
Modeling Trabecular Microstructure Evolution

via Genetic Algorithm

by

Samuel W. L. Shames

Submitted to the

Department of Materials Science and Engineering

in Partial Fulfillment of the Requirements for the Degree of

Bachelor of Science

at the

Massachusetts Institute of Technology

June 2013

c�2013 Samuel W. L. Shames

All rights reserved

The author hereby grants to MIT permission to reproduce and to

distribute publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature of Author..

Deparment of Materials Science and Engineering

May 3, 2013

Certified by..

W. Craig Carter

Professor of Materials Science and Engineering

Thesis Supervisor

Accepted by...

Je↵rey C. Grossman

Department of Materials Science and Engineering

Undergraduate Committee Chairman

1

ACKNOWLEDGEMENTS

This work represents the culmination of the last three years of my education. I am deeply
indebted to everyone who helped me to reach this point, and there are a number of people
without whom this thesis would not have been possible. I would like to thank a few key
individuals for their help and support.

First, I would like to extend my sincerest thanks to my thesis advisor, Professor W. Craig
Carter. Professor Carter has been a mentor and resource for me since I took 3.016 with him.
I was first impressed by his bag of tricks in Mathematica and later by the range and scope of
his knowledge of materials science, art, The Wire, and more. His willingness to help, along
with his seemingly endless list of interesting problems was the perfect complement to my
curiosity about materials science and Mathematica. I loved how he always challenged me
and pushed me to create work that was outstanding and beautiful. As my advisor, Professor
Carter suggested my thesis topic and has continually provided me with time and assistance
as I struggled to conduct this research. For everything from the use of his computer cluster
to his unparalleled patience with my unannounced visits to his o�ce with questions, I am
extremely grateful.

I would also like to thank Professor Lorna Gibson, in whose class, 3.032, I first learned about
what a remarkable material bone is and about the ways in which it adapts itself to its envi-
ronment. Hearing about the experiments with the guinea fowl was particularly memorable.
After I had chosen a thesis topic, Professor Gibson was kind enough to meet with me to give
me a series of papers all about the adaptability of trabecular bone. Her resources served
as the basis for my literature review and proved incredibly valuable throughout the project.
For both her excellent teaching and her enthusiastic willingness to help, I am grateful.

The last individual I would like to recognize is Professor Je↵rey C. Grossman. From the very
first 3.012 lecture, I found Professor Grossman’s charisma and passion for materials science
inspiring, and it was during that class that I began to love the subject. Since finishing 3.012
and Professor Grossman’s other class, 3.021, he has continued to inspire my education and
has provided me with opportunities as a UROP and later as a TA that I didn’t realize were
possible. For nurturing my enthusiasm and passion for the subject, and for his mentorship,
I o↵er my gratitude.

I also must thank all the other individuals who have supported me over the years and
contributed to my growth as a learner. This includes my family and friends, as well as all
the teachers I have had both at MIT and in high school. I must make o↵er an extra thanks to
Mr. Steve Chinosi, the teacher who taught me to love learning. Without him and everyone
else, I would not be in this position today. Thank you all for your continued support and
for igniting my intellectual curiosity.

2

Modeling Trabecular Microstructure Evolution

via Genetic Algorithm

by Samuel W. L. Shames

3

Modeling Trabecular Microstructure Evolution

via Genetic Algorithm

by

Samuel W. L. Shames

Submitted to the Department of Materials Science and Engineering
on May 3, 2013 in Partial Fulfillment of the

Requirements for the Degree of Bachelor of Science in
Materials Science and Engineering

ABSTRACT

Connecting structure to properties, and optimizing properties by controlling structure is
one of the fundamental goals of materials science and engineering. No where is this connec-
tion more apparent than with biomaterials, whose unparalleled properties are the result of
the evolution via cumulative selection of highly specialized structures. Beyond biomaterials,
cumulative selection o↵ers a generalizable model for materials optimization via accumulative
of beneficial mutations in a material’s genome that improve the properties for a given func-
tion. A genetic algorithm is one method for applying the principals of cumulative selection
to material’s optimization.

One of unique property that cumulative selection generated was the ability of trabecular
bone to optimize and adjust its structure in vivo in response to changes in its loading con-
ditions. This work presents a model for trabecular microstructure evolution using a genetic
algorithm, the same mechanism through which that ability evolved. The algorithm begins
by translating a trabecular genome into a developed structure. It then simulates the struc-
ture’s response under an applied load and selects for the genome which translates into the
best structure. The selected genome is then replicated and mutated. Simulations of mi-
crostructure evolution consist of iterating through this process across multiple generations.
A series of simulations was conducted demonstrating the ability of the algorithm to improve
trabecular architecture. The systems tended to converge to a uniform stress distribution,
after which additional generations of evolution had no e↵ect on performance. During the
simulations it was found that the length of the computation was most sensitive to the num-
ber of o↵spring per generation. Although focused on trabecular microstructure, this work
establishes the use of a genetic algorithm as a general tool for material’s optimization.

Thesis Supervisor: W. Craig Carter
Title: Professor of Materials Science and Engineering

4

Contents

1 Introduction 12

2 Modeling Trabecular Microstructure Evolution 17

3 Genetic Algorithms and Cumulative Selection 21
3.1 The Power of Cumulative Selection . 21
3.2 How Cumulative Selection Works . 23
3.3 Cumulative Selection and Genetic Algorithms 24
3.4 A Genetic Algorithm for Radiating Lines . 26

4 Creating a Genetic Algorithm for Trabecular Microstructure Evolution 33
4.1 Characterizing Trabecular Microstructure . 34
4.2 Trabecular Architecture and Graph Theory 35
4.3 Generating and Developing Trabecular Microstructures 38
4.4 Trabecular Architecture Genome . 43
4.5 Generating Trabecular Architecture . 44
4.6 Trabecular Loading and Selection . 49
4.7 Reproduction . 52
4.8 Non-Dimensionalizing . 53
4.9 Evolution Function . 54

5 Simulating Trabecular Microstructure Evolution 58
5.1 Varying the Genome . 60
5.2 Varying the Points . 60
5.3 Mapping Genomes onto Points . 62
5.4 Varying the Applied Stress . 63
5.5 Decrease in Standard Deviation . 63
5.6 General Trends . 65

6 Discussion 68
6.1 Number of Generations . 69
6.2 Number of O↵spring . 70
6.3 Mutation Rate . 71

5

6.4 Rate Limiting Computation . 74
6.5 Limitations of Genetic Algorithms . 75
6.6 Comparison with Previous Work . 77
6.7 Future Work . 78

6.7.1 Larger Scale Trabecular Simulations 78
6.7.2 Changing the Trabecular Genome . 80
6.7.3 Extension to 3D . 81
6.7.4 3D Printing and Experimental Validation 81

6.8 Genetic Algorithms for Materials Optimization 82

7 Conclusion 84

8 References 86

6

List of Figures

1.1 Schematic of the steps of the evolution process. 13
1.2 Schematic of the di↵erent levels of a materiome and the way in which they

combine together to create hierarchical structures across length scales to gen-
erate the macroscopic elements of a material’s structure. Reproduced from
Cranford et al. 2012. 14

1.3 (a) SEM micrographs of cellcular cancellous bone structure reproduced from
Gibson 1985. (b) Trabecular microstructure generated via genetic algorithm. 15

3.1 An example image of the types of radiating line pattern the genetic algorithm
can produce. 27

3.2 The optimal radiating line structure based on the selection criteria of the
maximum standard deviation in line length. 29

3.3 The evolution of one set of outputs of radiating line structures for a high,
medium, and low mutation rate. Shown are the first, 10th, 20th, 30th, 40th,
and 50th structures that were generated by the algorithm. In the medium
and high mutation rate cases, the optimal structure was found by the end of
the 50 generations. 30

3.4 A plot of the average standard deviation vs. generation number for 10 runs
each at a low, medium, and high mutation rate. The mean standard deviation
increases at a faster rate with a higher mutation rate. However, at high fre-
quencies mutations are more likely to cause a decrease in standard deviation.
Lower mutation rates are less likely to lead to regression. 31

4.1 Even though the vertices of these two graphs are located at di↵erent points in
space, the graphs are isomorphic because the edges between the vertices are
the same for both graphs. Unlike these graphs, the location of the vertices is a
defining feature of the trabecular architecture; changing the location changes
the overall structure. 36

4.2 A complete graph is one of the most basic graphs, where every vertex is con-
nected to every other vertex. A complete graph mapped onto a trabecular
architecture would mean that every vertex connects to every other one, result-
ing in a number of struts equal to the sum from 1 to the number of veritices
minus one. 37

7

4.3 A complete graph with 100 vertices where each vertex is a point on this 10 by
10 lattice. Once the vertices and edges have been mapped to a lattice, they
now be defined in terms of their geometry. 39

4.4 A random image that is used to generate the set of vertices within a trabecu-
lar cell. The pixel values in this 250 by 250 grayscale image, random numbers
between 0 and 1, are used to determine a probability distribution when ran-
domly selecting pixels to serve as vertices for struts. A pixel with an intensity
closer to 1 is more likely to be selected, resulting a random weighted pixel
distribution function. 40

4.5 Each of the four colors represents the randomly selected points for a region of
space from a random image like the one in figure 4.4. Each of the four regions
has a di↵erent number of selected pixels. A trabecular architecture will have
a gene for each region that determines the number of points that are selected
from the random image. These points serve as the vertices from which struts
can be created. 41

4.6 The top 10, 100, and 500, struts based on the results of the strut selector
function. The struts were compared to a strut of length 1, with angle Pi/2,
and of thickness 0.01. 42

4.7 The results of translating a trabecular genome onto a set of lattice points. The
genome specifies the number of struts that are created, the prefered angle,
thickness, and length of a strut, and the weights given to each of those three
strut features. 43

4.8 Trabecular architecture created by the combination of 16 di↵erent subcells,
like the ones in figure 4.7. For these two architectures, the genome is the same
for all the sub cells; however, the genome for the figure on the left is di↵erent
than for the figure on the right. 45

4.9 A translation for a trabecular genome mapped to a random set of lattice
points. Each cell had the same gene that specified that 100 lattice points
would be chosen at random. The genome also specified that 200 struts would
be created in each cell, that the ideal strut had thickness 0.005, length 1, and
angle of Pi/2. It also specified that the angle was 3 times as important as the
length and thickness. 46

4.10 A visualization of a trabecular architecture made of 16 di↵erent genomes
mapped onto 16 sets of lattice points. 47

4.11 Trabecular microstructure for 16 independent genomes. Each cell has a unique
genome that determines the number of random lattice points that were se-
lected, the number of struts that were created, and the features of those struts. 48

4.12 Visualization of the stresses on a strut in a cell in a trabecular system. Blue
coloring indicates low stress, while red indicates a large stress 51

4.13 Visualization of the stresses in a two by two supercell. 51
4.14 Schematic of trabecular microstructure evolution via genetic algorithm. . . . 54

8

4.15 Evolution of a small test trabecular architecture with random loading condi-
tions. The struts are colored according to their strain energy density, with
red representing a strut with a large stored energy. 56

4.16 Stress standard deviation for the trabecular architecture from figure 4.14. . . 57

5.1 Trabecular Architectures for evolution for two di↵erent genomes mapped onto
the same set of points under the same stress state at three stages of evolution.
The figure shows how drastically the microstructure of the system can change
in only a small number of generations and how the general tendency is for the
number of struts with a large strain energy—bright red struts—to decrease. . 61

5.2 The black struts represent the initial average length, thickness, and orientation
of each cell in the two systems. The red struts represent the average strut at
the end of ten generations of evolution. 62

5.3 The average initial and final struts in each cell in the two systems shown in
black and red respectively. 63

5.4 The initial and final architectures of two identical genomes mapped onto two
di↵erent set of points both under the same stress state. 64

5.5 The average struts for a single genome mapped onto five di↵erent sets of
points. The length and thickness of the average strut seem to be invariant to
the set of points onto which they are mapped, but the average angle can vary. 65

5.6 Showing how the average features of a genome vary with the points onto which
it is mapped. The average angle appears to be more sensitive to changes in
mapping points than the thickness or length. 66

5.7 Graph of the standard deviation in strain energy divided by the generation
zero standard deviation shows how the system improves with increasing num-
ber of generations. The larger blue dots are for the first genome, while the
smaller red dots are for the second genome. 67

6.1 The graph of standard deviation for di↵erent numbers of generations shows
the e↵ect of convergence: once the system finds the minimum standard de-
viation additional generations of evolution have little e↵ect on performance.
The largest dots, in red, are for the system that under went 25 generations
of evolution. Decreasing dot size, from blue to green, to brown, to black,
corresponds to the di↵erent number of generations of evolution the di↵erent
systems underwent. 69

6.2 The graph of Standard Deviation for the larger systems shows how the trend
of convergence is even more pronounced. Again, the dot size is proportional
to the number of generations of evolution the di↵erent systems underwent. . 70

6.3 Increasing the number of o↵spring makes the system’s performance level more
stable and reduces the variability in standard deviation with subsequent gen-
erations . 71

9

6.4 For the larger system, the improvements in stability are even more pro-
nounced; the trial with 10 o↵spring per generation had variability nine orders
of magnitude lower than the trial with only two o↵spring, as shown on this
log plot. 72

6.5 In the large scale system, increasing the mutation rate did not greatly a↵ected
variability, presumable because the number of mutations that produced a sys-
tem with equivalent performance was large enough that one was always pro-
duced. This time, the point size scales with mutation rate, with the largest
mutation rate corresponding to the set of red points and the smallest corre-
sponding to the black. 73

6.6 The small scale system showed that increasing the mutation rate did have
an e↵ect on system stability. Again, the mutation rate scales with the point
size—from red to blue, to green, to brown, and to black 74

6.7 The simulations with a larger mutation rate tended to have a larger variability
in converged stress than those with a smaller mutation rate. 75

6.8 The plot shows in red the increase in length of computation with varying
number of o↵spring per generation while the blue dots are for varying number
of generations. The steeper slope of the red line indicates that time is more
sensitive to the number of o↵spring. 76

6.9 Trabecular architecture for a 64 cell system. 79

10

List of Tables

3.1 Partial range of genes for radiating line genetic algorithm. 27

5.1 Table of parameters of trabecular evolution simulations 59

11

Chapter 1

Introduction

Whether in metals, polymers, or any other class of materials, materials scientists attempt

to connect structure to properties and to optimize properties by tuning and controlling

structure. Understanding the structure-function-properties-performance relationship and

using it to design novel materials is a fundamental goal of materials science and engineering.

There are many methods to optimize the structure for a given function and one that has

proven particularly successful is the process of cumulative selection used during natural

selection.

Evolution via natural selection has produced some of the most remarkable materials ever

synthesized: DNA, spider silk, enzymes, and tissue. Biomaterials are created by translating

instructions encoded in an organism’s DNA. These materials evolved through mutations in

the set of genes encoding them, and through the gradual accumulation of beneficial mutations

over millions of years they acquired the remarkable properties they have today. Figure 1.1

shows a schematic of the process of evolution via cumulative selection to which a set of genes

for a biomaterial is subject.

Part of the power of cumulative selection is how generalizable it is; the same mechanism

is use across all scales of evolution, not just the design of biomaterials. In materials science,

12

Figure 1.1: Schematic of the steps of the evolution process.

cumulative selection could also be used to probe the structure-function relationship for non-

biological materials, like metals and polymers, and as a method for discovering optimal

structures of these systems for a given application. As tool for materials scientists, cumulative

selection represents a powerful method for materials development and optimization.

One special feature of biomaterials that cumulative selection generated is there unparal-

leled adaptability. Unlike inorganic materials, biomaterials have the unique ability to change

their structure in vivo to adjust their properties in response to changes in their environment.

Part of the way in which biomaterials accomplish this is through the development of hier-

achical structures, and by generating active sensing loops across the di↵erent length scales

(Cranford et al. 2012). The creation of such feedback loops allows for multi-scale adapta-

tion, where changes in the building blocks of the di↵erent scales create improved properties

for better functionality. One way in which to characterize the hierarchical nature of bioma-

terials is through a materiome, which attempts to capture the material’s structure-function

relationships across all length scales. Figure 1.2 shows a schematic of the di↵erent levels of

13

Figure 1.2: Schematic of the di↵erent levels of a materiome and the way in which they com-
bine together to create hierarchical structures across length scales to generate the macro-
scopic elements of a material’s structure. Reproduced from Cranford et al. 2012.

a materiome and how they combine together to create the remarkable structures that define

biomaterials.

One example of such a structure is cancellous bone, the type which makes up trabeculae,

in which rods and plates form a connected network of either open or closed cells (Gibson

1985). Figure 1.3 is an SEM micrograph of cancellous bone along with a trabecular structure

generated via genetic algorithm for comparison. Since the 19th century, scientists have

observed that the orientation of struts align with the orientation of the principal stresses

(Turner 1992). These observations led Julius Wol↵, in 1892, to hypothesize that bone is a

structure with a self-optimizing capacity (Wol↵ 1892). Bone has the ability to dynamically

14

Figure 1.3: (a) SEM micrographs of cellcular cancellous bone structure reproduced from
Gibson 1985. (b) Trabecular microstructure generated via genetic algorithm.

evolve its microstructure in order to adapt to changes in the loading conditions it experiences;

changing the magnitude and orientation of the stresses a bone experiences will cause changes

in the orientation and thickness of the struts within the cancellous region.

When bone initially forms, its struts are orientated is in the same direction as the direction

of the average principal stress (Carter et al. 2001). The development of bone is strongly

influenced by the local stress history, and when the stresses change the architecture and

density of bone can change significantly in response (Carter et al. 2001). There is feedback

between the structure of bone and its loading pattern; changes in loading initiate changes

in structure, and developed adult bone has an internal structure tuned for its customary

mechanical loading (Carter et al. 2001).

Several experimental studies have demonstrated the connection between the microstruc-

ture of cancellous bone and the loading patterns. Work on guinea fowl in 2006 showed

that when the birds ran on an inclined treadmill, the orientation of their trabecular struts

changed to match the angle of the incline (Pontzer et al. 2006). This suggests not only that

the trabecular architecture is highly sensitive to its environment, but also that di↵erences in

architecture can result from di↵erences in loading conditions.

15

Other studies have used di↵erences in the trabecular architecture to account for di↵erent

biomechanical adaptations. One study found that di↵erences in trabecular architecture could

account for why humans are susceptible to fractures of the vertebral body, while apes are not

(Cotter et al. 2011). Other researchers have used trabecular architecture to demonstrate that

early human ancestors were bipeds (Galik et al. 2004, Rook et al. 1999). The explanatory

power of bone architecture extends beyond humans; researchers showed how the evolution

of dogs for either fighting or running resulted in di↵erent bone architectures (Kemp et at.

2005).

Given the connection between bone architecture and stress history, it is clear that bone

represents a highly responsive material, able to reorient and adapt its microstructure to

any possible loading conditions. Through this dynamic evolution, bone is able to obtain

maximum mechanical e�ciency with minimal mass. The purpose of this thesis is to model

the microstructure evolution of bone using the principals of cumulative selection—the same

mechanism through which bone developed its ability to evolve its microstructure. Although

this work focuses on cumulative selection as it applies to bone, it also aims to establish

cumulative selection as a general principal for material’s optimization.

The next chapter will survey previous computational modeling e↵orts of bone microstruc-

ture evolution. Following that background information is a chapter on cumulative selection

and genetic algorithms. After the background is a chapter that contains the details about

how the trabecular genetic algorithm was created. The next chapter contains the results of

the simulations using the genetic algorithm to model the evolution of di↵erent trabecular

microstructures under di↵erent loads. The discussion section further unpacks the results of

the simulations, including providing a comparison between the techniques of previous bone

modeling work with the genetic algorithms. Finally, the conclusion places the results of this

thesis back in the larger context of materials science and computational modeling.

16

Chapter 2

Modeling Trabecular Microstructure

Evolution

Previous computational studies on trabecular architecture have focused on three areas: at-

tempting to verify Wol↵’s hypothesis that bone is a self-optimizing structure, quantifying

the features of a trabecular architecture that has fully adapted to its loading conditions, and

connecting the cellular level remodeling process to the overall 3D macroscopic mechanical

adaptation. Of the three objectives, understanding how macroscopic features like stress and

strain drive microscopic changes in bone architecture has been a central question in a number

of previous studies.

At the scale of individual trabecular struts, microstructure evolution occurs via surface re-

modeling by cells called osteoclasts and osteoblasts (Adachi et al. 1997). Osteoclasts absorb

surface bone and osteoblasts form new surface. Through the cycles of osteoclasts and os-

teoblasts, with di↵erent proportion of time in osteoclasts to osteoblasts, macroscopic changes

in trabecular architecture can occur (Adachi et al. 1997). However, a central assumption of

this model is that the osteoclasts and osteoblasts can detect feedback—like number of stress

cycles of a given magnitude or local stress—of local from the overall trabecular architecture

17

and adjust their proportions accordingly.

Previous studies have explored several possible feedback mechanisms that can drive tra-

becular remodeling. Common driving forces include the ratio between local and average

stress on a trabecular strut; comparing the local and global strain energy density; and using

a minimum number of stress cycles of a given magnitude (Adachi et al. 1997, Huskie et al.

2000, Bagge et al. 200, and Carter et al. 2001). In all these studies, the driving force is

related to a rate remodeling equation which determines whether to add or remove surface

elements to individual trabecular struts. The equilibrium state is therefore the architecture

where the driving force, and thus the remodeling rate, on all struts is zero. In non-equilibrium

conditions, material is added or removed from individual struts until a steady state solution

is reached (Adachi et al. 1997). One key feature of the remodeling rate model is that there

is no global optimal solution; the model only describes the behavior of individual struts

(Adachi et al. 1997).

Besides using a remodeling rate equation to capture the relationship between cellular re-

modeling and the macroscopic stress state, researchers have also used topology optimization

to model the process of trabecular adaptation. Topology optimization calculates either the

stress or energy of individual struts and adds material to struts with high energy or stress

and removes material from low stress or energy struts (Jang et al. 2008). Although topology

optimization and a rate remodeling equation appear to be distinct methods for describing

trabecular architecture adaptation, it has been shown that both methods produce equivalent

solutions (Jang et al. 2008).

Whether using a rate remodeling equation or topology optimization, previous work has all

used Finite Element analysis. In the Finite Element studies, trabecular struts are modeled

as a discrete number of pixels in either 2D or 3D (Adachi et al. 1997). The trabecular

architecture is then an array of individual trabecular struts with fixed boundary conditions.

During the simulations, a stress is applied somewhere in structure, and the local stresses

18

of all the surface pixels are calculated using Finite Element analysis. Then using either

topology optimization or the rate remodeling equation, surface pixels are either added or

removed according to the specific criterion of the study (Adachi et al. 1997). This is an

iterative process that continues until either an optimal topology is found or the remodeling

rate on every surface pixel is zero.

The results of the previous computational bone modeling studies have all supported

Wol↵’s Hypothesis (Adachi et al. 1997). The results of the simulations were able to capture

the functional adaption of trabecular structures—demonstrating the ability to connect cel-

lular processes to macroscopic stimuli—and they showed good agreement with experimental

observations (Tsubata et al. 2009 and Boyle et al. 2011). Additionally, the showed several

important features of the equilibrium structures: trabecular struts aligned in the direction

of the largest principal stress, and that the thickness of a strut increases as a strut aligns

with the principal stress (Adachi et al. 1997).

Another important observation is that the equilibrium structures exhibit a uniform stress

distribution and a uniform strain energy distribution. This implies that each strut is used

equally to support the load, that the structure is fully stressed (Boyle 2011). This is one

condition for maximum mechanical e�ciency, and demonstrates that bone is in fact a self-

optimizing structure.

The previous studies on the microstructure evolution of trabecular architecture have

shown that external loads can drive cellular level remodeling that results in a trabecular

architecture that has been optimized for that load, one in which each strut is used equally

to support the load, indicating a fully stressed structure. In contrast with previous studies,

modeling trabecular microstructure evolution using a genetic algorithm does not use topology

optimization or a rate remodeling equation and creates a new structure with each generation,

rather than adding or removing material to the existing structure. Instead, it optimizes

through cumulative selection. To fully appreciate the distinction between this new model

19

and previous work, the nature of cumulative selection and genetic algorithms are described in

the next chapter, after which the genetic algorithm for trabecular microstructure evolution

is created.

20

Chapter 3

Genetic Algorithms and Cumulative

Selection

3.1 The Power of Cumulative Selection

One of the most remarkable aspects of biology is the range of conditions in which living things

have adapted to survive, in deserts, the Arctic, and even near boiling vents at the bottom

of the ocean. In each case, organisms have adapted by developing specialized structures

optimized for the functions that the organism needs to survive in the environment in which

it finds itself. Perhaps the most amazing aspect of this process is that it relies on a single

design principle: evolution through natural selection.

According to Richard Dawkins, evolution is the process of cumulative selection, directed

by non-random chance of survival (Dawkins 1996). The power of cumulative selection is

that it is not a random process, even though the mechanism for generation diversity, genetic

mutations, is random. In evolution, cumulative selection is non-random because the only

mutations that propagate across generations are those that increase an organism’s probability

of reproduction.

21

The other aspect of cumulative selection that makes it such a powerful method for adap-

tation and optimization is that each beneficial adaptation builds upon the previous ones.

This is because the each new generation begins with all the traits of its parent generation.

In other words, each improvement in an organism’s ability to reproduce in its environment

is used a starting point for future adaptations (Dawkins 1996).

Using cumulative selection, organisms have adapted to survive in almost every possible

environment, demonstrating the breadth of the design principal of cumulative selection. The

reason for this is that there is never a long-term selection criterion that pushes a species to

adapt in particular direction. Instead, the selection process is always short term: better odds

of survival or reproductive success (Dawkins 1996). This means that when an environment

changes—and what structures or traits are necessary for reproductive success in that envi-

ronment changes—the species in the environment can readily adapt to the new challenges

they will face.

Biology has demonstrated the power of cumulative selection as a tool to evolve and adapt

structures that allow organisms to thrive in their environment. Materials Scientists also try

to design structures that allow for specific functions and that meet goals in performance.

Just like Mother Nature, Materials Scientists can use cumulative selection to evolve initially

random structures into structures that are optimized for a specific function. Unlike the

process of natural selection, however, Materials Scientists can perform cumulative selection

with a long-term goal. Using this design paradigm and computational modeling, Materials

Scientists should be able to create structures as specialized as Mother Nature, but without

having to use millions of years of evolution.

22

3.2 How Cumulative Selection Works

Cumulative selection, whether in biology or in materials science, is a simple process using

three steps: development, selection, and reproduction. Through the repetition of theses

three steps across multiple generations, a random starting point can lead to a structure

highly optimized for an application or environment. One important key though is that a

structure is not what is passed on from generation to generation. What gets reproduced and

passed down from parent to o↵spring is instructions for how to make that structure, a set

genes, or an entire genome.

The interesting thing about this mechanism is that although genes are what is passed

down through generations, genes are not what is selected for during cumulative selection.

It is the e↵ects that genes produce on organisms—the proteins, structures, and behavior

for which they encode—and whether or not these things increase the odds of survival and

reproduction that determine whether or not a gene will be selected for and propagate across

generations (Dawkins 1996).

The first step in cumulative selection is the translation of the genome into the structures

that make up a living entity. This is the process of development, where the instructions for

creating proteins, cells, and life are decoded from the genome an organism inherits from its

parents. The initial development process is completely deterministic; the final structure of

an organism is completely determined by its genes, and identical genomes produce identical

structures. Over time though, environmental input may cause changes in the structure

independent of the genes.

The next step in the process is selection. In natural selection, the criterion is whether

an organism lives long enough to reproduce. When the cumulative selection process is used

in other applications, like materials science, there may be some objective function that is

used to quantitatively compare a set of developed structures. In that case, only the genes of

23

the optimal structure will be selected for and will enter into the reproduction phase of the

process.

In reproduction, the genome of the selected organism is taken as an input and copies are

made. The key feature of reproduction though is the possibility of mutation. It is mutations

in the genome, which result in changes in the developed organism or structure, that allow

for the adaption that defines cumulative selection. A mutation consists of a random change

in one or more of the genes in the genome of an organism.

Evolution consists of the repetition of development, selection, and reproduction, with

the endpoint of one generation as the starting point of the next. The di↵erence between

the genome, and consequently the developed organism, of one generation and its o↵spring is

small, but across many generations the di↵erences aggregate. Furthermore, even though the

changes in a genome between one generation and the next are due to random mutations, the

long-term changes in the genome are not random. The generational changes in a genome are

due to the selection of genes that develop properties that are useful for survival (Dawkins

1996).

3.3 Cumulative Selection and Genetic Algorithms

Cumulative Selection is an optimal design method when trying to create structures optimized

for a specific function without any a prior knowledge about what form the optimal structure

will take. Cumulative selection makes no assumptions about what the optimal solution looks

like; instead it allows for gradual improvements to be made to an initial random structure

until the performance of said structure meets some predefined criteria. For Materials Sci-

entists seeking to create new types of structures with novel functions, properties, and state

of the art performance, cumulative selection o↵ers a simple method capable of designing

structures for numerous applications. A genetic algorithm is a computer program that uses

24

the process of cumulative selection to design such structures.

Just like cumulative selection used in biology, a genetic algorithm optimizes a genome

based on a program to translate the genome into a developed system and then select for

an optimal system based on some criterion. A development function translates the genome

into its developed counterpart, an organism with proteins and cells in the case of biology.

The genes that make up the genome are the degrees of the freedom that the algorithm can

change.

Once a genome and a development function are defined, all possible structures are defined

as well, at least in a mathematical sense (Dawkins 1996). In practice however, for large

genomes, it is essentially impossible to comb through all possibilities to find an improved

outcome. Because of the impracticality of testing every possible genome, it is almost always

impossible to know whether a given outcome is in fact optimal. Instead of searching for an

optimal configuration, the goal of the algorithm is generally to evolve until some increase in

performance as been reached. The power of a genetic algorithm comes from its ability to

e�ciently search through di↵erent outcomes until it finds one that reaches a performance

goal. (Dawkins 1996).

Another useful aspect of a genetic algorithm is its ability to allow for the characterization

of precise relationships between developed structures; every genome occupies a unique point

in genetic space, defined as the phase space of all possible genomes, and there is a unique

spatial relationship between the every genome in genetic space. The relationship between

two developed structures can then be characterized by the euclidean distance between the

genomes for those structures in genetic space. This allows for precise quantification of the

evolution of a genome over the course of a genetic algorithm program.

Genetic algorithms can be developed for any application. As long as the features of a

system can be encoded in a genome in such a way that each genome represents a unique

developed structure, a genetic algorithm can be created. Then, once a selection criterion is

25

defined, the genetic algorithm program can be run and will evolve an optimized genome from

a random starting point. The result is the e�cient evolution of a system from a random

starting point towards optimized conditions.

3.4 A Genetic Algorithm for Radiating Lines

In order to gain experience with genetic algorithms, I decided to create a genetic algorithm

that would develop and select for images of lines radiating from di↵erent points in 2D space.

This is a useful exercise because even though radiating lines are unrelated to trabecular bone,

the code and sections of the algorithm will be analogous. By first developing an algorithm

for a simpler system, I will learn how best to structure the code and also about how to think

about the processes of development, selection, and reproduction. In addition to helping

understand how to create a genetic algorithm, the radiating line algorithm will also validate

the general nature of this method of optimization. In short, this simple case study o↵ers a

chance to better understand the key features of a genetic algorithm and how it is able to

optimize properties by mutating genes and changing structure.

In my example, I considered a genome that, when developed, would produce di↵erent

numbers of di↵erent length radiating lines from di↵erent points in space. Figure 3.1shows a

translation of one such genome. The number of lines, the length of the lines, and the points

in space from which the lines are drawn are all determined by the genome for this code.

Those three input genes characterize this simple algorithm. Table 3.1 shows a subset of the

genes for this algorithm along with an example genome and it’s transition.

Each of the three genes is one number from a di↵erent discrete set of possible values. The

number that defines a gene corresponds to a position in a list of either a number possible

lengths, a list of the number of lines that are generated, or a list of the points in space

from which lines are drawn, In a compromise between the complexity of the system and the

26

Figure 3.1: An example image of the types of radiating line pattern the genetic algorithm
can produce.

Num. of Points Num. of Lines Line Length
2 1 0.25
3 2 0.5
4 3 1
5 4 1.5
6 5 2
Example Genome: (3 2 4) Translation: 4 points, 2 lines, 1.5 line length

Table 3.1: Partial range of genes for radiating line genetic algorithm.

computational burden, I choose nine possibilities for each of the three genes. This means

that there are 729 possible genomes for this system.

After defining the genome for this algorithm, the next step was to create a development

function, which takes a genome as its input and returns the translation of that genome into

an image of di↵erent number of lines of di↵erent distances emerging from di↵erent points in

space. For example, the image in figure 3.1 is the translation of the genome (4,4,5) where

the first element is the length gene, the second is the number of lines gene, and the third is

the points in space gene.

27

The next step was to create a reproduction function. A reproduction function takes in

a genome and a mutation rate as its input and returns either the same genome or that

genome with one or more mutation. My methodology for determining whether or not a

mutation should occur was to generate a random real number between 0 and 1. If the

random number is greater than the mutation rate, a parameter in the algorithm, then that

gene was replaced by a random integer between 1 and 9, representing a di↵erent element

in the list of possible genotypes for that gene. Assuming that the random real number

generator generates all possible numbers with equal frequency, this method ensures that

the probability of a mutation increases in proportion to the mutation rate. This method

represents only one possible method for determining when a genome is mutated and other

genetic algorithms may use a di↵erent mechanism.

The last step in my genetic algorithm was to create a selection criterion and a selector

function. The selector function takes in a list of genomes as its input, uses the development

function to translate those genomes into the series of lines they represent, evaluates the

translations based on the translation criterion, and returns the genome that results in the

translation that scores the highest according to the selection criterion. For my algorithm,

I chose to select for genomes that produce the series of lines with the largest standard

deviation in their length. This criterion was completely arbitrary, but I thought it would

generate interesting results.

Once I had defined a quantitative selection criterion, all the possible genomes could

then be ranked according to their average standard deviations. Because there were only

729 possible variations, this was not a computationally intensive calculation. I was able to

sort through all my genomes and find the optimal one, shown in figure 3.2. The optimal

result has the genome (9,1,8) and results in an average standard deviation in line length

of 2.20. Although I was able to easily determine this, in more complex algorithms with

more degrees of freedom, it is ine�cient to determine this genome by brute computation.

28

Figure 3.2: The optimal radiating line structure based on the selection criteria of the maxi-
mum standard deviation in line length.

Furthermore there is no guarantee that there is only one optimal is optimal; for more complex

systems there may be multiple genomes which generate optimal properties. A better strategy

therefore, is to use the algorithm to preform genetic evolution.

The last step to using the genetic algorithm was to combine the developer, selector,

and replicator into a single evolution function. The evolution function takes as its input

an initial genome, a mutation rate, a number of o↵spring produced during reproduction,

and the number of generations of evolution. The evolution function then returns a list of

genomes, each one corresponding to the genome that was selected in that generation.

Once I had the evolution function, I could use it to evolve random initial genomes into

optimized genomes. Because I knew both the optimal genome and standard deviation it

produced, it was easy for me to determine whether or not the algorithm was working correctly.

What I did in order to gain insight about genetic algorithms was to run my algorithm

with the same initial genome and three di↵erent mutation rates, a high rate of 50 percent, a

low rate of 25 percent, and a medium rate of 10 percent. Because the algorithm has a random

nature to it, I needed to look at averages across runs in order to get a better assessment of

the performance of the code. I decided to run the algorithm 10 times for 50 generations at

each mutation rate. The results for one of those ten runs are shown in figure 3.3.

29

Figure 3.3: The evolution of one set of outputs of radiating line structures for a high, medium,
and low mutation rate. Shown are the first, 10th, 20th, 30th, 40th, and 50th structures that
were generated by the algorithm. In the medium and high mutation rate cases, the optimal
structure was found by the end of the 50 generations.

This method also allowed me to gain insight about the e↵ect of mutation rate on the

performance of the code. I took the average of the standard deviation in line length, the

selection criteria, across all 10 runs for each of the fifty generations in all three cases, low,

medium, and high mutation rates. A plot of those results is shown in figure 3.4.

The plot shows several important trends. First, in all three cases, the average standard

deviation increased, showing that the algorithm was working correctly. The second trend is

that the rate at which the average standard deviation increased depended on the mutation

rate, with a higher mutation rate resulting in a faster increase. The downside of this is that

a higher mutation rate also could lead the system to regress once it was close to the optimal

conditions. This trend was only present in the high mutation rate case. In the case of a

medium and low mutation rate, improvements were slower but stable. This implies that

there is an optimal mutation rate where the system quickly evolves towards the optimal con-

figuration and all improvements are stable. In the case of the trabecular genetic algorithm,

30

Figure 3.4: A plot of the average standard deviation vs. generation number for 10 runs each
at a low, medium, and high mutation rate. The mean standard deviation increases at a
faster rate with a higher mutation rate. However, at high frequencies mutations are more
likely to cause a decrease in standard deviation. Lower mutation rates are less likely to lead
to regression.

31

simulations will be conducted at multiple mutations rates to determine the sensitivity of the

algorithm and the optimal rate.

The radiating line genetic algorithm was an instructive way to learn the general principals

behind genetic algorithms. I will apply the same principals when I create a genetic algorithm

for trabecular structures. The code will have a very similar structure. The main di↵erences

will be in the complexity of the trabecular genome and in the selection criteria. The lesson

I learned about genetic algorithms—the e↵ect of mutation rate on performance—will also

apply in the case of trabecular structures. For those two reasons, this served as an excellent

introduction into genetic algorithms and has provided valuable insights that will guide me

in the more complex problem.

32

Chapter 4

Creating a Genetic Algorithm for

Trabecular Microstructure Evolution

In order to design a genetic algorithm to simulate the microstructure evolution of trabecu-

lar bone for a given stress state, it is first necessary to consider the features that define a

trabecular architecture, and the degrees of freedom necessary to accurately model the mi-

crostructure evolution and optimization process. The genetic algorithm will use the same

principles described in the previous chapter. This time, however, instead of having genes

that translate to a radiating line pattern, the genes will translated into the defining features

of a trabecular structure.

The genes for the trabecular genetic algorithm will correspond to the degrees of freedom

in the overall architecture. Once these genes have been defined, the development function will

translate a trabecular genome into a microstructure. The microstructure will then be placed

under an applied load and its response will be calculated. Using the response to the applied

load, a selection function will choose the genome that translates into the best trabecular

architecture for those conditions. That genome will then go through reproduction where it

will be copied and mutated. The o↵spring of the genome will then be placed under the same

33

load, and the o↵spring that best matches the selection criterion will be selected. Repeating

this process for multiple generations defines the evolution of a trabecular architecture and

the trabecular genetic algorithm. The first step in the process is to define the features of

trabecular microstructure and translate them into a genome.

4.1 Characterizing Trabecular Microstructure

In 2D, a trabecular microstructure consists of a network of struts of di↵erent length, angle,

and orientation. Those three features represent the degrees of freedom for the individual

struts that together define the microstructure. At the microstructure level, the defining

feature is the density, which can be defined several ways. For this genetic algorithm, the

number density, the number of struts per unit area, will be the defining criteria.

As previous studies have shown, during the microstructure evolution and optimization

of a trabecular architecture, the thickness, length, and orientation of the struts change in

response to the loading conditions. In the algorithm, these changes are modeled by changing

the genome that determines the type of struts that are constructed in a region.

An important feature of a trabecular architecture is the emergence of di↵erent domains,

characterized by a local strut angle, thickness, or orientation. In order to capture that feature

in our algorithm, the overall trabecular structure will be divided up into sub-sections, each

of which will have its own independent genome. The overall architecture is then given by

the combination of all the di↵erent sub-sections into a larger system. For this algorithm,

the sub-sections were chosen to be squares, but they can have any geometry. This allows for

individual domains to adapt to local applied stresses without a↵ecting other sections of the

overall structure that may have a di↵erent local stress state. Furthermore, by dividing up the

system into domains, it also allows the strut number density to vary locally, adding another

degree of freedom to the algorithm, allowing more accurate modeling of the microstructure

34

evolution.

Given both the essential features of microstructure evolution and the degrees of freedom

that define both the individual struts and a domain in the overall architecture, we can then

define the genes and the genome that will form the base of our algorithm. The genome can

be considered to contain information about multiple levels of the architecture. At the lowest

level, it contains instructions about the types of struts that will be created in a region, the

angle, thickness, and orientation. At the next level, it contains instructions about the strut

number density for the local region. The overall genome for a trabecular architecture can be

thought of as the aggregate of all the genomes for all subdomains within the boundaries of the

architecture. A key feature though is that the genomes of the subdomains are independent;

there is no global goal or driving force to create a unified genome across the system. Instead,

the genome of a domain is determined solely by optimized the local microstructure for the

local stress state.

4.2 Trabecular Architecture and Graph Theory

Given the model of trabecular architecture as a network of connected struts of di↵erent

thicknesses, angles, and orientations, a trabecular structure can be modeled using the prin-

ciples of graph theory as a network of vertices and edges. Within this framework, the edges

represent the struts and the vertices are the points in space where two or more edges in-

tersect. The distinction between this model of trabecular microstructure and graph theory

is the geometry; the absolute locations of the vertices in space are a defining feature of a

trabecular architecture, while the geometry of a graph can be changed arbitrarily without

changing the features of that graph. Figure 4.1 shows an example two isomorphic graphs,

graphs with di↵erent geometry but the same set of vertices and edges.

One of the most basic graphs is called a complete graph, with an edge between every

35

Figure 4.1: Even though the vertices of these two graphs are located at di↵erent points in
space, the graphs are isomorphic because the edges between the vertices are the same for
both graphs. Unlike these graphs, the location of the vertices is a defining feature of the
trabecular architecture; changing the location changes the overall structure.

pair of vertices. Figure 4.2 shows a six vertex complete graph. All graphs, including the

subset of complete graphs, can be characterized using an Adjacency Matrix. If there is an

edge between vertices ij in the graph, then the adjacency matrix will have the value 1 at

position ij and at ji, otherwise it will be a 0. In general, the adjacency matrix for a graph

of N vertices is an N by N symmetric sparse matrix where the only non-zero values are at

positions representing pairs of vertices connected by edges. An adjacency matrix can be

un-weighted, where the non-zero entries are all equal to 1, or weighted, where the non-zero

entries can take any range of values representing the weight of the edge between those two

vertices.

Using the principles of graph theory to construct trabecular microstructure begins by

creating a complete graph of N vertices with random edge weights. The edge weights will

map to the thickness of the struts. The vertices will map to a set of points from which the

struts will grow. The points onto which the graph will be mapped can take any form, such as

a regular lattice or a random sample of points. Figure 4.3 shows a complete 100 vertex graph

36

Figure 4.2: A complete graph is one of the most basic graphs, where every vertex is connected
to every other vertex. A complete graph mapped onto a trabecular architecture would mean
that every vertex connects to every other one, resulting in a number of struts equal to the
sum from 1 to the number of veritices minus one.

37

with equal edge weights mapped onto a regular 10 by 10 lattice. Once a graph has been

mapped to a lattice, the edges now take a definite geometry and can now be characterized

according to their angle, length, and thickness, all which will eventually be determined by

the genome. Before considering the strut characterization however, it is necessary to consider

how to generate the set of points onto which the complete graphs will be mapped.

4.3 Generating and Developing Trabecular Microstruc-

tures

Assuming that the vertices from which struts originate can only be arranged in a regular

lattice is unrealistic. A better approach would be to use a weighted random sample of initial

points whose features can be controlled by another gene in the strut genome. To create such

a random sample, random gray images were created where the pixel values were random

real numbers from zero to one. Figure 4.4 shows an example of one of these images. Using

the pixel values as a weighting function, a function then selects N pixels from the list with

pixel values closer to one having a higher probability of selection. This method allowed for

a more realistic point distribution than using a regularly spaced lattice. Figure 4.5 shows

the results of this random point selection method for four di↵erent sets of points within a

region of space. Each of the four regions selected a di↵erent number of total points from

the random gray image. For trabecular structures, the number of points selected will be

controlled using a gene.

Once a method for generating the set of points onto which the graphs were mapped was

established, the next step was to reduce the number of struts from the complete set that the

initial complete graph generated to a smaller subset that would be controlled by genes. The

genes would control the number of struts that are chosen from the set of all possible struts

and also the criteria for what struts are selected.

38

Figure 4.3: A complete graph with 100 vertices where each vertex is a point on this 10 by
10 lattice. Once the vertices and edges have been mapped to a lattice, they now be defined
in terms of their geometry.

39

Figure 4.4: A random image that is used to generate the set of vertices within a trabecular
cell. The pixel values in this 250 by 250 grayscale image, random numbers between 0 and 1,
are used to determine a probability distribution when randomly selecting pixels to serve as
vertices for struts. A pixel with an intensity closer to 1 is more likely to be selected, resulting
a random weighted pixel distribution function.

40

Figure 4.5: Each of the four colors represents the randomly selected points for a region of
space from a random image like the one in figure 4.4. Each of the four regions has a di↵erent
number of selected pixels. A trabecular architecture will have a gene for each region that
determines the number of points that are selected from the random image. These points
serve as the vertices from which struts can be created.

41

Figure 4.6: The top 10, 100, and 500, struts based on the results of the strut selector function.
The struts were compared to a strut of length 1, with angle Pi/2, and of thickness 0.01.

The criterion for selecting a strut is a function of the geometry of a strut. Once the graph

connections have been mapped onto a set of points, the struts take on a definite geometry,

characterize by their length, angle, and thickness. By comparing these features of all possible

struts to the features of a selection-strut, the struts can be sorted and ranked according to

how close they are to the features of the selection-strut. The features of the selection-strut

will be controlled by genes, which will determine its length, angle, and orientation. Another

gene will determine the how the features are weighted; the simplest case is that all are

equal, but a more complex gene could make the di↵erence in angle between the strut and

the selection strut twice, three times, or half as important as the di↵erences in the other

features.

Once the strut ranking function has been defined and a selection strut and weight function

have been input, the strut ranking function outputs the list of struts sorted by how close they

are to the weighed selection-strut. Next, a gene determines how many struts are selected for

the final structure and the top N struts are chosen from the overall list are output. Figure

4.6 shows the results of the strut ranking and selector function for a simple regular lattice.

42

Figure 4.7: The results of translating a trabecular genome onto a set of lattice points. The
genome specifies the number of struts that are created, the prefered angle, thickness, and
length of a strut, and the weights given to each of those three strut features.

4.4 Trabecular Architecture Genome

After having created the functions that convert a complete graph into a 2D trabecular archi-

tecture, the next step was to create genes that can control the features of the architecture.

The trabecular genome is a six dimensional genome that encodes information about all hi-

erarchies in the trabecular architecture. At the highest level is a gene that controls the

number of points that are selected as vertices in system. The next level is a gene that con-

trols the number of struts in the system. At the bottom level are the genes controlling the

features of the selection strut and the weight function. The weight function gene controls

the importance of the di↵erences between the struts and selection strut. The selection strut

gene control the angle, length, and thickness of the selection strut, each of which can vary

independently. Figure 4.7 shows the translation of two di↵erent trabecular genomes mapped

onto a regular lattice.

An important thing to consider is that the genomes described above only characterize

a subsection, or cell, in the overall trabecular architecture. Dividing the architecture into

43

domains is necessary to properly model ability of a trabecular microstructure to develop

domains in response to local loading conditions. The genome for a whole trabecular system

can be considered to be the list of genomes for each individual domain and the lattice points

onto which each genome is mapped.

It is also important to make a distinction between the trabecular genome and the materi-

ome. The genome is analogous to the DNA of a trabecular architecture while the materiome

is genome along with the points onto which the genome is mapped and the instructions for

translation. The distinction is in the perspective of the two view; in this case the genome

is only the set of genes that determine the features of the strut, but the materiome is the

entire process of trabecular development—the genes and the instructions for generating a

trabecular architecture from those genes. In short, the materiome o↵ers a complete picture

of trabecular architecture while the genome only captures the features of the types of struts

in each cell.

The first step to create a full trabecular architecture is to create the genomes for the

individual domains. The second step is to take the random points gene and translate into

a set of random lattice points. Once the lattice points for each region have been defined,

the trabecular microstructure for the system has been determined. Before translating the

random point genome, the microstructure has not yet been determined because due to the

random nature of point selection the same point gene could produce a di↵erent set of points

when translated di↵erent times, even though the macroscopic point distribution will be the

same in both cases.

4.5 Generating Trabecular Architecture

Once the list of points and genomes is defined, they can be translated into the set of struts

those genes produce. Figures 4.8-4.11 illustrate di↵erent structures produced under di↵erent

44

Figure 4.8: Trabecular architecture created by the combination of 16 di↵erent subcells, like
the ones in figure 4.7. For these two architectures, the genome is the same for all the sub
cells; however, the genome for the figure on the left is di↵erent than for the figure on the
right.

conditions. Figure 4.8 shows two 16-cell trabecular microstructure mapped onto a regular

lattice where each sub cell has the same genome. Figure 4.9 also shows a 16-cell trabecular

microstructure where each cell has the same genome, but mapped onto randomly selected

points instead of a regular lattice. Figure 4.10 shows another 16-cell architecture on a regular

lattice, but one where each cell has its own unique genome. Finally, Figure 4.11 shows a

16-cell architecture for 16 unique genomes, but mapped onto a set of random lattice points.

The gene that determined the number of random points for a cell was also di↵erent for each

of the 16 regions.

The last step in the development stage of the genetic algorithm was to create functions

that can determine the average features of a trabecular architecture. These functions will

be useful when quantifying the evolution of a given genome under a specific load. Functions

45

Figure 4.9: A translation for a trabecular genome mapped to a random set of lattice points.
Each cell had the same gene that specified that 100 lattice points would be chosen at random.
The genome also specified that 200 struts would be created in each cell, that the ideal strut
had thickness 0.005, length 1, and angle of Pi/2. It also specified that the angle was 3 times
as important as the length and thickness.

46

Figure 4.10: A visualization of a trabecular architecture made of 16 di↵erent genomes
mapped onto 16 sets of lattice points.

47

Figure 4.11: Trabecular microstructure for 16 independent genomes. Each cell has a unique
genome that determines the number of random lattice points that were selected, the number
of struts that were created, and the features of those struts.

48

were created that determine the mean length, angle, and thickness of the struts in a given cell

and also in the system as a whole. The function also returns the standard deviation for those

three features. These metrics allow for quantitative characterization of the microstructure

evolution of the algorithm.

A final major advantage of creating trabecular architecture using the principles of graph

theory is that these methods can easily be extended to 3D by mapping the initial complete

graph to points in 3D space. Once the graph has been mapped onto the set of points, the same

steps, with a few small modifications, can be used to produce 3D trabecular microstructure

controlled by genes.

4.6 Trabecular Loading and Selection

As discussed in earlier chapters, an optimal trabecular architecture is one where the strain

energy is equal for all struts. This implies that the stress on all struts is equal and that all

the struts are therefore being used equally to support the load. By selecting for trabecular

systems with the lowest standard deviation in the elastic strain energy, the system will evolve

towards a set of struts that produce uniform stress for those loading conditions. In order to

create this selection criterion, the first step is to create a function that calculates the strain

energy as a function of the loading conditions.

Modeling the trabecular struts as beams, in 2D trabecular systems there are three types

of stress under which the struts can be placed: a shear stress, a tensile stress, and a bending

moment. The dimensionless strain energy of a beam under a given stress-state is given by

equation 4.1:

U =
1

2

E(L
cell

(✏
L,x

� ✏
R,x

))2 + E

2(1+⌫)(Lcell

(✏
L,y

� ✏
R,y

))2

EL
strut

+
1

2

EIw(✓
L

� ✓
R

)2

E
(4.1)

49

Where U is the dimensionless elastic strain energy, E is the Young’s Modulus, L is the length

of the cell or the strut, epsilon and theta are the strains of the left and right vertices of the

strut, nu is the Poisson’s ratio, and I is the moment of inertia.

When calculating the strain energy, it is important to consider how the connectivity

of the system a↵ects the strain energy. Whenever two struts share a common vertex, the

displacement of that strut will change the energy of both struts. At each vertex there can be

three di↵erent types of displacements, strains in the x, y, or theta direction, so the number

of variables for the strain of a system scales as three times the number of struts.

The stress strut function uses equation 4.1 to calculate the energy in a strut as a function

of its displacements. By summing the stress strut function over all the struts in a system, the

total energy of a trabecular architecture under a given load can be computed. Minimizing

this function results in the elastic strain energy of each strut in the system. Once the strain

energy for every strut is known, the standard deviation can be calculated and the selection

function can choose the system with the lowest standard deviation, the most uniform strain

energy distribution. Figure 4.12 shows a visualization of one cell after having a completed

the strain energy computation. The red struts have a large elastic strain energy and the

blue ones have low elastic strain energy. Figure 4.13 is another visualization for a four cell

trabecular architecture with the same coloring scheme.

After developing the trabecular stress calculator, it was packaged into the general selec-

tion function. The selection function takes in a list of genomes, points onto which those

genomes map, and a set of initial conditions. It returns the genome that produces the best

trabecular structure—as defined by lowest standard deviation in strain energy—for that

stress state and those set of points.

The selection function begins by translation each genome and calculating the strain

energy on all the struts in the system using the strut energy function. Next, the standard

deviations in strain energy for each genome are calculated and compared. The system with

50

Figure 4.12: Visualization of the stresses on a strut in a cell in a trabecular system. Blue
coloring indicates low stress, while red indicates a large stress

Figure 4.13: Visualization of the stresses in a two by two supercell.

51

the lowest standard deviation is chosen and it is selected by the function.

The output format is a list containing the selected genome, a translation of the genome

into the developed trabecular system along with the strain energy of every strut in that

system. Also output is the mean strain energy and standard deviation of the system. This

output format allows for easy comparison and analysis.

The selection function is the where the power of a genetic algorithm is generated. By only

propagating mutations that improve the mechanics of the system, it turns random mutations

into a cumulative selection process, where only mutations that improve the performance of

the structure propagate. Furthermore, it allows mutations to build on one another, producing

a structure that is the product of incremental improvements.

To better interpret the results of the selection function, a stress visualizer function was

developed that takes the output of the stress calculation and outputs graphical representa-

tions of the trabecular structure in such a way that the strain energy of all the struts can be

compared. It does so using a colored scaling function, which colors the struts according to

the ratio of that strut’s energy to the maximum energy of all struts in that cell. Low energy

struts are colored blue while high energy struts are red. Figures 4.12 and 4.13 were created

using the stress visualizer function.

4.7 Reproduction

Reproduction is the part of the algorithm when a genome is input and copies of the genome

with di↵erent mutations are generated. The output of the reproduction function depends

on the mutation rate and the number of o↵spring per generation. The function determines

if a mutation on a gene occurs by generating a random number between zero and one for

that gene. If the mutation rate is greater than that number, that then that gene is mutated

and its value will change. This can occur for any of the genes in the system: strut thickness,

52

angle, or length, and also the strut weight gene and the number of struts gene. The number

of o↵spring that the reproduction function outputs is another variable that must be specified.

Because a trabecular system is a product of many individual trabecular cells, each with

its own genome, there will always be mutations during reproduction unless the mutation

rate is extremely small. Each cell has five di↵erent genes and whole systems have many

cells. Therefore, the probability that at least one gene will be mutated during reproduction

is large.

4.8 Non-Dimensionalizing

In order to make the results of algorithm more widely applicable, the lengths and stresses

in the system were non-dimensionalized. As described in the selection selection, the strain

energy calculation was normalized by the Young’s Modulus. The lengths of the system were

normalized by the length of the cell, the standard dimension for the problem.

The dimensionless strut length genes were defined in terms of fractional length of the

struts relative to the size of the cell. The dimensionless thickness genes were defined in

terms of the thickness to length ratio. The strut ranker function was adjusted to reflect

these dimensionless parameters. The comparisons between the features of a possible strut

and the ideal genome strut were done on the normalized features of the possible strut.

Once the strain energy was normalized, the only input that needed to be specified was

the Poisson’s ratio, which according to literature sources is 0.3 (Bagge 2000). The initial

conditions that defined a stress state are dimensionless strains defined relative to the size

of the overall cell. Non-dimensionalization allows for the comparison between systems of

di↵erent sizes and makes the algorithm more broadly applicable.

53

Figure 4.14: Schematic of trabecular microstructure evolution via genetic algorithm.

4.9 Evolution Function

An evolution function was created by merging the di↵erent development, selection, and

reproduction functions together into a unified package. The input of evolution is an initial

genome, set of points, and stress state, along with the number of generations of evolution, the

mutation rate, and the number of o↵spring per generation. Figure 4.14 shows a schematic

of the evolution process for this algorithm.

Evolution begins by calculating the strain energy of the initial genome, generation zero.

54

It then passes the results of that calculation to an evolver function, which replicates the

genome, calculates the strain energies of all the o↵spring, and uses the selection function

to output the best result. By running the evolver function with the Mathematica function

NestList the output of each generation is used as the input for the next. The output of

evolution is the genome, stressed translation, mean stress, and standard deviation for each

output. Figure 4.15 shows the evolution of one test system across five generations using

the stressed translation output. Figure 4.16 shows the standard deviation in strain energy

as a function of the generation. Because of the random nature of mutations, the standard

deviation can increase from one generation to the next even though the long term trend is

to decrease.

Having now created and tested the trabecular genetic algorithm, the next step was run-

ning simulations to learn about both the performance of the algorithm and the microstruc-

ture evolution of trabecular systems under di↵erent loading conditions. This begins by first

creating a set of test cases from which useful information can be extracted.

55

Figure 4.15: Evolution of a small test trabecular architecture with random loading condi-
tions. The struts are colored according to their strain energy density, with red representing
a strut with a large stored energy.

56

Figure 4.16: Stress standard deviation for the trabecular architecture from figure 4.14.

57

Chapter 5

Simulating Trabecular Microstructure

Evolution

In order to investigate the microstructure evolution of trabecular bone, a series of simulations

were created to demonstrate di↵erent aspects of genetic evolution. The simulations were

designed to test how the evolution of a system depended on the genome, the points onto which

the genome is mapped, and the loading conditions. The first set of simulations compared the

evolution of two systems with identical sets of points and stress states but di↵erent genomes.

The second set explored what happens to evolution of identical genomes and stress states but

mapped onto a di↵erent sets of points. A third simulation looked at how di↵erent loading

conditions a↵ect the evolution of two identical genomes mapped onto the same set of points.

A second set of simulations were performed to explore how the performance of the al-

gorithm depended on mutation rate, number of o↵spring per generation, range of genes,

and number of generations. Because these results of this set of simulations focuses more on

the algorithm and less on trabecular systems, they will be explored in more detail in the

discussion section. Table 5.1 shows the di↵erent inputs that were varied for all the sets of

simulations. The strain initial conditions were two percent compressive strain in either the

58

Num. of O↵spring Mutation Rate Num. of Generations Variable
4 0.2 10 Genome
4 0.2 10 Points
4 0.2 10 Stress
2, 4, 6, 8, 10 0.2 10 O↵spring
4 0.2 5, 10, 15, 20, 25 Generations
4 0.05, 0.1, 0.15, 0.2, 0.25 10 Mutation Rate

Table 5.1: Table of parameters of trabecular evolution simulations

pure x or pure y direction uniformly distributed across the top and bottom of each cell.

Each of the two sets of simulations was performed with two di↵erent ranges for the genes. In

the first set, the gene controlling the number of possible vertices ranged from ten to twenty

and the gene controlling the number of possible struts range from five to ten. The second

set used between 100-200 possible vertices and 50-100 possible struts. The ranges of all the

other genes were identical. In the large scale simulations, there were 5,354,808,750 di↵er-

ent unique genomes that one cell could have, almost forty times more than the 135,877,500

possible genomes in the smaller case. All of the simulations were conducted on four cell

systems, so the total number of possible genomes for a trabecular architecture is four times

the number for an individual cell.

Because of both the random nature of mutations and the random nature of generating

the points onto which a genome is matched, it would take a statistical analysis of multiple

trials of each simulation to do quantitative analysis. Unfortunately, this was not possible

due the computational demands of running such simulations, even using only four cells per

trabecular system. However, it is still possible to extract meaningful trends from the set of

results that were obtained.

In general, systems tended to converge to a minimum stress standard deviation within

the first five generations, after which the genome continued to mutate but without changing

the standard deviation. This indicates that there are multiple genomes which translate to

a trabecular architecture well adapted to a specific set of loading conditions and points. At

59

times however, the undesirable combinations of mutations for those conditions did cause the

standard deviation to increase.

5.1 Varying the Genome

The results of the first set of simulations show how the evolution process changes for two

di↵erent genomes mapped onto the same set of points under the same stress. Although

genome two was initially better adapted for the applied stress state, within a few generations

genome one had reached the same level of performance. Figure 5.1 visualizes the systems at

di↵erent points in the evolution process. Over the course of the evolution the average strut in

each cell in the two systems change features considerably, adapting its length, thickness, and

angle. Figure 5.2 shows the initial and final average struts for each cell in the two systems.

The final average struts are di↵erent for the two systems and that indicates that structures

with di↵erent macroscopic features can be equally well adapted for a given set of conditions.

5.2 Varying the Points

When testing the e↵ect of varying the points while keeping the genome and stress state

constant, it was discovered that applying the same genome to di↵erent points produced two

systems with almost identical average initial struts, as defined by their angle, thickness, and

length. Over the course of the evolution, the average struts changed and by the end of ten

generations the length of the average strut of the first set of points was considerably shorter

than the second set. Figure 5.3 shows the average struts for each cell before evolution

in black and the final average struts in red. Interestingly, although the systems evolved

di↵erently, both reached the same level of performance. Figure 5.4 shows the initial and

60

Figure 5.1: Trabecular Architectures for evolution for two di↵erent genomes mapped onto
the same set of points under the same stress state at three stages of evolution. The figure
shows how drastically the microstructure of the system can change in only a small number
of generations and how the general tendency is for the number of struts with a large strain
energy—bright red struts—to decrease.

61

Figure 5.2: The black struts represent the initial average length, thickness, and orientation
of each cell in the two systems. The red struts represent the average strut at the end of ten
generations of evolution.

final architectures of the two di↵erent systems.

5.3 Mapping Genomes onto Points

After noticing how the average features of the cells of a given genome seemed invariant to

the set of points onto which the genome was mapped, the average features of a genome

mapped onto five di↵erent sets of points were calculated. The results are shown in figure

5.5. Although there was variation in the average angle with the points, the average length

and thickness were essentially invariant with the points. The sensitivity of angle may be

due to the weight gene, which may have discounted the weight of keeping the angle constant

relative to the other two genes. The invariant nature of the average features of the cell shows

how the genome can be thought of as encoding macroscopic scale instructions about average

features within a system which can then be multiply realized on di↵erent sets of points.

62

Figure 5.3: The average initial and final struts in each cell in the two systems shown in black
and red respectively.

5.4 Varying the Applied Stress

The first stress state featured a compressive load of 2 percent of the initial cell size in the y

direction. The second stress state featured the same 2 percent load but in the x direction.

Both cases used the same initial genome and the same set of lattice points. This meant

that the initial trabecular architectures were identical. As expected though, the di↵erent

loading conditions caused the systems to evolve with di↵erent features. Figure 5.6 shows the

architecture of the two systems initially and after five and ten generations of evolution.

5.5 Decrease in Standard Deviation

The metric of performance for the algorithm was the standard deviation in stored strain

energy in the struts. A lower standard deviation in stored strain energy means that all the

struts are under equal stress and are being used equally to support the load, indicating an

optimized architecture. Because the smaller scale simulations had fewer struts and more

63

Figure 5.4: The initial and final architectures of two identical genomes mapped onto two
di↵erent set of points both under the same stress state.

64

Figure 5.5: The average struts for a single genome mapped onto five di↵erent sets of points.
The length and thickness of the average strut seem to be invariant to the set of points onto
which they are mapped, but the average angle can vary.

struts were initially stressed, there was larger initial standard deviation and improvements

were larger. Figure 5.7 shows the standard deviation in strain energy divided by the initial

standard deviation for the small scale case of two di↵erent genomes. Both genomes show a

decrease in standard deviation of more than 90 percent.

5.6 General Trends

Overall, the results of the simulations demonstrate that the genetic algorithm is able to

use cumulative selection to improve the performance—as defined in terms of the standard

deviation in strain energy—of the microstructure of trabecular bone in response to a given

set of loading conditions. The ability of di↵erent systems to reach the same level of per-

formance indicates that there are multiple genomes which generate well adapted structures.

65

Figure 5.6: Showing how the average features of a genome vary with the points onto which
it is mapped. The average angle appears to be more sensitive to changes in mapping points
than the thickness or length.

66

Figure 5.7: Graph of the standard deviation in strain energy divided by the generation zero
standard deviation shows how the system improves with increasing number of generations.
The larger blue dots are for the first genome, while the smaller red dots are for the second
genome.

The occasional decrease in performance in subsequent generations shows imperfect nature of

cumulative selection; that sometimes the wrong combination of mutations results in a struc-

ture that is not as well suited as the previous generation. Repeating the simulations in order

to generate enough results to preform statistical analysis should allow for more quantitative

measures of the observed trends.

67

Chapter 6

Discussion

The set of simulations investigating the e↵ect of mutation rate, number of generations, and

number of o↵spring per generation were designed to explore what governs the ability of the

algorithm to generate optimal structures. Performing these simulations on both the large

and small scale systems demonstrated how the range of genes a↵ects performance as well. In

addition to exploring how those factors influence the overall algorithm, this section will also

discuss the benefits and limitations of the model, compare the genetic algorithm to other

methods of modeling the optimization of trabecular microstructure. Potential future work

will also be explored, including the possibility of extending the algorithm to 3D systems.

In the large scale simulations, it was observed that the systems tended to very quickly

converge to a standard deviation and then maintained that deviation even as the genome

continued to mutate. The robustness of those systems may be accounted for by the fact

that the number of struts that were stress in the large scale system was small relative to the

overall number of struts. As a consequence, the system only needed to change a few struts

to reduce the standard deviation without concern for how it a↵ected the rest of the system.

In the future, applying more initial conditions will result in more struts being stressed and

more incremental improvements with each subsequent generation.

68

Figure 6.1: The graph of standard deviation for di↵erent numbers of generations shows the
e↵ect of convergence: once the system finds the minimum standard deviation additional
generations of evolution have little e↵ect on performance. The largest dots, in red, are for
the system that under went 25 generations of evolution. Decreasing dot size, from blue to
green, to brown, to black, corresponds to the di↵erent number of generations of evolution
the di↵erent systems underwent.

6.1 Number of Generations

Although one might expect that systems that underwent more generation of evolution would

result in a lower overall standard deviation, what was observed instead was convergence

around a minimum value, usually within five generations, followed by oscillations around

that minimum. Figure 6.1 shows a plot of the standard deviation as a function of generation

for systems with five di↵erent numbers of generations. Each color dot represents the evolution

of a single system and the dot size increases with the number of generations of evolution. The

graph shows that all the systems tended to converge around the same value for the standard

deviation, some systems converged faster than others. Figure 6.2 shows the same plot but

69

Figure 6.2: The graph of Standard Deviation for the larger systems shows how the trend of
convergence is even more pronounced. Again, the dot size is proportional to the number of
generations of evolution the di↵erent systems underwent.

for the large scale simulations. It shows completely stable convergence and no additional

improvements in performance beyond generation five, indicating that the system has most

likely reached the best possible performance level for that set of conditions.

6.2 Number of O↵spring

Increasing the number of o↵spring per generation increases the likelihood that only mutations

that improve performance will propagate. This is reflected in a lower variance in the standard

deviation once the system is conserved. Figures 6.3 and 6.4 demonstrate this trend plotting

the standard deviation in strain energy after convergence against mutation rate for both the

large scale and small scale systems. The large scale algorithm showed a larger increase in

stability than the small scale; the large scale case with ten o↵spring per generation had a

variability in converged strain energy with additional generations nine orders of magnitude

70

Figure 6.3: Increasing the number of o↵spring makes the system’s performance level more
stable and reduces the variability in standard deviation with subsequent generations

lower than the case with only two o↵spring per generation.

Although increasing the number of o↵spring per generation improves the stability of

the system, it comes at the expensive of computational speed. Each additional generation

requires its own stress minimization calculation, the most demanding computation in the

algorithm. In the large scale set, for example, the case with eight o↵spring per generation

took three times as long to simulate as the case with only two o↵spring per generation.

6.3 Mutation Rate

Mutations are the reason that cumulative selection generates such remarkable results, and

the mutation rate greatly a↵ects the performance of the algorithm, as already noted from

the radiating line algorithm. A higher mutation rate means a higher probability of getting a

large increase in performance in the first few generations. The flip side of this is that a higher

71

Figure 6.4: For the larger system, the improvements in stability are even more pronounced;
the trial with 10 o↵spring per generation had variability nine orders of magnitude lower than
the trial with only two o↵spring, as shown on this log plot.

mutation rate results in a less stable converged system because of a higher probability of the

genome mutating away from a well-adapted form. However, the large scale system exhibited

almost no variability once converged, even with mutation rates as high as 50 percent. Figure

6.5 shows the standard deviation against number of generations for all the di↵erent mutation

rates. This implies that there are so many potential genomes that produce a well-adapted

system for those conditions that mutations on multiple o↵spring per generation will likely

result in one with a nearly identical standard deviation. This contrasts with the radiating line

genetic algorithm, which had only 729 possible genomes, and where increasing the mutation

rate resulted in a strong increased in variability. This supports the hypothesis that having

a large number of genomes reduces the potential negative e↵ects of a large mutation rate.

Also supporting that hypothesis is the fact that the smaller scale simulations did show

that a higher mutation rate was more likely to generate variance in the converged standard

72

Figure 6.5: In the large scale system, increasing the mutation rate did not greatly a↵ected
variability, presumable because the number of mutations that produced a system with equiv-
alent performance was large enough that one was always produced. This time, the point
size scales with mutation rate, with the largest mutation rate corresponding to the set of red
points and the smallest corresponding to the black.

73

Figure 6.6: The small scale system showed that increasing the mutation rate did have an
e↵ect on system stability. Again, the mutation rate scales with the point size—from red to
blue, to green, to brown, and to black

deviation. Figure 6.6 shows the standard deviation against number of generations and figure

6.7 shows the variance in converged standard deviation as a function of mutation rate. The

trend in figure 6.7 is increased variance with increased mutation rate, although a statistical

analysis is necessary to confirm this observation. Overall, varying the mutation rate allows for

a balance between fast initial improvements and making improvements stable. Furthermore,

because changing the mutation rate does not change the expense of the simulation, it is

arguably the most important parameter in genetic algorithms.

6.4 Rate Limiting Computation

As the number of o↵spring, number of generations, and size of the system varied, so did

the time it took to complete the simulations. The results can be used to determine how

74

Figure 6.7: The simulations with a larger mutation rate tended to have a larger variability
in converged stress than those with a smaller mutation rate.

sensitive the time it takes to complete a computation is to those parameters and what the

rate limiting step is. The length of the computation scales linearly with the size of the

system, as shown by a 100 fold increase in time per simulation when moving from the small

scale to large system, where the large scale system had 10 times more vertices and 10 times

more struts. Within a size, the system is most sensitive to the number of o↵spring. Figure

6.8 shows a plot of the length of computation time for both the case of varying the number

of o↵spring and the number of generations. The slope of the o↵spring curve was 2.4 times

steeper indicating that the length of the computation is most sensitive to this parameter.

6.5 Limitations of Genetic Algorithms

The main limitation of using a genetic algorithm to evolve a system from an initial state to

an optimized state is the dependence on the genome and the set of genes. In order for the

model to be useful, the genes must accurately reflect the degrees of freedom of the system and

75

Figure 6.8: The plot shows in red the increase in length of computation with varying number
of o↵spring per generation while the blue dots are for varying number of generations. The
steeper slope of the red line indicates that time is more sensitive to the number of o↵spring.

also must have the correct range of values. Without the correct set of genes, it is impossible

to accurately model the evolution of a system and what to parameters are most important

for the desired set of properties.

Another limitation is the importance of selection criterion. The key feature of the cumu-

lative selection process is a quantitative comparison of systems according to some predefined

selection criterion. If the wrong selection criterion is used, then the system will not evolve

toward the state with the desired properties. Another limitation of this type of model is

that it does not capture the role of driving forces in the evolution process and how they are

responsible for the adaptation of di↵erent regions of the trabecular systems.

A limitation of this method specific to modeling trabecular microstructure evolution is

that a completely new set of trabecular struts is created after each generation of evolution. In

contrast, actual trabecular adaption occurs via adding and removing material to the surface

of existing struts. Therefore, this algorithm is better suited for modeling the process of

76

microstructure evolution across generations of a species—because each generation has a new

set of struts—rather the microstructure evolution of the preexisting architecture within a

specific organism.

6.6 Comparison with Previous Work

The previous work which had been done on modeling microstructure evolution in trabecular

systems focused on the process by which macroscopic properties like stress are used to

determine whether a given strut grows or shrinks. Previous models also focused on the

adaptation of one structure. In contrast, the genetic algorithm generated new structures

every generation and operated by choosing the best possible structure of all the ones in a

given generation.

Another area of distinction between this model and previous work is that other models

had no predefined stopping point built into them while the genetic algorithm runs for a

predetermined number of generations. The studies that used a remodeling rate, for example,

have built into their model that the system is stable when the remodeling rate on all struts

is zero. There is no way of knowing if a system is stable using a genetic algorithm and

the evolution process will always generate new structures with each subsequent generation,

even if those structures are not ultimately selected. While the optimal structure was defined

in previous cases as the structure where the remodeling rate on all struts is zero, there is

no predefined optimal structure in a genetic algorithm. Instead, it is more of a continuous

search process.

Like previous models, the genetic algorithm was able to model the process of trabecular

microstructure evolution and was able to reduce the standard deviation of the strut strain

energy—indicating a optimally designed fully stressed structure. A distinction is that the

struts in previous models adapted by adding or removing pixels to their surface, while the

77

genetic algorithm creates a completely new set of struts each generation. Both methods,

however, proved able to model the adaptation of a trabecular architecture to a set of loading

conditions.

6.7 Future Work

There are a number of interesting possible considerations for future modeling work using the

genetic algorithm. Thus far, the cases and simulations run have validated genetic algorithms

both as a method for modeling trabecular microstructure evolution and as a method for

generating optimal structures for a given stress state. This work also began to unpack

how the performance of a genetic algorithm depends on parameters like the mutation rate,

number of generations, and number of o↵spring. While this work yielded important insights

on both genetic algorithms and trabecular microstructure, it also raised the possibility of a

number of follow up studies and simulations.

6.7.1 Larger Scale Trabecular Simulations

Because of limiting computing resources, no simulations were preformed on systems larger

than four cells. A full scale trabecular architecture, however, consists of many more cells.

Running simulations on larger scale systems, like the 64 cells in figure 6.9, is the most logical

next step of this work because it will reveal the process of adaptation at the full trabecular

scale. In addition, these larger scale simulations should also allow for the emergence of

domains within the overall architecture.

In addition to simulations on larger systems, another logical next step is to add more

initial conditions and simulate more complex stress states. Simulation the loading conditions

that a human experiences upon running and comparing that to the loading conditions of a

dog running is one possible interesting example. Adding more initial conditions will result

78

Figure 6.9: Trabecular architecture for a 64 cell system.

79

in more fine tuned adaptation because more struts in the system will be under an initial

stress and be forced to adapt to reach a uniform stress distribution. It is important though,

that these future simulations be run multiple times so that the results can be averaged and

a statical analysis can be conducted.

6.7.2 Changing the Trabecular Genome

Another possible way in which to extend this work is to change the features of the trabecular

genome. Adding genes, like one for a chemical potential of calcium or one to adjust the

trabecular strut density, means additional degrees of freedom in the trabecular architecture

and a more responsive model. On the other hand, changing the types of genes can result in

an algorithm which more accurate models the process of microstructure evolution. Changing

the genes may also prove a way to combine genetic algorithms with the previous modeling

e↵orts.

In actual trabecular bone, rather than encoding for the features of struts, the genes

control the sensitivity and rate of the osteoclasts and osteoblasts. Creating a trabecular

genome with these features would result in system which evolves by adding and removing

material to the surface of preexisting struts, instead of generating a new set of struts each

generation. Changes in the genome would then result in changes in the sensitivity of the

system—and thus changes in when material is added or removed to a strut—and also changes

in the rate of remodeling or the ratio of osteoclast to osteoblast cycle time. These changes

would result in a genetic algorithm which more accurately models the process of trabecular

microstructure evolution.

Whether adding additional genes related to the strut ranking criterion the current al-

gorithm uses or designing a new set of genes, expanding the genome increases the degrees

of freedom of the system and provides more phase space in which to fine tune the optimal

structure. The methodology for development is flexible enough that it can be adapted to

80

any type of genome of arbitrary dimension. Extending the genome to create a more accurate

model is another natural extension for this work.

6.7.3 Extension to 3D

A second possible place to take this work is to extend the algorithm to 3D. Because the

trabecular are modeled using graph theory, this is very easy to do. It only requires mapping

connections onto points in 3D space instead of 2D space. Then the struts can be ranked

according to the same procedure as 2D, but with an additional gene for the second angle.

Of course, extending this work to 3D will make the stress minimization calculation much

more complex and make the algorithm more computational expensive, but it is interesting

to explore the types of 3D structures that can be produced.

6.7.4 3D Printing and Experimental Validation

3D printing o↵ers another potential avenue in which to take this research. 3D printing o↵ers

a chance to bring into existence the structures the algorithm generates, to test the structures

under actual loading conditions, to explore their mechanical properties, and to attempt to

confirm the increases in performance that the algorithm predicts. One possible experiment

which can be preformed is to 3D print the a trabecular structure with a genome designed

for a specific stress state and to test its performance against a trabecular structure with a

random genome. Anther possible experiment is to compare the performance of an initial

system and system that has evolved for a given stress state. This experiment provides a

way to test experimentally whether or not the structures that algorithm generates do in fact

become better adapted to its environment.

81

6.8 Genetic Algorithms for Materials Optimization

One important take away from both the trabecular microstructure genetic algorithm and

the radiating line genetic algorithm is the flexibility of this modeling method. Genetic

algorithms can be used across materials science and engineering—and indeed all of science

and engineering—in order to generate structures optimized for a given set of functions or

properties. Furthermore, the framework established in this thesis provides a method for

generalized genetic algorithm development, independent of the system being modeled.

The first step to creating a genetic algorithm for any materials science application is to

determine how the characteristics of a system can be described using a genome. For an

algorithm modeling polymer properties, the genes may be the average chain length, the side

group, and tacticity, for example. The next step is to create a procedure for development—

the process of translating the genome into a structure or system. For an algorithm mod-

eling microstructure of metals, the development may require using the theory of kinetics

to determine how the genes of phase fraction, temperature, and cooling rate determine the

microstructure. Following the development is the selection phase, which requires identifying

the metric of comparison for the system. In the case of metal microstructure, the selection

criteria may be highest tensile yield strength. Once the selection criterion is established, it

is necessary to quantify a procedure for calculating the criterion using the structure that

results from the development phase. The last step in generic algorithm development is the

reproduction phase, where the best genome is reproduced and mutated so that the cycle of

evolution may be repeated.

What should be clear is the features of genetic algorithms—development, selection, and

reproduction—can be mapped onto any possible materials optimization problem. As long

as there is known criterion for the optimal properties and a clear relationship between said

property and the structure of material, a genetic algorithm can be used to find the best

82

structure for a set of given conditions, just as it was for trabecular structures under a given

load.

83

Chapter 7

Conclusion

The ability for in vivo adaptation is one property that separates biomaterials from their

inorganic counterparts. Biomaterials like trabecular bone have the ability to adjust their

structure in response to changes in their environment. A genetic algorithm is one way to

model that process of adaptation, using the mechanism of cumulative selection through which

biomaterials evolved their unique properties. For materials scientists and engineers seeking

to developing the next generation of materials, biomaterials o↵er important lessons about

the relationship between structure and function and how adaptability can create robust

structures even in the face of large uncertainties about the environment in which they will

be used.

This thesis modeled trabecular microstructure evolution using a genetic genetic algo-

rithm. After creating the algorithm, simulations were conducted using di↵erent parameters

to explore microstructure evolution using the process of mutation and cumulative selection.

The results of the simulations show that the algorithm is able to increase the performance

of the system as defined by the selection criterion. The results showed the tendency of the

systems to converge to a minimum standard deviation in strain energy, with subsequent

variability of the converged value inversely proportional to the number of o↵spring per gen-

84

eration and proportional to the mutation rate. The results also show how a many di↵erent

possible architectures can be optimal for a given set of loading conditions and how small

changes in a genome or even a single gene can completely reshape the overall architecture of

the system.

By successfully modeling the process of trabecular microstructure evolution, this work

also establishes genetic algorithms and cumulative selection as a methodology for the opti-

mization of material’s properties. For materials scientists seeking to optimize the properties

of synthetic materials, genetic algorithms o↵er a method for creating a diverse set of struc-

tures and systematically searching through those structures for the ones that result in the

best properties. Whether trying to optimize the chemistry and molecular weight of a polymer

for tissue engineering, the microstructure and grain boundaries of a metal for an industrial

application, or the electrical properties of a semiconductor, genetic algorithms use the accu-

mulation of beneficial mutations to improve properties until they reach a given performance

metric. For materials scientists and engineers designing the next generation materials, ge-

netic algorithms serve as an important tool as they attempt to synthesis materials with

structures, functions, properties, and performance better than even the best biomaterials.

85

Chapter 8

References

Adachi, T., Tomita, Y., Hiroshi, S., Masao, T., 1997. Simulation of Trabecular Surface Re-
modeling based on Local Stress Nonuniformity. The Japan Society of Mechnical Engineers
Internal Journal 40, 782-792.

Bagge, M., 2000. A model of bone adaptation as an optimization process. Journal of
Biomechanics 33, 1349-1357.

Boyle, C., Kim, I., 2011. Three-dimensional micro-level computational study of Wol↵’s
law via trabecular bone remodeling in the human proximal femur using design space topol-
ogy optimization. Journal of Biomechanics 44, 935-942.

Carter, D. Beaupre, G., 2001. Skeletal Form and Function. Cambridge, UK, pp.138-158.

Cotter M., Loomis D., Simpson S., Latimer B., Hernandez C., 2011. Human Evolution and
Osteoporosis-Related Spinal Fractures. PLoS ONE 6. 26658. doi:10.1371/journal.pone.0026658.

Cranford, S., Buhler, M. 2012. Biomateriomics. Springer, New York, pp. 27-60

Dawkins, R., 1996. The Blind Watchmaker. W. W. Norton and Company, New York,
pp. 43-76.

Galik, K., Senut, B., Pickford, M., Gommery, D., Treil, J., Kuperavage, A., Eckhardt,
R., 2004. External and Internal Morphology of the BAR 100200 Orrorin tugenensis Femur.
Science 305, 1450-1453.

Gibson, L., 1985. The Mechanical Behaviour of Cancelllous Bone. Journal of Biomechanics
18, 317-328.

Huiskes, R., Riumerman, R., Harry van Lengthe, G., Janssen, J., 2000. E↵ects of me-
chanical forces on maintenance and adaptation of form in trabecular bone. Nature 405,

86

704-706.

Jang, I., Kim, I., 2008. Computational study of Wol↵s law with trabecular architecture
in the human proximal femur using topology optimization. Journal of Biomechanics 41,
2353-2361.

Kemp, T., Bachus, K., Nairn, J., Carrier, D., 2005. Functional trade-o↵s in the limb bones
of dogs selected for running versus fighting. The Journal of Experimental Biology 208. 3475-
3482.

Keten, S., Xu, Z., Ihle, B., Buehler, M., 2010. Nanoconfinement controls sti↵ness, strength
and mechanical toughness of beta-sheet crystals in silk. Nature Materials 9, 357-367.

Pontzer, H., Lieverman, D., Momin, E., Devlin, M., Polk, J., Hallgrmsson, B., Cooper,
D., 2006. Trabecular bone in the bird knee responds with high sensitivity to changes in load
orientation. The Journal of Experimental Biology 209, 57-65.

Rook, L., Bondioli, L., Khler, M., Moy-Sol, S., Macchiarelli, R., 1999. Oreopithecus was
a bipedal ape after all: Evidence from the iliac cancellous architecture. Proceedings of the
National Academy of Science 96, 8795-8799.

Tsubota, K., Suzuki, Y., Yamada, T., Hojo, M., Makinouchi, A., Adachi, T., 2009. Compu-
tational simulation of trabecular remodeling in human proximal femur using large-scale voxel
FE models: Approach to understanding Wol↵s law. Journal of Biomechanics 42, 1088-1094

Turner, C., 1992. On Wol↵s Law of Trabecular Architecture. Journal of Biomechanics
25. 1-9.

Watson, J., Crick, F., 1953. Molecular Structure of Nucleic Acids. Nature 4356, 737-738.

Wol↵, J., 1892. Das Gesetz der Transformation der Knochen. Hirchwild , Berlin.

87

