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Abstract

Functional composition, the application of one function to the results of another func-
tion, has a long history in the mathematics community, particularly in the context
of polynomials and rational functions. This thesis articulates and explores a general
framework for the use of functional composition in the context of signal processing. Its
many potential applications to signal processing include utilization of the composition
of simpler or lower order subfunctions to exactly or approximately represent a given
function or data sequence. Although functional composition currently appears implic-
itly in a number of established signal processing algorithms, it is shown how the more
general context developed and exploited in this thesis leads to significantly improved
results for several important classes of functions that are ubiquitous in signal pro-
cessing such as polynomials, frequency responses and discrete multivariate functions.
Specifically, the functional composition framework is exploited in analyzing, design-
ing and extending modular filters, separating marginalization computations into more
manageable subcomputations and representing discrete sequences with fewer degrees
of freedom than their length and region of support with implications for sparsity and
cfficiency.

Thesis Supervisor: Alan V. Oppenheim
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Chapter 1

Introduction

Signal processing is a rich discipline in which functional composition and decomposi-
tion can potentially be utilized in a variety of creative ways. In a broad sense, the aim
of this thesis is to create a systematic framework in which these two operations can be
exploited more fully in signal processing applications. From an analysis point of view,
one can often gain further insight into existing techniques by reinterpreting them in
terms of functional composition and decomposition. From a synthesis point of view,
one can develop new algorithms and techniques which inherit desirable properties of
these two operations. Moreover, computations can be performed more efficiently and
data can be represented more compactly in information systems in the presence of a

compositional structure.

In Section 1.1, functional composition and decomposition operations will be de-
fined. Their different interpretations will be shown to correspond to parallelization,
cascading and recursion, which are among methods that are often used to tackle com-
putationally difficult tasks. In Section 1.2, certain desirable aspects and implications
of composition and decomposition will be introduced as the focus of the framework
to be exploited in signal processing, namely an alternative way for compact represen-
tations of signals, modularity in designs and separability of computations. Section

1.3 will conclude the chapter with an outline of the other chapters.
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1.1 Functional Composition and Decomposition

Functional composition is the application of one function to the results of another
function. Conversely, functional decomposition is directed toward expressing a given
decomposable function as a composition of other functions, usually of lower order or
complexity. If the function is not decomposable, functional decomposition may be
applied to obtain a decomposable approximation. In this thesis, two notations will
be used interchangeably to denote the composition of two functions A and B, namely
A(B(-)) and A o B(:). Compositions of two operators will be distinguished by using
curly brackets, i.e. A{B{-}}.

Functional composition can be interpreted conceptually as a sequence of operators
applied to an input function or variable. This corresponds to cascading subfunctions
in order to obtain a more complex function, or cascading subsystems in order to
achieve a more sophisticated system to process an input. One simple example is the
application of filtering to an input signal z[n] using a cascade of two lower order
subfilters, which can be associated with operators G{-} and F{-}, respectively. The
result of the filtering operation can be expressed as the composition of these operators
acting on the input, namely F{G{z[n]}}. This composition takes a simple form if
the filters are linear and time invariant (LTI), in which case the z-transform of the
composition can be cxpressed as the product of individual z-transforms of the filters

with that of the input signal,
F{G{z[n]}} > F(2)G(2)X ().

Therefore, composition of cascaded subsystems in the case of LTI systems is commu-
tative, a property that is usually lacking in the composition of other more general
functions including nonlinear filters. This observation raises an interesting question
as to what classes of operators accept a rather simple representation in other domains
when they are composed. This question is not the main focus of this thesis but is a
promising future direction.

Another case which can be associated with functional composition is that of di-
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viding a complex function into subfunctions the results of which are not required
by each other in advance and therefore could be obtained separately and combined
appropriately at a later stage. This corresponds to parallelization of a task in which
each subtask can be performed by an independent subsystem such as multiple pro-
cessors or even different computers in a network. In signal processing, a common
scheme where parallelization is used is the implementation of high order infinite im-
pulse response LTI filters as a combination of several low order subfilters, in which

usually the low order filters are obtained by a partial fraction expansion. For two

such subfilters G;{-} and G»{-}, the output becomes the composition
F{Gi{z[nl}, Go{zlnl}} = Gi{ln]} + Go{z[n]} ¢ G1(2)X(2) + G2(2) X (2)

where z[n] is the input and F{-, -} simply corresponds to the summation of its ar-
guments in this example. This is a simple example of composing the multivariate
function F with univariate functions G;(z) and G2(z). In this thesis, composition
of multivariate functions will emerge in a discussion of decreasing the computational
complexity in certain classes of problems requiring marginalization.

A recursive approach to solving computationally difficult problems can also be
associated with a composition of subfunctions, where these subfunctions are similar
to the original function applied to easier subproblems. A very successful application of
this approach in the context of signal processing is the Fast Fourier Transform (FFT)
algorithms to compute the Discrete Fourier Transform (DFT) of a long sequence z[n].
In the decimation-in-time FFT algorithm, denoting the N-point DFT of a length-N

sequence with the operator Gy{-} leads to a recursion

Gnfalnl} = F{Gy (zelnl}, O {zolnl}},

where z.[n] and z,[n] are subsequences of z[n] consisting of its even and odd indexed
terms. The operator F{-,-} corresponds to combining its two arguments through
simple additions as well as multiplications with different roots of —1, therefore DFT

of a long sequence can be computed more efficiently by combining the DFT of its
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subsequences recursively.

So far, functional composition and decomposition were conceptually associated
with cascading, parallelization and recursion by representing subcomputations as op-
erators. In these approaches, the composition of operators does not necessarily lead
to the composition of the actual functions representing these operators. For example,
the cascade of two LTI filters was represented as F{G{-}} with an operator rep-
resentation of each filter. However the actual mathematical representation of this
operation is two convolutions involving impulse responses and does not involve com-
position of these impulse responses. In this thesis, composition and decomposition of
actual functions will be explored rather than their operator representations. In other
words, in the context of this thesis, composition will refer to the mathematical op-
eration of embedding functions into others through a direct replacement of variables

with functions.

1.2 A Framework for Signal Processing

1.2.1 Goals

It is the main goal in this thesis to develop a systematic framework in which functional
composition and decomposition can be exploited more fully in signal processing. To-
wards this goal, existing functional composition and decomposition algorithms in the
mathematical literature will be identified, implemented, extended or new algorithms
will be proposed that also accommodate the common optimality and efficiency criteria
of signal processing. A complete discussion regarding composition and decomposition
of all types of functions is neither possible nor meaningful. Therefore, the focus in
this thesis is on certain classes of functions that are ubiquitous in signal process-
ing, namely univariate polynomials, frequency responses and discrete multivariate
functions. Once the tools are developed, some of the existing signal processing ap-
plications in the literature will be revisited and re-interpreted within this framework

illustrating its additional benefits, and also new applications will be formulated.
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are formulated in the following chapters; namely sparsity, modularity and separability.
Each of these themes will have a close relationship with a corresponding interpretation
of composing two functions. The relationship between the themes and the functions

that constitute the focus in this thesis are depicted in Figure 1-1.

Compact Representations and Sparsity

In a parametric representation of two functions F' and G, their composition F oG can
be interpreted as expanding some or all parameters of F' with the parameters of G.
Parameters can be coefficients of a polynomial, variables in a multivariate function
or sample values of bandlimited functions. In most compositions, the number of
parameters in the composition F' o G well exceeds the total number of parameters
in F and G. This suggests an opportunity for a more compact representation of a
decomposable function in terms of the parameters of its components rather than its
direct parametric representation. This can be viewed as an alternative way to reduce
the number of required parameters to represent such functions with implications for

sparsity.

Modular Structures

Another interpretation of functional composition is to embed one function G into an-
other function F to obtain FoG. If a function is used to represent a signal processing
operation or task, the composition F' o G may correspond to repeating the subtask
G at different processing levels encapsulated by the main task F'. The implementa-
tion of the subtask G may be accomplished by a standardized and optimized off-line
design, which can then be repeatedly used at each processing level it is needed. This

naturally leads to a modular pattern with the main module being G.

Separation of Computations

A usual approach to simplify difficult computational problems is to divide them into

more manageable parts, for example in the case of factorable functions. The in-
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Figure 1-1: Functions for which composition and decomposition operations will be
discussed and the implications of these operations for signals and systems that will
arise in the context of examples discussed.

terpretation of functional composition as embedding subtasks in other tasks also
provides an alternative method to separate computations into smaller subcomputa-
tions. Computational efficiency usually follows by carefully framing and scheduling

the subcomputations.

1.2.2 Main Contributions

Functional composition and decomposition have manifested themselves in a variety of
contexts in signal processing. However, they were often not identified explicitly and
not manipulated utilizing the mathematical formalism. In this thesis, formal mathe-
matical representations of composition and decomposition will be adapted whenever
possible, which will make it more convenient to exploit them by borrowing techniques
from the mathematics literature. This also constitutes the basis for a framework to
systematically approach certain signal processing applications.

A chapter of this thesis is devoted to an overview of existing decomposition meth-
ods, their evaluation and development of a new decomposition method for an impor-

tant class of functions for signal processing, namely polynomials. The identification

18



of polynomial decompesition techniques as a potentially useful signal pracessing taol
presents a new viewpoint to manipulate finite length discrete time signals and LTI
systems. As computational challenges ever evolve and signal processing keeps offering
new and creative solutions for them, composition and decomposition of polynomials
may emerge as a promising set of operations to exploit in applications involving finite
length sequences.

Designing modular filters constitutes an important subset of applications that
are advocated in this thesis, which arises as an application of frequency response
composition and decomposition. Development of a technique to decompose frequency
responses leads to a convenient framework to design and analyze modular filters,
revisit and re-interpret filter sharpening applications as a special case of modularity,
which in turn allows improving and generalizing sharpening methods.

A further accomplishment is that decomposable multivariate functions are shown
to be potentially as useful as their factorable counterparts for an important class
of signal processing and machine learning applications, namely those that require
marginalizations. This is accomplished by identifying a close relationship between
decomposability and factorability of multivariate functions by introducing latent vari-
ables and temporarily increasing the dimensionality of these functions. This allows
exploitation of some well-known and computationally efficient methods in the case of
decomposable multivariate functions which were originally developed for marginaliz-
ing factorable functions. The relationship between decomposability of a lower dimen-
sional function and the factorability of an associated higher dimensional function also
appears in the literature for polynomials, a property which deserves further consid-
eration as to whether it exists more generally than in the case of these two classes of

functions.

1.3 Outline

In Chapter 2, applications from the existing signal processing literature that can be

interpreted as a form of composition and decomposition are discussed. This chap-

19



ter also reviews the basic concepts of time and frequency warping since these are
commonly exploited in this literature.

Chapter 3 explores polynomial composition and decomposition and compares the
implementation of several polynomial decomposition algorithms, including both ex-
act and approximate decompositions. A new method for approximate polynomial
decomposition is introduced. The chapter concludes with the discussion of sensitivity
of polynomial composition and decomposition operations and methods for obtaining
equivalent decompositions with lower sensitivity.

In Chapter 4, the composition and decomposition of frequency responses are de-
fined and methods are developed for their decomposition into a rational function
and a polynomial. The decomposition quality is specified in terms of the Chebyshev
norm of the difference between the given frequency response and its approximation
as a composition. The method is also extended to the cases where the decomposition
quality is specified based on approximating the magnitude of a given frequency re-
sponse with the magnitude of a composition, which, for example, becomes useful in
designing analog modular filters.

Composition and decomposition of discrete multivariate functions are discussed
in Chapter 5. For multivariate functions, their decomposability and factorability
are shown to be related by artificially increasing the dimensionality of the function
through the introduction of latent variables. This relationship allows using well-
established matrix factorization algorithms to decompose discrete multivariate func-
tions.

Several applications of functional composition and decomposition are discussed in
Chapter 6. These applications show that the functional composition viewpoint leads
to efficiency in representations, implementations and computations. These applica-
tions shown here are only a few examples of a possibly much larger set of applications

that can be formulated in the richness of signal processing.
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Chapter 2

Composition and Decomposition in

Signal Processing

Functional composition and decomposition, although not identified as such explicitly,
have appeared in a variety of signal processing contexts. Phase modulation is one such
example where a carrier sinusoid is composed with the signal to be transmitted and
as a result, the carrier signal experiences a time warping in the form of local changes
in its frequency and phase. A similar effect on signals that can be interpreted as
functional composition is the wow and flutter in musical recordings which stem from
imperfect and variable-speed recording and playback, where the varying speed can
be associated with a warping function. In other examples, functional composition
has been intentionally introduced into signal processing systems and algorithms in
order to exploit the benefits of time and frequency transformations as well as reusing
the same signal processing blocks repeatedly to avoid the expense of designing larger
systems in one step.

In this chapter, several signal processing contexts that can be interpreted from
a composition viewpoint are described to illustrate that composition is not a totally
unconventional concept in signal processing and its benefits have been recognized,
yet it is still far from being fully exploited in a systematical manner. Since time and
frequency transformations are commonly exploited in many of these contexts, as a

first step, these two operations are reviewed and re-interpreted as a form of functional
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composition.

2.1 Time and Frequency Transformations

2.1.1 Time Transformations

Time transformation of a signal z(t) by another function of time (t) can be defined
as the substitution of its time variable ¢ with ~(t), i.e. z(t) — z(y(t)), and is a
generic example of composition of functions. The resulting signal can be represented
as y(t) = z oy(¢) with the composition notation described in Chapter 1. An example
of time transformation is shown Figure 2-1 with z(t) = 2sin(5nt + 0.347) and v(t) =
tanh(3t). The independent variable axis, time axis in this case, gets warped in a
way consistent with «(t), the time warping function. This can be visually justified
by examining the time plots of z(t) and y(¢t) = z(v(t)). The time axis gets locally
compressed when the slope of «y(t) is greater than the slope of the identity warping
function ;4(t) = ¢, i.e. unity, and locally expanded when the slope is less than unity.
For an unambiguous recovery of z(t) from y(t), ¥(t) is required to be known and

invertible. In that case

z(t) = y(y~1(t)), (2.1)

i.e., z(t) can be obtained by the application of the inverse time warping function to

y(t).

2.1.2 Frequency Transformations

Frequency transformations of discrete time signals can be viewed as a special case of
transforming, or composing, the corresponding z-transform since the Fourier trans-
form of a signal is the evaluation of its z-transform on the unit circle. Only the
discrete time case will be explored as the discussion of continuous time signals is sim-

ilar. Since the z-transform F(z) of a causal discrete time signal f[n] of length M +1
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Figure 2-1: Time transformation y(t) = tanh(3t) applied to the signal z(t) =
2 sin(5nt + 0.34).

is given by

F(z)=)_ fuz ™, (2.2)
k=0

its composition with the z-transform G(z) of another causal discrete time signal g[n]

can be defined as

M
H(z) = F(G(2)) £ Y iiG*(2), (2.3)
k=0

1in the

where H(z) is the resulting z-transform. This corresponds to replacing z~
definition of F(z) with G(z), or equivalently, to composing the polynomial F(-) with

another function of 27!, namely G(z).

The frequency transformation implied by the composition in equation (2.3) can

be interpreted as follows. Before the composition, the DTFT F(e?) is specified by

computing the z-transform F(z) on the unit circle, which is parametrized as 27! =

e 7 and is transversed by sweeping w from 0 to 27. The composition in equation

1

(2.3) transforms the sequence f[n] to h[n] by substituting G(2) for z~*. Therefore
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the DTFT H(e’*) corresponds to computing F(z) on the contour parametrized by
27! = G(e’*) in the complex plane. This can be viewed as warping the unit circle as

specified by G(e?). Figure 2-2 illustrates the warping of the unit circle by
27 =G(e™) = -1+ 0.5e7 + 0.4z~ %« (2.4)

which are the set of new points on which F(z) is computed to yield H(e/*). The
computation of the z-transform on contours other than the unit circle has proved

useful in different signal processing contexts, for example the chirp z-transform [43].

An important class of mappings G(2) are all pass functions which satisfy |G(e?)| =
1. The importance of such mappings stems from the fact that they map the unit cir-
cle onto itself, therefore the Fourier transform before and after a composition are
frequency warped versions of one another. This also implies that compositions of
all-pass mappings with this property results in an all-pass mapping with the same
property as the unit circle is mapped onto itself by each map in the composition
chain. Mappings using all-pass functions have proven to be very important in signal

processing applications and several examples of their use are shown in Section 2.2.
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Figure 2-2: The unit circle in the complex plane, parametrized by 2=! = e 7, and
its image under the transformation 27! = G(e’*) = —1 + 0.5e™%* + 0.4z~ %%,
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2.2.1 Nonuniform sampling and local bandwidth

It is a well-known fact that a bandlimited signal can be represented by and recovered
from its uniform samples taken at a rate at least twice its highest frequency. In cases
where a bandlimited signal experiences a time transformation, this property may be
lost as the transformation renders the signal non-bandlimited in general. However, the
convenience of representing a signal using its finite-rate samples has tempted scveral
authors [14,55] to investigate other means to sample non-bandlimited signals obtained
by time warping bandlimited signals and reconstruct them from these samples, where
the signal can be sampled at a finite rate consistent with a notion of local bandwidth

corresponding to the time warping function in this context.

Given that a non-bandlimited signal f(t) is in fact obtained by time warping a

signal ¢(¢) bandlimited to w, i.e.

f(@) = g(r(t)), (2.5)

where (t) is an invertible warping function with y~!(t) = «(t), Wei [55] proposes
using the system depicted in Figure 2-3 to sample and reconstruct f(t). Reversal of
the time warping in the first stage can be viewed as a preconditioning of the signal to
avoid aliasing in the subsequent uniform sampling process. The samples taken in the
third step correspond to a non-uniform grid in the original time domain, supporting
the intuitive notion of the local bandwidth as the samples are denser when the +/(t) is
larger, corresponding to a higher local bandwidth. This method utilizes compositions
with functions of time in order to transform a non-bandlimited signal in an invertible
way to a bandlimited one to exploit the efficient sampling and reconstruction schemes

for the latter.
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Figure 2-3: A sampling and reconstruction scheme for a non-bandlimited signal f(¢)
obtained by time warping a signal g(¢) bandlimited to w., where f(t) = g(v(t)).
Figure is adapted from [55].

2.2.2 FFT for Unequal Resolution Spectra

Oppenheim et al. [39] showed that it is possible to use the FFT in order to compute
the DFT efficiently on a nonuniform frequency grid after appropriately warping the
Fourier transform in the frequency variable, which can be recognized as a form of
composition as discussed in Section 2.1.2. In the proposed method, the Fourier trans-
form is effectively composed by a nonlinear function such that a uniform sampling
grid, on which a DTFT can be efficiently sampled using the FFT, corresponds to a
desired nonuniform sampling grid for the original Fourier transform. This is accom-
plished by transforming the original sequence f[n] to a new sequence h[n] satisfying

the desired relationship between their corresponding Fourier transforms.

Figure 2-4 illustrates how a sequence h[n] is obtained from a causal discrete time
sequence f[n]. First, f[n] is time reversed and is provided as the input to a system
consisting of all-pass filters after the first two subsystems and which is tapped after
each block in the chain. Each block in this network and hence the resulting h[n] is
parametrized by the real number a. The discrete time sequence h[n] is specified as

the values recorded at these taps at n = 0, i.e.,
hln] = h,[0]. (2.6)
The relationship between H(e’”) and F(e’) is given by

H(e™) = F(e"®) (2.7)
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Figure 2-4: The system to obtain h[n] = h,[0] from f[n] with the frequency response
relationship given in equation (2.7) [39].

where
(1 - a?)sinw
—2a+ (1 + a?)cosw’

(2.8)

0,(w) = arctan

This is a parametric warping of the frequency axis with the parameter o. The DFT of
h[n] can be efficiently computed using the FFT, which computes the equally spaced
samples of H(e™), and hence the non-uniformly spaced samples of F(e7%) as desired.
This method can be interpreted as an indirect utilization of composition in the fre-
quency domain to extend the efficiency of the FFT to computations of the DFT on

non-uniform grids.

2.2.3 Frequency Transformations of Prototype Filters

Frequency selective filters can be designed by applying an algebraic transformation to
a prototype filter, which is usually selected as a low-pass filter. This can be interpreted
as another form of functional composition in the context of signal processing. The
idea is applicable to both continuous and discrete time filters, and is only illustrated
for discrete time in this section.

In Section 2.1.2, frequency transformations were expressed in terms of composing
the z-transform F(z) of a discrete time sequence f[n| by a mapping G(z), and com-
puting the Fourier transform on the resulting system function by setting 2! = e 9%,
If F(z) is a rational system function of a causal and stable filter, the system func-
tion after the composition is usually required to remain rational and correspond to a
causal and stable system. These requirements place certain constraints on the map-
ping G(z), namely, G(z) must be a rational function of 27! and the inside of the

unit circle must be mapped to the inside of the unit circle so that the poles are not
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mapped across the unit circle [40]. Moreover, for the resulting Fourier transform to
take values from the range set of F'(e’*), the unit circle must be mapped onto itself,

which requires |G(e’*)| = 1 as discussed in Section 2.1.2.

It was shown in [15] that the most general form of the mappings G(z) satisfying

these conditions is of the form

N

Z_ -
G2) = + H — akz_kl (2.9)

i.e., the product of a finite number of all-pass system functions each with a parameter
ax. The simplest mapping that maps a low-pass filter F(z) to another lowpass filter
is

41
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G(z) = (2.10)

1—az t’
A prototype low-pass filter F'(z) with a cut-off frequency 8, can be mapped to F(G(z))
using such a mapping to obtain a low-pass filter with cutoff frequency

(1 - a?)siné,
200+ (14 a?) cost,

wp = arctan (2.11)

This frequency transformation resembles the nonlinear transformation applied to a
discrete time sequence for the efficient computation of its DTFT on a nonuniform
grid as described in Section 2.2.2. However, in this setting, the purpose of the trans-
formation is to relocate the cut-off frequency. Equations (2.8) and (2.11) describe an
equivalent relationship between the frequency variables w and 6, and this relationship

is illustrated in Figure 2-5.

Compositions with mappings of the form (2.10), i.e., frequency transformations
can be used to obtain frequency selective filters more general than another low-pass
filter. For example, in order to obtain a band-pass filter with a desired lower cut-off

frequency w1 and a desired higher cut-off frequency wpe, the mapping

V4
G(Z) — k+l — k+1 (212)
k—+}z‘2 z—ﬂz‘l +1
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Figure 2-5: The parametric relationship between the frequency variable of a prototype
low-pass filter @ and the frequency variable w of a low-pass filter obtained after the
transformation in equation (2.11). Figure is adapted from [40].

is used for composing the prototype low-pass filter with the cut-off frequency 6,,

. 6
k = cot (‘””2—2“—21) tan (5”) (2.13)

_ cos(‘—”ﬂ%"ﬂ)

where

and

(2.14)

cos( <22t )
For a complete list of transformations from a low-pass filter to low-pass, high-pass,

band-pass and band-stop filters, the reader is referred to [15] or [40].

2.2.4 Design of Audio Filters

A desirable property of frequency selective filters obtained using frequency trans-
formations as in Section 2.2.3 is the fact that the resulting filter exhibits the same
extremal values in the pass-bands and the stop-bands as that of the prototype filter
since the composition distorts only the frequency axis. This guarantees that, for ex-
ample, the specifications for the maximum allowable ripple size are not violated after

the frequency warping, a fact that is often exploited in designing minimax-optimal
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Figure 2-6: Composing a filter F'(z) to accommodate audio filter specifications with
logarithmic frequency ranges by substituting its delay elements for all pass systems [4].

filters. One example is an audio filter design algorithm introduced in [4].

Due to the natural frequency sensitivity of the human auditory system, frequency
specifications in audio and speech applications are usually given on a logarithmic
scale. Frequency responses of the filters that are used in these applications have most
of the detail at low frequencies. This unbalance in the specifications between low and
high frequency ranges causes difficulties in designing filters such as yielding very high
filter orders or not converging at all. The design procedure proposed in [4] to alleviate
this problem utilizes the idea of warping the frequency scale nonlinearly similar to
the methods in Section 2.2.3. This is accomplished by composing the z-transform of
the filter by the all pass system function as illustrated in Figure 2-6, which leads to
composing the frequency response F(e’*) of the filter with the function in equation
(2.8). The choice of « in the range [—1,0] corresponds to expanding the frequency
axis at low frequencies and compressing at high frequencies, making the design space
suitable for logarithmic specifications. Low order and high quality audio equalizers
can easily be obtained by composing an FIR filter designed with well-established
techniques such as the Parks-McClellan algorithm [42] using this method.

2.2.5 Parks-McClellan Algorithm

Another example of a signal processing context in which functional composition has

indirectly appeared is the design of linear phase FIR filters. One approach to designing

30



linear phage caugal FIR filters ic to design a zerc phase FIR filter and delay the
sequence in time to the point it becomes causal as in the design of Parks-McClellan
filters [42]. This approach utilizes the symmetry in the coefficients of the filter to
optimize them indirectly by representing the Fourier transform as a composition of a

polynomial and a trigonometric function. For example, a finite length sequence h[n|

that is symmetric around zero has a real-valued Fourier transform of the form

L L
H(e) = Z h[n]e™# = Zh[n] COS W (2.15)
n=—L n=0
which can be rewritten as L
H(e™) = Z b, (cosw)™ (2.16)
=0
where b,,n = 0,1,..., L, the coefficients of the polynomial in cosw, depend on the

values of h[n]. Hence the Fourier transform can be expressed as the composition of a

polynomial

P(w) = i baw™ (2.17)

n=0
with the function f(w) = cosw. Due to this specific form of the Fourier transform,
Parks and McClellan [42] were able to express the linear phase FIR filter design
problem as a polynomial fitting problem, which is well studied in mathematics, and

devised the celebrated Parks-McClellan FIR filter design algorithm.

2.2.6 Extending Filter Dimensionality

Mersereau et al. [35] extended the idea by Parks and McClellan to 2-D linear phase
FIR filter design. Similar to its one dimensional counterpart in equation (2.15), a 2-D
linear phase FIR filter h[m,n| has a frequency response

My M>

H(ej“”, ejwz) = Z Z h[m, n] COS 1TNW1 COS NWa. (2-18)

m=0 n=0
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Figure 2-7: A 2-D low-pass filter obtained from a 1-D low-pass filter using McClellan
transformation. Figure adapted from [35].

The procedure to obtain 2-D filters from 1-D filters by taking advantage of this
similarity in the forms of Fourier transform is called McClellan transformation and

involves the substitution

P Q
cosw > Z Z t[p, g] cos pw; cos qus (2.19)

p=0 ¢q=0
in the Fourier transform of the 1-D filter given in equation (2.16). In other words,
the univariate polynomial in cosw given in equation (2.16) is composed by a bivariate
function of w; and w, given in equation (2.19) to yield the Fourier transform of the

2-D filter

n

L P Q
H(ejwl’ejw2)=an ZZt[p,q]cosI)wlcosqwg . (2.20)

n=0 p=0 ¢=0

The substitution given in equation (2.19) also describes the relationship between
the 1-D filter response and the 2-D filter response implicitly. Each frequency in the
one dimensional w space corresponds to a contour in the two dimensional frequency
plane indexed by w; and ws. The shape of the contour is determined completely by
the coefficients t(p,q), 0 < p < P, 0 < q< Q. The value of H(e?*) at w = wp will be

identical to the value of H(e/“?, e7“?) on the contour which corresponds to wp, but the
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1-D filter h[n]. This approach which uses functional composition for 2-D filter design
separates the problem into two tractable subproblems, namely the design of the 1-D
filter h[n] and the design of the contour parameters ¢(p, ¢). This procedure is similar
to the case of designing filters from a prototype using frequency transformations and
the ripple sizes are not affected by the increase in dimensionality. Figure 2-7 illustrates
an example of a two dimensional low-pass filter that is obtained by extending a 1-D

Paks-McClellan filter using McClellan transformation.

2.2.7 Filter Sharpening

In cases where multiple identical linear phase filters with an inadequate frequency
selectivity are available, it is possible to obtain improved overall frequency charac-
teristics that exhibits smaller deviations from zero in the stop-bands and smaller
deviations from unity in the pass-bands. This can be achieved by using replicas of
the given filter through an interconnection of adders and gains. This procedure is
usually referred to as filter sharpening [26]. In this section, several approaches by
different authors to the filter sharpening problem will be reviewed. These approaches
result in polynomial transformations applied on the filter, which is another interesting
and useful example that can be interpreted as a composition in the context of signal
processing, namely the composition of a polynomial and a filter frequency response.
However, all of these methods are ad hoc, some of them require exhaustive searches
and even in that case lead to suboptimal solutions. In Chapter 6, the compositional
structure of sharpened filters will be exploited in order to obtain both superior and
systematic methods for filter sharpening as compared to the current methods.

A straightforward approach to sharpening a filter with a frequency response G (&)
is to cascade the filter with itself to obtain a response G?(e*), but this has an adverse
effect in the passband since squaring will increase the deviation from unity. Tukey [52]
proposed a method called twicing which involves filtering the input with G(e’) and

adding back to the input the residual between the input and the output before a
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Figure 2-8: Implementation of twicing as proposed in [52]. Figure is adapted from [26].

second stage of filtering. The effective frequency response in this case becomes

Hig(€) = (1 + (1 = G(e™))G(e)

(2.21)
= 2G (") — G*(&*)

The implementation of twicing is illustrated in Figure 2-8.

Kaiser and Hamming [26] observed that the effective transformation 2z —z2 that is
being applied to G(e?) in twicing has a desirable attenuating effect on the passband
deviations from unity but an undesirable magnification effect on stop-band deviations
from zero, the exact opposite effects observed with cascading corresponding to the

transformation z2

. They explained the effect of these transformations through the
value of their slope at x = 0 for stop-band and z = 1 for passband; a zero slope
will attenuate the magnitude of deviations and a slope that is greater than unity
will increase the deviations. Therefore, they proposed using transformations A(z),
which they referred to as amplitude change functions, with vanishing derivatives at
both z = 0 and z = 1 in addition to the constraint A(0) = 0 and A(1) = 1. This
latter constraint guarantees mapping the magnitude in the stop-bands to zero and the
magnitude in the pass-bands to unity. For example, the smallest order polynomial

transformation satisfying all of these constraints is 3z2 — 2z%. The comparison of

these amplitude change functions is illustrated in Figure 2-9.
Kaiser and Hamming [26] provided a general formula to yield higher order poly-

nomials with higher order tangencies, i.e. vanishing derivatives, at £ = 0 and z = 1
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Figure 2-9: Comparison of three different amplitude change functions [26].

satisfying A(0) = 0 and A(1) = 1. Moreover, the order of tangencies at these two
points are not required to be equal. A polynomial with n-th order tangency at zero

and m-th order tangency at unity is given by

A=y @T:k—’f)!a =)k, (2.22)

Kaiser and Hamming’s work in [26] on filter sharpening of linear phase filters
inspired other authors [12, 38, 48] to approach this problem in a slightly more struc-
tured way than originally attempted. In this new approach, the overall design after

sharpening was referred to as tapped cascaded interconnection of FIR subfilters.

Nakamura and Mitra [38] advanced the notion of filter sharpening in two direc-
tions. The first one is to find the amplitude change function coefficients that not only
satisfy the desired values and the order of tangencies at z = 0 and z = 1, but also
minimize the mean squared error between the sharpened filter response and the ideal
response. The latter is achieved at the expense of requiring a higher order polyno-
mial than otherwise needed. Their second contribution is to introduce modifier filters
T'(e’) with coefficients of the form (%)k, where k is an integer, such that they can

be implemented using only bit shift operators and no explicit multiplications. The
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purpose of using these modifier filters was to approximate the behavior of the sub-
filters and reduce their burden to meet the subfilter specifications, and then cascade
them with the modifier filter to meet the specifications more accurately. Coefficients
of a similar form were later explored not only for subfilter modifiers but also for the
amplitude change functions to obtain multiplierless filters by Chen [12].

Saramaki [48] viewed the designs using tapped cascaded interconnection of FIR
subfilters as a form of a frequency transformation where the coefficients of the am-
plitude change function F'(z) corresponded to the prototype filter coefficients, or the
tap coefficients, and the subfilter G(z) as the frequency transformation similar to
the discussion in Section 2.2.3. Moreover, he considered the filter approximation
in Chebyshev norm rather than to minimize mean square error unlike in [38], and

discussed the following four approximation problems:

i. Given the number of subfilters, optimize simultaneously the subfilter and the
tap coeflicients such that the composite filter satisfies the given specifications

with a minimum subfilter order.

ii. Given the subfilter order, optimize simultaneously the subfilter and the tap
coefficients to meet the given overall specifications with a minimum number of

subfilters.

ili. Given a prescribed subfilter, optimize the tap coefficients to meet the given

overall specification with a minimum number of subfilters.

iv. Given the tap coefficients and the number of subfilters, optimize the subfilter

to meet the given overall specifications with a minimum subfilter order.

In order to understand the unified approach Saramaki proposed for these four

problems, consider the desired overall filter specifications

1-6, <H(@E™) <146, wEe Ipss (2.232)
—53 S H(e]w) S (Ssa we IstOP’ (223b)
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I5i0p are the union of pass-band and stop-band frequency intervals, respectively. The
design of such a filter is divided into two parts, namely the design of the prototype
low-pass filter F(z) such that

1-6, <F(E?<1+6, 0<Q<Q, (2.24a)
—0, < F(N <6, Q<< m, (2.24b)
and
0<G(e) <y, wE Lpuss (2.25a)
Q, <G <7, wE Lo, (2.25b)

where 2, and 2, are the pass-band and the stop-band edge frequencies for the pro-
totype low-pass filter F(z). The specifications for the prototype and the subfilter
guarantee that every frequency in the pass-band, w € I,qss, is mapped by G(e?*) to
the [0,€),] interval in which the prototype filter F(e/) is within the specified range
[1 — ép,1 + &) for the pass-band. Similarly, for every frequency in the stop-band,
w € Iytep, is guaranteed to be mapped to [, 7] interval in which the prototype filter
F (') is within the specified range [—d;, &) for the stop-band. Figure 2-10 depicts
the design of a band-pass filter H (e?*) using the porposed mapping from a low-pass
filter F'(e’?) and the corresponding G(e™).

Although this frequency transformation point of view presents an intuitive way to
think about tapped cascaded interconnection of identical subfilters, the optimal choice
of Q, and €, for a given order of prototype or subfilter requires an exhaustive search
for each pair (£2,,$)), and a design of Parks-McClellan filter for each pair to see if
the design criteria are met since this is a non-convex problem in general. Suboptimal
designs can be obtained by fixing either one or both of these two parameters. However,

the methodology still requires that both the prototype and the subfilter be designed as
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Figure 2-10: Design of a band-pass filter using the low-pass prototype and a mapping
as in equations (2.24) and (2.25). Figure is adapted from [48].

a symmetric linear phase filter, which limits the classes of filters that can be sharpened

or used in such a structure.

2.2.8 Other contexts

There are many other contexts in which functional composition appears in signal pro-
cessing implicitly or explicitly. For example nesting all pass filters into systems with
feedback, which corresponds to composing z-transforms, is proposed as an efficient
method for artificial reverberation [49]. In robotics, the location of the effector at
the tip of a robot arm with multiple joints can be expressed as a functional com-
position, where the location of each joint is a function of the previous joint location
and its own parameters, and techniques for multivariate polynomial decompositions
can be exploited to decrease on-line computations during robot operation [23, 37].
In computer-aided geometric design, composition can be used for the polynomial

reparametrization of Bezier simplexes [18], and for modeling and manipulating ob-
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Figure 2-11: A computer graphics of a sphere and a plane experiencing deformation
that is modeled by a functional composition. Figure is adapted from [50].

jects in deformable media [50]. Figures 2-11a and 2-11b illustrate objects in a de-
formable medium, where the deformation is modeled as the composition of a function

for object representations with the deformation function.

2.3 Chapter Conclusions

The signal processing contexts from the current literature discussed in this chapter
provide evidence that functional composition has appeared in many contexts directly
and indirectly. In some of these, it was natural to interpret the operations on signals
and systems as a form of composition such as phase modulation or the phenomena
of wow and flutter in musical recordings although the benefit of a functional com-
position point of view is not immediately obvious. However in other applications
which exploit time and frequency transformations, composition and decomposition
were intentionally introduced as they were recognized to be useful for designing and
generalizing filters, extending sampling and reconstruction schemes and computing
spectra efficiently. A third class of applications can be considered to be those in
which reusing a limited class of subsystems are promoted to obtain more sophisti-
cated overall systems such as the filter sharpening methods. Although it is natural
and straightforward to interpret this latter class from a functional composition per-

spective, their current analyses were not performed from this way which could have
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allowed gaining further insight into these applications and achieving further improve-
ments. Moreover, the utilization of functional composition and decomposition have
been rather limited in scope in all of these applications, focusing mostly on warping
either time or frequency, and failing in exploiting other aspects such as their potential
for more compact representations, modular structures and structured computations
as discussed in Chapter 1. After developing composition and decomposition algo-
rithms in the following chapters, examples representing these additional aspects will
be discussed illustrating the breadth of applications that can possibly be formulated

or revisited within this systematic framework.
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Chapter 3

Polynomial Composition and

Decomposition

A fundamental tool in signal processing to represent and manipulate discrete se-
quences, namely the z-transform, is a polynomial for the finite length case. Therefore,
univariate polynomials constitute an important class of functions that are ubiquitous
in signal processing. In this chapter, composition and decomposition of univariate
polynomials will be discussed as an important component of a framework in which
these two operations can be potentially exploited in signal processing applications.

In Section 3.1, the polynomial decomposition scenarios will be introduced. Sev-
eral methods exist in the current mathematics literature to decompose polynomials
if they are known to be decomposable. In this case, they will be referred to be ex-
actly decomposable polynomials and the methods to obtain exact decompositions will
be presented in Section 3.2. At the end of this section, their performances will be
compared on a relatively large set of randomly generated polynomials.

If a polynomial is not exactly decomposable, it can be approximated as the compo-
sition of lower order polynomials. This will be referred to as approximate polynomial
decomposition. Decomposing polynomials approximately is a more difficult problem
than the exact decomposition case and is relatively less studied and understood in
the mathematics literature. In addition to presenting the existing approximate de-

composition algorithms in Section 3.3, a new approximate decomposition algorithm
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will be developed in Section 3.4 in an attempt to obtain better performance and it

will be compared to the existing algorithms.

In Section 3.5, the sensitivity of polynomial composition and decomposition algo-
rithms with respect to perturbations in polynomial coefficients will be investigated.
It will be shown that this sensitivity can be lowered by departing to equivalent de-
compositions obtained with the methods discussed in that section. Section 3.6 will

conclude the chapter.

3.1 Decomposition Scenarios

Consider F(z), the polynomial that represents a length-(M + 1) sequence f,,

M
F(z) =) fas", (3.1)

which corresponds to the z-transform® of f, for z = 27!. Composing F(z) with

another polynomial that represents a length-(N + 1) sequence g, yields
M
H(z) = F(G(z)) = ) faG"(@). (3.2)
n=0

If a polynomial H(x) can be represented as a composition of two polynomials with
orders greater than unity as in equation (3.2), then H(z) is referred to as a decom-

posable polynomial. The sequence represented by H(z)|,—,-1 becomes

he = fo(g) + fi(6) + £2(42) + f3(6) + -+ - + far(g8D) (3.3)

In different disciplines, the z-transform is defined with = z. Although this thesis adopts the
common notation in the signal processing contexts with z = 271, z-transforms will still be referred
to as polynomials representing finite length sequences in the context of this thesis.
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be expressed through a matrix equation

Cf=h (3.4)
or, written explicitly,
b | ho
R e m
o | fo ha
| | | | fi hs
o o ¢ o g = ha | (3.5)
I | ' hs
o | L] | ke
I |
R | | hasw
where the 7th column of matrix C is the sequence gy(f V. The coefficient vectors of

F(z),G(z) and H(z) will be denoted by f, g and h, respectively, in the sequel. The
number of rows in C is MN + 1, i.e. the length of g,(.M) which is the highest order

self convolution of g, in equation (3.3), and the number of columns is M + 1.

The problem of decomposing polynomials can be divided into three categories.
Given that a polynomial H(z) is decomposable as in equation (3.2) and G(z) is
known, finding F(z) has a straightforward solution due to the linear relationship
between f and h as in equation (3.4). C is a matrix with fewer columns than rows,
therefore the solution for f will be unique if it is full-rank. This is indeed the case
unless the leading coefficient gy is zero, in which case G(z) can be regarded to have

one less order.

The other two decomposition scenarios assume that even though H(z) is known
to be decomposable, G(z) is unknown. In one case, F(z) may be provided, and in

the other case it may be also unspecified. Since the relationship between g and h is
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non-linear, both of these problems are much harder to solve than the case when G(z)
is known. The specification of F(z) does not facilitate the solution of the nonlinear
problem of determining a candidate for G(z) within the existing decomposition al-
gorithms as will be discussed in Section 3.2. However, its specification is useful to
uniquely determine a decomposition for H(z) since, otherwise, there are infinitely
many equivalent decompositions that can be obtained using compositions with first
order polynomials as will be described later in Section 3.5.4. As discussed in Sec-
tion 3.2, all existing decomposition algorithms have assumed the most general case in
which both F(z) and G(z) are not specified, focused on determining a candidate G(z)
first and then used the linear relationship in equation (3.5) to determine a candidate

3.2 Exact Decomposition Algorithms

In this section, four polynomial decomposition algorithms from the mathematics and
computer science literature are introduced, which obtain the components F(z) and
G(z) when the polynomial H(z) is indeed a composition, i.e., H(z) = F(G(z)).
These algorithms focus on obtaining the decomposition factor G(z) first since F(x)
can be obtained relatively easily from the linear relationship given in equation (3.5)

once G(z) is known.

3.2.1 Barton-Zippel algorithm

One of the earliest attempts to find a polynomial decomposition algorithm was pro-
posed by Barton and Zippel [6, 7], motivated by the search for an algorithm that
allows expressing polynomials in terms of compositions of low order polynomials for
efficient root finding and symbolic computations. Following the work in Fried and
MacRae [20], they showed that a polynomial H(z) has another polynomial G(z) as a
decomposition factor if and only if the bivariate polynomial ¢¢(y, z) divides ¢y(y, 2)

with no remainder resulting in another bivariate polynomial in y and z. Here, the
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These bivariate polynomials have a specific symmetry in their coefficients, namely the
terms that have the same total order p of the variables y and z also have the same
coefficients apy;-

It is relatively straightforward to show that if H(z) = F(G(z)), then ¢g(y, 2) has
to divide ¢y(y, z) with no remainder. More specifically,

Suly ) = L (37

m:Tazihm@—m@,
n=1
where ¢g(y, z) can be factored out from the summation, therefore divisibility is guar-
anteed.

The algorithm that was developed by Barton and Zippel [6] takes as input the poly-
nomial to be decomposed, namely H(x); obtains the bivariate polynomial ¢4 (y, 2)
and examines all of its factors to find a factor that has the form of ¢¢(y, z). The
requirement to examine all combinations of the factors to obtain a factor of the form
éc(y, z) makes this algorithm computationally inefficient since the number of combi-

nations to be examined is exponential in the number of factors.

3.2.2 Alagar-Thanh algorithm

This algorithm proposed in [2] uses the fact that the derivative of a decomposable
polynomial H(z) of the form in equation (3.2) has G'(x) as one of its factors. Specif-

ically,
H'(z) = F'(G(z))G'(z).

The algorithm focuses only on the factors of the univariate polynomial H'(z) with
appropriate orders since the order of G’'(z) is restricted to be one less than a factor

of the order of H(z). Every factor of H’'(z) is integrated to obtain a candidate for
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G(z) where the choice for the integration constant does not affect the next step,
namely the computation of ¢¢(y, z). The polynomial G(z) is a valid decomposition
factor if ¢¢(y, 2) divides ¢u(y, z). Since the polynomial factorization is performed on
a univariate polynomial rather than a bivariate one, this is a more efficient method
than the Barton-Zippel algorithm. However,the requirement to examine each possible

factor remains as an undesirable computational burden.

3.2.3 Kozen-Landau algorithm

A more systematic polynomial decomposition algorithm than the previous two algo-
rithms is given by Kozen and Landau [30], which has the complexity O(P?), where
P is the order of H(z). M and N, the orders of F(z) and G(z) respectively, are
required as part of the input. The algorithm uses the fact that the coefficients of N
highest order terms in H(x) are determined only by fjs, namely the coefficient of the
highest order term in F(xz), and all the coefficients of G(z). This can be seen from
the matrix equation (3.5) since the last N entries in every column of matrix C except
its last column consist of zeros, and only f)s among the coefficients of F(x) multiplies
this last column to yield the N highest order terms in H(z).

As the first step of the decomposition, H(z) is scaled to be monic, i.e. to have
unity as the coeflicient of the highest order term, an operation that does not affect
decomposability. Restricting G(z) and F(z) to be also monic, the coefficients of G(z)
is obtained in the order of decreasing powers through solving N equations iteratively
involving the coefficients of G(z), a straightforward and well-outlined procedure de-
scribed in [30]. After the decomposition is obtained for the monic polynomial, the
scaling is undone.

Although this algorithm requires the orders M and N of the decomposition com-
ponents as the input, it is computationally much more efficient than the previous
algorithms. If the information for orders is not available a priori, the algorithm is re-
quired to run more than once, however only for orders M and N the product of which
equals the order of H(z). This algorithm along with the Aubry-Valibouze algorithm

that will be discussed next are mainly used for later simulations since they are more
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complexity.

3.2.4 Aubry-Valibouze Algorithm

A different decomposition algorithm proposed by Aubry and Valibouze [5] utilizes
the relationship between the coeflicients of a polynomial and the power sum of its
roots known as the Newton identities. More specifically, the coefficients of an N
order monic polynomial G(z) can be uniquely determined from the k* power sums

sk, k=1,...N, of its roots defined as

N
Sk = Z Ts,ia (38)
=1
where 7,; ¢ = 1,...N, are the roots of G(x). The Newton identities relate the

polynomial coefficients g,, and the power sums s as in [27]
Sk + Gn-18k-1+ "+ Gn—k+151 = —kgn_ for 1 <k <n. (3.9)

In other words, there is a one-to-one linear relationship between the coefficients of the
n highest order coefficients and power sums of roots s, k = 1,...,n for a polynomial.

The Aubry-Valibouze algorithm first normalizes the polynomial H(x) to make it
monic as in Kozen and Landau’s algorithm. Since a polynomial F(z) of order M can

be written in terms of its roots as

M

F)=]](@-rs;) (3.10)

Jj=1

where r7; 7 = 1... M, are the roots of F(z), a decomposable polynomial H(z) =
F(G(z)) can be written as

H(z) = ][ (G(2) = r2) £ [[ Gs(e). (3.11)
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Each polynomial éj(z), j = 1...M, has the same coefficients as G(z) except the
constant term. By the one-to-one relationship implied by the Newton identities, all
é](:p) have identical power sums of roots for the powers £k = 1,..., N. Moreover,
the roots of G;(z) are also the roots of H(z), therefore the power sums of roots for
any éj (z) can be computed by dividing that of H(x) by M. The Newton identities
can be used again to find the coefficient of G(z) except its constant term using these
power sums, and the constant term gy can be computed from F(x) and H(z). Finally

the normalization to make H(x) monic is undone.

3.2.5 Comparison of Exact Decomposition Methods

Due to their computational complexity and the existence of more systematic methods,
the Barton-Zippel algorithm and the Alagar-Thanh algorithm are not included in the
comparison of exact decomposition algorithms. Both the Kozen-Landau algorithm
[30] and the Aubry-Valibouze’s algorithm [5] are based on using the coefficients of N
highest order terms in H(z). Moreover, both algorithms are accurate and similar in
performance for low order decompositions. For example, consider the composition of

the 4-th order polynomial
F(z) = 0.3603 + 0.5697x — 0.37642% — 0.99142% + z* (3.12)
and the 3-rd order polynomial
G(x) = —0.2921 + 0.6488z + 0.02611z + z°, (3.13)

which yields the 12-th order polynomial

H(z) = 0.1937 + 0.2830z + 0.4341z% — 0.11982> + 1.4098z* — 2.6497z° + 1.8790z°

— 4.0765z7 + 2.362228 — 1.9564z° + 2.5995z1° + 0.1044z*! + 212
(3.14)
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The Kozen-Landau and Aubry-Valibouze algorithms both recover F(z) and G(z) in
equations (3.12) and (3.12) successfully when H(z) as well as the orders M = 4 and
N = 3 are provided as the input to these algorithms.

Due to representation of polynomial coeflicients and their manipulations with fi-
nite precision, the performance of both algorithms deteriorates with increasing poly-
nomial orders. On the other hand, computation of k** power sums in equation (3.8)
can be performed using directly the roots of H(z) when they are provided rather than
computing them from its coefficients in the implementation of the Aubry-Valibouze
algorithm, which leads to significantly enhanced precision for the decomposition fac-
tors G(z) and F(z).

Figure 3-1 shows a comparison of the performance of three algorithms, namely
the Kozen-Landau algorithm and the Aubry-Valibouze algorithm implemented two
different ways: one using coeflicients and the other using roots of H(x). The poly-
nomials H(z) were obtained by composing random polynomials F(z) and G(x) with
the coefficients of the highest order fixed to be unity to avoid degenerate cases and
where the respective orders M and N are chosen equal and varied from 5 to 75 with
increments of five. The decomposition is considered successful if the SNR is more
than 80dB, where the error is defined as the energy in the difference between the true
and the obtained decomposition factors. Both algorithms show an almost identical
success rate since they use the same coefficients of H(x) to determine G(z) whereas
the implementation of the Aubry-Valibouze algorithm using the roots of H(z) directly
outperforms the others significantly. For all of the polynomials of order 1600, G(z)
was successfully determined by this algorithm while this number dropped to 79 out of
100 for polynomials of order 4900. Once G(z) is computed, F'(z) is also determined
using the linear relationship in equation (3.4). However, the matrix inversion using
finite precision deteriorates the success rate for F(z) as the order of the polynomials
increase. The Aubry-Valibouze algorithm manages to successfully obtain F(z) up to
higher orders by utilizing the relationship in equation (3.11) to find the roots of F(x)
and construct its coefficients when the roots of H(x) are provided. The improved

performance using the Aubry-Valibouze algorithm with the roots of H(z) suggests
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that this algorithm may be more useful to use in a signal processing context when

representations of signals and systems with poles and zeros are provided.
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Figure 3-1: The comparison of number of successful decompositions of H(z) = F o
G(z) by the Kozen-Landau algorithm and the Aubry-Valibouze algorithm, where the
latter is implemented using both coefficients and the roots of input polynomials H(z).

3.3 Current Approximate Decomposition Methods

Section 3.2 focused on algorithms for obtaining the decomposition factors when it is
known that a given polynomial is decomposable. Approximating non-decomposable
polynomials by decomposable ones can be also of significant interest, particularly in
applications such as signal representation and compression because of the inherent
reduction in the number of free parameters. This section starts with the introduction
of a mathematical tool, namely the Ruppert matrices, that has been exploited in
some of the existing approximate polynomial decomposition algorithms. Following

that, three approximate decomposition algorithms are introduced from the current
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literature which can be viewed ag an extension of the exact decomposition algorithms

given in Section 3.2.

3.3.1 Ruppert Matrices

Barton and Zippel’s exact polynomial decomposition algorithm was based on the fact
that a polynomial H(z) has another polynomial G(z) as a decomposition factor if and
only if the bivariate polynomial ¢¢(y, z) divides ¢y(y, z). This required examining
all factors of ¢x(y, z) to find one of the form ¢¢(y, z) for potential decomposabil-
ity. This examination was replaced by a stronger statement that required testing
only the factorability of ¢u(y, z) ( [21] Theorem 1, [53] Theorem 1). More specifi-
cally, a given polynomial H(z) with a non-prime order is decomposable if and only if
éu(y, 2) is factorable with no restrictions on the form of the factors. This relation-
ship between decomposability of a low dimensional function and the factorability of a
higher dimensional function will also appear in the context of multivariate functions,
suggesting a possibly deeper connection between these two properties of functions.
This more general result for polynomials leads to a decomposability test which in-
volves only checking the rank of a matrix constructed from its coefficients, namely
the Ruppert matrix, which will be discussed in this section. The Ruppert matrix
is a convenient tool that is exploited in the approximate decomposition algorithms
described in Sections 3.3.3 and 3.3.4.

Factorability of ¢g(y,2) can be determined using a particular test for bivariate
polynomial factorization that was introduced by Ruppert [47]. Specifically, ¢nu(y, 2)
is factorable if and only if there exist two bivariate polynomials r(y, z) and s(y, z) that
are not identically zero with degg,z)(r) < (P—2, P—1) and deg(y z)(s) < (P—1,P-3)
such that

or Opy  Os Opn

§¢H T T 8_y‘¢H + 8"@ 0, (3.15)

where P is the order of H(z). The existence of two such polynomials r(y, z) and s(y, z)
only certifies factorability of ¢x(y, z); they are not necessarily its factors. Given H (z)

and therefore ¢x(y, z), the differential equation given in equation (3.15) is linear in
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the coefficients of r(z,y) and s(z,y). Therefore it can be rewritten as
Ru=0, (3.16)

where R is a (4P? — 10P + 6) x (2P? — 3P) matrix the entries of which are linear
functions of the coefficients of H(z) and which is referred to as the Ruppert matrix of
H(z); and the vector u is obtained by concatenating the coefficient vectors of r(y, 2)
and s(y, z). Equation (3.16) implies that the existence of r(y, z) and s(y, 2) that are
not identically zero is equivalent to the Ruppert matrix R being rank deficient. More
specifically, if R is rank deficient, then ¢y(y, z) is factorable and H(z) is decompos-
able. The reverse statement is also true since all relationships are both necessary and

sufficient.

The full-rank Ruppert matrix of a non-decomposable polynomial can provide
additional information in addition to its non-decomposability. If H(z) is a non-
decomposable polynomial of order P, and if H (z) is a decomposable polynomial with

order at most P and H(0) = H(0), then

~ P 000 R

H—-Hl|p > ———s, 3.17
i.e., a decomposable polynomial H(z) has to be at least at a certain distance from a
non-decomposable polynomial H(z), where this distance is determined by the smallest
singular value oy, r of the Ruppert matrix [24,28]. This associates a radius of non-
decomposability with every non-decomposable polynomial H(z), meaning that all

polynomials within this distance to H(z) are also non-decomposable.

The linearity of equation (3.15) in the coefficients of ¢y (y, z) allows rewriting the
Ruppert matrix as the linear combination of a basis for Ruppert matrices [24]. More
specifically, by defining a linear operator Rp that takes a univariate polynomial of

order P as an argument and returns its Ruppert matrix, the computation of the
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R =Rp{H(z)} = Rp{d_hiz'} = hRp{z'} £ hRj, (3.18)
=0 i=1 i=1
where the matrices R;, ¢ = 1... P are the Ruppert matrices for the monomials z*
computed by treating them as a P-th order polynomial 0zF + 2* to yield the same
size as R. R;, ¢ =1... P can be considered to be a basis for Ruppert matrices of all
polynomials of order P, where the weight of each basis matrix is the corresponding
polynomial coefficient h;. The Ruppert matrix corresponding to the constant term
in a polynomial consists of only zeros and thus it is not required in the basis. The
formulation of the Ruppert matrix as in equation (3.18) will provide a basis for the

approximate polynomial decomposition technique discussed in Section 3.3.4.

3.3.2 Iterative Approximate Decomposition

Corless et al [16] proposed an approximate decomposition method that starts from an
initial guess for the decomposition factors F(x) and G(z), which are obtained using
Kozen-Landau algorithm in Section 3.2, and iteratively obtain a nearby decomposable
polynomial, where proximity is given in l; norm. The algorithm determines AG(z)

at each iteration to minimize

[H(z) — Fi(Gi(z) + AG(2))]|
~ ||H(z) — Fi(Gi(2)) — Fi(Gr(z))AG(2),

(3.19)

where the subscript k represents the current iteration step, || - || denotes the l; norm
of polynomial coefficient vectors and only the first term in the Taylor series is taken
into account since the coefficients of AG are assumed to be small at each iteration.
Until the change AG(z) is below a certain threshold, Gr41(z) is obtained by up-
dating Gi(x) with AG(z) and Fy41(z) is evaluated by solving equation (3.5). This
algorithm approximates a nonlinear optimization problem with a simpler one and if it

converges, the convergence rate is linear. They also proposed a second algorithm that
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attempts to solve the nonlinear problem of minimizing |H(z) — F(G(z))|| directly us-
ing Newton iterations where F(z) and G(z) are perturbed together and convergence
is quadratic at the expense of increased computational complexity. The quality of
the decomposition obtained by these algorithms is highly dependent on the validity
of the assumption that there is a decomposable polynomial close to H(z) since the
initial guess for G(z) is obtained through an exact decomposition algorithm, namely
the Kozen-Landau algorithm. Moreover, the quality of the initial guess is highly sen-
sitive to the perturbation on the N highest order terms in H(xz) since Kozen-Landau

algorithm uses these coefficients.

3.3.3 Decomposition by Approximate Factorization

Giesbrecht and May [24] exploited the relationship between the decomposability of a
univariate polynomial H(z) and factorability of the associated bivariate polynomial
én(y, 2) as discussed in Section 3.3.1 in order to extend Barton and Zippel’s exact de-
composition algorithm to the case of approximate decomposition. In the case where
H(z) is not decomposable, ¢x(y,2) is not factorable and there is no guarantee of
obtaining an approximate factor of the form ¢¢(y, 2) to find an approximate decom-
position factor G(z). Therefore an approximate factorization for ¢y (y, 2) is obtained
by the method described in [22] using the Ruppert matrix of H(z). Each approximate
factor of ¢g(y, 2) is examined to determine the one closest to the form of a polynomial
¢c(y, z), namely a bivariate polynomial in which the terms with equal total order for
y and z have the same coefficients. This is accomplished by computing the standard
deviation of terms with the same total order, setting the maximum of these as the
distance to a candidate ¢¢(y, z) and choosing the factor with smallest distance. G(z)
and F(z) can be obtained easily as before once ¢¢(y, 2) is known. A disadvantage
of this algorithm is that it uses the result of the approximate factorization step and
performs another approximation to find ¢¢(y, z), which complicates the estimation

of the quality of the obtained decomposition.
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2.2.4 Decomposition by Riemannian SVD

As an alternative method for approximate decomposition of a polynomial H(z), Bot-
ting [11] proposed a solution to the problem of finding a rank deficient Ruppert matrix
the corresponding polynomial of which is close to H(z), where distance is quantified
as the [; norm of coeflicient vector differences. The equivalence of decomposability
of a polynomial and rank deficiency of its Ruppert matrix was established in Sec-
tion 3.3.1. Specifically, the approximate decomposition problem was reduced to the

optimization problem [17] specified as

P
minimize (h; — hy)?
hi,w ; (320)

T

subject to Rw=0 and wiw=1

where h;, i = 1,..., P, are the coefficients of a decomposable polynomial H(z) and

R is its Ruppert matrix given by
R=) kR (3.21)

as defined in equation (3.18). The first constraint corresponds to rank deficiency
of R and the second constraint ensures that w is not identically zero preventing R
from having a nontrivial null space. The optimization problem (3.20) is shown to be
equivalent to a nonlinear generalized singular value decomposition referred to as Rie-
mannian SVD in [17]. This corresponds to finding the triplet (u, 7, v) corresponding
to the smallest scalar 7 that satisfies

Rv =D,ur, uTD,u=1

(3.22)
RTu=D,vr, vID,v=1

where D,, and D, are matrices with entries quadratic in the vectors u and v; and
also a heuristic iterative solution is provided leading to a polynomial with a rank

deficient Ruppert matrix and coeflicients 71,- = h; —uTR;vr. The iterations end when
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the smallest singular value of R becomes smaller than a given threshold, however no

theoretical guarantee for convergence exists.

3.4 Approximate Decomposition based on STLN

In this section, a new approximate polynomial decomposition algorithm will be for-
mulated. This algorithm will also exploit the Ruppert matrices in order to find a
decomposable approximation to a non-decomposable polynomial by approximating
its full rank Ruppert matrix with a rank-deficient one. The structure of a Ruppert
matrix must be preserved while finding an approximation, hence the Structured Total

Least Norm (STLN) method will be used [45].

In Section 3.4.1, the definition of STLN will be given as an extension to the total
least squares (TLS) formulations. Section 3.4.2 develops the approximate polyno-
mial decomposition based on STLN. This is followed by the comparison of certain

approximate decomposition methods in Section 3.4.3.

3.4.1 Structured Total Least Norm

Given an overdetermined and nonconsistent set of linear equations
Ax = Db, (3.23)

the solution that minimizes ||[Ax — b||2 is given by the well known least squares so-
lution. This solution leads to Ax = b + Ab, i.e. only the entries of b are altered to
satisfy the equation and A remains intact. Total least squares (TLS) is a generaliza-
tion of this problem where the entries of A are also subject to possible change. More

specifically the Frobenius norm of the matrix [AA|Ab] is minimized such that

(A + AA)x =b+ Ab. (3.24)
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This is equivalent to finding the closest rank deficient matrix [A + AA|b + Ab] to

[A|b] since equation (3.24) can be expressed as
[A +AA[b + Ably =0, (3.25)

where y = [xT , —1]7. The solution is obtained by suppressing the smallest singular
value of the matrix [A|b], however in general A and [A|b] do not retain any of their
previous structures such as sparsity, the structure of a Hankel or Toeplitz matrix or
the special structure of a Ruppert matrix.

Imposing a structure preserving constraint to equation (3.25) to approximately
solve equation (3.23) is the basis for the collective algorithms referred to as Structured
Total Least Square Norm (STLN) algorithms for a general norm [45], and reduces to
Structured Total Least Squares (STLS) for the choice of I norm for which a solution
was proposed in [17]. In fact, the approximate decomposition algorithm proposed by
Botting [11] in Section 3.3.4 is an example of an STLS problem since it formulates
the optimization problem in a way to preserve the Ruppert matrix structure while
minimizing an I, norm, however it utilizes the specialized Riemann SVD solution
developed in [17]. A more general solution for structure-preserving methods using
the STLN framework was provided in [45], including the l; norm case, which will be

explored in this section for a new approximate polynomial decomposition algorithm.

3.4.2 Algorithm Development

The exploitation of structure preserving low rank approximation formulations such as
STLN as described in [45] for finding a rank deficient Ruppert matrix has been sug-
gested as a potentially useful method ( [29], Remark 6), however no implementations
or results were reported. In this section, the approximate polynomial decomposition
problem of H(x) will be expressed in terms of approximate rank deficiency of its Rup-
pert matrix R, which in turn will be expressed as the problem in equation (3.25) with
A and b obtained from columns of R appropriately. AA and Ab obtained this way

will yield the required perturbation to R to render it rank deficient while preserving
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its Ruppert matrix structure. This will also yield the perturbations required for the
coeflicients of the polynomial H(z) to make it decomposable. The developed algo-
rithm will require solving a simple quadratic optimization problem at each iteration
step. The matrices used in the iterative algorithm given in [45] are also modified here
in order to minimize the perturbation on the polynomial coefficients as opposed to
unnecessarily minimizing the total perturbation on the entries of its Ruppert matrix,

which are not necessarily equivalent.

The rank deficiency of the Ruppert matrix can be imposed by setting one of its
columns as a linear combination of other columns. In order to formulate this problem
as in equation (3.25), the column vector b is chosen as one of the columns of the
Ruppert matrix R; and A is defined to be equal to R excluding the column vector
b. This specific column can be chosen as the one that minimizes the residual when

expressed in terms of other columns, i.e.
b =arg m&n (min lAx — b||2) , (3.26)
X

where x represents a column of R. The minimum value inside the parenthesis is
ideally zero, which would correspond to an already rank deficient Ruppert matrix.
Assuming b is chosen to be the k* column in R, one can define the vectors b; as the
k™ column vector of the basis Ruppert matrices R; fori =1, ..., P, where the basis
Ruppert matrices R; were defined in equation (3.18). Similarly the matrices A; can
be defined to be equal to R; excluding the column b;. If [AA|Ab] is constrained to
be of the form

P
> ai[Aifby) (3.27)
=0

for real scalars o;, i = 1... P, the resulting matrix
[A+ AA|b+ Ab]

in equation (3.25) will retain the same matrix structure as [A]b] due to the linear

relationship given in equation (3.18). The scalars o; correspond to the perturbation in
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can be formulated as an optimization problem in which the change in the coefficients
of the polynomial to be decomposed are minimized subject to the rank deficiency

constraint in equation (3.25), i.e.

P
minimize E o?
aiy i—1

(3.28)
subject to [A + AA|b+ Ably =0.

The similarity of the optimization problems given in equations (3.20) and (3.28) is
obvious since we chose to minimize the l; norm of the coeflicient perturbation vector
a = [ as ... ap]?. An explicit constraint for y to be nonzero is not required in
equation (3.28) since it is already restricted to be of the form y = [xT , —1]T with

this formulation, which cannot be identically zero.

In order to solve the nonlinear and nonconvex optimization problem in equation

(3.28), the following relaxation is considered,

minimize afa + \2%#T# (3.29)
oy
where
2 |A+ AA|b+ Ably (3.30)

and A is the penalty parameter for any nonzero residual ¥ and is required to be chosen
appropriately large for a good approximation to the original problem. An iterative
algorithm for the solution of a nonlinear optimization problem of the form (3.29) is

given in [45]. Setting y = [xT ,—1]7 in equation (3.30) yields

f=Ax+AAx—b—-Ab
(3.31)
=Ax+Xa-b-Qa=Ax+Ka-b
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where the matrix K = X — Q and the matrix X is defined by

P P
AAx = Z oG Ax = Z(Aix)ai 2 Xa. (3.32)

i=1 i=1
More specifically the i* column of X consists of Ajx. Similarly, i** column of Q
consists of b;. A heuristic value for the penalty parameter A that proved to yield

reasonable results was the reciprocal of the minimum singular value of K, namely
1

The steps of the iteration are summarized in Algorithm 1.

pg—
ALGORITHM 1
Input: H(z) with coefficients h;, i =1,..., P.
Output: A rank deficient Ruppert matrix R corresponding
to a polynomial H(z) with coefficients ; close to that of H(x).
Begin
Set k = 1. Specify A,b from R as in (3.26).
Set xM = arg min |Ax — bl|; and a® = 0.
Obtain Aj,b; from R;, ¢ =1,..., P.
Set Q= [by |...| bp].
1. Set XM = [A;xM |.. .| Apx], KM = XM — @, # = AxM + KMo — b
Ifk=1,set A= ! .
OK M, min

2. Solve the following quadratic program:

o AKKM JA| [Aa Apld
minimize

+
Aa,Ax I 0 Ax a[k] ,

3. Set xHU x4 Ax ot oM 4+ A, k « k+1.

P
4. FRM =R+ Z aik]Ri is rank deficient, then h; = h; + allk] fori=1,..., P, exit.

=1

If not, go to Step 1.
End
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242 Comparison of Approximate Decomposition Methods
In this section, the performance of the two most recent approximate decomposition
methods based on the use of Ruppert matrices are compared first, namely the Rie-
mann SVD (RiSVD) formulation summarized in Section 3.3.4 and the Structured
Total Least Norm (STLN) formulation proposed in Section 3.4.2. Afterwards, they
are both compared to the iterative approximate decomposition method discussed in

Section 3.3.2, which will also be referred to as Corless” method.

One hundred decomposable polynomials H(z) were obtained by composing an
M*_order random polynomial F(z) with an N**-order random polynomial G(z), the
coefficients of both of which were selected from a standard normal distribution except
the highest order terms that are fixed to be unity to avoid degenerate compositions.
The coefficient vector h of each polynomial H(z) is then perturbed by an error vector
e to obtain a nondecomposable polynomial H (z), where the coefficients of e are also
obtained from a standard normal distribution and scaled so that |le|lz = 1072||h||,

i.e. the SNR is 40dB.

The iterations in both RiSVD and STLN methods were stopped when the Ruppert
matrix is considered numerically rank deficient, where this is defined as the existence
of a significantly large ratio between any two consecutive singular values among the
smallest twenty singular values of the Ruppert matrix. More specifically, the Ruppert
matrix is considered to be rank deficient when the maximum ratio between consecutive
singular values are greater than one hundred times that of the original Ruppert matrix

or 104, whichever is smaller.

Table 3.1 summarizes the results of the simulations for the STLN and RiSVD
methods tested against non-decomposable polynomials of different orders. The de-
composition success rates are calculated as the ratio of the number of cases where
the ending criterion was met before one hundred iterations to the total number of
polynomials that did not have numerically rank deficient Ruppert matrices at the
initial stage. For the set of polynomials and the stopping criteria chosen, the STLN

method proves to be more successful than the RiSVD method for all orders.

61



Table 3.1: Success Rates for RiSVD and STLN based Approximate Decomposition
Methods (%)

deg(F) deg(G) deg(FoG) STLN RiSVD

2 3 6 97.0 2.0

3 4 12 83.7 12.2

6 2 12 95.0 11.3

Consider, for example, adding noise to the coefficients of the decomposable poly-
nomial H(z) in equation (3.14) to obtain a non-decomposable polynomial H(z) such
that the SNR is 40dB. The application of STLN and RiSVD algorithms to H(z)
yields the approximations given in the third and fourth columns in Table 3.2. Both
of these polynomials are very close to each other as well as to H(z) in their coef-
ficients. Figure 3-2 is the plot of the twenty smallest singular values of the three
Ruppert matrices corresponding to the nondecomposable polynomial H (z) and its
approximations obtained using RiSVD and STLN, where the singular values are de-
picted in the decreasing order for each matrix. Although the coefficient vectors of
all three polynomials are very close with respect to the l; norm, only the polynomial
that is the output of the STLN leads to a numerically rank deficient matrix in this
example as the ratio between its two smallest singular values is large, more specifically
355 % 10%

The polynomials obtained by STLN and RiSVD methods that are numerically
deemed as a decomposable approximation to H(z) may not always lead to a faithful
decomposition when they are used as the input to an exact decomposition algorithm,
such as the Kozen-Landau algorithm, to actually find a decomposition F(G(z)). This

is indeed the case for Hgrzy in this example. The fact that the radius of non-
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Table 3.2: Coefficients of H in (3.14) in increasing order from top to bottom, H

cbtained by perturbing thom with 40dB noise, and the resulting cocliicients after the
application of RiSVD, STLN and Corless’ methods to H.
H H Hrisvp Hsrin Heortess
0.19372869  0.17480287  0.17480287  0.17480287  0.17567301
0.28302078  0.29436839  0.29246959  0.29477573  0.29724135
0.43414745  0.45491202  0.38919792  0.43389074  0.42877466
—0.11975589 —0.10554232 —0.17286798 —0.10524759 —0.09980779
1.40982439  1.39074151  1.39984861  1.40067728  1.38490538
—2.64965555 —2.6362043 —2.64909473 —2.65041201 —2.64146584
1.87902027  1.86431271  1.77910056  1.86102616  1.84951314
—4.07645854 —4.07629235 —4.06771098 —4.06253602 —4.04778661
2.36218459  2.34961771 2.3642983 2.33975812  2.34035946
—1.95636998 —1.9324207 —2.01021235 —1.94051827 —1.93297813
2.59948389  2.55459276  2.61287623  2.56956633  2.56956643
0.10442734  0.10923451 0.1423575 0.10494564  0.10494761
1.00000000  0.99627832  0.99627832  0.98489721  0.98489877

decomposability associated with every non-decomposable polynomial as specified in
equation (3.17) is only a lower bound partially accounts for this observation. Other
possible reasons are that the rank of the Ruppert matrix may itself be very sensitive to
the polynomial coefficients, or the performance of the exact decomposition methods
are extremely sensitive to the exactness of the coefficients of the polynomial to be

decomposed.

The iterative approximate decomposition method introduced by Corless et al [16]
and summarized in Section 3.3.2 suggests a decomposable approximation to a given
polynomial at each step of the iteration. Therefore a decomposable approximation
was obtained for all the examples shown here using Corless’ algorithm. However a
direct performance comparison cannot be made between this method and the STLN
or RiSVD methods since Corless’ method is not based on approximating Ruppert
matrices. The initial guess in this algorithm is obtained using the Kozen-Landau
exact decomposition algorithm that utilizes high order coefficients in H(z). For the

example in Table 3.2, the last column corresponds to the decomposable approximation

obtained by Corless’ method, for which the approximate decomposition factors are
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Figure 3-2: The smallest twenty singular values of the Ruppert matrices corresponding
to the perturbed and nondecomposable polynomial H , its approximation Hgisvp as
the output of the RiSVD algorithm and Hsrpx as the output of the STLN algorithm,
all shown in decreasing order. Only the Ruppert matrix of the polynomial obtained
by the STLN method exhibits a large gap between its consecutive singular values,
corresponding to a numerical rank deficiency.

obtained as
F(z) = 0.3456 + 0.5829z — 0.3811z% — 0.9950z° + 0.9849z* (3.33)

and

G(z) = —0.2902 + 0.6512z + 0.026622 + 1.0000z°. (3.34)

These polynomials constitute a very good approximation to those in equations (3.12)
and (3.13). In all the examples shown in this section, the noise was evenly distributed
on all coefficients of the polynomial and Corless’ method yielded successful approxi-
mate decompositions with high SNR. However, the approximation is likely to be poor
in cases where the highest order terms of the polynomial H (z) experience relatively
more perturbation as these are used to find an initial guess as the first step of Corless’

algorithm.

Approximate polynomial decomposition has in fact proved to be a very difficult
nonlinear problem in both mathematics and computer science and it has been only

considered for cases in which the coefficients of a given polynomial is known to be
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which is consistently satisfactory for high polynomial orders and large or nonuniform
perturbations on the coefficients. In cases where the polynomial is not known to be in
the neighborhood of a decomposable polynomial, these algorithms summarized or de-
veloped in this chapter do not have any guarantees to yield an acceptable approximate
decomposition. This stems from the non-convex nature of the approximate polyno-

mial decomposition problem and the fact that the set of decomposable polynomials

constitutes a relatively small subset of the space of polynomials.

3.5 Sensitivity Analysis

The focus of this section is the sensitivity of the polynomial composition and the de-
composition operations. This is useful in understanding the types of signal processing
applications in which these operations can be used and the extent to which they re-
main reliable. For example, such an analysis can suggest when a decomposable signal
can be faithfully represented in terms of its components in the presence of quantiza-
tion noise. Similarly, this analysis can quantify the performance of a filter designed
as a generalized tapped delay line in the presence of error in the tap coefficients or
the subfilters, where the generalized tapped delay lines will be described in Chapter
6.

3.5.1 Composition Sensitivity

The sensitivity of composition for a given decomposable polynomial H(z) can be
defined as the maximum magnification of an infitesmall perturbation Au in its com-

posing polynomials, i.e.
Ean/En

2% Ena/Bu (3:35)

SU—-)H =

where U is either F or G depending on which is being perturbed, Ej, = ||h[|2 is the
energy of the coefficient vector h, E,, = ||u|| is the energy of the coefficient vector

u and || - ||2 is the square of the two norm of a vector. The relative magnification in
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perturbation depends on the direction of the perturbation vector Au; and sensitivity

is defined at the direction of maximum magnification.

Formulation of Sp_ g

Due to the linear relationship given in equation (3.5), a perturbation Af in the coef-

ficient vector of F'(x) will result in a change in the coeflicients of H(z) given by

Ah = CAf. (3.36)

The sensitivity of composition with respect to F(z) becomes, by equation (3.5), (3.35)
and (3.36)

S = manc ICATIE 1113

} 3.37
3 ARIR TICHIE (3:37)

For a given decomposition of a polynomial H(z) as F o G(z), the factor %ﬁz is
constant. The maximum value of %g'i is equal t0 0% 0, Where ¢ mes is the
maximum singular value of C. Therefore equation (3.37) becomes

F—H — aC,mamIICf”g' ( . )

Furthermore, % is bounded above by 0g2,;, and bounded below by og2, _ for any
2 ) ’

f. Hence, regardless of F(z), the sensitivity Sp_,y satisfies

0.2

1 < Spoypy < —20%2 (3.39)
C,min
2
where %%M is the square of the condition number of C.

Formulation of Sg_, g

A perturbation Agy to g, namely the coefficient of z* in G(z), does not affect the

coefficient of ™ in H(z) for k > n. Such a perturbation results in the composition
H(z) = F(G(z) + Agez®) = H(z) + AH(z) (3.40)
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where

AH(z) =~ F'(G(z))Agpz® (3.41)

assuming Agy is small and only the first term in the Taylor series for equation (3.40)
is considered. For k < n, equation (3.41) implies that the corresponding perturbation
in h, becomes

Ah,, = Agidn_x (3.42)

where d,,_ is the coefficient of z"~* in the polynomial D(z) defined as

D(z) = F'(G(x)). (3.43)
Perturbation of all the coefficients g, £ = 0,1,..., N results in the addition of error
terms in equation (3.42), i.e.
Ahn= > Agidni. (3.44)
0<k<min(N,n})
Equivalently,
Ah = DAg (3.45)

where D is an (M N +1) x (N + 1) Toeplitz matrix the first column of which consists
of the coefficients of the polynomial D(z), namely [dp d1 d2. .. dpn+1-n]T, With zero

padding of length N. The sensitivity of composition with respect to G(x) becomes,
by equations (3.35) and (3.45),

IIDAgI3 |Igll2
SG H = I —— .
U 2 lagllE [hiB

(3.46)

. 2 .
As in the previous section, for a given decomposition of H(z) as F o G(z), l}i—”% is
2
. DAgl2 . . i
constant. The maximum value of ﬁ;lz iS 03 ,nazs Where 0p mee is the maximum
2 ?

singular value of D. Therefore equation (3.46) becomes

G—H = UD,maz-I-m' ( ' )

67



An upper bound for Sgx can be obtained by an alternative representation of the

coefficient vector of D(z) given in equation (3.43) in the form of equation (3.5), i.e.
d=Cf=CVf (3.48)

where f is the coefficient vector of F'(z) and V is the (M + 1) x (M + 1) matrix
with superdiagonal elements 1,2,...M and zeros elsewhere, corresponding to the
derivative operator. Due to the derivative operation, the order of the polynomial
decreases by one, therefore the last element of f as well the last N elements of d are
zero, but these are not discarded for the consistency of the sizes among matrices and
multiplying vectors. For vectors d, Ah and Ag, which are related through equation
(3.44), it can be shown that
Ean

28k < (N +1)Eq, (3.49)
Eng

where the proof is given in Appendix A for the convolution of general sequences.

Therefore, from the definition in equation (3.35), Sg— g can be bounded as

2 |ICVE]3

— 3.50
*([CHIE (3.50)

E
Seou < (N + l)Ed—Ei- = +1)lgll
Defining
w = Cf, (3.51)

it can be shown f = (CTC)—1 CTw since C is full rank. Therefore equation (3.50)

becomes

Ty ! OTwl[2
o < ( + gl S D Ol .

< (N +D)llgllz0% mas

where the matrix T = CV (CTC).1 CT and o1 mes is the maximum singular value

of T.
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3.5.2 Dccompositi
Defining the sensitivity of decomposition directly as the relative magnification of per-
turbation in the components F(z) and G(z) when H(z) is perturbed is not meaningful
since a small perturbation Ah will render it nondecomposable in general. In other
cases, H(z) may remain decomposable but the new components F'(z) and G(z) may
have different orders than F(z) and G(z), respectively. These cases are excluded
from a discussion regarding their sensitivity here as well since the decomposition
process may be regarded as having failed by not predicting the orders of the com-
ponents correctly. Consequently, the definition for sensitivity of the decomposition
will be restricted to cases in which the perturbation preserves decomposability with

components of the same order.

Perturbations in polynomials F(z) and G(x) may lead to much smaller perturba-
tions in the coefficients of H(z). For the inverse operation, this implies that decompo-
sition under this specific perturbation in H(z) will yield larger relative perturbations
in F(z) and G(z). The sensitivity of decomposition hence can reasonably be defined
as

Y Eh) B (3.53)

SHy = max (m

Au

where again U is either F or G. Sy corresponds to the case where the perturbation

on the components results in the direction of maximum attenuation.

Formulation of Sy_r

The sensitivity associated with obtaining F(z) from a decomposable polynomial H(z)

becomes, by equations (3.5), (3.53) and (3.36)

. ||CAf| nfn%)‘l ( |I£113 )
S =<mm =\ 7C,min . 3.54
HoF = \ P AT TICA| 2 Cmin]|CF |2 (3:54)

-1
Furthermore, (“lg—lfll%g) is bounded above by 0% ... and bounded below by 0% ;...
2 3 H

Hence similar to equation (3.39), for any F(z), the sensitivity Sy_,r is bounded by
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the square of the condition number of C, which only depends on G(z), i.e.

2

[0}
1< Spp < 29 (3.55)

C,min

Formulation of Sy_¢

The sensitivity associated with obtaining G(z) from a decomposable polynomial H(z)

becomes, by equations (3.53) and (3.45),

.nDAgnzngnz)*l ( ngn%)*
Suoe = (mln ——rt = | OD min . 3.56
H6 = \ "W AR ([l Dmin || (3.56)

3.5.3 Simulations

In the following subsections, several simulation results are provided to illustrate the
sensitivity of the polynomial composition and decomposition operations. The coef-
ficient vectors of the polynomials F(z) and G(z) were selected from the standard
normal distribution by the randn function of MATLAB and were normalized to have

unit energy. The effect of normalization and scaling will be discussed in Section 3.5.4.

Simulations for composition sensitivity
Evaluation of Sg_, gy

In Section 3.5.1, Sr_,g was shown to be bounded by the square of the condition
number of C as given in equation (3.39) regardless of the specific value of F(x).
This bound is in fact attained if f is aligned with the right singular vector of C that
corresponds to its smallest singular value, however for an average case the sensitivity is
orders of magnitude lower than the square of the condition number as the simulations
in this section suggests.

The sensitivity Sg_z, as defined in equation (3.38), is shown in Fig. 3-3 as a
function of the degree of F(z). In Fig. 3-3, each point shows the median value of
Sp_,y obtained from composing one hundred instances of F(z) of the corresponding

order with each one of one hundred instances of G(z) of order seven. The vertical
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Figure 3-3: Sensitivity of the coefficients of H(z) with respect to the coefficients of
F(z). The order of G(z) is seven in all compositions. Each point is the median of
Sp_.g obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.

bars show the maximum and minimum sensitivities attained in these ten thousand
compositions. For consistency, the same set of G(z) were used for each degree of
F(z). The simulation results are consistent with the lower and upper bounds given
in equation (3.39), namely 1 and the square of the condition number of C, respectively.
However the upper bound has been omitted from this figure due to very large values

that exceed the display scale by multiple orders.

Evaluation of Sgpn

The sensitivity Sg_,u, as defined in equation (3.47), is shown in Fig. 3-4 as a function
of the degree of G(x). In Fig. 3-4, each point indicates the median value of Sg_,x
obtained from composing one hundred instances of G(z) of the corresponding order
with each one of one hundred instances of F(z) of order seven. The dashed line
indicates the upper bound given in equation (3.52) where ||g||3 = 1 and o7 mes is
evaluated for the G(z) that attains the maximum value of Sg_,x in the simulations

for each degree.
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Figure 3-4: Sensitivity of the coefficients of H(x) with respect to the coefficients of
G(z). The order of F(z) is seven in all compositions. Each point is the median of
Sc_, g obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained. The dashed line indicates
the upper bound given in equation (3.52).
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Figure 3-5: Sensitivity of the coefficients of F(z) with respect to the coefficients of
H(z). The order of G(z) is seven in all compositions. Each point is the median of
Sy_,r obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.
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Figure 3-6: Sensitivity of the coefficients of G(z) with respect to the coefficients of
H(z). The order of F(z) is seven in all compositions. Each point is the median of
Sy obtained from ten thousand compositions, where the vertical bars indicate the
range from the maximum to the minimum values attained.

Simulations for decomposition sensitivity
Evaluation of Sy_,r

Fig. 3-5 illustrates the sensitivity of the coefficients of F(z) with respect to the
perturbations in H(z), namely Sy r as described in equation (3.54). The values are

extracted from the experiments illustrated in Figure 3-3.

Evaluation of Sy_,¢

Su_q, as described in equation (3.56) the sensitivity of the coefficients of G(z) with
respect to the perturbations in H(xz) is illustrated in Fig. 3-6. The values are ex-

tracted from the experiments performed in Figure 3-4.

3.5.4 Equivalent Decompositions

For a decomposable polynomial H(z) = F(G(z)), there exists infinitely many other
pairs of polynomials that yields the same composition. This provides an opportunity
to choose a decomposition that has a lower sensitivity than a given decomposition.
This section discusses different ways of obtaining equivalent decompositions to be

exploited in order to lower sensitivity in the sequel.
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One way to obtain equivalent decompositions of a polynomial H(z) is through
compositions with first order polynomials. More specifically, given any first order

polynomial A(z) = az +b with a # 0 and with its inverse with respect to composition

A z) = %x - 2 (3.57)
it is clear that
H(z) = F(G(z)) = (Fo X o (Ao G)(x) = F(G(x)). (3.58)

Coefficients of F and G will be different in general yielding different sensitivities with

respect to these coeflicients.

Another way to obtain equivalent compositions is to exploit commutative polyno-
mials [9], namely polynomial pairs that satisfy F(G(z)) = G(F(z)). One such class is
the monomials, namely the polynomials of the form z™ where n is a positive integer.
Another class of commutative polynomials is the Chebyshev polynomials which can

be conveniently defined through trigonometric functions as
T,.(z) = cos(ncos™}(z)). (3.59)
Commutativity of the Chebyshev polynomials follows easily since

Ty © Ty(x) = cos(m cos™(cos(n cos™1(z))))
= cos(mncos™ (z)) (3.60)
= cos(n cos™*(cos(m cos™())))

=T, o Tr,(z).

Formalizing the work in [44], an entire set of commutative polynomials is defined in [9)
as a set of polynomials which contains at least one of each positive degree, and in which
any two members commute with each other. Furthermore, it is shown that only two

such sets exist, which are the polynomials of the form A~!o P, o A(z) where P,(z) is a
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monomial or a Chebyshev polynomial and A(z) is any first order polynomial. Both of
these classes correspond to a rather restricted form of decomposability, and therefore
they are relatively less useful in exploiting the existence of equivalent decompositions

for lower sensitivity.

Similar to equation (3.5), equation (3.58) corresponds to the matrix equation
h = Cf = (CA)(A™H) (3.61)

where A is a square, upper triangular and invertible matrix kth column of which
consists of k—1 self convolutions of the sequence {b, a} or equivalently the coeflicients
of (ax + b)*~1 in the ascending order. From equation (3.37), the sensitivity Sz_ 4

becomes
C|[CAAf|ZJA|2
SF-n ZURTTARR O ICHR

(3.62)

Although matrix A can be further factored as a product of two simpler matrices that
depend only on a and b, respectively, it is not obvious how Sz_, 5 will behave as a
joint function of @ and b in general. The effect of pure scaling, which corresponds to
the case a > 0, b = 0 and A is diagonal, can be inferred by examining the extremal

2
values of a. More specifically, as o tends to infinity, the term maxag Hcl‘r:?”f 2 also
2

—1¢)2
tends to infinity whereas the term 22 tends to a finite constant number if the
Y [ICH1T3
constant term of F'(z) is nonzero. The roles of these two terms are reversed as a tends

to zero, which suggests the existence of a minimum at a finite value of a > 0.

Fig. 3-7 illustrates the effectiveness of choosing different values for a and b in order
to reduce Sr_, . Here, F(z) and G(x) are chosen to be the pair of polynomials that
attained the largest sensitivity of 6.3 x 10* in Fig. 3-3 with F(z) of order fourteen
and G(z) of order seven. The simulation results in Fig. 3-7 were obtained through an
exhaustive search and indicate that Sg_,; gets larger as b tends to infinity in either
direction for this pair of F(z) and G(z). Sg_,y attains its minimum at ¢* = 0.73 and
b* = 0.57. Table 3.3 displays the values of all four sensitivities associated with this

composition before and after composition with A(z) = 0.73x + 0.57 and its inverse.

The effect of compositions with first order polynomials on Sg_.p is relatively
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Figure 3-7: Sp_ g as a function of @ and b. F(z)and G(z) are chosen to be the pair
of polynomials that attained the largest sensitivity in Fig. 3-3 with F(z) of order
fourteen and G(z) of order seven.

more straightforward. The matrix D in the definition of Sg_,m will be modified for

the definition of Sa_, ;. More specifically,
H(z) = F o G(z), (3.63)

therefore the columns of the modified matrix D will consist of the coefficients of the

polynomial F” o G(z) instead of F’ o G(x). Since

FoG(z) = (Fo X o (Ao G(a))
. (3.64)
— ((A_l)’F' o )\_1) o oGz = ED(:E),

Table 3.3: Sensitivity before and after composition with a*z + b*

Sensitivity | Original | at (a*, b*)
SF—>H 6.3 104 2.2 x 10°
SeH 1.7% 10° | 1.5 10°
SHAF 1.1.% 108 383 101
SHoa 1.55% 10% | 1.7 % 10
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0
a 12 -p2

Figure 3-8: The behavior of Sg_, g, Sy_, 7 and Sy_,& as a function of @ and b for same
pair of polynomials F(z) and G(z) as in Fig. 3-7.

the matrix D is simply equal to D scaled with é From equation (3.46), the sensitivity

Sa_,g becomes,

||;DAgl3 ||ag + bell3 _ |lg+ %ellés
G—H

S = max = 3.65
G = DX TURCR IR Tl ()

where e = [1,0,...,0]T and it is the same size as g. This implies that if |go F %‘ < | 9o
where gq is the constant term in G(z), Sg—x will also be improved. This is indeed
the case for the optimal point in Fig. 3-7 and introducing a linear composition to
improve Sg_,z has decreased Sg_,g. Due to its relationship with Sg_, g, the effect is
reversed on Sg_,¢ in such a way that their product remains the same. On the other
hand, the effect on Sy_, 7 can be described at extreme values of a and b similarly to
the case of Sp_,p. Fig. 3-8 illustrates the behavior of all of these sensitivities as a
function of @ and b for same pair of polynomials F(z) and G(z). Since the optimal
points are not the same for all sensitivities, a* and b* can be chosen depending on the

application.

3.6 Chapter Conclusions

Polynomial composition and decomposition methods are an important part of a signal
processing framework in which functional composition and decomposition are to be
exploited. Although composing polynomials is a straightforward operation in terms

of algebraic operations, their decomposition is not an easy task. In mathematics and
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computer science, decomposition methods have been developed to decompose poly-
nomials that are known to have a decomposition, yielding one of the infinitely many
choices for such a decomposition. A much more difficult problem involves approx-
imating nondecomposable polynomials with those that are decomposable. Existing
approximate decomposition methods as well as the new method introduced in this
chapter yield satisfactory results only for low order polynomials that are fairly close
to a decomposable polynomial, therefore approximate polynomial decomposition per-
sists as an interesting and challenging problem.

The sensitivities of composition and decomposition were also discussed in this
chapter, where natrix representation of composition is utilized to obtain closed form
expressions for sensitivity measures. The existence of equivalent decompositions using
first order polynomials and their inverses were also exploited to reduce sensitivity with

respect to perturbations in the polynomial coefficients.
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Chapter 4

Frequency Response Composition

and Decomposition

Frequency response representations of signals and systems are central to signal pro-
cessing. Therefore, identification and development of techniques for composing and
decomposing frequency responses as well as formulating new and interesting appli-
cations using them are important parts of a framework that will be exploited in the
context of signal processing.

The composition and decomposition of transfer functions that represent discrete
time FIR sequences, i.e. z-transforms, were related to polynomial composition and
decomposition as discussed in Chapter 3. The relationship between the z-transform
and the Fourier transform suggests a straightforward extension of the techniques in
Chapter 3 to the frequency response composition and decomposition. However, this
would restrict its applications to finite sequences and FIR systems. Moreover, approx-
imating the transfer function with a decomposable one with respect to a particular
norm involving coefficients does not always guarantee a satisfactory approximation
to the corresponding frequency response. An independent treatment of frequency
response composition and decomposition from that of the transfer functions will pro-
vide flexibility for specifying more relevant approximation constraints as well as the
ability to extend benefits of the framework to a wider class of signals including IIR

systems and continuous time signals that cannot be represented by polynomials.
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This chapter develops the mathematical methods that yield a decomposition of
any desired frequency response H(e*) continuous in w into two frequency responses

G(e?*) and F(e/*), where F, but not necessarily G, is a polynomial in e=7¢, i.e.,
- M .
H(e) = F(G(")) = > fiGH(e™). (4.1)
k=0

G(e?) will be assumed to be continuous and pre-specified, which is the case in certain
signal processing applications that can potentially exploit this procedure. In cases
for which G(e’*) is not specified, it can, for example, be designed to approximate
H(e?) with a low order rational frequency response before the decomposition so that
the composition itself has a rational form. In the current approach, the coefficients
fr will be chosen to minimize the Chebyshev or [, norm of the approximation error,

the commonly preferred norm in several signal processing applications,

minifmize A

& ) (42)
subject to ||H(e’¥) - kaGk(e"")||c>° <A.

k=0

This problem can be solved easily for any finite set of points. However solving it on a
continuum of frequency points requires specialized techniques. It is currently unclear
how to extend the mathematical tools developed in this chapter to decompositions
where F(e’*) is a more general function than a polynomial. Therefore these cases are

excluded from the current discussion.

In Section 4.1, the composition of a polynomial F(-) and a frequency response
G(e?*) will be treated as a special case of generalized polynomials, which is simply a
linear combination of continuous functions. This point of view will allow borrowing
two techniques from the existing mathematics literature with which optimal weights
for a generalized polynomial can be computed, and therefore can be recast as a
frequency response decomposition algorithm. The frequency response decomposition
algorithm that is developed for the frequency responses of discrete time signals and

systems will be extended to continuous time signals in a straightforward manner
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implying its generality.

Section 4.2 will present extensions to the decomposition algorithm where the de-
composition quality is improved when the phase of the target response H(e’*) is not
required to be matched and there is an emphasis on its magnitude instead, another

case that often arises in the context of signal processing applications.

4.1 Frequency Response Decomposition

The problem stated in (4.2) is a special case of the semi-infinite optimization problem

minifmize A

K (4.3)
subject to [D(w) — > _ filk(@)]leo < A
k=0
where Up(w), k =0,1,..., K, and D(w) are general continuous functions of w. Follow-

ing Cheney [13], a linear combination of continuous functions Uy (w) will be referred
to as a generalized polynomial in this thesis. The interpretation of the decomposition
of a desired response D(w) = H(e’) as an approximation using a generalized polyno-
mial with Ui(w) = G*(e/¥) will be the central theme when developing and extending
the frequency response decomposition algorithm. More specifically, the techniques
from the mathematical literature that will yield the optimal weights f; in (4.3) will
constitute the basis for the frequency response decomposition algorithm.

Two such mathematical techniques will be discussed in this section. The first one
is an efficient algorithm called the Remez Exchange Algorithm that will be discussed
in Section 4.1.2. However this works only under very restrictive conditions one of
which is called the Haar condition. The other is a less efficient algorithm called the
First Algorithm of Remez, which is not limited by the constraints of the previous
algorithm. This algorithm will be described in Section 4.1.3. Although the Haar
condition is not required for the First Algorithm of Remez, its existence implies
uniqueness of the optimal choice of weights. Since the Haar condition is central to

the discussion of both algorithms, this section starts with its description.
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4.1.1 Haar Condition and Best Approximations

A set of real or complex valued basis functions, Ui(w),k = 0,1,2,..., K, is said to
satisfy the Haar condition on a compact set S if each Ui(w) is continuous and any

function in their span,

Z FiUk(w), (4.4)

has at most K roots in S [34]. This is equivalent to the constraint on the (K + 1) x
(K + 1) matrix

-Uo((.do) U1 ((U()) Uz(WO) VN UK(OJO)
Uo(wl) U] (wl) Uz(wl) - UK(wl)
V= U()(OJQ) U](wg) Ug(&)z) N UK(wg) (45)
_U()(wK) Ul(wK) Ug(wK) e UK(wK)_

to be full rank for every set of distinct frequencies {wy € S,k =0,1,2,..., K} [13].

An optimal approximation with respect to the Chebyshev norm to any continuous
function D(w) as a linear combination of Ug(w) as in (4.3) exists, i.e. a set of weights
{fx} can be found to achieve the optimal approximation [13]. The existence of the
Haar condition within the basis functions is a necessary and sufficient condition for
the uniqueness of this optimal approximation and the set of coeflicients {fi} leading
to it (Theorem 19 in [34], [13]). For example, the optimal approximation to any
continuous function on a compact set S with an ordinary polynomial is unique since
the set of monomials w* k =0, 1,..., K, satisfies the Haar condition on any compact
set. This can be verified by the fact that the matrix V is a Vandermonde matrix for

Ur(w) = w*, which is guaranteed to be full rank if all wy are distinct.
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4.1.2 Alternation Theorem and the Remez Exchange Algo-

rithm

In cases where the basis functions Ug(w) satisfy the Haar condition and both these
and D(w) are real valued, the problem stated in (4.3) accepts an efficient solution
using the algorithm called the Remez Exchange Algorithm {13]. This algorithm ex-
ploits a characterization of the unique optimal approximation given by the alternation
theorem [13,34], where uniqueness of the optimal solution follows from the Haar con-

dition:

Theorem 4.1. Alternation theorem: The function

K
Dw) =Y fili(w) (4.6)
k=0

is the unique optimal approrimation to D(w) that is in the span of {Ux(w),k =
0,1,..., K} if and only if the error function

E(w) = Dw) = Y, fillk(w) (4.7)

exhibits at least K + 2 alternations, i.e., there are at least K + 2 alternation points
w; € S such that

w1 <wy < < Wiy < W42

and

E(wi) = —E(win) = £ max|E(w)]

fori=1,2,..., K + 1. In other words, for the unique optimal approzimation D(w),
the absolute value of the error function attains its mazimum value at the points w;

where the sign of the error alternates from one alternation point to the next.

The Remez Exchange Algorithm [13,42] is an iterative algorithm which exploits
the existence of at least K +2 alternation points and the behavior of the error function

E(w) at these points to find the unique optimal set of weights fi in (4.3). It starts
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with an initial guess for the alternation points, and at each iteration the coefficients
fr are updated so that the maximum error on the discrete set of candidate alternation
points is minimized. For the next iteration, the candidate points are exchanged with
another set of K +2 points including the point of maxirﬁum error on S. The iterations
are continued until the change in the maximum error does not improve beyond a pre-
specified threshold. This procedure is guaranteed to converge where the convergence
is quadratic [13]. A given frequency response D(w) can be decomposed by using the
Remez Exchange Algorithm by setting Ui(w) = G*(e/).

The set of basis functions (cosw)*, k = 0,1,..., L, satisfy the Haar condition and
are real valued. The well-known Parks-McClellan filter design algorithm [42] exploits
the alternation theorem and the Remez Exchange Algorithm to design, for example,

an even symmetric FIR filter for which the frequency response can be represented as

H(e™) = i fr(cosw)®. (4.8)

k=0
This implies that Parks-McClellan filter design algorithm can be re-interpreted as the
decomposition of an ideal filter response D(w) as F(G(e?*)) with G(e?*) = cosw. This
also suggests that the frequency response decomposition of the ideal filter response
with more general real-valued functions G¥(e/) satisfying the Haar condition can be

viewed as a generalization of the Parks-McClellan filter design algorithm.

A positive and continuous weight W (w) can be imposed on the error function E(w)
in equation (4.7) in order to regulate the relative approximation quality on subsets
of S. In that case, the alternation theorem and Remez exchange algorithm can be

re-expressed with respect to the weighted error

Bw (w) = W(w)

LIOEDY kak<w)] . (49)

The weighted approximation problem becomes equivalent to approximating the tar-
get function W(w)D(w) with a generalized polynomial where the basis functions are

{W(w)Uk(w),k =0,1,...,K}. This adjusted set of basis functions also satisfies the
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Haar condition since the matrix

W(wo)lolwo) W(wo)Uslws) W(wo)Ualwo) ... Wi(wo)Uk(wo) ]

W(wl)Uo(wl) W(wl)Ul(wl) W(wl)Uz(wl) RN W(wl)UK(wl)

W(w2)Up(ws) W(wo)Ui(ws) W(wo)Usws) ... W(wa)Ug(we) | (4.10)
_W(wK)Uo(wK) W(wK)Ul(wK) W(wK)Ug(UJK) . W(LUK)UK(CUK)_

is full rank for every set of distinct frequencies {wx € S,k =0,1,2,..., K}. That the
matrix in (4.10) is full rank can be shown by expressing it as the product of two full
rank matrices, namely the diagonal matrix W with diagonal entries W (wx) and V in
equation (4.5).

Although the Remez exchange algorithm is an efficient algorithm to solve the
frequency response decomposition as described, the requirements on H(e’*) to be
real and on G*(e’),k =0, 1,..., K, to be both real and to satisfy the Haar condition
are quite restricting on its applicability. This can be seen from the fact that the
matrix V given in (4.5) is a Vandermonde matrix for this basis, and it is full rank if
and only if G(e/) attains distinct values for each frequency w € S, i.e. if G(e/) is
monotonic. It is desirable to depart to possibly less efficient algorithms that work for
complex valued frequency responses and for basis functions that do not satisfy the

Haar condition such as the First Algorithm of Remez described next.

4.1.3 The First Algorithm of Remez

An algorithm that yields a solution to problem (4.3) and hence the frequency response
decomposition problem is the First Algorithm of Remez [13], which requires only the
function D(w) and the basis functions Ui(w) to be continuous on the compact set
S. Therefore, the algorithm is applicable to cases where these functions are complex
valued and where the Haar condition is not satisfied, two scenarios that very often
appear in a signal processing setting. The steps of the First Algorithm of Remez are

given in Algorithm 2.
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ALGORITHM 2

Input: Up(w),k=0,1,...,K and D(w),

K
Output: f* = argmfin |D(w) — Z TeUk(w)]] oo-

k=0

Begin (i = 1)

0. Choose S = {wp,wy, ... ,wWm} C 8 such that

m > K and the matrix [Ux(wn)lgm, £=0,1,...,K;

n=20,1,...,m has column rank K + 1.

K
1 i —
1. Set f arg min {52??5 |D(w) kzzokak(wﬂ}.

K
2. Find wl? = arg max |D(w) — Zf,g’)Uk(w)l.

k=0

3. Set S+ « Sy (w1} and i «+ i+ 1, go to Step 1.

The First Algorithm of Remez starts with a discrete set of frequencies {w;,7 =

0,1,...,m} in 8, where m is at least K. Although the Haar condition is not required

to be satisfied by the basis functions, this initial set of frequency points must be

chosen such that they yield a full-column-rank matrix

Us(wo) Unlwo) Usz(wo)
Uo(wi) Uir(wi) Ua(wi)
Uo(w2) Ui(wz) Usz(w2)
Vinit = :
Us(wk) Ui(wk) Us(wk)

_Uo(wm) Ul (wm) Uz(wm)

Ux(wo) |
UK (wl)
UK (w2)

UK(Q)K)

UK (wm)_

(4.11)

The lack of such a discrete set of points indicates that the basis is degenerate, i.e., some

of the basis functions Ui(w) are linearly dependent on others, in which case they are

excluded from the basis. The optimization problem (4.3) is solved only for this discrete
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Figure 4-1: The First Algorithm of Remez computes the optimal approximation for
a discrete set of points, and locates the maximum error point to include in the next
iteration. In this example, the compact set S on which the approximation is performed
is [0, 7).

set of points. The coefficients f; obtained are used to evaluate the approximation on
S and to locate the frequency at which the maximum approximation error occurs
as illustrated in Figure 4-1. This frequency is added to the set of points for which
the optimization problem will be solved in the next iteration, and the procedure is
repeated until the minimax error at each iteration does not deviate by more than a

pre-specified threshold.

Unlike the Remez exchange algorithm, the number of points for which an opti-
mization problem is solved increases by one at each iteration in the First Algorithm
of Remez. However, this does not present a serious computational concern as the
optimization problem (4.3) is linear when the functions involved are real-valued, and
is convex when they are complex-valued for a discrete set of frequencies, both cases
of which can be solved efficiently, and the required number of iterations are quite
few as will be shown in applications in Chapter 6. Moreover, it is shown in [19] that
the exact computation of the location of the maximum error on S at each iteration
is not required, and the algorithm has the same convergence guarantees when ap-
proximation error is computed on a “dense enough” and possibly irregular grid in

S.
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At each iteration ¢, the minimax error on § increases as new points are added to
the discrete set of points S®. The vector of optimal coefficients £ obtained at each
iteration is guaranteed to be in a bounded subset of R¥*+!, therefore the sequence of
vectors f\) is guaranteed to have at least one clustering point [46]. Moreover, any
of these clustering points will be an optimal choice for the coefficients f; with the
same maximum approximation error as the other cluster points. This implies that
the coefficient vector sequence f® does not necessarily converge, but the sequence
of minimax error on S converges. The Haar condition for {Ux(w)} is not required
for the convergence of minimax error sequence, however its existence guarantees the
uniqueness of the optimal choice for coefficients f [13]. These facts are proved in
[13] and the proof is included in Appendix B with the notation of this chapter for

convenience.

For the frequency response decomposition problem stated in (4.2), the matrix in
equation (4.5) will take the form of a complex-valued Vandermonde matrix which is
full rank if and only if G(e’*) has distinct values for each w € S. When the Haar
condition is not satisfied, there are multiple optimal choices including any clustering
point of the coefficient vector sequence f( obtained in Algorithm 2. In fact, any
coeflicient vector in the convex hull of the identified optimal coefficient vectors can
be shown to be an optimal choice itself. In order to see this, consider two optimal

coefficent vectors a and b that satisfy

K
HD(U)) - Z akUk(w)“oo = Aopt (412)
k=0
and
K
D) = > beUk(@)lloo = Aop (4.13)
k=0

where A, is the minimum attainable error among all choices of coefficients. It suffices
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to show that the coefficient vector in the midpoint % is also an optimal choice as in

K+1

lD( -2 a’“zb'“mw)l

(D(w) Z akUk(w)> + (D(w) - Z kak(w))

i )

where the triangular inequality was used in the first inequality. However, since no

l\Dlr—\

(4.14)
K+1

(D(w) — Z apUr(w)| +

K+1

(D) - 3 bulie(w)
k=0

NJI»—A

I/\

coeflicient set can achieve a smaller error than Ay, the incquality becomes an equality

proving the optimality of 242,

4.1.4 The Frequency Response Decomposition Algorithm

Since the frequency response decomposition of a desired function D(w) is a special
case of the optimization problem (4.3) with Ux(w) = G¥(e?*), its solution consists of
one of the two algorithms developed in this section.

Frequency Response Decomposition Algorithm. Given a desired function D(w), the ba-
sis functions G*¥(e’),k = 0,1,..., K, and the compact set S on which the decomposi-
tion is to be performed, invoke the Remez Exchange Algorithm with Uy(w) = G*(e?*))
if D(w) and G(e’) are real valued and the functions G*(e™),k = 0,1,..., K, sat-
isfy the Haar condition. Otherwise, invoke the First Algorithm of Remez given in
Algorithm 2.

Although the First Algorithm of Remez provides a slightly less efficient algorithm
to solve the optimization problem (4.3) than the Remez Exchange Algorithm due
to an increasing number of frequency points at each iteration for which the error is
optimized, it will be adapted as the main choice to solve this problem in the rest of
this chapter and for the applications in Chapter 6 since it applies to a much wider
class of applications where the functions are complex valued and the Haar condition

is not necessarily satisfied.
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4.1.5 Decomposition on infinite intervals: Continuous time

The frequency response decomposition algorithm applies to problems defined only on
compact sets. Continuous time signals and filters have frequency response represen-
tations that are defined on the entire real line as opposed to discrete time signals
and systems which need to be specified only on the compact interval [—m, 7]. There-
fore, one way to perform the decomposition of such frequency responses defined on
(—00,00) is to transform the problem to a compact interval, for example through a
frequency warping, before applying the decomposition algorithm developed in this
section. In this case, such a transformation must also preserve the minimax ap-
proximation error profile in both the original domain and the warped domain. The
bilinear transformation satisfies both of these properties and applications exploiting

this transformation will be shown in Chapter 6.

4.2 Frequency Response Decomposition by Mag-

nitude

Although the First Algorithm of Remez is able to locate the optimal solution by solv-
ing problem (4.3) efficiently even when D(w) and Uy(w) are complex valued functions,
a general disadvantage of approximating complex valued functions when compared
to those that are real valued is the additional requirement to match the phase of the
approximating generalized polynomial }°, fiUx(w) to that of D(w), which are always
matched when both are real regardless of the choice of coefficients fi. The attained
minimax error A,,: may not be satisfactory in cases where the phases of D(w) and
the basis functions Ux(w) are arbitrary due to this additional burden on the approx-
imation algorithm. The approximation quality may improve significantly if only the
magnitude of a complex-valued function is desired to be approximated with that of a
composition in an application. For example, the specification of continuous time LTI
filters are provided as constraints on the magnitude of the frequency response. These

applications can potentially benefit from an extension of the frequency response de-
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composition algorithm to the case where the approximation quality is specified with

respect to the difference between |H (e?*)| and |F(G(e?*))|.

This section extends the frequency response decomposition algorithm given in
Section 4.1.4 to the case of decomposition by magnitude. Since the functions of
interest are in general complex valued, only the first Algorithm of Remez will be
considered. In this case, the error to be minimized is given in terms of the difference
of magnitudes of the target function H(e*) and its decomposition Y, fiG*(e’*), and

the problem of decomposition by magnitude,

minifmize A

_ K _ (4.15)
subject to |||H(e™)| — D fiG* ()| <A,
k=0 00
becomes a special case of the semi-infinite optimization problem
minifmize A
K (4.16)
subject to  |M(w) — kaUk(w) <A
k=0 0

with M(w) = |H(e™)| and Uy (w) = G*(e™).

The frequency response decomposition algorithm described in Section 4.1.4 ex-
ploited the similarity of problems (4.2) and (4.3), where the latter was efficiently
solved by the First Algorithm of Remez for complex valued functions. However, the
decomposition problem by magnitude in (4.15) cannot directly exploit its similarity
to (4.16) as the First Algorithm of Remez does not apply to problems of the latter
form. Moreover, these problems are not convex with respect to the coefficients f un-
like in the frequency response decomposition problem. In this section, an equivalent
problem to that of (4.16) will be formulated that allows the utilization of the First

Algorithm of Remez in an iterative algorithm for its solution.
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4.2.1 An Alternating Projections Algorithm

The optimal solution for the optimization problem (4.16) does not change if its con-

straint is replaced by

<A (4.17)

(o e]

H |M(w)eje(‘”)| -

> fiUk(w)

where ©(w) is an arbitrary phase function since e/®®) has unit magnitude. In (4.17),
specifying ©(w) = ©¢(w), the phase of the generalized polynomial ), fiUk(w) such
that

K
A &), (4.18)
k=0

K
> AUk(w)
k=0

renders the absolute value operations redundant since both complex terms have the

same phase. Removing the absolute values yields an equivalent problem to (4.16),

minifmize A
(4.19)
< A.

subject to

K
|M(w)ejef(“’) > filk(w)

k=0

o0

The subscript f in Of(w) represents the dependency of the specified phase on the

coefficients of the generalized polynomial.

The optimization problem (4.19) is not convex and cannot be solved exactly.
Although (4.19) is equivalent to (4.16), its explicit dependence on f in two different
terms in its constraint suggests an iterative algorithm each step of which is much
easier to perform than solving (4.16) directly. In the ¢-th iteration of this iterative
algorithm, the optimal coefficients fl are obtained given the phase ©F~(w) from
the (i — 1)-st iteration. This phase is updated for the next iteration with the optimal
choice of ©(w) given fl. This procedure is outlined in Algorithm 3.
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ALGORITHM 3
Input: Uy(w),k=0,1,...,K; M(w); an arbitrary ol (w)
K
Output: A local optimum for f* = arg mfin | M (w)e?®re) — Z FrUr(@)]loo-

k=0

Set i = 1.

K
1. Set fll = argmfin ||M(w)ej9[ﬂ](“’) - kaUk(w)”oo.
k=0

K
2. Set Oll(w) = argmin || M (w)e?®®@ — 7 (w o
(@) = wgmin M) = 3 P00

3. Set 1 «+ i+ 1, go to Step 1.

Given the phase oli-1l (w) from the previous iteration, finding the optimal coef-
ficient vector flil to minimize the error in Step 1 of Algorithm 3 is an instance of
an approximation problem by a generalized polynomial which can be solved easily
using the First Algorithm of Remez. This step can be viewed as the projection of the
function M (w)eje[i_ll(w) onto the space of functions spanned by the basis functions

Up(w),k=0,1,...,K,ie,

U ={Pw)s.t. Plw)= iakUk(w) for a, € R}. (4.20)
k=0

Choosing the same set of frequency points in the initial step each time the first
algorithm of Remez is invoked guarantees the sequence f (1 to be bounded in magnitude
by the same number not only within one call of the algorithm but also throughout

the iterations in Algorithm 3.
Once £l is determined in Step 1, the optimal phase O (w) to attach to M (w) can
be determined by interpreting Step 2 as the projection of the generalized polynomial

Dok f,£i] Ui (w) onto the set of complex valued functions with magnitude M(w), i.e.,

M = {R(w) s.t. R(w) = M(w)e’®“) for arbitrary ©(w)}. (4.21)
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This set does not correspond to a vector space and it is not even convex, however
projections onto this set can be performed in a very straightforward manner. More

specifically, for every w,

K
IM(LU eje(w) Z [t]U ((.0 lM(w)eje(w Z [1, Uk(w) eJe[](w)
= (4.22)
= |M(w)|2 + Z Uk(w) - 2|M(w)] Z MUk(w )| cos(@(w) — elfi](w))
k=0

where the first equality follows from equation (4.18) for the definition of 9[:] (w) and
the second equality follows from the cosine theorem. The same optimal choice of
O(w) = 9?1((.«)) minimizes equation (4.22) for every frequency w, hence it is the

solution of Step 2 of Algorithm 3.

The two steps of Algorithm 3 correspond to alternating projections of a desired
magnitude function M(w) between the sets U defined in equation (4.20) and M
defined in equation (4.21) as depicted in Figure 4-2. It is well known that if the
two sets were both convex witn non-empty intersection, the sequence of functions
obtained during this iterative procedure would converge to a function in & N M
yielding A = 0, or, if the intersection is empty, converge to the closest point of U
to M attaining the global minimum of A. Although the lack of convexity in M
prevents from establishing such guarantees in the magnitude response decomposition
problem, the maximum error Al at each iteration can be shown to be a non-increasing

sequence. More specifically, for any i > 0,

K
A = || M(w)e® @ -3 U (w) o
k 0

jolil(w) i
> || M (w)e?®) Z FEUw) oo )
; .

> [|M(w)e® O =37 i 5 w) s

k=0
= AlH+1
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= M(w)e?® ) for arbitrary 6(w)}

{Pw) s.t. P(w)*

Figure 4-2: The illustration of alternating projections of a function between two sets
U defined in equation (4.20) and M defined in equation (4.21).

where the first inequality follows from the minimization at Step 1 and the second
inequality follows from the minimization from Step 2 of Algorithm 3. Since Al is

bounded below by zero, it is going to converge and possibly to a positive value Agy.

4.3 Chapter Conclusions

In this chapter, frequency response decomposition was treated as a special case of
approximations with generalized polynomials in order to develop the decomposition
algorithms in a more general setting and to utilize the mathematical tools available
for generalized polynomials from the literature. The Remez Exchange Algorithm
was shown to be an important tool that can be exploited to decompose real valued
frequency responses when the basis functions G*(e?*),k = 0,1,..., K are both real-
valued and satisfy the Haar condition on the frequency intervals of interest. Although
computationally efficient, such restrictions of the Remez Exchange algorithm moti-
vated an alternative algorithm again due to Remez, the First Algorithm of Remez,
to be extended for decomposing frequency responses which does not have these re-
strictions. This latter algorithm was extended to cases where only the magnitude
of the composition approximates the magnitude of a desired function. An iterative
algorithm was proposed for the solution of the decomposition problem by magnitude,
where, although the non-convex problem is not solved exactly, the approximation

error was shown to be monotonically non-increasing at each iteration step.
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Chapter 5

Discrete Multivariate Function

Composition and Decomposition

In the previous chapters, the focus has been on the composition and decomposition
of one dimensional functions. In a signal processing framework in which functional
composition and decomposition are to be exploited, it may be potentially useful to
extend the discussion to multivariate functions as well.

Applications that are characterized by their requirement of taking summations,
i.e. marginalizations, over multivariate functions constitute a large class of problems
that can potentially benefit from the composition and the decomposition of multivari-
ate functions. Some well-known examples that require marginalizations are nonlinear
filtering, projections, computing expectations and messages in message passing al-
gorithms in statistical inference problems. This chapter will develop a multivariate
function decomposition algorithm in order to benefit from its potential computa-
tional efficiencies for this large set of problems. The computational benefits for the
case of factorable functions in these applications are well known and several efficient
algorithms have already been developed to exploit factorability. The decomposition
algorithm which will be developed in this chapter will be formulated in a way to
extend the benefits of factorability to decomposability and to exploit the algorithms
previously developed in this new context. This will be accomplished by introducing

latent variables to a given decomposable function and representing it as a product of
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functions each of which have fewer variables, in which case the efficient algorithms
for the factorable functions can be invoked. This is done at the expense of artifi-
cially increasing the dimensionality of the given function. However a careful choice
of an alphabet size for the latent variable will be shown to ensure this approach re-
mains efficient. Moreover, if a given function is not exactly decomposable, it will
be approximated by a decomposable representation as an alternative to approximate

factorization in order to benefit from the same efficiencies.

In this thesis, attention will be restricted to discrete functions as the methods
developed will exploit mathematical methods that assume discrete and finite alpha-
bet sizes. However this will be sufficient to illustrate the feasibility and benefits of
introducing decomposition in certain signal processing applications and provide a mo-
tivation for exploring decomposition algorithms for multivariate continuous functions
in a future study.

In Section 5.1, the computational difficulties in the context of marginalization
problems will be discussed with an emphasis on why factorability into functions
with fewer variables have been widely considered as desirable. The class of appli-
cations known in the literature as marginalize-a-product-function (MPF) problems
will be introduced [1], and a new class of applications will be defined as marginalize-
a-decomposable-function (MDF) problems for which the computational benefits are
to be extended.

In Section 5.2, multidimensional matrices are introduced as a natural and straight-
forward tool to represent discrete multivariate functions. Moreover, a basic form for
a decomposable multivariate function, adapted from a stream of work in machine
learning for its convenience, will be introduced. It will be shown that once a decom-
position algorithm is developed for this basic form, other forms of decompositions can
also be obtained by repeatedly invoking this algorithm on the subfunctions.

In Section 5.3, methods will be developed to represent decomposable functions as
factorable functions at a higher dimension by introducing latent variables. The con-
ditions under which such an operation will remain efficient will be discussed, and the

decomposable representations will be manipulated to show that a decomposable func-
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tion can be represented as a product of matrices. Moreover, although factor graphs
can successfully capture the structure of factorable functions and not decomposable
functions, the techniques developed in this section will lead to a factor graph repre-
sentation that can capture the decomposability structure and lend itself to efficient
computations.

The matrix representations of multivariate functions as well as the matrix product
view of decomposition developed in Section 5.3 will constitute the basis of decom-
position algorithms that will be developed in Section 5.4. More specifically, having
reduced the decomposition problem to a matrix factorization problem, techniques
such as singular value decomposition (SVD) and nonnegative matrix factorization
(NMF) algorithms will be borrowed from the literature for developing the machinery

for decomposition.

5.1 Efficient Marginalization

The problems that require marginalizing multivariate functions over some or all of
their variables can be computationally intractable since the dimensionality over which
the summation is performed increases exponentially with the number of variables.
These problemé become instances of marginalize-a-product-function (MPF) problems
formally defined in [1,41], for which well-known efficient algorithms exist, when the
multivariate functions to be marginalized are factorable into local functions that
depend only on subsets of variables. The efficiency of factorability stems from the
possibility of distributing the summation over local functions hence reducing the
dimensionality over which these operations are performed. For example, consider a 5-
th order Volterra kernel of a nonlinear time invariant system which has a factorization

of the form

h[n17 g, N3, Ny, n5] = "/}A[’nﬂ) na, n5]d)B[n2) ng, n4]3 (51)

where 14 and v¥p are both multivariate functions themselves. In order to compute
the corresponding 5-th Volterra term ys[n] in the series expansion for the output when

the input is z[n], the marginalization can be distributed over the two local functions
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a4 and v instead of performing the marginalization over all possible five-tuples

{n4,...,ns} at once,

ysln] = 33 ST ST S walng, na, nsls(ng, na, nal [ [ wln — nl

ny n2 n3 g ns

=Z :z:[n—m](Z Z Ya[na, ny, n5]x[n——n1]x[n—n5]) (z Z Yp[na2, n3, nglz[n—nglz[n—ns

ngt ns n2 n3

(5.2)

where each local sum will be performed on a subset of variables, in which case much
fewer computations will be required. Although the computational savings depend
highly on the form of the actual factorization, the number of variables in the factors
and their alphabet sizes, performing computations by exploiting the factorization will
increase efficiency in general.

Following a naming convention similar to MPF, marginalizations over decompos-
able functions will be referred to as marginalize-a-decomposable-function (MDF) in
this thesis. In order to benefit from the existing algorithms for MPF problems exploit-
ing factorability, decompositions will be formulated as a generalization of factorization
when the function is artificially and temporarily carried to higher dimensions through
the introduction of latent variables. This will allow re-expressing MDF problems as
MPF problems and apply the same efficient algorithms with little overhead due to

the introduction of the latent variables.

5.2 Decomposable Representations of Discrete Mul-

tivariate Functions

A bivariate signal F'(-,-) of two variables {z,y} can be represented either analytically
in terms of z and y or specified for each and every value of the pair (z,y) if the
alphabets of these variables are finite and discrete, i.e., they can only take finitely
many distinct values. In many circumstances, an analytic expression for F(z,y)

is undefined, unknown or not meaningful such as with a natural image consisting
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of pixel values where the variations between pixel values cannot be modeled by an
analytic function of the pixel coordinates. In such an image, the variables z and y
correspond to coordinates of the pixels and they both take a finite number of discrete
values, consecutive integers in this case. In other cases, there may be an analytic
representation of F'(z,y) or the alphabets of the variables may be continuous. In an
application where computations are to be performed or data to be stored, a common
practice is to take the range of interest for the variables and discretize them, in which
case the function values can be recorded as a matrix Mpg.

The matrix representation of bivariate discrete functions can be extended similarly
to a multidimensional matrix, i.e. tensor, representation for discrete multivariate
functions H(X), where

X ={z1,22,...,ZK} (5.3)

is the set of K discrete variables with finite alphabets. The multidimensional matrix
Ty has K dimensions. The size of Ty along its k-th dimension is D, , namely the
alphabet size of xi, since it is indexed by zx. The total number of entries in Ty is

thus
Dx =[] Dar, (5.4)

i.e., it is equal to the joint alphabet size of the K-tuple (zi1,...,zx). Given an
instantiation of X, namely a set of values for (zj, zo, . .. ), the value of a multivariate
function H(X) can be obtained by a look-up procedure from the multidimensional

matrix Ty that represents it.

5.2.1 A Basic Decomposable Representation

A basic form that represents a function of a function in the context of multivariate

functions is

F(zgy, - 2.0y, G(T(g,1)s - - -5 T(g,N))) (5.5)

where the variable subindices f and g imply correspondence to F' and G, respectively.

In other words, in this basic decom