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Abstract
With large and growing datasets and complex models, there is an increasing need for
scalable Bayesian inference. We describe two lines of work to address this need.

In the first part, we develop new algorithms for inference in hierarchical Bayesian
time series models based on the hidden Markov model (HMM), hidden semi-Markov
model (HSMM), and their Bayesian nonparametric extensions. The HMM is ubiquitous
in Bayesian time series models, and it and its Bayesian nonparametric extension, the
hierarchical Dirichlet process hidden Markov model (HDP-HMM), have been applied in
many settings. HSMMs and HDP-HSMMs extend these dynamical models to provide
state-specific duration modeling, but at the cost of increased computational complexity

for inference, limiting their general applicability. A challenge with all such models is
scaling inference to large datasets.

We address these challenges in several ways. First, we develop classes of duration
models for which HSMM message passing complexity scales only linearly in the ob-
servation sequence length. Second, we apply the stochastic variational inference (SVI)
framework to develop scalable inference for the HMM, HSMM, and their nonparamet-
ric extensions. Third, we build on these ideas to define a new Bayesian nonparametric
model that can capture dynamics at multiple timescales while still allowing efficient
and scalable inference.

In the second part of this thesis, we develop a theoretical framework to analyze a
special case of a highly parallelizable sampling strategy we refer to as Hogwild Gibbs
sampling. Thorough empirical work has shown that Hogwild Gibbs sampling works
very well for inference in large latent Dirichlet allocation models (LDA), but there is
little theory to understand when it may be effective in general. By studying Hogwild
Gibbs applied to sampling from Gaussian distributions we develop analytical results as
well as a deeper understanding of its behavior, including its convergence and correctness
in some regimes.
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Chapter 1

Introduction

As datasets grow both in size and in complexity, there is an increasing need for rich,
flexible models that provide interpretable structure, useful prior controls, and explicit

modeling of uncertainty. The Bayesian paradigm provides a powerful framework for

approaching such modeling tasks, and in recent years there has been an explosion of new

hierarchical Bayesian models and applications. However, efficient and scalable inference

in Bayesian models is a fundamental challenge. In the context of large datasets and

increasingly rich hierarchical models, this inference challenge is of central importance

to the Bayesian framework, creating a demand both for models that admriit powerful

inference algorithms and for novel inference strategies.

This thesis addresses some aspects of the Bayesian inference challenge in two parts.

Ill the first part, we study Bayesian models and inference algorithms for time series

analysis. We develop new efficient and scalable inference algorithms for Bayesian and

Bayesian nonpararnetric time series models and we discuss new model generalizations

which retain both effective algorithms and interpretable structure. In the second part,
we study a highly parallelizable variation on the Gibbs sampling inference algorithm.

While this algorithm has limited theoretical support and does not provide accurate

results or even converge in general, it has achieved considerable empirical success when

applied to some Bayesian models of interest, and its easy scalability suggests that it

would be of significant practical interest to develop a theoretical understanding for when

such algorithms are effective. We develop a theoretical analysis of this sampling infer-

ence algorithm in the case of Gaussian models and analyze some of its key properties.

* 1.1 Efficient models and algorithms for Bayesian time series analysis

Bayesian modeling is a natural fit for tasks in unsupervised time series analysis. In such

a setting, given time series or other sequential data, one often aims to infer meaningful

states or modes which describe the dynamical behavior in the data, along with sta-

tistical patterns that can describe and distinguish those states. Hierarchical Bayesian

modeling provides a powerful framework for constructing rich, flexible models based

9



CHAPTER 1. INTRODUCTION

on this fundamental idea. Such models have been developed for and applied to com-

plex data in many domains, including speech [30, 68, 18] behavior and motion [32, 33,
51], physiological signals [69], single-molecule biophysics [71], brain-machine interfaces

[54], handwritten characters [67], and natural language and text [44, 70]. At their core,
these models are built on a Bayesian treatment of the ubiquitous Hidden Markov Model
(HMM), a model structure which provides both a coherent treatment of the notion of
state and temporal dynamics as well as efficient inference algorithms based on dynamic

programming and message passing.

A significant advancement for such general-purpose models was the development of
the Bayesian nonparametric hierarchical Dirichlet process hidden Markov model (HDP-
HMM) [106]. The HDP-HMM allows the complexity of the model to be learned flexibly
from the data, and indeed allows the complexity of the representation to grow with the
amount of data. However, in the case of the HDP-HMM the flexibility of the Bayesian

nonparametric prior can lead to models with undesirably rapid switching dynamics, to
the detriment of model interpretability and parsimony. The first work to address this
issue was the development of the Sticky HDP-HMM, which introduced a global bias
to encourage state persistence [31, 30]. In Johnson and Willsky [60] we generalized
the Sticky HDP-HMM to the hierarchical Dirichlet process hidden semi-Markov model
(HDP-HSMM), integrating work on HSMMs to allow arbitrary state-specific duration
distributions in the Bayesian nonparametric setting. However, as with other HSMM
models, explicit duration modeling increases the computational cost of inference, scaling
quadratically with the observation sequence length while the cost of HMM inference
scales only linearly. This increased computational complexity can limit the applicability
of both the HDP-HSMM and the Bayesian HSMM even when non-geometric duration
distributions provide a better model.

An additional challenge for all such Bayesian time series models is scaling inference
to large datasets. In particular, the Gibbs sampling and mean field algorithms developed
for the HMM and HSMM, as well as their nonparametric extensions, require a complete
pass over the dataset in each iteration and thus do not scale well. In contrast, recent
advances in scalable mean field methods require only a small number of passes over
large datasets, often producing model fits in just a single pass. However, while such
methods have been studied extensively for text topic models [53, 115, 17, 114, 92, 52],
they have not been developed for or applied to time series models.

In this thesis we address these inference challenges in several ways. To address
the challenge of expensive HSMM inference, in Chapter 4 we develop a framework for
computing HSMM messages efficiently for some duration distributions. In particular,
we derive message passing recursions for HSMMs with durations that are modeled
as negative binomials or mixtures of negative binomials for which the computational

10



Sec. 1.2. Analyzing Hogwild Gaussian Gibbs sampling

complexity scales only linearly with the observation sequence length. We also give an

HSMM Gibbs sampling algorithm which exploits this efficient structure.

To address the challenge of scaling inference to large datasets, in Chapter 5 we de-

velop stochastic variational inference (SVI) algorithms for the Bayesian HMM, HSMM,
and their nonparametric extensions. In addition, we build on the framework of Chap-

ter 4 to develop fast approximate updates for HSMMs with negative binomial durations.

We show that, as with SVI for topic models, the resulting algorithms provide speedups

of several orders of magnitude for large datasets.

In Chapter 6 we build on these ideas to develop a Bayesian nonparametric time series

model that can capture dynamics at multiple timescales while maintaining efficient and

scalable inference. This model is applicable to settings in which the states of complex

dynamical behavior can be decomposed further into substates with their own dynamics.

Such behavior arises naturally in the context of speech analysis, where we may wish to

model dynamics within individual phonemes as well as the dynamics across phonemes

[68, 18], and in the context of behavior analysis, where complex movements can be

decomposed into component parts [51, 32]. While this model is significantly more

complex than the HDP-HMM or HDP-HSMM alone, we show how to compose the

ideas developed in Chapters 3, 4, and 5 to develop both efficient Gibbs sampling and

scalable SVI inference.

* 1.2 Analyzing Hogwild Gaussian Gibbs sampling

Taking a broader perspective on scaling Bayesian inference, it is clear that some of

the workhorse Bayesian inference algorithms cannot scale to large datasets for general

models. Sampling methods in particular have proven to be hard to scale, and while there

is considerable ongoing work oii scalable sampling inference [116, 42], new strategies

must be developed and analyzed.

Some lines of work aim to parallelize the computation of sampling updates by ex-

ploiting conditional independence and graphical model structure [42]. Though this

strategy can be effective for some settings, there are many models and collapsed sam-

plers in which there are no exact conditional independencies and hence no opportunities

for such parallelization. However, in some cases dependence may be weak enough so

that some degree of independent computation can be tolerated, at least to produce

good approximate updates. In particular, thorough empirical work has shown that an

extremely simple and highly parallelizable strategy can be effective, at least for one one

popular hierarchical Bayesian model: by simply running Gibbs updates in parallel on

multiple processors and only communicating those updates to other processors period-

ically, one can effectively sample from the latent Dirichlet allocation (LDA) model [83,
82, 73, 7, 55].

11



CHAPTER 1. INTRODUCTION

While the empirical success in the case of LDA is well-documented, there is little
theory to support this strategy. As a result, it is unclear for which other models or

datasets this strategy may be effective, or how the organization of the computation,
such as the frequency of synchronization and the number of parallel processors, may

affect the results. However, developing a general theory may be difficult: even standard
sampling algorithms for general Bayesian models are notoriously resistant to theoretical

analysis, and the parallel dynamics add another layer of difficulty.

Therefore to begin to develop such a theoretical analysis we consider the case of using

this parallel strategy to sample from Gaussian distributions. Gaussian distributions

and algorithms are tractable for analysis because of their deep connection with linear

algebra, and we exploit this connection to develop an analysis framework that provides

an understanding of several key properties of the algorithm. We call this strategy

Hogwild Gaussian Gibbs sampling, and in Chapter 7 we describe our analysis framework

and prove several salient results concerning the convergence and correctness of Gaussian

Hogwild Gibbs sampling.

U 1.3 Organization and summary of contributions

In this section we provide an outline of the rest of the thesis and a summary of our
main contributions.

Chapter 2: Background

In Chapter 2 we provide a brief overview of the foundations for the work in this thesis,
including probabilistic graphical models, exponential family distributions and conju-
gate Bayesian analysis, hidden Markov models, and Bayesian nonparametric models

constructed using the Dirichlet process.

Chapter 3: The Hierarchical Dirichlet Process Hidden semi-Markov Model

We originally developed the HDP-HSMM in Johnson [59], and we include its develop-

ment here because Chapters 4, 5, and 6 build on it. There are new contributions in

this chapter as well; in particular, in Chapter 3 and Appendix B we provide a thorough

numerical study of the Gibbs sampler we proposed for the HDP-HSMM. The power

disaggregation application is also new, in addition to the factorial HDP-HSMM model.

Finally, the derivations of the Gibbs sampling algorithms are significantly improved.

Chapter 4: Faster HSMM Inference with Efficient Representations

HSMM message passing is much more computationally expensive than HMM message

passing, scaling as O(T 2N+TN2 ) compared to just O(TN 2 ) for a model with N states

12
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and an observation sequence of length T. This computational cost can severely limit

the applicability of models based on the HSMM, especially for larger datasets.

In Chapter 4 we develop a general framework for computing HSMM messages effi-

ciently for specific duration models, so that the computational complexity scales only

linearly with T. The main practical result, which we use extensively in Chapters 5

and 6, is an efficient message passing recursion for HSMMs with durations that are

modeled as negative binomial distributions or mixtures of negative binomial distribu-

tions. We also develop a Gibbs sampling algorithm for HSMMs with negative binomial

durations using these ideas.

The framework we develop is much more general, and includes new connections to

the theory of linear time-invariant (LTI) systems, which could yield efficient message

passing recursions for more duration models as well as new approximation schemes.

Chapter 5: SVI for HMMs, HSMMs, and Nonparametric Extensions

Since scalable inference is a fundamental challenge for Bayesian time series models, in

Chapter 5 we apply the stochastic variational inference (SVI) framework to develop

new algorithms for Bayesian HMMs, HSMMs, and their nonparamnetric extensions, the

HDP-HMM and HDP-HSMM. We show that these SVI algorithms can fit such time

series models with just a single pass over large datasets.

In addition, because the computational complexity of general HSMM message pass-

ing inference can be limiting even in the minibatch setting of SVI, we build on the

ideas developed in Chapter 4 to develop an approximate SVI update for models with

durations that are modeled as negative binomial distributions or mixtures of negative

binomial distributions. We demonstrate that this approximate update can effectively

fit HSMM models with time complexity that scales only linearly with the observation

sequence length.

Chapter 6: Scalable Inference in Models with Multiple Timescales

In many settings we may wish to learn time series models that represent dynamics at

multiple time scales, such as speech models which capture both the dynamics within

individual phonemes and the dynamics across phonemes. It is crucial for such models to

admit efficient and scalable inference algorithms, since such complex dynamics require

larger datasets to be learned effectively.

In Chapter 6 we develop a Bayesiani nonparametric model for learning such dynamn-

ics. We build on the HDP-HSMM developed in Chapter 3 so that explicit duration

modeling can be used to identify dynamics at the different timescales. Using the ideas

from Chapters 4 and 5 we also develop an efficient Gibbs sampler and a scalable SVI

algorithm. We demonstrate the effectiveness of both the model and the proposed infer-



ence algorithms on an application to unsupervised phoneme discovery.

Chapter 7: Analyzing Hogwild Parallel Gaussian Gibbs Sampling

Scaling sampling inference algorithms to large datasets is a fundamental challenge for
Bayesian inference, and new algorithms and strategies are required. One highly par-
allelizable strategy, which we call Hogwild Gibbs sampling, has been shown through
empirical work to be very effective for sampling from LDA models. However, there
is limited theoretical analysis for Hogwild Gibbs sampling and so it is difficult to un-
derstand for which models it may be helpful or how algorithm parameters may affect
convergence or correctness. Furthermore, sampling algorithms for general models are
notoriously difficult to analyze.

In Chapter 7 we develop a theoretical framework for Hogwild Gibbs sampling applied
to Gaussian models. By leveraging the Gaussian's deep connection to linear algebra,
we are able to understand several properties of the Hogwild Gibbs algorithm, and our
framework provides simple linear algebraic proofs. In particular, we give sufficient
conditions on the Gaussian precision matrix for the Hogwild Gibbs algorithm to be
stable and have the correct process means, we provide an analysis of the accuracy of
the process covariances in a low-order analysis regime when cross-processor interactions
are small, and we provide a detailed understanding of convergence and accuracy of
the process covariance, as well as a way to produce unbiased estimates of the exact
covariance, when the number of processor-local Gibbs iterations is large.

Chapter 8: Conclusions and Recommendations

In Chapter 8 we provide concluding remarks as well as some potential avenues for future
research.

14 CHAPTER 1. INTRODUCTION



Chapter 2

Background

In this chapter we provide a brief overview of the foundations on which this thesis builds,
particularly probabilistic graphical models, exponential family distributions, hidden

Markov models, and Bayesian nonparametric models constructed using the Dirichlet

process.

* 2.1 Graphical models

In this section we overview the key definitions and results for directed and undirected

probabilistic graphical models, which we use both for defining models and constructing

algorithms in this thesis. For a more thorough treatment of probabilistic graphical

models, see Koller and Friedman [65].

* 2.1.1 Directed graphical models

Directed graphical models, also called Bayes nets, naturally encode generative model

parameterizations, where a model is specified via a sequence of conditional distribu-

tions. They are particularly useful for the hierarchical Bayesian models and algorithms

developed in this thesis.

First, we give a definition of directed graphs and a notion of directed separation

of nodes. Next, we connect these definitions to conditional independence structure for

collections of random variables and factorization of joint densities.

Definition 2.1.1 (Directed graph). For some n E N, a directed graph on n nodes is

a pair (V, E) where V = [n] {1, 2,.. .,n} and E C (V x V) \ {(ii) : V}. We call
the elements of V the (labeled) nodes or vertices and the elements of E the edges, and

we say (i, j) E E is an edge from i to j.

Given a graph (V, E), for distinct i, j E V we write i -+ j or j <- i if (i, j) E E

and write i j if (i,j) E E or (j, i) E E. We say there is a directed path from 11 to

in of length n - 1 if for some i2, 3, . ,n- E V we have ii -+ i 2  -+ i,, and an

undirected path if we have i 1 -i 2 .-- in. We say node j is a descendant of node i

15
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Figure 2.1: An illustration of the cases in Definition 2.1.2. Shaded nodes are in the
set C.

if there is a directed path from i to j, and we say j is a child of i if there is a directed

path of length 1. Similarly, we say i is an ancestor of j if j is a descendant of i, and

we say i is a parent of j if j is a child of i. We use WG(i) to denote the set of parents

of node i and cG(i) to denote its children.

We say a directed graph is cyclic if there is a node i E V that is its own ancestor,

and we say a graph is acyclic if it is not cyclic. For directed graphical models, and all

of the directed graphs in this thesis, we use directed acyclic graphs (DAGs).

Using these notions we can define the main idea of directed separation.

Definition 2.1.2 (Blocked/unblocked triples). Given a DAG G = (V, E), let a -b -c

be an undirected path with a, b, c E V, and let C C V be a subset of nodes with C n

{a, c} = 0. We call a - b - c a triple, and we say it is blocked by C in two cases:

1. if the structure is not a b +- c, then b G C

2. if the structure is a -+ b <- c, and for all descendants b' E V of b we have b' V C.

We say a triple is unblocked by C if it is not blocked by C.

We illustrate the cases in Definition 2.1.2 in Figure 2.1, which shows six triples of

nodes, where nodes in the set C are shaded. In each of (a) and (b), the top triple is

unblocked while the bottom triple is blocked, corresponding to case 1 in the definition.

However, in (c) the reverse is true: the top triple is blocked while the bottom triple is

unblocked, corresponding to case 2 in the definition.

Definition 2.1.3 (Blocked/unblocked path). Given a DAG G = (V, E) and a set

C C V, let i1 - i 2  - n be a path with C n {i 1 ,i} = 0. We call the path

unblocked by C if every triple in the path is unblocked by C. We call the path blocked

by C if it is not unblocked.

Note that Koller and Friedman [65] uses the term active trail for our definition of

unblocked path.

Definition 2.1.4 (d-separation). Given a DAG G = (V, E), for distinct i, j E V and

a subset C C V with C n {i, j} 0, we say i and j are d-separated in G by C
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if there is no undirected path between i and j that is unblocked by C, and we write

d-sepc(i, j C). Further, for disjoint subsets A, B, C c V with A and B nonempty we

write d-sepG(A, B|C) if we have d-sepG(i, jIC) for all i C A and j e B.

In words, i, j E V may not be d-separated in G given C if there exists an undirected

path between i and j in G. However, the path must be unblocked, where if a node

on the path belongs to C it generally blocks the path except when there is a "V"

structure a -+ b +- c oi the path, in which case b blocks the path unless it or one of its

descendants is in C. This special rule is useful when defining probabilistic structure in

terms of the graph because it models how independent random variables can become

dependent when they are competing explanations for the same observation.

Next, we give a definition of conditional independence structure in collections of

random variables that uses graphical d-separation.

Definition 2.1.5 (Markovianity on directed graphs). Given a DAG G = (V, E) and a

collection of random variables X = {Xj : i C V} indexed by labeled nodes in the graph,
we say X is Markov on G if for disjoint subsets A, B, C C V we have

d-seP (alA, B|IC ) =-> X A -L X B|X I 2..

where for S C V we define XS A {Xi i E S}.

Note that this definition does not require that the graph capture all of the condi-

tional independencies present in the collection of random variables. Indeed, a collection

of random variables can be Markov on many distinct graphs, and every collection is

Markov oi the complete graph. Graphs that capture more structure in the collection

of random variables are generally more useful.

Conditional independence structure can be used in designing inference algorithms,
and a graphical representation can make clear the appropriate notion of local informa-

tion when designing an algorithm with local updates. A particularly useful notion of

local information is captured by the Markov blanket.

Definition 2.1.6 (Directed Markov blanket). Given a DAG G = (V, E), the Markov

blanket for node i C V, denoted MBG(i), is the set of its parents, children, and childreis'

parents:

MBc(i) A {j E V :j - i}Uj E V :i -}U{j E V : ]k . i-± k<-j}. (2.1.2)

The Markov blanket for a set of nodes A C V contains the Markov blankets for all nodes

in A except the nodes in A itself:

MBc(A) U U MBG(i) \A. (2.1-3)
i e A
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Figure 2.2: An illustration of the directed Markov blanket defined in Definition 2.1.6.
Nodes in the Markov blanket of node i are shaded gray.

We illustrate Definition 2.1.6 in Figure 2.2. The nodes in the Markov blanket of
node i are shaded gray.

Proposition 2.1.1. Given a collection of random variables { Xi : i E V} that is Markov
with respect to a DAG G = (V, E), we have

Xi If XS XMBG(i) (2.1.4)

where S A V \ (MBG(i) U {i}).

Proof. By conditioning on the parents of node i, all paths of the form a -+ b -* i are
blocked. By conditioning on its children, all paths of the form i -> b - c are blocked.
By conditioning on the childrens' parents, all paths of the form i - b <- c, which
may have been unblocked by conditioning on b or one of its descendants via case 2 of
Definition 2.1.4, are blocked. D

Another common and convenient notion of probabilistic graphical structure is a
density's factorization with respect to a DAG.

Definition 2.1.7 (Factoring on directed graphs). Given a DAG G = (V, E) on n nodes
and a collection of random variables X = {Xi : i C V} with density px with respect to
some base measure, we say px factorizes according to G if we can write

PX(Xi, . ., z) = rl P(XiIz, e(j)) (2.1.5)
iEV

where 7rG(i) A { V j - i} denotes the set of parents of node i in G.
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Theorem 2.1.1. A collection of random variables {Xi : I E V} with a joint density

(with respect to some base measure) is Markov on a DAG G if and only if the joint

density factorizes as in Eq. (2.1.5).

Proof. The proof is straightforward. In Koller and Friedman [65], Theorem 3.1 shows

Markovianity implies the densities factor and Theorem 3.2 shows the reverse. D

* 2.1.2 Undirected graphical models

Undirected graphical models, also called Markov random fields, do not easily encode

generative model specifications. However, they can be more useful for encoding soft con-

straints or local partial correlations. We use an undirected graphical model perspective

in our analysis of Hogwild Gibbs Sampling in Chapter 7.

As with directed graphical models, we first define undirected graphs and a notion

of separation of nodes, then give definitions that link the graphical structure to both

conditional independence structure in a collection of random variables and factorization

structure in the joint density for those variables.

Definition 2.1.8 (Undirected graph). For some n E N, an undirected graph on n

nodes is a pair (V, E) where V = [n] and E C {{i, j} : i, j E V, i / J}.

Analogous to the definition in the previous section, there is a natural notion of an

undirected path between nodes. Given a graph (V, E), for distinct i, j E V we write

i j if {i, E} F, and we say there is an (undirected) path from i1 to i, of length ri - 1

if for some i 2 , i6, - , in- 1 E V we have 11- i2 - -n. We say i is a neighbor of j
if {ij} E E and denote the set of neighbors of node i as nG(i) A {j E V : {i,j} c E}.

We say a pair of nodes is connected if there exists an (undirected) path from i to j.
The notion of undirected separation and corresponding notion of Markovianity on

undirected graphs is simpler than those for directed graphs.

Definition 2.1.9 (Undirected separation). Given an undirected graph G = (V, E), for

distinct i, j e V and a subset C c V with C n {i, J} = 0, we say i and j are separated

in G given C and write sepG(i, j|C) if there is no path from i to j that avoids C. For

disjoint subsets A, B, C c V with A and B nonempty we write sepG(A, BIC) if we have

sepG(i, jIC) for all i c A and j G B.

Definition 2.1.10 (Markovianity on undirected graphs). Given an undirected graph

G = (V, E) and a collection of random variables X = { Xi : i E V} indexed by labeled

nodes in the graph, we say X is Markov on G if for disjoint subsets A, B, C C V we

have

sepG(A, B|C) -> XA L XBXC. (216
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As with Markovianity with respect to directed graphs, an undirected graph may
not encode all the conditional independence statements possible for a given collection
of random variables.

The notion of Markov blanket for an undirected graph is also simpler.

Definition 2.1.11 (Undirected Markov blanket). Given an undirected graph G
(V, E), the Markov blanket for each node i C V, denoted MBG(i), is the set of neighbors

of node i:

MBG(i) nG(i) {j E 17: {i,j} G E}. (2.1.7)

The Markov blanket for a set of nodes A C V is the set of all neighbors to nodes in A
excluding those in A:

MBG(A) U U MBG(i) A. (2.1.8)
icA

We can use this definition for an undirected analog of Proposition 2.1.1.

Proposition 2.1.2. Given a collection of random variables { Xi : i G V} that is Markov

with respect to an undirected graph G = (V, E), we have

Xi LL XsIXMBG(i) (2.1.9)

where S A V \ (MBG(i) U {i})

Proof. Because all the neighbors of i are in MBG(i), for any j c S there can be no
undirected path from j to i that avoids MBG(i). El

We can also define a density factorization with respect to an undirected graph,
though we must first define the notion of a clique. A clique in a graph (V, E) is a
nonempty subset of fully-connected nodes; that is, a nonempty set C C V is a clique if
for every distinct i, j C C we have {i,j} C E.

Definition 2.1.12 (Factoring on undirected graphs). Given an undirected graph G
(V, E) and a collection of random variables X = {X : i C V} with density px with
respect to some base measure, we say px factorizes according to G if we can write

PX (X1, . ,n) = Z 11 Oc (xC) (2.1.10)
CEC

for a collection of cliques C of G and nonnegative potentials or factors {4'c : C C C}
indexed by those cliques, where

Z fj0C(c)v(d)(
'CEC
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is a normalizing constant.

Note that cliques typically overlap; that is, we may have Ci n Cj 7 0 for distinct

C, C E C. To remove many possible redundancies, without loss of generality one can

assume that C includes only maximal cliques, where a maximal clique cannot have any

other node added to it and remain a (fully-connected) clique.

The correspondence between a collection of random variables being Markov on an

undirected graph and its joint density factorizing as Eq. (2.1.10) is not quite as simple as

that for directed graphs because deterministic relationships among the random variables

call prevent factoring the density, as shown in the next example.

Example 2.1.1. Using Example 4.4 from Koller and Friedman [65j, consider four

binary random variables X = {Xi : i = 1, 2, 3, 4} with a PMF that takes value 1/8 on

the configurations of (Xi, X2, X3, X4) given by

(0,0,0,0) (1,0,0,0) (1,1,0,0) (1,1,1,0)

(0,0,0,1) (0,0, 1,1) (0, 1,1,1) (1,1,1, 1)

and 0 elsewhere. Then X is Markov on the graph 1 - 2 - 3 ---4 -- 1 but the density

cannot be factorized into pairwise potentials.

This issue cannot arise when we restrict our attention to strictly positive densities.

Theorem 2.1.2. Given a collection of random variables X = {Xj i G V} with a joint

density px (with respect to some base measure) and an undirected graph G, we have

1. If px factorizes according to G, then X is Markov on G.

2. If X is Markov on G and px is strictly positive, then Px factors according to G.

Proof. The proof for 1 is straightforward and is given as the proof of Theorem 4.1 in

Koller and Friedman [65]. The proof for 2 is the proof of the Hammersley-Clifford

theorem, given as Theorem 4.8 in Koller and Friedman [65].

U 2.1.3 Exact Inference and Graph Structure

Given some specification of a probability distribution, inference for that distribution

means computing quantities of interest such as marginals, conditionals, or expectations.

In the graphical model framework we cal be precise about the computations required

to perform inference and their complexity, as we overview in this subsection. For

concreteness, we focus on undirected models with densities.

Consider an undirected graphical model specified by an undirected graph G = (V, E)

and a set of potentials {ic : C E C} on a set C of cliques of G. The joint density is
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proportional to the product of the clique potentials p(x) o Hcec 4cxc). We can
represent an arbitrary inference query in terms of a subset of nodes on which we con-
dition, a subset of nodes which we marginalize out, and a subset over which we want
to represent the resulting density; that is, we partition the set of nodes V into three
disjoint (possibly empty) subsets A 1 , A 2 , A 3 with A 1 U A 2 U A 3 = V and write

p(xA1 | XA 3 ) JP(XA1, xA2 JXA 3 )iv(dXA 2 ) = fH~ bc(xc)v(dXA 2 ) (2.1.12)
f H0c c (xc)v(dxA 1uA2 )

Therefore to compute an arbitrary inference query we need only to compute integrals of
products of the factors in the density. To simplify notation, we write such computations
in the form

fJ 1 C(xC)v(dxA) (2.1.13)
CeC

for some subset A C V.

Graph structure affects how we can organize a computation of the form (2.1. 13) and
thus its computational complexity. Consider the special case of integrating out a single
variable xj by partitioning the set of cliques into those which contain node j and those
which do not, Cj {C E C: j E C} and Cj {C E C: jd C}, and writing

J1 H c(xc)v(dxj) = J 0c\.(xc\ 3 )J fJ V)cj(xc)v(dxj) (2.1.14)
CEC Cy ECy Ci eC3

= 1 O Cu (xce )OB(xB) (2.1.15)
C\j EC\j

where B A {i c Cj : Cj E Cy}\{j} is the set of all indices that share a clique with node
j in G and OB is a new factor on the clique B resulting from the integral over xj. Thus
as a result of the integral there is an induced graph on V \ {j} formed by eliminating j
by fully connecting its neighbors and deleting it from the graph.

When integrating over multiple variables, the process repeats: given an elimination
order, nodes are eliminated one by one from the graph, and each elimination introduces
a new clique in the graph and a corresponding new potential term in the density over
the remaining variables. The computational complexity of the process is determined
by the size of the largest clique encountered. In the case of PMFs with finite support,
the number of entries in the table encoding the new potential formed in (2.1.15) is
typically exponential in the size of the new clique; in the case of PDFs, the complexity
depends on the complexity of integrating over factors on cliques, where the clique size
determines the number of dimensions in the domain of the integrand, and the complexity
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of representing the result. The optimal elimination order is itself NP hard to find for

general graphs.

Some classes of graphs have straightforward elimination orderings that avoid the

growth in clique size, and inference in distributions that are Markov on such graphs

avoids the corresponding growth in complexity.

Definition 2.1.13 (Tree graph). A directed or undirected graph G = (V, E) is a tree

if for each pair distinct nodes i, j C V there is a unique undirected path from i to j in

G.

In an undirected tree G, we refer to the nodes i with only single neighbors InG ( 1
as leaves. In a directed tree, we refer to the nodes with no children as leaves.

Proposition 2.1.3 (Markov on trees). A density p that factors on an undirected tree

(V, E) can be written in terms of pairwise factors {<i: {i, j} C E} as

1
p(r) W= (7 H Oiji, X). (2.1.16)

{i,j}GbE

Proof. All of the maximal cliques in an undirected tree are of size at most 2. E

Note that because the edges are undirected, Oij and Oji denote the same object.

Given a density that factors according to an undirected tree specified in terms of its

pairwise factors {ij : {i, j} E} we can convert it to a directed specification by local

normalization, i.e. by choosing a direction for each edge and computing

pXzilzg) = . Oi .X j (2.1.17)
J, Oij(Xi,Xj) v (dxj,)

Note that a density that factors on a directed tree may not in general be written

purely in terms of conditional probability factors that depend only on pairs of nodes,
as shown in the next example.

Example 2.1.2. A density that factors according to the directed tree G = (V, E) with

V = {1, 2, 3} and edges 1 -+ 2 <- 3 may include a factor p(x2I1, X:3). Such a density

is not Markov on the undirected tree G' = (V', E') with V' = V and edges 1 - 2 -3,
and instead only factors on the complete undirected graph with edges 1 - 2 - 3 -1.

Directed trees in which each node has at most one parent avoid this issue, and

we can convert freely between directed and undirected tree parameterizations for such

models.

Proposition 2.1.4. A density p that factors on a directed tree G = (V, E) in which

each node only has one parent, i.e. |rrG(i) < 1 for i e V, also factors with respect to
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the undirected tree G' = (V', E') formed by dropping the directions on the edges of G,
i.e. V' = V and E' = {{i, j} : (i, j) E}

Proof. Set Oij (xi, xj) = p(xi I j).

With undirected trees and directed trees in which each node has at most one parent
we can perform elimination without introducing larger factors by using an elimination
order that recursively eliminates leaves. Furthermore, the corresponding partial sums
for all such elimination orderings can be computed simultaneously with an efficient
dynamic programming algorithm, as shown in the next theorem.

For an undirected graph G = (V, E) and a subset of nodes A C V, we define G \ A
to be the graph formed by deleting the nodes A and the edges incident on nodes in A,
i.e. the graph (V', E') where V'= V\A and E' = {{i,j} e E: i, j V A}. We say a pair
of nodes is connected if there exists an undirected path from i to j, and we say subsets
A, B c V are connected if there exists an i E A and j E B that are connected.

Definition 2.1.14 (Tree messages). Given a density with respect to a base measure
v that factorizes on an undirected tree G = (V, E) of the form (2.1.16), we define the
message from node i to node j with {i,j} E E to be

mJ-4i(xi) A j 11 Vg/y (Xil, Xj)@ij (Xi, Xj) v(dxv') (2.1.18)

where (V', E') is the subtree of G that is disconnected from node i in G j}.
Theorem 2.1.3 (Tree message passing). For a density that factorizes on an undirected
tree G = (V, E) of the form (2.1.16), the result of any computation of the form (2.1.13)
can be written in terms of messages as

j 11 y 0(xj, xj)v(dXA) = ri oij (Xi, Xj) rl mnj- (Xk) (2.1.19)
{ij}E {i,j}E' kEB

where (V', E') = G\ A is the graph over the the nodes that are not integrated out and B
is the set of nodes in V' that have edges to A in G, i.e. B {k C 1': {k, j} E, j e
A}. Furthermore, all messages can be computed efficiently and simultaneously via the
recursions

mnisj (xj) = Oij (Xi, Xj ) Tnm--+k(xj)v(dxj). (2.1.20)
k EnG (j)\{i}

Therefore all inference queries in undirected trees can be computed in time linear in the
length of the longest path in the tree.

Proof. The theorem follows from applying elimination to trees and expressing every
partial elimination result as (2.1.20). E
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We refer to an implementation of the recursion (2.1.20) as a tree message-passing

algorithm. We use tree message passing algorithms extensively as subroutines in the

inference algorithms for the time series models that we develop in the sequel.

* 2.2 Exponential families and conjugacy

In this section, we define exponential families and give some of the properties that we

use in this thesis.

* 2.2.1 Definition and Basic Properties

Definition 2.2.1 (Exponential family). We say a family of densities p with respect to

a base measure v indexed by a parameter vector 0 is an exponential family of densities

if it can be written as

p(xj0) = h(x) exp{'r/(0), t(x)) - Z(r;(0))} (2.2.1)

where (-,-) is an inner product on real vector spaces. We call tl(0) the natural parameter

vector, t(x) the (sufficient) statistic vector, h(x) the base density, and

Z (rF) Ill e, c IM ~ h (x)v1,(dx) (2.2.2)

the log partition function.

It is often useful to parameterize the family directly in terms of q, in which case we

simply write the density as p(xjrj). Note that marginalizing over part of the support of

ami exponential family, such as marginalizing over one coordinate of x or of t(x), does

not in general yield another exponential family.

Given an exponential family of the form (2.2.1) we define the set of natural paramn-

eters that yield valid normalizable probability densities as 0, where

a ffl : Z(r/) < 00} (2.2.3)

and the set of realizable expected statistics as

M {Ex-p(r)Lt(X)1 : r 0 (2.2.4)

where X ~ p( - 17) denotes that X is distributed with density p( - ?j). We say a family

is regular if 0 is open, and minimal if there is no nonzero a such that (a, t(x)) is equal

to a constant (v-a.e.). Minimality ensures that there is a unique natural parameter for

each possible density (up to values on sets of v-measure 0). We say a family is tractable
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if for any r, we can evaluate Z(r) efficiently' and when X - p( . ij) we can compute

E[t(X)] and simulate samples of X efficiently.

For a regular exponential family, derivatives of Z are related to expected statistics.

Proposition 2.2.1 (Mean mapping and cumulants). For a regular exponential family
of densities of the form (2.2.1) with X ~ p( - I), we have VZ : e -+ M and

VZ(TI) = E[t(X)] (2.2.5)

and writing p A E[t(X)] we have

V 2Z(1) = E[t(X)t(X) T ] - pT. (2.2.6)

More generally, the moment generating function can be written

Mx(s) = E[e(s'X)] = ez(7s)-Z(). (2.2.7)

and so derivatives of Z generate cumulants of X, where the first cumulant is the mean

and the second and third cumulants are the second and third central moments, respec-
tively.

Proof. Note that we require the family to be regular even to define VZ. To show 2.2.5,
using v as the base measure for the density we write

V -Z(g) Vj ln e(qt(x) h(x)v(dx) (2.2.8)

I t (X)eC 7t(x)h h(x)v1(dx) (2.2.9)
f Ce(rl' ))h (x) v(dx)

J t(x)p(x r)v(dx) (2.2.10)

E[t(X)]. (2.2.11)

To derive the form of the moment generating function, we write

E[e(s'X)] - fesx)p(x)v(dx) (2.2.12)

-=f e()e(7,t())-Z()h(x)v(dx) (2.2.13)

- ez(+s)-z(n). (2.2.14)

'We do not provide a precise definition of computational efficiency here. Common definitions often
correspond to the complexity classes P or BPP [3].

26



Sec. 2.2. Exponential families and conjugacy

The cumulant generating function for X is then in Mx (s) = Z( + s) - Z(7D). E

When a specific set of expected statistics can only arise from one member of an

exponential family, we say the family is identifiable and we can use the moments as an

alternative way to parameterize the family.

Theorem 2.2.1 (Exponential family identifiability). For a regular, minimal exponen-

tial family of the form (2.2.1), V Z : 0 -+ M is injective, and VZ : - M is

surjective, where M denotes the interior of A. Therefore VZ : 0 -+ A' is a bijec-

tion.

Proof. See Wainwright and Jordan [113, Theorem 3.3]. D

When parameterizing a regular, minimal exponential family in terms of expected

statistics [t E M ', we say it is written with mean parameters, and we have rI(p)=
(VZ)- 1 (p) using Theorem 2.2.1. Given a set of moments, the corresponding minimal

exponential family member has a natural interpretation as the density (relative to v)
with maximum entropy subject to those moment constraints [113, Section 3.1].

For members of an exponential family, many quantities can be expressed generically

in terms of the natural parameter, expected statistics under that parameter, and the

log partition function.

Proposition 2.2.2 (Entropy, score, and Fisher information). For a regular exponential

family of densities of the form (2.2.1) parameterized in terms of its natural parameter

r/, with X ~ p( - |rj) and p(/) ) E[t(X)] we have

1. The (differential) entropy is

H[p] A -E[lnp(Xlr)] = -(r, p(r)) + Z(r). (2.2.15)

2. When the family is regular, the score with respect to the natural parameter is

'v(x, i1) Vr, lr p(Xr1) = t(x) - p(q) (2.2.16)

3. When the family is regular, the Fisher information with respect to the natural

pararmeter is

I(r) E E[v(X, 'r)v(X, ir) T 2 Z](2.2.17)

Proof. Each follows from (2.2.1), where 2.2.16 and 2.2.17 use Proposition 2.2.1. D

When the family is parameterized in terms of some other parameter 0 so that

r = r(0), the properties in Proposition 2.2.2 include Jacobian terms of the form Dr//0.
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When the alternative parameter is the mean parameter p, since 1(p) = (VZ)-'(p) the
relevant Jacobian is (V 2 Z)- 1 . We use the Fisher information expression (2.2.17) in the
development of a stochastic variational inference (SVI) algorithm in Chapter 5.

We conclude this subsection with two examples of exponential families of densities.

Example 2.2.1 (Gaussian). The Gaussian PDF can be parameterized in terms of its
mean and covariance (p, E), where 1t E Rd and E E Rdxd with E >- 0, and can be
written

p(xIp, E) = (27)-d/2 I -1/2 exp (X _ ,j)TE-1( _ P

= 2r-d/2 E-1 E-1 _, TE-1 T=(21r7)/ exp{(Zl H 111 -t p), (miT I, X1) In I EnZ

hN(X) N(A, NN(X) ZN (7N

where ((A,b,c), (D,e, f)) = tr(AT D)+bT e + cf. Therefore it is an exponential family of

densities, and further it is a regular exponential family since 0 = {( E, 1t) : E 0, p C
Rd} is open (in the standard product topology for Euclidean spaces). The family is
minimal because there is no nonzero (A, b, c) such that ((A, b, c), tN(x)) = xTA b TX+c

equal to a constant (v-a.e.).

Example 2.2.2 (Categorical). Consider drawing a sample X from a finite distribution

with support on [K] = {1, 2, ... , K}, where p(x = k|7) = ,rk for K G [K] and 7r satisfies

Ei 7i = 1 and w > 0 element-wise. We can write the PMF for X as

K K

p(xIr) = 7 w r = exp { ln 7rkL[x = k]} exp {(ln 7, 1)} (2.2.18)
k=1 k=1

where the log is taken element-wise, I[ ] is an indicator function that takes value 1 when
its argument is true and 0 otherwise, and 1 k is an indicator vector with its ith entry

E[k = i]. We call this family of densities the categorical family, and it is an exponential

family of densities with natural parameter qj(7) = In r and statistic t(x) = 12. (A
closely related family is the multinomial family, where we consider drawing a set of n
independent samples from the same process, x = {xi : I E [n]}, and defining the statistic

to be the counts of each occurrence, i.e. the kth entry of t(x) is |{x, : xi = k}|.)
Note that Z(QT) = 0. The categorical family as written in (2.2.18) is not a regular

exponential family because 0 = {w7 e RK : 71i = 1, 7 > 0} is not open. Since

the family is not regular, (2.2.16) does not apply. We can instead write the family of

densities as

p(x 1r) = exp {(ln r, 1) - In E r} (2.2.19)

where Z(T7 (it)) = In E 1 ri so that 0 {iTr R K : 7F > 0} is open. However, neither
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(2.2.18) or (2.2.19) is a minimal exponential family, since the statistic satisfies (1, Rx) =

1 for any x e [K]. As is clear from the renormalization in (2.2.19), the parameter is

not identifiable, so Theorem 2.2.1 does not apply.

While it is possible to write the categorical as a regular minimal exponential family

by removing one component from the parameterization, it is often easiest to work with

the categorical (and multinomial) in the form (2.2.18).

U 2.2.2 Conjugacy

In this subsection, we define a notion of conjugacy for pairs of families of distributions.

Conjugate families are especially useful for Bayesian analysis and algorithms.

Definition 2.2.2. Given two (not necessarily exponential) families of densities p1(O8a)
and p 2 (x|0) indexed by parameters a and 0, respectively, we say the pair (P1, p2) are a

conjugate pair of densities if for all a, x, and 0 we have

pI(O a)p2(XIO) OC pi(0la') (2.2.20)

for sone a' = a'(x, a) that may depend on x and a.

We can extend this definition to distributions without densities by considering in-

stead indexed families of laws [88, Definition 21.

Conjugate pairs are particularly useful in Bayesian analysis because if we have a

prior family p(0la) and we observe data generated according to a likelihood p(xl0) then

the posterior p(0|x, a) is in the same family as the prior. In the context of Bayesian

updating, we call a the hyperparameter and a' the posterior hyperpararneter.

Given a regular exponential family likelihood, we can always define a conjugate

prior, as shown in the next proposition.

Proposition 2.2.3. Given a regular exponential family

px1o(x10) = hx (x) exp{(r/x (0), tx (x)) - Zx (r/x (0)) (2.2.21)

= hx () exp{((nx (0), -Zx (r(0))), (t x(x), 1))} (2.2.22)

then if we define the statistic to( 0 ) A (r/x(0), -Zx(r(0))) and an exponential family of

densities with respect to that statistic as

p0 1, (0 1a) = ho(0) exp{r/o(a), to(0)) - Zo (i/o (a))} (2.2.23)

then the pair (pol(, pxlo) is a conjugate pair of families with
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p(OIa)p(x 1) oc ho(O)exp{(qo(a) + (tx(x), 1), to(0))} (2.2.24)

and hence we can write the posterior hyperparameter as a' = ?-1(io(a) + (tx(x), 1)).
When the prior family is parameterized with its natural parameter, we have q' = 7 +

(tx (), 1).

As a consequence of Proposition 2.2.3, if the prior family is written with natural
parameters and we generate data {xI} _1 according to the model

0 ~ po1( IT|) (2.2.25)

l- Pxo( 0) i = 1, 2, ... , n, (2.2.26)

where the notation xi ri p( ) denotes that the random variables xi are independently
and identically distributed, then p(0|{xI} 1, r) has posterior hyperparameter q' = q +

(n 1 t(xi), n). Therefore if a prior family p( . Iq) is tractable then the posterior under
the conjugate likelihood is tractable.

We conclude this subsection with two examples of conjugate pairs of exponential
families. A list of conjugate pairs can be found in Gelman et al. [38].

Example 2.2.3 (NIW-Gaussian conjugacy). Here we show that the normal-inverse-

Wishart (NIW) is a conjugate prior family for the Gaussian likelihood of Example 2.2.1.
The NIW density with parameter a = (Ao, po, o, v o) and Ao s 0, K0 > 0, v0 > d is

p' la) cK |EI-(('x+d)/2+1) exp f - I tr(AE-1)- - 0)TE-1([I - po)}

- d/ 2 +leTpY- (A0 ±Ip 0 p0  I /i Tt'-ov/111 Z 1 In1J 1
/2+1 exp _(Ao + K010T, _o ,_ -I T /1p, -n 

hNIW(AE ?NIW(Ao,[to,ro,vo) NtNIW

where proportionality is over (p, E) and ((A, b, c, d), (E, f, g, h)) = tr(AT E) +bTf +cg+
dh.

The normal density from Example 2.2.1 is

p(x I#, E) = ( 2 7)-d/2 eXp { 1-1, , T -, (XXT, X, 1) - In JE }
hN() IN ) tN () ZN (qN(YE))

(27)-d/2 exp { - 1  1 - 1PT E- 1 - In T (XXT, X, 1,1)

hN () (TN - N (TN (/E (tNW,1)
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The joint likelihood of n independent sarriples {xi ' 1 .(p, E) :I C [n] I is

p({} I IIP, E) =j P(Xi I P
-nd/

i=1

= (2r)nd/2 exp { - (rN(P, ), -ZrN (N(I1, )) , znI (tN (Xi), 1)

so we see that p(p, E|{x} a) is in the NIW family with a new natural pararreter

T/NIW (Al, pn, Kn, 'n) rlNlW(Ao, /'o, Ko, v0 ) + Z.i (tN (Xi), 1)

(Ao + Kop1oP', '0/'o, no, vO) + (EZ ziX, xi, n, n)

where it can be checked by writing rj-1 that

n~, ~ + n2

"n =o + n

Pn =o+ n
pn K0 + 1KO + n rO + T1

At =Ao + S + n p _)( - PO)T
KO + n

with = E xi and S =(X - t)(x -)T as in Gelrnarn et al. [V8].

Example 2.2.4 (Dirichlet-categorical conjugacy). Here we show that the Dirichlet is

a conjugate prior family for the categorical likelihood of Example 2.2.2.

The K-dimensional Dirichlet density with parameter a C RK where a > 0 can be

written

p(7r1a) = Dir(a) - IF(K1 1 0) - (2.2.27)
R=1~ F(a2 )z=

o( exp{(a - 1, ln r)}. (2.2.28)

Using the categorical density we have

p(7x, a) oc p(7wa)p(x7) (2.2.29)

(X exp{a - 1,1n 7r)} exp{ln r, 1)} (2.2.30)

(x exp{(a - 1 + 1, In r)} (2.2.31)

where, as in Example 2.2.2, R, is an indicator vector with its xth entry set to 1 and

its other entries 0. Therefore the posterior p(7x, a) is in the Dirichlet family with
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Algorithm 2.1 Gibbs sampling

Input: distribution X on graph G with N nodes, conditionals px, IXMBG(l) (Xi MBG(i)
Output: samples {Jt}

Initialize x = (X1 , x 2 .... , TN)

for t = 1 2, ... do
for i = 1, 2, .. . ,N do

Xi ~PXiIxMBG~i IMBGli)

,a (I, X2,...,N)

parameter a + Ix. Similarly, for the Multinomial likelihood

p(x 1r) = exp{(In r, nx)} (2.2.32)

where n = > 1i so that the jth component is the number of occurences of outcome
j, the posterior p(7rjx, a) is in the Dirichlet family with parameter a + nx.

N 2.3 Bayesian inference algorithms in graphical models

Here we outline the standard Bayesian inference algorithms and how they relate to the
graphical model structure described in Section 2.1 as well as the exponential family
conjugacy structure described in Section 2.2. In particular, we describe algorithms
that are compositional in terms of graphical model structure and that have particularly
efficient updates when the graphical model is itself composed of tractable exponential
family distributions.

E 2.3.1 Gibbs sampling

In Gibbs sampling, and sampling methods more generally, the task is to generate sam-
ples from a distribution of interest so that any probability or statistic can be estimated
using the sample population. For a Markov Chain Monte Carlo (MCMC) method such
as Gibbs sampling, to generate samples for some collection of random variables X the
algorithm simulates a Markov chain on the range of X such that the limiting distri-
bution or stationary distribution of the chain is the target distribution of X. In the
Bayesian context, the distribution of interest is typically an intractable posterior.

Given a collection of n random variables X = {Xi : i E [n]}, the Gibbs sampling
algorithm iteratively samples each variable conditioned on the sampled values of the
others. When the random variables are Markov on a graph G = (V, E), the conditioning
can be reduced to each variable's respective Markov blanket, as in Algorithm 2.1.

A variant of the systematic scan of Algorithm 2.1, in which nodes are traversed in
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a fixed order for each outer iteration, is the random scan, in which nodes are traversed

according to a random permutation sampled for each outer iteration. An advantage of

the random scan (and other variants) is that the chain becomes reversible and therefore

simpler to analyze [94, Section 10.1.2]. With the conditional independencies implied by

a graph, some sampling steps may be performed in parallel.

A Markov chain is called ergodic if has a unique steady-state distribution for any

initial state; see Robert and Casella [94, Section 6.6.1] for a definition for countable

state spaces and Meyn and Tweedie [76, Chapter 13] for a definition for general state

spaces. If the Markov chain produced by a Gibbs sampling algorithm is ergodic, then

the stationary distribution is the target distribution of X [94, Theorem 10.6]. The

Markov chain for a Gibbs sampler can fail to be ergodic if, for example, the support of

the target distribution is disconnected [94, Example 10.7]. Many of the Gibbs samplers

we develop result in ergodic chains because all of the conditional densities exist and are

positive [94, Theorem 10.8]. The main performance criterion of an MCMC sampler is

its mixing time [94, Chapter 12], which measures the rate at which the distribution of

the chain's state reaches the target distribution.

For a more detailed treatment of Gibbs sampling theory, see Robert and Casella

[94, Chapter 6, Chapter 10]. For a detailed treatment of Markov chain ergodic theory

for general state spaces, as required in precise treatments of Gibbs samplers for the

Dirichlet process, see Meyn and Tweedie [76].

* 2.3.2 Mean field variational inference

In mean field, and variational inference more generally, the task is to approximate an in-

tractable distribution, such as a complex posterior, with a distribution from a tractable

family in which inference can be performed efficiently. In this section we define the

mean field optimization problem and derive the standard coordinate optimization algo-

rithm. We also give some basic results on the relationship between mean field and both

graphical model and exponential family structure. For concreteness and simpler nota-

tion, we work mostly with undirected graphical models; the results extend immediately

to directed models.

Mean field inference makes use of several densities and distributions, and so we use a

subscript notation for expectations to clarify the measure used in the integration when

it cannot easily be inferred from context. Given a function f and a random variable X

with range X and density p with respect to a base measure v, we write the expectation

of f as

Ep(X) [f(X)] = Jf(x)p(x)v(dx). (2.3.1)

Proposition 2.3.1 (Variational inequality). For a density p with respect to a base



measure v of the form

p(x) = p(x) with Z A P(x)v(dx), (2.3.2)

for all densities q with respect to v we have

ln Z = C[q] + KL(qI1p) C [q] (2.3.3)

where

C[q]A Eq(x) [in Eq(X) [lnp(X)] + H[q] (2.3.4)

KL(ql~ p) A Eq(X) In q(X) (2.3.5)
p(X )

Proof. To show the equality, with X - q we write

L[q] + KL(q Ip) = Eq(X) + Eq(X) In (2.3.6)
lq(X)l p(X)I

= Eq(x) [In p ] (2.3.7)

= ln Z. (2.3.8)

The inequality follows from the property KL(qllp) 0, known as Gibbs's inequality,
which follows from Jensen's inequality and the fact that the logarithm is concave:

- KL(q|p) = Eq(x) In _ < In q(x) ( ' v(dx) = 0 (2.3.9)
1 AX ) q(x)

with equality if and only if q = p (v-a.e.).

We call the log of p in (2.3.2) the energy and L[q] the variational lower bound,
and say C[q] decomposes into the average energy plus entropy as in (2.3.4). For two
densities q and p with respect to the same base measure, KL(q| 1p) is the Kullback-Leibler

divergence from q to p, used as a measure of dissimilarity between pairs of densities [2].
The variational inequality given in Proposition 2.3.1 is useful in inference because if

we wish to approximate an intractable p with a tractable q by minimizing KL(q Ip), we
can equivalently choose q to maximize C[q], which is possible to evaluate since it does
not include the partition function Z.

In the context of Bayesian inference, p is usually an intractable posterior distribution
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of the form p(O|x, a), p is the unnormalized product of the prior and likelihood P(O)
p(O|a)p(xJO), and Z is the marginal likelihood p(x a) =:f p(xJO)p(O|a)v(dO), which

plays a central role in Bayesian model selection and the minimum description length

(MDL) criterion [14, Chapter 28] [49, Chapter 7].

Given that graphical model structure can affect the complexity of probabilistic in-

ference, as discussed in Section 2.1.3, it is natural to consider families q that factor

according to tractable graphs.

Definition 2.3.1 (Mean field variational inference). Let p be the density with respect

to v for a collection of random variables X = (Xi i e V), and let

Q {q : q(x) oc 11 qc(xc)} (2.3.10)
ceC

be a family of densities with respect to v that factorize according to a graph G = (V, E)

with C the set of maximal cliques of G. Then the mean field optimization problem is

q* arg maxC [q] (2.3.11)
qEQ

'where L[q] is defined as in (2.3.4).

Note that the optimization problem is not convex and so one can only expect to find

a local optimum of the objective [11:3]. However, since the objective is convex in each

qc individually, an optimization procedure that updates each factor in turn holding
the rest constant will converge to a local optimum [11, Chapter 10]. We call such a

coordinate ascent procedure on (2.3.11) a mean field algorithm. For approximating

families in a factored form, we can derive a generic update to be used in a mean field

algorithm.

Proposition 2.3.2 (Mean field update). Given a mean field objective as in Defi-

nition .'.1, the optimal update to a factor qf fxing the other factors defned by

q* = arg maxqA .C[q] is

qA4(xA) o exp{E[ln (xA, XAc)]} (2.3.12)

where the expectation is over XAC qA 'with qAc (X Ac) C HCEC\A qc(xc)-

Proof. Dropping terms constant with respect to qA, we write

qA = arg min KL(q p) (2.3.13)
qA

= arg min EqA [lIn qA(XA)] + Eq [EqAC [log (X)]] (2.3.14)
qA

= arg min KL (qA l IA) (2.3.15)
qA
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where pA(XA) oc exp{Eqc [ln AXA, XAc)]}. Therefore, we achieve the unique (v-a.e.)

minimum by setting qA = DA.

Furthermore, if p factors according to a graph then the same graph structure is

induced in the factors of the optimal q.

Proposition 2.3.3 (Induced graph structure). If p is Markov on a graph G = (V, E)
with the form p(x) oc HcEc Oc(xc) for cliques C of G, then any optimal factor qA with

A C V factors according to G \ Ac. Furthermore, the update (2.3.12) can be computed

using only the factors on the cliques C' ={C e C C n A / 0}, i.e. the cliques on

variables in the Markov blanket of A.

Proof. Using (2.3.12) we have

q*(XA) oc exp{E[lnP(XA,XAc)]} c exp { E[n4c(Xc)] (2.3.16)

where factors not involving the variables in A are dropped up to proportionality. D

Because q inherits the graphical structure of p, it is therefore natural to consider

tractable families Q that are Markov on subgraphs of p. Note that when q is a subgraph

of p, the variational lower bound is a sum of terms corresponding to the factors of

p. When the family Q is chosen to be Markov on the completely disconnected graph

G = (V, E) with E 0, the resulting algorithm is called naive mean field. When
the tractable subgraph retains some nontrivial graphical structure, the algorithm is

called structured mean field. In this thesis we use structured mean field extensively for

inference in time series models.

Finally, we note the simple form of updates for exponential family conjugate pairs.

Proposition 2.3.4 (Mean field and conjugacy). If xi appears in p only in an exponen-

tial family conjugate pair (p1, p2) where

pi (Xi lxIG) C exp{ 0 ( ))0 t~ri))} (2.3.17)

p2 (XCG(i)Ixi) exp{(i), (t(sr' (i)), 1)) (2.3.18)

then the optimal factor qi(xi) is in the prior family with natural parameter

A E q [r(XG(i))] + Eq[(t(XCG0 )) 1] (2.3.19)

Proof. The result follows from substituting (2.3.17) and (2.3.18) into (2.3.12).
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r ' I X' X3 X4 1, 3"']

Y 1 8 82 1/ 4Y

Figure 2.3: Directed graphical model for ani HMM.

See Wainwright and Jordan [113, Chapter 5] for a convex analysis perspective on

mean field algorithms in graphical models composed of exponential families.

* 2.4 Hidden Markov Models

In this section we use the definitions and results from previous sections to define the

Bayesian Hidden Markov Model and give Gibbs sampling and mean field inference algo-

rithms. For simplicity, we refer only to a single observation sequence; the generalization

to multiple observation sequences is immediate.

A Hidden Markov Model (HMM) on N states defines a joint distribution over a

state sequence W1:T and an observation sequence Y1:T. It is parameterized by an initial

state distribution r(0) C RN, a transition matrix A C RNxN, and emission parameters

S= {0(i) 1. We use 7r() to denote the ith row of A and collect the transition rows

and initial state distribution into r = {7(i)}$O for convenient notation.

Recall that for two random variables X and Y, we write X ~ Y to denote that

X and Y have the same distribution. For three random variables X, Y, and Z, we

similarly write X1Y ~ Z to denote that X1Y has the same distribution as Z. Finally,

recall that for a random variable X and a density p we write X ~ p( - ) to denote that

X has density p. We use this notation to specify generative models, as in the following

definition.

Definition 2.4.1. We say sequences of random variables (W1T, y1:I') are distributed

according to a Hidden Markov Model, and write (l:T, Y1:T) HMM(r, 0), when they

follow the generative process

X1 ~ r(0) (2.4.1)

xt+1|xt ~ Tx) t =1, 21, . 1 T - 1, (2.4.2)

ytlxt p( - 00t)) t 1,2,... , T. (2.4.3)

Figure 2.3 shows a graphical model for the HMM.

If each p(ylQ(i)) is an exponential family of densities in natural parameters of the
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Algorithm 2.2 HMM Forwards Messages

Input: transition potentials A, emission potentials L, initial state potential 7(o)
Output: HMM forwards messages F

function HMMFWDMESSAGES(A,L,7( 0 ))

F1,: - 7r(0) ( LI,:
for t = 2, 3,.. ., T do

Fti - EN F _1,jApgie
return F

Algorithm 2.3 HMM Backwards Messages

Input: transition potentials A, emission potentials L
Output: HMM backwards messages B

function HMMBWDMESSAGES(A,L)
BT,: 1
for t=T- 1,T-2,...,1 do

Bt,i _ EN 1 AijBt+l,jLt+1,j
return B

form
P(y lyS')) = exp{(T1 (), tg())-Z (0g))} (2.4.4)

then we can write the joint density as an exponential family:

P(X1:T, Y1:T) = exp (ln7r(0)l+ 1l + (IT[t =i] t (0(yt))}
t=1 t=1

(2.4.5)
Since the HMM is Markov on an undirected tree (more precisely, a chain), we can

use the tree message-passing algorithm to perform inference efficiently. The HMM
messages and recursions are typically written in terms of forward messages F and
backward messages B, where

N

Ft,i p(yi:t, xt) = AF_1,jp(yt1()) (2.4.6)
j=1

N

B,i AP(yt+1:Tlt = ) Aijp(yt+1 J(i))Bt+1j (2.4.7)
j= 1

with the initial values F1,i = r( 10()) and BT,i = 1. Algorithms to compute these
messages are given in Algorithms 2.2 and 2.3.
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N
YI Y2 Y3 Y4 Y

Figure 2.4: Directed graphical model for a Bayesian HMM.

A Bayesian treatment of HMMs places priors on the parameters (7, 0) and includes

them in the probabilistic model. We use Dir(a) where a E R for some K > 0 to

denote the Dirichlet distribution with parameter a.

Definition 2.4.2. We say (0, r, X1:T, YI:T) are distributed according to a Bayesian Hid-

den Markov Model with hyperparameters a = {a(i)}I and A = {AGI)}N 1 , and write

(0, 7r, X1:T, Y1:T) ~ BayesHMM(a, A), when they follow the generative process

7r () iid Dir(a)) (2.4.8)

0 (i) v p( A- JA)) (2.4.9)

(X 1: T, Y 1:T)17, 0 ~ HMM(7r, 0) (2.4.10)

where HMM(7, 0) is defined in Definition 2.1. Figure 2.j shows a graphical model for

the Bayesian HMM.

Given an observation sequence y1: the task of interest is to perform inference in

the posterior r, 0, X1:T 11:T. Note In this section we develop both Gibbs sampling and

mean field algorithms for this inference task.

N 2.4.1 HMM Gibbs sampling

The HMM Gibbs sampler iterates sampling 0, r, and X1:T from their respective con-

ditionals. To sample the state sequence X1:T from its conditional, we exploit the tree

message-passing algorithm. Furthermore, since the Dirichlet is the conjugate prior to

the categorical from which each state is sampled, the conditional for 7r is also Dirichlet.

The HMM Gibbs sampler can then be written as Algorithm 2.4.

An alternative Gibbs sampler call be constructed by marginalizing the parameters

(w, 0), which is tractable when the observation prior and likelihood form a conjugate

pair, and generating samples of X1:T1 1:T, a, A. While such collapsed samplers can be

advantageous in some settings, in the case of a Bayesian HMM eliminating 7 and 0
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Algorithm 2.4 Bayesian HMM Gibbs sampling

Input: oz, A, 91:T
Output: samples {(I,1:,,)(t)}

Initialize X1:T
for t = 1, 2, ... do

for 1, 2, . .. ,N do
7(') +- sample Dir(a(2) + ni:) with nij =E EI[Xt i, +X±= j]
0 (i) e sample p(O1A, {yt :X i})

7(0) +- sample Dir(a(0 ) + 11)

1:T <- HMMSAMPLESTATES(7r( 0), A, L) with L,i =p(yt 10())

(,- : T, , ift (t a (X1:, , )

Algorithm 2.5 HMM state sequence sampling

Input: 7(o), A, L
Output: a sample 1 1:T

function HMMSAMPLESTATES(A,L)
B +- HMMBWDMESSAGES(A, L)

x, <- sample 7r60 B 1,iL 1,i over i
for t = 2, 3, ... IT do

xt <- sample A -,iBtiLti over i

induces a full graph on the remaining nodes, and so one cannot exploit tree message
passing to construct a joint sample of the state sequence and each £t must be resampled
one at a time. Because the £t are highly correlated in the model, the collapsed Gibbs
sampler is often slow to explore the posterior.

N 2.4.2 HMM Mean Field

Here we briefly overview a mean field algorithm for HMMs. For more details on the
HMM mean field algorithm, see Beal [6, Chapter 3].

We choose a variational family that factorizes as q(7r, , i:T) = q(r, )q(x1:T) SO
that the parameters and state sequence are decoupled. The Bayesian HMM graphical
model then induces independences so that the variational family is

N

q(7r, 0, Xi:) =H q(7r())q(0(i))q(x1:T) (2.4.11)
i=O

Note that because 7r() is the ith row of the transition matrix A, i = 1, 2, ... , N, we

write q(7r(l), ... , 7(N)) equivalently as q(A) to simplify some notation. The variational
objective function is
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p(7r, , x,y)
q(7r)q(O)q('1:T)]

IEq()[ r) I + Eq(O) ln P (0)
I q(7)]

For more explicit updates, we assume that each observation prior and likelihood form

a conjugate pair of densities and that the prior family is written in natural parameters

with the form

(2.4.14)p(0 Tr/ ) (X exp{('t/ ', t 0((0())} p(ylO( ) = exp{(t ((( ), (ty (y), 1))}.

Then the update for the factor q(Xl:T) is

q* (x1: 1) N E [111 P(X 1:, y1:10, 7r)]
T

-exp (E()[In 7(o)])Tjlx + I3 iT~ IEq()[iA
{(EqqA)In]lt+

t=1

(2.4.15)

T

+ (Eq(O)[t~) (Q(i))1, I[f .
t=1

(2.4.16)

and so, as expected, the optimal factor is also Markov on a chain graph.

For the conjugate updates to q(7) and q(0), we write the variational factors as

q(7r()) = Dir(6ti)). (2.4.17)

We can compute the expected sufficient statistics over q(X1T:) by running the HMM

message-passing algorithm. Defining

(i A Eq(i) [ln 7T] Leg A Eq(0)[11P(yt|0i)], (2.4.18)

and defining A to be a matrix where the ith row is r() for i 1

E [In (2.4.12)

(2.4.13)+ Eq(r))q(7)q(O) II
I q (x1:T) I
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Algorithm 2.6 HMM Mean Field

Initialize variational parameters az), 6(i), 6(o)
for t 1, 2, ... until convergence do

F - HMMFWDMESSAGES(A, , (0 ))

B <- HMMBWDMESSAGES(A, L)

Using F and B, compute each t ,i isi) an
with Eqs. (2.4.19)-(2.4.21)

Update r/i), 6(') 6(0) for i = 1, 2, ... , N
with Eqs. (2.4.22)-(2.4.24)

T T

im Elq2,( [xt = i]t(t) = EFt,jBt,j - (t((), 1)/Z
t=1 t=1
T-1 T-1

transj J Eq(X1:T) x =xt+1 =j] = FtjALt+1,jBt+,j/Z
t=1 t=1

(iinit )i Eq(x,T[) = X I ] = ~FoB1,i/Z

where Z =j= 1 FT,i. With these expected statistics, the updates to
q(A), q(7To), and q(O) are then

0f -r +

j aw + anstrans

S(0) +- (0) + .

We summarize the overall algorithm in Algorithm 2.6.

U 2.5 The Dirichlet Process and Nonparametric Models

(2.4.19)

(2.4.20)

(2.4.21)

the parameters of

(2.4.22)

(2.4.23)

(2.4.24)

The Dirichlet process is used to construct Bayesian nonparametric models, including
nonparametric HMMs such that the number of states is unbounded a priori. Bayesian
nonparametric methods allow model complexity to be learned flexibly from data and
to grow as the amount of data increases. In this section, we review the basic definition
of the Dirichlet process and the HDP-HMM.

Definition 2.5.1 (Dirichlet process). Let (Q, F, H) be a probability space and a > 0.
We say G is distributed according to a Dirichlet process with parameter aH, and write
G ~ DP(aH) or G - DP(a, H), if (Q, F, G) is a probability space and for every finite
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partition { Ai C Q : i E [r]} of Q

UAi= i# j Ai n Aj = 0, (2.5.1)
i=1

we have

(G(A1), ... , G(Ar)) Dir(aH(A),... , &H(A,)). (2.5.2)

By the Kolmogorov consistency theorem, this definition in terms of consistent finite-

dimensional marginals defines a unique stochastic process [8S]. Though the definition

is not constructive, some properties of the Dirichlet process are immediate.

Proposition 2.5.1. If G ~ DP(aH), then

1. G is atomic w.p. 1, meaning it can be written

00

G = ik (2.5.3)
ji=1

for some atoms wi E Q and weights 7Tri E (0,1).

iid
2. If OiIG '_ G for i = 1, 2,..., N, then G|{f }{1 is distributed as a Dirichlet process

with
N

GI { } 1 ~-' DP(aH + 63 o0,). (2.5.4)
i=1

Proof. As shown in Ferguson [27], these properties follow from Definition 2. .1 and

finite Dirichlet conjugacy. E

A construction that satisfies Definition 2.5.1. is the stick breaking process. In the

following, we use X - Beta(a, 3) to denote that X has the density

p(xla, 0) cx zCxa(1 - X)1-1. (2.5.5)

Definition 2.5.2 (Stick-breaking process). We say 7r = {7i : i E N} is distributed

according to the stick-breaking process with parameter a > 0, and write 7r - GEM(a),

if
3 ~ Beta(1, a), 7ri = 0i f(1 - #), i = 1,2, .... (2.5.6)

j<i

Theorem 2.5.1 (Stick-breaking construction). Let 7r ~ GEM(a) and O2 H for i c N.

If G = _' 7rios then G - DP(aH).
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Figure 2.5: Directed graphical model for an HDP-HMM.

Proof. See Sethuraman [103]. E

We can define Dirichlet processes that share the same set of atoms and have similar
weights using the hierarchical Dirichlet process construction [107]. This construction is

useful in defining a Bayesian nonparametric extension of the HMM.

Definition 2.5.3 (Hierarchical Dirichlet process). We say a collection of random mea-

sures {Gj : j c N} are distributed according to the hierarchical Dirichlet process with

parameters a, -y, and H if

Go ~ DP(a, H) Gj i DP(7, Go). (2.5.7)

We can use the stick-breaking construction of the DP to define a stick-breaking
construction of the HDP.

Definition 2.5.4. We say (7r, 6,1 :T, Y1:T) are distributed according to an HDP-HMM
with parameters a, -y > 0 and base measure H if

id iid/ GEM(-y), ri DP(a3), 64 H, (2.5.8)

Xt 7xt 1, Yt ~p( x- t) (2.5.9)

where 3 is treated as a density with respect to counting measure on N and where we set
x1 = 0. We write (7, 0, X1:T, Y1:T) ~ HDP-HMM(a, y, H).

Figure 2.5 shows a graphical model for the HDP-HMM.

There are several methods to perform sampling inference in Dirichlet process mod-

els. First, exploiting the conjugacy properties of the Dirichlet process, one can ana-

lytically marginalize the DP draws, as in the Chinese Restaurant Process (CRP) and

Chinese Restaurant Franchise (CRF) samplers for the Dirichlet process and hierar-

chical Dirichlet process, respectively [107]. However, as before, eliminating variables
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introduces many dependencies and can result in poor sampler performance for models

like the HDP-HMM. One can also work with a finite instantiation of the Dirichlet pro-

cess draws, so that the sampler only needs to work with the finite Dirichlet marginals,
as in the Direct Assignment sampler [107], but such a construction still precludes tree

message-passing in an HDP-HMM. The approach we take for most samplers in this the-

sis is based on approximating a DP prior with a finite symmetric Dirichlet distribution,
where the notion of approximation is made precise in the following result.

Theorem 2.5.2 (Weak limit approximation). Let (Q, F, H) be a probability space,
(v > 0 be a positive constant, and f : Q l R be any (F, B(R))-measurable function.

Consider the finite model of size K given by

Oj ". H 7 = (71, . 7K., r) ~ Dir(a) (2.5.10)

and define the measUre GK = y_ 1F6o,. Then as K -± oc we have

f (w)G K(dw) D f (w)G(dw) (2.5.11)

where G DP(aH).

Proof. See Ishwaran and Zarepour [57, Theorem 2], which also gives rates of convergence

and bounds on the probabilities of some error events. D

Based on this approximation result, we can define Bayesian nonparametric models

and perform approximate inference with finite models of size K, where K becomes an

algorithm parameter rather than a model parameter. With these finite approximations

we can exploit graphical model structure and tree message-passing algorithms in both

Gibbs sampling and mean field algorithms for time series nodels defined with the HDP.
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Chapter 3

Hierarchical Dirichlet Process
Hidden Semi-Markov Models

* 3.1 Introduction

Given a set of sequential data in an unsupervised setting, we often aim to infer mean-

ingful states present in the data along with characteristics that describe and distinguish

those states. For example, in a speaker diarization (or who-spoke-when) problem, we

are given a single audio recording of a meeting and wish to infer the number of speakers

present, when they speak, and some characteristics governing their individual speech

patterns [108, 31]. Or in separating a home power signal into the power signals of

individual devices, we could perform the task much better if we were able to exploit

our prior knowledge about the levels and durations of each device's power modes [66].
Such learning problems for sequential data are pervasive, and so we would like to build

general models that are both flexible enough to be applicable to many domains and

expressive enough to encode the appropriate information.

Hidden Markov Models (HMMs) have proven to be excellent general models for

approaching learning problems in sequential data, but they have two significant dis-

advantages: first, state duration distributions are necessarily restricted to a geometric

form that is not appropriate for many real-world data; second, the number of hidden

states must be set a priori so that model complexity is not inferred from data in a way

that scales with the size and complexity of the data.

Recent work in Bayesian nonparametrics has addressed the latter issue. In partic-

ular, the Hierarchical Dirichlet Process HMM (HDP-HMM) has provided a powerful

framework for representing a posterior over state complexity while maintaining efficient

inference algorithms [106, 5]. However, the HDP-HMM does not address the issue of

non-Markovianity in real data. The Markovian disadvantage is in fact compounded

in the nonparametric setting, since non-Markovian behavior in data can lead to the

creation of unnecessary extra states and unrealistically rapid switching dynamics [31].
One approach to avoiding the rapid-switching problem is the Sticky HDP-HMM [31],
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which introduces a learned global self-transition bias to discourage rapid switching. In-

deed, the Sticky model has demonstrated significant performance improvements over

the HDP-HMM for several applications. However, it shares the HDP-HMM's restric-

tion to geometric state durations, thus limiting the model's expressiveness regarding

duration structure. Moreover, its global self-transition bias is shared among all states,
and so it does not allow for learning state-specific duration information. The infinite

Hierarchical HMM [50] indirectly induces non-Markovian state durations at the coarser

levels of its state hierarchy, but it is difficult to incorporate prior information or other-

wise adjust the duration model. Furthermore, constructing posterior samples from any

of these models can be computationally expensive, and finding efficient algorithms to

exploit problem structure is an important area of research.

These potential limitations to the HDP-HMM motivate this investigation into explicit-

duration semi-Markov modeling, which has a history of success in the parametric (and

usually non-Bayesian) setting. We combine semi-Markovian ideas with the HDP-HMM

to construct a general class of models that allow for both Bayesian nonparametric in-

ference of state complexity as well as general duration distributions. We demonstrate

the applicability of our models and algorithms on both synthetic and real data sets.

The remainder of this chapter is organized as follows. In Section 3.2, we describe

explicit-duration HSMMs and existing HSMM message-passing algorithms, which we

use to build efficient Bayesian inference algorithms. We also provide a brief treatment

of the Bayesian nonparametric HDP-HMM and sampling inference algorithms. In Sec-

tion 3.3 we develop the HDP-HSMM and related models. In Section 3.4 we develop

extensions of the weak-limit and direct assignment samplers [106] for the HDP-HMM

to our models and describe some techniques for improving the computational efficiency

in some settings.

Section 3.5 demonstrates the effectiveness of the HDP-HSMM on both synthetic and

real data. In synthetic experiments, we demonstrate that our sampler mixes very quickly

on data generated by both HMMs and HSMMs and can recover synthetic parameters.

We also show that while an HDP-HMM is unable to capture the statistics of an HSMM-

generated sequence, we can build HDP-HSMMs that efficiently learn whether data were

generated by an HMM or HSMM. As a real-data experiment, we apply the HDP-HSMM

to a problem in power signal disaggregation.

E 3.2 Background and Notation

In this section, we review three main background topics: our notation for Bayesian

HMMs, conventions for explicit-duration HSMMs, and the Bayesian nonparametric

HDP-HMM.
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X1 X2 X3 X4 X T

Figure 3.1: Basic graphical model for the Bayesian HMM. Parameters for the transi-
tion, emission, and initial state distributions are random variables. The symbol a rep-
resents the hyperparameter for the prior distributions on state-transition parameters.
The shaded nodes indicate observations on which we condition to form the posterior
distribution over the unshaded latent components.

* 3.2.1 HMMs

Recall from Section 2.4 that the core of the HMM consists of two layers: a layer of
hidden state variables and a layer of observation or emission variables, as shown in
Figure 3.1. The hidden state sequence, x = (Xt)/i_, is a sequence of random variables
on a finite alphabet, xt e {1, 2, ... , N} = [N], that form a Markov chain. We focus on
time-homogeneous models, in which the transition distribution does not depend on t.
The transition parameters are collected into a row-stochastic transition matrix A where

Aij = p(xt+i = I zt i). (3.2.1)

We also use {7r(i)} to refer to the set of rows of the transition matrix, and we write 7(o)
for the initial state distribution. We use p(ytl (i)) to denote the conditional emission
distribution, where 0 () is the emission parameter for the ith state.

* 3.2.2 HSMMs

There are several approaches to hidden semi-Markov models [78, 118]. We focus on
explicit duration semi-Markov modeling; that is, we are interested in the setting where
each state's duration is given an explicit distribution. The basic idea underlying this
HSMM formalism is to augment the generative process of a standard HMM with a
random state duration time, drawn from some state-specific distribution when the state
is entered. The state remains constant until the duration expires, at which point there
is a Markov transition to a new state.

A kind of graphical model for the explicit-duration HSMM is shown in Figure 3.2,
from Murphy [78], though the number of nodes in the graphical model is itself random
and so it is not a proper graphical model. In this picture, we see there is a Markov
chain (without self-transitions) on S super-state nodes, (z,) 1 , and these super-states
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Y1 Yd, Yd 1+1 YT

Figure 3.2: HSMM interpreted as a Markov chain on a set of super-states, (z,)s 1.
The number of shaded nodes associated with each z,, denoted by d,, is drawn from a
state-specific duration distribution.

in turn emit random-length segments of observations. We refer to the index s as the

segment index or the super-state index. Here the symbol d, is used to denote the random

length of the observation segment of super-state s, and we call the sequence (ds)_ 1 the

duration sequence. The "super-state" picture separates the Markovian transitions from

the segment durations.

We also define the label sequence (xt)_ 1
1 in terms of the super-state sequence and

duration sequence. Writing xti:t2 = (xt , Xt 1 +1, ... I xt 2 ) to denote the subsequence of x

with first and last indices t1 and t 2 , respectively, the label sequence is defined by

Xt(s):t(s+1)-1 ZS s 1, 2,. . ., S (3.2.2)

t(s) t(s1)+ds1 t 1, 2, ... , T. (3.2.3)
t1 s = 1

Therefore there is one element of the label sequence for each element of the observation

sequence (yt)[ 1. While the observation sequence length T is observed, the number

of segments S is a latent variable. Note that while in some other work on HSMMs

the label sequence (xt)T 1 is referred to as the "state sequence," it does not capture

the full Markov state of the system because it does not include the required duration

information; therefore, we take care to distinguish the label sequence (xt) and the

super-state sequence (zS), and we do not refer to either as the HSMM's state sequence.

When defining an HSMM model, one must also choose whether the observation

sequence ends exactly on a segment boundary or whether the observations are censored

at the end, so that the final segment may possibly be cut off in the observations. In

the right-censored case, where the final segment may be cut off at the end, we have

S d, < T. We focus on the right-censored formulation in this chapter, but our

models and algorithms can easily be adapted to the uncensored or even left-censored

cases. For a further discussion, see Guddon [47].
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It is possible to perform polynomial-time message-passing inference along an HSMM

state chain (conditioned on parameters and observations) in a way similar to the stan-

dard alpha-beta dynamic programming algorithm for standard HMMs. The "backward"

messages are crucial in the development of efficient sampling inference in Section 3.4

because the message values can be used to efficiently compute the posterior information

necessary to block-sample the hidden label sequence (xe), and so we briefly describe the

relevant part of the existing HSMM message-passing algorithm. As derived in Murphy

[78], we can define and compute the backward messages' B and B* as follows:

Bti 'I =P(yt+1:T Jt -- iXt 4 t+1)

B*(j)p(xt+1 =l t =i), (3.2.4)

Bt*(0) p(yt-i-ii'Lrt~i = Z',x -/#t

Z Bt+d(i) p(Dt+1 = d xt+1 i) P(Yt+1:t4d Xt+1 i, Dt+1 d)

duration prior term likelihood term

+ p(D~i+ > T - tlxt+1 = i)p(yt+1:Tirt+i = i, Dt+1 > T - t), (3.2.5)

censoring tern

B1 (i) A 1 (3.2.6)

where we have split the messages into B and B* components for convenience and used

Yki:k 2 to denote (yki, .- ,Y k2 ). Dt+ 1 represents the duration of the segment beginning
at time t + 1. The conditioning on the parameters of the distributions, namely the

observation, duration, and transition parameters, is suppressed from the notation.

We write xt r xt+I to indicate that a new segment begins at t+1, and so to compute

the message from t +1 to t we sum over all possible lengths d for the segment beginning

at t + 1, using the backward message at t + d to provide aggregate future information

given a boundary just after t + d. The final additive term in the expression for B*(i) is

described in Gu6don [47]; it constitutes the contribution of state segments that run off

the end of the provided observations, as per the censoring assumption, and depends on

the survival function of the duration distribution.

Though a very similar message-passing subroutine is used in HMM Gibbs samplers,
there are significant differences in computational cost between the HMM and HSMM

message computations. The greater expressive power of the HSMM model necessarily

increases the computational cost: the above message passing requires O(T 2 N + TN 2 )

IrIn Murphy [78] and others, the symbols 3 and 0* are used for the messages, but to avoid confusion

with our HDP parameter 0, we use the symbols B and B* for messages.

51



basic operations for a chain of length T and state cardinality N, while the correspond-
ing HMM message passing algorithm requires only O(TN 2 ). However, if the support of
the duration distribution is limited, or if we truncate possible segment lengths included
in the inference messages to some maximum dmax, we can instead express the asymp-
totic message passing cost as O(TdmaxN + TN 2 ). Though the increased complexity of
message-passing over an HMM significantly increases the cost per iteration of sampling
inference for a global model, the cost can be offset when explicit duration modeling
is particularly informative, as shown in the experiments in Section 3.5. In Chapter 4,
we develop methods to reduce this message-passing complexity for specific duration
models.

N 3.2.3 The HDP-HMM and Sticky HDP-HMM

The HDP-HMM [106] provides a natural Bayesian nonparametric treatment of the
classical Hidden Markov Model. The model employs an HDP prior over an infinite
state space, which enables both inference of state complexity and Bayesian mixing over
models of varying complexity. We provide a brief overview of the HDP-HMM model
and relevant inference algorithms, which we extend to develop the HDP-HSMM. A
much more thorough treatment of the HDP-HMM can be found in, for example, Fox
[30].

The generative process HDP-HMM(-y, a, H) given concentration parameters y, a >
0 and base measure (observation prior) H can be summarized as:

0 ~ GEM(-y), (3.2.7)

(j) fid 0 (i) fidwr() DP(a, /) H 1, 2,..., (3.2.8)

Xt ~ s7F , (3.2.9)

yt ~ f (O )) t 1,2, ... , T, (3.2.10)

where GEM denotes a stick breaking process [102] as in Section 2.5 and f denotes an
observation distribution parameterized by draws from H. We set x, = 1. We have
also suppressed explicit conditioning from the notation. See Figure 3.3 for a graphical
model.

The HDP plays the role of a prior over infinite transition matrices: each 7r(j) is a DP
draw and is interpreted as the transition distribution from state j. The r0s) are linked
by being DP draws parameterized by the same discrete measure /, thus E[7r0)] = 0
and the transition distributions tend to have their mass concentrated around a typical
set of states, providing the desired bias towards re-entering and re-using a consistent
set of states.
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X1 X2 X 3 X4 X T

Figure 3.3: Graphical model for the HDP-HMM.

The Chinese Restaurant Franchise and direct-assignment collapsed sampling ineth-

ods described in Teh et al. [106] and Fox [30] are approximate inference algorithms for

the full infinite dimensional HDP, but they have a particular weakness in the sequential-

data context of the HDP-HMM: each state transition must be re-sampled individually,

and strong correlations within the label sequence significantly reduce mixing rates [30].

As a result, finite approximations to the HDP have been studied for the purpose of pro-

viding faster mixing. Of particular note is the weak limit approximation, used in Fox

et al. [31], which has been shown to reduce mixing times for HDP-HMM inference while

sacrificing little in terms of approximating the infinite-dimensional HDP posterior.

The Sticky HDP-HMM augments the HDP-HMM with an extra parameter K > 0
that biases the process towards self-transitions and thus provides a method to encourage

longer state durations. The Sticky-HDP-HMM(-, a, K, H) generative process can be

written

13 GEM(-), (3.2.11)

7r DP(a + K, + rj) r(i NH i = 1,2, ... , (3.2.12)

t ~ 7T t-I, 1(3.2.13)

yt ~ f (O6 t) t = 1, 2, . .. , T, (3.2.14)

where 6j denotes an indicator function that takes value 1 at index j and 0 elsewhere.

While the Sticky HDP-HMM allows some control over duration statistics, the state

duration distributions remain geometric; a goal of this work is to provide a model in

which any duration distributions specific to each state may be used.
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* 3.3 HSMM Models

In this section, we introduce the explicit-duration HSMM-based models that we use

in the remainder of the chapter. We define the finite Bayesian HSMM and the HDP-
HSMM and show how they can be used as components in more complex models, such

as in a factorial structure. We describe generative processes that do not allow self-

transitions in the super-state sequence, but we emphasize that we can also allow self-

transitions and still employ the inference algorithms we describe; in fact, allowing self-

transitions simplifies inference in the HDP-HSMM, since complications arise as a result
of the hierarchical prior and an elimination of self-transitions. However, there is a clear

modeling gain by eliminating self-transitions: when self-transitions are allowed, the
"explicit duration distributions" do not model the state duration statistics directly. To

allow direct modeling of state durations, we must consider the case where self-transitions

do not occurr.

N 3.3.1 Finite Bayesian HSMM

The finite Bayesian HSMM is a combination of the Bayesian HMM approach with

semi-Markov state durations and is the model we generalize to the HDP-HSMM. It
is instructive to compare this construction with that of the finite model used in the

weak-limit HDP-HSMM sampler that will be described in Section 3.4.2, since in that
case the hierarchical ties between rows of the transition matrix requires particular care.

The generative process for a Bayesian HSMM with N states and observation and
duration parameter prior distributions of H and G, respectively, can be summarized as

7 -d Dir(a(l - (6j), rld H x G i = 1, 2, ... , N, (3.3.1)

zS ~d f(Zn), (3.3.2)

ds ~ (,d(Z,)), S = 1, 2, ... , (3.3.3)

Yt(s):t(s+1)-1 ZS, (3.3.4)

Yt(S):t(S+1)-1 ,f (ZS)) (3.3.5)

where f and g denote observation and duration distributions parameterized by draws

from H and G, respectively, and t(s) is defined in (3.2.3). As in Section 3.2.2, we collect

the 7r(') for i = 1, 2, ... , N into the rows of a transition matrix A. We use Dir(a(1 - 6j))
to denote a symmetric Dirichlet distribution with parameter a except with the ith

component of the hyperparameter vector set to zero, hence fixing Ai = 0 and ensuring

there will be no self-transitions sampled in the super-state sequence (zS).
Note, crucially, that in this definition the r() are not tied across various i. In the
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HDP-HSMM, as well as the weak limit model used for approximate inference in the
HDP-HSMM, the 7() will be tied through the hierarchical prior (specifically via 0),
and that connection is necessary to penalize the total number of states and encourage

a small, consistent set of states to be visited in the super-state sequence. However,
the interaction between the hierarchical prior and the elimination of self-transitions

presents an inference challenge.

U 3.3.2 HDP-HSMM

The generative process of the HDP-HSMM is similar to that of the HDP-HMM, with

some extra work to include duration distributions. The process HDP-HSMM(-y, a, H, G),
illustrated in Figure 3.4, can be written as

3 ~ GEM(-y), (3.3.6)

7r(_ W DP(a #) (PCi, o() H x G i 1, 2, ... , (3.3.7)

z'S 7z _) (3.3.8)

ds ~ g(9(z,)) s 1,2, ... , (3.3.9)
1 t(s):t(s+1)-1 =ZS (3.3.10)

Yt(s):t(s+1)-1 d f (Q(zs)) (3.3.11)

where we use 7-(' ) (1 - 5u) to eliminate self-transitions in the super-state se-

quence (z8 ).
Note that the atoms we edit to eliminate self-transitions are the same atoms that

are affected by the global sticky bias in the Sticky HDP-HMM.

* 3.3.3 Factorial Structure

We can easily compose our sequential models into other common model structures, such

as the factorial structure of the factorial HMM [40]. Factorial models are very useful for

source separation problems, and when combined with the rich class of sequential models

provided by the HSMM, one can use prior duration information about each source to

greatly improve performance (as demonstrated in Section 3.5). Here, we briefly outline

the factorial model and its uses.

If we use y ~ HDP-HSMM(a, -', H, G) to denote an observation sequence generated

by the process defined in (3.3.6)-(3.3.11), then the generative process for a factorial

HDP-HSMM with K component sequences can be written as
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Figure 3.4: A graphical model for the HDP-HSMM in which the number of segments

S, and hence the number of nodes, is random.

y(k) ~ HDP-HSMM(oak, -Yk, Hk, Gk) k 1, 2, ... , K, (3.3.12)

K

t Ey, +W t =1,2, . . . , T, (3.3.13)
k=1

where wt is a noise process independent of the other components of the model states.

A graphical model for a factorial HMM can be seen in Figure 3.5, and a factorial

HSMM or factorial HDP-HSMM simply replaces the hidden state chains with semi-

Markov chains. Each chain, indexed by superscripts, evolves with independent dynam-

ics and produces independent emissions, but the observations are combinations of the

independent emissions. Note that each component HSMM is not restricted to any fixed

number of states.

Such factorial models are natural ways to frame source separation or disaggregation

problems, which require identifying component emissions and component states. With

the Bayesian framework, we also model uncertainty and ambiguity in such a separation.

In Section 3.5.2 we demonstrate the use of a factorial HDP-HSMM for the task of

disaggregating home power signals.

Problems in source separation or disaggregation are often ill-conditioned, and so one

relies on prior information in addition to the source independence structure to solve the

separation problem. Furthermore, representation of uncertainty is often important,

since there may be several good explanations for the data. These considerations moti-

vate Bayesian inference as well as direct modeling of state duration statistics.
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Figure 3.5: A graphical model for the factorial HMM, which can naturally be extended
to factorial structures involving the HSMM or HDP-HSMM.

* 3.4 Inference Algorithms

We describe two Gibbs sampling inference algorithms, beginning with a sampling algo-

rithm for the finite Bayesian HSMM, which is built upon in developing algorithms for

the HDP-HSMM in the sequel. Next, we develop a weak-limit Gibbs sampling algorithm

for the HDP-HSMM, which parallels the popular weak-limit sampler for the HDP-HMM

and its sticky extension. Finally, we introduce a collapsed sampler which parallels the

direct assignment sampler of Teh et al. [106. For both of the HDP-HSMM samplers

there is a loss of conjugacy with the HDP prior due to the fact that self-transitions in

the super-state sequence are not permitted (see Section 3.4.2). We develop auxiliary

variables to form an augmented representation that effectively recovers conjugacy and

hence enables fast Gibbs steps.

In comparing the weak limit and direct assignment sampler, the most important

trade-offs are that the direct assignment sampler works with the infinite model by

integrating out the transition matrix A while simplifying bookkeeping by maintaining

part of 0, as we make clear in Section 3.4.3; it also collapses the observation and

duration parameters. However, the variables in the label sequence (xt) are coupled

by the integration, and hence each element of the label sequence must be resampled

sequentially. In contrast, the weak limit sampler represents all latent components of the

model (up to an adjustable finite approximation for the HDP) and thus allows block

resampling of the label sequence by exploiting HSMM message passing.

We end the section with a discussion of leveraging changepoint side-information to

greatly accelerate inference.
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* 3.4.1 A Gibbs Sampler for the Finite Bayesian HSMM

In this section, we describe a blocked Gibbs sampler for the finite HSMM.

Outline of Gibbs Sampler

To perform posterior inference in a finite Bayesian HSMM, we construct a Gibbs sampler

resembling that for finite HMMs. Our goal is to construct samples from the posterior

p((xt), {0()}, {,i}, {1, }I(yt), H, G, o) (3.4.1)

by drawing samples from the distribution, where G represents the prior over duration

parameters. We can construct these samples by following a Gibbs sampling algorithm

in which we iteratively sample from the appropriate conditional distributions of (xt),
{i}, {(i} and {(0}.

Sampling {Oi} or {d(i} from their respective conditional distributions can be eas-
ily reduced to standard problems depending on the particular priors chosen. Sampling

the transition matrix rows {ri)} is straightforward if the prior on each row is Dirichlet
over the off-diagonal entries and so we do not discuss it in this section, but we note
that when the rows are tied together hierarchically (as in the weak-limit approxima-

tion to the HDP-HSMM), resampling the {F} correctly requires particular care (see
Section 3.4.2).

In the following section we develop the algorithm for block-sampling the label se-
quence (xt) from its conditional distribution by employing the HSMM message-passing

scheme.

Blocked Conditional Sampling of (xt) with Message Passing

To block sample (xt)I{OW}, {7 (i)}, {7()}, (yt) in an HSMM we can extend the standard
block state sampling scheme for an HMM. The key challenge is that to block sample

the states in an HSMM we must also be able to sample the posterior duration variables.

If we compute the backward messages B and B* described in Section 3.2.2, then we
can easily draw a posterior sample for the first state according to

p(xi = klYi:T) cx p(xi = k)p(yi:Tlzx = k) (3.4.2)

= pxi = k)B*(k), (3.4.3)

where we have used the assumption that the observation sequence begins on a segment

boundary and suppressed notation for conditioning on parameters.

We can also use the messages to efficiently draw a sample from the posterior duration
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distribution for the sampled initial state. Conditioning on the initial state draw, r-1,
the posterior duration of the first state is:

p(Di = dYi:T, Xi = p(D d,Y1:TX1 X) (3.4.4)
p(y1:T r1 - 11)

p(D1 = djx1 = x1)p(y1d: D1 = d, X 1  XI)P(Yd+1:TIDi = d,x 1 = ) (345)
P(Y1:T~IXV 34

-p(D1 = d)p(yl:d lDi = d, x1 = T1)Bd(Xl)(346

B3( 1 )

We repeat the process by using XDi+1 as our new initial state with initial distribution

P(XD,+1 = ili = x1), and thus draw a block sample for the entire label sequence.

In each step of the forward-sampling process a label is assigned in the label sequence.

To compute each label assignment, Eq. (3.4.6) is evaluated in constant time and, when

the duration expires, Eq. (3.4.3) is sampled in time proportional to the number of states

N. Therefore the overall complexity of the forward-sampling process for ail HSMM with

N states and sequence length T is O(TN) after computing the HSMM messages.

* 3.4.2 A Weak-Limit Gibbs Sampler for the HDP-HSMM

The weak-limit sampler for an HDP-HMM [3-1] constructs a finite approximation to

the HDP transitions prior with finite L-dimrensional Dirichlet distributions, motivated

by the fact that the infinite limit of such a construction converges in distribution

(i.e. weakly) to an HDP:

/3y ~ Dir(-/L, ... , y/L), (3.4.7)

7TNj, 0 ~ Dir(a#1 , . . ,IaL) i = 1, ... , L, (3.4.8)

where we again interpret 7r) as the transition distribution for state i and 63 as the

distribution which ties state transition distributions together and encourages shared

sparsity. Practically, the weak limit approximation enables the complete representation

of the transition matrix in a finite form, and thus, when we also represent all parameters,
allows block sampling of the entire label sequence at once. The parameter L gives us

control over the approximation quality, with the guarantee that the approximation will

become exact as L grows; see Ishwaran and Zarepour [56], especially Theorem 1, for a

discussion of theoretical guarantees.

We can employ the weak limit approximation to create a finite HSMM that approx-

imates inference in the HDP-HSMM. This approximation technique often results in

greatly accelerated mixing, and hence it is the technique we employ for the experiments
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in the sequel. However, the inference algorithm of Section 3.4.1 must be modified to
incorporate the fact that the {7r(i) } are no longer mutually independent and are instead
tied through the shared 3. This dependence between the transition rows introduces
potential conjugacy issues with the hierarchical Dirichlet prior; the following section
explains the difficulty as well as a simple algorithmic solution via auxiliary variables.

The beam sampling technique [110] can be applied here with little modification, as
in Dewar et al. [23], to sample over the approximation parameter L, thus avoiding the
need to set L a priori while still allowing instantiation of the transition matrix and
block sampling of the state sequence. This technique is especially useful if the number

of states could be very large and is difficult to bound a priori. We do not explore beam
sampling here.

Conditional Sampling of {7r()} with Data Augmentation

To construct our overall Gibbs sampler, we need to be able to resample the tran-
sition matrix 7r given the other components of the model. However, by ruling out
self-transitions while maintaining a hierarchical link between the transition rows, the
model is no longer fully conjugate, and hence resampling is not necessarily easy. To
observe the loss of conjugacy using the hierarchical prior required in the weak-limit ap-
proximation, note that we can summarize the relevant portion of the generative model
as

(3.4.9)

7r 1 , Dir(a/31 , . . . , o, )j = 1, ... , L, (3.4.10)

Xt I{7r2 }) , Xt_1 -~ fre_ t =2, . .. , T, (3.4.11)

(3.4.12)

where tj represents 7r) with the jth component removed and renormalized appropri-
ately:

_ 0r (1 - 6ij) 1i=jgrji-=where u - 3..3

1 - rher 6 0 otherwise (3.4.13)

The deterministic transformation from 7r(i) to r(i) eliminates self-transitions. Note

that we have suppressed the observation parameter set, duration parameter set, and
observation sequence for simplicity.

Consider the distribution of 7r(l)I(xt), /, the first row of the transition matrix:
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P(7(,)1('0) cP(() (1)Px ) 7) (3.4.14)
1) 12 () nit

1)( 01 1 ( (1) 013-L 7T2 ... L

-7T M 1-7(1

(3.4.15)

where nij are the number of transitions from state i to state j in the super-state sequence

(z,):

nij #{s e - 1]: z= i, z+ 1 =j}. (3.4.16)

Essentially, because of the extra l terms from the likelihood without self-transitions,

we cannot reduce this expression to the Dirichlet form over the components of 70), and

therefore we cannot proceed with sampling m and resampling # and 7r as in Teh et al.

[106].
However, we can introduce auxiliary variables to recover conjugacy [109], also called

a completion construction [94, Section 10.1.2]. We define an extended generative model

with extra random variables that, when the extra variables are marginalized out, cor-

responds to the original model. Then we show that conditional distributions simplify

with the extra variables, hence allowing us to cycle simple Gibbs updates to produce

an efficient sampler.

For simplicity, we focus on the first row of the transition matrix, namely T('), and

the draws that depend on it; the reasoning immediately extends to the other rows. We

also drop the parameter a for convenience, and to simplify notation, we write ni for

n1 , for i = 1, 2, ... , N. We also define it. = E ni. First, we write the relevant portion

of the generative process as

7r ( , Dir(#), (3.4.17)

zil-r(1) ~ tri (3.4.18)

yi I zi ~ f (zi) 'i = 1, . .. , M.. (3.4.19)

Here, sampling zi = k represents a transition from state 1 to state k. The {yi} rep-

resent the observations on which we condition; in particular, if we have zi = k then

yj corresponds to an emission from state k in the HSMM. See the graphical model in

Figure 3.6(I(a) for a depiction of the relationship between the variables.

We can introduce auxiliary variables {pi}, where each pi is independently drawn
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iF 1  W1

z z
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i U

(a) (b)

Figure 3.6: Simplified depiction of the relationship between the auxiliary variables
and the rest of the model; 3.6(a) depicts the nonconjugate setting and 3.6(b) shows the
introduced auxiliary variables {pi}.

from a geometric distribution supported on {o, 1, ... } with success parameter 1 - 7r

That is, we introduce pi 7r ~ Geo(1-7r(1 )), shown in Figure 3.6(b). Thus our posterior

becomes:

p(7r 1) I{zi}, {pi}) (3.4.20)

cX P(7r('))Pggi 17(1))f iI 1) (3.4.21)
() n2 () nL n.

oc(7r70))-O--. 7~ 2 ... )p( -7ri9
1 - 7ri 7F T _

(3.4.22)

((1))31+Z Pi-1 ((1))fl2+n2-1 ... (,(l))3L+nfL-1 (3.4.23)

xc Dir (1 + Pi I2 + n2, ... ,/L+ nrL. (3.4.24)

Noting that n. = ni, we recover conjugacy and hence can iterate simple Gibbs steps.

We can compare the numerical performance of the auxiliary variable sampler to

a Metropolis-Hastings sampler in the model without auxiliary variables. Figure 3.7

shows the sample chain autocorrelations for the first component of r in both samplers.

Figure 3.8 compares the Multivariate Scale Reduction Factors of Brooks and Gelman

[16] for the two samplers, where good mixing is indicated by achieving the statistic's

asymptotic value of unity. For a detailed evaluation, see Appendix B.

We can easily extend the data augmentation to the full HSMM, and once we have

augmented the data with the auxiliary variables {ps}{ we are once again in the
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Figure 3.7: Empirical sample chain autocorrelation for the first component of 7r for
both the proposed auxiliary variable sampler and a Metropolis-Hastings sampler. The
figure shows mean autocorrelations over 50 randomly-initialized runs for each sampler,
with the corresponding dotted lines showing the 10th and 90th percentile autocorrela-
tion chains over those runs. The rapidly diminishing autocorrelation for the auxiliary
variable sampler is indicative of fast mixing.
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Figure 3.8: Multivariate Potential Scale Reduction Factors for both the proposed
auxiliary variable sampler and a Metropolis-Hastings sampler. The auxiliary variable
sampler rapidly achieves the statistic's asymptotic value of unity. Note that the auxil-
iary variable sampler is also much more efficient to execute, as shown in 3.8(b).

conjugate setting. A graphical model for the weak-limit approximation to the HDP-

HSMM including the auxiliary variables is shown in Figure 3.9.
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Figure 3.9: Graphical model for the weak-limit approximation including auxiliary
variables.

* 3.4.3 A Direct Assignment Sampler for the HDP-HSMM

Though the main experiments in this chapter are performed with the weak-limit sampler
developed in the previous section, we provide a direct assignment (DA) sampler as

well for theoretical completeness and because it may be useful in cases where there is

insufficient data to inform some latent parameters so that marginalization is necessary

for mixing or estimating marginal likelihoods. In the direct assignment sampler for the

HDP-HMM the infinite transition matrix rr is analytically mnarginalized out along with
the observation parameters. The sampler represents explicit instantiations of the label

sequence (Xt) and the prefix of the infinite vector /3 1:K where K = {t =1, ... ., T}.
There are also auxiliary variables m used to resample #, but for simplicity we do not

discuss them here; see Teh et al. [106] for details.

Our DA sampler additionally represents the auxiliary variables necessary to recover

HDP conjugacy (as introduced in the previous section). Note that the requirement for,

and correctness of, the auxiliary variables described in the finite setting in Section 3.4.2

immediately extends to the infinite setting as a consequence of the Dirichlet Process's

definition in terms of the finite Dirichlet distribution and the Kolmogorov extension

theorem [19, Chapter 4]; for a detailed discussion, see Orbanz [87]. The connection to

the finite case can also be seen in the sampling steps of the direct assignment sampler

for the HDP-HMM, in which the global weights /3 over K instantiated components are

resampled according to (Xt1:K,/rest)Ia, (Xt) ~ Dir(a+ni, . ..,anKoa) where ri is the

number of transitions into state i and Dir is the finite Dirichlet distribution.
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Resampling (Xt)

To resample each element of the label sequence (xt), we perform an update similar

to that of the HDP-HMM direct assignment sampler. As described in Fox [30], the

corresponding HDP-HMM sampling step for each element xt of the label sequence is to

sample a new label k with probability proportional (over k) to

( 1k + nx,_i,k a3xt+1 + 1k,xt+1 + E[xt-1 k = xt+1 (
p(xt =k I(x\t ), 0) oc a- ltl*a+n, [ti k fobs(t tXt = k)

(3.4.25)

for k 1, .. ., K+1 where K = #{Ixt : t = 1, .. ., T} and where li is an indicator function

taking value 1 if its argument condition is true and 0 otherwise. 2 The variables nij are

transition counts in the label sequence excluding the transition into and out of xt; that

is, nij = #{X = ITr+1 =j :T EII ... ,T - 1} \ {t - 1, t}}. The function fob5 is a

predictive likelihood:

fobs(Yt lk) A p(yt lIt = k, {y, : x, k}, H) (3.4.26)

p(ytxt = k, (k)) P(yIx, = k, (k)) P((k) d(k)
liklihod T:rT =klikelihood I_ ___k , observation parameter prior

likelihood of data with same label

(3.4.27)

We can derive this step by writing the complete joint probability p((xt), (yt)1, H)

leveraging exchangeability; this joint probability value is proportional to the desired

posterior probability p(xt (x\t), (yt), 0, H). When we consider each possible assignment

xt = k, we can cancel all the terms that do not depend on k, namely all the transition

probabilities other than those to and from xt and all data likelihoods other than that

for yt. However, this cancellation process relies on the fact that for the HDP-HMM

there is no distinction between self-transitions and new transitions: the term for each t

in the complete posterior simply involves transition scores no matter the labels of xt+1
and xt-1. In the HDP-HSMM case, we must consider segments and their durations

separately from transitions.

To derive an expression for resampling xt in the case of the HDP-HSMM, we can

similarly consider writing out an expression for the joint probability p((xt), (yt)L1, H, G).

However, note that as the label assignment of xt k varies, the terms in the expression

change according to whether xt_1 = k or xt+ k. That is, if xt_1 = k or xt+1 = k,

2 The indicator variables are present because the two transition probabilities are not independent
but rather exchangeable.
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Figure 3.10: Illustration of the Gibbs step to resample xt for the DA sampler for the
HDP-HSMM. The red dashed boxes indicate the elements of the label sequence that
contribute to the score computation for k = 1, 2, 3 which produce two, three, and two
segment terms, respectively. The label sequence element being resample is emphasized
in bold.

the probability expression includes a segment term for entire contiguous run of label k.
Hence, since we can only cancel terms that do not depend on k, our score expression

must include terms for the adjacent segments into which xt may merge. See Figure 3.10
for an illustration.

The final expression for the probability of sampling the new value of xt to be k then
consists of between 1 and 3 segment score terms, depending on merges with adjacent
segments, each of which has the form

p(xt = k I (x/t), 
3, H, G) c k + nxprev, a/3x1#,.ext + kxnext

a(1 - #Xprev) + nxprev, a(1 - k) + nk,.

left-transition right-transition

fdur (t2 - ti + 1) - fobs(Yti:t 2 Ik), (3.4.28)

duration observation

where we have used ti and t 2 to denote the first and last indices of the segment,
respectively.

The function fdur(dlk) is the corresponding duration predictive likelihood evaluated
on a duration d, which depends on the durations of other segments with label k and any
duration hyperparameters. The function fobs now represents a block or joint predictive
likelihood over all the data in a segment (see, for example, Murphy [79] for a thorough
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discussion of the Gaussian case). Note that the denominators in the transition terms

are affected by the elimination of self-transitions by a rescaling of the "total mass."

The resulting chain is ergodic if the duration predictive score fdur has a support that

includes {1, 2,... , dinax}, so that segments can be split and merged in any combination.

Resampling # and Auxiliary Variables p

To allow conjugate resampling of /, auxiliary variables must be introduced to deal

with the conjugacy issue raised in Section 3.4.2. In the direct assignment samplers, the

auxiliary variables are not used to resample diagonal entries of the transition matrix 7F,
which is marginalized out, but rather to directly resample /. In particular, with each

segment s we associate an auxiliary count p, which is independent of the data and only

serves to preserve conjugacy in the HDP. We periodically resarmple via

7 a, 0 ~ Beta(aoi, a(1 - O)), (3.4.29)

Ps 1(, z, ~ Geo(1 - 7r)) (3.4.30)

The count ni,i, which is used in resampling the auxiliary variables m of Teh et al. [106]
which in turn are then used to resamuple #, is the total of the auxiliary variables for other

segments with the same label: ni,i = Ps. This formula can be interpreted as

simply sampling the number of self-transitions we may have seen at segment s given /
and the counts of self- and non-self transitions in the super-state sequence. Note the

diagonal entries 7W are independent of the data given (z,); as before, this auxiliary
variable procedure is a convenient way to integrate out numerically the diagonal entries

of the transition matrix.

* 3.4.4 Exploiting Changepoint Side-Information

In many circumstances, we may not need to consider all time indices as possible change-

points at which the super-state may switch; it may be easy to rule out many non-

chiangepoints from consideration. For example, in the power disaggregation application

in Section 3.5, we can run inexpensive chiangepoint detection on the observations to get

a list of possible changepoints, ruling out many obvious non-chiangepoints. The possible

chiangepoints divide the label sequence into state blocks, where within each block the

label sequence must be constant, though sequential blocks may have the same label.

By only allowing super-state switching to occur at these detected changepoints, we can

greatly reduce the computation of all the samplers considered.

In the case of the weak-limit sampler, the complexity of the bottleneck message-

passing step is reduced to a function of the number of possible changepoints (instead of

total sequence length): the asymptotic complexity becomes O(TageN + N 2 Tciange)
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where Tchange, the number of possible changepoints, may be dramatically smaller than
the sequence length T. We simply modify the backward message-passing procedure to
sum only over the possible durations:

B* (i) A P(Yt+1:T Xt+1 I, Xt z It+ 1)

= Bt+d(i) (Dt+1= dIxt+1 i) P (Yt+ 1:t+d I Xt+I = i, Dt+1 = d)
dc duration prior term likelihood term

+ P(Dt+1 > T - tlxt+i = i)P(Yt+1:T Xt+1 = i, Dt+1 > T - t), (3.4.31)

censoring term

where P represents the duration distribution restricted to the set of possible durations
ID C N+ and renormalized. We similarly modify the forward-sampling procedure to
only consider possible durations. It is also clear how to adapt the DA sampler: instead
of re-sampling each element of the label sequence (It) we simply consider the block

label sequence, resampling each block's label (allowing merging with adjacent blocks).

M 3.5 Experiments

In this section, we evaluate the proposed HDP-HSMM sampling algorithms on both
synthetic and real data. First, we compare the HDP-HSMM direct assignment sampler
to the weak limit sampler as well as the Sticky HDP-HMM direct assignment sampler,
showing that the HDP-HSMM direct assignment sampler has similar performance to
that for the Sticky HDP-HMM and that the weak limit sampler is much faster. Next,
we evaluate the HDP-HSMM weak limit sampler on synthetic data generated from
finite HSMMs and HMMs. We show that the HDP-HSMM applied to HSMM data
can efficiently learn the correct model, including the correct number of states and state
labels, while the HDP-HMM is unable to capture non-geometric duration statistics. We
also apply the HDP-HSMM to data generated by an HMM and demonstrate that, when
equipped with a duration distribution class that includes geometric durations, the HDP-
HSMM can also efficiently learn an HMM model when appropriate with little loss in
efficiency. Next, we use the HDP-HSMM in a factorial [40] structure for the purpose of
disaggregating a whole-home power signal into the power draws of individual devices.

We show that encoding simple duration prior information when modeling individual
devices can greatly improve performance, and further that a Bayesian treatment of the
parameters is advantageous. We also demonstrate how changepoint side-information

can be leveraged to significantly speed up computation.
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Figure 3.11: (a) compares the HDP-HSMM with geometric durations direct assign-
ment sampler with that of the Sticky HDP-HMM, both applied to HMM data. The
sticky parameter K was chosen to maximize mixing. (b) compares the HDP-HSMM di-
rect assignment sampler with the weak limit sampler. In all plots, solid lines are the
median error at each time over 25 independent chains; dashed lines are 25th and 75th
percentile errors.

M 3.5.1 Synthetic Data

Figure 3.11 compares the HDP-HSMM direct assignment sampler to that of the Sticky

HDP-HMM as well as the HDP-HSMM weak limit sampler. Figure 3.11(a) shows that

the direct assignment sampler for an HDP-HSMM with geometric durations performs

similarly to the Sticky HDP-HSMM direct assignment sampler when applied to data

generated by an HMM with scalar Gaussian emissions. Figures 3.11(b) shows that the

weak limit sampler mixes much more quickly than the direct assignment sampler. Each

iteration of the weak limit sampler is also much faster to execute (approximately 50x

faster in our implementations in Python). Due to its much greater efficiency, we focus

on the weak limit sampler for the rest of this section; we believe it is a superior inference

algorithm whenever an adequately large approximation parameter L can be chosen a

priori.

Figure 3.12 summarizes the results of applying both a HDP-HSMM with Poisson du-

rations and an HDP-HMM to data generated from an HSMM with four states, Poisson

durations, and 2-dimensional mixture-of-Gaussian emissions. In the 25 Gibbs sampling

runs for each model, we applied 5 chains to each of 5 generated observation sequences.

The HDP-HMM is unable to capture the non-Markovian duration statistics and so its

state sampling error remains high, while the HDP-HSMM equipped with Poisson du-

ration distributions is able to effectively learn the correct temporal model, including

duration, transition, and emission parameters, and thus effectively separate the states
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Figure 3.12: State-sequence Hamming error of the HDP-HMM and HDP-HSMM
with Poisson durations applied to data from an HSMM with Poisson durations. In
each plot, the blue line indicates the error of the chain with the median error across
25 independent Gibbs chains, while the red dashed lines indicate the chains with the
10th and 90th percentile errors at each iteration. The jumps in the plot correspond to
a change in the ranking of the 25 chains.
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Figure 3.13: Number of states inferred by the HDP-HMM and HDP-HSMM with
Poisson durations applied to data from a four-state HSMM with Poisson durations. In
each plot, the blue line indicates the error of the chain with the median error across 25
independent Gibbs chains, while the red dashed lines indicate the chains with the 10th
and 90th percentile errors at each iteration.

and significantly reduce posterior uncertainty. The HDP-HMM also frequently fails to
identify the true number of states, while the posterior samples for the HDP-HSMM
concentrate on the true number; see Figure 3.13.

By setting the class of duration distributions to be a superclass of the class of geo-
metric distributions, we can allow an HDP-HSMM model to learn an HMM from data
when appropriate. One such distribution class is the class of negative binomial distri-
butions, denoted NegBin(r, p), the discrete analog of the Gamma distribution, which
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Figure 3.14: The HDP-HSMM and HDP-HMM applied to data from an HMM. In
each plot, the blue line indicates the error of the chain with the median error across 25
independent Gibbs chains, while the red dashed line indicates the chains with the 10th
and 90th percentile error at each iteration.

covers the class of geometric distributions when r = 1. (We discuss negative binomial

duration models further and develop specialized algorithms in Chapter 5.) By placing

a (non-conjugate) prior over r that includes r = 1 in its support, we allow the model

to learn geometric durations as well as significantly non-geometric distributions with

modes away from zero. Figure 3.14 shows a negative binomial HDP-HSMM learning
an HMM model from data generated from an HMM with four states. The observa-

tion distribution for each state is a 10-dimensional Gaussian, with parameters sampled

i.i.d. from a Normal-Inverse-Wishart (NIW) prior, as defined in Example 2.2.3 of Sec-

tion 2.2. The prior over r was set to be uniform on {1, 2,..., 6}, and all other priors

were chosen to be similarly non-informative. The sampler chains quickly concentrated
at r = 1 for all state duration distributions. There is only a slight loss in mixing time

for the HDP-HSMM compared to the HDP-HMM. This experiment demonstrates that

with the appropriate choice of duration distribution the HDP-HSMM can effectively

learn an HMM model.

* 3.5.2 Power Disaggregation

In this section we show an application of the HDP-HSMM factorial structure to an

unsupervised power signal disaggregation problem. The task is to estimate the power

draw from individual devices, such as refrigerators and microwaves, given an aggre-

gated whole-home power consumption signal. This disaggregation problem is impor-

tant for energy efficiency: providing consumers with detailed power use information

at the device level has been shown to improve efficiency significantly, and by solving

the disaggregation problem one can provide that feedback without instrumenting every

individual device with monitoring equipment. This application demonstrates the utility
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of including duration information in priors as well as the significant speedup achieved
with changepoint-based inference.

The power disaggregation problem has a rich history [119] with many proposed
approaches for a variety of problem specifications. Some recent work [64] has considered
applying factorial HSMMs to the disaggregation problem using an EM algorithm; our
work here is distinct in that (1) we do not use training data to learn device models but
instead rely on simple prior information and learn the model details during inference,
(2) our states are not restricted to binary values and can model multiple different
power modes per device, and (3) we use Gibbs sampling to learn all levels of the model.
The work in Kim et al. [64] also explores many other aspects of the problem, such
as additional data features, and builds a very compelling complete solution to the
disaggregation problem, while we focus on the factorial time series modeling itself.

For our experiments, we used the REDD data set [66], which monitors many homes
at high frequency and for extended periods of time. We chose the top 5 power-drawing
devices (refrigerator, lighting, dishwasher, microwave, furnace) across several houses
and identified 18 24-hour segments across 4 houses for which many (but not always all)
of the devices switched on at least once. We applied a 20-second median filter to the
data, and each sequence is approximately 5000 samples long. See Figure 3.15 for an
example of the aggregated sequence data and its constituent sequences.

We constructed simple priors that set the rough power draw levels and duration
statistics of the modes for several devices. For example, the power draw from home
lighting changes infrequently and can have many different levels, so an HDP-HSMM
with a bias towards longer negative-binomial durations is appropriate. Refrigerators
tend to exhibit an "off" mode near zero Watts, an "on" mode near 100-140 Watts, and
a "high" mode near 300-400 Watts, so our priors biased the refrigerator HDP-HSMM
to have fewer modes and set the power levels accordingly. We encode such modes in
the prior by adjusting the generative process so that some parameters are drawn from
distinct prior distributions. To encode a prior mode near some po, we simply generate
a particular emission parameter as 0( = It ~ _ M(po, 0-2) with some uncertainty in the
mode value represented by o. Other emission parameters are generated independently
and identically from a fixed background prior.

Our priors are summarized in Table 3.1. We write Gauss(po, os; ( 2 ) to denote a
Gaussian observation distribution prior with a fixed variance of a2 and a prior over its
mean parameter that is Gaussian distributed with mean po and variance ao. We write
NegBin(a, 3; r) to denote a prior over duration distributions where p ~ Beta(a, 13) and
r is fixed, and durations are then sampled from Negflin(r, p). We did not truncate
the duration distributions during inference, and we set the weak limit approximation
parameter L to be twice the number of expected modes for each device; for example,
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Figure 3.15: Example real data observation sequences for the power disaggregation

experiments.

for the refrigerator device we set L = 6 and for lighting we set L = 20. We performed

sampling inference independently on each observation sequence.
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Figure 3.16: An total power observation sequence from the power disaggregation
data set. Vertical dotted red lines indicate changepoints detected with a simple first-
differences. By using the changepoint-based algorithms described in Section 3.4.4 we

can greatly accelerate inference speed for this application.

As a baseline for comparison, we also constructed a factorial sticky HDP-HMM

[31] with the same observation priors and with duration biases that induced the same

average mode durations as the corresponding HDP-HSMM priors. We also compare

to the factorial HMM performance presented in Kolter and Johnson [66], which fit

device models using an EM algorithm on training data. For the Bayesian models, we

performed inference separately on each aggregate data signal.

The set of possible changepoints is easily identifiable in these data, and a primary

task of the model is to organize the jumps observed in the observations into an expla-

nation in terms of the individual device models. By simply computing first differences

and thresholding, we are able to reduce the number of potential changepoints we need

to consider from 5000 to 100-200, and hence we are able to speed up label sequence

resampling by orders of magnitude. See Figure 3.16 for an illustration.

To measure performance, we used the error metric of Kolter and Johnson [66]:

Y= j t Yt
Ace. =- I -T

2 Lt=: pt

where 9t refers to the observed total power consumption at time t, y ) is the true power

consumed at time [ by device i, and t is the estimated power consumption. We

produced 20 posterior samples for each model and report the median accuracy of the

component emission means compared to the ground truth provided in REDD. We ran

our experiments on standard desktop machines, and a sequence with about 200 detected
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Power Disaggregation Accuracies
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Figure 3.17: Overall accuracy comparison between the EM-trained FHMM of Kolter
and Johnson [66], the factorial sticky HDP-HMM, and the factorial HDP-HSMM.

House EM FHMM F-HDP-HMM F-HDP-HSMM
1 46.6% 69.0% 82.1%
2 50.8% 70.7% 84.8%
3 33.3% 67.3% 81.5%
6 55.7% 61.8% 77.7%

Mean 47.7% 67.2% 81.5%

Table 3.2: Performance comparison broken down by house.

changepoints would resample each component chain in 0.1 seconds, including block
sampling the label sequence and resampling all observation, duration, and transition
parameters. We collected samples after every 50 such iterations.

Our overall results are summarized in Figure 3.17 and Table 3.2. Both Bayesian
approaches improved upon the EM-based approach because they allowed flexibility in
the device models that could be fit during inference, while the EM-based approach
fixed device model parameters that may not be consistent across homes. Furthermore,
the incorporation of duration structure and prior information provided a significant
performance increase for the HDP-HSMM approach. Detailed performance compar-
isons between the HDP-HMM and HDP-HSMM approaches can be seen in Figure 3.18.
Finally, Figures 3.19 and 3.20 shows total power consumption estimates for the two
models on two selected data sequences.

U 3.6 Summary

We have developed the HDP-HSMM and two Gibbs sampling inference algorithms, the
weak limit and direct assignment samplers, uniting explicit-duration semi-Markov mod-
eling with new Bayesian nonparametric techniques. These models and algorithms not

D-HMM F-HDP-HSMM
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Figure 3.18: Performance comparison between the
approaches broken down by data sequence.
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Figure 3.19: Estimated total power consumption
HSMM significantly outperformed the HDP-HMM
ularities.

HDP-HMM and HDP-HSMM

Estimated with F-HDP-HSMM

P Dishwasher

Microwave

Truth

Lighting

Dishwasher

Microwave

for a data sequence where the HDP-
due to its modeling of duration reg-

only allow learning from complex sequential data with non-Markov duration statistics
in supervised and unsupervised settings, but also can be used as tools in constructing
and performing infernece in larger hierarchical models. We have demonstrated the util-
ity of the HDP-HSMM and the effectiveness of our inference algorithms with real and
synthetic experiments.

In the following chapters, we build on these models and algorithms in several ways.
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Estimated with F-HDP-HMM

Lighting
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Lighting
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Truth

Lighting

Refrigerator

Microwave

Dishwasher

Figure 3.20: Estimated total power consumption for a data sequence where both the
HDP-HMM and HDP-HSMM approaches performed well.

In the next two chapters, we address issues of scalability in HSMM and HDP-HSMM

inference algorithms, including both the challenge of scaling HSMM message passing

to longer sequence lengths and the challenge of scaling inference to large datasets with

many observation sequences. In Chapter 6, we build on the HDP-HSMM and these

scalable inference techniques to define a new Bayesian nonparametric model.
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Chapter 4

Faster HSMM Inference with
Efficient Representations

* 4.1 Introduction

In this chapter we address some fundamental scaling challenges for Hidden semi-Markov

Model (HSMM) inference. One reason HSMMs are not utilized nearly as often as the

ubiquitous Hidden Markov Model (HMM) is that the HSMM's basic inference routines

are often too computationally expensive in practical settings. The time complexity of

HSMM inference scales quadratically with data sequence length while HMM inference

scales only linearly. The slowdown relative to HMM inference is due to the weaker

Markovianity properties in the HSMM state sequence, which require more expensive

message passing algorithms. For this reason, with growing dataset sizes and richer

hierarchical models requiring more data to be fit, HSMMs are often rejected even when

explicit durations provide a better model.

We address this challenge in two ways. First, we study HSMMs with a particular

natural family of duration distributions, the two-parameter negative binomial family,
and develop a message passing algorithm for these models with complexity that scales

only linearly with the sequence length. We derive the message passing algorithm in

terms of a general notion of HMM embeddings, which we define in Section 4.3 and which

improves upon previous work on expanded-state HMMs, as we discuss in Section 4.2.

We also develop a Gibbs sampling algorithm that uses this linear-time message passing

scheme. These algorithms immediately generalize to duration models that are mixtures

of negative binomials, a natural duration analog of the Gaussian mixture model. Second,
we give a linear time-invariant (LTI) system realization perspective that both generalizes

the class of duration models for which HSMM message passing can be made efficient

and illuminates the limits of such an approach.

In subsequent chapters we build on these inference methods for HSMMs with nega-

tive binomial durations to develop scalable inference algorithms for hierarchical Bayesian

and Bayesian nonparametric models, including the stochastic variational inference (SVI)
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methods for the HSMM and HDP-HSMM described in Chapter 5 and both Gibbs sam-

pling and SVI algorithms for a new model described in Chapter 6.
The remainder of this chapter is organized as follows. In Section 4.2 we discuss

previous work and how it relates to the framework and methods we develop. In Sec-
tion 4.3, we provide our definition of HMM embeddings of HSMMs and give a general

result on computing HSMM messages in terms of the embedding. In Section 4.4 we give
a particular embedding for HSMMs with negative binomial durations and show how to
use the embedding to construct an HSMM Gibbs sampling algorithm for which the time

complexity of each iteration scales only linearly in the observation sequence length. Fi-

nally, in Section 4.5 we give a more general perspective on efficient representations for

HSMM message passing in terms of LTI system realization.

* 4.2 Related work

The work that is most closely related to the ideas we develop in this chapter is the work
on expanded state HMMs (ESHMMs) [98, 97, 61, 48]. In the ESHMM framework,
non-geometric state durations are captured by constructing an HMM in which several
states share each observation distribution; the observations are generated from the
same observation distribution while the hidden Markov chain occupies any state in the
corresponding group of states, and so the effective duration distribution is modeled by
the Markov dwell time for the group of states. This technique is similar to the notion of
HMM embedding that we develop, but there are some key advantages to our approach,
both modeling and algorithmic. First, while an ESHMM is limited to a single HMM
of fixed size and transition topology, our definition of HMM embeddings as a way to

compute HSMM messages allows us to perform Bayesian inference over the HSMM
duration parameters and thus effectively resize the corresponding HMM embedding, as

we show in Section 4.4.2. Second, another consequence of using HMM embeddings to
compute HSMM messages is that the message passing recursions we develop require
significantly less memory than those for the ESHMM, as we describe in Section 4.3.
Finally, as we show in Section 4.5.2, our definition can be generalized to give efficient

HSMM message passing algorithms for duration models that cannot be captured by
ESHMMs.

Note that the HMM embedding we develop in Section 4.4 is most similar to the

ESHMM Type A model [97, 61], which can model a modified negative binomial duration

distribution with fixed r parameter and PMF given by

P(k r, p) = )(1 p)rPk-r k = r, r + 1, r + 2, .... (4.2.1)
k-r
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This distribution is not the standard negative binomial distribution which we use in

Section 4.4. In particular, the PMF (4.2.1) has support starting at r, which can be

an artificial limitation when modeling duration distributions and particularly when

learning the r parameter, as we do inl Section 4.4.

U 4.3 HMM embeddings and HSMM messages

In this section, we give our definition for HMM embeddings of HSMMs and show how

the HSMM messages can be computed in terms of HMM messages in the embeddings.

In Section 4.4 we use these results to derive efficient inference algorithms for HSMMs

with negative binomial durations, and in Section 4.5 we generalize these definitions.

As described in Chapter 3, there are standard HSMM forward and backward mes-

sages [78] analogous to those for the HMM. The forward messages (F, F*) and backward

messages (B, B*) are defined by

Ft, i p(y1:t, xt -= i1, xt 7 Xt+1)
T-t-1

SFt*_dip(dlxtd i)P(yd:t T[_d:t i) (4.3.1)
d=1

Ft'i p(y1:t, xt+1 = i~xt 7 xt+1)
N

- > Ft,ip(xt+1 = Ixt= j, xt x .t+1) (4.3.2)
j=1

F1,j p(xi = )(4.3.3)

Btj - P(Yt+i: Txt = Ixt It+i)
N

- > B/*p(xt+1 i xt =i, t it+1), (4.3.4)
j= 1

Bt*i P(yt+1 T lt+1 -- iXt 7 t+l)
T-t

3 Bt+d,ip(dlxt+1 = i)p(yt+1:tdXt+1:t+d = i )
d=1

00

+ p(d xt+j = i)P(Yt+1:Tlxt+1:T = i), (4.3.5)
d=T-t+1
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where T denotes the length of the observation sequence and N the number of states.

These HSMM messages are expensive to compute because the expression for B* , like
that for Ftj involves summing over all possible durations, resulting in an overall time
complexity of O(TN 2 + T 2 N) compared to the HMM message passing complexity of

O(TN 2 ). The HSMM algorithm's quadratic dependence on the sequence length T

severely limits the settings in which HSMM inference can be performed and has led

many practitioners to prefer HMMs even when geometric state durations are unnatural.

One way to interpret the HSMM messages messages is to embed the HSMM into

a much larger HMM that encodes the same generative process [78, 54]. The HMM
embedding includes the duration information in its Markov state. Here we give a more

general definition of HMM embeddings than considered in previous work, and use this

general definition to explore opportunities for more efficient representations.

Recall from Chapter 3 that we parameterize an HSMM on N states with a N x N
transition matrix A where Ai= p(xt+= j=xt = i, xt # xt+1), initial state distribution
r(o), observation parameters 0 {0(i)}I 1, and duration parameters d = {(i)} 1 .

Definition 4.3.1 (HMM embedding of an HSMM). Given an HSMM on N states with

parameters (A, 0, r('0),) and an observation sequence length T, an HMM embedding

of the HSMM is an HMM on N = EN N(M states for some N(I with parameters

(A, 6, r(O)) that satisfy the following requirements:

(1) The HMM transition matrix is of the form

A) ( (11) A ) - c(1)T -

A (3) b(N)

(4.3.7)

for some nonnegative matrices A( of size N() x N W and nonnegative vectors I0)
and c() of length NIV for i = 1, 2, ... , N. Entries shown as blank are zero.

(2) Indexing each HMM state as (i, j) for i = 1,2, ... , N and j 1,2,..., N(i), the

HMM observation parameters are 6(',j) = 0 (M and the initial state distribution is

7r() = ,r(c. . We can thus associate each HSMM state i with a collection of ()
HMM states of the form (i, j), and we refer to each i as the state index and each

j as the pseudostate index.

(3) The probability the HSMM assigns to any label sequence xi:T = (Xt)i 1 is equal

to the total probability the HMM embedding assigns to all HMM state sequences
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of the form 21:T = ((Xt, et)){_1 for some sequence of pseudostate indices (et); that

is, writing P(XI:T A, -F0), 0,0) for the probability the HSMM assigns to a fixed label

sequence x1 1T and p(1:T|A, 7(0), 0) for the probability that the HMM assigns to a

state sequence x1i' with 2= (Xt, et), we require

P(X1:TA, +r0), 0, t) =Zp~i:jA, fr, 0) Z p((xt, et)" 1 A, 7r, 0) (4.3.8)
et et

where the sum is over all possible pseudostate index sequences.

Note that by the construction in (4.3.7), for any HMM embedding of an HSMM,

each matrix

for i = 1, 2, ... , N is row-stochastic. Further, again decomposing each xt = (It, et) into

an HSMM state index and a pseudostate index, note that by Definition 4.3.1 we have

C = pXzt+1I = (I, J*) I t+1 = Z' Xt : t+ 1) (4.3.10)
c(0 z~'~ (4.3.11)
bI = Xxzt : Xt+1 xt = (i, ')).-43.1

Thus we refer to each c(") as the vector of entrance probabilities and to each I(0) as

the vector of exit probabilities for the HMM embedding pseudostates corresponding to

HSMM state i. An HMM embedding captures the desired HSMM transition dynamics

because EZ 1Zi - p(t1 = (j,)|zt = (i,k),xt #4 t+1) = Aj. Finally, note that

an HMM embedding models the HSMM durations in terms of the dwell times within

the group of HMM states corresponding to each HSMM state, as we make clear in

Proposition 4.3.1.

First, we give an example of a generic HSMM embedding from a construction given

in Murphy [78] (though not in terms of our definition of HMM embeddings).

Example 4.3.1. We can construct an HMM e'nbedding for an arbitrary HSMM by

using N = TN total states with N(') = TN and
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/0 1 \0\
0 1 0

A(M = (4.3.12)

0 0 1

-i (p(d > Tlt9(')) p(d - T - 1179M).. p (d 2 19(i)) p (d = 11()))V (4.3.13)

In this HMM embedding, when the group of states corresponding to HSMM state i is
entered, a duration (censored to a maximum of T) is sampled from the HSMM state's du-

ration distribution encoded in c('); if a duration d is sampled, the state with pseudostate

index T - d is entered. Then the pseudostate index serves as a counter, deterministi-

cally incrementing until reaching the maximum pseudostate index of T, at which point

a transition occurs and a new HSMM state is sampled.

While the construction makes it impossible to sample a pseudostate corresponding

to a duration greater than T, with the label sequence length fixed at T it is impossible

for any duration longer than T to be represented in the HSMM label sequence. Thus

this HMM embedding directly models the HSMM generative process for label sequences

of length T. Note that, in a sense we make precise in Section fl.5, an embedding that

depends on the sequence length T corresponds to an HSMM that does not have a finite-

size realization.

Example 4.3.1 also makes clear the computational complexity of HSMM message

passing and the reason it scales quadratically with T. The time complexity for message
passing on a generic HMM with TN states is ((T(TN) 2 ) because at each time one

must compute a matrix-vector product with a matrix of size (TN) x (TN). However,
due to the structure of A each multiplication for the HMM embedding can be done in
O(N 2 + TN) time. Indeed, this generic HSMM embedding provides a way to derive

the HSMM messages in terms of the HMM messages on the embedding.

Proposition 4.3.1. Let (A,0,wr( 0 ),) be an HSMM and let (A, Ofr(0 )) be a candidate

HMM embedding satisfying conditions (1) and (2) of Definition 4.3.1. If for each i

1, ... , N we have

c(iT (A() d- 6) - p(dl7O()) d = 1, 2,... , T - 1 (4.3.14)

S(A(')T b = p(d ;> Tld() (4.3.15)
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then (A,6, r(0)) is an HMM embedding of (A, 0, 7r(0), d).

Proof. Note that the matrix expression in (4.3.14) gives the probability of absorption

in d timesteps for a Markov chain with transition matrix and initial state distribution

given by

(A 1i)

respectively.

remaining in

Finally, note

the duration

and (ejIOT o) (4.3.16)

Therefore, by Definition 4.3.1, the expression gives the probability of

the pseudostates corresponding to HSMM state i for exactly d timesteps.

that, as in Example 4.3.1, the HMM embedding only needs to represent

distribution for durations up to the observation sequence length T. D

As we show in the next example, based on a construction from Hudson [54], HMM

embeddings of an HSMM are not unique.

Example 4.3.2. For an HSMM (A, 0, ((D,19), using Definition 4.Y.1 choose

0 1-p(d=1o('))
0

- ()
0 1-p(d=T-1Id>T-1,z('))

0

c (i) T( 1 0 .. 0 0).

(4.3.17)

(4.3.18)

p(d=1|i)

p(d=2jd>2,d('))

p(d=T -1jd;>T-1,,O ))
I

This HMM embedding also uses the pseudostate index as a duration counter,
of counting down until the time an HSMM transition occurs, the pseudostate

up the time since the previous HSMM transition.

but instead

here counts

Given any valid HMM embedding of an HSMM, we can compute the HSMM mes-

sages in terms of the HMM messages for the embedding, as we show in the following

proposition.

Proposition 4.3.2 (HSMM Messages from HMM Embedding). Given an HMM em-

bedding for some HSMM, let F and B denote the HMM messages for the embedding as

in Eqs. (2.4.6) and (2.4.7) of Section 2.4, so that

(4.3.19)

(4.3.20)
Bt,(i,j) = p(yM+1:T t (i, j))
Ft,(i,j) = pfyi:t,x e=(,J'))
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Then the HSMM messages for each time t = 1, 2,..., T and each index i = 1, 2, ... , N
can be computed as

N(')

Ft+,,i = E 6 t(i jPu+13 -
j=1

R(2)

Bt S ( Bt+1,(ijj)P(Yt+1|0())

J=1

N

Ft*; = EFt,iAji
j=1

N

Bt = E B1 *Aij.
j=1

Proof. Note that the expressions for Ft*i and Btj are identical to those in (4.3.2)
and (4.3.4), so it suffices to check the expressions for B* and Ft+l,i. Using (4.3.10)
and (4.3.11) we have

N(')

S bVtPi(j)P(yt+1 Q(i))
j= 1

N(')

j 1 t+1,(i,j)
j=1

N(')

= 5P(y i:t+i, = (i, j))p(xt # Xt+1 kt = (i, j))
j=1

SP(y1:t+1, xt = Z, xt t+1) = Ft+1,i

N(')

- P(Yt+1:Tjlt+1 (i,j))
j=1 P(tt+1= (, At+1 = ,t 7t ±t+1)1

=P(Yt+1:T jzt+1 = i, Xt : xt+1) = B*

Note that, since the full HMM messages do not need to be stored, the recursions
in Eqs. (4.3.21) and (4.3.22) can offer memory savings relative to simply computing
the HMM messages in the HMM embedding; instead, the recursions in Eqs. (4.3.21)
and (4.3.22) require only O(TN+N) memory to compute. In the case of the embedding
of Example 4.3.1, since multiplication by each AMj only performs shifting, the HSMM
messages can be computed with O(TN) memory, and indeed in that case the com-
putation corresponds precisely to implementing the recursions in (4.3.1)-(4.3.5). The
recursions in Eqs. (4.3.21) and (4.3.22) can be computed in time O(TNN nax + TN 2 ),
where Nmax = maxc AT().

From the HMM embedding perspective, the HSMM message passing complexity is
due to generic duration distributions requiring each HSMM state to be augmented by

T pseudostates in the embedding. In the next section we study a particular family of

duration distributions for which an HSMM can be encoded as an HMM using many

fewer pseudostates.

(4.3.21)

(4.3.22)

(4.3.23)

(4.3.24)

(4.3.25)

(4.3.26)

F
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Sec. 4.4. HSMM inference with negative binomial durations

* 4.4 HSMM inference with negative binomial durations

In this section, we develop an HMM embedding for HSMMs with negative binomial

duration distributions as well as a Gibbs sampler for such models. First, we develop

the HMM embedding in terms of the general results of the previous section, prove its

correctness, and state its message passing computational complexity. Next, we show

how to use the embedding to construct an HSMM Gibbs sampling algorithm in which

the overall time complexity of each iteration scales only linearly with the sequence

length T. Finally, we show how to generalize the HMM embedding construction to

include HSMMs in which the durations are mixtures of negative binomial distributions.

* 4.4.1 An embedding for negative binomial durations

The negative binomial family of discrete distributions, denoted NB(r, p) for parameters

r > 0 and 0 < p < 1, is well-studied in both frequentist and Bayesian analysis [38].

Furthermore, it has been recommended as a natural model for discrete durations [26,
61] because of it can separately parameterize mean and variance and because it includes

geometric durations as a special case when r = 1. In this section, using our formulation

of HMM ernbeddings from Section 4.3 we show that negative binomial distributions

also provide computational advantages for HSMM message passing and inference.

The negative binomial probability mass function (PMF) can be writteni

p(kjr,p) (k=2 (1 -p)rPk- k = 1, 2, .... (4.4.1)
k - )

When r is taken to be fixed, the family of distributions over p is an exponential family:

p(k rp) hr (k) exp {r/(p) - t(k) - Z, (p)} (4.4.2)

with

h7 (k) (k rI(p) In p, (4.4.3)

t(k) A k - 1, Z (p) r ln(1 - p). (4.4.4)

However, when considered as a family over (r, p), the negative binomial is no longer

an exponential family of distributions because the log base measure ln h1 (k) has a

dependence on r that does not interact linearly with a statistic of the data. The

1While some definitions take the support of the negative binomial PMF to be {0, 1, 2 .. .}, for

duration modeling we shift the PMF to start at 1 because we do not want to include durations of 0
length.
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definition of the negative binomial can be generalized to any positive real r parameter
by replacing the definition of h,(k) with the appropriate ratio of gamma functions,
but in this chapter we restrict our attention to the case where r is a positive integer.
This restriction is essential to the algorithms developed here and does not substantially
reduce the negative binomial's expressiveness as a duration model. For a discussion of
general results on exponential families of distributions, see Section 2.2.

To construct an efficient HMM embedding, we use the fact that a negative binomial-
distributed random variable can be represented as a sum of r geometrically-distributed,
shifted random variables:

r
x ~ NB(r,p) - = 1 + zi with zi - ShiftedGeo(1 - p) (4.4.5)

i=1

iid
where zi ~ ShiftedGeo(1 - p) denotes that the zi are independent and each has a
geometric distribution with parameter 1 - p shifted so that the support includes 0,
i.e. the PMF of each zi is given by

p(z1p) = pz(1 - p) z = 0, 1, 2, .... (4.4.6)

Therefore, given an HSMM in which the duration of state i is sampled from NB(r(), p(')),
we can construct an HMM embedding by augmenting each HSMM state with S(W = r()
pseudostates and choosing

A pi jW) ~ 1~z)~~() (4.4.7)
pM I - M

Binom(r(') - 11r(') - JpM)

)~w Binom(r() - 2|r(i) - lp() (4.4.8)

Binom(0lr(i) - ipM)

where Binom(kn,p) denotes a binomial PMF with parameters (n, p) and evaluated at
k, given by

Binom(kln, p) k(1-p"k (4.4.9)

In the next proposition, we show that this HMM embedding encodes the correct dura-
tion distributions.
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Proposition 4.4.1. Using A(W, -0), and c(') as in (4.4.7) and (4.4.8) in the HMM

embedding construction of Definition 4.J.1 gives a valid HMM embedding of an HSMM

in which the duration of state i is distributed as NB(rC(','p).

Proof. By Proposition 4.3.1 it suffices to show that the probability of absorption af-

ter exactly d timesteps in each Markov chain with transition matrix and initial state

distribution given by

AW _0) and ((i) T 0 , (4.4.10)

0 1))I

respectively, is distributed as NB(r(C',p(W). To simplify notation, we drop the super-

script i for the remainder of this proof.

Writing Xj to denote the random time to absorption from state r - j for j
0,1, ... , r - 1 in the Markov chain parameterized by (4.4.10) , note that by the construc-

tion of the transition matrix we can write X = 1+ Y + X _1 for j = 1, 2, .. ., r - 1 and

X0 = I+Y, where Y d Geo(p) for j 0,1,... r -1. Therefore X = I1+j+2 Yg,
and so we can write the PMF of Xj as (k-1 )(1 p)'pk-(r-j) for k =r, I + 1.

Summing over the initial state distribution we can write probability of absorption

after k steps as

r -0 - 1k (r
. ( + k - (1 - I' - 1)( (4.4.11)

rk- )(4.4.1)

where the last line follows from the Vandermonde identity [4]

m+n n ( n (4.4.14)

Note that we can compute matrix-vector products against each A(W in O((r() time.

Therefore with the HMM embedding given in (4.4.7) and (4.4.8) and Proposition 4.3.2,
for HSMMs with negative binomial durations we can compute the HSMM messages in

time O(TN 2 + TNR), where R = max. r(). This message passing computation avoids

the quadratic dependence on T necessary for generic HSMM messages.
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This embedding is not unique; indeed, it can be checked that another valid HMM
embedding is given by choosing

pMi (I _ M)(j (i _ po)roi)

Ap (i))2) (4.4.15)

pNi (1 _ pNi)( - (1 - p)2

(I -P)

Ii) =2 (4.4.16)

1- pM /

As we describe in Section 4.5.2, with respect to the HSMM forward message recursions
these two alternative HMM embeddings for negative binomial durations are analogous
to LTI realizations in observable canonical form and controllable canonical form, re-
spectively.

* 4.4.2 Gibbs sampling

Here we show how the HMM embedding for HSMMs with negative binomial durations
can be used to construct an HSMM (or weak limit HDP-HSMM) Gibbs sampler. Un-
like the corresponding Gibbs sampler developed for HSMMs with arbitrary duration
distributions in Chapter 3, the time complexity of each iteration of this Gibbs sampler
scales only linearly in T, requiring O(TN 2 + TNR) time for each update instead of
O(TN 2 + T 2N).

We describe the resampling steps for both the HSMM label sequence and the neg-
ative binomial parameters; the other sampling updates to the observation parameters,
transition matrix, and initial state distribution are performed as in Section 3.4. We
place priors of the form p(r(2), pM) = p(r))p(p(i)) over the negative binomial parame-
ters for each 1, 2, . . , N. In particular, we choose the prior over each r(') to be a generic

distribution with finite support {1, 2,. .. , rmax} and parameter v E- R+, writing the
PMF as

p(rlv) oc exp ln vT r r = 1, 2,, rmax (4.4.17)

where 1, denotes an indicator vector of length N with its rth entry set to 1 and its
others set to 0. We place beta priors over each p(') with parameters (a, b), writing
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p(pIa, b) = Beta(a, b) = exp {(a - 1) ln(p) + (b - 1) ln(1 -p) - ln B(a, b)} (4.4.18)

for p E (0, 1), where B(a, b) is the beta function defined by

B (a, b) = JOt"-l(1 - t)b- ' dt. (4.4.19)

Resampling the label sequence Xi:T. Using the sampled values of each (r(, p(0) and

the other HSMM parameters, as outlined in the previous section we can use the HMM

embedding given in (4.4.7)-(4.4.8) and the message passing recursions given in Propo-

sition 4.3.2 to compute the HSMM backward messages in time O(TN 2 + TNR). Using

the HSMM backward messages and the forward sampling algorithm given in Section

3.4.1, we can then construct a block sample of the label sequence £1:7 in time O(TN).

These steps require a total of O(TN + NR) memory to compute.

Resampling the negative binomial parameters (r(),p()). To derive a sampling update

for the negative binomial parameters (r(), p(M) for each state i = 1, 2, . .. , N given the

sampled label sequence XiT:, we first denote the set of durations of label i in the label

sequence by {dk} k 1 , where D is the number of times HSMM state i is entered in the

label sequence and we drop the explicit index i from the notation. Then the task is

then to sample (r( , p() conditioned on the {dk } and the hyperparameters a, b, and v.

Suppressing explicit conditioning on hyperparameters from the notation, we can

generate such a sample by first sampling r( I{dk} and then sampling p(r) ('), {dk}. We

can sample r (0{dk} according to the PMF

p(r|{dk}) a J p(r)p(p)p({dk} r, p) dp (4.4.20)

D dk +,r - 2
=p(r.)H ( dk - )

k=1

b) exp (a + ED 1 dk) ln(p) + (b + rD) ln(1 - p)} dp)

(4.4.21)

D dk -- r _ 2 B (a+ E _I d, b +rTD

dk-IB( b) (4.4.22)
k=1

for T = 1, 2, . .. , rmax, Where we have used the fact that, for each fixed r, the Beta prior
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on p is conjugate to the negative binomial likelihood. Using each sampled value f() of
r(), we can then sample p(') according to

p(pl{d}, r = (i)) = Beta a + di, b + f(?)D . (4.4.23)

Thus, using Eqs. (4.4.22) and (4.4.23) we can resample the negative binomial parameters
(r(i),p(i)) for each HSMM state i, completing the Gibbs sampler.

Note that by resampling the negative binomial parameters r(') we are effectively
performing inference over the size of the HMM embedding given in Section 4.4.1, which
we only use to compute the HSMM messages during the resampling step for the label
sequence :i:. Thus, unlike the ESHMM approach discussed in Section 4.2, we can
learn a much broader class of duration distributions than those corresponding to only
fixed r(') parameters while maintaining efficient message passing.

In Chapter 6, we extend the ideas used to derive this Gibbs sampling algorithm to
construct a scalable mean field inference algorithm for which approximate updates can
also be computed in time linear in the sequence length T.

* 4.4.3 HMM embeddings for negative binomial mixtures

Here we show how to generalize the HMM embedding for negative binomial durations
to an HMM embedding for durations that are mixtures of negative binomials.

Suppose that the duration distribution for HSMM state i has the PMF

(~) r(iij) +d-2 (~),(~)('
p(djp, r, p) = p d) d -' (1 -)( P(i d-1 (4.4.24)

j=1

for mixture weights p(03) and negative binomial parameters rF(i,) and p(ij), with j=
1, 2, ... , K() where K() is the number of mixture components. Then we can choose
the embedding

A ,,2)) (i,2) g(i,2)
AM 6(= .i) (4.4.25)

A(',K( ) b(i,K(') )i,

where
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Bi-() 1 - p( i ) )
A~i~j)(b'j)

P~,) p(t~J)/K-pi)

Binom(r'ij) - 1r(,) - 1,p(d))

(ii) =inom(+j) - - 1,pp(ij (4.4.26)

\ Binom (ij) - I, Ip~i'))

That is, we can construct an embedding for any mixture model by a simple comuposi-

tion of embeddings, where the entrance probabilities &ij) are weighted by the mixture

weights p(ii).

The time complexity for message passing in this HMM embedding is O(TNR +
TN 2 ) where now R = maxi E r(i). The memory complexity is only O(TN + RN)

because, as with the other HMM embeddings, we do not need to store the corresponding

HMM messages. Gibbs sampling updates can be performed using standard methods

for mixture models [11].

* 4.5 Generalizations via LTI system realization

In this section we extend the notion of HMM embedding of HSMMs developed in

Section 4.3 to a notion of LTI realization of HSMMs. The contributions in this section

are primarily of theoretical interest, though the framework we develop here may lead

to efficient HSMM message passing for a greater variety of duration models or to new

approximation schemes. In addition, by making connections to LTI systems and positive

realization theory, we show the limits of such methods by giving both anm example of

a duration distribution that can be represented efficiently as an LTI realization but

not an HMM embedding as well as an example of a duration distribution that has no

efficient representation of either kind.

The remainder of this section is organized as follows. In Section 4.5.1 we review

basic definitions and results from LTI system realization theory. In Section 4.5.2 we

develop a definition of LTI realizations of HSMMs and show some basic results, including

examples that show the limitations of such an approach to HSMM message passing.

We also show that HMM embeddings correspond to (normalized) positive realizations,
which are more constrained than general LTI realizations.
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* 4.5.1 LTI systems and realizations

In this section we review some basic definitions and state some results from linear
system theory [86] and positive linear system theory [8, 25]. We use these definitions
and results to define LTI realizations of HSMMs in Section 4.5.2.

We consider discrete-time, single-input single-output (SISO) linear systems of the
form 2

zt+ = Azt + but zO = 0

W t = e t = 0, 1, 2, (4.5.1)

for input signals u, output signals w, and internal state sequence z. We call the triple
(A, b, c) the parameters of the LTI system, where A is a K x K matrix and b and c
are vectors of length K for some 0 < K < oc. Note that the impulse response of the
system can be expressed in terms of the parameters as eT t-16 for t = 1, 2,... and the
transfer function of the system is cT(zI - A)- 1b for z - C.

Definition 4.5.1 (LTI realization). Given an impulse response ht with ho = 0, we say
a system of the form (4.5.1) is an LTI realization of ht if ht = eTAt-'-6 for t = 1, 2, ....

Theorem 4.5.1. An impulse response ht has an LTI realization of the form (4.5.1) if
and only if the corresponding transfer function H(z) =E'- htz-t is a strictly proper
rational function of z.

Definition 4.5.2 (Positive realization [8]). An LTI realization is a positive realization
if for all nonnegative input signals the output signal and internal state sequence are
nonnegative, i.e. if Vt ut > 0 = Vt wt, zt > 0, where zt > 0 is taken entrywise.

Theorem 4.5.2 (Theorem 1 [8]). A realization (A, b, e) is a positive realization if and
only if A, b, c > 0 entrywise.

As we make precise in the next subsection, HMM embeddings of HSMMs correspond
to positive realizations that are also normalized, in the sense that (4.3.9) is required to
be row-stochastic.

Definition 4.5.3 (Canonical realizations). We say an LTI system of the form (4.5.1)
is in controllable canonical form if the parameters (A, b, ii:) have the form

2 We use zt to denote the system's internal state and wt to denote its output to avoid confusion with
the HSMM label and observation sequences X1:T and Yi:T, respectively.
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/a,
1

a2 ... aK-1 aK

1 /

1

(4.5.2)

C1
c2

CK -1)
CK

and we say it is in observable canonical form if the parameters have the form

al
a2

aK-1
aKl

1
1

11

/bi\

b2

b =b21

bK-1

bK

We note that it is always possible to write LTI realizations of impulse responses corre-

sponding to strictly proper rational transfer functions in these two canonical forms.

E 4.5.2 LTI realizations of HSMMs

To motivate the definition of LTI realizations of HSMMs, we start from the definition of

HMM embeddings developed in Section 4.3 and show that we can relax the requirement

that the embedding parameters A(, bI), and (') be nonnegative and normalized. In

particular, note that using the representation (4.3.7) and Proposition 4.3.2, we can

write the HSMM forward messages recursion as

F,+1~ b Ft,(i'j )pC yt+1|6(0
j=1

N()

t+,(i,j) = A t,(,j)p(yt+1 JOW) + j F,*+

k=1

N

Ft*+,i =E Ft+1I,i Aji
j=1

(0) .
F, T i )7i

(4.5.4)

(4.5.5)

These recursions can be represented as an interconnection of linear systems as shown

in Figure 4.1. The system labeled A simply applies right-multiplication by the HSMM

transition matrix A to its input vector. The block labeled by z- 1 denotes a delay block

applied to each of its N inputs. Finally, the systems labeled D(',t) are the single-input

single-output linear time-varying systems defined by

C (4.5.3)
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Ft 1 DFt+,,

Ft,2 DFt+1,2

Ft,*N D(Nt) Ft+I,N

Figure 4.1: A block diagram showing interconnected linear systems corresponding to
the forward HSMM message passing recursions in (4.5.4)-(4.5.5). The block labeled z- 1

denotes a delay block. Ftj and Ft*i are the standard HSMM forward messages. Note
that the inputs and outputs of the blocks labeled z- 1 and A are vectors of length N,
while the blocks labeled D070 operate on each component of the vector.

zt+1 = A(',t)zt + b("t)ut zo = 0

Wt = (ii)jz t = 0, 1, 2, .... (4.5.6)

for input signal u and output signal w, where

A(i,) - p(ytO())A() b (',t) = p(yt|10%))b (). (4.5.7)

The corresponding recursion for the backward messages can be represented similarly.
While the linear systems defined in (4.5.6) are time-varying, as we show in the next

lemma to understand when any two such systems yield the same HSMM messages it
suffices to compare two corresponding LTI systems.

Lemma 4.5.1. Let (A,b,,ei) and (A',b', ') be two LTI systems and let dt # 0 be any
signal that is nonzero everywhere. The LTI systems have the same impulse response if
and only if the corresponding time-varying systems of the form

zt+1 dt(Azt + but) z 1 = dt (A'zt + b'ut) (4.5.8)

Wt T / = iTWt t 761 C t (4.5.9)
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with zo = 0 and z = 0, yield the same output signal w w' given the same input signal

U.

Proof. Because the time-varying systems are linear, we can write [20] the outputs w

and w' as linear functions of the input u:

t-1 t-1

wt d(t, f)j A'- 1but w' = d(t, f) ITA'T ' -b'uf (4.5.10)
f=O f=0

where d(t, f) = H_ dk. If we consider inputs of the form ue = 6(k - f) for some k,
where 6(k) is 1 if k is 0 and 0 otherwise, we see that the outputs wt and w' are equal for

all such inputs if and only if the terms in each sum are equal for each f. However, these

terms are equal if and only if we have cTAt-1- =/TA/t--1/ for all t = 1, 2,.... E.

Using Lemma 4.5.1, the following proposition gives a characterization of the pa-

rameters (A, b, c) that, when used in the recursions (4.5.4)-(4.5.5), compute the correct

HSMM messages. This proposition is analogous to Proposition 4.3.1 except it does not

require that the realization parameters be entrywise nonnegative or normalized, in the

sense that (4.3.9) need not be row-stochastic; it only constrains the system's impulse

response and not its parameters or internal state.

Proposition 4.5.1. Let (A, 0, 7rT0 ), i9) be an HSMM with N states and let (A 0 , b(i), c(i)

be any (not necessarily positive) linear system for each i = 1, 2,... , N. If the impulse

response of each system satisfies

5(iT A(' b() = p(dl((A ) d = 1, 2, ... I T - 1, (4.5.11)

e(i)T (A(' ( = p(d > T<V(')) (4.5.12)

then using these systems in the recursions (4.5.4)-(4.5.5) yields the correct HSMM mes-

sages.

Proof. If each linear system satisfies (4.5.11)-(4.5.12), then the first T values of the

impulse response of each system equal the first T values of the impulse response for

the HMM embedding of Example 4.3.1. Since the impulse responses are the same, by

Lemma 4.5.1 they yield the same HSMM messages when used in the recursions (4.5.4)-

(4.5.5). Therefore the linear systems (A(M, 0), CM)) yield the correct HSMM messages.

Proposition 4.5.1 motivates the following definition of an LTI realization of an

HSMM, which is strictly more general than the definition of HMM embedding be-
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cause it allows for parameters (AMi, 6(M, (i)) that are not necessarily nonnegative and

normalized and hence cannot necessarily be interpreted as encoding HMM transition
probabilities.

Definition 4.5.4 (LTI realization of an HSMM). Given an HSMM (A, 0, 7r('), 0) on N
states and an observation sequence length T, an LTI realization of the HSMM is a set
of N LTI systems of the form 4.5.1 with parameters (A), 6(, c(i)) for i = 1, 2,..., N
such that

(i)T A(i)d-1() = p(dgi9(2)) d = 1, 2, ... , T - 1, (4.5.13)

i (A()T 6M = p(d > T19M). (4.5.14)

This definition generalizes the class of representations which can yield efficient
HSMM message passing and provides connections to LTI system realization theory.
In particular, it makes clear that HMM embeddings correspond to positive realizations
of the duration PMF (which are also normalized in the sense that (4.3.9) must also be
row-stochastic), for which the internal system state is required to remain nonnegative

(and real) for all nonnegative inputs. Definition 4.5.4 removes this requirement of in-
ternal nonnegativity, and thus broadens the scope of such efficient representations from
positive realizations to general LTI realizations. In particular, the internal state of an
LTI system is not required to remain nonnegative or even real-valued.

While this definition is primarily of theoretical interest for the purposes of this
chapter, the connection to system realization theory may allow for new algorithms and
approximation schemes for HSMM message passing. There are also immediate compu-
tational advantages: by showing that the LTI system parameters need not correspond
to HMM transition probabilities, it is clear that one can parameterize the system so that
each matrix AM is in bidiagonal Jordan form, and hence the overall HSMM message
passing complexity reduces from O(TN 2 + TNK max) to O(TN 2 + TNKmax + Kmax),
where Kmax denotes the size of the largest matrix AM. This bidiagonalization is not
possible with HMM embeddings because HMM transition matrices may have negative
and even complex-valued eigenvalues in general.

Definition 4.5.4 also leads to a natural interpretation of the alternative forms of
generic HMM embeddings given in Examples 4.3.1 and 4.3.2, as well as the alternative
forms of the negative binomial HMM embedding given in Section 4.4. In each of these
pairs of alternative embeddings either () or c(') is chosen to be an indicator vector,
having a single nonzero entry. While these realizations are not precisely in control-
lable and observable canonical forms because the structure of the corresponding A is
not in canonical form, the structures of 6M and c(') are analogous to those given in
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Sec. 4.6. Summary

Definition 4.5.3.

We conclude this section with some examples that use the connection to LTI and

positive realization theory to show the limits of both HMM embeddings and LTI real-

izations for constructing efficient HSMM message passing recursions.

Example 4.5.1. The Poisson distribution has PMF given by p(djA) = A"'e--A for

a parameter A > 0 and d = 1, 2,.... Its probability generating function (PGF) can be

written as d>p(d|A)zd -e=A(l-z). Since its PGF is irrational, by Theorem 15.1

there is no finite LTI realization or HMM eribedding of an HSMM with Poisson duration

distributions.;

Example 4.5.2. Adapting Example 4 of Benvenuti and Farina [8, consider a dUration

distribution with PMF given by

p(d <) = (1 + cos[(d - 1)'O])e- d > 1 (4.5.15)

for some , £- R and a normalization constant Z. As shown in Benvenuti and Farina

[8], this duration distribution has an LTI realization with parameters

cosV sinV, 0 _5

A = c sin V) cos 0 I1 (4.5.16)
0 0 1) z 1) 0.5)

but, when 0,/w is irrational, it has no finite positive realization. Therefore an HSMM

with such duration distributions has a finite LTI realization but no finite HMM embed-

ding.

* 4.6 Summary

In this chapter we developed a general framework of HMM embeddings for HSMMs

and showed how to compute HSMM messages using HMM embeddings. The main

practical contribution, which we use in both Chapters 5 and 6, is the construction of

an HMM embedding for HSMMs with negative binomial duration distributions. Using

this HMM embedding, we showed how to compute HSMM messages in time that scales

only linearly with the observation sequence length, and we also derived a complete

Gibbs sampler for such HSMMs. The HMM embedding also generalizes to HSMMs

with duration distributions that are mixtures of negative binomial distributions.

3While there is no finite LTI realization or HMM embedding for all possible sequence lengths T, the

generic embedding of Example 4.3. 1, in which the number of pseudostates must grow with T and thus

message passing complexity is quadratic in T, is always possible.
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As a theoretical contribution, we also provided a definition of LTI realizations of
HSMMs which is a strict generalization of the notion of HMM embeddings. This gen-
eralization may allow for the efficient computation of HSMM messages for a greater
variety of duration distributions, and the connections to LTI realization theory may
provide a basis for finding efficient approximation algorithms for message passing.



Chapter 5

Stochastic Variational Inference for
HMMs, HSMMs, and

Nonparametric Extensions

Hierarchical Bayesian time series models can be applied to complex data in many do-

mains, including data arising from behavior and motion [32, 33], home energy con-

sumption [60], physiological signals [69], single-molecule biophysics [71], brain-machine

interfaces [54], and natural language and text [4,4, 70]. However, for many of these

applications there are very large and growing datasets, and scaling Bayesian inference

in rich hierarchical models to these large datasets is a fundamental challenge.

Many Bayesian inference algorithms, including standard Gibbs sampling and mean

field algorithms, require a complete pass over the data in each iteration and thus do not

scale well. In contrast, some recent Bayesian inference methods require only a small

number of passes [52] and can even operate in the single-pass or streaming settings [15].

In particular, stochastic variational inference (SVI) [52] provides a general framework

for scalable inference based on mean field and stochastic gradient descent. However,
while SVI has been studied extensively for topic models [53, 115, 17, 114, 92, 52], it has

not been applied to time series.

In this chapter, we develop SVI algorithms for the core Bayesian time series models

of this thesis, namely the hidden Markov model (HMM) and hidden semi-Markov model

(HSMM), as well as their nonparametric extensions based on the hierarchical Dirichlet

process (HDP), the HDP-HMM and HDP-HSMM. Both the HMM and HDP-HMM are

ubiquitous in time series modeling, and so the SVI algorithms developed here are widely

applicable. However, as discussed in the previous chapter, general HSMM inference

subroutines have time complexity that scales quadratically with observation sequence

length, and such quadratic scaling can be impractical even in the setting of SVI. To

address this shortcoming, we use the methods developed in Chapter 4 for Bayesian

inference in (HDP-)HSMMs with negative binomial durations to provide approximate
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Algorithm 5.1 Stochastic gradient ascent

Initialize 00)
for t = 1, 2, ... do

)- sample Uniform({1, 2,.. . , K})
05(t) 0(q~t) + p(t)I(0Vt)7gqf~t_1)' 9(0))

SVI updates with time complexity that scales only linearly with sequence length.
In Section 5.1 we briefly review the basic ingredients of SVI. In Section 5.2, we derive

SVI updates for (finite) HMMs and HSMMs, and in Section 5.3 we apply the methods
derived in Chapter 4 to derive faster SVI updates for HSMMs with negative binomial
durations. Finally, in Section 5.4 we extend these algorithms to the nonparametric

HDP-HMM and HDP-HSMM.

N 5.1 Stochastic variational inference

In this section we summarize the general stochastic variational inference (SVI) frame-
work developed in Hoffman et al. [52]. SVI involves performing stochastic gradient
optimization on a mean field variational objective, so we first review basic results on
stochastic gradient optimization and next provide a derivation of the form of the nat-
ural gradient of mean field objectives for complete-data conjugate models. We use the
notation defined in Sections 2.3.2 and 2.4.2 throughout.

* 5.1.1 Stochastic gradient optimization

Consider the optimization problem

K

arg max f (,) where f(5, ) = g(, (k)) (5.1.1)
k=1

and where 9 - {(k)}K is a fixed dataset. Using the decomposition of the objective
function f, if k is sampled uniformly over {1, 2,. ... , K}, we have

K 

(
Vf (0) = K E K (k)) = K - [E V g(o, 90)] . (5.1.2)

k=1

Thus we can generate approximate gradients of the objective f using only one 9(k) at
a time. A stochastic gradient ascent algorithm for a sequence of stepsizes p(t) and a
sequence of positive definite matrices G(0 is given in Algorithm 5.1.

From classical results in stochastic optimization [93, 14], if the sequence of stepsizes
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k = ,2,..., K

Figure 5.1: Prototypical graphical model for stochastic variational inference (SVI).
The global latent variables are represented by 4 and the local latent variables by Zk.

satisfies p =) oc and J:i(pt))2 < oc and each G) has uniformly bounded

eigenvalues, then the algorithm converges to a local optimum, i.e. 0* limt," O)

satisfies V~f(#*, y) = 0 with probability 1. If 9 is a large dataset, then each update

in a stochastic gradient algorithm only operates on one 9(k), or minibatch, at a time;

therefore, stochastic gradient algorithms can scale to the large-data setting. To make a

single-pass algorithm, the minibatches can be sampled without replacement. The choice

of stepsize sequence can significantly affect the performance of a stochastic gradient

optimization algorithm. There are automatic methods to tune or adapt the sequence

of stepsizes [104, 92], though we do not discuss them here.

SVI uses a particular stochastic gradient ascent algorithm to optimize a mean field

variational Bayesian objective over large datasets 9, as we review next.

* 5.1.2 Stochastic variational inference

Using the notation of Section 2.3.2, given a probabilistic model of the form

K

P(#, Z, y) = P(O) rl p(z(k) I )((k) Iz(k), 0) (5.1.3)
k=1

that includes global latent variables 0, local latent variables z {z(k)I 1, and observa-

tions y = {y(k)}K 1 ,the mean field problem is to approximate the posterior p(o, zIg) for

fixed data y with a distribution of the form q(#)q(z) = q(0) Hk q(z(k)) by finding a local

minimum of the KL divergence from the approximating distribution to the posterior

or, equivalently, finding a local maximum of the marginal likelihood lower bound

L Eq(O)q(z) In <;)(Z ) p(P). (5.1.4)

SVI optimizes the objective (5.1.4) using a stochastic natural gradient ascent algorithm

over the global factors q(&). See Figure 5.1 for a graphical model.

Gradients of L with respect to the parameters of q(0) have a convenient form if we
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assume the prior p(b) and each complete-data likelihood p(z(k), Y(k) 15) are a conjugate

pair of exponential family densities. That is, if we have

ln p( )=(T4, to(0)) - Zo(,4) (5.1.5)

Inp(z(k) IY (k)#)=Uzy (#), tzy (Z(k), Y(k)))-_Zzy (,zy() (5.1.6)

then conjugacy identifies the statistic of the prior with the natural parameter and log
partition function of the likelihood via to(O) = (7zy(#), -Zzy(qzy(#)), so that

p(01z(k), 9(k)) oc exp{ (q4 + (tzy (z(k), 9(k)), 1), t4 (0))}. (5.1.7)

Conjugacy implies the optimal q(#) has the same form as the prior; that is, without loss
of generality we have q () = exp {(i4, to(0)) - Z4( 4)} for some variational parameter

40 .
Given this structure, we can find a simple expression for the gradient of C with

respect to the global variational parameter i0. To simplify notation, we write t(z, 9) A
k= (tzy(z(k)(k)), 1), = i4, q A T1, and Z A Zo. Then we have

L = Eq(g)q(z) [lnp(#1z, 9) - In q(0)] + const. (5.1.8)

= (1 + Eq(z)[t(Z, 9)], VZ(T)) - ((?, VZ(4))-Z(f)) + const. (5.1.9)

where the constant term does not depend on i and where we have used the exponential
family identity Eq(4) [t(I#)] VZ(i) from Proposition 2.2.2. Differentiating over 1, we
have

Vj, = (V 2Z(T-')) (tl + Eq(z)[t(Z,)] ) . (5.1.10)

The factor V 2 Z(ii) is the Fisher information of the prior p(5) and, because the prior and
variational factor are in the same exponential family, it is also the Fisher information
of the global variational factor q(O). The natural gradient \7- can be defined in terms
of the gradient [52] via i5 A (V2Z())-l V, and so we have

(ai + Eq(,) [t(Z, 9)]- ).(.. )

Expanding q(z) =f1I q(z(k)) and t(z, k) = Zf 1 (zy(z(k) (k)), 1) we can write

-E (17 + E q(Z(k)[t((k), 9(k))] - (5.1.12)

and so the natural gradient decomposes into local terms as required for stochastic
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Algorithm 5.2 Stochastic Variational Inference (SVI)

-41)Initialize global variational parameter T,

for t 1, 2,... do
k - sample Uniform({1, 2,.. . , K})

q*(zd-)) LOCALMEANFIELD((t), (k)), e.g. Eq. (5.1.14)
1 (1 (t ~ + T tP) (fl4 + S - Eq *(z()) t(zr), p))

gradient optimization in (5.1.2).

Therefore a stochastic natural gradient ascent algorithm on the global variational

parameter h4 proceeds at iteration t by sampling a minibatch y(k) and taking a step of

some size p(t) in an approximate natural gradient direction via

Te <- (I - p(0)71 + f0 (rJ4 + s - Eq*(Z(k) t(z(k) I9(k))]) (5.1.13)

where q*(X1:T) is defined below and where s scales the stochastic gradient update on

the minibatch to represent the full size of the dataset; that is, if k is sampled uniformly

and we use Iy| and Iy(k) to denote the sizes of the dataset and minibatch, respectively,
we have s = ly /ly(k)1. In each step we find the optimal local factor q*(z(k)) using the

standard mean field update from Proposition 2.3.3 and the current value of q(), i.e. we

compute:

q*(z(k)) oc exp Eq(4) [Lnp(z (k) 4 )p((k) Z(k), )} . (5.1.14)

We summarize the general SVI algorithm in Algorithm 5.2.

* 5.2 SVI for HMMs and HSMMs

In this section we apply SVI to both HMMs and HSMMs and express the SVI updates

in terms of HMM and HSMM messages. For notational simplicity, we consider a dataset

of K sequences each of length T, written = { } ,1 and take each minibatch to be

a single sequence written simply PI:T, suppressing the minibatch index k for simplicity.

We also assume all sequences have the samie initial state distribution qr( 0).

M 5.2.1 SVI update for HMMs

Recall fromn Section 2.4 that a Bayesian HMM with N states defines a joint distribution

over an initial state distribution 7r(O), a row-stochastic transition matrix A, observation

parameters 0 = {Ji,} 1, and K hidden state sequences x and observation sequences

for k = 1, 2,..., K. We use r() to denote the ith row of A (i = 1, 2,..., N) and

ir to collect the transition rows and the initial state distribution. When
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convenient, we use the alternative notations p(7r) = p(7( 0))p(A) =H p(7r) to

denote the distribution over the initial state distribution and transition matrix and

P(0) = -1 p(Q(i)) to denote the distribution over the observation parameters. The

joint density for a Bayesian HMM is then

K

p(ir(0 )p(A)p(O) 171 p(X , yi 17(0), A, 0). (5.2.1)
k=1

In terms of the notation in Section 5.1.2, the global variables are the HMM parame-
ters and the local variables are the hidden states; that is, 0 = (A, 7(0), 0) and z = X1:T.
To derive explicit conjugate updates, we assume the observation model is conjugate
in that (p(O(i)),p(ylQ(i))) is a conjugate pair of exponential family densities for each
i =1, 2, . . ., N and write

P(7r-i)) = p(7r(i) la()) = Dir(oie)) i = 0, 1, ... ,N (5.2.2)

p((i)) = p(O(2) 2))= exp{( 2, [()Q )) - ZIt (7 )} i = 1, 2, ... , N (5.2.3)

p(yt|BN) = exp{(t )(&2)), (tj)(yt), 1))} i = 1,2, . .. , N. (5.2.4)

Correspondingly the variational family is q(7r)q(A)q(9) H 1 q(x (k)) with

q(7_) = q(7r() 16()) = Dir(6(2)) i 0,1, . . , N (5.2.5)

q(9(i)) = q(Q(i) =)) exp{(~' , - Zf )(?-2)} i= 1, 2, . .. , N. (5.2.6)

That is, each variational factor is in the same (conjugate) prior family as the corre-
sponding factor in the joint distribution p. Therefore we wish to optimize over the
variational parameters for the initial state distribution 6(0), the variational parameters
for the transition distribution 6M (i = 1, 2, ... , N), and the variational parameters for

the observation parameter distributions 7o.
At each iteration of the SVI algorithm we sample a sequence 91:T from the dataset

and perform a stochastic gradient step on q(A)q(7r( 0))q(O) of some size p. To compute
the gradient, we collect expected sufficient statistics with respect to the optimal factor
for q(1r.T), which in turn depends on the current value of q(A)q(7( 0))q(O). Recall from
Section 2.4.2 that we define

EN q(E r ) [In 7r~i Lij A Eq(O) [Inp(fjtlO )) (5.2.7)
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Algorithm 5.3 HMM SVI

Initialize global variational parameters I), K(, and &(o)
for t = 1, 2, ... do

Sample minibatch index k uniformly from {1, 2, . , K}

Using minibatch y(O, compute each t(, ttats, and t
with Eqs. (5.2.8)-(5.2.10)

Update each rI , a , and 6(0)
with Eqs. (5.2.11)-(5.2.13)

and collect the 'Q') into a matrix A, where the ith row of A is g('. Then using the

HMM messages F and B defined in Section 2.4 we write the expected statistics as

1 T

m E q(IZt'=]t( ) = ZFt,iBt,i - (t(j)(it), 1)/Z (5.2.8)
t=1 t=1
71-1 T-1

(i) ars )j Eq(T)ZI[Xt = i, Xt+i = j] = ZF,ii,j t+ijBt+1,j/Z (5.2.9)
t=i t=1

(iinit)i E Eq(xm)[Xi = i] = ~roB1,j/z (5.2.10)

where E[ - ] is 1 if its argument is true and 0 otherwise and Z is the normalizer Z A
Z1 F1 >s.
With these expected statistics, taking a natural gradient step in the parameters of

q(A), q(7ro), and q(O) of size p is

(i) _. (1 _ p) ( + p( 1  + s - E ) (5.2.11)

() - (1- p) ( + p(a M + ; - i1i) (5.2.12)

(O) -(1 _ p)J(O) + P((P 0 ) + s . iU) (5.2.13)

where s = jyj/ Y(k)| scales the minibatch gradient to represent the full dataset, as in

Section 5.1. When the dataset comprises K sequences where the length of sequence k

is T(k), we have s = (Z T(k'))IT(k).

We summarize the overall algorithm in 5.3.

* 5.2.2 SVI update for HSMMs

The SVI updates for the HSMM are similar to those for the HMM with the addition of

a duration update, though expressing the expected sufficient statistics in terms of the
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HSMM messages is substantially different. The form of these expected statistics follows
from the HSMM E-step [78, 54].

To derive explicit updates, we assume the duration prior and likelihood are a con-
jugate pair of exponential families. Writing the duration parameters as d = {i9 I ,

we can write the prior, variational factor, and likelihood up to proportionality as

p( x ) c exp{(r/)I t () ())}, (5.2.14)

p(dlz'O )) = exp{Kt()((i)), (td(d), 1))}, (5.2.15)

q(,d( ) oc exp{(r-' t ((9 ))}J. (5.2.16)

Using the HSMM messages (F, F*) and (B, B*) with L and A from the previous section,
we can write

T-1

ansI[X = E io+=jz +] (5.2.17)

T-1

= FtBB*jAj/Z (5.2.18)
t= 1

where Z is the normalizer Z E NlY B*2 .(O)

To be written in terms of the HSMM messages the expected label sequence indicators
1 [xt = i] must be expanded to

1[xt = i] = zl1xr± i, XT x X7+ 1] - 1[X, =, # [VT+1]. (5.2.19)
T<t

Intuitively, this expansion expresses that a state is occupied after a transition into it
occurs and until the first transition occurs out of that state and to another. Then we
have

1[t 1 , xt x t+1] = Ft*iB*ilZ (5.2.20)

Eq(x1T) [Xt =, xt x xt+I] = FiBti/Z. (5.2.21)

from which we can compute Eq J1[Xt =i], which we use in the definition of t' given

in (5.2.8).

Finally, defining Zdi E Eq(7) [p(dl)('))], we compute the expected duration statistics
as indicators on every possible duration d via
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Algorithm 5.4 HSMM SVI

Initialize global variational parameters (i), h{, a-(', and 6(0)

fort= 1, 2,... do
Sample muinibatch index k uniformly from {1, 2,... , K}

Using minibatch y(), compute each ' , ,) trais' and ti

with Eqs. (5.2.8),(5.2.10), (5.2.18), and (5.2.23)

Update each , f, &(i), and 5(0)
with Eqs. (5.2.11)-(5.2.13) and (5.2.24)

tdu~ Eq(xr1 T) [ZIXt Xt+i1, Xt+ i:t~d "X tQd±+ H(..2
T-d+1 t+d

b diFBtdi(Jjt,i)/Z. (5.2.23)
t=1 t'=t

Note that this step alone requires O(T 2N) time.

With these expected statistics, the updates to the observation, transition, and initial

state factors are (5.2.11), (5.2.12), and (5.2.13). The duration factor update is

T

(1 - + 1(r + ,((Z(ir )d - (td(d), 1))). (5.2.24)
d=1

We summarize the overall algorithm in 5.4.

While these updates can be used for any family of duration models, they can be

computationally expensive: as described in Chapter 4, both computing the HSMM mes-

sages and computing the expected statistics (5.2.22) require time that scales quadrati-

cally with the sequence length T, which can be severely limiting even in the minibatch

setting. In the next section, we apply the techniques developed in Chapter 4 to the

SVI algorithm to derive updates for which the computational complexity scales only

linearly with T.

N 5.3 Linear-time updates for negative binomial HSMMs

General HSMM inference is much more expensive than HMM inference, having runtime

O(T 2 N + TN 2 ) compared to just O(TN2) on N states and a sequence of length T.

The quadratic dependence on T can be severely limiting even in the minibatch setting

of SVI, since minibatches often must be sufficiently large for good performance [52, 15].

In this section, we develop approximate SVI updates for a particular class of duration
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distributions with unbounded support for which the computational complexity is only

linear in T.

Following the development in Chapter 4, we consider HSMMs with negative binomial

duration distributions. Each duration likelihood has parameters r and p with the form

p(klr, p) = k -, 2 exp{ (k - 1) In p + r In(l - p)} (5.3.1)

for k = 1, 2.... The negative binomial likelihood is not an exponential family of

densities over (r, p), and it has no simple conjugate prior. We use priors of the form

p(r, p) = p(r)p(p) with p(r) a finite categorical distribution with support {1, 2, ... , rmax}
and p(p) an independent Beta distribution, i.e.

p(r) o( exp{Kv, 1l)}, p(p) = Beta(a, b) oc exp{(a - 1) ln(p) + (b - 1) ln(1 - p)}.

(5.3.2)

Similarly, we define a corresponding mean field factor q(r,p) = q(r)q(p~r) as

q(r) oc exp{(i, Ir)}, q(plr) = Beta((r),Vr)). (5.3.3)

Thus for N states we have prior hyperparameters {((), a('), b0))}1 and variational

parameters {((, {a(r), b(r}i)}Imx)} 1 . To simplify notation, we suppress the indices

r and i when possible.

We write d(2)(X1:T) to denote the set of durations for state i in the state sequence

X1:T. Dropping indices for simplicity, the part of the variational lower bound objective
that depends on q(r, p) is

L Eq(rp)q(x:T) In 1 (5.3.4)
q + q )(r, p)

=Eq(r) In + Eq(r)q(x:)h(,, d(x1iT)) + Eq(r) Eq(pr) 1n (P )

(5.3.5)

where h(r, d(x1iT)) Ed'Ed(x1:T) n (r d' 12) arises from the negative binomial base mea-

sure term and lnP(d(x1:T)Jr,p) Ed'Gd(xi:T)(d' lnp + r ln(1 - p)) collects the negative

binomial PMF terms excluding the base measure.

First, we show that the SVI updates to each q(pr) can be considered independent

of each other and of q(r) by taking the natural gradient of L. The only terms in (5.3.4)

that depend on q(plr) are in the final term. Since the expectation over q(r) in the
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final term is simply a weighted finite sum, taking the gradient of C with respect to

the parameters ((r),b(r)) for r = 1, 2, .... , rmax yields a sum of gradients weighted by

each q(r). Each gradient in the sum is that of a variational lower bound with fixed 'r,
and because q(plr) is conjugate to the negative binomial likelihood with fixed r, each

gradient has a simple conjugate form. As a result of this decomposition, if we collect

the variational parameters of q(I, p) into i A (~, ((),(') ... , (a('imx), (iiax))), then

the Fisher information matrix

J(WL) IE(rip)~q(,p) (v6In q(r, p))(V ln q(r, p))T (5.3.6)

is block diagonal with the same partition structure as i). If we denote the Fisher

information of q(pIr) as J(Wr),cr)) , then the (r + 1)th diagonal block of J(i1o) can

be written as q(r)J(a(r),L()), and so the q(r) factors cancel in the natural gradient.

Therefore the natural gradient updates to each (('),b()) are independent and can be

computed using simple conjugate Beta updates.

Next, we derive updates to q(r). Since q(r) is a discrete distribution with finite

support, we write its complete-data conditional in an exponential family form trivially:

p(riJp, d(x1:T)) a exp{(v + tr(p, d(x1:T)), a?)} (5.3.7)

(t,(p, d(x1:T))), E d'cd(xl:T ) ln p(pId', r) + In h(r, d'). (5.3.8)

From the results in Section 5.1.2 the jth component of the natural gradient of (5.3.4)

with respect to the parameters of q(r) is

i. = , + Eq(pr-j)q(x1:T)tr (p, d( i:l,)) - Dj (5.3.9)

Due to the log base measure term ln h(r, d') in (5.3.8), these expected statistics re-

quire O(T 2N) time to compute exactly even after computing the HSMM messages

using (5.2.23). The HSMM SVI algorithm developed in Section 5.2.2 provides an ex-

act algorithm using this update. However, we can use the efficient sampling-based

algorithms developed in Chapter 4 to compute an approximate update more efficiently.

To achieve an update runtime that is linear in T, we use a sampling method inspired

by the sampling-based SVI update used in Wang and Blei [114]. For some sample count

S, we collect S model parameter samples { (r(), (, )(, P()) }I using the current

global mean field factors according to

q ~q) (f( q 3) q(r,.p).

ill

fr ~ q (7) (5.3.10)



and for each set of parameters we sample a state sequence

Xl:T P(X1:TtJ1:T'f, K)r p) I , pO). (5.3.11)

Using the methods developed in Chapter 4, each such sample can be drawn in time
O(TNR + TN 2 ). We denote the set of state sequence samples as S = and
we set q(Xi:T) = EES 6. 5(X 1 y:). As the number of samples S grows, the distribution

4(X1:T) approximates Eq(7r)q(O)q(r,p) [P(Xi:Tly1:T, 7r, 0, r,p)], while the optimal mean field
update sets q(iv:T) oc exp {IEq(ir)q(0)q(rp) Inp(Xl:Til:T, 7r, 0, r,p)}. As discussed in Wang
and Blei [114], since this sampling approximation does not optimize the variational
lower bound directly, it should yield an inferior objective value. However, Wang and
Blei [114] found this approximate SVI update yielded better predictive performance
in some topic models, and provided an interpretation as an approximate expectation
propagation (EP) update. As we show in Section 5.5, this update can be very effective
for fitting HSMMs as well.

Given the sample-based representation 4(X1:T), it is easy to compute the expecta-
tion over states in (5.3.9) by plugging in the sampled durations. The update to the
parameters of q(r(), p(i)) becomes

j;( <- (1 - p)i;P) + p (/m + s - (5.3.12)

Ej'r <- ( -p)jiE'r) + p (a + s - (5.3.13)

4('dr 4- (1 - p)i)0 + p (b + s - (5.3.14)

for i 1 2, ... , N and r 1, 2,..., rmax, where

1 S (d-1) (5.3.15)
SESde d~ (x)

r) 1(5.3.16)
i CSdEd~i (:)

( )r Eq(plr)q(xl:) tr (p, d(')Q1:T)) (5.3.17)

(a(i'r) + ( r) - 1) Eq(plr) [ln(pG'r) + (') + Fb'r - 1) Eq(plr) [ln(1 - p

+ 1I d + r-2) (5.3.18)
Se S dEqd(i) ).u

Similarly, we revise Eqs. (5.2.8)-(5.2.10) to compute the other expected sufficient statis-
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Algorithm 5.5 Negative Binomial HSMM SVI

Initialize global variational parameters ', ,(i, and 6(0)

for t = 1, 2, . do
Sample ninibatch index k uniformly from {1, 2, ... , K}

Using minibatch KJ(k), generate state sequence samples
according to Eqs. (5.3.10) and (5.3.11) and form 4(X1.T)

Using 4(Q1T:), compute each t(i) , M z as and tiit

with Eqs. (5.3.19)-(5.3.21) and (5.3.15)-(5.3.18)

Update each i4 , , (i), and 6(0)

with Eqs. (5.2.11)-(5.2.13) and (5.3.12)-(5.3.14)

tics using 4(X1:T):

T

tfo JE E(XI:) Ef i = i t((t) (5.3.19)
t=1
T-1

('ians)j E (Xi:) EI[t = I, t+i = A (5.3.20)
t=1

(finii ); E ( I[ = ] (5.3.21)

We summarize the overall algorithm in 5.5.

* 5.4 Extending to the HDP-HMM and HDP-HSMM

In this section we extend our methods to the Bayesian nonparametric versions of these

models, the HDP-HMM and the HDP-HSMM. These updates essentially replace the

transition updates in the previous algorithms.

Using the notation of Section 2.5 the generative model for the HDP-HMM with

scalar concentration parameters a, -y > 0 is

GEM(y), 7r() ~ DP(a#), 0O() Hd p(Q(t)) (5.4.1)

XI~ 7(0) Xtj-7(xt), Yt - P g t# )) (5.4.2)

where # GEM(-') denotes sampling from a stick breaking distribution defined by

v Beta(1, y, (I - vj)vk (5.4.3)

j<k



and 7(' ~ DP(ao) denotes sampling a Dirichlet process

w ~ GEM(a) Zk id , = EWkrzk. (5.4.4)
k-1

To perform mean field inference in HDP models, we approximate the posterior with a
truncated variational distribution. While a common truncation is to limit the two stick-
breaking distributions in the definition of the HDP [52], a more convenient truncation
for our models is the "direct assignment" truncation, used in [70] for batch mean field
with the HDP-HMM and in [17] in an SVI algorithm for LDA. The direct assignment
truncation limits the support of q(Xi:T) to the finite set {1, 2, ... , M}T for a truncation
parameter M, i.e. fixing q(X1T:) = 0 when any xt > M. Thus the other factors, namely
q(7r), q(0), and q(O), only differ from their priors in their distribution over the first
M components. As opposed to standard truncation, this family of approximations is
nested over M, enabling a search procedure over the truncation parameter as developed
in [17]. A similar search procedure can be used with the HDP-HMM and HDP-HSMM
algorithms developed here.

A disadvantage to the direct assignment truncation is that the update to q(13) is
not conjugate given the other factors as in Hoffman et al. [52]. Following Liang et al.
[70], to simplify the update we use a point estimate by writing q(13) = 6 p (3). Since the
main effect of 4 is to enforce shared sparsity among the 7r('), it is reasonable to expect
that a point approximation for q(3) will suffice.

The updates to the factors q(O) and q(1rlT) are identical to those derived in the
previous sections. To derive the SVI update for q(7), we write the relevant part of the
untruncated model and truncated variational factors as

p((7( 7')t)) = Dir(ce - (01:,A, Orest)) (5.4.5)

q((7('), 7r()t)) = Dir(&(')) (5.4.6)

where i = 1,2,..., M and where rrst 1 k-- k and Orest k 1- Z A -k.

Therefore the updates to q(7r)) are identical to those in (5.2.12) except the number
of variational parameters is A + 1 and the prior hyperparameters are replaced with

a - (131:M, !rest).

To derive a gradient of the variational objective with respect to 3*, we write
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Eq() I( .4
1q(/3)q(7)

(5.4.7)

(5.4.8)= V3* Inp(3*) + IEq(iii)) II p(7r(j) 0*)}
{ Mi=I

where lnp(*) ln p, (v(*))+ln det L ln pe(v) (-y -1) ln(1 - vj), and vi(0)

/-i T* . The Jacobian is lower-triangular, and is given by

0

(1-E /3k )2

and so taking partial derivatives we have

ln p(o*) = 2 E Inl -( 1)Zl n1 '-E
i>k i

Eij~ q(i)[lllp(7r5 7*)] =-5)

We use this gradient expression to take a truncated gradient step ott 0* during each SVI

update, where we use a backtracking line search' to ensure the updated value satisfies

the constraint 0* > 0.

The updates for q(7) and q(O) in the HDP-HSMM differ only in that the variational

lower bound expression changes slightly because the support of each q(7r()) is restricted

to the off-diagonal (and renornalized). We can adapt q(7r(i)) by simply dropping the

ith component fron the representation and writing

(5.4.12)

and we change the second term in the gradient for 0* to

k =i

(5.4.13)
Using these gradient expressions for 73* and a suitable gradient-based optimization

procedure we cart also perform batch mean field updates for the HDP-HSMM.

'In a backtracking line search, for some fixed parameter K E (0, 1), given an initial point x and an
increment A, while x +A is infeasible we set A - A.

i<j

=>j

(5.4.9)

(5.4.10)
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* 5.5 Experiments

We conclude this chapter with a numerical study to validate the proposed algorithms.

As a performance metric, we approximate a variational posterior predictive density

on held-out data; that is, for the HMM models we estimate

p(gtestI9 t rain) J P(Ptest17, O)p (r, 0 1train)d7d0 (5.5.1)

~Eq(7r)q(0)P(9test17, 0) (5.5.2)

by sampling models from the fit variational distribution. Similarly, for HSMM models
we estimate p(Ptestlgtrain) Eq(7r)q(0)q()P(Ytest I7, 0,09). In each experiment, we chose

pM = (t + -)0- with TF= 0 and , = 0.6. Gaussian emission parameters were generated
from Normal-Inverse-Wishart (NIW) distributions with po = 0, Eo = I, co = 0.1, and

vo = 7. For the HDP models, we set the truncation parameters to be twice the true

number of modes. Every SVI algorithm examined uses only a single pass through the
training data.

First, we compare the performance of SVI and batch mean field algorithms for

the HDP-HMM on synthetic data with fully conjugate priors. We sampled a 10-state

HMM with 2-dimensional Gaussian emissions and generated a dataset of 250 sequences

of length 4000 for a total of 106 frames. We chose a random subset of 95% of the

generated sequences to be training sequences and held out 5% as test sequences. We

repeated the fitting procedures on the training set 5 times with initializations drawn

from the prior, and we report the average performance with standard deviation error

bars. In Figure 5.2, the SVI procedure (in blue) produces fits that are on par with
those from the batch algorithm (in green) but orders of magnitude faster. In particular,
note that the SVI algorithm consistently converges to a local optimum of the mean field
objective in a single pass through the training set, requiring roughly the amount of time

needed for a single iteration of the batch mean field algorithm. This relative speedup

grows linearly with the size of the dataset, making the SVI algorithm especially useful

when the batch algorithm is infeasible.

Similarly, we compare the SVI and batch mean field algorithms for the HDP-HSMM.

We sampled a 6-state HSMM with 2-dimensional Gaussian emissions and negative bi-

nomial durations, where each of the negative binomial parameters were sampled as

p ~ Beta(1, 1) and r ~ Uniform({1, 2, ... , 10}). From the model we generated a dataset

of 50 sequences of length 2000 and generated an additional test set of 5 sequences with

the same length. Figure 5.3 shows again that the SVI procedure (in blue) fits the data

orders of magnitude faster than the batch update (in green), and again it requires only

a single pass through the training set.
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Figure 5.2: A comparison of the HMM SVI algorithm with batch mean field. Algo-
ritm 5.3 is shown in blue and the batch mean field algorithm is shown in green.
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Figure 5.3: A comparison of the HSMM SVI algorithm with batch mean field. Algo-
rithm 5.4 is shown in blue and the batch mean field algorithm is shown in green.

Finally, we compare the performance of the exact SVI update for the HSMM with

that of the approximate update proposed in Section 5.3. We sampled a 6-state HSMM

with 2-dimensional Gaussian emissions and Poisson durations, where each of the Poisson

duration parameters is sampled as A ~ Gamma(40, 2). From the model we generated

a dataset of 50 sequences of length 3000 and generated an additional test set of 5

sequences with the same length. We fit the data with negative binomial HDP-HSMMs

where the priors on the negative binomial parameters were again p - Beta(1, 1) and

r - Uniform({1, 2,. . . , 10}). We set the number of state sequence samples generated in
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Figure 5.4: A comparison of HSMM SVI algorithms. The approximate update scheme
of Algorithm 5.5 is shown in blue and the exact update scheme of Algorithm 5.4 is shown
in green.

the sampling-based approximate update to S = 10. Figure 5.4 shows that the sampling-

based updates (in blue) are effective and that they provide a significant speedup over the

exact SVI update (in green). Note that, since the figure compares two SVI algorithms,

both algorithms scale identically with the size of the dataset. However, the time required

for the exact update scales quadratically with the minibatch sequence length T, while

the sampling-based update scales only linearly with T. Therefore this approximate SVI

update is most useful when minibatch sequences are long enough so that the exact

update is infeasible.



Chapter 6

Scalable Inference in Models with
Multiple Timescales

* 6.1 Introduction

In many settings we may wish to learn dynamics at multiple timescales. For example,
in the context of speech analysis, we may wish to model both the dynamics within

individual phonemes as well as the dynamics across phonemes [68, 18]. In the context

of modeling behavior, motion [51], or handwriting [67], it is natural to decompose

movements into steps, while still modeling the statistics of the sequence of movements.

Each of these modeling tasks involves dynamics at multiple timescales, and therefore it is

natural to consider dynamical models that can capture such dynamics while maintaining

tractable inference.

In this chapter, we develop a Bayesian nonparamnetric model and associated inference

algorithms applicable to unsupervised learning of such dynamics. We combine and build

on ideas developed in previous chapters. In particular, we extend the HDP-HSMM

developed in Chapter 3 to include Markovian dynamics within each of its segments. The

explicit duration modeling provided by the HDP-HSMM allows us to set duration priors

that can disambiguate short-timescale dynamics from long-timescale dynamics and is

important for identifiability in the unsupervised setting. Using ideas from Chapters 3
and 4, we develop efficient Gibbs sampling algorithms for our proposed model. Finally,
extending ideas from Chapter 5, we also develop a structured Stochastic Variational

Inference (SVI) algorithm, which allows inference to scale to large datasets. Developing

scalable inference with efficient updates is particularly relevant when fitting rich models,
since more data are often required to fit more complex models effectively.

The main contributions of this chapter are algorithmic, particularly in incorporating

the algorithmic techniques developed in previous chapters. While the model we propose

is new, as we discuss in Sectioii 6.2 many similar models have been explored in the

literature. The key advantage to our model is its amenability to the efficient inference

algorithms we develop. Our model also benefits from explicit duration modeling and a
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Bayesian nonparametric definition, which enable both explicit control over important
priors and flexible learning.

In Section 6.2 we highlight some key related work. In Section 6.4 we develop several

Gibbs sampling algorithms for the model, including a collapsed direct assignment sam-
pler, a weak limit sampler, and a more efficient weak limit sampler when durations are
modeled with negative binomial distributions. In Section 6.5 we develop mean field and
SVI updates. Finally, in Section 6.6, we demonstrate our algorithms with an application

to unsupervised phoneme discovery.

This chapter synthesizes and extends results from previous chapters and so we rely

heavily on their notation and content.

N 6.2 Related work

The model we define in this chapter is most closely related to generalizations of HMMs
and HSMMs known as segment models, which can model sub-dynamics within an HMM
or HSMM state. Segment models have a long history in the HMM literature; see
Murphy [78] and Murphy [80, Section 17.6] and the references therein. Such models
have had considerable success in modeling multiscale dynamics, particular in modeling
speech dynamics at the level of words, phones, and sub-phones [80, p. 624]. Such
models have typically been explored in non-Bayesian settings. Our model can be viewed
as a Bayesian nonparametric segment model, where the Bayesian approach gives us
explicit control over duration priors and modeling of uncertainty, and the nonparametric
definition provides for flexible learning of model complexity.

A related class of models is the class of Hierarchical HMMs (HHMMs) [28] [80,
Section 17.6.2], which have also been studied extensively in non-Bayesian settings. A
Bayesian nonparametric HHMM, the infinite HHMM (iHHMM), has been developed
and applied successfully to some small example datasets [51]. The model represents an
infinite number of dynamical timescales and is extremely flexible. However, it does not
provide explicit duration modeling and so it is not easy to use priors to control timescales

in the learned dynamics. Furthermore, its structure is not particularly amenable to
scalable inference, and in its Gibbs sampling algorithm the hidden states at each level
must be sampled conditioned on the hidden states at all the other levels. The model

we propose has only two timescales and so is less flexible than the iHHMM, but it
allows explicit prior control over duration distributions. In addition, the algorithms we
develop exploit more powerful message passing, and the SVI algorithm developed in
Section 6.5 allows inference in our model to scale to large datasets.

Finally, the model that is most similar to ours is that of Lee and Glass [68], which
develops a Bayesian nonparametric model for unsupervised phoneme discovery. Again,
a key difference is again that our model provides explicit duration modeling and al-
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lows much more scalable algorithms. In addition, we allow for the substate dynamics

themselves to be modeled nonparametrically, while the model of Lee and Glass [(18]
focuses on modeling each phoneme with fixed-size finite HMMs. While our model call

also use fixed-size finite HMMs for short-timnescale dynamics, we focus on the fully

nonparametric specification.

* 6.3 Model specification

In this section, we define our generative model, composing both the HDP-HSMM and

HDP-HMM generative processes described in Chapter 3, particularly Sections 3.2.3

and 3.3.2. Recall that we write the prior measure on duration parameters as G and

the corresponding duration likelihood as p(dli()), and let a, - > 0 be concentration

parameters. According to the HDP-HSMM generative process, we generate the super-

state sequence (z'), the duration sequence (d,), and the label sequence (xt) as

3 ~ GEM(y) (6.3.1)

r DP(a, G) 9() G i 1, 2, ... (6.3.2)

~p(d (z)) s = 1,2, ... (6.3.3)

) t(s - 1) + ds 1 S > 1w t(S):t(s +1)-1 = Z t(s) = t =12, ... , T

where, as in Section 3.3.2, tr) A (1 - 62i). While the HDP-HSMM generates the

observation sequence (yt) within a segment as conditionally independent draws from

an observation distribution, here we instead generate observations for each segment

according to an HDP-HMM. That is, for each HDP-HSMM state i = 1, 2,... we have

an HDP-HMM with parameters {0), r 0 (i) }0 1 generated according to

() ~ GEMy(2)) (6.3.5)

gri) S'ig DP(aW/,)) 0'Wd H j 1, 2,... (6.3.6)

where H is the prior measure over observation parameters 60'j), t( and +jN are concen-

tration parameters, and each 7r',j is a transition distribution out of the corresponding

HDP-HMM's jth state. Then for a segment s in with HDP-HSMM super-state z, and

duration d8, we generate observations from the corresponding HDP-HMM via
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M3

S (?)j
... Xt2)... ... Xt(S) ... XT

Figure 6.1: A graphical model for the HDP-HSMM with sub-HDP-HMM observations.
Note that it is not formally a graphical model because the number of nodes is random
due to the random durations.

Xt ~ r(z",it-1) (6.3.7)

where Q(z,,Xt) is the observation parameter from the corresponding HDP-HMM's jth

state, and p(yO(zs,xt)) is the corresponding observation likelihood. We call (h )_1I the

substate sequence, and emphasize that it is distinct from the HDP-HSMM's super-state

sequence (zS) and label sequence (xt). See Figure 6.1 for a graphical model.

This model definition combines the explicit duration modeling and nonparametric

flexibility of the HDP-HSMM of Chapter 3 with HDP-HMM dynamics within each

HSMM segment. The HDP-HSMM states can model longer-timescale dynamics, such

as the dynamics between phonemes, while the HDP-HMM states can model shorter-

timescale dynamics, such as the structure within an individual phoneme. As we show

in the following sections, this model definition is also amenable to efficient inference.

While we have defined this model using Bayesian nonparametric priors for both

layers of dynamics, it is straightforward to adapt the definition so that one or both of

the layers is finite. For example, it may be desirable to use finite structured sub-HMM

models to exploit some domain knowledge [68]. Alternatively, it is also possible to

make the coarser-scale dynamical process a finite HSMM while allowing the substate

a-

7779-

'1)0
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dynamics to be generated from an HDP-HMM, thus enabling model selection via a
semiparametric approach [38].

* 6.4 Gibbs sampling

In this section, we develop several Gibbs sampling algorithms for the model defined
in Section 6.3. First, we develop a collapsed direct assignment sampler. This sampler
avoids approximating the posterior with a finite distribution but, as with the direct
assignment sampler developed in Chapter 3 and simulated in Figure 3. t 1(), its mix-

ing rate is far too slow to be practically useful. We include it for completeness and
theoretical interest.

Second, we develop a sampler based on the weak limit approximation. Analogous to

the weak limit sampler developed in Chapter 3, this sampler can use message passing

to perform block sampling and therefore achieve much greater mixing.

Finally, we build on the results of Chapter 4 to develop a much faster weak limit

Gibbs sampler for negative binomial duration distributions. The message passing com-

plexity is greatly reduced, and in particular is only linear in the sequence length T.

* 6.4.1 Collapsed Gibbs sampler

To develop a collapsed Gibbs sampler, we extend the HDP-HSMM direct assignment

Gibbs algorithm developed in Section 3.4.3. Essentially, we combine the HDP-HSMM

direct assignment sampler and the HDP-HMM direct assignment sampler.

The algorithm state for our direct assignment sampler consists of a finite prefix
of the HDP-HSMM 0 parameter and finite prefixes of each of the sub-HDP-HMM

,() parameters. It also includes both the HDP-HSMM label sequence (xt) and the

substate sequence (xt). That is, we write the sampler state as (01:N, 0) (i), XI:T, X1:T),

where we use N to represent the number of used HDP-HSMM states and N(') to

represent the number of used states in the ith HDP-HMM. The other parameters are

integrated out analytically, including the HDP-HSMM transition parameters {7r(i) }, the

sub-HDP-HMM transition parameters {7r(ii)}, the duration parameters {0(0}, and the

observation parameters {0 (ij) }.

The algorithm proceeds by jointly resampling each pair (xt, ht) for t 1,2, ... , T
and by resampling the 01:N and -

Resampling the label and substate sequence. To resanple each (xt, zt) conditioned on

all the other variables and parameters, we extend the HDP-HSMM\' sampling step of

Section 3.4.3 That is, we resample (xt, Xt) by considering all possible assignments (k, k')

for k = 1, 2, ... ,N+ l and k' = 1, 2, ... , N(') + 1 and evaluating rip to proportionality

the conditional probability
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p((xt, xt) = (k, k')I (x\t), (,\t), 3, {()}), (6.4.1)

where we suppress notation for conditioning on all the hyperparameters. Recall that

as we vary the assignment of the HDP-HSMM label xt we must consider the possible

merges into adjacent label segments, and as a result there are between 1 and 3 terms

in the expression for (6.4.1), each of the form

-a/_ Bk + nzprev,k anext 2 k, nextp((xt, xt) = (k, k)I(x\t, x\t)) (x _____+___c______ /Xnext
a(1 - xprev) + nxprev, a(1 -k) -+ nk,.

left-transition right-transition

fdur (t2 - tl + 1) - fobs(Yti:t 2 Ik), (6.4.2)
duration observation

where we have used ti and t2 to denote the first and last indices of the segment,
respectively, and (x\t) and (t\t) to denote the label sequence and substate sequence

assignments excluding the tth index, respectively. See Section 3.4.3 for details. In the

case of the HDP-HSMM of Chapter 3, the term fobs(Yti:t 2 lk) is computed from the

independent observation model. For sub-HDP-HMM observations, we simply replace

this term with the appropriate score for HDP-HMM observations, incorporating not

only the data yti:t 2 but also the substate assignment t =t k' and the substate sequence

(-t\t) .

Using the formula for the probability of an assignment sequence under an HDP

model [43, 10(5], we can write the fobs(Yti:t 2 k, k') term for sub-HDP-HMM observations.

Let nij be the number of transitions from substate i to substate j in the kth sub-HMM,

and let ni. = N(k)
a e . nij. In addition, for first and last segment indices ti and t 2 , let

hij = nij - #{t : xt = i, s~t+1 = j, ti < t < t2, Xt = k} (6.4.3)

be the number of transitions from substate i to substate j in the kth sub-HMM excluding

those in the segment from t i to t 2 , and let ni. = W hij. Then we can write
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N (k) r( _t N (k) r'1-1

fobs(Yti:t2 k, k') = ((ci-I-r)H j + f)
i=1j=1 f=nij

t2

-(J P(Yt |0 (kkV) g ((kki) yt, t, = k',x = k},qo) d (k'k')

t=t1

(6.4.4)

where tjo is the corresponding observation hyperparameter. By substituting (6.4.4)

for fobs in (6.4.2), we can proceed with the HDP-HSMM sampling procedure of Sec-

tion 3.4.3.

Resampling 13 1:N and 0 ) To resample 01:N conditioned on the HDP-HSMM label

sequence (xt), we use the same auxiliary variable method developed in Section 3.4.2.

To resample each 0) for each sub-HDP-HMM, i = 1, 2,. .. , N, we use the standard

HDP-HMM direct assignment update [106].

* 6.4.2 Weak limit sampler

We can develop a more efficient sampling algorithm by using a weak limit approximation

and exploiting dynamic progranning. In particular, we develop a weak limit sampler

that block resamples the label sequence and substate sequence jointly. We build on the

weak limit sampler developed in Section 3.4.2. We write the weak limit truncation level

of the HDP-HSMM as N and the weak limit truncation level of the itl HDP-HMM as

N(').

Recall that the label sequence (xt) can be resampled by first passing HSMM mnes-

sages backward and then sampling forward, as in Section 3.4.1, particularly equations

(3.4.3) and (3.4.6). From Section 3.2.2, the HSMM messages (B, B*) are defined by

N N

B14 (B*jp(xt+1 = A~xt = 1, Xt+1 3/: xt ) = B* A- 45 )

j=1  j=1

B*, = Bt+d,i p(dtiO = dl z,(t+1) = 1) -P(Yt+l:t+d zstt+ 1) = i, ds(t+ 1) =d ) (6.4.6)
t-t

d=1
duration prior term likelihood term

T-t-1

= Bt+d,jDd,iP(yt+1:t4dzs(t+l) = 1, ds(t+1) = d) (6.4.7)
d=1
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where

Dd,i = P(dld(')) Aij = p(xt+1 = jjxt = Z*, xt+1 7 xt ) (6.4.9)

and where s(t) denotes the segment index for time index t. In Chapter 3, the likelihood

term p(Yt+1:t+dlZs(t+1) = i, d,(t+1 ) = d) is computed as a product of independent likeli-

hoods, while here we must compute it according to the HMM observation model. If we

can compute these segment likelihood terms efficiently, we can use them in Eqs. (6.4.5)-

(6.4.8) to compute the backward messages over the HSMM and sample the HSMM

label sequence as in Section 3.4.1. Given the HSMM label sequence, we can then sam-

ple the substate sequence using the HMM state sequence sampling algorithm given in

Section 2.4.1.

Therefore it remains only to compute the segment likelihood terms efficiently. We

can exploit the Markov structure in the substate sequence to write these likelihoods in

terms of another set of messages. For each i = 1,2, ... ,N, we define the sub-HMM

backward messages for each t = 1, 2,... , T as

N()

B ' k A i+ B t- 1, 2, . .. , t B(, = 1 (6.4.10)
k=1

where L p(ytO(ik)) is the observation likelihood for the jth substate of the ithtk

HMM and A(') - p(;t+1 = k =j, xt = i) is the probability of transitioning from the

jth to the kth substate in the ith HMM. Similarly, we define the sub-HMM forward
messages for each i = 1, 2,.. .,N and t = 1, 2, ... , T as

NO)

F,"' = Y AkjLt,.jF; t = t + 1, t + 2,..., T F(t =i') .
k=1

where r( '0 ) is the initial state distribution for the ith sub-HMM. For any fixed time

index t and superstate index i, we can compute these messages in time O(TN() 2) time,
and therefore we can compute all such sub-HMM messages in time O(NT 2N(i2) time.

Finally, we can use these messages to compute every segment likelihood term via

N(')

P(yt:t+d--1|zst) = i, dsit) = d ) =(F( , B (it+d), (6.4.12)
j=1

for any t' = t, t + 1, ... , t + d - 1. To compute only the backward HSMM messages, as

required for the block sampling procedure, it suffices to compute only the sub-HMM
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forward messages.

Composing these expressions, we can write the overall HSMM messages as

T-1-t (N( N

B*j Bt+daiDdai kiF't Bt4 = Ai B*, (6.4.13)
d= 1 2 j=1

Writing Nsub = maxi N(), these messages require O(T 2 NN2ub+TN 2 ) time to compute.

With these messages, we can block resample the HSMM label sequence and substate

sequence.

The sampling updates to the other model parameters are identical to those described

in Sections 3.4.1 and 2.4.1.

* 6.4.3 Exploiting negative binomial durations

While the weak limit sampling procedure developed in Section 6.4.2 is general, it can

be computationally expensive for long observation sequences. In this section we apply

and extend the ideas developed in Chapter 4 to write an update for negative binomial

duration models for which the computational complexity scales only linearly in T and

is generally much more efficient. As in Chapter 4, this algorithm generalizes immedi-

ately to models in which the duration distributions are mixtures of negative binomial

distributions.

Recall from Chapter 4 that with negative binomial durations we can compute the

HSMM messages with more efficient recursions because the duration can be represented

as an augmentation with a small number of Markov states. In particular, to represent an

HSMM with negative binomial parameters (r0mI),T0) for i = 1, 2, ... , N, we constructed

an equivalent HMM on YN r() states. We can similarly embed an HSMM with HMM

emissions and negative binomial durations in a stationary HMM on EN1 r.)N() states.

Using the notation of Chapter 4, we choose
_(i =(i) - =

A') A( ) o A(') I) - 6() b , c) =(i) 0 sub, (6.4.14)

where X 9 Y denotes the Kronecker product of matrices X and Y, IM denotes the

all-ones vector of size rM, and (k(), 0),6(2)) denotes the HMM embedding parameters

for negative binomial durations given in Eqs. (4.4.7)-(4.4.8). Note that we can index

into the matrix A using the tuple (i,j, k), where i = 1,2, .. ., N indexes the HSMM

state, j = 1, 2, . .. , r0), indexes the duration pseudostate, and k = 1, 2,.. . , N() indexes

the sub-HMM substate. By comparing this construction to that of the embedding

developed in Section 4.4, it is clear that it encodes the same dynamics on the HSMM

label sequence: if we simply sumn over the sub-HMM substates, we recover the same
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embedding as that of Section 4.4. That is, if we use A to denote the transition matrix
of the HMM embedding of Section 4.4, then

N(') N(')

(i) j') =: E 3 A(ij,,k),(i',j',k')- (6.4.15)
k=1 k'=1

Furthermore, the sub-HMM substate dynamics are faithfully represented: the last block
row of A(i,j) ensures that the first substate of a segment is sampled according to 70),

and the substate transition probabilities are those of A(') until the superstate changes.

Note that due to the structure of the matrix A, the matrix-vector multiplications

required to perform message passing are especially efficient to compute. In particular,
using the identity

(X 0 Y)vec(Z) = vec(XZY T ) (6.4.16)

for any matrices X, Y, and Z of appropriate dimensions, we can compute the block
diagonal part of a matrix-vector product in O(N(R + N 2Ub)), where R = maxi r(').
Furthermore, using the structure in each A(6j), we can compute the off-block-diagonal

part of a matrix-vector product in O(N 2 + NNsub). Therefore, using the methods de-

veloped in Chapter 4, we can use the embedding to compute the HSMM messages in
only O(TN(R + N2 b) + TN 2 ) time, avoiding the quadratic dependence on T. Finally,
note that, using the methods developed in Chapter 4, this HSMM messages compu-

tation requires only O(TN + NRNsub) memory, a significant savings compared to the

O(TNRNub) memory required to compute the HMM messages in the full HMM em-
bedding.

Given the HSMM messages, we can perform the block sampling update to the label
sequence and substate sequence described in Section 6.4.2 much more efficiently.

* 6.5 Mean field and SVI

In this section, we derive the key updates necessary to perform mean field or SVI
inference in the model. This section relies heavily on the notation used in Chapter 5,
and extends its results to the model developed in this chapter.

Following the notation of Chapter 5, we write our variational family as

N N(')

q(o)q(7(')) rl q(('))qM(() q(( )q((,0)) rl q(i(j))q(i(,j)) q(x i:T, j1:T) (6.5.1)
i=1 j=1

where N is the truncation parameter for the HDP-HSMM and each N(') is the trunca-

tion parameter for the ith sub-HDP-HMM. The variational factors are defined analo-
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gously to those used in Chapter 5:

q(60'S) oc exp f' , ti'i) ('ij))) q(7( j) = Dir(('j)

q(_r_)) = Dir(a(3) (Oq) oc exp {(i), t (0()) }
q () =,() q(BW) = 6W 0( ).

The corresponding prior densities on each term are

(6.5.2)

(6.5.3)

(6.5.4)

p(('2j)) c exp { (rS', t2 (0(i')))

P(7 |101:N) =Dir(a#1:N)

P(7 1'j l1:N(i)) = Dir(o,( #1:N(i)) (6.5.5)

p(d ) oc exp {-( L), t~j)&o(i)

(6.5.6)

We derive a mean field update to the variational factors over model parameters in

two steps: first, we define structured mean field message-passing recursions analogous

to those defined in Section 6.4.2; second, we show how to use the mean field messages

to compute the expected statistics necessary for the parameter updates.

As in Section 6.4.2, it is useful to define sub-HMM messages for each i 1,2,. . . , N

and each time index t = 1, 2, ... , T:

N (
=tt( 1,

k=1

-(~) N (' W (

k=1

where

t' = 1, 2, ... , t

t = t + 1,t + 2, ... ,T

and where ZW is a matrix with its kth row as W(ik). Then we can write the overall

message recursions as

~(" t)-1
t'j

-(i1k
F; = 7k'U

(6.5.7)

(6.5.8)

(6.5.9)
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T-1-t 7N()

B*,i = ht+d,ifbd,i E Fz

d=1 f=1

T -t-1 N('

d=1 (f=1

N

Bti Yi j Zi
j= 1

N

j=1

where
N

Z = FT,i

i=1

(6.5.12)

and where A is a matrix with its ith row as W(j. As in Section 6.4.2, these messages
can be computed in time O(T 2 NN2ub + TN 2 ).

Next, we calculate expected statistics in terms of these messages. To simplify no-
tation, we write the event {Xt:t+d-1 = i,Xt_ # z # Xt+d} simply as {Xt:t+d-1 = zl-
First, note that we can write

Noi

, 5 iit)i(i+d) /Z.
.I i i = 1 ; f ~

This decomposition follows from the definitions of the HSMM messages.

definition of the sub-HMM messages, we can similarly write

Ft(i,t)f(i,t+d)L(i) (i)
( t',j t'+1,k t'+1,k J

E g a,:T,-t) (t, = t, '+1 = k I Xt:t+d-1 = = N(i) -(it) (i t+d)
t=1 t;,' Bt,

(6.5.13)

Using the

(6.5.14)

for any t' = t, t + 1, . . . , t + d - 2. To compute the expected statistics, we compose these

two expressions and use the basic identity that for any random variable X we have

E(I[X c A] f[X C B]] = P(X c A,X, C B]
= P[X e A] P[X e B|X G A]
=E(f[XeA]] E[[XCB]|XeA].

(6.5.15)

(6.5.16)

(6.5.17)

Therefore we can compute the expected statistics for each sub-HDP-HMM factor as

(6.5.10)

(6.5.11)
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T - IT -1-t

Z >1 t:t+d-=
t=1 d=1

t+d-1

i] P [zt
t,=t

j] (tyi ), )
.1 Y ..

(6.5.18)

T- T -1-t

YE [Xt:t+d-1
t=1 d=1

t+d-2

i] t [z
L'=t

j,.'+.1 = k]

t+d-2

t'=t
t'Ij t'-} ,k t'±1,k /Z (6.5.19)

i] Il[ht=j

T-I T-1-t

F t+d-Iibdi)
t=1 d

( t) (i t+d) /Z
(6.5.20)

Furthermore, we can compute the expected statistics for each HDP-HSMM factor as

[T-1

IX:t+d
t=1

T- 1

W i

du=1 E x:[)

(Fans )

t+d,1 Dd,i

T-1

Eq(xlT [t
t=1

,t ) t +d)

,Xt+I1

(6.5.21)

(6.5.22)

(6.5.23)

Al
T-1

t=1

F* B 1, /Z

While these expected statistics expressions appear complex when fully expanded, the

expressions are in fact quite modular: each involves the expectation of an HSMM

segment indicator, which is computed using the HSMM messages, and possibly an

expectation in terms of a sub-HMM statistic, which is computed using the sub-HMM

messages.

Using the notation of Chapter 5, the corresponding SVI updates to the variational

factors on the model parameters are then

Fij) A

(subtr)k

P' t3t+d) , /Z

E (x1TI:T)

T-1 T-1-t

t=1 d=1
Pt*it+d-libd
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E ~ll'X:'

T- 1T-1-t t+d-1

' i t+d 1id,i )(
t=1 d=1 t'=t

T-I T -1-t

E~l,"IT 7E [Xt-t+d- I
t=1 d=1

sbiniit ), A

N('

inlit i A Eq(x,:) [X1I]
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Algorithm 6.1 Sub-HMM SVI

Initialize global variational parameters (',j), &(',), i(), and rjf
for t = 1, 2, ... do

Sample minibatch index k uniformly from {1, 2,... , K}

Using minibatch y-(0, compute sub-HMM messages using (6.5.7)-(6.5.8)
and HSMM messages using (6.5.10)-(6.5.11)

Using the messages, compute ^(,3) i(, S' bn(i) tji) ans, and tinitY subr, subinit, dur, trans, ii

using (6.5.18)-(6.5.23).

Update each j0('2j), i(2'J), i(, and i~ using (6.5.24)-(6.5.29)

&d) +- (1 - p>7zJ) + p(77'i2J + s pi)) (6.5.24)
O(i +j) - (1 - -)o( + s ' r) (6.5.25)

6(i,) - (1 - p)a(iO) + p(a (i) + s t iit) (6.5.26)

a(i) _ (1 p)O) + p(a +- s - S.as) (6.5.27)

6(0) <- (1 _ p)a( 0
) + p(a + s Vi{ ) (6.5.28)

0(i _ )- )+P(q()+ 7 i)(5.91~ +- (1 9) + p() + s(L (Fr )d. (td(d), 1))). (6.5.29)

for some stepsize p and minibatch scaling s as in Section 5.1.2. We summarize the

overall algorithm in Algorithm 6.1.

* 6.6 Experiments

As discussed in Section 6.1, one natural motivation for models with multiple timescales
is speech analysis. Individual phonetic units, such as phonemes, have internal dynami-

cal structure that can be modeled by an HMM with Gaussian emissions [58, 68]. At the

same time, it is desirable to model the dynamical patterns among the phonemes them-

selves. The model and inference algorithms developed in this chapter can be applied

to capture these two timescales of dynamics. Furthermore, by utilizing both explicit

duration modeling and a Bayesian approach we can easily incorporate informative prior

knowledge and encourage the model to learn interpretable representations.

Similar models have been applied successfully to tasks in speech analysis. In partic-

ular, Lee and Glass [68] develop a Bayesian nonparametric approach in which phonetic

units are each modeled as fixed-size HMMs and the number of such units is discov-

ered using a Dirichlet process mixture. The authors show that the discovered phonetic

units are highly correlated with English phones and that the model can be used for
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some speech tasks to achieve state-of-the-art performance relative to other unsuper-
vised methods. Our model can be viewed as a refinement of this approach in two ways:
first, our model admits explicit phonetic unit duration and transition modeling, and
second, the inference algorithms we develop allow our model and similar models to be
fit to large datasets much more efficiently. Indeed, our algorithms allow such models to
be fit in minutes or hours of computation time instead of days or weeks.

In this section we describe an application of our models and algorithms to semi-
supervised phonetic unit modeling based on the approach of Lee and Glass [68]. In
particular, we demonstrate the advantages of using explicit duration priors, of modeling

dynamics within phonetic units, and of using scalable inference algorithms.
The remainder of this section is organized as follows. In Section 6.6.1 we describe

the dataset and features we use to train and evaluate the model. In Section 6.6.2 we

describe a general approach to set the hyperparameters for informative duration priors.
Finally, in Section 6.6.3 we describe our training procedure and experimental results.

* 6.6.1 Dataset and features

Our setup follows Lee and Glass [68] closely. We use the TIMIT dataset, which consists

of recordings of 630 speakers each reading 10 sentences, for a total of 6300 example

sequences. We process these recordings into 13-dimensional MFCC features [21] using

sliding windows of width 25ms spaced every 10ms. We concatenate the MFCCs with

their first- and second-order numerical time derivatives to form a 39-dimensional fea-

ture vector. We also center and whiten these features to have zero mean and identity

covariance.

The resulting dataset contains 6300 sequences of 39-dimensional features, where the

sequence lengths vary from 90 to 777 with an average length of 305. See Figure 6.2 for

a histogram of sequence lengths. The total number of features is 1,925,362 frames.

In addition, we follow Lee and Glass [68] and use the changepoint detector of Glass
[41] to accelerate our training algorithm. We include these detected possible change-

points while training our model to reduce the complexity of the message passing compu-

tation using the methods developed for the energy disaggregation application of Chap-

ter 3. See Figure 6.3 for a typical set of examples showing the detected changepoints

and the true changepoints.

The TIMIT dataset is also fully expert-labeled with phonetic units, and we make

use of a small subset of these labels to set our priors and initialize our fitting procedure,
as we describe in the subsequent sections.
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Figure 6.2: Histogram of TIMIT sequence lengths.
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Figure 6.3: Detected possible changepoints

U 6.6.2 Setting informative duration priors

We wish to use informative duration priors to encourage the model to learn interpretable

phonetic units. In this subsection we describe a general method for setting duration

hyperparameters.

Phonetic units have durations that are well-modeled by negative binomial distribu-

tions; see Figure 6.4(a) for typical phonetic unit duration distributions from the labels

in the TIMIT dataset. Recall from Chapter 4 that a negative binomial distribution has

parameters (r, p), where r E {1, 2, ... , rmax} and 0 < p < 1. We use priors of the form
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Figure 6.4: Phonetic unit durations in the labeled dataset and informative priors set
using the method of Section 6.6.2

p(r,p) = p(r)p(pjr) where

p(r = jIV) = vj p(p~r = j) = Beta(aj, bj) (6.6.1)

where (vj, aj, by) for j 1,2,... , ax are the hyperparameters we wish to determine

from labeled examples.

A natural way to set hyperparameters is via empirical Bayes [38], in which one

chooses hyperpararneters to maximize the likelihood of an observed training set. While

we have no training set of (r, p) parameter pairs available for such a procedure, we

can simulate an appropriate set of parameters by using the Gibbs sampling procedure

developed in Section 4.4.2 and some labeled durations. Using a set of durations {di}_ 1
drawn from the expert labels in the TIMIT dataset, we collect samples of (r, p) pairs

from p(r, pI{d}, v1, a 0, bo), where v0  1 and a0 = b= 1 for j = 1, 2,... , rmax

are chosen to be non-informative. Using these simulated samples {(ipa)I ', we

then choose hyperparameters via maximum likelihood. We choose S, the number of

duration examples used to set the hyperparameters, to correspond to 2.5% of the labeled

examples, and we set K, the number of simulated samples, to be equal to S.

See Figure 6.4(b) for samples drawn from this prior. By comparing these duration

distribution samples to the histograms in Figure 6.4(a), it is clear that the prior sum-

marizes the empirical distribution over typical phoneme duration means and variances

well. In addition, the negative binomial duration distribution class is able to represent

the empirical phoneme duration distributions, which look substantially different from

the geometric durations to which we would be restricted with a purely HMM-based

approach.
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Table 6.1: Fit times and per-frame predictive likelihoods

Sub-HMM Sub-GMM HDP-HMM
Pred. Like. (nats) -44.046 -47.599 -47.940

Fit Time (min.) 110 67 10

N 6.6.3 Experimental procedure and results

In this subsection we fit three alternative models, two of which are developed in this
thesis, and compare their performance both at prediction and on a phonetic unit seg-

mentation task. First, we fit the nonparametric model developed in this chapter, which
we refer to as the HDP-HSMM Sub-HMM model. Second, we fit an HDP-HSMM with
Gaussian mixture model (GMM) emissions, which we refer to as the HDP-HSMM Sub-
GMM model. This second model is different from the first only in that by using GMM
emissions instead of sub-HMM emissions, the internal structure of the phonetic units
is not modeled. Finally, we fit an HDP-HMM for comparison. The HDP-HMM does
not include the duration prior that the other two models can incorporate. Each model

has 39-dimensional Gaussian emission distributions, with Normal Inverse-Wishart pri-
ors with hyperparameters set as po = 0, Eo = I, Ko = 0.5, and vo = 45. For each of
the three models, we are able to scale efficient inference to this large dataset using the
algorithms developed in this chapter and in Chapter 5, allowing the models to be fit
orders of magnitude faster than previous methods.

Often in speech analysis there is an abundance of unlabeled data but only a very
limited amount of labeled data. In such settings, labeled data is used to set priors and
initializations, while an unsupervised inference procedure is used with the large amount

of unlabeled data. Accordingly, we use the labels from 2.5% of the full dataset to set our
prior hyperparameters using Gibbs sampling. We also use this small subset of labeled
data to initialize our inference procedure. We perform inference over the unlabeled data
in a single pass over the dataset using a minibatch size of 50 sequences and a stepsize
sequence p() = (t + T)- where we chose T = 0 and , = 0.6.

Table 6.1 summarizes both the fitting runtimes and the predictive performance of
each model. We measure predictive performance by computing the per-frame predictive

likelihood on 20 held-out sequences, where a larger value indicates a higher average

likelihood assigned to each held-out frame and hence better predictions. The per-frame

predictive likelihoods are very similar, indicating that the alternative models perform

comparably well on predictive measures. However, their predictive performance does
not give any insight into the interpretability of the latent structure learned, which we
discuss next.

To evaluate the quality and interpretability of the learned latent parameters, we
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Table 6.2: Error rates for the segmentation task

Sub-HMM Sub-GMM HDP-HMM
Missed Detections 22.0 21.9 24

False Positives 31.9 35.0 59.8

consider a segmentation task similar to the one considered by Lee and Glass [68]. On

the 20 held-out sequences and using no changepoint information from the changepoint

detector, we compute the optimal variational factor over the label sequence (or state

sequence in the case of the HDP-HMM) and then perform a Viterbi decoding to find the

most probable joint assignment according to that variational factor. Finding this most

probable label sequence (or state sequence) assignment evaluates each model's ability

to discover modes that correspond to phonemes, where the HDP-HMM is unable to
distinguish the dynamics at multiple timnescales present in the data. We then compare

the changepoints in the Viterbi sequence to the true changepoints and measure both

the missed detection and false positive error rates. Following Lee and Glass [68] and

Scharenborg et al. [100], we allow a 20ms tolerance window to compute detections.

We summarize the segmentation performance of the three models in Table 6.2.
We find that both of the models which include explicit duration modeling perform

significantly better than the HDP-HMM at both missed detection and false positive

error rates. In addition, we find that modeling the dynamics within each phonetic unit

with the Sub-HMM model further reduces the false positive rate. The HDP-HMM,
which cannot separate timrescales because it lacks explicit duration modeling, tends to

over-segment relative to the intended phonetic unit segmentation, leading to a very high

false positive error rate. The Sub-HMM changepoints also perform well qualitatively;

in Figure 6.5 we show 5 typical examples of the changepoints detected by each model.

These experiments demonstrate advantages of both our algorithms and our models.

With our SVI algorithms we are able to perform inference in a single pass over the

dataset in the time it would require to compute a single Gibbs sampling or batch mean

field update. Thus our algorithms allow inference in each of these models to scale to

large datasets efficiently, reducing the computation time by orders of magnitude and

enabling even larger datasets to be explored. By comparing three related models, we

also show that explicit duration modeling provides a significant boost to segmentation

performance, with the Sub-HMM model refinement providing a further increase in per-

formance. These models and algorithms may provide new tools for speech researchers

to analyze detailed structure while imposing model regularities with interpretable prior

information.
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Figure 6.5: Phonetic unit boundaries detected by the three models.
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* 6.7 Conclusion

This chapter composes the ideas of Chapters 3, 4, and 5 to develop both new models and
new efficient and scalable algorithms. In particular, it shows that the ideas developed
in this thesis can be readily extended. The flexible Bayesian nonparametric approach
to modeling dynamics at multiple timescales may provide new insights into complex
phenomena, and the algorithms we develop enable such rich models to be fit to large
enough datasets. Finally, our speech application shows the promise and potential utility
of explicit duration modeling in a Bayesian framework, both for performance and for
interpretability.
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Chapter 7

Analyzing Hogwild Parallel Gaussian
Gibbs Sampling

* 7.1 Introduction

Scaling probabilistic inference algorithms to large datasets and parallel computing ar-

chitectures is a challenge of great importance and considerable current research interest,
and great strides have been made in designing parallelizeable algorithms. Along with

the powerful and sometimes complex new algorithms, a very simple strategy has proven

to be surprisingly useful in some situations: running local Gibbs sampling updates on

multiple processors in parallel while only periodically communicating updated statistics

(see Section 7.4 for details). We refer to this strategy as "Hogwild Gibbs sampling" in

reference to recent work [84] in which sequential computations for computing gradient

steps were applied in parallel (without global coordination) to great beneficial effect.

This Hogwild Gibbs sampling strategy is not new; indeed, Gonzalez et al. [42]
attributes a version of it to the original Gibbs sampling paper (see Section 7.2 for

a discussion), though it has mainly been used as a heuristic method or initialization

procedure without theoretical analysis or guarantees. However, extensive empirical

work on Approximate Distributed Latent Dirichlet Allocation (AD-LDA) [83, 82, 73,
7, 55], which applies the strategy to generate samples from a collapsed LDA model

[12], has demonstrated its effectiveness in sampling LDA models with the same or

better predictive performance as those generated by standard serial Gibbs [83, Figure

3]. The results are empirical and so it is difficult to understand how model properties

and algorithm parameters might affect performance, or whether similar success can be

expected for any other models. There have been recent advances in understanding some

of the particular structure of AD-LDA [55], but a thorough theoretical explanation for

the effectiveness and limitations of Hogwild Gibbs sampling is far from complete.

Sanipling-based inference algorithms for complex Bayesian models have notoriously

resisted theoretical analysis, so to begin an analysis of Hogwild Gibbs sampling we

consider a restricted class of models that is especially tractable for analysis: Gaussians.
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Gaussian distributions and algorithms are tractable because of their deep connection

with linear algebra. Further, Gaussian sampling is of significant interest in its own

right, and there is active research in developing effective Gaussian samplers [72, 89,
90, 29]. Gaussian Hogwild Gibbs sampling can be used in conjunction with those
methods to allow greater parallelization and scalability, provided some understanding

of its applicability and tradeoffs.

The main contribution of this chapter is a linear algebraic framework for analyzing

the stability and errors in Gaussian Hogwild Gibbs sampling. Our framework yields
several results, including a simple proof for a sufficient condition for all Gaussian Hog-

wild Gibbs sampling processes to be stable and yield the correct asymptotic mean no

matter the allocation of variables to processors. Our framework also provides an anal-

ysis of errors introduced in the process covariance, which in one case of interest leads

to an inexpensive correction for those errors.

In Section 7.2 we discuss some related work in greater detail. In Section 7.3 we
overview known connections between Gaussian sampling and linear system solvers,
connections on which we build to provide an analysis for Hogwild Gibbs sampling.

In Section 7.4 we precisely define the parallel updating scheme. Finally, in Section 7.5
we present our analytical framework and main results on Gaussian models.

N 7.2 Related work

There has been significant work on constructing parallel Gibbs sampling algorithms, and

the contributions are too numerous to list here. One recent body of work [42] provides

exact parallel Gibbs samplers which exploit particular graphical model structure for

parallelism. The algorithms are supported by the standard Gibbs sampling analysis,
and the authors point out that while heuristic parallel samplers such as the AD-LDA
sampler offer easier implementation and often greater parallelism, they are currently
not supported by much theoretical analysis. Gonzalez et al. [42] attribute one version

(see Section 7.4) of Hogwild Gibbs to the original Gibbs sampling paper [39] and refer
to it as Synchronous Gibbs, though the Gibbs sampling paper only directly discusses

an asynchronous implementation of their exact Gibbs sampling scheme rather than a

parallelized approximation [39, Section XI]. Gonzalez et al. [42] also gives a result on

Synchronous Gibbs in the special case of two processors.

The parallel sampling work that is most relevant to the proposed Hogwild Gibbs

sampling analysis is the thorough empirical demonstration of AD-LDA [83, 82, 73, 7,
55] and its extensions. The AD-LDA sampling algorithm is an instance of the strategy

we have named Hogwild Gibbs, and Bekkerman et al. [7, Chapter 11] suggests applying

the strategy to other latent variable models.

The work of Ihler and Newman [55] provides some understanding of the effective-
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ness of a variant of AD-LDA by bounding in terms of run-time quantities the one-step

error probability induced by proceeding with sampling steps in parallel, thereby allow-

ing an AD-LDA user to inspect the computed error bound after inference [55, Section

4.2]. In experiments, the authors empirically demonstrate very small upper bounds on

these one-step error probabilities, e.g. a value of their parameter F = 10-4 meaning

that at least 99.99% of samples are expected to be drawn just as if they were samn-

pled sequentially. However, this per-sample error does not necessarily provide a direct

understanding of the effectiveness of the overall algorithm because errors might accu-

mulate over sampling steps; indeed, understanding this potential error accumulation

is of critical importance in iterative systems. Furthermore, the bound is in terms of

empirical run-time quantities, and thus it does not provide guidance regarding on which

other models the Hogwild strategy may be effective. Ihler and Newman [55, Section

4.3] also provides approximate scaling analysis by estimating the order of the one-step

bound in terms of a Gaussian approximation and some distributional assumptions.

Finally, Niu et al. [84] provides both a motivation for Hogwild Gibbs sampling as

well as the Hogwild name. The authors present "a lock-free approach to parallelizing

stochastic gradient descent" (SGD) by providing analysis that shows, for certain com-

mon problem structures, that the locking and synchronization needed for a stochastic

gradient descent algorithm to converge on a multicore architecture are unnecessary, and

in fact the robustness of the SGD algorithm compensates for the uncertainty introduced

by allowing processors to perform updates without locking their shared memory.

* 7.3 Gaussian sampling background

In this section we fix notation for Gaussian distributions and describe known connec-

tions between Gaussian sampling and a class of stationary iterative linear system solvers

which are useful in analyzing the behavior of Hogwild Gibbs sampling.

The density of a Gaussian distribution on n variables with mean vector / and

positive definite[ covariance matrix E >- 0 has the form

p(x) oc exp (x - p)TE--(x - y)0 c exp {I TJX + hTX} (7.3.1)

where we have written the information parameters J E E' and h A Jp. The matrix

J is often called the precision matrix or information matrix, and it has a natural

interpretation in the context of Gaussian graphical models: its entries are the coefficients

on pairwise log potentials and its sparsity pattern is exactly the sparsity pattern of a

graphical model. Similarly h, also called the potential vector, encodes node potentials

and evidence.

'We assume iodels are non-degenerate, i.e. that covariances are of full rank.
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In many problems [113] one has access to the pair (J, h) and must compute or
estimate the moment parameters p and E (or just the diagonal) or generate samples
from N(p, E). Sampling provides both a means for estimating the moment parameters
and a subroutine for other algorithms. Computing p from (J, h) is equivalent to solving
the linear system Jp = h for p.

One way to generate samples is via Gibbs sampling, in which one iterates sampling
each xi conditioned on all other variables to construct a Markov chain for which the
invariant distribution is the target .(p, E). The conditional distributions for Gibbs
sampling steps are

p(x1Jxzi =,i) cx exp
1 (Xi
2

I) Jii

(J~iz

Ji i zi _ (hi h I) ( i

(7.3.2)

(7.3.3)

where the indexing x, i (xj : j i) E R"- 1 denotes all the variables other than xi
and Jii (Jij : j 7 i) denotes the ith row of J with its ith entry removed. That is, we
update each xi to be a scalar Gaussian sample with mean 1(hi - Ja-+zi) and variance

i or, equivalently,

1
i - I (hi - Ji-ix-i)

Since each variable update is a linear

noise, we can collect one scan for i
sampler state vector at t and t + 1:

+ vi where vi i~ A(0, 1). (7.3.4)

function of other variables with added Gaussian

1, 2,... ,n into a matrix equation relating the

P(+1) = -D-L(t+) - D-lLTX) + Dk1 h + D--i(t

) r1 (0, I).

(7.3.5)

(7.3.6)

where we have split J = L + D + LT into its strictly lower-triangular, diagonal, and
strictly upper-triangular parts, respectively. Note that x(t+1) appears on both sides of
the equation, and that the sparsity patterns of L and LT ensure that the updated value
X ( 1 ) depends only on La and x + ) for all a > i and b < i. We can rearrange the
equation into an update expression:

oc exp - Jiix + (hi - Jii+,2i)xi}
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(I + D-lL)x(t'+) = -D-LTX() + D-'h + D-v0) (7.3.7)

P+1) = -(D + L)-LT() + (D + L)-'h+ (D + L)-D'v() (7.3.8)

= -(D + L)rLLTX(t) + (D + L)-1h + (D + L)-lit) (7.3.9)

,M A (0, D). (7.3.10)

The expectation of this update is exactly the Gauss-Seidel iterative linear system

solver update [9, Section 7.3] applied to Jp = h, i.e. P+1) = -(D + L)'LTX(t) +

(D + L)'h. Therefore a Gaussian Gibbs sampling process can be interpreted as Gauss-

Seidel iterates on the system Jp = h with appropriately-shaped noise injected at each

iteration.

Gauss-Seidel is one instance of a stationary iterative linear solver based on a matrix

splitting. In general, one can construct a stationary iterative linear solver for any

splitting J = A - N where Al is invertible, and similarly one can construct iterative

Gaussian samplers via

P+1) - (Ml-N)P) + M - 1h + M-l10) (7.3.11)
jid

v() , K(0, MT + N) (7.3.12)

with the constraint that MT + N - 0 (i.e. that the splitting is P-regular [77]). For a

stationary iterative process like (7.3.11) to be stable or convergent for any initialization

we require the eigenvalues of its update map to lie in the interior of the complex unit

disk, i.e. p(M-'N) A maxi JA(M 'N)| < 1 [9, Lemma 7.3.6]. The Gauss-Seidel solver

(and Gibbs sampling) correspond to choosing Al to be the lower-triangular part of J

and N to be the negative of the strict upper-triangle of J. J > 0 is a sufficient condition

for Gauss-Seidel to be convergent [9, Theorem 7.5.41] [OtI], and the connection to Gibbs

sampling provides anm alternative proof.

For solving linear systems with splitting-based algorithms, the complexity of solving

linear systems in Al directly affects the computational cost per iteration. For the Gauss-

Seidel splitting (and hence Gibbs sampling), Al is chosen to be lower-triangular so that

the corresponding linear system can be solved efficiently via back-substitution. In the

sampling context, the per-iteration computational complexity is also determined by the

covariance of the injected noise process 0(), because at each iteration one must sample

from a Gaussian distribution with covariance MT + N.

We highlight one other standard stationary iterative linear solver that is relevant

to analyzing Gaussian Hogwild Gibbs sampling: Jacobi iterations, in which one splits
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J = D - A where D is the diagonal part of J and A is the negative of the off-diagonal

part. Due to the choice of a diagonal M, each coordinate update depends only on

the previous sweep's output, and thus the Jacobi update sweep can be performed in

parallel. A sufficient condition for the convergence of Jacobi iterates is for J to be a

generalized diagonally dominant matrix (i.e. an H-matrix) [9, Definition 5.13]. A simple

proof 2 due to Ruozzi and Tatikonda [96], is to consider Gauss-Seidel iterations on a

lifted 2n x 2n system:

D -A) G-S update D-1 A) D 1A
-A D 4 D-'AD-1 D-1 (D-1A)2)

(7.3.13)
where zero entries are left blank where dimensions can be inferred. Therefore one

iteration of Gauss-Seidel on the lifted system corresponds to two iterations of the Ja-

cobi update D-1A to the latter n entries in the lifted system, so Jacobi iterations

converge if Gauss-Seidel on the lifted system converges. Furthermore, a sufficient con-

dition for Gauss-Seidel to converge on the lifted system is for the lifted matrix to be

positive definite, and by taking Schur complements we require D - AD- 1 A >- 0 or

I - (DI2AD--2)(D-2AD--) - 0, which is equivalent to requiring strict generalized

diagonal dominance of J [9, Theorem 5.14].

* 7.4 Hogwild Gibbs model

In this section, we define the Hogwild Gibbs computational model and fix some notation

for the iterative process that we use for the remainder of the chapter.

As with standard Gibbs sampling, we assume we are given a collection of n random

variables {xi : i e [n]} where [n] {1, 2, .. . , n} and that we can sample from the

conditional distributions xil, x. Gibbs sampling is an iterative Markov process on the
state vector x(t) for times t = 1, 2,... so that the stationary distribution is the joint

distribution of {xi : i E [n]}.

For Hogwild Gibbs, we assume we are given a partition {I1, 1 ... , I of [n] that

represents an allocation of the state vector to K processors, so that the kth proces-

sor updates the state values indexed by 'k. We assume each partition element k is

contiguous and ordered and we write xTk A (xi : i E Ik) to denote the corresponding

sub-vector of any vector x. We keep this partition fixed over time for the majority of

this chapter, though we describe a generalization in Theorem 7.6.2.
The Hogwild Gibbs algorithm is shown in Algorithm 7.1. We define two iterations:

outer iterations, which count the number of global synchronizations among the proces-

2 When J is symmetric one can arrive at the same condition by applying a similarity transform as
in Proposition 7. 7.3. We use the lifting argument here because we extend the idea in our other proofs.
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Algorithm 7.1 Hogwild Gibbs

Input: Joint distribution over x = (Xi,... , Xn), partition {11,.. . ,IK} of { 12, ... ,n
Initialize (P')
for t = 1, 2, ... do

for k = 1, 2, ... , K in parallel do
X t+1) <-- L OCALGIBBS(X(t), 1k, q(t, k))

function LOCALGIBBS(1, I, q)
for j = 1, 2, ... ,q do

for i C I in order do
xi +- sample xi2j,1 = xj

return j7

sors, and inner iterations, which count processor-local Gibbs scans. That is, during

outer iteration t (for each t = 1, 2, .. .), processor k runs a number q(t, k) of inner iter-

ations, each of which consists of a systematic scan Gibbs update [94, Algorithm A.40]

of its variables indexed by k.. During the inner iterations on each processor, the pro-

cessors do not communicate; in particular, all inner iterations on processor k compute

Gibbs updates using out-of-date values of xi for i V I. Processors synchronize values

once per outer iteration, and we write x(t) for the globally shared value before the inner

iterations of outer iteration t. For the majority of this chapter, we fix the number of

inner iterations performed to be constant for all processors and for all outer iterations,
so that q(t, k) = q, though we describe a generalization in Theorem 7.6.2.

There are several special cases of this general scheme that may be of interest. The

Synchronous Gibbs scheme of Gonzalez et al. [42] corresponds to associating one variable

to each processor, so that k= 1 for each k = 1, 2, . .. , K (in which case we may take

q = 1 since no local iterations are needed with a single variable). More generally, it

is particularly interesting to consider the case where the partition is arbitrary and q is

very large, in which case the local Gibbs iterations can mix and exact block samples

are drawn on each processor using old statistics from other processors for each outer

iteration. Finally, note that setting K 1 and q = 1 reduces to standard Gibbs

sampling on a single processor.

U 7.5 Gaussian analysis setup

Given that Gibbs sampling iterations and Jacobi solver iterations can each be written

as iterations of a stochastic linear dynamical system (LDS), it is not surprising that

Gaussian Hogwild Gibbs sampling can also be expressed as an LDS by appropriately

composing these ideas. In this section we describe the LDS corresponding to Gaussian

Hogwild Gibbs sampling and provide convergence and error analysis, along with a
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A B C

Figure 7.1: Support pattern (in black) of the Hogwild splitting J B - C - A with
n = 9 and the processor partition {{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.

connection to a class of linear solvers.

Given a joint Gaussian distribution of dimension n represented by a pair (J, h) as
in (7.3.1), consider a block-Jacobi splitting of J into its block diagonal and off-block-

diagonal components, J = Dbd - A, according to the partition. A includes the entries of
J corresponding to cross-processor terms, and this block-Jacobi splitting will model the

outer iterations in Algorithm 7.1. We further perform a Gauss-Seidel splitting on Dbd
into (block-diagonal) lower-triangular and strictly upper-triangular parts, Dbd = B -C;
these processor-local Gauss-Seidel splittings model the inner itertions in Algorithm 7.1.
We refer to this splitting J = B - C - A as the Hogwild splitting; see Figure 7.1 for an
example.

For each outer iteration of the Hogwild Gibbs sampler we perform q processor-local

Gibbs steps, effectively applying the block-diagonal update B-1C repeatedly using
Ax(t) + h as a potential vector that includes out-of-date statistics from the other pro-

cessors. The resulting update operator for one outer iteration of the Hogwild Gibbs
sampling process is

q--1

(1) = (B-1C)() + Z (B-lC) B-- (A() + h + v(i)) (7.5.1)
j=0

, M'l (0, D) (7.5.2)

where D is the diagonal of J. Note that we shape the noise diagonally because in Hog-

wild Gibbs sampling we simply apply standard Gibbs updates in the inner iterations.

M 7.6 Convergence and correctness of means

Because the Gaussian Hogwild Gibbs sampling iterates form a Gaussian linear dynam-

ical system, the process is stable (i.e. its iterates converge in distribution) if and only
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if [9, Lemma 7.3.6] the deterministic part of the update map (7.5.2) has spectral radius

less than unity, i.e.

q-1

T (B -' C ) + 1 (B-'C)jB-'A (7.6.1)
j=0

(B-C)q + (I - (B-C)q)(I - (B-'C)) B-1A (7.6.2)

(B-'C)" + (I - (B-IC)q)(B - C) 'A (7.6.3)

Tril + (1 - Tid)Tb, (7.6.4)

where

Tid A (B-'C) TbI A (B - C)-1 A, (7.6.5)

satisfies p(T) < 1. The term T,, is the block Gauss-Seidel update when A = 0 and the

processors' random variables are independent, while the term TbIl is the block Jacobi

update, which corresponds to solving the processor-local linear systems exactly at each

outer iteration. The update (7.6.4) falls into the class of two-stage splitting methods

[77, 35, 34], and the next proposition is equivalent to such two-stage solvers having the
correct fixed point.

Proposition 7.6.1. If a Gaussian Hogwild Gibbs process is stable, then its mean is

p = J-'h.

Proof. If the process is stable the mean process has a unique fixed point, from (7.5.2)

and (7.6.4) and using the definitions of Tind and Tblock we can write the fixed-point

equation for the process mean /iHog as

(I - T)p /-og = (I - Tid)(I - Tblock)/pHog (I- Tinid)(B - C)'1h, (7.6.6)

hence (I - (B - C)- 1 A)pHog = (B - C) - 1h and pHog = (B - C - A)-1h = J'h. E

The behavior of the spectral radius of the update map can be very complicated. In

Figure 7.2, we compare p(T) for q = 1 and q = oc for models generated from a simple

random ensemble. Each point corresponds to a sampled model J = QQT + nrI with

Qir 1_(0, 1) and r - Uniform[0.5, 1], and the value of each point's vertical coordinate

is the spectral radius of the Hogwild update T when q = oc (i.e. T = Tblock) while the

horizontal coordinate is the spectral radius of T when q = 1. Hogwild Gibbs sampling

on the model is convergent with q 1 when the point is to the left of the vertical

red line, and it is convergent as q oc when the point is below the horizontal line.

The figure shows that, while convergence in the two cases shows a positive correlation,
Hogwild Gibbs can be convergent when q = I and not when q = oc and it can be
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Figure 7.2: Comparing Hogwild stability on random models for extreme values of

the inner iteration count q. Each point corresponds to a sampled model, where the

horizontal coordinate is the spectral radius at q = 1 and the vertical coordinate is the

spectral radius at q = oc.

convergent when q = oc and not when q = 1. Therefore the behavior of the algorithm

with varying q is difficult to understand in general.

Despite the complexity of the update map's stability, in the next subsection we give

a simple argument that identifies its convergence with the convergence of Gauss-Seidel

iterates on a larger, non-symmetric linear system. Given that relationship we then

prove a condition on the entries of J that ensures the stability of the Gaussian Hogwild

Gibbs sampling process.

07.6.1 A lifting argument and sufficient condition

First observe that we can write multiple steps of Gauss-Seidel as a single step of Gauss-

Seidel on a larger system: given J = L - U where L is lower- triangular (including the

diagonal, unlike the notation of Section 7.3) and U is strictly upper-triangular, consider

applying Gauss-Seidel to a larger block k x k system:

L -U) L-1ULl
-U L G-Sk L-IUL-1 L-1 UL

-U L (L- 1U) -L-1 -- L--IU*L-1 L-1 (L- U)k

(7.6.7)

Therefore one step of Gauss-Seidel on the larger system corresponds to k applications

of the Gauss-Seidel update L-TU from the original system to the last block element of

the lifted state vector.

Now we provide a lifted linear system on which Gauss-Seidel iterations correspond

to applying Gaussian Hogwild Gibbs iterations to a block component.
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Proposition 7.6.2. Two applications of the Hogwild update T of (7.6.4) are equivalent

to the update to the last block element of the state vector in one Gauss-Seidel iteration

on the (2qn) x (2qn) system

B
-C B

Ex -) with E
-F E

A+C

A (7.6.8)
C B)

That is, if P
then

(0... 0 I) is n x 2qn with an T1 x n identity as its last block entry,

P F
(- F )E

( F)
PT = P (

E

(E-

-1F 2) pT

-1F)2

2.T 2.(7.6.9)

Proof. It suffices to consider E-1F. Furthermore, since the claim concerns the last block

entry, we need only consider the last block row of E1F. E is block lower-bidiagonal

and hence E1 has the same lower-triangular form as in (7.6.7),

BB1

E-1 B-'CB-1 B-1

(B--1C):q 1B-1 .. B- 1C .B-1 B-1

(7.6.10)

and the product of the last block row of E-- with the last block column of F yields

... (B-1C)B-1 B-1) - (A+ C A ... A) (7.6.11)

q-1

(B- C ) + z (B--C)'B--A
j=0

T. (7.6.12)

F-

Proposition 7.6.3. Gaussian Hogwild

converges on the system (7.6.8).

Gibbs sampling is convergent if Gauss-Seidel

To give a sufficient condition for the convergence of Gauss-Seidel on the lifted system

and hence the Gaussian Hogwild Gibbs process, we first state a standard result for

Gauss-Seidel and a simple corollary.

Lemma 7.6.1 (Theorem 6.2 [22]). If J is strictly diagonally dominant then its Gauss-

Seidel update matrix is a contraction in max norRrm; that is, if for every i we have

|JWj| > Z j Jjj| then letting J = L - U where L is lower-triangular and U is strictly
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upper-triangular we have

|IL -Ul'l, < 1 where ||A l l o ' sup -A max I1AK (7.6.13)
x#O |HxK aZoojxo 110C ij=1

and where x I maxi |xi|.

Note that the Gauss-Seidel update being a contraction in any induced matrix norm

immediately implies it is convergent since the spectral radius is upper bounded by any

induced norm; that is, p(A) <; IAIl for any induced matrix norm I| - I because if v is

the eigenvector corresponding to an eigenvalue of A that achieves its spectral radius

then

I|AII = sup ;> - p(A). (7.6.14)
X'O IXI- HIvH

We can extend the lemma slightly by considering generalized diagonally dominant

matrices and adapting the max norm accordingly.

Corollary 7.6.1. If J is strictly generalized diagonally dominant then its Gauss-Seidel

update matrix is a contraction in a weighted max norm; that is, if there exists an r (- R'

with r > 0 entrywise such that for every i we have ri| Ji| > r Jij, then letting
J = L - U where L is lower-triangular and U is strictly upper-triangular we have

IIL-'U I';- < 1 where I|A I'; sup A 00 = max - Aij3 Arj (7.6.15)
x0o 0 x ||K, i r j 1

and where flx|; A maxi +xil.

Proof. Let R A diag(r) and note that JR is strictly diagonally dominant. Therefore by
Lemma 7.6.1 we have that

1 > I R--L--URJIoc = max (7.6.16)

|L URx| |61
= max (7.6.17)

X Ao ||Ix||OC
JL--U Ul,

= max U = |IL 1 Ul I; (7.6.18)

where we have used IIx I ; = IR--1 xIJ, and on the last line substituted x -4 R 1 x. E
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With generalized diagonal dominance as a sufficient condition for Gauss-Seidel con-
vergence, we can use the lifting construction of Proposition 7.6.2 to give a sufficient

condition for the convergence of Gaussian Hogwild Gibbs.

Theorem 7.6.1. If J is strictly generalized diagonally dominant, that is if there exists

an r G R' with r > 0 entrywise such that

ri l Jii > Er IJij l, (7.6.19)
Joi

then Gaussian Hogwild Gibbs sampling is convergent for any fixed variable partition and

any fixed number of inner iterations. Further, we have ||T|| < 1.

Proof. Since each scalar row of the coefficient matrix in (7.6.8) contains only entries from

one row of J and zeros, it is generalized diagonally dominant with a scaling vector that

consists of 2q copies of r. Gauss-Seidel iterations on generalized diagonally dominant

systems are convergent by Lemma 7.6.1 and so by Proposition 7.6.3 the corresponding

Gaussian Hogwild Gibbs iterations are convergent.

To show the stronger result that the update is a contraction, first we define T to be

the Gauss-Seidel update matrix for the system (7.6.8), i.e.

T ( ) F) (7.6.20)-F E 1

and we define ~ to be 2q copies of r. For any x E R" we have

I Xj-; = | > T P T  > ppTX = - TxK (7.6.21)

where we have used the orthogonality of P and Corollary 7.6.1. E

Note that the lifting construction in (7.6.8) immediately generalizes to the case

where the number of inner iterations varies from processor to processor. Furthermore,
the proof of Theorem 7.6.1 shows that T is a contraction in ; regardless of the

partition or structure or inner iteration counts. Therefore we can immediately generalize

the result to the non-stationary case, where the numbers of inner iterations and even

the partition structure vary across outer iterations.

Theorem 7.6.2. If J is strictly generalized diagonally dominant, then for any inner

iteration schedule q with 1 < q(t, k) < qrrax (for t = 1, 2, .. ., k = 1, 2,... , K, and

any qliax < o) and any sequence of partitions I) = I , ... ,I( } Gaussian Hogwild

Gibbs is convergent.
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Proof. We write T for the set of all possible update maps T, where T() is a function

of both q(t, k) and 1 (t). The process is convergent if the joint spectral radius [95, 62]
of T satisfies

p(T) A lim sup{ T1 -- I I : T e T} < 1 (7.6.22)

where I . is any matrix norm. We use the matrix norm induced by the vector norm

- |I defined in (7.6.15) and note that any induced norm is submultiplicative, so that
for any matrices T1 and T2

|T0T2 0| T'c0T 2 H|. (7.6.23)

Then, using the submultiplicative property and the contraction property from Theo-

rem 7.6.1, for any f and any T1, T2 , . .,T E T we have

fT1-- T )i (HT|r ... < 1 - (7.6.24)

for some c > 0 using the fact that T is finite. Therefore p(T) < 1 and the process is
convergent. F

Generalized diagonally dominant matrices are also known as H-matrices [9, Defini-

tion 5.13]; see Berman and Plemmons [9, Theorem 5.14] for a long list of equivalent

characterizations. For an H-matrix to be a valid precision matrix it must also be posi-

tive semidefinite (PSD). Such matrices can also be described as having factor-width two
[13]; that is, a PSD H-matrix J can be factored as J = GGT where G is a rectangular
matrix in which each column has at most two nonzeros.

In terms of Gaussian graphical models, generalized diagonally dominant models in-
clude tree models and latent tree models (since H-matrices are closed under Schur com-

plements), in which the density of the distribution can be written as a tree-structured

set of pairwise potentials over the model variables and a set of latent variables. Latent

tree models are useful in modeling data with hierarchical or multiscale relationships,
and this connection to latent tree structure is evocative of many hierarchical Bayesian

models. PSD H-matrices also include walk-summable matrices [75], for which the Gaus-

sian Loopy Belief Propagation algorithm converges and yields correct mean estimates.

More broadly, diagonally dominant systems are well-known for their tractability and

applicability in many other settings [63], and Gaussian Hogwild Gibbs provides another

example of their utility.

Because of the connection to linear system solvers known as two-stage multisplit-

tings, these results can be identified with Theorem 2.3 of Frommer and Szyld [34], which

shows that if the coefficient matrix is an H-matrix then the corresponding two-stage

iterative solver is convergent. Indeed, by the connection between solvers and samplers
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one can prove these convergence theorems as corollaries to Frommer and Szyld [34,
Theorem 2.3] (or vice-versa), though our proof technique is much simpler. The other

results on two-stage multisplittings [34, 77], including the results on asynchronous it-

erations, can also be applied innediately for results on the convergence of Gaussian

Hogwild Gibbs sampling.

The sufficient conditions provided by Theorems 7.6.1 and 7.6.2 are coarse in that

they provide convergence for any partition or update schedule. However, given the

complexity of the processes, as exhibited in Figure 7.2, it is difficult to provide general

conditions without taking into account some model structure.

N 7.6.2 Exact local block samples

Convergence analysis simplifies greatly in the case where exact block samples are drawn

at each processor because q is sufficiently large or because another exact sampler [90,
29] is used on each processor. This regime of Hogwild Gibbs sampling is particularly

interesting because it minimizes communication between processors.

In (7.5.2), we see that as q -- oe we have T -- Tb 0 ck; that is, the deterministic part

of the update becomes the block Jacobi update map, which admits a natural sufficient

condition for convergence:

Proposition 7.6.4. If ((B - C)-A(B - C)-)2 I, then block Gaussian Hogwild

Gibbs sampling converges.

Proof. Since similarity transformations preserve eigenvalues, with A L (B-C)- A(B-

C we have p(Tblock) p((B - C)(B - C)-'A(B - C)-)= p(A) and since A is

symmetric A2 
-_ I -> p(A) < 1 -> p(Tblock) < 1.

* 7.7 Variances

Since we can analyze Gaussian Hogwild Gibbs sampling as a linear dynamical system,

we can write an expression for the steady-state covariance EHog of the process when it is

stable. For a general stable LDS of the form x(t+1) = TP) + v(t) with v(t) ~ Af(O, Eij)
where Eij is the injected noise of the system, the steady-state covariance is given by
the series E TtEiijTLT, which is the solution to the linear discrete-time Lyapunov

equation E = TETT + Enj in E [20, 105].
The injected noise Eij for the the Hogwild iterations is determined by the inner

iterations, which itself is a linear dynamical system with injected noise covariance D,
the diagonal of J. For Hogwild sampling we have Eij = (I - Td) (B - C)-D(B -

C)- (I - T q)T . The target covariance is J- 1 = (B - C - A)-'.

Composing these expressions we see that the Hogwild covariance is complicated in

general, but we can analyze some salient properties in at least two regimes of particular
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Algorithm 7.2 Hogwild Gibbs with Symmetric Local Sweeps

Input: Joint distribution over x = (x 1 ,... ,xn), partition {11,... ,IK} of {1, 2,. .. ,n}
Initialize x(1)
for t = 1, 2, ... do

for k = 1, 2, ... , K in parallel do
,-(t+1I)

VIk <- LOCALGIBBS(QP, 'k, q(t, k))

function LOCALGIBBS(i , I, q)
for j = 1, 2,..., q do

for i E I in order do
,tj <- sample xiIxj = x,1

for i e I in reverse order do
2t <-- sample xiIxj =:Tj

return x

interest: first when A is small so that higher-order powers of A can be ignored, and
second when local processors draw exact block samples (e.g. when q - 00).

* 7.7.1 Low-order effects in A

Intuitively, the Hogwild strategy works best when cross-processor interactions are small,
and so it is natural to analyze the case when A is small and we can discard terms that
include powers of A beyond first or second order. To provide an analysis for the low-
order regime, we first describe a variant of the Hogwild Gibbs algorithm that enables
more detailed spectral analysis. We also fix notation for derivatives. The results in
this subsection assume that the Hogwild process is convergent, which is guaranteed for
small enough A by continuity of the spectral radius.

For the remainder of Section 7.7.1 we analyze a slight variant of the Hogwild Gibbs
algorithm in which processor-local Gibbs update sweeps are performed once in order
and once in reverse order for each local iteration, as shown in Algorithm 7.2. This
variant is more amenable to spectral analysis because its corresponding inner splitting
has more structure than the Gauss-Seidel inner splitting of Algorithm 7.1. To see the
difficulty with the Gauss-Seidel inner splitting, consider the splitting

-1
1 0.7 1 0.7 0 0.7

0.7 1 0.7 G-Sy 0.7 1 097 0. 2 0.7 (7.7.1)
0.7 1 )0.7 1) 0.7 3 0.7 2
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This Gauss-Seidel update is not diagonalizable; its Jordan form is

0 0.7 -0.35 5 - 0 1 -0.35 5 -0.7 ( T 14 (U4.- T4
0.72 0.7 = 0 0.5 0.5 0 0 0.5 0.5

0.73 0.72 0 0.35 -0.35 0.98 0 0.35 -0.35)
(7.7.2)

and so there is no basis of eigenvectors for the invariant subspace with eigenvalue 0. In

general, a Gauss-Seidel update matrix may not be diagonalizable, and little can be said

about its eigenvalues.

The inner splitting update matrix for Algorithm 7.2 is that of symmetric Gauss-

Seidel, or Symmetric Successive Over-Relaxation (SSOR) with unit relaxation parame-

ter [22]. This update has much clearer spectral properties, as we show in the following

lemma. This lemma extends slightly a standard result that the eigenvalues of the SSOR

update are real [22, p. 299].

Lemma 7.7.1. Let J > 0 and let J = D - L - LT , where D is the diagonal of J and L

and LT are its strictly lower- and upper-triangular parts, respectively. The symmetric

Gauss-Seidel update matrix

(D - LT)--1 L(D - L)-ILT (7.7.3)

is diagonalizable, and farthermore its eigenvalues are real and in 0, 1).

Proof. We first show (7.7.3) is similar to a positive semnidefinite matrix whenever J

is symnietric. By applying the similarity transformation X F P-1 XP where P A
(D - L)-1D2, we see (7.7.3) has the same eigenvalues as

D--LT(D - L- 1 D1 D--L(D - L)-'DSj= YZ (7.7.4)

where Y A D-LT(D - LT)-1D' and Z A D-1L(D - L)-D 4 . Note that

L T (D - LT)-1 = (D - (D - LT))(D - L T)-- = D(D - L T) - I (7.7.5)

and similarly L(D - L)-' = D(D - L)-1 - I. Hence

Z D- 1/ 2 L(D - L)-D'/ 2 = D/ 2 (D - L)-'D 1/ 2 - I (7.7.6)

S[D1/2(D - LT)-1D1/ 2 - T [D-1/2LT(D - LT)-1D1/2] T YT (7.7.7)

and so YZ = yyT is positive semnidefinite and has nonnegative (real) eigenvalues.

Furthermore, when J & 0 the eigenvalues have absolute value less than unity because

symmetric Gauss-Seidel is convergent on positive definite systems. D
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A CT C D

Figure 7.3: Support pattern (in black) of the splitting for Hogwild Gibbs with sym-
metric local sweeps, J = D - CT - C - A, with n = 9 and the processor partition
{{1, 2, 3}, {4, 5, 6}, {7, 8, 9}}.

To model Algorithm 7.2 with its symmetric Gauss-Seidel inner splitting, given a
precision matrix J we split J = Dbd - A into block diagonal and block off-diagonal
parts as in Section 7.5, then further split Dbd = D - CT - C into diagonal, strictly
lower-triangular, and strictly upper-triangular parts. Note that B D - CT, and so
compared to the splitting presented in Section 7.5, we now split J D - CT - C - A
instead of J = B - C - A. Additionally, though we have B - C = D - CT - C, in the
equations in this section we continue to use B - C for simplicity and consistency with
other sections. See Figure 7.3 for an example of the sparsity pattern of A, CT, C, and
D, and compare to Figure 7.1.

The inner-splitting update matrix for Algorithm 7.2 is then the block-diagonal ma-
trix S A (D- C)--CT(D - CT)-iC. Comparing to (7.6.4), the deterministic part of
the update map becomes

T A +q + (I - Sq)Tb1  (7.7.8)

for the same definition of Tbj as in (7.6.5), and the discrete-time Lyapunov equation for
the Hogwild covariance remains

EHog TZHogT T + Zinj (7.7.9)

where now Eij = (I-Sq)(B-C)1D(B-C-1 (I-Sq)T. Similarly, in other expressions
we can replace each occurrence of Tind = B- 1 C with S. In the following analysis, we
use the fact that S has a complete basis of eigenvectors and that its eigenvalues are real
and lie in [0, 1).

Next, we fix notation for derivatives, following the notation used in Pressley [91].
Let R"' denote the space of real n x n matrices. For a function f : R" " a R,X, we
write its derivative at X E R >" as the linear map Dxf : Rnx" a R"x" defined by

d nx7Dx f (Y) _ tf (X + tY) V YGER" (7.7.10)
dt t=0
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where the differentiation is performed element-wise. Similarly, we write the second
derivative at X C R"X" as the symmetric bilinear form Di f : R"X x R" -+r R rLX"r

defined3 by

Df (Y, Y) dt2 f (X + tY)
t=o

V Y E Rt' "

Finally, we write the Taylor approximation for f around the point 0 as

f (X) = f (0) + Dof (X) + -D2f (X, X) + O( X |3)2

(7.7.11)

(7.7.12)

where 1 - 11 is any submultiplicative matrix norm.

To analyze the Hogwild covariance error to low order in A, we write both the
exact covariance and the Hogwild covariance as functions of the symmetric matrix A,
respectively E(A) and EHog(A). We write the Taylor expansion of EHog around 0 as

EHog(A) = E(0) + DoEHog(A) + ID2EHog(A, A) + C( JA 3),

where E(0)

(7.7.13)

(B - C)-i, and compare it to the exact series expansion for the target

covariance E = J-1 given by

J- 1  [B - C - A]- 1

(B - C)--2 I1 - (B - C)

=(B -C~ Q- 11+ (B -CQ

-2A(B -C)-2

-- iA(B -C)-2

(7.7.14)

(7.7.15)
I

(B - C)-2

2 (7.7.16)

(7.7.17)

1

- C)+((B - C)-A(B - C)

=(0) + (B - C)-'A(B - C)-1

+ (B - C)- 1 A(B C) 'A(B - C)- + O(JAH 3).

In particular, to understand low-order effects in A, we compare the lowest-order terms

that disagree in the two expansions.

We measure the total error as iiEHog(A)

XP,Fro H P-XP-l Fro

and where P A (D

E(A) IP,Fro, where

and I X II Fro A trm(XTX) (7.7.18)

CT)-1D- is the similarity transformation used in the proof of

3 A symmetric bilinear forim R on a vector space V is defined by the quadratic form Q with Q(u) =
R(u, u) for allu (E V via the polarization identity 4R(u, v) = Q(u + v) - Q(u - v). Thus to define the
second derivative it suffices to define the corresponding quadratic form, as in (7.7.11). In our analysis
based on Taylor series expansion, we only use the quadratic form.
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Lemma 7.7.1. In the following, we analyze the error on the block-diagonal and the error
off the block-diagonal separately, decomposing

EH og (A) - (A)P,Fro =

HFrbd(EHog(A) - P(A))HP,Fro ± lobd(ZHog(A) -- (A))P,Fro (7.7-19)

where Hbd and fobd project to the block-diagonal and off-block-diagonal, respectively,
and we have used the fact that P is itself block-diagonal.

Block-diagonal error

To analyze the low-order effects of A on the block-diagonal error, we first differentiate

(7.7.9) to write an equation for DoEHog(A):

DoEHog(A) - SqDoEHog(A)SqT A _ Sq A(1)qT _ (I _ q q) T (7.7.20)

where AM (B - C) A(B - C)-i DoE(A) is the first-order term in the expansion

for the exact covariance in (7.7.16). Note, however, that because A is zero on its block-
diagonal, Hbd(DoEHog(A)) = 0 = bd(Z(1 ) so the first-order terms in both expansions,
(7.7.16) and (7.7.13), are identical on the block-diagonal.

To compare second-order terms on the block-diagonal, we differentiate (7.7.9) twice
to write an equation for D 2EHog(A):

Hbd D 2EHog(A, A) - SD 2EHog(A, A)SqT) 2 1bd ((I - Sq)A( 2 ) (I _ Sq)T)

(7.7.21)
where E A (B - C)--1A(B - C)--A(B - 0)i =DE(A, A) is the second-order term

in the expansion for the exact covariance in (7.7.16). Using (7.7.21) and the fact that

S has a complete set of eigenvectors, we can decompose the error in the second-order

terms as

Ibd 2D EHog(A,) 2 f ( q (7.7.22)
/ P,Fro k [K] (ij)cI

where each (Ai, Aj) is a pair of eigenvalues of a block of S, and ... (QTp--A( 2 )p-T i

where Q is the orthogonal matrix such that QTp-1SpQ is diagonal. The function

f : (-1, 1)2 - R+ is defined by

(1 - A )(1 - Aq)
f (A- A I A q (7.7.23)

2 j
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Figure 7.4: A plot of the function f defined in (7.7.23).

Hence we can understand the error by analyzing the values of f(A', Aj) for all the pairs

of eigenvalues of S. For a detailed derivation, see Appendix A.

We plot the function f in Figure 7.4. In the figure, the color corresponds to the

value of f on a logarithmic scale, and we label some level sets of f. Note in particular

that f(0, 0) = 0 and that 0 < f(x, y) < 1 for (x, y) E [0, 1)2. Due to Lemma 7.7.1, we

need only consider the nonnegative quadrant [0,1)2, which corresponds to the upper-

right of the figure. Using these properties of f and the decomposition (7.7.22) yields

the following proposition.

Proposition 7.7.1. Using 1. = 11 - |P,Fro, we have

(1) For all q > 1, the block-diagonal Hogwild covariance satisfies

IHbd (EHog(A) - Z(A))I < I ibd (Z(0) - E(A))I + O(1AI 3); (7.7.24)

(2) The dominant (second-order) error term decreases with increasing q in the sense

that

Hbd (D2E Hog(A, A) - D2E (A, A)) - 0 (7.7.25)

monotonically as q -- oc.



Proof. (1) is immediate from the decomposition (7.7.22), Lemma 7.7.1, and the obser-
vation that 0 < f(x, y) < 1 for (x, y) E [0, 1)2. To show (2), first we note that since
limqso Aq = 0 for each eigenvalue Ai of S and because f is continuous at (0, 0), we

have that limq oo f(Aq, Aq) = f(0, 0) = 0 for every pair. Monotonicity follows from the
fact that if for any (Xo, Yo) E [0, 1)2 we define a path -y(t) = (4t y)T for t E R+, then
we have

d(t) (ln(xo)xt ln(yo)yt) < 0 (7.7.26)

element-wise, and since

Vf(x, y) (-X 2
2  (1-Xy)2 > 0 (7.7.27)

element-wise, we have af( 1 (t)) =(Vf(4y), y(t)) < 0 and f is monotonically

decreasing along -y. D

Proposition 7.7.1 shows that, to second order in A, the block-diagonal of the Hogwild
covariance is always improved relative to simply ignoring cross-processor effects by ap-
proximating A = 0, and that the amount of second-order improvement is monotonically

increasing with the number of local iterations q.

Off-block-diagonal error

Returning to the first-derivative equation (7.7.20), we see that both DOEHog(A) and

Z() are nonzero off the block-diagonal, and therefore to analyze the off-block-diagonal

covariance error for small A we compare the first-order terms. Analogous to the argu-

ment in the previous section, as derived in Appendix A we can decompose the error in
the first-order terms as

Llobd (DoEHog - P,Fro _ _ S ( (77.28)
k1,k 2 e[K] iEIk 1 JCIk2

k1#Ak2

where each (Ai, Aj) is a pair of eigenvalues from distinct blocks of S and we set iQ) A
"3

(QTp-1A()p-TQ),j, where Q is the orthogonal matrix such that QTP-lSPQ is diag-
onal. The function g : (-1, 1)2 -+ R+ is defined by

(1 - A )(1 - A )
g(A1, Aq) (7.7.29)

We plot the function g in Figure 7.5. In the figure, the color corresponds to the

value of g on a logarithmic scale, and we label some level sets of g. Note in particular
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Figure 7.5: A plot of the function g defined in (7.7.29).

that g(0, 0) 1 and that 0 < g(X, y) < 1 for (x, y) E [0, 1)2. Using these properties of

g and the decomposition (7.7.28) yields the following proposition.

Proposition 7.7.2. Using 11 - 11= 1 - |IP,Fro, we have

(1) For all q > 1, the off-block-diagonal diagonal Hogwild covariance satisfies

IHobd (EHog(A) - Y(A)) Ilobd (E(0) - + 0(1A1 2) (7.7-30)

where the inequality is strict if S has a nonzero eigenvalue;

(2) The dominant (first-order) error term increases with increasing q in the sense

that

I Ilobd (DoEflog(A, A) - DoE(A, A))h + IIHobd ( (0) -(A)) (7.7.31)

monotonically as q -+ oc.

Proof. As in the proof for Proposition 7.7.1, (1) follows immediately from the decompo-

sition (7.7.28), Lemma 7.7.1, and the observation that 0 < g(x, y) < 1 for (x, y) C [0, 1)2.

To show (2), note that limq_,>c g(Aq, A ) = 1. By comparing the level sets of g to those



of f, we see that if for any (Xo, yo) E [0, 1)2 we define -y(t) = (XI, yt)T for t C R+, then

we have T g(-y(t)) = (Vg(x', y'), -- y(t)) > 0 and so g is monotonically increasing along
the path -y.

Proposition 7.7.2 shows that, to first order in A, the off-block-diagonal of the Hog-
wild covariance is always an improvement relative to the A = 0 approximation (assum-
ing S has a nonzero eigenvalue), yet the amount of first-order improvement is monoton-
ically decreasing with the number of local iterations q. Therefore there is a tradeoff in
covariance performance when choosing q, where larger values of q improve the Hogwild
covariance on the block diagonal but make worse the covariance error off the block
diagonal, at least to low order in A.

We validate these qualitative findings in Figure 7.6. Model families parameterized

by t are generated by first sampling J= B - C - A = QQT with Qi Hd Ar(0, 1) where
Q is n x n and then letting J(t) = B - C - tA, so that t = 0 corresponds to a model
with zero off-block-diagonal entries and off-block-diagonal effects increase with t. The
sampling procedure is repeated 10 times with n = 150 and a partition with K = 3 and
each Ikj = 50. The plotted lines show the average error (with standard deviation error
bars) between the block diagonal of the true covariance E(t) = J(t)-' and the block
diagonal of the Hogwild covariance EHog(t) as a function of t for q = 1, 2, 3, 4, 100, where
varying q shows the effect of local mixing rates. That is, in Figure 7.6(a) each line plots
the block-diagonal error IHbd(E(t) - EHog(t P,Fro and in Figure 7.6(b) each line plots
the off-block-diagonal error IIH obd(E(t) - EHog(t) P,Fro. Note that separate black line
is plotted for IIbd(E(t) - (0)) 1P,Fro and II obd( (t) - P(0))1p,Fro, respectively; that
is, the black lines plot the respective errors when ignoring cross-processor effects and
approximating A = 0.

Figure 7.6(a) shows that to first order in t the block diagonal of the process co-
variance EHog is identical to the true covariance E, since all slopes are zero at t 0.
Second-order effects contribute to improve the Hogwild covariance relative to the A 0
approximation. Furthermore, we see that the second-order effects result in lower errors
on the block diagonal when there is more processor-local mixing, i.e. larger values of q.
Similarly, Figure 7.6(b) shows that first-order effects contribute to improve the Hogwild

off-block-diagonal covariance relative to the A = 0 approximation. The Hogwild slopes
at t = 0 are lower than that of the A = 0 approximation, and the relative improve-
ment decreases monotonically as q grows and the slopes approach that of the A = 0
approximation. These features and their dependence on q are described in general by
Propositions 7.7.1 and 7.7.2.

Figure 7.6(b) also shows that, for larger values of t, higher-order terms contribute
to make the Hogwild off-block-diagonal covariance error larger than that of the A = 0
approximation, especially for larger q. The setting where q is large and global commu-
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Figure 7.6: Typical plots of the projected error ||H(E(t) - EHog(t))flP,Fro for random
model families of the form J(t) = B - C - tA. In (a) H projects to the block diagonal;
in (b) H projects to the off-block-diagonal. The sampled models had p(S) ~- 0.67.
Hogwild covariances were computed numerically by solving the associated discrete time
Lyapunov equation [111, 112].
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nication is infrequent is of particular interest because it reflects greater parallelism (or
an application of more powerful local samplers [90, 29]). In the next subsection we show
that this case admits a special analysis and even an inexpensive correction to recover
asymptotically unbiased estimates for the full covariance matrix.

* 7.7.2 Exact local block samples

As local mixing increases, e.g. as q -+ oc or if we use an exact block local sampler
between global synchronizations, we are effectively sampling in the block lifted model
of Eq. (7.3.13) and therefore we can use the lifting construction to analyze the error in
variances.

Proposition 7.7.3. When local block samples are exact, the Hogwild covariance EHog
satisfies

E = (I + (B - C)-1 A)EHog and HE - ZHoglj < |(B - C--A Z HEHogl (7.7.32)

where E = J- 1 is the exact target covariance and | | is any submultiplicative matrix
norm. In particular, we may compute

E = EHog + (B - C)- 1 AEHog (7.7.33)

as a correction which requires only a large matrix multiplication and solving the processor-
local linear systems because B - C is block-diagonal.

Proof. Using the block lifting in (7.3.13), the Hogwild process steady-state covariance
is the marginal covariance of half of the lifted state vector, so using Schur complements
we can write

EHog = ((B - C) - A(B - C (7.7.34)

= (B - C)- [I + ((B - C)- A(B -

+((B - C) A(B - C)-) + -- ] (B - C)--. (7.7.35)

We can compare this series to the exact expansion in (7.7.16) to see that EHog includes
exactly the even powers, so therefore

E - Eflog = (B - C) -i -2((B - C)--2 A(B - C)-1)

+((B - C)--A(B - C)-)+ -... ] (B - C)-- (7.7.36)

= (B - C)- 1AEHog- (7.7.37)
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Note that this result does not place any assumptions on the off-block-diagonal A.

* 7.8 Summary

We have introduced a framework for understanding Gaussian Hogwild Gibbs sampling

and shown some results on the stability and errors of the algorithm, including (1) quan-
titative descriptions for when a Gaussian model is not too dependent to cause Hogwild

sampling to be unstable (Proposition 7.6.2, Theorems 7.6.1 and 7.6.2, Proposition 7.6.4);
(2) given stability, the asymptotic Hogwild mean is always correct (Proposition 7.6.1);

(3) in the low-order regime with small cross-processor interactions, there is a tradeoff

between the block-diagonal and off-block-diagonal Hogwild covariance errors (Propo-

sitions 7.7.1 and 7.7.2); and (4) when local samplers are run to convergence we can

bound the error in the Hogwild variances and even efficiently correct estimates of the

full covariance (Proposition 7.7.3). We hope these ideas may be extended to provide

further insight into Hogwild Gibbs sampling, in the Gaussian case and beyond.

167



168 CHAPTER 7. GAUSSIAN HOGWILD GIBBS



Chapter 8

Conclusions and Future Directions

This thesis presents two lines of work addressing some scaling challenges in Bayesian

inference. In the first we focus on inference algorithms for Bayesian time series models

based on the HMM and HSMM. We demonstrate that efficient inference in such mod-

els goes hand in hand with model structure. In particular, in Chapter 3 we develop a

Bayesian nonparametric model that includes explicit duration modeling, and in Chap-

ter 4 we show that for duration modeling in long observation sequences it is crucial to

have efficient representations so that message passing inference remains tractable. In

Chapters 5 we exploit message passing and efficient HSMM representations to build effi-

cient scalable inference algorithms in the SVI framework, which enables these Bayesian

models to be fit to very large datasets, and in Chapter 6 we demonstrate how these

models and algorithms can be composed to model extreniely rich dynamical behavior.

In Chapter 7 we turn to a more general setting and develop a theoretical analysis

of Hogwild Gibbs sampling in Gaussian models. This highly-parallelizable strategy for

generating approximate samples using only Gibbs sampling updates has proven to be

very effective in some cases, and by a theoretical analysis of the Gaussian case we aim

to provide understanding of its performance and tradeoffs.

Here we summarize our main contributions and offer some thoughts oi possible

future directions of research.

* 8.1 Summary of main contributions

In this section we provide an overview of the main contributions in each chapter.

Chapter 3: The Hierarchical Dirichlet Process Hidden semi-Markov Model

In Chapter 3 we define the HDP-HSMM, which is a generalization of the HDP-HMM to

allow arbitrary state-specific duration distribution modeling. We develop both collapsed

and weak limit Gibbs samplers as well as ami auxiliary variable scheme that makes the

sampling updates both simple and efficient. Ii addition, we show a composition of

HDP-HSMMs into a factorial structure, and apply this factorial model to an energy
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signal disaggregation task.

Chapter 4: Faster HSMM Inference with Efficient Representations

In Chapter 4 we develop a framework for representations of HSMMs that allow for effi-
cient message passing and inference. By defining HMM embeddings of HSMMs we refine
and extend previous ideas on embedded state HMMs (ESHMMs) and provide a general
algorithm for computing HSMM messages that is both time- and memory-efficient for
duration distributions that admit efficient representations. We then generalize further
to a notion of LTI realizations of HSMMs, and by building connections with LTI sys-
tems realization and positive realization theory, we show both the generality of the LTI
realization perspective as well as the ultimate limitations of such approaches. These
connections may also yield new approximation schemes for HSMM inference.

Chapter 5: SVI for HMMs, HSMMs, and Nonparametric Extensions

In Chapter 5 we use the stochastic variational inference (SVI) framework to develop
scalable mean field variational inference algorithms for Bayesian HMMs, HSMMs, and
their nonparametric extensions, the HDP-HMM and HDP-HSMM. Building on the
ideas from Chapter 4, we also propose a more efficient approximate update for HSMMs
with durations that are modeled as negative binomials (or negative binomial mixtures).

Chapter 6: Scalable Inference in Models with Multiple Timescales

In Chapter 6 we synthesize the ideas in earlier chapters to define a new Bayesian
nonparametric segment model with efficient and scalable inference algorithms. The
model is based on the HDP-HSMM, but instead of observations within each segment
being generated independently, observation segments are generated from HDP-IMMs.
While many similar models have been proposed, the main advantage to this new model
is that it admits efficient inference algorithms based on the ideas we develop in this
thesis. In particular, building on ideas from Chapters 3 and 4, we construct efficient
message passing and Gibbs sampling algorithms, and building on ideas from Chapter 5
we develop SVI updates that allow the model to be fit to large datasets.

Chapter 7: Analyzing Hogwild Parallel Gaussian Gibbs Sampling

In Chapter 7 we define the Hogwild Gibbs sampling algorithm based on a simple but
poorly-understood parallelization scheme for Gibbs samplers. We analyze this scheme
in the case of sampling from Gaussian distributions, and drawing on linear algebraic

tools we provide several results on its convergence and correctness. In particular, in
Theorems 7.6.1 and 7.6.2 and Proposition 7.6.1 we give sufficient conditions for the sta-
bility of the stochastic process and the correctness of the process mean. To understand
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the errors introduced in covariances, in Propositions 7.7.1 and 7.7.2 we give an analysis

of the error in the process covariance when the model's cross-processor interactions are

small, and in particular we show how the frequency of communication produces a trade-

off in the errors on and off the block diagonal. Finally, for the asymptotic case where

the frequency of cross-processor communication is minimized and parallel computation

is maximized, in Propositions 7.6.4 and 7.7.3 we give a more precise convergence con-

dition, an error bound on covariances, and even a correction so that the exact model

covariance can be computed efficiently from the process covariance.

* 8.2 Directions of future research

Here we suggest some lines of research that build on the ideas presented in this thesis.

Extending the HDP-HMM and HDP-HSMM to continuous-time

The flexible models and algorithms in this thesis include a wide variety of specific mod-

els with particular observation distributions or hierarchically tied parameters. These

models and algorithms also accommodate standard extensions to include switching lin-

ear dynamical systems as well as time-inhomnogeneous models, in which the transition

matrix or other parameters may vary over time. However, these models are all discrete-

time models. Continuous-time versions of these models would be useful for settings

where the data sequence does not represent observations sampled at uniformly-spaced

intervals of time, i.e. where observations instead each have timestamps.

While there is some work on constructing continuous-time Bayesian nonparamet-

ric time series models [99], the HDP-HSMM offers a particular perspective on the

construction of such models which may allow for the transfer of algorithms from the

discrete-time setting to the continuous-time setting. Continuous-time Markov chains

are typically parameterized in terms of a continuous-time arrival process, which gen-

erates transition times, and a transition matrix which excludes self-transitions [85].

The HDP-HSMM construction of Chapter 3 similarly separates the HDP prior over the

transition matrix from the description of transition times, which are controlled by the

discrete-time duration distributions. Therefore it may be possible to construct a cor-

responding continuous-time process, and corresponding Bayesian nonparametric prior,

using the same diagonal-truncated HDP construction as in Chapter 3 but exchang-

ing the discrete-time duration distributions for continuous-time ones. The advantage

to such a construction, in addition to its simplicity, is that many of the algorithms

we develop for the HDP-HSMM may be immediately applicable to the continuous-time

model. In particular, the auxiliary variable sampler for performing Gibbs sampling with

the truncated HDP prior developed in Chapter 3, the efficient duration representations

explored in Chapter 4, and the SVI methods derived in Chapter 5 could be adapted.

171



Direct inference in efficient HSMM representations

In Chapter 4 we develop a framework for efficient representations of duration models
in HSMMs, particularly both HMM embeddings and LTI realizations. For particular
duration models, namely negative binomials or mixtures of negative binomials, these
representations led to much more efficient HSMM message passing and hence more
efficient inference algorithms. While mixtures of negative binomials can represent a
wide variety of potentially multi-modal duration distributions, it is natural to look for
other duration models that have efficient representations yet are convenient for Bayesian
inference over their parameters.

Negative binomial duration models (and their mixtures) are particularly convenient
for Bayesian inference over their parameters because, due to their regular structure, we
can develop simple priors and Gibbs sampling updates for their parameters, as we show
in Section 4.4.2. However, it is not necessary to retain such simple parameter updates,
especially if there are potential gains for duration model expressiveness and efficiency.

One approach is to parameterize the efficient representations directly, either as HMM
embeddings or as LTI realizations. That is, in the case of HMM embeddings, one could
directly parameterize the pseudostate transition matrices A('), the entrance probabili-
ties cjj, and the exit probabilities I). As duration models, this class of distributions
can be very rich, and the complexity of message passing inference using such representa-
tions is clear. Furthermore, one could perform Bayesian inference over the parameters
using generic algorithms such as Metropolis-Hastings or Hamiltonian Monte Carlo [11].
Alternatively, one could exploit the HMM embeddings' probabilistic interpretation to
develop an auxiliary variable sampler, in which, conditioned on a set of durations in-
terpreted as dwell times, one could alternate between resampling the pseudostate se-
quences that gave rise to those dwell times and the pseudostate transition matrix given
the complete pseudostate sequences. However, it remains unclear whether such dura-
tion distributions can offer significant modeling advantages over mixtures of negative
binomial distributions.

Compositional time series model learning

Recent work has explored automatic model generation and selection in compositional
spaces [46, 24, 45]. In this line of work, a compositional model space may be specified
by a set of grammar rules, each of which can refine a model component to express more
detailed structure. More concretely, in Grosse [45, Chapter 3] models are expressed as
matrix decompositions while grammar rules correspond to further decompositions of
component factors. For example [45, Section 3.4.1], one might express a structureless
model for a data matrix as G, where the symbol G denotes that the matrix entries
are generated independently and identically as Gaussians. By applying the production
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rule G -* MG + G, where the symbol -/ denotes a "multinomial" matrix with one

nonzero entry per row, one can express clustering structure. Alternatively, by applying

the production rule G -+ GG + G, one can express low-rank structure. Grosse [45]

shows that, by recursively applying these and other rules and using Bayesian model

selection criteria and a greedy search, one can automatically discover very rich models

from data.

These automatic model discovery and refinement techniques may prove a powerful

tool for exploratory data analysis, especially when developing models in the unsuper-

vised setting. The Bayesian models and algorithms for unsupervised time series analysis

developed in this thesis may also fit naturally into such a framework. Models with the

potential for dynamics at multiple tiriescales, such as those described in Chapter 6,
may be particularly relevant, since an automatic search procedure might identify how

detailed a dynamical model should be and what form those dynamics might take, in-

cluding discrete Markov state dynamics or latent linear dynamics.

More general stochastic variational inference

The SVI algorithms developed in Chapter 5 are applicable to many Bayesian time

series models, including HMMs, HSMMs, and their nonparamnetric extensions paired

with any observation or duration models. However, the unbiased stochastic natural

gradient update relies on the assumption that the mninibatches used to compute each

update are conditionally independent given the global parameters. This assumption

would be violated if the overall graphical model were to have edges connecting the

latent variables of distinct minibatches.

Therefore to apply SVI to such models requires either an extension of the algorithm

or a refinement of the analysis to show that, at least for some models or in some regimes,
the existence of such cross-miribatch edges does not affect the convergence guarantees

of the SVI algorithm. A refined analysis is plausible because stochastic gradient algo-

rithms are known to converge under very weak assumptions [10]. Stochastic gradient

algorithms are also known to converge even when the computation is aggressively par-

allelized or distributed among many infrequently-communicating processors [10, 84],
and it would be beneficial to study these computational regimes, both theoretically and

empirically, for SVI in Bayesian models.

Understanding Hogwild Gibbs for Non-Gaussian Models

While the theory we develop in Chapter 7 only describes sampling in Gaussian models,
it may be possible to translate some of our results and techniques to non-Gaussian

settings.

In particular, several lines of work on developing scalable sampling algorithms rely
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on appeals to the Bayesian central limit theorem [116, 1, 81], in which, as the amount of

data grows large while the number of parameters stays fixed, posterior distributions for
sufficiently differentiable models become Gaussian. Our Gaussian theory immediately
applies to these settings. However, this framing is limited because it does not include

most nonparametric latent variable models in which the relevant latent dimension grows
with the amount of data. Settings in which the amount of data is sufficiently large to
completely overwhelm any prior also obscure the utility of taking a Bayesian analysis

approach. However, it may still be of interest to employ Hogwild Gibbs or similar
samplers to quantify uncertainty in these regimes, and so it would be of interest to

extend our Hogwild Gibbs sampling theory to these cases and evaluate the performance

of such sampling methods empirically.

There are other avenues for extending Hogwild Gibbs analysis. In particular, it may

be possible to build on ideas from parallel and distributed nonlinear optimization [10] to
show convergence results for such samplers. A linearized analysis of covariance effects,
such as the one we developed for Gaussians in Section 7.7.1, may also be possible in
such settings.

Finally, it may be possible to develop an understanding of when Hogwild Gibbs
procedures may be corrected to produce exact samples, such as with the inclusion of
some Metropolis steps or other adjustments [94, 117].
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Appendix A

Hogwild Gibbs Covariance Spectral
Analysis Details

Here we derive the expansions used in Eqs. (7.7.22) and (7.7.28). To unify the notation,
we drop the superscripts on Am1( and A(2) and write simply A since the argument is

identical in the two cases.

Recall from Lemma 7.7.1 that S can be diagonalized via

A = P-SP6 where P- 1 = QTp-l

in which Q is orthogonal and P is the matrix P B-1D1. The columns of P form a

basis of R" , and

(A.2)S {- j : pi, pj are the ith and jth columns of P}

is a basis for R"X". The maps X v-i SXST and X e (I - S)X(I - S)T are diagonal in

the basis S, since if Ai is the eigenvalue of S corresponding to eigenvector Fi then

SpijTST = AjAjj;)T (A.3)

(I - S)i5~j5J~(i S)T=(1 - Aj)(1 - Aj))i3 .' (A.4)

The coefficients i- are then the coordinates of A in the basis S. That is,

A = Yigig PA~ where iig = (p-IAP-T),j. (A.5)

The formula follows from the computation
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- - -(A .6)

- ijejeT (A.7)

where e is the ith standard basis vector with 1 in its ith coordinate and 0 elsewhere.
With this setup, Eqs. (7.7.22) and (7.7.28) correspond to expanding Eqs. (7.7.21)

and (7.7.20) in the S basis. Finally, note that

JAIJP,Fro P AP T Fro QT P- AP-T Fro = (A.8)



Appendix B

Numerical Evaluation of
HDP-HSMM Auxiliary Variable

Sampler

U B.1 Overview

This appendix considers the problem of drawing samples from posterior

formed under a Dirichlet prior and a truncated multinomial likelihood,
mean a Multinomial likelihood function where we condition on one or

being zero a priori. An example is the distribution with density

distributions

by which we

more counts

p(7r1n, a) oc H Q 7r" -( - I i r )i )72 J

prio1 1-2
I1 i7 2

prior likelihood

(B.1)

where 7 E A := Ix E R : Zxi = 1, a C R", and R+ { E R : x > 0}. We say

the likelihood function has two truncated terms because each term corresponds to a

multinomial likelihood defined on the full parameter 7 but conditioned on the event

that observations with a certain label are removed from the data.

Sampling this posterior distribution is of interest in inference algorithms for hier-

archical Bayesian models based on the Dirichlet distribution or the Dirichlet Process,
particularly the sampling algorithm for the Hierarchical Dirichlet Process Hidden Semi-

Markov Model (HDP-HSMM) of Chapter 3, which must draw samples from such a

distribution.

We provide an auxiliary variable (or data augmentation) [109] sampling algorithm

that is easy to implement, fast both to mix and to execute, and easily scalable to high

dimensions. This appendix will explicitly work with the finite Dirichlet distribution, but

the sampler immediately generalizes to the Dirichlet Process case based on the Dirichlet
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Process's definition in terms of the finite Dirichlet distribution and the Komolgorov
extension theorem [87].

Section B.2 explains the problem in greater detail. Section B.3 provides a derivation
of our sampling algorithm. Finally, Section B.4 provides numerical experiments in
which we demonstrate the algorithm's significant advantages over a generic Metropolis-
Hastings sampling algorithm.

Sampler code and functions to generate each plot in this appendix are available at
https://github.com/mattjj/dirichlet-truncated-multinomial.

N B.2 Problem Description

We say a vector 7 e A is Dirichlet-distributed with parameter vector a E R' if it has
a density

p(7l) =l i) _1 Ti (B. 1)
i=1 F(ai) i1

Dir(7rla) (B.2)

with respect to Lebesgue measure. The Dirichlet distribution and its generalization to
arbitrary probability spaces, the Dirichlet Process, are common in Bayesian statistics
and machine learning models. It is most often used as a prior over finite probability
mass functions, such as the faces of a die, and paired with the multinomial likelihood,
to which it is conjugate, viz.

Dir(7rla) -Mult(ml7r) c 7'-r - .l 7r" (B.3)

X Fci~n- (B.4)

oc Dir(7rla + m). (B.5)

That is, given a count vector m E Nn, the posterior distribution is also Dirichlet with an

updated parameter vector and, therefore, it is easy to draw samples from the posterior.

However, we consider a modified likelihood function which does not maintain the

convenient conjugacy property: the truncated multinomial likelihood, which corre-

sponds to deleting a particular set of counts from the count vector m or, equivalently,
conditioning on the event that they are not observed. The truncated multinomial like-
lihood where the first component is truncated can be written
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TruncMult i}(m17) := ( (B.6)

Mult(m 7, {m1  = 0}). (B.7)

In general, any subset of indices may be truncated; if a set I C {1, 2, ... , n} is truncated,
then we write

TruncMult(rii) (1 - 1ri (B.8)
7iI

where in. = Erni.
In the case where the posterior is proportional to a Dirichlet prior and a single

truncated iultinomial likelihood term, the posterior is still simple to write down and

sample. In this case, we may split the Dirichlet prior over I and its complement

I {1, 2, .. . , n} \ I; the factor over I is conjugate to the likelihood, and so the

posterior can be written

Dir(7rja)TruncMultI(mj-r) N Dir a Dir I ay + (_ _y
S1 - Ei~ Di 1- z 7 ~

(B.9)

from which we can easily sample. However, given two or more truncated likelihood

terms with different truncation patterns, no simple conjugacy property holds, and so

it is no longer straightforward to construct samples from the posterior. For a visual

comparison in the n= 3 case, see Figure B. 1.
For the remainder of this appendix, we deal with the case where there are two like-

lihood terms, each with one component truncated. The generalization of the equations

and algorithms to the case where any set of components is truncated is immediate.

E B.3 An Auxiliary Variable Sampler

Data augmentation methods are auxiliary variable methods that often provide excellent

sampling algorithms because they are easy to implement and the component steps are

simply conjugate Gibbs sampling steps, resulting in fast mixing. For an overview, see

the survey [109].
We can derive an auxiliary variable sampler for our problem by augmenting the

distribution with geometric random variables k = (ki, k 2 ) = ({kij}, {k 2j}). That is, we
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(a) The prior, Dir(7rla).

(b) The poste- (c) The posterior pro-
rior proportional to portional to Dir(7rla)
Dir(7rla) -Mult(ml7r). TruncMult I I(mI7r).

Figure B.1: Projected visualizations of the prior distribution Dir(7rla) for n = 3 and

a = (2, 2, 2) and the associated posterior distributions when paired with Mult(mI7r)

and TruncMult 1}(mI7r) where m = (0, 2, 0). In low dimensions, the posteriors can be

computed via direct numerical integration over a discretized mesh.

define for ki= {0, 1, 2, .. .} a new distribution q such that

m 2i

j=1
i) ( 1

1 )
(J T2 ) (B.1)

where {mi } and {m 2i} are sample counts corresponding to each likelihood, respectively,

and mi. := > mij. Note that if we sum over all the auxiliary variables k, we have
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Sq(ir,m,k a) oc (f -l 7(r) 7 17n2L) (r (n 7)
k~i7 \i / i1i2 J k1lj k2i

(B.2)

= J ir1 7r ) ) (B.3)
-7 -#12)s

(c p(7r, ml a) (B.4)

and so if we can construct samples of 7, klm, a from the distribution q then we can

form samples of 71m, a according to p by simply ignoring the values sampled for k.

We construct samples of r, k m, a by iterating Gibbs steps between k w7, m, a and

7rIk, n, a. We see from (B.1) that each kij in kI-r, m, a = k17r, m is independent and

distributed according to

q(k-j17, m) = (1 - 7r)7r . (B.5)

Therefore, each kij follows a geometric distribution with success parameter (1 - ri).
The distribution of 7rIk, in, a in q is also simple:

)7 ) Tlii Ii2
q(71m, k, a) oc ( )(- (B.6)

1- 71 1-72(B6

IT11. T112-(i(1 - 71)7rl1j f( - r2)7 k2j (B.7)
j=1 )(j=1

oc Dir(ir a + it) (B3.8)

where in is a set of augmented counts including the values of k. In other words, the

Dirichlet prior is conjugate to the augmented model. Therefore we can cycle through

Gibbs steps in the augmented distribution and hence easily produce samples from the

desired posterior. For a graphical model of the augmentation, see Figure 13.2.

* B.4 Numerical Experiments

In this section we perform several numerical experiments to demonstrate the advan-

tages provided by the auxiliary variable sampler. We compare to a generic Metropolis-

Hastings sampling algorithm. For all experiments, when a statistic is computed in terms
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k

(a) Un-augmented dis- (b) Augmented distribu-
tribution. tion.

Figure B.2: Graphical models for the un-augmented and augmented probability mod-
els.

of a sampler chain's samples up to sample index t, we discard the first [j samples and

use the remaining samples to compute the statistic.

Metropolis-Hastings Sampler We construct an MH sampling algorithm by using the

proposal distribution which proposes a new position 7r' given the current position 7r via

the proposal distribution

p(7r'17r; /) = Dir(7r'10 . 7r) (B.1)

where / > 0 is a tuning parameter. This proposal distribution has several valuable

properties:

1. the mean and mode of the proposals are both r;

2. the parameter / directly controls the concentration of the proposals, so that larger

/ correspond to more local proposal samples;

3. the proposals are naturally confined to the support of the target distribution,
while alternatives such as local Gaussian proposals would not satisfy the MH

requirement that the normalization constant of the proposal kernel be constant

for all starting points.

In our comparison experiments, we tune / so that the acceptance probability is
approximately 0.24.

Sample Chain Autocorrelation In Figure B.3 we compare the sample autocorrelation

of the auxiliary variable sampler and the alternative MH sampler for several lags with

n = 10. The reduced autocorrelation that is typical in the auxiliary variable sampler

chain is indicative of faster mixing.
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(a) Autocorrelations in the first (truncated) component.
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(b) Autocorrelations in the second component.

Figure B.3: Autocorrelations for the auxiliary variable sampler and MH sampler
chains with ai = 2, n = 10, / = 160. The solid lines show the mean autocorrelation over
50 randomly-initialized runs for each sampler, and the dashed lines show the 10th and
90th percentile autocorrelation chains over those runs. These plots can be reproduced
with the function autocorrelation in f igures.py.
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The R Multivariate Potential Scale Reduction Factor The f statistic, also called the
Multivariate Potential Scale Reduction Factor (MPSRF), was introduced in [16] and
is a natural generalization of the scalar Scale Reduction Factor, introduced in [37]
and discussed in [36, p. 296]. As a function of multiple independent sampler chains,
the statistic compares the between-chain sample covariance matrix to the within-chain
sample covariance matrix to measure mixing; good mixing is indicated by empirical
convergence to the statistic's asymptotic value of unity.

Specifically, loosely following the notation of [16], with for denoting the ith
element of the parameter vector in chain j at time t (with i = 1, ... , n, j 1,.. ,M,
and t = 1, ... , T), to compute the n-dimensional MPSRF we form

- T - I I
V = W + I1+ BIT (B.2)

T M)

where

M T

W = M(T - 1) (V'jt -4j.)(Vjt - 'j.)T  (B.3)
j=1 t=1

B/T= M1 1 (0j. - 4..)(j. c- .)T. (B.4)
j=1

The MPSRF itself is then defined when W is full-rank as [16, Eq. 4.1 and Lemma 1]

vT Yv
R:= sup VTWV (B.5)

vER1 V W

Amax (W--V) (B.6)

= Amax (W-2VWz (.7

where Amax(A) denotes the eigenvalue of largest modulus of the matrix A and the last

line follows because conjugating by W2 is a similarity transformation. Equivalently

(and usefully for computation), we must find the largest solution A to det(AW -V) = 0.
However, as noted in [16, p. 446], the measure is incalculable when W is singular,

and because our samples are constrained to lie in the simplex in n dimensions, the

matrices involved will have rank n - 1. Therefore when computing the F statistic, we
simply perform the natural Euclidean orthogonal projection to the (n - 1)-dimensional

affine subspace on which our samples lie; specifically, we define the statistic in terms of

184 APPENDIX B. NUMERICAL EVALUATION OF HDP-HSMM SAMPLER



Sec. B.4. Numerical Experiments

QTVQ and QTWQ, where Q is an TI x (TI - 1) matrix such that QTQ = I(-I) and

/-(n - 1) 1 .. I I
1 (T - 1

QR =)(B.8)

for upper-triangular R of size (n - 1) x (n - 1).

Figure B.4 shows the MPSRF of both samplers computed over 50 sample chains for

n = 10 dimensions, and Figure B.5 shows the even greater performance advantage of

the auxiliary variable sampler in higher dimensions.

Statistic Convergence Finally, we show the convergence of the component-wise mean

and variance statistics for the two samplers. We estimated the true statistics by forming

estimnates using samples from 50 independent chains each with 5000 samples, effectively

using 250000 samples to form the estimates. Next, we plotted the f2 distance between

these "true" statistic vectors and those estimated at several sample indices along the

50 runs for each of the sampling algorithms. See the plots in Figure B.6.
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MH and Aux. Var. Samplers MSPRF vs Sample Indices
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(a) The horizontal axis is the sample index.
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(b) The horizontal axis is elapsed time.

Figure B.4: The R Multivariate Potential Scale Reduction Factor [16] for the auxiliary

variable sampler and MH sampler with ai = 2, n = 10, and 0 = 160, with horizontal

axes scaled by sample index and elapsed time. For each sampler, 5000 samples were

drawn for each of 50 randomly-initialized runs, and the MPSRF was computed at 25

equally-spaced intervals. These plots can be reproduced with the function Rhatp in

figures.py.
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MH and Aux. Var. Samplers MSPRF vs Sample Indices
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(a) The horizontal axis is the sample index.
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Figure B.5: The F? Multivariate Potential Scale Reduction Factor [16] for the auxiliary

variable sampler and MH sampler with aj = 2, n = 20, and # = 160, with horizontal

axes scaled by sample index and elapsed time. For each sampler, 5000 samples were

drawn for each of 50 randomly-initialized runs, and the MPSRF was computed at 25

equally-spaced intervals. These plots can be reproduced with the function Rhatp in

figures .py.
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Figure B.6: Component-wise statistic convergence for the auxiliary variable sampler

and MH sampler with ai = 2, n = 10, and 0 = 160, with horizontal axes scaled by

sample index and elapsed time. For each sampler, 5000 samples were drawn for each

of 50 randomly-initialized runs. The f2 distances from estimated "true" parameters

are plotted, with the solid lines corresponding to the mean error and the dashed lines

corresponding to 10th and 90th percentile errors. These plots can be reproduced with

the function statistic-convergence in figures.py.
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Appendix C

Spectral Learning of HMM
Predictive State Representations

This appendix is a summary explanation of the algorithm in "A Spectral Algorithm

for Learning Hidden Markov Models- (COLT 2009), though there may be some slight

notational inconsistencies with the original paper.

The idea is to maintain output predictions in a recursive inference algorithm, instead

of the usual method of maintaining hidden state predictions, and to represent the HMM

only in terms of the maps necessary to update output predictions given new data. This

approach limits the inference computations the algorithm can perform (it can't answer

any queries about the hidden states since it doesn't explicitly deal with them at all),

but it also reduces the complexity of the model parameters that are learned and thus

makes learning easier. The learning algorithm uses an SVD and matrix operations, so it

avoids the local-optimia problems of EM or any other algorithms based on maximizing

data likelihood over the usual HMM parameterization. The COLT paper includes error

bounds and analysis.

Notation. For a vector v in a subspace V C Rk and a matrix C with linearly inde-

pendent columns and range(C) D V we use [v]c to denote the coordinate vector of v

relative to the ordered basis given by the colUmnns of C, and [v] or simply v to denote the

coordinate vector of v relative to the standard basis of Rk. Similarly, for a linear map

A :V - V we use [A] to denote the matrix of A relative to domain and codomain

bases given by the columns of C, and [A] to indicate its matrix relative to standard

bases. For a matrix A we also use [Aj to denote the (i, j)th entry.

X2 X3 4
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Definition C.1 (Hidden Markov Model). A time-homogeneous, discrete Hidden Markov
Model (HMM) is a probability distribution on random variables {(xt, ht)}}teN satisfying
the conditional independences implied by the graphical model, where range(ht) = [m] :=
{1, 2, . .. , m} and range(xt) = [n] where n > m. The standard parameterization is the
triple (T,0, r), where

T E R7 , [T]ij = Pr[ht = iZht- 1 j]
0 Rnxrx , [0] ij = Pr [xt = ilh = ht

7 E Rm, [7]j = Pr[hi = A].

We assume T and 0 to have full column rank and [7]j > 0 Vj e [m].

Definition C.2 (Observation Prediction). An observation prediction for any time t is
a vector it E Rn defined in the standard basis by

[ft)i := Pr[xt = ijx1:t-1 = 21:t _1](C.1)

for some fixed (implicit) sequence i:t-1.

Claim C.1. Every observation prediction Yt lies in a subspace U := range(O) C R"
with dim(U) = m.

Proof. By the conditional independences of the HMM, for any t we have

Pr[xt = ilx1:t_1 = 21:t_1] = Pr[xt = ilht = A]
jE[mr]

Pr[ht = j*lxi:t_1 = tj:t-j] (C. 2)

so therefore we can write

E a = ON, [ta := Pr[ht = j i:t_1 = Fi.ur1e (C.3)

Equivalently, we can say [ze]G = ht. See Figure C.E

Claim C.2. The observation

[P2,1]ij := Pr[X2 = i, X1 = j]
prediction subspace U satisfies U = range(P2,I), where

Proof. We can write the joint distribution over (X1 , X2) as
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R'"

it

R"U

Figure C.1: We can view 0 as (the matrix of) a map from hidden state beliefs to
output predictions (with respect to the standard bases). Not shown is the fact that

both h and Yt lie in the siniplices of R".. and R", respectively, and that 0 maps the
simplex in R' to (a subset of) the siniplex in R".

Pr[X2 = i, X1 j] E E3 Pr[X2 = i, X1j
hl h2

j, 1 = hih 2 = h21

= Pr[hi = hPPr[xi = j iAh = /I]

- Pr[h2 = h21hi = hi,]PrI[X2 = ilh2 = h2] (C.5)

and we can write that sum as P2,1 = OT diag*(7r)OT , where diag*(-) maps a vector to

a diagonal matrix in the usual way. By our rank and positivity assumptions, we see

that P2 ,1 satisfies range(P 2,1) = range(O) = U. 1

We can directly estimate P2 ,1

Claim C.2 we can then get a basis

getting an estimate of 0 this way,

with empirical statistics, and as a consequence of

for U by using an SVD of P2 ,1. Note that we aren't

but just its column space.

Claim C.3. Given an observation xt = xt, there is a linear rmap B, : U -> U such that

(C.6)

for some a = a(t, 5 t), a scalar normalization factor chosen to ensure t 1.

(C.4)

x2, V ) = ax-t+1
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R'"

hi,

0

Tdiag*(O.t

R" a

hK+1

+

Xt+i

Figure C.2: The matrix Tdiag*(O ,:) is the matrix (relative to standard bases) of a
linear map that updates hidden state beliefs given an observation xt, up to renormal-
ization which the figure does not show. The linear map 8,, is the update for output
predictions.

Proof. Following the usual recursive update for HMM forward messages, we have

Pr[ht+l = i, xl:t = tl:t] Pr[ht+l ilht = A]. Pr[xt = tjht = A]

-Pr[ht - j, xi:t_ = TI:t-_] . C

Therefore we can write the map B, as

given by the columns of 0:
an rn x m matrix relative to the basis for U

[8,]j8 = Tdiag*(Ot,:) (C.8)

where Ok: denotes the vector formed by

we have a = OT.

See Figure C.2.

the kth row of 0. We require 1T2t<+ - 1, s0

Note. Renormalization always works because Tdiag*(7,:) preserves the non-negative

orthant of R', and 0 maps the simplex in R m to (a subset of) the simplex in Rn. The

orthant preservation properties of these maps are an immediate consequence of the fact

that the matrices (with respect to standard bases) are entry-wise non-negative. In fact,
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instead of tracking vectors, we should be tracking rays in the non-negative orthant.

For any new observation x, the map B1 implements the "belief update" on output

predictions, up to a normalization factor which we can compute on the fly via 1T15 = 1.

Note that we can also write Bx as an n x n matrix relative to the standard basis of R":

[B] = OTdiag*(O :)Ot (C.9)

where Ot (QTgy-QT is the pseudoinverse of 0. Recall Xt = Oh1 and hence

lit= Ott.
We would like to write B, as a matrix without reference to the standard HMM

parameters (T, 0, r), since we want to avoid learning them at all.

Claim C.4. Let U E R""r be a matrix whose columns form an orthonornal basis for

U. We can write Bx as a matrix relative to the standard basis of R" as

[Bx] = P3,,1U (UT P2,1U)-1UT(C10

where

[P3, X,1] := P r 1X, = I IX 2 = X, X1 =I Vx E [n] (C. 11)

Proof. We can express the matrix P3,x,1 in a form similar to that for the matrix [Bx] in

Equation (C.9):

P3 ,1 ,1 = OT diag*(Ox:)Ot P2,1. (C.12)

Intuitively, we want to remove the P2 ,1 on the right, since that would give us [B] in

terms of quantities we can readily estimate, but we cannot form the inverse of P2,1
because it is n x n and has rank m < n. However, P2,1 has row and column space U
(intuitively, its restriction to U is invertible), thus we can substitute

P2 .1 = U(UTP 2.1 U)UT (C.13)

to get



P3 ,1 ,1 = OT diag*(O:)OtU(UTp 2 ,1 U)UT (C.14)

and hence

P3,x,1U(UTp 2 ,1U)-lUT = OTdiag*(O:)Ot = [Bx]. (C.15)

Because we can estimate each P 3 ,x,1 as well as P 2 ,1 from data by empirical statistics,
and we can obtain a U using an SVD, we can now estimate a representation of 3x from
data using the expression in Claim C.4. We can also directly estimate P1 from empirical

statistics, where [P 1 ]i := Pr[xi = i], and hence we can use these estimated quantities to

recursively compute Prlxtlxi:t-i] and Pr[xi:t-] given observations up to and including

time t - 1.

Since dim(U) = m < n, we can use the columns of U as our basis for U to get a

more economical coordinate representation of Yt and Bx than in the standard basis of

R':

Definition C.3 (HMM PSR Representation). For any fixed U E R"'X" with range(U)
U and UTU = Imx., we define the belief vector at time t by

bt := [X't]" =xt E R' (C. 16)

and in particular for t = 1 we have

bi = UTO7. (C.17)

For each possible observation x E [n], we define the matrix Bx e R"'X" by

Bx := [Bx]V = (UTO)Tdiag*(O:)(T (C.18)

Finally, for normalization purposes, it is convenient to maintain the appropriate map-

ping of the ones (co-)vector, noting ITO h = 1 if and only if IT h = 1 because 1 TO = IT:

(C. 19)
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The box below summarizes the method for learuing an HMM PSR representatiou

from data and how to use au HMM PSR representation to perform some recursive

hiference computations.

Learning

U ThinSVD(P2,1 )

UT P
f = UT 3,x, 1 (UTP2, 1)t VX [n

bU3= UT,

Inference

Pr[x1:t] = bB b

Pr[xtlx1it] = b Bx btL

B t b 1bt+1 - -
bT Bx bt

sequeice probability

prediction

recursive update
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