itive and false negative rates. To address these issues, many methods have been de-
veloped to post-process raw PPI data. However, with few exceptions, these methods
only analyze binary experimental data (in which each potential interaction tested is
deemed either observed or unobserved), neglecting quantitative information available
from AP-MS such as spectral counts.

We propose a novel method for incorporating quantitative information from AP-
MS data into existing PPI inference methods that analyze binary interaction data.
Our approach introduces a probabilistic framework that models the statistical noise
inherent in observations of co-purifications. Using a sampling-based approach, we
model the uncertainty of interactions with low spectral counts by generating an en-
semble of possible alternative experimental outcomes. We then apply the existing
method of choice to each alternative outcome and aggregate results over the ensem-

1The material in this chapter previously appeared in BMC Bioinformatics (2013) as “A sampling
framework for incorporating quantitative mass spectrometry data in protein interaction analysis”
by George Tucker, Po-Ru Loh, and Bonnie Berger [139].
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ble. We validate our approach on three recent AP-MS data sets and demonstrate
performance comparable to or better than state-of-the-art methods. Additionally, we
provide an in-depth discussion comparing the theoretical bases of existing approaches
and identify common aspects that may be key to their performance.

Our sampling framework extends the existing body of work on PPI analysis us-
ing binary interaction data to apply to the richer quantitative data now commonly
available through AP-MS assays. This framework is quite general, and many enhance-
ments are likely possible. Fruitful future directions may include investigating more
sophisticated schemes for converting spectral counts to probabilities and applying the
framework to direct protein complex prediction methods.

3.1 Introduction

The importance of protein interactions and protein complexes in understanding cellu-

lar functions has driven the generation of comprehensive protein-protein interaction

(PPI) maps. The first large-scale PPI maps were generated for the model organism

Saccharomyces cerevisiae, initially using yeast two-hybrid screens (Y2H) [141, 61]

and subsequently by affinity purification combined with mass spectrometry (AP-MS,

Figure 3-1) [49, 56]. Similarly, high throughput approaches have been applied to com-

prehensively map the Drosophila melanogaster interactome, initially using Y2H [51]

and more recently by AP-MS [53]. With advances in experimental protocols and de-

creasing costs, medium-scale AP-MS studies have become ubiquitous in proteomics

for targeted investigation of specific pathways or interactions. The PPI networks

these analyses generate have provided exciting insights into biological pathways and

protein complexes, e.g., with relevance to human disease [62]. However, raw AP-MS

data includes many false positive and false negative interactions, which are serious

confounding factors in their interpretation [15, 28].

To address these issues, numerous methods have been developed to post-process

AP-MS data sets. These generally fall in two classes: spoke and matrix models

(Figure 3-2). Spoke models [112, 124, 77, 25, 130, 23] produce confidence scores

on bait-prey interactor pairs directly observed in the data (i.e., those with non-zero

spectral counts), whereas matrix models [28, 54, 159, 149, 53] additionally infer prey-

prey interactions that are not directly observed and hence have broader coverage at
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Figure 3-1: A typical AP-MS workflow. A typical AP-MS study consists of performing
a set of experiments on bait proteins of interest, with the goal of identifying their
interaction partners. In each experiment, a bait protein is tagged (e.g., using a
FLAG-tag or TAP-tag) and expressed in cells. The bait protein and interacting prey
proteins are affinity purified. The resulting mixture of bait and bound prey proteins
is trypsinized into peptide fragments, which are separated by liquid chromatography
and passed to a mass spectrometer for analysis. The mass spectrometer produces
intensity spectra, which are matched to peptides to deduce proteins present in the
purification. Interacting preys thus identified are assigned semi-quantitative spectral
counts (SpC) indicating the propensity of each prey to bind to the bait. Data is
collated from across the experiments into a matrix of bait-prey spectral counts, which
serves as the input to post-processing methods that filter contaminants and identify
true interactions.
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the expense of increased false positives. Development of spoke models has been an

intense area of research from the outset; see Nesvizhskii [91] for a thorough review.

Matrix models rely on analyzing co-occurrences of pairs of proteins across many
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experiments and were thus less effective on the initial medium-scale AP-MS studies

first performed. As larger AP-MS experiments have become more common, however,

matrix models have become increasingly relevant because they can leverage the rich

co-occurrence information in these data sets. For example, Guruharsha et al. [53]

reported significantly improved inference on the Drosophila melanogaster interactome

using a matrix model approach as compared to state-of-the-art spoke methods.

Figure 3-2: Direct and indirect interactions in AP-MS data sets. The diagram depicts
a bait protein bound to a prey protein complex. Solid lines indicate bait-prey inter-
actions that could be observed in an AP-MS experiment, while dashed lines indicate
prey-prey protein complex interactions that are not directly observable. Spoke meth-
ods make predictions only on directly observed interactions (e.g., Bait with Prey A),
whereas matrix models infer protein complex interactions (e.g., Prey A with Prey B).
Because the prey proteins do not necessarily form a single complex that interacts with
the bait, inferences of prey-prey interactions need to be based on the co-occurrence of
pairs of preys across many purification experiments, which strengthens the evidence
for interaction.

Bait 

Prey 
B 

Prey 
A 

Prey 
C 

Directly observed interaction 

Protein complex interaction 

The existing literature on matrix approaches has almost exclusively considered
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only binary experimental data (i.e., data sets in which bait-prey interactions are

deemed either observed or unobserved, with no additional information about propen-

sity of proteins to interact). An exception is the HGSCore method [53], which to

our knowledge is the first to use quantitative information from AP-MS experiments

in the form of bait-prey spectral counts. In contrast, spoke models have success-

fully used quantitative information (e.g., spectral counts [124, 77, 130, 112, 25, 44]

and MS1 intensity data [23]) to filter contaminants and assign confidence scores to

interactions.

In this study, we propose a novel approach for incorporating quantitative inter-

action information into AP-MS PPI inference. Our approach aggregates scores over

an ensemble of binary data sets that represents the quantitative data, capturing the

uncertainty of interactions with low spectral counts. Importantly, the sampling-based

framework we propose allows us to directly harness previous binary methods without

modification, thus extending previous methods to use quantitative information. We

validate our results on a large-scale PPI network and two medium-scale networks.

Our approach improves all binary methods that we tested across a broad range of pa-

rameter values. In many cases, the improved performance is comparable to or better

than state-of-the-art methods that have been developed to leverage spectral counts.

Additionally, in the Discussion we characterize previous approaches and identify a

common mathematical framework that several successful approaches have used, pro-

viding insights that may be valuable in continuing to refine PPI inference techniques.

3.2 Results

3.2.1 Sampling framework

The motivation behind our approach is that spectral count values in AP-MS data sets

span a very large dynamic range (from single-digit values to numbers in the thousands

- Figure 3-3), and collapsing this range into binary values—as is necessary to apply

several previous methods [48, 28, 54, 159, 149]—loses a great deal of potentially
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useful information. In particular, our intuition is that bait-prey interactions observed

with high spectral counts are much more likely to be true interactions than those with

spectral counts of only 1 or 2, which might arise through experimental noise. However,

there are exceptions; lower abundance proteins can be true interactors if they are

pulled-down reproducibly, and high abundance proteins can be sticky proteins that

are not necessarily true interactors.

To model this uncertainty in the bait-prey interaction data in a way that allows

us to harness existing methods that operate on binary data, we propose a sampling

framework that represents the quantitative (spectral count) data set using an en-

semble of binary data sets (Figure 3-4). We do so by first converting each positive

spectral count into a probability that represents the confidence that the observed

interactions were not experimental artifacts. Then, for each of a specified number

of trials, we create a binary data set by sampling bait-prey interactions according to

their probabilities, and we apply the existing method to the binary data set. Finally,

we aggregate the results over the ensemble to produce an overall ranking of possible

PPIs.

Explicitly, our framework takes as input a matrix of spectral counts (nij), where

columns correspond to purification experiments and rows to prey proteins. We con-

vert a spectral count of n to the probability 1 − (1 − p)n, where p is a user-defined

parameter representing the probability that a single spectral count is the result of

a true observation, and we view the n observed spectral counts as arising indepen-

dently. Using these probabilities, we generate binary data sets of the same size as the

original spectral count input matrix by putting a 1 in each matrix cell independently

with probability 1− (1− p)nij . The resulting distribution of alternative binary real-

izations of the spectral count matrix thus reflects the range of confidences in different

bait-prey interactions, in contrast to the common approach of converting the spectral

count matrix to a single binary matrix simply by replacing all positive spectral counts

with 1s.

Given an ensemble of alternative binary realizations and an existing PPI scoring

algorithm that operates on binary data, we apply the PPI scoring algorithm to each
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Figure 3-3: Histogram of spectral counts in the DPiM data set [53]. Of 438,557
positive spectral counts, 94% are less than 20 (shown) and nearly half are either 1 or
2. In contrast, the largest spectral count value is 753.
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realization, in each case producing a score for every possible PPI. We then produce

an aggregate score for every PPI by taking the mean of the ensemble of scores for that

PPI, possibly after applying an appropriate transformation. (A slight subtlety can

arise in aggregating scores because depending on the shape of the score distribution,

taking the mean may not be robust. Among the algorithms we evaluated, we observed

that the SAI score [48] could produce unbounded negative values, so we lower-bounded

SAI scores at 0 before aggregation in order to prevent a single realization from having

an extreme effect on the ensemble score.)

An additional consideration is the size of the ensemble required to produce stable

results. In the tests we describe below, we ran 120 independent trials and found
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Figure 3-4: Sampling approach: Representing spectral counts with ensembles of bi-
nary matrices. A summary of our sampling approach. First, each spectral count in
the AP-MS data matrix is converted to a probability 1 − (1 − p)n, where n is the
spectral count. Then, for each cell of the matrix, we sample an independent Bernoulli
random variable according to its probability. We repeat this procedure independently
for a desired number of trials, obtaining an ensemble of binary matrices representing
the original quantitative AP-MS data. Each binary matrix is then used as input to
a PPI inference method of choice that operates on binary data, and the results from
each trial are aggregated to produce an ensemble score. Notably, the existing PPI
inference method is directly applied to each binary matrix without modification.
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reasonable score separation between low, medium and high confidence interactions

(Figure A-7). Then we further verified that increasing the ensemble size by a factor

of four had a negligible impact on the results, indicating that 120 trials was sufficient

to average out the stochasticity of the method. Although the minimum number of

trials required will vary with the specific data set, our experiments suggest that in

general, such a number of trials should sufficiently explore the space of binary real-

izations without presenting a computational burden, especially because the ensemble

computations can be easily parallelized.
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3.2.2 Validation on three AP-MS data sets

We benchmarked our method by producing predictions from three AP-MS data sets:

the recently published Drosophila Protein interaction Map (DPiM) [53] which includes

over 3000 baits, a medium-scale human data set (TIP49) with 27 baits [112], and a

Drosophila study focusing on the MAPK pathway with 21 baits [130]. On each

evaluation data set, we applied our sampling framework to three previously published

binary matrix methods for PPI inference: Hart et al. [54], PE [28], and SAI [48]. Each

method produced a ranked list of interactions.

A standard approach to evaluating inferred interactions is to compare predictions

with a high-confidence gold standard set. However, such a reference is challenging

to construct. Few large-scale databases are available, and even the largest are un-

derstood to be incomplete and include false positive interactions. In light of these

concerns, we follow the validation strategy used in Guruharsha et al. [53] of con-

sidering the overlaps between multiple curated data sets, obtaining subsets of PPIs

with increasingly stringent thresholds on the number of supporting sources. The idea

is that we can have high confidence in interactions supported by multiple lines of

medium-confidence evidence, reducing the false positive rate in the gold standard

data set (with the caveat that this approach may be biased toward well-studied path-

ways). We applied this procedure to create validation data sets from the Drosophila

Interactions Database (DroID) [90] for Drosophila PPI predictions and BioGRID [125]

for human PPI predictions (See Methods for details).

For each method, we compared the top 25,000 predicted interactions for the DPiM

data set and the top 2,500 predicted interactions for the TIP49 and MAPK data

sets to gold standard interactions supported by increasing numbers of sources, as in

Guruharsha et al. [53]. Our sampling framework produced robust improvement to the

binary methods across all levels of support and all data sets (Figure 3-5). Moreover,

the improved methods perform better than or comparably to state-of-the-art methods

that use spectral count data (HGSCore [53] and SAINT [25]). The choice of cutoff

at the top 25,000 and 2,500 interactions was arbitrary, and the results are similar at

61



different cutoffs (Figures A-1,A-2,A-3).

The sole parameter in our method is the probability p that represents the reliability

of a single peptide observation. We suggest a default value of p = 0.3, but the

performance improvements obtained using our sampling framework are robust across

a wide range of values of p (Figure 3-6,A-4,A-5) and for different confidence cutoffs

(Figure A-6).

3.3 Discussion

The literature of published methods for PPI inference from AP-MS data is substan-

tial, and in continuing to develop methodological improvements, it is valuable to

understand the similarities and differences among existing approaches and identify

key ideas.

3.3.1 Characterization of methods

Broadly speaking, methods can be broken down into two classes of models—spoke

and matrix models—and by their scoring method. Spoke models make predictions

solely on bait-prey interactions, while matrix models infer prey-prey interactions as

well. Because prey-prey relationships are never directly observed, matrix models use

the co-occurrence of pairs of proteins over multiple experiments to make inferences.

Methods can also be characterized by their scoring functions, which generally fall into

two classes: evidence-based scoring and null model-based scoring. In evidence-based

scoring, models are built that estimate the likelihoods of observations under interact-

ing and non-interacting pairs. Typically, a log likelihood ratio is then summed across

experiments, implicitly assuming independence. Evidence-based scoring approaches,

such as the PE [28] and C2S [149] scores, can easily combine direct bait-prey ob-

servations and prey-prey observations in the same model. However, because likeli-

hood models for interacting and for non-interacting pairs must be constructed, these

scores tend to have more tuning parameters that must be estimated from scarce gold

standard validation data. In null model based approaches, such as Hart et al. [54],
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Figure 3-5: Performance comparison of PPI inference methods. Performance of our
sampling approach applied to PPI inference methods that operate on binary bait-prey
interaction data (Hart et al. [54], PE [28], and SAI [48]), and compared to state-of-the-
art methods that make use of spectral counts (HGSCore [53] and SAINT [25]). For
each method that operates on binary data, two curves are plotted: (i) a dashed curve
that shows the performance of the method when applied to a direct binarization of
the spectral count data (i.e., converting all nonzero spectral counts to 1s)—a common
approach—and (ii) a solid curve showing performance upon applying our sampling
approach with p = 0.3. We evaluate performance according to the number of PPI
inferences (out of the highest-confidence 25,000 or 2,500) validated on gold standard
tests, as explained in the main text. The plot shows performance relative to a baseline
method of simply ranking PPIs in decreasing order of observed spectral counts. All
methods were run using default parameter settings.
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HGSCore [53], and SAI [48], a model for non-interacting pairs is assumed and fit from

the data. This forms an empirical null distribution under which observations can be

scored. The advantage of such an approach is that only the null distribution has to
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be tuned, so in many cases tuning with gold standard validation sets is unnecessary.

An additional consideration for any method that combines spoke and matrix in-

formation is the balance between information from direct bait-prey observations and

prey-prey co-occurrences. These sources of information are clearly distinct, so the

weighting between the two must be carefully calibrated, potentially requiring gold

standard validation data. Proper calibration is critical to performance and may ex-

plain why Hart et al. and HGSCore, which seemingly sub-optimally ignore spoke

information, perform significantly better on our tests than SAI [48], which uses both

spoke and matrix information.

For experiments with a handful of baits, we expect that methods relying on spoke

information will have the best performance because matrix methods rely on analyz-

ing co-occurrences of pairs of proteins across many experiments. However, even for

the medium-scale experiments that we analyzed, methods that rely solely on matrix

information performed competitively with methods that used spoke information. We

foresee that as experiment sizes grow, matrix relationships will be increasingly infor-

mative, so it will be crucial to consider both spoke and matrix information. Although

our approach is applicable to any binary method, in our experiments, we found that

for nearly all experiments PE was the top performer amongst the binary methods.

In addition, because PE uses spoke and matrix information, we recommend using it

in our framework.

3.3.2 Low rank plus sparse matrix framework

Interestingly, several methods (e.g., Hart et al. [54], HGSCore [53], SAINT [25]) can

be understood under a common “low rank plus sparse matrix” framework. Hart et

al. [54] considered a null model in which interaction partners are chosen independently

at random in proportion to the number of interactions each partner protein was

observed in. Although Hart et al. [54] used a hypergeometric distribution, for large-

scale studies, the score for interaction between proteins A and B is well approximated
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using a Poisson cumulative distribution function (CDF), taking the form

− log

(
1− PoissonCDF

(
XAB;λ =

NA

N
× NB

N
×N

))
,

where XAB is the number of experiments that protein A and protein B co-purify in,

NA (resp. NB) is the number of co-purifying pairs that protein A (resp. B) is observed

in, and N is the total number of co-purifying pairs.

In the above form, λ factors as a rank-1 matrix, so that the method can be seen

as modeling the co-occurrence matrix XAB as the sum of a rank-1 “background”

matrix (blurred by Poisson noise) and a sparse matrix indicating true interactions.

Notably, XAB ignores quantitative information, simply counting experiments in which

proteins were co-purified. HGSCore [53] is an extension of the Hart et al. score

that incorporates spectral count information through a transformation of the spectral

counts (instead of directly using the co-occurrence matrix) and then analyzes the

pseudo co-occurrence matrix in a similar manner. For the same reasons as above, we

can view HGSCore as a rank-1 null model plus sparse true interactions, where the

rank-1 component is estimated from a transformation of the spectral count data.

Similarly, SAINT [25] uses a probabilistic formulation to decompose a matrix of

observed counts as a sum of: a rank-1 matrix, a sparse true interaction matrix, and

generalized Poisson noise. Interestingly, SAINT decomposes the matrix of spectral

counts—as opposed to co-occurrences—and has an entirely different justification for

using a low rank model. Hart et al. and HGSCore assume that interaction partners

are chosen at random in the null model, which gives rise to a low rank structure

in the co-occurrence observations. Alternatively, SAINT assumes that contaminant

proteins produce similar spectral counts across all bait experiments, which gives rise

to a low rank structure in the spectral count observations. SAINT uses solely spoke

evidence while Hart et al. and HGSCore use only co-occurrence evidence, suggesting

that some combination of these approaches under a common framework may be an

interesting direction for future investigation.
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3.3.3 Moving toward complexes

As protein biology is ultimately driven by the interactions of protein complexes—

not just pairwise protein interactions—recent work has begun inferring protein com-

plexes directly from AP-MS data [112, 163, 113, 24, 50, 128]. Traditionally, methods

have first inferred PPIs and then clustered proteins into complexes (e.g., Guruharsha

et al. [53]); however, information may be lost in this two-step procedure that first

post-processes the data into high-confidence pairwise interactions. As with matrix

models, some recent methods that bypass this first step have considered only binary

experimental data [163, 50], whereas others have successfully used spectral count in-

formation [112, 113, 128, 24]. A similar sampling approach could be used to extend

methods that consider only binary data to leverage spectral counts.

3.4 Conclusions

As large-scale AP-MS experiments have become more common, an opportunity to

leverage indirect co-occurrence information for PPI inference has arisen. Our sam-

pling framework harnesses existing matrix methods for PPI inference that could pre-

viously only be applied to binary interaction data, achieving robust improvements

across a range of data sets and enabling comparable or better performance versus

current state-of-the-art methods. This framework extends the existing body of work

on binary interaction analysis to apply to richer spectral count data now commonly

available. Moreover, it is sufficiently general to have potential for future application

in related protein interaction inference studies.

3.5 Methods

3.5.1 AP-MS data sets

The main data set we analyzed, DPiM, is a large-scale AP-MS study of the Drosophila

proteome with 3485 experiments, which collectively pulled down 4927 distinct pro-
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teins ([53], Table S1). The DPiM data set is unique among publicly available AP-MS

data sets because of its large size, which gives us confidence that the results we ob-

served are not the result of random noise or overfitting. We also tested our approach

on two medium-scale AP-MS data sets. One is another Drosophila study that focused

on the MAPK pathway [130]; this data set contained 63 experiments, which collec-

tively pulled down 1078 distinct proteins and included 9 control experiments. The

other is a human data set referred to as TIP49 and originally published in Sardiu et

al. [112]. We obtained the interaction data set, consisting of 35 experiments, which

collectively pulled down 1207 distinct proteins and included 9 control experiments,

from Choi et al. ([25], Table S1).

3.5.2 Validation data sets

To validate Drosophila PPI inferences, we used the data sets in the DroID database [90].

We excluded the Perrimon co-AP complex and DPiM co-AP complex data sets to

avoid contaminating our test sets with training data, leaving 7 other PPI data sets

that we used in the above validation procedure. The validation set contained 58,657

interactions supported by at least one source, 3,310 interactions supported by at least

two sources, 289 interactions supported by at least three sources, and 67 interactions

supported by at least four sources.

To validate human PPI inferences, we used BioGRID v3.1.79 [125], which contains

40,680 interactions supported by at least one source, 11,054 interactions supported

by at least two sources, 4,879 interactions supported by at least three sources, and

2,271 interactions supported by at least four sources.

3.5.3 Implementation

We re-implemented the SAI [48], PE [28], Hart et al. [54], and HGSCore [53] meth-

ods; each is described in its reference but code is not provided. The PE score uses

two parameters, r, representing the probability of detecting a true association in a

purification experiment, and npseudo, the number of pseudocounts added for each prey.
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Since Collins et al. [28] estimates values of r = 0.51, 0.62, and 0.265 on three example

data sets and suggests using npseudo = 20, 10, or 5, we set r = 0.3 and npseudo = 10.

We downloaded and ran SAINT [25] with default parameters.

We also implemented the C2S score [149] but found its performance to be highly

sensitive to the tpr (true positive rate) parameter; some values of tpr—including the

default 0.6 in at least one of our tests—result in inferred values of the probabilistic

parameters rbp and rpp that exceed 1, causing improper values in subsequent calcu-

lations (e.g., logarithms of negative numbers). We therefore excluded C2S from our

analysis.

When we applied our sampling framework to data sets containing replicates, we

treated columns corresponding to replicates independently. When we tested all of

the methods on data sets containing controls, only SAINT, which explicitly models

control data, used the controls.
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Figure 3-6: Sensitivity of performance to sampling parameter p. We plot the improve-
ment in performance, as a function of p, achieved by applying our sampling approach
vs. applying methods to direct binarizations of spectral count data. Performance
is measured using the same setup as in Figure 3-5. For figure readability, we show
results for just the validation sets consisting of interactions supported by at least 3
pieces of evidence; similar results hold for the other validation sets.
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Chapter 4

Inferring interactors from

LUMIER using mixture models

Abstract

We describe a novel method for determining significant protein interactions from raw
LUMIER data that corrects for spatial biases that occur in high-throughput LUMIER
screens. We apply this method to a large LUMIER screen with 60 preys and 800 baits
to characterize chaperone, co-chaperone, and client interactions. We show that our
method is able to recover significantly more true interactions than previous methods.
From this data, we assemble a comprehensive network of chaperone, co-chaperone,
and client interactions that reveals new insights into co-chaperone specificity.

4.1 Introduction

1The crowded intracellular milieu poses major challenges to protein folding in vivo.

Intrinsic and extrinsic stress can easily derail the finely tuned cellular protein home-

ostasis (proteostasis) network, leading to protein misfolding and aggregation. To cope,

cells have evolved mechanisms to maintain proteostasis and to protect themselves

from environmental insults. Indeed, a substantial fraction of the cellular proteome is

1This section is adapted from a manuscript to appear in Cell as “A quantitative chaperone
interaction network reveals the architecture of cellular protein homeostasis pathways” from Mikko
Taipale, George Tucker, Jian Peng, Irina Krykbaeva, Zhen-Yuan Lin, Brett Larsen, Hyungwon Choi,
Bonnie Berger, Anne-Claude Gingras, and Susan Lindquist. We contributed the computational
processing of the interactions detected by LUMIER. In the subsequent subsections, we describe the
application of our method to this data set.
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dedicated to maintaining proteostasis [98].

The proteostasis network is intimately and very broadly linked to human disease.

In common and rare diseases alike, it has emerged as a central modifier of disease

progression and severity. Perturbation of the proteostasis network has been implicated

in many if not most diseases ranging from neurodegeneration, to cancer, to Mendelian

disorders, thereby contributing immensely to human disease burden [88, 146]. At

the same time, preclinical models and more recent clinical results with drugs that

target central modules of the network, such as proteasome or Hsp90 inhibitors, have

shown that targeting the network has high therapeutic potential [138]. However, it

is clear that we need a more detailed understanding of the proteostasis network to

understand how exactly it is perturbed in disease and to develop more effective and

specific therapeutics.

Chaperones are the most prominent class of proteins that shape the proteostasis

network. They transiently bind thousands of substrate proteins (clients) in the cell

and promote their folding, trafficking, and degradation [109]. The three major chap-

erone families chaperonins, Hsp70, and Hsp90 have distinct mechanisms of action

and modes of client protein recognition. Chaperonins such as GroEL recognize and

encapsulate proteins that are kinetically trapped in partially folded molten globule

conformations, whereas Hsp70 binds short, hydrophobic peptide motifs that are often

exposed during translation and in partially or fully unfolded proteins [55]. In contrast,

most Hsp90 clients are almost completely folded but often require this chaperone for

the final steps of folding, such as ligand or substrate binding [132].

As a result of these fundamental mechanistic differences in client protein recogni-

tion, chaperone families have distinct client preferences. Recent systematic proteomic

approaches have started to uncover the in vivo client protein ensembles of each chap-

erone family [14, 69, 133, 150, 165]. However, previous studies have employed widely

varying methods and model organisms, making it a challenge to quantitatively com-

pare results and integrate them into a coherent model. Perhaps more importantly,

however, chaperones do not function in isolation in vivo. Rather, they dynamically

associate with a diverse set of cofactors. These factors, collectively referred to as
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co-chaperones, provide a host of auxiliary functions to chaperones, ranging from reg-

ulating the rate of client release to recruiting specific client proteins to the core

chaperone [34, 65].

Detailed in vitro studies have revealed how co-chaperones interact with chaper-

ones and regulate their function [95, 122, 123], but we have such information for only

a few co-chaperones. Moreover, a growing body of evidence suggests co-chaperones

play much more than a supportive role in protein homeostasis. For example, some co-

chaperones possess intrinsic chaperone activity [40, 71, 166], whereas others indepen-

dently regulate cellular processes that are distinct from those of canonical chaperones

[35, 161]. Yet, both the client-protein specificity and possible chaperone-independent

functions of most co-chaperones remain enigmatic.

Chaperone interactions are difficult to assay by standard methods because they

interact so diversely, are highly abundant, interact with proteins that may be ex-

pressed at much lower abundance, and interact with a diverse set of co-chaperones

to perform their function that are not present in binary assays such as yeast two-

hybrid. Luminescence-based mammalian interactome mapping (LUMIER) [6] and

its extension LUMIER with bait control (BACON) [133] are well suited to detect-

ing these interactions. Here, we have taken a systematic and integrative approach,

surveying the physical interaction landscape of all known Hsp90 co-chaperones and

several known Hsp70 co-chaperones. We combine mass spectrometry and quantita-

tive LUMIER assays to characterize the client protein specificity of co-chaperones

and how they are integrated into the proteostasis network. Our analysis confirms

the existence of two partially overlapping networks of chaperone/client interactions,

centered on Hsp90 and Hsp70. It populates these networks with new members and

dramatically increases their connectivity, while suggesting unique functions for most

co-chaperones and identifying several new domain-specific co-chaperones.

In this chapter, we describe the method we developed to determine significant

protein interactions from LUMIER data. The method corrects for spatial biases that

occur in high-throughput LUMIER screens. We apply this method to a large LU-

MIER screen with 60 preys and 800 baits to characterize chaperone and co-chaperone
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Figure 4-1: Steps of the LUMIER with BACON assay[133]. 3 x FLAG tagged bait
protein is coexpressed with renilla lucerifase tagged prey protein (HSP90 in this case).
(1) Cells are lysed and the lysate is incubated in anti-FLAG coated microwells. (2)
Nonspecific binders are washed away and interaction strength is measured by lumi-
nescence. (3 & 4) Bait abundance is measured by ELISA. Adapted from Figure 1 in
[133].

interactions. We show that our method is able to recover significantly more true in-

teractions than previous methods, and this allows us to construct a comprehensive

network of chaperone and co-chaperone interactions. Finally, we discuss the insights

gained from mapping chaperone, co-chaperone, and client protein interactions.

4.2 LUMIER

LUMIER is a co-affinity purification assay that uses luminescence to measure inter-

action strength between a pair of proteins called the bait and prey proteins. Renilla

luciferase, an enzyme that emits light, is fused to a protein of interest, called a prey

protein. In each interaction test, the prey protein is coexpressed with a FLAG-tagged

protein, called a bait protein. The FLAG tag is a polypeptide tag added to a protein

to enable efficient purification of the tagged protein. This allows us to co-purify the

bait protein as well as any prey protein that interacts with the bait protein. Then,

we can measure the luminescence to quantify the abundance of the bound prey pro-
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Figure 1. LUMIER with BACON Assay Reveals the Quantitative Nature of HSP90::Client Interactions
(A) Principle of the assay. 3 3 FLAG-tagged bait constructs (putative HSP90 clients) are transfected into a 293T cell line stably expressing Renilla luciferase-

tagged HSP90 (prey). Cell lysates are incubated in 384-well plates coated with anti-FLAG antibody. After washing off nonspecific proteins, luminescence is

measured. Interaction of HSP90 with the bait can be detected as luminescence. In the second step, the amount of bait is measured with anti-FLAG ELISA. The

log2 ratio between bait and prey concentration is the interaction score.

(B) Distribution of luminescence in HSP90 interaction assays with 420 kinase clones (red), 498 E3 ligase clones (green), and 1,093 transcription factor clones

(blue). As a control, 176 kinase clones were tested against a cell line expressing Renilla luciferase only (black). Gaussian curve was fitted to each data set to

establish a cutoff for true interactions (dashed black line).

(C) Quantitative interaction score was calculated for all 193 kinases that interacted with HSP90. Scatter plot shows the interaction scores from two biological

replicates.

See also Figure S1 and Table S1.

Cell 150, 987–1001, August 31, 2012 ª2012 Elsevier Inc. 989

Figure 4-2: Visualization of luminescence readout from LUMIER. The LUMIER ex-
periments were performed in parallel on 384-well plates (left panel). The luminescence
can be visualized as a heatmap (right panel), where red indicates high luminescence
and blue indicates low luminescence. In our experiments, all wells on the same plate
contain the same prey while the bait is varied from well to well. Adapted from
Figure 1 in [133].

tein and determine if an interaction occurred. LUMIER with bait control (BACON)

[133] adds a step to quantify the abundance of the bait protein by enzyme-linked

immunosorbent assay (ELISA) using a separate FLAG antibody. The bait abun-

dance can be used to filter out bait proteins that failed to express and to normalize

the LUMIER scores. Because interactions are probed in-vivo, we can detect interac-

tions that involve additional protein partners and interactions that are contingent on

post-translation modifications.

High-throughput LUMIER experiments are conducted in parallel on plates with

hundreds of wells containing separate interaction test (Figure 4-2). In the experiments

that we analyzed, every well on the same plate had the same prey protein while the

bait proteins varied from well to well.

Previously, LUMIER has been used to map the transforming growth factor-β

(TGBβ) pathway, to map HSP90 client interactions [133], to assay small-molecule

binding to kinases [134], and to map other interactions.

4.3 Methods

As in all interaction assays, the interaction scores, in this case luminescence, have to

be compared to a negative control to identify significant interactions. Even when no

interaction occurs, the prey protein may bind at a low affinity to the FLAG-tag or the
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FLAG antibody, which can cause spurious luminescence. We used statistical meth-

ods to model the background luminescence distribution and to identify significant

interactions.

We use a two-step procedure to remove spatial bias and background batch effects

before scoring LUMIER experiments. In many experiments, we observe that raw

luminescence values exhibit spatial gradients across plates (Fig. 4-3). These spatial

gradients may be caused by unavoidable temperature gradients that affect the kinetics

of the reactions. Although the gradient changes smoothly, the differences between

wells in a plate can be significant and may result in false positives. Unlike other

assays with similar biases, such as microarrays, true interactions only increase the

luminescence, hence simple averaging approaches to estimate the background would

overestimate the bias. In the first step, we propose to explicitly model and then

subtract out the smooth spatial bias. This approach also removes batch effects that

influence a whole plate, allowing us to pool plates from the same prey.

All wells, even those without interactions, exhibit background levels of lumines-

cence. For those plates without significant spatial bias, we empirically find that the

background luminescence is well fit by a log-normal distribution, motivating model-

ing the luminescence values on a log scale. To determine significance above random

background luminescence, we explicitly model the background log-luminescence with

a normal distribution. In the following subsections, we provide detailed descriptions

of the models and scoring procedure.

4.3.1 Spatial Bias Model

Specifically, we modeled the log-luminescence values with a Gaussian process mixture

model to account for the spatial bias as well as true interactions. The observed lumi-

nescence is a combination of background luminescence modulated by a spatial bias

and potentially luminescence from true interactions. We assume that the background

log-luminescence is normally distributed, which is consistent with control experi-

ments. We also noticed that the mean background log-luminescence depends on the

identity of the prey protein, but is consistent on all plates of the same prey protein.

76



Raw$luminescence$values$

Spa0al$gradient$bias$ Background$luminescence$ Significant$interac0ons$

Figure 4-3: Mixture model for data normalization. The raw luminescence values (top
panel) are composed of: a background log-luminescence drawn from a prey-dependent
normal distribution (middle panel), a Gaussian variable which measures the spatial
bias and correlation between neighboring wells on a plate (left panel), and an effect
variable for each well which accounts for the actual interaction strength (right panel).
The effects are visualized as heatmaps, where red indicates high luminescence and
blue indicates low luminescence.

Similarly, the variance of the background distribution varies from prey to prey but is

empirically similar across plates for the same prey. Based on these observations, we

used a mixture model with three components: a background log-luminescence drawn

from a prey-dependent Gaussian distribution, a Gaussian variable which measures the

spatial bias, and an effect variable which accounts for the actual interaction strength.

Our model flags outliers as potential interactions without biasing our estimate of the

background.

Explicitly, our model is generative (i.e., it specifies the process generating the

LUMIER data). For each prey g, we have a Gaussian distribution N(mg, ρ
2) from

which the background log-luminescence µgp is drawn, which corresponds to the batch

bias for plate p. mg is the prey-dependent mean value; and ρ2 is the background

variance that controls the differences between plate-specific batch effects. In addition

to this background noise model, we introduce a Gaussian process to account for the

spatial bias on a plate. The spatial bias bgp· for all wells on a plate p of prey g is

drawn from a correlated multivariate normal distribution N(0, K), where K specifies
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the smoothness or correlation among the spatial biases on neighboring wells. We used

a squared exponential covariance matrix, estimated from the control plates.

For each plate p of prey g, we also have a mixture parameter πgp, which is the

proportion of true interactions on the plate. This parameter is drawn from a Beta

distribution with prior parameter a and b. Then for each well w on the plate, we

have a binary variable zgpw drawn from a Bernoulli distribution with the mixture

parameter πgp. If the binary variable zgpw = 1, we add a parameter modeling the

interaction strength that represents the average binding strength between bait and

prey; otherwise, the observed log-luminescence from the well is assumed to come

solely from the background noise and the spatial bias.

Our model can be fully specified as (Figure 4-3)

xgpw ∼ (1− zgpw)N(bgpw + µgp, σ
2
g) + zgpwN(bgpw + µgp + µe, σ

2
g + σ2

e),

where σ2
g is the variance of the background log-luminescence distribution for prey

g, and µe and σ2
e are the parameters for the log-luminescence distribution for the

significant or true biological interactions.

Inferring parameters in the model

Using the Expectation-Maximization algorithm (EM), we estimated parameters in

the model by maximizing the log-likelihood of the observed data. The overall log-

likelihood summed over each plate p, prey g and well w can be written as follows

L =
∑
gpw

zgpw

(
−(xgpw − µgp − bgpw)2

2σ2
g

− 1

2
log(2πσ2

g)

)
+ (1− zgpw)

(
−(xgpw − µgp − µe − bgpw)2

2(σ2
g + σ2

e)
− 1

2
log(2π(σ2

g + σ2
e))

)
+
∑
gpw

zgpw log πgp + (1− zgpw) log(1− πgp)

+
∑
gp

(
−(µgp −mg)

2

2ρ2
− 1

2
log(2πρ2)

)
−
∑
gp

1

2
bTgp·K

−1bgp·,
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up to a constant that does not depend on the parameters. The first summation is the

log-likelihood of the observed log-luminescence given our generative model, and the

rest of the terms are the log-likelihood of the prior distribution of the parameters. In

the model, zgpw are unobserved variables and Θ = {mg, µgp, bgpw, πgp, σg, µe, σe} are

parameters that need to be estimated. To perform the EM algorithm, we iteratively

replaced the zgpw by their expectation given Θ and maximized the log-likelihood with

respect to Θ.

Specifically, we optimized Θ by gradient descent. The gradient of the parameters

can be computed efficiently in closed form

∂L

∂mg

=
∑
p

µgp −mg

ρ2

∂L

∂µe
=
∑
gpw

(1− zgpw)
xgpw − bgpw − µgp − µe

σ2
g + σ2

e

∂L

∂σe
=
∑
gpw

(1− zgpw)
σe

σ2
g + σ2

e

(
(xgpw − bgpw − µgp − µe)2

σ2
g + σ2

e

− 1

)
∂L

∂µgp
=
∑
w

zgpw
xgpw − bgpw − µgp

σ2
g

+ (1− zgpw)
xgpw − bgpw − µgp − µe

σ2
g + σ2

e

− µgp −mg

ρ2

∂L

∂σg
=
∑
pw

zgpw
1

σg

(
(xgpw − bgpw − µgp)2

σ2
g

− 1

)
+ (1− zgpw)

σg
σ2
g + σ2

e

(
(xgpw − bgpw − µgp − µe)2

σ2
g + σ2

e

− 1

)
.

Given these gradient calculations, we used quasi-Newton L-BFGS to optimize the

parameters. Because πgp is constrained to be a probability, we estimated it separately.

Maximizing πgp given the rest of Θ is straightforward

πgp =

∑
w zgpw
W

,

where W is the number of wells on a plate. We also estimated bgpw separately because

it has complex relations with the other parameters. Taking the gradient with respect
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to bgp· gives

∇bgp·L = diag(zgp·)

(
xgp· − µgp

σ2
g

)
+ diag(1− zgp·)

(
xgp· − µgp − µe

σ2
g + σ2

e

)
−
[
diag(zgp·/σ

2
g) + diag

(
1− zgp·
σ2
g + σ2

e

)
+K−1

]
bgp·.

This leads to a closed form update for bgpw, which required solving a linear system of

equations.

In summary, we repeatedly replaced the zgpw by their expectation, maximized

{mg, µgp, σg, µe, σe}, maximized πgp, and maximized bgpw until convergence.

4.3.2 Background Luminescence Model

After removing the spatial bias, we compared the interaction effect with the estimated

background log-luminescence distribution. To do so, we used a previously described

approach to compute Z-scores for each interaction [133]. Briefly, we estimated a

mean and standard deviation parameter for each prey. We used the mode of the

distribution of log-luminescence scores as the mean. Then, we estimated the standard

deviation of the log-luminescence values as if all values above the mean were censored.

When estimating the background luminescence distribution, considering only values

below the mean is reasonable because true interactions only cause an increase in

luminescence (as opposed to a decrease). Finally, to score interactions, we calculated

the Z-score using the mean and standard deviation estimated above for each prey.

4.4 An application to mapping chaperone,

co-chaperone, and client interactions

In the following subsections, we describe an application of this method to a large

LUMIER screen with 60 preys and 800 baits to characterize chaperone, co-chaperone,

and client interactions. We validated our method against BioGRID [19], a database

of known protein interactions, and showed that it identifies more true interactions
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than previous methods.

4.4.1 Experiment setup

Our collaborators quantitatively assayed 800 known or putative clients for interac-

tion with 60 chaperones, co-chaperones, and protein quality control factors. All in-

teractions were assayed in duplicate. Lastly, all plates had at least one well with a

3xFLAG-tagged bait EGFP (which was not expected to interact with the prey) and

at least three empty wells with no bait proteins to serve as negative controls.

4.4.2 Preprocessing

We found that a number of bait proteins failed to express. To be conservative in

the reported interactions, we aggressively filtered interactions with low ELISA score.

Specifically, we first quantile normalized ELISA scores across plates having the same

bait protein configuration. Then we removed all interactions having ELISA score

lower than the 95th (90th) quantile of the control ELISA scores for the chaperone,

co-chaperone::client interactions (co-chaperone::beta-propeller interactions). We re-

duced the stringency for the co-chaperone::beta-propeller interaction experiments be-

cause we had fewer wells to estimate the control ELISA distribution from. We also

flagged control wells that had abnormally high quantile normalized ELISA scores,

manually checked, and removed mislabeled wells.

4.4.3 Validation

To validate our method, we compared the inferred interactions against a high-confidence

gold standard interaction dataset. We compared methods at several false discovery

rate (FDR) cutoffs for the number of predicted interactions that were validated in

the gold standard. Comparing methods at fixed FDR cutoffs allowed methods to pre-

dict novel interactions without suffering a penalty, as long as the method controlled

FDR. This is particularly important because we expected LUMIER to discover many
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novel interactions that were not in the gold standard. We estimated the FDR of each

method using control wells on each plate.

Specifically, to calculate an empirical upper bound for FDR, we scored both nega-

tive control and experiment LUMIER wells. Each assayed plate had a 3xFLAG-tagged

EGFP and at least three empty wells with no bait protein as negative controls. From

the control well scores, we calculated the number of wells passing different score

thresholds, which allowed us to estimate the number of false discoveries. Explicitly,

we upper bounded the false discovery rate by

FDR(t) ≤ C(t)/Nc

E(t)/Ne

where FDR(t) is the false discovery rate at a threshold t, C(t) is the number of

negative control wells with score greater than t, Nc is the number of control wells,

E(t) is the number of experiment wells with score greater than t, and Ne is the total

number of experiment wells.

In other words, this quantifies the expected number of experiment wells that pass

the score threshold under the conservative assumption that all of the experiment wells

were not true interactions, hence giving us an upper bound on the FDR. This bound

is conservative because we expect that many of the experiment wells passing the score

threshold will be true interactions. Because the number of control and experiment

wells passing large thresholds decreases quickly, we smoothed our estimate of the FDR

using a Generalized Pareto distribution to model the tail distribution of the control

wells and of the experiment well scores separately. We then estimated the quantities

C(t)/Nc and E(t)/Ne using the inferred Generalized Pareto distributions.

We used BioGRID [19] as our gold standard set of protein interactions. Our

method resulted in substantially more overlap with the gold standard than previous

approaches (Figure 4-5).
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Figure 4-4: Estimation of the false discovery rate (FDR) for LUMIER. The red line
indicates the empirical false discovery rate calculated based on control wells on each
plate as described in the text. The blue line shows a smoothed fit. At LUMIER cutoff
7, the smoothed FDR is 0.044.

4.4.4 Results

We highlight some of the insights gained by mapping the interactions between chap-

erones, co-chaperones, and client proteins (Figure 4-6). Previous studies have primar-

ily focused on the specificity of chaperone proteins, leaving co-chaperone specificity

largely unexplored. Our systematic exploration of co-chaperone interactions identi-

fied highly specific connections between co-chaperones and particular biological pro-

cesses: spindle assembly (BAG5 and MAD proteins), DNA replication (FKBP51 and

the MCM complex), mRNA decapping (BAG4 and P bodies), retrograde signaling

(NUDCD1 and COPI complex), and GPCR signaling (prefoldins and G protein γ

subunits).

Co-chaperone interaction patterns revealed novel specificity for folding domains for

a number of co-chaperones, in particular, for the poorly characterized NUDC family

of co-chaperones. The evolutionarily related co-chaperones in the family recognize

distinct but structurally homologous β-propeller domains.
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Figure 4-5: Comparison of methods for identifying significant interactions. Each
method reports a list of significant interactions at various false discovery rate (FDR)
cutoffs and we plot the number of significant interactions that overlap with BioGRID
at these FDR cutoffs. Our method is plotted in cyan, green is a previous method
[133], red is the raw readout, and purple is a simple manipulation of the raw readout.
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Figure 4-6: Quantitative view of the human protein folding landscape. 800 query pro-
teins (arranged in columns) were assayed for interaction with 60 different chaperones,
co-chaperones and quality control factors (rows) with a quantitative LUMIER assay.
Query proteins were clustered based on their interaction profiles. Some of the biolog-
ically coherent clusters are highlighted in more detail. Proteins that share the same
fold or are part of the same biological complex in each cluster are indicated in color.
(A) LRR proteins (red) and Argonaute proteins (orange) form distinct clusters. LRR
proteins interact strongly with SGT1, while Argonaute proteins associate with PP5.
(B) The R2TP complex members (purple) forms two separate clusters. (C) Hsp90
co-chaperone cluster. (D) Kinases (orange) cluster together and interact specifically
with CDC37 but not with CDC37L1. (E) NUDCD1 associates with DEAH/DEAD
box helicases (green). (F) BAG proteins that cluster together interact strongly with
Hsp70 proteins, Rpn1, Hsf1 and Hsf2. (G) Kelch domain protein cluster (brown)
with NUDCD3. (H) Proteasome cluster. (I) RCC1 repeat protein FBXO24 (purple)
interacts with NUDCD2. (J) G protein γ subunits (green) interact with prefoldins.
From Taipale, Tucker, Peng, et al. “A quantitative chaperone interaction network
reveals the architecture of cellular protein homeostasis pathways” Cell, in press.
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4.5 Conclusion

LUMIER presents an exciting opportunity to map interactions that may have been

missed by standard assays. However, it suffers from systematic biases that can ob-

fuscate true interactions. We introduced a statistical error model for LUMIER data

that identifies many more true interactors than previous methods. We applied our

method to a large LUMIER data set with 60 preys and 800 baits to construct an

extensive map of chaperone, co-chaperone, and client protein interactions. This net-

work revealed novel co-chaperone specificity and will provide an important resource

for other researchers to understand the implications of disease perturbations on the

protein homeostasis network.
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Statistical genetics
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Chapter 5

Mixed models with related

individuals

Abstract

We calculate expected mixed model association statistics for samples with unrelated
and related individuals. Surprisingly, our results suggest that standard mixed model
association statistics may not be calibrated in samples with related individuals. Ex-
tensive simulations and analysis of data from the CARe cardiovascular consortium
confirm that mixed models are inflated in a wide variety of relatedness regimes. We
propose a two variance component mixed model that alleviates inflation and can
improve power.

5.1 Introduction

Mixed models (MLM) are the state-of-the-art method for calculating association

statistics in genome-wide association studies (GWAS). They are understood to correct

for relatedness and population stratification at the same time as increasing power over

linear regression [153]. In this chapter, we investigate the claim that mixed models

correct for relatedness. Specifically, we expand upon [153] by providing an alternative

derivation of the expected mixed model association statistic for unrelated individuals

and then extend it to related individuals. MLM attempts to correct for relatedness

by using an empirical estimate of kinship. Our theoretical results suggest that this
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may be insufficient. We investigate MLM statistics with related individuals through

systematic simulations and find that MLM is inflated for a wide range of parame-

ters. We propose a solution based on [160] and show that it substantially reduces the

inflation in simulations and in tests with genotypes and phenotypes from the CARe

consortium.

5.1.1 MLM statistics

First, we derive the MLM statistic for GWAS. We consider association testing with a

quantitative trait, however future work might extend these results to the case-control

setting via the liability threshold model [78]. For tractability, we consider the case

where SNPs are unlinked. Additionally, for simplicity we assume there are no fixed

effect covariates, however, all of these results naturally extend to the case with fixed

effect covariates. Let N be the number of individuals in the study and M be the

number of genotyped SNPs. The test SNP w and phenotype y are N × 1 column

vectors. The N ×M genotype matrix W encodes the number of minor alleles (i.e.,

0, 1, 2) for each SNP and individual. For convenience, we’ll assume that the genotype

matrix has been normalized so that each SNP has mean 0 and variance 1.

The derivation of the MLM statistic starts by assuming a multivariate normal

distribution for the phenotype, y ∼ N(wβ,Σ) (for the moment we assume the co-

variance Σ is given, but we estimate it later). With a probabilistic model for y, we

can calculate a Wald statistic to test the hypothesis that β 6= 0. When Σ = Iσ2
e , the

standard linear regression Wald statistic hypothesis test is:

slinear =
β̂2

var(β̂)
=

(wTy)2

σ2
ew

Tw
,

which is distributed χ2 with 1 degree of freedom (DOF) under the null hypothesis.

When Σ is an arbitrary covariance matrix, we transform the phenotype to eliminate

the correlation. Observe that if Σ−1 = RRT , then RTy ∼ N(RTwβ, I), so that the
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MLM test statistic is:

sMLM =
(wTRRTy)2

wTRRTw
=

(wTΣ−1y)2

wTΣ−1w
.

Now, we specify the covariance structure for y. We assume a linear model for the

phenotype

y = wβ +Wα + ε,

where α ∼ N(0, Iσ2
g/M) and ε ∼ N(0, Iσ2

e). Marginalizing α gives

y ∼ N(wβ,Σ = WW Tσ2
g/M + Iσ2

e).

σ2
g and σ2

e are typically estimated by restricted maximum likelihood (REML) [96].

REML adjusts for the loss in degrees of freedom due to fixed effect covariates and

produces unbiased estimates of the variance parameters.

Standard linear algebra identities allow us to view the statistic from an alternative

perspective. Using the Woodbury identity,

Σ−1 =
1

σ2
e

(
I −W

(
I
σ2
e

σ2
u

+W TW

)−1

W T

)
,

where σ2
u = σ2

g/M . Define R = W
(
I σ

2
e

σ2
u

+W TW
)−1

W T as the ridge operator, in the

sense that if z ∼ N(Wβ, σ2
e) and β ∼ N(0, σ2

uI), Rz = zridge is the MAP estimate

or ridge regression estimate of z under this model. Thus, Σ−1z = 1
σ2
e
(z − Rz) =

1
σ2
e
(z − zridge).

Using this notation, the MLM statistic can be rewritten as

sMLM =
1

σ2
e

(yT (w − wridge))2

wT (w − wridge)
=

1

σ2
e

(wT (y − yridge))2

wT (w − wridge)
,

which highlights the close connection between mixed models and ridge regression. In

fact, the denominator is approximately constant in large data sets [131], so up to

scaling sMLM can be thought of as a linear regression Wald statistic on the ridge
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regression residual (y − yridge) instead of the phenotype (y).

In the derivations above, w was not included in Σ, so naively computing sMLM

would require computing and inverting a new Σ for each test SNP. A natural question

arises: is it necessary to remove w from Σ? Empirically, it has been shown that

including w in Σ reduces power [84]. If we include w in Σ, then we assume that

y ∼ N(wβ,wwTσ2
u + Σ), so the MLM statistic including w (MLMi) is

sMLMi =
(wT (wwTσ2

u + Σ)−1y)2

wT (wwTσ2
u + Σ)−1w

=
(wTΣ−1y)2

wTΣ−1w

1

1 + wTΣ−1wσ2
u

= sMLM
1

1 + wTΣ−1wσ2
u

,

by applying the Woodbury identity. Σ is positive definite, so 1
1+wT Σ−1wσ2

u
< 1, consis-

tent with the empirical results that including w in Σ reduces power.

5.1.2 Expected statistics with unrelated individuals

Now, let us assume that the phenotypes y are actually generated from a mixed model,

that is y ∼ N(wβ,Σ). Plugging this value into the statistics gives the following after

taking expectations with respect to the randomness from the normal distribution

slinear =
wTΣw

N
+Nβ2

sMLM = 1 + wTΣ−1wβ2

sMLMi = sMLM
1

1 + wTΣ−1wσ2
u

,

using the fact that w was normalized to variance 1. The assumption that individuals

are unrelated means that Cov(w) and Cov(W )/M are the identity. Assuming w and

the columns of W are mutually independent (the unlinked SNPs assumption) and

taking expectations, we see that

slinear = 1 +Nβ2
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Linear MLM MLMi

Exact wT Σw
N

+Nβ2 1 + wTΣ−1wβ2
(
1 + wTΣ−1wβ2

)
1

1+wT Σ−1wσ2
u

≈ E[·] 1 +Nβ2 1 + Fβ2 (1 + Fβ2) 1
1+Fσ2

u

Table 5.1: Wald statistics under data generated from MLM model, where F is given
by Eq. 5.1.

and

sMLM = 1 + E[trace(Σ−1)]β2.

We can approximate the expectation of the trace using the Marchenko-Pastur distri-

bution for the eigenvalues of a Wishart matrix [87]. First, we approximate

E[wTΣ−1w]

N
=
E[trace(Σ−1)]

N
≈
∫

ν(x)

xσ2
g + σ2

e

dx

where ν is the eigenvalue density for a Wishart matrix (i.e. XXT/M where X is a

matrix whose entries are independent standard normals). ν is known in closed form

when N,M →∞ at a finite ratio N/M ∈ (0, 1], so we can evaluate the integral with

this asymptotic density. This gives

E[trace(Σ−1)] ≈ N

2rσ2
g

(
−1−

σ2
g

σ2
e

(1− r) +

√(
1 +

σ2
g

σ2
e

a

)(
1 +

σ2
g

σ2
e

b

))
(5.1)

where r = N/M, a = (1 +
√
r)2, b = (1−

√
r)2. If we replace the wTΣ−1w terms with

this expression, then we recover the results from [153]. Yang et al. show that this

approximation is accurate and predicts that as N increases, the statistical power of

mixed models can be much larger than linear regression [153].

5.1.3 Expected statistics with related individuals

The covariance matrix of the SNPs reflects the relatedness or pedigree structure of the

individuals (e.g., siblings share half their of genomes on average, so the covariance

between their normalized SNP vectors will be 0.5 on average). In particular, let

E[wwT ] = E[WW T/M ] = θ denote the covariance structure. Now, the unlinked

93



assumption means that the w and the columns of W are independent given θ. With

related individuals, it will be important to model untyped SNPs as well as typed

SNPs. So, we model the phenotype as

y = wβ +Wα + Uγ + ε,

where γ ∼ N(0, Iσ2
h/Mh), Mh is the number of untyped or hidden causal SNPs,

and E[UUT/Mh] = θ. In this case, after taking the expectation with respect to

randomness in y, the MLM statistic is

wTΣ−1(WW Tσ2
g/M + UUTσ2

h/Mh + Iσ2
e)Σ

−1w

wTΣ−1w
+ wTΣ−1wβ2.

Taking the expectation with respect to U , we get

wTΣ−1(WW Tσ2
g/M + θσ2

h + Iσ2
e)Σ

−1w

wTΣ−1w
+ wTΣ−1wβ2.

Taking the expectation with respect to w gives

E

[
wTΣ−1(WW Tσ2

g/M + θσ2
h + Iσ2

e)Σ
−1w

wTΣ−1w

]
+ E[wTΣ−1w]β2

≈
E[wTΣ−1(WW Tσ2

g/M + θσ2
h + Iσ2

e)Σ
−1w]

E[wTΣ−1w]
+ E[wTΣ−1w]β2

=
trace(Σ−1(WW Tσ2

g/M + θσ2
h + Iσ2

e)Σ
−1θ)

trace(Σ−1θ)
+ trace(Σ−1θ)β2.

When β = 0, the statistic should be χ2 distributed with 1 degree of freedom, so

the mean value should be exactly 1. This form of the Wald statistic suggests that

inflation or deflation in the mean of the Wald statistic is due to mis-estimating the

covariance of y. For example, suppose we are using the linear regression statistic

where Σ = Iσ̂2
e ≈ I(σ2

g + σ2
h + σ2

e), a clear mis-estimate of the covariance of y. Then,
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the expected statistic is approximately

trace(WW Tσ2
g/M + θσ2

h + Iσ2
e)θ)

σ̂2
e trace(θ)

+
trace(θ)

σ̂2
e

β2,

which after taking the expectation with respect to W and approximating the expec-

tation of a ratio with the ratio of expectations

trace(θ2)(σ2
g + σ2

h) +Nσ2
e

N(σ2
g + σ2

h + σ2
e)

+
N

σ2
g + σ2

h + σ2
e

β2

=
∑
i 6=j

θ2
ij

σ2
g + σ2

h

N(σ2
g + σ2

h + σ2
e)

+ 1 +
N

σ2
g + σ2

h + σ2
e

β2

= NS
(σ2

g + σ2
h)

(σ2
g + σ2

h + σ2
e)

+ 1 +
N

σ2
g + σ2

h + σ2
e

β2,

where S =
∑

i 6=j θ
2
ij/N

2 measures the relatedness in the dataset. As a result of the

relatedness, the statistic is inflated by NS
(σ2

g+σ2
h)

(σ2
g+σ2

h+σ2
e)

. This is consistent with a more

general analysis of linear regression Wald statistics for linked markers1.

Previous studies have shown that when σ2
g is estimated in samples with related

individuals, σ2
g ≤ σ̂2

g ≤ σ2
g + σ2

h. In this case, Σ may not match the covariance

of y, potentially resulting in miscalibrated statistics. Inspired by [160], we propose

introducing a second variance component in Σ. Instead of using Σ = WW Tσ2
g/M +

Iσ2
e , we estimate the covariance structure by Σ = WW Tσ2

g/M + θ̂σ2
h + Iσ2

e where θ is

estimated by retaining the entries of WW T/M above a threshold. Recovering θ can be

viewed as a sparse covariance estimation problem, where thresholding approaches have

been shown to produce good results [9]. We expect that the two variance component

mixed model statistics will not be inflated in samples with related individuals because

it more closely models the covariance structure of y. In the following sections, we

describe the proposed two variance component MLM statistic in detail and describe

the results of extensive simulations and applications to real genotypes and phenotypes

from the CARe consortium.

1Hilary Finucane, personal communication.
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5.2 Results

5.2.1 Simulated genotypes and phenotypes

We conducted extensive simulations with randomly-generated genotypes and pheno-

types to understand inflation and power for mixed model association statistics with

related individuals. We systematically varied the number of related individuals, the

degree of relatedness, the number of markers in the genome, and the heritability of

the trait. Specifically, we simulated 1000 individuals, where some pairs of individuals

were related (50, 125, 250, and 500 pairs) and the rest of the individuals were un-

related (leaving 900, 750, 500, and 0 unrelated individuals, respectively). The pairs

of individuals shared between 0 and 0.5 of their genomes in expectation. Addition-

ally, we varied the number of markers (1,000, 5,000, 10,000, and 20,000 SNPs) and

generated unlinked markers for simplicity. To simulate markers, we randomly gener-

ated minor allele frequencies uniformly in [0.05, 0.5] and sampled genotypes from a

binomial distribution. For pairs of related individuals and for each haplotype, with

probability equal to the relatedness, the pair shared an allele drawn randomly, other-

wise the alleles for the pair were drawn independently. We generated 100 candidate

causal SNPs and 500 candidate null SNPs for testing in the same way. We used

an infinitesimal model to generate the phenotype. In particular, we generated effect

sizes for the observed SNPs from N(0, h2
g/M) where M is the number of SNPs in

the simulation. We also generated effect sizes for the candidate causal test SNPs

from N(0, (h2 − h2
g)/100). Because the model does not include the candidate causal

test SNPs, these SNPs effectively served as untyped causal loci. Finally, we formed

the phenotype by multiplying the effects with the genotypes and adding independent

noise distributed as N(0, (1− h2)I).

From the definition of the Wald statistic for mixed models, under the null hypoth-

esis (i.e., the probability model for y when β = 0), the statistic is distributed as a

scaled χ2 with 1 degree of freedom assuming that Σ is fixed. In theory, Σ depends on

y and the scaling constant depends on the test SNP, however, for large sample sizes,

Σ is well estimated and the constant does not depend strongly on the identity of the
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test SNP. This justifies measuring inflation by the mean Wald statistic on the null

SNPs and measuring power by the mean Wald statistic on the causal SNPs divided

by the mean Wald statistic on the null SNPs.

Contrary to the belief that mixed models correct for relatedness [153], we found

that for many parameter settings, the mixed model statistic is significantly inflated

(Figure 5-1) and in some cases, the inflation is quite substantial (e.g., mean Wald

statistic 1.10 ± 0.01 with 500 sib-pairs, N/M = 1, h2 = 0.75, h2
g = 0.4), whereas the

two variance component mixed model alleviates the inflation (mean Wald statistic

1.01± 0.01 for the same simulation). Unsurprisingly, as we increased the relatedness

(either by increasing the number of related individuals or the strength of relatedness),

the inflation grew. As we increased the ratio individuals to markers, the inflation

increased as well, suggesting that as sample sizes increase in real data sets, relatedness

may pose a significant challenge. For phenotypes with moderate heritability (h2 =

0.5), we found no substantial power difference between the one and two variance

component mixed models. For phenotypes with larger heritability h2 = 0.75, we found

that the two variance component model increased power as relatedness increased (at

most 3% and 6% improvements when h2
g = 0.4 and h2

g = 0.25, respectively). In

all cases, the two variance component model alleviated inflation and maintained or

increased power compared to the standard MLM (Figure 5-2).

To investigate the effects of using the thresholded estimator for θ, we performed

simulations using a two variance component model that used the true pedigree matrix.

We found that there were not substantial differences between using the thresholded

estimator or the true pedigree matrix (Figure 5-2).

5.2.2 CARe genotypes

Next we explored simulations with real genotypes from the CARe cardiovascular

consortium. The dataset includes samples from 8, 367 African-American individu-

als. After QC filtering (described in [79]), 770, 390 SNPs remained. Because the

individuals were admixed, all subsequent analysis factored out the first 5 principal

components to avoid confounding from population structure. To avoid problems due
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Figure 5-1: Calibration for mixed models. We plot the mean Wald statistic on null
SNPs for the standard mixed model (MLM) and the two variance component model
(2 var. comp. MLM) against N ∗ S, where S =

∑
i 6=j θ

2
ij/N

2 measures the amount
of relatedness in the data. Points are the mean over 100 simulations and standard
errors were ≈ ±0.007. We varied N/M , h2, and h2

g.
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Figure 5-2: Inflation and power for mixed models. We plot inflation (left) and power
(right) for the standard mixed model (MLM) and the two variance component model
(2 var. comp. MLM) against a two variance component model that uses the true
pedigree matrix (θ) instead of the thresholded estimator. Each point is the mean over
50 simulations. The thresholded estimator performs nearly identically to using the
true relatedness matrix, whereas the standard MLM inflates statistics in many cases
and can have decreased power.

to linkage between the candidate test SNPs and the GRM SNPs [84], we used SNPs

from chromosome 1 as candidate causal SNPs and SNPs from chromosome 2 as can-

didate null SNPs. We explored varying ratios of N/M by reducing the number of

observed SNPs. To generate phenotypes, we generated effect sizes for the observed

SNPs from N(0, h2
g/M). Then, we randomly selected 250 candidate causal SNPs

from chromosome 1 and generated effect sizes from N(0, (h2 − h2
g)/250). Finally, we

multiplied the effect sizes with the genotypes and added noise from N(0, (1− h2)I).

Consistent with the previous simulation, the standard mixed model inflated statis-

Observed SNPs # of SNPs MLM 2 var. comp. MLM threshold (t)
Chrom. 3 - 22 615,445 1.013 (0.002) 1.000 (0.002) 0.0239843
Chrom. 3 - 6 195,333 1.024 (0.002) 1.002 (0.002) 0.0505165
Chrom. 3 - 4 99,690 1.028 (0.002) 1.003 (0.002) 0.0807943

Chrom. 22 9,713 1.036 (0.002) 1.014 (0.002) 0.387328

Table 5.2: Mean Wald statistics on candidate null SNPs for simulations with CARe
genotypes. Mean values over 100 simulations are reported with standard error in
parenthesis. The two variance component model used the specified threshold to esti-
mate the relatedness matrix.
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tics and the two variance component model alleviated inflation (Table 5.2). Impor-

tantly, these results suggest that the levels of relatedness that are required for inflation

are present in typical data sets. In the last simulation, where only markers from chro-

mosome 22 are observed, the two variance component model appears to be inflated.

Given the large threshold chosen (> 0.38), we hypothesize that the number of markers

was too small to distinguish relatedness in the data from noise in the GRM, causing

an incomplete correction. Finally, we found that the power of the two variance com-

ponent model was similar and at least as great as the standard mixed model in all

cases.

5.2.3 CARe phenotypes

Finally, we calculated mixed model statistics for the CARe phenotypes: body mass

index (BMI), height, low density lipoprotein cholesterol (LDL), and high density

lipoprotein cholesterol (HDL) (Table 5.3). We adjusted for age, sex, and the top 5

PCs. Because we do not know the causal and null SNPs, we calculated the average

Wald statistic over all SNPs in a leave-one-chromosome-out fashion; noting that we

expect the statistics to be larger than 1 due to polygenicity [153]. The average Wald

statistics are higher for standard mixed models than the two variance component

model, consistent with the previous simulations. This suggests that mixed model

association statistics calculated on the CARe data using standard mixed models are

slightly inflated.

Phenotype N MLM 2 var. comp. MLM h2
pseudo h2

g h2

BMI 8148 1.025 1.039 0.37 0.20 0.45
height 8148 1.050 1.060 0.40 0.29 0.43
LDL 5311 1.018 1.028 0.35 0.18 0.47
HDL 5031 1.034 1.051 0.46 0.23 0.62

Table 5.3: Mean Wald statistics over all SNPs for MLM and two variance component
MLM. We list the number of individuals N with recorded phenotypes. We also list
h2
pseudo, the estimate of heritability using MLM, which is known to be inflated in

samples with related individuals [160], and the estimates of heritability from the two
variance component model.
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5.3 Statistical Methods

In this section, we describe the MLM and two variance component MLM statistics.

5.3.1 MLM statistics

We mean centered the phenotype y, covariates X, and genotypes W . Additionally,

we normalized each genotype by dividing by
√

2p̂(1− p̂) where p̂ is the estimated

minor allele frequency. Then the phenotype is modeled as

y = Xb+Wα + ε,

where α ∼ N(0, σ2
g/M), ε ∼ N(0, σ2

eI), and b is a vector of weights for the covariates.

This model naturally leads to an association statistic based on the Wald statistic.

To calculate the association statistic for SNP w, we added w as a fixed effect

covariate to the previous model and tested whether its coefficient is significantly

different than 0. Specifically, consider the model

y = wβ +Xb+Wα + ε,

where β is the coefficient for the test SNP. We estimated σ2
g and σ2

e by REML. The

fixed effect coefficients (β, b) are estimated by maximum likelihood.

It is straightforward to construct the Wald statistic to test whether β 6= 0. Let

V = σ̂2
gWW T/M + σ̂2

eI and Q = [w;X]. Then β̂ is equal to the first entry of

(QTV −1Q)−1QTV −1y and var(β̂) is equal to the first entry of (QTV −1Q)−1. The test

statistic is
β̂2

var(β̂)
,

which is χ2 distributed with 1 degree of freedom under the null distribution.

To avoid proximal contamination [84], we used a leave-one-chromosome-out pro-

cedure [153]. For each test SNP w (which is not necessarily in W ), we excluded

the chromosome including that SNP from the genotypes used to calculate the GRM
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and calculated the Wald statistic for w with this GRM. We did this efficiently be

precomputing and storing the GRM excluding each chromosome in turn.

5.3.2 Two variance component MLM statistics

In the two variance component model, we estimated θ by (WW T/M)>t where (·)>t
denotes the matrix where entries less than or equal to t have been set to 0. Here

and in other places where we formed a GRM, we projected out the first 5 principal

components to avoid confounding from ancestry [100]. We optimized t to reproduce

the covariance structure of the test SNPs. Specifically, let Z be the matrix of test

SNPs (i.e., the SNPs on the chromosome we are testing and as result W is the matrix

of SNPs on all other chromosomes). We set t to the minimizer of

||ZZT/Mz − (WW T/M)>t||22

where Mz is the number of SNPs in Z and || · ||2 is the Frobenius norm. Then under

the phenotype model

y = N(wβ +Xb,WW T/Mσ2
g + (WW T/M)>tσ

2
h + Iσ2

e)

we estimated σ2
g , σ

2
h, and σ2

e by REML. Then we proceeded as in the MLM with V

now equal to

V = WW T/Mσ̂2
g + (WW T/M)>tσ̂2

h + Iσ̂2
e .

5.4 Conclusion

Through extensive simulations and tests on CARe genotypes and phenotypes, we

showed that standard mixed models can be miscalibrated in a wide range of related-

ness settings. For current sample sizes and levels of relatedness, the inflation is small.

However, our simulations suggest that as sample sizes increase, relatedness will play

a larger role in inflating test statistics. The two variance component model effectively
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alleviates the inflation at no cost to power and in some cases can increase power

over standard mixed models. Because of this, we expect the two variance component

model to become increasingly relevant as sample sizes increase.
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Chapter 6

Improving the Power of GWAS

and Avoiding Confounding from

Population Stratification with

PC-Select

Abstract
1Using a reduced subset of SNPs in a linear mixed model can improve power for
genome-wide association studies, yet this can result in insufficient correction for pop-
ulation stratification. We propose a hybrid approach using principal components that
does not inflate statistics in the presence of population stratification and improves
power over standard linear mixed models.

6.1 Introduction

In recent years, there has been extensive research on linear mixed models (LMM) to

calculate genome-wide association study (GWAS) association statistics [67, 66, 117,

168, 131, 153]. While linear mixed models implicitly assume that all SNPs have an

effect on the phenotype (an infinitesimal genetic architecture), it is widely believed

1This chapter is adapted from “Improving the Power of GWAS and Avoiding Confounding from
Population Stratification with PC-Select” by George Tucker, Alkes L. Price, and Bonnie Berger
appearing in Genetics [140].

105



that disease phenotypes do not follow an infinitesimal model and that modeling a

genetic architecture where most SNPs have negligible effect and some have modest

effect (a non-infinitesimal genetic architecture) would increase power. As a step in

that direction, Listgarten et al. [84, 83] recently developed the state-of-the-art FaST-

LMM Select method, which constructs a genetic relationship matrix (GRM) from a

subset of top associated SNPs that are more likely to be causal. However, as a recent

Perspective paper [153] shows, limiting the GRM to a subset of SNPs can result in

insufficient correction for population stratification, leading to significantly inflated

statistics and false positive associations (Tables 6.1, 6.2 and Appendix B.1).

As a solution to this problem, we propose PC-Select, a novel hybrid approach

that includes the principal components (PCs) of the genotype matrix as fixed effects

in FaST-LMM Select. PC-Select leverages the advantages of the FaST-LMM Select

framework while correcting for population stratification. The two main steps of FaST-

LMM Select are ranking SNPs by linear regression p-values to form the GRM with

the top ranked SNPs and then calculating association statistics in a mixed model

framework using this GRM. We used the top 5 PCs2 as fixed effects in both of these

steps (See Methods). As a result, PC-Select yields non-inflated test statistics in the

presence of population stratification and maintains high power to detect causal SNPs.

6.2 Results

To examine inflation and power, we followed the simulation procedure in [153] and

generated data sets each containing 10,000 SNPs for 1,000 individuals. To avoid a

loss in power for LMM that can occur when candidate SNPs are included in the

GRM3 [84, 153], we separately simulated a set of candidate SNPs to compute test

statistics. We sampled individuals from two populations with Fst = 0.05, ancestral

2We follow the recommendations in the literature [100] and use a fixed number of PCs. We
have found that 5 PCs is generally sufficient to correct for stratification in simulated and real data
sets. Alternatively, the number of PCs may be selected through cross validation or Tracy-Widom
statistics [97].

3Both PC-Select and FaST-LMM Select avoid this by removing the candidate SNP and nearby
SNPs from the GRM when computing the association statistic.
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Figure 6-1: Comparison of power for linear regression, linear regression with PCs,
standard LMM, FaST-LMM Select, and PC-Select on simulated genotypes and phe-
notypes (A) and real genotypes and simulated phenotypes (B) with and without
population stratification as the fraction of casual SNPs (p = 0.05, 0.005) varies. To
measure power, we plot the mean Wald statistic on test causal SNPs. In all cases,
PC-Select has the highest power of the methods that do not inflate statistics.

minor allele frequencies uniform in [0.1, 0.5], and mean phenotypic difference 0.25

standard deviations. To simulate causal SNPs in the GRM, we selected a fraction

p = 0.05 or 0.005 of the SNPs at random and sampled Gaussian effect sizes (variance

equal to 0.5 divided by the number of casual SNPs in the GRM) for these SNPs. We

generated 500 candidate test null SNPs that were not causal, and to measure inflation

we calculated λGC , the median Wald statistic on these SNPs divided by the theoretical

median under the null distribution [31]. To investigate power, we generated 50 causal

candidate SNPs with normally distributed effect sizes (variance equal to 0.5 divided
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by the number of causal candidate SNPs) and measured mean Wald statistic on these

SNPs. We split the variability from causal SNPs evenly between the GRM and the

causal candidate SNPs. We repeated all simulations 100 times and report the mean

and standard error.

mean λGC pop. strat. pop. strat.
(std. error) p = 0.05 p = 0.005 p = 0.05 p = 0.005

Linear regression 3.8 (0.4) 4.5 (0.5) 1.01 (0.01) 1.01 (0.01)
Linear reg. with PCs 1.02 (0.01) 1.03 (0.01) 1.01 (0.01) 1.02 (0.01)

LMM 1.01 (0.01) 1.02 (0.01) 1.01 (0.01) 1.01 (0.01)
FaST-LMM Select 1.04 (0.01) 1.26 (0.03) 1.01 (0.01) 0.99 (0.01)

PC-Select 1.01 (0.01) 1.01 (0.01) 1.01 (0.01) 0.99 (0.01)

Table 6.1: Extent of null statistic inflation as measured by λGC (median Wald statistic
on test null SNPs divided by the theoretical median under the null distribution [31]).
We tabulate λGC for linear regression, linear regression with PCs, standard LMM,
FaST-LMM Select, and PC-Select on simulated genotypes and phenotypes with and
without population stratification as the fraction of casual SNPs (p = 0.05, 0.005)
varies. Values shown are mean λGC over 100 simulations with standard error in
parenthesis. FaST-LMM Select inflates statistics in the presence of population strat-
ification when few SNPs are causal (p = 0.005), which may result in false positives.

We found that when few SNPs were causal (p = 0.005), FaST-LMM Select inflated

null statistics in the presence of population stratification (λGC = 1.26±0.03), whereas

PC-Select was properly calibrated (λGC = 1.01± 0.01) (Table 6.1). Moreover, FaST-

LMM Select lost power in the presence of population stratification (as measured by the

mean Wald statistic on causal SNPs: 14.3± 0.2 with stratification versus 16.4± 0.1

without), whereas PC-Select’s power in simulations with and without population

stratification was not significantly different (16.3 ± 0.1 versus 16.3 ± 0.1) (Figure 6-

1). Thus, even though PC-Select corrected for stratification, this advantage did not

come at the expense of power. This gain is likely because the PCs reduce noise in

selecting subsets of SNPs for the GRM in the presence of population stratification. In

addition, PC-Select chose fewer SNPs than FaST-LMM Select to include in the GRM

(over 100 simulations, mean SNPs chosen: ∼20 versus ∼240, Figure B-4), yielding

potential computational savings. When many SNPs were causal (p = 0.05), both

methods used nearly all SNPs in the GRM (over 100 simulations, mean SNPs chosen:
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∼9, 400 and ∼8, 800 out of 10, 000, respectively), achieving similar performance to

standard LMM.

We also investigated a recent extension of FaST-LMM Select, the genard method

[57] that fits a data-adaptive low-rank GRM; however, we found that it did not have

increased power over LMM in our simulations (Figure B-5), which is consistent with

previous simulations in a similar context [57].

Next, we evaluated inflation and power on real genotypes with simulated pheno-

types in a similar manner. We analyzed 5,000 individuals randomly subsampled from

a multiple sclerosis (MS) study genotyped on Illumina arrays [114] made available via

Welcome Trust Case Control Consortium 2 (WTCCC2) (See Methods). As before,

we separated GRM SNPs and candidate SNPs to avoid proximal contamination and

provide a fair comparison of methods. We randomly sampled 50,000 SNPs for the

GRM from chromosomes 3 to 22, 250 causal SNPs from chromosome 1, and 500 null

SNPs from chromosome 2. To simulate environmental variance aligned with popula-

tion structure, we added 0.25 times the first PC (after the PC had been normalized

to variance 1) to each individual’s phenotype. Otherwise, we generated phenotypes

as before and report simulations over 200 randomly generated phenotypes.

mean λGC pop. strat. pop. strat.
(std. error) p = 0.05 p = 0.005 p = 0.05 p = 0.005

Linear regression 1.58 (0.02) 1.55 (0.02) 1.03 (0.01) 1.04 (0.01)
Linear reg. with PCs 1.01 (0.01) 1.00 (0.01) 1.01 (0.01) 1.02 (0.01)

LMM 1.02 (0.01) 1.01 (0.01) 1.00 (0.01) 1.02 (0.01)
FaST-LMM Select 1.02 (0.01) 1.06 (0.01) 1.00 (0.01) 1.02 (0.01)

PC-Select 1.01 (0.01) 1.01 (0.01) 1.00 (0.01) 1.01 (0.01)

Table 6.2: Extent of null statistic inflation as measured by λGC . We tabulate λGC for
linear regression, linear regression with PCs, standard LMM, FaST-LMM Select, and
PC-Select on real genotypes and simulated phenotypes with and without population
stratification as the fraction of casual SNPs (p = 0.05, 0.005) varies. Values shown
are mean λGC over 200 simulations with standard error in parenthesis. FaST-LMM
Select inflates statistics in the presence of population stratification when few SNPs
are causal (p = 0.005), which may result in false positives.

We again found that when few SNPs were causal (p = 0.005), FaST-LMM Select

inflated null statistics in the presence of population stratification (λGC = 1.06±0.01),
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whereas PC-Select was properly calibrated (λGC = 1.01±0.01) (Table 6.2). Moreover,

FaST-LMM Select lost power in the presence of population stratification (as measured

by the mean Wald statistic on causal SNPs: 14.64 ± 0.05 with stratification versus

16.02±0.05 without); in contrast, PC-Select’s power in simulations with and without

population stratification was not significantly different (16.02 ± 0.05 versus 16.08 ±

0.05) (Figure 6-1). In all of our simulations, PC-Select produced non-inflated statistics

and high power.

Finally, we analyzed data from 10,204 MS cases and 5,429 controls genotyped on

Illumina arrays [114] made available via WTCCC2 (See Methods). The cases and

controls were not matched for ancestry and thus exhibited substantial population

stratification. Evaluated over all SNPs, PC-Select had λGC = 1.24 and FaST-LMM

Select had λGC = 1.20. Due to polygenicity, we expect λGC on all markers to be larger

than 1. On the same data, [153] report λGC = 1.23 and 1.20 for linear regression with

PCs and LMM, respectively, which they show is consistent with polygenicity. To

evaluate power, we considered Wald statistics at 75 known associated SNPs (See

Methods, Table B.1 for Wald statistics). PC-Select consistently gave larger Wald

statistics than FaST-LMM Select (63 of 75 markers, P = 2×10−9; mean Wald statistic

12.07 versus 11.30). Based on cross-validation, both PC-Select and FaST-LMM Select

chose to use all markers. This may indicate that the disease is not caused by a small

number of loci with large effects or that our sample size is too small to capture

this effect. Although, PC-Select and FaST-LMM Select chose to use all SNPs and

thus neither method inflated statistics, we emphasize that without a priori knowledge

about the genetic architecture, PC-Select automatically tunes the number of SNPs to

include in the GRM to optimize power and simultaneously protects against population

stratification at no cost to power.

6.3 Discussion

Janss et al. caution against using PCs as fixed effects in combination with a random

effect derived from the GRM when estimating heritability [63]. This may result in
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an ill-posed model because the PCs enter both as fixed effects and implicitly through

the random effect. We avoid this issue when estimating variance components by

using the PCs as fixed effects in a restricted maximum likelihood (REML) approach,

which projects the genotype matrix into a subspace orthogonal to the PCs, effectively

removing them from the random effect. We also note that population structure and

PCs have previously been used successfully as fixed effects (or separate random effects)

in mixed model settings to address confounding from population structure and from

unusually differentiated markers [158, 164, 101, 129, 102].

Using PCs in a linear model does not correct for family relatedness and cryptic

relatedness [101]. As suggested by [153], due to the large length of segments shared

identical-by-descent, using a subset of SNPs may correct for cryptic relatedness. [84]

show that using a subset of SNPs in the GRM does not inflate statistics on the

WTCCC data, where inflation is likely primarily due to cryptic relatedness. We

expect that PC-Select will not be inflated by cryptic relatedness for the same reasons.

In most human data sets with unrelated individuals, family relatedness is not an issue;

however, for data sets with strong family relatedness, we suspect there may be cases

where both PC-Select and FaST-LMM Select inflate statistics.

PC-Select has the same asymptotic run-time as FaST-LMM Select, quadratic in

the number of individuals and linear in the number of markers. In practice, the

run-time for the additional step of computing the PCs for the genotype matrix is

minimal because both methods require several spectral decompositions of matrices of

nearly the same size for the cross-validation step. It should be noted that while the

asymptotic run-time of PC-Select and FaST-LMM Select is the same as previously

published exact LMM methods [82, 168], the actual run-time of both methods is os-

tensibly longer by a factor of 10 due to the cross-validation step. The cross-validation

step is parallelizable, so in practice this is not a significant limitation.

Including PCs as fixed effects allows PC-Select to infer ancestry from all SNPs si-

multaneously, while at the same time maintaining the benefits of using a statistically-

chosen subset of the SNPs to estimate the GRM [84, 83]. As we have shown, using a

combination of PCs and a subset of SNPs in the GRM gives the best of both worlds.
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6.4 Methods

6.4.1 MS dataset

We analyzed data from 10,204 MS cases and 5,429 controls (from NBS and 1958BC)

genotyped on Illumina arrays made available to researchers via WTCCC2 (http:

//wtccc.org.uk/ccc2/). We follow the quality control standards in [153]. Although

[114] analyzed UK and non-UK samples separately followed by meta-analysis in most

of their analyses, the data made available to researchers includes both UK and non-

UK cases but only UK controls. We retained all samples in order to maximize sample

size. We considered markers that were present in each of MS, NBS and 1958 BC

datasets and removed markers with> 0.5% missing data, P < 0.01 for allele frequency

difference between NBS and 1958BC, P < 0.05 for deviation from Hardy-Weinberg

equilibrium, P < 0.05 for differential missingness between cases and controls, or

MAF < 0.1% in any dataset, leaving 360,557 markers. The 75 known associated

markers were defined by including, for each MS-associated marker listed in the NHGRI

GWAS catalogue (http://genome.gov/gwastudies/), a single best tag at r2 > 0.4

from the set of 360,557 markers if available.

6.4.2 Statistical methods

PC-Select follows a similar framework as FaST-LMM Select [82, 84, 83]. For com-

pleteness, we list the steps and equations we used.

First, we describe a method for computing association statistics, then in subse-

quent sections we describe the steps of PC-Select.

Association statistics:

The phenotype y, covariates X, and genotypes W are mean centered. Addition-

ally, each genotype is divided by
√

2p̂(1− p̂) where p̂ is the estimated minor allele
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frequency. Then the phenotype is modeled as

y = Xα + u+ ε,

where u ∼ N(0, σ2
gK), ε ∼ N(0, σ2

eI), α is a vector of weights for the covariates, and

K is the GRM. This model naturally leads to an association statistic based on the

Wald statistic.

To calculate the association statistic for SNP w, we add w as a fixed effect covariate

to the previous model and test whether its coefficient is significantly different than 0.

Specifically, consider the model

y = wβ +Xα + u+ ε,

where β is the coefficient for the test SNP. We estimate σ2
g and σ2

e by REML. The

fixed effect coefficients (β, α) are estimated by maximum likelihood.

It is straightforward to construct the Wald statistic to test whether β 6= 0. Let V =

σ2
gK+σ2

eI and Q = [w;X]. Then β̂ is equal to the first entry of (QTV −1Q)−1QTV −1y

and var(β̂) is equal to the first entry of (QTV −1Q)−1. The test statistic is

β̂2

var(β̂)
,

which is asymptotically χ2 distributed with 1 degree of freedom.

Now we describe the PC-Select method:

Step 1: Extracting PCs:

We extract the top 5 PCs from a GRM formed using all of the genotype data, WW T ,

to use as fixed effect covariates. We use X to denote the matrix of user specified

covariates and the top 5 PCs.
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Step 2: Ranking SNPs by linear regression:

Second, we rank the SNPs by a linear regression test statistic. Linear regression test

statistics are calculated by fixing σ2
g to 0 and using the procedure described above to

calculate Wald statistics.

Step 3: Determining the GRM:

As in FaST-LMM Select, PC-Select uses a subset of the SNPs that are likely to be

causal. In this step, we determine k, the number of top SNPs (as ranked in Step 2)

to include in the GRM. We use 10-fold cross-validation on predictive log-likelihood

to choose the number of top SNPs.

We choose k from a list of user defined possibilities (e.g., k ∈ {100, 1000, 3000,

10,000, 30,000, . . .}). First, we randomly divide individuals into 10 equal groups or

folds. For each fold i, we form a test set from the individuals in fold i and use the

rest of the individuals as a training set. For each choice of k, we consider a subset

of the genotype matrix consisting only of the top k SNPs (the ranking of the SNPs

is recomputed per fold using the training data). For notational simplicity, we will

also refer to the reduced genotype matrix by W , and it will be clear from context

if this refers to the full genotype matrix or a subset. Let Wi denote the genotypes

from fold i and W−i represent the genotypes from the rest of the folds (similarly for

y and X). We wish to evaluate the predictive log-likelihood of yi given the training

information (y−i, X−i, Xi) to assess the predictive power of using only the top k SNPs

in the GRM.

Specifically, to evaluate the predictive log-likelihood, we start by forming a GRM

from the training set W−iW
T
−i. Then we estimate σ2

g and σ2
e from the training set by

REML. We estimate α by ML with these variance parameters fixed. Then under the

model

y = Xα + u+ ε

where u ∼ N(0, σ2
gWW T ) and ε ∼ N(0, σ2

eI), the predictive distribution of the pheno-

types given the training parameters, yi|y−i,W, α, σ2
g , σ

2
e , is normally distributed with
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mean

σ2
gWiW

T
−i
(
W−iW

T
−iσ

2
g + σ2

eI
)−1

(y−i −X−iα) +Xiα

and covariance

WiW
T
i σ

2
g + σ2

eI − σ2
gWiW

T
−i
(
W−iW

T
−iσ

2
g + σ2

eI
)−1

W−iW
T
i σ

2
g .

This can be evaluated efficiently using the spectral decompositions computed in the

REML step [82, 84]. We average the predictive log-likelihood over each of the 10 folds

and choose the k that gives the highest average log-likelihood.

Step 4: Calculating association statistics:

Finally, with the number of top SNPs to use in the GRM fixed, we calculate associ-

ation statistics for each SNP. Let W be the genotype matrix using the top k SNPs

chosen in the previous step. To avoid proximal contamination [84], we use a leave-

one-chromosome-out procedure [153]. For each test SNP w (which is not necessarily

in W ), we exclude the chromosome including that SNP from the GRM and calculate

the Wald statistic for w with this GRM. We do this efficiently be precomputing and

storing the GRM excluding each chromosome in turn.
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Chapter 7

Phenotype prediction using

regularized regression on genetic

data in the DREAM5 Systems

Genetics B Challenge

Abstract

1A major goal of large-scale genomics projects is to enable the use of data from high-
throughput experimental methods to predict complex phenotypes such as disease
susceptibility. The DREAM5 Systems Genetics B Challenge solicited algorithms to
predict soybean plant resistance to the pathogen Phytophthora sojae from training
sets including phenotype, genotype, and gene expression data. The challenge test set
was divided into three subcategories, one requiring prediction based on only genotype
data, another on only gene expression data, and the third on both genotype and gene
expression data. Here we present our approach, primarily using regularized regres-
sion, which received the best-performer award for subchallenge B2 (gene expression
only). We found that despite the availability of 941 genotype markers and 28,395
gene expression features, optimal models determined by cross-validation experiments
typically used fewer than ten predictors, underscoring the importance of strong reg-
ularization in noisy datasets with far more features than samples. We also present
substantial analysis of the training and test setup of the challenge, identifying high
variance in performance on the gold standard test sets.

1This chapter previously appeared in PLoS One (2011) as “Phenotype prediction using regu-
larized regression on genetic data in the DREAM5 Systems Genetics B Challenge” by Po-Ru Loh,
George Tucker, Bonnie Berger [85].
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7.1 Introduction

Predicting complex phenotypes from genotype or gene expression data is a key step

toward personalized medicine: the use of genomic data to improve the health of

individuals, for instance by predicting susceptibility to disease or response to treat-

ment [148, 106, 147, 104]. A pivotal early success in this field was the discovery of gene

expression profiles for the classification and prognosis of breast cancer [52, 1, 142]. Im-

proved technology and declining costs have since enabled ever-larger genetic screens

and gene expression studies, allowing researchers to apply the power of genetic anal-

ysis of genome-wide gene expression [13, 116]. The difficulty has thus shifted to the

algorithmic side: untangling complex associations and identifying small numbers of

influential predictors of phenotypic effects amid a sea of largely unrelated measure-

ments [29, 115]. One avenue of recent research has been the integration of distinct

types of genomic data to enhance inference, including both linkage studies combining

knowledge from different organisms [21, 37] and integrative analysis of distinct data

types for the same organism [76, 20].

It is difficult to objectively measure progress on algorithmic challenges without

standard benchmarks; within this context, the Dialogue for Reverse Engineering As-

sessments and Methods (DREAM) initiative [103] aims to provide a fair comparison

of methods and a clear sense of the reliability of the models. The fifth annual DREAM

challenge held in 2010 included a Systems Genetics component with the goal of pre-

dicting disease susceptibility from (1) only genotype data, (2) only gene expression

data, and (3) genotype and gene expression data. Through the challenge, the orga-

nizers hoped to identify the best predictive modeling approaches and to evaluate the

benefits of learning from combined genotype and gene expression data [20].

As a top performer on the second part of the challenge, we were invited to present

our results at the DREAM5 conference and contribute to the DREAM5 collection in

PLoS ONE; this paper describes our approach. We provide a comparison of several

regularized regression models and find comparable performance of elastic net, lasso,

and best subset selection. We also carefully analyze the level of noise in the data and
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consequent variability in performance and offer practical suggestions for similar data

analysis and data pre-processing.

7.2 Materials and Methods

7.2.1 Dataset and challenge setup

The data for this challenge were collected from a systems genetics experiment con-

ducted at the Virginia Bioinformatics Institute [167]. Two inbred lines of soybean

plants that differed substantially in susceptibility to a pathogen, Phytophthora sojae,

were crossed and their offspring were inbred for more than 12 generations to produce a

population of recombinant inbred lines (RILs). Individuals within each RIL exhibited

almost no genetic variation, whereas distinct RILs displayed much genetic variation

owing to their differing mixtures of parental genes. Each RIL was screened for 941

genetic variants and gene-expression profiled for 28,395 genes; gene expression was

measured in uninfected plants because the goal of the challenge was to predict disease

susceptibility using only information gathered under normal (healthy) conditions.

After infection with P. sojae, the plants were assayed for two continuous phe-

notypes, each a measurement of the amount of pathogen RNA in the infected tissue

sample. The first phenotype measured the fraction of pathogen probe sets that yielded

a detectable hybridization signal as determined by the MAS5 presence/absence call

in the Affymetrix software used to analyze the data. The second phenotype measured

the ratio between the sum of all background-subtracted soybean probe intensities and

the sum of all background-subtracted pathogen probe intensities. We abbreviate the

two phenotypes as P1 and P2.

The training data, from 200 RILs, thus consisted of a 200×941 boolean matrix of

genotype values (denoting presence or absence of genotype variants), a 200× 28, 395

real matrix of gene expression values, and a 200 × 2 real matrix of phenotype val-

ues. Three distinct test sets of 30 RILs each were used for evaluating submissions;

30×941 genotype and/or 30×28, 395 gene expression matrices were provided accord-
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ing to the respective subchallenge conditions, and predictions of the corresponding

(withheld) 30 × 2 phenotype matrices were solicited. At the end of the submission

period, predictions were scored according to their Spearman (rank) correlations to the

withheld “gold standard” phenotype data. All training and test data are available at

the DREAM5 challenge website

(http://wiki.c2b2.columbia.edu/dream/index.php/D5c3).

7.2.2 Preliminary ranking of predictors by correlation

We began our analysis for this challenge by computing correlation coefficients of the

genotype and gene expression training features against the two phenotype variables.

The magnitudes of these correlations guided our choice of modeling technique; we also

later used correlation-sorted rank lists to limit the scope of computationally intense

calculations to those features most likely to be relevant.

On first glance the highest correlations, above 0.3 for the expression data (Ta-

ble 7.1), appear promising. The significance of these correlations needs to be con-

sidered with the numbers of features in mind, however: 941 genotype and 28,395

gene expression markers. As a rough sanity check, we generated random matrices

with sizes equal to those of the training predictor matrices and computed the corre-

lation coefficients of these random features with the training phenotype data. This

experiment revealed that in fact the training features as a whole are only very weakly

correlated with the phenotypes: almost all correlations from the real training data are

within 0.03 of the highest random correlations, and only one real correlation is sub-

stantially larger (the 0.34 observed in expression vs. phenotype 2). From the point

of view of Bonferroni-corrected p-values, this largest correlation is significant with

p-value 0.017; all other p-values exceed 0.1 upon applying the Benjamini-Hochberg

multiple hypothesis correction [8].

These observations suggest that most features have little or no predictive power,

and hence proper regularization is crucial for modeling this dataset. Additionally, the

small difference between training correlations and the random background distribu-

tion indicate that the prediction task at hand is difficult; the amount of signal in the
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data is likely quite small.

In light of the above considerations, we sought to keep our modeling simple and

chose regularized regression as our general approach. Before fitting the data, however,

we needed to ensure that the relation between predictor and response variables was

as linear as possible, and so we considered data transformations and basis expansions.

7.2.3 Rank transformation to reduce phenotype outliers

Upon plotting the phenotype training data, we discovered that the variance in the

distribution of phenotype 1 is dominated by outliers. Among the 200 measurements

of phenotype 1, the largest outlier is 5.83 sample standard deviations from the mean.

Moreover, the seven most deviant samples account for more than half of the total

variance. For phenotype 2, the largest outlier is a substantial 3.77 standard devia-

tions above the mean but overall the distribution does not have unusually long tails

compared to a normal distribution. A plot of the fractions of variance explained by

increasing subsets of largest outliers in phenotype 1, phenotype 2, and random data

illustrates this behavior (Figure 7-1).

Motivated by the Spearman correlation-based scoring scheme used in this chal-

lenge, which judges predictions based on ordering rather than absolute accuracy,

we applied a rank transformation to phenotype 1 to remove the impact of outliers

on regression models. More precisely, we replaced the numerical values of pheno-

type 1 measurements with their ranks among the 200 sorted samples. Because the

approaches we applied minimized squared error (along with regularization terms),

asking our models to predict ranks rather than actual values removed the heavy

weight that outlier values would otherwise have received. Absolute predictions could

of course be recovered by interpolation if desired.
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7.2.4 Basis expansion to boolean combinations of genotype

variables

With only binary genotype data available for prediction in subchallenge B1, we hy-

pothesized that the true phenotypic response for a genotyped sample would be far

from linear. The simplest possible example of a nonlinear effect is interaction between

genotype markers: for instance, if two genes act as substitutes for one another, their

function is only suppressed if both are turned off. Similarly, if two genes are critical

to different parts of a pathway, turning off either one would impair its function.

With these examples in mind, we considered applying logic regression [107] to ex-

pand the set of features available to our linear models to include boolean combinations

of each pair {A,B} of genotype features:

A ∧B,A ∧ ¬B,¬A ∧B,¬A ∧ ¬B.

Note that the complements of these relations are implicitly included by a linear model

as well, so together they cover all nontrivial binary boolean relations.

To gauge the efficacy of these combined features, we compared the largest fractions

of variance explained by single boolean combination features (using single-variable

least-squares regression) to the best fits obtained by two-variable regression on pairs

of the original genotype features. Looking at the 20 best-performing regressions from

each group (Figure 7-2), we see that the top boolean combinations outperform the

best two-variable regressor pairs, suggesting that basis expansion in this manner does

indeed improve our ability to fit the data.

An important caveat to keep in mind when interpreting these measurements is

that the number of feature combinations considered is very large (nearly 2 million),

thus allowing random chance to inflate best performances as in the case of correlations

examined above. Nonetheless, we expect that the relative trends are still informative.

Upon closer inspection of the best boolean combination markers, we discovered

that some were near-trivial due to linkage disequilibrium (Figure 7-3): for instance,

we observed cases of nearby markers A and B having identical values for 198 out

122



of 200 samples, so that the boolean combination A ∧ ¬B was nonzero for only two

samples. Such combinations are very noisy (and likely uninformative) predictors; we

therefore limited the boolean features under consideration to those containing at least

20 nonzeros.

7.2.5 Regularized regression modeling

Having taken steps to linearize the predictor-response relationship, we applied regu-

larized regression to model the data. Classical linear regression on a predictor matrix

X ∈ RN×p and response vector y ∈ RN assumes a model y = Xβ + w (where w rep-

resents noise) and finds the coefficient vector β̂ ∈ Rp minimizing the sum of squared

residuals ||y − Xβ̂||22. In the highly underconstrained case (p � N), however, ad-

ditional constraints must be imposed for there to be any hope of approximating β;

often one assumes that β is sparse, in which case `1-minimization techniques may be

applied [137]. In the context of our experimental setup this assumption means that

most genetic markers and expression values are unrelated to phenotype, which seems

reasonable.

Our main approach of choice was elastic net regression [169], which imposes con-

straints on model complexity by adding the following penalization term to the squared

residuals being minimized:

λ

(
α||β||1 + (1− α)

||β||22
2

)
,

where 0 ≤ α ≤ 1 determines the weighting of the two terms and λ > 0 is the strength

of the regularization. Note that α = 0 produces the ridge regression penalty while

α = 1 gives the lasso; thus, in some sense elastic nets interpolate between `2- and `1-

regularization. Elastic net regression can be computed efficiently; we used the glmnet

package available for Matlab [45].

For the purpose of comparison, we also tried fitting the data with a simple best

subset selection approach, which seeks to minimize squared error using only a lim-

ited number of regressors. (In the language of our above discussion, this constraint
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can equivalently be viewed as imposing an `0 penalty λ||β||0.) Because best subset

selection is a nonconvex combinatorial problem with exponential complexity, how-

ever, finding best subsets exactly was computationally intractable [46]; instead, we

performed simulated annealing on a subset of likely candidate features (chosen by

correlation-ranking within our cross-validation loop) to obtain a reasonable approxi-

mation.

Implementation details are as follows. For elastic net regression, we ran glmnet

with α = 0, 0.1, 0.2, . . . , 1 and uniformly log-spaced regularization path and default

values of all other parameters. The best pair of (α, λ) for the elastic net was then se-

lected to achieve optimal cross-validation performance. For the lasso, we ran glmnet

with α = 1 and default values of all other parameters. In this case, glmnet auto-

matically calculated a regularization path and we selected the least complex model

achieving within one standard deviation of the best cross-validation performance. We

used this value of λ for our final regression fit.

For best subset selection, we first filtered to the top 30 features with strongest

correlations to phenotype (recomputed for each cross-validation training set). We

then used simulated annealing to compute subsets of size 1–20 features obtaining

approximately optimal linear fits to each training fold. The annealing procedure

consisted of 5 runs of initialization with a random feature subset of the required

size followed by 5000 iterations of attempted swaps, using a linear cooling schedule.

Explictly, the acceptance probability of a swap was

exp(5 · (fractional improvement in fit)/(fraction of iterations left)),

capped at 1.
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7.3 Results

7.3.1 Modest performance of all regression techniques on

training dataset

We evaluated our regression methods using 7-fold cross-validation on the 200-sample

training set, measuring goodness of fit with Spearman correlation to match the

DREAM evaluation criterion. We chose to use 7 folds so that our cross-validation test

sets during development would have approximately the same size as the 30-sample

gold standard validation set, allowing us to also estimate the performance variance to

be expected on the validation set. We applied each regression technique—elastic net,

lasso, and approximate best subset selection with simulated annealing—to fit phe-

notype 1 (rank-transformed) and phenotype 2 individually, using sets of regressors

corresponding to the three subchallenges of DREAM5 Systems Genetics B: genotype

only (B1), gene expression only (B2), and both genotype and expression (B3). Within

subchallenge B1, we ran two sets of model fits, one using only raw genotype markers

as regressors and the other using the boolean basis expansion described in Methods.

Because of the relatively small number of samples and large number of predic-

tors, the random assignment of samples to cross-validation folds caused substantial

fluctuation in performance, even when averaging across folds. We overcame this dif-

ficulty by running multiple cross-validation tests for each model fit using different

fold assignments in each run (20 replicates for elastic net and lasso and 5 replicates

for best subset selection), thus obtaining both mean performances and estimates of

uncertainty in each mean. We chose regularization parameters for each method in

each situation to optimize mean performance; Figure 7-4 shows the results using these

parameters.

Overall, the three regularized regression techniques perform quite comparably.

Note that elastic net regression necessarily always performs at least as well as lasso

(because lasso corresponds to the elastic net with parameter choice α = 1); however,

the performance difference is very small in all cases. Best subset selection appears
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to perform slightly better than the others in predicting phenotype 1 and somewhat

worse in predicting phenotype 2.

Comparing the different regressor sets, subchallenge B1 with genotype data only

is clearly the most difficult. The availability of gene expression data in subchallenges

B2 and B3 dramatically boosts average Spearman correlations to the 0.25-0.3 range

for phenotype 1 (though performance for phenotype 2 is largely unchanged in the

0.15-0.2 range typical for all other cases). Unfortunately, our regression models did

not attain a performance increase from B2 to B3 with the inclusion of genotype data

along with expression data, nor did boolean basis expansion appear to help with

performance on B1.

7.3.2 Effectiveness of rank transformation on phenotype 1

Surprisingly, the rank transformation we applied to phenotype 1 turned out to have

the greatest impact of the pre-regression data transformations we attempted. For

the purpose of comparison, we performed the same model-fitting as above using raw

(untransformed) values of phenotype 1. In all cases the rank transformation increases

average Spearman correlations considerably (Table 7.2). For subchallenges B2 and

B3, rank-transforming phenotype 1 more than doubles the correlation that would oth-

erwise be achieved, though a look at scatter plots of predicted versus actual values

(Figure 7-5) shows that our predictive power is still marginal: predictions are com-

pressed toward the mean, as tends to occur when trying to apply regression to data

that is difficult to model. The effectiveness of the rank transformation was unique to

phenotype 1; in contrast, rank-transforming phenotype 2 had no significant effect.

7.3.3 Strong regularization in best-fit models

Taking a closer look at the optimal regularization parameters for elastic net, lasso,

and approximate best subset selection, we discovered strikingly low model complexity

prescribed by cross-validation in each case. As an example, the blue curves of Fig-

ure 7-6 plot average performance of lasso and best subset selection on subchallenge
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B2 as a function of increasing model complexity. (Note that unlike typical cross-

validation curves with error to be minimized on the vertical axis, our performance

metric is Spearman correlation so we seek maxima.) The regularization parameter is

particularly transparent for best subset selection (shown in the bottom two plots): in

this case, regularization is explicitly manifested as the number of features to be used

in the subset chosen for regression.

With lasso, we likewise see that performance drops off quickly as model complexity

increases; here, the complexity parameter λ is less directly interpretable, but since

the `1-minimization approach of lasso also results in sparse models, the result in this

case as well is that lasso also recommends using only a handful of features. Even with

elastic net regression, which tends to fit denser models due to the presence of an `2

“ridge” penalty, we find that optimal regularization parameter choices de-emphasize

the ridge term, creating lasso-like model fits with α (the “lasso proportion”) typically

in the range 0.8 to 1.

To better understand the strong regularization, we provide heat maps displaying

the feature weight distributions chosen by the elastic net to predict phenotype 1 (rank-

transformed) and phenotype 2 for a set of cross-validation runs on subchallenge B2

(Figure 7-7). As expected, the few features chosen from the 28,395 available are

typically among those predicted to be most informative according to correlation with

phenotype (Table 7.1). The features assigned greatest weight are quite stable from

fold to fold, while the choice of lower-weight features is noisier.

7.3.4 High variance in performance on individual

cross-validation folds and test set

As mentioned earlier, our cross-validation analysis also allows us to estimate the

accuracy to which algorithm performance can be measured using a 30-sample test

set. Unfortunately, we find that this test size is insufficient for accurate evaluation:

whereas the greatest-weight features selected by our models are relatively stable from

fold to fold (Figure 7-7), the Spearman correlations obtained on the held-out test
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folds vary markedly. The blue error bars in Figure 7-6 display one standard deviation

in the Spearman correlation between predicted and actual phenotype values from

fold to fold; with 7-fold cross validation, each fold contains about 29 samples. These

standard deviations mostly fall in the 0.15-0.2 range, in some cases exceeding the

mean performance of even the best parameter choice.

The red curves of Figure 7-6 illustrate the variance in performance when models

fit on the training data were applied to the actual 30-sample gold standard test set

(released after the end of the DREAM5 challenge). As expected, test set performance

strays substantially from the mean.

7.3.5 Official DREAM5 challenge results

Notwithstanding the caveat just discussed regarding uncertainty in results on a small

test size, we include the final results from the DREAM5 Systems Genetics B challenge

for completeness (Figure 7-8). Our team, identified by “orangeballs” and Team 754

in the published results, achieved the best performance on the subchallenge B2 test

set. The overall distribution of Spearman correlations achieved by the various teams

is in line with what we would expect given our analysis of our training results, with

subchallenges B2 and B3 being more tractable than B1.

7.4 Discussion

While the performance achieved by our methods—indeed, by every team’s methods—

is modest, our work does highlight a few important lessons in statistical learning and

in the setup of algorithmic benchmarking challenges such as DREAM. Regarding

the first, our analysis did not lead us to a radically new and complex model for the

genotype-phenotype relationship in P. sojae; on the contrary, we found that given

the limitations of small sample size and noise in the training data, the best models

we discovered were among the simplest we tried. Regularized least squares regression

with careful cross-validation and linearization (using the rank transform we applied

to phenotype 1) proved to be as effective an approach as any other we are aware of,
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and the noise-to-signal in the data was such that the best linear fits needed only a

few well-chosen regressors.

One might hope that the transparency of such simple models can shed light on

the underlying biological mechanism at work; while this may be possible, we also

should caution against trying to glean more from the models than the data allow.

Simplicity may be due to the involvement of only relatively few genes or just to the

fact that heavy regularization makes models less prone to overfitting. In light of

the noisiness of the dataset, we suspect the latter may be true. As a case in point,

while we were disappointed that modeling pairwise interactions through boolean basis

expansion did not improve fitting using the genotype data, we still find it quite

plausible that such effects are at work and may aid modeling in situations when more

data is available. With this dataset, our techniques were likely unable to discern these

effects because the limited data size could not support the increased complexity that

modeling interactions would entail.

Overall, while this contest was perhaps too ambitious for the data available, we

feel it succeeded in stimulating research and discussion in the field. The original

motivation of developing methodology for combining genotype and gene expression

data to improve phenotype prediction remains a worthy goal and interesting open

question.
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Figure 7-1: Large contribution of outliers to variance in phenotype 1. The largest
seven outliers in phenotype 1 account for the bulk of the variance in the data; in
contrast, the outlier distribution for phenotype 2 is similar to that of a random normal
variable.
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Figure 7-2: Single-variable, two-variable, and pairwise logic regression for pheno-
type 2. The plot compares the best least squares fits attainable under three model
types: single-variable regression using each genotype feature independently (blue),
two-variable regression using pairs of features at once (green), and single-variable
regression using pairs of features combined through a binary boolean relation (red).
The best single-variable fits using boolean combination features outperform the best
two-variable regressions.
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Figure 7-3: Correlation coefficients between genotype markers, displaying linkage
disequilibrium. The heat map shows Pearson correlations between pairs of genotype
markers; most pairs have only slightly positive or negative correlations attributable
to chance, but groups of nearby markers exhibit distinctly positive correlations.
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Figure 7-4: Goodness of fit of regularized regression models on training data using
various regressor sets. We tested elastic net, lasso, and approximate best subset
selection on phenotypes 1 and 2 using regressor sets derived from the DREAM5
subchallenges B1, B2, and B3. In each case the regularization parameter(s) were
chosen to optimize average Spearman correlation. We ran multiple cross-validation
tests with different random fold splits to reduce uncertainty in mean performance
and enable comparison between methods; error bars show one standard deviation of
confidence.
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Figure 7-5: Example elastic net predictions versus actual values with and without
rank transformation for subchallenge B2P1. Each scatter plot shows predictions from
one cross-validation run on the training data (blue points) as well as predictions of
the fitted model for the gold standard test set (red points). For the elastic net
modeling on rank-transformed data (right plot), predictions of phenotype 1 values on
an absolute scale were obtained by interpolation. The reported values of R are the
Pearson correlation coefficients.

Top correlations Genotype Expression
(absolute values) Training Random Training Random

Phenotype 1 0.2155 0.2404 0.3034 0.2835
0.2122 0.2116 0.2976 0.2781
0.2061 0.1862 0.2975 0.2749
0.2054 0.1857 0.2963 0.2689
0.2041 0.1851 0.2909 0.2611

Phenotype 2 0.2433 0.2127 0.3441 0.2777
0.2261 0.2104 0.3084 0.2684
0.2198 0.2053 0.2990 0.2679
0.2181 0.1928 0.2824 0.2642
0.2180 0.1926 0.2754 0.2619

Table 7.1: Highest absolute correlations of genotype and gene expression data to
phenotype, versus random background. The top five correlations found in the training
data are shown, as are the top five correlations against a random 0-1 matrix with the
same dimensions as the genotype data and a random normal matrix replacing the
gene expression data.
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Figure 7-6: Variation in cross-validation and test set performance with model com-
plexity for subchallenge B2. Each plot follows the performance of a regression model
as complexity increases. For lasso (top plots), model complexity is determined by
a regularization parameter λ; for best subset selection (bottom plots), complexity is
defined as the number of features used. The blue curves show Spearman correlations
averaged over cross-validation folds, each fold having approximately the same size as
the gold standard test set. Performance varies dramatically from fold to fold; error
bars show one standard deviation of the Spearman correlations achieved for different
folds. The red curves follow performance of the models on the actual gold standard.

Spearman corr. before and after transformation
Subchallenge (regressors) Elastic net Lasso Best subset
B1 (genotype) 0.058 0.107 0.054 0.095 0.092 0.167
B1 (genotype with basis expansion) 0.042 0.085 0.011 0.048 0.025 0.102
B2 (expression) 0.099 0.257 0.094 0.237 0.111 0.285
B3 (genotype and expression) 0.090 0.243 0.077 0.230 0.092 0.272

Table 7.2: Improvement in goodness of fit with rank transformation on phenotype
1. Applying the rank transform to phenotype 1 increases average cross-validated
Spearman correlations for all regression approaches and regressor sets we tested. The
performance improvement is especially large for subchallenges B2 and B3, where gene
expression data is available.
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Figure 7-7: Stability of features and coefficients selected by elastic net regression for
subchallenge B2. The heat maps show regression coefficients chosen by the best-fit
elastic net models as each cross-validation fold is in turn held out of the training set.
The features shown on the vertical axis are those having a nonzero coefficient in at
least one of the seven runs; they are indexed by their rank in Table 1, correlation to
the phenotype being predicted.
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Figure 7-8: Final results of the five teams participating in all three DREAM5 Systems
Genetics B subchallenges. All teams had difficulty even achieving consistently positive
correlations; we suspect the main obstacles were the large amount of noise in the
data and the small 30-sample gold standard evaluation sets. We achieved the best
performance on the test set used for subchallenge B2 (prediction using gene expression
data only).
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Figure A-1: As the validation databases for protein interactions are not complete,
we do not have true negative protein interactions, so we cannot form ROC curves.
We, as is typical (see [77, 25]), plot percent of predicted interactions present in the
respective validation set for a varying number of predicted interactions, which conveys
conceptually similar information to a ROC curve. For this figure, all interactions
supported by at least one external source are included in the validation set. Otherwise,
the setup is the same as Figure 3-5.

0.5 1 1.5 2 2.5

x 10
4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Number of interactions

%
 o

f p
re

di
ct

ed
 in

te
ra

ct
io

ns
 in

 v
al

id
at

io
n 

se
t

DPiM data

500 1000 1500 2000 2500
0

0.02

0.04

0.06

0.08

0.1

0.12

Number of interactions

%
 o

f p
re

di
ct

ed
 in

te
ra

ct
io

ns
 in

 v
al

id
at

io
n 

se
t

MAPK data

500 1000 1500 2000 2500
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Number of interactions

%
 o

f p
re

di
ct

ed
 in

te
ra

ct
io

ns
 in

 v
al

id
at

io
n 

se
t

TIP49 data

 

 
Hart et al. (sampling p=0.3)
Hart et al. (original)
PE (sampling p=0.3)
PE (original)
SAI (sampling p=0.3)
SAI (original)
HGSCore
SAINT

138



Figure A-2: Percent of predicted interactions present in the respective validation set
for a varying number of predicted interactions. For this figure, all interactions sup-
ported by at least two external sources are included in the validation set. Otherwise,
the setup is the same as Figure 3-5.
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Figure A-3: Percent of predicted interactions present in the respective validation set
for a varying number of predicted interactions. For this figure, all interactions sup-
ported by at least three external sources are included in the validation set. Otherwise,
the setup is the same as Figure 3-5.
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Figure A-4: Performance comparison of methods using p = 0.2 as the sampling
parameter. The setup is otherwise the same as in Figure 3-5.
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Figure A-5: Performance comparison of methods using p = 0.5 as the sampling
parameter. The setup is otherwise the same as in Figure 3-5.
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Figure A-6: Sensitivity of performance to sampling parameter p for higher-confidence
predictions. Only the top 40% of predictions considered in Figure 3-6 are evaluated
here. The setup is otherwise the same.
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Figure A-7: Distribution of scores over multiple binary realizations representative
interactions. The score distributions for low, medium and high confidence interactions
overlap slightly indicating the importance of averaging over multiple samples.
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Appendix B

Supporting Information for

PC-Select

B.1 Model performance as the number of top SNPs

to include in the GRM is varied.

We investigated model performance as the number of top SNPs, k, to include in the

GRM is varied. In the following simulations, we compared using the top k SNPs in

the GRM to a model using PCs with the top k SNPs. The following analysis explores

the intermediate choice that the FaST-LMM Select and PC-Select methods have to

make. Both methods use cross-validation predictive log-likelihood to choose k.

In the presence of population stratification and without causal SNPs, we found

that no choice of top k SNPs is sufficient to correct for population stratification,

except when all SNPs are used in the GRM (Figure B-1). This illustrates the tension

between using a subset of SNPs in the GRM to increase power and the need to use

all SNPs to correct for population stratification. On the other hand, when using PCs,

statistics were not inflated for any choices of k.

In the absence of population stratification, including PCs does not compromise

power. The power when using PCs with the top k SNPs is not significantly different

than when using the top k SNPs (Figure B-2).
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Figure B-1: Comparison of inflation when using the top k SNPs in the GRM and
when using PCs with the top k SNPs in the GRM. Two populations are simulated
with Fst = 0.05 and no SNPs are causal. Without PCs, the only choice of k that is
not significantly inflated is using all SNPs. With PCs, no choice of k is inflated.

In the presence of population stratification and casual SNPs, we find that when few

SNPs are causal (p = 0.005), using a subset of SNPs increases power over standard

LMM as previously reported [83]. However, in this regime, using the top k SNPs

inflates null statistics (Figure B-3). With PCs, there were choices of k that improved

power over standard LMM, while at the same time avoiding inflating null statistics.

B.2 Implementation

We suggest implementing PC-Select by extracting PCs from the genotype data using

EIGENSOFT [100] and then running FaST-LMM Select [82, 84, 83] with REML using

the PCs as fixed effects.

For large datasets, we found that FaST-LMM Select exhausted our 170-GB mem-

ory limit, so we provide a memory efficient MATLAB implementation of the cross-

validation step to select k. Then using GCTA [152], the SNPs can be sorted by linear

regression p-value, a truncated GRM using the top k SNPs can be formed, and as-

sociation statistics can be computed using GCTA mlma-loco with a GRM consisting

only of the top k SNPs. In all steps, the PCs are included as fixed effects as well as
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Figure B-2: Comparison of power when using the top k SNPs in the GRM and when
using PCs with the top k SNPs in the GRM. A fraction p = 0.05, 0.005 of the SNPs
were randomly chosen as causal and population stratification was not present. The
last unlabeled points result from using only truly causal SNPs to construct the GRM.
It represents the highest achievable score. In all cases, the power is not significantly
different between the two methods.

any additional covariates.

EIGENSOFT is available at: http://www.hsph.harvard.edu/alkes-price/software/

FaST-LMM Select is available at: http://research.microsoft.com/en-us/um/redmond/

projects/mscompbio/fastlmm/

MATLAB data simulators, analysis pipeline, and cross-validation implementation are

available at: http://groups.csail.mit.edu/cb/pc-select/

GCTA is available at: http://www.complextraitgenomics.com/software/gcta/

download.html
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NHGRI SNP Tag SNP Chr. Position PC-Select FaST-LMM Select

rs4648356 rs4648356 1 2699024 57.5983 54.1676

rs233100 rs233100 1 85544597 8.75607 8.02551

rs6604026 rs6604026 1 93076191 14.6014 13.1095

rs11581062 rs11581062 1 101180107 24.5684 24.2292

rs2300747 rs1335532 1 116902480 28.2122 25.6348

rs3761959 rs3761959 1 155935902 24.4998 21.3694

rs1323292 rs1323292 1 190807644 7.9819 7.87495

rs12466022 rs12466022 2 43212565 3.21049 2.91722

rs7595037 rs7595037 2 68500599 6.24591 6.28292

rs17174870 rs17174870 2 112381672 20.6672 19.6121

rs10201872 rs10201872 2 230814968 8.58927 7.21495

rs9821630 rs9821630 3 16945942 4.62683 4.48627

rs11129295 rs11129295 3 27763784 13.9527 11.6844

rs669607 rs669607 3 28046448 12.5163 10.2774

rs771767 rs771767 3 103231328 6.03805 5.39359

rs2293370 rs2293370 3 120702624 29.6184 27.8487

rs4285028 rs4285028 3 123143354 2.48924 1.93022

rs4308217 rs4308217 3 123275877 1.59951 1.47762

rs9282641 rs9282641 3 123279458 15.2174 14.883

rs908821 rs908821 3 142023408 1.65432 1.67819

rs1841770 rs1841770 3 149239376 0.148637 0.415421

rs2243123 rs2243123 3 161192345 5.57165 5.2983

rs10936599 rs10936599 3 170974795 20.7171 20.6344

rs228614 rs228614 4 103797685 1.69184 1.48077

rs12644284 rs12644284 4 154373450 0.621968 0.58592

rs7672826 rs7672826 4 182636689 0.195435 0.136328

rs6897932 rs6897932 5 35910332 26.7281 26.3093

rs756699 rs756699 5 133474474 4.17009 3.96739
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NHGRI SNP Tag SNP Chr. Position PC-Select FaST-LMM Select

rs1062158 rs1062158 5 141503184 10.9026 10.5473

rs2546890 rs2546890 5 158692478 15.9447 16.2163

rs4075958 rs4075958 5 176717118 10.6018 9.93475

rs11755724 rs11755724 6 7063989 4.02806 4.53184

rs11962089 rs11962089 6 105718913 0.43312 0.530643

rs802734 rs802734 6 128320491 7.09974 5.66315

rs9321490 rs9321490 6 135536568 9.43833 8.90168

rs11154801 rs11154801 6 135781048 27.7979 25.7072

rs17066096 rs17066096 6 137494601 14.9497 13.2316

rs13192841 rs13192841 6 138008907 4.6728 4.39535

rs1738074 rs1738074 6 159385965 26.3828 24.4227

rs6952809 rs6952809 7 2415019 11.6368 10.6263

rs758944 rs758944 7 75791233 4.57183 4.76084

rs354033 rs354033 7 148920397 7.50107 7.06653

rs1520333 rs1520333 8 79563593 7.31574 6.09822

rs2019960 rs2019960 8 129261453 0.60485 0.688187

rs2150702 rs2150702 9 5883861 2.07041 1.67457

rs1755289 rs1755289 9 17928351 1.85224 2.01786

rs290986 rs290986 9 92603357 15.5941 14.1678

rs3780792 rs3780792 9 135825164 0.2023 0.190039

rs3118470 rs3118470 10 6141719 25.7664 25.0488

rs1250550 rs1250550 10 80730323 13.7682 14.0924

rs7923837 rs7923837 10 94471897 8.35128 7.04458

rs650258 rs650258 11 60588858 17.1356 16.4211

rs4409785 rs4409785 11 94951070 10.2767 9.10435

rs630923 rs630923 11 118259563 8.59249 8.76583

rs1458175 rs1458175 12 40252128 0.261234 0.235203

rs703842 rs703842 12 56449006 27.2546 25.9998

149



NHGRI SNP Tag SNP Chr. Position PC-Select FaST-LMM Select

rs9523762 rs9523762 13 92129887 0.258751 0.179013

rs4902647 rs4902647 14 68323944 6.32905 5.2318

rs2300603 rs2300603 14 75075310 16.8255 16.7838

rs2744148 rs2744148 16 1013553 9.70226 8.50068

rs7200786 rs7200786 16 11085302 40.8143 38.0727

rs386965 rs386965 16 78210042 26.3899 24.2915

rs13333054 rs13333054 16 84568534 12.8357 12.5916

rs4792814 rs4792814 17 40758788 4.16238 3.62007

rs180515 rs180515 17 55379057 16.859 16.1936

rs12456021 rs12456021 18 54364370 5.15011 4.5952

rs7238078 rs7238078 18 54535172 5.53865 4.79417

rs1077667 rs1077667 19 6619972 32.0466 29.9332

rs874628 rs874628 19 18165700 23.1209 22.2579

rs7255066 rs7255066 19 49837943 6.19959 5.82356

rs307896 rs307896 19 52353333 11.9913 11.3425

rs281380 rs281380 19 53906282 16.3993 14.4309

rs397020 rs397020 20 1153886 5.67704 5.94638

rs2283792 rs2283792 22 20461125 7.36146 6.70206

rs140522 rs140522 22 49318132 10.4006 9.15617

Table B.1: Wald statistics for 75 published associated

markers in the MS data set.
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Figure B-3: Comparison of power and λGC when using the top k SNPs in the GRM
and when using PCs with the top k SNPs in the GRM. Two populations were simu-
lated with Fst = 0.05 and a randomly chosen fraction p = 0.005 of SNPs were chosen
as causal. The top subplot measures power by mean Wald statistic on test causal
SNPs and the bottom subplot measures inflation by λGC on an independent set of
null test SNPs. Whenever using the top k SNPs without PCs has higher power than
using PCs, it also exhibits significant inflation of λGC .
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Figure B-4: Comparison of number of SNPs chosen by Fast-LMM Select and PC-
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with population stratification and p = 0.005. On average PC-Select chooses fewer
SNPs to include in the GRM.
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Figure B-5: Comparison of λGC and power for the genard method [57] and standard
LMM on simulations with and without population stratification (abbreviated p.s.) as
the fraction of casual SNPs (no causal, p = 0.05, 0.005) varies. As recommended by
the author of the genard method, model complexity is selected by BIC and PCs are
ordered by squared correlation to the phenotype (covSq), squared correlation to the
phenotype multiplied by the eigenvalue (covSq*ev), and effective degrees of freedom
(DF). In these simulations, genard does not provide a benefit over standard LMM.
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