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Abstract

Traditional approaches in Model Predictive Control (MPC) suffer from several weaknesses such
as: (a) Satisfying the output constraints over a finite control horizon and guaranteeing closed
loop stability. (b) The need for infinite horizon for robust stability and performance. (c)
Limited representation of plant-model mismatch. (d) Inability to shape frequency response
characteristics of the outputs through systematically selected weights in the objective function.
(e) Significant numerical complexity which depends on the number of input constraints. These
weaknesses are addressed by formulating and solving the MPC in a multiscale (time/scale)
domain. Based on the wavelet transformation of time domain models, the multiscale models are
defined on dyadic or higher-order trees, whose nodes are used to index the values of any variable,
localized in both time and scale (range of frequencies). The objective function, state equations,
output equations and constraints on inputs and outputs are transformed into the multiscale
domain. Moreover, feedback information is also generated for all scales using a multiscale
constrained state estimator, providing rich depiction of the plant-model mismatch (including
modeling errors, external disturbances and measurement noise) than the pure time domain
formulation. This problem formulation: (i) incorporates rich depiction of feedback errors and
provides an environment to identify plant-model mismatch at multiple scales, (ii) it provides
a natural framework for optimum fusion of multirate measurements and control actions. The
solution to this problem, (i) satisfies all the constraints on Inputs and outputs if the problem is
feasible at least over an infinite horizon and (ii) satisfies the frequency response specifications on
the controlled outputs. In addition it reduces the computational load through two very effective
mechanisms. (1) Sets horizon to the required length at each open loop optimization step. (2) It
minimizes the search space for active constraints, because once a constraint is determined to be
active at a scale, all the lower scale depictions of the constraint emanating from that node, will
also be active, and can be solved using parallelized algorithms thus reducing the complexity
further and allowing handling of larger problems with more constraints.

Thesis Supervisor: George Stephanopoulos
Title: A. D. Little Professor of Chemical Engineering
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Chapter 1

Introduction

SO easy it seemed

Once found, which yet unfound most
would have thought

Impossible

John Milton

Fast developments in industry, computer technology and mathematics give rise to a need
to explore more sophisticated control, identification and estimation methodologies in order to
improve process performance in economic, safety, and environmental impact terms.

One of the most important shortcomings of today’s methods is handling of multiscale pro-
cesses, i.e. processes which occur at different scales, at different frequency bands.

In chemical engineering applications multiscale phenomena can appear in many different
occasions:

- Sensors sending data at different sampling rate (measurements are done at different scales)

- Actuators operating at different physical rates ( control actions are exerted at different
scales)

- Different process equipment with different characteristic times

- Chemical reactions with different reaction rates (stiff ODE systems)

- Physical phenomena like mass and heat transport having different characteristic times

- Phenomena like crystallization, turbulence, vortex formation , etc., have multiscale char-

14



acter.

Modeling and identification of thdse processes in a consistent way across scales and their
control requires a Multiscale Analysis and a Multiscale System Theory Framework . Previous
work on Multiscale System Theory by Willsky et al. ( [5], [1], [2], [3]) already indicate the
advantages of working in multiscale domain such as multiscale data fusion, computational
efficiency, statistical optimality, explicit calculation of error statistics, estimates at multiple
resolutions and so forth. |

The developments during the last 10 years in the wavelet theory give us the opportunity to
use wavelets and their multiscale character to establish a Multiscale System Theory Framework.
Benveniste at al.( [5], [1], [2]) studied multiscale state space models defined on binary tree
structures, which are natural extensions of the wavelet theory.

Much of the work on multiscale modeling and identification is done in signal processing field
on image analysis and there is not much active research on multiscale control [6].

This knowledge should be extended to create multiscale models describing chemical pro-
cesses, to identify those models in time-frequency (multiscale) domain, and to control systems
described by these multiscale models.

Our work will describe the basic framework of multiscale modeling and we will explore the
advantages of using Model Predictive Control (MPC) as the advanced control algorithm for
multiscale systems. We will look at first what MPC is and how it works and comment on its
shortcomings related with today’s’ identification and estimation algorithms. We will propose

solutions to these problems using the multiscale system theory.

1.1 Control of Large Scale Systems: MPC

Model Predictive Control refers to a class of control algorithms that compute a manipulated
variable profile by utilizing a process model to optimize a linear or quadratic open loop per-
formance objective subject to constraints over a future time horizon. The first move of this
~open loop optimal manipulated variable profile is then implemented. This procedure is re-
peated at each control interval with the process measurements used to update the optimization

problem [8]

15



Over the years different MPC algorithms are developed. Some of them are listed below:

IDCOM (Identification and Command), DMC (Dynamic Matrix Control), QDMC (Quadratic
Programming DMC), IDCOM-M/S (MIMO and SISO), HIECON ( Hierarchical Constraint
control), PCT (Predictive Control Technology).

In electrical engineering they are called as Receding Horizon Control, Predictive Control,
Generalized Predictive Control. Similar methods gave birth to Model Algorithmic Control,
Internal Model Predictive Control, and others. ‘

MPC has many advantages for applications in chemical process control:

o Flexibility in modeling: State space models, convolution models, input/output models,

linear transfer function models can be used.
e Multivariable systems
e Computational advantages.
e Ability to handle of constraints.
e Ability to handle model uncertainty.
e Incorporation of process nonlinearities.
e Improvement in stability, robustness and performance

For processes with constraints on process input and/or outputs, constrained MPC is cur-

rently the most effective methodology for treating constraints in a systematic way.

1.2 Weaknesses of MPC

Although industrial applications prove the advantages of MPC over traditional PID-like feed-
back controllers, theoretical investigation of issues related to nominal stability and performance,
and robust stability and performance still challenge researchers in this field, especially in cases
- with constraints on inputs and/or states [7].

Robustness of MPC affects its performance and stability through plant-model mismatch and
uncertainty. Performance degradation resulting from plant-model mismatch should be reduced

and it should be ensured that state constraints are met in case of mismatch/uncertainty [4].

16



Traditional approaches suffer from several weaknesses, such as the following:

e Satisfying the output constraints over a finite control horizon while guaranteeing closed

loop stability.

The need for infinite (or very large) control horizon to ensure robust stability and perfor-

mance leads to computationally unrealizable (or very time consuming) algorithms.

e Fairly limited and contrived assumptions for the representation of plant-model mismatch,

Inability to deliberately shape frequency response characteristics through systematic as-

signment of weights in the objective function.

The high he numerical complexity which increases rapidly as to the number of input

constraints increases.

1.3 Shortcomings and Multiscale Domain

Control relevant modeling enhances the performance of the controller and the controlled system
significantly. Existing methodologies in controller design are mainly based on the frequency
domain and cannot handle models involving constraints on inputs and outputs. MPC, which
is capable of handling such constraints, cannot be formulated in frequency domain and thus
cannot utilize the benefits and flexibility of frequency domain controller design techniques,
which include loop shaping, noise reduction, and robustness enhancement etc. In addition to
those issues the major difficulty with today’s modeling and MPC type control strategies is the
computational load. Since all of the frequency bands (scales) should be solved simultaneously
at every open loop optimization step the size of the optimization problem becomes very large
and difficult to solve in the allowed time period. All these weaknesses can be addressed if the
MPC is formulated and solved in a multiscale (time/scale) domain. Solution of the optimization
problem at selected frequency bands would result in a variable horizon control algorithm, that is
- computationally much more efficient compared to the classical MPC. Formulating the problem
in multiscale (time/scale) domain has the additional benefit of allowing the use of frequency
domain type controller design techniques, since the new domain gives access to both scale and

time domains simultaneously.

17



1.4 Multiscale Systems Theory

Multiscale (time/scale or time frequency) formulation of the MPC problem is achieved through
the Multiscale Systems Theory Framework, which is based on the wavelet transformation of time
domain models. These models are defined on dyadic or higher-order trees, whose nodes are used

to index the values of any variable, localized in both time and scale (range of frequencies).

1.5 Addressing the Issues through Multiscale Systems Theory.

The objective function, state equations, output equations and constraints on inputs and outputs
are transformed into the multiscale domain. Moreover, feedback information is also generated
for all scales using a multiscale constrained state estimator, providing a richer depiction of
the plant-model mismatch (including modeling errors, external disturbances and measurement
noise) than the pure time domain formulation.

An initial step with log,(V ) complexity (N being the length of‘the control horizon) de-
termines the upper bound on the required length of the control horizon N , thus allowing a
variable length horizon algorithm. The constrained quadratic programming problem is solved
in the multiscale domain over this horizon, where weighing scales in the objective function
differently provides a natural environment to specify frequency response characteristics of the
controller explicitly. Large weights at higher scales (low frequencies, longer time scales) cause
high frequency controller action and thus fast response, whereas large weights at lower scales
(high frequencies, shorter time scales) cause slower but smoother controller action without high
frequency components.

This problem formulation offers the following advantages:

* Incorporates rich depiction of feedback errors and provides an environment to identify

plant-model mismatch at multiple scales (section 5.4).

e Provides a natural framework for optimum fusion of multirate measurements and control

actions.

» Allows for systematic determination of the weights in the objective function, thus achiev-

ing the desired behavior of the controlled outputs.

18



The solution to this problem (section 4.5):

e satisfies all the constraints on inputs and outputs if the problem is feasible at least over

an infinite horizon,
o satisfles the frequency response specifications at the same time (section 4.4.3),

e minimizes the computational load by setting the horizon to the required length at each

open loop optimization step (section 4.4.1)

® minimizes the search space for active constraints because once a, constraint is determined
to be active at a scale all the lower scales emanating from that node will also be active,

and

e can be obtained using parallel algorithms reducing the complexity further thus allowing

handling of larger problems with more constraints (section 3.6.3).

1.6 Thesis Content

This thesis will delve into these issues and elaborate on their solution. Chapter 2 will introduce
the Model Predictive Control algorithm and its properties. In Chapter 3 we will develop the
multiscale systems theory and show how time domain models can be transformed into the
multiscale domain. In Chapter 4 we will formulate the MPC in time/scale domain and we will
also discuss the algorithm to solve it. Chapter 5 will illustrate through various case studies how
multiscale MPC provides solution to the classical MP(C’s shortcomings. Finally in Chapter 6

we will present our conclusions and make recommendations for future research steps.
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Chapter 2

Model Predictive Control

Model Predictive Control (MPC) belongs to the family of optimal controllers. To be able
to understand its strength and weaknesses the theory of optimal control should be visited
first. A short déﬁnition of optimal control will be followed by the first theoretically sound
implementation of optimal control: Linear Quadratic Regulator. Constraints will be introduced
next and a numerical algorithm to solve such problems will be demonstrated. Finally Model

Predictive Control and its properties will be described in great detail.

2.1 Optimal Control

The optimal control problem can be defined simpiy as: For the continuous-time system, with
the obvious extension to the discrete-time system, one wants to determine the control function
u(t) from among the admissible set which takes the system from the initial state z(0) at time
t=0toa ﬁn-a.l condition or goal such that some suitable performance index is minimized.
Assuming that u? (k) (in discrete-time domain) is the solution of the optimal control prob-

lem, the control law, in which the control is some function of the initial state and time, is:
u® (k) = g[z(0), k] (2.1)

When such a functionality is obtained, the system is said to be operating in an open-loop

manner: that is u% (k) is not an explicit function of z(k). In the same sense, a closed-loop
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control law could have the form:
u® (k) = g [z (k), k] (2.2)

In which the current value of the state variable is included in the functionality. If g is linear in
z (k) the control law will be called a linear control law, and if g does not depend on k (or time)
explicitly the control law is called a stationary control law.

One important member of the optimal control family is the Linear Quadratic Regulator,
which falls into the category of open-loop optimal controllers. The next section will deal with

the histdry, formulation and solution of the LQR.

2.2 LQR Control

Qin and Badgwell [19] describe the development of modern control concepts by indicating that

it can be traced to the work of Kalman in the early 1960’s, who sought to determine when a
linear control system can be said to be optimal ( [9]; [10]). Kalman studied a Linear Quadratic
Regulator (LQR) designed to minimize a quadratic objective function. The process to be

controlled can be described by a discrete-time, deterministic linear state-space model:

Try1 = Azy + Buy (2.3)

e = Cxy

The vector u represents process inputs, or manipulated variables; vector y describes process
output measurements. The vector z represents process states. The state vector is defined
Such that, knowing its value at time k& and future inputs allows one to predict how the plant
will evolve for all future time. Much of the power of Kalman’s work relies on the fact that

this general process model was used. The objective function to be minimized penalizes squared

A input and state deviations from the origin and includes separate state and input weight matrices
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Q and R to allow for tuning trade-offs:

T =37 (lokesly + unssl2) (24)

J=1

where the norm terms in the objective function are defined as follows:
2|3 = 27 Qz ' (2.5)

Implicit in this formulation is the assumption that all variables are written in terms of deviations
from a desired steady-state. The solution to the LQR problem was shown to be a proportional

controller, with a gain matrix K computed from the solution of a matrix Ricatti equation:
ur = —Kay, (2.6)

A more detailed description of the LQR problem including modeling and measurement errors
is given in Appendix A.

The infinite pI'edlCthIl horizon of the LQR algorithm endows the algorithm with powerful
stabilizing propertles it was shown to be stabilizing for any reasonable linear plant (stabiliz-
able and detectable), as long as the objective function weight matrices Q and R are positive
definite. A dual theory was developed to estimate plant states from noisy input and output
measurements, using what is now known as a Kalman Filter. The combined LQR controller
and Kalvman Filter is called a Linear Quadratic Gaussian (LQG) controller. Constraints on
the process inputs, states and outputs were not considered in the development of LQG theory.
Although LQG theory provides an elegant and powerful solution to the problem of controlling
an unconstrained linear plant, it had little impact on control technology development in the

process industries. The most significant of the reasons cited for this failure include ( [22], [6]) :
e constraints
e process nonlinearities
» model uncertainty (robustness)
e unique performance criteria
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e cultural reasons (people,education, etc.)

It is well known that the economic operating point of a typical process unit often lies at the
intersection of constraints [18]. A successful industrial controller must therefore maintain the
system as close as possible to constraints without violating them. In addition, process units
are typically complex, nonlinear, constrained multivariable systems whose dynamic behavior
changes with time due to such effects as changes in operating conditions and catalyst aging.
Process units are also quite individual so that development of process models from fundamental
physics and chemistry is difficult to justify economically. Indeed the application areas where
LQG theory had a more immediate impact, such as the aerospace industry, are characterized
by physical systems for which it is technically and economically feasible to develop accurate
fundamental models. Process units may also have unique performance criteria that are difficult
to express in the LQG framework, requiring time dependent output weights or additional logic
to dehneate different operating modes. However the most significant reasons that LQG theory
failed to have a strong impact ma.y have been related to the culture of the industrial process
control community at the time, in which instrument technicians and control engineers either
had no exposure to LQG concepts or regarded them as impractical.

In the next section we will introduce techniques to solve the above formulation under input

and/or output constraints.

2.2.1 Optimization With Inequality Constraints

To be able to handle the constraints in LQR, one has to introduce a different solution algo-
rithm, which is numerical rather than analytical, as in LQR. The lack of an analytical solution
brings additional burden on proving properties like stability or robustness. Although there are
quite many work-arounds, which we will mention later, there are still no clear answers how to

determine those systems theoretic properties.

- 2.2.2 The Problem Definition

In order to introduce the constraints one should change the formulation and optimality condi-

tions of the optimization problem slightly as follows:
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min J(u) (2.7)

subject to  f(u) <0 (2.8)

The optimal solution can be either on an active constraint or it can be an interior point so

that the constraints are all satisfied and passive. Considering small perturbations around the

optimum’
oJ
dJ = (a) o du 2 0 (29)
_ (oF
df = <%)u° du<0 (2.10)

above inequalities should be satisfied. The same requirement can be expressed as follows, too:

oJ  rof

gl = > ‘ 2.11
gu T =0 220 (2.11)

Furthermore the original optimization function can be modified to incorporate the constraints
H(u, A) = J(u) + AT f(u) ' (2.12)

Then the necessary condition becomes

0H

5o =0 | (2.13)
and

flu) 0, (2.14)
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where

3 20 =0 (2.15)
=0, f(u) <0

Remark 1 The gradient of J with respect to u at a minimum, must be pointed in such a way .

that decrease of J can only come by violating the constmznts

2.2.3 The Numerical Method

There are many different approaches to solve the above formulation. The numerical method

consists of two major steps:

1. Finding a Feasible Point

Find a y such that
flu)<o0 (2.16)

Guess a value for y, and the consider the perturbation

f

af = (2.17)

If certain components of f are greater than zero then the matrix F formed by the infeasible

rows of %:5 should satisfy
Fdu<0 (2.18)

and du should improve f(u + du) towards a feasible solution.
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2. Finding a Feasible Improvement

Using the feasible y we next search for a better objective function value such that

Ju+du) < J(u)
flu+du) < 0

and this can be represented as follows

aJ

ED

aJ
vl du=Hdu <0

2.2.4 Inequality Constraints on the Control Variables

Suppose that there are constraints of the form
C(u,t) <0
and if the Hamiltonian is defined as
H=Xf+J+u7C
then the.necessary condition becomes
Hy=Ju+ X fu+u4TCy =0

with the additional requirements (2.15) and

>0, C=0
i
=0, C<0

(2.19)
(2.20)

(2.21)

(2.22)

(2.24)

(2.25)

Detailed information on these subjects can be found in (3, Applied Optimal Control].
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2.2.5 Example: Bang Bang Control

The following is a nice treatment of the constrained optimal control (from (4, Intro to Optim.
Cont])

Assume parking of a car by manipulating the acceleration

d’z
and

—-a<u<pg (2.27)
Minimize the time T

T
T = / 1dt (2.28)
0 e
subject to (2.26) and (2.27) and
2(0)=0,2(0)=0,2(T)=a, #(T) =0 (2.29)

The inequality constraints can be transformed into the constraint equations
V2 = (u+ a) (B —u) (2.30)

Since v is real (2.27) should be satisfied automatically. Convert the problem to state space

model by
T, = 1 (2.31)
33‘1 = T2 (2.32)
Iy = y (2.33)
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The augmented functional becomes

= 11:2(0) =0
= a,z(T)=0

T
T*=/0 {1+p (22 —d1) +py (u—d2) + 4 12 - (u+@)(B — )]} dt

From this the optimality criterion is (Euler Equations for optimal solution)

OF d (8F\ _
Z4 () -
OF d (8F\ _
8_:1:2"22(6—::‘:2) N
OF d (8F\ _
%‘a(%) =
OF d (9F\ _
E‘E(%) =

0, thatisp; =0
0, thatispy=—p;
0, thatis p2 = u(8—a — 2u)

0, thatis 2vu =0

(2.34)
(2.35)

(2.36)

(2.37)
(2.38)
(2.39)

(2.40)

From here there are 2 possibilities, either 1 = 0 (this does not generate any solution) or v = 0

(which generates the Bang Bang control)

2.3 Introduction to MPC

Who invented predictive control?

-God

-Predictive control is a discovery not an invention but God needs prophets.

Richalet

2.3.1 History

The Model Predictive Control (MPC) methodology has been developed in industry and thor-

oughly implemented to the point where it is now considered a basic tool of the trade of the

process control engineer [6].

The industry addressed the weaknesses of LQR by introducing a more general model based
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control methodology in which the dynamic optimization problem is solved on-line at each control
execution. The differences from LQR being the generality of the objective, the process model
and the application of the computed process input profile, where only the first element of the
profile is fed to the system, the new methodology provided a better and more flexible framework
to handle practical issues. ‘

Although the development and application of MPC technology was driven by the industry,
the idea of using sequential open-loop dynamic optimization' to control a system was not new.
Moving or receding horizon controllers were proposed in early 60’s, but since the quality of the
model based controller depends heavily on the speed of the solution of the open loop dynamic
optimization problem at each execution step, the practical implementation did not occur until
mid 70’s, when digital computers started finding a place in process control industries.

The first description of MPC application was presented by Richalet et al. [22] at a 1976
conference. They called their approach as Model Predictive Heuristic Control (MPHC) and the
algorithm to solve it was called IDCOM (Identification and Command). MPHC formulation
had hard constraints on inputs and/or outputs, a quadratic performance objective function
with a finite prediction horizon, a reference path to follow, and a linear impulse response model
for the plant.

Around the same time Shell Engineers developed their own MPC technology and named it
as DMC, Dynamic Matrix Control [5]. DMC formulation used linear step response model for
the plant, a setpoint to follow rather than a reference path, a quadratic objective with finite
prediction horizon, and a least square type solution for the open loop optimization problem. The
objective function for DMC consists of two parts, one penalizing the deviations of the states and
the other penalizing the deviations of the inputs from their setpoint. This formulation results
in a less aggressive input profile and it provides a degree of robustness to modeling error.

Incorporation of constraints into DMC required a new algorithm to solve the optimization
problem. Shell engineers decided to use Quadratic Programming (QP), which gave the name
QDMC to the new methodology.

Adding constraints to the open loop optimization step begged other issues, though. Feasi-
bility of the QP problem was not guaranteed, and there was no clear way to handle an infeasible

solution. Converting hard constraints into soft ones was not completely satisfactory. Differ-
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ent solutions were proposed to address this problem, and the major idea was prioritization
of the constraints. At the same time translation of control requirements into relative weights
for a single objective function became increasingly difficult. Some researchers proposed the
use of multiple objective functions. These motivations resulted in new algorithms IDCOM-M
(Identification and Command- Multivariable systems) and HIECOM (Hierarchical Constraint
Control).

There are many other variations in the market, but the underlying methodology is the same,

as will be shown more in detail in the following sections.

2.3.2 Properties and Advantages of the Formulation

As its history shows MPC technology has been developed to address the issues encountered in
the industry. As a result its properties reflect the flexibility required for applications in chemical
process control.

A quick glance at the properties would generate a list as below. Some of the properties are

there by design, and some are natural outcomes.

e Flexibility in modeling: State space models, convolution models (finite step response, fi-

nite impulse response models), input/output models, and linear transfer function models
can all be used in the formulation of MPC. Each model has its advantages and disad-
vantages. In the last decade state space models are used extensively, because of their

generality and easy representation.

e Multivariable systems: One important reason why MPC was so successful is its ability

to handle multivariable systems exactly as it handles single variable systems. There is
absolutely no need to make any changes in formulation or theory. Multivariable process
control is a natural extension to MPC. State space models representing multivariable

processes can be used without any modification.

e Computational advantages: The optimization of the open-loop performance objective is

performed by either linear or quadratic programming algorithms. These algorithms are

efficient and robust, which is essential for on-line applications. Additionally more than one
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performance objective can be constructed in MPC paradigm, which provides flexibility in

handling the constraints and increases performance.

Handling of constraints: For processes with constraints on process input and/or outputs,

constrained MPC is currently the most effective methodology for treating constraints in
a systematic way. Constraints on inputs, rate of change of inputs, states and outputs can
be incorporated into the MPC formulation as part of the linear or quadratic program.
This allows operation close to process constraints, which is necessary for economically

optimal control of chemical processes.

Model uncertainty: Model uncertainties and measurement errors can be incorporated into

the model or into the on-line identification algorithms. This property provides a better

control on the robustness characteristics of the controller.

Process nonlinearities: The MPC algorithm can handle many different process models.

So nonlinearities can easily be added and handled. The formulation remains theé same
but the optimization problem becomes much more difficult, depending on the type of
non-linear models used. A global minimum can not be guaranteed for each open loop
step and theoretical treatment of nonlinear MPC is not easy at all, but still the existing

formulation can be used without any further changes to incorporate process nonlinearities.

Stability, robustness and performance: One of the most important successes of MPC is its

stabilizing effect. MPC performs well even with non-minimum phase plants where there is
no easy way to design a feedback controller ( [15], [14]). Although industrial applications
prove the advantages of MPC over traditional PID-like feedback controllers, theoretical
investigation of issues related to nominal stability and performance, and robust stability
and performance still challenge researchers in this field, especially in cases with constraints
on inputs and/or states [11]. Robustness of MPC affects its performance and stability
through plant-model mismatch and uncertainty. Performance degradation resulting from
plant-model mismatch should be reduced and it should be ensured that state constraints
are met in case of mismatch/uncertainty [1]. Rawlings and Muske [15] discuss the nominal

stability and performance of MPC in three sections:
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— Stable plants: If the plant is described through the model,
T+l = Az + Bug

in which zx € R ux € R™ and zo is assumed measured and the performance

objective is written as follows:

]
min = Z zF Qzi + u} Rug
A

" where Q and R are positive definite, symmetric weighing matrices. Then for stable
A and N > 1, the receding horizon controller with the above objective function is
stabilizing.

_ Unstable plants: For stabilizable {A,B} with r unstable modes and N > r, the

receding horizon controller with the above objective function is stabilizing.

— Constraints: We consider input and state constraint:

Duy,

IN
Y

kaﬁh

in which d € R and h € R? and di, by > 0.

+ Stable plants: For stable Aand N> 1,z =0is an asymptotically stable
solution of the closed-loop receding horizon controller with the above objective

- function and feasible constraints for every zop € R

« Unstable plants: For stabilizable {A, B} with r unstable modes and N 2 T,
) = 0 is an asymptotically stable solution of the closed-loop receding horizon
controller with the above objective function and feasible constraints for every
2o € Xn (where Xy demote the set of zo for which there exists {uk}N “leU

and ug = 0, k > N such that limx—co Tk = 0).

For systems with constraints which give rise to non-linear control there are no explicit con-

troller design methodologies, which can guarantee stability and performance robustness.
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However, there are methods that account for the asymptotic nominal stability of MPC
algorithms with infinite prediction horizon (Rawlings, Muske 1993). The basic parame-
ters of the algorithm affecting the stability, and performance,both nominal and robust,
are the length of prediction and control horizons, and the weights of various components
in the performance objective. Of course, like in all other control methods a good model

and clean measurements from the process improve the performance of the MPC.

Better identification, a general framework to deal with multirate, multivariable, ( [11] {17]

and [2]) and multiscale processes is required to satisfy the need of industrial applications.

2.3.3 Problem Formulation

Model Predictive Control formulation represents a collection of knowledge from various fields
such as optimization, control theory and estimation. This section will describe how those fields
are brought togé’cher to rep:'esent the MPC formulation and how to implement the solution.
The notation for the following representation can be found at the end of this section.
The state and output equations for a system with m inputs, m outputs and n states can be

represented in state space as follows:

Tht1 = AnxnTk + BrxmUr + dy. (2.41)

Yt = CmxnTk (2.42)

The objective function for the state tracking problem over an horizon of length IV becomes:

®(z0,u) = D (Re ~ k)" (Bk—2x) (243)
N

This objective function can also be written as:

® (z0,u) = (R—x)T (R —x) (2.44)
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where

R1 I

Ry TN

A B - 0 U
X = zo + +
AN AN-1p ... B UN-1
I 0 do
(2.45)
AN-1 0T dn—1
The input constraints are:
U<up<U,Vk=0.N-1 (2.46)
The output constraints are:
Y<u<Y,Vk=1.N ' (2.47)

Additionally one can have bounds on the rate of change of inputs, end of horizon state
or output constraints or penalty terms (soft constraints) in the objective function. Different
formulations will be demonstrated in the next section along with their theoretical and practical
properties.

The mathematical dual of the prediction problem is the estimation problem. In most ap-
plications the states are not directly measured. If the state space model comes from a discrete

"transfer function, then the states will usually have no physical meaning and not be measur-
able. Even if the states are physically meaningful, sensors may not be available to measure

ecach state. In these cases, output feedback must be performed using an observer that recon-
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structs the states from the output measurements. Since the controller presented above is in the
state-space linear quadratic framework, it can take direct advantage of the results from linear
quadratic filtering theory.

The standard linear observer is constructed for the system below in which Wi and v are

Zero-mean, uncorelated, normally distributed, stochastic variables,

Tyl = Anxnxk + anmuk + anmwk (2.48)

Ue = menxk+vk (2.49)

The optimal linear observer for this system in which fk+1]k is the estimate of the state

vector at time k + 1 given output measurements up to time k is :
‘i'lc+1[k = Ajk[k—l + Bug + L (yk - Ci'k[k—l) (2.50)

The discrete Kalman filter gain, L, minimizes the mean square error of the state estimate Ty
It is computed from the solution of the following discrete filtering steady-state Riccati equation

with @Q,, and R, the covariance matrices of wy and v, respectively.

P = 4 [p ~ PCT (CPCT +R,)™ CP] AT + GQLGT (2.51)
L = APCT(CPCT +R,)™! (2.52)

This observer optimally reconstructs the states from the output measurements given the noise
assumptions above. The steady-state Riccati formulation guarantees nominal stability of the
filter in (2.50) provided R, > 0, [C, A] detectable, and [4, GQ1] stabilizable.

With this observer the term dk in equation (2.41) can be expressed as:
dk =1L (yk - Ci‘klk—l) (253)

and this value can be assumed to be constant over the horizon of length N when solving the

minimization problem. di represents the combination of measurement and modeling errors at
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a given time, where the measurement noise (and modeling noise) are assumed to have a known
statistical structure (i.e. known cova.riénces)

One problem with the observer described above is that it can generate physically unrealistic
state estimations. To prevent this one can modify the problem and formulé.te the estimation

problem with constraints as follows:

k-1 k
min®y = Gf_y_ P kv + Y (@7 QpN;) + > (9TR; ;) (2.54)
s j=k—N j=k—-N
subject to:
i‘j+1[k = Ai’jlk + Buj + 10,
vi = CZjp+7;

with initial estimate

Te-Njk = Tp-Np-N-1 + Dk-N-1 (2.55)

and the constraints

wmin < szwmax

Zmin < ij{ksimax

One can also add output constraints to this formulation but inputs and outputs are already
fixed and boﬁnds on noise terms can guarantee the feasibility of the solution in terms of outputs.

There is yet another approach to solve the estimation problem which is similar to the MPC
algorithm and actually can be called the dual of the MPC problem (as Kalman filter can be

called the dual of LQR ) This method also allows system parameter identification at the same
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time:

Th+1

Aps1
B
Yk

2k

Wk

A T
][]
B}c Uk
[ 4, ]

k +w£
B |
Czr + v

T

{xkakakJ
wy

wh

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

where w§, w?, vy are zero mean white noise. The minimization problem can be defined then as

min  (z -z )T P! (z —z )
k—m+1 k—m+1|k—m k—m+1|k—m, \Fk—m+1 k—-m+1lk—m

Zl—m+41,V,W

k k
+ > TRy + > wlQ

t=k—-m+1 i=k—m-+1

subject to the constraints

Umin <
Wmin <
Tmin <
Pmin <

2.3.4 Notation:

z: States
u: Inputs
y: Outputs
R: Reference path

d: Disturbance

Ui < Umax Vi € [k —m + 1, k]
Wi € Wmax Vi € [k —m+ 1,k — 1]
Ti < Trmax Vi € [k —m + 1, k]

Pi < Pmax Vi € [k —m + 1, k]
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v: Measurement noise -

w: Modeling noise

U: Lower input constraint
U: Upper input constraint
Y: Lower output constraint
Y: Upper output constraint

2.4 TIssues with Classic MPC Formulation

MPC has been first introduced by industry and thus some theoretical properties were developed
later by academicians. Theorems involving the closed loop stability are happen to be the
most difficult ones to prove. There are also some other practical issues for which there are
workarounds but no definitive solutions, yet. Next sections will go more into detail in those

subjects.

2.5 Theoretical

Unlike regular feedback systems where nominal and robust stability and performance properties
can be derived from analytical expressions, constraints in MPC turn the problem into a non-
linear one and thus there exists no closed form solution. The lack of analytical expressions
results in indirect methods outside linear control theory to prove nominal, robust stability and

performance of MPC.

2.5.1 Nominal Stability of MPC

Stability in the sense of MPC requires little bit more explanation than its definition in linear
control theory. First of all since we are dealing with, at least theoretically, infinite horizon
controllers the type of stability we are looking for is asymptotic stability, where simply the gap
-between the target and the controlled variable becomes infinitely small as time progresses.

A more deliberate definition will require first the definition of stability in general:

The issues of stability can be grouped in two main classes:
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1. stability with respect to initial conditions

2. Input output stability

These two classes are complementary to each other and can also be combined. For linear
systems, the two classes are, in general, equivalent. However, they are differentfor nonlinear

dynamic systems [16].

1. Stability with respect to initial conditions.

For the following definitions consider a discrete dynamic system of the form
Tr4+1 = f(k: iEk), k >0 (266)

and assume that z = 0 is the equilibrium point of this dynamic system.

Definition 1 Stability: The equilibrium point O at time ko is said to be stable at time ky, if for
any € > 0, there exists a § (ko,€) > 0 such that

llzko Il < 6 (Ko, €) = |lzkl| < V & > ko (2.67)

Definition 2 Uniform Stability: The equilibrium point O at time ko is said to be uniformly

stable over [ko, 00), if for any € > 0, there exists a & (€) > 0 such that

|l < (e

1>k

= ||zx]| <e Vk>1 (2.68)

Definition 3 Asymptotic Stability: The equilibrium point O at time ko is said to be asymptot-
tcally stable at time ko, if

1. 1t is stable at time ky and

2. there ezists a § (kg) > 0 such that
lonoll < 8 (ko) = lim [lzel| = 0 (2.69)
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Definition 4 Uniform Asymptotic Stability: The equilibrium point 0 at time ko is said to be

uniformly asymptotically stable at time ko, if
lim ||zx|| =0 for any zy, (2.70)
k—oco

2. Input Output Stability

I/O stability refers to the effect of inputs to systems outputs, i.e. how much amplification

the system exerts on the inputs.

Definition 5 Bounded input - bounded output stability: A system S, mapping an input signal

u to an output signal z with S (0) = 0 is stable if bounded inputs produce bounded outputs, i.e.,
[lullp < 00 = [|z]]q < 00 (2.711)

where

) 1/p
llzllp = <Z llxkllp) (2.72)

k=1

Although this definition seems to be logical in some circumstances where infinite norm is
bounded but finite norms are not, questions arise whether the system is stable or not. A

complimentary definition for the amplification of the system £lls this hole.

Definition 6 Finite Gain Stability: A system S : =g, u—z £ Su is finite gain stable if

the gain (induced norm) of S is finite i.e.,

l|l] |
1Sl; pg & sup f < o0 (2.73)

uel—{0} HUHp

This definition can be further improved if the search of the supremum is performed over the
“set of inputs u for initial conditions Sy in the set S. This covers everything required but the
computations involved are nof trivial.

From these definitions we will definitely use the asymptotic stability and finite gain stability,

though in a different way.
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Stability is very important and it is fundamental property of a dynamic system. In the

MPC formulation there are two types of stability:

1. the stability of the open loop

2. the stability of the closed loop

The first type is relatively easy to show. If the problem is feasible i.e. there exists a feasible
set of inputs to drive the system from given initial conditions to the desired set points then
ultimately the optimization algorithm will result in an asymptotically stable solution.

The easiest case is the infinite horizon MPC with an ob Jjective function which minimizes the
deviations from the desired target point. If this problem is feasible then the objective function
should have a finite value indicating that the magnitude of the deviations decreases towards to

zero as time progresses indicating asymptotically stability.

oo
e = > - -w) "(2.74)
® < ;o
O = (W~ W -v)=ls -w)l and ;>0
= im ;= lim [|(3] —g)l[ =0 (2.75)

Infeasibilities can give rise to instabilities, or a fully constrained solution can leave an offset
which again is not asymptotically infeasible and results in an infinitely large objective function
value.

Using an infinite horizon simplifies the theoretical approach but at the same time makes the
problem computationally not realizable. ‘

Research on finite horizon MPC generated a wealth in new techniques to tackle some of the
issues.

One major technique is to use a finite control horizon and an infinite prediction horizon.

For the sake of simplicity assume that the ob Jective function is the deviation from a reference
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path:

o = > (Ri—z)T (R — ) (2.76)
i=1
Tit1 = Al‘i + B’LL;‘ + d,'

] < aV0<i<p

Ui = up,Vji>p

This formulation is computationally realizable since the degrees of freedom is finite. The same

objective function can be written as

® = 9+ O, (2.77)
p+1 ©

& = > (Ri—z)  (Ri—z)+ > (Ri—z) (R~ ) (2.78)
=1 a—

it is easy to see that

P
Tpr1 = APz + Z AP~ lpy, (2.79)
1=0

and starting from z,,5 all the points depend on the first p+ 1 inputs.

P k—1
Tpr1+k = AP Fzo + Y APHE-iTlgy, o [Z AR By (2.80)
1=0 =0
For asymptotic stability ®; should have a finite value and thus
|Rj —zj|| > 0asp+1<j— o0 (2.81)
and notice that
k-1
IR; —z;ll = ||R; — AFz, — [Z A’J Bu, (2.82)
1=0
E = j-p-1
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Assuming that the reference path satisfies

R; = zZfina +6; (2.83)

6; — Oasj— oo (2.84)
where T f;nq; should satisfy the criteria

Tfinal = AZfina + BUfina
Tfinal = (I - A)—1 Bufina.l (2.85)

and we should also notice that the last input variable up should be equal to u final in order
to reach the steady state target value ultimately. If we again concentrate on the norm of the
deviation from the reference path after the control horizon, “R_.,- — AFz, — [Zf;ol Ai] BupH ,
we want to show that this norm decays to zero if the dynamic equation satisfies certain criteria.

Showing this property will also prove the asymptotic stability.
k-1
[Z A‘J = (I - A)™ (1 - A’“) (2.86)
i=0
Using the above identity and the following inequality we can establish the proof as follows:

k-1
0 < ||R; — Arx, — {ZA‘] Bu,
=0

= ||Ry — 4y~ (1= )7 (1 - 4¥) By

IA

RBi—(I-A) 7" Bul+

— ARz, + (I — A)7! AkBup”
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If we substitute equation (2.83) in this inequality, we get

o
IA

k-1
R; — AFz, — [ AiJ Bu,
i=0

< 1851+ ||-AFzp+ (1= )7 4*Bu, |

= Ié_,l -+ H—Akl'p + Akmﬁnaz

= |6 + HA"H |Z final — |
If the dynamic system is stable, i.e. all the eigenvalues of A are positive and less than one, then ‘

1651 — 0

HAkH — Qask,j— o0
so the norm becomes

(2.87)

R; — Akg, — [ Ai] Bu,

< 1651+ ”AkH |Z final — |

— QDask— o0

This concludes the proof showing that the norm approaches zero as we progress in time indi-
cating the asymptotic stability.

Another way to work around the infinite horizon is to put a terminal state constraint.
Although it has no physical meaning and can create easily open-loop infeasible problems, this

technique results in smaller optimization problems with built-in stability guarantees.

man R —z)T (R - z;) (2.88)
i im1
st  Tiy1 = Az;+ Bu;+d;
]u,-l < a 1<k

Tk = ZTTerminal
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To ensure that feasibility is not affected the following system should have a solution:

k-1
k 2 : k—1—j
ZTerminal = A o + Ak JBuj
=0
|'u,j| < «

A less aggressive approach would be relaxing the terminal condition and just putting an
additional inequality constraint |ZTerminal — Tx| < o and ciloosing o such that the problem
remains feasible, but still asymptotically stable.

Adding such new constraints increases the number of tuning parameters and thus makes
the use of MPC more difficult.

The second type of stability in MPC theory is the stability of the closed-loop. It is essential
to prove that a proposed MPC algorithm is closed-loop stable.

The proof is not trivial even for linear and stable plants. The constraints convert the linear
problem into a nonlinear one and there exists no close form solution on which stability analysis
can be performed. Instead indirect methods are used:

Consider the following state space model
Try1 = Azg + Buy

We assume perfect knowledge of the matrices 4 and B, full state information zj and absence

of disturbances. The objective function used in the MPC formulation is

P P
. T T
min O = E :$k+i]kQ$k+i|k + Zuk+i—1]kRuk+i—l|k

i=1 =1

where Q is positive definite and R is positive semi-definite matrix. The constraints on inputs

and outputs are:

Gu

IN
Q

Hxr < h

These constraints are assumed to define a feasible solution space containing the origin point.
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Closed-loop MPC stability can be established using the following Lyapunov argument [21].

Consider a solution

k+p—1|k
Uoptk|kp * = {uoptklk’ e auoptk+p—l|k}
to the objective function at time k, and assume that the horizon length p is large enough such

that z, = 0. Now guess a solution at time point k+1

k+p|k+1
Uoptk_,_ﬂk.}_l = {uoptk+1lk: SR 1uoptk+p—llkz 0}
This solution is just a shifted version of the previous optimal solution, where the last value is
set to be zero. It is a feasible solution, since zero satisfies the input constraints. The objective

function value at point k+1 then becomes

p p
_ T T .
Brp1 = D T i1k QT e + > uopty ;x Ruoply

i=1 =1

p P
= > Ty ife QThifi + > uOpty s 1)p RUOPte i1y +

i=1 i=1

T T : T T

— i T T

The real optimal objective function value would be less than or equal to this value, i.e.:

¢
@]ocﬁ_]_ < ¢k+1
opt T T
opt
< 9
Therefore the sequence @ifko_ioo is non-increasing, and consequently it will converge to a

constant value, i.e.

lim @Zpt =c
k—o0
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In addition, as shown below,

T t t
: T T : t t
i, (T Qe+ fRue) < Jim (97 - 072)
=0

The implication of the above is that

lim zx =0 and lim ug =0
k—oo —00

and the closed-loop stability is proven.

The proof itself is not difficult, but there are certain assumptions it hinges on:
1. The open loop optimization problem is feasible.

2. In finite time the desired set-points can be reached.

3. There is no model-plant mismatch.

4. There are no disturbances.

5. States are perfectly observable.

6. Constraints on inputs and states or outputs are time independent.

7. The open loop problems solution is globally optimum.

For stable processes selecting a proper control and prediction horizon ensures the assump-
tions 1 and 2. Again practically infinite horizon for the open loop problem is not the only
- solution, techniques like terminal point constraints, constraining the final state point to belong
to a small neighborhood of the set point or state contraction arguments help to ensure stability.

For unstable processes one needs to show that the stabilization is possible with the current

state values. The main idea is doing a transformation and steering the controllable variables to
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their set points and ensuring that uncontrollable modes are stabilizable. If it is not the case,

then there is no way to bring the states to their set points.

2.5.2 Robust Stability

Whenever there is a discrepancy between the computed or assumed and real values, thevrobust-
ness issue arise, because the process behaves differently than assumed by the controller. Even
very small differences can be amplified to destabilize an othérwise nominally stable controller.

In MPC to guarantee robustness of stability the following inequality constraint should be

satisfied
0 < L (zx,w) < OF° — @7, (2.89)
where
L (zx,ur) = (Re — zi)T(Re — )

The same inequality constraint was used to prove closed-loop stability. Even if there is
model uncertainty the above constraint would force the controller to remain stable. There two

main approaches to satisfy this constraint,

1. Tune the objective function in such a way that the consecutive objective function values
at each open-loop step have a decreasing value. This would prevent major modification

of the MPC structure.

2. Add the constraint below explicitly to the problem formulation. Although the optimiza-
tion problem becomes more difficult to solve, robustness is preserved without any tuning,

which could make the controller more conservative than required.

0< &P — & (2.90)

There are many different MPC formulations based on these two main approaches to guaran-

tee the robust stability. Interested readers are suggested to look at Nikolau [16], Badgwell [19],
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and others.

Of course like in any other control scheme a better knowledge about the process and the pos-
sible uncertainty sources within their corresponding statistics can vastly improve the controller.
The main sources of uncertainty are the external disturbances, model-plant mismatch, uncer-
tainty in actuators (calibration errors, equipment degradation or faults, human interception)
and measurement errors.

Having perfect knowledge about the range of fluctuations in those sources one can in theory
develop a controller which would remain robust under any condition, but such a controller
would suffer from the trade-off of being very conservative in return.

In thé recent years with the increasing number of control variables that MPC should handle,

a different idea started gaining more ground:

Claim 2.1 If the optimization is very large and complicated to solve, sometimes just a feasible

solution is enough.

This idea supported the development of techniques to simplify the large optimization prob-
lems by reducing the number of free variables. This is achieved by blocking the input variables,
i.e. forcing a block of input variables to have the same value. A similar technique called con-
densing can be used to decrease the number of output constraints. More information about
these techniques can be found in the section 4.4.5.

One additional benefit of blocking is that it enhances robustness of the MPC. The reduction
in the number of control variables put a bound on the rate of change of the output variables.
Thus a disturbance cannot move the outputs as much as it could do without blocking. Of
course in return performance suffers because the decrease of the number of degrees of freedom

also slows down the tracking of desired reference path (or rejecting disturbances).

2.5.3 Performance

The classical measures of system performance such as steady state error, gain margin and
phase margin are essential criteria of optimality, and control system compensators are designed

to meet these requirements.
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In MPC the systems measure of performance, or performance index, is not fixed beforehand.
Instead compensation is chosen so that the performance index is maximized or minimized. The
value of performance index is unknown until the completion of the optimization process. In
unconstrained MPC since the solution can be expressed in a closed form, the performance can
be expressed in terms of system parameters and weights in the objective function. So the
nominal performance can be tuned as well. Changing the values of the weights one can specify
any performance characteristics. '

A similar specification cannot be maid for the constrained MPC, though. Rigorous results
for the performance of constrained MPC are lacking.

There are several propositions to improve the robust performance of MPC. Those proposi-
tions are mainly based on either modifying the structure of the MPC formulation, or tuning
specifically for robust performance or improving the optimization algorithms such that more
complex and realistic formulations can be solved efficiently on-line.

Since robust performance requires that MPC performs within the desired bounds under
any expected uncertainty, all of the propositions above in some way cause a more conservative
controller.

There are certain intuitive parameters which effect the performance of MPC:

1. Horizon length: The longer the horizon the more the open-loop optimization step knows
about the system and can respond better, but if there are some additional constraints to
satisfy, robust stability increasing the horizon length can have the reverse effect and the

controller can become more conservative causing inferior performance.

2. Weights in the objective function: Weights in the objective function are far from being
arbitrary. They reflect the frequency domain characteristics in a very convoluted manner.
A correct choice of weights can generate a response which can reject uncertainties (like
noise at certain frequencies) in the system and generate superior performance. Unfor-
tunately classical constrained MPC does not have the advantage of using the frequency
domain ideas as the unconstrained MPC can. Frequency shaped cost functionals (112], (8])

provide a nice framework to shape the loop characteristics.

3. Design of the reference path: The reference path defines the nominal performance. The

51



best the unconstrained MPC can do is to perfectly track the reference path. Constrained
MPC minimizes the deviation from the reference path. The shape of the reference path
is closely related to the weights in the objective function and to the desired frequency

response characteristics.

2.5.4 Feasibility

Because MPC requires the solution of an optimization proBlem at each open-loop step, the
feasibility of that optimization problem must be ensured. Input, output and additional con-
straints to guarantee robust stability may generate an empty feasible solution space or they can
generate a non-convex solution space (giving rise to multiple local minima and maxima).

One major reason for the industrial success of Model Predictive Control is the ability of
the controller to enforce hard constraints on the process. There are two major classes of
hard constraints: the input constraints and state or output constraints. The input constraints
represent mostly physical limitations and they should be satisfled at all times. On the other
hand state or output constraints are only desirables and cannot be strictly enforced at all times,
especially if there are external disturbances.

For infinite horizon MPC feasibility and stability become identical making the importance
of feasibility clearer.

There are several methods to ensure the feasibility of the MPC and thus the closed-loop

stability indirectly.

1. Minimum time approach:

Trk+1 = Azp + Bug (2.91)
. o0
J (zg,m) = Z (27 Qz + uT Ru]
1=0
m™ = {'LLO,U]_,...,’U,N_l} y uk=0 VkZN

@ > 0,R>0, [Ql/zA] detectable

Rawlings and Muske [15] proposed a method where the time point is determined after

which there are no more state or output constraint violations. Up to that point state
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or output constraints are violated. At the subsequent open-loop steps the length of this
relaxation time decreases at least by one time point and the closed-loop response reflects at
most the first relaxation length. With this method the time to earliest possible constraint
satisfaction is minimized, it is nominally stabilizing and for longer control horizons open-
loop and closed-loop results converge, but the computation of the relaxation time is

difficult and during the transient large constraint violations can oceur.

2. Soft constraint approach: This method adds a penalty term for constraint violations to the
objective function. If the weight of this penalty term becomes large, the soft constraints
become practically hard ones. The computation is easy, the solutions are nominally stable,
the states are continuous allowing easy establishment of robust stability, but closed-loop

and open-loop behaviors are different and tuning is not trivial.

3. Mixed Methods: Rawlings and Scokaert [23] propose new methods for the minimal time
and the soft constraint approaches. Their method addresses the shortcomings of the

previous methods as described above.

2.6 Practical Properties

Other than the properties normally discussed in the context of feedback controllers and optimal
control problems there are certain aspects of MPC which require some additional discussion.
-2.6.1 Horizon Length

To ensure a number of desired theoretical properties, the horizon length should be infinitely long.
Infinite horizon length MPC has the nice property that feasibility ensures nominal stability.
Practically this is not realizable though. The on-line optimization has only a limited time
to deliver a solution and this need results in finite horizon MPC. There are several types of

finiteness though:

1. Finite control horizon, infinite prediction horizon

2. Finite control horizon, terminal state constraint
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3. Finite control horizon and finite prediction horizon

Since degrees of freedom and thus the complexity of the optimization problem depends on
the number of input variables, the biggest reduction in computation occurs when the contro]
horizon is constrained to be finite and as short as possible. It is also possible to parametrize
the control vector such that although the control horizon is infinite there are only finite number
of decision variables. As expected this limitation causes performance degradation and even can
destabilize certain systems.

The choice for the length of the control horizon is mostly a design decision and once fixed
it remains constant. There were several attempts to formulate a variable horizon MPC (13],

where the horizon length is adjusted to guarantee stability.

2.6.2 Tuning

Other than the horizon length there are the weights in the objective function which should
be tuned for desired perf;rmance and stability. Especially robust performance and stability
require very careful tuning.

For unconstrained MPC there are techniques to define the weights such that the resulting
frequency response of the controller satisfies certain requirements [12]. Frequency shaped ob-
Jective functions can only be used if there are no hard bounds. Hard bounds introduce events
occurring at certain time points if they are activated and the frequency domain techniques
automatically fail because they don’t have any time localization. This limitation prohibits the
use of powerful frequency domain techniques like loop shaping in constrained MPC. |

Tuning in this setting refers to adjusting the matrices Q and R in the following objective

function

oo
J = Z (.’L‘Z,_l Qrir1 + u,TRui) (2.92)
1=0

- There are also cases when the rate of change in inputs is included in the objective function. It
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can be established either by cdnverting

ATSAu — WTPTSPy (2.93)
Au = Pu
Au; = uig —u;

Addition of that type of penalty terms (soft constraints) allow the designer to shape the fre-
quency response in an indirect and convoluted way. Adding these weights has also another
beneficial effect: If the plant has right hand plane zeros the resulting system would have non-
minimum phase characteristics which is difficult to handle, but the addition of input penalty
terms push the right half plane zeros to the left and thus stabilize the system (and the con-
troller).

2.6.3 Owutput Constraints

As mentioned before under the feasibility issue the output constraints are the main source of in-
feasibility. Most of the time these type of constraints represent the economical or environmental
limitations. Unlike the input constraints which cannot be violated physically these constraints
can bé relaxed for certain period of time (see section 2.5.4).

These is also the problem of active output constraints at the steady state operating point.
Since active constraints can be regarded as the rule rather than the exception in chemical
process operations this is a frequently encountered issue. Rao and Rawlings [20] discuss how
this issue can be addressed by computing the best target values by projecting the system onto

the active constraints under the finite horizon parametrization of the input.

2.6.4 Disturbance and Model-Plant Mismatch

Classical Model Predictive Control algorithms incorporate disturbances by using the difference
‘between the last predicted and measured outputs and assuming that it will remain constant
along the prediction horizon in the open-loop optimization step. This constant term of course
includes measurement errors (an observer can reduce it), model-plant mismatch and finally

external disturbances. The history of the plant is most of the time neglected and just the last
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disturbance term is used. This limited disturbance model prevents incorporation of periodic or
long term event (like day-night temperature swings).

Extracting information to minimize the model-plant mismatch is very important. Instead
of adding a constant term only, one can also update the parameters of the model. Such an
adaptive strategy, though, would be very sensitive to measurement errors and external distur-
bances. There is research on this topic where additional constraints are incorporated into the
MPC algorithm to ensure that the inputs provide the strong. persistent excitation criterion [7]
Through this method a time varying model can be identified on-line without causing major

output fluctuations.

2.7 Summary of Issues
1. Nominal and robust stability with finite horizon MPC.
2. Feasibility of the open-loop problem with output constraints.
3. Limited disturbance models.
4. Determining the horizon length.
5. Specifying frequency domain characteristics.
6. Computational load.

7. Capturing multirate systems.
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