
A Framework for Auto-ID Enabled Business

by

Timothy Porter Milne

M.S. Mechanical Engineering, 1995
Brigham Young University

B.S. Mechanical Engineering, 1992
Brigham Young University

Submitted to the Department of Mechanical Engineering
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

INSTITUTEMASSACHUSETTS
August 8, 2003 OF TECHNOL

OCT 0 6
© 2003 Massachusetts Institute of Technology

All Rights Reserved. LIBRAR

Signature of Author:................................
Departm of Mechanic Engineering

(V August 8, 2003

C ertified by:...

Associat

A ccepted by:...

Sanjay E. Sarma
e Professor of Mechanical Engineering

Thesis Supervisor

Ain A. Sonin
Chairman, Department Committee on Graduate Students

BARKER

INSTITUTE
OGY

IES

A Framework for Auto-ID Enabled Business

by

Timothy Porter Milne

Submitted to the Department of Mechanical Engineering
August 8, 2003

In partial fulfillment of the requirements for the degree of
Master of Science

ABSTRACT

Modern commerce is as much about trading information as it is about exchanging goods
and money. With an Auto-ID enabled future, the expeditious exchange of information
will be even more critical. The fundamental problem with e-commerce today is the soft
connection between goods and their related information, which frequently results in
breakdowns between the physical and information worlds.

The Auto-ID Center at MIT has proposed a system using Radio Frequency Identification
(RFID) tags on objects, coupled with a distributed information system using the Internet,
that will allow the tracking of physical objects and the automatic association of relevant
data about those objects.

This thesis outlines a framework for a new method of using Auto-ID to connect the
physical world to the information world using an example from commerce: Shipping and
Receiving Verification. This thesis also presents a mapping of Core PML, a component
of the Auto-ID system, into various EDI and XML based messaging systems including
Simpl-eb and UBL. Finally, this thesis describes the results of a reference
implementation based on my research, including a candidate platform and messaging
channel, and then concludes with lessons learned and recommendations for future
research in the field of Auto-ID enabled Business (a-Biz).

Thesis Supervisor: Sanjay E. Sarma
Title: Associate Professor of Mechanical Engineering

2

Acknowledgements

This work is not the result of one man's labor. For their contributions to this project I
would like to thank the following (in no particular order):

First of all, I would like to thank the a-Biz team: Chris Clauss for the initial spark and the
ongoing support that allowed a-Biz to flourish. Bob Ganley, who brought Sun's many
resources to bear. Elwin Loomis for making his team available and Rick Schendel for
assembling the group within Target that made this research both possible and enjoyable.
Paul Rieger for the start and Tom Torre for the finish that kept the project rolling. Budi
Saputra for his insights and ongoing feedback. Steve Rehling for his tireless and
undaunted foray into all aspects of Auto-ID. Ted Osinski and Tom Heist for their help
and feedback on the models. Amit Goyal for his exceptional contribution, it was a blast.
Dan Engels and Tom Scharfeld for their help with readers and antennas. Tom Scharfeld
and Heidi Schuster for a web page. Jim Clarke for gathering a great team, Sean Clark for
the servers and moral support, and Rolla Grace for getting the servers online. Ben Griffin
and his uncanny 6th sense for finding and fixing problems. Stu Stern and his team for
creating reality from requirements. Dirk Heyman and his Zurich team for a great demo.
And everyone else that contributed to a-Biz along the way.

There are also those from the Auto-ID team that I would like to single out: Robin Koh for
his energy, direction, guidance and friendship. Christian Floerkemeier for his great work
with PML Core, his help and his friendship. Dr. Duncan McFarlane for assembling a
great UK team and all the great work they do. Humberto Moran for helping to congeal
my thinking about Auto-ID use cases. Professor Sanjay Sarma for his advice, assistance
and most of all enthusiasm. Dr. Brock for getting the whole thing started. Brendon
Lewis, Sephen Ho, and Yun Kang for all the fun times. David Rodriguera and the sisters
Skeete, Tracy and Carolyn, without whom nothing really happens at Auto-ID.

I would also like to thank some members of the MIT community: Dr. George Kocur for
two of the best classes I took at MIT, and for his willingness to share his unique insight
and industry expertise while proof reading this thesis. The ME department at MIT, for
slamming some doors, but keeping others open. Leslie Regan and her staff for all of their
help during my graduate career (keeping some of those doors open). Professor Ain Sonin
for a comforting ear during troubled times.

To everyone who proof read this thesis: Sanjay Sarma, Tom Scharfeld, George Kocur
and my wife Kim, it got better with each revision.

My wonderful children, Taylor, Jayden, Alyssa, and Amberly, for their patience and
unconditional love, which truly makes make it all worthwhile.

But most of all thanks to my beautiful wife, Kim, for her unwavering support love and
patience. What one accomplishes in this life is really the product of two souls joined in
adventure, led by that God who quickens our intelligence, making all things both
interesting and possible.

3

TABLE OF CONTENTS
CHAPTER 1: INTRODUCTION ... 9

1. 1 EDI AND XM L ... 9
1.2 THE FUNDAMENTAL PROBLEM .. 10
1.3 A SOLUTION ... 10

CHAPTER 2: BACK GROUND .. 11

2.1 INTRODUCTION ... 11
2 .1.1 T h e U P C ... 1 1
2 .1 .2 R F ID ... 1 2
2 .1 .3 X A 4 L .. 1 6
2.1.4 Traditional EDI .. 17
2 .1.5 S im p l-eb .. 18

2.2 AuTo-ID COMPONENTS .. 20
2 .2 .1 T a g s .. 2 1
2 .2 .2 E P C .. 2 1
2 .2 .3 O N S .. 2 2
2 .2 .4 S a va n t ... 2 2
2 .2 .5 P M L .. 2 3
2.2.6 PM L Service .. 24
2 .2 .7 O verview ... 2 4

2.3 OTHER CONCEPTS ... 24
2 .3 .1 C o n ten t ... 2 4
2 .3 .2 C h a n n el .. 2 6
2 .3 .3 S ec u rity ... 2 9

2.4 CONCLUSION .. 29

CHAPTER 3: THE FRAM EW ORK .. 30

3.1 INTRODUCTION ... 30
3. 1.1 Overview ofM odeling ... 30
3.1.2 Shipping and Receiving ... 30

3.2 UM I, DIAGRAMS .. 31
3 .2 .1 A c to rs ... 3 1
3.2.2 Collaboration Diagrams ... 31
3.2.3 Use-Case D iagram .. 33
3.2.4 Activity Diagram ... 34
3.2.5 Deployment D iagram .. 35
3.2.6 Detailed Sequence Flows .. 36

3.2.6.1 M ain Flow of Events .. 36
3.2.6.2 Alternate Flow One: Something M issing (Under) 38
3.2.6.3 Alternate Flow Two: Something Extra (Over) .. 40

3.2.7 Summary ... 42
3.3 FRAmEwoRK NOTES ... 43
3.4 CONCLUSION .. 43

4

CHAPTER 4: REFERENCE IMPLEMENTATION: SHIPPING AND
RECEIVIN G VERIFICATIO N ... 44

4.1 INTRODUCTION .. 44
4.1.1 The Framework.. 44
4.1.2 Framework Checklist ... 44

4.2 A-BIZ DEMO CHARTER.. 47

4.3 PROJECT TEAM .. 47
4.4 PROJECT TIMELINE ... 48

4.5 IMPLEMENTATION ARCHITECTURE ... 49

4.5. .1 a an ..Sof...49
4.5.1.1 Savant... 49
4.5.1.2 ON S ... rvi .. 50
4.5.1.3 PMIL Service .. 50
4.5.1.4 Order Processing System .. 50
4.5.1.5 Business Information System ... 51

4.5.2 H ardware... 51
4.5.2.1 Savant Servers... 51
4.5.2.2 Back End Servers.. 51
4.5.2.3 M arkem /ThingM agic Readers ... 51
4.5.2.4 Rafsec S Tags... 52
4.5.2.5 Cushcrafi Antennas .. 52
4.5.2.6 RPCs.. 52

4.6 M ESSAGES..52
4.6.1 CorePM L .. 52
4.6.2 Order 53

4.6.4 D espatch Advice - Augmented.. 54
4. .4 D s a c dv ce............... .. 54

4.6.5 Receipt Advice... .. 54
4.7 A-Biz IMPLEMENTATION... 55

4.7.1 H ighlights 55
4. 7.2 Filter Settings .. 57

4.8 PROBLEM S..58
4.8.1 Spurious Reads ... 58
4.8.2 Reader Adapter Software Reset .. 58
4.8.3 Savant Shutdown/Startup ... 58

4.9 CONCLUSION .. 59

CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 60

5.1 CONCLUSIONS .. 60
5.1.1 Fundamental Problem ... 60
5.1.2 Usability of Core PM L ... 60

5.2 RECOMMENDATIONS...60
5.2.1 Changes to Existing Standards.. 60

5.2.1.1 EDI .. 61
5.2.1.3 U BL .. 61
5.2.1.2 Sim p -eb.. 61

5

5.2.2 Future Work .. 62
5.2.2.1 ON S and PM L .. 62
5.2.2.2 Legacy Numbering Schemes .. 62
5.2.2.3 Other Applications ... 62
5.2.2.4 Data Storage ... 62
5.2.2.5 Logistics ... 63

5.3 CONCLUSION .. 63

APPENDIX .. 64

EPC DOT NOTATION .. 64
In tro d u ctio n ... 6 4
Re resentations ... 64
C o n clu sio n ... 6 6

TYPES OF QUERIES ... 66
ESTIMATED DATA LOAD REQUIREMENTS .. 67
SAMPLE M ESSAGES .. 68

In tro d u ctio n ... 68
P M L C o re .. 6 8
S O A P ... 7 0
S im p l-e b .. 7 1

Simpl-eb Order .. 71
Simpl-eb Despatch Advice Quantity Counts ... 72
Simpl-eb Despatch Advice - Standard .. 74
Simpl-eb Despatch Advice -Augmented .. 76

U B L ... 7 9
UBL Order ... 79
UBL Despatch Advice - Standard .. 79
UBL Despatch Advice - Augmented .. 81
UBL Receipt Advice - Augmented ... 84

E D I ... 8 6
EDI 856 Advanced Shipping Notification - Traditional 86

C o n clu sio n ... 8 8
SOURCE CODE .. 88

S o ap L og g er ... 8 8
EnterOnlyFilter ... 91
PassSmoothingFilter .. 93
E M S .c o nf .. 9 5
SavantController ... 96

GLOSSARY ... 101

REFERENCES .. 108

6

LIST OF FIGURES
Figure 1 A Universal Product Code (UPC) with Manufacturer and Item [27].................11
Figure 2 RFID Com ponents... 13
Figure 3 A Sequence Diagram of Simpl-eb Messages [54]...19
Figure 4 Overview of the GSMP Development Process [52]......................................20
Figure 5 A Typical ON S Query [61].. 22
Figure 6 An Example Hierarchical Savant Network [62] .. 23
Figure 7 Auto-ID System Overview .. 24
Figure 8 Overview of J2EE Environment (adapted from [49]) 26
Figure 9 Despatch Advice Collaboration Diagram [26]...32
Figure 10 Instance of Despatch Advice Collaboration Model [26].............................32
Figure 11 Collaboration Model Repeats in Supply Chain [26] 32
Figure 12 Simplified UML Use-Case Diagram with Savant and Readers 33
Figure 13 UML Use-Case Diagram with Error Checking ... 34
Figure 14 UML Activity Diagram with Error Checking ... 35
Figure 15 UML Deployment Diagram with ONS..36
Figure 16 Major and Minor Milestones of the a-Biz Project.......................................48
Figure 17 The a-Biz Joint Project Demo ... 55
Figure 18 Products Being Scanned by the Savant, Reader and Antenna 56
Figure 19 P&G BIS Server and the Web Interface for Order Shipping Billing 57
Figure 20 UML Class Diagram of PML Core [93]..69
Figure 21 UML Class Diagram for Despatch Advice [101].......................................73

7

LIST OF TABLES
Table 1 Categorization of RFID Tags [37]... 13
Table 2 Commercial RFID Frequencies [39, 40, 41]...14
Table 3 Frequency Ranges for RFID Systems [41, 42]...15
Table 4 Tag C lassifications... 21
Table 5 Bit Allocations for the Current EPC Versions [60]..22
Table 6 A Comparison of Messaging Schemes .. 25
Table 7 Some M ajor Application Servers... 27
Table 8 A Comparison of J2EE and .NET... 28
Table 9 Summary of the Framework Enabled System's Capabilities 42
Table 10 a-Biz Joint Project Participating Sponsors ... 48
Table 11 Parameter Settings for the a-Biz Savant Filters...57
Table 12 Summary of Issues encountered with the EAN.UCC Schemas 62
Table 13 Breakdown of the 96 Bit Type 1 EPC.. 64
Table 14 Maximum Header Number for the 96 Bit Type 1 EPC 64
Table 15 Maximum Domain Manager Number for the 96 Bit Type 1 EPC 65
Table 16 Maximum Object Class Number of the 96 Bit Type 1 EPC 65
Table 17 Maximum Serial Number of the 96 Bit Type 1 EPC....................................65
Table 18 Maximum Combined Number of the 96 Bit Type 1 EPC Using Dot Notation .65
Table 19 Maximum Field Lengths of the Various Representations.............................65
Table 20 Possible Uniform Naming Schemes for the EPC .. 66
Table 21 Example EDI 856 with Qualifier Annotations ... 88

8

CHAPTER 1: Introduction

1.1 EDI and XML

Over the past half-century, many organizations have expended time and resources
trying to connect their Order, Shipping Billing systems (OSB) to reduce or
eliminate the many errors that occur while trading goods. Beginning in the
1950's, when large corporations began automating their routine paperwork,
through the 1960's, when many core business functions were handed over to large
data processing systems, and on through the 1970's, 80's and 90's, when many
large corporations began using "standard" Electronic Data Interchange (EDI)
using Value Added Network providers (VANs) [1], the lingua franca for business
has undergone drastic changes. There are currently two Traditional EDI standards
in widespread use, the ANSI X12 standard [2], maintained by the American
National Standards Institute's [3] X12 Committee and widely used in North
America, and the Electronic Data Interchange For Administration, Commerce,
and Transportation (EDIFACT) standard [4], which is an international
implementation of EDI sponsored by the United Nations [5] and the European
Union and is used for international commerce and commerce within countries that
have adopted EDIFACT as their standard.

Traditional EDI has brought commerce a long way towards the goal of connecting
disparate systems between trading organizations, but it has failed to realize it's
true potential. This is due in part to the fact that the two EDI "standards" are not
really standards, but a set of rules from which a slew of proprietary
implementations or industry specific "standards" have been based [6], as well as
many other identified shortcomings including cost [7], and other factors [8, 9, 10].
The net effect of these barriers has been a lack of widespread EDI adoption.

With the explosive growth of the Internet, many industries have been moving
away from traditional EDI transactions that use a dedicated VAN, and towards
newer Extensible Markup Language (XML) [11] based technologies over the
Internet. Even EDI is finding its way into the XML world as both the X12
Committee and EDIFACT have begun research and support for XML based
initiatives [12, 13]. However, moving to XML is not the simple panacea that
most would have you believe, and there remain many issues that will need to be
addressed [14].

In addition to XML based EDI, there are other consortiums and industry groups
that are deploying fundamentally new architectures aimed at addressing the issues
surrounding electronically conducted business, and these include Simpl-eb [15],
from the Global Commerce Initiative [16] and EAN.UCC [17], Rosettanet [18],
and the ebXML [19] based Universal Business Language (UBL) [20] and many
more. In fact, too many more. So many that the resulting standards proliferation
has been an impediment to global commerce. A truly global standard is in order
[21].

9

1.2 The Fundamental Problem

The problem, however, is that none of the initiatives or standards mentioned in
the last section address the core problem of electronic data communication
between organizations. There is a fundamental and physical disconnect between
the information being transmitted via e-commerce, and the goods with which the
information is associated.

This disconnect is a result of a combination of procedural, systemic and human
errors. Data integrity and reliability are only as good as the systems and
procedures in place to capture and convey them, and unfortunately most systems
have a unreliable links, most involving humans, that lead to inaccuracies and a
breakdown between the physical and information worlds. Until this gap can be
bridged, the data being transmitted is only as good as the underlying assumptions
and the labeling codes.

1.3 A Solution

The Auto-ID Center at MIT [22] has proposed a system using Radio Frequency
Identification (RFID) tags on objects, coupled with a distributed information
system using the Internet, that would allow for the tracking of physical objects
and the automatic association of relevant data about those objects [23].

While directing the a-Biz Joint Project of the Auto-ID Center at MIT, I
investigated how the Auto-ID infrastructure, including objects tagged with RFID,
improves the process of shipping and receiving using an automatically generated
and verified Despatch Advice. Goyal has summarized some of the initial work
surrounding Shipping and Receiving Verification [24].

In this thesis I will consider the broader framework within which the Despatch
Advice is an integral part [25], and give a detailed outline of an Auto-ID enabled
method of connecting the physical and information worlds in the realm of e-
commerce [26]. As part of the exposition, I will introduce various components of
the Auto-ID system along with their integration into a framework.

In this thesis I will also present a mapping of Core PML, a component of the
Auto-ID system, into various EDI and XML based messaging systems including
Simpl-eb and UBL.

Finally, I will describe the results of a reference implementation based on my
research, including a candidate platform and messaging channel, and then
conclude with lessons learned and recommendations for future research in the
field of Auto-ID enabled Business (a-Biz).

10

CHAPTER 2: Background

In this chapter I'll begin with a sampling of historical and emerging technologies
used in marking and conveying information about physical goods. I will then
proceed to introduce the major components and concepts necessary for an Auto-
ID enabled framework for business. In the next chapter I'll use the building
blocks presented in this chapter to build a complete picture of the framework.

2.1 Introduction

A brief review of related technologies is in order before covering the components
of Auto-ID. This section begins with the UPC bar code and RFID, then turns to
traditional EDI and newer XML based messaging standards. The subject matter
in this section lays an introductory foundation for the Auto-ID components
presented in the next section.

2.1.1 The UPC
Perhaps the most successful attempt to overcome the problem of associating
information with an object to date is the Universal Product Code (UPC). For over
25 years the UPC has enabled many efficiencies in the supply chain, not the least
of which are retail checkout and inventory management.

There are several versions of the UPC published by the EAN.UCC used
worldwide, and a representative example of the UPC-12 is shown in the following
figure [27]:

NUMBERING - 0 0 23 5 4 0 8 156 5- MODULO

SYSTEM CHECK

CHARACTER CHARACTER
MANUFACTURER ITEM NUMBER

ID NUMBER

Figure 1 A Universal Product Code (UPC) with Manufacturer and Item [27]

As the figure shows, the UPC is broken down into manufacturer and item or
product class codes, but there is no unique item serialization code. Thus, any

11

....

UPC labeled item is indistinguishable from any other similarly labeled item.
There are, however, many advantages to be gained by unique serializations. The
automotive industry has been using a uniquely serialized Vehicle Identification
Number (VIN) for years to track individual vehicles [28]. This has implications
for theft and product quality in the used car market.

But lack of serialization is only one of a UPC based system's shortcomings.
Many other shortcomings have to do with the process of capturing the UPC code
itself, including the line of sight restrictions this imposes [29]. The bar code must
be properly aligned and visible for a scanner to successfully take a reading. For
this reason, many systems designed around the traditional bar code expend a lot of
time and energy assuring the alignment of code with scanner to assure proper
reads.

But perhaps the most significant shortcoming of the UPC code is the limitations it
imposes on the type and amount of information that it can convey. As noted, the
standard UPC only contains manufacturer and product class. Other bar codes like
the Serialized Shipping Container Code (SSCC) [30], which is used to label
logistics units shipped between companies, contain a unique number that links to
electronic information, but this information is static and conveyed in non-standard
ways, making it difficult to reuse in other contexts. In fact, the SSCC, by design,
is to be used only once, and is invalidated when any changes are made to the
logistics unit. This system does not lend itself to use and re-use throughout the
supply chain and lifetime of an individual object.

Recent research has focused on 2D and 3D barcodes, which can handle
significantly larger amounts of information, and are referred to in the barcode
industry as portable databases. With a portable database, all of the significant
data necessary for a localized operation can be conveyed by and read from the
barcode itself. There are several major drawbacks to a portable database
approach, however, including slower read rates caused by the increased data
transfer, error correction challenges, and the static nature of the data. If you don't
use data redundancy or a good error correction scheme like Reed-Solomon error
encoding [31, 32], then damaged, smudged or partially obscured barcodes become
useless. More importantly, systems based on a portable database are inflexible
because the information contained in the codes is static, again diminishing its
usefulness in different contexts. If inappropriate information is selected for hard
coding in the tag, it offers little or no benefit to other third parties trying to use or
reuse the tag. Adams provides an excellent discussion of bar codes [33],
including 2D barcodes [34].

2.1.2 RFID
In the last decade and a half, many industries have turned to traditional Radio
Frequency Identification (RFID) technologies to overcome the data limitations
and line of site restrictions attendant with 2D bar code technology. Though its
use is still limited, RFID is being used in various commercial and industrial
applications that range from the tracking of livestock to vehicles on the interstate
[35].

12

The history of RFID actually goes back to the Second World War, when the
British equipped their aircraft with transponders that were used to identify their
aircraft [36]. This technology was dubbed identify friend or foe (IFF), and was
the early precursor to the RFID developments in use today.

A typical RFID system includes a tag (or transponder), a reader (or interrogator),
and a host system. The host system handles the information flow between the tag,
reader and itself. The tag communicates to the reader over an air interface.
Figure 2 shows examples of the various components of an RFID system.

Reader Host System

Tag

Reader Antenna

Figure 2 RFID Components

Tags can have onboard power, or derive power from the electromagnetic field
emitted from the reader. They can also have active transmitters for
communication to the reader. Tags are grouped in one of the following three
categories shown in the following table [37].

On-tag Power Active Transmitter

Active Yes Yes

Passive No No

Semi-Passive Yes No

Table I Categorization of RFID Tags [37]

Commercially available passive RFID systems come in two main categories,
near-field systems, that use inductive coupling of the tag to the reactive energy

circulating around the antenna, and far-field systems, that couple to the real

energy contained in propagating electromagnetic plane waves. Near-field systems

operate in LF and HF bands with short reading distances, and far-field systems

operate in UHF and microwave bands with longer read ranges [38, 39].

The following table shows the RFID frequencies in commercial use today with

benefits and limitations [39, 40, 41].

13

i ag i ype

Low 0 Frequencies 0 Shortest read- 0 Animal
frequency accepted worldwide range (less than tracking

(less than 135 o Works near metal 1.5 meters) 0 Beer keg
Kilohertz) * Least sensitive to 0 Slower tag read tracking

liquids rate * Automobile

*Cheapest readers Costliest tags anti-theft and
key-and-lock

* In wide use systems

High 0 Frequency 0 Does not work near e Library book
frequency accepted worldwide metal tracking

(13.56 0 Works in most 0 Shorter read-range * Pallet/contain
Megahertz) environments (less than 1.5 er tracking

* Less sensitive to neters) bu onger Access
liquids ran control

0Ceprraesrange (buildings)
Cheaper readers Slower tag read 0 Airline

* In wide use rate baggage
0 Costlier tags tracking

UHF 0 Longest read-range o More sensitive to 0 Pallet and

(868 to 956 (more than 1.5 liquids container

Megahertz) meters) 0 Costlier readers tracking
* Faster tag read rate 0 Truck and

* Cheaper tags traing

* Licensed for
evaluation in Japan

* Expanding
commercial use

Microwave 0 Longer read-range 0 Frequency not * Access

(2.45 (more than 1.5 licensed for control

Gigahertz) meters), but less commercial use in (vehicles)
than 915 MHz parts of Europe
range. * Complex systems

* Fastest tag read development
rate 0 Most sensitive to

* Cheapest tags liquids

* Costliest readers

Table 2 Commercial RFID Frequencies [39, 40, 41]

All of the frequencies listed in Table 2 experience detuning when the tags are in
close physical proximity to varying degrees. As the table shows, the cost of

14

readers increases with increasing frequencies. Conversely the cost of tags
decreases with increasing frequencies. This reflects current economics and does
not take future volumes into consideration. The speed with which tags can be
read tends to increase with increasing frequencies. As a point of reference, you
can currently read about 200 tags/second at 13.56 MHz. The read range is more
complex and dependent on the physics of the situation, and does not linearly
relate to the frequency used. Of the frequencies listed in the table, the range tends
to increase with frequency until you get to 2.45 GHz, which has a smaller range
than 915 MHz. One final trend is the sensitivity to liquids or moist environments,
which increases with the frequency used. These trends are simplifications of the
true complexity involved. For example, read rates are not a simple function of
frequency and range is affected by almost every component of an RFID system
[39].

The following table shows some available frequencies with comments [41, 42].

< 135 kHz low frequency, inductive coupling

6.765 - 6.795 MHz medium frequency (ISM), inductive coupling

7.400 - 8.800 MHz medium frequency, used for EAS (electronic article surveillance)
only

13.553 - 13.567 medium frequency (13.56 MHz, ISM), inductive coupling, wide
MHz spread usage for contactless smartcards (ISO 14443, MIFARE,

LEGIC, ...), smartlabels (ISO 15693, Tag-It, I-Code, ...) and item
management (ISO 18000-3).

26.957 - 27.283 medium frequency (ISM), inductive coupling, special applications
MHz only

433 MHz UHF (ISM), backscatter coupling, rarely used for RFID

868 - 870 MHz UHF (SRD), backscatter coupling, new frequency, systems
under development (Europe only)

902 - 928 MHz UHF (SRD), backscatter coupling, several systems
(USA/Canada only)

950 - 956 MHz UHF (SRD), backscatter coupling, systems under development
(for evaluation in Japan only)

2.400 - 2.483 GHz SHF (ISM), backscatter coupling, several systems, (vehicle
identification: 2.446 .. 2.454 GHz)

5.725 .- 5.875 GHz SHF (ISM), backscatter coupling, rarely used for RFID

Table 3 Frequency Ranges for RFID Systems [41, 42]

Scharfeld gives a more detailed description of the allowable field strength,
distances and transmission power associated with the frequencies listed in Table
3, which vary in different parts of the world [37].

The traditional RFID industry has been moving to include more and more
information on the tag itself. Co-locating the information with the physical object

15

has its benefits, and certainly solves the fundamental problem posed in this thesis,
but it has two important drawbacks. First, like the 2D and 3D barcodes
mentioned in the last section, the data tends to be static and useful only within a
narrowly defined scope or context. For this reason, many commercial RFID
systems in use today are closed systems that are tailored more for a specific
company's needs than for general reuse throughout the supply chain. The second
problem is the cost and read rate of the tag are both adversely affected when the
tag carries more information. Higher costs and slower read rates are particularly
problematic when large volumes of inexpensive goods must be processed quickly
in industries like Consumer Packaged Goods (CPG) and postal operations.

A central tenant of Auto-ID minimalism is the development and use of low cost,
passive tags. This will allow the recurring and incremental cost of each tag to be
absorbed within the unit cost of the items being tagged [37]. To accomplish this,
the Auto-ID system aims to limit the amount of data stored on the tag itself
Decoupling the data from the object is similar to the concept of pointers in
software engineering. Traditional RFID tags, with their on board data storage, are
like pass by value, passing all of their data. Auto-ID tags that contain only an
EPC code are similar to pass by reference, where the data is stored off tag and
simply referenced. I will revisit this topic later in the chapter when I discuss the
components of the Auto-ID infrastructure.

In addition to cost, probably the biggest limitations of traditional RFID
technologies are the lack of worldwide data standards and available frequencies
[40]. The frequency problem is one that affects not only the current RFID
industry, but also any future Auto-ID implementations, and the regulatory
environment is something that requires more work [37]. The size and type of
antenna used is directly related to the frequency used as well [37], and is an
important consideration in the design of product packaging.

The lack of worldwide standards is something that the Auto-ID center is hoping to
address with the introduction of low cost, EPC based tags, with the necessary
components to retrieve data about an object. This solves the fundamental
problem posed by this thesis, and allows flexibility by allowing context sensitive
and non-static information to be associated with an object.

2.1.3 XML
The Extensible Markup Language (XML) [43, 44] is a World Wide Web
Consortium (W3C) [45] proposed recommendation of a file format to easily and
cheaply distribute electronic documents on the World Wide Web. One of the
features of XML is that it is extensible, not set like the Hypertext Markup
Language (HTML) [46], so users can define their own tags using Document Type
Definitions (DTD) [47] or the newer XML Schemas [48]. XML documents are
self-describing and contain the rules to which the data must conform. This
supports structure, like objects, hierarchies, and references, but more importantly,
it supports validation and well formedness [44, 49].

16

A derivative of the Standard Generalized Markup Language (SGML) [50], XML
and other markup languages, like HTML, allow you to "markup" elements with
tags. These tags facilitate the separation of form from content. The same
document can then be parsed and presented in many different ways, formats and
contexts, allowing for data reuse. One important difference between HTML and
XML is XML is much stricter in it rules of use, and only supports a small subset
of the markup rules provided by SGML. It has been said that XML has 80% of
the functionality of SGML with 20% of the complexity [49]. Indeed, the SGML
specification is over 155 pages, while the XML specification is a compact 35
pages. All of the optional features of SGML have been removed from XML, and
this aids in parsing, validating and easily guaranteeing that a document is well
formed.

In actual practice, however, the extensibility of XML proves to be a stumbling
block. As many schemas are developed, the Internet community is inundated
with varying and overly specialized industry standards. It is important for major
standards bodies and organizations (like ANSI, the International Standards
Organization (ISO) [51], and the UN) to set forth standards, and for the user
community to adopt them. This is in fact exactly what is happening, and I will
discuss several XML based standards later in the chapter (Simpl-eb, UBL).

Standards aside, XML is human readable, machine readable, and document ready.
This makes it perfect for data interchange between computers, and in fact many
applications are now based on it. A common architecture uses a web server as a
data channel to connect two databases. XML is a common formatting tool for
Web, EDI, and paper based documents [49].

Before leaving this topic, I would like to give a more formal definition of what it
means for an XML document to be valid and well-formed.

A valid document:

* Refers to or includes an XML schema or DTD and follows all the
formatting rules in that schema or DTD [44]

A well-formed document:

0 Follows all of the XML syntax rules, but may not be valid [44]

A browser can accept a well-formed XML document that has already been
validated by a server (there is no need to download the DTD or schema to
revalidate).

2.1.4 Traditional EDI
In Chapter 1 I provided a brief introduction and history of traditional Electronic
Data Interchange (EDI). Interestingly enough, like RFID, EDI also traces its
roots to the late 1940's and early 50's. Combined with a VAN, EDI offers the
content and the channel for Business-to-Business (B2B) communication. As
previously mentioned, however, both the one-time setup and recurring costs of
this infrastructure are prohibitive for most medium and small companies. This

17

also leads to a stove-piped Supply Chain that is very inflexible and incurs a very
high switching cost when a link in the chain is replaced. Less than 80,000 of 6.3
million US businesses use EDI, and only 125,000 businesses worldwide [49]. For
these reasons and others, the use of traditional EDI has peaked, and new users of
Internet e-commerce will forgo EDI and use cheaper XML based platforms
instead.

The recent proliferation of the Internet for commercial use has provided an
infrastructure backbone that can replace the dedicated VAN. And with the
emergence of extensible, XML based replacements for the EDI messages
themselves, we have the opportunity to build a truly open standard that will
replace both the channel and messages of traditional EDI, at a much lower cost.
The opportunity for a true Supply Network also emerges by avoiding the stove
piping mentioned above with EDI. As mentioned in Chapter 1, both major EDI
platforms are moving to an XML based messaging scheme.

One disadvantage of XML based messaging over a traditional EDI message,
however, is the XML markup adds a lot of overhead to the message. Please refer
to the appendix, where examples of the same message encoded in both traditional
EDI and various XML based schemas can be compared. These disadvantages
aside, the extensible nature of XML based messaging allows for easy
modification and extension of the messages to accommodate business needs.

Two common EDI messages are the EDI 214 and 856. The EDI 856 is the
Advanced Shipping Notification (ASN), or Despatch Advice (DA). The DA
includes quantity counts of the items being shipped and other information,
including the Purchase Order (PO) and Bill of Lading (BOL). The BOL is a legal
document that is shipped with the goods and is a manifest of the shipment.

The EDI 214 is the Shipment Status Message, and is sent by a transportation
carrier to the company receiving a shipment on three different occasions:

* When the shipment is ready to be picked up

" When the shipment has been picked up

* When the shipment is expected to arrive

Like the EDI 856, the EDI 214 also includes the PO and BOL numbers.

There are many other defined EDI documents, but I will only draw upon the EDI
856 and 214 in this thesis.

2.1.5 Simpl-eb
As I mentioned in Chapter 1, Simpl-eb is a redesign of business methods, and,
among other things, it defines the messaging standards for the business messages.
The UCC uses a method called Global Standards Management Process (GSMP)
in the development of their standards [52]. The GSMP uses a global network of
end users to develop and validate the business models.

18

Rather than translating existing EDI messages into XML, the UCC began their
modeling effort from scratch. They began by modeling the transactions necessary
for business messaging by putting together a basic framework for a business
transaction between a buyer and a seller, which they call Simpl-eb [53, 54]. The
core sequence of messages includes: party introductions, exchange item request
and price, place an order, despatch advice (DA), and invoice. The first two
messages are grouped under alignment, and the last three under trade or
commerce. Alignment includes the exchange and coordination of static data
before any transaction to minimize the amount of information exchanged during
the actual transaction. The DA includes minimal information about the quantities
being shipped and date of movement to the receiver of that shipment. This
message is kept simple by aligning the product catalogue data prior to the sending
of the advice message. The DA then refers back to the more complete and
previously aligned catalogue data. The following figure is a Unified Modeling
Language (UML) [55] Sequence Diagram that puts all of these messages in
context (UML modeling concepts will be used heavily throughout this thesis
[56]).

Receiving Party : Sending Party
Align Data (Party, Item, Price) Information

Align Data (Party, Item, Price) Information

Order

Despatch Advice

Invoice

Figure 3 A Sequence Diagram of Simpi-eb Messages [54]

19

With the Simpl-eb framework defined, the UCC then set about gathering business
requirements for the individual components. They captured these in Business
UML (BUML) models. The BUML models are technology neutral, and don't
specify or require any particular platform or technology. Once the BUML models

are approved by the GSMP, they are passed to an Implementation UML (IUML)
group, which is tasked with the technical details of implementing the business

transaction. Figure 4 shows how the components of this development process fit
together.

GSMP PROCESS

FEEDBACK FEEDBACK

Figure 4 Overview of the GSMP Development Process [52]

The framework I present in this thesis will be based on the Simpl-eb model, and

will rely on the fact that data alignment takes place prior to the placing of an
order. I will also look at the Simpl-eb, XML-based messaging schemes and show

how they work with the Auto-ID components [57].

2.2 Auto-ID Components

In the last section I gave a general overview of several Auto-ID related
technologies, but in this section I will focus specifically on the technological
contributions of the MIT Auto-ID Center itself

Founded in 1999, the Auto-ID Center is a global partnership between over 100
companies and six of the world's leading research universities; the Massachusetts
Institute of Technology in the US, the University of Cambridge in the UK, the

University of Adelaide in Australia, Keio University in Japan, Fudan University
in China, and the University of St. Gallen in Switzerland. Together they are
designing, building, testing and deploying a global infrastructure that will make it

possible for computers to identify any object anywhere in the world instantly.
This network will provide the means to feed reliable, accurate, real-time
information into existing business applications [22].

The critical elements of the new Auto-ID network include: the Electronic Product
Code (EPC), a specification for cheap tags and cheap agile readers, the Object

20

Naming Service (ONS), the Physical Mark-up Language (PML) and Savant
software technology [22].

I will describe these Auto-ID Center components in more detail in the following
sections.

2.2.1 Tags
The tags are affixed to or manufactured into the product or its packaging and
carry the unique EPC code for that object. The tags can fall under any of
categorizations mentioned in Section 2.1.2 RFID. For a truly low cost, minimal
solution, however, passive tags should be employed.

The following table shows the tag classifications.

Type Classification Comments

Passive Class 0 Chips irreversibly pre-programmed with the EPC by the chip
manufacturer

Class 1 Chips programmable by the user in the field

Class 2 Chips with full read/write capability, more memory, and more
functionality

Semi Class 3 Battery enhanced for long range, more memory and more
Passive functionality

Active Class 4 Battery enhanced with an active transmitter

Table 4 Tag Classifications

2.2.2 EPC
The Electronic Product Code (EPC) is the next generation UPC, and like the
UPC, is divided into segments containing the version number, the domain
manager, and the object class. But unlike the UPC, the EPC also has a field
containing a unique serial number [27]. Standards for several EPC formats have
been put forth ranging from 64 bits [58] to 256 bits [59]. Table 5 shows the bits
assigned to the seven EPC versions available at the time of this thesis [60]. Each
successive EPC representation is guaranteed to be backwards compatible [59].
(See the EPC Dot Notation I proposed in the appendix for more on the EPC code
and its storage requirements).

Version
Number

Domain
Manager

Object
Class

Serial
Number

EPC-64 Type 1 2 21 17 24

Type I1 2 15 13 34

Type 111 2 26 13 23

EPC-96 Type I 8 28 24 36

21

Type I1

Type Ill

0

8

8

32

64

128

56

56

56

192

128

64

Table 5 Bit Allocations for the Current EPC Versions [60]

2.2.3 ONS
The Object Name Service (ONS), based on the Internet's Domain Name Service
(DNS), is a framework to locate networked services for tagged objects.
Specifically, the networked services for an object can be identified based on the
unique EPC tag on that object [61]. In other words, the ONS can take an EPC
code and return a URI or URL for a server that can handle queries about that
object.

Figure 5 shows the path of a typical ONS Query.

TYPICAL ONS QUERY

EPC 2. EPC
ETAG TAG READER -. LOCAL SERVER

3, EPC

6 1PAddress

Contactmrg

4. EPC 5. IP address PML server
d omain name of PML server

ONS SERVER
INFRASTRUCTURE

Figure 5 A Typical ONS Query [61]

The ONS is the key to removing the information from the tag and storing it
somewhere else. It provides the bridge from the EPC to the services that provide
the information associated to that EPC.

2.2.4 Savant
The Savant is a data router. It performs operations such as data capturing, data
monitoring, data filtering, smoothing and transmission. The current reference
implementation of the Savant consists of three modules [62]:

" Event Management System (EMS)

" Real-time In-memory Data structure (RIED)

22

9 Task Management System (TMS)

The EMS connects readers to applications by managing the event flow generated
by the reader. The RIED is an optimized, in-memory database that supports a
subset of the Structured Query Language (SQL) used to query data from a

database. The TMS coordinates processes initiated by higher level Savants [24].
Without the data smoothing, filtering and routing services of the Savant, the

Internet backbone would be quickly flooded with reader-generated messages.

Figure 6 shows how the Savant can be deployed in a hierarchical fashion.

i /US
NATIONAL

CENTER

IS NEW ENGLAND
REGION

IS MIDWEST
REGION

ES 0WM ES 11-ES

ES ES

Figure 6 An Example Hierarchical Savant Network [62]

2.2.5 PML
The Physical Markup Language (PML) is the XML-based schema used to

describe objects in the Auto-ID System [63]. PML will become the language of

physical things. The aim of PML is to develop a standard representation that can

be used by multiple industries and organizations throughout the life cycle of an

individual EPC.

Recently, the development of PML was divided into two groups: PML Core,

which handles the Auto-ID sensor events and represents only those messages
generated by the Auto-ID tags, readers and Savant, and PML Extensions, which

covers the business specific XML extensions [64].

PML Core includes time and physical measurements, as well as sensor
observations and tags. (Please refer to the appendix for a UML Class diagram of

the PML Core available at the time of this thesis).

23

Wi .4,

2.2.6 PML Service
The PML Service, also referred to as PML Server, is responsible for serving up
the PML data about an object, and is contacted after an ONS lookup on an EPC.
The PML Service is currently a work in progress, and there are several custom but
incomplete reference implementations available [65].

2.2.7 Overview
The following figure shows how the various components of the Auto-ID
infrastructure fit together interact in the context of shipping and receiving.

AUTO-ID PML EXTENSIONS
INFORMATION

IL,1

GOODS IN
TRANSIT

MANUFACTURER
EPC

SAvANT ' RFID READER

AUTO-ID
SHIPPING AND

TRACKING

EPC LOOKUP TAGGED

GOODS

RETA ILER

$AVANT - RFnD READIER

AUTO-ID
RECEIVING AND

INVENTORY
MANAGEMENT

Figure 7 Auto-ID System Overview

2.3 Other Concepts

To close this chapter, I will briefly touch upon several topics related to the
transmission of electronic information. There must be a message, a channel to
convey the message, and a means of securing the transmission.

2.3.1 Content
There are currently many standards used for transmitting data between
companies. EDI is a more established messaging standard, and it is compact by
design. But problems abound, as previously mentioned, as there are many
variations of the standard, and the standards are used in non-standard ways.

24

TAGGED
GOODS

Recently, XML-based messaging schemes have come to the forefront including
those proposed by the EAN.UCC and more recently with UBL. The XML tags
add overhead to the payload, but they allow for the same information to be easily
presented in many different ways using Cascading Style Sheets and XML
Stylesheet Language (XSL) Transforms (XSLT). The ability for reuse should
drive developers to carefully design schemas with unanticipated future uses in
mind.

Table 6 shows a summary of some of the benefits and disadvantages of Simpl-eb,
traditional EDI, and UBL. I've provided a more detailed discussion of the three
schemes along with examples in the appendix.

5cheme ienetits Limitations
Simpl-eb 0 Prior alignment of detail data * No Receipt Advice specification

results in minimal message Large XML overheadcontent *LreXLoeha

c Extensible and flexible One of many specifications vying
for acceptance

* Same data easily represented * An error in the published schema
in many different ways with the omission of the quantity

* Minor change to allow counts element
inclusion of EPC data

UBL 0 Prior alignment of detail data * Large XML overhead
results in minimal message * One of many specifications vyingcontent for acceptance

& Extensible and flexible eChanges necessary for EPC data
* Same data easily represented * Overly restrictive about matching

in many different ways Despatch Advice and Receipt
0 Includes a Receipt Advice Advice line items

specification

Traditional * Compact message (terse line o Includes some data that should be
EDI qualifiers) previously aligned

* Venerable, and installed user * Expensive VAN and infrastructure
base requirements

" Expensive to implement

* Competing versions and
standards

* Inflexible, lengthy approval
process

" Changes necessary for EPC data

* Limited future growth

Table 6 A Comparison of Messaging Schemes

25

A complete survey of current messaging standards is beyond the scope of this
work. I will focus on the traditional EDI, and the XML-based EAN.UCC Simpl-
eb and Sun's UBL. There are many good surveys of XML based standards, and
the interested reader is referred to them [66, 67].

2.3.2 Channel
The EDI's VAN is a good example of a channel. As previously mentioned,
setting up a dedicated VAN channel has the added benefit of built-in security, but
that comes at a cost. The current industry charges a flat fee for the connection
setup, and then per character transmitted thereafter. If this fee structure were to
remain in place, transmitting serialized EPC data using a traditional EDI
infrastructure would cost several orders of magnitude more than it does today.

This is one reason why many have looked to the Internet as a backbone channel to
replace the dedicated connections. Abandoning the VAN is not without cost,
however, as security over a public medium like the Internet must now be
considered.

Many new Internet-based messaging channels are based on Java 2 Enterprise
Edition (J2EE). J2EE technology and its component-based model simplify
enterprise development and deployment. The J2EE platform manages the
infrastructure and supports the Web services to enable development of secure,
robust and interoperable business applications [68]. Figure 8 shows a high level
view of the J2EE environment. The .NET technology from Microsoft addresses
the same problems as J2EE, and the figure for a .NET-based infrastructure would
be very similar to Figure 8 as well.

j2EE ENVIRONMENT

APPLICATION
SERVERS

HTML, XML, SOAP

UNIX/LINUX WINDOWS OTHER

AvA ViRTuAL MACHjwE]AvAXML

WEB SERVER

JAVA VIRTUAL MACHINE

DATABASES
(SOL. XML)

Figure 8 Overview of J2EE Environment (adapted from [49])

26

One component of the architecture shown in Figure 8 is an application server.
There are many commercial application servers available today. Several of the
leading application servers are listed in Table 7:

Name Vendor

WebSphere [69] IBM

SunONE [70] Sun Microsystems

WebLogic [71] BEA

WebServer [72] Borland

Oracle9i Application Server [73] Oracle

Table 7 Some Major Application Servers

In addition to the ones listed in Table 7, the following also provide commercial
application servers: ColdFusion, Delano, eXtend, Flash, JBoss, JRun, Orion,
PowerTier, Pramati, Sybase, Tango, Total-e-server, Versata and others. An
application server provides an environment that deploys compliant applications.
For example, the J2EE based SunONE application server provides a platform to
deploy J2EE compliant applications. Similarly, the .NET platform is appropriate
for .NET based applications. An integration server works with an application
server to provide a common API for legacy information systems, and is useful for
integrating both new and legacy systems. The Auto-ID Center will not compete
in the application/integration server market. An organization can leverage an
appropriate and existing application or integration server.

The aim of these integration and application servers is to provide a reliable
channel for communication. Some explicitly address security, while others
provide security as an add-on. I'll return to the issue of security in the next
section.

In addition to these application servers, there are a host of other software offerings
like i2 [74], Manugistics [75], SAP [76] and others. These provide more than just
the channel, however, and many are not currently compatible with serialized data
schemes and processes.

Message wrappers are also part of the channel. One of the most popular is the
Simple Object Access Protocol (SOAP) [77]. SOAP, which is basically XML and
HTTP, doesn't introduce any new technologies for distributed computing other
that what is currently being used. In other words, SOAP adds some header
information to HTTP, with no other changes. This is accomplished by defming a
new MIME type: text/xml. Because SOAP is text based, it is not efficient for
applications running on a single machine, but it provides more than adequate
performance for distributed applications that involve machine-to-machine
communication [49]. Please see the appendix for a couple of examples of SOAP
messages.

27

Microsoft's .NET is an alternative web services platform that is currently gaining
momentum [78]. There are also a slew of web service technologies based on
.NET. Along with these services, there are ways to discover them using Universal
Description, Discovery and Integration (UDDI) of Web Services [79] and the
Web Services Description Language (WSDL) [80]. UDDI and WSD are also
compatible with J2EE based applications.

The following table shows a comparison of some elements of the J2EE and .NET
platforms [49].

Implementation Standard Product

Product Vendor Many (Sun, IBM, etc) Microsoft

Web Pages Java Server Pages (JSP) Active Server Pages

Server Components Enterprise JavaBeans .NET Components

Database Access JDBC and SQL/J ADO.NET (on ODBC)

Middleware SOAP, UDDI, WSDL SOAP, UDDI, WSDL

Primary Language Java C++, C#, VB

Portability Across many vendors Microsoft only

Table 8 A Comparison of J2EE and .NET

Other than the differences mentioned in Table 8, the actual differences are
relatively small. Some of the secondary differences include [49]:

1. ASP.NET is independent of client device, and the same user interfaces will
work on PCs, handheld devices, etc. JSP requires platform specific changes.

2. .NET Components are simpler than Enterprise JavaBeans. If you don't need
additional features, .NET is simpler. Otherwise you have to build the extra
features yourself, making your project more complex (such as nested transactions,
state machines).

4. J2EE tools come from many vendors and don't interoperate as smoothly as
.NET, which is all Microsoft based.

5. J2EE is more mature. .NET is new and represents a major change for some
companies.

I will mention in passing the existence of industry-sponsored communities that
are developing XML based standards like Transora [81]. Again, a complete
survey of the available B2B offerings is beyond the scope of this work, but the
concept of J2EE based integration or application servers is an important part of
the framework that will be introduced in the next chapter, and the reader is
reminded that there are other available options.

28

2.3.3 Security
The movement to the Internet as a messaging channel has raised the importance
of security. By security I may mean authentication, confidentiality, and integrity
[24]. If you don't somehow secure the message and/or channel, then any
interested third party can intercept the message when a public infrastructure like
the Internet is used.

There has been limited research into many of the aspects of security as it relates to
the Auto-ID infrastructure [82]. There are also many offerings that allow one to
securely send messages over the Internet [83, 84].

In this thesis, I will address the issue of securing the message channel, but not
necessarily the rest of the Auto-ID infrastructure.

2.4 Conclusion

In this chapter I introduced all of the major components and concepts that will be
combined to form the Framework for Auto-ID Enabled Business. In the next
chapter I will pull all of these pieces together and describe the framework in
detail.

29

CHAPTER 3: The Framework

The Auto-ID system addresses the problem of coupling physical objects with their
associated information models. I this chapter I present a framework for Auto-ID
enabled business that makes use of this coupling. To frame the context of this
discussion, I will focus on the flow of goods and information between two
organizations. This parallel flow of goods and data could be within a company,
e.g. from manufacturing to packaging to warehousing, or between two companies,
e.g. from manufacturer to distributor to retailer. In either case, the fundamental
concepts of synchronizing goods and data are the same.

3.1 Introduction

The framework begins with a modeling exercise that culminates in requirements
for implementation. The modeling can be broken down into 4 distinct phases.

3.1.1 Overview of Modeling
The first step in the modeling process is to study the existing business processes
and generate a prioritized list of opportunities for Auto-ID. The most compelling
option should then be selected for more careful examination. The next step is to
bring together a team of knowledgeable domain experts and technical experts to
model the chosen process in detail. The Unified Modeling Language (UML) is an
ideal choice for capturing the details of these discussions. The UML diagrams
should remain technology neutral so they remain accessible to all members of the
team.

Once the existing system has been modeled, the third step is to again use UML
modeling concepts to redesign a new Auto-ID based system with the approval of
all participating team members. These UML diagrams can then be turned over to
the technical team to generate detailed requirements documents against which the
technical implementation will be carried out, which is the last step.

There are many UML diagrams available, including sequence diagrams,
collaboration models, use-case diagrams, and class diagrams. There are even
software development tools that take UML class diagrams and automatically
generate schemas and business engines.

I will present many particularly useful UML diagrams in this chapter.

3.1.2 Shipping and Receiving
The framework is best illustrated using a concrete example. Throughout the
remainder of this chapter I will focus on the process by which the composition of
a pallet is checked by the staff at the receiving party's warehouse to verify that the
pallet has been assembled according to the product specification or order. This
process currently falls somewhere in the range from the fully manual (breaking

30

down mixed pallets for a hand count) to semi-automatic (manually scanning the
SSCC's and any product codes). The EAN.UCC business message item standard
can be used to specify and electronically convey the configuration of the pallet in
a DA to the receiving party, which can then use the Auto-ID infrastructure to
automatically detect the actual configuration. This will move the currently
manually intensive validation process towards full automation.

In the broader context, the goal of this framework is to demonstrate the benefit of
combining the static information contained in the EAN.UCC business messages
with the dynamic information gathered by the Auto-ID infrastructure. The
EAN.UCC business messages are used to describe the required configuration,
whereas the Auto-ID data are used to automatically verify that the actual
configuration agrees with the required configuration. There are benefits for both
the receiving and sending parties, particularly as the use of mixed pallets
increases, which are currently even more labor intensive.

3.2 UML Diagrams

Due to space limitations, I will only present the UML diagrams for the redesigned
focus transaction using Auto-ID components. The following models represent
step 3 of the modeling phase described in the previous section.

3.2.1 Actors
The first modeling step is to define the actors involved in the use case. The
following actors will be used in the UML diagrams in this section:

A.1. Sending Party - An entity, like a manufacturer, that provides goods and a
PML Service with information about traded goods via EPC lookups.
Equipped with Auto-ID enabled readers, Savant and PML Server.

A.2. Receiving Party - An entity, like a retailer, that receives goods from the
Sending Party and can initiate queries to the Sending Party's PML service.
Equipped with Auto-ID enabled readers, and Savants.

A.3. Transporting Party - An entity, like a third party logistics carrier or
dedicated fleet that moves the physical goods between the Sending Party
and the Receiving Party.

A.4. ONS Host - MIT or another organization that is equipped with an Object
Name Service.

3.2.2 Collaboration Diagrams
Recall the concept of Simpl-eb introduced in the last chapter. In this model, the
data is aligned prior to the placing and fulfilling of an order. When an order is
being fulfilled, the sending party sends a Despatch Advice ahead of the shipment
with details about the contents of the shipment. The receiving party can begin
tentative allocations of the inbound goods even before they arrive.

31

Figure 9 shows a UML collaboration diagram that illustrates the parallel flow of
goods and information in the shipping process.

DESPATCH ADVICE IN THE SHIPPING PROCESS

License Plated Logistic Units License Plated Logistic Units

Waybill/Bill of Lading Transport Status__ _ _ _I

S~~iPPpcINGo TRNPOkTIN#CZVING

Despatch Advice

Figure 9 Despatch Advice Collaboration Diagram [26]

Whereas Figure 9 is a generalization of the shipping process, Figure 10 shows a
particular instantiation of the direct process between a manufacturer and a retailer.
Figure 11 shows how the same pattern repeats itself throughout the supply chain
(Note that the distributor's upstream and downstream transactions are simply
instances of the same general transaction shown in Figure 9).

SPECIFIC INSTANTIATION OF THE SHIPPING PROCESS

License Plated Logistic Units License Plated Logistic Units

Waybill/Bill of Lading Transport Status
MANUFACTURER l !I) RETAILER

Despatch Advice

Figure 10 Instance of Despatch Advice Collaboration Model [26]

SPECIFIC INSTANTIATION OF THE SHIPPING PROCESS

Lcense Plated Logistic Units Lcense Plated Logistic Units License Plated Logistic Units Lcense Plated Logistic Units

ay B Trasprt Wayus of 0 B Stans t

MANUFACTURER 0--f.ain 3PL a- DISTRIBUTOR/) t RETAILER

WHOLESALER/

BROKER

Despatch Advice Despatcn Advice

Figure 11 Collaboration Model Repeats in Supply Chain [26]

32

The challenges faced by the shipper are building and verifying a perfect order.
Similarly, the challenge faced by the receiver is verifying that everything the
shipper claims to have shipped was actually received.

3.2.3 Use-Case Diagram

Figure 12 contains a simplified Use-Case diagram, which shows how all of the
actors involved in a shipping and receiving transaction can extend functionality
from the Savant and Readers.

SHIPPING VERIFICATION

TRANSPORTING
PARTY

SENDING PARTY

SAVANT AN RE

READERS
CEIVING VERIFICATION

RECEIVING PARTY
TRACK AND TRACE

Figure 12 Simplified UML Use-Case Diagram with Savant and Readers

Figure 13 is a more detailed Use-Case diagram, which shows the activities for the
sending party and the receiving party with the Auto-ID affected use cases in blue.
Note that the error checking function has been abstracted and is included in the
relevant Use Cases. The types of errors have also been generalized as shown.

33

CHECK ERROR: OVER: WRONG

SENDING PARY PICK&PACK

(NCkDEW

LOAD TRUCK CHECK ERROR: OVE

(41 N CLUDE

INVOICEDESPATCH ADVICE
ORDER SHIP GOODS 7 AUTO-ID ERROR CHECK

((INC(UEE))

IUNLOAD TRUCK CHECK ERROR: UNDE

BREAK DOWN PALLET
RECEIVING PARTY

R

CHECK ERROR: UNDER: MISSING

Figure 13 UML Use-Case Diagram with Error Checking

3.2.4 Activity Diagram

Figure 14 shows a detailed activity diagram for the entire order process with the
Auto-ID affected activities highlighted in blue. The alignment operations are not
represented, but the movement of goods parallel to the information messages is.
The figure highlights the feedback loop in the Pick&Pack operation at the sending
party. This Auto-ID enabled error check continues until the Pick&Pack operation
is correct. A similar error check is illustrated at the receiving party. Of particular
interest is how the receiving party's error checking will interface with their
invoicing system. A confirmation message or Receipt Advice (RA) is sent
immediately after the shipment is received and checked so the sending party can
begin investigating any problems. The RA is sent in addition to the invoice, but
in a timelier manner.

34

R

1EC
WE RA

WT

WITP

61 C*NCflL E1 Ec a IPY ADVC Es D
WITH PAYkMNT

I-
PROCESS RECEIVE ORDER

FAIL

PASS

FAIL /-LmiD TRUCK

PASS

SEND DA WITH P

SHIP GOODS WITH BOL

SEND INVOICE W! TH PO AN D BOL NUMBERS

Figure 14 UML Activity Diagram with Error Checking

3.2.5 Deployment Diagram
Figure 15 shows the deployment diagram for the framework. Note that the ONS
is first introduced here. The detailed sequence flows in the next section will show
how all of these components come into play. The deployment diagram shows
how the Readers and Savants can feed data into the BIS, which can automatically
convert this data into the Despatch Advice or Receipt Advice.

35

- END tRDER $TART

0 AND BOL NUMBERS RCIED
RECEIVE GDA~

RECEIVE
INVOICE/

U*LoAo TAU"
-T BREnAown

A to0 ERM~

PASS \

FAI\

ADIU~fCO~ft F AIL

ADIVICE

PASS

SENDING PARTY
PML SERVER

SENDING PARTY SECEIVING PARTY ONS
BIS SYSTEM BIS SYSTEM

SENDING PARTY RECEIVING PARTY

EDGE SAVANT EDGE SAVANT

RFID READER RFID READER RFID READER RFID READER
LOADING PICK&PACK RECEIVING BREAKOUT

Figure 15 UML Deployment Diagram with ONS

3.2.6 Detailed Sequence Flows
In this section I will present detailed sequence flows that include the DA and RA
for shipping and receiving verification. This is based on a format I developed for
use in the Auto-ID Center for generating use cases [85, 86].

I have designed these sequences to exercise all major components of the Auto-ID
system, including Core PML. Please refer to the appendix for a class diagram of
Core PML as well as example message payloads using EDI, Simpl-eb and UBL.

3.2.6.1 Main Flow of Events
The main flow does not rely on pre-positioning EPC data using the traditional
Despatch Advice (DA). This will mitigate unnecessary bandwidth utilization and
data processing and storage requirements for the majority of transactions.
However, the main flow does illustrate how Auto-ID will facilitate the preparation
of perfect orders that exactly match the data contained in the DA.

M.1. Receiving Party

M.1.1. Send order to Sending Party

36

M.2. Sending Party

M.2.1. Receive order from Receiving Party

M.2.2. Process order

M.2.3. Fulfill order (build pallet/tote)

M.2.3.1. Scan goods while building pallet/tote

M.2.3.2. Verify when order complete or note missing items
for DA

M.2.4. Scan goods before shipping

M.2.4.1. Verify order or note missing items for DA and BOL

M.2.4.2. Generate DA and BOL

M.2.4.2.1. Traditional EDI 856

M.2.4.2.1.1. Convert scanned EPCs to appropriate
GTIN's and Line item numbers in EDI
document to improve accuracy

M.2.4.2.2. Alternately use the Simpl-eb Despatch Advice

M.2.4.2.2.1. Using EPCs to improve accuracy

M.2.4.2.3. Alternately use the UBL Despatch Advice

M.2.4.2.3.1. Using EPCs to improve accuracy

M.2.4.3. Save the scanned EPC and PO data referenced by
BOL Number

M.2.5. Send DA to Receiving Party including BOL Number

M.2.6. Ship pallet/tote to Receiving Party

M.3. Receiving Party

M.3.1. Receive DA from Sending Party

M.3.2. Process/parse DA data

M.3.3. Receive pallet/tote from Sending Party

M.3.4. Scan received pallet/tote

M.3.4.1. Aggregate carton counts

M.3.5. Reconcile received goods with DA

M.3.5.1. If ok

M.3.5.1.1. Flow goods into facility

M.3.5.1.2. Send Confirmation to Sending Party

M.3.5.2. If not ok

M.3.5.2.1. Handle one of two exceptions outlined below

37

M.4. Sending Party

M.4.1. Receive confirmation from Receiving Party

M.4.2. Close the transaction

3.2.6.2 Alternate Flow One: Something Missing (Under)
In this alternate flow, something comes up missing from the shipment when the
Receiving Party receives it. This could be the result of shrinkage, damage, or an
error in the DA data. This error condition is illustrated as an "under" in Figure 13.
(Note: steps shown in italics are identical to the main flow.)

A1.1. Receiving Party

Al.1..Send order to Sending Party

A1.2. Sending Party

A1.2.1.Receive order from Receiving Party

A1.2.2.Process order

A1.2.3.Fulfill order (build pallet/tote)

A1.2.3.1. Scan goods while building pallet/tote

A1.2.3.2. Verify when order complete or note missing items for
DA

A1.2.4.Scan goods before shipping

A1.2.4.1. Verify order or note missing items for DA and BOL

A1.2.4.2. Generate DA and BOL

A1.2.4.2.1.Traditional EDI 856

A1.2.4.2.1.1. Convert scanned EPCs to
appropriate GTIN's and Line item
numbers in EDI document to improve
accuracy

A1.2.4.2.2.Alternately use the Simpl-eb Despatch Advice

Al.2.4.2.2.1. Using EPCs to improve accuracy

A1.2.4.2.3.Alternately use UBL Despatch Advice

A1.2.4.2.3.1. Using EPCs to improve accuracy

A1.2.4.3. Save the scanned EPC and PO data referenced by BOL
Number

A1.2.5.Send DA to Receiving Party including BOL Number

A1.2.6.Remove one item from the pallet/tote (Simulate loss)

A1.2.7.Ship pallet/tote to Receiving Party (with removed item)

A1.3. Receiving Party

38

A1.3.1.Receive DA from Sending Party

A1.3.2.Process/parse DA data

A1.3.3.Receive pallet/tote from Sending Party

A1.3.4.Scan received pallet/tote

A1.3.4.1. Aggregate carton counts

A1.3.5.Reconcile received goods with DA

A1.3.5.1. Detect missing item

A1.3.5.2. Build Augmented DA/RA from scanned data

A1.3.5.3. Send Augmented DA/RA' to Sending Party

A1.3.5.3.1.Include BOL Number or original DA number

A1.4. Sending Party

A1.4.1.Receive the Augmented DA/RA from Receiving Party

A1.4.2.Process/parse Augmented DA/RA

A1.4.3.Retrieve the scanned EPC data based on the BOL Number sent
from Receiving Party

A1.4.4.Reconcile previously scanned items with EPCs Receiving Party
claims to have received

A1.4.4.1. Determine exactly what (if anything) is missing2

A1.4.5.Send an updated DA to Receiving Party

A1.4.6.Update internal billing systems (beyond scope of thesis)

A1.5. Receiving Party

A1.5.1.Receive the updated DA from Sending Party

A1.5.2.Reconcile with actual shipment

A1.5.3.Update home office systems (beyond scope of thesis)

Alternately, if this flow allowed the Receiving Party to request a DA from the
Sending Party using the BOL Number, then the Receiving Party could begin
polling for Augmented DA's as soon as they receive the shipment status message
(EDI 214) from the carrier indicating the shipment is ready. This is possible
because the Sending Party has already scanned and stored the EPC data for the
PO before the goods are released to the Transporting Party, so the Receiving Party
will know that the data is available. This would enable pre-positioning of the data
in those situations where the Receiving Party might deem it necessary to enable

'Augmented DA/RA includes a detailed list of EPC's that Receiving Party has received
2 Minutes after the exception occurs, not days or months

39

real-time decision-making systems3 . I will not implement pull messaging in this
thesis, but the reader is hereby notified that it is an available option.

3.2.6.3 Alternate Flow Two: Something Extra (Over)
In this alternate flow, something extra or unexpected shows up at the Receiving
Party. This could be the result of erroneous case or item counts, promotional
items, a substitution, an error in the DA data4, or something altogether unexpected
(no DA data at all). Auto-ID will enable the Receiving Party's receiving systems,
with the aid of the dockworker, to quickly reconcile this discrepancy and flow the
goods into the facility. This error condition is illustrated as an "over" in Figure
13. (Note: steps shown in italics are identical to the main flow.)

A2.1. Receiving Party

A2.1.1.Send order to Sending Party

A2.2. Sending Party

A2.2.1.Receive order from Receiving Party

A2.2.2.Process order

A2.2.3.Fulfill order (build pallet/tote)

A2.2.3.1. Scan goods while building pallet/tote

A2.2.3.2. Verify when order complete or note missing items for
DA

A2.2.4.Scan goods before shipping

A2.2.4.1. Verify order or note missing items for DA and BOL

A2.2.4.2. Generate DA and BOL

A2.2.4.2.1.Traditional EDI 856

A2.2.4.2.1.1. Convert scanned EPCs to
appropriate GTIN's and Line item
numbers in EDI document to improve
accuracy

A2.2.4.2.2.Alternately use the Simpl-eb Despatch Advice

A2.2.4.2.2.1. Using EPCs to improve accuracy

A2.2.4.2.3.Alternately use UBL Despatch Advice

A2.2.4.2.3.1. Using EPCs to improve accuracy

A2.2.4.3. Save the scanned EPC and PO data referenced by BOL
Number

3 Sending Party and Receiving Party will have to work out how long Sending Party should keep
this data, and if Receiving Party wants to guarantee that the data be available for future use, they
should pull it over to their internal systems while it is still available.
4 Please note that following the steps outlined in the Main Flow will reduce the errors in the DA.

40

A2.2.5.Send DA to Receiving Party including BOL Number

A2.2.6.Add one item to the pallet/tote (Simulate something extra)

A2.2.7.Ship pallet/tote to Receiving Party (with additional item)

A2.3. Receiving Party

A2.3.1.Receive DA from Sending Party

A2.3.2.Process/parse DA data

A2.3.3.Receive pallet/tote from Sending Party

A2.3.4.Scan received pallet/tote

A2.3.4.1. Aggregate carton counts

A2.3.5.Reconcile received goods with DA 5

A2.3.5.1. Detect additional item's EPC

A2.3.5.2. Perform an ONS lookup

A2.3.5.2.1.Use unexpected EPC

A2.3.5.2.2.Receive Sending Party's PML Server from ONS

A2.3.5.3. Send PML Server request to Sending Party

A2.3.5.3.1.Use unexpected EPC

A2.3.5.3.2.Request product information

A2.4. Sending Party

A2.4.1.Receive PML Server request from Receiving Party

A2.4.2.Retrieve the catalogue data based on EPC sent from Receiving
Party

A2.4.3.Format a PML message

A2.4.3.1. Include product description

A2.4.3.2. Include product EPC

A2.4.3.3. Include product GTIN

A2.4.3.4. Include associated PO and BOL Number (if available)

A2.4.4.Send PML reply to Receiving Party

A2.5. Receiving Party

A2.5.1.Receive PML product data from Sending Party

5 Note: This flow can also be used if the DA has not yet arrived, and there is no information about
the inbound shipment. In this case everything is considered extra or over. Alternately steps
A2.3.5.2-A2.4.3 can be replaced by the Receiving Party requesting an Augmented DA as
mentioned at the end of the first Alternate Flow. The Augmented DA would also contain all of the
(additional) EPCs for reconciliation purposes.

41

A2.5.2.Process/parse the PML data

A2.5.3.Display product data to receiving personnel

A2.5.3.1. If there is a PO and BOL Number

A2.5.3.1.1.Request an Augmented DA (beyond scope of
thesis)

A2.5.3.1.2.Accept it into facility and information systems6

A2.5.3.2. If there is no PO or BOL Number

A2.5.3.2.1.Manually enter returned GTIN into PRD

A2.5.3.2.2.Flow into facility7

3.2.7 Summary
In this section I have presented UML models for a redesigned Shipping and
Receiving process that makes use of Auto-ID components for automatic
verification. The following table shows a summary of the capabilities for this
redesigned system.

Reduced labor costs at receiving Auto-ID infrastructure at the receiving party
party automatically identifies cases and pallet and

checks pallet configuration against required
configuration, no breakdown necessary

Reduced labor costs at sending party Auto-ID infrastructure at the sending party
automatically identifies cases and pallet and
checks pallet configuration against required
configuration as pallet is being built

Decrease number of "incorrect" Auto-ID infrastructure validates pallet
shipments configuration before a shipment leaves a

location

Reduced gap between physical and Automatic validation is less error-prone than
system inventory levels manual checking, and much faster

Cost-efficient solution because of Using the EAN.UCC item business message
reliance on existing standards work specification guarantees interoperability

between the two parties

Table 9 Summary of the Framework Enabled System's Capabilities

6 Minutes after the exception occurs, not hours
7 Minutes after the exception occurs, not hours or days

42

3.3 Framework Notes

By application of the framework, I was able to redesign a new system for
Shipping and Receiving. Note that the system proposed in this chapter can use
either an existing channel and VAN network with an existing or modified payload
message, or it could short circuit the existing channel in lieu of an alternate
channel, like the Internet. It is technology neutral, flexible, and can adapt as
conditions and circumstances dictate.

Another important feature of the redesigned system, and indeed for any Auto-ID
deployment, is the minimization of transferred data. This is achieved first by
prior alignment of data as per Simpl-eb, which allows the DA and RA messages
sent back and forth to be minimally terse. Secondly, and more importantly, the
system's sequence has been explicitly designed to send minimal messages with
entire lists of EPCs only sent to handle increasingly rare exceptions.

These are important considerations that should be kept in mind when using the
framework.

3.4 Conclusion

In this chapter I presented a basic framework for analyzing Auto-ID enabled
business with the transfer of goods and data. In the next chapter I will detail a
reference implementation based on the Despatch Advice from Simpl-eb that
illustrates how Auto-ID can be effectively used to solve the fundamental problem
I've posed in this thesis, namely, the coupling of information with the physical
world.

43

CHAPTER 4: Reference Implementation: Shipping
and Receiving Verification

In this chapter I will cover the details of a reference implementation of the
Shipping and Receiving Verification use case described in the previous chapter.
While the models in the last chapter were technology neutral, this chapter shows
an actual implementation and draws upon many specific technologies introduced
in Chapter 2.

The implementation details presented in this chapter are state of the art, and
among the best of breed for e-commerce systems, however, the reader should bear
in mind that the Auto-ID Center neither recommends nor makes any claim of
usability for any of the technologies and methods used in the reference
implementation. The system is merely a proof of concept for which other, similar
technologies could easily be substituted.

Roemer and Schoch's paper presenting a framework for the development of Auto-
ID enabled application development is another good resource [87]

4.1 Introduction

During my research at the Auto-ID Center, I conceived and directed the a-Biz
Phase Joint Project to exercise dataflow elements of the Shipping and Receiving
Verification use case covered in Chapter 3. This chapter will cover a-Biz in
detail, but before presenting a-Biz, let's reconsider the framework.

4.1.1 The Framework
What is the framework? It includes the steps and technologies that I've outlined
thus far in this thesis, and culminates in a plan for execution. This chapter details
how the a-Biz Joint Project implemented the process flows modeled in the
Shipping and Receiving use case, and serves as a roadmap for similar future
projects. In other words, it is the natural culmination and implementation of the
framework. So before beginning, a quick review of the checklist used for a-Biz is
in order.

4.1.2 Framework Checklist
The following summarizes the steps I took for the a-Biz Joint Project and can be
used as a checklist for project execution against the framework presented in this
thesis:

* Begin with a charter

o An example is the charter from the Business Information and
Industrial Control Action Group within the Auto-ID Center:

44

Charter

1. Focus on evolutionary applications, not revolutionary ones

2. Identify how Auto-ID fits into existing processes and systems

3. Identify use cases and provide rationale

" Decide on a broad category for study

" Research the available and emerging technologies used within the
category

* Put together a project timeline

* Pull together a select few experts from category companies

o Make sure the team includes appropriate representatives

For example, this research drew from:

" Manufacturing

" Logistics

* Finance

" Sales and Marketing

" Others

" Have a team kickoff meeting

o Review the charter

o Brief the attendees on Auto-ID technology

o Generate a list of potential applications with justifications

o Prioritize the list

o Create Use Case focus groups to look at the top 1 or 2

o Determine what organizations should be represented in the use
case focus groups

- Companies affected

- Relevant standards bodies or institutions that may have
done work in this area

o Recommend

- The proposed use case focus group's composition

- An action plan for moving forward

* After the kickoff meeting

o Contact the companies identified for the use case focus group

45

o Invite the targeted companies to meet with the use case focus
group

- Provide in advance a high level overview of the use case
focus group's aims

- Provide in advance the meeting notes from the first meeting

- Follow up to verify attendance

- Verify the skill set/domain expertise of attendees

o At least one group member should possess UML modeling
capability

o At least one group member should be familiar with the technology
to be used (e.g. XML and XML Schemas)

o At least one group member should be intimately familiar with the
Auto-ID technology

Ongoing meetings

o Review the charter

o Conduct a detailed analysis of the use case assigned to the focus
group

o Evaluate which Auto-ID components come to bear

o Develop a use case using Auto-ID

o Capture all details with UML models [55]

- Follow the format demonstrated by the a-Biz Framework
[26]

- The following UML diagrams are recommended

* UML Sequence diagrams

" UML Activity diagrams

* UML Use Case diagrams

" UML Deployment diagrams

* UML Class diagrams

* Any other appropriate UML diagrams

o Gain consensus (GSMP model [52])

o Should any XML work be necessary

- Use the Core PML schemas from the Auto-ID Center [93]

" Use the ebXML Core Components [88]

* Execute a pilot

46

o To determine the feasibility of the Auto-ID enabled solution

o Base it upon the models developed

o Deploy the necessary Auto-ID components

o Use a spiral approach to development [89]

- The first implementation doesn't need to be gold-plated or
robust, just proof of concept

o Document the findings

E Something along the lines of this thesis

This process flow, which was followed by the a-Biz Joint Project, is based on an
unpublished work I wrote entitled Business and Industrial Control Action Group.
Sub Group and Use Case Focus Group Methodology [90]. This work led to the
more detailed analysis recently published by the Auto-ID Center entitled The
development of Use Cases as an alternative approach to identify the impact of
Auto-ID implementations on Business [85]. I would refer anyone interested in
pursuing similar projects to these documents as reference guides to get started.

4.2 a-Biz Demo Charter

The second phase of the a-Biz Joint Project involved setting up a desktop demo
that would include all the major software and hardware components of the use
case. This implementation focuses upon:

* Scanning goods upon shipment to verify order and bill of lading

* Scanning goods upon receipt to verify order and bill of lading.

* Reconciling shipped goods with orders.

* Interacting with a PML service to investigate goods received without
documentation.

" Shipping an Augmented Despatch Advice to enumerate the EPCs of
products shipped.

* Demonstrate the main flow and two alternate flows outlined in the Chapter
3.

This chapter outlines the details of this reference implementation demo.

4.3 Project Team

With a focus of shipping and receiving in mind, I recruited a manufacturer,
retailer, a technology provider and a standards body from the Auto-ID community
to provide expert domain knowledge. The following table shows the project
participants and the role they fulfilled:

47

Manufacturer Procter & Gamble Corporation

Retailer Target Corporation

Technology Provider Sun Microsystems

Standards Body Uniform Code Council (UCC)

Project Management MIT Auto-ID Center

Table 10 a-Biz Joint Project Participating Sponsors

I contacted and brought together personnel from these companies to form the core
modeling and execution team that met in bi-weekly meetings for the duration of
the a-Biz Joint Project.

4.4 Project Timeline

The following Gantt chart shows the major and minor milestones and deliverables
of the a-Biz Joint Project.

Figure 16 Major and Minor Milestones of the a-Biz Project

48

4.5 Implementation Architecture

The intention of the implementation was to explore all the core interactions of
each of the software components within a controlled, but accurate environment.
The a-Biz team employed a representative distribution of hardware and software
components to demonstrate the architecture.

4.5.1 Software

4.5.1.1 Savant
We used Savant version 1.1 with a customized event management system
processing units. This Savant is deployed into the SunONE Application Server 7
on Solaris 9.

SunONE Application Server is a J2EE 1.3 compatible and certified technology.
The Application Server 7 Platform Edition is offered free of license costs for
development and deployment, with support available at an additional charge. It is
built for high performance, leveraging proven HTTP and JMS engines.

4.5.1.1.1 Reader Adapter
We also used ThingMagic readers manufactured by Markem. The MIT Auto-ID
Center provided an appropriate reader adapter from Oat Systems for the
ThingMagic readers. The reader adapter connects to the readers via a TCP/IP
interface, and has three tunable parameters - poll time, monitorpoll time, and
timeout.

4.5.1.1.2 Loggers

SoapLogger

A Core PML message contains a reader identity, an observation, and a set of tag
identifiers. The logger's interface from the Savant system, however, reports tags
one at a time. The transaction engine expected groups of tags in a Core PML
message, so the individual readings needed to be gathered together and batched.
A custom logger called "SoapLogger" was written and added to the Savant to
package together and batch the observed tags. The logger gathers all tags
observed since the last pass and reformats them into a CorePML message, which
is sent to the PML Service.

The SoapLogger has one tunable parameter, endpoint, which defines the
SOAP/HTTP endpoint to receive the CorePML messages. The source code is
reproduced in the appendix.

4.5.1.1.3 Filters

EnterOnlyFilter

Since products may be sitting on the reader for an extended period of time during
the scanning operations, an EnterOnly filter was required. This filter only reports
the EPC the fist time it is seen in the reader field. For the EPC to be reported

49

again, it must be absent from the field for a given number of passes, configurable
by the number-of passes parameter. The source code is reproduced in the
appendix.

PassSmoothingFilter

Since some readers will constantly report each tag seen and sometime miss a tag
during a pass, the PassSmoothingFilter was created. It's purpose is to take a
number of passes, tunable by the number-of passes parameter, and normalize all
the tags reported during that period into one pass. The source code is reproduced
in the appendix.

4.5.1.1.4 EMS.conf
The Event Management System configuration file is used by the Savant to set up
the data routing and logging services of the Savant at startup. The source code for
all of the filters and loggers is reproduced in the appendix as well as the Savant
EMS.conf that initializes the data flows through the Savant.

4.5.1.1.5 PostgreSQL Database

The Savants were equipped with a PostgreSQL database, version 7.2.3 [91]. This
is an open source SQL database.

4.5.1.2 ONS
ONS is the Object Name Service used to resolve a PML Service address from an
EPC. The ONS is used when an "unknown items received" event occurs during
alternate flow of the use case. In this instance, the receiving party receives
something that does not have an order or bill of lading associated with it, so a
query must be made to an ONS to determine the appropriate PML Service with
data about the item.

Because I was not able to secure properly encoded tags, we did not use the ONS
in the current implementation. Instead, the EPCs were related to products using a
hash table.

4.5.1.3 PML Service
The PML Service accepts Core PML messages from Savant about the sensor
reads. It accepted the Core PML messages and persisted them for later use.

As there is no formal PML Service Specification from the Auto-ID Center at the
time of this writing, a tool from GorillaLogic [92] was used for the PML Service.
The GorillaLogic platform is deployed in the backend systems inside the SunONE
Application Server 7 as a J2EE application.

4.5.1.4 Order Processing System
To simulate the order processing system, we used another tool from GorillaLogic
that automatically generates a working system from a UMIL model. Using the
interfaces generated from the GorillaLogic platform, we are able to enter orders

50

via a web browser. The orders can contain line items with products and product
counts.

4.5.1.5 Business Information System
The BIS serializes the data into an XML format designed to be compatible with
the Simpl-eb message format. Thus, between the customer and supplier, only
Simpl-eb messages are sent for the Order and Despatch Advice. This uses
HTTP/Soap at the moment. By integrating with the SunONE Integration Server
B2B platform including the SunONE Secure Trading Agent, the transport system
can be easily secured. Similarly, the messaging format can be easily changed
between Simpl-eb, UBL, EDI and other XML-based schemas.

4.5.2 Hardware

4.5.2.1 Savant Servers
Simple, low cost SunFire Xl servers are deployed in the warehouse location to act
as Auto-ID Savant hosts. The throughput in this instance is fairly small, so any
low-end server would be adequate.

The XI has two Ethernet cards, and one was configured on the front end to be
connected to the Internet. Routing was turned off, and the second Ethernet card
was configured on the back end to connect directly to the reader with a crossover
cable. The IP address for the reader on the backend was 10.0.0.10 1 (the default),
and the XI was 10.0.0.100.

Easier administration and recovery is provided through Sun's Lights-Out
Management (LOM) and a System Configuration Card (SCC). LOM provides
monitoring of the system and diagnosis, even when Solaris is not running and the
system is in stand-by mode. The SCC enables quick replacement of a faulty
system by transferring the system identity to ensure rapid recovery.

LOM lets system administrators remotely monitor and manage the Sun Fire V120
server. Automatic Server Restart provides system and component monitoring and
initiates an automatic restart without intervention if the system or application
freezes. Together, LOM and Automatic Server Restart software maximizes
system availability and manageability.

4.5.2.2 Back End Servers
For the Back End portion of the architecture, which would be located at the home
office, slightly larger machines were chosen. We used Netra 20's from Sun,
which are part of Sun's entry-level server line.

4.5.2.3 Markem/ThingMagic Readers
We used Markem 6100 readers from ThingMagic. These readers have both a
serial and an Ethernet interface. The readers are not dual frequency, and operate
only in the UHF band (915 MHz). These are the same readers available in the
Auto-ID evaluation kits [22]. For worldwide demos, multi-frequency agile

51

readers would be preferable. Note: Tyco/ThingMagic readers could also be used
(with the same reader adapter) to demonstrate interoperability.

4.5.2.4 Rafsec S Tags
We used Class 0 Rafsec S tags in the demo. I chose this tag because the S
configuration of the antenna makes the tag less sensitive to orientation issues.
Unfortunately, however, the Class 0 nature the tags meant they were "locked",
and the EPC number was already set and could not be changed. Unlocked tags
are desirable so that the domain manager and object class can be properly
encoded. This will allow us to test the algorithmic conversion of EPC to GTIN,
which is currently being handled by a hash table. Note: iCode tags could also be
used to demonstrate interoperability.

4.5.2.5 Cushcraft Antennas
We chose right hand circular polarized Cushcraft Antennas (model
S9028PC12NF) for the UHF band (902-928 MIHz). These have nice range
capabilities, but are not a viable option for worldwide deployment (see RFID in
Chapter 2).

4.5.2.6 RPCs
I acquired Reusable Pallet Containers from CHEP to hold the products during the
inbound and outbound scans.

4.6 Messages

This section gives a brief overview of the messages I used, and how I modified
them to include lists of EPCs.

4.6.1 CorePML
The Core PML messages are used to tell the PML Service when an EPC is
observed. The message contains a reader EPC, a date time stamp, and a list of
observed EPCs [93].

Here is an example CorePML message:

<?xml version="1.0" encoding="UTF-8"?>
<pmlc:Sensor
xmlns:pmlc="urn:autoidcenter:pml:Core:1.0:0.50"
xmlns:xsi="http: //www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="urn:autoidcenter:pml:Core:1.0:0.50
PML _LibraryCore.xsd">
<ID>01.0000A89.035F23.000169DC1</ID>
<Observation>

<ID>000345869</ID>
<DateTime>2003-05-19T13:04:34-06:00</DateTime>
<Tag>

<ID>01.0000A89.00016F.000169DC1</ID>
</Tag>

52

<Tag>
<ID>01.0000A89.00016F.000169DC3</ID>

</Tag>
<Tag>

<ID>01.0000A89.00016F.000169DC4</ID>
</Tag>

</Observation>
</pmlc: Sensor>

4.6.2 Order
An EAN.UCC Order message initiates an order between a customer and a
supplier. The EAN.UCC schemas for Order and all other messages are available
from the UCC Solution Center [94].

Within the a-Biz architecture, the order contains GTIN numbers and counts for
the ordered items. The following is an XML fragment that illustrates how I used
the "requestedQuantity" element to indicate desired order quantities (the complete
example can be found in the Sample Messages section of the Appendix under
Simpl-eb: Order):

<order>

<!-- Pampers Bibsters-->

<lineItem>
<number>O</number>

<requestedQuantity>6</requestedQuantity>
<itemIdentification>

<gtin>037000401803</gtin>
</itemIdentification>

</lineItem>
<!-- Bounce -->

<lineItem>
<number>0</number>
<requestedQuantity>6</requestedQuantity>
<itemIdentification>

<gtin>037000801689</gtin>
</itemIdentification>

</lineItem>

</order>

4.6.3 Despatch Advice - Standard
The EAN.UCC Despatch Advice message is sent from the supplier to the
customer to indicate the goods that are being shipped for a given order [94]. The
following is an XML fragment which shows how I used the "quantityContained"
element to indicate scanned quantities (the complete example can be found in the
Sample Messages section of the Appendix under Simpl-eb Despatch Advice -
Standard):

<despatchItem>
<!-- Pampers Bibsters-->

<itemsContained>

<containedItemID>037000401803</containedItemID>

53

<quantityContained>2</quantityContained>
</itemsContained>
<!-- Bounce -- >
<itemsContained>

<containedItemID>037000801689</containedItemID>
<quantityContained>1</quantityContained>

</itemsContained>
</despatchItem>

4.6.4 Despatch Advice - Augmented
The following is an XML fragment from an EAN.UCC Despatch Advice. I had
to slightly modify the schema for the Despatch Advice to facilitate EPC data. The
example shows how the modified "serial" element is used to transmit a list of
scanned EPCs (the complete example can be found in the Sample Messages
section of the Appendix under Simpl-eb Despatch Advice - Augmented):

<despatchItem xsi:type="eanucc:LogisticUnitsType"
number="1" id="100370000014190998">

<!-- Pampers Bibsters-->
<itemsContained>

<containedItemID>
037000401803

</containedItemID>
<listForEachItem>

<serial>
01.0000A89.00016F.000169DC1

</serial>
</listForEachItem>
<listForEachItem>

<serial>
01.0000A89.00016F.000169DC2

</serial>
</listForEachItem>

</itemsContained>
<!-- Bounce -- >
<itemsContained>

<containedItemID>
037000801689

</containedItemID>
<listForEachItem>

<serial>
01. 0000A89. 003014 . 000169AB1

</serial>
</listForEachItem>

</itemsContained>
</despatchItem>

4.6.5 Receipt Advice
Unfortunately, the EAN.UCC does not have a Receipt Advice message. An
Augmented Despatch Advice message will be used for this purpose. With slight
modification to the DA, the Augmented DA can also include lists of EPCs for
reconciliation purposes.

54

4.7 a-Biz Implementation

4.7.1 Highlights
The following few figures show the completed a-Biz Joint Project Demo. The
various systems representing the Savants and home office Business Information
Systems can be seen along with the readers and tagged products.

All of the a-Biz systems are shown in the same room in Figure 17, but I exhibited
the demo in a distributed fashion during the June 2003 Board Meetings of the
Auto-ID Center. To do this I left the BIS hosts in Cambridge, MA, and carried
the readers and Savants with me to Zurich, Switzerland. I reconfigured the
system so the Savants would log PML Core messages via the Internet back across
the Atlantic Ocean. The BIS servers then handled and rerouted the messages
between companies. This deployment is very similar to an actual field
deployment of these systems, and the distributed framework worked exceptionally
well.

Figure 17 The a-Biz Joint Project Demo

55

Figure 18 shows several tagged products in the CHEP pallet container, which is
sitting on top of the reader and antenna during a scan. I set up and used the
systems and products shown here in Zurich.

Figure 18 Products Being Scanned by the Savant, Reader and Antenna

56

Figure 19 shows the BIS Server representing P&G. A user can point a web
browser to this server and enter orders and process Despatch Advice and Receipt
Advice messages that are automatically generated from the Savant data. A
similar setup exists for the Target BIS. I configured and left these in Cambridge,
Massachusetts.

Figure 19 P&G BIS Server and the Web Interface for Order Shipping Billing

4.7.2 Filter Settings
The following table shows the parameter settings for the Savant filters that I used

in the a-Biz demo:

IEnterOnlyFilter
number of passes

5

PassSmoothingFilter number of-passes 3

Table 11 Parameter Settings for the a-Biz Savant Filters

The EnterOnlyFilter's number of passes setting indicates a tag must be missing

from the field for 5 consecutive passes before it will be picked up again.

Otherwise, it will be suppressed. This cuts down on the chatter of continually

reading tags that have not moved into or out of the field.

57

The PassSmoothingFilter's number of passes setting allows 3 passes to be
normalized into one read. This allows three passes, which that may include
random dropouts, to be consolidated into a single message sent to the BIS Server.

The combination of these two filters provided good results, with normalized and
complete messages being sent via the SoapLogger to the BIS Server in every
instance.

4.8 Problems

During the deployment of the demo, we encountered several problems. They are
detailed in the following sections for reference.

4.8.1 Spurious Reads
At first, the BIS Server couldn't handle spurious or multiple reads being sent to
the message engine, so we quickly fixed this problem. However, even with this
fix, the demo performed better without a lot of extra reads sent to the BIS Server's
message router. For this reason, controls were implemented to start and stop the
Savant to suppress the logging of messages. Similar controls will almost certainly
be necessary in the field, with a technician controlling when a reader is active.
Refer to the appendix for the source listing for my SavantController that controls
the application server and the Savant software on the Savant host. This java
application can be run remotely.

4.8.2 Reader Adapter Software Reset
Because of the difficulties mentioned in the previous section, the Savant software
is started and stopped several times when using the demo, but the supplied reader
adapter could not reconnect to the reader after the first Savant shutdown. The
reader adapter was not closing the socket to the reader during shutdown, so
subsequent connection attempts were prohibited because the socket was still open
(Note: By design, a reader can only communicate with one device at a time). The
solution to this problem was to shutdown the process that was running the reader
adapter, which forced the socket to be closed.

4.8.3 Savant Shutdown/Startup
While scripts and a SOAP interface exist to start and stop the Task Management
System (TMS) and Event Management System (EMS) portions of the Savant
software, the software is not durable enough to accommodate a shutdown and
subsequent startup. In particular the TMS system does not reopen the
PostGreSQL database connection during startup, but it closes it during shutdown,
resulting in a broken TMS being activated. The short-term solution to this
problem is to always bring down the application server instance when stopping
the Savant software, this will cause all the components to be initialized properly
when the instance is started.

58

4.9 Conclusion

In this chapter I covered the details of a reference implementation of the Auto-ID
enabled Business Framework. More technical details can be found in the
appendix. In the next chapter I will conclude with a summary of this work and
provide future recommendations.

59

CHAPTER 5: Conclusions and Recommendations

In this thesis I have presented a framework for incorporating Auto-ID
technologies to automate business transactions. In this final chapter I will discuss
some of the findings of my research, and make some recommendations for future
study.

5.1 Conclusions

5.1.1 Fundamental Problem
Recall that the fundamental problem I posed in this thesis is the synchronization
of the physical and informational worlds. When this synchronization breaks
down during a business transaction, there are penalties to be paid by both
transacting parties resulting in lost time and money. In this thesis I have
presented a framework for applying Auto-ID to a business transaction that can
bridge the gap between physical objects and their related information. This eases
and automates the flow of goods and information through the supply chain. The
a-Biz Joint Project, a result of my research, has shown that this framework can be
successfully employed to resolve a real business need.

5.1.2 Usability of Core PML
One key objective of my research was to test whether Core PML was capable of
supporting a business transaction such as shipping and receiving. With the a-Biz
Joint Project, I've shown in detail how Core PML succinctly automates an
existing process, and facilitates a redesign of the process that expedites the
verification of goods shipped using an automatically generated Despatch Advice
and Receipt Advice.

Both Core PML and the Savant network easily facilitate counting operations, but
the ability to uniquely identify products also aids in tracking. If the tracking data
is persisted, a PML Service providing access this data enables tracing operations
as well. In addition to tracking and tracing, this same framework can be extended
to enable other mission critical operations including authentication [95], anti-theft
[96], and dynamic expiration dates among others.

5.2 Recommendations

5.2.1 Changes to Existing Standards
In this section I will outline some proposed changes to the messaging standards
used in my thesis: EDI, UBL, and Simpl-eb.

60

5.2.1.1 EDI
If Auto-ID is to be used with Traditional EDI, then line qualifiers will need to be
added to the EDI standards to support Electronic Product Codes. This approval
process is a lengthy one, however, and by the time it is ready for use, traditional
EDI may no longer be in wide spread use. Efforts should instead be focused on
emerging XML based schemas to make sure they include elements capable of
supporting the EPC.

5.2.1.3 UBL
The Universal Business Language includes a Despatch Advice and a Receipt
Advice, both useful for automating electronic commerce and closing the
information loop. However, there is an unnecessary restriction forcing each line
in the Receipt Advice to correspond to a line in the Despatch Advice. If a
receiving company wishes to transmit a list of EPCs in the Receipt Advice so the
sending party can reconcile any errors or exceptions, then the sending party is
forced to send the same EPCs in the original Despatch Advice. This wastes
bandwidth and is extremely inefficient. The UBL framework needs to ease this
restriction to facilitate the shipping and receiving verification process proposed in
this thesis, which provides a Receipt Advice to handle minimal exceptions.

5.2.1.2 Simpl-eb
I used the EAN.UCC business schemas as a basis for the messages sent between
the supplier and customer in the reference implementation outlined in Chapter 4.
To include the EPC data, I needed to slightly modify the schemas for the
Despatch Advice. This change should be officially adopted by the UCC schema,
which would make it more flexible for future use.

In addition to a Despatch Advice, a Receipt Advice should be added to the
messaging standard. The Receipt Advice should not place limitations on the form
and content of the message body as you find with UBL. This will allow minimal
messages to be sent from the sending party to the receiving party with only
quantity counts, but more detailed messages to be returned when exceptions
occur. The more detailed Receipt Advice can then contain detailed lists of EPCs.

While there isn't anything wrong with the current schemas, the following table
summarizes some things that go against recommended practice:

Problem Description

Attributes hold data Generally, elements should be used for data, and attributes for
metadata. The reason for this is attributes can't be extended by
the addition of children. Complex types are therefore preferred.

Type substitution Type substitution is the use of derived types in place of a base
type. This is sensible from an Object Oriented perspective, but
often adds (needless) complexity to the XML document
exchange.

Abstract types Abstract types can be difficult to handle for processing

61

applications, which must otten be written to handle some, but not
all, concrete derived types. Again, this practice seems to make
sense from an Object Oriented design approach, but it doesn't
lend itself well to document exchange.

Deep element There are many nesting levels with some elements buried within
nesting many layers. This can be awkward in the same way that deeply

nested classes can be.

Mixed content The text content in mixed elements can't be validated or
constrained. This is also problematic because it won't map to all
specifications as Java objects.

Table 12 Summary of Issues encountered with the EAN.UCC Schemas

5.2.2 Future Work

5.2.2.1 ONS and PML
There is currently much ongoing work to standardize the PML Service. There are
several reference implementations for specific use cases, but no general consensus
has emerged to date. In addition, the ONS working group has just been formed,
and the ONS itself is undergoing some changes. As work progresses in these
fields, ongoing research and development should take place with PML extensions
that will be suitable for specific industries.

When the new ONS specification is published, it should be added to the reference
implementation and tested with tags and readers that support all of the newly
proposed EPC recommendations. In addition, as the PML Service matures, the
ONS lookup should be used for a product catalogue data lookup on unknown
EPCs. This will involve coordination with existing product data catalogue
services like Transora and UCCNet.

5.2.2.2 Legacy Numbering Schemes
An important area of research is the exploration of algorithmic methods to
automatically convert the EPC into legacy numbering schemes, including the
Globe Trade Item Number (GTIN), the Vehicle Identification Number (VIN), the
National Drug Code (NDC) and others. In this work we've used a hash table to
avoid a complete ONS and PML Service lookup.

5.2.2.3 Other Applications
The a-Biz reference implementation should be expanded using the framework to
become a test bed for track and trace, authentication, theft and other Auto-ID
enabled applications.

5.2.2.4 Data Storage
The data storage and transmission requirements of Auto-ID enabled business will
strain current systems. In the appendix I've included a brief analysis of the

62

projected data loads. This is not an insurmountable obstacle, but the topic does
require further work.

One idea is the use of patterns analysis to detect and label patterns in the
accumulated data, thus reducing the data storage requirements for each individual
item by referencing the associated patterns.

5.2.2.5 Logistics
Finally, many of the models used in logistics today will need to be revised or
changed based on the ability to capture real-time information about the flow of
goods through the supply chain. This will dramatically reduce inventories in the
supply chain and simultaneously increase service levels. Some work has already
been done (e.g. Yun Kang's and Stephen Ho's work in the Auto-ID Center, soon
to be published), but there is much more to be done. Some of the methods and
tools from the field of Fluid Dynamics could be used to build some of the new
models.

5.3 Conclusion

In conclusion, there is much to be done. This field is ripe with possibilities that
will yield many important advances in the coming century. The applications are
endless, and the framework I've presented in this paper will serve as a roadmap to
ongoing development and adoption.

63

APPENDIX

The appendix contains detailed technical discussions of some aspects of the
research documented in my thesis. Each major heading in this appendix can be
taken as a self-contained mini-chapter, and is provided for the interested reader.

EPC Dot Notation

Introduction
As we begin looking into inserting EPC data into third party systems, it is
important to take a quick look at the storage requirements this will impose, based
on the different representations that may be available. This short brief introduces
a dot notation for the EPC, and shows the representation field lengths for the EPC
using this notation in binary, hexadecimal and decimal formats in comparison
with the field lengths for the EPC in each of these native formats. The reader
should bear in mind that the dot notation is NOT how an EPC will be transmitted
via Core PML messages within the Auto-ID system. This notation is simply
meant to show one way that an outside application can reformat and/or store the
EPC data for quick parsing and analysis.

This dot notation is used with the 64 bit EPCs represented in some of the other
XML examples found later in the appendix.

Representations
The following table shows the break down of the 96 Bit Type I EPC.

version

8 bits 28 bits 24 bits 36 bits

Table 13 Breakdown of the 96 Bit Type 1 EPC

The 96 Bit Type I EPC's header is 00100001. The following table shows
different representations of this number.

Binary Hexadecimal Decimal

00100001 33 21

Table 14 Maximum Header Number for the 96 Bit Type 1 EPC

The following table shows different representations of the maximum domain
manager number.

64

Binary Hexadecimal Decimal

1111111111111111111111111111 FFFFFFF 268435455

Table 15 Maximum Domain Manager Number for the 96 Bit Type I EPC

The following table shows different representations of the maximum object class
number.

Binary Hexadecimal Decimal

111111111111111111111111 FFFFFF 16777215

Table 16 Maximum Object Class Number of the 96 Bit Type I EPC

The following table shows different representations of the maximum serial
number.

Binary Hexadecimal Decimal

I111111111111111111111111111111111111 FFFFFFFFF 68719476735

Table 17 Maximum Serial Number of the 96 Bit Type 1 EPC

The following table shows three representations of a dot notation that may be
useful for parsing and processing the 96 bit EPC (on computers that can't handle
true 96 bit representations).

Bin 010oo0oou*n11anu1iiie n t1 in nin111n n n n i iiiin nn ii it ei uI

Hex 33.FFFFFFF.FFFFFF.FFFFFFFFF

Dec 21.268435455.16777215.68719476735

Table 18 Maximum Combined Number of the 96 Bit Type I EPC Using Dot Notation

Because the EPC data may be inserted in a flat text file for use in a company's
systems, the following table shows a side-by-side comparison of the
representation field lengths of an EPC both with and without dot notation.

Hexadecimal Fields Decimal Fields

Max Binary Number (-2 1 -23 -29

Max Dot Notation (Previous table) 27 33

Table 19 Maximum Field Lengths of the Various Representations

65

All of the representations shown in the tables above are for the maximum EPC
number that can be represented. Recently, the ONS Working Group of the Auto-
ID Center has taken up the issue of representations of the EPC patterned after the
International Standard Book Number (ISBN) and Uniform Resource Name
(URN) [97] standards, among others. The URN is encompassed by the Uniform
Resource Identifier (URI) [98, 99], and the ISBN may eventually be as well [100].
The ONS Working Group is debating the elimination of leading zeroes, and using
a decimal format. The following table shows a recommended dot notation using a
URI or URN naming scheme.

Scheme Dot Notation

URI uri:epc:1.24564.21346.21678856

URN umn:epc: 1.24564.21346.21678856

Table 20 Possible Uniform Naming Schemes for the EPC

The interested reader should follow the work of the Auto-ID ONS Working
Group for a final recommendation and representation.

Conclusion
In summary, Table 19 shows the maximum field lengths for the different
representations. In native form, the EPC will require 23 to 29 fields in a flat text
file, or 27 to 33 fields using the dot notation, depending on the representation
chosen.

Types of Queries

There are basically three classes of queries that need to be handled to properly
address the needs of sequence flows presented in this thesis. The following
questions exemplify the three classes of queries:

* Where is this item? Alternately, how many of these SKUs are at location
X?

" Which readers saw this item in this time frame?

" Did any items cross path with any other items?

The first two types of queries are similar to the Eulerian and Lagrangian methods
for tracking particles in a fluid flow, one follows the path of an item and can
determine it's properties at any given time, the other watches a system within a
reference frame and captures information about all items that flow through the
reference frame boundaries during the capture interval. The third group of
queries can be categorized as data mining for patterns.

The different types of queries will result in different data load requirements. For
example, the simple query "Where is this item?" can be answered with minimal

66

data. The data requirements of the remaining queries outlined in this section
depend on the number of item EPCs involved with the request and/or the length of
the time frame. Refer to the next section entitled Estimated Data Load
Requirements for some representative numbers useful for these types of
calculations.

Estimated Data Load Requirements

The following estimates should be kept in mind when designing Auto-ID systems
for Shipping and Receiving, and Track and Trace systems:

" The Auto-ID sponsor community is responsible for about 1 trillion items
in the supply chain annually.

" There are almost 300 million people in the US, and there are currently
100,000 retail outlets in the US (1 for every 3000 shoppers).

" A typical large retailer may have 2,000 to 3,000 domestic outlets and up to
4,500 worldwide. Growth varies from several dozen new stores to 350
new stores annually.

" A typical large retailer may handle between 20 and 40 billion individual
items system wide each year.

* A typical retailer/outlet may carry anywhere from 20,000 to 120,000
SKU's, depending on the size and type of the store (e.g. Retail, Discount,
Warehouse).

Choosing some representative numbers, if a company handles 40 billion items
spread among 4,000 retail stores, each store handles roughly 10 million items a
year, 833,000 items a month, and 28,000 items a day. If a daily replenishment
cycle is assumed, that means 28,000 items move in and out of a store every day.

Using the calculated number of 28,000 items being received by a store each day,
if a receiving system is designed where only the 96 bit EPC is captured and used,
328 KB of data would be generated with each complete scanfor the EPC data
alone. (Using the 64-bit EPC would require 218 KB.)

((28,000 items) * (96 bits/item)) / ((8 bits/byte) * (1024 bytes/KB))
328 KB

For Shipping and Receiving Verification on inbound shipments for any given
store, the list of EPCs sent in the DA would require an additional 328/218 KB of
data above and beyond the normal data shipped in the DA. The Auto-ID system
will also have to quickly scan and process this information on the receiving end to
quickly reconcile the EPCs.

Assuming there is about 5 KB of static product data for each item, if an EPC
lookup is performed to request and receive this data for each of the 28,000 items,
about 137 MB of memory would be required.

67

((28,000 items) * (5 KB/item)) / (1024 KB/MB) ~ 137 MB

The 5 KB per item of static product data is not necessary for Shipping and
Receiving Verification, as this can be accomplished by comparing only the list of
EPCs. More detailed product data approaching the 5 KB per item limit may be
necessary for tracking operations, but a lot of the static data can be cached at the
SKU level. To properly support tracing operations, however, you must account
for the persistent storage requirements of the tracking data, which could grow
well beyond the 5 KB of static data, and depends on a combination of factors
including the number scans performed, the amount of data gathered, and the
method used to persist the data to a data store for later mining.

If 1 trillion items are traded in a year, and each has about 5 KB of static product
data associated with it, the data storage requirement for these items is about 960
GB.

((1 trillion items) * (5 KB/item)) / ((1024 KB/MB) * (1024 MB/GB)) ~
960 GB

If over it's lifetime each product amasses an additional 20 KB of tracking data,
then we are looking at 3.84 TB of historical data each year:

((1 trillion items) * (20 KB/item)) / ((1024 KB/MB) * (1024 MB/GB) *

(1024 GB/TB)) ~ 3.84 TB

Note that all of the calculations just presented assume that each item is treated
individually. If instead you treated the items as the SKU level (no item
serialization), then the storage requirements are dropped by several orders of
magnitude, and are in fact more in line with current storage requirements. The
numbers presented herein are subject to interpretation, and are meant only to
provide a rough order of magnitude analysis.

Also note that some retailer's data requirements currently approach 250 TB of
data each year, and that is without the granularity imposed by serialized EPC
product data. These numbers and formulas are meant as a reference, and should
be adjusted as situations dictate.

Sample Messages

Introduction
This section presents complete examples of the various electronic messages
formats considered. It concludes with a summary of the different formats.

PML Core
The following is a UML class diagram representing the PML Core [93].

68

EPCTagType PhysicalPropertyType
Mnem ory

Esensor

PhysicalProperty

EPCTag Etyp e : Phys icalPropertyType
*minOcurs = 0

e: EPCTagType Emaxoccurs
inOccurs = 0

EmaxOccurs
Nam e

Etype :cd:NameType
Memory

type: cct:TextType
Em inOccurs = 0 Meas ure

*type: cct:MeasureType

Sensor

type: SensorType SensorType
EminOccurs = 0
EmaxOccurs

ObservationType

Observation

Etype : ObservationType
maxoccurs

DateTime

Etype: cd:DateTimeType

Command

type: cct:TextType
Eminoccurs = 0

D ata
Etype : cct:TextType
Em inOccurs = 0

rmaxOccurs

Figure 20 UML Class Diagram of PML Core [93]

Here is a sample Core PML message that provides a list of EPCs:

<?xml version="1.0" encoding="UTF-8"?>
<pmlc:Sensor
xmlns:pmlc="urn:autoidcenter:pml:Core:1.0:0.50"
xmlns:xsi="http: //www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="urn:autoidcenter:pml:Core:1.0:0.50
PMLLibraryCore . xsd">

<ID>01.0000A89.035F23.000169DC1</ID>
<Observation>

<ID>000345869</ID>
<DateTime>2003-05-19T13:04:34-06:00</DateTime>
<Tag>

<ID>01.0000A89.00016F.000169DC1</ID>

</Tag>
<Tag>

<ID>01.0000A89.00016F.000169DC3</ID>
</Tag>
<Tag>

<ID>01.0000A89.00016F.000169DC4</ID>
</Tag>

</Observation>
</pmlc: Sensor>

69

~1

SOAP
SOAP can be used to wrap a message, and it can also be used for Remote
Procedure Calls (RPC). The following is an example of a simple SOAP wrapper
for a remote request that uses a method called ONSLookup using an EPC code:

POST /ONS HTTP/1.1
Host: www.autoidcenter.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<soap: Envelope
xmlns:soap="http: //www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.autoidcenter.org/ons">

<m: ONSLookup>
<m: EPC>

01101010011110010110100111001011110100011010110001101101O1100100
</m: EPC>

</m: ONS Lookup>
</soap: Body>

</soap:Envelope>

A sample SOAP response may take the form:
HTTP/1.1 200 OK
Content-Type: application/soap; charset=utf-8
Content-Length: nnn<?xml version="1.0"?>

<soap: Envelope
xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
soap:encodingStyle="http://www.w3.org/2001/12/soap-
encoding">

<soap:Body xmlns:m="http://www.autoidcenter.org/ons">
<m:ONSLookupResponse>

<m:URL>1.D.69CB.1.0.0.7.1.5.006.epc.objid.net</m:URL>
</m: ONSLookupResponse>

</soap:Body>
</soap:Envelope>

One final example shows a SOAP message sent from the Savant to the BIS server
containing a Core PML Observation:

<s : Envelope
xmlns:s="http://schemas.xmlsoap.org/soap/envelope/">

<s:Body>
<Sensor>

<ID>SAMPLEUHF</ID>

<Observation>
<DateTime>2003-06-17T18:00:00-0700</DateTime>

<Tag>
<ID>8000800424086080</ID>

</Tag>

70

</Observation>
</Sensor>

</s:Body>
</s :Envelope>

Simpl-eb
This section contains sample XML files showing the format of the EAN.UCC's
Simpl-eb messaging. For the Despatch Advice, both a standard message, which is
much like you would see today without EPC data, and an augmented message,
which includes serialized lists of EPCs, are presented.

The Despatch Advice as described by the UCC in DespatchAdvice.xsd was
insufficient, so I had to make two small changes to the schema. In particular, the
following problems were encountered when trying to use the default Simpl-eb
schema definition:

" the "serial" number in the "ItemContainmentType" element was ideal to
transmit EPCs, but it is only 20 characters long

o I changed the type of the "serial" element from "Stringlto20Type"
to "xsd:string"

- The string type has the disadvantage of allowing spaces

" the SSCC (serial shipping container code) is only 18 digits, but the EDI
definition for our example ASN uses 20 digits

* the original DA schema didn't allow you to specify the quantity of items
shipped

O I modified the schema by adding a "quantityContained" element to
the " ItemContainmentType" element

O The original BRD from the UCC includes this element, but it is
missing from the schema (see below)

I noted the following deficiency with the Simpl-eb schema:

* No carrier details

One final note:

Simpl-eb uses identifier (GLN) to represent parties whereas EDI uses Name and
ID code

Simpl-eb Order
The following is a sample Order using the EAN.UCC business-messaging format:

<order>

<creationDate>06/20/03</creationDate>
<documentStatus>ORIGINAL</documentStatus>

<contentVersion>1.l</contentVersion>
<documentStructureVersion>1.l</documentStructureVersion>
<lastUpdateDate>06/20/03</lastUpdateDate>
<movementDate>06/21/03</movementDate>

71

<movementDateType>REQUESTED_PICKUP</movementDateType>

<!-- Pampers Bibsters-->
<line Item>

<number>O</number>
<requestedQuantity>2</requestedQuantity>
<itemIdentification>

<gtin>037000401803</gtin>
</itemIdentification>

</lineItem>
<!-- Bounce -- >

<lineItem>
<number>O</nurber>
<requestedQuantity>1</requestedQuantity>
<itemIdentification>

<gtin>037000801689</gtin>
</itemIdentification>

</lineItem>
<buyer>

<gln>!146@@760?7@@718</gln>
</buyer>
<seller>

<gln>!146@@760?9@@719</gln>
</seller>

<typedEntityIdentification>
<entityIdentification>

<uniqueCreatorIdentification>Order 1

</uniqueCreatorIdentification>
</entityIdentification>

</typedEntityIdentification>
</order>

Simpl-eb Despatch Advice Quantity Counts
This section addresses how to include count information using Simpl-eb.
Referring to the UML class diagram from the Business Requirements Document
(BRD) for Despatch Advice [101], consider the situation where you want to
describe a pallet containing 3 cases with each case containing 10 units.

From root class DespatchAdvice there are one or more DespatchItems (1). The
Despatchltem can be represented as either a TradeltemUnit (2) or a LogisticsUnit
(2). Once the selection has been made, there is an ItemContainment (3), which
then allows for quantityContained (4).

72

Business Process: DELIVER: Despatch Advice

+del k ryNote
+consignmentNumber +orderNumber

0-1 1

Rs*QOr.

L1

Despatchtem TradeftemUnit

1..

Specifoftemata Tmne+cionmtemntt

LogisticUnit s +itemsContainted m~ an1] d Dat e-. d t.A
sid: SSCC 1.n Da

+containedkemlD

+listForEachftem
+extendedAttributes

0.. n 0..1 +quanrtityConytain

SpecifickemData TransactionalkemrvDataI

seral0.1]:Stn9 itemlExpirationDate[O.1] : Date urtY

loBt ubrO.11: Strn OPM Ew'"ad ceWS T Me)

Figure 21 UML Class Diagram for Despatch Advice [101]

So using the example mentioned above:

* 1 Pallet with

* 3 Cases

* 10 Units per case

There will be one Despatchltem for the 1 pallet represented as a LogisticsUnits.
From there ItemContainment will be used twice:

* Once for the Cases with the appropriate GTIN and quantity

* Second for the Each with the appropriate GTIN and quantity

73

PAlty enekStOM

0.1 1 1 1+buyer tOMo

+carrier +sel r

+a ipTo
TypecEintjtyWdeftWitn

mom Enll? 10d"oto)
I

For the purposes of this thesis, I skipped the Case GTINs and used only the
Package GTINs, as I used individual packages. See Simpl-eb DA Standard and
Simpl-eb DA Augmented later in the appendix for XML instance examples.

Simpl-eb Despatch Advice - Standard
The following is a complete sample Despatch Advice using the EAN.UCC
business-messaging format. Note how the "quantityContained" element is used to
indicate scanned quantities:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by
Timothy P. Milne (MIT Auto-ID Center) -- >
K!--

<eanucc:envelope
xmlns:xsi="http: //www.w3.org/2001/XMLSchema-instance"
xmlns :eanucc="http: //www. uc-

council.org/smp/schemas/eanucc"
xsi:noNamespaceSchemaLocation="EanUccProxy.xsd"
communicationVersion="1.1">

<!-- prolog for xml spy & xsv-->

<eanucc:envelope

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns :eanucc="http: //www.uc-

council.org/smp/schemas/eanucc"
xsi: schemaLocation="http: //www.uc-

council. org/smp/schemas/eanucc
As2Envelope.xsd http://www.uc-

council. org/smp/schemas/eanucc
Transaction.xsd http://www.uc-

council. org/smp/schemas/eanucc
DocumentCommand.xsd http://www.uc-

council.org/smp/schemas/eanucc

DespatchAdviceAutoID.xsd" communicationVersion="1. 1">

<messageHeader creationDate="2001-08-02T12:00:00">
<userId>ProctorAndGamble</userId>
<password>SECRET</password>

<messageIdentifier>938890001</messageIdentifier>
<to>

<gln>0011223344556</gln>
</to>
<from>

<gln>9988776655443</gln>
</from>
<representingParty>

<gln>0011223344556</gln>
</representingParty>

</messageHeader>

<body>
<eanucc:transaction>

<entityIdentification>
<uniqueCreatorIdentification>A-BIZ-TRANS-12345
</uniqueCreatorIdentification>

<contentOwner>

<gln>9988776655443</gln>

74

</contentOwner>
</entityIdentification>
<command>

<eanucc:documentCommand>
<documentCommandHeader type="ADD">

<entityIdentification>
<uniqueCreatorIdentification>

A-BIZ-ITEM-12345
</uniqueCreatorIdentification>
<contentOwner>

<gln>9988776655443</gln>
</contentOwner>

</entityIdentification>
</documentCommandHeader>
<documentCommandOperand>

<eanucc:despatchAdvice
creationDate="2003-05-28T12:13:14"
documentStatus="ORIGINAL"
contentVersion="1.1.1"
documentStructureVersion="1.1.1"
lastUpdateDate="2003-05-28">
<estimatedDeliveryDate>

<date>2003-08-28</date>
</estimatedDeliveryDate>
<typedEntityIdentification
entityType="DESPATCHADVICE">
<entityIdentification>

<uniqueCreatorIdentification>
A-BIZ-TRANS12345

</uniqueCreatorIdentification>
<contentOwner>

<gln>9988776655443</gln>
</contentOwner>

</entityIdentification>
</typedEntityIdentification>
<buyer>

<gln>0011223344556</gln>
</buyer>
<seller>

<gln>9988776655443</gln>
</seller>
<shipTo>

<gln>0011223344556</gln>
</shipTo>
<carrier>

<gln>9988776655443</gln>
</carrier>
<deliveryNote number="12">

<date>2003-06-28</date>
</deliveryNote>
<orderNumber number=

"0094-4316399-0577">
<dateTime>

2003-04-23T12:13:14
</dateTime>

</orderNumber>
<consignmentNumber number="06716420">

75

<date>2003-04-29</date>
</consignmentNumber>
<actualShipDate>

<date>2003-04-27</date>
</actualShipDate>
<despatchItem
xsi: type="eanucc: LogisticUnitsType"
number="1" id="100370000014190998">

<!-- Pampers Bibsters-->
<itemsContained>

<containedItemID>
037000401803

</containedItemID>
<quantityContained>

2
</quantityContained>

</itemsContained>
<!-- Bounce -->

<itemsContained>
<containedItemID>

037000801689
</containedItemID>
<quantityContained>

1
</quantityContained>

</itemsContained>
</despatchItem>

</eanucc:despatchAdvice>
</documentCommandOperand>

</eanucc: documentCommand>
</command>

</eanucc:transaction>
</body>

</eanucc:envelope>

Simpl-eb Despatch Advice - Augmented
The following is a complete sample Despatch Advice using the EAN.UCC
business-messaging format that has been augmented to allow lists of EPCs. Note
how the modified "serial" element is used to transmit the list of scanned EPCs:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by
Timothy P. Milne (MIT Auto-ID Center) -- >

<eanucc:envelope
xmlns:xsi="http: //www.w3.org/2001/XMLSchema-instance"
xmlns:eanucc="http: //www.uc-council.org/smp/schemas/eanucc"
xsi:noNamespaceSchemaLocation="EanUccProxy.xsd"
communicationVersion="1.1">

<!-- prolog for xml spy & xsv-->

<eanucc:envelope
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns :eanucc="http: //www.uc-council .org/smp/schemas/eanucc"
xsi: schemaLocation="http: //www.uc-
council.org/smp/schemas/eanucc As2Envelope.xsd

76

http://www.uc-council.org/smp/schemas/eanucc
Transaction.xsd http://www.uc-
council.org/smp/schemas/eanucc DocumentCommand.xsd
http://www.uc-council.org/smp/schemas/eanucc
DespatchAdviceAutoID.xsd" communicationVersion="1.1">

<messageHeader creationDate="2001-08-02T12:00:00">
<userId>ProctorAndGamble</userId>
<password>SECRET</password>
<messageIdentifier>938890001</messageIdentifier>
<to>

<gln>0011223344556</gln>
</to>
<from>

<gln>9988776655443</gln>
</from>
<representingParty>

<gln>0011223344556</gln>
</representingParty>

</messageHeader>
<body>

<eanucc:transaction>
<entityIdentification>

<uniqueCreatorIdentification>
A-BIZ-TRANS-12345

</uniqueCreatorIdentification>
<contentOwner>

<gln>9988776655443</gln>
</contentOwner>

</entityIdentification>
<command>

<eanucc:documentCommand>
<documentCommandHeader type="ADD">

<entityIdentification>
<uniqueCreatorIdentification>

A-BIZ-ITEM-12345
</uniqueCreatorIdentification>
<contentOwner>

<gln>9988776655443</gln>
</contentOwner>

</entityIdentification>
</documentCommandHeader>
<documentCommandOperand>

<eanucc:despatchAdvice
creationDate="2003-05-28T12:13:14"
documentStatus="ORIGINAL"
contentVersion="1.1.1"
documentStructureVersion="1.1.1"
lastUpdateDate="2003-05-28">
<estimatedDeliveryDate>

<date>2003-08-28</date>
</estimatedDeliveryDate>
<typedEntityIdentification
entityType="DESPATCHADVICE">
<entityIdentification>

<uniqueCreatorIdentification>
A-BIZ-TRANS12345

</uniqueCreatorIdentification>

77

<contentOwner>
<gln>9988776655443</gln>

</contentOwner>
</entityIdentification>

</typedEntityIdentification>
<buyer>

<gln>0011223344556</gln>
</buyer>
<seller>

<gln>9988776655443</gln>
</seller>
<shipTo>

<gln>0011223344556</gln>
</shipTo>
<carrier>

<gln>9988776655443</gln>
</carrier>
<deliveryNote number="12">

<date>2003-06-28</date>
K/deliveryNote>
<orderNumber number=

"0094-4316399-0577">
<dateTime>

2003-04-23T12:13:14
</dateTime>

K/orderNumber>

KconsignmentNumber number="06716420">
<date>2003-04-29</date>

K/consignmentNumber>

KactualShipDate>
<date>2003-04-27</date>

</actualShipDate>
<despatchItem
xsi:type="eanucc:LogisticUnitsType"
number="1" id="100370000014190998">

<!-- Pampers Bibsters-->
<itemsContained>

<containedItemID>
037000401803

</containedItemID>
<listForEachItem>

<serial>
1.0000A89.00016F.000169DC1

</serial>
</listForEachItem>
<listForEachItem>

<serial>
1.0000A89.00016F.000169DC2

</serial>
</listForEachItem>

</itemsContained>
<!-- Bounce -- >
<itemsContained>

<containedItemID>
037000801689

</containedItemID>
<listForEachItem>

78

<serial>
01.0000A89.003014.000169AB1

</serial>
</listForEachItem>

</itemsContained>
</despatchItem>

</eanucc:despatchAdvice>
</documentCommandOperand>

</eanucc: documentCommand>
</ command>

</eanucc:transaction>
</body>

</eanucc: envelope

UBL
This section contains sample XML files showing the format of the ebXML based
UBL messages. Like Simpl-eb, this section contains both standard and
augmented versions of the messages, without and with EPCs respectively.

It should be noted that unlike Simpl-eb, UBL does provide a Receipt Advice
(RA). Unfortunately, the format of the RA must exactly match the corresponding
DA (meaning there must be a 1:1 correlation between the DespatchLines in the
DA and the ReceiptLines in the RA). If you want to transmit detailed EPC
information in the RA, it will have to be broken down into separate Logistical
Units for each EPC, and this will force the original DA to be similarly formatted
(Augmented with EPCs). This means that the sending party will be forced to
transmit all of the EPC scan data in the original message, a situation we are
clearly trying to avoid. In other words, if you use the RA described in UBL
Receipt Advice Augmented, then the original DA should be as outlined in UBL
Despatch Advice Augmented. Bandwidth limitations alone make this an
unattractive option.

UBL Order
UBL provides an order that could have been used. But since Simpl-eb, was used,
the UBL order will not be included here.

UBL Despatch Advice - Standard
The following is a complete sample Despatch Advice using a UBL business-
messaging format. Note how the UPC code is used for the LineID and the
DeliveredQuantity shows the count:

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by
Timothy P. Milne (MIT Auto-ID Center) -- >
<DespatchAdvice
xmlns="urn:oasis:names:tc:ubl:DespatchAdvice:1.0:0.70"

xmlns:cat="urn:oasis:names:tc:ubl:CommonAggregateTypes:1.0:
0.70"
xmlns:cct="urn:oasis:names:tc:ubl:CoreComponentTypes:1.0:0.

70"
xmlns:ccts="urn:oasis:names:tc:ubl:CoreComponentParameters:

79

1.0:0.70" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi: schemaLocation="urn: oasis: names: tc: ubl: DespatchAdvice: 1
.0:0.70
UBLLibraryOp7ODespatchAdvice.xsd">

<cat:ID>99-99-000</cat:ID>
<cat:IssueDate>2003-05-14</cat:IssueDate>
<DeliveryDate>2003-05-19</DeliveryDate>
<LanguageCode>US-ENG</LanguageCode>
<cat:ReferencedOrder>

<cat:BuyersOrderID>
0094-4316399-0577

</cat:BuyersOrderID>
<cat:SellersOrderID>06716420</cat:SellersOrderID>
<cat:IssueDate>2003-02-14</cat:IssueDate>

</cat:ReferencedOrder>
<cat:BuyerParty>

<cat:ID>TO001</cat:ID>
<cat:PartyName>

<cat:Name>Target DC 557</cat:Name>
</cat:PartyName>
<cat:Address>

<cat:ID/>
<cat:Street>413 Spring St.</cat:Street>
<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:Address>
</cat:BuyerParty>
<cat:SellerParty>

<cat:ID>PG0001</cat:ID>
<cat:PartyName>

<cat:Name>
Procter and Gamble Distribution Co.

</cat:Name>
</cat:PartyName>
<cat:Address>

<cat:ID/>
<cat:Street>1 Main Street</cat:Street>
<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>52358</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:Address>
<cat:ShippingContact>

<cat:ID/>
<cat:Name>Door Mat</cat:Name>
<cat:Phone>(763) 865-2194</cat:Phone>

</cat:ShippingContact>
</cat:SellerParty>
<cat:DeliveryRequirement>

<cat:ID/>
<cat:DeliverToAddress>

<cat:ID/>
<cat:Street>413 N Spring St. </cat:Street>
<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

80

</cat:DeliverToAddress>

</cat:DeliveryRequirement>

<!-- Auto-ID: Pampers Bibsters -- >

<cat:DespatchLine>
<!-- Auto-ID: UPC Code -- >
<cat:LineID>037000401803</cat:LineID>
<cat:OrderLineID>1</cat:OrderLineID>

<cat:DeliveredQuantity unitCode="PKG">
2

</cat:DeliveredQuantity>
<cat:DeliverySchedule>

<cat:ID/>

<cat:DeliveryRequirement>

<cat:ID/>
</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID>OCLU1234556</cat:ID>
</cat:ReferencedTransportHandlingUnit>

</cat:DespatchLine>

<!-- Auto-ID: Bounce -- >

<cat:DespatchLine>

<cat:LineID>037000801689</cat:LineID>
<cat:OrderLineID>2</cat:OrderLineID>

<cat:DeliveredQuantity unitCode="PKG">
1

</cat:DeliveredQuantity>
<cat:DeliverySchedule>

<cat:ID/>
<cat:DeliveryRequirement>

<cat:ID/>
</cat:DeliveryRequirement>

</cat: DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID>OCLU1234556</cat:ID>

</cat:ReferencedTransportHandlingUnit>
</cat:DespatchLine>

<cat:ActualShipment>
<cat:ID/>

</cat:ActualShipment>
</DespatchAdvice

UBL Despatch Advice - Augmented
The following is a complete sample Despatch Advice using a UBL business-
messaging format that has been augmented to allow lists of EPCs. Note how the
Logistics Unit can be separated into units of 1 each, with the LineID being used
for the individual EPC codes:

<?xml version="1. 0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by
Timothy P. Milne (MIT Auto-ID Center) -- >
<DespatchAdvice
xmlns="urn:oasis:names:tc:ubl:DespatchAdvice:1.0:0.70"
xmlns:cat="urn:oasis:names:tc:ubl:CommonAggregateTypes:1.0:
0.70"
xmlns:cct="urn:oasis:names:tc:ubl:CoreComponentTypes:1.0:0.

81

xmlns:ccts="urn:oasis:names:tc:ubl:CoreComponentParameters:
1.0:0.70" xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:schemaLocation="urn:oasis:names:tc:ubl:DespatchAdvice:1
.0:0.70
UBL Library Op70 DespatchAdvice.xsd">

<cat:ID>99-99-000</cat:ID>
<cat:IssueDate>2003-02-14</cat:IssueDate>

<DeliveryDate>2003-05-19</DeliveryDate>
<LanguageCode>US-ENG</LanguageCode>
<cat:ReferencedOrder>

<cat:BuyersOrderID>0094-4316399-0577
</cat:BuyersOrderID>

<cat:SellersOrderID>06716420</cat:SellersOrderID>
<cat:IssueDate>2003-02-14</cat:IssueDate>

</cat:ReferencedOrder>
<cat:BuyerParty>

<cat:ID>T0001</cat:ID>
<cat:PartyName>

<cat:Name>Target DC 557</cat:Name>
</cat:PartyName>
<cat:Address>

<cat:ID/>

<cat:Street>413 Spring St.</cat:Street>
<cat:CityName>OCONOMOWOC</cat:CityName>

<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:Address>
</cat:BuyerParty>
<cat:SellerParty>

<cat:ID>PG0001</cat:ID>
<cat:PartyName>

<cat:Name>Procter and Gamble Distribution Co.

</cat:Name>

</cat:PartyName>

<cat:Address>

<cat:ID/>

<cat:Street>1 Main Street</cat:Street>

<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>52358</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:Address>
<cat:ShippingContact>

<cat:ID/>
<cat:Name>Door Mat</cat:Name>

<cat:Phone>(763) 865-2194</cat:Phone>
</cat:ShippingContact>

</cat:SellerParty>
<cat:DeliveryRequirement>

<cat:ID/>

<cat:DeliverToAddress>

<cat:ID/>
<cat:Street>413 N Spring St. </cat:Street>

<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

82

</cat:DeliverToAddress>
</cat:DeliveryRequirement>

<!-- Auto-ID: Pampers Bibsters -- >

<cat:DespatchLine>

<!-- Auto-ID: EPC Code -- >

<cat:LineID>01.0000A89.00016F.000169DC1</cat:LineID>
<cat:OrderLineID>1</cat:OrderLineID>

<cat:DeliveredQuantity
unitCode="PKG">1</cat:DeliveredQuantity>

<cat:DeliverySchedule>
<cat:ID/>

<cat:DeliveryRequirement>

<cat:ID/>
</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID/>

</cat:ReferencedTransportHandlingUnit>

</cat:DespatchLine>

<cat:DespatchLine>

<!-- Auto-ID: EPC Code -- >

<cat:LineID>01.0000A89.00016F.000169DC2</cat:LineID>
<cat:OrderLineID>1</cat:OrderLineID>

<cat:DeliveredQuantity
unitCode="PKG">1</cat:DeliveredQuantity>

<cat:DeliverySchedule>
<cat:ID/>

<cat:DeliveryRequirement>
<cat:ID/>

</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID/>

</cat:ReferencedTransportHandlingUnit>

</cat:DespatchLine>
<!-- Auto-ID: Bounce -- >

<cat:DespatchLine>
<!-- Auto-ID: EPC Code -- >

<cat:LineID>01.0000A89.003014.000169AB1</cat:LineID>
<cat:OrderLineID>1</cat:OrderLineID>

<cat:DeliveredQuantity
unitCode="PKG">l</cat:DeliveredQuantity>

<cat:DeliverySchedule>
<cat:ID/>

<cat:DeliveryRequirement>
<cat:ID/>

</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID/>
</cat:ReferencedTransportHandlingUnit>

</cat:DespatchLine>
<cat:ActualShipment>

<cat:ID/>
</cat:ActualShipment>

</DespatchAdvice

83

UBL Receipt Advice - Augmented
The following is a complete sample Receipt Advice using a UBL business-
messaging format that has been augmented to allow lists of EPCs. It shows how
the Logistics Unit can be separated into units of 1 each, with the ID being used for
the individual EPC codes (Note how the first Pampers Bibster is missing, and
specified as a short):

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XML Spy v4.4 U (http://www.xmlspy.com) by

Timothy P. Milne (MIT Auto-ID Center) -- >
<ReceiptAdvice
xmlns="urn:oasis:names:tc:ubl:ReceiptAdvice:1.0:0.70"

xmlns:cat="urn:oasis:names:tc:ubl:CommonAggregateTypes:1.0:

0.70"
xmlns: cct="urn:oasis:names: tc:ubl:CoreComponentTypes:1.0:0.

70"
xmlns: ccts="urn : oasis : names : tc: ubl: CoreComponentParameters:

1.0:0.70" xmlns:xsi="http://www.w3.org/2001/XMLSchema-
instance"
xsi: schemaLocation="urn: oasis: names: tc: ubl: ReceiptAdvice: 1.
0:0.70
UBL Library Op70 ReceiptAdvice.xsd">

<cat:ID>99-99-000</cat:ID>

<cat:IssueDate>2003-02-14</cat:IssueDate>
<cat:ReferencedDespatchAdvice>

<cat:ID>99-99-000</cat:ID>
<cat:IssueDate>2003-05-14</cat:IssueDate>

</cat:ReferencedDespatchAdvice>

<cat:BuyerParty>

<cat: ID>TO001</cat: ID>
<cat: PartyName>

<cat:Name>Target DC 557</cat:Name>
</cat:PartyName>

<cat :Address>

<cat: ID/>

<cat:Street>413 Spring St.</cat:Street>

<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat :Address>
</cat:BuyerParty>

<cat:SellerParty>

<cat:ID>PGOOO1</cat:ID>
<cat: Part yName>

<cat:Name>Procter and Gamble Distribution Co.

</cat:Name>

</cat:PartyName>

<cat :Address>
<cat: ID/>

<cat:Street>1 Main Street</cat:Street>

<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>52358</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:Address>
<cat:ShippingContact>

84

<cat: ID/>
<cat:Name>Docr Mat</cat:Name>

<cat:Phone>(763) 865-2194</cat:Phone>
</cat:ShippingContact>

</cat:SellerParty>
<cat:DeliveryRequirement>

<cat:ID/>

<cat:DeliverToAddress>

<cat:ID/>

<cat:Street>413 N Spring St. </cat:Street>
<cat:CityName>OCONOMOWOC</cat:CityName>
<cat:PostalZone>53066</cat:PostalZone>
<cat:CountrySub-Entity>USA</cat:CountrySub-Entity>

</cat:DeliverToAddress>

K/cat:DeliveryRequirement>

<!-- Auto-ID: Pampers Bibsters -- >

<cat:ReceiptLine>

<!-- Auto-ID: EPC Code -- >

<cat:ID>01.0000A89.00016F.000169DC1</cat:ID>
<!-- Auto-ID: The next two lines indicate a short -- >

<cat : ReceivedQuantity
unitCode="PKG">0</cat:ReceivedQuantity>

<cat: ShortQuantity unitCode="PKG">
1

</cat:ShortQuantity>
<cat:ReceivedDate>2003-05-19</cat:ReceivedDate>
<cat:DeliverySchedule>

<cat:ID/>
<cat:DeliveryRequirement>

<cat:ID/>
</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID/>
</cat:ReferencedTransportHandlingUnit>

</cat:ReceiptLine>
<cat:ReceiptLine>

<!-- Auto-ID: EPC Code -- >

<cat:ID>01.0000A89.00016F.000169DC2</cat:ID>
<cat:ReceivedQuantity
unitCode="PKG">1</cat:ReceivedQuantity>
<cat:ReceivedDate>2003-05-19</cat:ReceivedDate>
<cat:DeliverySchedule>

<cat:ID/>

<cat:DeliveryRequirement>

<cat:ID/>
</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat:ID/>
</cat:ReferencedTransportHandlingUnit>

</cat:ReceiptLine>
<!-- Auto-ID: Bounce -- >

<cat:ReceiptLine>

<!-- Auto-ID: EPC Code -- >

<cat:ID>01.0000A89.003014.000169AB1</cat:ID>
<cat:ReceivedQuantity

85

unitCode="PKG">1</cat: ReceivedQuantity>
<cat:ReceivedDate>2003-05-19</cat:ReceivedDate>
<cat:DeliverySchedule>

<cat: ID/>
<cat:DeliveryRequirement>

<cat: ID/>
</cat:DeliveryRequirement>

</cat:DeliverySchedule>
<cat:ReferencedTransportHandlingUnit>

<cat: ID/>
</cat:ReferencedTransportHandlingUnit>

</cat:ReceiptLine>
</ReceiptAdvice

EDI
This section contains sample EDT documents showing the EDI format of the
business messages. No augmented version of the EDT will be presented.

EDI 856 Advanced Shipping Notification - Traditional
This section contains a traditional EDT 856, or Advanced Shipping Notification,
with annotations describing the qualifiers. Note how minimal the line qualifiers
are, resulting in compact message [102].

EDI Notes

86

ISA*00* *00* *08*9251590000
*08*6111470100 *030428*0046*U*00401*000093900*0*P*>

GS*SH*9251590000*6111470100*20030428*0046*93889*X*004010

ST*856*938890001 Message ID
BSN*00*06716420*20030428*0034*0001 Shipment Number,

Date & Time Ship
Notice Created

HL*1**S
P04********16*CF
TD1*CTN25*10****G*203*LB
TD5*B*2*P&G*M*P&G Carrier Details
TD3*TL**8520

REF*BM*06716420 Bill of Lading
(same as
Shipment Number)

REF*MB*00370002072118207 Master Bill of
Lading

DTM*011*20030427 Ship Date
DTM*067*20030429 Arrive Date
FOB*PP*DE

N1*SF*PROCTER & GAMBLE DISTRIBUTING CO.*9*001902212WY00 Ship from
Organization

N4*WEST BRANCH*IA*52358 Ship from Location
(City, State, Zip)

N1*ST*TARGET DC 557*92*0557 Ship to
Organization

N4 *OCONOMOWOC*WI*53066 Ship to Location
(City, State, Zip)

HL*2*1*O Hierarchical Level
(Order)

TD1*CTN25*10****G*203*LB

Customer
Purchase Order
Number and Date

REF*IA*3872918 Internal Vendor
Number

N1*BY*TARGET DC 557*92*0557

HL*3*2*T Hierarchical Level
(Tare)

MAN*GM*00100370000014190998 SSCC (Serial
Shipping Container
Code)

HL*5*4*P Hierarchical Level
(Pack)

LIN**UA*00370004018036*LT*3025BL01XX UPCCase Code
(GTIN) and
Product and Lot ID

SN1**l*CA Number of Cases
shipped

MAN*UC*10370004018036 UCC128 SSCC
HL*7* 6*I Hierarchical Level

(Item)
LIN**UP*037000401803 UPC code

(Bibsters)
SN1** 6*EA Number of Eaches

shipped
P04*1 Case Pack count

or number of
cartons per case, if
there are cartons
in the case

PID*F****35791 PAMP BIBSTERS 6/20 SMALL

HL*9*8*P

LIN**UA*003700080168*LT*3025BL03XX

SN1**l*CA

MAN*UC*10037000801686
HL*11*10*I

LIN**UP*037000801689 UPC code
(Bounce)

SN1**6*EA

P04*1
PID*F****80168 BOUNCE SHT SNGL SC 6/160 CT
HL*13*12*P
LIN**UA*003700040509*LT*3025BL05XX

SN1**l*CA

MAN*UC*10037000405099

HL*15*14*I
LIN**UP*037000405092 UPC code (Swiffer)
SN1**6*EA

P04*1
PID*F****40509 SWIFFER DUSTER 9/5CT KIT

HL*17*16*P

LIN**UA*0037000340394*LT*3025BL07XX

SN1**1*CA
MAN*UC*10037000340393

HL*19*18*I

LIN**UP*037000340393 UPC code
(Cascade)

87

tln - UUjq q'1 J- U33 Imuo . z U U- u uuz -5

P04*1

PID*F****37197 CASC LEMON CITRON

HL*21*20*P

LIN**UA*003700740920*LT*3025BL09XX

SN1**l*CA

MAN*UC*1003700740919

DTM*036*20041130

HL*23*22*I

LIN**UP*03700740919 UPC code
(Metamucil)

SN1**6*EA
P04*1

PID*F****40514 METAMUCIL CAPS 12/100 CT BOTTLE

CTT*23 Number of
Hierarchical Level
Segments

SE*55*938890001

GE*10*938 90

IEA*1* 000 93901

Table 21 Example EDI 856 with Qualifier Annotations

Conclusion
It is not really an option, because Core PML is not an established business
message, but the format of Core PML for transmitting lists of scanned EPCs is the
most succinct of the options herein presented. A close second is the Augmented
Simpl-eb, with the Augmented UBL coming in a distant third. I have not made
the modifications necessary to the EDI format to include EPC codes, but the
standard format of EDI tags carry much less overhead than the XML based
markup. To add EPCs to an EDI document, however, would require a new line
qualifier, and would result in a lot of characters being added to the EDI document
to handle the EPC data. The current EDI user community is hesitant to do this, as
they pay per character of data transmitted.

Source Code

This section contains all of the source code for the loggers and filters used in this
thesis. These code listings provide instructive examples for development projects
using Savant 1.1. It should be noted that the Auto-ID SAG Working Group for
the Savant is currently working a new Savant specification that may alter or
eliminate the fundamental Savant framework and APIs used in this thesis. The
author would like to thank Ben Griffin from Sun Microsystems for his work on
many of these routines.

SoapLogger
The following is a code listing in java of the SoapLogger:

88

* SoapLogger.java
*

* Created on May 19, 2003, 2:37 PM

package com.sun.autoid.savant;

import java.util.Properties;
import java.net.URL;
import java.net.MalformedURLException;

import org.w3c.dom.Document;

import org.autoidcenter.ems.ReaderInterface;
import org.autoidcenter.ems.Event;
import org.autoidcenter.exception.EPMFException;
import org.autoidcenter.exception.EPMFErrorCodes;
import org.autoidcenter.util.EPMFLog;
import com.sun.sjc.jms.ArgParser;

import org.apache.soap.Envelope;
import org.apache.soap.messaging.Message;
import org.apache.soap.util.xml.DOMWriter;

/** A Savant Event Management System logger that forwards
the events as

* SOAP messages encoded in CorePML.
* @author BenGriffin
* @see http://www.inf.ethz.ch/floerkem/pml/
*/

public class SoapLogger extends BatchEventLogger implements
ReaderInterface {

private URL endpointURL = null;
private PMLUtilities pmlUtilities = new PMLUtilitieso;

/** Creates a new instance of SoapLogger
* @param initialization The initialization string
* passed in from the .conf file.
*

* @throws EPMFException if the initialization
* parameters are incorrect.
*/

public SoapLogger(String initialization)
throws EPMFException
super("SoapLogger");
Properties properties =

ArgParser.processArgs(initialization);
String endpoint = properties.getProperty("endpoint");

if (endpoint == null) {
throw new PMFException(

EPMFErrorCodes.BAD LOGGER INITSTRING,
"Missing endpoint name argument");

try {
endpointURL = new URL(endpoint);

} catch (MalformedURLException ex)
throw new EPMFException(

89

EPMFErrorCodes.BADLOGGERINITSTRING,

"Malformed endpoint " + ex.getMessageo);

/** Shuts down this the logger */
public void shutdown()

/** Create a CorePML document from all the queued
* events, and send them to the <i>endpoint</i> via a
* soap message.

protected void packageAndSendEvents()

try {
Document doc = pmlUtilities.createCorePMLDocument(

recentEvents);

if (doc != null) {
Envelope msgEnv =

SOAPUtils.toSOAPEnvelope(
doc.getDocumentElement());

// send the message

Message msg = new Message();

EPMFLog.debug("About to send xml: " +
DOMWriter.nodeToString(

doc.getDocumentElement()));

EPMFLog.debug("Sending to endpoint: " +

endpointURL.toString());
msg. send(_endpointURL,

"urn:this-is-the-action-uri ", msgEnv);

catch (Exception ex

EPMFLog.error(EPMFErrorCodes.MODEMS,

"SoapLogger received an Exception while " +
"logging events",
ex);

/** Test routine to populate the queue with a few events

* then send them out via a soap message **/
public static void main(String args[l) {

try {

SoapLogger soaplogger = new
SoapLogger(

"endpoint=http://localhost:8080/

quiet time=5000");
soaplogger.addEvent(

new Event(

Event.EPCEVENT,System.currentTimeMillis(),

"TAG-EPC",
"READEREPC"));

soaplogger.addEvent(
new Event(

Event.EPCEVENT,System.currentTimeMillis(,

90

"TAG-EPC2",

"READEREPC"));

soaplogger.addEvent(
new Event(

Event.EPCEVENT,System.currentTimeMillis(),

"TAG-EPC3",

"READEREPC"));

soaplogger.packageAndSendEvents();

} catch (Exception ex
System.out.println(

"Error" + ex + ex.getMessage());
ex.printStackTrace();

}

EnterOnlyFilter
The following is a code listing in java of the EnterOnlyFilter:

* EnterOnlyFilter.java
*

* Created on June 12, 2003 1:33 PM

package com.sun.autoid.savant;

import java.util.Timer;

import java.util.HashMap;
import java.util.TimerTask;
import java.util.Properties;
import java.util.Iterator;

import com.sun.sjc.jms.ArgParser;

import org.autoidcenter.ems.EventFilterInterface;

import org.autoidcenter.ems.ReaderInterface;
import org.autoidcenter.exception.EPMFException;

import org.autoidcenter.exception.EPMFErrorCodes;

import org.autoidcenter.util.EPMFLog;
import org.autoidcenter.ems.Event;
import com.sun.sjc.jms.ArgParser;

/** A Savant filter
*

* @author BenGriffin

public class EnterOnlyFilter implements
EventFilterInterface {

private ReaderInterface loggers[] = null;
private HashMap currentField =new HashMap();

private HashMap newField =new HashMap(;

private int _numPasses = 5;

private int _passNumber = numPasses;

/** Creates a new instance of EnterOnlyFilter.
*

91

public EnterOnlyFilter(String initialization)
throws EPMFException
Properties properties =

ArgParser.processArgs(initialization);

_numPasses =
Integer.parseInt(

properties.getProperty("number ofpasses"));

if (_numPasses <= 0) {
throw new EPMFException(

EPMFErrorCodes.BAD LOGGER INIT STRING,
"invalid number of passes argument");

/** Is called when an epc is read by the reader.
* @param timestamp The time the epc was read.
* @param epc String containing the epc.
* @param readerEPC The identifier of the reader that
* saw the tag.

public void logEpcEvent(long timestamp,
String epc, String readerEPC) {
try {

Event event =
new Event(

Event.EPCEVENT,timestamp,epc,readerEPC);
newField.put(event.getEpc(),event);
if (!currentField.containsKey(event.getEpc())

currentField.put(event.getEpc(),event);
if (loggers != null) {

for (int i = 0; i < loggers.length; i++)
loggers[i].logEpcEvent(timestamp, epc,

readerEPC);

catch (Exception ex
EPMFLog.error(EPMFErrorCodes.MODEMS,
"EnterOnlyFilter received an Exception while " +
"logging event at
+ timestamp,
ex);

public void logNonEpcEvent(long timestamp,
String readingType,
String value, String readerEPC)
if (loggers != null) {

for (int i = 0; i < loggers.length; i++)
loggers[il.logNonEpcEvent(timestamp,

readingType, value,
readerEPC);

92

public void logStatusEvent(long timestamp,
String statusMessage) {
if (statusMessage.startsWith("PASS DONE")

if (_passNumber-- <= 0) {

_passNumber = _numPasses;
cleanUpCurrentField();

if (loggers != null
for (int i = 0; i < loggers.length; i++

loggers[i].logStatusEvent(timestamp,

statusMessage);

public void setListeners(

ReaderInterface[] readerInterface)

throws org.autoidcenter.exception.EPMFException {

loggers = readerInterface;

protected void cleanUpCurrentField()
7/ remove all the events that haven't been seen since
// the last checkpoint find all the events that are
// not in newField but are in currentField

Iterator currentKeys =

currentField.keySet().iterator();

while (currentKeys.hasNext())

String key = (String)currentKeys.next();

if (!newField.containsKey(key)

currentKeys.remove();

newField.clear(;

public void shutdown()

PassSmoothingFilter
The following is a code listing in java of the PassSmoothingFilter:

/*
* PassSmoothingFilter.java
*

* Created on May 27, 2003, 10:09 AM
*/

package com.sun.autoid.savant;

import java.util.HashMap;

93

}

import java.util.Properties;

import java.util.Iterator;

import com.sun.sjc.jms.ArgParser;

import org.autoidcenter.ems.EventFilterInterface;
import org.autoidcenter.ems.ReaderInterface;
import org.autoidcenter.exception.EPMFException;

import org.autoidcenter.exception.EPMFErrorCodes;

import org.autoidcenter.util.EPMFLog;
import org.autoidcenter.ems.Event;

/**

* @author BenGriffin

public class PassSmoothingFilter implements
EventFilterInterface {

private HashMap events = new HashMap(;
private ReaderInterface loggers[] = null;

private int _numPasses = 3;

private int _passNumber = 0;

/** Creates a new instance of PassSmoothingFilter */
public PassSmoothingFilter(String initialization)

throws EPMFException

Properties properties =
ArgParser.processArgs(initialization);

_numPasses =
Integer.parseInt(

properties.getProperty("number of passes"));

if (_numPasses <= 0
throw new

EPMFException(

EPMFErrorCodes.BADLOGGERINITSTRING,

"invalid numberofpasses argument");

public void logEpcEvent(long timestamp,
String epc, String
readerEPC)

try {

if (!events.containsKey(epc)

passNumber = 0;

}
events.put(epc,

new Event(

Event.EPCEVENT,timestamp,epc,readerEPC));

catch (EPMFException ex) {

EPMFLog.error(EPMFErrorCodes.MODEMS,

"PassSmoothingFiler received an Exception while
+ "logging event at

+ timestamp,

ex);

94

public void logNonEpcEvent(long timestamp,

String readingType,
String value, String readerEPC) {
if (loggers != null) {

for (int i = 0; i < loggers.length; i++
loggers[i].logNonEpcEvent(timestamp,

readingType, value, readerEPC);

public void logStatusEvent(long timestamp,

String status) {
if (loggers != null

if (status.startsWith("PASS DONE") &&

(passNumber++ > _numPasses)){

passNumber = 0;
// send all the tags in the hashmap & the pass
// event

for (int i = 0; i < loggers.length; i++

Iterator iter = events.values().iterator();

while (iter.hasNext())

Event event = (Event)iter.nexto;

loggers[i].logEpcEvent(
event.getTimestamp(, event.getEpc(),

event.getReaderEpco());

loggers[i].logStatusEvent(timestamp,

status);

events.clear();
else {

for (int i = 0; i < loggers.length; i++
loggers[i].logStatusEvent(timestamp,

status);

public void setListeners(

ReaderInterface[] readerInterface)

throws org.autoidcenter.exception.EPMFException {

loggers = readerInterface;

}

public void shutdown()

EMS.conf
The following shows the contents of the EMS.conf file, and illustrates how the
filters and loggers were assembled in the Savant:

95

}

config database "jdbc:postgresql://localhost/savant "
user "postgres" password "postgres";

logger file logger is org.autoidcenter.ems.logger.ConsoleLogger
startup "name=file logger log type=all
filename=//var/opt/SUNWsavant/pgsql/log/events.log";

logger soaplogger is com.sun.autoid.savant.SoapLogger
startup

"endpoint=http: //192.168.2. 114/supplier/servlet/messagerouter";

filter smoother is com.sun.autoid.savant.PassSmoothingFilter
startup "numberof _passes=3" output (filelogger soaplogger);

filter enter only is com.sun.autoid.savant.EnterOnlyFilter
startup "number of passes=5" output (smoother);

public queue mainqueue size 1000 output (enter-only);

adapter adaptername is
com.oatsystems.ems.adapter.thingmagic.ThingMagicAdapter

startup "polltime=2000 monitor poll time=100000 timeout=5000
reader locations=10.0.0.1/UHFl" for main-queue

SavantController
The following is a code listing in java of my SavantController:

* SavantController.java
*

* Created on June 18, 2003, 11:05 PM

package org.autoidcenter.utils;

/**

* @author tmilne
*/

//Import the java lang package
import java.lang.Runtime;

import java.io. IOException;

//Import the java swing package.
import javax.swing.*;

//Import the java Color package.
import java.awt.Color;

public class SavantController extends javax.swing.JFrame

/** Creates new form SavantController *7
public SavantController()

initComponents();

}

96

/** This method is called from within the constructor to
* initialize the form.

* WARNING: Do NOT modify this code. The content of this
* method is always regenerated by the Form Editor.

private void initComponents()

//GEN-BEGIN:initComponents

jbExit = new javax.swing.JButtono;

jpSavant = new javax.swing.JPanel();
jtbSavant = new javax.swing.JToggleButton();
jtfSavant = new javax.swing.JTextFieldo;

jpAppServer = new javax.swing.JPanel();
jtbAppServer = new javax.swing.JToggleButton();
jtfAppServer = new javax.swing.JTextField(;

addWindowListener(

new java.awt.event.WindowAdapter()
public void windowClosing(

java.awt.event.WindowEvent evt)

exitForm(evt);

jbExit.setText("Exit");
jbExit.addActionListener(

new java.awt.event.ActionListener(

public void actionPerformed(
java.awt.event.ActionEvent evt) {

jbExitActionPerformed(evt);

getContentPane().add(jbExit,
java.awt.BorderLayout.SOUTH);

jpSavant.setLayout(new java.awt.BorderLayout());

jtbSavant.setText(" Start Savant ");

jtbAppServer.setText(sStartAppServer);

jtbSavant.addActionListener(
new java.awt.event.ActionListener()

public void actionPerformed(
java.awt.event.ActionEvent evt) {

jtbSavantActionPerformed(evt);

jpSavant.add(jtbSavant,
java.awt.BorderLayout.CENTER);

jtfSavant.setBackground(java.awt.Color.red);
jtfSavant.setEditable(false);
jtfSavant.setHorizontalAlignment(

javax.swing.JTextField.CENTER);
jtfSavant.setText("Off");

97

jtfSavant.setText(sOff);
jtfSavant.setPreferredSize(new java.awt.Dimension(49,

20));
jtfSavant.setAutoscrolls(false);
jpSavant.add(jtfSavant, java.awt.BorderLayout.SOUTH);

getContentPane().add(jpSavant,

java.awt.BorderLayout.CENTER);

jpAppServer.setLayout (new java.awt.BorderLayout());

jtbAppServer.setText("Start App Server");

jtbAppServer.setText(sStartAppServer);
jtbAppServer.addActionListener(

new java.awt.event.ActionListener()

public void actionPerformed(
java.awt.event.ActionEvent evt) {

jtbAppServerActionPerformed(evt);

jpAppServer.add(jtbAppServer,
java.awt.BorderLayout.CENTER);

jtfAppServer. setBackground (java. awt. Color. red)

jtfAppServer.setEditable(false);

jtfAppServer.setHorizontalAlignment(

javax.swing.JTextField.CENTER);
jtfAppServer.setText("Off");

jtfAppServer.setText(sOff);
jtfAppServer.setPreferredSize(

new java.awt.Dimension(49, 20));

jtfAppServer.setAutoscrolls(false);

jpAppServer.add(jtfAppServer,
java.awt.BorderLayout.SOUTH);

getContentPane().add(jpAppServer,

java.awt.BorderLayout.NORTH);

pack();

}//GEN-END:initComponents

private void jbExitActionPerformed(

java.awt.event.ActionEvent evt)
{//GEN-FIRST:event jbExitActionPerformed

System.exit(0);

}//GEN-LAST:event jbExitActionPerformed

private void jtbSavantActionPerformed(
java.awt.event.ActionEvent evt)

{//GEN-FIRST:event jtbSavantActionPerformed
// Check the button state:

if (evt.getActionCommand().equals(sStartSavant))

{
//Start the Savant.

try{

Runtime.getRuntime().exec(

98

"/opt/SUNWsavant/bin/savant sla7 start");

//Wait for the Savant to start up.
sleep(38);

//Change the state.
jtbSavant.setText (sStopSavant);
jtfSavant.setText (sOn);
jtfSavant.setBackground(cOn);

catch (IOException ex){
JOptionPane.showMessageDialog(this,

"Error: Starting Savant",
"Error", JOptionPane.ERROR MESSAGE);

//Change the state.
jtbSavant.setSelected (false);

else

//Stop the Savant
try{

Runtime.getRuntime().exec(
"/opt/SUNWsavant/bin/savantsla7 stop");

//Wait for the Savant to stop.
sleep(10);

//Change the state.
jtbSavant.setText (sStartSavant);
jtfSavant.setText (sOff);
jtfSavant.setBackground(cOff);

catch (IOException ex){
JOptionPane.showMessageDialog(this,

"Error: Stopping Savant",
"Error", JOptionPane.ERROR MESSAGE);

//Change the state.
jtbSavant.setSelected (true);

}//GEN-LAST:eventjtbSavantActionPerformed

private void jtbAppServerActionPerformed(
java.awt.event.ActionEvent evt)

{//GEN-FIRST:event jtbAppServerActionPerformed
// Check the button state:
if (evt.getActionCommand().equals(sStartAppServer))

//Start the App Server.
try{

Runtime.getRuntime().exec(
"asadmin start-appserv");

//Wait for the App Server to start up.

99

sleep(90);

//Change the state.

jtbAppServer.setText (sStopAppServer);
jtfAppServer.setText (sOn);

jtfAppServer.setBackground(cOn);

catch (IOException ex){

JOptionPane.showMessageDialog(this,
"Error: Starting App Server",

"Error", JOptionPane.ERRORMESSAGE);

//Change the state.
jtbAppServer.setSelected (false);

}
}
else

{
//Stop the App Server
try{

Runtime.getRuntime().exec(

"asadmin stop-appserv");

//Wait for the App Server to stop.

sleep(15);

//Change the state.
jtbAppServer.setText (sStartAppServer);

jtfAppServer.setText (sOff);

jtfAppServer.setBackground(cOff);

catch (IOException ex){

JOptionPane.showMessageDialog(this,
"Error: Stopping App Server",

"Error", JOptionPane.ERRORMESSAGE);

//Change the state.

jtbAppServer.setSelected (true);

}

}//GEN-LAST:event jtbAppServerActionPerformed

/** Exit the Application */
private void exitForm(java.awt.event.WindowEvent evt)

{//GEN-FIRST:eventexitForm

System.exit (0);

}//GEN-LAST:event exitForm

private void sleep(int seconds){

//Calculate milliseconds
int milliseconds = seconds*1000;

//Sleep for the number of seconds passed in

try {

Thread.sleep(milliseconds);
catch (InterruptedException e)

JOptionPane.showMessageDialog(this,

100

"Error: Sleeper interrupted",
"Error", JOptionPane.ERRORMESSAGE);

* @param args the command line arguments

public static void main(String args[]) {
new SavantController().show();

}

// Variables declaration - do not modify//GEN-
BEGIN:variables

private javax.swing.JTextField jtfSavant;
private javax.swing.JToggleButton jtbSavant;
private javax.swing.JButton jbExit;
private javax.swing.JPanel jpSavant;
private javax.swing.JPanel jpAppServer;
private javax. swing.JToggleButton jtbAppServer;
private javax.swing.JTextField jtfAppServer;
// End of variables declaration//GEN-END:variables

private String sStartAppServer = "Start App Server";
private String sStopAppServer = "Stop App Server";
private String sStartSavant = " Start Savant ";

private String sStopSavant = " Stop Savant ";

private String sOn = "On";
private String sOff = "Off";
private Color cOn = Color.green;
private Color cOff = Color.red;

Glossary

a-Biz - Auto-ID Enabled Business
a-Biz is the Auto-ID Joint Project that will eventually consider the integration of
Auto-ID technology with many real world business use-cases, thus enabling
"Automated Business", or a-Biz.

ANSI - American National Standards Institute
The American National Standards Institute is a body that recommends a wide
variety of standards used in North America ranging from weights and measures to
EDI standards.

ASN - Advanced Shipping Notification
The ASN is a document that is sent ahead of the shipped goods to give notice that
they are in transit and to convey the composition of the shipment. Also referred
to as Despatch Advice (DA).

101

ASP - Active Server Pages
Active Server Pages or ASP, as it is more commonly known, is a Microsoft
technology that enables you to make dynamic and interactive web pages. ASP
uses server-side scripting to dynamically produce web pages that are not affected
by the type of browser the web site visitor is using. The default scripting
language used for writing ASP is VBScript, although you can use other scripting
languages like JScript (Microsoft's version of JavaScript).

BIS - Business Information System
Business Information System, or BIS, is the system used to handle information
about commerce transactions.

BOL - Bill of Lading
The BOL is an inventory sent along with a shipment that lists the items in the
shipment and the associated PO(s).

Chargeback
A chargeback is an adjustment made to an invoice to reconcile an error in the
shipment. This results in a credit with the Sending Party. See also Deduction.

Data Channel
A data channel is a pipeline for transmitting data and can include a phone call,
fax, or VAN.

Deduction
A deduction is an adjustment made to an invoice to reconcile an error in a
shipment. This reduces the amount paid to the Sending Party. See also
Chargeback.

Despatch Advice
The DA is a document that is sent ahead of the shipped goods to give notice that
they are in transit and to convey the composition of the shipment. Also referred
to as an Advanced Shipping Notification (ASN).

DNS - Domain Name Service
DNS is an abbreviation for Domain Name Service (or System), a system for
naming computers and network services that is organized into a hierarchy of
domains. DNS naming is used in TCP/IP networks, such as the Internet, to locate
computers and services through user-friendly names.

EAN - European Article Numbering
The EAN system, administered by the EAN International and similar to the UCC
system, is used in Europe.

EAN.UCC
The EAN International and the UCC have joined together under the EAN.UCC to
create open, global, multisectoral standards based on best business practices, and

102

drive their implementation, play a leading role in supply & demand chain
management improvement worldwide.

EDI - Electronic Data Interchange
Developed to allow different programs using proprietary data formats to talk to
each other using an EDI Standard Format.

EDIFACT - Electronic Data Interchange For Administration, Commerce,
and Transportation

EDIFACT is a form of EDI sponsored by the United Nations and is the basis of
international trade and trade within countries that have adopted EDI as their
trading standard.

EMS - Event Management System
Part of the Savant architecture, the EMS connects readers to applications by
managing the event flow generated by the reader. You can write loggers, and
filters to control the destination and flow of the events through the EMS.

EPC - Electronic Product Code
The EPC is the unique code used to identify an object in the Auto-ID
infrastructure. It is similar to other numbering schemes (GTIN, UPC, VIN and
others).

Filter
A filter is used to suppress the amount of data being passed through the Savant's
EMS.

GSMP - Global Standards Management Process
The Global Standards Management Process (GSMP) develops and maintains
standards based solutions for global trade using the enabling EAN.UCC System
Technologies.

GTIN - Global Trade Item Number
The GTIN, administered by the EAN.UCC, assigns a unique number to each
product class, and is globally unique. Ideal for international trade, it does not
include item level serialization.

HTML - Hypertext Markup Language
HTML is based on SGML, and is used for marking up documents suitable for
display in a web browser.

HTTP - Hypertext Transfer Protocol
The hypertext transfer protocol is the protocol used to transmit HTML and related
documents types over the Internet.

103

ISO - International Standards Organization
A network of national standards institutes from 147 countries working in
partnership with international organizations, governments, industry, business and
consumer representatives.

J2EE - Java 2 Enterprise Edition
J2EE is a set of Java based standards for electronic commerce. The J2EE
platform manages the infrastructure and supports the Web services to enable
development of secure, robust and interoperable business applications.

JSP - Java Server Pages
JSP, which stands for Java Server Pages, is a server side technology that controls
the content of web pages through the use of servlets, small programs that are
defined in the web page and run on the server to modify the page before it's
downloaded to the user who requested it. JSP technology is built on top of
servlets, a portable Java program that provides server side processing.

Logger
A logger is used to define the endpoint or destination of an information stream in
the Savant. It can be a database, a flat file, or a port on a remote server that is
waiting for the incoming data.

Message Format
The message format may be an augmented EDI format, an instantiation of
ebXML, UBL or many other payloads that are available.

Mixed Pallet
The procedure where multiple, different items are stacked or "mixed" on the same
pallet. This occurs often with direct store delivery or cross-docking operations,
where pallets are assembled at the manufacturer's site for a specific store to
minimize the handling and reconfiguration in the distribution network that would
otherwise be necessary.

.NET
Microsoft .NET is a set of software technologies for connecting information,
people, systems, and devices. This new generation of technology is based on Web
services-small building-block applications that can connect to each other as well
as to other, larger applications over the Internet.

ONS - Object Naming Service
The Object Naming Service, or ONS, is a component of the Auto-ID framework,
and performs a name resolving function similar to the Domain Naming Service
employed by the Internet today.

104

OSB - Order Shipping Billing
The OSB is a system or suite of processes and tools used to handle all of the
operations involved in the order process from order to payment. It is as much
concept as much as it is an actual system.

PML - Physical Markup Language
The Physical Markup Language is used by the Auto-ID infrastructure to
communicate information about physical objects.

PO - Purchase Order
The PO is sent from the receiving party to the sending party to initiate an order.

RA - Receipt Advice
The RA is a document that is sent by the Receiving Party back to the Sending
Party after the physical goods have been received. The RA is used to signify that
the shipment was ok, or to convey problems about the shipment
(over/under/damage). Also referred to as a Confirmation Receipt.

Receiving Party
Any party receiving a shipment of goods (i.e. retailer, warehouse, etc.).

RFID - Radio Frequency Identification
RFID refers to the transmission of an identification code over an air interface
using radio waves.

Savant
The Savant is a part of the Auto-ID framework. It is a globally distributed server
that serves as a data router performing the functions of data capturing, data
monitoring, and data transmission.

Sending Party
Any party sending goods (i.e. manufacturer, packager etc.).

Shrinkage
A logistics term used for goods that are lost, stolen or damaged in the supply
chain delivery process.

Simpl-eb - Simple Electronic Business
Simpl-eb is a framework or set of business messaging standards being developed
by the UCC for conducting electronic business.

SGML - Standard Generalized Markup Language
SGML is the predecessor of many of the other markup languages in current use,
including HTML and XML. It can be used as a direct markup language, or used
to defme other markup languages. In fact, XML and HTML have been defmed
with SGML. Due to its unwieldy size, it does not enjoy wide spread use.

105

SQL - Structured Query Language
SQL is a structured language used to query and retrieve information from
standard data stores.

SOAP - Simple Object Access Protocol
SOAP is an XML-based protocol (originally written by Microsoft, IBM, and
others) for the message-based exchange of distributed application components
and information. [103]

SRV - Shipping and Receiving Verification
Shipping and Receiving Verification is the process by which perfect orders and
prepared, shipped and received using an Auto-ID enabled mechanism for
verification.

SSCC - Serialized Shipping Container Code
The SSCC is set forth by the EAN.UCC and is used to mark and identify logistics
units during transport. It is unique for a particular aggregate logistics unit, and if
any changes are made it's associated item or bundle of items, it is invalidated and
set aside.

TMS - Task Management System
The TMS is part of the Savant, and coordinates processes initiated by higher level
Savants.

Transporting Party
Any party that transports the goods (i.e. dedicated fleet or third party carrier).

UBL - Universal Business Language
UBL is an ebXML-based business-messaging framework that includes the notion
of Despatch Advice and Receipt Advice, along with other useful business
messages.

UCC - Uniform Code Council
The UCC is a family of wholly-owned subsidiaries, divisions, and partnerships
that connects companies in the supply chain with standards-based solutions that
are universally open, industry-driven, and globally endorsed.

UDDI - Universal Description, Discovery, and Integration
UDDI is a specification (driven initially by IBM, Microsoft, and Ariba) composed
of SOAP application programming interfaces required to enable a service broker
and ultimately simplify inter-enterprise integration. [103]

URI - Uniform Resource Identifier
The generic set of all names/addresses that are short strings that refer to resources.

URL - Uniform Resource Locator
An informal term (no longer used in technical specifications) associated with
popular URI schemes: http, ftp, mailto, etc.

106

URN - Uniform Resource Name
A URI that has an institutional commitment to persistence, availability, etc. Note
that this sort of URI may also be a URL.

Alternately, a particular scheme, urn:, intended to serve as persistent, location-
independent, resource identifiers.

UML - Unified Modeling Language
The Unified Modeling Language, or UML, is a descriptive modeling framework
for modeling the requirements and business processes via Use-Cases, Activity
Diagrams, etc.

UPC - Universal Product Code
A product code published by the EAN.UCC that embeds manufacturer and
product class information.

VAN - Value Added Network
A Value Added Network refers to the dedicated network of telecommunications
equipment, links and services with which companies conduct business using EDI.

Valid XML Document
Follows all of the rules of a well-formed document, but in addition it follows
strictly all the rules set forth in its schema or DTD.

VIN - Vehicle Identification Number
The VIN is used in the automotive industry to uniquely identify individual
vehicles.

Well Formed XML Document
A well-formed XML document follows all of the XML syntax rules, but may not
be valid. To be valid, it must be checked against the DTD or schema. However,
a document need only be well formed for browsers to accept the XMIL that has
already been validated by the server, so there is no need to download the DTD or
schema to the client browser and revalidate.

WSDL - Web Services Description Language
WSDL is an XML vocabulary (driven by IBM, Microsoft, and Ariba) for
describing Web services interfaces, defining the published service operations, and
defining definition the location and binding details of the service. [103]

107

REFERENCES

[1] Netscape Corporation. ECXpert Site Administrator's Handbook The Netscape
ECXpert System Version 1.1. Published September, 1998.
http://developer.netscape.com/docs/manuals/ecxpert/admin/sadmb.htm, July, 2003.

[2] http://www.x12.org, July, 2003.

[3] http://www.ansi.org, July, 2003.

[4] http://www.unece.org/trade/untdid/welcome.htm, July, 2003.

[5] http://www.un.org, July, 2003.

[6] Research on the Slow Adoption of Traditional EDI. Published May, 1996.
http://www.icaris.net/icaris/tradedi.html, July, 2003.

[7] Fu, S. et al, A Practical Approach to Web-Based Internet EDI, IBM IAC, T. J.
Watson Research Center, PO Box 704, Yorktown Heights, NY 10598. Published
1999. http://www.research.ibm.com/iac/papers/icdcsws99.pdf

[8] Steel, K. The Casefor Next Generation EDI, The University of Melbourne,
Department of Computer Science. Published 21 June, 1995.

[9] Hogan, M., XML versus EDI, Published July, 2001.
http://www.esuppliersolutions.com/eu/articles/ContentWire_070401 .htm

[10] Ericson, J., EDI and the Internet, Published Jan, 2002.
http://www.line56.com/articles/default.asp?NewsID=3287

[11] Electronics Industry Data Exchange Association. Traditional EDI via a VAN.
Published March, 2003. http://www.eidx.org/publications/techinfo/techoptl.html,
July, 2003.

[12] ASCX12 Press Release: ASC X12 Defines 2003 Strategic Direction, Develops New
EDI Messages in X12 & XML Formats.
http://www.xl2.org/x1 2org/prdoc.cfn?Name=780, July 2003.

[13] UN-XML EEMA EDI/EC Work Group
http://www.edi-tie.nl/edifact/xml-edi.htm, July, 2003.

[14] Oracle Corporation. Traditional EDI and XML/EDI: A Reality Check
http://www.oracle.com/appsnet/technology/integration/collateral/williams_2.pdf

[15] http://xml.coverpages.org/ni200l-08-22-c.html, July, 2003.

108

[16] http://www.globalcommerceinitiative.org/oas/gci/gci.home, July, 2003.

[17] http://www.uc-council.org, July, 2003.

[18] http://www.rosettanet.org, July, 2003.

[19] http://www.ebxml.org, July, 2003.

[20] http://www.oasis-open.org/committees/tchome.php?wgabbrev--ubl, July, 2003.

[21] The Case for Global Standards: Creating the Business Case for Global Data
Synchronisation in Your Company. Oct 2002. Cap Gemini Ernst & Young/Global
Commerce Initiative.

[22] http://www.autoidcenter.org, July, 2003

[23] Kundapur, N. On Integrating Physical Objects with the Internet, Masters Thesis,
MIT, Cambridge, Massachusetts. Published June, 2000.

[24] Goyal, A., Synchronized Exchange of Material and Information, Masters Thesis,
MIT, Cambridge, Massachusetts. Published May, 2003.

[25] Milne, T.P. Auto-ID Business Use-Case Framework (A-Biz) - Background.
Technical Report MIT-AUTOID-TM-009. The Auto-ID Center, MIT. Cambridge,
Massachusetts. Published Nov 1, 2002. http://www.autoidcenter.org/research.asp

[26] Milne, T.P. Auto-ID Business Use-Case Framework (A-Biz) - Despatch Advice Use-
Case. Technical Report MIT-AUTOID-TM-010. The Auto-ID Center, MIT.
Cambridge, Massachusetts. Published Nov 1, 2002.
http://www.autoidcenter.org/research.asp

[27] Brock, D. L., The Electronic Product Code (EPC) A Naming Scheme for Physical
Objects, White Paper MIT-AUTOID-WH-002. The Auto-ID Center, MIT.
Cambridge, Massachusetts. Published Jan 1, 2001.
http://www.autoidcenter.org/research.asp

[28] http://www.sae.org/technicalcommittees/vin.htm, July, 2003

[29] Saar, S., Thomas, V., Toward Trash That Thinks Product Tags for Environment
Management, Journal of Industrial Ecology, Volume 6, Number 2 P. 133. MIT
Press. http://mitpress.mit.edu/catalog/item/default.asp?sid=4418CA7E-1673-
4EDO-B857-F8C5AB986473&ttype=6&tid=9887

[30] UCC Inc., Serialized Shipping Container Code (SSCC) Implementation Guide.
Published May, 2002 http://www.uc-council.org/eanucc-system/pdf/SSCC.pdf

[31] http://www.eccpage.com, July, 2003.

109

[32] http://web.usna.navy.mil/~wdj/reed-sol.htm, July, 2003.

[33] Adams, R. Bar Code 1. http://www.adams1.com, July, 2003.

[34] Adams, R. 2-Dimensional Bar Code Page.
http://www.adamsl.com/pub/russadam/stack.html, July, 2003.

[35] A Historical Account of Radio Frequency Identification, July, 2003.
http://web.ics.purdue.edu/-pobanz/FinaV/RFID%20history.htm

[36] Eagle, J., RFID: the Early Years 1980-1991. Published Sept, 2002
http://members.surfbest.net/eaglesnest/rfidhist.htm, July, 2003.

[37] Scharfield, T. An Analysis of the Fundamental Constraints On Low Cost Passive
Radio-Frequency Identification System Design. The Auto-ID Center. Cambridge,
Massachusetts. Published Aug 1, 2001.

[38] http://www.rafsec.com/products.htm, July, 2003.

[39] Scharfeld, T., Compliance and Certification: Ensuring RFID Interoperability,
Technical Report MIT-AUTOID-TRO17. The Auto-ID Center, MIT. Cambridge,
Massachusetts. Published June 1, 2003. http://www.autoidcenter.org/research.asp

[40] Overby, C., RFID: The Smart Product (R)evolution. Forrester Research, Cambridge,
MA. Published August, 2002.

[41] Finkenzeller, K., RFID Handbook: Fundamentals and Applications in Contactless
Smart Cards and Identification, 2nd edition, Wiley & Sons LTD, ISBN: 0-470-
84402-7, Published May, 2003.

[42] http://www.rfidjournal.com/article/articleview/477/1/1/, July, 2003.

[43] http://www.w3.org/XML/, July, 2003.

[44] w3c.org, Extensible Markup Language (XML) 1.0 (Second Edition). Published Oct,
2000. http://www.w3.org/TR/2000/REC-xml-20001006, July, 2003

[45] http://www.w3.org

[46] http://www.w3.org/MarkUp

[47] http://www.w3.org/XML/1998/06/xmlspec-report.htm, July, 2003.

[48] http://www.w3.org/XML/Schema, July, 2003.

[49] Kocur, G., Database, Internet and Systems Integration Technologies. Course Notes,
1.264, MIT. Cambridge, Massachusetts. Fall, 2002

110

[50] International Standards Organization, Information processing -- Text and office
systems -- Standard Generalized Markup Language (SGML).
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER= 63
87, July, 2003.

[51] http://www.iso.org, July, 2003.

[52] http://www.ean-ucc.org/global-smp/gsmpsmp.htm, July, 2003.

[53] http://usnet03.uc-council.org/smp/xmlschemasandbusinessmessa.html, July,
2003.

[54] EAN.UCC, Business Modeling Group (BMG) Business Requirements Analysis for
Simple Despatch Advice. Published Jan, 2001. http://www.uc-council.org

[55] http://www.uml.org, July, 2003.

[56] Fowler, M., Scott, K., UML Distilled: A Brief Guide to the Standard Object
Modeling Language, 2nd Edition, Addison-Wesley Publishing Co., ISBN:
020165783X, Published Aug, 1999.

[57] http://usnet03.uc-council.org/smp/schemas.html, July, 2003.

[58] Brock, D. L., The Compact Electronic Product Code, a 64-bit Representation of the
Electronic Product Code, White Paper MIT-AUTOID-WH-008. The Auto-ID
Center, MIT. Cambridge, Massachusetts. Published Nov 1, 2001.
http://www.autoidcenter.org/research.asp

[59] Engels, D., EPC-256: The 256-bit Electronic Product Code Representation.
Technical Report MIT-AUTOID-TR-010. The Auto-ID Center, MIT. Cambridge,
Massachusetts. Published May 1, 2003. http://www.autoidcenter.org/research.asp

[60] Engels, D., The Use of the Electronic Product Code. Technical Report MIT-
AUTOID-TR-009. The Auto-ID Center, MIT. Cambridge, Massachusetts.
Published May 1, 2003. http://www.autoidcenter.org/research.asp

[61] Oat Systems and MIT Auto-ID Center. The Object Name Service - Version 0.5
(Beta). Technical Manual MIT-AUTOID-TM-004. The Auto-ID Center, MIT.
Cambridge, Massachusetts. Published Feb 1, 2002.
http://www.autoidcenter.org/research.asp

[62] Oat Systems and MIT Auto-ID Center. The Savant - Version 0.1 (Alpha), Technical
Manual MIT-AUTOID-TM-003. The Auto-ID Center, MIT. Cambridge,
Massachusetts. Published Feb 1, 2002.http://www.autoidcenter.org/research.asp

[63] Brock, D., Milne, T. P., Kang, Y., Lewis, B. The Physical Markup Language, Core
Components: Time and Place. White Paper MIT-AUTOID-WH-005. The Auto-ID

111

Center, IT. Cambridge, Massachusetts. Published Jun 1, 2001.
http://www.autoidcenter.org/research.asp

[64] Floerkemeier, C., Koh, R.. Physical Mark-Up Language Update. Technical Memo
MIT-AUTOID-TM-006. The Auto-ID Center, MIT. Cambridge, Massachusetts.
Published September 1, 2002. http://www.autoidcenter.org/research.asp

[65] Harrison, M., Moran, H., Brusey, J., McFarlane, D., PML Server Developments,
White Paper CAM-AUTOID-WH-0 15. The Auto-ID Centre, UK. Cambridge,
England. Published Jun 1, 2003. http://www.autoidcenter.org/research.asp

[66] Janakiraman, M., Web Service Standards - A Survey.
http://www.gca.org/papers/xmleurope200l/papers/html/s30-1.html, July, 2003.

[67] Willaert, F., XML-Based Frameworks and Standards for B2B ECommerce.
http://www.ebxml.org/documents/ebxml-thesis.pdf, July, 2003.

[68] http://java.sun.com/j2ee, July, 2003.

[69] http://www-3.ibm.com/software/infol/websphere/index.jsp?tab=products/appserv,
July, 2003.

[70] http://wwws.sun.com/software/products/integration-srvr-eai/homeint_eai.html,
July, 2003.

[71] http://e-docs.bea.com/wls/docs81/index.html, July, 2003.

[72] http://www.borland.com/besappserver/index.html, July, 2003.

[73] http://www.oracle.com/ip/deploy/ias, July, 2003.

[74] http://www.i2.com, July, 2003.

[75] http:// www.manugistics.com, July, 2003.

[76] http://www.sap.com, July, 2003.

[77] W3C.org, SOAP Version 1.2 Part 1: Messaging Framework, published June, 2003,
http://www.w3.org/TR/2003/REC-soap12-part1-20030624, July, 2003

[78] http://www.microsoft.com/net, July, 2003.

[79] http://www.uddi.org, July, 2003.

[80] W3C.org, Web Services Description Language (WSDL) Version 1.2 Part 1: Core
Language, Working Draft, June, 2003, http://www.w3.org/TR/2003/WD-wsdll2-
20030611, July, 2003.

112

[81] http://www.transora.com, July, 2003.

[82] Sarma S., Weis S.A., Engels D.W. RFID Systems, Security, & Privacy Implications.
White Paper MIT-AUTOID-WH-014. The Auto-ID Center. Cambridge,
Massachusetts. Published Nov 1, 2002.

[83] Secure Processing.
http://www.accpac.com/products/exchange/SecureProcessing.asp, July, 2003.

[84] Secure Trading Agent.
http://www.sun.com/software/download/products/Suntm__ONEIntegrationServ
er,_SecureTrading Agent.html, July, 2003.

[85] Moran, H., McFarlane, D., Milne, T., The development of Use Cases as an
alternative approach to identify the impact ofAuto-ID implementations on
Business, White Paper AUTOID-WH-0 16. The Auto-ID Centre, UK. Cambridge,
England. Published Jun 1, 2003. http://www.autoidcenter.org/research.asp

[86] Milne, T., SAG - Shipping and Receiving Use Case. Last Call Working Draft. The
Auto-ID Center. Cambridge, Massachusetts. Published June, 2003.

[87] Roemer, K., Schoch, T., Infrastructure Conceptsfor Tag-Based Ubiquitous
Computing Applications, Department of Computer Science, ETH Zurich. Published
2002

[88] UN/CEFACT, UN/CEFACT ebXML Core Components Technical Specification, Part
1, http://www.unece.org/cefact/ebxml/ebXMLCCTSPart l_Vi-8.pdf, July, 2003.

[89] McConnell, S., Rapid Development: Taming Wild Software Schedules, 1st edition,
Microsoft Press, ISBN: 1556159005, Published July, 1996.

[90] Milne, T. P., Business Information and Industrial Control Action Group: Sub Group
and Use Case Focus Group Methodology, dated 20 November, 2002, unpublished.

[91] http://www.postgresql.org, July, 2003.

[92] http://www.gorillalogic.com, July, 2003.

[93] Core PML Specification. http://www.inf.ethz.ch/~floerkem/pml, July, 2003.

[94] EAN.UCC Inc. https://solutionscenter.uc-council.org/index.cfm, July, 2003.

[95] Koh, R., Schuster, E., Chackrabarti, I., Bellman, A., Securing the Pharmaceutical
Supply Chain, White Paper MIT-AUTOID-WH021. The Auto-ID Center.
Cambridge, Massachusetts. Published Jun 1, 2003.

113

[96] Koh, R., Schuster, E., Lam, N., Prediction, Detection, and Proof An Integrated
Auto-ID Solution to Retail Theft, White Paper MIT-AUTOID-WH022. The Auto-
ID Center. Cambridge, Massachusetts. Published Jun 1, 2003.

[97] http://uri.net and http://uri.net/urn-nid-status.html, July, 2003

[98] http://www.w3.org/Addressing/, July, 2003

[99] http://www.w3.org/TR/2001/NOTE-uri-clarification-20010921, July, 2003.

[100] http://asg.web.cmu.edu/rfc/rfc3305.html, July, 2003.

[101] EAN.UCC, Business Requirements Document (BRD) for Despatch Advice.
Published 2002.

[102] Used with permission of Procter & Gamble Inc. and Target Corporation.

[103] Sholler, D. SOAP, UDDI, and WSDL Defined. Meta Group. Published April 9,
2002. http://techupdate.zdnet.com/techupdate/stories/main/0,14179,2859619-
6,00.html, July, 2003.

114

