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ABSTRACT

Nanoengineered glycan sensors may help realize the long-held goal of accurate and rapid
glycoprotein profiling without labeling or glycan liberation steps. Current methods of profiling
oligosaccharides displayed on protein surfaces, such as liquid chromatography, mass spectrometry,
capillary electrophoresis, and microarray methods, are limited by sample pretreatment and quantitative
accuracy. Microarrayed platforms can be improved with methods that better estimate kinetic parameters
rather than simply reporting relative binding information. These quantitative glycan sensors are enabled
by an emerging class of nanoengineered materials that differ in their mode of signal transduction from
traditional methods. Platforms that respond to mass changes include a quartz crystal microbalance and
cantilever sensors. Electronic response can be detected from electrochemical, field effect transistor, and
pore impedance sensors. Optical methods include fluorescent frontal affinity chromatography, surface
plasmon resonance methods, and fluorescent single walled carbon nanotubes (SWNT). Advantages of
carbon nanotube sensors include their sensitivity and ability to multiplex. The focus of this work has been
to develop carbon nanotube based sensors for glycans and proteins. Before detailing the development of
these new sensors, the thesis will begin with a very brief primer on glycobiology, its connection to
medicine, and the advantages and limitations of existing tools for glycan analysis. In the second chapter
we model the use of quantitative nanosensors in a weak affinity dynamic microarray (WADM) to
simulate practical uses of these sensors in bioprocessing and clinical diagnostics.

There is significant interest in developing new detection platforms for characterizing glycosylated
proteins, despite the lack of easily synthesized model glycans or high affinity receptors for this analytical
problem. In the third chapter we experimentally demonstrate 'proof of concept' of carbon nanotube-
based glycan sensors. This is done with a sensor array employing recombinant lectins as glycan
recognition sites tethered via Histidine tags to Ni2 l complexes that act as fluorescent quenchers for SWNT
embedded in a chitosan hydrogel spot to measure binding kinetics of model glycans. We examine as
model glycans both free and streptavidin-tethered biotinylated monosaccharides. Two higher-affined
glycan-lectin pairs are explored: fucose (Fuc) to PA-IIL and N-acetylglucosamine (GlcNAc) to GafD.
The dissociation constants (KD) for these pairs as free glycans (106 and 19 pM respectively) and
streptavidin-tethered (142 and 50 ptM respectively) were found. The absolute detection limit for the first-
generation platform was found to be 2 pg of glycosylated protein or 100 ng of free glycan to 20 pg of
lectin. Glycan detection (GlcNAc-streptavidin at 10 [M) is demonstrated at the single nanotube level as
well by monitoring the fluorescence from individual SWNT sensors tethered to GafD lectin. Over a
population of 1000 nanotubes, 289 of the SWNT sensors had signals strong enough to yield kinetic
information (KD of 250 ± 10 pM). We are also able to identify the locations of "strong-transducers" on
the basis of dissociation constant (4 sensors with KD < 10 [M) or overall signal modulation (8 sensors
with > 5% quench response). We report the key finding that the brightest SWNT are not the best
transducers of glycan binding. SWNT ranging in intensity between 50 and 75% of the maximum show
the greatest response. The ability to pinpoint strong-binding, single sensors is promising to build a
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nanoarray of glycan-lectin transducers as a high throughput method to profile glycans without protein

labeling or glycan liberation pretreatment steps.
In the fourth chapter we move from detection of model glycoproteins (streptavidin with

biotinylated glycans) to a more applied problem: detection of antibodies and their glycosylation. We do

this with a second generation array of SWNT nanosensors in an array format. It is widely recognized that

an array of addressable sensors can be multiplexed for the label-free detection of a library of analytes.

However, such arrays have useful properties that emerge from the ensemble, even when

monofunctionalized. As examples, we show that an array of nanosensors can estimate the mean and

variance of the observed dissociation constant (KD), using three different examples of binding IgG with

Protein-A as the recognition site, including polyclonal human IgG (KD p = 19 RM, T2 = 1000 mM2 ).
murine IgG (KD = 4.3 nM, 2= 3 uM 2), and human IgG from CHO cells (KD [ = 2.5 nM, a2 = 0.01

RM 2). Second, we show that an array of nanosensors can uniquely monitor weakly-affined analyte
interactions via the increased number of observed interactions. One application involves monitoring the

metabolically-induced hypermannosylation of human IgG from CHO using PSA-lectin conjugated sensor

arrays where temporal glycosylation patterns are measured and compared. Finally, the array of sensors

can also spatially map the local production of an analyte from cellular biosynthesis. As an example we

rank productivity of IgG-producing HEK colonies cultured directly on the array of nanosensors itself.

One great limitation to these practical applications, common to other new sensor developments,

are the constraints of large, bulky, and capital-intensive excitation sources, optics, and detectors. In the

fifth chapter we detail the design of a lightweight, field-portable detection platform for SWNT based

sensors using stock parts with a total cost below $3000. The portable detector is demonstrated with

antibody detection in our lab and onsite at a commercial facility 3700 miles away with complex

production samples.
Along the course of developing these sensors, there was a need to analyze noisy data sets from

signal nanotubes (Chapter 3) to determine distinct binding states. NoRSE was developed to analyze high-
frequency data sets collected from multi-state, dynamic experiments, such as molecular adsorption and

desorption onto carbon nanotubes. As technology improves sampling frequency, these stochastic data

sets become increasingly large with faster dynamic events. More efficient algorithms are needed to

accurately locate the unique states in each time trace. NoRSE adapts and optimizes a previously published

noise reduction algorithm (Chung et al., 1991) and uses a custom peak flagging routine to rapidly identify

unique event states. The algorithm is explained using experimental data from our lab and its fitting

accuracy and efficiency are then shown with a generalized model of stochastic data sets. The algorithm is

compared to another recently published state finding algorithm and is found to be 27 times faster and

more accurate over 55% of the generalized experimental space. This work is detailed in Chapter 6.

Future uses of these sensors include in vivo reporters of protein biomarkers. In Chapter 7, three-

dimensional tracking of single walled carbon nanotubes (SWNT) with an orbital tracking microscope is

demonstrated for this purpose. We determine the viscosity regime (above 250 cP) at which the rotational

diffusion coefficient can be used for length estimation. We also demonstrate SWNT tracking within live

HeLa cells and use these findings to spatially map corral volumes (0.27-1.32 Im 3), determine an active

transport velocity (455 nm/s), and calculate local viscosities (54-179 cP) within the cell. With respect to

the future use of SWNTs as sensors in living cells, we conclude that the sensor must change the

fluorescence signal by at least 4-13% to allow separation of the sensor signal from fluctuations due to

rotation of the SWNT when measuring with a time resolution of 32 ms.

In the final chapter we draw conclusions from the development of this carbon nanotube-based

sensor for glycan analysis and show the start of future work with arrays of SWNT sensors for

glycoprofiling.

Thesis Supervisor: Michael S. Strano
Title: Professor of Chemical Engineering
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1. Introduction

Some of the work, text and figures presented in this chapter are reprinted or adapted from

reference' (reproduced under thesis use allowance from The Royal Society of Chemistry)

1.1 Motivation and Overview
Surface sugars that cover the majority of our proteins and cells, called glycans, are key players in

2
human health and disease. Characterizing their complex structure is a key piece of understanding their

structure-function relationship. Current methods of glycan analysis are complex. It was the motivation of

this work to develop a simple, label free method of glycan characterization.

This first chapter does not attempt to summarize the vast field of glycobiology nor the current,

well-established methods of glycoprofiling, but rather critically reviews a few emerging, nanoengineered.

carbohydrate sensors to frame the motivation and need for the subsequent experimental work presented in

this thesis. These technologies can form the basis of new analytical tools for rapid glycoprofiling without

the traditional steps of glycan liberation or labeling. These sensors can reduce our current macroscopic

approaches to mimic the intricate and precise processes of cellular machinery3 just as nanotechnology has

done in other areas like synthetic pores which regulate molecular transport4 , specific nano-catalysts that

mimic selective enzymes5' , and self-assembled materials that resemble cellular vesicles or lipid walls.7-"1

Although routine for nascent proteins in the cell's endoplasmic reticulum' 2 ' 4, the cellular quality-control

mechanism of accurate glycan profiling on the surface of proteins 5 has been very difficult to engineer in

man-made sensors.16 Current approaches for high-throughput glycoprofiling require significant

pretreatment of the sample, namely chemical/enzymatic liberation of sugar groups from the protein and

labeling steps, for accurate detection.' 7 However, an emerging class of nanoengineered glycan sensors

promise to sense the glycoprotein as the cell would, in its native state. Each of these emerging

nanosensors employ some synthetic or naturally-occurring glycan (carbohydrate) recognition domain

(CRD) to selectively bind the glycan but they can be classified in three categories according to their

method of signal transduction: 1) mechanical, 2) electrical, and 3) optical. However, before we critically

review these new platforms, we must briefly frame the history and nomenclature of Glycobiology, the

relation of glycoprofiling to medicine, and the current state of glycoprofiling techniques that require

labeling and/or chemical liberation steps for accurate results.
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1.1.2 A brief history of glycobiology and glycoprofiling

The first seeds of discovery in the burgeoning field of Glycobiology were sown over 100 years

ago. These pioneering works included the structural analysis of monosaccharides by Hermann Emil

Fischer in 189118 and the discovery of human blood groups by Karl Landsteiner in 190019 (for a more

complete list of early Glycobiology pioneers we recommend Table 1.1 of reference 1820). But the work

of these early scientists lay largely dormant during the explosive growth phase of genetic and proteomic

discovery. It was not until the late 1980s that general interest returned to physiologically relevant glycans

and the term "Glycobiology" was coined. In the past two decades we have witnessed an exponential

growth of discovery and interest in the field of Glycobiology, evidenced by increased publications (Fig.

1.1), the founding of a journal solely dedicated to the field in 199022, and major general scientific awards

given to Glycobiolgists, like the MIT-Lemelson prize to Prof. Carolyn Bertozzi in 201023. Growing

commercial interest in glycoprotein profiling15 is also evidenced by the increasing number of academic

spin-off companies in the past few years (Table 1.1) whose main products are glycan analysis services or

tools. The current market emphasis is on services, or contracted profiling of glycosylated proteins, as

reliable accuracy and expense have impeded the adoption of off-the-shelf glycoprofiling assays such as

those offered by GP Biosciences Ltd or Procognia.

900
a Protein-Carbohydrate Interaction

800 0 Glycan

a Glycobiology

700 M Glycan Profiling

600

500

400

300

200

100

1965 1970 1975 1980 1985 1990 1995 2000 2005 2010

Fig. 1.1 Growing number of publications in the field of glycobiology. Searches for publications made on Web of

SciencesM for the following subjects: protein-carbohydrate interactions, glycan, glycobiology, and glycan profiling.
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Table 1.1 Growing interest in glycoprofiling evidenced by new companies in the past decade with profiling as their

primary product (not an exhaustive list).

Name Service Academic Source Year Founded

Glycan Connections, LLC On-site carbohydrate analysis for Univ NH 2009
pharmaceuticals, antibodies, and vaccines

ProGlycAn Service arm of university group offering BOKU Vienna --
glycan analysis services

GP Biosciences Ltd. Tools for glycan structure analysis: lectin Japan-AIST 2009
chip array, evanescent field reader
On-site MS analysis and available

Glycome Technologies software packages for MS data Univ NH 2009
interpretation

Ezose On-site MALDI-MS analysis based on Hokkaido Univ 2009
GlycanMap M technology
On-site glycan analysis for

Ludger pharmaceuticals and available Oxford Univ 1999
kits/standards for purchase

Procognia High-throuput lectin array for glycan Tel Aviv Univ 2000
analysis

1.1.3 Brief glycobiology primer

The Glycome, 24 -2 7 sometimes referred to as the "third alphabet" in biology 28 (following the

language of genetics and proteomics), is incredibly diverse and complex. The library of basic building

blocks (analogous to base pairs for genetics or amino acids for proteomics) consist of 9 monosaccharides

for mammalian cells (until they are further derivatized by sulfation and other chemical modifications) 20,2 9

(Fig. 1.2) and many more for bacterial3 0. However the number of branching points available on each

carbohydrate, compounded by relevant stereochemistry leads to a huge number of possible linked

combinations. For example, a simple glycan consisting of six monosaccharide units from the library of 9

mammalian sugars can theoretically exist in - 1012 different branched and linear isomeric forms29 .

Thankfully, nature has settled on a more finite set of structures that are recognized by the glycan-binding

proteins and mediate biological functions (referred to as glycan determinants): the current estimate in the

number of human glycan determinants is -7000.31 Glycans can also differ in how they are bound to

proteins: via glycosidic linkages to asparagine residues (N-linked glycans) or to serine and threonine

residues (0-linked glycans).2 0 To catalogue the vast number of glycan structures, a systematic

International Union of Pure and Applied Chemistry (lUPAC) nomenclature for carbohydrates was

developed (also available online here http://www.chem.qmul.ac.uk/iupac/2carb/ ) in which numbers are

used to note which saccharide carbons are linked and the symbols a and f are used to specify the linkage

13



stereochemistry. 32 A widely-accepted figure representation (Fig. 1.3) was initially proposed33 3 4 and

later standardized35 to visually depict these long IUPAC named species. Colored or shaded blocks

represent the monosaccharides and the drawn orientations of the blocks specify the types of linkages

between the sugars.

OH

HO
HO J: OH

OH

D-Glucose
(GIc)

OH

HO
HO OH

NHAc

N-Acetyl-o-glucosamine
(GIcNAc)

HO OH

HO 0 OH
OH

D-Galactose
(Gal)

HO OH

HO
HO OH

NHAc

N-Acetyl-o-galactosarnine
(GalNAc)

HO HO
HO .HOH OH

D-Mannose
(Man)

HO -V
HO OH

OH

o-Xylose
(Xyl)

H0 2C
HO

HO OH
OH

D-Glucuronic acid
(GIcA)

OH

HO O H

L-Fucose
(Fuc)

HO OH CO HOH

AcHN~.jO
OH

N-Acetylneuraminic acid
(NeuAc)

Fig. 1.2 Common monosaccharides found in vertebrates (Reproduced with permission from Essentials20).

Sugar Basic N-Ac Nf (N4 Deoxy Acid
PMose

Gluose 0 Ae AQ - AA El -m

Glucose G-cNAc

Gabac0ose 0 *-

Mane Mannos

Id- - -.- .

Unknown or unupecif led
Pontose 0 0 Q 0
"enose 0 0 Q 0 0i
Pentose

Xyylose oe A A A- A A
RUise V V V - V -
Arablnose C>-
Silek adds

NouSAc-

NeuGu G-

Inositl"-
Unsut- - -

GIcA
TyVelose 9 - - - -

(ii) 6 I

(m)

D E

C, 4 * *'
C S

lD-Galp' -+4 -GkNAc ->2Hfl -D-Galp( I -4 -oD-GkcNAep0 I46-
D-Ma41.p- 1-l-D-Gal ~4,rD tikNA pI I4-1 13GalpiI4-

GkcNAcp4 -+6,-Ic-I)>Mazvpl-+3)}-U-Manpi 4-rD-GkcNAcp( I-+4--
Fucq.-+ -6)l4-D-GkNAcp

Fig. 1.3 Figure representation of glycan structures. (i) A colored or shaded key is used for the most common

monosaccharide units, (ii) carbon linkage positions are denoted by the bond position drawn on each
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monosachharide, (iii) examples of colored and shaded glycan figures with corresponding IUPAC nomenclature.

Reproduced with permission.34

1.1.4 Medicine and glycoprofiling

The careful bookkeeping of all bond linkages and stereochemistries is more than an academic

injunction; it is vital to track the physiological impact of glycans. Subtle changes in a glycan's structure

can have tremendous impact, and thus similar glycans must be carefully distinguished. To quote a recent

case,36 researchers found that when the glycosylated, murine-expressed, monoclonal antibody drug called

Cetuximab (used to treat colorectal cancer and squamouscell carcinoma) bears the wrong disaccharide,

Galactose-a 1 ,3-Galactose, rather than one of the other 21 similar forms, 37 the drug becomes immunogenic

to one third of its intended population. Thus production of this drug requires stringent glycoprofiling to

eliminate batches that contain this deleterious disaccharide.

Glycoprofiling is a crucial step in all glycosylated protein production, especially when the

expressed product is intended as a drug38 . Such proteins are efficiently expressed in non-native cell lines

that lack the inherent glycosylation regulation machinery. The expressed proteins emerge as a

heterogeneous mixture of glycoforms. 3 9 In order for a glycosylated protein drug to gain clinical approval,

the range of produced glycoforms has to be carefully established, tested, and approved. 40 If changes in

the production of the drug alter the glycoform population in any way, for example through environmental

changes or in process scale-up, the drug is considered as a new entity and must be reapproved. 38 During

ongoing production, each batch of proteins must be carefully profiled to ensure that the approved

glycosylation pattern is present. There is a huge research interest in engineering cell lines to produce

specific homogenous glycoproteins 41-43; the impact of such work is witnessed by the competitive

acquisition of GlycoFi, which successfully produced homogenous glycoproteins from yeast cells, by

Merck for $400 million in 2006.44 Yet, the growing market of glycosylated therapeutics, now at over two

thirds of the biologics market, is still dominated by traditional expression mechanisms. 40 Thus high-

throughput platforms that can easily integrate directly into the production line and screen native proteins

would be of great academic and industrial worth.

Another direct medicinal application of glycoprofiling is in the screening of known biomarkers

and the discovery of new ones. Arthritis is an example of a human disease with known glycosylated

biomarkers. Arthritis has been linked with changes to the single glycosylation site in the constant domain

of the IgG Fc region.45 It is thought that by accurate screening of the glycan group on these proteins,

clinicians would be able to tell what type of arthritis an individual has. Healthy individuals have a large

glycan group in this region, yet as the arthritis severity increases, this glycan group loses many of its
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terminal sugars.4 5 When an increased count of the IgG proteins contain only the base glycan structure

((GlcNAc2Man6)-Man4GlcNAc-4GlcNAc also known as IgG-GO), the individual is likely suffering from

Rheumatoid Arthritis (RA).46 In a clinical setting it would be advantageous to create a rapid screening

tool for this prescient glycan group from all the other possible IgG variants. There are many other

glycosylated protein biomarkers known for cancers and carcinomas.47-50 An accurate glycoprofiling tool

could also be used for discovery of new disease biomarkers5' by screening serum samples from infected

populations.

Lastly, there are many other fundamental areas of clinical science that glycoprofiling can help

address, as glycans compose the fourth most abundant ingredient of all cellular structures (after proteins,

DNA, and lipids)52 and glycosylated proteins compose -50% and >90% of the cell and secreted proteome,

respectively 53 ' 54. Glycans help dictate protein folding, function, and transport.55-57 As such they are

integral in homeostatic processes, and likewise play a role in many human diseases. These are too

numerous to address in this short review article, but we refer the reader to a number of more exhaustive

reviews for glycan connections to cancer 5-0 , chronic inflammation 1, immunology62, immunoglobulin
50 63,64function , and other human diseases. Profiling tools aid basic research in determining the structure of

physiologically relevant glycans. Additionally, as the structural roles of glycans are further understood,

better engineering of emerging glyconanomaterials for medicinal applications will be possible. 65

1.1.5 Current methods of glycoprofiling

For a more detailed account of current methods of glycoprofiling, including the established

"acronym tools" (mass spectrometry (MS), capillary electrophoresis (CE), liquid chromatography (LC))

and more recent microarray methods, we recommend these recent reviews.17,66-69 The common acronym

tools, listed above, have spawned an even greater list of specialized tools also known by acronyms; see

table 47.1 of the Essentials of Glycobiology text2 O for a concise guide. Herein we wish to briefly review

these current methods to illustrate their capacities and limitations to frame the need for emerging

nanoengineered sensors for medical applications. A good summary of their advantages and limitations is

provided in the Vanderschaeghe et al. review 7 .

The Rudd et al. review67 provides a clear roadmap of how the "acronym" technologies are often

linked together for glycan analysis (reproduced in Fig. 1.4). The glycoprotein solution, which consists of

a heterogeneous mixture of glycoforms39 , is pretreated to release the glycans from the surface of the

protein referred as the liberation step. Liberation is done by either chemical (hydrazinolysis) or enzymatic

release (general peptide N-glycanases for N-glycans and more specialized enzymes for O-glycans) 39.

This liberation step must be done carefully to ensure that the glycans are neither destroyed nor altered so
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the subsequent analysis is an accurate representation of the protein's glycan profile. Liberation of the

glycans is necessary for the subsequent profiling tools as the protein's presence will confound the

separation technique or influence the spectrometric analysis.

Fig. 1.4 Common coupling strategies of macroscopic profiling tools. MS is the work horse of the systems, while

HPLC, CE, and SDS PAGE provide atomistic details. Reproduced with permission.67

The choice of tool after liberation largely depends on the quantity of the glycan sample and the

prior knowledge of the glycoform population. If a large amount of sample is available (>5mg) and

standards are available for known species in the population, than simple liquid chromatographic

techniques?0'7 can be used. The column will separate the glycans, and the elution times are compared to

standards. However, identical elution times do not guarantee the glycan fraction is identical to the

standard, so LC methods are often coupled with atomistic analyses like mass spectrometry. 72 73 LC

methods do not necessarily require labeling of the glycan species, but this is often done to enhance

separation.
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Mass spectrometry (MS) is the old work horse of these coupled systems, giving a clear, atomistic

structure of the glycan.74 It was first used in 1978 to analyze the surface carbohydrates of Antarctic fish

"antifreeze" proteins75 and has subsequently been used for many structural determinations. 76 For a clearer

glycan structural analysis, the sample must be relatively pure, thus it is coupled with separation tools, like

LC mentioned above. Electrophoretic separation, such as capillary electrophoresis (CE), can also be

coupled with MS for glycan analysis77'78 but is more difficult to interface than LC methods and is less

frequently used. Like LC tools, CE can be used without MS coupling for glycan analysis, as in this study

of screening milk oligiosaccharides79 , but it requires labeling67,80 and yields indirect structural information

(comparison to standards). Mass spectrometry is enhanced by molecule ionization techniques, the most

common being matrix-assisted laser desorption ionization (MALDI) yielding "mass-maps" of the glycan

constituents. The use of MALDI-MS systems to profile glycans has been rigorously chronicled in the

reviews81 -89 of D.J. Harvey (the developer of the widely-used figure nomenclature of glycans). Recent

improvements in MS techniques for glycan analysis include better data analysis methods" and reduction

of sample size with microfluidic platforms91 . NMR can also probe the atomistic structure of glycans, but

it requires specific expertise to analyze the complex signal. Thus, these analyses are often reserved for

determining the finer details of glycan structures like the anomericity of the glycosidic bonds20 but can

also be used in profiling, as the A. E. Manzi et al. study does with the glycans of genetically modified

mice.92 The interplay of all these systems is demonstrated well in the D. Muller et al. work,93 wherein

they use MALDI-MS, HPLC, and NMR to glycoprofile a population of hybrid plasminogen activators.

These "acronym" tools have been strongly established over the past 30 years, but they still remain

expensive and time-consuming.17 They give clear, detailed images of the glycan, including composition

and linkage structure, but at the expense of destroying the protein and glycan. For certain clinical

applications, such as serum screening, the liberation requirement may be suitable, but the cost may be

prohibitive. For large scale, continuous glycoprotein profiling, such as in screening the expressed

production of a protein therapeutic, the liberation steps and time-consuming analysis would be unsuitable.

Thus, there has been an interest in platforms that are more rapid and can do profiling without labor

intensive glycan liberation.

In the past decade microarray platforms for glycoprofiling have emerged to fulfill the need for

rapid glycoprofiling. 6 They do not require glycan liberation from the protein surface, but they do require

labeling steps for detection. The premise of these platforms is to create an array of carbohydrate

recognition domains (CRDs) that interact with varying degrees of affinity to glycans. If enough CRDs

are present, a fingerprint for each glycan can be determined; this effectively mimics nature's use of

glycans as a "sugar code." 28,95-97 There is a distinct emphasis in the field on using naturally occurring
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proteins with CRDs, known as lectins,98 as the arrayed sensors. These lectin-based platforms have been

used for glycoprotein profiling9 ""-", biomarker detection10 2, and analysis of cell-surface

carbohydrates.1 03 104 In these platforms the labeling can occur as a pretreatment step (labeling the

glycoprotein) or as a sandwich assay 0 5 (adding a fluorescent molecule that absorbs selectively to the

glycoproteins bound to CRDs on the surface). CRDs have also been formed from a new class of

carbohydrate binding peptides,10 6 random peptide sequences 1a, and other carbohydrate antibodies.'

These array platforms are currently limited to rough, high throughput analyses of glycoproteins. Their

level of detail is limited to the number of CRDs present on the array and their ability to accurately define

the relative binding affinities of the glycoproteins to the CRDs. 17'5'98 Advances have been made in the

basic platform to boost the fluorescent signal of the bound species, such as using evanescent field

illumination" or optimized labeling and sensor positioning" , but there is still a need for better

resolution. The ideal platform would be able to clearly distinguish between the binding strengths of

glycans to CRDs without the need of labeling the glycoprotein, just as the ER is able to screen nascent

proteins without any pretreatment steps.

1.2 Mechanical platforms

Mechanical transduction of single molecules has been done with a myriad of micro and nano-

platforms. Extension of these platforms to the detection of glycan-CRD interactions has occurred in the

past two decades, primarily using a quartz crystal microbalance (QCM) platform and more recently with

fine-tuned cantilever arm detectors. The self-assembled monolayer (SAM) has recently appeared to be

the most promising approach to create a scaffold for either lectins or sugars, in conjugation with the use

of classical QCM. In this portion of the review, we will focus our discussion on the application of QCM

and cantilever sensors to studying the binding between lectins and sugars, as well as the more recent

approaches of creating SAM layers.

1.2.1 Principles of QCM and measuring strategies

The QCM technique relies on the change in the resonant frequency of a quartz crystal associated with a

mass change of the crystal, following the equation given by Sauerbrey in 19591"1.

Af = -2Amnf 0 IrA(pq pq )"]

(Eq. 1.1)

where n is the overtone number, p is the shear modulus of the quartz, and pg is the density of the quartz.

The equation is obtained by solving a one-dimensional equation of motion, with an important assumption:
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the frequency change of a resonator is due to the deposition of thin, rigid, and uniform films, where the

foreign mass is strongly coupled to the resonator. 12

QCM can be used to track both the thermodynamics and the kinetics of the binding between two

molecules. Both damping resistance and frequency modulation can be monitored (a typical graph inserted

below, Fig. 1.5). Small damping resistance changes indicate rigid and strong attachment, whereas large

changes indicate viscoelastic behavior of the adsorption. Specific interaction between the molecule and

the surface will cause a mass increase of the crystal, resulting in a frequency decrease.

Typical QCM operates in such a way that the QCM quartz surface is first modified to strongly

adsorb or covalently attach a receptor molecule; frequency modulation and dissipation functions are then

monitored in real-time as the ligand molecule flows over the quartz surface. The example measurements

(Fig. 1.5) reveal typical output of a QCM experiment where adsorption of the molecule results in a

decrease in frequency and an increase in dissipation.

AB D C E C

Fig. 1.5 The time-dependent frequency (upper curve) and dissipation shift (lower curve) recorded during the

immobilization of Concanavalin A lectin on the surface of quartz crystal electrode: (A) thiol-modified electrode; (B3)
activation of the carboxyl groups with NHS:EDC mixture; (C) rinse with the running buffer; (D) immobilization of

the lectin (1mg mL-1, 60 min); (E) blocking of unspecific sites with ethanolamine-HCI (pH 8.5). PBS (l0mM, pH
7.4) containing ImM metal ions (Ca 2+, Mg2+ and Mn 2+) was pumped through the system at a flow rate 50 [d min-1.

Reproduced with permission." 3

1.2.2 Chemistry of SAM and comparisons
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SAMs are used to immobilize lectins, sugars, or glycoproteins onto the surface of the QCM gold

substrate. A properly made SAM should have two important aspects: 1) the first layer of molecules

(either lectins or sugars) should bind to the surface strongly (mostly through covalent interaction) such

that the introduction of the counter-molecules will not easily remove them; 2) non-specific binding should

largely be eliminated. Among the many types of SAMs, alkanethiolates on gold currently constitute the

best model system. 114,115 Modification of the gold surface with sugars or lectins is easily performed with

thiol-gold chemistry.

1.2.2.1 Construction of the sugar-SAM

In order to create sugar SAM layers, two general strategies have been used, as shown in Figure 1.6. One

approach is to synthesize sugars with an alkanethiol group attached (Fig. 1.6a), although the synthetic

effort of this approach is not trivial. The second approach is to first modify the gold surface by

introducing a SAM layer with specific functional groups, and then introduce the sugars through reactions

with these functional groups (Fig. 1.6b); 'click chemistries' play a major role in this latter scheme.

Collman and co-workers made azide-functionalized SAMs and then attached the alkyne-modified

ligodeoxyribonucleotide through 'click chemistry;' the resultant layer is well-defined (Fig. 1.7).

Following this strategy, Wang et al. 116 created a sugar SAM through introduction of an alkyne-terminated

alkanethiol linker to the gold surface on which the azido-sugars could be 'clicked' (Fig. 1.8).

Q--SH SH

s S S __S S S S

(a) (b)

Fig. 1.6 Carbohydrate SAM fabrication strategies on the gold substrate: (a) direct coupling through thiol anchor; (b)

indirect coupling through click reactions on preformed template. Reproduced with permission.116

21



HN HN

N N

N N N H WA N HN N

I x xxxxx
50pM onigo conc.

S S S, 30 mnUteS R T S
DMSO/H20 Cu(I)TSTA~

X = OH, CH3

Fig. 1.7 Surface modification of a mixed SAM on gold by chemoselective coupling of acetylene-bearing

oligonucleotides." 7

.4 ~) H(

NODA

1

N' N~

~ ~
'IN ~ - .*4 .A~4

I /

6 ,, 4 N N

21ar

Au surfac#

Of1

AU surftc*

ame-w5e

Fig. 1.8 Carbohydrate (i.e., mannose, lactose, or R-Gal) SAM fabricating strategies using a Huisgen 1,3-dipolar

cycloaddition "click" chemistry. Reproduced with permission.116

1.2.2.2 Construction of the lectin-SAM layer

Various methods of making lectin-SAM layers have been studied. In Faria's work'18 , cystamine was first

introduced to the gold surface and followed by glutaraldedyde molecules; the two candidate lectins were
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introduced separately (Con A and Jacalin). The gold surface was then exposed to glycine solution to

block the remaining aldehyde groups. Other studies have fabricated lectin-SAM surfaces using a similar

strategy.1 19

In the work by Bueno, et al. ,12' EDC/NHS reaction was performed to covalently attach the lectins

to the surface of the gold. In this work, the gold quartz crystal was incubated first in a solution of 1x10 4

Molar 1 1-mercaptoundecanoic acid (MUA) and 10 Molar 2-mercaptoethanol in ethanol. After the acid

was activated by the EDC/NHS reagent, the gold crystal was exposed to the lectins, to form a lectin-

SAM. This platform was used to compare the activity of the native and recombinant forms of Artin M

protein to horseradish peroxidase glycoprotein (HRP).

Covalently attaching proteins to the gold surface is necessary for most QCM studies, as a simple

adsorption-type SAM layer will not be able to withstand the many rinsing steps that follow. Lekka and

co-workers1"9 compared two types of immobilization methods. Direct adsorption of ConA on the gold

surface resulted in the removal of the SAM layer in a later rinsing step, whereas covalent binding of Con

A (using thiol chemistry) resulted in a more stable SAM layer, even after a rinsing step identical to that

which removed the non-specifically adsorbed Con A (Fig. 1.9)

J. pAl (.m i4n

A

B

0 60 120 180
Time. min

Fig. 1.9 The time-dependent frequency shift recorded during the adsorption of 2.5 pM Con A onto the surface of

quartz crystal electrodes: pure gold (A) and thiol-glutaraldehyde-modified electrodes (B). Arrows indicate the

moments when Con A was added and when electrodes were rinsed with pure buffer. Reproduced with permission.' 1 9

1.2.3 Applications of using QCM on SAMs

Frequency modulation of QCM is typically more closely monitored than damping resistance to

understand the binding events. For a first-order Langmuir isotherm model, the frequency change can be

described as follows.
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Af KAC

Afrn, KAC+1

(Eq. 1.2)

C C 1 1
Or --- = + --

Af Afma Af1 . KA

(Eq. 1.3)

where KA is the binding constant, and C is the concentration of the counter-molecule. Fitting -- as a
4f

function of C allows for calculation of KA.

With regard to the study of kinetics, the most common approach is to assume the binding of the

analyte to the SAM layer is the first-order and described by two rate constants related to association (k,)

and dissociation (k 1 ) of the molecules with the surface. The relaxation time constant, T is defined as,

T1 = kj [concentration] + k_ 1

(Eq. 1.4)

The percentage of the ligand bound to the receptor is defined as 6, and the equilibrium percentage as

0. . At any given time, t,

t = Om.(I -e-t")

(Eq. 1.5)

If one assumes the mass change of the crystal corresponds to the formation of the ligand-receptor

complex and that the frequency change is proportional to the mass change, the following equation also

holds:

Af, = Afmax (1- e~t')

(Eq. 1.6)

Therefore, by monitoring the frequency modulation as a function of time and concentration, k1 , k-1, and KA

can be readily evaluated, elucidating the interaction between the lectins and the carbohydrates or
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glycoproteins. In the following section, we will summarize a few examples on how to apply QCM to

study this type of interaction. Reproduced with permission.119

1.2.3.1 Lectin detection using sugar-SAM

In Wang and co-workers' study" 6 , through click chemistry, three sugar-SAMs were constructed,

including mannose-SAM, lactose-SAM, and galactose. The mannose-SAM was found to have a high

specificity for ConA, but also had slight cross-activity with ECL, which binds to galactose and galactosyl

(pl-1,4) N-acetylglucosamine. The value of KA for ConA binding with mannose was determined to be

(8.7 ± 2.8) x 10' M' by QCM technique and (3.9 ± 0.3) x 106 M-1 by SPR; and (4.6 ± 2.4) x 106 for

lactose binding with ECL and (6.7± 3.3) x 106 M- for u-Gal binding with anti-Gal by QCM. The

deviation between QCM and SPR results were explained by avidity effects, in which the gold chip used

for SPR may contain more binding sites than the gold chip made for QCM. In this study, as well as

others included in this review, multivalency has significant pros and cons. On the one hand, it can

increase the apparent binding affinity (as in the case of glycosylated nanoparticles reviewed in Section

1.2.3.4). On the other hand, multivalency also results in a non-intrinsic binding constant, which may bias

our understanding of the strength and kinetics of the binding between certain glycans and lectins, as given

in the example above.

1.2.3.2 Glycan detection using lectin-SAM

In the work by N. C. Pesquero et al., a lectin-SAM layer was constructed for both Con A and Jacalin.

Different concentrations of maltose and Fetuin were introduced to Con A- and Jacalin-coated electrodes,

respectively, in a QCM setup, and equilibrium binding curves were measured (Fig. 1.10). Binding

constants for Jacalin binding to Fetuin ((6.4 ± 0.2) x10 4 M-) and Con A to maltose ((4.5 ± 0.1) x 102 M

1) were found.
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Fig. 1.10 a) QCM frequency change monitored during the addition of different concentrations of maltose to a Con

A-SAM. b) QCM frequency change monitored during the addition of different concentrations of fetuin (close circle)

and BSA (open circle) to a Jacalin-SAM. Reproduced with permission.12

Rather than immobilizing Con A on the quartz crystal electrode, Ramstr6m et al.1 2 1 instead

coated gold-plated electrodes with polystyrene followed by yeast mannan, a mannose-rich

polysaccharide. Bovine serum albumin, a non-specific protein, was used to cover the non-polar regions of

the surface to which the mannan didn't adsorb. Con A was then flowed over the surface at varying

concentrations (Fig. 1.11) and a saturation curve was obtained. Using a Langmuir isotherm model, the

dissociative constant for the studied mannan-Con A binding interaction was K) = 0.4 stM, corresponding

to an affinity constant Ka = 2.5x 106 M-. After Con A adsorption, a series of competition experiments

were conducted using four known Con A carbohydrate ligands: D-mannose, methyl-a-D-

mannopyranoside, allyl-a-D-mannopyranoside, and 4-nitrophenyl-a-D-mannopyranoside. Increasing the

concentration of the ligands led to a decrease in the oscillation frequency shift (Af), indicating a loss of

surface-bound Con A. The competition plots (Fig. 1.12) were analyzed with a non-linear regression to

obtain the EC 0 values listed in Table 1.2. EC 0 is defined as half maximal effective concentration,

denoting to the concentration of the ligand that is needed to introduce a response halfway between the

baseline and maximum. The ability of the QCM to assess the binding characteristics of glycans to lectins

is limited by the mass of the analyte; if it is too small, a frequency shift will not be observed. By attaching

the glycan, rather than the lectin, to the QCM surface, Ramstr6m et al. demonstrated a system that can

potentially be modified to study monosaccharides or small glycans the QCM is unable to detect when

they are introduced as analytes.
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Fig. 1.11 QCM frequency variation with increasing concentrations of the lectin, Con A. The inset represents the

linearized data. Reproduced with permission.1 2 '
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Fig. 1.12 Competition plots for Con A binding, D-Man: D-mannose, Me-a-D-Manp: methyl-a-D-mannopyranoside,

All-a-D-Manp: allyl-a-D-mannopyranoside, and PNP-a-D-Manp: 4-nitrophenyl-a-D-mannopyranoside. Reproduced

with permission.'
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Table 1.2 Comparison of EC50-values for the QCM lectin biosensor and reported values from an enzyme-linked

lectin assay (ELLA). Reproduced with permission. 1 2 1

L-gand / 53 (-M) QCM (95% C>2 E 5 (M) (ELLA)
H

n-Mannose WI 5.3 (4.4-6.5) >2.5

HO OH
OH

HOC

Methyl--D-mannopyranoside HO 1.1 (0.90-1.3) 0.92

'OMe
OH

H

Allyl-a-D-mannopyranoside 0 025 (021-029) 0.26

OH
HO

4-Nitrophenyl-rx-D-znannopyranoside H OQ, o f NO2 0.18 (0.15-021) 0.11

H 0

Fgeswithin brackets represent 95% confidence intervals (95% CI).
a 67% a-, and 33% P-D-mannose according to 'H NMR-analysis in D3PO4-NaOD buffered saline, pD 7.4.

1.2.3.3 Glycoprotein activity study using lectin-SAM

QCM has become a very useful tool to study glycoprotein and lectin interactions without labeling. In the

work by Bueno, et al. ,l comparative studies were performed on the binding activity of native and

recombinant forms of Artin M protein to horseradish peroxidase glycoprotein (HRP). HRP is N-

glycosylated protein that contains the trimannoside Manal-3[Manul-6]Man, which is a known ligand

for jArtinM (a D-mannose binding lectin). In this work, QCM measurements were performed to assess

HRP binding at different concentrations, monitoring both the kinetics of the binding and also the

equilibrium constants. In the kinetics study, the following equations were assumed

k,
[free ArtinM site ]s + [HRP], [HRP - bound site]5k-1

(Eq. 1.7)

rb = kFfI [HRP]

(Eq. 1.8)

rd = k-lFb

(Eq. 1.9)
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where ki is the binding constant, and k_1 is the dissociation constant. For both forms of ArtinM, the

kinetics rates and affinity equilibrium constants were determined to be statistically equivalent (Table 1.3).

Table 1.3 Kinetic constant rates of binding and dissociation and kinetic equilibrium affinity constant for jArtinM-

HRP and rArtinM-HRP. Reproduced with permission.1 2 0

Interaction ki (1/mol/s) k.1 (1/s) Ka (1/mol)

jArtinM-HRP 28 ± 4 (4 ± 2) x 10-3 (7 ± 3) x 103

rArtinM-HRP 27 ±2 (4± 1) x 10-3  (7 ±2) x 103

In other work by the Lekka group 19, QCM was applied to study the interaction between

immobilized Con A and carboxypeptidase Y (CaY - a glycoprotein that catalyzes the hydrolysis of

peptidyl-L-amino acids). Frequency modulation was monitored in real-time at different concentrations of

CaY (Fig. 1.13). The results showed that k, = (5.6 ± 0.1) x10 4 M-1 s-' and k 1 = 0.095 ± 0.002 s-

respectively, and binding constant, Ka, was calculated as a ratio of the association and the dissociation rate

constant (0.59 ± 0.01) x10 6 M-1 .
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Fig. 1.13 (a) The real-time response of the motional resistance measured for Con A-modified crystal in TBS (A), for

Con A-modified crystal during binding of CaY to Con A. (b) Real-time frequency response curves obtained for Con

A-CaY binding process recorded for different concentrations of CaY: (1) 0.1, (2) 0.3, (3) 0.6, (4) 1.0, (5) 2.0, (6)

2.5, and (7) 5 pM. (c) The linear dependence between the relaxation constant and CaY concentration. Datapoints are

average values of three independent experiments. The correlation coefficient of the fit was 0.994. Reproduced with

permission. 9
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In the work by Danielsson et al. 113 the cross-reactivity of a set of lectins and glycoproteins was

studied using a lectin-SAM surface with a QCM. The results are presented in the following figure (Fig.

1.14) using the frequency change as a figure of merit.
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Fig. 1.14 Affinity of glycoproteins to different lectin surfaces (Con A, WGA, UEA, LCA). PBS (10 mM, pH 7.4) containing

1 mM metal ions (Ca 2 ,. Mg 2
+ and Mn 2

,) was pumped through the system at a flow rate 50 pL min. Glycoproteins (1 mg m7L1)

were injected for 40 min. Surfaces were regenerated with glycine-HCl (pH 2.5). Reproduced with permission.1

1.2.3.4 QCM signal amplifier

According to QCM theory (Eq. 1.1), the observed frequency change scales with the change in mass. The

current commercially-available QCM systems lack small molecule sensitivities and require additional

'synthetic amplifiers' to increase the signal. In addition, the theory assumes that the analyte mass couples

tightly to the resonator, which is not always the case. When bacterial cells bind to the surface of the gold,

they trap water, which damps oscillation and confounds the signal. 122 Thus, more complicated surface

chemistry techniques are needed to ensure that the bacteria bind tightly to the gold surface.

One way to increase the binding is to introduce Con A to a gold surface that is pre-treated with

polymannoside and then introduce the alkyl glycosides (Fig. 1.15, left panel) 12 3 . Although Con A is well

known to selectively bind x-mannosides and x-glucosides, in this setup only the "maltovesicles" V4

adsorbed specifically while others displayed little adsorption (Fig. 1.15, right panel). These observations

were attributed to conformational changes or the orientation of the glycosides on the surface.
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Fig. 1.15 Left: Scheme 1 Alkyl glycosides for vesicle functionalisation: f-glucoside 1, a-mannoside 2, -galactoside

3, and p-maltoside 4. Right: QCM adsorption profiles for alkyl glycoside functionalised vesicles at different molar

ratio of alkyl glycosides 1-4 to phospholipids (1 : 20/mol : mol = 10 pM in glycoside ). Reproduced with

permission.1

As follow-up, Barboiu et al. analyzed the binding constant for Con A with a-mannosides and a-

glucosides using gold glyconanoparticles to increase the mass of the analytes and their valence.2 3 The

Con A was immobilized on the surface by two methods. The first method consisted of immersion in an

octadecanethiol solution followed by exposure to Con A. The second method introduced an intermediate

step whereby polysaccharide Mannan was adsorbed on the octadecanethiol-functionalized surface before

Con A deposition, resulting in denser lectin layers. Six gold nanoparticle (NP) solutions were tested with

the Con A-treated system, containing respectively mannoside (11), glucoside (12), glactoside (13),

lactoside (14), maltoside (15), and the control, 2-(2-(2-mercapto-ethoxy)ethoxy)ethanol) (16). Only

mannoside and maltoside displayed selective absorption to the lectin-surface. The lectin layer was

resistant to the glucoside and galactoside nanoparticles (Fig. 1.16). Application of a Langmuir model gave

affinity constants of Ka = 1.6 x 10 7 M- and Ka = 7.2 x 107 M- for mannoside and maltoside, respectively.

In discussion of these results, Barboiu et al. stated that the glucoside nanoparticles attach glucose in the -

configuration, whereas the maltose presents terminal glucose in the a-configuration, which explains the

lack of affinity of the glucoside nanoparticles to the Con A surface. The multivalency effect, as a result of

the incorporation of the gold nanoparticles, was shown to increase the affinity constant by 2000 times for

mannoside-NP relative to methyl-a-mannoside, and by 25,000 times for maltoside-NP relative to D-

maltose. Barboiu et al. attributed the significant increase in binding affinity to a chelating affect as well as

an entropic affect. The decrease in conformational entropy of the system when the ligands are clustered
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into nanoparticles relative to their free state reduces the entropic cost of a binding event. In their work, the

ability of nanoparticles to significantly amplify the affinity of some of the carbohydrate-protein

interactions was demonstrated. Yet, in some cases, the incorporation of the nanoparticle changed the

configuration of the carbohydrate, as with glucoside, thereby preventing any binding.
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Fig. 1.16 a) Glycoligands 11-16 used for (b) glycoNPs 1 INP-16NP synthesis. c) QCM frequency variation during

addition of the glyconanoparticles (8 nM, core side d = 12 nm) to the Con A-treated QCM electrodes. Reproduced

with permission.1

In order to increase the frequency modulation signal for bacterial adhesion on the gold surface, Wang and

co-workers developed an innovative approach to strengthen the binding between the cell and the gold

surface122 . In a conventional approach, cells adhere to the mannose-SAM layer through a fimbriae-

mediated adhesion mechanism which is relatively weak (Fig. 1.17, left), and the resultant response curve

(Fig. 1.18, left) indicates a detection limit of 3.0 x I0 7 cells/mL. In this approach, Con A was first

introduced to adhere on the specific terminal carbohydrates of the bacterial lipopolysaccharides, which

increased the contact area between the cell and the surface. The detection limit of the new approach

decreased significantly to 750 cells/mL.
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Fig. 1.17 Schematic presentations of direct E. coli detection and Con A mediated E. coli detection. Reproduced with

permission. 122
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Fig. 1.18 Left: Frequency change vs. time curve when the mannose-QCM electrode during exposure to different
2+ 2+,

concentrations of E. coli W1485 in 1.0 mL stirred PBS buffer (pH = 7.2) with 1mM Ca2+ and 1 mM Mn . (The

final concentrations of E. coli were: 2.9 x 107, 9.8 x 107, 1.6 x 108, and 2.7 x 106 cells/mL.) Right: Frequency

change vs. time curve when the mannose-QCM sensor was first exposed to 100 nM Con A, followed by the addition

of E.coli W1485 (7.5 x 107 cells/mL) in 1.0 mL stirred PBS buffer (pH = 7.2) with 1mM Ca2
+ and 1 mM Mn 2

+.

Reproduced with permission.'22
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1.2.3.5 Glycoconjugated porphyrins target receptors of cells

While QCM is useful in quantifying the interactions between lectin and carbohydrates or

glycosylated proteins, it can also be used in more applied medical applications, such as designing new

therapeutic drugs or detection tools that mimic physiologic interactions between lectins and

carbohydrates. Researchers have synthesized sugar-functionalized nanoparticles to target cell receptors

that contain sugar-binding domains, taking advantage of the lectin-sugar interaction for cell target

studies.12 4 For example, in a new therapy for retinoblastoma (a malignant tumor)125, a sensitizer that lacks

mutagenic properties under visible light is administered to the cancerous cells. Upon the sensitizer's

photo-activation, reactive oxygen species are generated that cause irreparable damage to these cells,

resulting in cell death.126 Most of the sensitizers are porphyrin-based compounds and are poorly soluble in

water, yet glyconjugation is considered to be a potentially effective way to increase the solubility. In

Rosilio's work 124, glycoconjugated porphyrins are designed to specifically target the receptors to X-

mannose. These have been previously found to be the receptors exposed at the cell surface of neoplastic

retinal tissues 27 . In this work, new meso-(tetraphenyl) glycodendrimeric porphyrins were synthesized

(Fig. 1.19). 1c was a nonglycoconjugated porphyrin with the same structure as 1 and was used as a

control for 1, and to a lesser extent, 2. The binding affinity of these porphyrins with concanavalin A (Con

A), a mannose-specific lectin, was analyzed with QCM. The Au-coated crystals were coated with a 5 mM

ethanolic I 1-mercaptoundecanoic acid (MUA) solution. The carboxylic acid functions of MUA were

converted to N-hydroxysuccinimide esters by reaction with N-hydroxysuccinimide, followed by exposure

to Con A. The porphyrins were solubilized in DMPC liposomes to overcome their poor solubility in

water. DMPC, DMPC-lc, DMPC-1, and DMPC-2 were introduced to the immobilized Con A surface,

and the oscillation frequency shift (Af) and the energy dissipation change (AD) of the quartz crystal were

monitored in the QCM over time. The binding constant values for the porphyrin derivatives with Con A

and human serum albumin were determined, and the glycoconjugated porphyrin evidenced a much

stronger binding to Con A than the original porphyrin. The study concluded that glycodendrimeric

porphyrins could be applied for specific recognition of certain CRD-containing tumors with a higher

selectivity than sensitizers or porphyrins that are not conjugated to sugars.
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Fig. 1.19 Chemical structures of the studied porphyrins and of methyl-a-D-mannopyranoside. Reproduced with

permission. 127

1.2.4 Cantilever array sensors detecting carbohydrate-protein interactions

Cantilever microarrays are another emerging class of nanoscale tools for detecting molecular binding

using mass change transduction. For example, a label-free, cantilever-array sensor was used to measure

picomolar levels of mRNA without target amplification; moreover, these results could be obtained within

a few minutes. 128 Upon binding between a receptor and a molecule, the cantilever bends, resulting in the

deflection of the laser, allowing for direct detection of the binding events. In the work performed by

Hermann129 and colleagues, the interaction between mannose and an antiviral protein cyanovirin-N (CV-

N) was studied, the latter being an 11 kDa protein that has recognizes oligomannosides. Here, the

cantilever array was functionalized with trimannose (Figure 1.20a, 1), nonamannose (Figure 1.20a, 3).

and galactose (Fig. 1.20a, 2) at different densities using thiol-gold chemistry; galactose served as an

internal control. Upon injection of CV-N, the deflection signal of the trimannose cantilevers (Fig. 1.21,

red and orange) was approximately 3-4 times larger than that of the galactose cantilevers (Fig. 1.21, dark

and light blue).

The nonamannose-functionalized cantilevers exhibited a 20% stronger deflection than trimannose-

functionalized cantilevers upon CV-N addition. The galactose-subtracted differential signal was assumed

to come from the specific adsorption of the CV-N on the galactose cantilever. Similar measurements

were also performed using Con A in place of CV-N. The resulting deflection of the nonamannose was

more significant than that of the trimannose, which result from multivalent binding of Con A to

nonamannose. Using this technique, a 9.6 nM concentration of Con A (1 ptg/mL) can be detected even

when immediately followed by a Con A pulse of higher concentration. This sensitivity is comparable to

other surface techniques like SPR (Section 1.4.2) and QCM.
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Cantilever sensors have potential as a quantitative tool for deducing interactions between glycans

and CRDs; however, limitations do exist. Thiol-functionalized galactosides require significant synthetic
130efforts. Additionally, although CV-N and ConA are not galactose lectins , in this study they

demonstrate binding to the galactose-modified cantilever; this unexpected binding indicates that the

surface chemistry used in this work may have altered some of the native structures of the sugars,

introducing non-specific adsorption, which would confound selective sensing applications. For

glycoprotein profiling, the detection scheme must be reversed; it would be necessary to immobilize the

CRDs on the array surface and use the glycosylated reageant as the analyte. This reverse scheme may

have the same mass limitations as SPR (Section 1.4.2) as the large lectins would induce a larger

deflection than would a smaller glycosylated product.

H
HO 0 o, O 0
HO OHO

HO 0 . O "SH 0- -SH
HO ; 0 HO 0

O') HO o

1 2
OH

QH OH O
OH

OH OH

0~~ 0

OH
OH OH HVOA

00

0o _HO O

H 

OH O-''SH

3

Fig. 1.20 a) Carbohydrates studied in this work, including trimannoside (1), galactoside (2), and nonamannoside (3).

b) Scheme of a cantilever array functionalized with thiol-terminated carbohydrates where the galactose-modified

cantilever serves as an internal control. While cantilevers 3, 4, 7, and 8 are coated with trimannose to detect CV-N,

cantilevers 1, 2, 5, and 6 are coated with galactose as reference. Carbohydrate densities were adjusted using two

different incubation times (1, 3, 5, 7 sparse and 2, 4, 6, 8 dense). Upon contact between the sensor surface and CV-

N, protein binding results in intermolecular interactions that induce surface stress on the cantilever surface that in

turn is relieved by cantilever bending. Reproduced with permission. 129
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Fig. 1.21 a) Averaged/differential cantilever deflection as a function of time during CV-N detection (0.1 mg/mL

(9.09 pM), shaded area). Top: Upon injection of CV-N, trimannose cantilevers (red and orange) show an about 3-4

times larger deflection signal than the galactose cantilevers (dark and light blue). The more sparsely functionalized

trimannose layer (9 min, orange) shows a somewhat larger deflection than the more densely functionalized layer (14

min, red). Each graph represents an average signal of two identically functionalized cantilevers. Bottom:

Corresponding differential signals for two different incubation times (9 min, light green and 14 min, dark green),

calculated by subtracting the nonspecific galactose signals from the specific trimannose signals. The differential

signal is assumed to reflect specific binding events. At the return of the running buffer, the differential signal

recovers more slowly than the averaged signal, indicating dissociation of nonspecific binding. B) Average and

differential ConA binding signals. Upper panel: Following injection of ConA (2 mg/mL; 19.2 pM) the average

deflection of the tri- and nonamannose-coated cantilevers was considerably larger than the average deflection of the

galactose reference cantilevers. Multivalent and multisite binding by nonamannose resulted in increased deflection.

The inset illustrates cantilever array functionalization. Lower panel: The differential deflections represent the

specific binding of Con-A to trimannose and nonamannose cantilevers after correction for the nonspecific binding

using the galactose reference cantilever. Reproduced with permission.129

In summary, mechanical methods, especially QCM, have particular advantages for

glycoprofiling, including: 1) the concept and operation of QCM is very simple, and the detection is fast

(less than 30 min per run); 2) the detection is quite sensitive; typical binding constants are on the order of

106 M-, although detection is also surface-chemistry and analyte dependent; 3) simple but efficient

surface chemistry can be readily applied, including gold-thiol chemistry, NHS/EDC chemistry, 'click'

chemistry, and widely used conjugation chemistry; 4) nonspecific adsorption is a concern but it can be
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overcome with careful engineering. There are other limitations in this technology, the main concern

being the difficulty in transducing binding events between smaller molecules. Signal amplification, if

used, is generally complicated and highly system-dependent.

1.3. Electrical Platforms
The concept of electrical transduction is primarily based on the detection or recognition of

electrical signals, including resistance, impedance, conductance, potential, and voltage. An advantage of

electrical transduction is that it is a nondestructive analytical technique, which makes it a promising

method over the above-mentioned traditional methods such as mass spectrometry or HPLC. There are

three important electrical methods that are recognized and reviewed herein. First, electrochemical sensors

employing nanomaterials have been widely studied as a liquid-phase sensing system for probing

intermolecular interactions.' 3' Electrochemical impedance spectroscopy is especially utilized for the

detection of a variety of biological analytes.13 1 Second, field effect transistor (FET) sensors based on

carbon nanotubes132-136 or nanowires 137 have attracted much attention since their first report in 1998.138

The constrained chemistry of the nanotubes and nanowires results in an observable decrease in

conductivity along their length when an analyte binds to their surface. Nanotube FETs (NTFETs) are

promising candidates for electronic detection of biological species by measuring the electrical

conductance change of nanotubes before and after binding to a biomolecule. Third, biological pores139

and solid-state nanopores4 are another emerging class for electrical platforms; they have current

applications in biomolecule detection or DNA sequencing by single-channel electrical recording

technology. Following, we present a critical review of recent research towards the development of

glycoprofiling technology based on these three electrical platforms.

1.3.1 Electrochemical sensors

The development of nanoscale electrochemical platforms has been extensively investigated as an

inexpensive, rapid approach to sensitively detect a variety of biological analytes1 340,41 and the

interactions between different biomolecules, including lectin-glycan 33 ,42 ,43 , antigen-antibody44 46

protein-cell 47 148, avidin-biotin 35,149 , enzyme-biomolecule' 40 , or cell-matrix.14 The common
132,140,141,144 132 . 32,1511electrochemical methods include voltammetry , amperometry , potentiometry ' , and

electrical impedance spectroscopy (EIS).13 1,14 2 -14 4 ,14 6 Generally, nanomaterial-modified electrodes are

initially characterized using cyclic voltammetry (CV). Differential pulse voltammerty (DPV), square-

wave voltammetry (SWV), amperometry, and EIS are then employed to quantify analytes, in which DPV

produces less charging current, which is often applied to discriminate multiple compounds and improve

sensitivity.140 Among others, EIS is a powerful tool for probing the interface features of surface-modified
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electrodes and is particularly used to study the stepwise assembly of the composite biosensors.

Electrochemical impedance is generally measured by applying a small sinusoidal AC potential (2-10 mV)

to an electrochemical cell and measuring the current that crosses through the cell. Thus, if the applied

sinusoidal excitation potential E, is expressed as

E, = E0 -sin(2rft)

(Eq. 1.10)

the corresponding current signal I, could be expressed as

I =o -sin(24f±+)

(Eq. 1.11)

where E) is the amplitude of the voltage signal,f is the frequency expressed in Hertz, Io is the amplitude

of the current signal, 0 is the phase angle, t is the time. In analogy to Ohm's law, the impedance of the

system is given by:

E, E0 , sin(2nft) sin(2#ft)

i, I0 -sin(2±ft +#) 0 sin(24ft + 0)

(Eq. 1.12)

For the mathematical treatment of data, a common way to represent the impedance vector model

is to use complex notation; the in-phase current response determines the real (resistive) component of the

impedance, and the out-of-phase current response determines the imaginary (capacitive) component. In

this way all components that generate a phase shift (i.e. the capacitor) will contribute to the imaginary

part of the impedance, while the ones that do not produce any phase shift (i.e. the resistance) will

contribute to the real part.

Z=Z ±iZ
Z_ real +iinag

(Eq. 1.13)

The impedance spectra of EIS are often presented in a Nyquist plot, which includes a semicircle

part and a linear part. The semicircle part at higher frequencies corresponds to the electron-transfer

limited process, in which the semicircle diameter equals the electron-transfer resistance, while the linear

part at lower frequencies describes the diffusion-limited process.

The fabrication of electrodes normally involves a multilayer structured assemble process. First, a

"sandwich" electrode is made from selected materials, including silicon chips, carbon or metal electrodes,
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carbon nanotubes, graphene, or noble metal nanoparticles. Then the bioactive molecules are "hooked up"

to construct a recognition interface by click chemistry or some simple conjugation reactions. For instance,

Prasad's group reported a NanoMonitor device consisting of a silicon chip with an array of gold

electrodes overlaid on a nanoporous alumina membrane, in which lectins were conjugated to the surface

of the electrode for glycan biomarker detection. 4 3

As shown in Fig. 1.22, the NanoMonitor is composed of a microfabricated silicon platform with

eight microscale gold-sensing sites, each of which includes a 25 [im diameter working electrode and a

125 Rm diameter counter electrode. The eight sensing sites are physically isolated from each other so that

parallel measurements can be performed at the same time. The construction of the recognition interface

was achieved by first coating the electrode surface with the crosslinking agent, dithiobis succinimidyl

propionate (DSP). The disulphide linkage of DSP chemisorbs quickly to the gold surface forming DSP

monolayers while the N-hydroxysuccinimide groups are available for binding to the primary amine group

of proteins. Then, streptavidin was added and incubated onto the electrode surface containing DSP by

bioconjugation binding. Finally, the immobilization of lectins to the functionalized gold surface was

achieved by using the biotin-avidin linker chemistry. In this study, three glycoforms including

asialofetuin (ASF), 3'-linked terminal sialic acid (3SF), 6'-linked terminal sialic acid (6SF) of the

glycoprotein fetuin were analyzed on the NanoMonitor through EIS, based on the principle of double

layer capacitive measurement. The experimental results demonstrate that the NanoMonitor has excellent

potential for development as a handheld electrochemical sensor for routine detection of glycan

biomarkers. Table 1.4 summarizes of the performance of the NanoMonitor relative to that of the lectin-

based enzyme linked immunosorbent assay (ELISA) for the detection of these three glycoform variants of

fetuin. Compared with the traditional ELISA technique, the NanoMonitor is five orders of magnitude

more sensitive as well as highly selective over a broad dynamic range of glycoprotein concentrations. The

NanoMonitor is a rapid, completely label-free, and very promising detection platform. However, as

discussed in the introduction of this review, the three glycoforms screened in this work are just a few of

the many glycoforms that are possible. In this case, Fetuin can adopt over one hundred glycforms with

its three N-linked oligosaccharides (each with two to three branches) and one to two 0-linked

glycosylation sites that can also be terminally sialylated. Thus for this platform to resolve more of the

glycoforms, especially differentiation between nearly identical species, more sensor sites would need to

be employed each with a more accurate measure of binding on a unique CRD (in this case, lectins). This

would effectively expand the possible 'bar codes' of the fetuin species and assign each a unique code.
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Fig. 1.22 (A) The Nanomonitor consists of a base silicon microplatform with eight gold metal sensing sites to form a

hand-held diagnostic device (insert). (B) Each sensing site is composed of a gold working electrode (25 pm

diameter) and a counter electrode (125 [m). (C) The nanoporous alumina membrane is used to create a high density

array of nanowells on the sensing site. (D) Schematic representation of the interaction of biomolecules at the

electrical double layer. Reproduced with permission.143

Table 1.4 Summary of the performance of the NanoMonitor in comparison to the

detection of the glycoform variants of fetuin. Reproduced with permission. 143

Performance parameter

Detection sensitivity
3' sialylated fetuin
6' sialylated fetuin
Detection specificity
3' sialylated fetuin
6' sialylated fetuin
Linear range of detection
Volume per assay
Response time per sample
Detection method

Lectin-based ELISA

0.156 pg/ml
0.312 pg/ml

>0.156 pg/mi
-0.312 pg/ml
0.312-5 pg/ml
50 pl minimum
Approximately 4 h
Enzyme-linked colorimetric assay

lectin-based ELISA for the

NanoMonitor

1 pg/ml
1 pg/ml

>1 pg/ml
100 pg/ml

1 pg/ml-10 ng/ml
10 pi maximum
<15 min
Label-free impedance

Compared with a bare carbon electrode, the nanocomposite-modified electrode offers a more

homogeneous surface for biomolecule or living cell loading, which enhances the reproducibility of both

the biosensor and the obtained signals. The most widely employed nanomaterials are gold nanoparticles
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(AuNPs) and carbon nanotubes (CNTs), which greatly improve the sensor surface area, biocompatibility,

electrical conductivity and connectivity, chemical accessibility and electrocatalysis.131

AuNPs can be layered through electrodeposition onto the surface of electrodes, on which a

protein, oligonucleotide or other probe molecule can then be immobilized as the recognition interface. For

instance, Penadds' group reported a nanostructured disposable impedimetric sensor using screen-printed

carbon electrodes (SPCEs) modified with AuNPs.14 2 The self-assembled monolayer (SAM) of thiolated

carbohydrate was conjugated on AuNPs/SPCEs for the detection of biomolecular specific interactions

based on reactions between carbohydrates and proteins. AuNPs can also be used as a solution-phase

conjugation reagent for amplifying the signal or optimizing detection frequency for EIS. Belle's group

reported a single sensor multiplexed marker assay, in which AuNPs were conjugated to an antibody in

solution-phase to help tune the impedance frequency of the proteins away from one another for better

signal processing.146

CNTs are normally incorporated onto electrodes by directly growing CNTs on the electrode

surface, adsorbing them on existing electrodes, polymer coating or wrapping, or using a binder to make a

paste electrode. For instance, Ju's group reported poly(diallyldimethylammonium) (PDDA) polymer

functionalized multi-wall CNTs (MWCNTs) on glassy carbon electrode (GCE), on which negatively

charged concanavalin A (Con A) was adsorbed, binding to the positively charged PDDA, for the specific

recognition of cell-surface glycans.14' This ConA/PDDA/MWCNT/GCE composite electrode

demonstrated a linear response to K562 cells ranging from lx 104 to Ix 107 cells/mL. Yuan's group

reported a biosensor based on tris(2,2'-bipyridyl)cobalt(III) and MWCNTs-Nafion composite for

immunoassay of carcinoma antigen-125, in which both AuNPs and MWCNTs were applied to assemble

the sensing platform.144 In addition, CNT itself can be modified by doping nitrogen, boron, or other

elements to improve sensitivity and selectivity for a specific analyte. Zhu's group reported a 3D-

architectural biosensor by combining PDDA-functionalized nitrogen-doped MWCNTs having a nitrogen

content of 3.2% (PDCNx), with thionine (THe) and AuNPs via the layer-by-layer method.147 This

ConA/AuNPs/TH*/PDCNx/GCE demonstrated excellent analytical performance for the detection of HeLa

cells ranging from 8.Ox 102 to 2.Ox 107 cells/mL with detection limit of 500 cells/mL.

1.3.2 Nanotube field effect transistor (NTFET) sensors

In NTFETs, a single SWNT or a network of SWNTs acts a conducting channel between two metal

electrodes (source and drain) while the two electrodes are held at a constant bias voltage (Fig. 1.23).135,151

The design principle of NTFET sensors is based on high conductance sensitivity of semiconducting

SWNTs when exposed to the environment. In an NTFET sensor, each atom on the surface of the SWNTs
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is exposed to the surroundings such that even small changes in the environment can cause drastic changes

to the SWNTs' electrical properties. All kinds of organic, inorganic, and biological materials may be

applied to functionalize the surface of SWNTs for improving their biocompatibility, sensitivity, and

selectivity by covalent or non-covalent binding. Covalent modification of SWNTs tends to create defects

in the SWNTs, which may hamper their electronic properties. To avoid these defects, non-covalent

modification is commonly employed. By 7r-7r stacking or hydrophobic interaction, various synthetic

polymers and biomolecules including proteins, DNAs, polysaccharides, enzymes, antibodies, bacterium,

and living cells are adsorbed or incubated on NTFETs to investigate specific biological

interactions.132 ,134,135,151-154 Widely used synthetic polymers include Tween 20, poly(ethylene imine),

poly(ethylene glycol) and their derivatives. These polymers are employed not only as the recognition

interface but also as a coating to protect the SWNTs from non-specific binding of interferences. 3 2 The

suggested biosensing mechanism for NTFET sensors may involve electrostatic gating' 36,155-157 changes in
158 159 136,157gate couplings 4 , carrier mobility changes- 's , and Schottky barrier effects. One promising

application of NTFET sensors for the detection of glycan-CRD interactions was reported by Star's group

who made a glycoconjugated SWNT network FET sensor, which demonstrated very good specific

binding of bacterial lectins.133 However, semiconducting SWNTs with higher purity are required to

achieve better signal quality as a further research goal.
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Fig. 1.23 (A) Schematic representation of a NTFET sensor.15' (B) A representative scanning electron micrograph

(SEM) of an individual straight SWNT connecting source and drain electrodes on a silicon oxide (SiO 2) surface.' 5'
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(C) Working scheme of the NTFET sensor. A polymeric functional layer, which coats the SWNT, is functionalized

with a molecular receptor, biotin, a protein that recognizes a biomolecule, streptavidin.13 5 (D) I-V characterization of

the NTFET sensor before and after PEI/PEG polymer coating and after biotin attachment to the polymer layer.

Reproduced with permission.'3 5

1.3.3 Nanopore sensors

Nanopore sensors with single-channel electrical recording is an emerging technology for the

stochastic sensing of a variety of molecules.'60 As shown in Fig. 1.24, when different analytes pass

through the nanopore, the current signal will report binding events due to the partial blocking of the ionic

current.160 Furthermore, different molecular adaptors can be placed in the lumen of the pore for periods

sufficiently long to observe host-guest interactions. The binding events between adaptors and target

molecules cause current fluctuations that permit the quantification and identification of the target

molecules (Fig. 1.25). 161 Very recently, Bayley's group reported two new nanopore biosensors based on

a-hemolysin (a-HL) protein pore combined with disulfide cyclodextrin adaptor for molecular

recognition.139 Their results demonstrate that with skeleton-modified cyclodextrins, the sensing selectivity

could be tuned toward different target molecules, which may indicate a promising application for chirality

sensing. For instance, since their data suggest a successful asymmetric alteration of both the conformation

and the cavity of the cyclodextrin adaptor, we could extend this technology to make a series of adaptors

with different chiral features, which may find application in chiral recognition or even separation of chiral

biomolecules or pharmaceutical molecules.

Compared with mechanical platforms, especially QCM, these electrical platforms possess better

anti-interference ability and biocompatibility, and they are easier to fit in a present sensing platform.

However, they have disadvantages. For NTFETs, the sensitivity of the whole system is directly dependent

on the purity of the semiconducting SWNTs as the presence of metallic SWNTs will cause an inferior

conduction channel. However, the separation and purification of semiconducting SWNTs is a challenging

research goal that is being actively pursued. As for the nanopore platform, the characterization of each

new sensor is not easy and requires lots of expertise and time. Nevertheless, one of these electrical

platforms may be integrated in a future system for label-free and non-destructive glycoprofiling.
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Fig. 1.24 Detection of a variety of analytes by stochastic sensing. (a) metal ions; (b) organic molecules; (c) proteins.

Reproduced with permission.' 60
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1.4. Optical platforms

A few optical platforms are currently used to transduce glycan-CRD binding. They can be

broadly separated into two categories: (1) non-equilibrium methods and (2) kinetic or near-equilibrium

methods. 20 Equilibrium platforms include the microarray methods mentioned in the introduction (i.e.

lectin arrays or lectin sandwich arrays) as well as other similar, fluorescent detection schemes like

ELISA. 162 -116 In these methods, no absolute quantitative binding information is given (kf, k, or KD) but

rather relative binding information. A microarray screening can determine which glycan-CRD pair has

the greatest affinity and how it relates to the other pairs screened on the same array. This limits their

application to a glycoprofiling platform. Conversely, non-equilibrium methods can yield quantitative

information; these include optical methods such as frontal affinity chromatography, surface plasmon

resonance, and optical nanotransducers. A critical review of these technologies follows.

1.4.1 Fluorescent frontal affinity chromatography for kinetic parameters

Frontal affinity chromatography (FAC) is a widely used method for determining glycan-lectin

kinetics since the 1970s. As the name connotes, FAC is an advance to the chromatographic processes

mentioned in the introduction. Unlike simple affinity chromatography, whose aim is selective binding of

glycan entities for separation into different elution volumes, FAC is a quantitative analysis of the

advancing front in an affinity column. In their foundational paper 166, Kasai and Oda demonstrate how

analyzing the binding of an advancing front can yield KD for a given glycan-CRD pair. Their initial

method was nanoscale in its immobilization of lectin transducers and truly label-free, making acquisition

of the proper volume fractionations time-intensive and laborious. Subsequent enhancements, including

HPLC automation, data-analysis algorithms, and a coupled fluorescent detector, helped speed up and

simplify the process, at the cost of requiring fluorescently-labeled glycan reagents. 167 An alternative to

identifying fluorescently labeled analytes is to couple the FAC system with mass-spectrometry and

analyze each of the species as they elute through the column; in this way both kinetic affinities and

chemical identities can be achieved for a large population of analytes.168 The FAC-MS method has not

yet been widely adopted for glycan-CRD analysis, with one literature demonstration being interactions of

blood trisaccharides with the lectin from Marasmius oreades.169

The current fluorescent-based FAC system for glycan-protein interactions is described well in this

methods paper. 170 Dilute solutions of glycan are passed through a Lectin-immobilized column (Fig.
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1.26a) at a constant concentration [A 0]. If the glycan has no affinity, it passes through the column (blue in

Fig. 1.26) and the glycan front is fluorescently detected faster than the front of an affined glycan (red in

Fig. 1.26), which is delayed by binding to the lectins in the column. The dissociation constant of the

glycan lectin pair is determined by the governing equation of FAC (Eq. 1.14):

[AO](V -VO) = AO]

([AO] + KD)

(Eq. 1.14)

Where [A0] is the initial glycan concentration applied to the column, B, is the approximate mole amount

of lectin in the column, and the (V-VO) term is the difference in the elution front volume of the affined and

non-affined glycan, as described in Fig. 1.26 b-d. The elution concentration of the glycan eventually

approaches the concentration that is being applied, as the lectins become fully loaded by the glycan. This

signal plateau (Fig. 1.26d) must be clearly defined in order to determine the elution volume.

To better understand the equation of FAC analysis (Eq. 1.14), one should inspect its analogue: the

equilibrium form of the Michaelis-Menten equation (Eq. 1.15).

[ES] = [E] 0 S]
KD + IS]

(Eq. 1.15)

This is the governing equation for a classic enzymatic reaction (Eq. 1.16) where a number of enzymes (E)

binds with sample (S) to form a bound species (ES)

E + S kf ES

kr (Eq. 1.16)

This reaction is governed by a forward and reverse reaction, whose divisor (k/kf) is an inverse measure of

the affinity of the species, known as the dissociation constant (KD, inverse of the K, constant used in

Section 1.2). The smaller the KD, the more affined the two species are to one another. For reference,

lectin-glycan pairs9" typically have a KD in the range of 10-3 tol0-7. Comparing Eq. 1.14 with Eq. 1.15

illustrates that FAC analysis is simply the kinetic analysis of surface binding. The number of lectin

binding sites is finite (B,) and the left hand term of equation 2 ([A] (V - V0)) is a measure of the bound

lectin sites at equilibrium.
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Fig. 1.26 Experimental scheme for frontal affinity chromatography (a) and method of calculating the elution front

volume (b-d). Reproduced with permission.170

Hirabayahsi and his team established fluorescent FAC as a tool for oligiosaccharide-lectin

interactions. In their founding works they screened various oligiosaccharides to lectin-imobilized

columns, as they did for 12 glycans to LEC6 (a galectin or galactose binding lectin from the nematode

Caenorhabditis elegans) in this work.167 The glycans were fluorescently labeled and detected using a

FAC system coupled with fluorescent detection as detailed above (Fig. 1.26). The FAC traces (Fig. 1.27)

provided the loading curves necessary to determine the elution volumes and enabled determination of the

dissociation constants of the 12 pairs (Table 1.5). This paper is a good representation of the type of data

fluorescent FAC systems can provide. The Hirabayashi group has continued to probe galectin

interactions using fluorescent FAC.171-173 Other groups have used fluorescent FAC for medicinally

relevant glycan interaction studies in the areas of immune cells, 7 4 ER associated degradation of

proteins,17 5 17 7 HIV,178 disease biomarkers,'179 and glycan binding specificity of many lectins. 180~183
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Fig. 1.27 Showing the FAC elution curves necessary to determine the front volume. Reproduced with permission.167

Table 1.5 Calculated KD for the 12 glycan-LEC6 pairs screened in the Hirabayashi study. Reproduced with

permission. 167

Structure of PA-oligosaccharides used in this study and the obtained dissociation constants (K s) for LEC-G

No. Common namie Structure V r- I" KA' for IEC6 Relaive afftiny"

(l) (rmd) (M)

of Biantennary complex Gato] -4Gk NAcps2Manal-6 10.92 065 4.2- 10 6.4
Galol-4GkNAcpl-2Manal-3M

21 Monsaialyted blantennary NeuAc2dGCalt- 4GkNAcPl 12Mana1 6 0.38 0.11 2.5-10 I.1
complex CaIl -4GkNAcfW2Manrtl-3

22 Nonmsialvlated btantenvary Galt-4GtckNAcPl-2Mantl -6 0.35 0.08 3.2-10 ' 0.83
complex NeuAcu2CGall -4GIkNAfI p2Manl -3 ManIRh

23 Disialylated blanitennary NeuAcM2 Ca$1-4GkNAqp-2Mana n 0.29 0.02 1.4-10 . 0.2

complex NeuAco24Cal .4GkNAcP t2M3an al-3Mn

26 Asialo GM3 (la rose) Gal-CAGl-PA 0.34 0)07 3.9-10 0.69

27 Astalo GM2 GalNA ob4GalpI.4Gk-PA 0.31 0.04 6.9-10 - 0.39

28 Asialo CMI Ga1 -3IatNAcpI-4Galp i -40c-PA 0.37 0.10 2.7-10 0.98

.10 Forsman pentasaccharide Ga1NAcot-3CatNAIl-3Gaklt-4GaI01-4Gc-P 0.32 0.05 5.5-10 0.49

41 Lacto-N neotetraose Gall -4GkNAclt-3GalpsI4Gc-PA 0.43 0.16 1.710 1.6

42 Lacto-A'-teaose Gal1I-3GcNAcpI-3GalI-4Glc-PA 0.53 0.26 1.1-10 1 2.6

45 Lacto-N-fucopeptaose III Gall 4GkCNAcp -3Catsp4Gk U PA 0.31 0.03 9.1-10 4 0.29

Fa l-3

47 A-11exasaccharlide GalNAcyl 3Galpi-3CkNApic-3(a$1t 4GIc-PA 0.33 0.06 4.6-10 - 0.59
Fucibt-3

'Relative affinity cakulated on the asis of for p-arninopienyl-p-lacloside.

R = I -IGIc 4NA 4CAc-PA-

The advantages of FAC have been delineated as 1) the equilibrium kinetic analysis is a simple,

clear equation; 2) the method is capable of measuring weak interactions (KD > 10-7); 3) data is reliably

reproduced; 4) only small amount of the glycan is necessary (0.5 pmol/assay); and 5) the lectin

concentration does not need to be known to a high precision. Possible drawbacks were also noted as 1)
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lectin immobilization may affect its binding properties; 2) proteins may be unstable during the assay; 3)

the complete screening takes a few days; 4) a large amount of lectin is needed for full analysis (0.5 mg);

and 5) crude, heterogeneous samples cannot be analyzed. Another apparent drawback is the labeling

requirement; the glycosylated analytes must be fluorescently tagged, most often with pyridylamine

groups,167,184 to produce the frontal binding curves required for kinetic analysis.

1.4.2 Surface plasmon resonance for kinetic parameters

Another nanoscale optical technique also analyzes the loading of surface sensors for kinetic

analysis of bimolecular interactions, but without the need of labeled reagents: surface plasmon resonance

(SPR). First applied by Liedberg et al.'85 in 1983, this technique has become an essential laboratory tool;

there are many recent reviews of SPR techniques for measuring bimolecular interactions 186,18 7 as well as a

review'88 and book chapter'8 9 specifically for plasmonic techniques used for oligosaccharide-CRD

interactions. In SPR measurements, one binding ligand is immobilized to a gold surface and the other

binding pair is transported across the surface (Fig. 1.28a). The refractive index of the surface changes as

the surface ligands become occupied. The surface loading can thus be transduced with a careful optical

setup, resulting in a loading curve (Fig. 1.28b) similar to those seen for QCM measurements (SRC) and

fluorescent FAC.167 A typical SPR experiment consists of three phases: 1) association, 2) dissociation,

and 3) regeneration. In the association phase, the analyte is introduced at a constant concentration and the

surface is fully loaded. In the dissociation phase, the analyte flow is stopped, and the bound analytes are

washed away. In the regeneration phase the surface is given time to recalibrate to its original refractive

index in preparation for the next measurement. These phases are replicated with varying analyte

concentration to determine the binding kinetics of analyte to surface-bound ligand. This technique has

achieved widespread use due to simple-to-use commercial instruments, like the BiaCoreTM system.
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Fig. 1.28 Surface plasmon resonance detector for glycan-lectin interactions. A) Lectins are immobilized on a thin

gold film and glycosylated analytes are flown across the surface. As analytes bind to the surface, the refractive

index changes altering the path of a polarized light source. B) The resulting light signal is reported in a "sensogram"

showing the characteristic loading curve after analyte addition. Reproduced with permission.20

The kinetic analysis of SPR loading curves is also a straightforward analogue of a Michaelis-

Menten reaction. 190 In the case of lectin-glycan interactions, if we assume the same surface reaction form

as FAC experiments (Eq. 1.16) we can write a reaction equation as

G+L4++GL

(Eq. 1.17)

where G is the glycosylated analyte, L is the lectin binding sites and GL is the bound complex. Given this

model, we would expect the following kinetic model to express the rate of change of bound complex:

d [GL]
dt = kf [G][L] - kr[GL]dt

(Eq. 1.18)

The concentration of the free Lectin sites at a given time can be expressed as:

[L]t = [L]tO - [GL]t
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(Eq. 1.19)

Thus, equation 1.18 can be rewritten as:

dt = kf[G]([L]to - [GL]) - kr[GL]

(Eq. 1.20)

We assume that the analyte concentration, [G], is constant (as the bulk of fluid above the SPR surface is

large in comparison to the number of lectin binding sites). The change in our SPR signal (measured in

resonance units, RU) is a measure of the change in bound complex [GL], so an analogous form of

equation 1.20 for an SPR system would be:

d RU
y = kf C (RUmax - R Ut) - kr(R U)

(Eq. 1.21)

This equation can be rearranged to lump the kinetic parameters together into one kinetic variable (ks) to fit

SPR data:

d RU
d= kfCgRUmax - ks(RUt )

(Eq. 1.22)

ks = kfCg + kr

(Eq. 1.23)

Integrating equation 1.22 yields the equation for the absorption curve:

RUt = M(1 - ekst) + RU,

(Eq. 1.24)

kfCgRUmM =
kfCg + kd

(Eq. 1.25)

Thus, by obtaining absorption curves at three to four different concentrations of glycosylated analytes

(C) and fitting them to Equation 1.24, one can plot k, versus C.. If the reaction is governed by the first-

order surface reaction (Eq. 1.16), a linear trend should emerge which, when fitted, will yield kf and kr as

the slope and y-intercept, respectively (Eq. 1.23). This analysis method, called integrate rate analysis, is

the basis of the software packages usually coupled with SPR machines. It is better at estimating the
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error 191 and deviation from the ideal surface reaction (Eq. 20) than the prior method of SPR analysis,

called the linearization method.192-194

There are many research studies spanning the last two decades using SPR for measuring glycan-

CRD interactions, those included herein are only a sampling of these works to illustrate how SPR is used.

First is the Mann et al. study of 1998 where they probed ligands for Concanavalin A (ConA) using SPR.
195 As discussed in Section 2, Con A is a tetrameric plant lectin expressed from jack-bean, Canavalia

ensiformis and shows specificity for terminal mannosyl and glucosyl groups. 3 0 Its binding behavior is

well-known and thus often a candidate for new systems. The investigators note the difficulty of

measuring the binding of low molecular weight carbohydrate (200 Da) to immobilized lectin via SPR, so

they use Con A as the analyte and form a synthetic lipid-mannose layer on the gold sensor surface (Fig.

1.29). By controlling the molar amount of mannose, they could tailor surfaces with varying densities of

carbohydrate. For their control, they created surfaces with only lipid (phosphatidylcholine or POPC).

They tested these surfaces with monovalent Con A derivatives and stronger, multivalent Con A. The

expected loading curve of SPR measurements was observed (Fig. 1.30). Their study demonstrates the

control of SPR surface functionalization to probe the effect of multivalent and monovalent interactions.

They also illustrated how SPR could be used to analyze the effect of various inhibitors on glycan-lectin

interactions, having significant implications in pharmacology.

Alkane Thiol Coated Surtace

Gold !iJl

100% POPC Glycolipid/
Liposomes 90% POPC Liposornes

Underivatized Phospholipi Monolayer Glycolipid Monolayer

Fig. 1.29 Lipid carbohydrate preparation of gold surface for SPR measurements. Reproduced with permission.'
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Fig. 1.30 SPR response of ConA to glycolipid surface and control (POPC) as raw signal (A) and subtracting

background bulk refractive index change (B) shoing the expected loading curve. Reproduced with permission. 195

A more recent study by Schlick et al. also utilized ConA and mannose in SPR experiments. 96

The mannose was immobilized on the gold surface via a self-assembled monolayer of dithiols coupled to

amine-functionalized mannose derivatives (Fig. 1.31). This functionalization scheme resulted in a very

stable surface that could be used for multiple assays. Their reported loading curves are similar in shape to

the Mann et al. study conducted more than a decade prior, but illustrate the replication possible with an

automated system. The loading curves are reported at two replicates of seven different analyte (Con A)

concentrations in a "sensogram" (Fig. 1.32). The automated SPR software yields a KD of 78 nM.

Inhibition was also studied in this work by adding glycodendrimers to the solution which competitively

bound to the Con A in solution. These SPR competition assays help confirm the affinity enhancements

due to multivalency.
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Fig. 1.31 Gold surface functionalization by self-assembled monolayers bearing dithiols coupled to amine

functionilzed mannose derivatives. Reproduced with permission.196
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Fig. 1.32 Sensogram illustrating the SPR loading curves of ConA to mannose surface injected at 7 series dilutions.

The measured KD is found to be 78nM. Reproduced with permission.196

Another method of SPR surface immobilization of glycans was found to boost the sensitivity of

the weak carbohydrate-lectin interactions.' 97 In this scheme, biotinylated sialosides (glycans) are

connected to the SPR gold surface via NeutrAvidin linkage to a deposited BSA layer (Fig. 1.33). The

addition of an inert hydrophilic hexaethylene glycol spacer (HEG) between the glycan and the surface

reportedly enables a more defined surface that has the correct orientation and flexibility necessary for

interactions. Again, in this scheme the lectins are the analyte (Sambucus nigra agglutinin (SNA),
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Maackia amurensis lectin (MAL), ConcanavalinA (Con A), and wheat germ agglutinin (WGA)). The

resulting SPR loading curves are similar to the two previous studies, showing the characteristic loading,
release, and wash steps of an automated SPR system (Fig. 1.34).

0 7if
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-'Au layer
glass sikd

Fig. 1.33 Use of flexible synthetic tethers to immobilize glycans to SPR surface for signal improvement.
Reproduced with permission. 97
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Fig. 1.34 SPR sensogram showing signal response to construction of the BSA-Biotin-NeutrAvidin-glycan surface
and repeated addition/wash cycles of the glectin (SNA). Reproduced with permission. 197
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Finally, there have been two recent advances in SPR technology that are worthy of review for

glycoprofiling applications. The first is the development of localized SPR readings for glycan-CRD

interaction measurement.'98 This device is built as an array of core-shell nanoparticles deposited on a

surface (Fig. 1.35). Rather than analyzing the surface plasmon over a large chip area, these devices probe

the plasmon generated on nanosurfaces. The result is a simpler, more efficient device that requires fewer

reagents than traditional SPR or QCM. The functionality of this device was demonstrated using

immobilized LacNAc glycoside on the surface of the nanoparticles and flowing WGA lectin as the

analyte. As the lectin binds to the particles, there is a distinct shift in the absorption spectra of the

particle. The paper only reports the relative binding efficiencies of these new probes, but one can

envision calculation of kinetic parameters from the fluorescent signal, as is done with traditional SPR.

These nanoscale particles may develop into exciting arrays of unique sensors capable of reporting binding

many lectin-glycan pair independently. Such a nanoarray could be used for glycoprofiling applications.

Oligosacchande Lectin

Corn uter

Optical probes

1) Irnmnobilizalion of 2) Oligosaccharide-ectin 1) Optical characteristics eValUation

oligosaccharide interaction
Spectrophotometer

Incidencc light Reflection light

Plasmonic
optical device Wavelength

Fig. 1.35 Concept of localized SPR for glycan-lectin interactions. The surface plasmon of nanoparticles are

investigated for binding of analyte lectins to immobilized oligosaccharides. Reproduced with permission.'9 8

A second recent advance is the commercial production of multiplexed or arrayed SPR machines.

These can quantify the binding kinetics of many spots of immobilized molecules on the surface to the

analytes in solution. Such devices radically reduce time and reagent costs. These machines have been

used in studies of protein and nucleic acid arrays, 99 ,200 and more recently with glycan arrays.29 '

Karamanska et al. used a commercially available array-SPR machine (Biacore Flexchip SPR) which can

measure loading curves from a 20x20 array of independent spots on a 1 cm 2 chip. Each arrayed spot has

an accompanying control region to monitor changes in the bulk refractive index and to correct for any

instrumental drift. First, the SPR array fidelity was tested by spotting ten replicate spots of Gal, Glc,

Man, and GlcNAc and interrogating them with RCA120 (lectin that shows specificity for Galactose 202).
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The results (Fig. 1.36) reveal the predicted response to Galactose and good replication among spots.

Next, 40 sialylated and non-sialylated glycans were spotted and their interactions with a recombinant Fc

fusion protein (human Siglec 7 (h-Siglec7-Fc)) were assessed to determine which binding partners were

the strongest. Although this study does not include any kinetic analysis, Karamanska et al. do

acknowledge that such an array could be used for screening lectins.
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Fig. 1.36 Taken from the Karamanska et al study that uses an arrayed SPR tool for glycan-lectin interactions. The

investigators array replicates of Gal, Glc, Man, and GlcNAc and interrogate with RCA120 lectin. They see the

expected response to Gal for all replicates (a) and good reproducibility of the max RU signal (b). Reproduced with
p si201permission.
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The advantages of SPR for determining kinetics of glycan-CRD pairs are: 1) a wide range of

affinities can be assessed (pM to mM); 2) forward and reverse kinetic parameters can be determined (not

just KD as in fluorescent FAC); 3) only 1-5 pg of sample is needed for immobilization; 4) the amount of

analyte is approximately 0.1 to 100 times the KD of the pair, with flow volumes of 50 to 150 pl per test;

and 5) established, automated measurement tools and packaged analysis software make for rapid

determination of kinetics. 20 The same source also delineated some significant limitations of SPR analysis:

1) the analyte must have significant mass to transduce the change in refractive index necessary for SPR

analysis, thus the more substantial lectins are routinely used as the analyte and the glycans are bound to

the surface; 2) the mass-transport of the analyte to the surface may affect the measured kinetic

parameters; and 3) glycan coupling directly to the gold surface is inadequate, so neoglycoproteins 203( i.e.

glycans synthetically bound to a protein backbone) and the more substantial lectins are used as the

binding analytes. This can bias the analysis of single CRD-glycan interactions as neoglycoproteins alter

the presentation and density of the glycans, a critical parameter in binding kinetics.2 04 In terms of

application to glycoprofiling, SPR tools are beginning to emerge in a microarray format, allowing one to

get quantitative parameters between hundreds of glycan-CRD pairs in a single assay. This could

conceivably be turned into a profiling tool for lectins, but not for glycans or small glycoproteins due to

the large analyte mass constraint. However, an emerging technology that uses a different means of signal

transduction may overcome this limitation.

1.4.3 Optical carbon nanotube based sensor for measuring glycan-lectin kinetics

A platform using fluorescent single walled carbon nanotubes (SWNT) for measuring kinetic parameters

between glycans and lectins205 is the subject of this thesis (detailed further in chapters 3-6). One of its

greatest advantages is that the clear, rapid signal transduction of SPR is preserved, but the sensor platform

has no mass constraints. Thus, the lectins or synthetic CRDs can be arrayed on the surface and glycans or

glycoproteins can be the analytes. There is no need for labeling, and the ability to pinpoint nanoscale

strong transducers will serve well in creating a nanoarray of lectins or CRDs to report kinetic parameters.

Rather than having hundreds of sensors on a 1cm 2 chip, as emerging multiplexed SPR devices are able to

do, one could have thousands of reporters on a 1mm2 spot. This could radically reduce the required lectin

or CRD reagent requirement and push the sensitivity of the optical array to the sub-nanomolar level,

capable of probing glycosylated biomarkers in their native state and physiological concentration.
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1.5 Summary

As carbohydrates dictate much of a protein's mass, structure, and function, accurate

glycoprofiling is a major research focus both in academia and in industry. Current methods of profiling

include separation techniques, like liquid chromatography or capillary electrophoresis, and atonistic

determination methods, like NMR or mass spectrometry, used separately or in tandem. These methods

require glycan liberation, via chemical or enzymatic methods, to ensure that the protein content does not

bias the glycan analysis. Additionally, fluorescence labeling is often required to increase sensitivity.

More recent microarray methods have eliminated the need for glycan liberation but still require labeling

for binding detection. Additionally, the current microarray methods yield relative binding information, so

their profiling resolution is limited. Many emerging nanoengineered sensors allow for quantitative

measurement of glycan-CRD interactions (executive summary provided in Table 1.6). Mechanical

systems include QCM and cantilever arrays which have good sensitivity but are unable to transduce the

binding of low mass species. Electronic systems include electrochemical sensors, field effect transistors,

and pore impedance sensors. These tools have demonstrated quantified binding of glycans and lectins but

are difficult to construct and may be limited in their microarray applications. Finally, optical systems

include FAC, SPR, and fluorescent SWNT. FAC has enabled the determination of the dissociation

constants of many Lectin-Glycan pairs, but the most sensitive form of FAC requires fluorescent labeling.

SPR is a regularly used tool due to simple, commercialized platforms and straightforward signal analysis

but is limited in its ability to detect smaller glycosylated products. The SWNT-based methods developed

in this thesis are not labeling or mass limited, but to date have only measured glycoprotein-lectin KD in

the pM range and require further work to optimize the sensor signal. In the near future one of these

reviewed nanoengineered platforms, or one yet to be developed, may be incorporated into an array of

quantitative, glycan-CRD sensors. With enough unique CRDs, a unique "kinetic code" could be

determined for each glycan of interest. Thus profiling could occur as it does regularly in nature, without

liberation or labeling of the glycans. Modeling of this profiling method is the subject of the next chapter.
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Table 1.6 - Executive summary table overviewing the nanoengineered sensors detailed in this review

Sensor Type Technology Limitations Advantages

(a) Quartz crystal
microbalance (QCM).
(b) Cantilever arm
detectors.

Electrical (a) Electrical
impedance spectroscopy
(EIS).
(b) Nanotube field
effect transistors (NTFETs).
(c) Nanopore Sensors.

(a) Frontal affinity
chromatography (FAC).
(b) Surface plasmon
resonance (SPR).
(c) Nanotransducers
based on fluorescent
SWNTs.

(a) The mass of the
analyte limits the ability of the
QCM.
(b) The assumption that
the analyte mass couples
tightly to the resonator is not
always the case.
(c) Surface chemistry
introduces non-specific
adsorption.
(d) Signal amplification
is complicated and highly
system-dependent.

(a) Complicated
assemble process of multilayer
electrodes.
(b) Semiconducting
SWNTs with higher purity are
required to achieve better
signal quality in NTFETs.
(c) Complicated
characterization of nanopore
sensors.

(a) Slow analysis time
and required large amount of
analyte with higher purity
when using FAC.
(b) FAC is not a label-
free platform unless coupled
with mass spec.
(c) The mass of the
analyte limits the ability of the
SPR.
(d) Mass-transport of the
analyte to the surface affects
the measured kinetic
parameters using SPR.
(e) Neoglycoproteins
used as the binding analytes
may bias the analysis results
of SPR.
(f) The binding events
must cause a change of
fluorescence of SWNTs,
which needs careful
engineering design.

(a) Label-free and
liberation-free detection
platform.
(b) Very simple concept
and operation.
(c) Reasonable detection
time (<30 min.).
(d) Higher sensitivities
could be achieved by additional
signal amplifier.
(e) Simple but efficient
surface chemistry can be
readily applied to improve the
binding events.

(a) Label-free and
liberation-free detection
platform.
(b) Fast detection time
(<15 min.).
(c) Lower detection
sensitivity (1 pg/mL).
(d) Excellent potential for
development as the handheld
sensors.
(e) Great potential for the
detection of chiral molecules
using nanopore sensors.

(a) Label-free and
liberation-free detection
platform except FAC.
(b) FAC is capable of
measuring weak interactions
and the equilibrium kinetic
analysis.
(c) Wide range of
affinities (pM to mM), and
forward and reverse kinetic
parameters can be determined
using SPR.
(d) No mass constraints
with nanotransducer platform
(single molecular detection is
achievable).
(e) Great potential for in
vivo detection with
nanotransducer platform.
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2. Modeling Native Glycoprofiling with Glycan-CRD Sensors

Some of the work, text and figures presented in this chapter are reprinted or adapted from Reuel, N. F.,

Mu, B., Zhang, J., Hinckley, A. & Strano, M. S. "Nanoengineered glycan sensors enabling native

glycoprofiling for medicinal applications: towards profiling glycoproteins without labeling or liberation

steps." Chemical Society Reviews 41, 5744-5779, (2012) - (reproduced under thesis use allowance from

The Royal Society of Chemistry)

2.1 Overview

Lectin microarrays have been proposed as a platform for profiling glycoproteins, where each

lectin has a few, highly-specific glycan pairs. It may be possible to profile using a much smaller set of

lectins, if the entire affinity spectrum can be utilized. A Weak Affinity Dynamic Microarray (WADM)

utilizes nanosensor transducers that allow for single molecule adsorption and desorption dynamics to be

measured in real time, as opposed to equilibrium binding only. This resolves both weakly and strongly

binding partners. This concept could be realized by one of the many nanoengineered sensors reviewed in

the previous chapter, or ideally the SWNT-based sensors developed in this work. To model this concept,

we use approximate binding constants from 75 lectins and 442 glycans and use the model to define the

requirements and limitations of the dynamic array. A Kinetic Monte Carlo model of reduced

glycoproteins can estimate the optimal number of lectin types, number of transducers, and glycoprotein

concentration for three prototypical glycan profiling applications: 1) screening protein therapeutics, 2)

clinical biomarker screen, and 3) complete profiling of glycoproteins without a priori knowledge of their

synthesis pathway. Finally, experimental considerations for profiling homogenous and heterogeneous

solutions of glycoproteins with a lectin WADM are discussed as well as using the dynamic array to obtain

an accurate database of mono and multivalent interaction parameters between lectin-glycan pairs.

2.2 Introduction

In the past two years there has been an explosion of technologies to recognize sugar groups on

proteins. Glycans participate in protein signaling, interaction, structure, and folding thus knowledge of

the attached glycans helps better characterize the protein.1, 2 This is especially applicable to protein

therapeutics where over two thirds of the rapidly-growing market is composed of glycoproteins. 3

Expression of these therapies in non-native cell lines yields a highly heterogeneous mixture of

glycosylated proteins (although there have been recent studies showing the production of homogenous

glycoproteins using eukaryotic cells 4-6). The heterogeneity is unacceptable for highly-specific therapies,

as well as passing any stringent drug review process. 3 Thus many profiling systems have been proposed:
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magnetic nanoparticles.7 reverse-phase chromatography tandem mass spectrometry,8 nanoflow liquid

chromatography coupled with Fourier-transform, ion-cyclotron, resonance mass spectrometry,9 and

magnetic resonance imaging.10 Lectin arrays have also recently been proposed," 15 however these current

platforms are limited to detection of more strongly-affined ligands. The concept explored in this work, a

Weak Affinity Dynamic Microarray (WADM), may overcome these limitations by monitoring single-

molecule adsorption and desorption dynamics in real time, as opposed to equilibrium binding only. In this

way, the full spectrum of affinities, with an emphasis in the weakly binding regime, can be resolved,

thereby reducing the number of lectin types needed for glycoprotein profiling.

Lectins, unlike antibodies, have a wider range of binding affinities, but their affinities are much

weaker than typical antibody-antigen pairs (experimental values of KD ranged from 10- to 107).15 It has

been proposed that a carefully selected array of stronger binding lectins might be able to profile

glycoproteins. 1 -15 Recent speculation has centered upon the case of four lectins that exhibit

characteristic, fluorescent binding patterns to four different glycans.' 6 By using the four lectins together

in a microarray, they suggested that a unique fluorescent signature could be obtained for each glycan.

The limitation in this approach is that it relies only on strong associations between glycan-lectin pairs to

obtain a unique fluorescent signal. The weakly binding pairs are lost in the typical processing steps of

conventional arrays (Fig 2.1 a). When one considers the vast number of natural structures in the glycome

(estimated at 104 - 105 structures16 ) and the infinitely varied synthetic structures, such a platform would

require a substantial set of unique lectins to provide a clear fluorescent signature from bound-pairs. If

however one could utilize the full spectrum of affinities to provide a clear readout signature, then the set

of unique lectins required in a microarray would be greatly reduced. The concept of achieving this

reduction by utilizing affinity information directly is the focus of this work.

As an alternative to current microarray technology which uses strong-binding, ligand-receptor

pairs for differentiation, the transient binding behavior of weakly-affined lectins (Fig 2. 1b) can be utilized

to identify the glycan. By monitoring the statistical behavior of a glycoprotein binding on and off the

lectin receptor, the full spectrum of the lectin's affinities can be used to profile the glycoprotein in

solution. Note that several emerging nanosensor platforms allow for single molecule

adsorption/desorption dynamics to be recorded in real time.17-21 The response of such nanosensors (Fig

2.1c) could be used to determine the kinetic parameters between glycan-lectin pairs. These parameters in

turn, could help differentiate between glycans present on the protein surface. By carefully choosing the

right lectin types and running the assay under optimal conditions, the profiling accuracy can be greatly

improved.
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Figure 2.1 - Comparison of traditional lectin array and conceptual lectin WADM. Traditional arrays (a) consist of

the following detection steps: 1) construct array with many unique lectin types, 2) flow homogenous glycoprotein

sample over array, 3) incubate for binding, 4) wash unbound glycoproteins away, 5) tag bound glycoproteins to

determine lectin location (if the glycoprotein is not tagged prior). In this scheme only the more affined interactions

are resolved. In the WADM (b) both strong and weak interactions can be detected. The strong-binding glycoprotein

has less dynamic response (1) than the weak-binding (2). This dynamic signal could be transduced electrically or

fluorescently for the strong (3) and weak (4) glycoproteins. An ensemble average for the probabilities of binding

(Pf) and release (Pr) as well as the average event time (T) could be constructed from long-term monitoring of a single

lectin site, or composing an average from an array of lectin transducers (5). These ensemble values could then be

used to calculate the reverse and forward kinetic parameters by Gillespie's equations (Gillespie 1977). This has

been done experimentally (c) on the single molecule level using the fluorescent response of carbon nanotubes (Jin et

al. 2008). The right graph shows the quenching response of 20 pM H20 2 and the left of HCI at a pH of 4. The

green trace is the fluorescent response and the red is a Hidden Markov Model fit used for transducers that have more

than one binding site.
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2.3 Experimental Model
This dynamic array was modeled with a Kinetic Monte Carlo simulation of a Langmuir

association/disassociation surface reaction (Fig 2.2c). Glycoproteins in solution (GP) bind to free lectin

sites (S) to form glycoprotein-lectin pairs (GP*). The pairs can then dissociate back to free sites and

glycoproteins in solution. Association and dissociation are governed by the forward and reverse rates (kf

and kr) respectively. The ratio of these rates (kr/kf) is the disassociation constant (KD). These interaction

values can be determined experimentally from liquid chromatography (LC), mass spectrometry (MS),

capillary electrophoresis (CE), and frontal affinity chromatography (FAC).15 Due to growing importance

of glycoproteins, databases of these affinity values are continually expanding, but access for general

researchers is still limited.

(b) (c) GP

(a) Control Volume k
LCI (CV)

FL S GP*

Substrate

LT GP

e - e e -a- * *Lectin Transducer

Substrate

Figure 2.2 - Setup of stochastic model. (a) Spacing of lectin transducers (LT) is based on the diffusion length scale

(Ld) of the glycoproteins in solution. This length scale is dynamically solved in the stochastic model and the overall

spacing yields a control volume. (b) The control volume depth is set at Ld. (c) The surface reaction follows

Langmuir equation. Free glycoprotein (GP) associates with free lectin surface points (S) to form a glycoprotein-

lectin pair (GP*) according to the forward reaction rate (kf). The glycoprotein also disassociates from the surface to

reform free GP according to the reversible rate (kr).

The kinetic parameters for this model were supplied in the form of dissociation constants between

75 unique lectins and 442 glycans, approximated from the only public database of lectin-glycan

interaction values. 2 The CFG collects lectin proteins submitted by consortium investigators and the CFG

core staff assay the proteins on glass slides with immobilized glycans. Affinity of lectin-glycan pairs are

measured by relative fluorescence. The most current printed array (Version 4.1) has 442 glycans. To

76



date over a hundred lectin submissions have been made by CFG members on this current array, with 75 of

them being unique lectin types at varying low concentrations.

The approximate KD interaction matrix for this model was made by combining the experimentally

known KD range from Hirabayashi's work with the fluorescent data given by the CFG. Hirabayashi

found that glycan-lectin KD values range from 10-3 to 0-7. It is assumed that the 442 glycans present on

the CFG array span this interaction range. By normalizing the relative fluorescence data of each CFG

lectin submission to its respective fluorescence range, and then finding the proportional distance in the KD

range, a full matrix of Glycan-Lectin approximated KD values can be formed for the 75 unique lectin

entries (Fig 2.3 and Appendix 2.1). This database is much smaller than the number of naturally occurring

glycans23 and the kinetic estimates from the fluorescent data are rough, however the model still provides

valuable insight into the working parameters of a dynamic array. More accurate kinetic parameters could

be obtained from the dynamic array itself and fed into the model to provide better predictions of lectin

subsets for specific screening and profiling problems.
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Figure 2.3 - Approximation of dissociation constants from CFG florescent database. Graphs shown for Glycan 1

(Galo-Sp8): a) raw relative florescence data compiled from the CFG database, b) florescence normalized to range

used by each lectin submission, c) KD estimate made from proportionality of florescence range to measured KD

range (d).
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The Gillespie algorithm was used to find an ensemble average of occupied lectin sites for a

given glycoprotein in solution. Stochastics were invoked in this model due to the very small species

concentrations and simulated control volume. First the forward and reverse rate expressions were

transformed into probability functions:

Pk -Ns-NGP (2.1)

AN'V

P(Rr) = kr -NGP* (2.2)

The concentration of glycoproteins in solution and the number of lectin sites (NS) were specified by the

user. The control volume (V) was dynamically solved for using the diffusion length (Ld) of protein in

solution and the event time step (t) predicted by the Gillespie algorithm:

LD = 4 ' D "Ts (2.3)

The diffusion length was used to space the lectin transducers into a regular grid (Fig 2.2a) and the

resulting area was multiplied by the reactive depth (again the diffusion length) to produce the control

volume (V) (Fig 2.2b). The number of free glycoproteins in solution (NGP) was calculated from the

specified protein concentration and the control volume. To ensure that both reactive probabilities have

the units of molecular event per second, Equation 1 also includes Avogadro's number (AN). The forward

reaction rate was assumed to be diffusion limited. The diffusion constants for glycoproteins vary by a

small degree, so an average protein kf value of 2E8 (M- s) - was used.

The Gillespie algorithm uses an ensemble average of probabilistic binding/dissociation events

over a given simulation time to predict frequency of events and average occupancy number. Each

experimental "run" is for 1000 binding events, and the ensemble average is composed of 1000 runs. The

code loops through each of the lectins to determine which lectin types provide the greatest contrast for

screening/profiling purposes. The general algorithm goes as follows: 1) read in glycan profile for protein

in solution (either user specified or randomly generated - numbers should correspond to the glycan rows

in the interaction KD matrix (Appendix 2.1)), 2) generate a random number to determine which glycan

site is presented on the glycoprotein, 3) generate a random number to determine which of the reactions

occur, 4) adjust count of GP, S, and GP*, 5) generate next time step according to Equation 2.4, 6) Add

time step to time count, 7) loop through steps 2-6 until 1000 binding events are achieved, 8) conduct 1000

runs of the stochastic simulation to create ensemble average, and 9) perform an ensemble average for

each of the lectins to determine which would be best for screening purposes. This algorithm was compiled

in MATLAB.
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ATime = - ( log(rand) (2.4)
- Rf + Rr)

To make the simulation tractable, the modeled glycoprotein has been significantly reduced. The

natural occurrence of heterogeneous mixtures of glycoproteins (glycoforms) has been neglected in the

current model. Only homogenous solutions of glycoproteins are considered, although a system for

profiling heterogeneous mixtures is discussed below. In the first three simulation examples, each glycan

on the surface of the simulated glycoprotein is assumed as equally accessible (a random number is used to

determine which glycan is presented to the lectin); but in the fourth example, profiling a glycoprotein is

modeled while taking into account spatial arrangement. As multivalent interactions would lead to

obvious, non-dynamic responses (the glycoprotein would simply adhere strongly to the lectin transducer),

these events are omitted in the dynamic model. These events are also rarer between a wide range of

glycans and lectins due to the required, close-matched spacing of carbohydrate recognition domains and

surface ligands needed for a multivalent interaction.2 6 However the dynamic array could be used to

measure more accurate mono and multivalent kinetic parameters. Interactions between the protein

surfaces (charge, Van der Waals, and sterics) are assumed minimal.

To demonstrate how a dynamic microarray could be used for screening and profiling, the reduced

experimental model was applied to three pertinent areas of glycoprotein research: 1) screening of protein

therapeutics, 2) screening clinical biomarkers, and 3) complete profiling of unknown glycoproteins. A

fourth example then explores profiling glycoproteins while taking into account spatial arrangement, or

accessibility.

2.4 Results and Discussion

2.4.1 Screening of Protein Therapeutics - Galactose-al ,3-Galactose

A recent example of recombinant glycoprotein therapeutics being expressed with harmful glycans is the

drug Cetuximab used for colorectal cancer and squamouscell carcinoma. Chung et al. found that this

murine-expressed, monoclonal antibody occasionally contained a glycan, Galactose-a 1,3-Galactose,

which caused hypersensitivity in a third of the treated patients.27 Another study found that this

therapeutic had 21 unique glycan candidates. 28 Most of these glycans are not yet part of the kinetic

parameter database; however two of the candidate, biatternary glycans are included: one benign (Glycan

#50) and one with two deleterious Galactose-al,3-Galactose groups (Glycan #359) (Fig 2.4a insert). A

dynamic microarray could be used to screen between these two and determine which cell line is
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producing harmful strains of the drug. This first case study is the simplest form of screening:

differentiation of one glycoprotein from another.

The kinetic model simulates the dynamic response of the unique glycoprotein in solution to find

optimal conditions for screening. Utilizing the user-supplied kinetic parameters (in the form of

dissociation constants), it determines the ensemble average of bound lectins over time. The responses of

both glycoproteins are then determined for each lectin type (150 ensemble averages generated for the

current 75-lectin database). The responses of the two glycoproteins are then compared for each lectin

type to determine the optimal lectin. Once the optimal lectin has been found, the best operating

conditions are determined by running the model at various concentrations and number of lectin binding

sties (or lectin transducers). The resulting contrast values are normalized by the total number of lectin

transducers used in the simulations. This yields an operating space to find the optimal number of

transducers and concentration of glycoproteins in solution. This predictive process is illustrated with the

approximate KD database for the Cetuximab problem.

The model predicts that a single lectin type is sufficient for clear differentiation between

two homogenous solutions of Cetuximab therapeutics and provides the practical operating conditions for

the screen. By looking at the average number of bound species over time of both proteins on each lectin

(Fig 2.4a), it was found that a single lectin is needed to show contrast between these two glycoproteins.

Lectin 26 (Antibody BD6 made to rat basophilic leukemia cells (RBL-2H3)) was found to show

maximum contrast (difference between the average number of bound species over time of the two

proteins) (Fig 2.4b). By varying both number of lectin transducers and concentration of glycoprotein an

operating space is generated to help maximize contrast in the screen (Fig 2.4c).

There exists an optimal protein concentration and number of transducers as too few of the latter

will not yield a measurable response above the noise and too many proteins in solution will saturate the

binding sites. At saturation, both protein types would be in excess and bind to the limited number of

transducers, thus decreasing the ability to differentiate between the two solutions. For this example,

glycoprotein concentrations less than 5 gM and greater than 100 [tM inhibit differentiation. It is found

that a glycoprotein concentration of 20 gM and 150 lectin transducers exhibits a normalized contrast of

0.74: the protein with the benign group (#50) occupies 111 less (out of the 150) lectin transducer sites

than the protein with the harmful glycan (#359). In this particular example, the range of allowable

glycoprotein concentrations and number of lectin transducer sites is wide. In other situations where the

affinities are weaker or the two glycoproteins are very similar there is a much tighter optimal range.

Galactose-a 1,3-Galactose is just one of many potentially harmful or simply unwanted glycans that can be

expressed on therapeutics or other laboratory glycoproteins. For each case of differentiation between two
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known glycoprofiles there will be a unique, optimized lectin and operating space. However the

generalized method described above holds for all differentiation-screen scenarios and the predictive

power is increased with the quality of available kinetic data.
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Contrast refers to the difference in number of occupation sites between the two glycoproteins on Lectin 26. It is

normalized by total number of LT to find optimal region.

2.4.2 Screening Biomarkers - Arthritic Disease and Glycosylation of IgG

Arthritis has been linked with changes to the single glycosylation site in the constant domain of

the IgG Fc region.29 It is thought that by screening the glycan group on these proteins, clinicians would

be able to tell what type of Arthritis an individual has. Healthy individuals have a large glycan group in

this region, yet as the arthritis severity increases, this glycan group loses many of its terminal sugars.2 9

When an increased count of the IgG proteins contain only the base glycan structure ((GlcNAc2Man6)-

Man4GlcNAc-4GlcNAc also known as IgG-GO), the individual is likely suffering from Rheumatoid

Arthritis (RA).30 In a clinical setting it would be advantageous to create a rapid screening tool for this

prescient glycan group from all the other possible IgG variants.

This second case study represents a more difficult situation of screening than the proceeding

example (differentiation of one "desired" profile from 49 other "undesired"), yet the basic method

outlined in the previous case study holds. The ensemble average of occupied sites is generated for each

of the glycoproteins to each lectin type (50 glycoproteins with the 75-lectin database yields 3750

simulations). The response of the "desired" protein for screening is then subtracted from all the

"undesired" for each lectin type. These contrast values are then normalized by dividing by the total

number of lectin transducers in the simulation. An algorithm was then written that sorted the lectin

database types by contrast response (best contrasting lectin to worst) for each of the "undesired" glycan

types. Finally, the algorithm searched through the best contrasting lectin types for each of the

"undesired" glycans to find which minimal subset of lectins could achieve clear profiling between the

"desired" glycan and all the other "undesired" groups. This expanded algorithm is demonstrated for the

case of IgG-GO screening using the approximate 75-lectin database.

Our stochastic model predicted that two types of lectins would be sufficient to differentiate the

RA glycan group (IgG-GO) from other similar glycans. The glycan group was identified in the database

as glycan #301 and the database was then searched for other glycans with similar base structures; this

yielded 49 similar glycans (Appendix 2.2). The contrast between glycan #301 and the other 49 glycans

were generated for each lectin type and normalized by the total number of lectin transducers (Fig 2.5).

The algorithm described above then sorted the lectin database numbers by contrast response (best

contrasting lectin to worst) and found which subset of lectin types where among the top-ten contrasting

lectin types for each of the similar glycans (normalized contrast response data found in Appendix 2.3). It

was found that by using both Lectin #1 (LSECtin:Mouse LSectin 0.5) and #52 (Nictaba:Nictaba, wild
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type) high contrast could be shown between Glycan #301 and each of the other similar glycans. Used

together, the two lectins exhibit high contrast over the entire range of glycans. However, these

predictions are based on approximate kinetic data. As better kinetic parameters between glycans and

lectins are obtained, these predictions can be further refined by the described model and method.
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Figure 2.5 - Normalized contrast of Rheumatoid Arthritis glycan (#301) from other similar glycan groups (1-49) for

all lectin types in current CFG database. Contrast is given in average number of occupied lectin transducer sites

divided by total number of sites. Simulation run at 200 LT and 0.2 mM concentration of glycoproteins. Arrows

denote lectins with exhibit a wide range of unique contrasts, potential candidates for screening the RA glycan group

from other similar groups.2.4.3 Complete Profiling of Unknown Glycoprotein

2.4.3 Complete Profiling of Unknown Glycoprotein

The most difficult differentiation scheme to imagine for this platform would be full profiling of

an unknown glycoprotein. This would be advantageous in many Glycobiology applications, such as the

detection of known biomarkers and discovery of new. Glycoprotein biomarkers have been found for
31 32 33 3

general inflammatory problems, prostate cancer, ovarian cancer, and a host of other diseases.34 The

stochastic model provides an estimate of the number of lectin types would be needed for clear profiling.
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Profiling is a monumentally harder problem than the previous screening examples, as there are

more unknowns to differentiate. For a model protein with a single glycosylation site, there are 442

unique possibilities in the current database (442 different glycans on the current CFG array, many more

groups naturally exist2 3). For a protein with two glycans there are 97,903 unique combinations (442

choose 2), for three groups there are 14,294,280 combinations (442 choose 3), and upward to an average

biological limit of 5 glycosylation sites with an astounding number of 137 billion unique combinations

(442 choose 5). The possibilities are further compounded when more glycans are added to the model and

when spatial considerations are taken into account (as seen in the next example). Finding a unique, strong

binding ligand for each of these glycoproteins is an impossible task, but with dynamic observation of

lectins a much smaller number of lectin types could be used to make an effectual bar-code for reading

each glycoprofile.

Due to computational limits, only the cases of proteins with one and two glycosylation sites have

been currently simulated, but the process holds for glycoproteins with more glycans. A response matrix

(average number of occupied transducers) for each glycan lectin pair was generated with the conditions of

200 lectin transducers and a glycoprotein concentration of 300 pM (Appendix 2.4). An algorithm then

sorted the lectin response vectors in order of uniqueness (most unique to least). Uniqueness was

measured by scoring how many glycan responses on the given lectin were outside a tolerance of four

occupied sites from the other glycan responses on the same lectin (this indicates a glycan group that could

be readily differentiated from the others on the lectin). A second algorithm then searched down the

resorted matrix to determine how many lectins it would take to create a unique response "bar code" for

each possible glycan profile (again using the tolerance of at least four occupied site difference). For a

protein with a single glycosylation site and the 75 lectins now available in the database it was found that 6

lectin types were needed for full profiling, and for a two glycosylation site protein 37 lectin types are

needed (see Appendix 2.5 for expected response data of single glycosylated protein).

2.4.4 Adding Accessibility to Profiling Algorithm

In the preceding profiling example, spatial arrangement of the glycans was neglected. If

considerations are made for the accessibility of the glycans to the lectin transducer, the number of

possible profiles is greatly increased as is the required number of lectin types for clear profiling. Consider

a simple case where the two-site glycoprotein model has been modified to include three different spatial

arrangements: 25% accessible in glycan A - 75% accessible in glycan B, 50% in both, and 75% in glycan

A - 25% in glycan B. If the same profiling algorithm as above is used, the number of unique profiles

increases three-fold (293,709 response profiles) and the number of lectin types required for clear profiling

84



is not met with the current database of lectins. A much larger set of unique lectins is needed to both

profile and determine the spatial arrangement of glycans on a homogenous solution of glycoproteins. The

number depends on the uniqueness of the lectin, and as more lectins and other sugar-binding proteins are

explored this required number will decrease.

2.5 Conclusion

The predictions of this stochastic model are promising but they are only as good as the affinity

parameters supplied to the model. A comprehensive, public database of lectin-glycan binding affinities

does not yet exist. In order to make better predictions of which lectin types will be best for specific

screening situations such a database should first be obtained. The WADM can be used to obtain more

accurate kinetic parameters between glycan-lectin pairs. These in turn could be cycled back to the model

for clearer predictions of which lectins to use for specific applications. Also, by expanding the library of

lectins there is a greater possibility of finding lectin types with more unique glycan affinity signatures.

This will reduce the total number of lectin types needed for profiling.

Although the affinity parameters presented in this work are approximated, they are on the correct

experimental order and the operating conditions found herein will hold for any lectin dynamic array

system. Such an experimental system would require the ability to monitor single protein binding events

via electrical or fluorescent transduction at a very high frame rate. In order to capture the correct

statistics, or ensemble average, of occupied transducers, the system would need to be sampled on the

order of the binding event time scale. This time scale changes depending on the concentration of

glycoproteins and number of lectin transducers used. Consider the hypothetical therapeutic screening of

the first case study. The average event time scale (for binding or release) is on the order of 100

nanoseconds (Fig 2.6). This corresponds to a frame capture rate of 10 MHz. This is on the cusp of

current single-molecule detection schemes using highly sensitive nano-mechanical cantilevers,3 5 nanowire

electronic sensors,36 or carbon nanotube fluorescence.' 8 It would be possible to operate at a lower frame

rate for situations where the contrast is greater or with lectins that have higher affinities. Because of the

extremely high frame rate, enough data could be gathered in a fraction of a second to determine what

glycoprotein is present in solution, hence making this an extremely rapid profiling platform.
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Figure 2.6 - Average time scale of binding or release events in glycoprotein therapeutic case study. The time scale

changes for different operating conditions (number of transducers and glycoprotein concentrations). This reveals

that the experimental frame capture rate would need to be on the order of 100 nanoseconds.

The experimental setup for profiling homogenous solutions of unknown glycoproteins would

consist of a greater array of WADMs (Fig 2.7). The stochastic model currently predicts the number of

lectin types that are required for clear profiling (37 lectin types for 2 site glycosylation). If the lectin

transducer response is a fluorescent signal, these arrays could be micro-printed onto a single glass slide.

The glycoprotein solution would then be added on top of the large array assembly. Each lectin type

would be monitored for a fraction of a second to determine the average site occupancy numbers.

Expected response traces (Fig 2.7b) will be similar to those found in an emerging class of stochastic

sensors based on nanoscale transducers that allow for single molecule dynamics to be resolved.' 8 The

stepwise signal can be translated to both kinetic parameters (forward and reverse rates) as well as an

ensemble average of bound lectin sites (Fig 2.7c). The ensemble averages could then be fed to the

response database which is searched (within the given tolerance) for a profile match Fig 2.7d). If a

successful match is found, the profile is supplied to the user (Fig 2.7e). This simple experimental setup

could be expanded for a larger number of glycosylation sites. Again, the number of required lectin types

will be reduced as more lectins are screened for unique glycan binding characteristics.
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unknown glycoprotein is added on the platform (a greater array of dynamic lectin transducers) at optimal

concentration. b) If the transducers exhibit a fluorescent response (like those of Figure IC), each lectin spot on the

array could be dynamically monitored as a pixel trace via a CCD camera. c) The ensemble average of bound sites

over time could be determined from each trace. The ensemble average for each lectin type would then be fed to the

response database for profiling. d) The known glycoprofile database is searched for a match to the experimental data

(within the given tolerance). e) Finally, the matched glycoprofile is outputted to the user. The entire procedure

could be completed within seconds and can be optimized as more lectins are screened for uniqueness.

Rapid profiling of a heterogeneous solution of glycoproteins (the estimable goal of the field)

would require a more elaborate setup for the dynamic array (Fig 2.8a). It could be realized with emerging

nanofluidic platforms. 3 7-39 The setup would consist of a series of nanochannels with patterned lectin

transducers along the bottoms, in which glycoproteins are induced to flow in single-file (Fig 2.8b). The

glycoproteins would flow at a rate that would allow dynamic interaction with the lectins. The response of

the transducers would be recorded for each protein as it drifts over the different types of lectins (Fig 2.8c).

After a sufficient sample of proteins has been profiled, a histogram of the glycoprotein types could be

generated (Fig 2.8d). The number of unique lectin types would depend greatly on the desired fidelity of
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the profile and on the application. However hundreds of lectin types could easily be patterned on a single

chip with existing micro and nanofabrication techniques.

(a)
(C)

R5 R6 R7 R8

R1 R2 R3 R4 I (d)
(b)

Figure 2.8 - Proposed experimental setup for profiling heterogeneous solutions of glycoproteins with lectin WADM

in a nanofluidic array. A small sample of the heterogeneous solution (a) is flowed through nanofluidic trenches

which induce single-file passage of the glycoforms. The flow is controlled to allow interaction over the many types

of lectins deposited in the trenches (c). The transducer responses (RI-R8...) are tracked for each glycoprotein and

computationally interpreted to provide a population histogram of glycoform profiles present in solution (d).

The stochastic model herein promotes the WADM as a valuable potential avenue for glycan

screening and profiling. The platform would require less experimental time and does not require a unique,

strong-binding site for every glycan combination. With carefully selected lectins the dynamic array could

monitor the average occupancy via nanoscale transducers and accurately translate this into a glycan

profile. Such transducers could be made with emerging mechanical, electronic, and fluorescent

nanotechnology. It is hoped that this work stimulates further interest in the area of glycoprotein profiling

and encourages an open, growing database of accurate, kinetic data for lectin-glycan pairs. The concept

of a WADM might also be useful in other fields of molecular screening and profiling where finding

strong-binding partners for each analyte is an insurmountable task. In the next chapter we will detail the

first experimental 'proof-of-concept' SWNT-based glycoprotein sensor that could be implemented in a

WADM.
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Appendix 2.1

Lectin # Lectin Name
1 LSECtin:Mouse LSectin 0.5
2 Rat mannose-binding lectin 1:Rat mannose-binding lectin 250
3 CD15s anti-human antibody CSLEX1:CD15s anti-human antibody CSLEX1

4 Anti-human PSGL-1 antibody CHO131:Anti-human PSGL-1 antibody CHO131

5 LSECtin:Mouse LSectin 200

6 Normal mouse sera C57/BL6 strain:Normal mouse sera C57/BL6 strain

7 3P2 antibody to bovine submaxillary mucin:3P2 antibody to bovine submaxillary mucin

8 3P3 antibody to bovine submaxillary mucin:3P3 antibody to bovine submaxillary mucin

9 3P6 antibody to bovine submaxillary mucin:3P6 antibody to bovine submaxillary mucin

10 3P4 antibody to bovine submaxillary mucin:3P4 antibody to bovine submaxillary mucin

11 3P5 antibody to bovine submaxillary mucin:3P5 antibody to bovine submaxillary mucin

12 Aspergillus fumigatus lectin (AFL):Aspergillus fumigatus lectin (AFL) 0.01 ug/ml

13 Aleuria aurantia lectin (AAL):Aleuria aurantia lectin (AAL) 0.01 ug/ml

14 Clostridium difficile toxin A:TcdA (amino acids 1832-2710

15 Ralstonia solanacearum lectin (RSL):Ralstonia solanacearum lectin (RSL) 0.005 ug/ml

16 Tapl:Tapl

17 SpGH101 putative glycoside hydrolase:SpGH101 100 ug/ml

18 Vacuolating cytotoxin VacA:Anti-VacA antibody

19 Vacuolating cytotoxin VacA:Vacuolating cytotoxin (VacA) p88, pH 3.0

20 Vacuolating cytotoxin VacA:Vacuolating cytotoxin (VacA) p88, pH 8.0

Hemagglutinin serotype 2 (H2N8):Hemagglutinin serotype 2 (HA2[8]) from Influenza A grown
21 in HEK293T cells

Hemagglutinin serotype 7 (H7N2):Hemagglutinin serotype 7 (HA7[2]), from Influenza A grown
22 in HEK293T cells

23 Galectin-1:Anti-human Fc antibody

24 Galectin-9:Galectin-9 2ug/ml

25 Galectin-1:Galectin-9 N-term CRD-Galectin-9 linker-Galectin-1 C-term CRD (9-9-1) 200ug/ml

26 Galectin-1:Galectin-1 N-term CRD-Galectin-9 linker-Galectin-1 C-term CRD (1-9-1) 200ug/ml

27 Galectin-1:Galectin-1 N-term CRD-Galectin-9 linker-Galectin-9 C-term CRD (1-9-9) 200ug/mI

28 Galectin-1:Galectin-1 dimer joined by rigid helical linker L9 2ug/ml

29 Galectin-1:Galectin-1 dimer joined by Gly-Gly linker 2ug/ml

30 Galectin-1:Galectin-1 2ug/ml

31 Galectin-1:Galectin-1 N-term CRD-Galectin-9 linker-Galectin-1 C-term CRD (1-9-1) 0.2ug/ml

32 Tapl:Tapl 5ug/ml

33 Sulfo-Sialyl-Lewis x antibody 1 0.5ug/ml:Sulfo-Sialyl-Lewis x antibody 1 0.5ug/ml

34 Sulfo-Sialyl-Lewis x antibody 2 0.lug/ml:Sulfo-Sialyl-Lewis x antibody 2 0.1ug/ml
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Antibody BD6 made to rat basophilic leukemia cells (RBL-2H3) 10 Ig/ml:Antibody BD6 made
35 to rat basophilic leukemia cells (RBL-2H3) 10 ig/ml
36 Galectin-1:Galectin-1 (W69 mutant) fused with human Ig Fc + anti-goat IgG
37 Galectin-1:Galectin-1 (WT) fused with human Ig Fc + anti-goat IgG
38 Galectin-1:Galectin-1 (W69 mutant) fused with human Ig Fc
39 Galectin-1:Galectin-1 (WT) fused with human Ig Fc
40 56R+Vlx -2AA:56R+Vlx -2AA
41 56R+Vlx +2AA:56R+Vlx +2AA
42 56R+Vlx:56R+Vlx

56R+Vk38c antibody single chain variable fragment:56R+Vk38c antibody single chain variable
43 fragment

44 56R/76R + Vk38c antibody :56R/76R + Vk38c antibody

MW1 antibody made to DRPLA-19Q (Huntingtin):MW1 antibody made to DRPLA-19Q
45 (Huntingtin)

JAA-F11 antibody to Thomsen-Friedenreich disaccharide-0.1:JAA-F11 antibody to Thomsen-
46 Friedenreich disaccharide-0.1

47 Influenza A hemagglutinin H5N1:lnfluenza A Chicken H5N1 hemagglutinin
48 Influenza A hemagglutinin H1N1:lnfluenza A California H1N1 hemagglutinin
49 HA33- HA component of B. neurotoxin:HA33- HA component of B. neurotoxin
50 Flo1:Flocculin-1 (FLO1), from S. cerevisiae-GST
51 Nictaba:Nictaba, recombinant wild type
52 Nictaba:Nictaba, wild type
53 Nictaba:Nictaba, recombinant mutant 2

Influenza A/Oklahoma/3052/2009 (H1N1), Alexa488 at 3.12 p1g:lnfluenza
54 A/Oklahoma/3052/2009 (H1N1), Alexa488 at 3.12 pg

A/Oklahoma/483 Alexa488 labeled, pH5, 37 0C+4 0C:A/Oklahoma/483 Alexa488 labeled, pH5,
55 37 0C+4 0C
56 hPIV1 Alexa488 labeled:hPIV1 Alexa488 labeled

A/Oklahoma/483 Alexa488 labeled, pH5, 370C+4 0C with inhibitor:A/Oklahoma/483 Alexa488
57 labeled, pH5, 37 0C+4 0C with inhibitor

hPIV1 Alexa488 labeled after H3N2 unlabeled at pH 5:hPIV1 Alexa488 labeled after H3N2
58 unlabeled at pH 5

hPIV2 Alexa488 labeled after H3N2 unlabeled at pH5:hPIV2 Alexa488 labeled after H3N2
59 unlabeled at pH5

Influenza A/Oklahoma/447/08 (HiNi) Alexa 488 labeled after unlabeled H1N1 at pH
60 5:lnfluenza A/Oklahoma/447/08 (HiNi) Alexa 488 labeled after unlabeled HINI at pH 5

Influenza A/Oklahoma/1138/08 (HiN1) oseltamivir-resistant Alexa488 labeled, pH7:lnfluenza
61 A/Oklahoma/1138/08 (HiN1) oseltamivir-resistant Alexa488 labeled, pH7

Influenza A/Oklahoma/447/08 (H1N1), Alexa488 labeled, pH7:lnfluenza A/Oklahoma/447/08
62 (H1N1), Alexa488 labeled, pH7

Influenza A/Oklahoma 483/08 (H3N2) Alexa488 labeled after H3N2 unlabeled at
63 pH5:lnfluenza A/Oklahoma 483/08 (H3N2) Alexa488 labeled after H3N2 unlabeled at pH5
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Influenza A/Oklahoma/483/08 (H3N2) Alexa488 labeled, pH 7:nfluenza A/Oklahoma/483/08
64 (H3N2) Alexa488 labeled, pH 7

hPIV2 Alexa488 labeled after H1N1 unlabeled at pH 5:hPIV2 Alexa488 labeled after H1N1
65 unlabeled at pH 5

hPIV1 Alexa488 labeled after H1N1 unlabeled at pH 5:hPIV1 Alexa488 labeled after H1N1
66 unlabeled at pH 5

67 hPIV2 Alexa488 labeled:hPIV2 Alexa488 labeled

Influenza A/ Oklahoma/3052/2009 (H1N1), Alexa488 at 50 Ig, constant volume:Influenza A/
68 Oklahoma/3052/2009 (H1N1), Alexa488 at 50 Ig, constant volume

Influenza A/Oklahoma/3052/2009 (H1N1), Alexa488 at 6.25 p1g:lnfluenza

69 A/Oklahoma/3052/2009 (H1N1), Alexa488 at 6.25 pg

70 Dog Galectin-3:Dog Galectin-3 50ug

71 Dog Galectin-7:Dog Galectin-7 50ug

72 Dog Galectin-4:Dog Galectin-4 0.5ug

73 Dog Galectin-2:Dog Galectin-2 0.5ug

74 SLT lectin:SLT lectin

Aurantioporus croceus lectin (ACL) purified from fungus- 0.1:Aurantioporus croceus lectin

75 (ACL) purified from fungus- 0.1

Glycan
# Glycan Name

1 Gala-Sp8

2 Glca-Sp8

3 Mana-Sp8

4 GalNAca-Sp8

5 Fuca-Sp8

6 Fuca-Sp9

7 Rha-Sp8

8 Neu5Aca-Sp8

9 Neu5Aca-Sp11

10 Neu5Acb-Sp8

11 Galb-Sp8

12 Glcb-Sp8

13 Manb-Sp8

14 GalNAcb-Sp8

15 GlcNAcb-Sp0

16 GlcNAcb-Sp8

17 GIcN(Gc)b-Sp8

18 Galbl-4GIcNAcb1-3(Galbl-4GIcNAcb1-6)GalNAca-Sp8

19 GlcNAcbl-3(GcNAcb1-4)(GcNAcb1-6)GcNAc-Sp8

20 [30SO3][60SO3]Galbl-4[60SO3]GcNAcb-Sp0

21 [30SO3][60SO3]Galbl-4GcNAcb-Sp0

22 [30SO3]Galbl-4(Fucal-3)[60SO3]Glc-SpO
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23 [30SO3]Galbl-4GIcb-Sp8

24 [30SO3]Galb1-4[60SO3]Glcb-SpO

25 [30SO3]Galbl-4[60S03]Glcb-Sp8

26 [30SO3]Galbl-3(Fuca1-4)GcNAcb-Sp8

27 [30SO3]Galbl-3GaINAca-Sp8

28 [30SO3]Galbl-3GIcNAcb-Sp8

29 [30SO3]Galbl-4(Fuca1-3)GcNAc-SpO

30 [30SO3]GaIbl-4(Fuca1-3)GcNAcb-Sp8

31 [30SO3]Galbl-4[60SO3]GIcNAcb-SpO

32 [30SO3]Galb1-4[60SO3]GIcNAcb-Sp8

33 [30SO3]Galbl-4GIcNAcb-SpO

34 [30S03]Galb1-4GIcNAcb-Sp8

35 [30SO3]Galb-Sp8

36 [40SO3][60SO3]Galb1-4GIcNAcb-SpO

37 [40SO3]Galb1-4GIcNAcb-Sp8

38 6-H2PO3Mana-Sp8

39 [60SO3]Galbl-4GIcb-SpO

40 [60SO3]Galb1-4GIcb-Sp8

41 [60SO3]Galbl-4GIcNAcb-Sp8

42 [60SO3]Galbl-4[60SO3]Glcb-Sp8

43 Neu5Aca2-3[60SO3]GaIbl-4GcNAcb-Sp8

44 [60SO3]GIcNAcb-Sp8

45 Neu5Ac(9Ac)a-Sp8

46 Neu5Ac(9Ac)a2-6GaIbl-4GIcNAcb-Sp8

47 Mana1-3(Manal-6)Manbl-4GIcNAcbl-4GIcNAcb-Sp12

48 Mana1-3(Mana1-6)Manb-4GIcNAcbl-4GcNAcb-Spl3

49 GIcNAcb1-2Mana 1-3(GIcNAcbl-2Mana1-6)Manbl-4GcNAcb1-4GIcNAcb-Spl3

Galbl-4GIcNAcb1-2Manal-3(Galbl-4GIcNAcb1-2Manal-6)Manbl-4GIcNAcb1-4GIcNAcb-

50 Sp12

Neu5Aca2-6GaIbl-4GIcNAcbl-2Manal-3(Neu5Aca2-6Galb1-4GIcNAcb1-2Mana 1-6)Manbl-
51 4GIcNAcbl-4GcNAcb-N(LT)AVL

Neu5Aca2-6Ga b1-4GIcNAcbl-2Ma na 1-3(Neu5Aca2-6Gal b1-4GIcNAcb1-2Mana 1-6) Manbi-
52 4GIcNAcbl-4GIcNAcb-Sp8

Neu5Aca2-6Galbl-4G IcNAcb1-2Manal-3(Neu5Aca2-6Galbl-4G IcNAcbl-2Mana 1-6) Manbi-
53 4GIcNAcb1-4GIcNAcb-Sp12

Neu5Aca2-6Ga b1-4GIcNAcbl-2Ma nal-3(Neu5Aca2-6Gal b1-4GIcNAcb1-2 Mana 1-6) Manbi-
54 4GIcNAcbl-4GIcNAcb-Spl3

55 Fuca1-2Galbl-3GalNAcbl-3Gala-Sp9

56 Fuca1-2GaIbl-3GaINAcbl-3Gala1-4GaIbl-4Glcb-Sp9

57 Fuca1-2GaIbl-3(Fuca1-4)GIcNAcb-Sp8

58 Fuca1-2GaIb1-3GalNAca-Sp8

59 Fuca1-2GaIbl-3GaINAca-Sp14

60 Fuca 1-2GaIbl-3Gal NAcbl-4(Neu5Aca2-3)Galbl-4GIcb-Sp0
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61 Fuca1-2GaIb1-3GaINAcbl-4(Neu5Aca2-3)GaIb1-4GIcb-Sp9

62 Fuca 1-2Galbl-3GlcNAcbl-3Galb1-4GIcb-Sp8

63 Fuca1-2Galbl-3GIcNAcbl-3GaIb1-4GIcb-Spl0

64 Fuca1-2GaIb1-3GlcNAcb-SpO

65 Fuca1-2GaIb1-3GlcNAcb-Sp8

66 Fuca 1-2Galbl-4(Fucal-3)GIcNAcbl-3Galbl-4(Fucal-3)GIcNAcb-SpO

Fuca 1-2Ga lbl-4(Fucal-3)GIcNAcbl-3Galbl-4(Fuca1-3)G IcNAcb1-3GaIb1-4(Fuca1-

67 3)GIcNAcb-SpO

68 Fuca1-2GaIbl-4(Fuca1-3)GlcNAcb-SpO

69 Fuca1-2Galb1-4(Fuca1-3)GlcNAcb-Sp8

70 Fuca 1-2Galb1-4GIcNAcbl-3Galb1-4GIcNAcb-SpO

71 Fuca1-2Galbl-4GIcNAcbl-3Ga lb1-4GIcNAcbl-3Galb1-4GlcNAcb-Sp0

72 Fuca1-2GaIb1-4GcNAcb-SpO

73 Fuca1-2Galb1-4GlcNAcb-Sp8

74 Fuca1-2Galb1-4GIcb-Sp0

75 Fuca1-2Galb-Sp8

76 Fuca1-3GcNAcb-Sp8

77 Fuca1-4GlcNAcb-Sp8

78 Fucbl-3GIcNAcb-Sp8

79 GalNAca1-3(Fuca1-2)Galb1-3GlcNAcb-SpO

80 GaINAca1-3(Fuca1-2)Galbl-4(Fuca1-3)GlcNAcb-SpO

81 [30SO3]Galbl-4(Fuca 1-3)Glc-SpO

82 GalNAca1-3(Fuca1-2)Galb-4GlcNAcb-SpO

83 GaINAca1-3(Fuca 1-2)Galb1-4GlcNAcb-Sp8

84 GaINAca1-3(Fuca1-2)Galb1-4Glcb-SpO

85 GlcNAcbl-3GaIb1-3GaINAca-Sp8

86 GalNAca 1-3(Fuca 1-2)Galb-Sp8

87 GaINAca1-3(Fuca1-2)GaIb-Sp18

88 GaINAca1-3GaINAcb-Sp8

89 GalNAcal-3Galb-Sp8

90 GalNAca1-4(Fuca1-2)Galb1-4GlcNAcb-Sp8

91 GaINAcb1-3GalNAca-Sp8

92 GaINAcb1-3(Fuca1-2)Galb-Sp8

93 GaINAcb1-3Gala1-4GaIl-4GIcNAcb-SpO

94 GaINAcbl-4(Fuca1-3)GcNAcb-SpO

95 GalNAcb1-4GlcNAcb-SpO

96 GalNAcb1-4GlcNAcb-Sp8

97 Gala1-2Galb-Sp8

98 Gala1-3(Fuca1-2)Galb-3GIcNAcb-SpO

99 Gala 1-3(Fuca1-2)Galb1-4(Fuca1-3)GcNAcb-SpO

100 Gala1-3(Fucal-2)Galb-4GlcNAc-SpO

101 Gala1-3(Fuca1-2)GaIb1-4GIcb-SpO

102 Gala1-3(Fuca1-2)Galb-Sp8
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103 Gala1-3(Gala1-4)GaIbl-4GIcNAcb-Sp8

104 Gala1-3GaINAca-Sp8

105 Gala1-3GaINAca-Sp16

106 Galal-3GaINAcb-Sp8

107 Gala1-3GaIbl-4(Fuca1-3)GlcNAcb-Sp8

108 Gala1-3GaIbl-3GcNAcb-SpO

109 Gala1-3Galbl-4GIcNAcb-Sp8

110 Gala1-3Galbl-4GIcb-SpO

111 Galal-3Galb-Sp8

112 Gala1-4(Fuca1-2)GaIbl-4GcNAcb-Sp8

113 Gala1-4Galbl-4GcNAcb-SpO

114 Galal-4Galbl-4GIcNAcb-Sp8

115 Gala1-4Galbl-4GIcb-SpO

116 Galal-4GIcNAcb-Sp8

117 Galal-6GIcb-Sp8

118 Galbl-2Galb-Sp8

119 Galbl-3(Fuca1-4)GIcNAcbl-3GaIbl-4(Fuca1-3)GcNAcb-Spo

120 GaIbl-3(Fuca1-4)GlcNAcb1-3GaIbl-4GcNAcb-SpO

121 GaIbl-3(Fuca1-4)GIcNAcb-SpO

122 GaIbl-3(Fuca1-4)GlcNAc-Sp8

123 Galb1-3(Fuca1-4)GIcNAcb-Sp8

124 GaIbl-4GIcNAcbl-6GaINAca-Sp8

125 Galbl-3(GIcNAcbl-6)GaINAca-Sp8

126 GaIbl-3(GIcNAcbl-6)Ga1NAc-Sp14

127 GaIbl-3(Neu5Aca2-6)Gal NAca-Sp8

128 GaIbl-3(Neu5Aca2-6)GaINAca-Sp14

129 GaIbl-3(Neu5Acb2-6)GaINAca-Sp8

130 GaIbl-3(Neu5Aca2-6)GIcNAcbl-4GaIbl-4GIcb-SplO

131 Galbl-3GaINAca-Sp8

132 Galbl-3GaINAca-Spl6

133 Galbl-3GaNAcb-Sp8

134 GaIbl-3GaINAcbl-3Gala1-4GaIb1-4Gcb-SpO

135 GaIbl-3GalNAcbl-4(Neu5Aca2-3)Galb1-4GIcb-Spo

136 GaIbl-3GaINAcbl-4Galbl-4GIcb-Sp8

137 Galbl-3Galb-Sp8

138 GaIbl-3GIcNAcbl-3Galbl-4GIcNAcb-SpO

139 Galbl-3GIcNAcbl-3Galbl-4GIcb-Splo

140 Galbl-3GlcNAcb-SpO

141 Galbl-3GIcNAcb-Sp8

142 GaIbl-4(Fuca1-3)GcNAcb-SpO

143 GaIbl-4(Fucal-3)GIcNAcb-Sp8

144 Galbl-4(Fucal-3)GlcNAcbl-4GaIb1-4(Fuca1-3)GIcNAcb-Sp

145 GaIbl-4(Fuca1-3)GIcNAcbl-4GaIbl-4(Fuca1-3)GcNAcb1-4GaIb1-4(Fuca1-3)GcNAcb-Sp0
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146 GaIbl-4[60SO3]GIcb-Sp0

147 GaIb1-4[60SO3]GIcb-Sp8

148 GaIbl-4GaINAcal-3(Fuca1-2)GaIbl-4GcNAcb-Sp8

149 GaIbl-4GaINAcbl-3(Fuca1-2)GaIbl-4GIcNAcb-Sp8

150 GaIb1-4GIcNAcbl-3GaINAca-Sp8

151 GaIbl-4GIcNAcbl-3GaINAc-Sp14

152 GaIbl-4GIcNAcb1-3GaIb1-4(Fuca1-3)GcNAcb1-3GaIbl-4(Fuca1-3)GcNAcb-Sp0

153 GaIbl-4GIcNAcbl-3GaIbl-4GIcNAcbl-3GaIbl-4GIcNAcb-Sp0

154 GaIb1-4GIcNAcbl-3GaIbl-4GIcNAcb-Sp0

155 GaIb1-4GIcNAcbl-3GaIbl-4Gcb-SpO

156 GaIbl-4GIcNAcbl-3GaIbl-4GIcb-Sp8

157 GaIbl-4GIcNAcbl-6(Galbl-3)GalNAca-Sp8

158 GaIbl-3(GaIbl-4GcNAcbl-6)GalNAca-Sp8

159 GaIbl-3(GaIbl-4GIcNAcbl-6)GaINAc-Spl4

160 GaIbl-4GIcNAcb-Sp0

161 GaIbl-4GIcNAcb-Sp8

162 GaIbl-4GIcb-SpO

163 GaIbl-4GIcb-Sp8

164 GIcNAca1-3GaIbl-4GIcNAcb-Sp8

165 GIcNAca1-6GaIbl-4GIcNAcb-Sp8

166 GIcNAcbl-2GaIbl-3GaINAca-Sp8

167 GIcNAcbl-3(GIcNAcbl-6)GaINAca-Sp8

168 GIcNAcbl-3(GIcNAcbl-6)Galbl-4GcNAcb-Sp8

169 GIcNAcb1-3GaINAca-Sp8

170 GIcNAcbl-3GaINAca-Spl4

171 GIcNAcbl-3Galb-Sp8

172 GIcNAcbl-3GaIbl-4GIcNAcb-Sp0

173 GIcNAcbl-3GaIbl-4GIcNAcb-Sp8

174 GIcNAcbl-3GaIbl-4GIcNAcbl-3GaIb1-4GIcNAcb-SpO

175 GIcNAcbl-3Galbl-4GIcb-SpO

176 GIcNAcbl-4-MDPLys

177 GIcNAcbl-4(GIcNAcbl-6)GaINAca-Sp8

178 GIcNAcbl-4GaIbl-4GIcNAcb-Sp8

179 (GIcNAcbl-4)6b-Sp8

180 (GicNAcbl-4)5b-Sp8

181 GIcNAcbl-4GIcNAcbl-4GIcNAcb-Sp8

182 GIcNAcbl-6(GaIbl-3)GaINAca-Sp8

183 GIcNAcbl-6GaINAca-Sp8

184 GIcNAcbl-6GaINAca-Spl4

185 GIcNAcbl-6GaIbl-4GIcNAcb-Sp8

186 GIcal-4GIcb-Sp8

187 GIcal-4GIca-Sp8

188 GIca1-6GIca1-6GIcb-Sp8
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189 Glcbl-4GIcb-Sp8

190 Glcbl-6GIcb-Sp8

191 G-ol-Sp8

192 GIcAa-Sp8

193 GIcAb-Sp8

194 GlcAbl-3Galb-Sp8

195 GIcAbl-6Galb-Sp8

196 KDNa2-3Galbl-3GIcNAcb-Spo

197 KDNa2-3Galbl-4GIcNAcb-Spo

198 Mana1-2Manal-2Mana1-3Mana-Sp9

199 Mana1-2Mana1-3(Manal-2Mana1-6)Mana-Sp9

200 Mana1-2Mana1-3Mana-Sp9

Mana1-6[Manal-2Mana1-31 Mana1-6[Manal-2Manal-3] Manbl-4GIcNAcbl-4GcNAcb-
201 Sp12

Mana1-2Manal-6(Manal-3) Mana1-6[Mana1-2Manal-2Manal-3] Manbl-4GIcNAcbl-
202 4GIcNAcb-Spl2

Manal-2Manal-2Manal-3(Manal-2Mana1-3(Manal-2Mana1-6)Mana1-6)Manb1-

203 4GIcNAcbl-4GIcNAcb-Spl2

204 Manal-3(Mana1-6)Mana-Sp9

205 Mana1-3(Mana1-2Mana1-2Mana1-6)Mana-Sp9

206 Mana1-6(Manal-3)Mana1-6[Manal-2Mana1-3]Manb-4GcNAcbl-4GIcNAcb-Spl2

207 Manal-6(Manal-3)Manal-6(Manal-3)Manbl-4GcNAcbl-4 GIcNAcb-Sp12
208 Manbl-4GIcNAcb-SpO

209 Neu5Aca2-3Galbl-4GIcNAcbl-3Galbl-4(Fucal-3)GcNAc-Spo

210 [30SO3]Galbl-4(Fuca1-3)[60SO3]GIcNAc-Sp8

211 Fuca1-2[60SO3]Galbl-4GcNAc-SpO

212 Fuca1-2Galbl-4[60SO3]GIcNAc-Sp8

213 Fuca1-2[60SO3]Galb-4[60SO3]Glc-SpO

214 Neu5Aca2-3Galbl-3GaINAca-Sp8

215 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3(GaINAcbl-4)Galbl-4Gcb-SpO

216 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3(GaINAcbl-4)Galbl-4GIcb-SpO

217 Neu5Aca2-8Neu5Aca2-8Neu5Aca2-3Galbl-4Gcb-SpO

218 Neu5Aca2-8Neu5Aca2-3(GaINAcbl-4)Galbl-4GIcb-SpO

219 Neu5Aca2-8Neu5Aca2-8Neu5Aca-Sp8

220 Neu5Aca2-3(6-0-Su)Galbl-4(Fucal-3)GIcNAcb-Sp8

221 Neu5Aca2-3(GaINAcbl-4)Galbl-4GcNAcb-Sp0

222 Neu5Aca2-3(GaINAcbl-4)Galbl-4GIcNAcb-Sp8

223 Neu5Aca2-3(GaINAcbl-4)Galbl-4Gcb-SpO

224 Neu5Aca2-3(Neu5Aca2-3Galbl-3GaINAcbl-4)Galbl-4Gcb-SpO

225 Neu5Aca2-3(Neu5Aca2-6)GaINAca-Sp8

226 Neu5Aca2-3GaINAca-Sp8

227 Neu5Aca2-3GaINAcbl-4GcNAcb-SpO

228 Neu5Aca2-3Galb1-3[60SO31GIcNAc-Sp8
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229 Neu5Aca2-3GaIbl-3(Fuca1-4)GIcNAcb-Sp8

230 Neu5Aca2-3GaIbl-3(Fuca1-4)GIcNAcbl-3Gab1-4(Fuca1-3)GcNAcb-SpO

231 Neu5Aca2-3Galbl-3(Neu5Aca2-3Galbl-4)GIcNAcb-Sp8

232 Neu5Aca2-3GaIbl-3 [60SO3]GalNAca-Sp8

233 Neu5Aca2-3Galbl-3(Neu5Aca2-6)GaINAca-Sp8

234 Neu5Aca2-3Galb-Sp8

235 Neu5Aca2-3Galbl-3Gal NAcbl-3Gala1-4GaIbl-4GIcb-SpO

236 Neu5Aca2-3GaIbl-3GIcNAcbl-3Galbl-4GcNAcb-SpO

237 Fuca1-2[60SO3]Galbl-4GIc-SpO

238 Neu5Aca2-3Galbl-3GcNAcb-SpO

239 Neu5Aca2-3GaIbl-3GIcNAcb-Sp8

240 Neu5Aca2-3GaIbl-4[60SO3]GIcNAcb-Sp8

241 Neu5Aca2-3Galbl-4(Fuca1-3) [60SO3]GIcNAcb-Sp8

Neu5Aca2-3GaIbl-4(Fuca1-3)G IcNAcb1-3Ga Ibl-4(Fuca1-3)G IcNAcbl-3GaIbl-4(Fuca1-

242 3)GIcNAcb-SpO

243 Neu5Aca2-3GaIbl-4(Fuca-3)GIcNAcb-SpO

244 Neu5Aca2-3GaIbl-4(Fuca1-3)GcNAcb-Sp8

245 Neu5Aca2-3GaIbl-4(Fuca1-3)GIcNAcbl-3Galb-Sp8

246 Neu5Aca2-3GaIbl-4(Fuca1-3)GIcNAcbl-3GaIbl-4GcNAcb-Sp8

247 Neu5Aca2-3GaIbl-4GcNAcbl-3GaIbl-4GcNAcb1-3Galb-4GcNAcb-SpO

248 Neu5Aca2-3Galbl-4GIcNAcb-SpO

249 Neu5Aca2-3GaIbl-4GIcNAcb-Sp8

250 Neu5Aca2-3GaIbl-4GIcNAcbl-3GaIbl-4GIcNAcb-Sp0

251 Fuca1-2GaIbl-4[60SO3]Gc-SpO

252 Neu5Aca2-3GaIbl-4GIcb-SpO

253 Neu5Aca2-3GaIbl-4GIcb-Sp8

254 Neu5Aca2-6GaINAca-Sp8

255 Neu5Aca2-6GaINAcbl-4GIcNAcb-Sp0

256 Neu5Aca2-6GaIbl-4[60SO3]GIcNAcb-Sp8

257 Neu5Aca2-6GaIb1-4GIcNAcb-Sp0

258 Neu5Aca2-6GaIbl-4GIcNAcb-Sp8

259 Neu5Aca2-6GaIbl-4G IcNAcbl-3GaIb1-4(Fuca1-3)GIcNAcbl-3Ga Ibl-4(Fuca 1-3)GIcNAcb-SpO

260 Neu5Aca2-6Galbl-4GIcNAcbl-3GaIbl-4GIcNAcb-SpO

261 Neu5Aca2-6GaIbl-4GIcb-SpO

262 Neu5Aca2-6GaIb1-4GIcb-Sp8

263 Neu5Aca2-6Galb-Sp8

264 Neu5Aca2-8Neu5Aca-Sp8

265 Neu5Aca2-8Neu5Aca2-3GaIbl-4GIcb-Sp0

266 GaIbl-3(Fuca1-4)GcNAcb1-3GaIbl-3(Fuca1-4)GcNAcb-SpO

267 Neu5Acb2-6GaINAca-Sp8

268 Neu5Acb2-6GaIbl-4GIcNAcb-Sp8

269 Neu5Gca2-3GaIbl-3(Fuca1-4)GcNAcb-Sp0
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270 Neu5Gca2-3Galbl-3GIcNAcb-Sp0

271 Neu5Gca2-3Galbl-4(Fucal-3)GIcNAcb-Sp0

272 Neu5Gca2-3Galbl-4GIcNAcb-Sp0

273 Neu5Gca2-3Galbl-4GIcb-SpO

274 Neu5Gca2-6GaINAca-Sp0

275 Neu5Gca2-6Galbl-4GIcNAcb-Sp0

276 Neu5Gca-Sp8

277 GaIb1-3(Neu5Aca2-3GaIbl-4GIcNAcbl-6)GalNAca-Sp14

278 Galbl-3GaINAca-Sp14

279 GaIbl-3GIcNAcbl-3Galbl-3GIcNAcb-Sp0

280 GaIbl-4(Fuca1-3)[60SO3]GIcNAc-Sp0

281 GaIbl-4(Fucal-3)[60SO3]Glc-Sp0

282 GaIb1-4(Fuca1-3)GIcNAcbl-3GaIbl-3(Fuca1-4)GcNAcb-Sp0

283 Galb1-4GIcNAcbl-3GaIbl-3GcNAcb-SpO

284 Neu5Aca2-3Galbl-3GIcNAcbl-3Galbl-3GcNAcb-SpO

285 Neu5Aca2-3GaIbl-4GIcNAcbl-3GaIbl-3GIcNAcb-SpO

286 [30SO3] [40SO3]Galbl-4GcNAcb-Sp0

287 [60SO3]Galbl-4[60SO3]GlcNAcb-Sp0

288 6-H2PO3GIcb-Sp10

289 Gala1-3(Fuca1-2)GaIb-Sp18

290 GaIbl-3(Neu5Aca2-3GaIbl-4(Fuca 1-3)GIcNAcb1-6)GalNAca-Sp14

291 GaIbl-3GaIbl-4GIcNAcb-Sp8

GaIbl-4GIcNAcbl-2Mana1-3(Neu5Aca2-6Galb1-4GIcNAcb1-2Mana1-6)Manbl-4GcNAcb1-

292 4GIcNAcb-Spl2

293 Galbl-4GIcNAcbl-3(Galbl-4GIcNAcb1-6)Galbl-4GIcNAc-Sp0

294 GaIb1-4GIcNAcbl-3(GIcNAcbl-6)Galb1-4GcNAc-Sp0

295 Galbl-4GIcNAca1-6GaIbl-4GIcNAcb-Sp0

296 GaIbl-4GIcNAcbl-6GaIb1-4GcNAcb-SpO

297 GalNAca-Spi5

298 GaINAcb1-3Galb-Sp8

299 GIcAbl-3GIcNAcb-Sp8

GIcNAcbl-2Mana 1-3(Neu5Aca2-6Galbl-4GIcNAcbl-2Manal-6) Manbl-4G IcNAcbl-
300 4GIcNAcb-Spl2

301 GIcNAcbl-2Mana1-3(GIcNAcbl-2Mana 1-6)Manbl-4GIcNAcbl-4GIcNAcb-Spl2

302 GIcNAcbl-3Man-Sp10

303 GIcNAcbl-4GIcNAcb-SplO

304 GicNAcbl-4GIcNAcb-Spl2

305 HOOC(CH3)CH-3-0-GIcNAcbl-4GIcNAcb-Sp1O

306 Manal-6Manb-SplO

307 Manal-6(Manal-3)Manal-6(Mana1-3)Manb-Sp10

308 Mana1-2Mana1-2Mana1-3(Manal-2Mana1-6(Manal-3)Mana1-6)Mana-Sp9

309 Mana1-2Mana1-2Mana1-3(Manal-2Mana1-6(Manal-2Mana1-3)Manal-6)Mana-Sp9

310 Neu5Aca2-3GaIbl-3(Neu5Aca2-3GaIb1-4GcNAcb1-6)GaINAca-Sp14
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311 Neu5Aca2-3GaIbl-3(Neu5Aca2-6)GaINAca-Sp14

312 Neu5Aca2-3GaIb1-3GalNAca-Sp14

Neu5Aca2-3Galbl-4GlcNAcb-2Mana1-3(Neu5Aca2-6GaIb1-4GlcNAcb1-2Mana1-6)Manbl-

313 4GIcNAcbl-4GIcNAcb-Spl2

Neu5Aca2-6GaIb1-4GlcNAcb-2Mana1-3(GaIb1-4GlcNAcb1-2Mana1-6)Manb1-4GcNAcb1-

314 4GlcNAcb-Sp12

Neu5Aca2-6GaIbl-4G IcNAcbl-2Manal-3(G lcNAcb1-2Mana 1-6) Manbl-4GIcNAcbl-

315 4GlcNAcb-Sp12

316 Neu5Aca2-8Neu5Acb-Spl7

317 Neu5Aca2-8Neu5Aca2-8Neu5Acb-Sp8

318 Neu5Gcb2-6Galbl-4GIcNAc-Sp8

Galb1-3GlcNAcbl-2Ma na1-3(GaIbl-3GlcNAcb1-2Mana1-6)Manbl-4GIcNAcbl-4G lcNAcb-

319 Sp19

Neu5Aca2-3GaIb1-4GlcNAcb-2Mana1-3(Neu5Aca2-3GaIb1-4GIcNAcb1-2Mafna1-6)Manbl-

320 4GIcNAcb1-4GIcNAcb-Spl2

Neu5Aca2-6GaIb1-4G IcNAcbL-2Mana 1-3(Neu5Aca2-3GaI b1-4G lcNAcb1-2M ana 1-6) Ma nbl-

321 4GIcNAcbl-4GlcNAcb-Sp12

Fuca1-3(Galbl-4)GlcNAcb1-2 Manal-3(Fucal-3(Galbl-4)GIcNAcbl-2Mana1-6) Manbi-

322 4GIcNAcbl-4GIcNAcb-Sp2O

323 Neu5Ac(9Ac)a2-3Galbl-4GIcNAcb-SpO

324 Neu5Ac(9Ac)a2-3Galbl-3GlcNAcb-SpO

325 Neu5Aca2-6GaIb1-4GlcNAcbl-3Galb1-3GlcNAcb-SpO

326 Neu5Aca2-3Galbl-3(Fuca1-4)GlcNAcb1-3GaIbl-3(Fuca1-4)GcNAcb-SpO

327 Neu5Aca2-6GaIb1-4GcNAcbl-3Galb1-4GcNAcb-3GaIb1-4GIcNAcb-SpO

328 Gala 1-4Galbl-4GIcNAcbl-3GaIbl-4Glcb-SpO

329 GaINAcb1-3Gala1-4GaIb-4GcNAcb1-3GaIb1-4Gcb-SpO

330 GalNAca 1-3(Fuca1-2)Galb-4GlcNAcbl-3Galb1-4GIcNAcb-SpO

331 GalNAca 1-3(Fuca1-2)Galbl-4GlcNAcbl-3GaIbl-4GcNAcbl-3Galb-4GcNAcb-SpO

332 (Neu5Aca2-3-Galbl-3)(((Neu5Aca2-3-Galb-4(Fuca1-3))GlcNAcb1-6)GaINAc-Sp14

333 GIcNAca1-4GaIb1-4GIcNAcbl-3GaIbl-4GcNAcbl-3Galb-4GIcNAcb-SpO

334 GIcNAca1-4Galb1-4GIcNAcb-SpO

335 GIcNAca1-4GaIb1-3GcNAcb-SpO

336 GlcNAcal-4GaIb1-4GlcNAcbl-3GaIb1-4GIcb-SpO

337 GIcNAca 1-4GaIb1-4G IcNAcbl-3Galbl-4(Fuca 1-3)G lcNAcbl-3GaI bl-4(Fuca1-3)G IcNAcb-SpO

338 GIcNAca1-4GaIb1-4GIcNAcbl-3GaIb1-4GIcNAcb-SpO

339 GIcNAca1-4Galb1-3GalNAc-Sp14

340 Mana1-3(Neu5Aca2-6Galbl-4GlcNAcb1-2Manfal-6)Manb-4GcNAcb1-4GlcNAc-Sp12

341 Neu5Aca2-6GaIb1-4GlcNAcb1-2Mafna1-3(Mana1-6)Manb1-4GIcNAcb1-4GlcNAc-Sp12

342 Neu5Aca2-6GaIb1-4GlcNAcb-2Mana1-6Manb1-4GcNAcb1-4GlcNAc-Sp12

343 Neu5Aca2-6Galbl-4GlcNAcb1-2Mana1-3Manb1-4GIcNAcb-4GlcNAc-Sp12

344 Galb1-4GIcNAcb1-2Mana-3Manb1-4GcNAcb1-4GIcNAc-Sp12

345 Galb1-4GlcNAcb-2Mana1-6Manb1-4GcNAcb1-4GlcNAc-Sp12
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346 Galbl-4GIcNAcbl-2Manal-3(Manal-6)Manbl-4GlcNAcb1-4GlcNAcb-Sp12

347 GIcNAcb1-2Mana1-3(GIcNAcbl-2Mana 1-6)Manbl-4GlcNAcbl-4(Fucal-6)GcNAcb-Sp22
Galbl-4GIcNAcb1-2Ma na 1-3(Galbl-4G lcNAcb1-2Manal-6)Manbl-4GcNAcb1-4(Fuca 1-

348 6)GIcNAcb-Sp22

Galbl-3G lcNAcb1-2Ma na 1-3(Galbl-3GIcNAcb1-2Mana 1-6)Ma nbl-4GlcNAcbl-4(Fuca 1-
349 6)GIcNAcb-Sp22

Galb1-3(Fucal-4)GIcNAcb1-2 Mana 1-3(Galbl-3(Fuca 1-4)GlcNAcb1-2Manal-6) Manbi-
350 4GlcNAcbl-4GIcNAcb-Spl9

351 [60SO3]GlcNAcbl-3Gal b1-4GIcNAc-b-SpO
352 KDNa2-3Galbl-4(Fucal-3)GIcNAc-SpO

353 KDNa2-6Galbl-4GIcNAc-SpO

354 KDNa2-3Galbl-4Glc-SpO

355 KDNa2-3Galbl-3GaINAca-Spl4

Fuca 1-2Galbl-3GIcNAcb1-2 Mana1-3(Fuca1-2Ga lb1-3GlcNAcb1-2Ma na1-6)Manb1-
356 4GlcNAcbl-4GIcNAcb-Sp2O

Fuca 1-2Galb1-4GlcNAcb1-2 Mana1-3(Fuca1-2Galb1-4GIcNAcb1-2Ma na 1-6)Manb1-
357 4GIcNAcbl-4GIcNAcb-Sp2O

Fuca 1-2Ga lbl-4(Fucal-3)GIcNAcbl-2Ma na 1-3(Fuca 1-2Galb1-4(Fuca1-3)GIcNAcb1-
358 2Manal-6)Manbl-4GcNAcbl-4GIcNAb-Sp2o

Galal-3Galbl-4GIcNAcbl-2Mana1-3(GaIal-3Galb1-4GlcNAcb1-2Manal-6)Manbl-

359 4GIcNAcbl-4GlcNAcb-Sp2O

360 Mana1-3(Galb1-4GIcNAcb1-2Mana1-6)Manbl-4GcNAcb1-4GlcNAcb-Sp12

Galbl-3(Fucal-4)GIcNAcbl-2Manal-3(Galbl-3(Fuca1-4)GIcNAcbl-2Mana1-6)Manbi-

361 4GIcNAcbl-4(Fucal-6)GIcNAcb-Sp22

362 Neu5Aca2-6GIcNAcbl-4GIcNAc-Sp2l

363 Neu5Aca2-6GlcNAcbl-4GIcNAcb1-4GIcNAc-Sp21

364 Fuca1-2Galbl-3GIcNAcb1-3(Galb1-4(Fucal-3)GIcNAcbl-6)Galb1-4Glc-Sp21

Galbl-4GlcNAcbl-2(Galbl-4GlcNAcbl-4)Manal-3(Galbl-4GlcNAcbl-2Manal-6)Manbl-

365 4GIcNAcbl-4GIcNAc-Sp2l

GalNAca1-3(Fuca1-2)Galbl-4GIcNAcbl-2Manal-3(GaINAca1-3(Fucal-2)Galbl-4GlcNAcbl-

366 2Manal-6)Manbl-4GcNAcbl-4GcNAcb-Sp2o

Gala1-3(Fuca1-2)Galbl-4GIcNAcb1-2Mana1-3(Gala1-3(Fuca1-2)GaIb1-4GIcNAcbl-2Mana1-

367 6)Manbl-4GlcNAcbl-4GlcNAcb-Sp2o

Gala 1-3Galbl-4(Fuca 1-3)G lcNAcb1-2 Mana 1-3(Galal-3Ga Ib1-4(Fuca1-3)GlcNAcb1-2 Ma nal-
368 6)Manbl-4GcNAcbl-4GcNAcb-Sp2O

GalNAca 1-3(Fuca 1-2)Galb1-3GIcNAcb1-2Mana1-3(Ga INAca 1-3(Fuca1-2)Galb1-3GIcNAcb1-
369 2Manal-6)Manbl-4GIcNAcbl-4GIcNAcb-Sp2o

Gala 1-3(Fucal-2)Galbl-3GIcNAcbl-2Manal-3(Gala1-3(Fucal-2)Galb1-3GIcNAcbl-2Mana1-
370 6)Manbl-4GlcNAcbl-4GlcNAcb-Sp20

Fuca 1-2Galbl-3(Fucal-4)GlcNAcbl-2Mana1-3(Fucal-2Galbl-3(Fucal-4)GlcNAcbl-

371 2Manal-6)Manb-4GIcNAcb1-4GIcNAcb-Sp19

372 Neu5Aca2-3Galb1-4GlcNAcb1-3GaINAc-Sp14

373 Neu5Aca2-6Galbl-4GlcNAcb1-3GalNAc-Sp14
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374 Neu5Aca2-3GaIbl-4(Fuca1-3)GIcNAcbl-3GaINAca-Sp14

(Gal NAcbl-4GIcNAcbl-2Ma na 1-6)Ga lNAcbl-4GlcNAcbl-2Mana 1-3Manbl-4G IcNAcb1-

375 4GIcNAc-Sp12

376 GaIb1-3GaINAcal-3(Fuca1-2)Galb1-4Glc-Sp0

377 Galbl-3Gal NAcal-3(Fuca1-2)GaIb1-4GcNAc-SpO

378 Galb1-3GlcNacbl-3(Galbl-3GIcNacbl-3GaIb1-4GIcNacbl-6)GaIb1-4Gcb-Sp0

379 Galbl-3GIcNAcbl-3(Galbl-4(Fuca1-3)GIcNAcbl-6)GaIb1-4Glc-Sp21

380 Fuca1-2GaIbl-3(Fuca-4)GIcNAcb-3(Gab1-4GcNAcb1-6)GaIb1-4Gc-Sp21

381 Fuca1-2GaIb1-3(Fuca1-4)GlcNAcb1-3(GaIbl-4(Fuca1-3)GcNAcb1-6)Galb1-4Gc-Sp21

382 GaIb1-3GIcNAcb1-3(Galb1-3GIcNAcb1-3Galb1-4(Fuca1-3)GIcNAcb1-6)GaIb1-4GIc-Sp21

GaIb1-4GlcNacbl-2(Galbl-4GIcNacbl-4)Mana1-3(GaIb1-4GcNacb-2(GaIb1-4GcNacb1-

383 6)Manal-6)Manbl-4GIcNacbl-4GIcNacb-Sp2l

384 GIcNacbl-2(GIcNacb-4)Manfal-3(GIcNacbl-2Manal-6)Manb1-4GcNacb1-4GcNac-Sp21

385 Fuca1-2GaIb1-3GaINAca1-3(Fuca1-2)Galb1-4Gcb-SpO

386 Fuca1-2Galbl-3Gal NAcal-3(Fucal-2)Galb1-4GcNAcb-SpO

387 Galb1-3GlcNAcbl-3GalNAca-Sp14

388 Neu5Aca2-3(GalNAcbl-4)Galbl-4GcNAcb1-3Gal NAca-Sp14

389 GalNAca1-3(Fuca1-2)Galb1-3GaNAca1-3(Fuca1-2)Galb1-4GcNAcb-Sp0

Gala1-3Galbl-3GlcNAcb1-2Mana 1-3(Galal-3Galb1-3GlcNAcb1-2Mana1-6)Manbl-

390 4GlcNAcb1-4GIcNAc-Sp19

Gala 1-3Galbl-3(Fuca1-4)GlcNAcb1-2Mana1-3(Galal-3Galb1-3(Fuca1-4)GcNAcb1-2Mana 1-

391 6)Manb1-4GlcNAcb1-4GIcNAc-Sp19

Neu5Aca2-3Galb1-3GlcNAcb1-2Mana1-3(Neu5Aca2-3Galb1-3GcNAcb1-2Mana1-6)Mafnbl-

392 4GlcNAcb1-4GIcNAc-Sp19

393 Galb1-4GlcNAcb1-2Manal-3(GlcNAcb1-2Manal-6) Manbl-4GlcNAcbl-4GIcNAc-Spl2

394 GlcNAcb1-2Mana1-3(Galbl-4GcNAcb1-2Mana1-6)Manb1-4GIcNAcb1-4GcNAc-Sp12

395 Neu5Aca2-3Galb1-3GIcNAcb1-3GaINAca-Sp14

396 Fuca1-2Galb1-4GlcNacbl-3GalNaca-Sp14

397 Galb1-4(Fuca1-3)GlcNacb1-3GalNaca-Sp14

398 GalNacal-3GalNacbl-3Gala1-4Galb1-4GlcNacb-Sp0

Gala 1-4Galb1-3GlcNacb1-2Mana1-3(Gala1-4Galb1-3GlcNacb1-2Manal-6)Manbl-

399 4GIcNacb1-4GlcNacb-Sp19

Gala1-4Galbl-4GlcNacbl-2Mana 1-3(Galal-4Galb1-4GlcNacb1-2Mana1-6)Manb1-

400 4GlcNacb1-4GcNacb-LVaNKT

401 Gala1-3GaIb1-4GlcNacbl-3GalNaca-Sp14

402 GaIb1-3GlcNAcb1-6Galb1-4GcNAcb-SpO

403 Galb1-3GcNAca1-6Galb1-4GcNAcb-Sp0

404 GalNAcb1-3Gala1-6Galbl-4Glcb-Sp8

405 GlcNAcb1-6(GlcNAcbl-3)GalNAca-Sp14

406 Gala1-3(Fuca1-2)Galbl-4(Fuca1-3)Gcb-Sp21

407 Neu5Aca2-6Galb1-3GcNAcb1-3(Galb1-4GcNAcb1-6)Galb1-4GIc-Sp21

408 GaIb1-3GaINAcb1-4(Neu5Aca2-8Neu5Aca2-3)GaIb1-4GIcb-Sp0

409 Neu5Aca2-3GaIb1-3GaINAcb1-4(Neu5Aca2-8Neu5Aca2-3)GaIb1-4GIcb-SpO
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410 Gala1-3(Fuca1-2)GaIb1-4GlcNAcbl-3GaINAca-Sp14

411 GaINAca1-3(Fuca 1-2)Galb1-4GIcNAcbl-3GaINAca-Spl4
412 GalNAca 1-3GaINAcb1-3Gala1-4GaIb-4Gcb-SpO

413 Fuca1-2GaIbl-4(Fuca1-3)GIcNAcbl-3GalNAca-Sp14

414 Gala1-3(Fuca1-2)Galbl-4(Fuca1-3)GIcNAcb1-3GalNAc-Sp14

415 GaINAca1-3(Fuca1-2)GaIb1-4(Fucal-3)GIcNAcbl-3Ga1NAc-Sp14

GaIbl-4(Fuca1-3)GlcNAcb1-2 Mana1-3(Galbl-4(Fucal-3)G IcNAcb1-2Mana 1-6) Manbi-
416 4GIcNAcbl-4(Fuca1-6)GIcNAcb-Sp22

Fuca 1-2GaIb1-4GlcNAcb1-2 Mana 1-3(Fuca 1-2GaIb1-4GIcNAcb1-2Mana 1-6)Manbl-
417 4GIcNAcbl-4(Fuca1-6)GIcNAcb-Sp22

GlcNAcb1-2Mana 1-3(GIcNAcb1-2(GIcNAcbl-6) Ma nal-6) Manbl-4G IcNAcb1-4G IcNAcb-
418 Sp19

419 Fuca1-2GaIb1-3GIcNAcbl-3GaINAc-Sp14

420 Gala1-3(Fuca1-2)GaIb1-3GcNAcbl-3GaINAc-Sp14

421 GalNAca 1-3(Fuca1-2)Galbl-3GIcNAcbl-3GaINAc-Spl4

422 Gala1-3Galb1-3GIcNAcbl-3GalNAc-Sp14

Fuca 1-2Ga Ib1-3GIcNAcb1-2 Mana1-3(Fuca 1-2GaIb1-3GIcNAcb1-2Mana 1-6)Man b1-
423 4GIcNAcbl-4(Fuca1-6)GIcNAcb-Sp22

Gala1-3(Fucal-2)Galbl-4GlcNAcb1-2Mana1-3(Gala1-3(Fuca1-2)Galb1-4GlcNAcbl-2Mana1-

424 6)Manbl-4GIcNAcbl-4(Fuca 1-6)GlcNAcb-Sp22

GaIbl-3GIcNAcb1-2Manal-3(GaIb1-3GlcNAcb1-2(Galb1-3GlcNAcbl-6)Mana1-6)Ma nbl-
425 4GIcNAcbl-4GIcNAcb-Spl9

426 Fuca1-2GaIb1-3GlcNAcb1-3(GaIbl-4GIcNAcbl-6)GaIb1-4Glc-Sp21

427 GaIb1-4GIcNAcbl-3GaIbl-4(Fuca1-3GIcNAcbl-6)Galb1-4Glc-Sp21

428 GlcNAcb1-2Mana 1-3(GlcNAcb1-4)(GIcNAcbl-2Ma nal-6) Manb1-4GIcNacb1-4GlcNAc-Sp21

GIcNAcbl-4(GIcNAcbl-2) Mana 1-3(GIcNAcbl-4)(G IcNAcbl-2Mana 1-6) Ma nb1-4GlcNAcb1-
429 4GlcNAc-Sp2l

GIcNAcbl-2Mana 1-3(GIcNAcbl-4)(GIcNAcbl-6(GIcNAcb1-2)Ma na1-6) Ma nb1-4GIcNAcb1-
430 4GlcNAc-Sp2l

GIcNAcbl-4(GIcNAcbl-2)Mana 1-3(GIcNAcbl-4)(GIcNAcbl-6(GIcNAcbl-2) Mana 1-6)Ma nbl-
431 4GIcNAcbl-4GIcNAc-Sp2l

Galb1-4GIcNAcbl-2Ma na1-3(G lcNAcb1-4)(Galb1-4GlcNAcb1-2) Manb1-4G lcNAcb1-
432 4GlcNAc-Sp21

Galb1-4GIcNAcbl-4(Galbl-4GIcNAcb1-2)Mana1-3(GlcNAcb1-4)(GaIbl-4G lcNAcbl-2 Mana1-
433 6)Manbl-4GIcNAcbl-4GcNAc-Sp2l

Galbl-4GIcNAcbl-2Manal-3(GIcNAcb1-4)(Galb1-4GIcNAcb1-6(Galb1-4G IcNAcb1-2) Manal-
434 6)Manbl-4GIcNAcbl-4GIcNAc-Sp2l

435 Galb1-4Galb-Sp1O

436 Galb1-6Galb-Sp1O

437 Neu5Aca2-3GaIb1-4GIcNAcb1-3GaIb-Sp8

438 GaINAcb1-6GaINAcb-Sp8
439 [60SO3]Galbl-3GIcNAcb-SpO
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440 [60SO3]Galbl-3[60SO3]GcNAc-SpO

Fuca1-2GaIbl-4GIcNAcbl-2(Fuca1-2Ga Ibl-4GIcNAcbl-4)Mana1-3(Fuca 1-2Galbl-4
441 GIcNAcbl-2Mana1-6)Manbl-4GIcNAcbl-4GcNAcb-N

Fuca1-2GaIbl-4(Fuca1-3)GIcNAcb1-2(Fuca1-2Galbl-4(Fuca1-3)G IcNAcbl-4)Mana1-
442 3(Fuca1-2Galb1-4(Fuca1-3)GIcNAcb1-2Mana1-6)Manb-4GcNAcb1-4GcNAcb-N

-3

-15

-4

200 0

2505

3D-7

Lectin #
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Appendix 2.2

Rheumatoid Arthritis Glycan Group and Similar Glycan Groups

RA Glycan
Group
Arth Glycan #

301

Similar Glycan Gro
Sim

Name
GIcNAcbl -2Manal -3(GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GlcNAcb-
Sp12

ups:
# DB# Name

Galb1 -4GlcNAcbl -2Manal -3(Neu5Aca2-6GaIb1 -4GlcNAcbl -2Manal -
1 292 6)Manbl -4GIcNAcbl -4GlcNAcb-Sp 12

GlcNAcb1 -2Manal -3(Neu5Aca2-6GaIb1 -4GlcNAcbl -2Manal -6)Manbl -
2 300 4GIcNAcbl-4GIcNAcb-Spl2

Neu5Aca2-3Galb1 -4GIcNAcbl -2Manal -3(Neu5Aca2-6GaIb1 -4GIcNAcb 1-
3 313 2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Spl 2

Neu5Aca2-6Galbl -4GlcNAcbl -2Mana1 -3(Galbl -4GlcNAcb1 -2Manal -
4 314 6)Manbl -4GIcNAcb1 -4GlcNAcb-Sp 12

Neu5Aca2-6Galbl -4GIcNAcbl -2Manal -3(GlcNAcbl -2Manal -6)Manb1 -

5 315 4GlcNAcbl-4GlcNAcb-Spl2
Galbi -3GIcNAcbl -2Manal -3(Galbl -3GIcNAcb1 -2Manal -6)Manbl -

6 319 4GIcNAcbl-4GIcNAcb-Spl9
Neu5Aca2-3Galb1 -4GlcNAcbl -2Manal -3(Neu5Aca2-3GaIb1 -4GlcNAcb 1-

7 320 2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Spl 2
Neu5Aca2-6Galbl -4GlcNAcbl -2Manal -3(Neu5Aca2-3Galb1 -4GlcNAcbl -

8 321 2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Spl 2
Fucal -3(Galbl -4)GlcNAcbl -2Manal -3(Fucal -3(Galbl -4)GIcNAcbl -2Manal -

9 322 6)Manbl -4GIcNAcbl -4GlcNAcb-Sp2O
GIcNAcbl -2Manal -3(GlcNAcbl -2Manal -6)Manbl -4GlcNAcbl -4(Fucal -

10 347 6)GIcNAcb-Sp22
Galb1 -4GIcNAcbl -2Manal -3(Galbl -4GIcNAcbl -2Manal -6)Manbl -

11 348 4GIcNAcb1 -4(Fucal -6)GlcNAcb-Sp22
Galbi -3GIcNAcbl -2Manal -3(Galbl -3GIcNAcbl -2Manal -6)Manbl -

12 349 4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22
Galb1 -3(Fucal -4)GlcNAcbl -2Manal -3(Galbl -3(Fucal -4)GlcNAcbl -2Manal -

13 350 6)Manbl -4GlcNAcb1 -4GIcNAcb-Sp 19
Fucal -2Galbl -3GIcNAcbl -2Manal -3(Fucal -2Galbl -3GlcNAcbl -2Manal -

14 356 6)Manbl-4GlcNAcbl-4GlcNAcb-Sp2o
Fucal -2Galbl -4GlcNAcbl -2Manal -3(Fucal -2Galbl -4GIcNAcbl -2Manal -

15 357 6)Manbl-4GIcNAcbl-4GIcNAcb-Sp2o
Fucal -2Galbl -4(Fucal -3)GlcNAcbl -2Manal -3(Fucal -2Galbl -4(Fucal -

16 358 3)GIcNAcbl -2Manal -6)Manbl -4GlcNAcbl -4GIcNAb-Sp2O
Galal -3Galbl -4GIcNAcbl -2Manal -3(Galal -3Galbl -4GlcNAcbl -2Manal -

17 359 6)Manbl-4GIcNAcbl-4GlcNAcb-Sp2o
Galbi -3(Fucal -4)GlcNAcbl -2Manal -3(Galbl -3(Fucal -4)GIcNAcbl -2Manal -

18 361 6)Manbl -4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22
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Galb1 -4GIcNAcbl -2(Galbl -4GIcNAcbl -4)Manal -3(Galbl -4GIcNAcbl -
19 365 2Manal -6)Manbl -4GIcNAcbl -4GIcNAc-Sp2l

GalNAcal -3(Fucal -2)Galbl -4GIcNAcbl -2Manal -3(GaINAcal -3(Fucal -

20 366 2)Galbl -4GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Sp2O
Galal -3(Fucal -2)Galbl -4GIcNAcbl -2Manal -3(Galal -3(Fucal -2)Galbl -

21 367 4GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Sp2O
Galal -3Galbl -4(Fucal -3)GIcNAcbl -2Manal -3(Galal -3Galbl -4(Fucal -

22 368 3)GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Sp2O
GalNAcal -3(Fucal -2)Galbl -3GIcNAcbl -2Manal -3(GaINAcal -3(Fucal -

23 369 2)Galbl -3GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Sp2O

Galal -3(Fucal -2)Galbl -3GIcNAcbl -2Manal -3(Galal -3(Fucal -2)Galbl -
24 370 3GIcNAcbl -2Manal -6)Manbl -4GlcNAcbl -4GIcNAcb-Sp2O

Fucal -2Galbl -3(Fucal -4)GIcNAcbl -2Manal -3(Fucal -2Galbl -3(Fucal -

25 371 4)GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Spl 9
(GaINAcbl -4GIcNAcbl -2Manal -6)GaINAcbl -4GIcNAcbl -2Manal -3Manbl -

26 375 4GIcNAcbl-4GIcNAc-Spl2
Galb1 -4GIcNacbl -2(Galbl -4GIcNacbl -4)Manal -3(Galbl -4GIcNacbl -2(Galbl -

27 383 4GIcNacbl -6)Manal -6)Manbl -4GIcNacbl -4GIcNacb-Sp2l
GIcNacbl -2(GIcNacbl -4)Manal -3(GIcNacbl -2Manal -6)Manbl -4GIcNacbl -

28 384 4GIcNac-Sp2l
Galal -3Galbl -3GIcNAcbl -2Manal -3(Galal -3Galbl -3GIcNAcbl -2Manal -

29 390 6)Manbl -4GIcNAcbl -4GIcNAc-Spl 9
Galal -3Galbl -3(Fucal -4)GIcNAcbl -2Manal -3(Galal -3Galbl -3(Fucal -

30 391 4)GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GIcNAc-Spl 9

Neu5Aca2-3Galb1 -3GIcNAcbl -2Manal -3(Neu5Aca2-3Galbl -3GIcNAcbl -

31 392 2Manal -6)Manbl -4GIcNAcbl -4GIcNAc-Spl 9

Galb1 -4GIcNAcbl -2Manal -3(GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -
32 393 4GIcNAc-Spl2

GIcNAcbl -2Manal -3(Galbl -4GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -
33 394 4GIcNAc-Spl2

Galal -4Galbl -3GIcNacbl -2Manal -3(Galal -4Galbl -3GIcNacbl -2Manal -

34 399 6)Manbl -4GIcNacbl -4GlcNacb-Spl 9
Galal -4Galbl -4GIcNacbl -2Manal -3(Galal -4Galbl -4GIcNacbl -2Manal -

35 400 6)Manbl -4GIcNacbl -4GIcNacb-LVaNKT
Galbi -4(Fucal -3)GIcNAcbl -2Manal -3(Galbl -4(Fucal -3)GIcNAcbl -2Manal -

36 416 6)Manbl -4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22

Fucal -2Galbl -4GIcNAcbl -2Manal -3(Fucal -2Galbl -4GIcNAcbl -2Manal -

37 417 6)Manbl -4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22

GlcNAcbl -2Manal -3(GlcNAcbl -2(GicNAcbl -6)Manal -6)Manbl -4GIcNAcbl -

38 418 4GIcNAcb-Spl9
Fucal -2Galbl -3GIcNAcbl -2Manal -3(Fucal -2Galbl -3GIcNAcbl -2Manal -

39 423 6)Manbl -4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22

Galal -3(Fucal -2)Galbl -4GIcNAcbl -2Manal -3(Galal -3(Fucal -2)Galbl -
40 424 4GIcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4(Fucal -6)GIcNAcb-Sp22

Galb1 -3GIcNAcbl -2Manal -3(Galbl -3GIcNAcbl -2(Galbl -3GIcNAcbl -
41 425 6)Manal -6)Manbl -4GIcNAcbl -4GIcNAcb-Spl 9

GIcNAcbl -2Manal -3(GIcNAcbl -4)(GIcNAcbl -2Manal -6)Manbl -4GIcNacbl -
42 428 4GIcNAc-Sp2l

GIcNAcbl -4(GIcNAcbl -2)Manal -3(GicNAcbl -4)(GIcNAcbl -2Manal -6)Manbl -

43 429 4GIcNAcbl-4GIcNAc-Sp2l
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GIcNAcbl -2Manal -3(GIcNAcbl -4)(GIcNAcbl -6(GIcNAcbl -2)Manal -6)Manbl -

44 430 4GIcNAcbl-4GlcNAc-Sp2l
GIcNAcbl -4(GicNAcbl -2)Manal -3(GicNAcbl -4)(GlcNAcbl -6(GIcNAcbl -

45 431 2)Manal -6)Manbl -4GIcNAcbl -4GlcNAc-Sp2l

Galbi -4GIcNAcbl -4(Galbl -4GIcNAcbl -2)Manal -3(GIcNAcbl -4)(Galbl -

46 433 4GIcNAcbl -2Manal -6)Manbl -4GIcNAcb1 -4GlcNAc-Sp2l
Galbi -4GIcNAcbl -2Manal -3(GlcNAcbl -4)(Galbl -4GIcNAcbl -6(Galbl -

47 434 4GIcNAcbl -2)Manal -6)Manbl -4GIcNAcbl -4GlcNAc-Sp2l

Fucal -2Galbl -4GIcNAcbl -2(Fucal -2Galbl -4GIcNAcbl -4)Manal -3(Fucal -

48 441 2Galbl -4 GlcNAcbl -2Manal -6)Manbl -4GIcNAcbl -4GlcNAcb-N

Fucal -2Galbl -4(Fucal -3)GIcNAcbl -2(Fucal -2Galbl -4(Fucal -3)GIcNAcbl -

4)Manal -3(Fucal -2Galbl -4(Fucal -3)GIcNAcbl -2Manal -6)Manbl -

49 442 4GIcNAcbl-4GIcNAcb-N
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Appendix 2.4
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Appendix 2.5
Unique 'barcode' for each of the glycans using the best 6 lectins for differentiation of single glycans:
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3. Proof of Concept - Nanotube Sensors for Proteins and Glycans

Some of the work, text and figures presented in this chapter are reprinted or adapted from reference'

(reprinted under thesis use allowance from the American Chemical Society © 2011)

3.1. Introduction

Understanding the interactions between glycans and carbohydrate recognition domains (CRD)

found on cellular and protein surfaces is vital to the fields of glycobiology, immunology, and

pharmacology. Glycans decorating the surface of proteins substantially influence function, such as

folding pathways, signaling, retention and pharmacokinetics.2 ,
3 The efficacy of protein-based

therapeutics is largely dictated by their glycosylation4 , and thus de novo design of drugs that interact with

known CRD sites, such as cell-adhesion modulating galectins5 , requires a greater understanding of the

kinetic parameters between glycans and CRDs. Despite this importance, robust assays of protein

glycosylation are under-developed, with the dominant profiling technologies falling to frontal affinity

chromatography6, 7 and mass spectrometry."- 1 Recently, the concept of the lectin microarray has emerged

as a promising approach to investigating glycan-lectin interactions. These arrays take advantage of

multivalent interactions to overcome the weak monovalent binding of lectin-glycan pairs (typically 10-7

M < Kd < 10- M), but are limited in their ability to transduce weak mono or multivalent interactions and

also require fluorescence labeling. -6,115 An emerging concept6'1 is to use multivariate responses of

glycans binding to a library of lectins to discern their identity, but this requires detection methods that are

necessarily sensitive enough to transduce the presence of weakly bound proteins. Label free methods,

which reduce sample volume requirements, have a distinct advantage in this approach by decreasing the

absolute detection limit. Herein, we develop a fluorescent single walled carbon nanotube sensor 6 for

glycan-lectins interactions with the ultimate goal of profiling glycans.

Our approach is to couple band gap fluorescent SWNT to receptor lectins, which are a host of

naturally occurring carbohydrate binding proteins.17 We benchmark the sensor by evaluating the kinetic

parameters between anti-His tag antibody and comparing it to literature surface plasmon resonance (SPR)

parameters. We then demonstrate the detection of fucose (Fuc) to PA-IlL lectin and N-acetylglucosamine

(GlcNAc) to GafD lectin. Kinetic parameters are obtained by first measuring the fluorescence intensity of

a large spot of SWNT, and then it is shown how the same signal can be increased by probing individual

SWNT sensors and determining which sensors are most responsive to glycosylated analyte addition. Our

objective of glycan profiling makes this effort distinct from recent work creating glycosolate carbon

nanotubes for therapeutic purposes' and electronic FET sensors for lectin, but not glycan, binding"
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In contrast, the aim of our work is to profile glycans via their selective binding to a fluorescent nanotube

surface, a concept not yet demonstrated in the literature to date.

Kinetic information on glycans-CRD interactions is currently determined by two types of

analytical methodology: equilibrium and non-equilibrium. 23 Non-equilibrium methods yield relative

binding information rather than physical kinetic rates; that is, they specify which glycan-CRD

combinations bind with greater or lesser affinity in reference to each other. These methods include

ELISA24 , glycan microarrays25 , agglutination2 6, and electrophoresis27 . A notable exception in this

category of relative binding assays are some of the carbohydrate arrays from the CH Wong group that can

yield quantitative fluorescent binding curves similar to SPR (below) and be translated to KD values. 5

Equilibrium dialysis can determine the forward reaction rate (kf) of glycan-CRD binding but requires a

large amount of glycan reagent, which is often a significant investment of time and money if complex

sugars are used. Equilibrium titration calorimetry 28,29 is a delicate technique to determine kinetic

parameters from thermodynamic information, but is rarely employed because of time and reagent

expenses. Another equilibrium technique, frontal affinity chromatography 30, can be used to determine the

affinity constant (KD) for most glycan-CRD pairs (KD > 10-7) however the glycan must be labeled for

detection. The current standard for obtaining kinetic information from label- free groups is surface

plasmon resonance (SPR) machines, such as the Biacore © systems. In the case of glycan-CRD

interactions, SPR can detect both the forward and reverse kinetic rates for a wide range of affinities (KD:

mM-pM range). However, to induce a detectable signal the analyte must have significant mass. Thus

glycans are typically immobilized on the gold surface (often using neoglycoproteins 31, i.e. glycans

synthetically coupled to a protein backbone) and the more substantial lectins are used as the binding

analytes. This can bias the analysis of single lectin-glycan interactions as presentation and density of the

glycan is a critical parameter in CRD binding and the immobilization methodology can alter this. 2

Though more difficult, lectins can also be immobilized on the SPR surface and detect glycosylated

analytes, but again these must have enough mass to transduce a change in refractive index.

We show that the SWNT-based fluorescence sensors developed in this work demonstrate loading

curve signals competitive with SPR, both in shape and analysis technique, but they differ in a few

significant ways. First, the detection scheme is reversed. The lectins are the tethered sensors and the

glycans are the analyte in solution. This allows us to determine the kinetics of free glycans as well as

glycoproteins giving us precise control over carbohydrate presentation in the interaction. Second the

amount of analyte needed for each experiment (2 gg of glycosylated protein or 100 ng of free glycan) is

smaller than what is necessary for SPR experiments, which require analyte flow to overcome mass-

transport effects (at its best, SPR requires 20-250ptg of analyte protein3 3). Third, each SWNT-sensor spot
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can be tethered to different lectins and illuminated simultaneously, creating the potential for a

multiplexed, quantitative detection of analyte binding analogous to an array-reading SPR machine with

distinct advantages in sample size and run time.

3.2 Methods

3.2.1 Lectin Expression

The resulting plasmid pET4IGafD and pET41-PAIIL were transformed into BL21(DE3) m Star

(Invitrogen) according to standard procedures. 34 A single colony was used to inoculate 5 mL LB medium

containing kanamycin (50 ptg mL- 1). Three milliliter of the overnight culture at 37 'C was used as an

inoculum to a 350 mL flask of LB containing 50 ptg mL-1, and this was incubated again with shaking at

37 'C. Heterologous protein was induced by the addition of isopropyl P-D-1 -thiogalactopyranoside

(IPTG, final concentration 1 mM) once this culture had reached log phase (A 600 of 0.6). Growth was

continued for 6 h before the cells were harvested by centrifugation. For His-tag protein purification,

harvested cell pellet was washed twice with phosphate-buffered saline, PBS (10 mM, pH 7.4) and then

lysed with Complete Lysis-B (Roche Applied Science). The crude lysate was clarified by centrifugation

prior to application to a 3 mL Ni-NTA agarose column (Qiagen). Non-specifically bound proteins

removed from the column with wash buffer (50 mM NaH2PO 4, pH 8.0, 300 mM NaCl, 20 mM imidazole)

and bound His-tag GafD and PAIL were eluted with elution buffer (50 mM NaH2 PO4 , pH 8.0, 300 mM

NaCl and 250 mM imidazole). Eluted samples were analyzed by 15% SDS-PAGE and protein

concentration was determined with BCA assay kit according to manufacturer's instructions (Pierce). To

change the buffer with PBS (10 mM, pH 7.4), the eluted solution was centrifuged through a centrifugal

filter with a molecular cutoff of 10 kDa (Millipore) and the concentration of lectin was finally adjusted to

4 mg mL-1.

3.2.2 Glycan and Model Glycoprotein Probes

Biotinylated glycans were provided by the Consortium of Functional Glycomics - Scripps Institute

Group. For this work, glycans B121 (GlcNAc-SpNH-LC-LC-Biotin) and B158 were used (Fucal-

2GalPf-4GlcP-SpNH-LC-LC-Biotin) where Sp is 2-azidoethyl and LC-LC biotin is a standard biotin

reagent with an extra-long spacer group (Pierce ID# 21343). The lyophilized sugars were dissolved in

3mL of lx PBS to create stock solutions and stored at -20'C. To construct model glycoprotein probes,

the biotinylated glycans were incubated with streptavidin (Sigma Aldrich S0677) for 1 hour at 20'C in a

6:1 molar ratio to allow maximum binding to the four biotin binding sites on each streptavidin. Excess
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biotinylated glycans were filtered away from the glycoproteins by centrifugation through an Amicon filter

(16,300 x g on Labnet Inc centrifuge, 10 min, 30,000 kDa cutoff, Milipore). The glycoproteins were

washed on the filter 3x (400 ptL PBS) and then resuspended in PBS at the desired concentrations.

3.2.3 Native PAGE Binding Analysis

The interaction between lectin and glycan was analyzed by 15% native PAGE according to the method of

Schagger and von Jagow with minor modifications. 35 Briefly, electrophoresis was performed using a Mini

Protean Electrophoresis system (Bio-Rad, USA) under nondenaturing conditions to examine molecular

interactions. Nonreduced protein/glycan samples (GafD Lectin held constant at 30pg per lane, GIcNAc-

Strept added at 5, 10, 20, and 30pg) in the sample buffer (20 % glycerol, 200 mM Tris-HCl, pH 6.8,

0.05% bromophenol blue) were applied to the gel (gel buffer: 25 mM Tris-HCl, 200 mM

glycine).Electrophoresis was performed at 80 V for 120 min. After electrophoresis, the protein bands

were visualized by staining with Coomassie Brilliant Blue R-250.

3.2.4 Construction of Chitosan-SWNT Sensor Chips

To increase the reproducibility of our sensors, we have introduced a careful automated printing method of

the chitosan gel (Fig 3.1). Patterned glass microscope slides (Tekdon) were inserted in a microarray

printer (Digilab MicroSys System) where the robotic head was programmed to dispense alternating layers

of chitosan-SWNT (0.25wt% chitosan (CHI), I vol% acetic acid, 30ug/ml suspended (6,5) SWNT) and

crosslinker (10 vol% glutaraldehyde). The suspended SWNT was made from Southwest

Nanotechnologies, Inc. CoMoCAT@ nanotubes sonicated in 0.25wt% chitosan (CHI) and 1 vol% acetic

acid for 45 minutes at 40% amplitude with a probe-tip sonicator (Cole Parmer, Model CV1 8). For each

sensor spot ten alternating layers of SWNT-CHI and cross-linker were printed at 100nL per layer,

resulting in a highly-uniform gel of lul SWNT-CHI material. The chips were printed in a humidified

enclosure (85% RH) at 25'C and allowed to cross-link overnight in the same environment. Nickel-NTA

groups were introduced as previously reported 16. Briefly, the chips were washed with a dilute basic

buffer (0.01 M NaOH) and water three times. Carboxylic acid groups were introduced to the chitosan

wrapped SWNT by bathing the chips in succinic anhydride (0.1 M) overnight (Fig 3.2 step 2).
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(b)

(c)

(d)

Figure 3.1 - An automated printer (a) is now used to print the SWNT-Chitosan gel. When the gel is printed by hand

(b) the gel morphology is irregular and the crosslinking is inhomogenous leading to different spot sizes and

intensities after subsequent chemistry steps. Automated printing of large spots with subsequent addition of cross-

linker on top of the gel (c) also leads to inhomogenous spots. By printing many alternating layers of SWNT-

Chitosan gel and crosslinker (d) we can build a spot that is homogenous in shape and signal.

1) Wrap ( 6,5) SWNT in Chitosan
H
N

Bind His tag HsOa
nsor protein to theH

H 2 00

H' 'O4) Chelate Ni2+ with OH
nsothe NTA group

0

0

OH

N

HO

3) Attach NTA tether after
EDC and NHS amine
activation

2) Add succinic
anhydride

Figure 3.2 - Processing steps to tether a His tag sensor protein to SWNT: 1) wrap SWNT in chitosan, 2)

functionalize chitosan with carboxylic acids, 3) attach tethered NTA group, 4) chelate nickel with NTA, 5) add His

tag protein to sensor.
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The chips were then washed three times with water and the carboxylic acid groups were activated

via N-(3- dimethylaminopropyl)-N'-ethylcarbo diimide hydrochloride (EDC - 0.1M) and N-

hydroxysuccinimide (NHS - 0.1M). The chips were bathed in this solution for 2 hours at 25'C and

examined for the expected formation of bubbles. The chips were again washed and allowed to bathe in a

solution of a linked tricarboxylic acid group (Na,Na-bis(carboxymethyl)-L-lysine a.k.a. NTA - 33mM)

overnight (Fig 3.2 step 3). The chips were washed in water again and stored in a 100mM solution of

NiSO 4 to allow maximum binding of nickel to the NTA chelating groups (Fig 3.3 step 4). Thus in each

experiment the SWNT sensors start in their maximally quenched state due to close proximity of the

nickel. During experimentation the excess NiSO 4 is washed away with water and the sensor protein, His-

tagged lectin, is tethered to the SWNT sensors via the chelated nickel group (Fig 3.4 step 5). The large

protein groups cause the nickel group to move away from the SWNT sensor, due to steric loading

(discussed below), and part of the quenched fluorescent signal returns.

3.2.5 Ensemble Measurements of Sensors

A custom-made near infrared inverted microscope (Zeiss D. 1 Observer) setup allows us to probe

the fluorescent emissions of our SWNT sensors (Fig 3.3a). The chips are secured on the microscope

stage and the objective (50x/0.7 Zeiss) is pushed into contact with a blank portion of the glass slide (no

SWNT-CHI) to obtain a 5 second background spectrum, which is subsequently subtracted from the

response spectra. The objective is then moved under a SWNT-CHI gel spot and again pushed in contact

with the glass slide. By placing the objective in the maximum z-axis position, the microscope can image

a higher plane of the SWNT-CHI gel where more analyte response is observed. The SWNT are excited

by a 785nm laser (B&W Tek - 495mW) and the emission is sent to a spectrometer (Princeton Instruments

Acton SpectraPro 2500i Spectrograph) and accompanying nIR camera (Intervac MOSIR Camera 350).

The spectra are collected via WinSpec software (Princeton Instruments) and analyzed with custom Matlab

(Mathworks) code. To maximize signal stability, the spectrometer is cooled with liquid nitrogen two

hours prior to experimentation and the laser is allowed to reach peak stability for two hours. The SWNT-

CHI gel has a small transient region when first exposed to the laser due to local heating and further

permeation of Ni2 l in the gel; thus each spot is pre-exposed to the laser for 5 minutes before data is

gathered. Data is gathered in the form of emission intensity spectra (950-1250nm) integrated for 5

seconds.
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Figure 3.3 - Ensemble measurements of Chitosan-SWNT sensors for glycan lectin detection. A) The chistosan

wrapped SWNT are processed (see text) to include tethered NTA groups and chelated Ni2+ so that His-tagged lectins

(i) can attach to the sensors. An analyte (anti His-tag antibody (iv), free biotinylated glycan (ii), or glycan tethered

to streptavidin (iii)) is added and the emission fluorescence is increased (Part B (i) to (ii)) due to the Ni2+ group

moving away from the SWNT, caused by steric loading of the sensor (see text). B) Ensemble measurement setup:

the chitosan-SWNT gel is spotted onto glass chips which are excited by a 785nm laser in a custom inverted

microscope setup. The resulting emission spectra are then analyzed looking at the intensity of the (6,5) nanotube

peak over time.

A typical experiment was run for approximately 1000 frames (at 5 seconds each) and included a

few addition and washing steps to detect lectin-glycan binding (Figure Ib). First NiSO4 was again added

to ensure that the SWNT sensors were responsive and that the NTA chelating groups were fully loaded

with Ni2+ groups. The nickel was then washed away with PBS three times, leaving -20u1 of PBS on the

sensors. The His-tag lectin was then added to the sensor (20d at 2mg/ml) and allowed to bind for 300

seconds. Excess lectin was again washed by PBS three times and 20 1 Il PBS was left to bathe the

sensor. The sensor was allowed to equilibrate for 100 seconds and 20pl of analyte was added. The
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analytes tested in this paper include free biotinylated glycans, glycans tethered to streptavidin, and anti

His-tag antibody. Each of these, upon binding, causes an increase in SWNT luminescence (Figure 1b).

The sensor response was recorded for 500 seconds. It is essential to record stabilization frames before

and after the analyte addition in order to correct for any focal drift caused by the tension of the objective

in contact with the glass slide (see Results section).

3.2.6 Single SWNT Sensor Measurements

A second custom microscope was used to collect emission intensities of single SWNT sensors.

The SWNT-CHI gel was diluted to 3ptg/ml of SWNT and spin-coated (3000 rpm for 30s on Laurell

Technologies Corporation, WS-650MZ-23NPP/LITE) on glass-bottom petridishes (MarTec Corp). The

petri-dishes were then placed on the microscope platform (Zeiss D. 1 Observer) and the oil-immersed

objective (Zeiss 100x/1.46) was focused on the SWNT sensors on the glass surface. The SWNT were

excited by a 660nm laser (Crystal Laser - 100mW) and the emission intensities were recorded by a

nitrogen-cooled InGaAs array (Princeton Instruments). Again WinSpec software (Princeton Intrsuments)

was used to collect the data in the form of a stacked Tiff image where pixel values corresponded to

spectral intensity. These Tiff images were then analyzed using custom Matlab code (Mathworks) to: 1)

construct an intensity versus time trace for each SWNT sensor, 2) noise reduce the intensity signal, 3) fit

the signal to a step-wise curve, and 4) determine the kinetic rates for each SWNT sensor according to a

previously published model.3 6 37

3.3. Results and Discussion
We first confirmed that our Streptavidin-based model glycoproteins bind to our expressed His-tag

lectins using native PAGE gel analysis, which allows the protein-protein complex to remain in its native,

non-denatured from. Note that separation is dictated by native complex charge and morphology, not

strictly molecular weight as in SDS-PAGE 38. The resulting gel (Fig 3.4) clearly indicates a bound

complex that arises when GlcNAc-streptavidin probe (1mg/ml) is added in solution with GafD lectin, a

lectin from Escherichia coli, which binds f-GlcNAc (3mg/ml).
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Figure 3.4 - Native PAGE gel of GlcNAc-Streptavidin (1mg/ml) to GafD Lectin (3mg/ml) in solution. The gel

reveals an increasing band of GafD-GlcNAc conjugate as more GlcNAc-Streptavidin is added to solution.

Next the time response of the sensor during construction and various analyte additions was

analyzed using the ensemble measurement technique outlined in Figure 1. In the first test, Niz, was

added (100mM) which caused a clear quenching response as the Ni2
+ interacted with the exposed SWNT

decreasing their fluorescence (Figure 3.5a). The effect of divalent cation quenching of nanotubes is

established in the literature. 3 ,40 In brief, the SWNT exciton formed by laser excitation is affected by the

electronic field of metal ion and caused to decay in non-radiative pathways; thus the fluorescent emission

of the SWNT is effectively reduced as the metal ion comes in close proximity. The excess Ni2
+ was then

washed away and the His-tagged lectin GafD was added (40ug in 20u1). A loading curve (much like that

observed in SPR assays) was observed as the lectin binds to the NTA-Ni 2+ complexes. The mechanism

consistent with our previous analysis is that the increase in SWNT fluorescence is caused by an increase

in the distance between the Ni2 complex, lessening its proximity quenching effect.16 Both steric loading

and multivalent effects can influence this as discussed below. The excess lectin is removed and the

Streptavidin-GlcNAc probe is added (40pg in 40p1), in two steps. Again, an SPR-like loading curve is

observed, except with slower kinetics and less overall response. The excess Streptavidin-GlcNAc probe

is washed away and free biotinylated GlcNAc is added (20pl of 100pM). Again the loading curve is

observed. After washing away the excess free glycan, we added 40 pl of PBS to the system to ensure that

the loading responses were due to the analyte and not some focal change due to increased mass on the

sensor. We then checked to see if the biotinylated glycans, now bound to the sensor, were accessible to

blank streptavidin. Upon streptavidin addition we see another loading curve, with slower kinetics,
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confirming binding of streptavidin to the biotin ends of glycans decorated on the SWNT-Lectin sensors.

As a positive control, we used an anti His-tag antibody, as previously 6 to verify the integrity of His-tag

binding at the end of the experiment. Here, binding to the His-tagged lectin displaces it and increases the

distance between the SWNT and Ni2
+, causing the reported increase.

Two other time-series analyses were conducted as a negative and positive control. In the negative

control, blank streptavidin was added to the sensor, after Ni2
+ and GafD lectin loading (Fig 3.5b). No

loading curve is observed. In the positive control blank streptavidin is again used as the analyte but this

time the GafD lectin is biotinylated (Pierce Kit 21455). Upon addition of streptavidin we see the

expected loading curve (Fig 3.5c).
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Figure 3.5 - Time response curves of sensor chemistry steps and analyte additions. A) Responses during

construction of a GafD lectin sensor and responses to free GlcNAc, GlcNAc-Streptavidin, unconjugated

streptavidin, and anti His-tag antibody. Each of the additions with known affinity exhibit a loading similar to those

found in SPR experiments. B) Negative control: adding unconjugated streptavidin to GafD lectin results in

negligible response. C) Positive control: adding unconjugated streptavidin to biotinylated GafD lectin.
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The time-series analyses reveal activation limited kinetic responses as expected for our free

glycan and streptavidin-tethered probes, since the response rates are highly dependent upon the analyte,

and therefore not limited by diffusion through the chitosan matrix. To obtain forward and reverse kinetic

rates of binding we analyzed the loading curves of the sensors at varying analyte concentrations.

Assuming our reaction model is that of a single-site surface absorption:

G + L +-* GL

(3.1)

where G is the glycosylated analyte, L is the lectin binding sites and GL is the bound complex, than we

would expect the following kinetic model to express the rate of change of bound complex:

d [GL]
d = kf[G][L] - kr[GL]dt

(3.2)

The concentration of the free Lectin sites at a given time can be expressed as:

[ L]t = [ L]to -- [G L]t

(3.3)

Thus equation 3.2 can be rewritten as:

d [GL]
dt = kf[G]([L]to - [GL]) - kr[GL]

(3.4)

We assume that the analyte concentration, [G], is constant (as the bulk of fluid above the sensor is large in

comparison to the number of lectin binding sites). The change in our fluorescent intensity (I) is a measure

of the change in bound complex [GL], so an analogous form of equation 4 for our sensor system would

be:

dl
d = kfCg(Imax - It) - kr (It)

(3.5)

This equation can be rearranged as to lump the kinetic parameters together into one kinetic variable (ks) as

is done in fitting SPR data':
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dl
= kf C Imax - ks (It)

(3.6)

ks = kfCg + kr

(3.7)

Integrating equation (3.6) yields the equation for the absorption curve:

It = M(1 - e-kst) + I

(3.8)

M = kCgIm
kfCg + kd

(3.9)

Thus by obtaining absorption curves at three to four different concentrations of glycosylated analytes (C)
and fitting them to equation 3.8, one can plot k, versus Cg. A linear trend supports this binding

mechanism and kinetics. As equation 3.7 shows, the slope and y-intercept of this line correspond to kf

and kr respectively.

Concentration dependent absorption curves were obtained for controls, anti His-tag antibody, free

biotinylated glycans (Fuc and GlcNAc), and glycans tethered to streptavidin (Fuc and GlcNAc). The

controls (Figure 3.6a) revealed a positive response for Fuc-Streptavidin probe to PA-IIL lectin and

GlcNAc-Streptavidin probe to GafD lectin. It is also revealed a negligible response to blank streptavidin

as well as biotin. Here we must mention that the first 20 frames of the absorption curve often contain

artifacts due to the manual additions of analyte (pipette tip to edge of spot). Thus in fitting the absorption

curves to equation 3.8 we have set the fit parameters to optimize the fit on the curved portion of the

isotherm rather than the artifacts at the beginning of the curve. Also the absorption curves have been

linearly corrected for focus drift caused by tension on the z-axis focus due to direct contact with the glass.

This small correction (less than 0.05% of the signal) is made by linearly fitting the end of the absorption

curve when the system is again at equilibrium.
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Figure 3.6 - Concentration dependent curves loading curves of various analytes to SWNT-Chitosan sensors. A)

Control curves showing positive response of GlcNAc-Strept to GafD and Fuc-Strept to PA-IIL and negative

responses to biotin and blank streptavidin. Concentration dependent loading curves for (b) anti His-tag antibody to

GafD lectin, (c) biotinylated Fuc to PA-IIL, (d) Fuc-Streptavidin to PA-IIL, (e) biotinylated GlcNAc to GafD, and

(f) GlcNAc-Streptavidin to GafD. The dotted lines denotes the kinetic model fit and resulting parameters are

reported in Table 3.1.
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The curves for anti His-tag antibody (Fig 3.6b) were obtained for 1500nM, 500nM, 166nM, and

55nM concentrations interacting with GafD lectin tethered to the SWNT sensor. The resulting k, fit was

highly linear (R2 = 0.97 1) and resulting kf, kr, and KD values are tabulated in Table 3.1. The KD of 4 pM

found for our murine produced anti His-tag antibody (Sigma H1029) correlates well with the 1 pM found

by Biacore SPR studies 42. The concentration dependant curves for free biotinylated fucose (40, 13.3, 4.4,

and 1.5 pM) to PA-IIL lectin (Fig 3.6c) and tethered fucose-streptavidin probes (10, 3.3, 1.1, and 0.4 pM)

to PA-IIL lectin (Fig 3.6d) also fit the SPR-like kinetic model well and their kinetic parameters are

reported in Table 1. The KD of 106 and 142 pM found by our sensor for free and tethered fucose to PA-

IIL is weaker than the previously reported 3 gM found by isothermal titration microcalorimetry (ITC)43.

It is often observed that surface tethering of a receptor results in an increase in KD, often by orders of

magnitude44, therefore the decreased affinity of our surface tethered approach compared with ITC

measurements of solution phase binding is expected. The discrepancy in KD measurement may also arise

in the chemical modification of the glycan or the tethered presentation of the lectin on the surface. The

binding of free biotinylated GlcNAc (50, 16.6, and 5.5 pM) and GlcNAc-streptavidin probe (10, 3.3, 1.1

pM) to GafD lectin (Fig 3.6e-f) also followed the model. The fitted kinetic parameters are reported in

Table 1. To our knowledge, this is the first measurement of GlcNAc to GafD kinetics on any platform,

although there are many glycan-array studies showing a high relative affinity of GlcNAc to GafD over

other glycans.
4 5-48

Table I - Kinetic parameters found from concentration dependent curves. 95% confidence ranges are not available

for the less-affined glycan-streptavidin probes with the current platform.

. 2 95% ConfidenceExperiment R2 Val Kf(pM-s) 1  kr (s)-' KD (AM)

KD (pM) Range

ATB to GafD 0.9707 2.OOE-06 0.0082 4 2-14

Fuc-Biotin to PA-IIL 0.8649 7.OOE-05 0.0074 106 58-192

Fuc-Strept to PA-IIL 0.9367 0.0001 0.0142 142 N/A

GIcNAc-Biotin to GafD 0.941 0.0002 0.0037 19 11.5-25.5

GlcNAc-Strept to GafD 0.99 0.0003 0.015 50 N/A

We also checked the selectivity of the SWNT-Lectin sensors by measuring the cross response of

our glycans and lectins (Fig 3.7). The PA-IIL lectin showed negligible binding to GlcNAc-Streptavidin
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probe, whereas the GafD lectin exhibited a small affinity for Fuc-Streptavidin. However the cross affinity

of Fuc-Streptavidin to GafD was much smaller than the known strong-binding combination of fucose to

PA-IIL. This demonstrates that the SWNT-lectin sensors could potentially be used to distinguish between

sugar groups, especially as the sensor signal is optimized.
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Figure 3.7 - Selectivity of SWNT-Lectin sensors. Greater response of known high affinity pairs (Fuc to PA-IIL and

GlcNAc to GafD) than the cross reactions.

The overall change in signal intensity is small (3-5%) for ensemble measurements of glycan-

lectin binding for this system (Fig 3.6). We asked if the observed response was homogeneous, meaning

that each SWNT responds to this small degree, or inhomogeneous where a subset of SWNT modulate to a

much greater extent. The use of single nanotube spectroscopy allows one to address this question (Figure

3.8a). Our laboratory has used this approach for other single molecule sensitive platforms using SWNT-

based sensors for H2 0249,50, NO 36,51, glucose4, and nitroaromatics.52 The resulting thin film of chitosan

wrapped SWNT (Figure 3.8b) was imaged at a frequency of 1 frame per second using our InGaAs array

setup. Using software developed in house, we can analyze the movies of SWNT fluorescence and extract

intensity time traces for each of the individual SWNT sensors (Fig 3.8c).37 We have also recently

developed an efficient algorithm (see thesis chapter 6) for fitting large quantities of these time traces to

125

0

1

0

a)

0

-0.005 ,



embedded fluorescent levels.5 3 Briefly, the algorithm uses an optimized form of an established noise-

reduction algorithm for biological experiments54 to clean the traces (Fig3.8c). It then evaluates all-points

histograms of each trace to determine the unique fluorescent states of each trace. The resulting step traces

(Fig 3.8c) are then used to determine the forward and reverse kinetics of each SWNT sensor. Before

analyzing the kinetics of each individual trace, the prior ensemble experiments were approximated by

summing the intensity values of noise-reduced traces from 150 individual SWNT sensors (Fig 3.8d). The

resulting signal modulation of GlcNAc-Streptavidin probe (10 pM) to GafD is nearly identical to that of

our ensemble measurements (-3.5% response).
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Figure 3.8 - Single SWNT sensor measurements. A) Experimental setup: a thin film of chitosan-SWNT is spin-

coated on the glass chip and excited by a 660nM crystal laser, the resulting emission is analyzed by an InGaAs

array. B) The array produces a tiff image per time frame where each pixel value denotes the fluorescent intensity, in

this manner single SWNT can be visualized. C) By binning 2x2 pixel regions for the brightest 1000 SWNT,

individual traces of fluoresce intensity versus time can be created for each SWNT sensor. These traces are then

noise-reduced and fitted to determine kinetic parameters (--- denotes addition of GlcNAc-Streptavidin at 10 pM to

GafD). D) An ensemble average of the individual SWNT sensors can be approximated by adding the signals of 150

SWNT sensors (--- denotes addition of GlcNAc-Streptavidin at 10 pM to GafD).
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The kinetic analysis of individual SWNT sensors helps determine the locations of "strong-

transducers" based on overall signal modulation and kinetic strength. Intensity versus time traces are

extracted from the brightest 1000 SWNT sensors (Fig 3.9a), and analyzed for a time period of 40 seconds

before and after glycan addition. The location of the eight top SWNT sensors based on signal modulation

(each greater than 5%) is easily determined (Fig 3.9b). To determine the KD of each SWNT sensor, the

traces are noise-reduced and fitted by the NoRSE algorithm55 and then kinetic parameters are found with

the previously reported Birth-Death kinetic model. 36,37 The first 40 seconds of the trace (before glycan

addition) are used to determine the background kf and kr rates for each SWNT sensor (due to intrinsic

fluctuations of the tethered group) and then subtracted from the kf and kr rates found after glycan addition.

Of the 1000 traces analyzed, 289 traces had sufficient signal over the background fluctuations to

determine the KD upon glycan addition (Fig 3.9c). Locations of the four strongest transducers, with KD

values less than 10pM, were determined. It is interesting that these strong kinetic transducers were not

the brightest SWNT traces but rather traces with 50 to 75% the intensity of the brightest recorded. This

may reflect the insensitivity of small SWNT bundles to this sensing mechanism. Bundles appear brighter

as a composite fluorescent spot, and their construction would necessarily shield the interior SWNT from

modulation. Future work will explore this. The population of 289 SWNT transducers was analyzed to

find a KD of 250 ± 9 VM (Fig 3.9d). Further optimization of glycan-lectin kinetic parameters from single

molecule analysis could be achieved with a system that has a faster sampling time than the current limit of

1 frame per second.

The SWNT may differ in their ability report the Glycan-Lectin binding events due to accessibility

to analyte in the gel, inhomogeneous chemistry modifications (more or less NTA groups per SWNT),

SWNT defects, and the influence of multivalent binding. We note that we do not see single molecule

steps associated with discrete adsorption steps, as we have seen for other, small molecule quenchers36,5"

In this case, the interaction of the analyte with the SWNT is indirect, through the spacer chemistry that

adjusts the Ni2+ distance to the SWNT. This mechanism need not be discretized as in the case of

adsorption/desorption of a molecular quencher directly on the SWNT surface. In the glycan/lectin

system, the quenching distance is continuous. Never the less, single SWNT do respond and contribute to

the ensemble response. The fact that the response can be monitored in a single 2x2 pixel spot offers

possibilities to dramatically decrease the quantity of required analyte. Even the current responses are an

improvement over SPR (which can require 20-250 ptg of protein analyte at optimal run conditions3 3) since

we utilized less than 2 pg of glycosylated protein or 100 ng of free glycan as the analyte probe. The

amount of lectin (20 pig) used for the SWNT scnsors can also be dramatically reduced be microprinting

smaller volumes of protein directly on an array of optimally responding SWNT sensors.
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Figure 3.9 - Single SWNT sensor measurement results. (a) thin film of CHI-SWNT is imaged by the single sensor

setup showing a field of sensors on the glass surface. (b) The sensors can be evaluated individually to find which

ones give maximum signal modulation. Shown are curves from eight of the most responsive with their positions

marked by red circles in (a). Vertical dotted lines denote the time of analyte addition. (c) 289 SWNT sensors have

signals strong enough to determine KD values, these are plotted versus starting intensity. Four sensors are found to

have strong KD values (< 10pM) and their locations are denoted by green circles on (a). (d) The population of KD

values yields a single Gaussian distribution when plotted as a histogram of log1O(KD) values with a mean KD of 250

gM.

Finally, these data sets reveal more about the response mechanism of our Ni-NTA tethered

SWNT sensor. As demonstrated previously 6 , the Ni2
+ appears to act as a proximity quencher39 to the

SWNT, however in this work we have now done careful time-series analyses rather than static before and

after measurements. In each case of analyte binding, the fluorescent signal increases consistent with the

Ni2
+ group moving further away from the SWNT group. According to this model, the higher the affinity

an analyte has for the sensor protein, the larger the observed increase. To demonstrate this, we include

another time trace of anti His-tag antibody response to GafD (Fig 3.10) which includes an addition step of
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adding imidazole (250mM). Imidazole exhibits a higher affinity for Ni2
+ than a His-tag group and is

often used in protein purification to elute proteins bound in a Ni-agarose column. The time trace shows

that for each of the additions (His-tag lectin, antibody, and imidazole) we see an increase in SWNT

intensity. This seems to suggest that the the increase in tether length is due to "steric-loading" of the

NTA-Ni 2
+-sensor protein complex. As more analyte binds to the complex, the required space increases

and the tethered group's fluctuations tend to be further from the nanotube. Multivalency of the analyte

may also play a role (as in the case of glycan-streptavidin addition) as multiple NTA-Ni2
+-sensor protein

complexes stretch to meet a single, multivalent analyte.

75000

70000

65000
Add GafD Lectin

(2mg/ml)

60000

55000 1oaeNiSoaked AddAnti-Histag Add Imidazole
(100mM) AntIbody (1500nM) (250mM)

50000

45000
=ManualWashiWg

40000

0 100 200 300 400 500 600

Time (s)

Figure 3.10 - Time response curve showing increased fluorescence response upon addition of all affined analytes,

including Imidazole. Upon addition, the analytes cause steric loading of the tether causing the Ni2 to move away

from the SWNT; this causes a partial return of the quenched SWNT fluorescence.

3.4. Conclusions

In conclusion, we demonstrate a sensor for measurement of binding kinetics of model glycans.

The approach uses recombinant lectins as glycan recognition sites tethered via Histidine tags to Ni 2
+

complexes that act as fluorescent quenchers for semi-conducting single walled carbon nanotubes

embedded in a chitosan hydrogel spot. As model glycans, both free and streptavidin-tethered biotinylated

monosaccharides are studied with two higher-affined glycan-lectin pairs: fucose (Fuc) to PA-IIL and N-

acetylglucosamine (GlcNAc) to GafD. We find that the dissociation constants (KD) for these pairs as free

glycans can be measured as 106 and 19 pM respectively and streptavidin-tethered 142 and 50 pM

respectively. The absolute detection limit for the current platform was found to be 2 pg of glycosylated

protein or 100 ng of free glycan to 20 pg of lectin. Glycan detection (GlcNAc-streptavidin at 10 pM) is
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demonstrated at the single nanotube level as well by monitoring the fluorescence from individual SWNT

sensors tethered to GafD lectin. Over a population of 1000 nanotubes, 289 of the SWNT sensors had

signals strong enough to yield kinetic information (KD of 250 ± 10 ptM). This single molecule approach

allows us to identify the locations of "strong-transducers" on the basis of kinetic strength (4 sensors with

KD < 10 iM) or overall signal modulation (8 sensors with > 5% quench response). The brightest SWNT

are clearly not the best transducers of glycan binding. SWNT ranging in intensity between 50 and 75% of

the maximum show the greatest response. The ability to pinpoint strong-binding, single sensors is

promising to build a nanoarray of glycan-lectin transducers as a high throughput method to profile

glycans without protein labeling or glycan liberation pretreatment steps. In the next chapter we improve

upon this first-generation sensor and apply them to biomanufacturing of antibodies.
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4. SWNT Glycan Sensors Applied to Biomanufacturing Antibodies

Some of the work, text and figures presented in this chapter are reprinted or adapted from Nigel F. Reuel,

et al. ACS Nano 2013 7 (9), 7472-7482 (reprinted under thesis use allowance from the American

Chemical Society @ 2013).

4.1 Background and Motivation

The concept of vastly multiplexing analyte detection using arrays of independently addressable

sensors is ubiquitous in the literature, 1,2 following successful demonstrations of the DNA 3 and protein5 ,6

microarrays. This approach has been a prevailing motivation for further reduction in array size to

nanometer dimensions. ~ Such nanosensor arrays, however, have other important capabilities that are not

as well recognized, even when functionalized for just a single analyte. For example, many biological

analytes, including antibodies, demonstrate a distribution of dissociation constants even in relatively

purified form.101 2 In this work, we demonstrate that an array of sensors can reconstruct this important

distribution via sampling a large number of independent interactions. Such arrays can also quantify

weakly-affined interactions by recording a large number of rare binding events. Lastly, a nanosensor

array can also characterize and differentiate biosynthesis around single cells and colonies, enabling the

label-free selection of more productive strains, as we are the first to show. These new properties have the

potential to greatly enhance process analytics for biomanufacturing applications.

Improved analytical technology13'15 for the rapidly increasing production of clinical recombinant

antibodies16-20 is an area of great interest. In fact, several recent studies highlight the need for improved

(1) clonal selection, 21-23 (2) glycan analysis,24-29 and (3) determining the affinity distribution or

heterogeneity of the expressed product. 0 -12 Cell line generation and selecting culture parameters typically

take over a year with current assays30 (the clonal selection part is -6 weeks but can also take multiple

rounds to find the best candidate) and often cell candidates are only picked based on static measurements
~222

of productivity.22,3 Glycosylation patterns can easily change due to processing conditions (media
31-33 36 35836 31

components, temperature, 34 pH,35 pCO 2, dissolved oxygen,37 cell density,8 duration, etc.) and they

have a dramatic effect on the pharmacokinetics and immunogenicity of the resulting drug.39 40 Current

titer and glycosylation analytical technologies such as ELISA and tandem LC/MS systems respectively

can deliver exquisite detail at the expense of much time and reagent. Furthermore their processing steps

are prohibitive to any on-line process use. The trend to milliliter-sized bioreactors41 for upstream process

optimization will also require platforms that can accurately assay much lower protein and glycan

quantities. Finally, harsh biomanufacturing process conditions (pH, temperature, mixing) and variability
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in cell production result in heterogeneous products with a distribution of binding affinities and currently

there is no convenient platform on which to measure the dissociation constant (KD) distribution.

Emerging nanoengineered sensors fabricated in massive (10,000+ sites) arrays could provide solutions

to these three areas of biomanufacturing analytics. In the previous chapter we have described carbon-

nanotube based optical sensors for single protein4 3 and single glycan4 detection. However, in this chapter

our focus is instead on applying theses sensors to antibody production and on previously unacknowledged

properties of nanosensor arrays in general, as described above. We demonstrate completely new

functions of such arrays for assaying binding heterogeneity, weakly-affined hypermannosylation

detection, and determining local cell productivity of biomanufactured products.

4.2 Methods

4.2.1 SWNT Sensor and Gel Platform Fabrication

SWNT are suspended in chitosan as before.4 In brief 3 mg of purified HiPCO SWNT (Unidym)

are added to 20m of chistosan suspension (0.25 wt% in water containing 1 vol% acetic acid - Sigma).

The resulting mixture was tip sonicated (1/4" tip Cole Parmer,Model CV18) at lOW for 45 minutes in an

ice bath and table-top centrifuged three times at 13.2 RPM for 90 min each, while collecting the

suspended SWNT supernatant and discarding the aggregate pellet after each cycle. The SWNT was then

mixed at a 50:50 volume ratio with the polyacrylamide mixture for casting as the top layer. The amount

of monomer (acrylamide) and cross-linker (N,N'-Methylenebisacrylamide - both Sigma) are specified

using standard %T %C nomenclature where %T refers to the overall weight % of polymer (monomer and

crosslinker) in the solution and %C refers to the wt% of the total polymer that is cross linker. The

optimal surface gel was found to be 3%T and 1%C. A substrate gel (6%T 1%C) was also prepared.

TEMED (Tetramethylethylenediamine) was added in at 0.7 vol% in both the top and bottom gel solutions

to stabilize the radical reaction. A fresh initiator solution of 1 wt% Ammonium persulfate (APS) was

made immediately prior to each gel batch. The APS, bottom and top gel solutions, and substrate chips (8

chamber Lab-Tek by Nunc) were degassed in the glove box antechamber to remove absorbed and

dissolved oxygen. Within the nitrogen controlled glove box (MBraun LABstar), 1 vol% of the APS

solution was added to the substrate gel to initiate the polymerization and it was immediately cast (I00ul to

each well) and then allowed to cure for one hour. The top gel was then initiated with 1 vol% APS and

immediately spotted at 20 ul to each gel surface and allowed to cure for 1 hour.

The functionalization steps of the chitosan wrapped SWNT is also similar to our previous work.4

In brief, the amine groups of the chitosan are reacted with succinic anhydride (133 mM in PBS 7.4 buffer
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- Sigma) overnight and then washed thoroughly with water. The carboxylic acid functional groups are

then activated with 100mM EDC and 520mM NHS (Sigma) in MES Buffer pH 4.7 (Pierce) for 2 hours.

After washing with water thoroughly the gels are then reacted with 34mM Na,Na-Bis(carboxymethyl)-L-

lysine hydrate (Sigma) in PBS 7.4 buffer overnight. The gels are then washed an incubated with a

100mM nickel sulfate solution for 20 minutes. These chips are then washed thoroughly in water and

stored in water.

4.2.2 Poroelastic Relaxation Indentation and Dextran Release Curves

The gel pore size was first evaluated by poroelastic indentation by AFM as explained in the

literature 4 In brief, a short silicon tip with a 45 ptm polystyrene sphere (Novascan) is fitted on the AFM

(Asylum Research - MFP3D) and the IgorPro software indentation panel is used to drive the tip into the

gel at a specified distance and record the force over time (details below). This was done in replicates for

multiple sites on each gel type. A custom Matlab algorithm is then used to analyze the force relaxation

curves and determine the average pore size (Appendix 4.1).

The top acrylamide gel layer containing the SWNT sensors was tuned to a maximum pore size.

This was done by protecting the radical polymerization in a nitrogen-filled glove box from quenching

oxygen species. We found that solutions with as low as 3 wt% polymer (97% water) were able to

crosslink in this environment (NOTE on standard nomenclature: %T is the total weight percent of

polymer (monomer + crosslinker) in solution and %C is the percentage of that polymer that is

crosslinker). The effect of crosslinker concentration on pore size has been established qualitatively in

literature with TEM imaging,46 but we probed the pore size of our optimized gels experimentally to

ensure that large antibodies could diffuse to the sensor sites.

The pore size was rigorously probed using a recent hydrogel characterization technique called

microscale poroelastic indentation. 45 In brief, a microsphere that was orders of magnitude larger than the

average pore size (R = 22.5 jim) is indented into the gel at a specified distance (h) and held while the

displaced solvent leaks into surrounding regions. The resulting force versus time curve (Fig 4. lb)

exhibited an initial spike (F0) that relates to the shear modulus of the gel (G in Eq 4.1) and then relaxed to

an equilibrium state (Foo) which relates to the diffusion constant of the displaced fluid. The force

relaxation curve was obtained for multiple penetration depths (h = 8, 6, and 4 ptm), normalized (Fig 4. 1c)

and fit by a numerically solved model for an indented sphere geometry 47 to determine the diffusion

constant (D in Eq 4.2) and Poisson ratio (v, in Eq 4.3). These parameters and the viscosity of water (19)

were then used to solve for the average pore size of the network (4 in Eq 4 .4 ).48 These measurements
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yielded an average pore size of 57-93 nm (95% confidence interval) which is 5-9 times the calculated size

(-10-11 nm) of a hydrated IgG antibody4 9 (code available in Appendix 4.1).
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Figure 4.1 - Characterization of the polyacrylamide sensor gel network. a) SEM images showing fluorescent

SWNT clusters (slow dried sample - left panel) and some structural information of the structures (flash dried - right
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panel). b) Absolute force indentation curves at 8pm for each of the gel compositions. c) Normalized force relaxation

curves for PRI analysis and resulting pore size calculations. d) Elution profiles of different diameter FITC-coated

dextran particles from the gel.

FITC-conjugated dextran particles (Invitrogen) of various sizes (10, 40, 70, and 500 kD) were

also absorbed into 150ul cylindrical gel plugs over 48 hours. The impregnated gels were then removed,

washed, and inserted into clean water. The release of the FITC particles was observed by sampling the

exterior fluid and assaying the FITC content with a plate reader. Using standard curves, the release can

then be presented as cumulative mass release over time (Fig 4.1d). These curves showed that our largest

dextran probe (31.4nm in diameter) was able to freely diffuse into the 3%T 1 %C optimized gel.

4.2.3 Data collection on nIR Inverted Microscope

The SWNT sensor data presented in this paper was collected on a custom inverted microscope

(Zeiss D. 1 Observer) that was fitted with a 660 nm laser (Crystal Laser, 100 mW). A 20x planar

objective (Zeiss) was used and the emission intensities were recorded by a nitrogen-cooled InGaAs array

(Princeton Instruments). Win Spec software (Princeton Instruments) was used to collect the SWNT

emission and saved as an image stack TIF file. This file was then analyzed using the Matlab code

presented in Supplement 3. Analyte samples were added to the sensor gels by hand, applying the 100ul

sample to the lower right corner of the well as not to place the plastic pipette tip in the laser beam path.

To prepare a sensor gel for testing, it was first thoroughly washed with PBS to exchange the

buffer and then allowed to incubate with the his-tag sensor protein (Protein A (Abcam) or PSA lectin

(Vector Labs - conjugated to His-tag peptide (Abbiotec) via Traut's reagent and SMCC linker (Pierce)) at

500tg/ml overnight. The gel is again washed thoroughly with PBS and then fitted on the microscope for

testing.

4.2.4 HEK Cell Line Generation and CHO Origin

A tricistronic expression cassette pLB2-CMV-GFP-TA99 was created using 2A skip peptides.

The light and heavy chain sequences of TA99, a murine IgG2a antibody5 1 , were linked by a T2A

sequence. The expression cassette was cloned into the lentiviral vector, pLB2, modified with a CMV

promoter driving GFP-F2A expression, creating the complete plasmid sequence of pLB2-CMV-GFP-

F2A-LC-T2A-HC. All cloning was performed using overlap extension PCR. HEK- GFP-TA99 cells were

generated using a modified version of a previously described protocol. 53 Briefly, HEK-293FT cells

(Invitrogen) were transfected with the following plasmids: pLB2-CMV-GFP-TA99, pCMV-dR8.91,2 and
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pCMV-VSV-G55 at a mass ratio of 2:1:1 using PEI. After 24 hours, fresh media was exchanged. 48 and

72 hours later, supernatant containing lentiviral particles was harvested. HEK-293 cells were transduced

twice for 24 hours by incubation with freshly harvested supernatant supplemented with protamine sulfate

at 5 pg/mL. GFP positive cells were selected to a purity of greater than 95% using flow fluorescence

activated cell sorting at the Koch Institute Flow Cytometry Core.

The CHO cell line has been cultured by the Love et al. group as received (courtesy of D. Burton,

Scripps Research Institute). Details on the generation of this cell line can be found in the following
56paper.

4.2.5 Cell Passaging and Culture

For standard culture the medias used were DMEM (with 4.5 g/L glucose, 10% heat inactivated

FBS (Invitrogen), 2 mM L-glutamine, 100 U/ml Penicillin, 100 U/ml Streptomycin - rest Sigma) and

GMEM (same additives - Sigma) for the HEK and CHO cultures respectively. For cultures used in

experiments, a serum free media was used for growth and as a buffer in the sensor gel (Invitrogen

Freestyle 293). To passage the cells, they were allowed to grow to confluence, washed with PBS, and

then released with Trypsin (0.05% w/0.53 mM EDTA). The cells were then pelleted, resuspended in

fresh media and diluted at a 1:5 ratio. The cells were passaged every 2-3 days and discarded after the 2 0 th

passage.

4.2.6 Hypermannosylation CHO Culture Experiment

CHO cells were seeded at equal density in small culture flasks (25cm2 - Sarstedt) and allowed to

grow to confluence with regular GMEM media (overnight). The growth media was then exchanged with

3ml serum free media (Freestlye 293 Invitrogen) and the cells were allowed to produce for 24 hours. The

media was then saved and a fresh 3ml of serum-free media was added for the next 24 cycle. This was

repeated for 10 days. The IgG content was measured by ELISA (ICL Lab, Inc.) and the samples were

diluted to 10ng/ml in Freestyle to run on the PSA-incubated SWNT gels.

4.3 Results and Discussion

4.3.1 Sensor Fabrication, Detection Method, and Mechanism

Recall that the original SWNT sensors for protein and glycan recognition (Chapter 3) were cast in

a chitosan hydrogel. Not only were the desired attributes of large pore size and local SWNT
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functionalization hard to control in this gel, but the chitosan proved to exacerbate the non-specific binding

of the more 'sticky' IgG and Protein A species. Adding Protein A-Histag followed by Human IgG (Fig

4.2a) resulted in the expected loading curves but when other proteins were swapped for Protein A, like

EFGP-Histag, we still observed a loading curve from the IgG (Fig 4.2b). Furthermore Protein A would

also non-specifically bind to the gel, as Protein A without a Histag also resulted in binding (Fig 4.2c).

(a) - (b) -

Add Addigc 
Add igC

PrAteinA Add

11mg/mi) !DXEGFP

Do, (1mg/ml)

Frame From

Add Protein A Addmgm

No Histag
(1mg/mi)

Fran*

Figure 4.2 - Protein A and IgG nonspecific response on original SWNT sensor platform using chitosan

hydrogel (Chapter 3)

In this work single-walled carbon nanotubes (SWNT) are arrayed (Fig 4.3a) in a multi-layer,

highly-porous (60-90nm) polyacrylamide hydrogel to reduce nonspecific binding46' 57 and allow for fast

diffusion of the IgG analytes to the SWNT sensors (Fig 4.3b). A basal gel with no SWNT is used on the

glass substrate to position the thin sensor layer in a separate focal plane and eliminate the background

fluorescence caused by glass impurities. The platform is excited by a 660nm laser (Crystal Laser) on an

inverted microscope (Zeiss D.1) and the nIR emission is collected as an image stack on a 256x320 pixel

InGaAs array (Princeton Instruments Acton Array). The SWNT are suspended in chitosan and have been

chemically modified as before44 to display chelated nickel groups that act as both the docking site for His-

tagged capture proteins (Protein A and PSA Lectin here) and as the signal transducer (proximity

quencher). In brief, the nanotube acts as an optical switch, brightening as antibodies bind to the capture

protein. The ensemble response of the array is created by averaging the intensity values over the entire

array for each time point and is analogous to other bioassay techniques like ELISA and Biacore@ SPR
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measurements. Divalent nickel, protein A, and IgG addition (100mM, 1 mg/ml, 1.5 mg/ml) cause a

decrease, increase, and additional increase respectively (Fig 4.3ci). Subsequent washing of the gel

surface shows negligible effects on the ensemble signal, which we interpret as absence of unbinding.

Adding a BSA control (2mg/ml) does not elicit a sensor response (Fig 4.3ci). Alternatively the responses

of all SWNT pixels can be monitored as histograms of percent modulation (Io-Final /) (Fig 4.3cii).

Sensor specificity can also be observed qualitatively with a nIR heatmap filtered to the 10,000 most

responsive sites (Fig 4.3d). To render the sensor array specific, we observed that the sensor protein

(Protein A or PSA lectin) must first be docked to the chelated nickel; otherwise BSA can elicit a response

(Figure 4.4). Although the ensemble response can be efficiently used to construct calibration curves and

monitor titer and glycosylation trends, the averaging loses the valuable information about the affinity

distribution recorded by each of the individual sensor elements.
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Figure 4.3 - Nanosensor array fabrication and detection methods. a) nIR micrograph of nanosensor array - each

SWNT-illuminated pixel records changes in intensity upon analyte binding, such as nickel quenching or signal

return from IgG adsorption shown. b) Multi-layer, poly-acrylamide gel platform used to immobilize the SWNT
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sensors and provide a porous network for IgG diffusion. SWNT sensors are wrapped in chitosan, nickel-chelated,

and functionalized with a capture protein (Protein A or PSA - Lectin). c) Ensemble (i) and all-points histogram (ii)

response to 100mM nickel (1), 1mg/ml Protein A (2), 1.5mg/ml Human IgG (3) and 2mg/ml BSA (4) additions. d)

Selectivity of the sensor array (nIR micrograph of starting intensities shown) as demonstrated by a heat map

reporting the percent modulation response of the 10,000 top responding pixels after analyte addition.
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Figure 4.4 - His-tagged sensor protein needed to reduce nonspecific binding - data presented as distribution of all

SWNT sensor sites.

In an attempt to understand the variation between sensor gel batches we did substantial

characterization of the polyacrylamide hydrogel network. The thin, top polyacrylamide gel entraps the

SWNT sensors in a sparsely cross-linked network. If the chitosan wrapped SWNT are added to the

solution containing acrylamide monomers and bis-acrylamide crosslinker immediately prior to radical

polymerization initiated by ammonium persulfate, the resulting gel has a homogenously distributed

SWNT pattern. Conversely if the SWNT are able to interact with the monomer and crosslinker solution

during the bottom gel curing time, the amine groups on the chitosan-wrapped SWNT undergo linear step

growth Michael Addition Polymerization with the bisacrylamide cross-linker (forming poly amido

amines) leading to larger fluorescent SWNT clusters. The cluster sizes are dependent on the interaction

time of these two constituents before starting the radical polymerization that consumes the remaining

crosslinkers and immobilizes the clusters. These clusters can be clearly seen in the nIR micrographs (Fig

4.3a). The clusters visible in the top gel nIR micrographs were characterized with SEM (Fig 4.5) and the
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presence of SWNT was confirmed with Raman mapping (Fig 4.6) and TEM (Fig 4.7). The SEM images

were created from flash dried samples. We found that this preserved the structural integrity of the

underlying gel and some of the clusters in the top gel. We found that gels with SWNT clusters were

found more responsive to IgG than the gels with sparse, evenly distributed SWNT. This is likely due to

binding events affecting a greater population of SWNT when in cluster formations versus interacting with

only a few SWNT when patterned as more sparse elements.

Figure 4.5 - SEM images of clusters present in the top gel. The smooth background is the substrate gel. One can

also see the collapsed surface gel surrounding the clusters.
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Co-tour map shows relahve height of SWNT G
Peak (1580 cm-) (arbitrary scale)

Figure 4.6 - Raman mapping of clusters reveals SWNT presence. A large cluster is found with the visible objective

(a), the SWNT G Peak (1580 cm-') is probed (b) and a Raman map is created over a section of the cluster revealing

a greater concentration of SWNT (c).

1 -

'I

Figure 4.7 - TEM image of top surface gel absorbed and dried to a holey carbon grid. The porosity and structure of

this dried gel will differ from the ones cast in the microwell format; however there is evidence of the dried polymer

(darker regions) associating with the SWNT (light fibrils).
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In our previous work,' we postulated that the chelated nickel used to bind the His-tag sensor

protein is responsible for the modulation of the SWNT fluorescence. From our experiments it is clear that

nickel quenches chitosan-wrapped SWNT in solution and immobilized on a surface (Fig 4.3d(i)).

Divalent nickel cations have been shown to quench anionic surfactant wrapped SWNT5 8 and quantum

dots. 59 The proximity of the chelated nickel groups alter the local electronic environment and offer non-

radiative decay pathways for the SWNT exciton. To explore if this is the only mechanism at work, we

conceived of an experiment to replace the nickel with another small molecule proxy - biotin. The

chitosan wrapped SWNT are biotinylated with a commercially available NHS linker (Pierce EZ-Link

NHS-Biotin) and then exposed to nuetravidin and a BSA control (500pig/ml). The specific response is

again a positive modulation and the control is null (Fig 4.8a) although the turn-on response is

approximately 20% of what we typically see when nickel is present. This supports two interoperating

mechanisms (Fig 4.8b): (1) the sensor proteins are originally quenched by chelated nickel groups and the

return of signal occurs when the nickel is displaced upon binding of the sensor protein or IgG, and (2) the

chitosan wrapped SWNT is originally quenched by aqueous quenching species (water molecules,6 0

dissolved oxygen34 and protons6 1 have all been shown to quench exposed portions of suspended SWNT)

and the bound macromolecule displaces these species to cause a return in signal. We ruled out a

macroscopic swelling mechanism (as we have observed in previous work with PVA hydrogels 62) as the

recorded movies of SWNT arrays during testing show that the SWNT sensors are immobilized and do not

move on the pixel resolution recorded (1.2 pm per pixel).
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Figure 4.8 - The role of nickel in SWNT sensor modulation. a) Testing the current hypothesis of nickel being the
crucial transduction component by swapping it out with another small molecule binding site - biotin. Histograms
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show sensor responses of the biotinylated chitosan-wrapped SWNT to nuetravidin and BSA. b) Two proposed

quenching mechanisms at work - 1) the nickel acts as a quencher providing electronic states for non-radiative decay

of the SWNT exciton, 2) the bound macromolecule displaces aqueous quenching species such as nickel and water

from the SWNT surface.

4.3.2 Modeling a Nanosensor Array to Measure KD Distributions

Consider an analyte with a Gaussian distribution of KD and variance (Gt ) assayed on a 1 mm2

total area array of otherwise independently addressable sensors. Obviously, as the total area is sub-

divided further and further into a population of independent sensor regions, the exact KD distribution can

be stochastically observed and recovered as the area of a single sensor approaches the projected area of

the analyte. Before this limit is reached, however, if each sensor element reports an average of the

interactions from multiple molecules, the measured sample variance (a m2) is much smaller than the actual

value (Fig 4.9a insert). For a Gaussian distribution of KD, this decay of (am/ c7) scales as 1/N/ 2 (see

derivation below), where N is the number of molecules averaged on each sensor site (Fig 4.9a). This

relation informs the effect of concentration and sensor area and identifies the regime where nanosensor

arrays can effectively report on the variance of KD (Fig 4.9b - assumes 10nm2 area for antibodies). Our

demonstration platform in this work uses nanotubes arranged in 1.4pm2 pixels in the concentration ranges

of nM to pM, thus determining distributions of K0 among samples is feasible when the intrinsic variance

of the sensor response is low.

N = number of sites in full distribution Eq 4.5

Navg = number of sites averaged together from full distribution Eq 4.6

2 = [X1 -- W)2 + (X2 - M)2 + ... + (XN ~ 2 where i = (X1 + ' + XN).7

____ Eq 4.8
N/Navy N

1 Eq 4.9
a N/Navg _ 1

2 1 NavgN

rn 1 Eq 4.10

at VNavg

To verify the derivation of equations 5-10 we ran a simulation in which you assume a Gaussian

distribution with at and then create a new distribution by selecting a number of points (Navg) from the

original distribution and then measure this distribution's new standard deviation (am). By running the
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simulation multiple times and averaging the simulation results, the relationship found above clearly

emerges (Fig 4.10).
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Figure 4.9 - Modeling a nanosensor array for measuring KD distributions. a) Assuming a Gaussian shaped KD

distribution with known variance (@y), the effect of averaging number of molecules (N) on a single sensor site on

measured variance (c 2). b) Design regime where ( can be reconstructed showing two spectrum limits (ensemble

and single molecule detection) and where our current nanosensor platform operates. c) Modeling nanotube array

response - (i) assuming a Weibull (skewed) KD distribution, (ii) Langmuir coverage fraction to determine extent of

nanosensor modulation, (iii) resulting simulated response 'plume' normalized by average sensor intensity (Iag)

where each point represents a sensor site, and (iv) calibration curve from fitting the plume angle mean and standard

deviation (OP and 0,) with a bivariate Gaussian distribution. d) Effect of changing KD distribution skewness (P) on

resulting 0, and 0,( calibration curves as well as fit parameters 'B' (steepness of calibration curve) and 'C' (KD

mean).
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Figure 4.10 - Simulation of averaging a number of points (Navg) from a given distribution with standard deviation at

and determining the ratio of the new standard deviation (om) with the original. The -1/2 power law determined

above emerges.

A model is first needed to map our experimental array response back to an initial variance in

binding. To simulate the array response, a more realistic distribution of KD for an antibody is used. The

Weibull distribution has been proposed for antibody affinity due to its ability to effectively present

skewness in the probability distribution function using two shape parameters (a and p). 12 Antibody

affinity is intuitively non-symmetric as changes in the optimal protein will more often result in reduced

binding and rarely enhance the product. Thus an antibody with positive skew in logO(KD) is modeled

(tail with higher KD values or analytes with less affinity) and the probability density function (PDF) is

expressed as:

<1 (x; a,fl) e where x = logio

Eq. 4.11
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This distribution is initially centered at KD = 100 nM (can be translated for other values) such that

a = 7 and P can vary from 2 to 45+ with 2 being a very large tail (high variance) and 45+ being an

essentially monodisperse distribution (Fig 4.9c(i)). The sensor response is modeled by the Langmuir

equation (Eq 4.12) where the coverage fraction (OL) is determined by /KD and sample concentration (C)

(Fig 4.9c(ii)). In this case 0
L represents the extent to which a nanotube sensor is turned on by a small

number of local interacting molecules during the time of light acquisition (Is per frame).

C_

OL (P1, C) = where i-i is sampled from 01 (x; a, fl)
1 + KD) K

Eq. 4.12

Two additional inputs to the sensor response are the starting intensity of the SWNT (I") and the

percent functionalization (PF). Both will determine the extent to which a given sensor can modulate.

Both can be fit with probability density functions (PDF) from experimental data. An all points histogram

of pixel intensity (Fig 4.11 a) reveals two distinct populations of pixels - those that are not illuminated by

the laser spot and the pixels that contain SWNT emission. The starting SWNT intensities for each sensor

gel can be fit by a Weibull distribution (Fig 4.1 lb) and vary in their mean values (a) and skewness of

bright SWNT (f) depending on processing conditions, age of SWNT suspension etc. However, this does

not affect the simulation results as variation in the SWNT I, distribution translates to shifting of the center

of the plume distribution in the radial distance when performing the Gaussian bivariate fit in polar

coordinates. The plume angle is used to report the calibration curve, and not the radial position, thus any

positively skewed Weibull distribution can be used. For the simulation (Appendix 4.2) we used the

following PDF fit (Fig 4.1 lb) to the first data set (nickel quench in Fig 4.3a,d):

(P2(x; a, fl) = 8 e () where x = Io, a = 6872, and f = 2.2

Eq. 4.13

The extent of sensor functionalization was determined by monitoring the extent of quenching

caused by nickel addition. This provides a reasonable measure to the accessibility and functionalization

of each nanotube. The percent quenching was found to be invariant in SWNT length (banded when
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plotted vs. I)

(Fig 4.11 d):

and approximated well by a Gaussian distribution (Fig 4.1 lc-d) with the following PDF

1 -(x-)2

p3 (X ; , -)= e YU where x = PF, = -14.2, and a = 13.9
295

Eq. 4.14
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Figure 4.11 - Probability distribution functions of sensor starting intensity (Io) and percent functionalization (PF)

found from experimental data. a) Histogram of all pixels in nickel quench experiment (Fig la of manuscript).

Population is fit with a Weibull PDF (b) and can be created for each experiment. c) Histogram of quenching percent

after nickel addition - population is found to be conserved amongst separated gels and is fit with a Gaussian PDF

(d).

It is important to note that the number of binding sites on the sensor protein is also imbedded in

the functionalization variance (if all nanotubes were uniformly wrapped, functionalized, and had the same

number of binding sites, this variable would be a constant). To stochastically simulate the response of an

ensemble, for example, individual sensor responses, R, can be obtained as a coverage fraction, intensity,

and percent functionalization value (0, Io, and PF,) randomly generated from their respective PDFs ((pi,

(P2, (P3) and subsequently evaluated as:
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R (O (01, C), 02(Uo), 03 (PF)) = IPa-1g 6
'avg

Eq. 4.15

The response is normalized by the average intensity (Iavg) as each experimental platform's overall

intensity may change due to variance in the experimental setup or quality of SWNT. This normalization

allows for clear comparison of distinct arrays assayed at different concentrations. By plotting against the

normalized starting intensity ((I, - Immi) / (Imax - mi)), characteristic response 'plumes' are observed (Fig

4.9c(iii)). The modeled 'plumes,' are fit well by a bivariate Gaussian distribution in polar coordinates

(0,R) and the mean 'plume' angle (0,) is used to create the calibration curve (Fig 4.9c(iv)). The standard

deviation in the plume angle (0,) also has an interesting dependence on starting KD skew (P) and is

reported (Fig 4.9c(iv)). The (0,) calibration curve is fit by a four parameter logistics curve (used for many

other bioassays that exhibit a signal saturation - i.e. ELISA) however in this case two parameters are

known from experimental conditions (A = 9
min = 0 and D = OSAT = Eq. 4.17).

Plume 6gjx) = (1 ++ D where x = loglo(C)

Eq. 4.16

(1

D =OSAT = tan 1 - PF~
IAvgNorm

Eq. 4.17

The parameter B is a measure of 'steepness' and C is equal to the inflection point at KD. By

analyzing the model at many different extents of KD skewness (2 <0 <45), the effect of KD variance on the

fit parameters were found (Fig 4.9d). As the distribution of antibody affinities becomes tighter (P

increases), the nanosensor array yields a steeper calibration curve (Fig 4.13c fits this relation). An

analytical relation between KD variance (P - skewness parameter in <pi) and the fit nanosensor response

(B-fit parameter) is mathematically beyond the scope of this work (multiplying three PDFs may be
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intractable) and thus we have used a numerical simulation to determine this relation. In a single iteration

of the program, 10000 sensor sites are generated with random KD, 10, and PF values generated from 91, 92,

and 93 respectively. The KD values, centered at IOOnM (Fig 4.12a), determine the coverage fraction

coefficients (OL) (Fig 4.12b) as specified in the paper (Eq. 2). The response of each sensor is determined

for 29 concentration points between InM and 10pM (Fig 4.12c). The responses are then fit in polar

coordinates (Fig 4.12d) with a bivariate Gaussian distribution (Fig 4.12e). The plume angle mean and

standard deviation (0, and 0,) are then recorded for each concentration. The program completes 6

iterations to create a smooth calibration curve (Fig 4.12f). The initial KD skewness parameter (P) is then

changed and the program is run again. This was done for 200 different 3 values spanning 2 to 45 and the

results are shown in Figure 2d of the manuscript. The full code for this simulation can be found in

Appendix 4.2. A movie showing how the frames in Fig 12 change for each p value can be found here.
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The array of nanotube sensors conjugated to His-tagged Protein A (Abcam) was used to assay

three different samples of IgG with expected differences in affinity distributions: (1) commercial,

lyophilized, polyclonal Human IgG reconstituted in PBS, (2) murine IgG (T A99) from an engineered

human embryonic kidney (HEK) cell line, and (3) human IgG (b12) cultured from Chinese hamster ovary

(CHO) cells. The custom engineered human embryonic kidney (HEK) cell line was transduced to
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produce both GFP and a murine IgG (TA99). This provides a convenient control as the non-transfected

cells can be visually inspected with a FITC filter to confirm the lack of a GFP signal (Fig 4.12a) and

therefore assured lack of IgG production. The control HEK cells and TA99 producing HEK cells were

seeded at equal density and grown for four days in serum free media (Invitrogen Freestyle 293). The cell

extract supernatants of both were then screened showing a statistically significant increase in signal for

the antibody producing cells (Fig 4.12b).

(a) (b) 70
Control HEK Cells TA99 + GFP HEK Cells HEK Cell

60 - Expression

40

20

10

-10

-201

0

o 0

Figure 4.12 - Cell culture extract supernatant studies. a) Engineered HEK cell line that is transduced to produce both murine IgG
(TA99) and GFP. b) Response to control and and IgG cell line extract presented as box plot of percentage modulation values.

The data 'plumes' predicted by the model where observed for each of the systems (Fig 4.14a)

and the resulting calibration curves (Figure 4.14b) yielded KD mean values (95% confidence intervals for

each: 11 - 27 pM, 3.3 - 5.3 nM, and 0.6 - 16 nM) comparable to those found in literature for IgG-Protein

A interactions (2-50 nM from SPR,63 34 nM from acoustic device64). The calibration curve also provided

'B' fit parameters (Eq. 4.16) that are related to the starting distribution skew parameter (f) as solved from

the model simulation (Fig 4.14c). With KD mean (a) and skewness (3), the affinity PDF of each system

(Eq. 4.11) can be determined (Fig 4.14d). As expected, the freshly expressed Human IgG has the greatest

affinity for Protein A with the least amount of variance. The murine antibody has a comparable KD

average, but much more predicted variance. This difference could be due to less efficient binding of

murine IgG to Protein A as observed in literature. 5 Finally the lyophilized, polyclonal human IgG shows
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a 1000x reduction in KD and a much broader distribution of affinities likely due to denaturation damage 66

or freeze-thaw cycles 67 (vs. the freshly expressed CHO product). One limitation of the modeling

approach is the a priori assumption of PDF form (in this case Weibull). The array of nanosensors can be

used to report distributions directly, without any assumption of PDF form by calculating the Langmuir

coverage from the response of each individual sensor (Eq. 4.12 and 4.15) and creating a histogram of KD

values (Fig 4.1.4e). To do this now, however, one assumes a constant percent functionalization value (PF

= 0.14, mean of <3) and chooses a concentration value away from saturation. These assumptions are an

approximation as a distribution of functionalization (q3) exists and each concentration does not align

perfectly on the calibration curve, so each 'plume' will yield a slightly different K0 histogram with

differing KD mean values (as can be seen with the CHO data, green trace, in Fig 4.14e). This direct

technique for measurement can be improved by better fabrication methods, reducing the intrinsic variance

of length and functionalization. We do note however that the direct reporting approach also presents KD

distributions with similar shape and positive skew as our model assumed.

(a) - ,(b) -
K.=11-27pM A-D \

91=C(.A 1

A =2.794
B=3.464

S C= 0.949Conto 5
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Figure 4.14 - Experimental results from lyophilized IgG in PBS, murine IgG (TA99) from HEK cells, and human

lgG from CHO cells screened on sensor arrays at various concentrations, a) All point sensor response 'plumes' and
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fit calibration curves (b) yielding KD 95% confidence intervals, B-fit parameters, and angle saturation values (OsAT)

calculated from the starting intensity distribution of each sensor batch (Eq. 5). c) Relation of B-fit parameter and KD

skewness parameter (p) as found by simulation results. d) Measured KD distributions using assumed Weibull PDF.

e) KD histograms directly calculated from sensor response assuming a constant functionalization value - revealing

the approximate shape of the true PDF.

4.4.4 Hypermannosylation Detection - Weakly affined interactions on nanosensor arrays

Another advantage of nanosensor arrays is their ability to report weak binding events - a greater

number of individual sensor sites increases the probability of a detection event and this event is not

averaged to null with other non-responsive sites, as in the case for an ensemble sensor. The label-free

nature of the platform is also beneficial to detecting weakly-affined ligands since it requires no washing

steps. By swapping out the His-tagged Protein A with a His-tagged, mannose-specific plant lectin, Pisum

sativum agglutinin (PSA) the sensor platform can detect specifically high mannose content IgG (Fig

4.15a). Different species of IgG were initially used to test this concept. Chicken IgG contains an

appreciable amount of glycoforms with high mannose content (>40% of population) whereas these are

virtually absent in human and mouse IgG. 2 8 The SWNT sensor responses to human, mouse, and chicken

IgG in PBS align with these findings and confirm that the platform can detect mannose species with the

PSA lectin specifically (Fig 4.15b). A well-characterized, sample of IgG with high-mannose content

from a fungal expression system (Novartis) was then used to further validate detection and obtain a

calibration curve and KD distribution as before (Fig 4.15c-e). The mannose IgG - PSA affinity (KD =1.3

- 55 [M 95% confidence interval) is comparable to literature values (pM > KD > mM for lectin-glycan

interactions 68) with a broad distribution (Fig 4.15e). This is expected as 60% of the IgG sample is

aglycosylated (verified by MS analysis) and the remaining 40% bear differing lengths and structures of

high mannose-type glycans (verified by released glycan analysis -Novartis).
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Figure 4.15 - Hypermannosylation detection on PSA-lectin conjugated sensor arrays. a) The weaker mannose-PSA

lectin interactions can be transduced on independent nanosensors. b) Results of testing concept with chicken IgG

which has > 40% high mannose glycoforms where human and mouse IgG do not contain these isoforms. c) All

point 'plume' responses and calibration curve (d) as before with corresponding KD distribution (e). f) Media

compositions used to elicit hypermannosylation in CHO cell culture. Culture was sampled for eight days showing

expected changes in IgG titer from ELISA (g) and mannose content from SWNT sensor array (h).
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It has also been shown that changing culture conditions such as media components can affect the

onset and extent of IgG hypermannosylation. In order to further validate our platform, we designed an

experiment for CHO cultures in which levels of NaCI were increased and a MnCl2 additive was used

while monitoring mannose content over time using traditional Peptide-N-Glycosidase F release and

capillary electrophoresis. 3' We cultured four identical dishes of CHO cells in which we fed media

compositions derived from this study (Fig 4.15f). The supernatants were collected after each 24 hour

period, diluted to a standardized IOng/ml IgG concentration and assayed on our PSA rendered sensor

gels. The IgG concentrations were determined with ELISA (Fig 4.15g) and if below l0ng/ml, the sample

was run at stock concentration. The resulting trends (Fig 4.15h) determined by the mean percent

modulation from the nanosensor array distributions (Fig 4.16) match those found in the previous study: 1)

increased mannose content as culture time increases, 2) increased mannose from higher NaCl osmolality,

and 3) delayed onset of hypermannosylation from MnCl 2 additive.
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Figure 4.16 - The CHO cultures were fed different media compositions (Figure 4.15f) for ten days and then assayed
for IgG concentration (Figure 4.16b) and diluted to lOng/ml each. The samples were then assayed for mannose
content. a) Raw trends in mannosylation of each 24hr period diluted to lOng/ml presented as distributions of all
SWNT modulation. b) IgG titer for each of the culture days (by ELISA). c) General trends of mannosylation derived
from the distribution averages in (a).
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The presence of mannose in these samples was confirmed by surface staining with fluorescently

tagged PSA (Fig 4.17a). Protein A conjugated to a porous resin bead (Pierce 53139) was immobilized to

a poly-lysine coated glass surface via glutaraldehyde in 2.5mm diameter Teflon patterned wells. The

daily CHO samples diluted to l0ng/mI IgG (used in Fig 4.16 assay) were then spotted on the glass slide at

20ptl. The IgG was allowed to interact for 2 hours and the chip was then washed in PBS. The chip was

then spotted with 300pg/ml BSA to block non-specific sites and washed with PBS again. Finally FITC-

conjugated PSA (Vector Labs FL-105 1) was spotted on the sample at 25ug/ml and allowed to interact

overnight. The samples were then washed with PBS and assayed on an inverted microscope reading the

visible FITC emission. Qualitatively we observed more conjugated FITC-PSA on the days with the peak

mannose found by the nanosensor platform (Fig 4.17b). This supports the finding of mannose in the IgG

samples. The low concentration (< 4pg/ml) of the CHO hypermannosylation culture samples and low

culture volumes (3 ml) make it very difficult to assay with current analytical techniques. We note that the

sensitivity demonstrated by the array exceeded the capabilities of established glycan characterization

tools; the same samples were captured on protein A columns, cleaved and interrogated using LC/MS but

there was not adequate signal to resolve glycosylated species (Novartis).

(a) FITCTagged PSA
lgG from CHIO

Culture

ProteinA in Resin
Beads(PAAMrn)

Glutaraldehyde

Linkage * I

Coated Glass 
-A-______________________________

Slide

CultureC-Day1 CultureC-Days

Figure 4.17 - Surface staining experiment to confirm the presence of mannose in the CHO culture samples. a) A

surface is treated to bind the IgG in the CHO samples and a FITC-labeled PSA lectin is used to stain the mannose

content. b) Representative FITC fluorescent images of the stained surface showing a marked increase in mannose

content as found by the SWNT nanosensors.
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4.4.5 Nanosensor Arrays for Monitoring Local Cell Colony Production

A gel with an imbedded array of nanosensors can be used to screen local production of cells.

Unfortunately single cells are very difficult to culture for long periods of time on the current porous

platform (little indications of healthy, single cell adherence). The single cells that did culture well,

however, displayed colocalization of IgG production on a Protein A-incubated gel (Fig 4.18a). By

seeding a greater number of cells, larger colonies of cells formed on the porous gel surface and were able

to produce for longer time periods (24 hours). By analyzing images of control and IgG-producing HEK

cells islands after 24 hours of production, we observed a statistical difference between the two profiles of

production. By ranking the brightest 1000 SWNT and then querying their location, there is a greater

localization of the bright SWNT under IgG-producing islands where as they are evenly or randomly

distributed within and outside of the control cell islands (Fig 4.18b,c - Code in Appendix 4.3). We then

plated HEK cells producing IgG on a gel and acquired multiple images of the nIR intensities at 0, 1, 2,

and 3 hours. Histograms of the 1000 brightest SWNT pixels in these images show a 'turn-on' trend that

is likely due to IgG production (Fig 4.18d). Finally, large HEK islands of HEK cells were allowed to

grow overnight on a Protein A gel. The nIR response was clearly co-localized under each of the islands,

and the response was summed, averaged over the island area and each island was ranked based on

productivity (Fig 4.18e).
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Figure 4.18 - Sensor response to local cell production. a) Qualitative images of control and IgG producing cells

showing colocalization of SWNT response. b) Location of top 1000 SWNT in LgG and control cell images,

presented as coverage percentage of cell area (specific) and gel area (non-specific) in each image (c). d) Dynamic

response of SWNT sensors to IgG producing cells plated on gel presented as distributions of top 1000 SWNT from

images and micrographs of scaled SWNT intensity. e) Mapping visible IgG producing cell islands, the colocalized

SWNT signal underneath, and ranking the islands' productivity based on intensity normalized by island area.

4.4 Conclusion

Here we have reported on carbon nanotube-based fluorescent sensor arrays for monitoring

distributions of KD, hypermannosylation, and local cellular production of IgG with clear implications in

biomanufacturing. The platform was demonstrated with lyophilized IgG in PBS as well as characterizing

freshly-expressed IgG in complex media from three different cellular expression systems: HEK, CHO,

and a fungal cell line. The sensor array was rendered specific to mannose with PSA-lectin and trends in

metabolically-induced hypermannosylation from a previous study were confirmed. Finally, local
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production of IgG from HEK cell colonies cultured on sensor arrays was monitored. Better upstream

colony selection could be performed with a sensor gel optimized for healthy cell culture. The cell

colonies could be exposed to various culture and media conditions and their productivity and

glycosylation patterns could be monitored in real time. This platform could lead to more rapid and

informed selection of master cell lines and culture conditions based on multiple parameters rather than

picking colonies based on static snapshots of productivity provided by current assays. 23 During

production, sensor arrays in a microfluidic platform could monitor product titer, KD distribution, and

glycosylation by periodically sampling the bioreactor, filtering cellular components, diluting to a set level

depending on the cell line's average productivity (Fig 6a), read the fluorescent signal, and then regenerate

for the next sample. We have demonstrated that the Protein A gels can be regenerated using a pH 3.0

release wash, similar to regeneration of Protein A purification columns with little loss of sensitivity

(Supplement 2h). Detection of mannose has been validated here but other glycans of interest (galactose,

fucose, sialic acids, and non-human, immunogenic glycans like gal-a 1,3-gal 69) could also be detected by

multiplexing portions of the nanosensor array with different His-tag lectins. The longstanding goal of

nanosensor arrays is to preserve the sensitivity and analytical advantages of single-molecule nanosensors

with the multiplexing ability of macroscale techniques, thus filling an untapped analytical regime (Figure

6b). The fast assay time (< 5 min) of nanosensor arrays could also provide a disruptive70 alternative to the

more time intensive ELISA and LC/MS analytics that are currently used (Fig 6b). The current limitations

of these arrays are the intrinsic variances caused by non-automated production in small batches (16-32

gels per batch). Small variations in polymer casting time, initiator concentration, and washing procedures

result in gels with varying levels of functionalization and sensitivity. A standardized gel from an

automated printing/production system could reduce this variance and provide a robust tool for

biomanufacturing analytics and beyond. In the following chapter we report on progress to this goal.
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Figure 4.19 - a) Ensemble response of high concentration IgG bioreactor supernatant delivered from a fungal cell

expression system assayed at different dilutions along with samples from the non-transfected cell line that was

cultured in parallel delivering a similar high background concentration of proteins. 100x dilution necessary to

suppress background proteins from saturating the sensor array. b) Experimental domain addressed by arrayed

nanosensors in comparison to existing technologies. Also mapped are approximate assay times of each technique.
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Figure 4.20 - Response of recycled gel to IgG (a) and to BSA followed by IgG (b). Gels had been tested with IgG,

washed with pH 3.0 buffer (0.lM acetic acid), and then washed with PBS (lx pH 7.4). The IgG response is as

before (Fig 4.20a) but the nonspecific response to BSA (Fig 4.20b) has increased. This is likely due to denatured
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Protein A that did not retain the best specificity upon refolding. This effect could be studied and optimized to find

the best process for eluting bound IgG while retaining specificity for future use. This will be an ongoing study.
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Appendix 4.1
This code was used to analyze the force relaxation curves presented in the manuscript to identify the

hydrogel pore size.

function AFM_PRI_Analysisv4_8um

% Coded by Nigel F. Reuel on 8.7.2012
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% Used to analyze the PRI curves derived from AFM as the Van Vliet group
% has demonstrated - Analyzes the curves to find the following:
%- 1. G = shear modulus
% 2. D = diffusion rate
% 3. Vs = Poisson's ratio
% 4. PS = Pore Size

% 8.8.2012 v2 provides 95% error limits on the pore calculation
% 8.8.2012 v3 corrects for drift present in low crosslink gels
% 8.27.12 v4 adjusted for new data set (8.23.12 experiments)

--------- 8um Indentation Step -------- 30s indentation

% (1) Read in the raw data:

% Number of files, time of indentation, and data rate
NF = 18;

TI = 20; % In seconds
% Determine the recording rate:
Record temp = dlmread('3p5p_8um_1.txt');
Timel = Record temp(5,1);
Time2 = Record temp(4,1);
DR = 1/(Timel-Time2); % In Hertz

RD_8um = zeros(TI*DR,NF);
Nrows = floor(TI*DR);
for i = 1:NF

Datatemp = dlmread(['3p5p_8um_',int2str(i),'.txt']);
% Check and correct for drift, using last 5000 time points:
L = floor(TI*DR);

L2 = 5000;

yp = Datatemp(L-L2+1:L,2);
xp = (1:L2)';
p = polyfit(xp,yp,1);
plot(xp,yp)
%pl = slope and p2 = intercept
% Correct for slope:
p2 = 0;
DataTempCor zeros(L,1);
for j = 1:L

DataTempCor(j,1) = Data_temp(j,2)- p2*(j-1);
end
RD_8um(:,i) = DataTemp_Cor(1:Nrows,l);

end

% Center the values so the initial Force is zero
CenterD_8um = zeros(Nrows,NF);
for i = 1:NF

for j = 1:Nrows
CenterD_8um(j,i) = RD_8um(j,i) - RD_8um(l,i);

end
end
% Try plotting together to see what they look like:
X = (1:Nrows)';

plot(X,CenterD_8um)

% Good replication in 1-14
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Avg8umCurve = zeros(Nrows,1);
ConfPosCurve = zeros(Nrows,1);

ConfNegCurve = zeros(Nrows,1);

SR = 1;

ER = 14;

for i = 1:Nrows
Avg8umCurve(i,l) = mean(CenterD 8um(i,SR:ER));
ConfPosCurve(i,1) = mean(CenterD_8um(i,SR:ER)) +

2*std(CenterD_8um(i,SR:ER));

ConfNegCurve(i,l) = mean(CenterD_8um(i,SR:ER)) -
2*std(CenterD_8um(i,SR:ER));

end
% Plot the averaged curve with error bars
plot(X,Avg8umCurve,X,ConfPosCurve, 'r--',X,ConfNegCurve, 'r--')

csvwrite ('AvgF_8um.csv',Avg8umCurve)
csvwrite ('AvgFP_8um.csv' ,ConfPosCurve)

csvwrite ('AvgFN_8um.csv' ,ConfNegCurve)

% Plot the force relax curve (w/ error bars)

[Fzero index] = max(Avg8umCurve);
Finf = mean(Avg8umCurve (Nrows-100:Nrows, 1));

F = zeros(1:Nrows-index+1,1);
for i = index:Nrows

Ft Avg8umCurve(i,l);

F(i-index+1,1) = (Ft - Finf)/(Fzero-Finf);

end
Xtime = ((1:Nrows-index+1)*l/DR)';

% ---- High error
[FzeroH indexHI = max(ConfPosCurve);

FinfH = mean(ConfPosCurve(Nrows-100:Nrows,1));
FH = zeros(1:Nrows-indexH+1,1);

for i = indexH:Nrows
FtH = ConfPosCurve(il);
FH(i-indexH+1,1) = (FtH - FinfH)/(FzeroH-FinfH);

end
XtimeH = ((1:Nrows-indexH+l) *1/DR)';
% ---- Low error

[FzeroL indexL] = max(ConfNegCurve);
FinfL = mean(ConfNegCurve (Nrows-100:Nrows, 1));

FL = zeros(1:Nrows-indexL+1,1);
for i = indexL:Nrows

FtL = ConfNegCurve(i,l);

FL(i-indexL+1,1) = (FtL - FinfL)/(FzeroL-FinfL);

end
XtimeL = ((1:Nrows-indexL+l)*1/DR)';

% Plot together...

plot(Xtime,F,XtimeH,FH,'r--',XtimeL,FL, 'r--')

% Save the F and X file
csvwrite('Force_8um.csv',F);
csvwrite('Time 8um.csv',Xtime);
% Solve for tau
R = 22.5*10A-6; %Radius of the bead
h = 8*10A-6; % Depth of the indentation

a = (R*h)A(1/2);

eta = 1*10A-3; % (N s/m2)

DO = .000000002;

% ----- Calculated value --
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D = fminsearch(@ForceFunc,DO, [],F,a,Xtime);
G = Fzero*3/16/a/h;
Vs = 1-Fzero/Finf/2;

PS = 2*(eta/2*D*(1-2*Vs)/G/(l-Vs))^(1/2)*lOA9 %Reported in nanometers!
% ----- High error value ----
DH = fminsearch(@ForceFunc,DO, [],FH,a,XtimeH);
GH = FzeroH*3/16/a/h;
VsH = 1-FzeroH/FinfH/2;
PSH = 2*(eta/2*DH*(1-2*VsH)/GH/(l-VsH))A(1/2)*1OA9 %Reported in nanometers!

-Low error value ----
DL = fminsearch(@ForceFunc,DO, [],FL,a,XtimeL);
GL = FzeroL*3/16/a/h;
VsL = 1-FzeroL/FinfL/2;
PSL = 2*(eta/2*DL*(1-2*VsL)/GL/(l-VsL))A(1/2)*l0^9 %Reported in nanometers!
end

function FZet = ForceFunc(DO,F,a,Xtime)
rows = length(F);
ErrorSQR = 0;
for i = 1:rows

tau = DO*Xtime(i,l)/a^2;
ErrorSQR = (F(i,l) - (0.491*exp(-.908*(tau)^(1/2)) + 0.509*exp(-

1.679*tau)))A2 + ErrorSQR;
end
FZet = ErrorSQR;

end

Appendix 4.2
The following code was used to simulate the effect of the KD distribution skewness parameter (P) on the

calibration fit parameter.

function SimulationEffectofBeta
% Coded by Nigel F. Reuel on 1.8.12
% Used to explain:
% 1. How going from KD -- > K -- > LangTheta -- > Plume of Data
% 2. How to fit the plume of data
% 3. Effect of changing KD distribution skewness parameter (Beta) on fit

% Number of sensor points to simulate:

Npoints = 10000;
% Number of concetration points between those that are graphically
represented!
BP = 4;
Nconc = BP*6+5;

logC linspace(-9,-5,Nconc); % #4 <------------ Change Conc Range here!!
Lt = zeros(Npoints,Nconc);
Kvec = zeros(Npoints,1);
KDGlobalMean = 7;

% #4#44 KD Beta Parameter Loop Start
BetaMin = 2;

BetaMax = 45;
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nB = 200; % ## <-------------------------
here

BetaSpan linspace(BetaMin,BetaMax,nB);

ThetaSAVE zeros(nB,Nconc);

SigmaSAVE zeros(nB,Nconc);
ThetaSAVEstd = zeros(nB,Nconc);
SigmaSAVEstd = zeros(nB,Nconc);
for Bloop 1:nB

Beta BetaSpan(1,Bloop);

% ##### Replicate Loop START ######

NR = 6;

MuTheta = zeros(NR,Nconc);

S22 = zeros(NR,Nconc);
for Rep = 1:NR

Change number of Beta parameters

Number of Replicates here

for i = 1:Nconc

for j = 1:Npoints
K = 10 (wblrnd(KDGlobalMean,Beta));

C = 1OA(logC(1,i));
Lt(j,i) = K*C/(1+K*C);

Kvec(j,l) = K;

end
if Rep == NR

if i == 1
bins = linspace(-11.1,-2.9,200);
KDL = loglO(1./Kvec);

[n x] = hist(KDL,bins);

subplot(2,3,1) % <--------------
bar(x,n)
xlim([-ll -31)
xlabel('log10(KD)')
ylabel('Frequency')
title('KD Distribution')
text(-7,max(n)*.95,[' \leftar

end
subplot(2,3,2) %<-------------
[n x] =hist(Lt(:,i),200);
if i == 1+BP

plot (x,n, 'b. ')
elseif i == 2*BP+2

plot (x,n, 'r.')
elseif i == 3*BP+3

plot (x,n, 'g.')
elseif i == 4*BP+4

plot (x,n, 'Im.')

elseif i == 5*BP+5
plot(x,n,'k.')

end
xlim([0 1])
hold on

end
end
%Cspan = 10. (logC)*10A9; % Reported in
if Rep == NR

Plot 1

row \beta = ,int2str(Beta)])

- Plot 2

nM
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%hlegl = legend([int2str(Cspan(1,1+BP)),'

nM'], [int2str(Cspan(1,2*BP+2)),' nM'], [int2str(Cspan(1,3*BP+3)),
nM'], [int2str(Cspan(1,4*BP+4)), ' nM'], [int2str(Cspan(1,5*BP+5)), ' nM']);

%set(hlegl,'Location','NorthWest')
title('Langmuir Coverage')
ylabel('Frequency')
xlabel('\theta - Coverage Fraction')
hold off

end

NSWNT = Npoints;
Length = zeros(NSWNT,Nconc);
Response = zeros(NSWNT,Nconc);
RespNorm = zeros(NSWNT,Nconc);
INorm = zeros(NSWNT,Nconc);
% Create matrix of SWNT lengths, then do the calculation:
for i = 1:Nconc

for j = 1:NSWNT
Length(j,i) = wblrnd(6871.7,2.2);

end
end
% Values to Normalize SWNT Length
MaxL = max(Length);
MinL = min(Length);
MeanL = mean(Length);
%MeanLNorm = (MeanL - MinL) ./ (MaxL - MinL)
for i = 1:Nconc

for j = 1:NSWNT

Theta = Lt(j,i);

L = Length(j,i);

Response(j,i) = Theta*L;
RespNorm(j,i) = Theta*L/MeanL(1,i);
INorm(j,i) = (L - MinL(1,i)) / (MaxL(l,i) - MinL(l,i));

end

end

% Plot the expected response at different concentrations
%subplot(3,3,6) %
%plot(INorm(:,l),RespNorm(:,1), '.b',INorm(:,2),RespNorm(:,2), '.r',INorm(:,3),
RespNorm(:,3),'.g',INorm(:,4),RespNorm(:,4),'.m',INorm(:,5),RespNorm(:,5),'.k

1)
%legend([int2str(Cspan(1,1)),' nM'], [int2str(Cspan(1,2)),
nM'] [int2str(Cspan(1,3)), ' nM'], [int2str(Cspan(1,4)), '
nM'],[int2str(Cspan(1,5)),' nM'])
%title('Simulated Sensor Response - No Functionalization Parameter')
%ylabel('(Io*\theta)/Iav_g')

%xlabel('(Io - I m i n)/(I_m a x-I m i_n)')
% But the SWNT have been functionalized to a certain extent
PMNi = csvread('PMNickel.csv').*100;
%[n x] hist(PM Ni,200);
%subplot(3,3,7) %
%bar(x,n)

%xlim([-35 01)

%title ('Nickel Functionalization')
%ylabel('Frequency')

%xlabel('% Quench')
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Read in the nickel quenching data to create your Gaussian fit:

Gfit = gmdistribution.fit(PMNi,1);
%GMean = Gfit.mu

%GSigma Gfit.Sigma;

%Gm = mean(PM Ni);

%Gs = std(PMNi);
%Gfit2 = gmdistribution(GmGs,1);

%subplot(3,3,8) %
%X = linspace(-50,10,100)';
%Y = pdf(Gfit,X);
%plot(XY)

%xlim([-35 0])

%xlabel ( % Quench

%ylabel('f(x;\mu, \sigma)')

%title('Gaussian Fit of Functionalization Extent')

% Now plot what the experimental ouput would look like with

% functionalization distribution

FuncResponse = zeros(NSWNT,Nconc);
FuncRespNorm = zeros(NSWNT,Nconc);

for i = 1:Nconc
for j = 1:NSWNT

Theta = Lt(j,i);

Io = Length(j,i);
FuncRange = Io*(1/(1-random(Gfit)/-100) - 1);

FuncResponse(j,i) = Theta*FuncRange;
FuncRespNorm(j,i) = Theta*FuncRange/MeanL(1,i);

end
end
if Rep == NR

subplot(2,3,3) % < ------------------------------------------------- Plot 3

plot(INorm(:,l+BP),FuncRespNorm(:,l+BP),'.b',INorm(:,2*BP+2),F

*BP+2),'.r',INorm(:,3*BP+3),FuncRespNorm(:,3*BP+3),'.g',INorm(

espNorm(:,4*BP+4),I.m',INorm(:,5*BP+5),FuncRespNorm(:,5*BP+5),

%hleg2 = legend([int2str(Cspan(1,1+BP)),

nM'],[int2str(Cspan(1,2*BP+2)),' nM'], [int2str(Cspan(1,3*BP+3)

nM'], [int2str(Cspan(1,4*BP+4)),' nM'], [int2str(Cspan(l,5*BP+5)

%set(hleg2, 'Location', 'NorthWest')

title('Sensor Response - Cartesian')

ylabel('(Io*(1/(1-PF)-1)*\theta/I -a -V_g')
xlabel('(Io-I_m_i_n)/(I_max-Imin)')

ylim([O 1.2])

end

% Now plot what this plume reduces to with your radial analysis

ThetaMean = zeros(1,Nconc);

L = zeros(1,Nconc);

U = zeros(1,Nconc);
ThetaSig = zeros(1,Nconc);

Lsig = zeros(1,Nconc);

Usig = zeros(1,Nconc);

MixGausData = zeros(3,2,Nconc);
for i = 1:Nconc

Xn = INorm(:,i);
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Yn = FuncRespNorm(:,i);
[THETA1 RH01] = cart2pol(Xn,Yn);
% Plot according to the point density (to see what this looks like)...
%nl = 100;

%n2 = 100;

%[z,C] = hist3 ([RHO1 THETA1] , [nl n2]
%xb = C{1,1}; % RHO Values
%yb = C{l,2}; % THETA Values

clear X
X(:,1) = THETA1;
X(:,2) = RHO1;

if Rep == NR

subplot(2,3,4) %<---------------
if i == 1+BP

plot(THETA1, RHO1,'.b')

hold on
Cloudl = gmdistribution.fit(X,1);
MU = Cloudl.mu;

SIG = Cloudl.Sigma;

MixGausData(1,1:2,i) = MU;
MixGausData(2:3,1:2,i) = SIG(:,:,1);
%ezcontourf(@(x,y)pdf(Cloudl, [x y]),

elseif i == 2*BP+2

plot(THETA1, RHO1,'.r')

Cloud2 = gmdistribution.fit(X,1);
MU = Cloud2.mu;

SIG Cloud2.Sigma;
MixGausData(1,1:2,i) = MU;
MixGausData(2:3,1:2,i) = SIG(:,:,1);
%ezcontourf(@(x,y)pdf(Cloud2, [x y]),

elseif i == 3*BP+3

plot(THETA1, RHO1,'.g')
Cloud3 = gmdistribution.fit(X,1);
MU = Cloud3.mu;

SIG = Cloud3.Sigma;

MixGausData(1,1:2,i) = MU;
MixGausData(2:3,1:2,i) = SIG(:,:,l);
%ezcontourf(@(x,y)pdf(Cloud3, [x y]),

elseif i == 4*BP+4

plot(THETA1, RHO1,'.m')
Cloud4 = gmdistribution.fit(X,1);
MU = Cloud4.mu;

SIG = Cloud4.Sigma;

MixGausData(1,1:2,i) = MU;
MixGausData(2:3,1:2,i) = SIG(:,:,1);
%ezcontourf(@(x,y)pdf(Cloud4, [x y]),

elseif i == 5*BP+5
plot(THETA1, RHO1,'.k')

Cloud5 = gmdistribution.fit(X,1);
MU = Cloud5.mu;

SIG Cloud5.Sigma;
MixGausData(1,1:2,i) = MU;

-- Plot 4

[0 .81, [0 1]);

[0 .8], [0 1]);

[0 .8] [0 1]);

[0 .81, [0 11);
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MixGausData(2:3,1:2,i) = SIG(:,:,1);
%ezcointourf (@ (xy) pdf (Cloud5, [x y])

else
CloudNull = gmdistribution.

MU = CloudNull.mu;
SIG = CloudNull.Sigma;
MixGausData(1,1:2,i) =
MixGausData(2:3,1:2,i)

[0 .8] [0 1]);

fit (X,1)

MU;
= SIG(:,:

end
hold on

else
CloudNull = gmdistribution.fit(X,1);
MU CloudNull.mu;
SIG = CloudNull.Sigma;
MixGausData(1,1:2,i) = MU;
MixGausData(2:3,1:2,i) = SIG(:,:,1);

end

Rep == NR

xlim([0 .751)
ylim([O 1])

title('Sensor Response - Polar')
hold off
xlabel('\theta')
ylabel('R')

Represent polar fits as bivariate distr

subplot(2,3,5)
h = ezcontourf(@(x,y)pdf(Cloudl, [x y]), [0
set(h,'LineStyle','none');
hold on
h = ezcontourf(@(x,y)pdf(Cloud3, [x y]), [0

set(h,'LineStyle','none');
hold on
h = ezcontourf(@(x,y)pdf(Cloud5, [x y]), [0
set(h,'LineStyle','none');
hold on
colormap(hot)
title('Bivariate Gaussian PDF Fit')
xlabel('\theta')
ylabel('R')
hold off

ibutions

.81, [0 .81,100);

.81, [0 .8],100);

.8], [0 .8] ,100);

% Now in your last plot, plot the parameters of interest (Rho-Mu and Rho

% sigmall)

for i = 1:Nconc

MuTheta(Rep,i) = MixGausData(1,1,i);
S22(Rep,i) = MixGausData(2,1,i);

end
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Rep
6 ##### End for Replicate Loop #####
end
X = logC;
subplot (2,3,6)
[AX,H1,H2] = plotyy(X,mean(MuTheta),X,mean(S22),'plot');
set(get(AX(l),'Ylabel'),'String','\theta_\mu' )
set(get(AX(2), 'Ylabel'), 'String', '\theta_\sigma')
set (AX (1) , ' YLim' , [0 .6] )
set(AX(2),'YLim',[0 .1])
xlabel('loglO(Conc)')
title('Calibration Curve')
set(H1,'LineStyle','--')
set(H2,'LineStyle',':')

% Set up the picture, save and close!

set(gcf, 'Position', [5 5 1000 1000])
figurenamefig = [int2str(Bloop),'.png'];
print(gcf,'-dpng',figure name fig);
close

ThetaSAVE(Bloop,:) = mean(MuTheta);
SigmaSAVE(Bloop,:) = mean(S22);
ThetaSAVEstd(Bloop,:) = std(MuTheta);
SigmaSAVEstd(Bloop,:) = std(S22);
Bloop

% ###### End for BetaLoop
end
% Save the calibration curve data:
csvwrite('ThetaMumean.csv' ,ThetaSAVE);
csvwrite('ThetaMustd.csv',ThetaSAVEstd);
csvwrite ( 'ThetaSig mean. csv' , SigmaSAVE);
csvwrite ( 'ThetaSigstd.csv' , SigmaSAVEstd);

end

Appendix 4.3
The following code was used to analyze the local cell production images. First the images of control cells

and IgG producing cells were analyzed to find the top 10000 SWNT and the cell regions were recorded

using the ROI matlab function. These locations were then used to determine the coverage of the SWNT

in the cell regions (specific) and outside the cell regions (un-specific) using the CellAnalysis Function

(below).

The time response of the IgG producing cells was determined again using the top 10,000 SWNT

pixels and plotting their absolute intensity distributions over time for the series of images collected using

the CellTime function (below).
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Finally, the AnalyzeCellPic function was used to plot the average intensity of cell islands as a

contour plot as presented in Figure 6 of the main manuscript.

function CellAnalysis
% Coded by Nigel F. Reuel on 9.19.2012

% This program does the basic comparison analysis of our control and IgG

% producing cells

NFiles = (1:21);

PSpec = zeros(1:21,1);

PNSpec = zeros(1:21,1);

for i = NFiles
CellLoc = csvread(['K',int2str(i),' _CellLoc.csv'1);
SWNTLoc = csvread(['SLocRanklOOOO_',int2str(i),'.csv']);
CellCount = sum(sum(CellLoc));
OutCellCount = 320*256 - CellCount;
SWNTinCell = 0;
SWNToutCell = 0;
for j = 1:320

for k = 1:256

if SWNTLoc(j,k) > 0 && CellLoc(j,k) > 0;
SWNTinCell = SWNTinCell + 1;

elseif SWNTLoc(j,k) > 0 && CellLoc(j,k) == 0;
SWNToutCell = SWNToutCell + 1;

end
end

end
PSpec (i, 1)
PNSpec(i,1)

SWNTinCell/CellCount*100; % Percent Coverage

SWNToutCell/OutCellCount*100; % Percent Coverage

end
X = (1:21)';
plot(X,PSpec, X,PNSpec)
Data = zeros(4,1); % 1 = IgG Cell specific,

Control Cell Specific, 4 = Control Cell non

Error = zeros(4,1);

Data(1,1) = mean(PSpec( [13:16 18:211,1));
Data(2,1) = mean(PNSpec([13:16 18:211,1));
Data(3,1) = mean(PSpec(1:7,1));
Data(4,1) = mean(PNSpec(1:7,1));
Error(1,1) = std(PSpec([13:16 18:21],1));
Error(2,1) = std(PNSpec([13:16 18:21],1));
Error(3,1) = std(PSpec(1:7,1));
Error(4,1) = std(PNSpec(1:7,1));
bar(Data)
hold on
errorbar(Data,Error, 'or')
hold off
ylabel('% Coverage')

2 = IgG Cell non specific, 3

specific

end

function CellTime
% Coded by Nigel Reuel on 9.19.2012

% This code analyzes the time traces of the cells
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PL_0 = 0;
PL_1 = 0;
PL_2 = 0;

PL_3 = 0;
counti = 1;
count2 = 1;
count3 = 1;
count4 = 1;

for i = 1:19
PLData = imread(['HS',int2str(i),'.tif'1);
SWNTLoc = csvread(['SLocRank10000_',int2str(i),'.csv']);

for j = 1:320
for k = 1:256

if SWNTLoc(j,k) > 0
if i < 3 % Time Zero

PLO(countl,1) = PLData(j,k);
counti = counti + 1;

elseif i <10 % Time 1-1.5 hr
PL_1(count2,1) = PLData(j,k);
count2 = count2 + 1;

elseif i <18 % Time 2-2.5 hr
PL_2(count3,1) = PLData(j,k);
count3 = count3 + 1;

else % Time 3-3.5 hr
PL_3(count4,1) = PLData(j,k);
count4 = count4 + 1;

end
end

end
end

end
% Construct histograms for these time points
X = linspace(5000,30000,1000);

subplot (1,4,1)
n = hist(PL_0,X);
bar(X,n)
xlim([7500 15000])

subplot (1,4,2)
n = hist(PL_1,X);
bar(X,n)
xlim([7500 15000])

subplot (1,4,3)
n = hist(PL_2,X);
bar(X,n)
xlim([7500 15000])

subplot(1,4,4)
n = hist(PL_3,X);

bar(X,n)
xlim([7500 15000])

function AnalyzeCellPic
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% Coded by Nigel F. Reuel on 9.12.2012
% This code will analyze a single cell picture (*.tif)

% For Figure 6 of biomanufacturing paper

%I

% Plot the Data together!!

NC = 10;

% Data file number
FN = 3;

CData = zeros(320,256);

PLData = imread(['S',int2str(FN),'.tif'],1);

Cell = imread(['C',int2str(FN),'.tif'],1);

for i = 1:NC

Ccount = 0;
Stotal = 0;
Cloc = csvread(['C',int2str(FN),'_CellIsland',int2str(i),'Loc.csv']);

for j = 1:320
for k = 1:256

if Cloc(j,k) > 0
Ccount = Ccount + 1;

Stotal = Stotal + PLData(j,k);
end

end
end
AvgSig = Stotal/Ccount;
for j 1:320

for k = 1:256

if Cloc(j,k) > 0
CData(j,k) = AvgSig;

end
end

end
end
contourf(CData)
set(gca, 'Clim', [0 80001)
colormap (hot)
M = 10;

imagesc(Cell)
colormap(gray)
m = 10;

imagesc(PLData)
M = 10;

end
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5. Portable Detection of Carbon Nanotube Optical Sensors

5.1 Background and Motivation

Several emergent nanosensor platforms are capable of sensitive and selective detection of

analytes without prior labeling, including fluorescent single walled carbon nanotubes' for glucose, 3 .

protein4, glycoprotein , neurotransmitters , and nitric oxide 7. Recent work has shown the broad ability to

tune the selectivity of these types of sensors based on the rational design of the absorbed polymer phase

(Corona Phase Molecular Recognition (CoPhMoRe)8 ). However, challenges in methodology and

instrumentation to produce broadly applicable research tools have remained unaddressed. Herein, we

describe a novel hydrogel preparation and detection methodology coupled with low cost optics and

integrated data processing that addresses this specific challenge.

Single walled carbon nanotubes (SWNT) have clear advantages for label-free, sensitive detection

due to their unique photophysical properties, fluorescent stability, and single molecule sensitivity'.

However, as with other emergent nanosensor platforms9 , there is a need for novel methodologies that

allow for widespread tool development. The constraints of size and capital intensive photo-excitation

sources, optics, and detectors represent one challenge. Others include environmental sensitivity to

temperature, humidity, vibration, contamination and electromagnetic interference. In this chapter, we

describe a novel methodology, demonstrated using examples from protein and neurotransmitter detection,

using fluorescent SWNT sensors in the context of a stand-alone, field-portable instrumentation platform

with low total cost below $3000, to highlight applicability.

5.2 Methods

5.2.1 Fabrication of Gel Modules for Portable Sensing of SWNT Sensors

A movie of this fabrication process can be viewed here." Attach a batch (30-60) of " glass

slides (Warner Instrument) to a PDMS holder and lightly scratch the centers with a diamond tip scribe to

help the hydrogel adhere to the surface. Melt 2mg/ml (0.2 wt%) of agarose in water, try not to boil

(agarose solution will become clear). Let cool to -40'C and cast 4ul gel spots on the center of the chips.

Let gels cure in a humid environment for 30 min. Place 10 ul of desired SWNT sensor solution on each

gel. Place in 37 0 C incubator for 10 min. Remove from incubator and let cool for 10 min. Wash off

a http://www.youtube.com/watch?v=6bhBKGIUdXY
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excess SWNT sensor solution and place sensor gels in holding buffer or perform extra functionalization

chemistry.

5.2.2 Functionalization of Chitosan Wrapped SWNT for IgG Sensing

The chemistry to functionalize chitosan wrapped nanotubes for protein sensing is similar to

beforel except for more efficient coupling of succinic anhydride with a high capacity buffer and the pre-

chelation of copper to NTA before conjugation to the SWNT sensor. First deprotonate the chitosan

wrapped SWNT in the sensor gels by soaking in 0.01M NaOH. Wash with water and add 5mg/ml or

succinic anhydride (Sigma) in 500 mM PBS, pH 8.0. Shake gently overnight. Wash with water.

Activate carboxylic acid with 20mg/ml and 60mg/mi of EDC and NHS respectively (Sigma) in MES

buffer, pH 4.5 (Pierce). Let sit for 2 hours (bubbles will be visible). Carefully remove the fluid as the

chips will tend to float due to bubble formation and wash with water three times. Pre-chelate the copper

to the NTA-N (Sigma) as presented in the literature" and react with the NHS esters in a buffer of pH 7-8

(half-life of NHS ester is too short above pH 8.5 to achieve good conversion). Wash in PBS or

experimental buffer immediately before experiment.

5.2.3 Preparation of (GT)15-SWCNT for dopamine detection

First, 1 mg of as-synthesized single walled carbon nanotubes (SWeNT SG65i, CoMoCAT-

process, SouthWest NanoTechnologies, USA) was placed in an 1.5 ml centrifugation tube. Then 2 mg of

(GT) 15-ssDNA (IDT, USA) was dissolved in 1 ml of 0.1 M NaCl solution and added to the carbon

nanotubes. The carbon nanotubes were suspended by direct probe-tip sonication (Cole Parmer, 40 %

amplitude, 3 mm tip) for 10 min in an ice bath. Afterwards, the sample was centrifuged twice (16000g)

for 90 min to remove aggregates and collect the supernatant. Finally, samples were analyzed by UV-Vis

spectroscopy to confirm spectral features of carbon nanotubes and determine a concentration.

5.3 Results
Previous data presented on these SWNT based optical sensors 5'8 were collected with custom, near

infrared optical microscope systems; they included a floated optics stage, liquid nitrogen cooled InGaAs

detector, and a laser for excitation. The total capital cost (>$250k) and size (> Im 3) limits broad

applicability as a scientific tool. The detection platform presented here (Fig 5. 1a) has a similar optics

pathway to an inverted microscope but is designed for SWNT detection in a more compact footprint (<

0.015m 3) and the cost of instrumentation is lower (<$3k see Table 5.1). The platform presented in this

communication has been optimized for the (6,5) SWNT chirality (specific nanotube wrapping pattern)
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with a high-power LED at 565nm to excite on resonance and filters to collect the 990nm emission peak

(Fig 5.1b). Raw data from the detector (Fig 5.1c) reveals the strong signal to background (S/B > 6) and

low electronic noise (T = 0.003 volts) such that even low modulating SWNT sensors (like antibody

detection'0) have clearly transduced events. A detector was found that could electronically amplify the

SWNT signal without the constraint of cooling and that would not be damaged upon over saturation, thus

enabling normal, counter-top operation in ambient lighting.

Sample

F = 3 cm, all
lenses

750 SP

6" (15cm) h-
1050 SP
950 LP

(b) 12000

10000

8000

g6000

-4000

2000

0

0)

60

37

36

3,5

34

Peak at 990nm
for (6,5)SWNT

900 1000 1100 1200
Wavelength(nm)

200 400 600 800 1000 1200 1400 1600
Time (s)

Figure 5.1 - Platform for portable detection of nanotubes. a) Optical pathway and components for the <$3k

detection system for nanotube sensors (SP = short pass filter, LP = long pass filter, LEX = excitation lens, LEM

emission lens, green line = excitation pathway, red line = emission pathway). b) Emission spectrum from chitosan-

wrapped SWNT excited by 200mW 561nm laser (Opto Engine) with five second integration time (sample was

diluted lOx from 30mg/L) revealing the 990nm emission peak. c) Raw response from portable detector for antibody

detection showing loading of Histag Protein A (i), wash followed by partial unloading of Protein A (ii), and IgG

loading (iii).

183

(a)

1300

Add Protein A
Add IgG

SWNT
Sensor

Note: Glass Background, (No SWNT) =0.5V

1800

::i



Table 5.1 - Cost of goods analysis for portable detector parts

Shorthand
Name

Excitation lenses

Dichroic

LED

Excitation Filter

Dichroic Cage

Emission lens

Emission Filters
Tube
Framework

Detector

DAQ

Housing + Base

Catalog Number and Vendor

MAP103030-A 1:1 Matched Achr. Pair, f1=30 mm, f2=30 mm, BBAR 400-700 nm (Thorlabs)

DMLP900R (Thorlabs)

M565L2 (Thorlabs)

FES0750 (Thorlabs)

CM1-DCH (Thorlabs)

MAP103030-B 1:1 Matched Achr. Pair, f1=30 mm, f2=30 mm, BBAR 650-1050 nm (Thorlabs) - Use one

NT 66-230 (LPx2), NT 64-330 (SPx1) from Edmund Optics

1/3"xl" (3x) + 1/2"xl" (2x) + 1"xi" (2x) + 1/3"xl/2" (1x) all Thorlabs [SM1L03, SM1L05, SM1-10, SM05L031

PDF10C (Thorlabs)

U6 from LabJack

User made (cardboard/case/base to secure detector on)

Total = $2,993

A new method for immobilizing SWNT sensors was also developed to decrease response time

with the portable detection platform, thus enabling higher throughput. The portable detector minimizes

the effects of vibrational noise by interrogating the sensors in a larger focal volume (-0. 125mm3 created

by two achromatic doublets Fig 5. la). For sensors immobilized in hydrogels, this can result in longer

diffusion times of the analyte to reach all of the illuminated sensors (see difference in dopamine detection

with SWNT sensors in gel vs. solution Fig 5.2), especially in the case of large molecular weight analytes

such as proteins. The response time decreases >7x when the sensors are placed in the top surface (casting

the hydrogel and then reheating to 37'C in the presence of SWNT for surface adsorption) versus the

sensors being placed throughout the hydrogel (mixed in the melted agarose before cooling) as shown by

response curves to a protein tagged with quenching moieties (BSA-pyrene Fig 5.3a). The fabrication

steps have also been simplified (Methods) to enable scalable and automated production of large gel

batches (Fig 5.3b) with a mesh of SWNT sensors absorbed to the top surface (Fig 5.3c-e).
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$168

$360

$455
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$150

$84

$460

$104

$790

$299

$50



15

10

C
0

0a

0

5

-5

-10
0 50 100 150

Time (s)
200 250 300

Figure 5.2 - Response of dopamine selective SWNT sensors embedded in agarose hydrogel for portable

detection versus solution on the singleplex portable detector. The detector also shows the long-term,

reversed response of dopamine sensing noted before6 - as the analyte sits in solution for 15 min and

polymerizes the response begins to degrade and eventually response goes from positive modulation to

quenching (blue to green trace).
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Figure 5.3 - Agarose hydrogels optimized for portable sensing and automated fabrication. a) Gels can be cast with

the nanotubes fully dispersed throughout the gel (i) or absorbed on the top surface (ii). The quenching response time

to BSA-pyrene is improved 7x by absorption to the top surface. b) Large batches of gels can be fabricated in

ambient conditions with the new protocol. c-e) SEM images reveal the SWNT network in the top surface of the gel.

The resulting hydrogel sensors for portable detection were characterized to ensure consistency in

functionalization and composition. In the case of protein detection, following our originally developed

laboratory protocol 5 10 , the amines of the chitosan-wrapped nanotubes are conjugated to a chelating group

for a divalent cation that acts as both the signal quenching moiety and docking site for a His-tagged

binding protein (antibody, lectin, or receptor protein). Both colorimetric assay (TNBSA)13 and FTIR"

can be used to track the completion of the amine conjugation to succinic anhydride (introducing COOH

groups Fig 5.4a). We found that a high capacity buffer is necessary for efficient completion of these steps

(online methods). While screening sensor gels for protein detection made from 15 different SNWT

suspensions, an optimal SWNT concentration was found (50mg/ml) for incubation in the top gel surface

(Fig 5.4b). Below this concentration (Fig 5.4b iii,iv) the SWNT emission intensity fell below the

detection limit of the portable detector and above this concentration (Fig 5.4b i) the signal saturated,

decreasing the magnitude of response (also a denser nanotube network on the gel surface inhibits protein

entry). We find that reproducible hydrogel synthesis requires precise measurement of the mechanical
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properties, from which one can infer the cross linking density and all other constructive properties. Pore

size was measured with poroelastic relaxation indentation (PRI10" 4" 5 ) and was found to be 50-75nm,

enough for large analytes like hydrated IgG molecules.10 PRI also yields the shear modulus (G) and

Poisson ratio (v) which can be used to estimate Young's modulus (E - Eq 5.1). The consistency of the

gel composition batch to batch was measured using a stress-controlled rheometer (Fig 5.4d), yielding the

storage modulus (E') and loss modulus (E"), which also can be used to measure Young's modulus (Eq

5.2). Both techniques yield a similar measure of the compliant material (300 and 350 Pa respectively).

E = 2G(1 + v)

1
E = (E'2 + E"2 )2

Eq (5.1)

Eq (5.2)
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Figure 5.4 - Characterization of the sensor gels. a) FTIR of the gels reveal carboxylic acid features after the

successful completion of succinic anhydride and removal of these features once conjugated to NTA-Cu2.

Colorimetric assay (TNBSA - insert) tracking the amine content also shows the importance of high capacity buffer

when coupling succinic anhydride to amine. b) Gels created with varying concentrations of suspended chitosan

wrapped SWNT, optimum concentration found to be - 50mg/ml by OD. c) Poroelastic indentation with AFM to
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measure the pore size, shear modulus (G), poisson ratio (v), and Young's modulus (E). d) Consistency of gels
confirmed with stress controlled rheometer which also gives a measure of Young's modulus.

The performance of the portable detector was first evaluated with antibody sensing. Our new

methodology presented in this work generalizes and makes portable the approach using his-tagged Protein

A10 for detection of IgG. Note that the response curves (Fig 5.5a) resemble 'sensograms' obtained from

surface plasmon resonance16 (SPR - Biacore@) and biolayer interferometry (BLI - Forte Bio Octet@)1 as

well as the ensemble curves previously reported from our larger detector setups for SWNT sensors 0 . Our

new methodology deconvolves the response into six discreet events: baseline, sensor protein loading,

wash, unloading of sensor protein, analyte loading, and small molecule control (Fig 5.5a). The small

molecule control in this case was the addition of imidazole which complexes with all divalent cations

(Cu2 ,) that may not be accessible to the larger sensor protein.' 0 By analyzing the slope (dR/dt) of the

Protein A loading curve and IgG loading curve (Fig 5.5b), one can determine the forward and reverse

kinetic rate constants (kf, kr) and a lumped mass transfer coefficient (km) using a bimolecular surface

absorption model (next page).
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Figure 5.5 - Portable detector measurements of IgG and kinetic characterization. a) Representative response curve
('sensogram') from portable detector showing six recorded events (colored frames): baseline, His-tag Protein A
loading, wash, unloading of Protein A, IgG loading, and Imidazole control. b) Plots of dResponse/dt vs Response

used to determine kf, kr, and km of Protein A loading and IgG. c) Kinetic rates and mass transfer coefficients for
Protein A and IgG are moderately conserved over many different batches of gels (averages included in the plots). d)
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Extent of Protein A modulation ((SI-B1)/BI in Fig 5.5a) is needed for good IgG modulation ((S2-B2)/B2) as

denoted by IgG points (o) below the dotted line, however the percent modulation varies (all experiments here at

100ug/ml of IgG). Conversely imidazole modulation is independent of Protein A modulation, denoted by (x) points.

The kinetic model is as follows: assume an analyte in the gel phase (Ag) travels to the SWNT

surface subject to a lumped mass transfer coefficient (km - assume same in and out of gel). The analyte

on the SWNT surface (As) then complexes with binding sites (B) subject to a forward and reverse kinetic

rate (kf, kr - see Eq. 5.3). The rate of analyte-binding site (AB) formation (Eq. 5.4) is the response rate

(R). The number of binding sites is conserved (Eq. 5.5). The flux of species in and out of the sensor

surface is conserved (Eq. 5.6). Solving for A, using Eq. 5.5 and 5.6 yields Eq. 5.7. Similar assumptions

to SPR kinetic analysis are made (Eq. 5.8) namely bulk concentration [C] does not change and the

response [R] is proportional to the bound species [AB]. Solve for km where adsorption is dominated by

mass transfer, the horizontal regime of dR/dt vs. R (Eq. 5.9). Solve for kf and kr where adsorption is

dominated by ligand kinetics, linear regime of dR/dt vs. R (Eq. 5.10).

Ag mA +JB kAB (Eq. 5.3)

d AB
dt = kf [As] [B] - kr [AB] (Eq. 5.4)
dt

[B] = [ABmax] - [AB] (Eq. 5.5)

km[Ag] - km[As] = kf [As] [B] - kr[AB] (Eq. 5.6)

[As] = km[Ag] + k"AB] (Eq. 5.7)
km + kf([ABmax] - [AB])

[Ag] C, [AB] = R, [ABmax] = Rmax (Eq. 5.8)

d R
if km <K kf[B] then = km [C] (Eq. 5.9)

d R
if km >> kf[B] then dR = kf [C](Rmax - [R]) - kr[R] (Eq. 5.10)

After examining hundreds of such traces over many different fabrication batches, we see

encouraging consistency in the kinetic rate constants (Fig 5.5c) and the average rates predict a KD of 250

and 10 nM for Protein A histag to Cu2 + and IgG to Protein A. If one assumes the diffusion of a large

protein through a membrane is approximately 10-0 cm2/s the average mass transfer coefficients give a
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length scale (or approximate penetration depth) of 1000 and 160 nm for Protein A and IgG respectively.

These parameters are expected as Protein A to IgG should be a strong interaction (KD < [M) and the

150kDa IgG should have a shallower penetration than the 43kDa Protein A.

Such portable instrumentation for the detection of IgG has applications in bio-manufacturing and

specifically upstream process development, production control, and product quality testing 0 . The

methodology and instrumentation can be utilized to perform simple, binary tests (determining

presence/absence) very efficiently. This was demonstrated with many different types of commercial IgG

supernatants in our Cambridge, MA lab (Fig 5.6) and on site in Basel Switzerland (Fig 5.7 and movie

hereb). Binary tests can also be run without a wash step if the analyte concentration is greater than the

sensor protein (Fig 5.6b). Obtaining a robust, universal calibration curve for all fabricated batches of gels

to determine analyte concentration from response is difficult due to the variance in response extent (Fig

5.5d). All sensor gels that load well with protein A respond to the IgG analyte but to varying modulation

percentages (points below dotted line in Fig 5.5d). Conversely, the imidazole control loads independent

of the success of the Protein A modulation (points above and below the line), but also with varying

degrees of 'turn on' response. Automated gel fabrication and structure-function studies are currently

being pursued to optimize gel response and make them more consistent than the current hand-fabricated

gels. Another approach to calibration for concentration readings could be using the response of a single

gel. The slope of the Protein A loading curve can be compared to the slope of the analyte additions to

give an approximate read of concentration (Fig 5.6c). We note that such a universal calibration does not

exist for many widely utilized methods such as ELISA, SPR, and BLI measurements which require

explicit calibration as a part of the method.

b http://www.youtube.com/watch?v=jbzZ4AILynO
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Figure 5.6 - Other informative IgG detection traces. a) Example of clear binary sensing. After protein A loading, a

control commercial supernatant with only host cell proteins gives no response (i) whereas the supernatant from the

same strain producing IgG has a clear loading (ii). Raw supernatant was diluted at 10,000x in PBS. b) Example of a

no wash experiment, where the Protein A (i) is loaded (at 100ug/ml) and followed by a higher concentration of IgG

(ii) (at 230 ug/ml). c) Concentration dependence can be observed within a single trace, protein A loading followed

by 10, 100, 1000, and 10000 ng/ml (i-iv) and imidazole control (v) at 15mM. The sensor starts responding in the

100ng/ml range.
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Figure 5.7 - Demonstrating field portability of detector by transporting sensor gels and two prototypes from

Cambridge, MA lab to Novartis Campus in Basel, Switzerland. Demonstrated detection of IgG type molecules

(fusion proteins, IgG in raw extract, IgG in clarified extract) in three different labs.

One great advantage to these label-free optical sensors versus other techniques (SPR, BLI) is their

ease of multiplexing. The response is emitted from the SWNT sensor so there is no need of physical

coupling or waveguide insertion to transduce the signal. To demonstrate the multiplex capabilities we

installed a single portable detector in a hand-held briefcase with samples held on a rotating plate (Fig 5.8).

The number of samples is limited by the number of gel spots one can print on the circumference of the

rotating disc (up to 100 tested on a 150mm disc). Each revolution yields a data point to all of the loading

curves. Obviously there is a trade-off on rotation velocity and signal stability. We found that signal

responses of greater than 2.6% modulation could be multiplexed with a rotational period of 6.6 seconds,

thus yielding 20-100 loading curves in less than two minutes (Fig 5.9). This would be sufficient to do

rapid testing of SWNT sensors that have a high percent modulation, such as dopamine sensors in solution

phase6 (Fig 5.2).
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Figure 5.8 - Multiplexed portable reader in fully-integrated briefcase. Multiplexing is achieved by spinning sensors

patterned on the circumference of a rotating holder (20-100 samples). The case also contains integrated fluid

handling, on-board control and analysis (Raspberry Pi), optics (Fig 5.1a).
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Figure 5.9 - Trade-off in multiplex rotation speed and signal stability. a) At high speeds (<5s period) the stepper

motor is less efficient in positioning the gel module at the same position during each revolution, as shown by traces

of the 20 SWNT gels. b) At lower speeds the (>6.5s) per period the repositioning is more efficient and modulation

events greater than 2.6% can easily be detected (based on 3x the standard deviation of the noise introduced by

rotation).
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5.4 Conclusions
Optical SWNT based sensors have increasingly been shown as a promising platform for label-free sensing
with applications in defense18 , healthcare13, and manufacturing'0 . One dominant hurdle to their

implementation is the large capital cost of equipment to excite, collect, and gather their response signal.

Herein we are the first to demonstrate a truly portable and inexpensive method for optical SWNT sensor

detection. We have demonstrated its use with antibodyl0 and dopamine6 sensing but it can enable

portable detection of many other SWNT sensors already established in the literature and currently being
developed by other groups.
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6. Sensor Signal State Evaluator Program (NoRSE)

Some of the work, text and figures presented in this chapter are reprinted or adapted from "NoRSE: noise

reduction and state evaluator for high-frequency single event traces," by Nigel F. Reuel et al.

Bioinformatics (2012) 28 (2): 296-297. doi: 10. 1093/bioinformatics/btr632 (Reproduced under thesis use

allowance by Oxford Journals D 2012)

6.1 Summary

NoRSE was developed in the course of this thesis work to analyze high-frequency data sets

collected from multi-state, dynamic experiments, such as molecular adsorption and desorption onto

carbon nanotubes - such as those presented in the single nanotube analysis of Chapter 3. As technology

improves sampling frequency, these stochastic data sets become increasingly large with faster dynamic

events. More efficient algorithms are needed to accurately locate the unique states in each time trace.

NoRSE adapts and optimizes a previously published noise reduction algorithm (Chung et al., 1991) and

uses a custom peak flagging routine to rapidly identify unique event states. The algorithm is explained

using experimental data from our lab and its fitting accuracy and efficiency are then shown with a

generalized model of stochastic data sets. The algorithm is compared to another recently published state

finding algorithm and is found to be 27 times faster and more accurate over 55% of the generalized

experimental space. NoRSE is written as an M-file for Matlab (Appendix 6.1).

6.2 Motivation

As stochastic biological studies are performed at increasingly smaller length and time scales, the

analysis of large, noisy data-sets is becoming an increasingly common problem. In our lab, these sets

consist of time traces gathered from monitoring the fluorescence of single-walled-carbon nanotube

(SWNT)-based sensors. As target molecules bind to a single sensor, the fluorescence is quenched in a

step-wise manner (Cognet et al., 2007), resulting in unique fluorescent states that correspond to the

number of bound sites along the length of the nanotube (Jin et al., 2008). Although NoRSE was created

with our fluorescence data sets in mind, the algorithm can be readily applied to other, analogous

biological experiments that contain event states. This is demonstrated by an error analysis of generalized

stochastic traces as shown below.

6.3 Algorithm Explanation

In this chapter, data from our SWNT-based, protein-protein sensors are analyzed. Excited SWNT

fluoresce due to their unique band-gap structure (Bachilo et al., 2002) and can be quenched by specific
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molecules or chelating groups (Jin et al., 2008). At a single-molecule level, the quenching is exhibited in

a stepwise manner as each of the limited, exciton excursion distances of the SWNT are occupied (Cognet

et al., 2007). Our 900 nm sensor exhibits a maximum of ten binding events, or ten step levels. The

fluorescence of each SWNT is monitored for 3000 time steps and NoRSE efficiently resolves the bound

states. NoRSE imports the data traces X1(t), X2(t), ... Xn(t) and normalizes them by the maximum

intensity such that {Xi: 0<Xi<1 } (Fig 6.la - top trace is a control and the bottom trace exhibits binding

events).
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Figure 6.1 - Explanation and evaluation of NoRSE algorithm. A) Control (blue) and signal (green) traces are

normalized and (B) noise-reduced by Chung et at. algorithm. C) All point histogram peaks of each trace are

identified as unique event states to which the trace is fit (D). E) Corresponding SFA fit of these traces.

Xi(t) is then noise-reduced (Fig 6.lb) by the Chung and Kennedy algorithm (Chung et al., 1991).

Their forward-backward, non-linear filtering technique was designed to preserve high-frequency step

198



events surrounded by background noise. In brief, the algorithm searches forward and backwards from

each data point using a bank of window sizes to weigh the probability of a sharp step occurring. Their

algorithm contains three parameters (p- which sets the sharpness of state transitions, N- which specifies a

set of forward and backward windows, and M- which sets how much data the N windows are run against)

which were optimized in the original work for patch-clamp experiments (Chung et al., 1991) and

subsequently for protein folding experiments (Haran 2004). We used Monte Carlo simulations of generic,

noisy, high-frequency event traces to further explore this parameter optimization. Generally, we found

that an increasing value of p and N and a decreasing value of M improved the noise reduction algorithm's

ability to reconstruct the original trace, but the improvement was marginal. Thus the program is set to run

with p, N, and M values of 40, [4 8 16 32], and 10 respectively for all types of experimental traces.

After noise-reduction of Xi(t), all points histograms with 200 bins are generated for Xi(t) (Fig

6. Ic). The distinct groups of histogram peaks represent event states but vary in height and width

depending on their frequency and uniqueness respectively. A detailed explanation of this peak flagging

routine is given below, but briefly all potential peaks are flagged and then logic is used to determine

which peaks are unique and which should be combined with neighboring peaks. The result is a vector of

significant peak bin numbers, which are then translated back to the corresponding signal levels of Xi(t).

These are the unique state levels for the trace. Finally, each time point of the noise reduced trace of Xi(t)

is compared to the possible state levels and the one that fits closest is assigned. Qualitatively, the fit looks

good for our experimental data (Fig 6. 1d-e), but we were interested in a quantitative method of

determining the error as well as finding its applicability to other types of data that contain step events.

6.3.1 Peak Finding Subroutine

The distinct peaks of the all-point histogram for each signal trace reveal the unique event states in

the given trace. Determining the peaks by eye is a simple process, but creating a routine that is general

enough for all peak types took some creative code. On the first pass, the algorithm flags each possible

peak; that is for each bin in the histogram it evaluates if the bin prior and the bin following have a

frequency count lower than the evaluation bin. If they do, this bin is flagged as a possible peak.

The next step is to analyze peaks in a pair-wise fashion. By analyzing the valley distances

between two peaks, each peak can be sorted into three categories: 1) a unique and significant peak, 2) an

insignificant peak, or 3) significant but a candidate for averaging with the next peak. A significant valley

distance is defined as one that is greater than 50 percent of the average frequency response. For example,

a trace with 1000 time points, that is binned with 200 bins in an all-point histogram and then smoothed

with a running average window of 5, would have an average response of 1 frequency count per bin

(=1000/200/5). So if the differences in averaged-frequency count from the top of the peak to the bottom
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of the valleys (right and left side of the peak) are greater than 50 percent of this average response, it is

considered as significant and unique. If both valley distances are smaller than the average response, the

peak is labeled as insignificant. If only one valley distance (right-side or left-side) is greater than this cut-

off, further logic is used to determine if the peak should be merged with adjacent peaks or ignored.

Peaks are merged if their bins are separated by a small distance. This cut off distance is specified

as 2.5 percent of the total bin count (5 bins for a 200 bin all point histogram). The two bins are placed in

a temporary vector of candidate for peak averaging and the next peak is evaluated to see if it too should

be combined. When a significant valley distance is found, the candidate peaks for merging are averaged

and the valley distances of this new combined peak are evaluated. If the frequency count is less than the

cut-off specified above, the combined peak is ignored. This works especially well in eliminating

supposed peaks that are closely grouped together in a slow-rising side of another significant peak, or as a

valley between two other significant peaks. The fidelity of this peak finding algorithm over a wide range

of signal types can be assessed in the following general model for error analysis.

6.4 Gauging Performance of Algorithm with a Generalized Model
There are many types of data sets that are stochastic in nature and contain imbedded event states.

The biological data sets highlighted in this article include protein-protein interactions, protein-folding

FRET experiments, and patch-clamp data sets. These are just a few of the many possible data sets. To

evaluate the error rate of the NoRSE algorithm on these and other types of data sets, we have created a

model with three general parameters that roughly describe most of this experimental space: A =

(Tendency upwards movement/ Tendency downwards movement), B = (Average event time/ Signal

sampling time), and C = (Average event transition size/ Average noise level). Parameter 'A' can be

thought of as a quasi-dissociation constant. A large value of 'B' represents an experiment in which the

sampling time is much smaller than the event time, and thus step events are more easily resolved.

Conversely, a small 'B' value is in the regime of fast dynamic experiments where the sampling time is

comparatively small. A small value of 'C' represents data sets that are highly obstructed by noise.

Many sample traces were generated (using random, Gaussian distributed values) around the trace

parameter specified above. Limits to these generalized parameters, in terms of plausible experimental

traces, were set as follows: 0.1 to 10 for A, 5 to 500 for B, and 0.1 to 10 for C. Values deviating from 1

(equilibrium) for parameter A are symmetric (<1 representing traces that move in a downwards fashion,

>1 upwards) and has less of an effect on the fitting fidelity than the other two parameters (it will simply

increase the number of unique states and increase computation time). Most experimental data sets are

interested in the fluctuating, equilibrium state, thus a value of A = 1 was used in this analysis. However,
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our code for this trace generator can be simply adjusted to vary this parameter as well. Example

simulated traces for A = 1, B = [5 50 500], and C = [0.1 1 10] are provided (Fig 6.2).

B=5

'1. L''

C= 0.1

B=50

at 3 C 0 WO 90C 

B= 500

'JeI' 1I II 0 we W ri:? O 1 =F W 0 1

Figure 6.2 - Generalized model of stochastic traces with unique event states. These simulated traces are at a

constant value of A (A = 1) while varying B (5, 10, and 500) and C (0.1, 1, and 10). These traces depict

qualitatively how the simulated traces vary over the experimental space.

Many types of single-event experiments can be cast on this generalized experimental space

(Figure 6.3a). As the parameter 'A' has less of an effect on the fitting-fidelity, it was held at the

equilibrium level of 1, while the other parameters 'B' and 'C' were varied over the ranges of 5 to 500 and

0.1 to 10 respectively. For each parameter combination, 100 traces were generated at 1000 time steps

each. The noisy trace was sent to NoRSE and the resulting fit was compared to the known generated

trace. Each time step was analyzed to see if it was within 2% of the real value, if not, it was marked as an

error. Finally the average error percent for each B-C combination was reported (Fig 6.3a). The contour

plot maps the specific regions where the NoRSE algorithm is most accurate; it begins to have errors

greater than 10% at B values < 20 and C values < 2.7.
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Figure 6.3 - a) The fit error percentage of NoRSE over a general experimental space (Green Star = general region

for patch clamp experiments, Red = FRET Protein folding, and Orange = SWNT protein-protein sensors). b) Error

percentage of SFA algorithm. Shaded area is the experimental space in which NoRSE outper-forms SFA.

To compare NoRSE's computational efficiency and accuracy, an identical error analysis was

performed on a popular "State-Fitting Algorithm" (SFA) used for similar noisy, dynamic traces (Kersse-

makers et al., 2006) (Fig 6. le). SFA uses a series of Chi-squared best fit analyses as the number of steps

(S) is iteratively increased and compared to corresponding "anti-fits." The resulting error contour map

(Fig 6.3b) indicates regions in which NoRSE outperforms SFA (shaded region - code provided in

Appendix 6.2). The physical run time of NoRSE was also 27 times faster. By scaling the algorithms and

taking the approximate ratio of SFA to NoRSE (see below), we find that NoRSE is on the order of [S2/

(K(N+3))] more efficient than SFA, where S is the number of SFA fit steps and K and N are parameters
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of the noise reduction algorithm. The two algorithms were performed on the protein-protein traces and

the average run time was 25 times faster for NoRSE (32 predicted from approximate scaling).

6.4.1 Scaling comparison of NoRSE and SFA Algorithms

The two algorithms involve many steps which complicate the general scaling estimation.

However, by analyzing the loops of each step a general picture of the required number of computations

can be obtained. This was done for both the SFA algorithm and the NoRSE code. The ratio of the two

was then created to determine how computationally efficient the NoRSE program is in comparison to the

existing SFA code.

Variables with common values:

N = 1000 Number of traces

t = 3000 Number of time points

S = 32 Number of attempted fit states

k = 4 Number of comparison windows in noise reduction algorithm

nBin = 200 Number of histogram bins

M = 5 Parameter in noise reduction algorithm

Approximate scaling:

SFA=N-t-S+N-S 2 -t+N-S

NoRSE= 3 -N- t -k + N t k -M +2 -N -t +2 N -nBin + N -S

Approximate ratio:

SFA N-t-S+N-S 2 -t+N-S

NoRSE 3 - N - t - k + N - t k -M + 2 - N - t + 2 N -nBin + N -S

Simplified:

SFA S(t+S-t+1)

NoRSE 2 -nBin+S+ 2 -t +3 - k -t + k -m -t

Keeping most significant values:
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SFA S2

NoRSE k - (M + 3)

Using the common values for the parameters stated above, the full approximate ratio yields 30.93 and the

simplified scaling ratio yields 32. Thus, for any given set of parameters NoRSE is approximately S2 more

computationally efficient than the established state finding program, SFA (where S is the maximum

number of states that each program attempts to fit to the data).
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Appendix 6.1
function NoRSE

% Coded by Nigel F. Reuel 4.01.2011
% Massachusetts Institue of Technology
% Department of Chemical Engineering

% --- Step 1: Read in the Traces (can normalize here if desired) ---

% Data Columns = Trace number, Data Rows = Time steps

RTD = csvread(Data.csv');
%Determine the number of time steps (Ns) and number of transducers (Nt):
[Ns,Nt]= size(RTD);
RTD_n = RTD;
% Create empty matrix to recieve the noise reduced traces:
M = zeros(Ns,Nt);

% ------ ---- Step 2: Denoise each of the Traces ------------

204



%The denoising algorithm loses the first and last time steps, so set a new
%time window:
time = Ns - 2;
%Create an empty matrix to recieve the denoised trace data:
T_denoise = zeros(time,Nt);
for i = 1:Nt

NT = RTD-n(:,i);
IC = feval(@NoiseReduc,NT);
T_denoise(:,i) = IC(:,I);

end
% csvwrite(['T-denoise',int2str(iii),'.csv'],Tdenoise);

% -------- Step 3: Construct APH for each trace ------------

%Number of bins for the histogram construction?
nbins = 200;
%Create empty recieving matrices for histogram counts (nM) and the bin
%centers (xM)
nM = zeros(Nt,nbins);
xM = zeros(Nt,nbins);
for i = 1:Nt

Y = T-denoise(:,i);
[n,xout] = hist(Y,nbins);
nM(i,:) =n(,:);

xM(i,:) = xout(l,:);
end
%xlswrite('nM',nM);
%xlswrite('xM',xM);

% --------- Step 4: Find peaks for each APH histrogram ------

%Use PeakFinder Function to find the Average Peak Locations (APL) - these
%translate to the bin number
APL = feval(@PeakFinder,nM);
[Nt,Nlev] = size(APL);

%Translate the APL bin numbers back to the normalized intensity level to
%determine the stochastic step levels (SLL)
SLL = zeros(Nt,Nlev);
for i = 1:Nt

% Very rarely, the peak finder will flag no bins as peaks, in this case
% we will use a general gaussian fit of the denoised data to find a
% mean step value.
if sum(APL(i,:)) == 0

Ncurves = 1;
X = Tdenoise(i,:);
[u,~,~,~]= feval(@fit-mixgaussian,X,Ncurves);
SLL(i,1) = u;

else
forj = 1:Nlev
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if APL(ij) -= 0
N_bin = APL(ij);
SLL(ij) = xM(i,N-bin);

end
end

end
end

%------- Step 5 Determine the NoRSE Fit Trace -------------

for ii = 1:Nt
RealT = T_denoise(:.ii);
count = 0;
form= 1:Nlev

if SLL(ii,m) >0
count = count + 1;

end
end
for i = 1:time

compare = zeros(count,1);
for j = 1:count

compare(j,1) = abs(RealT(i,1)-SLL(iij));
end
[C,I] = min(compare);
M(i+1,ii,1) = SLL(iiI);

end
% Because the noise reduction program takes away the first and last time
% point, estimate their values as those immediately following and
% proceeding respectively
M(1,ii,l) = M(2,ii,1);
M(time+2,ii,1) = M(time+1,ii,1);

end
% Record the noise-reduced traces in a csv format:
csvwrite('NRData.csv',M)
end

% <------------Functions embeded in the Trace Analyzer ---------- >

function IC = NoiseReduc(NT)

%Coded by Nigel Reuel on 8.31.2010

%Adaptation of Chung and Kennedy (1991) forward-backward non-linear
%filtering technique to reduce the noise of our
%fluorescent signal in an attempt to resolve the single molecule events
%amidst the noise.

%Input: Takes supplied noisy trace (NT)
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%Output: Returns cleaned trace without the first and last data point

time = length(NT);

%Set algorithm parameters:
N = [4 8 16 32]; %Sampling window length
K = length(N); %Number of sampling windows
M = 10; %Weighting parameter length
P = 40; %Parameter that effects sharpness of steps

% ------ The Forward-Backward non-linear Algorithm ---------

%First - Run each time step and store the average forward and backward

%predictors for each of the sampling windows

Lavg f zeros(timeK);
I_avgb = zeros(time,K);
for g = 1:time

%Run for each sampling window
fork= 1:K

%Solve for the average forward predictor (w/ some
%logic to help solve the beginning of the trace
window = N(k);
if g == 1

Lavg_f(g,k) = NT(1,1);
elseif g - window - 1 < 0

Lavg_f(g,k) = sum(NT(1:g-1,1))/g;
else

epoint = g - window;
spoint = g - 1;
Lavg_f(g,k) = sum(NT(epoint:spoint, 1))/window;

end
%Now do the same for the backward predictor
if g == time

I_avgb(g,k) = NT(g,1);
elseif g + window > time

sw = time - g;
I-avg-b(g,k) = sum(NT(g+1:time, 1))/sw;

else
epoint = g + window;
spoint = g + 1;
I_avgb(g,k) = sum(NT(spoint:epoint,1))/window;

end
end

end

%Second - Solve for non-normalized forward and backward weights:
f = zeros(time,K);
b = zeros(timeK);
for i = 1:time

fork= 1:K
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Mstoref = zeros(M,1);
Mstoreb = zeros(M,1);
forj = O:M-1

t_f= i -j;
t_b= i +j;
if t_f < 1

Mstoref(j+1,1) = (NT(i,1) - I-avg-f(i,k))A2;
else

Mstoref(j+1,1) = (NT(tf,1) - Iavgf(tfk))A2;
end
if t_b > time

Mstore_b(j+1,1) = (NT(i,1) - Lavg-b(i,k))A2;
else

Mstore-b(j+1,1) = (NT(t-b,1) - Iavg-b(tb,k))A2;
end

end
f(i,k)= sum(Mstoref)A(-P);
b(i,k) = sum(Mstore-b)A(-P);

end
end
% Third - Solve for vector of normalization factors for the weights
C = zeros(time,1);
for i = 1:time

Kstore = zeros(K,1);
fork= l:K

Kstore(k,1) = f(i,k) + b(i,k);
end
C(i,l) = I/sum(Kstore);

end
% Fourth and final step - Put all parameters together to solve for the
% intensities
Iclean = zeros(time,I);
for i = 1:time

TempSum = zeros(K,1);
fork= l:K

TempSum(k, 1) = f(i,k)*C(i,1)*ILavgf(i,k) + b(i,k)*C(i,1)*I avg b(i,k);
end
Iclean(i,1) = sum(TempSum);

end
IC = Iclean(2:time-1,1);
return
end

function PeakLocAvg = PeakFinder(nM)
% Coded by Nigel Reuel on 9.15.2010 updated in March 2011 by NFR
% This function finds the peaks of a histogram using a modified running
% average algorithm + peak flagging routine

[nT,nB] = size(nM);

%Size of window for running average algorithm (increasing this causes more
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%of a rough approximation of peaks)
SW = 3;
% Centered running average algorithm to help find peaks:

T_ra = zeros(nT,nB);
for j = 1:nT

for i = 1:nB
if i < (SW + 1)

T-ra(j,i) = sum(nM(j,1:i+SW))/(i+SW);
elseif i >= (SW+1) && i <= (nB-SW)

Tra(j,i) = sum(nM(j,i-SW:i+SW))/(SW*2+1);
else

T-ra(j,i) = sum(nM(j,i:nB))/(nB-i+1);
end

end
end
%xlswrite('T-ra',T-ra);

% --------------- Peak finding algorithm--------------------

% Base function on physical example of climbing up and down hills. Drop
% flags on supposed peaks. Eliminate "peaks" that are molehills. Combine
% peaks that are close neighbors.
Flags = zeros(nT,nB,6);
% Layer 1 = Peak Flag
% Layer 2 = Right Valley Bin#
% Layer 3 = Left Valley Bin#
% Layer 4 = Peak magnitude (Histogram Count)
% Layer 5 = Right Valley magnitude (Histogram Count)
% Layer 6 = Left Valley magnitude (Histogram Count)
% Molehill level (number of responses that are not significant - avg!)
MoleL = (5/SW)*.5; % = #responses/#bins/SW = Avg. Response, no significance)
PeakLocAvg = zeros(nT,2);
for i = I:nT
forj = 1:nB

if Tra(ij) > MoleL
% Logic to find significant peaks at endpoints (and the R/L
% valleys)
if j == 1 && T ra(ij) > T-ra(ij+1)

Flags(ij,1) = 1;
Flags(i,j,4) = T ra(ij);
Pval= T-ra(ij);
Pnext = T-ra(ij+1);
index = j;
% Find right hand valley:
while Pval > Pnext

index = index + 1;
Pval = Tra(i,index);
Pnext = T-ra(i,index+1);

end
Flags(i,j,2) = index;
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Flags(i,j,5) = T-ra(i,index);
elseif j == 1 && Tra(ij) <= T-ra(ij+1)

Flags(ij,1) = 0;
elseif j == nB && Tra(ij) > Tjra(ij-1)

Flags(i,j,1) = 1;
Flags(i,j,4) = T-ra(ij);
Pval = T-ra(ij);
Pprior = T-ra(ij-1);
index = j;
% Find left hand valley:
while Pval > Pprior

index = index - 1;
Pval = Tra(i,index);
Pprior = T-ra(i,index-1);

end
Flags(i,j,3) = index;
Flags(i,j,6) = T-ra(i,index);

elseif j == nB && Tjra(ij) <= T-ra(i,j-1)
Flags(i,j,1) = 0;

% Logic to find peaks at all midpoints (and their R/L valleys)
elseif Tra(ij) >= Tjra(ij-1) && Tjra(ij) >= Tjra(ij+1)

Flags(i,j,l) = 1;
Flags(i,j,4) = T ra(ij);
% Find left hand valley:
Pval = Tjra(ij);
Pprior = T-ra(ij-1);
index =j;
if j > 2

Switch = 1;
else

Switch = 0;
index = 1;

end
while Pval > Pprior && Switch == 1;

index = index - 1;
Pval = Tra(iindex);
Pprior = Tjra(i,index-1);
if index == 2

Switch = 0;
index =1;

end
end
Flags(i,j,3) = index;
Flags(i,j,6) = T ra(i,index);
% Find right hand valley:
Pval = T ra(ij);
Pnext = Tjra(i,j+1);
index =j;
if j < nB -1

Switch = 1;
else
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Switch = 0;
index = nB;

end
while Pval > Pnext && Switch == 1;

index = index + 1;
Pval = Tra(iindex);
Pnext = T-ra(i,index+1);
if index == nB - 1;

Switch = 0;
index = nB;

end
end
Flags(ij,2) = index;
Flags(ij,5) = Tra(i,index);

end
end

end
%{

X = (1:200)';
Y1 = Flags(i,:,1)';
Y2 = T-ra(i,:);
plot(X,YI.X,Y2)

%}I
%Make a vector containing the peak locations:
PeakVec = 0;
count = 1;

forj = 1:nB
if Flags(ij,I) == 1

PeakVec(1,count)= j;
count = count + 1;

end
end
% Now analyze peak pairs:

% Specify significant peak valley distance and significant bin
% distance:
SigD = (5/SW)*.5; % = the average response
SigBinD = 200*(.025); % = 2.5% of the total bin #.
Npeaks = length(PeakVec);
% Determine the peak pairwise interactions...each will have a right
% hand value and left hand value (except for the endpoints):
% 1: Unique
% 2: Combine
% 3: Ignore
% Create a matrix to recieve these calculations:
PeakCode = zeros(2,Npeaks); % Row I = to right, Row2= to left
forj = l:Npeaks-1

% Determine the peak bin numbers:
PBN1 = PeakVec(l,j);
PBN2 = PeakVec(1,j+1);
% Calcualate the valley distances (left to right)
VDI = abs(Flags(iPBN1,4) - Flags(i,PBN1,5));
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VD2 = abs(Flags(i,PBN2,6) - Flags(i,PBN2,4));

if VD1 <= SigD && VD2 <= SigD
% Combine
PeakCode(1,j) = 2;
PeakCode(2,j+1) = 2;

elseif VD1 >= SigD && VD2 <= SigD
% Left Peak sig, right peak ignore
PeakCode(1,j) = 1;
PeakCode(2,j+1) = 3;

elseif VD1 <= SigD && VD2 >= SigD
% Left peak ignore, right peak significant
PeakCode(1,j) = 3;
PeakCode(2,j+1) = 1;

elseif VD1 >= SigD && VD2 >= SigD
% Both peaks are significant
PeakCode(1,j) = 1;
PeakCode(2,j+1) = 1;

end
end
% Logic for the peak endpoints
Left = abs(Flags(i,PeakVec(1, 1),4) - Flags(i,PeakVec(1,1),6));
if Left >= SigD

PeakCode(2,1) = 1;
else

PeakCode(2,1) = 3;
end
Right = abs(Flags(i,PeakVec(1,Npeaks),4) - Flags(i,PeakVec(1,Npeaks),5));
if Right >= SigD

PeakCode(1,Npeaks) = 1;
else

PeakCode(1,Npeaks) = 3;
end
% Now determine what to do with the peaks. Look at combinations
% reading left to right. Put signifcant peaks into a vector.
SPV = 0;
j = 1;
count= 1;
while j <= Npeaks

CI = PeakCode(lj);
C2 = PeakCode(2,j);
if Cl == 1 && C2== 1

% This is a bonafide unique peak. Put it in the vector.
SPV(1,count) = PeakVec(1,j);
count= count+ 1;
j =j+1;

elseif CI == 2
% This peak will be merged with other peak(s)
count2 = 2;
Merge = PeakVec(1,j);
while CI == 2
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j =j + 1;
CI = PeakCode(1,j);
Merge(1,count2) = PeakVec(1,j);
count2 = count2 + 1;

end
% Insert logic here to eliminate valleys and slow rises (see
% what is happening at the significant enpoints!)
Endl = Flags(i,Merge(1,1),4) - Flags(i,Merge(1,1),6);
End2 = Flags(i,Merge(1,end),4) - Flags(i,Merge(1,end),5);
Distance = Merge(1,end) - Merge(l,1);
if Endl >= SigD && End2 >= SigD

SPV(1,count) = round(mean(Merge));
count = count + 1;
j =j + 1;

elseif Endl >= SigD && End2 <= (SigD)*(-1) && Distan
SPV(1,count) = round(mean(Merge));
count = count + 1;
j =j + 1;

elseif Endl <= SigD*(-1) && End2 >= (SigD) && Distan
SPV(1,count) = round(mean(Merge));
count = count + 1;
j =j + 1;

ce >= SigBinD

ce >= SigBinD

end
else % Represents 1/3, 3/1, and 3/3 combos which are all ignored!!

j =j + 1;
end

end
Nsigpeaks = length(SPV);
forj = 1:Nsigpeaks

PeakLocAvg(i,j) = SPV(1,j);
end
%{

% Plot the PeakLocAvg to see how the algorithm performs)
S = Nsigpeaks;
FF = zeros(1,nB);

fork = 1:S
Temp = PeakLocAvg(i,k);
FF(1,Temp) = 1;

end
X = (1:200)';
Y1 = FF(,:)';
Y2 =Tra(i,:);
plot(X,YI,X,Y2)
stop=1;
%}

end

return
end
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function [usig,t,iter] = fitmix gaussian( X,M)

% Gaussian Fit Function by Ohad Gal (c) 2003
% Download at:
% http://www.mathworks.com/matlabcentral/fileexchange/4222-a-collection-of-fitting-functions
% on 3.21.2011

% fit-mix-gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm

% format: [u,sig,t,iter] = fit-mix gaussian( X,M)

% input: X - input samples, Nx1 vector
% M - number of gaussians which are assumed to compose the distribution

% output: u - fitted mean for each gaussian
% sig - fitted standard deviation for each gaussian
% t - probability of each gaussian in the complete distribution
% iter- number of iterations done by the function

% initialize and initial guesses
N = length( X );
Z = ones(N,M) * I/M; % indicators vector
P = zeros(N,M); % probabilities vector for each sample and each model
t = ones(1,M) * 1/M; % distribution of the gaussian models in the samples
u = linspace(min(X),max(X),M); % mean vector
sig2 = ones(1,M) * var(X) I sqrt(M); % variance vector
C = l/sqrt(2*pi); % just a constant
Ic = ones(N,1); % - enable a row replication by the * operator
I1 = ones(1,M); % - enable a column replication by the * operator
Q = zeros(NM); % user variable to determine when we have converged to a steady
solution
thresh = le-3;
step =N;
laststep = inf;
iter = 0;
miniter = 10;

% main convergence loop, assume gaussians are ID
while ((( abs((step/last-step)-1) > thresh) & (step>(N*eps))) I (iter<minjiter))

% E step

Q =Z;
P = C ./ (Ic*sqrt(sig2)) .* exp( -((X*Ir - Ic*u).A2)./(2*Ic*sig2));
form= 1:M

Z(:,m) = (P(:,m)*t(m))./(P*t(:));
end

% estimate convergence step size and update iteration number
prog-text = sprintf(repmat('\b',I,(iter>0)*12+ceil(log10(iter+1)) ));
iter = iter + 1;
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laststep = step * (1 + eps) + eps;
step = sum(sum(abs(Q-Z)));
fprintf( '%s%d iterations\n',prog-text,iter);

% M step
%========---

Zm = sum(Z); % sum each column
Zm(find(Zm==O)) = eps; % avoid devision by zero
u =(X')*Z./ Zm;
sig2 = sum(((X*Ir - Ic*u).A2).*Z) ./ Zm;
t =Zm/N;

end

sig = sqrt( sig2);

return
end

Appendix 6.2

function NoRSESFAComparison
% Finished by Nigel F. Reuel on 3.31.2011
% Massachusetts Institute of Technology
% Department of Chemical Engineering

% This code uses the generalized model of stochastic data sets to generate
% traces with embeded event states. It is currently set to compare NoRSE
% with the SFA algorithm. For each parameter set (A,B,C) it does the
% following:

% 1) Generates 100 traces
% 2) Fits traces with NoRSE
% 3) Fits traces with SFA
% 4) Computes average error for each algorithm
% 5) Reports the average times to run the 100 traces through NoRSE and SFA

% The errors and run times are then recorded in a *.csv file for further
% analysis.

% The program goes as follows:

% 1) Specify the trace generator parameters

A= 1;
B = [5 7 10 15 20 35 50 75 100 125 150 175 200 250 300 400 500];
C = [0.1 .15 .2.3 .35 .4.45 .5 .6.7 .8 .85 .9 12 3 4 5 6 7 8 9 10];

% Number of traces:
nt = 100;
% Number of steps:
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ns = 1000:
% Answer matrices:
NorseQual = zeros(length(B),length(C));
FSQual = zeros(length(B),length(C));
TimeN = zeros(length(B),length(C));
TimeFS = zeros(length(B),length(C));

for i = 1:length(B)
forj = 1:length(C)

b =B(i);
c= C(j)
disp(['Analyzer started for condition B = ',num2str(b),' and C = ',num2str(c)])
% 2) Generate Traces
M = feval(@GenTrace,A,b,c,nt,ns);
% 3) Generate Fits
[M2,T] = feval(@TraceFitter,M(:,:,2));
% 4) Compare Fits
% First you must specify the tolerance of fit:
TF = 0.02; %<--- Remember this is on a scale of 0 to 1
% Reset the count of bad NoRSE points and bad FS points:
BadN = 0;
BadFS = 0;
for k = 1:nt

for I = 1:ns
if abs(M2(l,k,1)-M(l,k,1))> TF

BadN = BadN + 1;
end
if abs(M2(lk,2)-M(l,k, 1))> TF

BadFS = BadFS + 1;
end

end
end
% Now compute the percent error:
%disp('End of analysis. Run time and results below.')
TotalSteps = nt*ns;
PerBN = BadN/TotalSteps;
PerBFS = BadFS/TotalSteps;
NorseQual(i,j) = PerBN;
FSQual(i,j) = PerBFS;
TimeN(ij) = T(1,1);
TimeFS(i,j) = T(1,2);

end
end
% These are the output files:

csvwrite('BadFitPercentN.csv',NorseQual)
csvwrite('BadFitPercentFS.csv',FSQual)
csvwrite('TimeN.csv',TimeN)
csvwrite('TimeFS.csv',TimeFS)
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return
end

function [MT] = TraceFitter(RTD)
% This function fits the generated traces with both the NoRSE program and
% the fit states program.

--- Step 1: Read in and the Traces ----

%Determine the number of time steps (Ns) and number of transducers (Nt):
[Ns,Nt]= size(RTD);
RTDn = RTD;

M = zeros(Ns,Nt,4); % First level Norse fit, second level FS
T = [0 0]; % 1 = NoRSE Time, 2 = FS time

%##### ### NoRSE ALGORITHM ### ##################### ###########

% ---- ----- Step 2: Denoise each of the Traces ------------

tic
%The denoising algorithm loses the first and last time steps, so set a new
%time window:
time = Ns - 2;
%Create an empty matrix to recieve the denoised trace data:
T_denoise = zeros(time,Nt);
for i = 1:Nt

NT = RTD-n(:,i);
IC = feval(@NoiseReduc,NT);
T_denoise(:,i) = IC(:,I);

end
% csvwrite(['T-denoise',int2str(iii),'.csv'],Tdenoise);

% ------- Step 3: Construct APH for each trace --------

%Number of bins for the histogram construction?
nbins = 200;
%Create empty recieving matrices for histogram counts (nM) and the bin
%centers (xM)
nM = zeros(Nt,nbins);
xM = zeros(Nt,nbins);
for i = l:Nt

Y = T-denoise(:,i);
[n,xout] = hist(Y,nbins);
nM(i,:) =n(,:);
xM(i,:) = xout(l,:);

end
%xlswrite('nM',nM);
%xlswrite('xM',xM);

% --------- Step 4: Find peaks for each APH histrogram -----
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%Use PeakFinder Function to find the Average Peak Locations (APL) - these
%translate to the bin number
APL = feval(@PeakFinder,nM);
[Nt,Nlev] = size(APL);

%Translate the APL bin numbers back to the normalized intensity level to
%determine the stochastic step levels (SLL)
SLL = zeros(Nt,Nlev);
for i = 1:Nt

% Very rarely, the peak finder will flag no bins as peaks, in this case
% we will use a general gaussian fit of the denoised data to find a
% mean step value.
if sum(APL(i,:)) == 0

Ncurves = I;
X = Tdenoise(i,:);
[u,~,~,~]= feval(@fit-mixgaussian,X,Ncurves);
SLL(i,1) = u;

else
forj = 1:Nlev

if APL(ij) -= 0
N_bin = APL(ij);
SLL(ij) = xM(i,N-bin);

end
end

end
end

%------- Step 5 Determine the NoRSE Fit Trace ----------

for ii = 1:Nt
RealT = T_denoise(:.ii);
count = 0;
form= 1:Nlev

if SLL(ii,m) >0
count = count + 1;

end
end
for i = 1:time

compare = zeros(count, 1);
for j = 1:count

compare(j,1) = abs(RealT(i,l)-SLL(iij));
end
[C,I] = min(compare);
M(i+1,ii,1) = SLL(ii,l);

end
% Because the noise reduction program takes away the first and last time
% point, estimate their values as those immediately following and
% proceeding respectively
M(Iji,l) = M(2,ii,1);
M(time+2,ii,1) = M(time+l,ii,1);

end
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T(1,1) = toc;

% ######4,#############################t######
% ------- FitStates Analyzer ----------- (Added 1.15.2011 by NFR)
% ########################################H

tic
forward-trans = 0;
NonNormTraces = RTD;
[num rows, num cols] = size(NonNormTraces);
Ftime = 1:1:numrows;
% Make empty matrix to recieve the traces and their fits
count = 0;
GoodTrace2 = 0;
for i = 1:num_cols

Tracemax = max(NonNormTraces(:,i));
Tracemin = min(NonNormTraces(:,i));
data3 = 1000*(NonNormTraces(:,i) - Tracemin)/(Tracemax - Tracemin);
data2 = 1000 - data3;
MaxNumofStates = 30;
maxN = 30;
[NumofStates, BestFitTraces] = fitStates(maxN, Ftime, data2, data3, MaxNumofStates);
M(:,i,2) = BestFitTraces; % Best fit trace from Fit States

end
T(1,2) = toc;
return
end

% <-----------Functions embeded in the Trace Analyzer -------- >

function IC = NoiseReduc(NT)

%Coded by Nigel Reuel on 8.31.2010

%Adaptation of Chung and Kennedy (1991) forward-backward non-linear

%filtering technique to reduce the noise of our
%fluorescent signal in an attempt to resolve the single molecule events
%amidst the noise.

%Input: Takes supplied noisy trace (NT)
%Output: Returns cleaned trace without the first and last data point

time = length(NT);

%Set algorithm parameters:
N = [4 8 16 32]; %Sampling window length
K = length(N); %Number of sampling windows
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M = 10; %Weighting parameter length
P = 40; %Parameter that effects sharpness of steps

% ------ The Forward-Backward non-linear Algorithm -------

%First - Run each time step and store the average forward and backward
%predictors for each of the sampling windows

Iavgj zeros(timeK);
I_avgb = zeros(time,K);
for g = 1:time

%Run for each sampling window
fork= :K

%Solve for the average forward predictor (w/ some
%logic to help solve the beginning of the trace
window = N(k);
if g == I

Lavgif(g,k) = NT(l,1);
elseif g - window - 1 < 0

I~avgf(g,k) = sum(NT(1:g-1,1))/g;
else

epoint = g - window;
spoint = g - 1;
ILavg-f(g,k)= sum(NT(epoint:spoint, 1))/window;

end
%Now do the same for the backward predictor
if g == time

Lavgb(g,k) = NT(g,1);
elseif g + window > time

sw = time - g;
Lavgb(g,k) = sum(NT(g+1:time, 1))/sw;

else
epoint = g + window;
spoint = g + 1;
Iavg-b(g,k) = sum(NT(spoint:epoint,1))/window;

end
end

end

%Second - Solve for non-normalized forward and backward weights:
f = zeros(time,K);
b = zeros(time,K);
for i = 1:time

fork= :K
Mstore_f= zeros(M,I);
Mstoreb = zeros(M,l);
forj = 0:M-1

t_f= i -j;
t_b=i+j;
if t_f < 1

Mstore-f(j+1,1) = (NT(i, 1) - I-avgf(i,k))2;
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else
Mstore_f(j+1,1) = (NT(tf, 1) - ILavgf(tf,k))A2;

end
if t_b > time

Mstore_b(j+1,1)= (NT(i,1) - Lavg-b(i,k))^2;
else

Mstore_b(j+1,1)= (NT(tb,1) - I-avg-b(t-b,k))2;
end

end
f(i,k) = sum(Mstoref)A(-P);
b(i,k) = sum(Mstore-b)A(-P);

end
end
% Third - Solve for vector of normalization factors for the weights
C = zeros(time,1);
for i = 1:time

Kstore = zeros(K,1);
fork= :K

Kstore(k,1) = f(i,k) + b(i,k);
end
C(i,1) = 1/sum(Kstore);

end
% Fourth and final step - Put all parameters together to solve for the
% intensities
Iclean = zeros(time,1);
for i = 1:time

TempSum = zeros(K,1);
fork= 1:K

TempSum(k,1) = f(i,k)*C(i,1)*lavgf(i,k) + b(i,k)*C(i,1)*I avg b(i,k);
end
Iclean(i. 1) = sum(TempSum);

end
IC = Iclean(2:time-1,1);
return
end

function PeakLocAvg = PeakFinder(nM)
% Coded by Nigel Reuel on 9.15.2010 updated in March 2011 by NFR
% This function finds the peaks of a histogram using a modified running
% average algorithm + peak flagging routine

[nT,nB] = size(nM);

%Size of window for running average algorithm (increasing this causes more
%of a rough approximation of peaks)
SW = 3;
% Centered running average algorithm to help find peaks:

T_ra = zeros(nT,nB);
for j = 1:nT

for i = 1:nB
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if i < (SW + 1)
Tra(j,i) = sum(nM(j,1:i+SW))/(i+SW);

elseif i >= (SW+1) && i <= (nB-SW)
T-ra(j,i) = sum(nM(j,i-SW:i+SW))/(SW*2+1);

else
Tra(j,i) = sum(nM(j,i:nB))/(nB-i+1);

end
end

end
%xlswrite('T-ra',T-ra);

% ---------------Peak finding algorithm------------------

% Base function on physical example of climbing up and down hills. Drop
% flags on supposed peaks. Eliminate "peaks" that are molehills. Combine
% peaks that are close neighbors.
Flags = zeros(nT,nB,6);
% Layer 1 = Peak Flag
% Layer 2 = Right Valley Bin#
% Layer 3 = Left Valley Bin#
% Layer 4 = Peak magnitude (Histogram Count)
% Layer 5 = Right Valley magnitude (Histogram Count)
% Layer 6 = Left Valley magnitude (Histogram Count)
% Molehill level (number of responses that are not significant - avg!)
MoleL = (5/SW)*.5; % = #responses/#bins/SW = Avg. Response, no significance)
PeakLocAvg = zeros(nT,2);
for i = 1:nT
forj = 1:nB

if Tjra(ij) > MoleL
% Logic to find significant peaks at endpoints (and the R/L
% valleys)
if j == I && Tra(ij) > Tra(ij+1)

Flags(ij,I) = 1;
Flags(i,j,4) = Tjra(ij);
Pval = Tjra(ij);
Pnext = Tjra(ij+1);
index =
% Find right hand valley:
while Pval > Pnext

index = index + 1;
Pval = Tra(iindex);
Pnext = T-ra(i,index+1);

end
Flags(i,j,2) = index;
Flags(i,j,5) = T ra(i,index);

elseif j == 1 && Tra(ij) <= Tjra(i,j+1)
Flags(ij,1) = 0;

elseif j == nB && T-ra(ij) > Tra(i,j-1)
Flags(i,j,1) = 1;
Flags(i,j,4) = Tjra(ij);
Pval = Tjra(ij);
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Pprior = T-ra(i,j-1);
index =j;
% Find left hand valley:
while Pval > Pprior

index = index - 1;
Pval = T-ra(i,index);
Pprior = Tra(i,index-1);

end
Flags(i,j,3) = index;
Flags(i,j,6) = T-ra(i,index);

elseif j == nB && Tra(ij) <= T-ra(i,j-1)
Flags(ij,1) = 0;

% Logic to find peaks at all midpoints (and their R/L valleys)
elseif T ra(ij) >= T ra(ij-1) && T ra(ij) >= T-ra(ij+1)

Flags(i,j,1) = 1;
Flags(i,j,4) = T-ra(ij);
% Find left hand valley:
Pval = T_ra(ij);
Pprior = T ra(ij-1);
index =j;
ifj>2

Switch = 1;
else

Switch = 0;
index = 1;

end
while Pval > Pprior && Switch == 1;

index = index - 1;
Pval = T-ra(i,index);
Pprior = T-ra(i,index-1);
if index == 2

Switch = 0;
index= 1;

end
end
Flags(i,j,3) = index;
Flags(i,j,6) = Tra(i,index);
% Find right hand valley:
Pval = T_ra(ij);
Pnext = Tra(ij+1);
index =j;
if j < nB - 1

Switch = 1;
else

Switch = 0;
index = nB;

end
while Pval > Pnext && Switch == 1;

index = index + 1;
Pval = T-ra(i,index);
Pnext = T-ra(i,index+1);
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if index == nB - 1;
Switch = 0;
index = nB;

end
end
Flags(i,j,2)= index;
Flags(i,j,5)= Tra(i,index);

end
end

end
%{

X = (1:200)';
Y1 = Flags(i,:,1)';
Y2 = T-ra(i,:);
plot(X,YI,X,Y2)

%}I
%Make a vector containing the peak locations:
PeakVec = 0;
count= 1;

for j = l:nB
if Flags(ij,1) == 1

PeakVec(1,count) = j;
count = count + 1;

end
end
% Now analyze peak pairs:
% Specify significant peak valley distance and significant bin
% distance:
SigD = (5/SW)*.5; % = the average response
SigBinD = 200*(.025); % = 2.5% of the total bin #.
Npeaks = length(PeakVec);
% Determine the peak pairwise interactions...each will have a right
% hand value and left hand value (except for the endpoints):
% 1: Unique
% 2: Combine
% 3: Ignore
% Create a matrix to recieve these calculations:
PeakCode = zeros(2,Npeaks); % Row I = to right, Row2 = to left
forj = 1:Npeaks-1

% Determine the peak bin numbers:
PBN1 = PeakVec(lj);
PBN2 = PeakVec(1,j+1);
% Calcualate the valley distances (left to right)
VD1 = abs(Flags(i,PBNI,4) - Flags(i,PBN1,5));
VD2 = abs(Flags(i,PBN2,6) - Flags(i,PBN2,4));

if VD1 <= SigD && VD2 <= SigD
% Combine
PeakCode(lj) = 2;
PeakCode(2,j+1) = 2;

elseif VDl >= SigD && VD2 <= SigD
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% Left Peak sig, right peak ignore
PeakCode(1,j) = 1;
PeakCode(2,j+1) = 3;

elseif VDl <= SigD && VD2 >= SigD
% Left peak ignore, right peak significant
PeakCode(1,j) = 3;
PeakCode(2,j+1) = 1;

elseif VDl >= SigD && VD2 >= SigD
% Both peaks are significant
PeakCode(1,j) = 1;
PeakCode(2,j+l) = 1;

end
end
% Logic for the peak endpoints
Left = abs(Flags(i,PeakVec(1,1),4) - Flags(i,PeakVec(1,1),6));
if Left >= SigD

PeakCode(2,1) = 1;
else

PeakCode(2,1) = 3;
end
Right = abs(Flags(i,PeakVec(1,Npeaks),4) - Flags(i,PeakVec (1,Npeaks),5));
if Right >= SigD

PeakCode(1,Npeaks) = 1;
else

PeakCode(1,Npeaks) = 3;
end
% Now determine what to do with the peaks. Look at combinations
% reading left to right. Put signifcant peaks into a vector.
SPV = 0;
j = 1;
count= 1;
while j <= Npeaks

CI = PeakCode(1,j);
C2 = PeakCode(2,j);
if CI == 1 && C2 == 1

% This is a bonafide unique peak. Put it in the vector.
SPV(1,count) = PeakVec(1,j);
count = count + 1;
j =j+1;

elseif CI == 2
% This peak will be merged with other peak(s)
count2 = 2;
Merge = PeakVec(1,j);
while C == 2

j =j + 1;
CI = PeakCode(1,j);
Merge(1,count2) = PeakVec(1,j);
count2 = count2 + 1;

end
% Insert logic here to eliminate valleys and slow rises (see
% what is happening at the significant enpoints!)
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Endl = Flags(i,Merge(1,1),4) - Flags(i,Merge(1,1),6);
End2 = Flags(i,Merge(1,end),4) - Flags(i,Merge(1,end),5);
Distance = Merge(1,end) - Merge(1,1);
if Endl >= SigD && End2 >= SigD

SPV(1,count) = round(mean(Merge));
count = count + 1;

j = j + 1;
elseif Endl >= SigD && End2 <= (SigD)*(-1) && Distance >=

SPV(1,count) = round(mean(Merge));
count = count + 1;
j =j + 1;

elseif Endl <= SigD*(-1) && End2 >= (SigD) && Distance >=
SPV(1,count) = round(mean(Merge));
count = count + 1;

j =j + 1;
end

else % Represents 1/3, 3/1, and 3/3 combos which are all ignored!!
j =j + 1;

SigBinD

SigBinD

end
end
Nsigpeaks = length(SPV);
forj = 1:Nsigpeaks

PeakLocAvg(i,j) = SPV(1,j);
end
%{I

% Plot the PeakLocAvg to see how the algorithm performs)
S = Nsigpeaks;
FF = zeros(1,nB);

fork= 1:S
Temp = PeakLocAvg(i,k);
FF(l,Temp)= 1;

end
X = (1:200)';
Y1 = FF(,:)';
Y2 =Tra(i,:);
plot(X,Y1,X,Y2)
stop= I;
%}

end

return
end

%% ------------ ------- FIT STATES ----- ------------
function [NumofStates, BestFitTraces] = fitStates(maxN, timevector, data2, data3, MaxNumofStates)
%This function determines the number of states for each trace

%INPUTS:
% maxN maximum number of transitions for each traces
% timevector vector of times corresponding to each frame
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% data2 second column of normalized data in *.dat files
% data3 third column of normalized data in *.dat files

%OUTPUTS
% NumofStates row vector containing number of states for each trace
% BestFitTraces matrix showing the current states occupied by each
% trace for each frame (crude approximation)

A{1 } = timevector';
[row, cols] = size(data2); %# rows = # timeframes, # cols = # SWNT
for q = 1:1 :cols %Loop through each SWNT trace

%redefine variable to match formatting used in StatesFinder
A{2} = data2(:,q);
A{3} = data3(:,q);

time=A{ 1};
data=A{ 3}./1000;
timeinc=time(2,1 )-time(1,1);
fulldata=[A{1} A{2} A{3}];

fitdata=data;
antifit=data;

resultArray=zeros(maxN,3); %first column the begnning index. second column is the length. third

colum is the step fit.
resultArray(1,1)=1;
resultArray(1,2)=length(data);
resultArray(1,3)=mean(data);
fitdata(:)=resultArray(1,3);
chisquaredFit=zeros(maxN, 1);
chisquaredAntifit=zeros(maxN, 1);
chisquaredFit(1)=sum((data-fitdata).^2,1);
SS=zeros(maxN,1);
SS(1)=l;

flag=0;
resultArray0 = resultArray;
for i=1:(maxN-1),

para=0;
for j=1:i,

temp=resultArray(j, 1);
temp2=resultArray(j,2);
B=data(temp:(temp2+temp-1));
[StepSize,StepLocation,left,right]=TJstepFinder(B);
temp3=StepSize*(temp2)AO.5;
if temp3 > para %optimal num. of transitions (maximize temp3)

para=temp3;
newBegin1=temp;
newLengthl=StepLocation- 1;
newValue1=left;
newBegin2=temp+StepLocation- 1;
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newLength2=temp2-newLengthl;
newValue2=right;
bestJ=j;

end
end

resultArray(bestJ, 1)=newBeginI;
resultArray(bestJ,2)=newLength 1;
resultArray(bestJ,3)=newValue 1;
resultArray(i+ 1,1)=newBegin2;
resultArray(i+1,2)=newLength2;
resultArray(i+1,3)=newValue2;
currentFitArray=sort-on-key(resultArray(1:i+ 1,:), 1);
antiFitArray=zeros(i+2,3);
antiFitArray(1,1)=1;
antiFitArray(1,2)=length(data);
for j=1:(i+1),

temp=currentFitArray(j, 1);
temp2=currentFitArray(j,2);
if (temp2 == 1)

flag = 1;
break;

end
B=data(temp:(temp2+temp-1));
[StepSizeStepLocation,left,right]=TJstepFinder(B);
antiFitArray(j+1,1)=temp+StepLocation-1;

end
if (flag == 1)

break;
end
for j=1:i+1,

antiFitArray(j,2)=antiFitArray(j+1,1)-antiFitArray(j,1);
antiFitArray(j,3)=mean(data(antiFitArray(j, 1):(antiFitArray(j,2)+antiFitArray(j,1)-1)));

end
antiFitArray(i+2,2)=length(data)-antiFitArray(i+2, 1)+ 1;
antiFitArray(i+2,3)=mean(data(antiFitArray(i+2, 1):end));

forj=1:i+1,
fitdata(resultArray(j, 1):(resultArray(j,2)+resultArray(j, 1)-1))=resultArray(j,3);

end
for j=1:i+2,

antifit(antiFitArray(j, 1):antiFitArray(j,2)+antiFitArray(j, 1)-1)=antiFitArray(j,3);
end

chisquaredFit(i+I)=sum((data-fitdata).^2,1);
chisquaredAntifit(i+ 1)=sum((data-antifit).^2, 1);
SS(i+ 1)=chisquaredAntifit(i+ 1)/chisquaredFit(i+ 1);

resultArrayO = resultArray;
end
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resultArray = resultArray0;

[C,I]=max(SS);

bestfitnumber=I;
resultArray(1,1)=1;
resultArray(1,2)=length(data);
resultArray(1,3)=mean(data);
fitdata(:)=resultArray(1,3);
chisquaredFit=zeros(maxN, 1);
chisquaredFit(1 )=sum((data-fitdata).^2,1);
for i=1:(bestfitnumber),

para=O;
for j=1:i,

temp=resultArray(j, 1);
temp2=resultArray(j,2);
B=data(temp:(temp2+temp-1));
[StepSize,StepLocation,left,right]=TJstepFinder(B);
temp3=StepSize*(temp2)AO.5;
if temp3 > para,

para=temp3;
newBeginl=temp;
newLength I=StepLocation- 1;
newValue l=left;
newBegin2=temp+StepLocation-1;
newLength2=temp2-newLengthl;
newValue2=right;
bestJ=j;

end
end

resultArray(bestJ, 1)=newBeginI;
resultArray(bestJ,2)=newLength 1;
resultArray(bestJ,3)=newValue 1;
resultArray(i+ 1, 1)=newBegin2;
resultArray(i+1,2)=newLength2;
resultArray(i+1,3)=newValue2;

end

for j=1 :bestfitnumber+ 1,
fitdata(resultArray(j, 1):(resultArray(j,2)+resultArray(j, 1)- 1))=resultArray(j,3);

end
finalresult=sort on key(resultArray((1:bestfitnumber+ 1),:), 1);
finalresult(:, 1)=(finalresult(:, 1)-1)*timeinc+time(1);
finalresult(:,2)=finalresult(:,2)*timeinc;

if MaxNumofStates == 10 %if maximum number of states is 10
statesnum=length(unique(round(10*finalresult(:,3))));
roundedfit = round(fitdata* 10)/10;
fitdataaverage = zeros( 1,length(fitdata));
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for i = 1:1:length(rounded fit)
if roundedfit(i) ~= -1

sameStatecoord = find(rounded fit==rounded_fit(i));
total sum = 0;
for j = 1:1:length(sameState-coord)

totalsum = totalsum+fitdata(sameStatecoord(j));
rounded fit(sameState-coord(j)) = -1;

end
averagestate = totalsuml(length(sameState-coord));
for k = 1:1 :length(sameState-coord)

fitdataaverage(sameState-coord(k)) = averagestate;
end

end
end

else %if maximum number of states is something other than 10
%from the fit, group states with similar values according to the
%maximum numnber of states as specified by the user. First, create a
%vector of states between 0 and 1 consisting of number of states
%specified by the user. Then find the difference between each of these
%states and the fitdata value, and whichever state i closest to the
%fitdata value is determined to be the state.
possible-states = 0:(1/MaxNumofStates): 1;
roundedfit = zeros(1, length(fitdata));
for i = 1:1:length(fitdata)

difference = abs(fitdata(i)-possible-states);
[dum, state coord] = min(difference); %find the state closest to the fit data
rounded-fit(i) = possible-states(state_coord);

end
%Now start to average all the states that were grouped into having the
%same rounded state
fitdataaverage = zeros(1,length(fitdata));
for i = 1:1:length(rounded-fit)

if rounded fit(i) -= -1
sameStatecoord = find(rounded fit==roundedfit(i));
totalsum = 0;
for j = 1:1:length(sameState-coord)

totalsum = total-sum+fitdata(sameState coord(j));
rounded fit(sameState-coord(j)) = -1;

end
average-state = total-suml(length(sameState-coord));
fork = 1: 1:length(sameState coord)

fitdata-average(sameState-coord(k))= averagestate;
end

end
end
statesnum = length(unique(fitdata average));

end
output(q,:) = [statesnum, fitdata-average];

end

NumofStates = output(:,1)';
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BestFitTraces = output(:, 2:end)';

return;
end

%% ----------------- TJ STEP FINDER -------------------------
function [StepSize,StepLocation,left,right]=TJstepFinder(B)

%This function is called upon by the fitStates function to locate steps in

%the traces.

global C; %this is what we send to TJflatFit

lengthB=length(B);

%Initial conditions
fitResult=B;
tempfit=B;
StepSize=O;
bestchisquared= 1OA10;
time=(1:lengthB);
StepLocation= 1;
C=zeros(1,2);
C(:, 1)=(I: 1)';
C(:,2)=B(1:1);
A1=mean(C(:,2));
tempfit(1: 1)=A1;
C=zeros((lengthB- 1),2);
C(:, 1)=((l +1): lengthB)';
C(:,2)=B(( +1):lengthB);
A2=mean(C(:,2));
StepSize=abs(A2-A1);
left=A1;
right=A2;

for i=1:(lengthB-1),
C=zeros(i,2);
C(:,1)=(1:i)';
C(:,2)=B(1:i);
Al =mean(C(:,2));%fmins('TJflatFit',mean(C(:,2)));
tempfit(1:i)=A1;
C=zeros((lengthB-i),2);
C(:,1)=((i+1):lengthB)';
C(:,2)=B((i+1):lengthB);
A2=mean(C(:,2));%fmins('TJflatFit',mean(C(:,2)));
tempfit((i+ 1):lengthB)=A2;
chisquared=sum((tempfit-B).A2, 1);
if chisquared < bestchisquared,

bestchisquared=chisquared;
fitResult=tempfit;
StepSize=abs(A2-A1);
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StepLocation=i+1;
left=Al;
right=A2;

end
end

return;
end

%% -------------------- SORT ON KEY ----------------------------------

function sorteer=sortonkey(rij,key)

%This function is called upon by the fitStates function to locate steps in
%the traces. It reads a (index,props) array ands sorts along the index with one of the
%props as sort key

size=length(rij(:, 1));
sorteer=O*rij;
buf=rij;
for i=1:size

[g,h]=min(buf(:,key));
sorteer(i,:)=buf(h,:);
buf(h,key)=max(buf(:,key))+1;

end

return;
end

function M = GenTrace(A,B,C,numTr,Ttotal)
% Coded by Nigel Reuel on 3.3.2011
% This function generates general step traces according to three
% parameters which encompass all types of step data:
% A - tendency up / tendency down
% B - avg event time / signal sampling time
% C - avg step size / avg noise
% It generates a user-specified number of traces with these three
% parameters and returns a 3D matrix of the traces (first level - real
% response, 2nd level - noise). To aid in comparing traces, all traces are
% normalized on a scale of 0 to 1.

Tdown = ;
Tup = A;
Tprob = Tdown + Tup;
%SigSampT = 1; %< --- Not used, but coded in my index numbers
AvgEventT = B;
AvgNoise = 1;
AvgStep = C;
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% Set total simulation time and number of traces: - Now function input
% Ttotal = 1000;
% Initialize solution matrix:
M = zeros(Ttotal,numTr,2);
% Generate the traces
for i = 1:numTr

t = 1;
% Signal start (arbitrary due to normalization):
S = 100;
% Track signal changes:
SigChange = [0 0];
num= 1;
while t < Ttotal

SigChange(num, 1) = t;
% 1) Determine step size:
SS = rand()*2*AvgStep;
% 2) Determine the direction:
randI = rando;
check I = rand 1 *Tprob;
if check1 < Tdown

S = S - SS;
else

S = S + SS;
end
SigChange(num,2) = S;
num= num + 1;
% 3) Determine the next event time:
tstep = rand()*2*AvgEventT;
t = t + tstep;

end
% Turn signal change matrix into real trace and trace w/ noise
RealTr = zeros(Ttotal,1);
NoiseTr = zeros(Ttotal,1);
Intervals = round(SigChange(:, 1));
Intervals(num,I) = Ttotal;
for j = l:num-1

fork = Intervals(j,1):Intervals(j+1,1)
RealTr(k,I) = SigChange(j,2);
NoiseL = (rand()*2-1)*AvgNoise;
NoiseTr(k,1) = SigChange(j,2) + NoiseL;

end
end
%Normalize according to max and min levels in traces
Max(1,1) = max(RealTr);
Max(2, 1) = max(NoiseTr);
Min(1,1) = min(RealTr);
Min(2,I) = min(NoiseTr);
MaxN = max(Max);
MinN = min(Min);
SigDiff = MaxN-MinN;
Real n = (RealTr-MinN)./SigDiff;
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Noise-n = (NoiseTr-MinN)./SigDiff;
M(:,i,1)= Realn;
M(:,i,2) = Noise-n;
% Graphical check of traces:
%{
X= 1:1000;
X =X';
plot(X,Real-n,X,Noise-n);
%}

end
return
end

function [usig,t,iter] = fit mix-gaussian( X,M)

% Gaussian Fit Function by Ohad Gal (c) 2003
% Download at:
% http://www.mathworks.com/matlabcentral/fileexchange/4222-a-collection-of-fitting-functions
% on 3.21.2011

% fitmix-gaussian - fit parameters for a mixed-gaussian distribution using EM algorithm
%
% format: [u,sig,t,iter] = fit-mix-gaussian( X,M)

% input: X - input samples, NxI vector
% M - number of gaussians which are assumed to compose the distribution

% output: u - fitted mean for each gaussian
% sig - fitted standard deviation for each gaussian
% t - probability of each gaussian in the complete distribution
% iter- number of iterations done by the function

% initialize and initial guesses
N =length( X );
Z = ones(N,M) * I/M; % indicators vector
P = zeros(N,M); % probabilities vector for each sample and each model
t = ones(1,M) * 1I/M; % distribution of the gaussian models in the samples
u = linspace(min(X),max(X),M); % mean vector
sig2 = ones(1,M) * var(X) / sqrt(M); % variance vector
C = l/sqrt(2*pi); % just a constant
Ic = ones(N,1); % - enable a row replication by the * operator
Ir = ones(1,M); % - enable a column replication by the * operator
Q = zeros(N,M); % user variable to determine when we have converged to a steady
solution
thresh = le-3;
step =N
laststep = inf;
iter = 0;
miniter = 10;

% main convergence loop, assume gaussians are ID
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while ((( abs((step/last-step)-1) > thresh) & (step>(N*eps)) ) (iter<minjiter) )

% E step

Q =Z;
P = C ./ (Ic*sqrt(sig2)) .* exp( -((X*Ir - Ic*u).A2)./(2*lc*sig2));
form= 1:M

Z(:,m) = (P(:,m)*t(m))./(P*t(:));
end

% estimate convergence step size and update iteration number
prog-text = sprintf(repmat( '\b',1,(iter>O)*12+ceil(log1O(iter+1)) ));
iter = iter + 1;
laststep = step * (1 + eps) + eps;
step = sum(sum(abs(Q-Z)));
fprintf( '%s%d iterations\n',progjtext,iter);

% M step
%========---

Zm = sum(Z); % sum each column
Zm(find(Zm==O)) = eps; % avoid devision by zero
u =(X')*Z . Zm;
sig2 = sum(((X*Ir - Ic*u).A2).*Z) ./ Zm;
t =Zm/N;

end

sig = sqrt( sig2);

return
end
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7. 3D Tracking of Carbon Nanotubes within Living Cells

Some of the work, text and figures presented in this chapter are reprinted or adapted from "Three-

Dimensional Tracking of Carbon Nanotubes within Living Cells," Nigel F. Reuel, Aurdlie Dupont,

Olivier Thouvenin, Don C. Lamb, and Michael S. Strano. ACS Nano 2012 6 (6), 5420-5428 (reprinted

under thesis use allowance from the American Chemical Society © 2012).

7.1 Background and Motivation

Semiconducting single-walled carbon nanotubes (SWNTs), which fluoresce in the near infrared

(nIR) due to their unique band-gap structure,' can be engineered into biosensor constructs by non-

covalent wrappings that are 1) selective to target analytes (such as glucose,' NO,4 proteins, and

glycans6) and 2) modulate the SWNT fluorescent signal when a binding event occurs. 7 However, much

remains to be understood regarding SWNT interaction with biological cells and tissues. In particular,

their mechanisms of endocytosis and trafficking, aggregation and exocytosis.8 Past work in the Strano

group utilized two-dimensional tracking of SWNTs using nIR fluorescent microscopy to elucidate the

mechanistic steps of endo- and exo-cytosis in NIH3T3 cells.9 Subsequently, we derived and validated a

model that described the size-dependent uptake of SWNTs via endocytosis.10 However, 2D tracking was

limited in the spatial and temporal resolution as the particles drifted in the z-direction out of the focal

volume or out of the field of view in the x-y direction. Feedback-based, three-dimensional nanoparticle

tracking can overcome these limitations by changing the field of view or focal volume depth in real time

to follow the motion of the particle. This allows one to follow SWNTs in the focus of the microscope

over longer periods of time and one has the possibility to extract additional information such as corral

volumes (rather than corral surfaces or regions found in 2D tracking) or determine the local viscosity

experienced by the nanoparticles. As the SWNT remains in the focus of the tracking microscope, the

fluorescence intensity can also be used during the trajectory to provide orientation information of

anisotropic SWNT particles. Understanding the rotational behavior and corresponding signal fluctuations

at varying viscosities is necessary to utilize the fluorescence intensity as a readout of the SWNT sensor."

Thus, not only is the pathway of the particle mapped through the cell but also the production or

consumption of a specific analyte (protein, sugar, or small molecule) can be measured at different

locations within a cell.

Here, we demonstrate 3D tracking of single SWNTs with an orbital tracking microscope,1-1 and

extend this technique to SWNTs localized within living HeLa cells. Mathematical modeling and analysis

of the experimental in vitro trajectories shows the effect of solution viscosity on SWNT rotational motion
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and confirms the hypothesis that SWNT rotation causes signal fluctuations. 5 At high viscosities (250-

1000 cP), the rotation is slow enough to use the rotational diffusion coefficient for accurate SWNT length

calculations5 -15 ' 7 whereas, at lower viscosities, the translational coefficient is preferred. After quantifying

the translational and rotational characteristics of SWNTs as a function of viscosity, we used them to probe

the viscosity of a HeLa cell. The internalized SWNTs demonstrated normal diffusion, active transport,

and confined diffusion. The 3D motion of the SWNTs was used to calculate the active transport

velocities and corral volumes; the relationship between SWNT rotation and translation determined in

vitro was used to predict local apparent viscosities and SWNT lengths. Finally, we show how the

rotational diffusion constant can be used to evaluate the level of background noise of a SWNT sensor and

what level of quenching or fluorescence enhancement would be necessary for a statistically significant

binding event to be distinguished from fluorescence fluctuations due to rotation.

7.2 Methods

7.2.1 Preparation of Chitosan Wrapped SWNT Suspension

The SWNT were prepared as previously published.6 Briefly, 3 mg of SWNT (Southwest

Nanotechnologies - (6,5) chirality > 70%) were added to a chitosan solution. The chitosan was made

soluble by protonation in an acidic solution (add 1 vol% acetic acid). The resulting mixture was sonicated

for 40 min at lOW amplitude with a probe tip sonicator (Cole Parmer, Model CV18). The black

suspension was centrifuged at 16,000g for 2 hours using a table top centrifuge (Labnet Inc) and the

supernatant was collected. The centrifugation process was repeated two more times to eliminate any

SWNT aggregates. The supernatant can be stored at room temperature in a sealed container for more than

3 months without any aggregation. The final concentration of our SWNT sample was 15 mg/L as found

by optical absorbance at 990nm using the calibration value for (6,5) SWNTs of 13 mg/L for an absorption

of I OD at 990 nm.'8

7.2.2 Tracking of SWNT Particles

First, the optimal concentration of SWNT must be determined for single particle tracking. This

was done by immobilizing SWNT in a moisture curable resin (MY-133MC from MY Polymers Ltd) at

varying SWNT concentrations and imaging the sample to see whether single particles were resolvable.

At concentrations greater than 0.5% vol, the sample emitted large photon counts above 950 nm, but single

particles could not be detected (bright background). At a concentration of 0.5% vol, we were able to

visualize single SWNT as fluorescent diffraction-limited spots and 'track' them by moving the stage
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holding the immobilized SWNTs in a set 2D sinusoidal and 3D box pattern as has been discussed

previously.' 2 Seven 100 pl SWNT-glycerol solutions were created by adding approximately 40, 50, 60,

75, 85, 95, and 99.5 pl of glycerol to 0.5 pl of SWNT stock. Particle-filtered (Millipore) pure water was

added to make up the remaining volume. The solutions were bath sonicated for 15 minutes in a warm

bath (T z 30'C) to ensure complete mixing of the viscous solutions and then allowed to cool to room

temperature.

After calibrating the system (to determine pixel size and ensure tracking accuracy), SWNT

tracking in 3D was accomplished by entrapping them in a sample chamber and acquiring tracks using the

Globals for Images (Sim-FCS) software from the Gratton group.' 9 Sample chambers were constructed

from thin (No. 1) coverslips separated by 300tm of Parafilm (two film layers) on both sides of a small

channel between the two coverslips. The SWNT solutions were drawn into the chambers via capillary

flow and the input and output of the chamber were sealed by adding melted paraffin at the ends of the

channel. The small sample chambers allowed the SWNT to freely diffuse in all 3 dimensions without

wall interactions and preserved the sample for multiple days of imaging. The chambers were placed on

the water-immersed objective (Nikon water immersion objective, NA 1.20 63x) and the middle of the

fluid chamber was determined by observing the reflected excitation beam at the surface of the top and

bottom coverslip and positioning the objective between these points. The 561nm laser (50 mW Cobolt

Jive) was set to full power (0.4 mW at the sample) to observe the SWNT. The photon counts fluctuated

during a tracking event but on average were 3 times greater than the background count. This signal-to-

noise ratio could be drastically improved by utilizing nIR detectors.

Data analysis was then done with a few custom Matlab programs (all available in Appendix 1-4).

The text log output from the SimFCS software was parsed to extract the X, Y, and Z coordinates as well

as the photon counts from the upper and lower detectors. As the traces contained some dead time before

and after the real tracking events or jumping between different tracked particles, another automated

program was used to analyze the data and find significant tracking events (Code in Appendix 7.1).

Specified criteria were longer tracks (greater than 100 steps) that had small internal step lengths (total

squared displacement less than 3x10 4 nm2 between steps or average of 100 nm in each direction). Finally,

another program was used to analyze each of these significant traces with the following steps: 1)

calculate MSD plots from the position and rotational data, 2) fit the first 10% of the time steps in the

MSD plot to determine the translational and rotational diffusion coefficients, and 3) calculate lengths

using the equations detailed by Marshall et al.20 A distribution of the lengths was then created from the

individual measurements.

7.2.3 Tracking of SWNT Particles in Live HeLa Cells
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Live HeLa cells were seeded at a density of 1x10 4 cells/well into 8 well chamber slides (IBIDI). The cell

culture media was replaced prior to experiment by warm DPBS buffer and the sample was maintained at

37 0 C on the microscope state. A target cell was visualized using the widefield channel of the microscope.

First, the center of the cell was approximated by bringing the intracellular compartments in sharp focus

and then a stack of five images below and five above the center point were acquired at a step resolution of

200 nm using an external z-axis control. This stack of images was later used to reconstruct the cell

volume (via the darker cell walls) and see if the overlaid SWNT tracks were within the cell volume.

SWNT were added from the stock solution to the media (10 uL, final concentration 2.5% vol) without

disturbing the cell in focus. The SWNTs diffuse too quickly in aqueous solution to be tracked with the

current setup up. After 30 minutes, the SWNT are taken up by the HeLa cells and the motion of the

SWNTs can then be followed. After overlaying the acquired tracks, 17 were found within the cell volume

along with one extra-cellular SWNT resting on or near the plasma membrane.

7.2.4 AFM Imaging of SWNT

For AFM measurements, the stock solution of chitosan SWNT was diluted to lIx and deposited

on a clean silicon wafer. After allowing for physisorption for 30 min, the chip is washed with water three

times and then dried with nitrogen. The SWNTs on the chip are then imaged with AFM (Asylum

Research) using a silicon nitride tip (Olympus Micro Cantilievers - resonant frequency of 70 kHz, spring

constant of 2 N/m) in tapping mode at 700mW drive set point and scan angle of 90'. A scan area of 5 [m

square and scan frequency of 0.5 Hz was found to visualize SWNT well. The SWNT lengths were

measured by the multi-point length determining tool of Gwyddion software (freely available online).

7.3 Results and Discussion

An orbital tracking system (with established spatial resolutions of 7-15 nm and temporal

resolution of 32 ms) 12 was used to visualize chitosan wrapped SWNT. 6 The orbital microscope utilizes an

orbiting excitation beam and a real-time feedback control system (Figure 7. la) to keep the particle in

focus: 1) deviations from the orbit's center give rise to an intensity modulation from which the particle's

position can be inferred and the orbit location is adjusted to follow the particle via the piezo-mirror; 2)

deviations in the z-plane are detected via the difference in photon counts between the two, off-focus

detection planes and the microscope responds by a piezo-controlled objective. The microscope was

originally designed for use with visible fluorescent probes12" 3 and was therefore modified for nIR

detection by exchanging the emission filter with a 950 nm longpass filter in the emission path to the

silicon avalanche photo diodes (APD) (Figure 7. 1a). The APDs have a low quantum efficiency in the nIR

but the sensitivity is still sufficient for single particle tracking. The (6,5) SWNT chirality was targeted as
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its excitation resonance matched the 561 nm laser source and its emission (990 nm)1 could be detected on

the APD. The large Stokes shift of the SWNT fluorescence is advantageous for tracking in live cells as

the absorption of the nIR emission from the SWNTs is low ('Tissue Transparent Window') and there will

be minimal background autofluorescence.' Our ability to detect and track SWNT with orbital tracking

was tested using immobilized particles in cured polymer, which were first located and then tracked while

being moved in known test patterns by a peizo stage. It was found that the stock solution of SWNT (15

mg/L) must be diluted to 0.5 vol% to detect and track individual particles. Three-dimensional single

particle tracking was then performed on SWNT in solution using the Globals for Images (Sim-FCS)

software. SWNTs exhibited their characteristic high photostability even at maximum laser power during

tracking, whereas the fluorescent beads used for calibration quickly bleached at a rate dependent on laser

power (Figure 7.1b).
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Figure 7.1 - Three dimensional tracking of SWNT. a) Schematic diagram of the orbital tracking microscope with a

990 nm longpass filter placed in the fluorescence beam path. b) Fluorescence intensity of a SWNT and fluorescent

beads for comparison at varying laser power (quantum efficiency of silicon detectors at 990 nm is less than 10%,

thus, the SWNT signal is comparatively low but photostable). c) Representative SWNT tracks at approximately 40,

85, and 95 vol% glycerol (19.3, 6.9, and 8.9 s tracks respectively) with accompanying translational (2.82, 0.12, 0.05
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ptm 2/s respectively) and rotational diffusion coefficients (0.03, 0.06 and 0.11 rad2/s respectively). The color of the

track denotes the signal intensity to show the fluctuations during observed tracking (normalized scale).

As observed also in previous 2D tracking work,15 SWNT diffusion in pure water is too rapid to

allow single particle tracking in aqueous solution with our orbital tracking microscope with 32 ms per

orbit (on average 500 nm in each direction per 32ms orbit - Fig 7.2). Hence, we increased the viscosity

with glycerol and measured the free diffusion of SWNTs in seven different concentrations of glycerol

(approximately 40, 50, 60,75, 85, 95, and 99.5 vol% in water, Table 7.1) (Figure 1c). As pipetting was

only approximate and the hydroscopic properties of glycerol make the high glycerol concentrations

unreliable, we experimentally determined the viscosity of the different solutions (Table 7.1). We used

190nm diameter fluorescent beads as a calibration and extracted the viscosity from the diffusion

coefficient determined from a mean square displacement (MSD) analysis assuming the Stokes-Einstein

relationship:22

D= kB -T Eq.7.1
6 -7r -71 - r

where D is the translational diffusion coefficient, kB is the Boltzmann constant, T is temperature, q is

viscosity of the solvent and r is the radius of the spherical particle. During tracking, the fluorescence

intensity of the SWNTs fluctuated (Figure 7.1b) significantly more than the control beads or when the

SWNTs were placed in cured polymer. These fluctuations were attributed to the rotation of the SWNTs in

solution as hypothesized by Tysboulski et al.5 We also tested this hypothesis by simulating the effect of

SWNT rotation in a random walk model (Appendix 7.2) and analyzing the simulation results with the

same analysis protocol used for the acquired experimental tracks.

Table 7.1 - Calculated viscosities for seven samples with different concentrations of glycerol. Averaged viscosity

values come from 8-10 experimental tracks.

Sample # Glycerol Content (vol %) Calculated Viscosity from
Bead MSD (cp) and 95%

confidence interval
1 40% 2.5 0.7
2 50% 10.6 4.2
3 60% 15.7 10.8
4 75% 43.7 ± 5
5 85% 51.4 ± 9
6 95% 374 ±110
7 99.5% 856 ±200
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Figure 7.2 - Plots were generated from equations 7.2 and 7.3 for a 900 nm nanotube at viscosities from 1 to 1000

centipoise. They illustrate how the unidirectional displacement (a) and degree of rotation (b) change with relation to

viscosity.

The length of the nanotube is an unknown parameter that needs to be determined, either through

translation diffusion or rotational diffusion assuming that SWNT rotation causes fluctuations in the

fluorescence signal. Calculating nanotube length from simulated and experimentally acquired trajectories

and intensity data is straightforward. For translation diffusion MSD plots (tm 2 vs. At - Figure 7.3a insert)

are created from the 3D trajectories recorded by the orbital tracking microscope and the diffusion

coefficient is determined from the slope of MSD curve2
0 (code in Appendix).
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For determination of rotational diffusion, the intensity values were first scaled to geometrical

angles of rotation (ranging from 0 to 7r/2) by assuming a maximum signal when the nanotube's length is

parallel to the linear polarization of the impinging excitation (perpendicular to direction of the light -

angle of 0) and a minimum when the nanotube is perpendicular to the polarization (r/2), 23 with a cos 2 (O)

proportion holding between these two endpoints.' 4 For this assumption to hold, the nanotube must

always be centered in the excitation pathway, which is a good approximation as the orbital tracking

microscope continually recenters the excitation beam around the particle. This simple approximation also

ignores the decrease in linear polarization of the excitation beam due to dichroics or the use of high

numerical aperture objectives. However, although the approximation is simple, the comparison of

calculated lengths to the measured and known physical lengths is very good. After this scaling is made,

the MSD of the angle (rad2 vs. At - Figure 7.3a insert) is calculated and the rotational diffusion

coefficients determined from the slope of the MSD curve 20 (code in Appendix 7.3). The rotational

diffusion of nanorods can also be determined using fluorescence correlation spectroscopy from

fluctuations induced by rotation of the SWNT in the polarized excitation beam.24 In fact, orbital tracking

should allow direct observation of the rotational diffusion in FCS without being affected by translation

diffusion as the excitation beam is tracking the SWNT. However, the trajectories measured in this work

were too short to perform a quantitative correlation analysis. Thus, we continued with our angle scaling

approximation to find the rotational diffusion constant and used the equations outlined by Marshall et al.2O

without corrections for sidewall interactions to calculate the nanotube's length. This was done for both

the translational (Eq.6.2) and rotational (Eq.6.3) diffusion coefficients (code in Appendix 7.3):

kB -T -3 -ln () + 2 -B + C] Eq.7.2

Dtrans = 8 - r - L

kB Eq.7.3
kB -T -3 [In @~ + A] E.

Drot = 7T . .-

where Drans and Drot are the translational and rotational diffusion coefficients respectively, kB is the

Boltzmann constant, T is temperature, qj is viscosity, L is the length of the nanotube, and d is the diameter

of the nanotube (held constant at 0.8 nm). The parameters A, B, and C are geometrical correction factors,

which for an infinitely long cylinder are -0.447, -0.114, and 0.886 respectively.25

The rotational diffusion coefficient is preferred to calculate SWNT length due to its higher

sensitivity (function of L3 and not L - Eq. 7.2 and 7.3). However, this is only possible at viscosities where

the rotation is slow enough for the orbit to accurately map changes in rotation between each orbit, and

thus depends on the viscosity, size, orbital speed etc. To determine at what viscosity the length
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calculation accuracy from rotational diffusion begins to break down for the current 32 ms minimum orbit

time, a random walk model was created in Matlab (Appendix 7.2). A 900 nm long nanotube was

simulated to take 10,000 steps at 1 ms per step dictated by translational and rotational diffusion

coefficients. One thousand traces were generated for each of the 50 viscosities (ranging from 1-1000

cP). The 'experimental traces' were simulated by averaging the positions and rotational signals of the

particle for every 32 ms period. The resulting 'experimental traces' were then analyzed to determine the

diffusion coefficients (from MSD plots) and the coefficients were then used with Eq. 7.2 and Eq.7.3 to

determine the limits of length calculation from rotational diffusion. It was found that above 250 cP the

length predictions are within 25% of the true length value when the rotational coefficient is used. At

viscosities below this point, the rotational diffusion should not be used and the translational diffusion

coefficient should be taken for length predictions.

This viscosity limitation is seen in our experimental data when we plot both length predictions

versus viscosity (Figure 7.3a). When the model is plotted on the experimental data (dotted line Figure

7.3a) we see a good fit further establishing the assumption that we can correlate signal fluctuations to

SWNT rotation. When we create a distribution of lengths (Figure 7.3b) calculated from the tracks (using

translational diffusion coefficients for the 40, 50, 60, 75, and 85 glycerol vol % samples and rotational for

the 95 and 99.5 vol %), we find that, of the 515 successful SWNT tracks, 476 had length predictions

within the expected range of 0.5 to 2 pm provided by the manufacturer. The remaining lengths (2-8 gim)

were assigned to larger aggregates of SWNT and excluded from further analysis. Interestingly, the length

distribution found by single particle tracking more closely fits the manufacturer's range and mode (400-

2000 nm and 900 nm respectively) than measurements with the same SWNT solution on a surface via

AFM (Figure 7.3b). It is known that surfaces that irreversibly absorb particles will disproportionately

display the smaller end of the distribution, as these species diffuse the fastest to the surface from bulk and

capture the available area before larger particles reach the surface.26 28 The experimental tracks also

exhibit less accurate length predictions from translational diffusion at higher viscosities (Figure 7.3a). As

the SWNT slows down in a more viscous solution, macroscopic errors begin to dominate over the

microscopic movements. These errors can come from tracking inaccuracies (7-10 nm in each direction),

changes in the location of the fluorescence along the length of the -900 nm SWNT, or errors associated

with microscope drift. All of these movements cause an overestimate of the actual diffusion coefficient,

particularly at high viscosity. Averaging multiple orbit steps during post-processing to lengthen the

SWNT movement between time steps improved the results but was still not sufficient to overcome the

macroscopic errors (below). To calculate accurate translational diffusion coefficients at such high

viscosities, the measurement has to be optimized with great care give to the stability of the system with

respect to the diffusing step sizes.
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To try and overcome the macroscopic errors (drift, tracking error, and movement along the

SWNT axis) we studied the effect of averaging multiple orbit periods in order to obtain a longer time-step

allowing the SWNT to diffuse further thus overcoming the experimental errors. This was done for the 95

and 99.5 vol% glycerol traces. The following plot (Fig 7.4) is the result of averaging the length

predictions from translational diffusion coefficient at 95 vol% and seeing how the average length

calculation changes dependent on the averaging window (number of orbits that are combined). The

averaged orbits do 'improve' the predictions - but there is still a significant discrepancy between the

determined length of the SWNT from translational diffusion and the average 900 nm value determined

from rotational diffusion. This suggests that other sources of error such as microscope drift are dominant

at short times in viscous media.

180 - - -----

160-
0

140-
0

0)

120-

1001
0 5 10 15

Number of Orbits Averaged for Each Time Step

Figure 7.4 - Effect of averaging the orbits to improve length predictions from high viscosity data. Here all of the 95

vol % glycerol traces are used to calculate lengths from translational diffusion coefficients. The predictions

generally improve upon averaged orbits, but the effect is small. If one is concerned with accurate translational

coeffcients at such a high velocity, they should focus on minimizing the experimental errors introduced by the setup.

We then demonstrated 3D tracking of SWNT in living HeLa cells and used the above relations

found in vitro to determine local environment conditions of the cell such as apparent viscosity and regions

of SWNT confinement versus active transport. The microscope setup (Figure 7.1 a) allows for both

tracking and widefield imaging; thus the acquired 3D traces can be mapped into a three-dimensional

image of the cell volume during post processing (code available in Appendix 7.4). Of the 50 traces we

acquired during cell experiments, 17 tracks were found to reside within a single HeLa cell and an

additional track was observed in the vicinity of the exterior cell surface (Figure 7.5a - the other tracks

were found outside cell walls). The track lengths (3.2-14.4 s) were shorter and more difficult to obtain

than in vitro (3.2 to 90 s) due to increased signal-to-noise ratio within the cell. By analyzing the MSD

plots of these tracks (Fig 7.5d, Fig 7.6, Fig 7.7), we could deduce the type of diffusion (normal,

convective or confined"12, 29) as well as the translational and rotational diffusion constants (Figure 7.5b

and Table 7.2).
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Figure 7.5 - 3D SWNT tracks in HeLa cell. a) Overlaid 2D location of 18 SWNT tracks in relation to HeLa cell

(outlined in yellow). b) Master plot of the translational, rotational diffusion coefficients, types of diffusion, and

corral volumes or active transport velocities for 18 measured trajectories. Ten of the tracks demonstrated corralled

diffusion with an average volume of 0.79 pm3. (c) Representative 3D plots of three SWNT tracks demonstrating the

three types of diffusion and accompanying MSD plots (d). The color of the 3D tracks denote the level of intensity to

show the fluctuations during tracking (same normalized scale as Figure 1). Internalized SWNT exhibit normal,

convective, and corralled diffusion. e) After 1.5 hours, internalized SWNT have clearly formed large aggregates

within (red arrows) and surrounding the cell (white arrows). Left image is from the widefield channel (yellow lines

denote approximate cell boundaries) and the right is an integrated (20s) photon count from the SWNT emission

(arbitrary color scale denoting the fluorescence intensity).
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Figure 7.7 - Close up MSD plots for translational motion of 18 SWNT tracks within HeLa cell
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Table 7.2 - Calculated results from the 3D SWNT Tracks in HeLa Cell

Local Probable Corral Convective Avg. rot % (Ima)SWNT Viscosity SWNT DT DR Diffusion Volume Velocity during for Significant
# (cP) Length (nm) (PMi2 s) (rad2/s) Type (im 3) (nm/s) (rad Event Signal

1 78 513 0.083 0.077 Confined 1.07 0.070 13%

2 72 1204 0.043 0.007 Confined 0.94 -- 0.020 4%

3 85 880 0.048 0.017 Normal - 0.033 6%

4 83 725 0.058 0.030 Confined 0.80 - 0.043 8%

5 72 1147 0.045 0.008 Confined 0.57 0.022 4%

6 73 899 0.054 0.015 Confined 1.02 -- 0.031 6%

7 54 706 0.090 0.027 Active -- 455 0.041 8%54 76 0.90 0027 Transport

8 89 521 0.071 0.078 Normal -- - 0.070 13%

9 105 947 0.036 0.015 Confined 1.12 - 0.031 6%

10 137 704 0.036 0.036 Confined 0.52 - 0.048 9%

11 179 650 0.029 0.047 Confined 0.27 - 0.055 10%

12 74 514 0.087 0.075 Normal -- -- 0.069 13%

13 104 594 0.055 0.055 Confined 0.27 0.060 11%

14 77 668 0.067 0.036 Normal -- -- 0.048 9%

15 71 758 0.065 0.024 Normal 0.039 8%

16 71 705 0.069 0.030 Normal - - 0.044 8%

17 80 660 0.065 0.038 Normal -- - 0.049 9%

18 76 675 0.067 0.035 Confined 1.32 - 0.047 9%

Ten of the tracks were found to be confined and the confinement volumes were approximated

with rectangular corral volumes ranging from 0.27 to 1.32 [m 3. One track (Figure 7.5c) demonstrated

convective diffusion with an active transport velocity of 455 nm/s (422-490 for 95% confidence with a R2

0.998, Fig 7.8), slightly larger than those found by 2D tracking of quantum dots in HeLa cells. 30 This

discrepancy is likely due to the added contribution of the velocity along the third dimension that is not

available in 2D measurements. Our measured transport velocity falls within the range observed for

dynein 3' (centripetal and centrifugal directions were 691 ± 233 nm/s and 676 ±214 nm/s respectively) and

other kinesin motors32 (570 ±20 nm/s) within HeLa cells; these are the cargo-carrying proteins that march

along structural microtubules. It is also at the upper end of the range of velocities measured for actin-

mediated transport (200-500 nm/s). 33
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Figure 7.8 - Fit to determine active transport velocity - blue dots are the MSD data and red line is the fit to

MSD = 6 -D - t + (v - t)2. Velocity was found to be 455 nm/s (422-490 for 95% confidence interval) with an R 2

fit of 0.998

For the SWNT undergoing random motion within the cell, we could use the translational and

rotational data of the tracked SWNT to determine both the probable SWNT length and apparent local

viscosity within the cell. This was done by first fitting the random walk model to create an expression for

the ratio of length calculations versus solution viscosity. The form of the fit function is predicted by

taking the approximate ratio of Eq. 3 to Eq. 2 and inserting the inverse relationship of diffusion constants

to viscosity (Eq.7. 1). By neglecting the many constants and focusing on the length values, we get a

function form of:

( )_2Eq. 7.4
-= A-- + 1

where LR and LT are the rotational and translational length calculations, r/ is viscosity of the solution, r/, is

viscosity of water, and A is a fit coefficient. The model predictions are fit well (R 2 value of 0.985) by this

function form with a value of 41.31 for A (Fig 7.9). The same code used to calculate SWNT length in

vitro is then used with the exception that the viscosity is now treated as an unknown parameter. The

program was modified to sweep through viscosities in the range of 1-300 cP and compare the ratio of the

resulting length calculations (LR/LT) to Eq. 4 until the two are in agreement. In this manner, the SWNT

length and local viscosities can be determined (Table 1). The calculated internal viscosities (54-179 cP)

are greater than the recent simulation results of Kalwarczyk et al.34 who estimated the macroscopic

cytoplasmic viscosity of HeLa cells to be 44cP based on estimated length scales inserted in their
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rheological model. The higher measured viscosity is likely due to the effects of cellular crowding on

macromolecular transport35 that might not be fully captured in their model. This effect is exaggerated

with SWNT which have a length dimension two orders of magnitude greater than large proteins. The

viscosity of Track 16 located near the cell membrane (71 cP) indicates that this track is indeed interacting

with the cell surface and not freely diffusing in the media. This would be expected as diffusion of

SWNTs in pure water was too fast to image with our current setup. Full endosomal aggregation of

SWNT occurred roughly 1.5 hours after the stock solution of SWNT was added to the cell medium (2.5%

vol SWNT). Several SWNT formed large fluorescent aggregates within the cell (Figure 7.5e), similar to

agglomerates in endosomes observed previously by our laboratory" 0 and others.36 38
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Figure 7.9 - The random walk model data (blue dots) with a fit equation (red line - Eq 7.4) used to deduce local
viscosity and SWNT length of intracellular tracks.

With the ultimate goal of utilizing the SWNT as internal sensors, we estimate the quality of

SWNT sensors that will need to be engineered to clearly transduce fast binding events from rotational

diffusion (occurring on the time scale of the orbit or faster). From the measured radial diffusion

coefficient, we calculated the average rotation during our 32 ms orbit (Table 7.2). By evaluating the ratio

of this rotation amount to the full range of motion (76/2), we can estimate the amount of 'noise' that will

be present in a given track. Using a common sensor heuristic that the signal event must be three times

that of the background noise, we can estimate the signal size that would be necessary to report a clear

binding event - represented as a percentage of the fluorescence range presented upon SWNT rotation or

Ix-m (Table 7.2). For the 18 tracks, we see that the binding event would need to quench or increase the

nanotube fluorescent range by 4 to 13%. This requirement can be lessened by increasing the orbital speed

where fluorescence fluctuations due to rotation of the SWNT are diminished. For example, if the orbit is
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decreased to 3.2 ms, the fluorescence changed required for sensor applications would be 1 to 4% and only

a change of I % would be necessary for a 0.32 ms orbit, provided the signal from the SWNT is sufficient

for such quick orbits.

7.4 Conclusion

Herein we have successfully demonstrated 3D tracking of fluorescent SWNT for the first time, in

vitro and in live HeLa cells, with over 500 tracks collected from our modified orbital tracking

microscope. We have created a random walk model to describe the effect of viscosity on length

calculation accuracy due to averaging during a 32 ms orbit of the excitation beam. Our model shows

that, for viscosities from 250-1000 cP, the rotational diffusion coefficient is accurate (within 25%), but at

low viscosities the translation diffusion coefficient should be used. Our in vitro experimental results

corroborate the model by plotting the calculated lengths from both translational and rotational diffusion

coefficients for the 476 experimental tracks versus solution viscosity. Furthermore, the close fit justifies

the assumption made that fluctuations in the SWNT intensity during tracking are due to SWNT rotation

as previously hypothesized.15 AFM was also used to characterize the distribution of SWNT lengths. The

length distribution was shorter than the distribution determined from 3D tracking, consistent with the

property of absorbing surfaces to be covered preferentially with the smaller, faster diffusion particles.

Tracking was then demonstrated in living HeLa cells revealing normal and confined diffusion as

well as active transport. By fitting to a random walk model, we created an expression that allowed us to

calculate local viscosity conditions within the cell as well as the SWNT length. The intracellular tracks

also demonstrated that moderately large response SWNT sensors (4 to 13% of Imax - Imi) are needed to

overcome the signal noise introduced by rotation. This constraint is relaxed significantly when faster

orbital times can be used. Although the demonstrated tracks are short (2-90 s), the photostability of

SWNT would allow for collection of longer trajectories in an orbital tracking microscope specifically

designed for nIR emission (800 nm-1600 nm). This could be done by installing nIR sensitive detectors

with, for example, Germanium or InGaAs elements. SWNT emission can also be improved with a more

powerful excitation source (200 mW-1 W). However, this is not recommended as higher laser powers

increase the photo-induced toxicity in cells. With improvements in detection, one could better track the

location of an individual SWNT sensor from cell internalization to eventual aggregation and also better

deconvolve the fluctuating SWNT signal with a faster orbital time. In this study, we have established the

contribution of SWNT rotation to signal fluctuation and its dependence on solution viscosity. This will

be applied in future studies where the SWNT is utilized as an in vivo sensor to monitor binding events

along the tracked pathway, such as reversible quenching in the presence of nitrous oxide.39
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Appendix 7.1
Matlab Code for determining significant nanotubes

function SWNTTracePrep
% Coded on 7.18.2011 by Nigel F. Reuel
% This program goes through a list of SWNT traces acquired in the day and
% determines the unique SWNT tracking segments.

% Criteria for Uniqueness:
SDcut = 3*10A4; % nm^2 - Squared Deviation Cut off
NScut = 100; % Number of steps required to qualify it as a trace

% Specify the files
Nfiles = 50;
% Initialize Unique Trace saving:
UTcount = 1;
% Loop through all the files
for iii = 1:Nfiles

% Use Matlab function to read in the file (without the header):
[-, M1 = feval(@hdrload,['S',int2str(iii),'.txt']);
% Initial visualization
X = M(:, );
Y = M(:,2);

Z =M(:,3);

if iii == 7
plot3 (X, Y, Z)
stope = 5;

end

%}
Il =M(:,16);

12 M(:,17);
% Determine the MSD of the trace with step size of 1
% Scale of the pixels:
scale = 92; % nm/pixel
scaleZ 29; % nm/pixel
SD = zeros(length(X)-1,2);
for j = 1:length(X)-1

delX = ((X(j+1,1)-X(j,1)))*scale;
delY = ((Y(j+1,1)-Y(j,1)))*scale;
delZ = ((Z(j+1,1)-Z(j,1)))*scaleZ;
SD(j,l) = delXA2 + delYA2 + delZ^2;
if delXA2 + delYA2 + delZA2 < SDcut;

SD(j,2) = 1;
end

end
% Now check for regions that match the length criterion specified
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% above:
count = 1;

while count < length(X)-l
count2 = 0;
if SD(count,2) == 0

count = count + 1;

else
while SD(count,2) == 1 && count < length(X)-l

count = count + 1;

count2 = count2 + 1;

end
if count2 >= NScut;

% Congrats! You have a trace segment that is considered

% significant. Save the X,Y,Z,I1,12 data of this trace.

Start = count - count2;
End = count - 1;

m(:,l) = X(Start:End,1);
m(:,2) = Y(Start:End,1);
m(:,3) = Z(Start:End,l);
m(:,4) = Il(Start:End,1);
m(:,5) = 12(Start:End,1);
% Full title to see where the trace comes from:

csvwrite(['SigT_',int2str(UTcount),' _FileNum_',int2str(iii),'_ST_',int2str(St

art),' ET ',int2str(End),'.csv'],m)
% Shortened title for the analyzer program:

csvwrite(['SigT_',int2str(UTcount), '_ForAnalyzer.csv'],m)

UTcount = UTcount + 1;

clearvars tt;

end
end

end

% End of outer file reading loop:
end
end

function [header, data] = hdrload(file)

% HDRLOAD Load data from an ASCII file containing a text header.

% [header, data] = HDRLOAD('filename.ext') reads a data file

% called 'filename.ext', which contains a text header. There

is no default extension; any extensions must be explicitly

% supplied.

% The first output, HEADER, is the header information,

% returned as a text array.

% The second output, DATA, is the data matrix. This data

% matrix has the same dimensions as the data in the file, one

% row per line of ASCII data in the file. If the data is not

% regularly spaced (i.e., each line of ASCII data does not

% contain the same number of points), the data is returned as

% a column vector.

% Limitations: No line of the text header can begin with
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% a number. Only one header and data set will be read,
% and the header must come before the data.

% See also LOAD, SAVE, SPCONVERT, FSCANF, FPRINTF, STR2MAT.
%1 See also the IOFUN directory.

% check number and type of arguments
if nargin < 1
error('Function requires one input argument');

elseif -isstr(file)
error('Input must be a string representing a filename');

end

% Open the file. If this returns a -1, we did not open the file
% successfully.
fid = fopen(file);
if fid==-l
error('File not found or permission denied');
end

% Initialize loop variables
% We store the number of lines in the header, and the maximum
% length of any one line in the header. These are used later
% in assigning the 'header' output variable.
nolines = 0;
max-line = 0;

% We also store the number of columns in the data we read. This
% way we can compute the size of the output based on the number
% of columns and the total number of data points.
ncols = 0;

% Finally, we initialize the data to []
data = [;

% Start processing.
line = fgetl(fid);
if -isstr(line)
disp('Warning: file contains no header and no data')
end;

[data, ncols, errmsg, nxtindex] = sscanf(line, '%f');

% One slight problem, pointed out by Peter vanderWal: If the
% first character of the line is 'e', then this will scan as
% 0.00e+00. We can trap this case specifically by using the
% 'next index' output: in the case of a stripped 'e' the next
% index is one, indicating zero characters read. See the help
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% entry for 'sscanf' for more information on this output

% parameter. We loop through the file one line at a time until

% we find some data. After that point we stop checking for

% header information. This part of the program takes most of the

% processing time, because fgetl is relatively slow (compared to

% fscanf, which we will use later)

while isempty(data) (nxtindex==1)

nolines = nolines+1;
max line = max([maxline, length(line)1);
% Create unique variable to hold this line of text information.

% Store the last-read line in this variable.
eval(['line', num2str(nolines), '=line;']);
line = fgetl(fid);

if isstr(line)
disp('Warning: file contains no data')

break
end;

[data, ncols, errmsg, nxtindex] = sscanf(line, '%f');

end % while

% Now that we have read in the first line of data, we can skip

% the processing that stores header information, and just read

% in the rest of the data.

data = [data; fscanf(fid, '%f')];

fclose(fid);

% Create header output from line information. The number of lines

% and the maximum line length are stored explicitly, and each
% line is stored in a unique variable using the 'eval' statement

% within the loop. Note that, if we knew a priori that the

% headers were 10 lines or less, we could use the STR2MAT

% function and save some work. First, initialize the header to an

% array of spaces.
header setstr(' I*ones(no lines, max-line));

for i = 1:nolines
varname = ['line' num2str(i)];
% Note that we only assign this line variable to a subset of

% this row of the header array. We thus ensure that the matrix

% sizes in the assignment are equal. We also consider blank
% header lines using the following IF statement.

if eval(['length(' varname ')-=0'1)

eval(['header(i, 1:length(' varname ')) = ' varname ';']);

end
end % for

% Resize output data, based on the number of columns (as returned

% from the sscanf of the first line of data) and the total number

% of data elements. Since the data was read in row-wise, and
% MATLAB stores data in columnwise format, we have to reverse the

% size arguments and then transpose the data. If we read in

% irregularly spaced data, then the division we are about to do
% will not work. Therefore, we will trap the error with an EVAL

% call; if the reshape fails, we will just return the data as is.
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eval('data = reshape(data, ncols, length(data)/ncols)'I;', I');
end

Appendix 7.2
Random Walk Model Matlab Code

Coded by Nigel Reuel on 8.3.2011

% Number of average of runs
Navg = 10;

% ETA to measure
neta = 50;
%ETA = 2;

Log_ETA = linspace(.1,3,neta); % loglO(Viscosity) reported in cP
ETA = zeros(1,neta);
for i = 1:neta

ETA(1,i) = 10A(LogETA(1,i));
end
% Lengths to measure
%nL = 100;

%L = linspace(450,2000,nL); % Lengths reported in nm
nL = 1;

L = 900;
% Parameters for trace generation
FullTime = 10; % seconds.
ns = 10000;
ts = FullTime/ns;
nT = 100;
% Experimental setup parameter - orbital average:
Oavg = 0.032; % seconds
%Oavg ts;
% Initialize a Length matrix for translational and rotational measurments:
%MSE LT = zeros(nT,neta);
%MSE LR = zeros(nT,neta);
% Loop through each of the ETA and L combinations to show how well the
% setup will measure the length:
for i = 1:neta

for k = 1:Navg
tic
for j = 1:nL

eta = ETA(i);
length = L(j);
%Generate the 'real' traces
T = feval(@GenTrace,length,ns,ts,eta,nT);
% Now determine what the 3D particle tracker sees:
Texp = feval(@TrackerTrace,T,FullTime,length,nT,ns,Oavg);
% Calculate the length from the experimental values:
[Lt Lr Lrcos] = feval(@SWNTTraceAnal v2,Texp,nT,Oavg,eta);
% Now record the mean square error of the measurment at this

length and
% viscosity:

260



MSELT(k,1) = ((length-mean(Lt))./length);

MSELR(k,l) = ((length-mean(Lr))./length);

MSELR2(k,l) = ((length-mean(Lrcos))./length);

end
MSELTn(i,l) = (mean(MSELT));

MSELR n(i,l) (mean(MSELR));

MSELR2_n(i,l) = (mean(MSELR2));

toc
k

end
end
%
X = ETA';
figure
plot(X,MSELTn)

hold on
plot(X,MSELRn, 'g')

hold off
csvwrite('MSELTn.csv',MSELTn)

csvwrite('MSELRn.csv',MSELRn)
csvwrite('MSELRcos2scalen.csv',MSELR2n)

end

function Texp = TrackerTrace(T,FullTime,L,nT,ns,Oavg)
% Specify the orbital averaging time of the current setup:

% Oavg = 0.032; % seconds
% Determine what the setup would see during its orbit and introduce error

% associated with length of the nanotube:

Nexpstep = floor(FullTime/Oavg);
StepSpan = floor(ns/Nexpstep);
Texp = zeros(Nexpstep,5,nT);

for i = 1:nT

for j = 1:Nexpstep
% What are the averaging indecies of T for this time interval:

sindex = (j-1)*(StepSpan)+1;
eindex = j*StepSpan;
% Average the 'real' trace as the experimental setup would and

% introduce measurment error in the X,Y,Z position due to the

% nanotube length

% Let's start by saying the nanotube length induces a random

% displacment error in one direction (along length of the nanotube)

% and the magnitude is gaussian arround the 1/2 length of the tube.

% Adjust the X,Y,Z values according to this scheme

Tadj = T(l:ns,1:3,i);

for k 1:ns

Lhalf = L/2;

R = (rand()*2-1); % Random number from (-1 to 1) centered around

0
% assign the direction (1 = x, 2 = y, 3 = z)

Error = R*Lhalf;

rd = ceil(rand(*3);
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Tadj(k,rd) = Tadj(k,rd)+Error;
end

% Now solve for the new values
Texp(j,l,i) = mean(Tadj(sindex:eindex,1)); AVG X coordinate +

Texp(j,2,i) = mean(Tadj(sindex:eindex,2)); % AVG Y coordinate +

Texp(j,3,i) = mean(Tadj(sindex:eindex,3)); % AVG Z coordinate +

%6

% Texp(j,4,i) = mean(T(sindex:eindex,4,i)); %
% This is the angle value you would get w/ cos2
TempTimeAngles = T(sindex:eindex,4,i);
AnglesCosScale = cos(TempTimeAngles).A2;
MeanFluor = mean(AnglesCosScale);

Texp(j,5,i) acos((MeanFluor)^(1/2));
% This is the angle value that you would get w/
Texp(j,4,i) = (MeanFluor-1)*-pi()/2;

AVG angle
scaling

linear scaling:

end
end
% Return the experimental traces to the main function
return
end

function [Lt Lr Lr cos] = SWNTTraceAnalv2(Texp,nT,Oavg,eta)
% Coded on 7.18.2011 by Nigel Reuel (altered and inserted in new program on
% 8.4.2011 by Nigel Reuel)

% Outer loop refers to trace number...

Lt = zeros(nT,1);
Lr = zeros(nT,1);
Lrcos = zeros(nT,1);
for iii = 1:nT

% Assign the X,Y,Z,
X = Texp(:,1,iii);

Y = Texp(:,2,iii);
Z = Texp(:,3,iii);

Il = Texp(:,4,iii);
12 = Texp(:,5,iii);

Il values

st = 1;

et = length(X);

% Determine the MSD of the trace
Nsteps = (et-st);
MSD = zeros(Nsteps,l);
MSDrot = zeros(Nsteps,1);
MSDrot2 = zeros(Nsteps,1);
% Scale of the pixels (already in nm in the case of generated traces):
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scaleX = 1; % nm/pixel
scaleY = 1; % nm/pixel
scaleZ = 1; % nm/pixel
for i = 1:Nsteps

SD = 0;
SRD 0;
SRD2 = 0;
for j = 1:et-st+1-i

delX = ((X(j+i,1)-X(j,1)))*scaleX;
delY = ((Y(j+i,l)-Y(j,l)))*scaleY;
delZ = ((Z(j+i,1)-Z(j,l)))*scaleZ;
delIl = ((I1(j+i,1)-I1(j,1)));
delI2 = ((12(j+i,l)-I2(j,l)));
SD = SD + delX^2 + delYA2 + delZA2;
SRD = SRD + delIlA2;

SRD2 = SRD2 + delI2A2;

end
MSD(i,l) = SD/(et-st+l-i);
MSDrot(i,1) SRD/(et-st+1-i);
MSDrot2(i,1) = SRD2/(et-st+l-i);

end
%Portion of the MSD plot to fid

Por = .1;

xp = (1:round(Nsteps*Por))';
yp = MSD(1:round(Nsteps*Por),1);
xpr = (1:round(Nsteps*Por))';
ypr = MSDrot(1:round(Nsteps*Por),1);
xpr2 = (1:round(Nsteps*Por))';
ypr2 = MSD rot2(1:round(Nsteps*Por),1);
%plot((l:Nsteps)',MSD)

p = polyfit(xp,yp,1);
p2 = polyfit(xpr,ypr,1);
p3 = polyfit(xpr2,ypr2,1);
%pl = slope and p2 = intercept
% Must correct for time scale:
ts = Oavg; % seconds per averaging orbit(s)
D = p(1)/ts/6; % nm^2/s <-- For 3D diffusion

Dr = p2(1)/ts/2; % rad^2/s
Dr2 = p3(1)/ts/2; % rad^2/s

% Now determine

d = 0.76; %nm -

Lo = 1000; %nm -

options=optimset

1);
Lt solve = fsolv

the length of the nanotube from Translation:

diameter for (6,5) Nanotubes

initial guess for length of Nanotube

('MaxFunEvalsl,1*10^10,'MaxIter',l*lOA10,'To

e(@SWNTLength,Lo,options,D,d,eta);

lFun',0.000000000

% Now determine the length of the nanotube from rotation:

options=optimset('MaxFunEvals',1*10^10,'MaxIter',l*lOA10,

1);
Lrsolve

'TolFun',0.000000000

fsolve(@SWNTLengthrot,Lo,options,Dr,d,eta);

% Now determine the length of the nanotube from rotation

scaling) :

options=optimset('MaxFunEvals',1*10^10, 'MaxIter',1*10^10,

1);
Lrsolve2

(with Cos^2

'TolFun',0.000000000

fsolve(@SWNTLength_rot,Lo,options,Dr2,d,eta);

263



% Record the solutions:
% Record the solutions:

Lt(iii, ) Lt solve;
Lr(iii,1) = Lrsolve;
Lrcos(iii,1) = Lrsolve2;

end
return
end

function F = SWNTLength(L,D,d,eta)
% Solve function to determine length of nanotube (all inputs in units of nm):
kB 1.3806503*10A(-23); %m2 kg s-2 K-1
T = 298; % K
% Drag = 8*pi()*(eta/1000)*(L*10^-9)/(3*log(L/d)+2*(-0.114)+0.886);

F = D - kB*T/(8*pi()*(eta/1000)*(L*lOA^9)/(3*log(L/d)+2*(-
0.114)+0.886))*(10^9)A2; % Both quantities should have units of m^2/s
return

end

function F = SWNTLength rot(L,D,d,eta)
% Solve function to determine length of nanotube (all inputs in units of nm):
kB 1.3806503*10A(-23); %m2 kg s-2 K-1
T = 298; % K
% Drag 8*pi()*(eta/1000)*(L*10^-9)/(3*log(L/d)+2*(-0.114)+0.886);

F = D - kB*T/(pi()*(eta/1000)*(LA3/(10A9)^3)/(3*(log(L/d)- 0.447))); % Both
quantities should have units of m^2/s
return

end

function Tr = GenTrace(L,ns,ts,eta,nT)
% Coded by Nigel Reuel on 8.2.2011
% This function generates the 3D trajectory of a nanotube based on the
% given input parameters:
% L length (nm)
o ns number of time steps (integer)
% ts = time scale (s)
% eta viscosity (cp)
% nT = number of traces (integer)

% Output trace trajectory: T(ns,4,nT) -- > cl:X,c2:Y,c3:Z, and c4:current
rotation
% angle

% Translational Diffusion

kB = 1.3806503*10A(-23); %m2 kg s-2 K-1
T = 298; % K
d = 0.76; % nm
Dt = kB*T/(8*pi(*(eta/1000)*(L*10^-9)/(3*log(L/d)+2*(-0.114)+0.886))*10^18;
% nm'2/s

% Rotational Diffusion
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Dr = kB*T/(pi()*(eta/1000)*(L^3/(10^9)^3)/(3*(log(L/d)- 0.447))); rad^2/s

% Solve for the MSD (unidirectional) and MSR:

MSD = Dt*ts*2;

MSR = Dr*ts*2;

% Initialize the matrix to recieve the trajectory coordinates:

Tr = zeros(ns,4,nT);

for i = 1:nT
% Initialize the SWNT location at 0,0,0,0
X = 0;
Y = 0;
Z = 0;
rad = 0;
for j = 2:ns

% This was the original way I constructed the X,Y,Z coordinates.

% From Aug 2011.
% This is incorrect (I believe) but I will keep it commented in

% case I want to look at it for reference.

% Generate your random numbers with average of 1 (span 0 to 2)

r(l) = rand(*2;

r(2) = rand(*2;
r(3) = rand(*2;

r(4) = rand(*2;
% Generate your random -1 or +1 to determine if the distance

% traveled was positive or negative

s = zeros(1,4);

s(l) = round(rand();

s(2) = round(rand());

s(3) = round(rand()

s(4) = round(rand();

for k = 1:4

if s(k) = 0
s(k) = -1;

end

end

% Determine the displacements:

delX = (MSD)A(1/2)*r(1)*s(1);
delY = (MSD)A(1/2)*r(2)*s(2);

delZ = (MSD)^(1/2)*r(3)*s(3);

delRad = (MSR)A(1/2)*r(4)*s(4);

% Determine the new locations:

X = X + delX;
Y = Y + delY;

Z = Z + delZ;

rad = rad + delRad;

%}

% This is the new method for determining X,Y,Z

% 10.29.2011

TotalMSD = MSD*3;
% Determine which portion of Total MSD goes to

r(1,1) = rand(*3;

coordinates coded on

X,Y,and Z direction
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r(2,1) = rando*3;
RandN = sort (r);
X_MSD = (RandN(1,1))/3*TotalMSD;

Y_MSD (RandN(2,1)-RandN(l,l))/3*TotalMSD;
Z_MSD = (3 - RandN(2,1))/3*TotalMSD;

% Generate your random -1 or +1 to determine if the distance
% traveled was positive or negative
s = zeros(1,3);

s(1) = round(rand();
s(2) = round (rand());
s(3) = round(rand));
s(4) = round(rand());
for k = 1:4

if s(k) == 0
s(k) = -1;

end
end
% Determine the displacements:
delX = (XMSD)A(1/2)*s(1);
delY = (YMSD)^(1/2)*s(2);

delZ = (Z MSD)^(1/2)*s(3);

delRad = (MSR)^(1/2)*s(4);
% Determine the new locations:
X = X + delX;
Y = Y + delY;
Z = Z + delZ;
rad = rad + delRad;

% Record the X,Y,Z, locations and the absolute rotation angle
Tr(j,l,i) = X;
Tr(j,2,i) = Y;
Tr(j,3,i) = Z;
Tr(j,4,i) = abs(rem(rad,pi()/2));

end
end
return
end

Appendix 7.3
Matlab Code for analyzing SWNT length from MSD Plots

function SWNTTraceAnalv2
% Coded on 7.18.2011 by Nigel Reuel
% This code analyzes the significant trace segments (found by the
% 'SWNTTracePrep' program).

% Analysis steps:
% 1) Creates MSD plot and fits it linearly
% 2) Determines the translational diffusion coeffcient
% 3) Determines the lengths of the nanotubes
% 4) Evaluates the mean intensity
% 5) Evaluates the stdev of intensity
% 6) Saves 3-5 for post analysis
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% Look in the data folder and determine the number of significant traces:
Nt = 75;
% Create matrix to save the data:
Data = zeros(Nt,6);

% Loop through the files to do the analysis:
for iii = 1:Nt

M = csvread(['SigT ',int2str(iii), 'ForAnalyzer.csv']);
% Initial visualization
X = M(:, );
Y =M(:,2);

Z =M(:,3);

Il =M(:,4);

12 M(:,5);
% Normalize the Ii and 12 vectors to be between 0 and pi)/2
Ilmax = max(I1);
Ilmin = min(I1);
I2max = max(12);
12min = min(12);
Iln = acos(((Il-Ilmin)./(Ilmax-Ilmin)).^(1/2));
12n = acos(((I2-I2min)./(I2max-I2min)).^(1/2));
%plot3 (XY,Z)

St = 1;

et = length(X);
% Determine the MSD of the trace
Nsteps = (et-st);

MSD = zeros(Nsteps,1);
MSDrot = zeros(Nsteps,1);
% Scale of the pixels:
scaleX = 92; % nm/pixel
scaleY = 92; % nm/pixel
scaleZ = 29; % nm/pixel
for i = 1:Nsteps

SD = 0;
SRD = 0;
for j = 1:et-st+1-i

delX = ((X(j+i,1)-X(j,1)))*scaleX;
delY = ((Y(j+i,1)-Y(j,1)))*scaleY;

delZ = ((Z(j+i,1)-Z(j,1)))*scaleZ;

delI1 = ((I1n(j+i,1)-I1n(j,1)));
delI2 = ((12n(j+i,1)-I2n(j,1)));
SD = SD + delX^2 + delY^2 + delZA2;
SRD SRD + delIA2 + delI2A2;

end
MSD(i,l) = SD/(et-st+1-i);
MSDrot(i,l) = SRD/(et-st+l-i);

end
xp = (1:round(Nsteps*.05))';
yp = MSD(1:round(Nsteps*.05),1);
xpr = (1:round(Nsteps*.05))';
ypr = MSDrot(1:round(Nsteps*.05),1);
%plot((1:Nsteps)',MSDrot)

p = polyfit(xp,yp,1);
p2 = polyfit(xpr,ypr,1);
%p= slope and p2 = intercept
% Must correct for time scale:
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ts = 32*10^-3; %
D = p(l)/ts/6; %

Dr = p2(1)/ts/4;

seconds per frame
nm^'2/s <-- For 3D diffusion

% rad^2/s

% Now determine the length of the nanotube from Translation:
d = 0.76; %nm - diameter for (6,5) Nanotubes
Lo = 1000; %nm - initial guess for length of Nanotube

options=optimset('MaxFunEvals',1*l0A10,'MaxIter',1*10^10,'TolFun',0.000000000
1);

L = fsolve(@SWNTLength,Lo,options,D,d);

% Now determine the length of the nanotube from rotation:

options=optimset('MaxFunEvals',l*10A10,'MaxIter',1*10^10,'TolFun',0.000000000

1);
L2 = fsolve(@SWNTLengthrot,Lo,options,Dr,d);

% Evaluate the Intenisty Traces
Imeanl = mean(M(:,4));
Imean2 = mean(M(:,5));
Isdl = std(M(:,4));

Isd2 = std(M(:,5));
% Write the data for this trace into the CSV file

Data(iii,l) = L;
Data(iii,2) = L2;
Data(iii,3) = Imeanl;
Data(iii,4) = Imean2;
D'ata(iii,5) = Isdl;
Data(iii,6) = Isd2;

% End of outer loop for reading files:
end

% Post processing save and graphing tools:
% Save Data:

csvwrite('SWNTData.csv',Data);
%plot(Data(:,1),Data(:,2))

end

function F = SWNTLength(L,D,d)

% Solve function to determine length of nanotube (all inputs in units of nm):

kB= 1.3806503*10^(-23); %m2 kg s-2 K-1

T = 298; % K
eta = 51; %centipoise

% Drag = 8*pi()*(eta/looo)*(L*10^-9)/(3*log(L/d)+2*(-0.114)+0.886);

F = D - kB*T/(8*pi()*(eta/1000)*(L*10^-9)/(3*log(L/d)+2*(-

0.114)+0.886))*(10A9)A2; % Both quantities should have units of m^2/s

return

end

function F = SWNTLength rot(L,D,d)

% Solve function to determine length of nanotube (all inputs in units of nm):

kB = 1.3806503*10^(-23); %m2 kg s-2 K-i

T = 298; % K

eta = 51; %centipoise

% Drag = 8*pi()*(eta/1000)*(L*10^-9)/(3*log(L/d)+2*(-0.114)+0.886);
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F = D - kB*T/(pio*(eta/1000)*(LA3/(10^9)^3)/(3*(log(L/d)- 0.447))); % Both
quantities should have units of m^2/s

return
end

Appendix 7.4

Code for determining cell volume from a z-stack of widefield images

function SWNTinCell_imageMaker
% Coded by Nigel Reuel on 9.30.2011
% Used to display the SWNT tracks within a z-stack of cell images

% Step 0: .... Define scale.....

% Read in calibration image to define the following parameters:
% (only has to be done once)----- >

Cal = imread('Calibratiori.tif');
imshow(Cal);

% Select UL, UR, and LR points

[Xcal,Ycal] = ginput(3);

%Save these points so they do not need to be clicked again:
csvwrite ('Xcal.csv',Xcal);
csvwrite('Ycal.csv',Ycal);

Xcal = csvread('Xcal.csv');
Ycal = csvread('Ycal.csv');

% Translate the widefield pixel distance to
FCSdistance = ((Xcal(1,1)-Xcal(2,1))A2 + (Ycal(1,1)-Ycal(2,1))A2)^(1/2);
xscale = 92*FCSdistance/256; % nm/pixel
yscale = 92*FCSdistance/256; % nm/pixel
% Z scale from lab notebook
zscale = 1000; % nm/stack step;
%

% Step 1: .... Define the Cell Space....

% ------------ Read in the z-stack images ----
% Number of images (lowest to highest z level)
Ni = 15;

% Read one image to see how big your matrix needs to be:
temp = imread('Celll_l.jpg');
[Nr Nc] = size(temp);

zstack = zeros(Nr, Nc, Ni);

for i = 1:Ni

itemp = imread(['Celll_ ',int2str(i), '.jpg']);
idouble = double(itemp);

zstack(:, :,i) = idouble;

end
% Optional image check:
% contour(zstack(:,:,l))

%---------- Logic to define wall regions (darkest in the image)-
%
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% Are nearest neighbors below seL threshold?

Threshold:

MeanZ mean(mean(mean(zstack)));
%Thr = MeanZ-10*std(std(std(zstack)));

Thr = MeanZ*.75;

% Neighbor size:
NS = 1;

% Cell wall location matrix
CellLoc = zeros(1,3);

count = 1;

for k = 7:10

tic
% Calculate z location
zmid = round(Ni/2);

Zpos
for i =

for

(k-zmid)*zscale;
1+NS:Nr-NS
j = 1+NS:Nc-NS

if mean(mean(zstack(i
% Mark this spot
Xpos = i*xscale;

Ypos = j*yscale;
CellLoc(count,:)

count = count+1;

end

end
end
plot3 (CellLoc
toc

end
csvwrite (CellLoc2
%-

-NS:i+NS,j-NS:j+NS,k))) < Thr

= [Xpos Ypos Zpos];

(:,1),CellLoc(:,2),CellLoc(:,3),'.')

.csv',CellLoc);

CellLoc = csvread('CellLoc2.csv');

plot3 (CellLoc (:,1)
hold on

,CellLoc(:,2),CellLoc(:,3),'.')

%0 Step 2: Insert the significant traces into the volume cell:

Specify number of files and run the trace prep program
% meaningful traces:
%NumFiles = 18;
%Nt = feval(@SWNTTracePrep,NumFiles);
% Now plot the data!

% Loop through the files to do the analysis:
%for iii [7 5 161

for iii = 1:18

M = csvread(['SigT_',int2str(iii), '_ForAnalyzer.csv']);
% Initial visualization

to extract the
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X = (:,1);
Y M(:,2);
Z = M(:,3);
TI = (:,4)
12 M(:,5);

% Normalize the 11 and 12 vectors to be between 0 and pi()/2
Ilmax = max(Il);
Ilmin = min(Il);
I2max = max(12);
12min = min(12);
Iln = I1./(Ilmax-I1min)*pi()/2;
12n = I2./(I2max-I2min)*pio/2;
% Scale of the pixels:
scaleXFCS = 92; % nm/pixel
scaleYFCS = 92; % nm/pixel
scaleZFCS = 20; % nm/pixel
% Center point of FCS in widefield

Xcenter = (Xcal(3,1)-Xcal(1,1))*xscale;

Ycenter = (Ycal(3,1)-Ycal(1,1))*yscale;

% First attempt, don't worry about the small rotation

L = length(Il);

Xcorrect = zeros(L,

Ycorrect = zeros(L,

Zcorrect = zeros(L,

for i = 1:L

Xcorrect(i,1)
Ycorrect (i, 1)
Zcorrect (i,1)

1);
1);
1);

= X(i,1)*scaleXFCS+Xcenter;

= Y(i,1)*scaleYFCS+Ycenter;

= Z(i,l)*scaleZFCS;

end
% Plotting code:
% Fancy Plot: Show the trace with the intensity mapped along it:
% W = 3;
C = Il;

Cmin = min(Il);
Cmax = max(I1);
p = feval(@cline,Xcorrect,Ycorrect,Zcorrect,C,Cmin,Cmax);
figurenamefig = [int2str(iii),'.png'1;
saveas(gcf,figure namefig,'png');
%set(gcf,'Position', [0 0 365 3431)
% End of loop file to go through the trace segments:
end
end
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8. Conclusion and Future Outlook

This thesis focuses on the development of label-free sensors for glycans and proteins based on

single walled carbon nanotube (SWNT) fluorescence. Impetus for this work came from our growing

realization of the integral role glycans play in human health and disease and the lack of convenient tools

for glycobiologists. Existing tools for glycan analysis include many pretreatment steps for liberating and

labeling the sugars (Fig 1.4). In Chapter 1 we review many nanoengineered candidates for label and

liberation free glycan analytics. Carbon nanotube-based sensors emerge as a worthy candidate for these

analytics due to their sensitivity and capability for massive multiplexing. In Chapter 2 we model how

such quantitative nanosensors, SWNT or otherwise, could be used as a weak affinity dynamic microarray

to augment the sensitivity and profiling capabilities of existing lectin microarrays. This is simulated with

a kinetic Monte Carlo model with parameters estimated from the Consortium of Functional Glycomics

(CFG) public database of fluorescent microarray data. The model is applied to a few relevant examples

(screening biotherapeutics and monitoring clinical biomarkers), but what it really highlights is 1) the

usefulness of quantitative nanosensors and 2) the need for much larger libraries of robust kinetic data to

make real predictions. Obtaining these massive data sets of kinetic parameters between glycans and

lectins (and other carbohydrate recognition domains, such as custom boronic acid polymers) will be an

area of ongoing work for these sensors.

Next we detail the 'proof of concept' experimental work, showing the ability to transduce glycan-

lectin binding events using carbon nanotubes (Chapter 3). This first generation platform consisted of

chitosan-wrapped SWNT functionalized with NTA chelation groups that held divalent cations (Ni2 ,).

The nickel provided the signal transduction (quenching when close to the SWNT surface) as well as a

convenient docking site for a sensor protein. When the analyte protein binds to the sensor protein, the

increased steric hindrance (pulling the sensor from the SWNT surface) increases the SWNT signal. Two

glycan-lectin pairs are explored (GlcNAc to GafD and Fuc to PA-IIL) both as free glycans and as model

glycoprotein probes (by biotinylating the sugar and attaching to streptavidin). The sensor signal was

collected and integrated from ensembles of nanotubes in chitosan hydrogels. The dynamic response

closely resembles the surface plasmon resonance 'sensograms' presented in Chapter 1 and are likewise

analyzed with a similar kinetic model. The fit provides the forward and reverse kinetic rates and

dissociation constant (KD). The sensors were also interrogated individually and we found that a small

subset of 'good responders' were responsible for the majority of the integrated signal modulation. With

this proof of concept established we then embarked on applying the tool to a more practical problem.
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There are many useful applications for a glycan sensor (Chapter 1), but the problem we decided

to tackle first was that of antibody production (Chapter 4). It is a tractable problem, in that the

glycoprotein (IgG) is well understood. The Fc domain of the IgG has two conserved sugars that can

change based on a variety of processing parameters. There are a set of glycans that are desirable

(terminal sialyic acid, terminal galactose, core fucose) as well as glycoforms that are unwanted due to

poor pharmacokinetics (hypermannose forms, immunogenic glycans). The first problem to overcome in

adapting our first generation sensor to antibody detection was the inherent promiscuity of antibodies; they

had a greater tendency for non-specific adsorption. Also, they were much larger than the streptavidin

probes used previously and thus a new hydrogel platform was developed. In the end polyacrylamide

(PAAm) demonstrated reduction in nonspecific adsorption as well as the ability to tune pore size. This

platform was then used to measure IgG titer, KD distributions, and extent of hypermannosylation. Also,

local productivity of cell islands could be measured with the spatial array. Future work for this project

included making a field portable instrument and making nanotube containing hydrogels more conducive

to cell growth. The portable detector was the subject of the next chapter and the latter is an ongoing area

of research in our group.

With success of demonstrated lab-based measurements, the next hurdle was performing such

measurements in the field with online bioreactors (Chapter 5). The lab-based platforms we had used prior

(Chapter 3-4) were too capital intense and were not conducive for portability (large inverted microscope,

floated optics stage, laser, liquid nitrogen cooled detector). So we designed a smaller, portable unit that

used an LED for excitation and a much smaller, electronically amplified detector (Fig 8.1). We also

changed the sensor hydrogel to agarose to allow for a more rapid production protocol (1 day vs. I week)

and also one that can be automated (all steps done in ambient conditions). The portable detector was

demonstrated in our Cambridge, MA lab as well as on the Novartis campus in Basel, Switzerland with

many different types of IgG products. Ongoing work for this area includes further improvements in the

portable detector optics to increase signal to noise and to improve multiplexing capabilities. Along this

vein, we have also designed another detector that allows for multiplexing of a small printed grid of

hydrogel spots by raster scanning the excitation source (laser) across a larger surface area (Fig 8.2). This

way a larger array of spots can be printed and interrogated at the same time (Fig 8.3). This experimental

tool is now being used to print smaller and smaller arrays so that 100-200 independent sensor sites can be

monitored simultaneously with less than a second frame rate. This should allow for the long-held goal of

multiplexing many different His-tagged sensor proteins (i.e. lectins) and obtaining their kinetic

parameters with an analyte protein (i.e. glycoprotein) in a single experiment, thus realizing the desire for

larger and larger KD matrices to use for our predictive modeling work (Chapter 2).
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$150-250k, throughput = 1 sample/hr

$5-1 Ok, throughput = 100 samples/hr

Figure 8.1 - Evolution of experimental setups going from capital intense lab-based systems to portable detectors

Figure 8.2 - Microarray scanner setup a) Optics - excited by a 561nm laser, galvo mirrors sweep the focused spot

on the sample slide up to a 1cm 2 area. b) Close up of sweep pathway as recorded in a photo-bleached dye showing a

11.5um spot size.
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Figure 8.3 - Example data set from microarray scanner of a 7x6 grid of sensor spots. a) Half of the array is covered

by melted parafilm (initially brighter because the low pH water partially quenches the exposed SWNT - lower half)

b) Upon nickel addition the exposed sensor sites reduce in brightness. c) Algorithms have been written in Matlab to

extract the average signal from each spot, presented are intensity traces from two - spot 1 that was protected from

the nickel quench and spot 42 that was exposed.

In the course of this research there were multiple times that large data sets of single nanotubes

were analyzed (Chapter 3). These single nanotube signal traces contained embedded event states

obscured by noise. We developed an efficient state finding algorithm (NoRSE - see Chapter 6) that we

used in this work to evaluate KD of a large body of SWNT. It can be used for many other types of

experiments and has since been adopted by a few other experimenters outside of this field.

Nanotube sensors immobilized in hydrogels (chitosan, PAAm, and agarose) have been the

dominant focus of this work, but there are many future applications where it is desirable for the SWNT

sensor to be a free-floating probe. These could be in vivo probes for a specific glycosylated biomarker or

to adhere to cells with a unique glycocalyx (such as cancer cells). Thus this thesis also explored the ability

to track nanotubes in vivo using an advanced particle tracking microscope customized for SWNT sensing

(Chapter 7). The study revealed the fundamentals of SWNT rotational movement as tracked with
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polarized excitation and correlated these motions to solution viscosity. Nanotubes were tracked in living

cells, demonstrating normal, confined, and convective diffusion. The SWNT sensors could also monitor

the internal viscosity of the cells. In future work the microscopes orbital speed should be increased to

improve the ability to differentiate signal fluctuations caused by SWNT rotation versus sensor

transduction. This would then allow for interesting studies of SWNT sensors, tracking binding events,

while traveling around a cell in vivo.

This work has taken an abstract idea of improving glycan analytics via the use of quantitative

nanosensors. It has focused on fluorescent carbon nanotubes as a good candidate for glycan sensing due

to signal stability and capability to multiplex. The sensor was shown to work experimentally with ideal,

homogenous glycoprotein standards. The sensor platform was improved for antibody measurement from

cell supernatants and real fermentation bioreactors. The platform was then further refined for portable

sensing and demonstrated on-site at a major pharmaceutical company. Along the way a useful algorithm

for finding binding events in noisy single nanotube sensor responses was created as well as demonstrating

the practical limitation of tracking SWNT sensors three-dimensionally in vivo. We look forward to the

utilization of these sensors in larger and larger arrays (Fig 8.3) to realize the long-standing goal of simple

and robust glycoprofiling. -Once realized this will have a very large impact in biopharmaceutical

manufacturing, clinical diagnostics, and beyond.
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