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Abstract

In precision assemblies, components must be aligned relative to another with high ac-
curacy. The components are typically supported on flexures, which exhibit negligible
damping; therefore, vibration of the components becomes an issue. In this thesis (and
in concert with Zuo and Nayfeh [50]), we develop the concept of the multi-degree-of-
freedom (MDOF) tuned-mass damper (TMD) to damp multiple modes of vibration
of a primary structure. A MDOF TMD consists of a rigid mass connected to a pri-
mary mass with damping and stiffness tuned to suppress vibration in as many as six
modes of vibration of the primary structure. Zuo and Nayfeh [50] have shown that,
given size and location of the absorber mass, numerical optimization can efficiently
determine the values of the springs and dampers but not their locations.

The goal of this thesis is to develop analytical approximations for the design and
'attainable performance of MDOF TMDs. The use of perturbation methods allows
the locations of the springs and dampers to be optimized, in addition to their values.
First, we examine the single-degree-of-freedom tuned-mass damper and use eigen-
value perturbation, with the mass ratio as the small parameter, to determine the
approximate eigenvalues and eigenvectors. To demonstrate the application of the ap-
proximate eigenvalues and eigenvectors for design, we show that perturbation results
for the minimax design, which maximizes the minimum damping coefficient, are a
Maclaurin series expansion of the exact solution. Then, we extend the method to
multiple degrees of freedom. Approximate eigenvalues and eigenvectors are deter-
mined for the coupled system. We use the minimax criterion to illustrate the design
procedure using the expansion. The method is applied to a two-DOF system and a
three-DOF system, and for the two-DOF system the results are compared with those
of a numerical optimization procedure.

Thesis Supervisor: Samir A. Nayfeh
Title: Assistant Professor
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Chapter 1

Introduction

1.1 Motivation

In the design of precision machines and precision assemblies, components must be

positioned to within tight tolerances. Furthermore, the support structures must not

deform these components by applying unnecessary stresses. Therefore, the compo-

nents must be kinematically constrained. In other words, the structure must be

statically determinate. To accomplish this task, components are often supported on

flexures, elastic elements which are relatively stiff in usually one direction and com-

pliant in the other directions. Because these flexures are elastic and typically have

negligible damping, vibration of the components relative to the support structure be-

comes a problem. Therefore, a method of introducing damping into the system must

be found.

An example of such a system is the optical assembly of a lithography system. A

mock-up of a beam splitter supported on flexures is shown in Figure 1-1. Its vibration

mode shapes are shown in Figure 1-2. To maximize performance of the lithography

system, the vibration of the optical elements should be well damped.

A number of methods exist for adding damping, but precision systems have special

requirements that impose limitations. Typical methods such as adding viscoelastic

materials are unacceptable in precision applications because creep is introduced into

the system. Electromagnetic dampers are often difficult to use when retrofitting a

19



Figure 1-1: An aluminum block supported on flexures serves as a mock-up of an
optical assembly typical of a lithography system. Aluminum has approximately the
same density as glass.
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y x
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Figure 1-2: Vibration mode shapes of the mock-up shown in Figure 1-2.
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system. Fluid dampers are unacceptable in systems where cleanliness is a concern.

An inertial, or tuned-mass, damper is a good alternative because it is easy to retrofit;

and it does not introduce creep.

1.2 Terminology

A tuned-mass damper (TMD), or dynamic vibration absorber (DVA), consists of a

rigid mass connected to a primary mass with damping and stiffness tuned to suppress

vibration of the primary mass (see Figure 1-3). There are three common tuning

methods (see Figure 1-4). The H, optimal tuning minimizes the maximum response

to harmonic excitation, which for the single-degree-of-freedom (SDOF) TMD, sets the

two peaks in the frequency response to be of equal and minimum height (see Figure

1-4). The H2 optimal design minimizes the energy in the system, or equivalently,

minimizes the variance to white-noise (random) excitation. The third common tuning

method is obtained from "minimax" optimization of the damping; the minimum

damping coefficient is maximized. This design differs from the H. and H2 tunings

because it is not input-output based. When the input, or disturbance(s), are not well

known, the minimax design is often preferable to the H, and H2 optimal designs.

This design maximizes the stability margin and robustness of the system. A result of

this design for the SDOF TMD is that the system has one repeated eigenvalue instead

of two distinct eigenvalues (see Figure 1-5). Therefore, the frequency response has a

single peak (see Figure 1-4). This thesis focuses primarily on the minimax design.

1.3 Previous Literature

The concept of the tuned-mass damper was created by Frahm [9], who received a

patent for the idea in 1909. The first analysis of the TMD was performed by Den

Hartog and Ormondroyd in 1929 [26]. Their idea for the optimal tuned-mass damper

was based on the idea of "equal peaks." They derived a simple tuning which very

21



m X2

k c

M _ X

K

Figure 1-3: Diagram of a vibratory system comprising a mass M to which a single-

degree-of-freedom tuned-mass damper m is attached.
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Figure 1-4: Frequency responses for various tuned-mass damper tuning methods: un-
damped (dots), solid (Den Hartog, approximate H..), minimax (dashed), H2 (dash-
dot)
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Figure 1-5: Eigenvalue locations for the minimax tuned SDOF TMD as the damping
is varied. Only the upper half-plane pole locations are shown because the eigenvalues
form complex conjugate pairs. The poles coalesce for the minimax damping value.

nearly approximates the H, optimal tuning and is given by

1
f = I(1.1)

I +

where f is the ratio of the natural frequency of the TMD to the primary system and [

is the mass ratio (m/M). In 1946, Brock [4] derived the optimal damping coefficient

of the absorber for Den Hartog and Ormondroyd's method of equal peaks:

( = (1.2)
8(1 +p)

More recently, researchers have expanded on the work of Den Hartog by finding the

optimal tuning and damping based on time and frequency domain techniques [34] [40]x

including the H. and H2 optimal designs [3] and considered systems where the pri-

mary structure has light damping [10] [42]. Tsai [35] [36], Igusa and Kiureghian [13],

and Pacheco and Fujino [27] used perturbation techniques to study the response of

systems with SDOF TMDs. Fujino and Ab6 [10] expanded on this work and de-
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veloped expressions for the design of SDOF TMDs using perturbation techniques.

The presence of multiple modes in a primary structure affects the performance and

optimal design of SDOF TMDs; this has been studied in continuous and discrete

structures (e.g., [15, 42, 37]).

A fundamental difficulty in the use of a TMD is its sensitivity to tuning. Re-

searchers have attempted to improve the performance robustness by tuning many

SDOF TMDs to a single mode of the primary structure [12, 1, 18, 28, 21, 11]. Abe

and Fujino [1] employed a perturbation method to develop some design rules for the

multiple-TMD systems.

Most common structures have more than one vibrational mode of importance,

and it is often desired to attenuate the response in many or all modes of a structure.

Multiple SDOF TMDs can be employed to damp more than one mode of a primary

structure (e.g., [41, 22, 20]). Rice [30] used the Simplex Algorithm to minimize the

peak of the frequency response over a designated frequency range for two SDOF

TMDs attached to a cantilever beam, optimizing the location as well as the stiffness

and damping of the absorbers. Chen and Wu [5] studied the optimal placement of

multiple SDOF TMDs on a model of a multi-story shear building. Many others (e.g.,

[29, 25, 33, 2, 49]) have used numerical methods, including genetic algorithms and

LQG/H2 optimization, to design SDOF TMDs for MDOF structures.

Several researchers have examined the dynamics of MDOF structures coupled to

other MDOF structures to obtain simple or closed-form approximations for the dy-

namic response [17, 7, 14, 43], but relatively few have used these results to design the

secondary structures in order to attenuate vibration of the primary structure. Igusa

and Kiureghian [14] used perturbation techniques to find approximate expressions

for the behavior of primary-secondary structures. Snowdon et al. [32] developed the

cruciform absorber which consists of two mass-loaded beams connected at right an-

gles to one another and tuned to damp one or two modes of the primary structure.

Yamaguchi [44] and Kawazoe et al. [19] both examined the use of beam-like absorbers

to damp the vibration of primary beam structures.

Verdirame et al. [39] considered a MDOF TMD comprising a rigid body sup-
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Figure 1-6: Diagram of a vibratory system comprising a mass M to which a tuned-

mass damper m is attached.

ported by several springs and dampers relative to a primary structure and tuned this

MDOF connection to maximize the minimal damping among as many as six modes

(see Figure 1-6). A two-term perturbation expansion was used to obtain an approx-

imate tuning, which was further refined using non-smooth numerical optimization.

More recently, Zuo and Nayfeh [50] have shown that a single MDOF TMD can be

more effective than multiple SDOF TMDs of the same total mass in maximizing the

damping in many modes of a structure. Verdirame et al. [39] found that a two-term

expansion yields a reasonable approximation for initial sizing and location of a MDOF

TMD, but does not produce accurate enough frequency detunings or damping coef-

ficients to build a nearly optimal absorber. The numerical optimization of Zuo and

Nayfeh [50] efficiently determines the optimal spring and damping values for the ab-

sorber once their locations are given. However, their method is unable to determine

their locations, which is an important parameter in determining the optimal design.

In this thesis and similarly in Verdirame and Nayfeh [38], an eigenvalue perturbation

is used to approximately determine the optimal springs, dampers, and their locations.

Once the approximate design including locations is found, the methods of Zuo and

Nayfeh [50] can efficiently determine the optimal spring and damper values.
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1.3.1 Concept of the Multi-Degree-of-Freedom Tuned-Mass

Damper

Assuming that the mounted component, such as the cube shown in Figure 1-1, is

relatively more stiff than the flexures, the system has in general six modes of vibra-

tion in which the mounted component moves as a rigid body relative to the base.

Therefore, we would like to be able to damp up to six modes of vibration. To ac-

complish this task, one could use six single-degree-of-freedom tuned-mass dampers.

However, when six single-degree-of-freedom tuned-mass dampers are used, the inertia

of the absorbers is not fully utilized. Instead as demonstrated by Zuo [45], Zuo and

Nayfeh [50], and Verdirame et al [39], a multi-degree-of-freedom TMD may achieve

better performance because the inertia of the single absorber mass is utilized to damp

vibrations in many modes. A MDOF TMD consists of a single rigid body connected

to a primary structure with damping and stiffness tuned to suppress vibration in as

many as six modes of vibration of the primary structure.

Take as a simple example the two-degree-of-freedom system shown in Figure 1-7.

If the total amount of mass added by the tuned-mass damper(s) is limited to pM,

then two SDOF TMDs will each have a mass ratio of pM/2. However, a two-degree-

of-freedom TMD consisting of a single body can have a mass of PM. The performance

of a tuned-mass damper is limited by the magnitude of the mass ratio. Therefore, one

expects that the two-DOF TMD is capable of better performance than two SDOF

TMDs. Zuo [45] has shown that in many cases the MDOF TMD outperforms multiple

SDOF TMDs.

1.4 Overview

The goal of this thesis is to improve on the methods developed by Zuo and Nayfeh.

We develop analytical formulas for the approximate locations of the eigenvalues and

eigenvectors of the MDOF TMD system. To demonstrate how these formulas may be

used for design, we develop approximate analytical formulas for the minimax optimal
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Figure 1-7: Diagram of a two-DOF system with (a) two SDOF TMDs and (b) one
two-DOF TMD

design, a somewhat simple case.

1.4.1 Single-Degree-of-Freedom Tuned-Mass Damper

In Chapter 2, the single-degree-of-freedom primary system with a single-degree-of-

freedom tuned-mass damper is studied in detail to provide insight for the multi-

degree-of-freedom case. The equations of motion are nondimensionalized and then

scaled appropriately. A three term eigenvalue perturbation expansion results in ap-

proximations with satisfactorily small error. An approximate minimax design is de-

rived and compared to the exact minimax optimal design. The approximate design

converges to the exact design. The approximate H,, optimal design for a SDOF

TMD is discussed in Appendix A. The approximate H2 optimal design is discussed

in Appendix B.

1.4.2 Multi-Degree-of-Freedom Tuned-Mass Damper

Building on the work of Chapter 1, the MDOF TMD is analyzed using a perturba-

tion expansion. First, the general equations of motion are derived for two connected

bodies. Then, the equations are scaled analogously to the SDOF case. Eigenvalue

perturbation is used to derive analytical formulas for approximate eigenvalues and
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eigenvectors. An approximate minimax design technique is given, and design exam-

ples are demonstrated for two-DOF and three-DOF systems.

1.5 Summary of Contributions

1. Developed the concept of the multi-degree-of-freedom tuned-mass damper along

with Zuo and Nayfeh [50]

2. Eigenvalue perturbation: derivation of approximations for the eigenvalues and

eigenvectors of systems containing multi-degree-of-freedom tuned-mass dampers

3. Approximate minimax design: a simple and direct method for designing MDOF

TMDs to maximize the minimum damping coefficient
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Chapter 2

Single-Degree-of-Freedom

Tuned-Mass Damper

Consider the system in Figure 2-1 consisting of a single-degree-of-freedom primary

system and a single-degree-of-freedom tuned-mass damper. The equations of motion

for the free vibration problem are

M 0 X1 C -C X1 K+k -k JE1 0(21
[~ ] ..i + [.~] l + [ i j 0 () (2.1)

L0 M i 2 L-C C 2 L2 - k k i C2 0

2.1 Scaling

The scaling of the parameters is determined using distinguished limits [24]. The

first step is to nondimensionalize the equations of motion. Then, the mass ratio,

eigenvalues, and stiffness scaling are determined from the undamped equations of

motion. Finally, the scaling of the damping is determined by looking at the full

equations of motion, including damping.
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Figure 2-1: Diagram of a vibratory system comprising a mass M to which a single-

degree-of-freedom tuned-mass damper m is attached.

2.1.1 Undamped SDOF TMD

Introducing nondimensional time T = QOt where Q, is the natural frequency of the

primary system, mass ratio EN = m/M, and frequency ratio k = (Wa/Qn) 2 , we write

the undamped equations of motion in the form

1 2 , Nk _C~ ;N

S+ [+N 
(2.2)

L0 1 1(D '2) L k k i C2 0

where D 2 is the operator denoting the second derivative with respect to nondimen-

sional time T. The characteristic equation (whose solutions are the eigenvalues) is

W 4 _ W2 (1±+ N k +k) + k=O0 (2.3)

Tuning rules [8] suggest that the natural frequency of the absorber must be close

to the natural frequency of the primary system. Therefore, we write the natural

frequency ratio k as

k = 1 + kiEP (2.4)
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where ki is 0(1) and represents the detuning. Defining A = w2 , the characteristic

polynomial becomes

A2 - A(2 + EN + kjcP(1 +,EN)) + 1 + kjEP = 0

We are concerned with the relative scaling so we set p = 1, without loss of generality.

The characteristic equation becomes

(A - 1)2 = A(EN + kicN+1 + k1e) - kic (2.5)

We assume a solution of the form

A = 1 + EvAi + E2v + . .. (2.6)

We substitute (2.6) into (2.5). To retain the most dominant terms, we set N = 2:

2v A2 2 + kiv+1AI 2 k 6 ±A (2.7)

Therefore, we obtain the v = 1, and the tuning is written as

k = 1 + Ek + E2 k2 +... (2.8)

2.1.2 Damped SDOF TMD

Tuning rules [8] require that the damping of the absorber be light, or equivalently,

that the absorber should be underdamped. Therefore, we write a = E cmQ, where

c = 0(1). Nondimensionalizing the governing equation but taking advantage of the

scaling of the mass ratio and the scaling of the detunings from the undamped case,

the characteristic equation becomes

(w2 _ 1)2 -qco + L 2 (kiE + 62 + ki - c2
6

2 +2q) + jWcEq(E 2 + kiE3 - 1) - kic (2.9)
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We assume a solution of the form

W = I + Ewi + 2 A2 + . . . (2.10)

There is also a pair of roots near w = -1, but we may ignore them because they are

the complex conjugates of the pair near w = 1. Extracting the dominant terms, we

obtain

4e2VlW = 2jcw16c+v + 2kiAicv+ + 62 (2.11)

Therefore, we obtain the scaling to be q = 1 and v = 1. Thus, the damping is written

as

c = eco + E2 c +... (2.12)

Using either row of the matrix form of the equations of motion, the scaling of the

eigenvectors is shown to be

( ( 0 (2.13)
: 2 X20)

2.1.3 Scaling of Higher Order Terms

Further analysis using either distinguished limits or the perturbation expansion shows

that the second correction to the eigenvalue is at 0(c3/2). As well, the higher correc-

tions scale with 61/2 powers. The eigenvalue expansion is written in the form

W = 1 + 6W2 + 6 3 /2W3 + 62 W4 + .. . (2.14)

If one performs a Taylor expansion of the tuning, one naively expects only terms in

integer powers of c. The reason for the half-power terms is that when the eigenvalues

come close together, their sensitivities to parameter changes becomes large, and the

half-power terms are necessary to capture this rapidly changing behavior. When the

absorber is sufficiently detuned, the half-power terms go to zero.

Corresponding to the half-power scaling of the eigenvalues, the scaling of the

higher order eigenvector corrections scale with powers of E1/2. Thus, the expansion of
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the eigenvectors may be written as

EX1O + 63 / 2 X11 + ...

X20 + 61/2X2 1 + . . .

(2.15)

This scaling agrees with expectations that the primary mass has small amplitude vi-

brations compared to the absorber. As in the eigenvalue expansion when the absorber

is sufficiently detuned, the half-power corrections of the eigenvectors become zero.

2.2 Perturbation Expansion

We write the equations of motion in nondimensional form as

01

iJ D2 X
-3

LE2 e;c]

Dxi) 1+ 2k1i

Dx2 k

-Ek x2

k (X2

0

0
(2.16)

where k = 1+ Ek + e2k 2 + .. . , c = cO + Ec, + 62c2 +... and the displacements have

been scaled to reflect the eigenvector scaling such that i1 = cx 1 and Y2 = X2.

To solve the eigenvalue problem, we assume a solution of the form

X1

x2I

X 1 o

X20

+ E11 2 Xll + CX12 +

+ E1/2X21 + EX 2 + .

ejwT (2.17)

where w is given by

w = WO + EW 2 + E3/2W3 + .. . (2.18)

Next, we perform the perform the perturbation expansion by separating terms of

equal order in c.
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0(1) Unknown: ao, a2o
Decoupled
Oscillators

0(61/2) Unknown: ala2

0(6) Obtain: 02 , a10, a 20

Away from Near coalescence
coalescence

0(63/2) = 0,a1 = 0,a21 =0 Unknown: W3,a,1 ,a21

Away from Near coalescence

0(62) Outer Intermediate Inner

Away from Near
coalescence coalescence

Figure 2-2: Diagram indicating the various steps in the perturbation expansion.

Expansion to 0(1)

At this order, we obtain

-1 - W 2 0 X10 0
0 2 (2.19)

Therefore, we obtain wo = 1 and the eigenvector

(Xi 10o (2.20)
J20 a 2 0

where aio and a 2o are unknown scalars.

Expansion to 0(1/2)

At this order, the equations are of a form similar to those at 0(1):

I - W2 0 (1 0
0 2 (2.21)

0 1 - O (X21 0)
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We obtain corrections to the eigenvectors in the form

X11 all (.2

X 21 a 21 )

where all and a 21 are unknown scalars. These terms will only be non-zero when the

eigenvalues are close to each other.

The homogeneous solution of (2.21) is (aio a2o)T. An arbitrary multiple of the

homogeneous solution may always be added to the particular solution. For simplicity,

we set this arbitrary constant to zero so that all multiples of the homogeneous solution

are contained in the 0(1) solution. The total solution of (2.21) can be written in the

form

X11 aalo + all (.3a 0  + 1(2.23)
21 a 2 o) ka2l)

We set a 1 = 0 without loss of generality. As a result, (an a 21)T is orthogonal to

(aio a 20)T. As will be shown later, all and a 21 are zero when the eigenvalues are

sufficiently separated.

Expansion to O(c)

At this order the equations become coupled and are given by

1 - O 0 X12 2wow 2  1 1(2
0 1 - L X2 2  1 2wOw 2 - (ki + jwoco)J (x2o2

The coefficient matrix on the left-hand side is singular; therefore, solutions of the

inhomogeneous problem exist if and only if the inhomogeneous terms are orthogonal

to each solution of the adjoint homogeneous problem. Noting that the homogeneous

problem is self-adjoint, we write the solvability condition as

2w -2 2 1  0 (0) (2.25)
L1 2wOU)2 - (ki + joCo) X20 0
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Non-trivial solutions exist only if the determinant is zero. This requirement results

in an equation for the first correction to the natural frequency:

(jWoco + ki) ± (jwoco +k) 2 + 4 (2.26)
4wo

Equation (2.25) yields a relation between the scalars aio and a20 :

a20 = -2wow 2  (2.27)
alo

Either a1 o or a20 may be set arbitrarily.

In the same manner as at O(E1/2), the total solution of (2.25) can be written in

the form

= a 2  + (2.28)
X22 (ka20  b22

where a 2 may be set to zero without loss of generality because (aio a 20)T is the ho-

mogeneous solution at each order and b12 and b22 are scalars chosen so that (b12 b22 )T

is orthogonal to (aio a20)T.

Figure 2-3 shows a plot of the exact and approximate eigenvalues W as the damping

is varied and the tuning is held fixed. (Only the upper half of the plot is shown because

the eigenvalues form complex-conjugate pairs.) From the figure, we see that the O(e)

approximation is not accurate enough for use in design, and we therefore proceed to

a higher order.

Expansion to O(E3/ 2)

At this order, we obtain

1 -o 01 X13

0 1- wo (X23

2wOw 2  1 1 1  + 2wOw3  0 X10  (2.29)

1 2wOw 2 - (ki + jwoco) x 2 1 0 2wOw 3 x 20
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Figure 2-3: Comparison of the actual eigenvalues (dots) and O(E) approximations to
the eigenvalues (dashed) for a perfectly tuned (ki = 0) SDOF TMD with a mass ratio
of 5% (e = 0.22) as the damping (co) is varied.

Imposing the solvability conditions, we obtain

2woW2 I all -wW 1 0 aio (-0

L1 2woW2 -- (ki + juooco) J(a21 0 1 J(a20

where all and a21 are still unknown. The coefficient matrix of the LHS is singular so

we must impose that the RHS be orthogonal to the solution of the adjoint homoge-

neous problem (aio a20)' where the prime indicates conjugate transpose. Imposing

this solvability condition, we obtain

2WOW3(alo + a20) 0 (2.31)

This equation leads to the different solution regions shown in Figure 2-2. Usu-

ally, (2.31) requires that W3 = 0. However, if the eigenvalues come close together

(i.e., if the two values Of W2 obtained from (2.26) are identical), then al 0 + a20 = 0

and W3 remains unknown until the next order.
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The corresponding eigenvector correction (an a21)T can only be found once W3 is

known. To solve for the eigenvector corrections all and a21, we must also impose the

requirement given earlier that (an a2 i)T be orthogonal to (aio a20)T. Therefore, the

equation for all and a21 is

2wow 2

L 1o

(2.32)
1Jbi -2woW3aio

a20 J(b2l 0

where the bar indicates the complex conjugate. Thus, if w3 = 0, then al1 and a 2 1 are

zero.

If the eigenvalues of the coupled system come close together, the perturbation

expansion becomes singular. This singularity leads to different solution regions (see

Figure 2-2) depending on the closeness of the eigenvalues. First, we perform an "outer

expansion" for the case where the TMD is sufficiently detuned that the expansion

never becomes singular.

Outer Expansion to O(E2)

In this case, the TMD is detuned and hence w3 = 0, and we proceed to solve for w4

at this order. The governing equations at 0(c2) are

E - w 0 [2wow 2

0 - [i24 2w

+ 2ww 3
0

F2wow 4 + L2 - 1

Lki + jwoco 2wow 4 +

Making use of w3 = 0 and imposing sol

at 0(c3/2), we obtain an expression for w4 :

1X12

OL2 -(ki + j 1oco) X22

0 X11

1 X21

ki + jwoco ( 10

- (k2 + jw 2c0 + jWoc 1 ) x20
(2.33)

vability conditions in the same manner as

1 + 4wow 2 (ki + jwoco) + 4w2w (k2 + jwoci + jw2 co) - 2j(1 + 4wLO!) (2.34)
W4 = 2wo(a20 + a 0)
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Figure 2-4: Outer expansion: Comparison of actual eigenvalues (dots) and O(62)
approximations to the eigenvalues (solid) for a SDOF TMD with a mass ratio of 5%
with kI = -1, k2 = 0, and ci = 0 as the damping (co) is varied.

Figure 2-4 shows a comparison of the exact and approximate eigenvalues (to O(E2))

as the damping is varied for a SDOF TMD for 6 = 0.22. Based on this figure, we

conclude that the approximation to this order is of sufficient accuracy for practical

design. In this case, the stiffness has been sufficiently detuned to keep the expansion

regular, or uniform. We observe from (2.34) that the expansion becomes nonuniform

when the denominator alo + a20 becomes small, which occurs as the two eigenvalues

come close together.

Intermediate Expansion to O(e2)

In this case the eigenvalues are relatively close together, the two solutions for w 2 given

by (2.26) are identical and w3 cannot be found using (2.31). Instead, the solvability

condition for (2.33) results in an expression for w3 :

1 + 4ww 2 (ki + jwoco) + 4w2W2(k 2 + jwoci + jw2co)V3 = i (2.35)
8WOW2
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Figure 2-5: Comparison of actual and approximate eigenvalues including W3 for a
perfectly tuned (k1 = 0) SDOF TMD with a mass ratio of 5% as the damping (co) is
varied: outer expansion (dashed), intermediate expansion (dashdot), exact (dots).

Figure 2-5 shows the variation of the eigenvalues as the damping is varied where

the approximation includes w3 . The exact and approximate solutions are not in close

agreement; then we proceed to solve for w4 by imposing solvability conditions (as

before) at O(e5/2). Figure 2-6 shows the combination of the outer and intermediate

approximations to the eigenvalues of the SDOF TMD as the damping is varied. The

intermediate expansion closely approximates the eigenvalue locations in the region of

non-uniformity where the outer expansion becomes singular.

Inner Expansion to O(E2)

If the numerator of the expression for w3 given by (2.35) is zero, the eigenvalues are

very close together. In this case, we can determine w4 from the solvability condition

at O(c 3). The resulting expression is valid only in a small region where the distance

between the eigenvalues is smaller than O(e3/2).

A case of particular interest is that in which the numerator and denominator in the

expression for w4 given by (2.34) are both zero. As co (or k1 ) is varied, the numerator
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Figure 2-6: Comparison of actual and approximate eigenvalues including w4 for a
SDOF TMD with a mass ratio of 5%, k1 = 0, c1 = 0, and k2 = 0 as the damping (co)
is varied: outer expansion (x), intermediate expansion (solid), exact (dots).

and the denominator 2wo(a20 + a 0 ) approach zero at the same rate and the limit

remains finite. Thus, the outer expansion remains valid even as the denominator

goes to zero. For the SDOF TMD, in the limit as we approach k, = 0, k2 = -2,

co = 2, and ci = 0, the expression for w4 given in (2.34) approaches -5/8. If we hold

k, = 0, k2 = -2, and ci = 0 as we vary co, we obtain Figure 2-7, where the expansion

agrees closely with the exact solution even as the eigenvalues com very close together.

As shown by Figures 2-4, 2-6, and 2-7, the outer, intermediate, and inner ex-

pansions approximate well the eigenvalues and eigenvectors of the coupled systems

despite a relatively large perturbation parameter (E = 0.22).

2.3 Approximate Minimax Design

The minimax design maximizes the minimum damping coefficient. As a consequence,

the poles must coalesce for the SDOF case. To obtain an approximate minimax

design, the approximations of the eigenvalues must coalesce at each order.
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Figure 2-7: Outer expansion when the eigenvalues are close
k1 = 0, k2 = -2, c1 = 0) as the damping (co) is varied: O(62)
locations (dashed), exact eigenvalue locations (dots).

to coalescence (k0 = 1,
approximate eigenvalue

The first correction to the natural frequency w2 is the solution of a quadratic

equation given by (2.26). For w2 to have only one value, the radicand must be zero.

Therefore, we obtain w2 = j/2, k, = 0, and c0 = 2. Setting a10 = 1, we require

a20 = -j. The next correction for the design is found from forcing W3 to coalesce.

Equivalently, we may use the outer expression for wp4 and force the numerator to be

zero. (The O(E) design causes the denominator to be zero.) Thus, we obtain k2 = -2,

Ci = 0, and w4 = -5/8.

2.3.1 Comparison to the Exact Minimax Design

The exact solution for the tuning, damping, and eigenvalue of the minimax tuned-

mass damper is derived by solving for the coefficients of the terms in the characteristic

polynomial [10]. For the minimax optimal design, the eigenvalues must be a complex-

conjugate pair of repeated roots. Therefore, the characteristic equation has the form

(w - w*) 2 (W - -*) 2 = 0 (2.36)
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where w* is the location of the repeated eigenvalue of the minimax TMD in the

complex plane and the overline indicates the complex conjugate. This equation is a

fourth-order polynomial in w. The characteristic equation derived from (2.1) is also a

fourth-order polynomial in w. Equating coefficients, we obtain four equations for four

unknown quantities: tuning, damping, and real and imaginary parts of the eigenvalue.

Solving these equations for the case of zero damping in the primary structure, the

exact solutions as given by Fujino and Ab6 [10] are

6* 1 + /(2.37)
2 1+c2 1+62

k*= 2)2 (2.38)

c* = 2 (2.39)
1 + 62

Expanding the exact solutions in a Maclaurin series (Taylor series about zero) in

6, we obtain
1 .52 13_

W =j- - 862 +4- ... (2.40)

k* =1-2 2+E ... (2.41)

c* =-2 1 - -62 + 15 - ... (2.42)
2 8

Comparing coefficients of the expansion to the approximate design, we find that

the perturbation design gives the same results as the expansion of the exact solution.

We conclude that the perturbation expansion yields a uniform approximation to the

exact solution. In the next chapter, we examine the multi-degree-of-freedom tuned-

mass damper in the same manner.
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Chapter 3

Multi-Degree-of- Freedom

Tuned-Mass Damper

In this chapter, we extend the methods of the preceding chapter to a multi-degree-

of-freedom (MDOF) tuned-mass damper (TMD).

3.1 Equations of Motion and Scaling

Consider small-amplitude vibration of the body M shown in Figure 3-1 with N < 6

degrees of freedom relative to an inertially fixed base. With reference to its center

of mass, we arrange the non-dimensional displacements and rotations of the rigid

body M into a coordinate vector x1 , which for the case of N = 6 takes the form

U11, U 12, u 13 , 0, 612, 0 1 3 ]T. Before the addition of the TMD, the governing equation

can be written as

M.,1j+ Kx1 = 0

where M and K are, respectively, the non-dimensional mass and stiffness matrices

associated with free vibration of the body described by the coordinate vector xi.

The tuned-mass damper m has N degrees of freedom relative to the main mass.

If the body M is restrained from motion, the equations of motion for the absorber
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C k

r X

M

Figure 3-1: Diagram of a vibratory system comprising a mass M to which a tuned-

mass damper m is attached.

mass can be written as

m3 2 + CX2 + kx 2 = 0

where m, c, and k are the non-dimensional mass, damping, and stiffness matrices,

respectively, of the absorber when it is decoupled from the primary mass.

If the coordinate systems of the absorber and the primary mass are parallel, the

dimensionless equations of motion of the coupled system can be written as

M 0 zij 2 GcG' -Gc :i1

0 E 2 M 2 -cG' c (-2

K+ 2GkG' (E2Gk x1 0
+ (3.1)

E 2 kG' IE2 k X2 0

where the small parameter

E (3.2)

is the square-root of the mass ratio and the matrix G is given by

I 0
G =

w R I 

where I is the identity matrix and R is a skew-symmetric matrix comprising the
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elements of the vector from the center of mass of the primary system to the center of

mass of the absorber: -

-r2

A more detailed derivation of the coupled

Assuming harmonic response of the form

form of an eigenvalue problem:

2M 0 2 GcG' - GC

0 C2 M -cG' c

-r3 r 2

0 -rj

r1 0

equations of motion is given in Appendix C.

jwt, we write the governing equation in the

]
K+E 2 GkG' - 2 Gk x1 0

-E 2kG' E 2k X2 0
(3.3)

In the following, we develop approximations of w,

bation expansion in the small parameter c.

x1 , and x2 by means of a pertur-

3.1.1 Scaling

We begin by scaling the parameters and response of the system in accordance with

insights gained from the classical Den Hartog tuning rules [8]: (1) The absorber

natural frequencies (when decoupled from the primary system) should be close to

those of the primary system without the absorber. (2) The absorber damping should

be light. We therefore write the absorber stiffness matrix as

k = ko + k1 + c2 k2 + ... (3.4)

where ko is chosen so that the natural frequencies (eigenvalues) of the absorber and

primary system would be equal if k = ko, and the damping matrix of the absorber as

(3.5)
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We also expect the eigenvalues of the coupled system to be in the neighborhood

of the eigenvalues of the primary system. Based on the eigenvalue expansion of

the SDOF TMD, we expect that the eigenvalues can be expressed in terms of integer

powers of 6 unless two eigenvalues come close together. In that case, their sensitivities

to parameter changes become large, and half-power terms in e are required. Hence,

we expand the eigenvalues in the form

Wp = WpO + EWp 2 + 63 /2 W 3 + 62Wp4 +... (3.6)

where wpo is the p-th natural frequency of the decoupled systems. The 0(c3/2) term

in this expansion is zero when the eigenvalues are well separated.

To be effective, a vibration absorber must undergo a large amplitude of vibration

relative to that of the primary system. Based again on the SDOF absorber or the

distinguished limits in a perturbation expansion, we write the system eigenvectors in

the form
X1 EX1 0  + E3/2X 1 1 )( 2 X 12+

=+ I+ +1 .. (3.7)
X2 X20 )/ 61/ 2X2 1  EX22

where the terms with half powers of E go to zero if the eigenvalues are well separated.

0(1) wp, Mode Shapes vi,, v2,
Unknown: a105 , a2o,

Decoupled
Oscillators

O(EI/2) Unknown a,,a2>

0(E) Obtain: W,2, 1o,,a20p

Away from Near coalescence
coalescence

0(E3/2) W 3 =,a, = O,21 = 0 Unknown: Wp3,aj,,a21,

Aaysfrom Near coalescence
caecence

0(62) Outer Intermediate Inner

Away from Near
coalescence coalescence

Figure 3-2: Diagram indicating the various steps in the perturbation expansion.
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3.2 Perturbation Expansion

The primary system has N < 6 modes (p = 1. .. N), and the coupled system has

2N modes. The objective of the perturbation expansion is to obtain the approximate

eigenvalues wp (two for each value of p) and the corresponding eigenvectors.

3.2.1 The Expansion to 0(1)

At this order, we obtain

rio o
(Kc - w2M 0) ( (3.8)

W MC (X20 0

where wpo is the p-th natural frequency and

K 0 M 0
Ke = and Mc =

0 ko 0 M

These are simply the decoupled equations governing the primary system and absorber.

The corresponding eigenvectors (i.e., solutions to this singular, homogeneous system

of linear equations) can be written as

xio = aiopv1, (3.9)

x 20 = a20pv 2p (3.10)

where aio, and a20, are scalars (unknown to this order) and v1i and v2, are the eigen-

vectors of the primary and secondary decoupled systems, respectively. The eigenvec-

tors are scaled to be orthonormal. That is v'Mvi, = 1 and v',mv2 , = 1.
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3.2.2 The Expansion to O(1/2)

The equations at this order are of the same form as at 0(1):

(Kc _ U;2~c =1 (3.11)
KX21 0

Hence we obtain corrections to the eigenvectors in the form

x11 =allvip (3.12)

X21 = a21pV2p (3.13)

where again the alip and a 21 are unknown at this order. These terms will be non-zero

only when two eigenvalues are close to each other.

3.2.3 The Expansion to O(c)

At this order, the equations become coupled and are given by

(Kc-wojMc) Q (3.14)
X22 X20

where

2wpowp2M Gko

koG' 2wpowp2 m - (ki + jopoco)

The coefficient matrix on the left-hand side of this equation is singular; therefore,

solutions of this non-homogeneous problem exist if and only if the non-homogeneous

terms in the equation are orthogonal to each solution of the adjoint of the homoge-

neous problem. Making use of (3.9) and (3.10), and noting that the homogeneous

problem is self-adjoint and of the same form as (3.8), we write the solvability condition

as

S aiop 0 (3.15)

a20p 0
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where
2wpowp2 vi GkOv2 1S = 1P(3.16)

v' koG'vip 2wpowJ 2 - vp(ki +

In order to obtain non-zero aiop and a20 p, the determinant of S must be zero. This

results in an equation for the first correction to the eigenvalue in the form

vlp(ki + jwpoco)v 2p ± /(vP(kl + jpO0CO)V 2 p) 2 + 4(v1PGkov2p)2

Wp2 = (~p4p (3.17)
4wpo

As expected, for each value of p (or each mode of the primary system), we obtain two

eigenvalues in the coupled system. Equation (3.15) further yields a relation between

the scalars aiop and a 2 0p
a 2 0p 2wpoWp2 (3.18)
a1 vGkov2  (3.18

Either aiop or a20o may be set arbitrarily.

The total solution of (3.14) can be written in the form

X12 a12 pVip + W2p(3.19)

x 22  a 22pv 2p + w 22p J
where a 12p and a 22p are unknown scalars at this order and w 1 2p and w 22, are particular

solutions. To render the particular solution unique, we choose them to be mass-

orthogonal to the homogeneous solution. That is

V'iMW12p = 0 (3.20)

2p mW22p = 0 (3.21)

Figure 3-3 shows a plot of the exact and approximate eigenvalues W for a SDOF

TMD on a SDOF primary system as the damping is varied and k is held fixed. (Only

the upper half of the plot is shown because the eigenvalues form complex-conjugate

pairs.) From the figure, we see that the O(e) approximation is not accurate enough

for use in design, and we therefore proceed to a higher order.
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Figure 3-3: Comparison of the actual eigenvalues (dots) and
the eigenvalues (dashed) for a perfectly tuned (k1 = 0) SDOF
of 5% (e = 0.22) as the damping (co) is varied.

O(E) approximations to

TMD with a mass ratio

3.2.4 The Expansion to O(0/2)

At this order, we obtain

(Kc - 20Mc) =13 2wpoWp 3 Mc + Q 1
(X23) X20 X21

(3.22)

The coefficient matrix on the left-hand

solvability condition must be imposed in

solvability condition is

side is the same as at 0(e). Therefore, a

order for a solution (x 13 x 23 )T to exist. The

(3.23)aip 2 1 0 aiop 0

Sa2 1p] +p 0 ~p3 0 1 \\a2 0p ) I0

where S is the matrix given by (3.16). The scalars all and a21 are unknown and

their coefficient matrix S was required to be singular in order to obtain non-zero aiop

and a20p from (3.15). Imposing in turn a solvability condition on (3.23), we obtain
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an equation for the second correction wp3 to the eigenvalue in the form

2wpoWp3 (a10P + a = 0 (3.24)

This equation leads to the different solution regions shown in Figure 3-2. Usually,

(3.24) requires that Wp 3 = 0. However, if the eigenvalues come close together (i.e., if

the two values of Wp2 obtained from (3.17) are identical), then a20P + = 0 and w1 3

remains unknown at this order.

If the eigenvalues of the coupled system come close together, the perturbation

expansion becomes singular. This singularity leads to different solution regions (see

Figure 3-2) depending on the closeness of the eigenvalues. First, we perform an "outer

expansion" for the case where the TMD is sufficiently detuned that the expansion

never becomes singular.

3.2.5 Outer Expansion

In this case, the TMD is detuned and hence wp3 = 0 and we proceed to solve for wp4

at 0(c2). The equations at this order are

(Kc 2 X14)I 12(Kc OpMc) =Q +
X24 X 2 2

2wowp3 Mc (1 + P P1 (3.25)
X21  [P12 P22  X2 O

where

P 1 = (2wpowp4 + wp2 )M - GkoG' (3.26)

P12 = G(ki + jwpoco) (3.27)

P2 2 = (2wpowp + w,2)m - (k2 + JpOCi + Jop2co) (3.28)
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Figure 3-4: Outer expansion: Comparison of actual eigenvalues (dots) and 0(E2)
approximations to the eigenvalues (solid) for a SDOF TMD with a mass ratio of 5%
with k, = -1, k2 = 0, and ci = 0 as the damping (co) is varied.

Following a procedure similar to that at O(63/2), we obtain

F
Wp = (3.29)

= 2wpo(alop + a20p)

where

F = 2 VIGkOG'v1p - (a 2, + a20 p)w 2

+ ajv'2V(k 2 + jWpOCi + jWp 2c0)v 2,

± a2opv6f(ki + jWpOCO)W 22p - a 20pv' koG'wi 2,

- aiopv'vGkow 2 2p - 2aiopa2Ov' G(ki + jOpoco)v 2p, (3.30)

Figure 3-4 shows a comparison of the exact and approximate eigenvalues (to O(E2))

as the damping is varied for a SDOF TMD with 6 = 0.22. Based on this figure, we

conclude that the approximation to this order is of sufficient accuracy for practical

design. In the example shown in Figure 3-4, the stiffness is sufficiently detuned, and

54

1.11 F- - - 7



0.5 - -
-0.45 -0.4 -0.35 -0.3 -0.25 -0.2 -0.15 -0.1 -0.05

Reow)

Figure 3-5: Comparison of actual and approximate eigenvalues including wp3 for a
perfectly tuned (k, = 0) SDOF TMD with a mass ratio of 5% as the damping (co) is
varied: outer expansion (dashed), intermediate expansion (dashdot), exact (dots).

the expansion remains uniform. We observe that the expansion becomes nonuniform

when the denominator a 2p + a 2 becomes small, which occurs as two eigenvalues

come close together.

3.2.6 Intermediate Expansion

In this case, the eigenvalues are relatively close together, the two solutions for Wp2

obtained from (3.17) are identical, and wp 3 is non-zero and cannot be found using

(3.24). Instead wp3 is obtained by imposing a solvability condition at O(E2).

Following the same procedure as before, we obtain an expression for wp3 of the

form
A
B (3.31)
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Figure 3-6: Comparison of actual and approximate eigenvalues including Wg for a

SDOF TMD with a mass ratio of 5%, ki = 0, c1 = 0, and k2 = 0 as the damping (co)

is varied: outer expansion (x ), intermediate expansion (solid), exact (dots).

where

A = aip',Go'1 - a20o'v2pkoG'w12p

+ aj0pvlp(k 2 + jwpoci + jop2CO)V2p

+ a2 opv~p(k1 + jwpoco)w 2 2p - a10o'v1,Gkow 22p

- 2aiora 2 0o 1 G(ki + joco)V2p (3.32)

and

0._5 8X!o p '3.33)

(v'ipGkov2 p)2 (3)

Figure 3-5 shows the variation of the eigenvalues for a SDOF TMD on a SDOF

primary system, where the approximation includes , 3. The exact and approximate

solutions are not in close agreement; hence we proceed to solve for Wg by imposing

solvability conditions (as before) at O(e5/2). Figure 3-6 shows the combination of the

outer and intermediate approximations to the eigenvalues for the SDOF TMD as the

damping is varied. The intermediate expansion closely approximates the eigenvalue
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Figure 3-7: Outer expansion for a SDOF TMD when the eigenvalues are close to
coalescence (k0 = 1, ki = 0, k2 = -2, c1 = 0) as the damping (co) is varied: 0(E2)
approximate eigenvalue location (dashed), exact eigenvalue locations (dots).

locations in the region of non-uniformity where the outer expansion becomes singular.

3.2.7 Inner Expansion

If the numerator of the expression for wp3 given by (3.31) is zero, the eigenvalues are

very close together. In this case, we can determine wp4 from a solvability condition

at O(0s). The resulting expression is valid only in a small region where the distance

between the eigenvalues is smaller than O(E3/2).

A case of particular interest is that in which the numerator and denominator in

the expression for w, 4 given by (3.29) are both zero. As c0 (or k1 ) is varied, the

numerator F and the denominator 2wpo(a 0  + a 0,) approach zero at the same rate

and the limit remains finite. Thus, the outer expansion remains valid even as the

denominator goes to zero. For example, let us again consider the SDOF absorber

coupled to a SDOF primary system with a mass ratio of 0.05. In the limit as we

approach k, = 0, k 2 = -2, c0 = 2, and ci = 0, the expression for wp4 given in (3.29)

approaches -5/8. If we hold k, = 0, k2 = -2, and ci = 0 as we vary c0, we obtain
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Figure 3-7, where the expansion agrees closely with the exact solution even as the

eigenvalues come very close together.

As shown by Figures 3-4, 3-6, and 3-7, the outer, intermediate, and inner ex-

pansions approximate well the eigenvalues and eigenvectors of the coupled systems

despite a relatively large perturbation parameter (E = 0.22).

3.3 Approximate Minimax Design

Based on the perturbation expansion developed in the foregoing, we develop an ap-

proximate method for maximization of the minimal damping of all of the modes in

the coupled primary and absorber system.

Consider first maximization of the minimal damping of the two modes of the

coupled system that correspond to a given value of p, which is achieved by forcing

the eigenvalues to coalesce. We impose this condition in turn for each term of the

expansion for wp. For the eigenvalues to coalesce to O(c), we set the radicand in the

expression for wp2 given by (3.17) to zero. The imaginary part is guaranteed to be

zero if k, = 0. Setting the real part of the radicand to zero, we obtain

(Wpov2pcov2p) 2 = 4(v'PGkov2p) 2  (3.34)

The approximate damping ratio (associated with each of the two modes) becomes

( w 20 'GkoV2 (3.35)

Thus, to maximize the damping in the p-th mode, we must choose kov 2p to have as

large a projection as possible onto G'vir. Therefore, we make the two vectors parallel

by setting

kOV2p= pG'vip (3.36)

where f3p is a scalar chosen such that v'Tmv2p = 1. In order for the eigenvalues of

the decoupled systems to match, we must have kov 2p = WOmv2p. Making use of this
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expression, we write the optimal eigenvector v2p as

V* - m~'G'v1p
= m G'vi12 (3.37)

which yields the approximate maximum damping damping in the p-th mode

* "6 V' GG'v1p
(* ~ 21 / (3.38)

2 (v'PGm-1G'v1p)

This expression for the approximate maximum achievable damping is a function only

of the original eigenvectors of the primary system, the inertia matrix of the absorber,

and the relative location of the center of mass of the absorber.

To be physically realizable, the v2p must form a "mass orthogonal" set. That is,

v6,mv 2n =0 if p # n. In general, the set of eigenvectors chosen according to (3.37) will

not satisfy this orthogonality condition. Because our goal is to maximize the minimal

damping, we assign the v2p using the following procedure: First, we compute the (*
and rank them from smallest to largest. For the mode with the smallest (*, we use

(3.37) and assign the eigenvector v2p = v2,. Then, in turn, we assign the eigenvector

corresponding to the next higher value of (* by maximizing the projection of v2p onto

the optimum vector v4, subject to the constraint that v2pmv 2n = 0, where n takes on

the values corresponding to each of the previously assigned eigenvectors.

Assembling the desired eigenvectors v 2, into a matrix V2 = [v 21, v2 2 ,...] and the

squares of the natural frequencies w20 into a diagonal matrix A, we construct ko

according to

ko = mV2AV 2m (3.39)

If the TMD is to be constructed using N discrete springs, the locations and stiffnesses

of the springs can be set to achieve the desired matrix ko. The damping matrix co

must satisfy the N scalar equations given by (3.34). If, for example, the TMD is

constructed using N discrete dashpots collocated with the N discrete springs (whose

locations are already set), then (3.34) forms a set of N linear equations in the damping

coefficients of the individual dash-pots.
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Figure 3-8: Diagram of the two-DOF system with tuned-mass damper: 11 = 1, M = 1,
I = 0.0833, K 1 = 3, K 2 = 5, ri = 0.333, m = 0.05M, Id = 0.00561, 13 = 0.333.

This design based on the 0(c) expansion is perfectly tuned (i.e, the decoupled

natural frequencies of the absorber and primary system match exactly), but based

on Den Hartog's tuning rules [8] we expect that a slight detuning will improve per-

formance. To determine further corrections to the stiffness and damping (k2 and ci),

we force the two values of wp3 given by (3.31) to coalesce, which can only happen

when wp 3 is zero. The procedure is similar to that described above for wp2, and we

obtain the condition that c1 = 0 in addition to N equations for k2 , which can be used

to solve for a correction to the stiffness of each of the N springs whose locations are

already fixed.

3.4 Design Examples

3.4.1 Two-DOF System

To illustrate application of the methods developed in this paper, we consider the

design of the two-DOF TMD for the two-DOF primary system shown in Figure 3-8.

Taking the mass m and location r1 as given, our goal is to determine kid, k2d, Cld,

C2d, and the distance 12 so that the minimal damping is maximized.
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Table 3.1: Results of the perturbation-based design: The perturbation method to
0(c) returns a distance between the springs of 12 = 0.1088, which is used as a fixed
parameter for the 0(c2) design.

Perturbation 0(c) Perturbation O(E2)
Mode w, [rad/s] (, [%] w, [rad/s] (, [%]

1 2.54 0.419 2.44 3.25
2 2.75 5.80 2.61 2.71
3 4.83 4.36 4.90 16.7
4 5.32 15.5 4.94 4.74

We begin by computing the approximate maximum achievable damping (* for

each mode using (3.38). For this system, we find that (* = 2.97% and (2 = 3.92%.

Because the first mode has the lower (*, we set v21 = v*1. Then, the other eigen-

vector is uniquely determined by requiring v21mv 22 = 0 and v21mv 21 = 1. Having

determined the eigenvalues and eigenvectors of the absorber, we use (3.39) to calcu-

late ko. After calculating ko, the individual spring stiffnesses kid and k2d and location

12 are calculated.

It is often practical to place the dampers in the same locations as the springs

as shown in Figure 3-8. With the locations of the dampers known, the damping

coefficients Cld and C2d are calculated from (3.34). The resulting parameter values are

shown in the first row of Table 3.3.

To improve upon this initial design, we determine the first detuning k2 so that wp 3

goes to zero, using the value of 12 determined above. The parameter values obtained

in this manner are shown in Table 3.3. The resonant frequencies and damping ra-

tios for the "O(c)" and "O(c 2 )" designs are shown in Table 3.1. The design based

on the higher-order approximation provides substantially improved performance, in-

creasing the lowest damping coefficient from 0.419% to 2.71%. These improvements

are easily seen from the frequency response (Figure 3-9) and the eigenvalue locations

(Figures 3-10 and 3-11). Table 3.2 provides for comparison of the performance to

results obtained from the numerical methods developed by Zuo and Nayfeh [46].
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Table 3.2: Optimization results from Verdirame et al [391. The perturbation method
to O(E) returns a distance between the springs of 12 = 0.1088, which is used as a fixed
parameter in the optimization algorithm. In a second numerical optimization, the
distance between the springs is taken as an additional design variable to be optimized.

12 Fixed 12 Optimized
Mode w, [rad/s] (, [%] w, [rad/s] (, [%]

1 2.56 4.11 2.58 9.54
2 2.56 4.11 2.58 9.54
3 4.86 4.11 4.89 9.54
4 5.19 17.3 4.89 9.54

Table 3.3: Various optimal designs: The perturbation method to O(E) returns a
distance between the springs of 12 = 0.1088, which is used as a fixed parameter in the
optimization algorithm. In a second numerical optimization, the distance between
the springs is taken as an additional design variable to be optimized.

______ _I k1d k2d Cld C2d 12

Perturbation O(E) 0.4816 0.7309 0.0079 0.0769 0.1088
Perturbation O(E2) 0.3838 0.6722 0.0079 0.0769 (0.1088)
Numerical, 12 Fixed 0.40771 0.72652 0.02005 0.071675 (0.1088)

Numerical, 12 Optimized 0.51604 0.15295 0.04096 0.02243 0.203147
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Figure 3-9: Frequency Responses: (a) shows the displacement x1 of the center of main
mass. (b) shows the rotation 01 of the center of main mass. Original system without
TMD (dots), O(E) perturbation design (thin solid), O(E2 ) perturbation design (thick
solid), numerically optimal design with fixed 12 (dashdot), and numerically optimal
design with optimized 12 (dashed).
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Figure 3-10: Eigenvalue Locations for Mode 1 of the two-DOF example: O(E) approx-
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Figure 3-11: Eigenvalue Locations for Mode 2 of the two-DOF example: 0(c) approx-

imation as the damping is varied (o), O( 2 ) approximate as the damning is varied (x),

O(c) perturbation design (0), O(E2) perturbation design (*), numerically optimal de-

sign with fixed 12 (*), and numerically optimal design with optimized 12 (E)-
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Table 3.4: Results of the perturbation-based design: The perturbation method to
O(E) returns the spring and damper locations and the angle q, which is used as a
fixed parameter for the O(E2 ) design.

Perturbation O(E) Perturbation O(E2)
Mode w, [rad/s] (n [%] w. [rad/s] (, [%]

1 0.725 1.27 0.719 7.69
2 0.757 4.86 0.733 1.27
3 1.48 3.81 1.50 10.7
4 1.60 11.9 1.51 5.71
5 2.00 5.76 2.02 19.8
6 2.26 20.4 2.06 7.63

3.4.2 Three-DOF System

As a second example of the design method, we consider the design of a three-DOF

TMD for the three-DOF primary system shown in Figure 3-12. Taking the mass

m, moment of inertia Ia, and location coordinates r, and ry as given, our goal is to

determine kid, k2d, k3d, Cldi, C2d, C3d, q, f, and £y. The reason we need to determine

angle # is because the optimal stiffness matrix may be a full matrix, and the stiffness

matrix will not be full if the springs are all parallel to the coordinate axes.

We again calculate the maximum achievable damping coefficient for each mode

and find * = 3.07%, (2* = 3.33%, and (3* = 5.36%. Thus, we set v2 1 = v*1 . Then,

v22 and v23 are determined in turn using the methods outlined before and detailed

in Appendix D. Then, ko is calculated. Once ko is determined, the location and

orientation q of the springs and dashpots are known. Then, the values of the damping

coefficients Cld, C2d, and C3d are determined. Finally, the stiffnesses are corrected at

0(E2). The resulting parameter values are given Table 3.5. The performance of the

0(c) and O(E2) designs are given in Table 3.4. A typical frequency response, from x-

direction ground displacement to x-direction displacement of the main mass) is given

in Figure 3-13. The eigenvalue approximations and actual locations as the damping

is varied for modes 1, 2, and 3 are shown in Figure 3-14, 3-15, and 3-16, respectively.

From Table 3.4 and Figure 3-13 we notice that the performance of the O(2) design

does not improve over the O(E) design as happened with the two-DOF example. In
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ksac-a2f k3d7C3dk2d, C2d kd ~

K1
Y1 X1

M, I

SK 2  K3

Figure 3-12: Diagram of a three-DOF system with a tuned-mass damper. M = 1,
K1 = 1, K 2 = 1, K 3 = 2, I = 0.0853, m = 0.05M, Ia = 0.001157, rx = 0.1667,
ry = 0.0833, bx = 0.5. by = 0.1667

Table 3.5: Three-DOF absorber parameters determined by the perturbation methods.

Parameter I Perturbation O(c) I Perturbation O(C2)
kid 0.1244 0.1142
k2d 0.0777 0.0830
k3d 0.1391 0.1018
c1d 0.0247 0.0247

c2 d 0.0054 0.0054

c3d 0.0464 0.0464
f2 0.1158 0.1158
fy 0.0105 0.0105

< 0.1746 0.1746
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Figure 3-13: Frequency response showing the response of M in the x-direction due
to ground displacement in the x-direction. Original system without TMD (dots),
O(c) perturbation design (dashed), 0( 2 ) perturbation design (solid).
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Re(jo)

-0.04 -0.02

Figure 3-14: Comparison of actual and approximate eigenvalues for mode 1 of the
three-DOF example as the damping is varied: O(c) approximation (circles), O(c2)
approximation (x), exact (dots), 0(c) design (diamond), O(c 2 ) design (*).
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Figure 3-15: Comparison of actual and approximate eigenvalues for mode 2 of the
three-DOF example as the damping is varied: 0(e) approximation (circles), O(62)
approximation (x), exact (dots), O(E) design (diamond), 0(e2) design (*).
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Figure 3-16: Comparison of actual and approximate eigenvalues for mode 3 of the
three-DOF example as the damping is varied: 0(e) approximation (circles), O(e 2)
approximation (x), exact (dots), 0(e) design (diamond), 0(e 2) design (*).
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fact, the smallest damping coefficient has actually decreased. However, the eigenvalue

plots seem to indicate that the poles for the O(E2) design are marginally closer to

coalescing than the O(6) design poles. There are a couple of reasons for the lack of

improvement.

First, the perturbation design method for MDOF systems does not generally con-

verge to the true minimax optimal design as it does in the SDOF case. The error

should become small, but convergence is not guaranteed.

The second, and more important, factor is the scaling of the rotational terms.

In scaling the equations, we assumed the characteristic lengths, such as the radii of

gyration, of the primary system and the absorber were the same. For this example,

the two-DOF example, and many examples the characteristic length of the primary

system is much greater than the characteristic length of the absorber. Thus, the

ratio of the rotational inertias of the absorber to those of the primary system is much

smaller than the mass ratio. Then modes in which rotary inertia plays a significant

role are not as well damped as desired. In the three-DOF example, the mode shape

of the absorber is
0.3987

V2 1 = 0.0238 (3.40)

29.2764

but the rotational inertia ratio is 0.0136, and the distance between the center of

masses is of the same order as the absorber's radius of gyration.

To test this hypothesis, we examine the three-DOF example but increase the

rotational inertia of the absorber so that the inertia ratio is 0.492 while the mass

ratio is still 0.05. (The distance between the centers of mass is kept the same as

before). Table 3.6 compares the damping ratios and natural frequencies for the O(E)

and 0(62) designs. The smallest damping ratio improves from 2.95% for the O(E)

design to 4.42% for the O(2) design. Qualitatively, the improvement is seen by

examining the eigenvalue plots (see Figures 3-17 through 3-19). The design poles

obviously provide better performance in the case 0(c2) case. Additionally, the error

between the approximate and exact solutions as the damping is varied is now smaller
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Table 3.6: Results of the perturbation-based design for Ia/I = 0.492: The perturba-
tion method to O(c) returns the spring and damper locations and the angle #, which
is used as a fixed parameter for the O(c 2) design.

Perturbation O(c) Perturbation 0(6 2 )
Mode w [rad/s] (, [%] w, [rad/s] (, [%]

1 0.719 2.95 0.722 7.33
2 0.760 8.64 0.733 4.42
3 1.48 3.97 1.50 11.9
4 1.60 12.6 1.51 5.54
5 2.01 6.85 2.05 20.8
6 2.26 20.2 2.07 7.98

than in the case where the inertia ratio was much smaller than the mass ratio.

One approach to understanding the scaling is to reexamine the SDOF TMD. In

the case of a translational system, the small parameter is the square root of the mass

ratio. In the case of a rotational system, the small parameter is the square root of

the rotational inertia ratio.

In the MDOF case, both translation and rotation occur so we expect both the

mass ratio and the inertia ratio to be important. Furthermore, the distance between

the centers of mass matters because the mass contributes an rotary inertia about that

point. The modal mass ratio is the important ratio, but we are trying to determine

the mode shapes so we are unable to determine this ratio.

We conclude that to obtain a more accurate expansion we must consider two small

parameters, the mass ratio as before and either a characteristic length ratio or the

inertia ratio.
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Figure 3-17: Comparison of actual and approximate eigenvalues for mode 1 of the

three-DOF example as the damping is varied for Id = 0.04921: O(E) approxima-

tion (circles), O(E2 ) approximation (x), exact (dots), 0(c) design (diamond), O(E2)
design (*).

1.65

1.6 -

1.55

1.5

1.45

1.4 k

-0.4 0-0.2
-02
Re(jw)

Figure 3-18: Comparison of actual and approximate eigenvalues for mode 2 of the

three-DOF example as the damping is varied for Id = 0.04921: 0(c) approxima-

tion (circles), O(e 2 ) approximation (x), exact (dots), O(e) design (diamond), O(E2 )
design (*).
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Figure 3-19: Comparison of actual and approximate eigenvalues for mode 3 of the
three-DOF example as the damping is varied for Id = 0.04921: O(c) approxima-
tion (circles), 0(c2 ) approximation (x), exact (dots), 0(c) design (diamond), O(E2)
design (*).
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Chapter 4

Conclusions and Future Work

4.1 Findings

The goal of this thesis is to provide insight for the design of multi-degree-of-freedom

tuned-mass dampers. Zuo and Nayfeh [50] have shown that in many cases the MDOF

TMD is better than multiple SDOF TMDs and developed efficient numerical methods

for optimizing the values of the springs and dampers. In design, however, analytical

formulas for the performance and design of the system are desirable. Furthermore,

the methods of Zuo and Nayfeh are unable to determine the optimal locations of

the springs and dampers. To address these limitations in this thesis, we have devel-

oped approximate formulas for the response, performance, and design (including the

spring and damper locations) of multi-degree-of-freedom tuned-mass dampers using

eigenvalue perturbation.

First, the SDOF TMD was analyzed to provide insight for the MDOF case. Then,

the MDOF TMD was analyzed. Analytical formulas for the approximate eigenvectors

and eigenvalues were developed. As an example of how these approximations may

be used for design, we developed an approximate minimax design, which maximizes

the minimum damping coefficient. The minimax design is an eigenvalue shifting

procedure which makes it relatively simple to perform based on the approximate

eigenvalues and eigenvectors. Input-output design methods (such as H2 and H',

optimization [47]) can be developed based on the approximate eigenvalues and eigen-
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vectors. In the approximate miniimax design, we first determine the approximate

performance (damping coefficient) and try to maximize it. This process determines

the stiffness and damping matrices for the absorber, which allow us to calculate the

stiffness and damping values as well as their locations.

Although we have formulated this perturbation approach for the design of a

damper attached to a single body and both the main mass and the absorber have N

degrees of freedom, the approach is easily adaptable for multiple dampers or other

systems with multiple degrees of freedom.

4.2 Future Work

4.2.1 Two Parameter Expansion

In Chapter 3, we concluded from the three-DOF example that a ratio of characteristic

rotational inertias is another important small parameter. Based on that example, we

expect that a two-parameter expansion will be useful when the ratio of rotational

inertias is much smaller than the mass ratio and/or the distance between the centers

of mass is small.

If the primary structure has a characteristic length p1 (an average radius of gyra-

tion, say) and the absorber has a characteristic length P2, then we define

P = (4.1)
Pi

When r7 is small, then the ratio of radii of inertia A =rj is small. This A is the second

small parameter and is given by

~2
A- 2

M = (4.2)
Mp1

Consider again the system consisting of a MDOF primary system to which a

MDOF tuned-mass damper is attached as shown in Figure 3-1. Nondimensionalizing

lengths by pi, scaling the displacements and rotations of the primary mass by c and the
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rotations of the absorber by r-1, and making use of both c and A, the

equations of motion may be written as

M

0

nondimensional

0 D2x 1 + (EGo + AO)c(cGo + AG)' -(cGo + AG)c Dxi

m D2 -c(Go + Ad)' c Dx 2

-K+ (cGo + AC)k(EGo + AG)' -(EGo + AG)k x, f(T)

-k(EGo + Ad)' k X2 0
(4.3)

where the D is the operator denoting differentiation with respect to

time T, Go is given by

G 0
Go =

R 0

nondimensional

(4.4)

where R is an 0(1) skew-symmetric cross-product matrix representing the nondimen-

sional vector from the center of mass of the primary structure to the center of mass

of the absorber, and C is given by

0 0

0 I
(4.5)

If the distance between the centers of mass is small (of the same order as the charac-

teristic length of the absorber instead of the primary mass), then it may be necessary

to change Go to have the form

Go[
0

0

0
(4.6)

and d to have the form

(4.7)

The absorber stiffness must be expanded

small parameters are used to obtain

in a similar manner as before, but now two

k = ko + eki + 1/2A1/2k1 + Ak 1 + E2 k2 + EAk 2 + A2 k2 + . . .
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where ko is a stiffness matrix chosen so that the natural frequencies of the absorber

exactly match the absorber of the undamped primary structure. The damping must

be light so c is expanded in the form

C = ECO + 61/2 A1/20 + Ado + E2Ci + -i-+ A2 1 + .% . . (4.9)

The eigenvalues should be expanded as

Wp = WpO + EWp 2 + E1/ 2A1/ 2 CI, + Awg2 + 63 /2W 3+ cA1/2Wp3

+ E/ 2AWF + A/2p 3 + 62Wp4 + EADp4 + A2iJ 4 + ... (4.10)

where wo is the p-th natural frequency of the undamped primary system. The eigen-

vectors should be expanded as

= 1+ 1/2 + A1/ 2

X2 X20 X21 )2

+ E () + E1/2 A1/2 + A + .. . (4.11)

(X22 ) 522 ) 22

4.2.2 Tuning Multiple Modes of the Absorber to One Mode

of the Primary Structure

Zuo and Nayfeh [48] showed that a MDOF TMD can achieve better performance than

a single SDOF TMD or multiple SDOF TMDs for suppression of a single mode of vi-

bration. They reached this conclusion by comparing the performance of a two-DOF

absorber, two SDOF absorbers, and a single SDOF absorber for a SDOF primary

system. The two-DOF absorber achieves better performance provided that the ra-

tio of the radius of gyration of the absorber to the distance between the springs is

properly chosen. Numerical methods are sufficient for a two-DOF system because

a simple search can be used to find the optimal ratio. However, the same problem

arises that occurred for MDOF absorbers on MDOF systems: the numerical method
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cannot determine the optimal location of the springs and dampers. Therefore, we

should use perturbation methods to determine approximate optimal locations of the

springs and dampers. Furthermore, the perturbation expansion will again result in

analytical formulas for the approximate performance and design which are useful in

the preliminary design stages. Before performing the perturbation expansion, we ex-

pect that the equations of motion must be rescaled because more than three or more

poles will be close to coalescence.

4.2.3 Other Work

To improve on the perturbation design, a better estimate of the optimal location for

the springs and dampers should be found. In the current procedure, an O(e) estimate

of the achievable damping ratio is used. To improve on the design, we should try to

maximize the 0(c2) estimate of the damping ratio, which may be written as

( Ep2 = CIm(Wp4) (4.12)
P wo -+ e2Re(wp 4)

However, forcing the poles to coalesce causes the imaginary part of wp4 to be zero.

Therefore, we must make w, 4 as large and negative as possible.

To give a more complete picture of the design of MDOF TMDs for MDOF struc-

tures, we must develop approaches for the approximate H2 and H, optimal designs.

This should be an extension of the work in Appendices A and B, which examine these

designs for SDOF structures.

To truly verify the usefulness of MDOF TMDs, we must implement them on phys-

ical systems such as shown in Figure 1-1. This work will involve the use of the design

methods of this thesis and the methods of Zuo and Nayfeh [50] and the development

of adjustable springs and dampers. Zuo [45] has developed some flexures with both

adjustable stiffness and damping. Viscoelastic materials are inexpensive and conve-

nient materials to construct tuned-mass dampers. To facilitate the construction of

TMDs using viscoelastic materials, the perturbation methods of this thesis must be

adapted to reflect the viscoelastic damping model.
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Appendix A

Single-Degree-of- Freedom

Tuned-Mass Damper Subject to

Harmonic Forcing

In this appendix, we examine the behavior of a SDOF TMD subject to light, harmonic

forcing using the method of multiple scales. (An alternative method is to project the

forcing in to modal coordinates using the approximate mode shapes determined in

Chapter 2.) Then, we use the expansion for design. Specifically, we determine the

approximate tuning and damping for the H,, optimal design, which minimizes the

peak value of the frequency response of the primary mass.

A.1 Method of Multiple Scales

The nondimensionalization procedure is the same as for the unforced SDOF TMD

examined in Chapter 2 with the exception of the forcing. We assume the forcing

is light (scales with c) and that its frequency is near the natural frequency of the
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primary system. The nondimensional equations of motion are

1 0 D 2X 3 C - 2 C Dxi

0 1 D2X2 -62 EC Dx2

1 +[ ck ek x1 E fewT (A.1)
-Ek k X2 0

where D is the operator denoting differtiation with respect to nondimensional time,

T = Qt. Because the tuning and damping will not be chosen to make that the

eigenvalues are close to coalescence, as will become evident in the expansion to O(E),

the expansions for the eigenvalues and eigenvectors do not need to include the terms

with e1/2 powers. Thus, we write the displacements as

X1 X10 + 11 +E2 X12+(A2()= ( +) +c ~~ e~X + ... (A.2)
X2 X20 ) 21 22

The frequency of excitation is expanded as

W = 1I + E-U (A.3)

where o- is 0(1). We introduce nondimensional time scales

TO = T T 1 = ET T2 = E2T,... (A.4)

The derivative operator D is expanded as

D = Do + ED, + E2 D2 +... (A.5)

where Do is the derivative operator with respect to To, D1 is the derivative operator

with respect to T 1, and so on. The stiffness of the absorber is written as

k = 1 + Ek +E2 k2 + .. -(A.6)
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The damping of the absorber is written as

c = cO + Eci + C 2 c2 +...

A.1.1 Expansion to 0(1)

The equations at this order are

E
0

01

1 J D xio 2X [1 0 X1

0 +
D 2O2 0 1_ J(X20

0

0)

(A.7)

(A.8)

The response is

i= AoeiTo + cc (A.9)

X20 BoeiTo + cc (A.10)

where cc denotes complex conjugate. We may ignore the complex conjugate because

this problem is linear.

A.1.2 Expansion to O(E)

At this order, the equations are

1

0

01

1 J (D 2x 11
D 221

1

_0

0 X11

1 k(x 2 1 J
k-2iD

1Ao
AO - 2iDiBo

BO + f ei"T

- (ki + ico)Bo
eiTO (A.11)

To suppress secular terms, we require that the RHS be zero. Rearranging terms, we

obtain

D1 Ao

D1 Bo/

0

-
(A.12)

The solution for AO and BO may be separated into homogeneous and particular

parts. We are concerned with the forced response and thus only care about the
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particular solution, which we write as

AopJ

Bop

Substituting this solution form into (A.12), we obtain

2a-

1

1

2o- - (ki + ico)Iao(

boJ

-7f
o ,

For convenience, we define

2a-
PI=

2or- - (k + -ico)

Solving for aop and b0p, we obtain transfer functions

o - kl+ico
2 4

f -U.2 + (ki + ico) +

bo1
f -U.2+ E (ki + iCO) +2_ 4

The response at this order X12 and x22 maybe written as

-1 = A eiTo + cc

X21 B eio + cc
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(A.17)
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A.1.3 Expansion to 0(c2 )

The equations at this order are

1

0

0 D i2 F 1 0 X 12  -2DoD 1  1 1

1] D 2 2 / [0 1 2 2  1 -2DoD 1 - (ki + coDo) X21

-2Do DD 2 -2 D ki + coD o -io
+ 1 k2 (A.20)

L ki + coDo -2DoD2 - Di -(k2 + c1Do + COD,)_ X20)

We substitute for x1o, X20 , x11 , and x21 and suppress secular terms by setting the

RHS to zero. We obtain

k, + i

-2iD 2 - D - (k2

-2iDi
+

co Ao

+ ic + coDi)J Bo

1  A0

-2i'Di - (ki + iCO) B1 0

where AO and BO are functions of f and T only; therefore, the derivative with

to T2 is zero. Because AO and BO are harmonic functions of the form ei"'T, we

particular solutions for A1 and B1 have the form the form

Alp alp eioTi

B1, bip

Substituting into (A.21), we obtain

P alp Q aopaP '\= -Q (ap

(b1p bop

where Q is given by

2 - ( ki + ico
Q [=)

ki + ico a.2 - (k2 + ZCi + ZCOo-)
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-2iD 2 - D -_

L k, + ico

(A.21)
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assume

(A.22)

(A.23)
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The unknowns aop and bop are linear functions of f as given by (A.16) and (A.17)

Substituting the transfer function for aop and bop, we find

Ifol
lbipL
\fo/)

= P-1 QP~1 (A.25)
I

0

The transfer functions are

a1 4cA - 4(ki + jco)U3 + U ((ki + jcO) 2 - 3) - jorco + (ki + jco) 2 - (k2 + jci)

(4. 2 - 2c-(ki + jco) - 1)2

-- (4U2 - u(5ki + 7jco) + 2(ki + jco) 2 - 2(k2 + jc1 + 1))
(40r2 - 2u(ki + jco) - 1)2

The resulting response for x 12 and x 22 is

X12 = A2eiTo + cc

X22 = B2eiTo + cc

A.1.4 Expansion to 0(03)

The equations at this order are

E

0

0 D(Dgx 13  1 01

1] D2x 23  0 1

-2DoD 2 - D - 1

k+ cD

X13

X23)

612

612

6121

622_

(io

X20)

k1 + coDo

-2DoD 2 - D- (k2 + c1Do + coD 1 )

-2DoD 1

1

1

-2DoD 1 - (ki + coDo)

where

61 = -2DoD 3 - 2D 1 D2 - (ki + coDo)

612 = k2 + c1Do + coD 1
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(A.27)

(A.28)

(A.29)

I(
X21

X12

X22I (A.30)

(A.31)

(A.32)

fo



62 2 = -2DoD 3 - 2D 1 D 2 - (k3 + c1Di + c2 Do + coD 2)

We suppress secular terms in the same manner by setting the RHS equal to zero. All

variables are only a function of T1 so higher derivatives (D2 , D 3, ... ) are zero. We

assume a particular solution for A2 , B 2 of the form

A2p a2p igo.Tj (A.34)
B2p b2p

The resulting equation is

P a~,+ Q ap+ R =o (A.35)
(b2p b1p bop 0

where R is given by

(ki + ico) k2 + iUcO + ici1
R = (A.36)

[k2 + iUco + ic1  -(k 3 + i-ci + ic2 )

Making use of (A.14) and (A.25), we obtain

/a2p\

fo = P- 1 (-QP-Q + R) P-1 (A.37)
b2p 0

A.2 Approximate H,, Optimal Design

To determine the approximate design, we examine the total response at each order and

try to minimize the peak height(s) of the transfer function by varying the parameters.

Ormondroyd and Den Hartog [26] and Brock [4] used the ideal of "equal peaks" to

find a very good approximation of the H,, optimal design. The idea is that the

optimal design is the one which the two peaks are of equal height and that height is

as small as possible. Furthermore, Ormondroyd and Den Hartog were able to simplify

the calculations by recognizing that for fixed stiffness tuning, all frequency response

curves pass through two points independent of damping. For the optimal design,
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these points are the peaks. Ormondroyd and Den Hartog then found the optimal

frequency tuning to be
Wa (A.38)
Q, 1 +

where p is the mass ratio. Brock contributed a formula for the damping of the

absorber by noting the slope of the frequency response curve is zero at the peak. The

optimal damping coefficient of the absorber is

(a = 3(A.39)8(1 + p)3

where (a = 2mQ,. This definition of the damping ratio is not exactly correct because

the natural frequency should be that of the absorber. Making use of the optimal

frequency tuning, the damping coefficient of the absorber may be written as

= 3 (A.40)
8(1 + p)

where = 2 mwa. This design is not the true optimal because the peaks are not of

equal height, as noted by Brock. However, the design is a very good approximation

when compared to the formula for the exact optimum given by Asami et al. [31 through

a Taylor series expansion, for example. The optimal tuning is

Wa 2 2(16+2362 + 964 +2(2+ 62) 4+362(A)
+ (A.41)

QN 1 + 62 3(64+8062+27E4)

and

2Ma=1 8 + 9E2 _ 4v4 + 362 (.22mwa = - ±64±2(A.42)
4F1+ E2

The result of the O(e) expansion is a transfer function for a0p given by (A.16).

We first may argue that the transfer function should be symmetric about - = 0 to

obtain k, = 0. Then, we follow a procedure analogous to that of Ormondroyd and

Den Hartog [26] and Brock [4] to obtain co = f. Figure A-1 shows the tranfer

function for various values of the damping with k, = 0. The bold curve is the
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1.8

1.6

1.4-

1.2-

0
-1.5 -1 -0.5 0 0.5 1 1.5

Figure A-1: Frequency response of a0 p for various damping co with k1 = 0: original

system without TMD (dots), co = 0 (dashed), O(E) design (bold solid), various non-
optimal designs (solid).

approximate behavior for the approximate design. (The curve with a single peak is

the minimax design described in Chapter 2.)

At 0(62), we obtain a transfer function for alp. We again want to minimize the

peak response of x1 , but now we have a better approximation of the behavior. First,

we calculate the total transfer function aop + ca 1 . The value of 6 does not effect the

resulting design. We again would like to make the heights of the peaks equal, but

there are no stationary points so the approach is more brute force. First, we find the

locations of the peaks by setting the derivative of the transfer function with respect to

o- equal to zero. Then, in order to minimize the height of the peaks, we differentiate

with respect to the parameters k2 anc c1 and set the resulting equations equal to zero.

The resulting design is k2 = -2 and c1 = 0. Figure A-2 shows the magnitude of the

transfer function for various k2.

At O(C3), the transfer function for a 2, is found. Similar methods to those used at

0(E2) can be used to find the optimal k3 and c2.

Now, we compare the perturbation design to the Den Hartog [8] and exact designs.
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2

1.5

+d
0.

0.51

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

ar

Figure A-2: Frequency response of a0p + a1 , for various tuning k2 with c1

0(62) design k2 = -2 (bold solid), various non-optimal designs (solid).
= 0:

The transfer function for the dimensional equations is given by

X(s)
F(s)

ms2 +cs + k
Mms4 + cs3 (m + M) + s2 (mK + k(m + M)) + Kcs + kK

(A.43)

Figure A-3 shows the frequency responses of the various designs for E = 0.22 (i.e.

mass ratio=0.05). The Den Hartog design is undiscernible from the exact H" optimal

design for this value of E.
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0.75 0.8 0.85 0.9 0.95 1
o [rad/sec]

1.05 1.1 1.15 1.2 1.25

Figure A-3: Frequency response with mass ratio of 0.05: original system without
TMD (dots), O(c) design (dashed), O(e2) design (solid), optimal design (dashdot).
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Appendix B

Single-Degree-of-Freedom

Tuned-Mass Damper Subject to

Random Excitation

In this appendix, we examine the behavior of a SDOF TMD subject to light, random

excitation. Specifically, we determine the approximate tuning and damping for the

H2 optimal design, which minimizes the variance to white noise excitation.

The nondimensionalization procedure is the same as for the harmonically excited

system discussed in Appendix A. The nondimensional equations of motion are

1 0 D[2X1 :c - 2c Dxi

0 1 D2X2 _-2c EC DX2

I + E2k -Ek () Ef (T; ) (B.1)
-ck k X2 0

where D is the operator denoting differentiation with respect to nondimensional time

T = Qt. Because the tuning and damping will not be chosen to make the eigenvalues

close to coalescence, the expansions for the eigenvalues and eigenvectors do not need
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to include terms with 61/2 powers. Thus, we write the displacements as

= +6 +6 +-...(2 )(£ 1 2 2
X2 £20 X21 ) (X22/)

(B.2)

We introduce nondimensional time scales

TO=T T1 = eT T2 = E2 T,.... (B.3)

The derivative operator D is expanded as

D = Do + cD 1 + E2D 2 +... (B.4)

where Do is the derivative operator with respect to To, D1 is the derivative operator

with respect to T 1, D2 is the derivative operator with respect to T2, and so on. The

stiffness of the absorber is written as

k = 1 + eki + 62 k2 + ... (B.5)

The damping of the absorber is written as

C = Co + 6c 1 + E2 c 2 +... (B.6)

We expect that the dominant component behavior is due the components of the

response in the neighborhood of resonance so we consider the forcing to be in the

neighborhood of resonance. The frequency of excitation is expanded as

W = 1 + C- (B.7)

where o is 0(1). Therefore, the scaled forcing is given by

f (T; c) = foeiTo(1+Eo-) (B.8)
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(b)
- 26o-ma

1

Figure B-1: Spectrum of excitation force: (a) Spectrum of o-, (b) Spectrum of w.

The forcing is band-limited white noise (random) by requiring the specturm S(o-)

to be zero when a > 0(1) (see Figure B-1). Now, we are ready to perform the

perturbation expansion.

B.1 Method of Multiple Scales

B.1.1 Expansion to 0(1)

At this order, the two subsystems are decoupled and the governing equation is

E
0

01

1

0D 2Xi

D 2x20

L 1
+ I

_0

01

1

(X1O

X20

0

0
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4S(o-)

0 0max

S(w)

1 r

-7max

-1 0

(B.9)

I 0



The response is

x 10 = AoeiTo + cc (B.10)

X20 =BoeiTo + cc (B.11)

where cc denotes complex conjugate. As before, we may ignore the complex conjugate

because this problem is linear.

B.1.2 Expansion to O(c)

The equations at this order are

1 0 D x [1 0 xii -2iD 1 Ao + BO + foeaT1i
0 + ~ei (B. 12)

0 1 D x 2 1 J 0 1 x 2 1 Ao - 2iD1 BO - (ki + ico)Bo

To suppress secular terms, we require that the RHS be zero. Rearranging terms, we

obtain
D1 AO 0 -1 Ao foe(Ti

2 + (B. 13)
D1BO - kli co K BO 0

Now, we would like to find the variance of the response AO to the excitation foe T1

where the spectrum S(-) is constant band-limited. Therefore, we want to calculate

E[A 2] = IHo(o-)12 d- (B.14)

where Ho(-) is the transfer function from fo to A0 . This integral is difficult to

calculate. Because we expect the contribution to the integral to be negligible for

lal > amax, we extend the limits of integration to too. Thus, the expected value

becomes

E[A2] = j Ho(-)12 d- (B.15)

The transfer function as given in Appendix A is

Aoa _ ki+ico
Ho(-) = A _ 2 4 (B.16)

fo -_.2 +1 ((ki + ico) +
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Then, IHo(o-)12 is a rational function whose denominator is a fourth-order polynomial

and whose numerator is a second-order polynomial. Its integral must be evaluated

using contour integration. Tables of integrals of rational functions of the form

g00 jO) 21 dw (B.17)
och(jw)

where g and h are polynomials with real coefficients are given in many references,

such as [6] and [16]. For these formulas to be valid, the poles of the transfer function

must not lie on the real axis. (Otherwise, an indented contour must be used and the

resulting formulas will be different.) However for the transfer function in our problem,

the coefficients of the polynomial in the denominator are complex, and these tables

are not available.

To compute the integral, we make use of Cauchy's Residue Theorem [31]:

rn
f (z)dz = 27ri Res(zm) (B.18)

M=1

where Res(zm) is the residue of the poles zm inside the contour. We choose a "D"-

shaped countour which extends from -oo to +oo along the real axis, and whose ends

are connected by a semicircular arc in the counterclockwise direction in the upper

half-plane (see Figure B-2). The contribution to the integral of the semi-circular arc

is zero because the numerator of the integrand is two orders in - smaller than the

denominator.

Another requirement is that no poles exist on the real axis, otherwise we must

complicate the procedure by using an indented contour. Through conformal mapping

(e.g. [31]), we now show that if co > 0, then both poles of Ho(c-) will occur in the

upper half plane, and if co < 0, then both poles will occur in the lower half-plane.

The transfer function has poles at

1 ki + jco (k1i + jco) 2

- ± +11 (B.19)2 2 4

95



-R

Im(z)

Re(z)

R

Figure B-2: Integration contour

We define a complex variable z of the form

ki + jc0

2
(B.20)

and examine the mapping

w = U(z) = (z t Vz21) (B.21)

The square root is a multi-valued function so we must define a branch cut. The

branch point is a point at which the function is not analytic. For w = -(z), the

branch points are z = ±i. We may rewrite this function as

w = -(z) = 2 t 2 (B.22)

or, equivalently, as

w = (z) = (z ± zel 1+ + ( ) (B.23)

where arg is the argument function -7r < arg(z) < r. The branch cuts are the places

where z2 + 1 is negative real. In the case of (B.22), we choose the branch cuts to

go from z = -i to -ioo along the imaginary axis and from z = i to ioo along the
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, Im(z)

i
Re(z)

(a)

Im(w)

2

2

(b)

Re(w)

Figure B-3: Mapping of z-plane (a) to w-plane (b) for w = -(z) given by (B.22)

Im(z)

i
Re(z)

-i

(a)

, Im(w)

i

2
Re(w)

(b)

Figure B-4: Mapping of z-plane (a) to w-plane (b) for w = -(z) given by (B.23)

imaginary axis. In the case of (B.23), we choose the branch cuts to go from z = -i

to z = i. Under both mappings, (B.22) and (B.22), the branch cut is mapped to the

imaginary axis (see Figures B-3 and B-4).

Conformal mapping of a grid in the upper half-plane (see Figure B-5) under the

transformation w = o-(z) given by (B.22) shows that as long as the damping is non-

zero both poles of the transfer function are in the upper half-plane if co > 0 and in

the lower half-plane if co < 0. Figure B-6 shows this for the case c > 0. The mapping

breaks down near the branch cut because the grid is not properly spaced close to it.

Thus, the poles of IH(-)12 are the poles of the transfer function and their complex

conjugates (see Figure B-7).

We are now ready to calculate the integral I, which involves quite tedious algebra.

To be somewhat more general, we write the transfer function in the form

B 1c + Bo,R + iB0 ,1
-A 2U2 + io-(-iA 1,I + A1,R) + A0

(B.24)

where B 1 , BO,R, Bo,1, A 2, A1,1 , A1,R, and AO are real. Using Cauchy's Residue Theo-
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Figure B-5: Grid of points in the upper half of the z-plane.
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Re(a(z))

Figure B-6: Mapping of the z-plane grid shown in Figure B-5 under the mapping
w = U(z) as given by (B.22).
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Figure B-7: Schematic of pole locations for H(o-).
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Figure B-8: Contour plot of the variance E[A2] as a function k, and co.

rem, we obtain

BR+ BO,I)A2A,R + B (Al,R + A1, A1,I)

7r L+4B1Bo,RA, A,RA2 + r 2 (B (A1,R cos 20 - A1,j sin 20) - 2BlBo,RA 2 sin 20)
I 

A
2 AiR + A2 R 2 cos 20 - r4 cos 2 0 sin 2

]
(B.25)

where r is given by

r = V4A2Ao - AiR + A, 1 + 2iAl,RA1, I

and 0 is given by

1
0 = 2 arg(4A2Ao - Al,R + Al,1 + 2iAl,RA,I)

We substitute for B 1 , Bo,R, Bo,7 , A 2 , A 1,,, A1,R, and AO obtain and an expression

for E[A2]. A contour plot as k, and co are varied is given in Figure B-8.

100

(B.26)

(B.27)
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After suppression of the secular terms, the response for x11 and x21 is given by

x1 = AieiTo + cc

x 2 1 Beiro + cc

B.1.3 Expansion to 0( 2 )

As for the system with harmonic forcing, the governing equations at this order are

01

iJ
D X12 1 0 X1 2  -2DoD 1

/ [0 1] 2

-2DoD 2 - D- 1
+ +

ki + coD 0

-2DoD 1 - (ki + coDo)l

ki + coDo

-2DoD 2 - D - (k2 + c1Do + coD,)

X 1 0

x 20)

X21)

(B.30)

We substitute for xiO, x20 , x11 , and x21 and suppress secular terms by setting the

RHS to zero. We obtain

[-2iD 2 - D- 1

ki + ico

k, + icO

-2iD 2 - D2- (k2 + ici + coD 1 )

-2iDi

[i

IAo

Bo

D 1 -

-2Z-D1 - (ki + ico) B1 )

0

0
(B.31)

where AO and BO are functions of f and T only. To obtain a transfer function from

fo to a,, we again assume a solution of the form

and obtain

Alp

Bip

fo
~bip)
\fol)

alp e iuT

bipJ

P-lQP-1

(0)

(B.32)

(B.33)
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where

P =2a- 1 (B.34)
1 2- - (ki + ico)

and

d U2 -1 ki + ico (B.35)

-k, + ico o.2 (k2 + ici + iCO-)_

The transfer function for a1 is

a1  4a4 - 4(ki + jco)U3 + o 2 ((ki + jco) 2 - 3) - juco + (ki + jco) 2 - (k2 + jci)

fo (4U2 - 2o-(ki + jco) - 1)2 (B.36)

Because both the numerator and denominator are fourth-order, the integral to cal-

culate the variance of alp will not converge in general. Thus, we leave this step and

higher orders to future work.

B.2 Approximate H2 Optimal Design

The H2 optimal design minimizes the variance to white noise excitation. The ap-

proximate design must minimize the variance of A0 . To find the optimal values of

co and ki, we set the partial derivative of the expression for the variance of A0 with

respect to co and k, to zero and solve for co and k, simultaneously. This step is very

tedious because of the cumbersome nature of the expression for the variance of A0 .

From the contour plot of the variance (see Figure B-8), we observe that the variance

is symmetric about k, = 0. Therefore, we expect that k, = 0 is the optimal value.

Another, perhaps more naive, approach is to examine the expression for JHo() 12:

H = 2 4 2) + ( )4 (B.37)
(i -a2 + )2 +

Then, we may guess that the optimal value of k, is such that the maximum of -

a.2 + 1 o- occurs at - = 0. Again, we find ki = 0.

The benefit of finding k, = 0 is that we may use the simpler expressions for the
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variance found in textbooks, such as Crandall and Mark [6]. In that case the variance

of A0 is

E[A2] =w(r .+ L) (B.38)
8 8co

The value of co which minimizes this expression is co = 1. (We ignore co = -1

because the damping should be positive.) This design matches the Maclaurin series

expansion of the exact solution given below.

B.2.1 Comparison to the Exact H2 Optimal Design

To calculate the variance of the exact solution, we use Equation 2.38 from the text

by Crandall and Mark [6]. (One may equivalently use their Equation 2.55.) For the

transfer function

-iW3 B3 - w 2B 2 + iwB 1 + Bo
w4 A4 - iw3 A - w2A2  iwA 1 + Ao (B .39)

the variance is

(B2/Ao)( A2A3 - A1 A4) + A3 (B 2 - 2BoB 2 )

+ +A 1 (B2 - 2B 1 B3 )+ (B2/A 4)(A1 A 2 - AoA 3 )
1 H(w)|12 dw = 7r - - (B.40)

_-00 A1( A2A3 - A1 A4) - AoA3

The exact solution for tuning the SDOF TMD given by Asami et al [3] is

W 2 1 2 + c 2
k - 1"a- - (B.41)Q2 (1+62)2 2

4 + 3e
c=2mwa - 1 +c)2 2 ) (B.42)

8(1 + E2)(2 + 2

With mass M normalized to be 1, time normalized to give Qn = 1, and a mass

ratio of 0.05, the variance of the exact solution is 27.9315. (Sometimes this value is

normalized by 7r.) The variance for the O(E) design is 29.5042. The next correction in

the Maclaurin series expansion of the exact solution results in a variance of 27.9803.

The third correction (should agree with O(63)) results in a variance of 27.9389.
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Appendix C

Derivation of the Coupled

Equations of Motion

In this appendix, we derive the form of the coupled equations of motion for the small

displacements of two rigid bodies connected by linear springs and dampers by using

the principle of superposition.

Consider the diagram of a MDOF TMD shown in Figure C-1. The coordinate

systems of the two bodies are parallel and centered at their respective centers of

mass.

We consider only the stiffness matrix because the damping is easily extrapolated

from the form of the coupled stiffness matrix. The force-displacement relationship

for the primary mass without the absorber is given by

(F [2:;: k @:)= K, 1 (C.1)
r1 kxi koo1 01 01

where F is the vector of forces at the center of mass, 1 1 is the vector of moments

about the center of mass, x1 is the vector of translations of the center of mass, and

01 is the vector of rotations. Similarly, the force-displacement relationship of the
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cr k
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Figure C-1: Diagram of a vibratory system comprising a mass M to which a tuned-

mass damper m is attached.

absorber is given by

F2 kxx2 kx02 X2 (2 ) (C.2)
F2 k' 2 ko02 02 02)

where x2 is the vector of translations of the absorber's center of mass and 02 is the

vector of rotations of the absorber.

First, we calculate the force and torque (applied at the center of mass) required

to hold the primary mass in place with zero displacement while the absorber is given

a general, static, non-zero displacement. The forces and torques on the two bodies

are given by

F1  kxx2 -kx02

F1  -k' - Rkxx 2 -k 00 2 - Rkx2 X2
=2 (C.3)

F 2  kxx2 kx2 62

\r2 k'o ko2L x0

where the cross product has been written in matrix form using a skew-symmetric

matrix representing the vector from the center of mass of the primary mass to the
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center of mass of the absorber:

0 - r, ry Fx

rxF= r] 0 -r Fy (C.4)

-ry rX 0 Fz

Now, we hold the absorber fixed with zero displacement in the inertial reference

frame while the primary mass is given a general, static, non-zero displacement. The

resulting forces and torques on the bodies are

F1  kxx1 + kxx 2  kx02- kxx2R + kx02
F1  _ kxo1 + Rkxx 2 + k'02 koo1 + ko02 - Rkxx2R + Rkx02 - k' R x

F2  -kxx 2  -kx02 + kxx2R k 1

\172 - -k 2 + k' R02R

(C.5)

Using the principle of superposition, we find the force-displacement relation for

the coupled system to be

/, \ /F1  Li

[1 K, + OK 2G' -1K2 01 (C.6)

F 2  -K 2 ' K2 X 2

\F2; 02

where

I 0
G = I(C.7)

where R is given by and I is the n x n identity matrix (Each system, absorber and

primary mass, has n degrees-of-freedom.).
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Appendix D

Assignment of the Absorber Mode

Shapes

In the approximate minimax design of the MDOF TMD (Section 3.3), we assign

mode shapes of the absorber in a ranked order. In this appendix, we describe how

this process works. This process is basically the Gram-Schmidt orthogonalization

except that the vector must be mass-orthogonal instead of orthogonal.

The set of optimal eigenvectors v* are known, but they do not form a mass-

orthogonal set. The mode shape with the least damping is assigned exactly its de-

termined optimal v* . For simplicity and without loss of generality, we assume that

the achievable damping increases with p (i.e, mode 1 has the least achievable damp-

m1/24 1/2(U2 U1

M- ow 21 1,( - V1

Fu1/2 M1/2 Pj2i2 - e 21 1/2 - gof 22 M /221 _ M/2V21

Figure D-1: Projection of mode shapes under the mass-orthogonality constraint.
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ing, mode 2 has the next smallest achievable damping coefficient, and so on.) The

higher modes are assigned to maximize the projection on the optimal mode v* and

be mass-orthogonal to all previously assigned modes.

The requirement of mass-orthonormality can be written as

V2pmV2q = 6pq (D.1)

where m is the mass matrix and 6pq is the delta function given by

1I if p =q
6pq = (D.2)

0 otherwise

This requirement can also be written as

(m 1 / 2 v2p)'(m 1 / 2v2q) = 6pq (D.3)

because the mass matrix is symmetric positive semi-definite.

The first mode is assigned its optimal mode shape v21 = v.*1 The second mode

shape is calculated by subtracting the component of m 1 / 2v*1 parallel to m 1 / 2v 2 from

m1 /2v2 2 (see Figure D-1). The resulting vector is in the direction or v22. This step

may be written as
m 2 2 = M 22 - am 1 /2 v2 1  (D.4)

The scalar a is simply the cosine of the angle between the two vectors and may be

written as
(m/ 2 v 21 )'(m/ 2 v22 ) = VI Mv* (D.5)

m 1 / 2v 21 11 m1 / 2v22 1 1

where we have taken advantage of the mass orthonormality in simplifying the de-

nominator. The scalar f is determined by scaling the resultant vector such that it is

mass-orthonormal. The simplified result is

V22  *

f V2 - (v21mv22)V2 1 (D.6)
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A similar procedure is followed to calculate v23 , which v23 must be mass-orthogonal

to both v 21 and v22 . Because v21 and v22 are already mass-orthogonal (Each vector

has no projection onto the other.), we simply subtract the component of each vector

that points in the same direction as m /23. Performing the same algebra as for v22,

we obtain

V23 = V 3 - (v'Imv*3 )v 2 1 - (v 2 mv*3 )v 22  (D.7)

The procedure is continued until all mode shapes have been determined.
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Appendix E

A Note on Solvability Conditions

Throughout this thesis, solvability conditions are used to carry out the perturbation

expansions. In this appendix, we briefly describe solvability conditions for linear

algebraic equations. Further details are given in numerous texts including [23, 24].

Consider the system Ax = b wher A is a N x N matrix and x and b are N x 1

vectors. The solvability condition for this system may be stated as: If the homoge-

neous system Ay = 0 has a nontrivial solution y, then the inhomogeneous system

Ax = b has a solution if and only if (b, u) = bT = 0 where u is the solution of

the homogeneous adjoint problem A'u = 0 where ' indicates the complex conjugate

transpose.

In this thesis, two cases are commonly encountered. First, the matrix A is sym-

metric and complex. Then, we say A = AT # A'. The homogeneous adjoint problem

is

A T = Au = 0 (E.1)

The homogeneous solution is y = 7, and the solvability condition is yTb = 0.

Second, the matrix A is block diagonal. For a block diagonal system, we write the

equation as

A, 01 (Xi" (E.2)
0 A 2  x2  b2
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where the homogeneous adjoint solustion is

U = 1 "(E.3)
U2)

We may impose the solvability condition on each row separately to obtain

( lb 0(E .4)
U' b2 0
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