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Abstract

Large displacements and rotations are commonly encountered in the behavior of one-
dimensional slender structures. There are several ways to model these structures
using the finite element method, but since this involves a geometrically nonlinear
analysis, a solution can be quite costly. By applying various assumptions developed
from beam bending theory, the analysis can be considerably simplified. Further,
the buckling analysis can be simplified to a linearized form for which there are two
different formulations. In this thesis, the governing assumptions supporting the secant
and classical methods for a linearized buckling analysis are compared.

This work surveys the effectiveness of various assumptions used in the analysis
of one-dimensional slender structures, determines when they can be applied and ex-
amines their effects on bending and buckling behavior. By understanding when to
appropriately apply the assumptions, we can characterize and model complex beam
structures more effectively.

Three cases are modelled and evaluated to compare various assumptions. To gain
further insight into the analyses, the solution techniques have also been implemented
in a code developed specifically for evaluating the behavior of beam structures using
a geometrically nonlinear finite element method.

Thesis Supervisor: Klaus-Jirgen Bathe
Title: Professor of Mechanical Engineering
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Chapter 1

Introduction

Slender one-dimensional structures are often susceptible to large displacements and

large rotations which complicate an analysis. These structures can be modelled as

beams. The strains can be assumed to be small so that linearized constitutive equa-

tions can be applied, but the displacements and rotations are of arbitrary magnitude.

For geometrically nonlinear systems undergoing this type of motion, the displace-

ments are relatively large compared to the geometry of the problem. The kinematic

relations are nonlinear resulting into that the element stiffness is a function of these

displacements.

For geometrically linear behavior, the nonlinear terms are neglected, and this

leads to a computationally less expensive linear analysis. However when including

nonlinear behavior, the total displacement field must be computed incrementally as a

continuous change in shape. At successive increments while the structure deforms, the

analysis determines the solution with respect to the original undeformed configuration

using the total Lagrangian description.

The displacement-based finite element method takes advantage of displacement

interpolation functions to evaluate structures as models discretized into sufficiently

small elements. The displacement functions and the finite element equations of equi-

librium, which are based upon the principle of virtual work, can be used to solve for

the displacement field of the body. This displacement field is continuous and sat-

isfies the appropriate boundary conditions. Given the displacements and hence the

9



strains, the stress-strain law is applied to obtain the internal nodal point forces which

equilibrate the external forces. The geometrically nonlinear analysis described in this

thesis was developed using the total Lagrangian formulation given in the article by

K.J. Bathe and S. Bolourchi [4] and is adequate for large displacements and large

rotations.

Frequently, in geometrically nonlinear analysis, in addition to determining the

displacement field, one wants to determine the critical load a structure can withstand

prior to instability. Structures undergoing large displacements and rotations are often

unstable and can buckle under critical loads. This condition frequently occurs with

slender structures under compressive loads. Instead of performing a computationally-

expensive, complete incremental nonlinear analysis, a linearized buckling analysis can

be employed to calculate the lowest buckling loads. This study will examine the ways

to effectively model a beam structure which may be susceptible to instability.

An important aspect in successfully using the finite element method is to make the

appropriate assumptions to decrease costs and the time consumed for a sufficiently

effective analysis. There are many ways to effectively model structures and their

behavior. The following study concentrates on beam models, a common type of finite

element model found in many engineering applications. This study will also examine

some of the different ways in which to simplify the finite element model and solution

of a beam structure.

Much work has been done in this field of study, particularly for prismatic beam

structures, but there are still many areas which need to be more carefully explored.

The buckling instability of beam structures is a fundamental area of importance, and

a thorough understanding of beam buckling behavior is necessary for the treatment

of slender beam structures which are susceptible to collapse.

For simple cases, the beam behaviors under applied loading (e.g. displacement

history and buckling loads) have been determined analytically. Most often, analytical

results are not available for comparison with the finite element models of real-life

applications. The finite element programs must be used with a clear understanding

of the theoretical background to achieve reliable results. Two of the case studies

10



examined in Chapter 3 compare the finite element results with analytical results, and

the third case deals with a more complicated structure.

A general reference for the theoretical background and applications of the finite

element method is provided by References [1] and [3]. A general derivation of the

finite element method, including the secant formulation of linearized buckling analysis

is given in Reference [3]. The formulation of the large displacement finite element

analysis specifically using Hermitian beam elements is found in Reference [4].

General elastic beam bending theory using the Bernoulli beam assumption is stud-

ied in References [8] and [13], whereas the beam bending theory using the Timoshenko

beam assumption can be found in Reference [16]. Stability and general beam buckling

theory is discussed in References [7] and [15]. When applied to matrix methods, lin-

earized buckling analysis using the classical formulation and general matrix iterative

methods are developed in greater detail in References [6], [9] and [14].

The examples studied in Chapter 3 have been studied in other publications. Cases

1 and 2, common examples for studying large displacement bending and elastic insta-

bility respectively, can be found in papers such as [4] and [12]. Case 3 is introduced

in Reference [2].

These studies show that errors develop when using Hermitian beam elements in

the presence of moderate strains and significant shear forces. On the other hand, the

isobeam elements gave accurate and reliable results with negligible variation when

decreasing the number of nodes from four to two.

When performing a linearized buckling analysis, the accuracy of the secant formu-

lation is reliant on the size of the perturbation load and converges in the limit as the

perturbation load vanishes. On the other hand, the classical formulation is accurate

and reliable, independent of the size of the perturbation load.

The equations were also implemented into a MATLAB code as discussed in Ap-

pendix B for the geometrically nonlinear finite element analysis of linear elastic beam

structures using Hermitian beam elements. Implementation of the equations aids in

understanding the solution process of the finite element method.
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Chapter 2

Theory

To understand the behavior of beam structures, this work analyzes beams of rectan-

gular section undergoing large deformations and rotations. When the analysis is no

longer restricted to small displacements and rotations, the analysis can be adapted

to model more complex behavior such as buckling.

The following approach uses an incremental total Lagrangian formulation in which

the motion of the body is referenced to a fixed Cartesian coordinate system. The un-

known static and kinematic variables in the configuration at time t are determined

using those of the initial configuration. To determine these variables, the equations

based on equilibrium, kinematics and constitutive behavior must be solved as de-

scribed in the article by K.J. Bathe and S. Bolourchi [4]. A summary of the necessary

equations used in this type of analysis is given in the following sections.

2.1 Beam Elements

The displacement-based finite beam elements used in the beam structure models

are assumed to have constant cross-sectional area and remain straight due to the

assumption of small strains. Hence, plane sections of the beam remain plane during

deformation. Beam structures are most often modeled as assemblages of either two-

node Hermitian or two-, three- or four-node isobeam elements. The main difference

between the two major classes of beam elements, Hermitian and isobeam elements,
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lies in the assumptions used to model bending actions. The beam elements used to

model the beam structures have six degrees of freedom per node and are capable of

transmitting an axial force, two shear forces, a torque and two bending moments.

2.1.1 Hermitian Beam Elements

Hermitian elements exclude effects due to shear deformations and exhibit bending

behavior corresponding with Bernoulli-Euler beam theory [8, 13]. The basic kinematic

assumption governing Bernoulli-Euler beam theory for symmetric beams is that plane

sections originally normal to the neutral axis remain plane after bending. In addition,

the angular rotation is equal to the slope of the beam's mid-surface. The angle of the

plane section measured from the vertical can be found using the relation [3]

dv 
(2.1)

dx

where v(x) is the transverse displacement along the beam originally lying along the

x-axis and v is the angular rotation of the element.

In the case of pure bending, the beam is subjected to a constant bending moment

and therefore, the shear and axial forces are zero. Hermitian beam elements are ideal

for the case of pure bending. For nonuniform bending, a shear force also acts on the

beam, and the beam will shear and develop out-of-plane distortions. The absence of

terms to account for shear deformations using Hermitian beams can yield questionable

results. To account for the effect of shear forces, isobeam elements should be used.

2.1.2 Isobeam Elements

Isobeam beam elements include effects due to shear deformation and behave con-

sistent with Timoshenko beam theory [16]. Timoshenko beam theory retains the

assumption that plane sections through a beam remain plane after bending, but un-

like the Bernoulli-Euler beam assumption, plane sections do not necessarily remain

normal to the beam mid-section. Instead, these elements attempt to approximate the

effects due to shear forces by assuming that the rotation of the plane section depends

13



on a constant shearing strain across the section in addition to the rotation of the

element. In other words, the angle of the plane section measured from the vertical 3

can be determined by the relation [3]

dv
S - 7 (2.2)
dx

where

T
y = - = constant shearing strain over the corresponding shear areaA,

G

T = - shearing stress (shear force over the section A,)

A
k = s= shear correction factor determined from theoretical considerations [3]

A

Using the correction factor, the effects due to shear are closely approximated. A

detailed analysis will be given in Chapter 3. The analysis will also compare the

results using various multi-nodal elements.

The beam structure model can now be analyzed using the displacement-based

finite element method. The basis for this method is the principle of virtual work from

which we can extract and subsequently solve the equations of equilibrium.

2.2 Equations of Incremental Equilibrium

For linear analysis, the exact response corresponding to beam theory can be calculated

because the exact displacement functions are known. These same functions are also

used to yield an effective solution in nonlinear analysis, but whereas the stress-strain

and compatibility relations are satisfied exactly, the stress equilibrium within the

elements themselves is only satisfied approximately in the general case.

For example, consider a cantilever beam subjected to a transverse applied load at

the tip. The results have been determined analytically and by using the finite element

method by modelling the beam using ten Hermitian beam elements. The results are

summarized in Appendix A. The stresses are calculated directly from the strains by

14



applying the stress-strain law:

tSij Cijrs t Ers (2.3)

These strains are evaluated from the displacements which are continuous and comply

with the given displacement boundary conditions, thereby complying with compat-

ibility. As shown in Figure A-3, the complex displacement field can be accurately

represented using the finite element analysis compared to analytical theory. The ac-

curacy of the finite element results for the displacements along the beam follows from

the fact that the stress-strain law and compatibility are satisfied exactly. However,

whereas the stress-strain law and compatibility are satisfied, the stress equilibrium

is only satisfied approximately. Figure A-4 compares the analytical results to results

from a finite element analysis for calculating the axial forces, shear forces and mo-

ments along the beam. Since the model is divided into a sufficient number of elements,

the errors are minimal. When using a coarser mesh, the results start to skew as shown

in Figure A-5 for a mesh using three elements. These findings agree with the state-

ment that the finite element analysis satisfies stress equilibrium only approximately,

whereas the stress-strain law and compatibility requirements are satisfied exactly.

Most geometric nonlinear analyses have been developed using three different for-

mulations: total Lagrangian, updated Lagrangian and co-rotational. The total La-

grangian formulation utilizes the initial configuration as the reference frame (xo, Yo, zo

at time 0) described using the second Piola-Kirchoff stress and the Green-Lagrange

strain. As suggested by its title, the updated Lagrangian formulation references the

latest calculated configuration (xt, yt, zt at time t) by using the same stress and strain

measures but referred to time t to study the configuration at time t + At. The

co-rotational formulation references a configuration that moves together with the ele-

ment and allows the use of linear kinematic relations while the geometric nonlinearity

is accounted for by the frame rotation.

In the total Lagrangian formulation, the principle of virtual work yields the fol-

15



lowing equation [4]:

(toL NL) ~ T

where

toKL, oKNL

t±AtThtE 7
0~tR

= linear and nonlinear incremental stiffness matrices

= vector of incremental nodal displacements

= vector of externally applied nodal loads at time t + At

= vector of nodal forces corresponding to element stresses at time t.

The subscript 0 preceding a quantity corresponds to a quantity measured in the

total Lagrangian formulation with respect to the initial configuration at time 0. The

overbar signifies a quantity evaluated with respect to the local convected coordinate

axis of the beam '-(i = 1, 2, 3). The finite element matrices listed above are evaluated

using the following equations:

OKL 0U = [BL o B0L dv] 0
fV 0

tOKNL Of = 0 B 'L OBNL dv] o5
JV Bf 0 dv

tOF = V tOB O$ dv

(2.5)

(2.6)

(2.7)

where

= linear and nonlinear strain-displacement transformation matrices

= incremental stress-strain material property matrix

= matrix and vector of second Piola-Kirchhoff stresses.

The linear and nonlinear strain-displacement transformation matrices are evaluated

using the interpolation functions defined in Reference [4]. These functions are con-

structed assuming a linear variation in longitudinal, torsional and warping displace-

16
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ments and a cubic variation in transverse bending displacements.

The total Lagrangian formulation is characterized by the coordinate transforma-

tions required for the strain calculations. The transformation matrix 'T relates the

displacements measured in the original configuration at time 0 to the displacements

measured in the current configuration at time t to account for the translational dis-

placements and axial rotation of the beam elements. This transformation requires

the additional equations:

tK = OTT tK OT (2.8)

F = OTTt F (2.9)

u = OTT 0-9 (2.10)

where

tK = tKL + tKNL = tangent stiffness matrix

OT = transformation matrix

u = vector of incremental nodal displacements in the global coordinate system.

All quantities are explicitly defined in K.J. Bathe and S. Bolourchi [4] and are referred

to the 07i(i = 1, 2, 3) coordinate system unless otherwise specified.

2.3 Incremental Analysis

An important feature of nonlinear analysis is incremental stepping. As the prescribed

loads increase, the incremental displacement distributions are continuously calculated

as incremental changes pertaining to each load step. The nonlinear stiffness matrix

0JKNL also changes since it is dependent on the forces acting on the beam elements.

To appropriately calculate this nonlinear dependence, the final total load t+ZtR

must be divided into smaller increments, CR , and applied successively to the struc-

ture at each timestep At. Additionally at each step, the incremental displacements

17



are calculated and added to the incremental displacements previously calculated over

all previous timesteps as shown by the following equation:

t+AtU = tU + U (2.11)

where U is the increment in nodal displacements corresponding to the increment in

element displacements and stresses from time t to time t + At. A similar incremental

relationship holds for the nodal point force vector t+ztF. For problems with multiple

loads, the incremental load vector can be implemented using different scaling factors

for the various loads.

Usually the errors resulting from the first linearized calculation of the internal

stresses are too large to be negligible. In this case, the Newton-Raphson iterative

method is employed to maintain equilibrium between the applied loads and the in-

ternal stresses.

2.4 Newton-Raphson Iterations

The tangent stiffness matrix, t+AtK(o), is only an approximation since it was derived

by linearization. After i iterations, the resulting matrix, t+AtK(i), is progressively a

more accurate representation of the true linearized behavior at time t + At.

For each load step, equilibrium is attained when the external load vector equals

the internal stress vector such that [3]

t+AtR - t+AtF = 0 (2.12)

The external load vector, t+AtR, is simply a vector comprised of externally applied

nodal loads and is independent of the displacements. The internal stress vector,

t+AtF, must be calculated at each incremental step since it depends on the total dis-

placements corresponding to that timestep. To correct the error in the incremental

approach described in Section 2.3, the Newton-Raphson iterative scheme is included.

This scheme assumes an initial value of t+AtF = tF, corresponding to the internal

18



stresses found at the previous timestep. As the load increases from 'R to t+AtR, the

internal stresses also increase. The Newton-Raphson iterations increase the magni-

tude of t+AtF until it matches the known external nodal loads, t+AtR at the timestep.

The iterative error, the difference between the two vectors, is used to calculate the

incremental displacements in the timestep. These incremental displacements decrease

from the start of each timestep as the Newton-Raphson method converges and Equa-

tion 2.12 is satisfied to within an acceptable tolerance. The equations used in this

process are summarized below for iteration i = 1, 2, 3,... :

t+AtK(i-l)AU(i) - t+AtR - t+tF(i-1) (2.13)

t+AtU(i) - t+AtU(i 1) + AU( (2.14)

with the following initial conditions per step

t+AtK(O) = tK; t+AtU(O) - tu; t+AtF(O) = tF

To derive Equations 2.13 and 2.14, we express the finite element equilibrium equa-

tions 2.12 as

f(U*) = 0 (2.15)

where

f(U*) - t+ZNR(U*) - t+AtF(U*) (2.16)

and U* represents the final solution vector of displacements. Taking a Taylor series

expansion of f(U*) yields

f(U*) = f(t+AtU(il)) + [f (U* _t+At U(-')) + higher-order terms
LOUJ t+Atu(i-i)

(2.17)
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given that the vector of displacements t+AtU(i-l) is evaluated at the previous iteration.

Substituting Equations 2.15 and 2.16 into Equation 2.17 and ignoring the higher-

order terms results in

[F] (U* _t+At U(-') = i+AtR - t+AtF(i-l) (2.18)

assuming that the externally-applied loads are independent of the displacements,

i.e. 9 = 0 and A+AtR is constant throughout the timestep. This equation can be

simplified to Equation 2.13 where

t+AtK(L-1) = [OF (2.19)

The final displacement solution converges by improving the displacement solution

using Equation 2.14. In practice, this process is repeated until the convergence is

reached with sufficiently small AU() or sufficiently small (t+AtR - t+AtF(i)).

2.5 Linearized Buckling Analysis

Structures undergoing large displacements and rotations are often unstable and can

buckle or collapse. This condition particularly occurs to slender structures undergoing

compressive loads. One way to determine the critical buckling load can be through

evaluating the load displacement history as outlined in the previous section. The total

stiffness matrix at any time T, 'K, changes as the load increases with time. For loads

smaller than the critical load, the internal and external forces acting on the beam are

in stable equilibrium, and the deflections remain relatively small. In general, when

the forces in the beam are mostly tensile, the total stiffness increases; when the forces

are mostly compressive, the total stiffness decreases. When the stiffness decreases,

the structure is susceptible to buckling. As the total stiffness approaches zero, the

displacement increments increase rapidly until reaching a certain point at which the

system is unstable. This limit point represents the point at which the internal and

external forces are in unstable equilibrium. The value of the applied load has reached
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the critical buckling load value given by

'Ku = 0;u # 0 (2.20)

with 'K singular which leads to

det['K] = 0 (2.21)

In most cases, this procedure is expensive. Often, the load increments specified are

not small enough to correctly detect when Equation 2.21 is fulfilled, and calculating

through each incremental load until buckling is costly. An automatic time-stepping

approach such as the load-displacement-constraint (LDC) method can be used for a

nonlinear displacement analysis that steps through each incremental load.

A more efficient alternative to calculating the lowest buckling loads is the lin-

earized buckling analysis. Instead of calculating through each time step to find the

displacement history, the linearized buckling analysis assumes that the elements of

the stiffness matrix vary linearly from time t - At until the time t when buckling

occurs. The buckling load is approximated using sufficiently small prebuckling loads.

The problem is effectively reduced to an eigenvalue problem with which we want to

evaluate the eigenvalues and eigenvectors to find the corresponding buckling loads

and mode shapes.

At the point of instability, the application of the critical buckling load, the stiffness

matrix is singular. Therefore, Equation 2.20 can be rewritten as

0Ki = 0 (2.22)

where #3 is a nonzero vector corresponding to buckling mode i. This analysis can be

quite accurate if used with sufficiently small prebuckling displacements. For a detailed

look into the calculation of the linearized buckling load, there are two formulations:

the secant and classical formulations.
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2.5.1 Secant Formulation

Linearized buckling analysis using the secant formulation assumes that the elements

of the stiffness matrix vary linearly from the previous timestep to the time of buck-

ling. This assumption likewise applies to the vector of external loads. Therefore, the

following relations hold at any time T [3]:

rK = K + Aj (t K - t-AtK) (2.23)

and

OR= R+ A (tR - t-AR) (2.24)

where A, is a scaling factor corresponding to buckling modes i = 1, 2,3,... and the

stiffness matrices and corresponding vectors of externally applied loads, K AtK,

t- AR and tR, are known. By substituting Equation 2.23 into Equation 2.20, we

obtain the generalized eigenvalue problem:

Koi = Ai (-tAK - t K)#j (2.25)

The resulting Ai and #i correspond to the critical buckling loads and buckling

modes. Since t-A K - t K is indefinite, this yields both positive and negative eigen-

values. To calculate the smallest positive eigenvalues, we rewrite Equation 2.25 as

toi = j t-At Koi (2.26)

where

- 1
= Ai -1(2.27)

The values of j are strictly positive. By using this transformation, the eigenvalues

are strictly positive and the smallest one corresponds to the lowest buckling mode.
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The buckling loads are evaluated from the eigenvalues using the following equation:

Ruckling,i = -AtR+ Ai (t R - t-AR) (2.28)

2.5.2 Classical Formulation

Linearized buckling analysis using the classical formulation takes advantage of differ-

ent assumptions to derive a solution to Equation 2.22. The classical formulation takes

advantage of the fact that the tangent stiffness matrix can be broken down into a lin-

ear part and a nonlinear part as shown in Section 2.2 such that 'K = (GKL + rKNL).

Substituting this relation into Equation 2.22 yields

( KL+ 0KNL) O =0 (2.29)

for any time T. We assume that the total tangent stiffness matrix varies linearly in

time during prebuckling; hence, the term, "linearized" buckling analysis. The linear

part of the incremental stiffness matrix is assumed to be independent of loading and to

remain constant as the loading increases with time. Therefore, the time-dependence

of the total stiffness matrix originates from the nonlinear stiffness matrix which simply

varies as a multiple of its initial value:

'KL +0KNL 0KL±Ai stK (2.30)

If we generalize this statement such that the linear portion of the stiffness matrix is

constant and equal at any time T to the linear stiffness matrix at some time t, then

substituting this approximation into Equation 2.29 leads to the following equation:

( KL + Ai iKNL) qi = 0 (2-31)

23



since KL is constant for all t. The buckling loads and corresponding buckling modes

can then be found using the following equation [1]:

'Koi = i ('K - 'KNL)i (2.32)

where i is defined exactly as in Equation 2.27 for the secant formulation. The critical

buckling loads are then calculated using Equation 2.28. The classical formulation is

widely used and can be found in many texts on finite element methods.

2.6 Warping Torsion Analysis

Warping torsion occurs in prismatic beams of noncircular cross-section which are sub-

ject to twisting. In ADINA, the isobeam and Hermitian beam elements both model

the warping behavior as derived in the paper by K.J. Bathe and A.B. Chaudhary

[1, 5].

To implement a warping torsion analysis using beam elements, separate warping

displacement functions must be included in the formulation of the beam element to

account for the additional axial displacements that occur under large torques. St.

Venant torsion theory of a non-circular twisted bar assumes that the deformation is

comprised of two components. First, every cross-section along the bar rotates as a

function of 0, the angle of twist per unit length of the bar [10]. Second, every cross-

section warps by some amount u = b(x, y) where O(x, y) is a general warping function

dependent on the shape of the cross-section. For beams of general rectangular cross-

section [5]:

u = axy + xy(x 2 _ y 2 ) (2.33)

where a and # are additional degrees of freedom which may be eliminated using

static condensation before assembling the global stiffness matrix. The displacements

v and w are given by the general linear functions for torsion [3, 4]. There are no nor-

mal stresses acting between the longitudinal fibers, and this warping component acts
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identically over all cross-sections of the beam. The addition of these warping displace-

ments will affect the linearized buckling analysis in addition to the total displacement

field.

The analysis defined using the procedure outlined above can now be applied to

the following examples for which we will compare the results of these two linearized

buckling methods.
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Chapter 3

ADINA Case Studies

Three cases were analyzed using the finite element analysis commercial software pack-

age ADINA. The finite element large displacement and linearized buckling analysis

results were compared to analytical results, if available. The following cases are lim-

ited to isotropic, linear elastic material behavior for large displacements and rotations.

3.1 Cantilever Beam Subjected to End Moment

model:
10 elements

zh

1- L ---

tip displacements et

and rotation: -9--0").-

material:
linearly elastic

y Young's modulus

geometry:
length
base
height
moment of inertia

load:

E = 3 x10

L= 10
b=2
h =1
I = h

2

100 increments
total moment M =

Figure 3-1: Cantilever beam under end moment: finite element model
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Figure 3-2: Case I: motion following the load application

The beam is initially straight and is idealized using ten elements with motion

restricted to the y-z plane as shown in Figure 3-1. Figure 3-2 illustrates the resulting

two-dimensional beam motion due to the concentrated end moment M. The two beam

configurations correspond to the motion corresponding moment parameters 'q = 0

and r7 = 0.9, respectively. The following discussion will look at the limitations of

the analytical solution compared to a more complete large deformation finite element

analysis.

3.1.1 Analytical Solution Using Bernoulli Beam Assumption

Since there is only an applied moment acting on the end of the beam, the internal

reaction consists of a constant bending moment along the length of the beam. This

case is idealized in solid mechanics as one of pure bending, where the only resultant

internal reaction is a pure couple. Therefore, there are no shear or axial forces, and

there is no danger of instability in the analysis.

The theory behind pure bending states that the cross section is plane along the

length of the beam and remains plane under bending. This assumption also corre-

sponds with the fundamental Bernoulli beam assumption discussed in Section 2.1.1

for Hermitian beam elements. By applying this Bernoulli beam assumption to this

particular case, we can easily derive equations to analytically calculate the nodal
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displacements and rotations. The Bernoulli beam assumption is applicable to beam

structures undergoing large displacements, large rotations and small strains.

There is an infinitesimal angle dO between two planes initially normal to the

neutral axis when the beam is in bending. These two initially normal planes intersect

the neutral axis at two distinct points which are separated by an infinitesimal distance

ds along the curved beam. Therefore, the following geometric relation holds for a

beam undergoing small strains such that dy = ds:

1 dO
- = -- (3.1)p ds

where p is the radius of curvature of the beam after bending. By applying Hooke's

law and balancing linear momentum about the neutral axis, the exact differential

equation for the deflection curve can be expressed as

dO
El- = M (3.2)

ds

for beams of Young's modulus E and moment of inertia I.

This equation can be recast as the general moment-curvature relationship appli-

cable to beams of linearly elastic material:

1 MI- = - (3.3)p El

In order to achieve such a simple equation relating moment and curvature, we must

assume that the strains and relative rotations are small and therefore, the incremental

slope of the beam is very small. This small strain assumption leads to a slight error

in the analysis which will be addressed in the following section.

By substituting the moment-curvature relation, Equation 3.3, into the simple

geometrical relations derived in Figure 3-3, the displacements and rotations can be
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L = 0 p

cos 0= Pw

sin 0 =

| \ p

p-WI \
I L-v i

L w

L

Figure 3-3: Case I: derivation of the analytical solution

found analytically from the given material and loading conditions:

EIML\
axial displacement, v = L - sin --- (3.4)M \EI/

transverse displacement, w = 4 [ - cos (3.5)

rotation, - El (3.6)

By restricting the analysis to one of Bernoulli beam bending, the mathematics

becomes much simpler and can be completed without running a more costly finite

element analysis. The main consequence of this simplification is an error which will

be evaluated and addressed in the following sections.

3.1.2 Finite Element Analysis

The normalized moment-displacement curve of Figure 3-4 compares the ADINA anal-

yses using Hermitian and multi-nodal isobeam elements and the analytical results.

The plot shows the normalized nodal y-displacements ktenraizdndlz

00

displacements i and the normalized nodal rotations at the tip of the beam. The

load-displacement results from analytical theory and the Hermitian beam analysis are
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Pure Bending Analysis
Hermitian Beam

0.9 - - 2-node Isobeam
.... 3-node Isobeam
- -- 4-node Isobeam

0.8-

0.7-

E 0.6 -

CL

S0.5 -

E 0.4-

0

0.3-

0.2-

0.1 -

0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
moment factor i =ML

nEl

Figure 3-4: Case I: load-displacement plot of the tip for a thick beam; L = 10
Note: The results for the three-node and four-node isobeam element are overlapping.
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Beam y-displacements z-displacements x-rotations
Element Type Value Difference Value Difference Value Difference

Analytical 1.00000 3.016% 0.63662 4.919% 0.50000 3.157%
Hermitian beam 1.00000 3.016% 0.63924 5.352% 0.50000 3.157%
2-node isobeam 1.04937 1.741% 0.59514 1.954% 0.52634 1.908%
3-node isobeam 1.03112 0.002% 0.60676 0.002% 0.51631 0.002%
4-node isobeam 1.03110 0.60677 0.51630

Table 3.1: Case I: convergence properties at the tip for a thick 10-element beam; L
= 10

practically identical and differ within less than one percent.

There is a noticeable discrepancy between the Hermitian beam and analytical

results and the isobeam results in Figure 3-4. Table 3.1 compares the values of the

displacements at the tip of the beam for the various beam models. From the theory

discussed in Section 2.1, one can assume that the four-node isobeam is the most

accurate solution since it can be applied to more general large displacement and

strain cases. Therefore, the error analysis for the other beam models was based on

the four-node isobeam analysis. After performing additional tests on the isobeam

element, it can be concluded that the discretization error is negligible for this case,

and there is no evident source of error from the convergence tolerances for the shear

analysis using the isobeam element.

The plot in Figure 3-4 shows that the isobeam transverse displacements are larger

than those from the analytical theory and the Hermitian beams by as much as 5%. To

find the cause of this error, one must return to the underlying assumptions used in the

models of the Hermitian beam and isobeam elements. One notable difference between

the two models is the less refined level of approximation for the strain-displacement

relation for the Hermitian beam element. The Hermitian beam element and Bernoulli

beam theory neglects a higher order strain term so that they are essentially valid for

sufficiently small strains.

The 5% error for the analytical and Hermitian analyses arises primarily from this
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small strain assumption. As mentioned in its derivation, the analytical solution as-

sumes small strains. Likewise, the derivation of the equations for the Hermitian beam

element eliminates higher-order quadratic terms from the Green-Lagrange strain ma-

trix, ' n, in the total Lagrangian formulation equations given in Section 2.2. The

Piola-Kirchoff stresses are found from the Green-Lagrange strains using the stress-

strain law from Equation 2.3. The strain-displacement relation for the axial strain

component of a three-dimensional bending beam lying along the y-axis is the following

[3]:

* v* 1 [(w*' 2 (Dv*\20* + + (3 7)
DY ay 2 [ y ) y

where v* and w* are the displacements of a longitudinal fiber along the beam in the

y- and z-directions, respectively, and are functions of the transverse position of the

fiber in the z-direction in addition to the axial and transverse displacements v and

w (i.e. v* = f(v, w, z) and w* = g(v, w, z)). The higher-order z-dependent terms

are neglected for small strain analysis. These terms become more pronounced when

the beam is thicker, and this causes an error in small strain analyses that use the

Bernoulli beam assumption. Since the strains are larger in thicker beams, this small

strain approximation causes the Hermitian beam element response to stray from the

isobeam response when the beam thickness increases. Unlike the Hermitian beam

element, the isobeam element is capable of effectively modelling larger strains.

Beam thickness is usually evaluated using the nondimensional slenderness ratio,

y where d is the depth of the beam in the plane of bending. For thicker beams,

approximately L < 10, the additional terms in the strain expression are significant,

and the errors in the analysis increase.

Figure 3-5 is a plot of the same beam when the length of the beam is increased by

a factor of ten so that L = 100. Lengthening the beam, and thereby decreasing its

thickness to length ratio results in the decrease of the magnitude of the strains. In the

limit as the strains become very small, the beam becomes increasingly more slender

and the isobeam results converge towards the Hermitian beam and analytical results.
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Pure Bending Analysis
- Hermitian Beam
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Figure 3-5: Case 1: load-displacement plot of the tip for a slender beam; L 100
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Figure 3-5 shows that the results of the isobeam elements match the solution derived

from the Bernoulli beam assumption when the beam length L = 100. The differences

in the normalized tip deflections and rotations are less than one-thousandth. There-

fore, it is usually only necessary to use the more numerically complex Timoshenko

beam assumption in the analysis for thicker beams when the strains are larger. The

evaluation of thick beam structures should be restricted to isobeam elements. For

slender beams, the Hermitian beam elements are sufficient.

Figure 3-4 also illustrates the convergence properties of the isobeam element as

the number of nodes increases. As the number of nodes per element increases from

two to four, the results given in Table 3.1 converge rapidly. It should also be noted

that the three-node element performs just as well as the four-node element for this

analysis.
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3.2 Cantilever Beam Subjected to Compressive Load

h- L -|

tip displacements
and rotation:

model:
10 elements

material:
linearly elastic

y Young's modulus

geometry:
length
base
height
moment of inertia

load:
100 increments
total force
perturbation

Figure 3-6: Cantilever beam under compressive axial load: finite element model

ADINA

PRESCRIBED
FORCE

1150000.

B-

Figure 3-7: Case II: motion following load application

For this case, a cantilever beam modelled with ten beam elements is subjected to

an axial compressive load P and a transverse perturbation load OP at the tip of the

beam. The problem description is shown in Figure 3-6. Initially, the beam is straight

and of constant rectangular cross section. The resulting beam motion is restricted to

the y-z plane, and the deflected shape is illustrated in Figure 3-7 for P = 1.5 x 10'.
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3.2.1 Analytical Solution Using Bernoulli Beam Assumption

One way to analyze this problem is similar to the previous analysis using the Bernoulli

beam assumption. Shear deformations are ignored, and we will show that this is

acceptable for slender bars. By obtaining an approximate solution to the deflection

curve (similar in form to Equation 3.2 where the bending moment can be determined

from the product of the flexural rigidity and the curvature), the differential equation

of the deflection curve is

dO
El - -Pz (3.8)

ds

for the applied load P on a beam lying along the y-axis. After manipulating this

equation with the geometrical relations given in the book by S.P. Timoshenko [15],

results for the deflections and rotations are tabulated numerically using elliptic inte-

grals. The following results can be found as functions of p, which is directly related

to the rotation 6:

_K(p)
2EI 39

applied load, P = L2 (3.9)

y-displacement, v = 2 E(p) E - L (3.10)

z-displacement, w = 2p El (3.11)

x-rotation, 0 = 2sin- p (3.12)

where K(p) and E(p) are the complete elliptic integrals of the first and second kind,

respectively. These integrals can be found as follows:

K(p) = (3.13)
Jo 1-p2sinq5/7r/2

(p) = 10 I -sin do$ (3.14)
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ii _

Beam y-displacements z-displacements x-rotations

Element Type Value Difference Value Difference Value Difference

Analytical 0.3454 8.57% 0.6626 2.62% 0.1944 3.77%
Hermitian beam 0.3451 8.64% 0.6615 2.79% 0.1942 3.88%
2-node isobeam 0.3799 0.56% 0.6833 0.42% 0.2032 0.56%
3-node isobeam 0.3777 <0.01% 0.6804 <0.01% 0.2021 <0.01%
4-node isobeam 0.3777 0.6804 1 0.2021

Table 3.2: Case II: convergence properties at the tip for a thick 10-element beam; L

= 10

where p is given using Equation 3.12. The loading parameters given in Figure 3-6

result in a rotation up to approximately 70 degrees.

Like the analytical solution in the previous case, these equations are also limited

to small strains and do not account for shear deformations. Both of these assumptions

introduce errors in the results since shear deformations can only be neglected when

the resultant internal reaction is a pure couple and small strains are usually limited to

slender beams. For beams with the given set of geometry and loading, the axial load

and transverse perturbation load both contribute to additional forces that render the

Bernoulli beam assumption inadequate for this case. The magnitude of this error will

be evaluated in the following section.

3.2.2 Finite Element Analysis

Figure 3-8 graphically compares the analyses using Hermitian and isobeam elements

with the analytical results for the calculation of the normalized nodal y-displacements

, the normalized nodal z-displacements f and the normalized nodal rotations y at

the tip of the beam as the loading increases. Table 3.2 compares the values for the

displacements at the tip of the beam of length L = 10, assuming that the four-node

isobeam is the most accurate solution.

Similar to the results of the previous case, the results of the analytical solution and

the Hermitian beam solution are identical to within 0.1%. Also, the displacements
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Figure 3-8: Case II: load-displacement plot of tip for a thick beam; L = 10
Note: The results for the three-node and four-node isobeam element are overlapping.
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Figure 3-9: Case II: load-displacement plot of tip for a slender beam; L = 100
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for the isobeam elements are greater than those for the Hermitian elements and the

analytical case, but for this case, the error is larger. When comparing the Hermitian

axial displacements with those of the four-node isobeam, the difference rises to 8.6%.

There are two reasons for this error. First, like the previous case, there is an error due

to the fact that the Bernoulli beam assumption is valid for small strains. Therefore,

there are smaller values for displacements using the Hermitian beam element and

the analytical solution. Second, the isobeam elements include shear deformations. In

this example, the resultant normal and shear forces are nonzero which means that the

Bernoulli beam assumption for negligible shear forces is not applicable to this case.

Instead, the Timoshenko beam description is a more valid model.

The isobeam elements are equally effective when using the three- and four-node

elements. There is a very slight difference when using the two-node element which

gives smaller displacements yet is still more accurate than the Hermitian beam el-

ement. The results from the two-node isobeam lie below the three- and four-node

isobeam and above the Hermitian beam element.

Figure 3-9 shows the same plot for the same beam elongated to length L = 100.

As in the previous example, after extending the length of the beam, the results for the

isobeam elements converge towards the results for the analyses which neglect shear

deformations and assume small strains. For thicker beams, the shear stresses are

relatively significant compared to the axial stresses due to bending, and the errors in

the analysis increase.

3.2.3 Linearized Buckling Analysis

Another interesting aspect of this problem is the transition to instability due to the

compressive forces acting along the beam. The load-displacement plot of Figure 3-8

is characteristic of a loaded beam structure which progresses from stable to unstable

equilibrium. The prebuckling displacements, corresponding to P < P, are relatively

small and comparatively linear with respect to the applied loading. The structure is in

stable equilibrium. At the instance when the first critical buckling load is reached, the

structure buckles and transitions from stable to unstable equilibrium. This transition
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drastically alters the load-displacement path, and the structure does not function the

same as before. Whereas the stable prebuckling behavior was characterized by small

displacements per load increment, the unstable postbuckling behavior is characterized

by the same-sized load increments producing much larger displacements.

The fastest method for calculating an estimate for the critical buckling loads for

this case is by using Euler's column formula:

r2EI
Pe = (3.15)

This equation is derived from the differential equation of the deflection curve which

neglects shear deformations and assumes that the beam is initially straight and un-

dergoes small strains. To account for the shear deformations, the differential equation

for the deflection curve should account for the additional curvature due to shear. The

following correction factor for this beam problem should be used instead [151:

Pcr = 1 e (3.16)
1 + nPe/AG

where Pe is the Euler buckling load given in Equation 3.15, G is the shear modulus, A

is the cross-sectional area of the beam and n is a correctional factor which depends on

the cross-sectional geometry (n = 1.2 for rectangular beams). Using this correctional

factor to include shear effects on the buckling load when Poisson's ratio, v = 0,

the critical load decreases by a factor of about 0.0005 for beams of length L = 10

and 0.005 for beams of length L = 100, a relatively insignificant amount. Table 3.3

shows that for the shorter beam, the correction to include shear effects decreases

the error from 0.62% to 0.12%. The relative insignificance of this result agrees with

S.P. Timoshenko's conclusion [15] for solid columns. Timoshenko has found that the

ratio 1/ (1+ nPe/AG) is almost always close to unity for solid beam elements since

nPe < AG.

As described in Section 2.5, there are two methods with which the critical buck-

ling loads can be determined using the finite element method: classical and secant.

Tables 3.3, 3.4 and 3.5 compare the calculated values for the buckling loads using
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Beam Classical Method Secant Method
Element Type Buckling Load Difference Buckling Load Difference

Hermitian beam 123114 0.41% 123111 0.41%
2-node isobeam 123115 0.41% 122986 0.35%
3-node isobeam 122612 <0.01% 122485 0.10%
4-node isobeam 122612 122485 0.10% J

Analytical - no shear 123370 0.62%
Analytical - shear 122764 0.12%

Table 3.3: Case II: calculation of the smallest critical buckling load for a thick beam
using a small perturbation load; L = 10 and 3 = 2 x 10-

Beam Classical Method Secant Method
Element Type Buckling Load Difference Buckling Load Difference

Hermitian beam 1233.68 < 0.01% 1230.82 0.23%
2-node isobeam 1238.72 0.41% 1235.82 0.18%
3-node isobeam 1233.63 < 0.01% 1230.74 0.23%
4-node isobeam 1233.62 1230.74 0.23%

Analytical - no shear 1233.70 0.01%
Analytical - shear 1233.64 < 0.01%

Table 3.4: Case II: calculation of the smallest critical buckling load for a slender beam
using a small perturbation load; L = 100 and 3 = 2 x 10-4

Beam
Element Type

Hermitian beam
2-node isobeam
3-node isobeam
4-node isobeam

Analytical - no shear

Analytical - shear

Classical Method
Buckling Load

1233.68
1238.72
1233.63
1233.62

1233.70
1233.64

Difference

< 0.01%
0.41%

< 0.01%
< 0.01%

0.01%
< 0.01%

Secant Method
Buckling Load

1169.19
1173.80
1168.89
1168.89

Table 3.5: Case II: calculation of the smallest critical buckling load for a slender beam
using a large perturbation load; L = 100 and # = 10-3
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these two methods. Each of these three tables corresponds to varying values of the

length of the beam and the size of the perturbation load. Table 3.3 is the same

case that was analyzed for the load-displacement plot of Figure 3-8, and likewise,

Table 3.4 matches the elongated beam of Figure 3-9. In addition, a third variant

used for Table 3.5 matches that of Table 3.4 except that the perturbation load has

been increased from 3 = 2 x 10-4 to 3 = 10-3. All of the results were compared to

the four-node isobeam element for the particular beam length and 3 = 10-3, since it

includes shear effects, accounts for large strains and includes minimal effects due to

the perturbation load.

The findings support the various ways in which errors due to neglecting shear de-

formations and assuming small strains can be minimized as discussed for the previous

case. As discussed above, when shear effects are included in the analytical buckling

calculations, the error decreases to 0.12%. This remaining error is due to the as-

sumption of small strains. Analytical solutions are rare though and only exist for few

problems. When performing a finite element analysis, one way to minimize errors is

the choice of beam element. Although the buckling results from the Hermitian beam

and the isobeam models differ by less than 1% in each case, this error results from the

assumption of negligible shear deformations and small strains in the Hermitian beam

elements. When using slender beams, the error for most of the element models using

the classical method are decreased to much less than unity. This effectively disregards

the need to include terms to account for shear and large strains since those factors

are minimal. As described in the previous case, the discrepancy results partially from

shear deformation assumptions, but also from the assumption of small strains in the

analytical and Hermitian beam results.

The Euler column buckling load and the classical method of the linearized buck-

ling analysis provide essentially the same results since they take advantage of the

same assumptions. In general, the buckling loads calculated using the secant method

are less than those calculated using the classical method or analytically. The errors

are magnified from less than 1% to approximately 5% when the perturbation load

increases from 0 = 2 x 10- 4 to 1 = 10-3. Although this reflects up to a 5% inac-
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curacy in comparison to the analytical and classical result, the results are relatively

constant. The key assumption governing the secant formulation is not as strong as

the key assumption governing the classical formulation. Namely, the prebuckling to-

tal stiffness matrix is more easily broken down into a constant, loading-independent

linear part and a linearly-varying, loading-dependent nonlinear part as developed in

the classical theory. This is a stronger assumption than by assuming, as in the secant

formulation, that the total stiffness matrix varies linearly from the previous timestep

to the next. The formulations yield of course different results, and in this example

the classical formulation for the linearized buckling load is more accurate.

Table 3.5 reflects how the perturbation load can skew the accuracy of the anal-

ysis. The perturbation load is necessary to introduce an initial imperfection into

the problem which would, in turn, induce unstable equilibrium. This load should

be small so that the results do not directly depend on its magnitude. One way to

examine the effects of the perturbation is to view the load-displacement history, and

determine if the displacements that are directly resulting from the perturbation load

are excessively large. If so, then the perturbation load may be affecting the results.

Figure 3-10 compares the effect of different values of the perturbation load on the

displacement history. Just before reaching the critical load, the z-displacements are

much larger when 13 = 10-2 than when it increases to 13 = 2 x 10-. The same beam

which is loaded by the larger perturbation load develops errors as large as 5.25% using

the secant method for the linearized buckling analysis. Therefore, the secant method

is accurate as long as the perturbation load does not affect the bending behavior

significantly.

As shown in Table 3.5, when the perturbation load increases, the secant method

approximation to the critical load decreases. When the perturbation load is small, the

secant method is just as accurate as the classical method. Although there are errors,

the method is still reliable as a more conservative estimate of the critical buckling

load. To determine why the secant method estimates the buckling load conservatively,

one should compare the governing assumptions underlying the secant and classical

formulations of the linearized buckling analysis as discussed in Section 2.5. The
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Figure 3-10: Case II: comparison of z-displacement response of the tip for a thick
beam under various perturbation loads; L = 10

secant method assumes that in prebuckling the elements of the stiffness matrix vary

linearly from one timestep to the next. When the perturbation load is relatively

large, this assumption starts to become invalid. Figure 3-10 shows how the bending

behavior alters as the perturbation load increases. The prebuckling z-displacement

() displacements become increasingly nonlinear as 3 increases. This is surprising

considering the secant method takes into account the nonlinear aspect of the stiffness

matrix, whereas the classical method assumes it varies linearly with respect to time.

Therefore, mathematically the secant method should be more reliable. Further study

into this problem is needed to completely understand this phenomenon.

When using the secant method for the linearized buckling analysis, it is useful to

see how the estimated buckling loads vary as the perturbation load varies since it is

not sufficient to assume that the solution is accurate if 0 < 1.
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3.3 Right-Angle Frame Under End Load

model:
L - . 20 elements

material:
z linearly elastic

y Young's modulus E = 7.12 x101

Poisson's ratio v = 0.31

geometry:
length L = 0.24
base b = 0.03
height h = 0.0006
moment of inertia I = bh 3

12

L load:
100 increments

P total force P=2
perturbation s = 0.001

PP

tip displacements r hI
and rotation: -- b -

Figure 3-11: Right-angle frame under end load: finite element model

This example is an assemblage of two beams connected in the manner of a right-

angle frame shown in Figure 3-11. The cross-section is extremely thin as shown in the

figure. The structure is modelled using 20 beam elements (10 per section) which are

initially straight and of constant rectangular cross section. A force P and a relatively

small perturbation load /3P acts at the tip of the structure, and the resulting three-

dimensional motion is shown in Figure 3-12. The three configurations correspond

to the initial undeformed configuration P = 0, an intermediate load which is slightly

larger than the first buckling load P = 1.2 and the much larger final load P = 2.0. The

deformed configurations show that the motion is more complicated than either of the

two previous examples, but the discussions in Sections 3.1 and 3.2 are useful when

interpreting and understanding the various mechanisms that apply to the present

case.

One interesting aspect of this case is that buckling is not caused directly from

compression due to the applied load as for the previous case for the beam under

compressive axial load. This results from the fact that the structure is extremely

thin as can be seen by the specifications provided in Figure 3-11. The aspect ratio of
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Figure 3-12: Case III: motion following load application: ADINA results

Figure 3-13: Case III: twisting motion following load application
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width-to-height is 50:1, and the load acts parallel to the width of the structure. In

addition, Figure 3-13 shows the frame with exaggerated thickness under the loading.

As the load P increases with time, the outer arm (from the right-angle joint to the

free tip) begins to twist with respect to the x-axis whereas the inner arm (from the

fixed end to the right-angle joint) follows. The resulting motion leaves the right-angle

frame with compression acting along the outer edges as shown in Figure 3-13, and

tension along the inner edges. The compression along the outer edges causes buckling.

This problem has been studied by J.H. Argyris et. al. [2] to calculate the buckling

load using a different finite element modelling technique. There are also other texts

which predict the deformation of this right-angle frame using linear displacement

assumptions for small displacements and loads much smaller than the critical buckling

load, P < Per.

3.3.1 Finite Element Analysis

The results of the finite element analysis are shown in Figure 3-14 for the normalized

displacements along the y-axis (i), the normalized displacements along the z-axis

(i) and the normalized rotations around the x-axis (y) where v and w are the tip

displacements and 6 is the x-rotation at the tip. The plot shows that the rotation

term y is greater than either of the other displacement terms. This is different than

in the previous two cases where the transverse displacement term dominated. In this

case, the large rotation term at the tip of the right-angle frame corresponds to a

twisting moment on the leg of the frame on which the load is applied. This problem

clearly includes warping torsion in addition to bending displacements.

Table 3.6 compares the convergence properties of the finite element analysis when

examining the displacements at the tip of the structure. Assuming that the four-node

isobeam element is the most accurate, the error analysis uses this model to compute

the accuracy. As in the previous examples, the values of the displacements at the

tip using the isobeam element converge as the number of nodes increases, yet the

two-node isobeam element still gives accurate results to within 0.29%.

Also, the results show that the Hermitian beam yields approximately the same
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Figure 3-14: Case III: load-displacement plot of tip of the right-angle frame.

Note: The results for the two-, three- and four-node isobeam elements are overlapping.

V L 
LL 2w7

Beam y-displacements z-displacements rotations about
Element Type the negative x-axis

Value Difference Value Difference Value Difference

Hermitian beam 0.1009 11.59% 0.0563 1.33% 0.9477 5.59%
2-node isobeam 0.0906 0.21% 0.0554 0.29% 0.8985 0.11%
3-node isobeam 0.0904 <0.01% 0.0555 <0.01% 0.8975 <0.01%
4-node isobeam 0.0904 0.0555 0.8975

Table 3.6: Case III: isobeam convergence properties at the tip
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error as found in the previous example for which the error remained below 9% in the

displacements. In this case, the largest error rises to about 11.6%. The similarity in

error analysis indicates that the errors using the Hermitian beam element most likely

stem from the same source: the presence of shear deformations and large strains.

3.3.2 Linearized Buckling Analysis

Buckling of this beam structure occurs due to a combination of bending and torsion.

S.P. Timoshenko studied a similar example in Reference [15] for a right-angle struc-

ture with one end fixed and the other simply-supported. For that case, two solutions

for the critical buckling load were found corresponding to flexural buckling and purely

torsional buckling by solving the governing differential equations for bending and tor-

sion. The solution to the governing equations for this problem exists when the load

is smaller than the flexural Euler load for buckling. The results of this analysis are

1.648 for the critical flexural buckling load and 1.018 for the critical purely torsional

buckling load. The latter solution governs the buckling behavior of the frame since

it is smaller. This solution is comparable to the results using the classical method in

Table 3.7 for a fixed-free frame and differs from the four-node element by approxi-

mately 6%. Since the structure is more likely to buckle due to torsion, it is important

to correctly model the beam structure using the appropriate warping displacement

functions as described in Section 2.6.

Tables 3.7 and 3.8 compare the results of various buckling analyses. The latter uses

a perturbation load factor 3 = 10-. From Figure 3-14, we can see that the Hermitian

beam and isobeam incremental large displacement analyses using the LDC method

both predict that the initial buckling load lies within the load interval bounded ap-

proximately by 1.0 < P < 1.2. The analytical result for the simply-supported frame

also pinpoints the critical buckling load at slightly above 1.01. Therefore, we can as-

sume that larger errors arise when using the Hermitian beam elements or the secant

method since those results are no larger than 0.87 and are much smaller than those

predicted by the load-displacement plots and the analytical analysis. Although there

are no definitive solutions for this case, we can infer from analytical methods of similar
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Beam Classical Method Secant Method
Element Type Buckling Load Difference Buckling Load Difference

Hermitian beam 0.5475 49.62% 0.2835 73.92%
2-node isobeam 1.0883 0.12% 0.4096 62.31%
3-node isobeam 1.0868 0.17% 0.4090 62.37%
4-node isobeam 1.0869 <0.01% 0.4090 62.37%

Table 3.7: Case III: calculation of the smallest critical buckling load using a large
perturbation load; = 10-3

Beam Classical Method Secant Method
Element Type Buckling Load Difference Buckling Load Difference

Hermitian beam 0.5473 49.65% 0.5473 49.65%
2-node isobeam 1.0885 0.14% 0.8716 19.81%
3-node isobeam 1.0877 0.06% 0.8708 19.89%
4-node isobeam 1.0870 0.8707 19.89%

Table 3.8: Case III: calculation of the smallest critical buckling load using a small
perturbation load; 3 = 10-

cases and from the general numerical results using the more general isobeam element

an approximate value for the buckling load. The error analyses of Tables 3.7 and

3.8 are performed with respect to the buckling load calculated using the four-node

isobeam element under the classical method with 13 = 10'.

The results remain relatively constant when varying the number of nodes of the

isobeam elements. This reflects the same pattern as in the previous cases. The two-

node element gives results for the displacement field and the linearized buckling load

that are accurate to within 1% of the four-node isobeam element.

Another notable characteristic of Table 3.7 is that the error increases to 50% us-

ing the Hermitian beam element. In case II, the error was negligible between the

two element models when calculating the buckling load. This case differs by the

existence of warping torsion, but the Hermitian beam elements and the isobeam el-

ements both include warping torsion displacements using displacement interpolation

functions given in Reference [5]. Torsion is not the cause of the errors that stem from

using the Hermitian beam elements rather than the isobeam elements. Instead, this
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discrepancy arises due to the limitations of the linear variation in axial displacements

adopted by the axial displacement function for the Hermitian beam elements. The

linear approximation is not sufficient to model more complex axial displacement vari-

ations in the beam structure. Conversely, the isobeam element is based on a mixed

interpolation of displacements and stresses that is capable of accurately modelling the

beam structure. It is surprising that this difference is so large for the displacements

as a function of the load history. Figure 3-14 shows that the response is not much

different between the isobeam and Hermitian beam element for the buckling load.

Calculating the buckling load with the Hermitian beam incrementally using the LDC

method (see Section 2.5) yields much more accurate results than using the linearized

buckling method with that particular beam element. The isobeam element yields ac-

curate results using either solution technique: the classical linearized buckling method

or the incremental LDC method.

Similar to the results for the linearized buckling analysis for the second example,

there is a significant discrepancy between the secant and classical formulations with

each returning consistent results. However, unlike in the previous example, the secant

method analysis provides a significantly more conservative estimate. The classical

method holds up quite well in this case since it assumes that the nonlinear part of

the stiffness matrix is linear for small precollapse timesteps whereas the linear part

remains constant.

Of course, the classical buckling solution is close to the analytical solution since

the same assumptions are used, but in this case we find a large discrepancy between

those results and that using the secant buckling method. One may expect better

results from the secant method rather than the classical method, but that is not

reflected in this case. The secant method takes into account the total stiffness matrix

and maintains its nonlinearity, whereas the classical method assumes that the stiffness

matrix can be divided into a constant stiffness matrix KL that is independent of the

loading and a varying nonlinear stiffness matrix KNL that is dependent on the loading.

Since the secant method is more general, one would expect that this formulation

would yield more accurate results. Further research and numerical experimentation
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is necessary in order to see the cause of this behavior.

The combination of torsion and flexure effects on the calculation of the buckling

load retains the discrepancies that were discovered in the two previous examples.

There are some surprising results where we find that the classical method is more

general for nonlinear displacements than the secant method for linearized buckling

analysis and also, the Hermitian beam element yields surprisingly inaccurate results

for the buckling load using the linearized buckling analysis but works quite well using

the incremental LDC method. Further research must be done, and a shell analysis

would be an appropriate way to proceed in order to ascertain the cause of these

discrepancies.
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Chapter 4

Conclusions

The examples described in the previous chapter examine the effect of various the-

oretical assumptions which are commonly used to model one-dimensional, slender

structures and their displacement and buckling behavior. Depending on the geome-

try and applied loading, various assumptions can be applied in order to decrease the

time needed to complete the finite element analysis.

The choice between Hermitian beam elements and isobeam elements depends on

the magnitude of the strains and shear forces acting on the structure. The simplest

analysis using two-node Hermitian beams is reliable for structures undergoing negli-

gible shear forces and small strains since the analysis neglects shear effects using the

Bernoulli beam assumption and neglects higher-order strain terms. For most large

displacement analyses of slender beam structures, either element can be used. How-

ever, when performing an analysis in the presence of moderate strains and/or shear

forces, Hermitian beam elements may be unreliable.

The errors that develop when varying the number of nodes of the isobeam element

are negligible as long as a reasonable number of elements is used. The errors between

the two-node element compared to the four-node element never rose over 2% when

evaluating the load-displacement history or the buckling load.

For the linearized buckling analysis, the secant formulation is a more conservative

estimate for the calculation of the critical buckling load in the cases examined in

this thesis. When applying the secant formulation, one must be sure to see if the
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perturbation load factor # is small enough. It is not sufficient to assume the analysis

is accurate if 3 < 1. For beam structures under complex loading, larger errors may

arise using the Hermitian beam element due to the limitations of the linear variation

in the axial displacement interpolation function. Otherwise, the results are consistent

and reliable for simply loaded structures. On the other hand, the classical formulation

is very accurate and reliable for all of the given examples.

By examining these modelling techniques, we establish rules by which one can ap-

ply the finite element method for more complicated slender, one-dimensional struc-

tures. A thorough understanding of the theory behind the finite element method

provides a means to most effectively interpret the results of the analysis.
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Appendix A

Cantilever Beam Subjected to

Transverse Load

L -

tip displacements
and rotation:

model:
10 elements

material:
linearly elastic

y Young's modulus

geometry:
length
base
height
moment of inertia

load:
100 increments
total force

Figure A-1: Cantilever beam under transverse load: finite element model

The problem of a linear elastic cantilever beam subjected to a transverse load is

represented by the finite element model shown in Figure A-1 using ten beam elements.

The motion following the load application is shown in Figure A-2 for the initial

undeformed beam and the deformed beam under the total applied load.

Figure A-3 compares the load-displacement results from the finite element analysis

with analytical results derived using elliptic integrals in Reference [11] by K. Matti-

asson. The results differ from the ADINA analysis using Hermitian beam elements

by less than 1%.
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Figure A-2: Case IV: motion following the load application
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Figure A-3: Case IV: load-displacement plot of the tip
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Figure A-4: Case IV: axial forces, shear forces and moments along the beam with
load P = 1500 modelled using 10 elements

Figure A-4 compares the analytical and finite element analysis results for the

axial force, shear force and moment over each element along the beam at the final

timestep corresponding to P = 1500. The analytical results were obtained for the

large displacement case assuming that the applied loading, which can be separated

into axial and transverse components, induces an equal and opposite reactive force

along the beam. Using the nodal rotations calculated analytically in Reference [11 for

an incremental large displacement analysis, the axial forces, shear forces and moments

are determined using simple geometric relations. Given the x-rotation 'o of beam

element n at time t, the forces and moments are given by the following relations:

axial force, 'R, = 'P sin('On) (A.1)

shear force, %V, = 'P cos(On) (A.2)

moment, tMn = tP (tL - tyn) (A.3)
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where 'P is the applied loading at the tip at time t, ty, is the position of the node

along the y-axis with respect to the fixed node at time t and tL is the total length

of the beam along the y-axis at time t as illustrated in Figure A-2. As exhibited in

Figure A-4, the finite element analysis gives an accurate estimate of the axial forces,

shear forces and moments along the beam.

When using a coarser mesh, a noticeable discrepancy develops between the finite

element ADINA results and the analytical results when calculating the axial forces,

shear forces and moments along the beam. Figure A-5 compares the response when

the number of elements for the finite element model decreases to three. This follows

from the fact that the stress-strain law and compatilibity between the elements is

satisfied exactly whereas the stress equilibrium is satisfied approximately.

a)
2

.2

a-)
0

Cu

P

C

E
0
E

~1
0

- P

P 0L r

3

2 3

element

Figure A-5: Case IV: axial forces, shear forces and moments along the beam with
load P = 1500 modelled using 3 elements
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Appendix B

Implementation of the Nonlinear

Finite Element Beam Equations

The objective of this work is to gain more insight into the evaluation of geometrically

nonlinear beam structures. Through the evaluation of various case studies, the re-

sults were analyzed and compared in order to determine advantages to using different

modelling techniques. To further understand the nonlinear finite element analysis of

beam structures, the equations and procedures described above have been directly

applied to these studies. The nonlinear finite element analysis using Hermitian beam

elements described in Chapter 2 has been implemented using MATLAB. This imple-

mentation was performed in order to better understand the application of the finite

element equations and the general sequence of algorithms used to perform an analysis.

The equations were implemented into a source code named CR, using the method

described in Reference [4] for Hermitian beam elements. All integrations were per-

formed over rectangular cross-sections using Mathematica and imported as subfunc-

tions of CR which is completely evaluated using MATLAB. The linear and nonlinear

strain-displacement transformation matrices were constructed using the beam inter-

polation functions given in the Reference [4]. The complete analysis assembles the

linear and nonlinear stiffness matrices and nodal point force vector at each incre-

mental load step and performs Newton-Raphson iterations to satisfy equilibrium at

sufficient convergence.
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The code was then tested using Case IV and Case I. Figure B-1 compares the re-

sults for Case IV, a beam subjected to a transverse force at the tip with specifications

given in Figure A-1, and Figure B-2 compares the results for Case I, a beam subjected

to an end moment at the tip with specifications given with Figure 3-1. Both cases

show that the results are accurate, but slight errors arise as the load increases. This

results from convergence errors rather than flaws in the theory. Further optimization

of the code is necessary before performing more complex analyses. These examples

allowed me to more thoroughly understand the theory described in Chapter 2 and

how the theory can be directly applied to beam structures.
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Figure B-1: Case IV: Implementation results
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