
Probabilistic Graphical Models: Distributed
Inference and Learning Models with

Small Feedback Vertex Sets
by

Ying Liu

B.E., Electronic Engineering, Tsinghua University, 2008
S.M., Electrical Engineering and Computer Science, MIT, 2010

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

June 2014
@ 2014 Massachusetts Institute of Technology

All Rights Reserved.

Signature of Author:
Signature redacted

MASSACHUSETTS INSTTJTE
OF TECHNOLOGY

JUN 10 201

LIBRARIES

Certified by:

Department of Electrical Engineering and Computer Science
May 21, 2014

Signature redacted
Alan 4. Willsky

Edwin Sibley Webster Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Accepted by: Signature redacted
itslil A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Probabilistic Graphical Models: Distributed

Inference and Learning Models with

Small Feedback Vertex Sets
by Ying Liu

Submitted to the Department of Electrical Engineering

and Computer Science on May 21, 2014

in Partial Fulfillment of the Requirements for the Degree

of Doctor of Philosophy in Electrical Engineering and Computer Science

Abstract

In undirected graphical models, each node represents a random variable while

the set of edges specifies the conditional independencies of the underlying distri-

bution. When the random variables are jointly Gaussian, the models are called

Gaussian graphical models (GGMs) or Gauss Markov random fields. In this the-

sis, we address several important problems in the study of GGMs.

The first problem is to perform inference or sampling when the graph struc-

ture and model parameters are given. For inference in graphs with cycles, loopy

belief propagation (LBP) is a purely distributed algorithm, but it gives inaccurate

variance estimates in general and often diverges or has slow convergence. Previ-

ously, the hybrid feedback message passing (FMP) algorithm was developed to

enhance the convergence and accuracy, where a special protocol is used among the

nodes in a pseudo-FVS (an FVS, or feedback vertex set, is a set of nodes whose

removal breaks all cycles) while standard LBP is run on the subgraph excluding

the pseudo-FVS. In this thesis, we develop recursive FMP, a purely distributed

extension of FMP where all nodes use the same integrated message-passing pro-

tocol. In addition, we introduce the subgraph perturbation sampling algorithm,

which makes use of any pre-existing tractable inference algorithm for a subgraph

by perturbing this algorithm so as to yield asymptotically exact samples for the

intended distribution. We study the stationary version where a single fixed sub-

graph is used in all iterations, as well as the non-stationary version where tractable

3

4

subgraphs are adaptively selected.

The second problem is to perform model learning, i.e. to recover the underlying
structure and model parameters from observations when the model is unknown.
Families of graphical models that have both large modeling capacity and efficient
inference algorithms are extremely useful. With the development of new inference
algorithms for many new applications, it is important to study the families of
models that are most suitable for these inference algorithms while having strong
expressive power in the new applications. In particular, we study the family of
GGMs with small FVSs and propose structure learning algorithms for two cases:
1) All nodes are observed, which is useful in modeling social or flight networks
where the FVS nodes often correspond to a small number of high-degree nodes, or
hubs, while the rest of the networks is modeled by a tree. 2) The FVS nodes are
latent variables, where structure learning is equivalent to decomposing an inverse
covariance matrix (exactly or approximately) into the sum of a tree-structured
matrix and a low-rank matrix. We perform experiments using synthetic data as
well as real data of flight delays to demonstrate the modeling capacity with FVSs
of various sizes.

Thesis Supervisor: Alan S. Willsky

Title: Edwin Sibley Webster Professor of Electrical Engineering and Computer
Science

Acknowledgments

This has been an amazing six-year intellectual journey that would be impos-

sible without the help of many wonderful people.

First and foremost, I am extremely fortunate to have Prof. Alan Willsky as my

thesis supervisor. Since our very first grouplet meeting, I have never stopped being

amazed by his incredibly deep knowledge and his ability to quickly grasp both

high-level ideas and technical details. Alan has allowed me to freely pursue my

research ideas while giving me invaluable guidance. His tremendous intellectual

enthusiasm and remarkable energy has always been an inspiration to me. Without

his support and help, none of my PhD studies would be possible. Thanks, Alan,

for everything.

I am very grateful to my thesis committee members Prof. Devavrat Shah and

Prof. Yury Polyanskiy. I thank them for their encouragement and for many helpful

discussions. I benefited greatly both from talking with them about my research

and from reading their research work on my own. Their knowledge in a variety of

fields has provided me new perspectives and shaped how I view my research on a

broader level.

I thank Prof. Bill Freeman who served on my RQE committee with Devavrat.

At this early stage of my research, they gave me advice on presentation skills and

provided insights on how to formulate research problems. I also thank Prof. Alan

Oppenheim, who has been my academic advisor at MIT and guided me through

every step during my study.

I am fortunate to have been a teaching assistant with Prof. Polina Golland

and Prof. Greg Wornell, from whom I learned how to explain difficult concepts

intuitively and clearly.

In addition to Alan, I enjoyed collaborating with Anima Anandkumar, Venkat

Chandrasekaran, and Oliver Kosut. In particular, I would like to thank Venkat

for helping me jump-start my research journey by giving me frequent feedback on

5

ACKNOWLEDGMENTS

my half-baked ideas.

I am grateful to Rachel Cohen, Jennifer Donovan, Janet Fischer, and Brian

Jones, who assisted me to ensure my progress was smooth.

I have interacted with many other great people in LIDS, RLE, and CSAIL who

have helped me in many aspects both in research and life. I thank Jason Chang,
George Chen, Myung Jin Choi, Justin Dauwels, Rose Faghih, Audrey Fan, Emily

Fox, Roger Grosse, Qing He, Ying-zong Huang, Matt Johnson, Na Li, Dahua Lin,
Dmitry Malioutov, Sidhant Misra, James Saunderson, Parikshit Shah, Ramesh

Sridharan, John Sun, Vincent Tan, Kush Varshney, Lav Varshney, Ermin Wei,
Yehua Wei, Kuang Xu, Ying Yin, Lei Zhang, Yuan Zhong, and Hongchao Zhou.

It is impossible to enumerate all my friends who have made my life at MIT

full of excitement and fun. I thank them all the same.

Finally, I thank my family for their unreserved love and support. This thesis

would have certainly been impossible to complete without them. They are the

source of my determination and perseverance in pursuing all my endeavors.

6

Contents

Abstract 3

Acknowledgements 5

Contents 7

List of Figures 11

List of Tables 13

List of Algorithms 15

1 Introduction 17

1.1 Recursive Feedback Message Passing for Distributed Inference 18

1.2 Sampling Gaussian Graphical Models Using Subgraph Perturbations . . 19

1.3 Learning Gaussian Graphical Models with Small Feedback Vertex Sets . 21

1.4 Thesis Organization and Overview of Contributions 23

1.4.1 Chapter 2: Background . 23

1.4.2 Chapter 3: Recursive Feedback Message Passing for Distributed

Inference . 23

1.4.3 Chapter 4: Sampling Gaussian Graphical Models Using Subgraph

Perturbations . 24

1.4.4 Chapter 5: Learning Gaussian Graphical Models with Small Feed-

back Vertex Sets . 24

1.4.5 Chapter 6: Conclusion . 25

2 Background 27

7

8 CONTENTS

2.1 Graphical Models

2.1.1

2.1.2

Notions in Graph Theory . . .

Graphical Models and Exponent

2.1.3 Gaussian Graphical Models . .

2.2 Inference Algorithms

2.2.1 Belief Propagation

2.2.2 Walk-sum Analysis

2.2.3 Feedback Message Passing . . .

2.3 Common Sampling Algorithms

2.4 Learning Graphical Models

2.4.1 Information Quantities.....

2.4.2 Maximum Likelihood Estimation

2.4.3 The Chow-Liu Algorithm . . .

. 2 7

. 2 8

ial Families 29

. 3 0

. 3 2

. 3 2

. 3 4

. 3 6

. 4 3

. 4 5

. 4 5

. 4 6

. 4 8

3 Recursive Feedback Message Passing for Distributed I

3.1 Introduction .

3.2 Recursive FMP Described by Stages

3.2.1 Stage I: Election of Feedback Nodes

3.2.2 Stage II: Initial Estimation

3.2.3 Stage III: Recursive Correction

3.3 Recursive FMP: Integrated Message-Passing Protocol . .

3.4 Theoretical Results .

3.5 Experimental Results .

3.6 Appendix for Chapter 3

4 Sampling Gaussian Graphical Models Using Subgraph

4.1 Introduction .

nference 49

. 49

. 51

. 56

. 61

. 69

. 74

76

. 91

. 94

Perturbations 101

. 1 01

4.2 Sampling by Subgraph Perturbations with Stationary Graphical Splittings 103

4.2.1 General Algorithm . 103

4.2.2 Correctness and Convergence . 106

4.2.3 Efficient Local Implementation 109

4.3 Sampling by Subgraph Perturbations with Non-Stationary Graphical Split-

tin g s .

4.4 The Selection of Tractable Subgraphs . 116

4.4.1 Select Subgraph Structures for Stationary Splittings 116

8 CONTENTS

4.4.2 Adaptive Selection of Graph Structures for Non-Stationary Split-

tin gs .. 117

4.5 Experim ental Results . 118

4.5.1 Motivating Example: 3 x 10 Grids 118

4.5.2 Using Subgraphs Beyond Trees 121

4.5.3 Power System Network: Standard Test Matrix 494 BUS 122

4.5.4 Large-Scale Real Example: Sea Surface Temperature 123

4.6 Appendix for Chapter 4 . 126

5 Learning Gaussian Graphical Models with Small Feedback Vertex Sets 131

5.1 Introduction . 131

5.2 Computing the Partition Function of GGMs with Small FVSs 132

5.3 Learning GGMs with Observed FVSs . 135

5.3.1 Case 1: An FVS of Size k Is Given. 136

5.3.2 Case 2: The FVS Is to Be Learned 141

5.4 Learning GGMs with Latent FVSs . 142

5.4.1 The Latent Chow-Liu Algorithm 143

5.4.2 The Accelerated Latent Chow-Liu Algorithm 147

5.5 Experim ents .. 149

5.5.1 Fractional Brownian Motion: Latent FVS 149

5.5.2 Performance of the Greedy Algorithm: Observed FVS 150

5.5.3 Flight Delay Model: Observed FVS 151

5.6 Future D irections . 154

5.7 Appendix for Chapter 5 . 157

6 Conclusion 163

6.1 Summary of Contributions. 163

6.2 Future Research Directions . 165

Bibliography

9CONTENTS

165

CONTENTS10

List of Figures

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

Markov property of a graphical model

Sparsity relationship between the underlying undirected

inform ation matrix .

A graph with an FVS of size 2

Illustration for the FMP algorithm

Illustrating example of the leader election algorithm . .

Elimination of tree branches

Priority lists at the start of Stage II

Updating priority list at an active node

Updating priority list at an inactive node

An inactive node waking up

Stage II and Stage III of recursive FMP

Recursive FMP as an integrated protocol

An example of electing the feedback nodes

An example where g is connected but Li C F

graph and the

3.11 Recursive FMP with different parameters performed on grids of various

siz e s .

3.12 Estimating SSHA using recursive FMP

4.1 Decom position of a grid .

4.2 Sampling from a 3 x 10 grid using basic Gibbs sampling, chessboard

(red-black) Gibbs sampling, forest Gibbs sampling, and our subgraph

perturbation sampling using a stationary splitting.

4.3 Sampling from a 3 x 10 grid using non-stationary splittings

29

32

37

42

. 58

. 60

. 63

66

. 67
70

. 73

75

81

. 83

93

95

105

120

120

11

12 LIST OF FIGURES

4.4 The performance of subgraph perturbation sampling using various kinds

of subgraphs on grids of size 3-by-3 to 30-by-30 122

4.5 Perturbation sampling using various subgraph structures on a power sys-

tem netw ork . 124

4.6 Perturbation sampling from a GGM for sea surface temperature estimation125

5.1 Covariance matrix obtained using various algorithms and structures. 151
5.2 The relationship between the K-L divergence and the latent FVS size 152
5.3 Learning a GGM using Algorithm 5.3.3 153
5.4 GGMs with FVSs of sizes 0 and 1 for modeling flight delays 155
5.5 GGMs with FVSs of sizes 3 and 10 for modeling flight delays 156

List of Tables

4.1 Convergence rates of various sampling algorithms 121

4.2 Convergence rates of subgraph perturbation using non-stationary graph-

ical splittings . 121

4.3 Convergence rates using a single tree and subgraphs with FVS of various

sizes . 123

13

14 LIST OF TABLES

List of Algorithms

2.2.1 Selection of the Feedback Nodes . 40

2.2.2 Feedback Message Passing Algorithm . 41

2.4.1 The Chow-Liu Algorithm for GGMs . 48

3.2.1 Message Protocol for Leader Election with General Scores 58

3.2.2 Extended Leader Election: Electing the Nodes with the Top-i Priority

Scores with General Scoring Function . 59

3.2.3 Elimination of Tree Branches . 60

3.2.4 Message Protocol for Stage I: Election of Feedback Nodes 62

3.2.5 Message Protocol for Stage II: Initial Estimation 68

3.2.6 Message Protocol for Stage III: Recursive Correction 72

4.2.1 Sampling by Subgraph Perturbations with Stationary Splittings 106

4.2.2 Sampling by Subgraph Perturbations with Local Implementation 111

4.3.1 Sampling by Subgraph Perturbations with Non-Stationary Splittings . . 112

4.4.1 Selecting a Tree-Structured Subgraph . 116

5.2.1 Computing the Partition Function When an FVS Is Given 134

5.3.1 The Conditioned Chow-Liu Algorithm 137

5.3.2 Compute JML (EML)- 1 After Running Algorithm 5.3.1 140

5.3.3 Selecting an FVS by a Greedy Approach 142

5.4.1 Alternating Projection . 143

5.4.2 The Latent Chow-Liu Algorithm . 145

5.4.3 The Accelerated Latent Chow-Liu algorithm 148

15

16 LIST OF ALGORITHMS

Chapter 1

Introduction

In undirected graphical models or Markov random fields (MRFs), each node represents

a random variable while the set of edges specifies the conditional independencies of the

underlying distribution. When the random variables are jointly Gaussian, the models

are called Gaussian graphical models (GGMs) or Gauss Markov random fields (GM-

RFs). GGMs, such as linear state space models, Bayesian linear regression models,

and thin-membrane/thin-plate models, have been widely used in communication, image

processing, medical diagnostics, oceanography, and gene regulatory networks [1, 2, 3, 4].

There are two fundamental problems in the study of GGMs. The first problem is

to perform inference or sampling when the graph structure and model parameters are

given. Inference refers to computing the marginal distributions or the most likely state,

while sampling refers to drawing samples from the underlying probabilistic distribution.

In some contexts, sampling is considered as a type of inference as the generated samples

are often used to approximately compute some inference results when direct inference

is prohibitively costly. In the era of big data, a central challenge in many applications

of machine learning is how to efficiently process the gigantic amount of data available

and make near real-time estimation and prediction. In the modern computational in-

frastructure (such as cloud computing), distributed and parallel algorithms are of great

importance, and they significantly outperform many traditional algorithms developed

for the traditional single-machine framework. The second problem is to perform model

learning, i.e., to recover the underlying structure and model parameters from observa-

tions when the model is unknown. Families of graphical models that have both large

modeling capacity and efficient inference algorithms are extremely useful. With the

development of new inference algorithms for many new applications, it is important to

study the family of models that are most suitable for these inference algorithms while

having strong expressive power in the new applications.

17

In this thesis, we propose (1) the recursive feedback message passing algorithm,
which is a purely distributed message-passing algorithm for inference; (2) a sampling

framework based on perturbing models on subgraphs; and (3) learning algorithms for

several different cases in learning the family of models with small feedback vertex sets.

We motivate our algorithms and provide a brief literature review in Sections 1.1-1.3.

Next, in Section 1.4, we outline the thesis organization and give a overview of the

contributions.

E 1.1 Recursive Feedback Message Passing for Distributed Inference

For GGMs of moderate size, exact inference can be solved by algorithms such as direct

matrix inversion, Cholesky factorization, and nested dissection, but these algorithms

cannot be used for large-scale problems due to the computational complexity [4, 5].

For tree-structured graphs, a message-passing algorithm called belief propagation

(BP) can give exact results in linear time. When there are cycles in the graphs, loopy

belief propagation (LBP) is often used, where the message-update protocol is the same

as BP. LBP is distributed in nature: messages from all nodes may be updated in par-

allel using only local information. However, LBP is not guaranteed to converge or give

accurate results [6, 7, 8, 9]. Some extensions to LBP include generalized belief propaga-

tion [10], tree-reweighted message passing [11], double-loop belief propagation [12], and

relaxed Gaussian belief propagation [13]. LBP in the context of quadratic minimization

has also been studied in [14, 15]. For inference in Gaussian graphical models with cycles,
LBP performs well for some graphs, but often diverges or has slow convergence. When

LBP does converge, the variance estimates are incorrect in general.

In [16] the authors have proposed the feedback message passing (FMP) algorithm.

FMP uses a different protocol among a special set of vertices called a feedback vertex set

or FVS, a set of nodes whose removal breaks all cycles in the graph. When the size of

the FVS is large, a pseudo-FVS is used instead of an FVS. By performing two rounds

of standard LBP among the non-feedback nodes and solving a small inference problem

among the feedback nodes, FMP improves the convergence and accuracy significantly

compared with running LBP on the entire graph. In addition, choosing the size of the

pseudo-FVS enables us to make the trade-off between efficiency and accuracy explicit.

FMP is partially distributed, but the algorithm in [16] still requires centralized commu-

nication among the feedback nodes. One can ask some natural questions: Is it possible

18 CHAPTER 1. INTRODUCTION

Sec. 1.2. Sampling Gaussian Graphical Models Using Subgraph Perturbations

to select the feedback nodes in a purely distributed manner? Can we further eliminate

the centralized computations among the feedback nodes in FMP without losing the

improvements on convergence and accuracy?

In Chapter 3, we propose recursive FMP, a recursive and purely distributed exten-

sion of FMP where all nodes use the same message-passing protocol. In recursive FMP,

an inference problem on the entire graph is recursively reduced to smaller subgraphs

until inference can be solved efficiently by an exact or approximate message-passing

algorithm. A purely distributed algorithm is of great importance because in many sce-

narios, such as wireless sensor networks, it is easy to implement the same protocol on

all nodes while centralized computations are often expensive or impractical. In this re-

cursive approach, there is only one active feedback node at a time, and thus centralized

communication among feedback nodes in FMP is reduced to message forwarding from

the single feedback node. While under certain conditions, essentially those that are

identical to those required for the original FMP algorithm, our recursive algorithm pro-

duces the same results but in a distributed manner. However, our distributed algorithm

is far more flexible, as the feedback nodes used by different parts of a very large graph

may be different, allowing each node in the graph to adapt and respond to those nodes

of most importance locally.

* 1.2 Sampling Gaussian Graphical Models Using Subgraph Perturbations

As a fundamental problem by itself, sampling also has the relative advantage of allowing

estimation of arbitrary statistics from the random field, rather than only the mean and

variance. Moreover, sampling is useful for statistical models in which a GGM is one

of several interacting components. In such a setting, a sampler for the GGM is an

essential piece of any Markov chain Monte-Carlo (MCMC) framework for the entire

system. Efficient sampling algorithms have been used to solve inference problems [17],

to estimate model parameters [18], and used for model determination [19].

Very efficient algorithms for both inference and sampling exist for GGMs in which the

underlying graph is a tree (i.e., it has no cycles). Such models include hierarchical hid-

den Markov models [20], linear state space models [211], and multi-scale auto-regressive

models [22]. For these models exact inference can be computed in linear time using BP

[23] (which generalizes the Kalman filter and the Rauch-Tung-Striebel smoother [21]),
and exact samples can be generated using the forward sampling method [23]. However,

19

the modeling capacity of trees is limited. Graphs with cycles can more accurately model

real-world phenomena, but exact sampling is often prohibitively costly for large-scale

models with cycles.

MCMC samplers for general probabilistic models have been widely studied and can

generally be applied directly to GGMs. The most straightforward is the Gibbs sampler,
wherein a new sample for each variable is generated by conditioning on the most recent

sample of its neighbors [24]. However, the Gibbs sampler can have extremely slow

convergence even for trees, making it impractical in large networks. For this reason,
many techniques, such as reordering [25], blocking [26, 27], or collapsing [28], have been

proposed to improve Gibbs sampling. In particular, the authors of [29] have proposed a

blocked Gibbs sampler where each block includes a set of nodes whose induced subgraph

does not have cycles; in [1.7] a Metropolis-Hastings sampler is studied, where a set of

"control variables" are adaptively selected.

There are also sampling algorithms for GGMs that make explicit use of the joint

Gaussianity. Since inference in a GGM is equivalent to solving a linear system, sampling

algorithms are often closely related to direct or iterative linear solvers. One approach

is using the Cholesky decomposition to generate exact samples. If a sparse Cholesky

decomposition is provided directly from the problem formulation, then generating sam-

ples using that decomposition is the preferred approach. Similarly, in [30] the problem

formulation leads directly to a decomposition into sparse "filters", which are then used,
together with random perturbations to solve linear equations that produce samples.

Once again, for problems falling into this class, using this method is unquestionably

preferred. However, for other Gaussian models for which such sparse decompositions

are not directly available, other approaches need to be considered. In particular, the

computation of the Cholesky decomposition has cubic complexity and a quadratic num-

ber of fills in general, even for sparse matrices as arise in graphical models [31]. While

this complexity is acceptable for models of moderate size, it can be prohibitively costly

for large models, e.g., those involving millions or even billions of variables.

In Chapter 4, we propose a general framework to convert iterative linear solvers

based on graphical splittings to MCMC samplers by adding a random perturbation at

each iteration. In particular, our algorithm can be thought of as a stochastic version of

graph-based solvers and, in fact, is motivated by the use of embedded trees in [32, 33]

for the computation of the mean of a GGM. That approach corresponds to decomposing

the underlying graph of the model into a tractable graph, i.e., one for which sampling

20 CHAPTER 1. INTRODUCTION

Sec. 1.3. Learning Gaussian Graphical Models with Small Feedback Vertex Sets

is easy (e.g., a tree), and a "cut" matrix capturing the edges removed to form the

tractable subgraph. The subgraphs used can have any structure for which efficient

inference algorithms exist: for example, tree-structured graphs, graphs with low tree-

width, or graphs having a small FVS [16]. Much more importantly, in order to obtain a

valid sampling algorithm, we must exercise some care, not needed or considered for the

linear solvers in [32, 33], in constructing the graphical models corresponding to both the

tractable subgraph and to the set of variables involved in the cut edges.

We give general conditions under which graph-based iterative linear solvers can be

converted into samplers and we relate these conditions to the so-called P-regularity con-

dition [34]. We then provide a simple construction that produces a splitting satisfying

those conditions. Once we have such a decomposition our algorithm proceeds at each

iteration by generating a sample from the model on the subgraph and then randomly

perturbing it based on the model corresponding to the cut edges. That perturbation

obviously must admit tractable sampling itself and also must be shaped so that the re-

sulting samples of the overall model are asymptotically exact. Our construction ensures

both of these. As was demonstrated in [32, 33], using non-stationary splittings, i.e.,

different graphical decompositions in successive iterations, can lead to substantial gains

in convergence speed. We extend our subgraph perturbation algorithm from stationary

graphical splittings to non-stationary graphical splittings and give theoretical results

for convergence guarantees. We propose an algorithm to select tractable subgraphs for

stationary splittings and an adaptive method for selecting non-stationary splittings.

* 1.3 Learning Gaussian Graphical Models with Small Feedback Vertex Sets

The trade-off between the modeling capacity and the efficiency of learning and infer-

ence has been an important research problem in the study of GGMs. In general, a

larger family of graphs represents a larger collection of distributions and thus can better

approximate arbitrary empirical distributions. However, many graphs lead to compu-

tationally expensive inference and learning algorithms. Hence, it is important to study

the trade-off between modeling capacity and efficiency.

Both inference and learning are efficient for tree-structured graphs (graphs without

cycles): inference can be computed exactly in linear time (with respect to the size of the

graph) using BP [35] while the learning problem can be solved exactly in quadratic time

using the Chow-Liu algorithm 136]. Since trees have limited modeling capacity, many

21

families of models beyond trees have been proposed [37, 38, 39, 40]. Thin junction

trees (graphs with low tree-width) are extensions of trees, where inference can be solved

efficiently using the junction algorithm [23]. However, learning junction trees with tree-

width greater than one is NP-complete [40] and tractable learning algorithms (e.g., [41])

often have constraints on both the tree-width and the maximum degree. Since graphs

with large-degree nodes are important in modeling applications such as social networks,

flight networks, and robotic localization, we are interested in finding a family of models

that allow arbitrarily large degrees while being tractable for learning.

Beyond thin-junction trees, the family of sparse GGMs is also widely studied [42,

43]. These models are often estimated using methods such as graphical lasso (or 1-1

regularization) [44, 45]. However, a sparse GGM (e.g., a grid) does not automatically

lead to efficient algorithms for exact inference. Hence, we are interested in finding a

family of models that are not only sparse but also have guaranteed efficient inference

algorithms.

In the context of classification, the authors of [46] have proposed the tree augmented

naive Bayesian model, where the class label variable itself can be viewed as a size-one

observed FVS; however, this model does not naturally extend to include a larger FVS. In

[47], a convex optimization framework is proposed to learn GGMs with latent variables,
where conditioned on a small number of latent variables, the remaining nodes induce a

sparse graph. In our setting with latent FVSs, we further require the sparse subgraph

to have tree structure.

In Chapter 5, we study the family of GGMs with small FVSs. In [16] the authors

have presented results showing that for models with larger FVSs, approximate inference

(obtained by replacing a full FVS by a pseudo-FVS) can work very well, with empirical

evidence indicating that a pseudo-FVS of size O(log n) gives excellent results. We will

provide some additional analysis of inference for such models (including the computation

of the partition function), but the main focus is maximum likelihood (ML) learning of

models with FVSs of modest size, including identifying the nodes to include in the

FVS. In particular, we present several learning algorithms for different cases. For the

case where all of the variables are observed, we provide an efficient algorithm for exact

ML estimation, as well as an approximate and much faster greedy algorithm for this

case when the FVS is unknown and large. For a second case where the FVS nodes are

taken to be latent variables, we propose an alternating low-rank projection algorithm

for model learning and show the equivalence between the structure learning problem

22 CHAPTER 1. INTRODUCTION

and the decomposition of an inverse covariance matrix into the sum of a tree-structured

matrix and a low-rank matrix.

1.4 Thesis Organization and Overview of Contributions

1.4.1 Chapter 2: Background

In this background chapter, we provide necessary background for the subsequent chap-

ters including the definitions, existing inference algorithms, common sampling algo-

rithms, as well as some learning algorithms. In Section 2.1, we start with preliminaries

on graphical models including basic graph theory, general graphical models, and specif-

ically Gaussian graphical models. Next in Section 2.2, we describe inference algorithms

for graphical models, including loopy belief propagation and the feedback message pass-

ing algorithm. We then summarize some common sampling algorithms such as using

the Cholesky decomposition, forward sampling, basic Gibbs sampling, and variants of

Gibbs sampling in Section 2.3. Finally in Section 2.4, we introduce preliminaries of the

learning problem, including information quantities, the maximum likelihood criterion

and the Chow-Liu algorithm.

1.4.2 Chapter 3: Recursive Feedback Message Passing for Distributed

Inference

The primary contributions of this chapter include: (1) We propose recursive FMP, a

purely distributed extension of FMP, where all nodes use the same message-passing

protocol. An inference problem on the entire graph is recursively reduced to those

on smaller subgraphs in a distributed manner. (2) We show that one advantage of

this recursive approach compared with FMP is that centralized communication among

feedback nodes can be turned into distributed message forwarding. (3) We characterize

this algorithm using walk-sum analysis and provide theoretical results for convergence

and accuracy. (4) We also demonstrate the performance using both simulated models

on grids and large-scale sea surface height anomaly data.

This chapter is organized as follows. After motivating the problem in Section 3.1, we

describe the recursive FMP algorithm in three separate stages in Section 3.2. Then in

Section 3.3, we summarize the recursive FMP algorithm as a single integrated protocol

without the separation of stages. Next we present and prove our theoretical results

23Sec. 1.4. Thesis Organization and Overview of Contributions

using walk-sum analysis in Section 3.4. Finally in Section 3.5, we demonstrate the

performance of the algorithm using simulated models on grids as well as real data for

estimating sea surface height anomaly.

1.4.3 Chapter 4: Sampling Gaussian Graphical Models Using Subgraph

Perturbations

The primary contributions of this chapter include: (1) We provide a general framework

for converting subgraph-based iterative solvers to samplers with convergence guarantees.

In addition, we provide a construction where the injected noise at each iteration can

be generated simply using a set of i.i.d. scalar Gaussian random variables. (2) We

extend our perturbation sampling algorithm from stationary graphical splittings to non-

stationary graphical splittings. In the previous studies on linear solvers, it has been

observed that using multiple subgraphs may give much better convergence than using

any of the individual subgraphs. We prove that if we choose from a finite collection of

P-regular graphical splittings, then the convergence is always guaranteed. (3) We study

the use of different kinds of tractable subgraphs and we also propose an algorithm to

adaptively select the subgraphs based on an auxiliary inference problem.

This chapter is organized as follows. In Section 4.2, we propose the subgraph pertur-

bation algorithm with stationary splittings, providing efficient implementation as well

as theoretical results on the convergence rate. Next in Section 4.3, we present the use of

non-stationary splittings and theoretical results on convergence. We then discuss how

to select tractable subgraphs for both the stationary and the non-stationary settings in

Section 4.4. Finally in Section 4.5, we present experimental results using simulated data

on various graph structures as well as using large-scale real data.

1.4.4 Chapter 5: Learning Gaussian Graphical Models with Small Feed-

back Vertex Sets

The primary contributions of this chapter include: (1) We investigate the case where

all of the variables, including any to be included in the FVS are observed. We provide

an algorithm for exact ML estimation that, regardless of the maximum degree, has

complexity O(kn2 + n2 log n) if the FVS nodes are identified in advance and polynomial

complexity if the FVS is to be learned and of bounded size. Moreover, we provide an

24 CHAPTER 1. INTRODUCTION

approximate and much faster greedy algorithm when the FVS is unknown and large.

(2) We study a second case where the FVS nodes are taken to be latent variables. In

this case, the structure learning problem corresponds to the (exact or approximate)

decomposition of an inverse covariance matrix into the sum of a tree-structured matrix

and a low-rank matrix. We propose an algorithm that iterates between two projections,

which can also be interpreted as alternating low-rank corrections. We prove that even

though the second projection is onto a highly non-convex set, it is carried out exactly,

thanks to the properties of GGMs of this family. By carefully incorporating efficient

inference into the learning steps, we can further reduce the complexity to ((kn 2 +

n 2 log n) per iteration. (3) We also perform experiments using both synthetic data and

real data of flight delays to demonstrate the modeling capacity with FVSs of various

sizes. We show that empirically the family of GGMs with FVSs of size O(log n) strikes

a good balance between the modeling capacity and efficiency.

This chapter is organized as follows. In Section 5.3, we study the case where nodes

in the FVS are observed. We propose the conditioned Chow-Liu algorithm for structure

learning and prove its correctness and complexity. Next, we study the case where the

FVS nodes are latent variables and propose an alternating low-rank correction algorithm

for structure learning in Section 5.4. We then present experimental results for learning

GGMs with small FVSs, observed or latent, using both synthetic data and real data of

flight delays in Section 5.5.

* 1.4.5 Chapter 6: Conclusion

In this chapter, we highlight the important contributions of this thesis and discuss future

research directions.

25Sec. 1.4. Thesis Organization and Overview of Contributions

26 CHAPTER 1. INTRODUCTION

Chapter 2

Background

In this chapter, we give a brief introduction to graphical models including the defini-

tions, existing inference algorithms, common sampling algorithms, as well as well as

some learning algorithms. We outline this chapter as follows. In Section 2.1 we start

with preliminaries on graphical models including basic graph theory, general graphical

models, and specifically Gaussian graphical models. Next in Section 2.2, we describe

inference algorithms for graphical models, including loopy belief propagation and the

feedback message passing algorithm. We then summarize some common sampling al-

gorithms such as using the Cholesky decomposition, forward sampling, basic Gibbs

sampling, and variants of Gibbs sampling in Section 2.3. Finally in Section 2.4, we

introduce preliminaries of the learning problem, including information quantities, the

maximum likelihood criterion and the Chow-Liu algorithm.

* 2.1 Graphical Models

Graphical models are widely used to represent the structures of multivariate distribu-

tions using graphs [23]. The graphs used can be undirected graphs, directed graphs,

or factor graphs resulting in undirected graphical models (or Markov random fields), di-

rected graphical models (or Bayesian networks) and factor graph models. In this thesis,

we focus on undirected graphical models where the underlying undirected graphs are

used to model the conditional independencies in the distributions. In the following, we

first briefly review basic notions from graph theory; next we introduce graphical models

in a general setting; and then we describe Gaussian graphical models, the main models

used in our subsequent chapters.

27

* 2.1.1 Notions in Graph Theory

A graph g= (V, S) consists of a set of nodes or vertices V and a set of edges E. An

edge (i, j) is a pair of distinct nodes (i, j) with i, j E V. In undirected graphs, the edges

are unordered pairs, i.e., (i, j) and (j, i) denote the same edge. The neighborhood (also

called the set of neighbors) of a node i is the set AP(i) = {jI(i, j) E E}. Two nodes are

connected if they are neighbors. The degree of node i, denoted as deg(i), is the number

of its neighbors, which equals .Af(i) .1 In this thesis, we also refer to the size of V, or

|V|, as the size of the graph.

A graph is called a complete or fully connected graph if any two nodes are connected.

A walk w = (wo, wi, ... , w,) or w = (wo, w 1 , w 2 ,...) on a graph is a finite or infinite

sequence of nodes where the consecutive nodes are neighbors. The length of a walk is

the number of nodes in its sequence minus one, i.e, the length of w = (wo, wi, ... , wn)
is n.2 A path is a walk where all nodes in the sequence are distinct. A graph is called

a connected graph if there exists a path between any pair of nodes. A cycle or loop is

a walk that starts and ends at the same node but all other nodes are distinct. The set

of The distance between two nodes (i, j) in a graph, denoted as d(i, j), is the minimum

length of all paths between i and j. The diameter of a graph is the maximum distance

between any pair of nodes in the graph.

A chain is a connected graph where two nodes have degree one and all other nodes

have degree two. A forest is a graph without cycles. If a forest is a connected graph,
it is also called a tree. In this thesis, we use the term tree-structured graphs to refer to

forests in general.

A graph Q' (V', E') is a subgraph of g (V,S) if V C V and S' C S. g' is a

spanning subgraph of g if V' = V and E' C S. The graph g' = (V', E') is a subgraph

of g (V, E) induced by V' if V' C V and that (i,j) E E'if and only if i, j E V'and

(i, j) E S. A subgraph is called a clique if it is a fully connected. A maximal clique is

a clique that is not a proper subgraph of any larger clique. A graph is called chordal

if every cycle of length at least four contains two nodes that are not adjacent in the

cycle but are connected in the graph. The treewidth of a chordal graph is the size of its

largest clique minus one. The treewidth of a non-chordal graph is minimum tree-width

of all chordal graphs of which the non-chordal graph is a subgraph. We say that set S

separates set A and set B if any path between a node in A and a node in B contains at

'We use |Al to denote the cardinality of a set A.
21n the special case of a walk with a single node, the length is zero.

28 CHAPTER 2. BACKGROUND

least one node in S.

N 2.1.2 Graphical Models and Exponential Families

Markov random fields (MRFs) are graphical models in which the conditional indepen-

dence structure of a set of random variables is represented by an undirected graph

[48, 23]. Each node s C V corresponds to a random variable x. For any subset A C V,

the random vector XA corresponds to the set of random variables {xsIs E A} and we

will also simply write x for xv. A random vector has the Markov property with respect

to the graph if for any subsets A, B, S C V where S separates A and B in the graph,

XA and xB are independent conditioned on xS, i.e., XA I XB xs. Figure 2.1 provides

an illustrating example of this Markov property.

/ \

/B

/ /
A '

Figure 2.1: Markov property of a graphical model: XA I XB IXS since S separates

A and B.

By the Hammersley-Clifford theorem, if the probabilistic distribution function (p. d.f.)

p(x) of a distribution is Markov with respect to graph g = (V, £) and is positive every-

29Sec. 2.1. Graphical Models

where, then p(x) can be factored according to

p(x) = I H qc(xc), (2.1)
C eC

where C is the collection of cliques and Z is the normalization factor or partition func-
tion. Each factor 0c is often represented by Oc(xc) = exp{fc(xc)} and thus the

factorization of p(x) can be written as

p(x) = exp E c (xc)}. (2.2)
cEC

A graphical model is a pairwise model if the only nonzero 0C are for cliques of size

one or two. In particular, if the underlying model is tree-structured, the p.d.f. of the

distribution can be factored according to Proposition 2.1.1.

Proposition 2.1.1 : The p.d.f. of a tree-structured model T = (V, S) can be factorized

according to either of the following two equations:

1.

p(x) = P(xr) 7 p(xilxr(i)), (2.3)
iEV\{r}

where r is an arbitrary node selected as the root and ir(i) is the unique parent of

node i in the tree rooted at r.

2.

p X) = H P (xi) H ' .x j (2.4)
icv (j) EEp(xi)p(xj)*

* 2.1.3 Gaussian Graphical Models

An important sub-class of MRFs are Gaussian Markov random fields (GMRFs) or Gaus-

sian graphical models (GGMs), where the joint distribution is Gaussian. GGMs have

been widely used in computer vision [2], computational biology [49], medical diagnostics

[50], and communication systems [51]. GGMs are particularly important in very large

probabilistic networks involving millions of variables [4, 5].

30 CHAPTER 2. BACKGROUND

Using the representation of (2.2), the p.d.f. of a GGM can be written as

p(x) oc exp{ZE i (xi) + 13 4(xij)}, (2.5)
iEV (ij)EE

where

1
Oi(xi) =-Jiix + hixi (2.6)

2

=(xij) -Jijxix. (2.7)

Hence, the p.d.f. of the distribution can be parametrized by

p(x) oc exp{--xI Jx + hTx}, (2.8)
2

where J is the information matrix or precision matrix and h is the potential vector.

For a valid Gaussian graphical model,the information matrix J is positive definite. The

parameters J and h are related to the mean p and covariance matrix E by y = J-1 h

and E = J-1 . We denote this distribution by either PJ(p, E) or A- 1 (h, J).

The structure of the underlying graph can be constructed using the sparsity pattern

of J, i.e., there is an edge between i and j if and only if Jjj f 0. Hence, the conditional

independence structure can be read immediately from the sparsity pattern of the infor-

mation matrix as well as that of the underlying graph (See Figure 2.2). Our starting

point will simply be the specification of h and J (and with it the graphical structure).

One setting in which such a specification arises (and which we will illustrate with our

large-scale example) is in estimation problems, that in which x represents a large ran-

dom field, which has prior distribution K-1(0, Jo) according to a specified graph3 (e.g.,

the thin-membrane or the thin-plate model [11) and where we have potentially sparse

and noisy measurements of components of x given by y = Cx + v, v ~K/(0, R), where

C is a selection matrix (a single 1 in each row, all other row elements being 0) and R is a

(blocked) diagonal matrix. In this case, the posterior distribution p(xly) is .A-'(h, J),

where h = CTR-ly and J Jo + CTR-1C.

In the following chapters of this thesis, we focus on GGMs to demonstrate our

inference and learning algorithms while some of the ideas can be extended to other

3Without loss of generality we can assume that the prior mean of x is 0 simply by subtracting
it from the random field and from the measurements.

31Sec. 2.1. Graphical Models

X1 X2 X3 X4 X5

X4 x1

X2

X3

X4

(a) (b)

Figure 2.2: Sparsity relationship between the underlying undirected graph and

the information matrix: (a) The sparsity pattern of the undirected graph; (b)

The sparsity pattern of the information matrix.

pairwise models such as the Ising models [23].

* 2.2 Inference Algorithms

The inference problems in graphical models refer to computing the marginal distribu-

tions of individual variables or the maximum likelihood state (i.e., the variable con-

figuration with the highest probability density) given model parameters. In Gaussian

graphical models, inference refers to computing (exactly or approximately) the means

pi and variances Eii for all i E V given J and h. In this section, we review the message-

passing algorithm belief propagation (BP), the walk-sum analysis framework, as well as

the feedback message passing (FMP) algorithm.

* 2.2.1 Belief Propagation

BP is an efficient message-passing algorithm that gives exact inference results in linear

time for tree-structured graphs [231. The Kalman filter for linear Gaussian estimation

and the forward-backward algorithm for hidden Markov models can be viewed as special

instances of BP. Though widely used, tree-structured models (also known as cycle-free

32 CHAPTER 2. BACKGROUND

graphical models) possess limited modeling capabilities, and many stochastic processes

and random fields arose in real-world applications cannot be well-modeled using cycle-

free graphs. Loopy belief propagation (LBP) is an application of the message-passing

protocol of BP on loopy graphs using the same local message update rules. Without

loss of generality, we use BP and LBP interchangeably throughout this thesis, as the

protocols are the same. Empirically, it has been observed that LBP performs reasonably

well for certain graphs with cycles [7, 52]. Indeed, the decoding method employed for

turbo codes has also been shown to be a successful instance of LBP [53]. A desirable

property of LBP is its distributed nature-as in BP, message updates in LBP only

involve local model parameters and local incoming messages, so all nodes can update

their messages in parallel.

In Gaussian graphical models, the set of messages can be represented by {AJ__ j U

,Ahj__,jeej), where AJiff and Ahis are scalar values. Consider a Gaussian graphical

model: p(x) oc exp{- Ix T Jx + hTx}. BP (or LBP) proceeds as follows [54]:

1. Message Passing

The messages are initialized as APJ and Ah , for all (Z, J) - S. These initial-

izations may be chosen in different ways. In this thesis we initialize all messages

with the value 0.

At each iteration t, the messages are updated based on previous messages as

=- Jji(j (t- , (2.9)

Ahi = - J f ()-10 -,\ (2.10)

where

= J.. + AJ (2.11)
kiE (i)\j

j1 = hi + 3 Ah (2.12)
i\j k+

keAr(i)\j

The fixed-point messages are denoted as AJi* and Ah if the messages con-

verge.

2. Computation of Means and Variances:

33Sec. 2.2. Inference Algorithms

The variances and means are computed based on the fixed-point messages as

J= Ji + S AJk*i (2.13)
ke)V(i)

hi = hi + E Ah* 2 i. (2.14)
kEA/(i)

The variances and means can then be obtained by Eii = <1 and pi = hi.

2.2.2 Walk-sum Analysis

Computing the means and variances of a Gaussian graphical model corresponds to

solving a set of linear equations and obtaining the diagonal elements of the inverse of J

respectively. There are many ways in which to do this - e.g., by direct solution, or using

various iterative methods. As we outline in this section, one way to interpret the exact

or approximate solution of this problem is through walk-sum analysis, which is based on

a simple power series expansion of J-1 . In [54, 331 walk-sum analysis is used to interpret

the computations of means and variances formally as collecting all required "walks" in

a graph. In particular, the analysis in [54] identifies that when the required walks can

be summed in arbitrary orders, i.e., when the model is walk-summable, LBP converges

and gives the correct mean.4 One of the important benefits of walk-sum analysis is

that it allows us to understand what various algorithms compute and relate them to

the required exact computations. For example, as shown in [54], LBP collects all of the

required walks for the computation of the means (and, hence, always yields the correct

means if it converges) but only some of the walks required for variance computations

for loopy graphs (so, if it converges, its variance calculations are not correct).
Frequently it will be convenient to assume without loss of generality that the infor-

mation matrix J has been normalized such that all its diagonal elements are equal to

unity. Let R = I - J, and note that R has zero diagonal. The matrix R is called the

edge-weight matrix.5

4 As will be formally defined later, walk-summability corresponds to the absolute convergence
of the series corresponding to the walk-sums needed for variance computation in a graphical
model [54].

5 The matrix R, which has the same off-diagonal sparsity pattern as J, is a matrix of par-
tial correlation coefficients: Rij is the conditional correlation coefficient between xi and xj
conditioned on all of the other variables in the graph.

34 CHAPTER 2. BACKGROUND

In GGMs, the weight of a walk is defined as the product of the edge weights,

(w)

O(w) = Rwjnw,, (2.15)
1=1

where l(w) is the length of walk w. Also, we define the weight of a zero-length walk, i.e.,

a single node, as one. By the Neumann power series for matrix inversion, the covariance

matrix can be expressed as

E = J-' = (I - R)-1 = R1. (2.16)
l=0

This formal series converges (although not necessarily absolutely) if the spectral radius,

p(R), i.e., the magnitude of the largest eigenvalue of R, is less than 1.

Let W be a set of walks. We define the walk-sum of W as

4(W) = E 0(W). (2.17)
wEI/V

We use 0(i j) to denote the sum of all walks from node i to node j. In particular, we

call #(i - i) the self-return walk-sum of node i. It is easily checked that the (i, j) entry

of R equals #1(i -+ j), the sum of all walks of length I from node i to node j. Hence

00

Eij = q(i -+j) = E (i j). (2.18)
1=0

A Gaussian graphical model is walk-summable (WS) if for all i, j E V, the walk-sum

0(i - j) converges for any order of the summands in (2.18) (note that the summation

in (2.18) is ordered by walk-length). In walk-summable models, 0(i a j) is well-defined

for all i, j E V. The covariances and the means can be expressed as

E =(i -+ j), (2.19)

Pi = hjPi= h(i - j). (2.20)
jCV jEV

As shown in [54] for non-WS models, LBP may not converge and can, in fact, yield

oscillatory variance estimates that take on negative values. Here we list some useful

35Sec. 2.2. Inference Algorithms

results from [54] that will be used in this thesis.

Proposition 2.2.1 : The following conditions are equivalent to walk-summability:

(i) $ I0(w)| converges for all i, j G V, where Wim is the set of walks from

i to j.

(ii) p(R?) < 1, where R is the matrix whose elements are the absolute values of the

corresponding elements in R.

Proposition 2.2.2 : A Gaussian graphical model is walk-summable if it is attractive, i.e.,
every edge weight Rij is nonnegative; a valid Gaussian graphical model is walk-summable

if the underlying graph is cycle-free.

Proposition 2.2.3 : For a walk-summable Gaussian graphical model, LBP converges and

gives the correct means.

Proposition 2.2.4 : In walk-summable models, the estimated variance from LBP for a

node is the sum over all backtracking walks6 , which is a subset of all self-return walks

needed for computing the correct variance.

U 2.2.3 Feedback Message Passing

A feedback vertex set (FVS) is defined as a set of vertices whose removal (with the

removal of the incident edges) results in an cycle-free graph [55]. An example of a graph

and its FVS is given in Figure 2.3, where the full graph (Figure 2.3a) becomes a cycle-

free graph (Figure 2.3b) if nodes 1 and 2 are removed, and thus the set {1, 2} is an

FVS. A pseudo-FVS is a subset of an FVS that breaks not all but most crucial cycles.

Frequently we refer to an FVS as a full FVS to emphasize the distinction.

The FMP algorithm is a message-passing algorithm that can compute the means

and variances of all nodes exactly with a computational complexity of O(k 2 n), where k

is the size of the FVS used in the algorithm, and n is the total number of nodes. When

the size of the full FVS is too large, approximate FMP can be used, where a pseudo-FVS

'A backtracking walk of a node is a self-return walk that can be reduced consecutively to a
single node. Each reduction is to replace a subwalk of the form {i, j, i} by the single node {i}.
For example, a self-return walk of the form 12321 is backtracking, but a walk of the form 1231
is not.

36 CHAPTER 2. BACKGROUND

is selected instead of an FVS, and where inference in the non-cycle-free graph obtained

by removing the pseudo-FVS is carried out approximately using LBP. With a slight

abuse of terminology, in this thesis, we use FMP to refer to both FMP and approximate

FMP in [56] because the procedures are similar except for whether the feedback nodes

constitute a full FVS. In the following, we use F to denote the set of feedback nodes

and T to denote the set of non-feedback nodes. We also use T in the calligraphic font

to denote the subgraph induced by the set T, where the subgraph is cycle-free when

F is an FVS and has cycles when F is a pseudo-FVS. We also use the calligraphic T

instead of T in the superscripts to avoid confusion with matrix transposition. The FMP

algorithm works as follows.

(a) (b)

Figure 2.3: A graph with an FVS of size 2. (a) Full graph; (b) Tree-structured subgraph
after removing nodes 1 and 2

Step 1: Before running FMP, an FVS or a pseudo-FVS is selected by a greedy algorithm

to break the most crucial cycles. The selected nodes are called feedback nodes. After

graph cleaning (i.e., the process of eliminating the tree branches7), the greedy algorithm

computes the "priority score"

jE >(i)
(2.21)

7This procedure of eliminating "tree branches" simply removes nodes and edges corresponding
to loop-free components of the current graph. One looks for nodes with only one neighbor,
eliminating it and the edge associated with it and continues removing nodes and associated
solitary edges until there are no more.

Sec. 2.2. Inference Algorithms 37

4

56 78

for each node i, where the definition of the scores are motivated by the theoretical

results on the convergence and accuracy of FMP (c.f. [56]). Next the node with the

highest score is selected as a feedback node. These steps (including graph cleaning and

recomputing the priority scores) are then repeated until k feedback nodes are selected.'

We summarize the greedy selection procedure in Algorithm 2.2.1. Note that Algorithm

2.2.1 is a centralized algorithm and the information about the selected feedback nodes is

shared everywhere. After the selection, all of the priority scores are dropped and are not

used again in the subsequent steps. Without loss of generality, we re-order the nodes

so that the first k nodes are the selected feedback nodes and the remaining n - k nodes

are the non-feedback nodes. According to this ordering, the information matrix J and

the potential vector h can be partitioned as

FJF ~
J= J I (2.22)

[JM JT

h = " . (2.23)

Step 2: In this step, LBP is employed in the subgraph excluding the feedback nodes

to compute the partial inference results with the model parameters on the subgraph as

well as to compute the "feedback gains" using a set of auxiliary "mean" computations,
each corresponding to a feedback node. Specifically, we construct a set of additional

potential vectors {hl, h 2 , .. ., hk} with

hP = JT,p, p = 1, 2, . .. , k, (2.24)

i.e., hP is the submatrix (column vector) of J with column index p and row indices

corresponding to T. Note that

hp = Jpi for all i E g(p) (2.25)

hP = 0 for all i V(p), (2.26)

8Note that the scores in (2.21) are adjusted at each iteration to reflect that nodes already
in the FVS are removed from the graph (together with edges associated with them, as well as
nodes and edges removed in the tree-cleanup phase) are removed from the graph used in the
next stage of the selection process.

38 CHAPTER 2. BACKGROUND

Sec. 2.2. Inference Algorithms 39

and thus hP can be constructed locally with default value zero. In this step, the messages

from node i to its neighbor j include k + 2 values: AJij, Ahisj for standard LBP

and {Ahyi*j}p=1,2,...,k for computing the feedback gains. The standard LBP messages

yield for each node i in T its "partial variance" ET (if the feedback nodes form a full

FVS, then E = (Jgj1)j) and its "partial mean" pj (as long as the messages converge,

we have pu (JI1 hT)i). Note that these results are not the true variances and means

since this step does not involve the contributions of the feedback nodes. At the same

time, LBP using the auxiliary potential vectors {hl, h 2 , .. , hk} yield a set of "feedback

gain" {gf}p=1,2,...,k (similar to the mean computation, we have gp = (J--hP)j if the

messages converge). Figure 2.4a illustrates this procedure.

Step 3: After the messages in Step 2 converge, the feedback nodes collect the feedback

gains from their neighbors and obtain a size-k subgraph with J7 and hr given by

(JF)pq = Jpq - , Vp, q E F (2.27)
j EM(p)nT

(hF)p = hp - 5 JlpjI, Vp E F. (2.28)

je f(p)nT

Then we solve a small inference problem involving only the feedback nodes and obtain

the mean vector in AF and the full covariance matrix EF at the feedback nodes using

EF = (2.29)

AF = JhF (2.30)

Figure 2.4b gives an illustration for this step.

Step 4: After the feedback nodes compute their own variances and means, their in-

ference results are used to correct the partial variances ET and "partial means" Pf

computed in Step 2.

The partial variances are corrected by adding correction terms using

E = ± + gET pqgi, Vi c T. (2.31)
p,qGF

The partial means are corrected by running a second round of LBP with revised

potential vector hT and the same information matrix JT. The revised potential vector

is computed as follows:

i = hi - Jij(AF), Vi E T. (2.32)
jEAF(i)fnF

Since this revision only uses local values, it can be viewed as passing messages from the

feedback nodes to their neighbors (c.f. Figure 2.4c). Then a second round of LBP is

performed on the subgraph T with model parameters JT and hT. After convergence,
the final means are obtained, such that if T is a tree, this message-passing algorithm

provides the true means, namely,

Pi = (JIfhT)i, Vi E T. (2.33)

An illustration of this step is shown in Figure 2.4d.

The complete message update equations (except for the selection of the feedback

nodes) of FMP is summarized in Algorithm 2.2.2. We also provide some theoretical

results in the following propositions and theorems, whose proofs can be found in [16].

Algorithm 2.2.1 Selection of the Feedback Nodes
Input: information matrix J and the maximum size k of the pseudo-FVS

Output: a pseudo-FVS F

1. Let F = 0 and normalize J to have unit diagonal.

2. Repeat until |FJ = k or the remaining graph is empty.

(a) Clean up the current graph by eliminating all the tree branches.

(b) Update the scores p(i) = jK(i)IJijI on the remaining graph

(c) Put the node with the largest score into F and remove it from the
current graph.

Theorem 2.2.5 : The FMP algorithm described in Algorithm 2.2.2 results in the exact

means and exact variances for all nodes if F is an FVS.

40 CHAPTER 2. BACKGROUND

41Sec. 2.2. Inference Algorithms

Algorithm 2.2.2 Feedback Message Passing Algorithm

Input: information matrix J, potential vector h and (pseudo-) feedback vertex

set F of size k

Output: mean pi and variance Eii for every node i

1. Construct k extra potential vectors: Vp C F, hP = JT,p, each corresponding

to one feedback node.

2. Perform LBP on T with JT, hT to obtain E = (Jj7)ji and pT = (JjFhT)i
for each i E T. With the k extra potential vectors, calculate the feedback

gains gi = (Jji1h1), g2 = (Jih2 (Jhk)j for i E T by LBP.

3. obtain a size-k subgraph with JF and hF given by

= Jpq -
jeA((p)nT

Jy q, Vp, q E F, (2.34)

(2.35)=h - Z Jj, Vp e F,
jEN(p)nT

and solve the inference problem on the small graph by EF = and

AF = F 1 F-

4. Revise the potential vector on T using

i = h i -
jcAf(i)nF

Jij (PF)j, Vi c T.

5. Another round of BP with the revised potential vector hT gives the exact

means for nodes on T.
Add correction terms to obtain the exact variances for nodes in T:

Eii = ET + 9P (Y-T) pq 9, Vi G T.
pG.F qEF

(JF)pq

(hF)p

42 CHAPTER 2. BACKGROUND

1 23

5 78

9 10 11 12

13 14 16

(a) LBP on the subgraph excluding the
feedback nodes

....... 2......... 3

5 8

......... 10 11-----. I(1D...........

O .-------- 14 16

(c) Feedback nodes send feedback mes-
sages back to their neighbors

(b) Solving a small inference problem
among the feedback nodes

12 3

9 10 1112

13 14 16

(d) Another round of LBP among the
non-feedback nodes gives the final re-
sults

Figure 2.4: Illustration for the FMP algorithm. Shaded nodes (4, 6, and 15) are
selected feedback nodes.

42 CHAPTER 2. BACKGROUND

Theorem 2.2.6 : Consider a Gaussian graphical model with parameters J and h. If

FMP converges with a pseudo-FVS F, it gives the correct means for all nodes and the

correct variances on the pseudo-FVS. The variance of node i in T calculated by this

algorithm equals the sum of all the backtracking walks of node i within T plus all the

self-return walks of node i that visit F, so that the only walks missed in the computation

of the variance at node i are the non-backtracking walks within T.

Proposition 2.2.7 : Consider a Gaussian graphical model with graph g (V, ') and

model parameters J and h. If the model is walk-summable, then FMP converges for any

pseudo-FVS F C V.

Proposition 2.2.8 : Consider a walk-summable Gaussian graphical model with n nodes.

Assume the information matrix J is normalized to have unit diagonal. Let fFMP denote

the error of FMP and FMP denote the estimated variance of node i. Then

F^FMPM< n-k
EFMP = -- i - ii ~

ieV

where k is the number of feedback nodes, 5 is the spectral radius corresponding to the

subgraph T, and denotes the girth of T, i.e., the length of the shortest cycle in T. In

particular, when k = 0, i.e., LBP is used on the entire graph, we have

LBP EZiBP _ 9

iEV

where the notation is similarly defined.

U 2.3 Common Sampling Algorithms

In this section, we summarize some commonly used sampling algorithms including us-

ing the Cholesky decomposition, forward sampling on trees (and beyond), and Gibbs

sampling (with its variants).

Sampling Using the Cholesky Decomposition The Cholesky decomposition gives a lower

triangular matrix L such that J = LLT. Let z be an n-dimensional random vector

whose entries are drawn i.i.d. from the standard Gaussian distribution A(O, 1). An

exact sample x can be obtained by computing x = (LT)- 1 (z + L- 1 h). If such a

43Sec. 2.3. Common Sampling Algorithms

decomposition is available and if L is sparse, sampling is fast even for very large models.

However, for a general sparse J, the computation of L has cubic complexity, while fill

in L can be quadratic in the size of the model. For very large models, the Cholesky

decomposition is computationally prohibitive. 9

Forward Sampling for Tree-Structured Models For a tree-structured GGM, an exact

sample can be generated in linear time (with respect to the number of nodes) by first

computing the variances and means for all nodes and covariances for the edges using

BP, and then sampling the variables one by one following a root-to-leaf order where the

root node can be an arbitrary node [23].

Forward Sampling for Models with Small Feedback Vertex Sets There are other tractable

graphical models that one can consider, including models with small FVSs. In this

case, one can compute the means and covariances using the FMP algorithm that scales

quadratically in the size of the FVS and linearly in the overall size of the graph and

can then produce samples by first sampling the nodes in the FVS (perhaps using the

Cholesky decomposition, with complexity cubic in the size of the FVS) and then per-

forming forward tree sampling on the rest.

Basic Gibbs Sampling The basic Gibbs sampler generates new samples, one variable at

a time, by conditioning on the most recent values of its neighbors. In particular, in each

iteration, a sample for all n variables is drawn by performing

2 Aft
1

) (1V (I" hi- 7 (t - (t

(h- E J) -- Jjizjt ,J'l) for i = 1,2,....n.
j<i, jceN(i) j>i, jENr(i)

The Gibbs sampler always converges when J >- 0; however, the convergence can be very

slow for many GGMs, including many tree-structured models. More details on Gibbs

sampling can be found in [24].

Variants of Gibbs Sampling There have been many variants of the Gibbs sampler using

the ideas of reordering, coloring, blocking, and collapsing. For example, in the blocked

Gibbs sampler the set of nodes is partitioned into several disjoint subsets and each subset

is treated as a single variable. One approach is to use graph coloring, in which variables

9 Sparse Cholesky decomposition can be employed to reduce the computational complexity.
However, even for sparse graphs, the number of fills in the worst case is still 0(n 2) and the total
computational complexity is 0(n3) in general [31].

44 CHAPTER 2. BACKGROUND

are colored so that adjacent nodes have different colors, and then each Gibbs block is

the set of nodes in one color [57]. In [29] the authors have proposed a blocking strategy

where each block induces a tree-structured subgraph.

N 2.4 Learning Graphical Models

Learning graphical models refers to the procedure of recovering the graph structure as

well as model parameters of an unknown model given observations. In this section,

we first give a brief introduction to some useful notions in information theory that

will be use in our problem formulation or proofs. Next we introduce the maximum

likelihood criterion for structure and parameter learning and its equivalent formulation

as an optimization problem. Finally, we summarize the Chow-Liu algorithm, which has

been proposed for efficiently learning models in the family of trees.

* 2.4.1 Information Quantities

In the following we review some important information quantities with brief descriptions.

The entropy of a probabilistic distribution is defined as

Hp. (x) - fpx(x) log px(x)dx. (2.36)

The conditional entropy is the expected entropy of the conditional distribution, i.e.,

H , (xy) A - pxy (x, y) log pxIy (xIy)dxdy. (2.37)

The mutual information of two variables or two sets of variables is a nonnegative measure

of the variables' (or sets of variables') mutual dependence:

lgPx(x)PY(Y d(y)

IpX, ,(x; y) = Pxy(xY)log dxdy. (2.38)
fX1Y pxy (x, Y)

The mutual information between two sets of random variables that are jointly Gaussian

is
1 det ExdetZE

I(x; y) = - log (2.39)
2 det E

where E = [is the covariance matrix. In particular, the mutual informa-

yx E yI

45Sec. 2.4. Learning Graphical Models

tion between two scalar jointly Gaussian variables is I(x; y) = -} log(1 - p2), where

p is the correlation coefficient. The conditional mutual information is useful to ex-

press the mutual information of two random variables (or two sets of random variables)

conditioned on a third. It is defined as follows

IpsY, (x; ylz) = Pxyz(x, y, z) log p (xdxdydz. (2.40)
x,y,z Px(z(xyz)Py(z)dyz(4

The Kullback-Leibler divergence or K-L divergence is a non-symmetric nonnegative mea-

sure of the difference between two distributions:

DKL (Px qx) Px (X) log xX. (2.41)

The K-L divergence is always nonnegative. It is zero if and only if the two distributions

are the same (almost everywhere). The conditional K-L divergence between two con-

ditional distributions piy(xly) and qxly(xly) under distribution py(y) is the expected

K-L divergence defined as

DKL(Px~y qxy py) Ep [DKL(Pxy=yEqxYy=y)y = y] (2.42)

SD(pxyp(y)I qxlypy). (2.43)

When there is no confusion, we often omit the subscripts in the distributions, e.g.,
Ip, (x; y) written as Ip(x; y). With a slight abuse of notation, we also use p(xA) to
denote the marginal distribution of XA under the joint distribution p(x), and similarly

p(xAIxB) to denote the conditional distribution of xA given XB under the joint distri-

bution p(x).

* 2.4.2 Maximum Likelihood Estimation

Learning graphical models refers to recovering the underlying graph structures and

model parameters from observations, where the models are often known or assumed to

be in a family of models. The maximum likelihood (ML) criterion is to select the model

such that the observed data has the maximum likelihood. The estimated model using

the ML criterion is called the ML estimate. In the following, we define the ML criterion

and introduce its equivalent formulation.

Given samples {x}. 1 independently generated from an unknown distribution q in

46 CHAPTER 2. BACKGROUND

the family Q, the ML estimate is defined as

S

qML =arg max jq (x') (2.44)
ML= arg max s X9N

Sargmax log q(x). (2.45)

It has been shown that computing the ML estimate is equivalent to minimizing the

K-L divergence between the empirical distribution and the distributions in the family.

The following proposition 2.4.1 states this equivalence. The proof of this proposition

can be found in standard texts such as in [58].

Proposition 2.4.1 : Given independently generated samples {x 2 }' 1 , the ML estimate

QML = arg maXqQ Z log q(X) can be computed using

qML = arg min DKL(P q), (2.46)
qeQ

where P is the empirical distribution of the samples.

For Gaussian distributions, the empirical distribution can be written as

P (x) = K(x;, i), (2.47)

where the empirical mean

1 xi (2.48)
i=1

and the empirical covariance matrix

I x i(x)T- #. (2.49)
i=1

For more general models, the expectation-maximization (EM) algorithm is often

used to iteratively find the ML estimate of the model parameters. The general steps of

the EM algorithm can be found in [59].

47Sec. 2.4. Learning Graphical Models

* 2.4.3 The Chow-Liu Algorithm

For the family of tree-structured models, the ML estimate can be computed exactly

using the Chow-Liu algorithm, where the graph structure is obtained by computing the

maximum spanning tree (MST) with the weight of each edge equal to the empirical mu-

tual information (the mutual information between the two nodes of the edge computed

under the empirical distribution) and then the model parameters are computed using

information projection [36]. In Algorithm 2.4.1, we summarize the Chow-Liu algorithm

specialized for GGMs. The input is the empirical covariance matrix t and the outputs

are ECL, the estimated covariance matrix that has a tree-structured inverse, and ECL,
the set of edges in the learned model. The computational complexity of Algorithm 2.4.1

is O(n 2 log n), where n is the number of nodes.

Algorithm 2.4.1 The Chow-Liu Algorithm for GGMs

Input: the empirical covariance matrix Z

Output: ECL and ECL

1. Compute the correlation coefficients Pij = t for all i, j V.

2. Find an MST (maximum weight spanning tree) of the complete graph with
weights Ipij I for edge (i, j). The edge set of the tree is denoted as ET.

3. The entries in ECL are computed as follows

(a) For all i E V, (ECL)ii = tij;

(b) for (i,j) E ST, (ZCL)ij =

(c) for (i,j) ST, (ECL)i3 = O EJi jj (lk)EPath(ij) Plk, where Path(i, J) is
the set of edges on the unique path between i and j in the spanning
tree.

48 CHAPTER 2. BACKGROUND

Chapter 3

Recursive Feedback Message

Passing for Distributed Inference

U 3.1 Introduction

In Section 2.2, we have described the FMP algorithm proposed in [16]. FMP uses the

standard LBP message-passing protocol among the nodes that are not in the FVS and

uses a special protocol for nodes in the FVS. The FMP algorithm gives the exact means

and variances for all nodes with a total computational complexity that is quadratic in

the size of the FVS and linear in the total number of nodes. When the size of the FVS is

large, a pseudo-FVS is used instead of a full FVS to obtain approximate inference results.

By performing two rounds of standard LBP among the non-feedback nodes and solving

a small inference problem among the feedback nodesi, FMP improves the convergence

and accuracy significantly compared with running LBP on the entire graph. In addition,

choosing the size of the pseudo-FVS enables us to make the trade-off between efficiency

and accuracy explicit.

The overall message-passing protocol of FMP is indeed distributed among the non-

feedback nodes since the messages among them are updated using only local parameters

or incoming messages from neighbors; however, centralized communication (i.e., propa-

gating information between nodes without connecting edges) among the feedback nodes

is still required when solving the smaller inference problem among these nodes. More-

over, the set of feedback nodes (either forming an FVS or a pseudo-FVS) are selected

in a centralized manner prior to running FMP (c.f. Algorithm 2.2.1 in Section 2.2).

'As mentioned in Section 2.2, nodes in the FVS or pseudo-FVS are called feedback nodes.

49

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Hence, we refer to FMP as a hybrid algorithm. One can ask some natural questions: Is

it possible to select the feedback nodes in a purely distributed manner? Can we further

eliminate the centralized communication among the feedback nodes in FMP without

losing the improvements on convergence and accuracy?

In this chapter, we propose and analyze the recursive FMP algorithm, which is a

purely distributed extension of FMP where all nodes use the same distributed message-

passing protocol in the entire procedure. In recursive FMP, an inference problem on the

entire graph is recursively (but in a distributed manner) reduced to those on smaller and

smaller subgraphs until the final inference problem can be solved efficiently by an exact

or approximate message-passing algorithm. In this algorithm, all messages are passed

between nodes with connecting edges. Furthermore, the election2 of the feedback nodes

is integrated into the distributed protocol so that each node uses incoming messages to

determine whether it itself is a feedback node. In this recursive approach, centralized

communication among feedback nodes in FMP is reduced to message forwarding3 from

the feedback nodes. Such a purely distributed algorithm is of great importance because

in many scenarios, for example wireless sensor networks, it is easy to implement the

same distributed protocol on all nodes while centralized computation is often expensive

or impractical. Moreover, this algorithm now shares with LBP the characteristic that

each node receives messages and performs computations using exactly the same protocol.

Throughout this chapter, we use the same notation for the model parameters as in

Section 2.1.3. In particular, we assume that the information matrix J is normalized

to have unit diagonal. 4 In addition, without loss of generality, we assume that the

underlying graphs are connected.5

The remainder of this chapter is organized as follows. First in Section 3.2, we

describe the recursive FMP algorithm in three separate stages. Then in Section 3.3,
we summarize the recursive FMP algorithm as a single integrated protocol without the

separation of stages. Next we present and prove our theoretical results using walk-sum

2When an algorithm is distributed, the word "election" is used in place of "selection" to
emphasize the distributed nature.

3 Message passing is also called message forwarding if messages are passed without being
modified.

4The information matrix J is normalized using J <- DA JD-A, where D is a diagonal
matrix having the same diagonal as J.

5When the underlying graph of a graphical model is not connected, then the random variables
in different connected components are independent. Hence, the inference problem on the entire
graph can be solved by considering inference problems on individual connected components.

50

analysis in Section 3.4. Finally in Section 3.5, we demonstrate the performance of the

algorithm using simulated models on grids as well as real data for estimating sea surface

height anomaly (SSHA).

* 3.2 Recursive FMP Described by Stages

In this section, we describe the message-passing protocol used in recursive FMP in

separate stages. In practice, all nodes use the same integrated protocol (while they may

execute different message-update rules at a particular time depending on their internal

status). However, for clarity, we present the protocol in three separate stages: 1) election

of feedback nodes; 2) initial estimation; and 3) recursive correction. For each stage, we

explain the motivation and illustrate the protocol with examples.

Overview

It is useful to understand that the FMP algorithm described in Section 2.2.3 can be

interpreted as, first organizing the nodes into two sets (feedback and non-feedback),

then performing Gaussian elimination of the non-feedback nodes (or an approximation

to it using LBP if a pseudo-FVS is used), then solving the reduced problem on the set

of feedback nodes, followed by back-substitution (accomplished via the second wave of

LBP). At a coarse level, one can think of our distributed algorithm as continuing to

perform Gaussian elimination to solve the problem on the non-feedback nodes rather

than performing this in a centralized fashion, where these nodes need to determine on the

fly which ones will begin Gaussian elimination and back-substitution and in what order.

Our fully integrated algorithm in Section 3.3 combines all of these steps together, so

that each node knows, from a combination of its own internal memory and the messages

that it receives, what role it is playing at each step of the algorithm.

In the following, we first contrast our distributed algorithm with the FMP algorithm

described in Section 2.2.3, which can be directly interpreted as having distinct stages.

Then we describe our algorithm in several stages as well (although as we discuss, even

in this staged version, several of these stages actually may run together). In doing

so, we will also need to be much more careful in describing the protocol information

that accompanies messages in each as well as the quantities stored during each stage

at each node. Ultimately, in Section 3.3, we describe an integrated algorithm without

51Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

explicit stages, while in Section 3.4 we present theoretical results on the correctness of

our algorithm.

To begin, we briefly re-examine the hybrid FMP algorithm in Section 2.2.3 (dis-

tributed among the non-feedback nodes while centralized among the feedback nodes

both in the selection and in message passing). First, there is one parameter that needs

to be specified a priori, namely k, the maximum number of feedback nodes that are to

be included. This algorithm can be thought of as having several stages:

1. Identify feedback nodes, either for a full FVS or for a pseudo-FVS. As we discuss

in Section 2.2.3, the greedy algorithm (Algorithm 2.2.1) we suggest involves com-

puting "priority scores" for each node, choosing the node with the highest score,

recomputing scores, and continuing. For this algorithm, once the set of feedback

nodes have been computed:

(a) The scores are thrown away and have no further use.

(b) All nodes are aware of which nodes are feedback nodes and which are not.

2. Perform a first round of LBP among the non-feedback nodes. As described in

Section 2.2.3, this is done with a set of auxiliary "mean" computations, corre-

sponding to the feedback gains to be used by the feedback nodes. Explicitly, this

means that if there are k feedback nodes, all non-feedback nodes must compute

and then send k + 2 messages, the "2" corresponding to the LBP messages using

the potential vector and "J" matrix for the non-feedback part of the graph (c.f.

2.10-(2.12)) as well as a message for each of the k feedback nodes (which corre-

spond to computations analogous to the computation of means on that part of

the graph but with the non-zero potential of each initiated with non-zero values

at the immediate neighbors of each feedback node in the remaining graph). These

imply the following:

(a) Each message sent has enough protocol information to identify it-i.e., is it

one of the two messages corresponding to LBP on the non-feedback graph

or is it a message associated with the computation of the feedback gain of a

particular feedback node.

(b) Each node stores and then updates its values of these k +2 quantities. Note

that in this stage of the computation, the feedback nodes are inactive, i.e.,

52

they do not contribute to the message passing after they provide the initial

potentials for the computation of feedback gains. All of the non-feedback

nodes are active, as they participate in the message-passing. As all nodes

are aware of the set of feedback nodes, each node knows who is active and

who is not, including which of its neighbors is active.

3. Perform exact inference on the set of feedback nodes. In general this requires dense

communication among the feedback nodes (which are typically not neighbors of

each other), but results in the mean and full covariance on the vector of variables

at the set of feedback nodes.

4. Add correction terms to the partial variances obtained in Step 2, where the cor-

rection terms are computed from the inference results in Step 3 and the feedback

gains in Step 2. This requires all of the feedback nodes communicating to all of

the nodes in T, either by direct communication or by message forwarding. The

final estimates of the means are computed by performing a second round of LBP

among the feedback nodes with a modified potential vector, where each entry of

the potential vector is modified by adding correction terms corresponding to its

neighboring feedback nodes.

As we have discussed in Section 2.2.3, if k is large enough to allow for a complete FVS to

be used, the algorithm produces exact means and variances. If k is not large enough and

if the algorithm converges (which our choice of scoring and greedy choice of feedback

nodes aims to ensure), the means are correct and the variances, while incorrect, collect

more walks than LBP on the entire graph.

Finally, we note that in describing the algorithm in Section 2.2.3, we did not em-

phasize the "status" of nodes during the steps of the algorithm, but it is worth doing so

now, as this is a much more important issue with the distributed algorithm. Specifically,

in the hybrid algorithm as the process of choosing feedback nodes begins, all nodes are

undecided, a status we denote by "U". As feedback nodes are chosen, they switch to a

status which we denote by "F", although we also call these nodes "inactive" as they do

not participate in the LBP operations. The remaining nodes (after all feedback nodes

are chosen) take on status "T", which we also refer to as "active." In this hybrid algo-

rithm each node's status remains unchanged throughout the algorithm. In contrast, as

we will see, in our purely distributed algorithm, inactive nodes can become active (and

switch status state to "T") as they join the LBP/Gaussian elimination stage.

53Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

In contrast, the "staged" version of our distributed algorithm completely avoids the

non-local communication in Step 3 of the hybrid algorithm and, in addition, allows nodes

to operate with knowledge gained only through local communication. In its general

form, each node needs to have three parameters specified, whose purpose is made clear

in the following sections. Also, in its general form, each node may have a different and

dynamically evolving set of nodes that it includes in its list of feedback nodes. These

three parameters are:

* An effective diameter di for each node i, which can be interpreted as a default

estimate of the network diameter. This is used in our algorithm for "electing"

feedback nodes (Stage I), where, in essence, each node does not look beyond a

certain distance from itself. As we will see, the election of feedback nodes has

a two-layered set of iterations, where the effective diameters control the "inner"

iterations in this stage.

" A number of outer iterations 1i in which each node i participates in the election

of feedback nodes.

" A capacity Ki, which is the maximum number of inactive nodes that each node i

is allowed to keep track of.

For simplicity we will describe our algorithm assuming that these three parameters

are constant across nodes. As mentioned previously, the introduction of this staged

algorithm is included for expository reasons, and the integrated single-protocol algorithm

in Section 3.3 combines all of these stages. In particular, as we proceed with our "staged"

version, we will systematically describe how components of the message protocols and

especially the memory at individual nodes are added to accommodate the needs of

successive stages (again, the integrated algorithm has all of this memory structure from

the start).

The "stages" of our algorithm are the following:

Stage I A first stage of electing feedback nodes, i.e., the nodes that have status F

and are initially inactive, combining the so-called leader election algorithm [60] and the

algorithm for eliminating tree branches. As this stage proceeds, each node keeps track

of the node it has heard from that has the highest score and then identifies itself as

a feedback node if it receives messages indicating that it itself is the highest scoring

node seen in a circuit of diameter d and it is at least distance d from the end node of

54

any tree branch. At the end of this stage, each node either (a) knows that it is not a

feedback node; or (b) knows that it is a feedback node and also knows and stores its

own score. At this point, this is the only memory that each node has. While there is

other information that could be gleaned by each node concerning other nodes we do

not include that in stored memory at this point, as that knowledge becomes exposed

as the subsequent stages proceed. So, in contrast to the hybrid algorithm, at this point

each node has stored only local information about its own status (feedback or not) but,

for each feedback node its priority score that was thrown away in the hybrid algorithm

is maintained. This algorithm has several important properties: For example, if the

effective diameter is sufficiently large, if a sufficient number of outer iterations is allowed,

and if the remaining graph of active nodes stays connected, then the nodes identified as

feedback nodes in this algorithm will equal those in the centralized selection algorithm.

Stage I The second stage of the distributed algorithm is roughly equivalent to Step

2 of the hybrid algorithm, and involves message passing among active nodes. The

protocol and memory for the base set of two messages corresponding to LBP on the

active nodes are exactly the same as in the hybrid algorithm, but each active node only

begins to augment the number of messages it sends and quantities it stores (in particular

to compute feedback gains) as it receives incoming messages, which carry information

about the existence of inactive nodes. The number of messages each node i sends may

be as large as Ki + 2 (plus extra information bits including the inactive node indices

and priority scores).

Stage III The third stage of recursive correction can be viewed as counterpart of Step 3

and Step 4 of the hybrid algorithm combined. However, the most important difference is

that here no centralized communication is needed, i.e., no messages between two inactive

nodes without direct links are passed and there is no solving of the inference problem

on the set of inactive nodes in a centralized manner. When some local conditions are

satisfied, an inactive node is triggered to convert to an active node, where this conversion

consists of the following steps: (a) the inactive node computes some local values that

store the current estimate of its mean and variance (which are similar to those stored

at current active nodes); (b) sends these values (in the form of a correction message) to

neighboring active nodes for forwarding; and (c) becomes an active node and follows the

protocols for active nodes from now on. At the same time, an active node in this stage

only corrects its local values upon receiving correction messages and forwards those

55Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

messages to neighboring active nodes.

E 3.2.1 Stage I: Election of Feedback Nodes

In the first stage, the set of feedback nodes are elected in a distributed manner. The

nodes that are elected are called feedback nodes because they play a similar role as

the feedback nodes used in standard FMP (Algorithm 2.2.2). Specifically, the set of

"feedback nodes" refers to the fixed set of nodes that are elected at the end of Stage

I, while the set of "inactive" nodes refers to the set of nodes that do not participate

in message passing, which is initially simply the set of feedback nodes but may change

at each iteration as inactive nodes become active. Similarly, the set of "non-feedback"

nodes 6 refers to the fixed set of nodes that are not elected at the end of Stage I, while

the term "active nodes" refers to the set of nodes that participate in message passing,

which is initially the set of non-feedback nodes but will increase as inactive nodes switch

status. We use Si to denote the status of node i, where the status can be U (undecided),

F (inactive) or T (active). Initially, all nodes have status U, but as our overall algorithm

proceeds, nodes change status from U to either F or T and in subsequent stages nodes

with status F may change to T. We use U to denote the set of nodes with status

U and Au(i) to denote the set of i's neighbors with status U, i.e., Vu(i) = {jlj E
M(i) and Si = U}. The symbols F, T, MF(i), and AJT(i) are similarly defined. We note

that sets such as .Au(i) will change from iteration to iteration. In addition, we use ET to

denote the set of edges among the active nodes, i.e., ET = {(i, j)(ij) E E and i, j E T}.
The message-passing protocol in the first stage is motivated by the greedy pseudo-

FVS selection algorithm (Algorithm 2.2.1). In the greedy algorithm, each node i has the

priority score pi = Ej C(i) JjJI which arises from the theoretical results on convergence

[16]. The node with the highest priority score that also breaks some cycles is selected as

the first feedback node. Then the algorithm continues to select the cycle-breaking node

with the highest priority score7 among the remaining nodes until a certain number of

feedback nodes are selected. 8

6These non-feedback nodes are counterparts of the nodes in the pseudo-tree in standard FMP
[16]. The subgraph induced by the non-feedback nodes may still have cycles if a pseudo-FVS is
used.

7The priority scores are now updated to exclude the contribution of the already selected
feedback node.

'As discussed in [16], the number of feedback nodes to select is determined by how much
computational resource is available.

56

We first describe the well-established "Leader Election Algorithm" as well as two

extensions that (a) allow for the election of more than one leader; and (b) that take into

account that we do not wish to include as leaders nodes that are on tree branches. These

then lead to our Stage I Algorithm 3.2.4, which elects feedback nodes that are given

inactive status F. We first describe the well-established "Leader Election Algorithm"

as well as two extensions that (a) allow for the election of more than one leader; and

(b) that take into account that we don't wish to include as leaders nodes that are on

tree branches. These then lead to our Stage I Algorithm 3.9. Throughout the following

part of this chapter, without loss of generality, we assume that the priority scores are

distinct, i.e., there are no ties.9

Leader Election Algorithm The leader election algorithm is a purely distributed algo-

rithm that elects the node with the highest priority score regardless of the graph struc-

ture (i.e., whether it breaks cycles) [601. In this algorithm, each node i stores two scalar

values locally: MaxScore(i) and MaxId(i) representing the maximum priority score that

node i has "seen" so far and the corresponding node index. Every node has status U at

the beginning of the algorithm and will eventually change its status to F if it is elected

as the leader. At each iteration, each node i sends the current values of MaxScore(i)

and MaxId(i) to its neighbors and updates the values of MaxScore(i) and Maxld(i)

based on incoming messages. In the end, a node proclaims itself has a leader if it itself

has the highest priority score it has seen. Figure 3.1 provides an illustrating example

of the message-passing protocol. Currently, as the figure shows, node 2 thinks it itself

has the highest priority score 0.3 (since MaxScore(2) = 0.3 and MaxScore(2) = 2), but

among its neighbors, node 3 knows the highest priority score (which is 0.5 of node 8 as

MaxScore(3)=0.5 and Maxld(3) = 8). Hence, the stored values at node 2 will change

to MaxScore(2) = 0.5 and Maxld(2) = 8 at the end of this iteration. We summarize

the leader election algorithm in Algorithm 3.2.1. It has been shown that if the number

of iterations d is equal to or greater than the diameter of the graph, then after running

Algorithm 3.2.1, the node with the highest priority will be the (only) node elected [60].

Algorithm 3.2.1 can be extended to elect the nodes with the top 1 priority scores.

This extension can be done by repeating Algorithm 3.2.1 for 1 times (which also requires

resetting the locally stored values and excluding the already elected nodes from message

passing). We summarize the extended leader election algorithm in Algorithm 3.2.2.

9 1f there are ties of priorities scores, we can define an arbitrary tiebreaker, e.g., using node

indices.

57Sec. 3.2. Recursive FMP Described by Stages

58 CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

/ MaxScore(2) = 0.3
Maxld(2) = 2

/ 1 X2 Maxscore(3)= 0.5 \
Maxld(3) = 8

MaxScore(l) =0.3

\MAx (1) = X4

MaxScore(4) = 0.3
MaxId(4) = 2

Figure 3.1: Illustrating example of the leader election algorithm. MaxScore(i)
and MaxId(i) represent the maximum priority score node i has "seen" so far and
the corresponding node index. These local values are shown for nodes 1, 2, 3 and
4 (corresponding to the random variables x1 , x2 , X3 , and x 4).

Algorithm 3.2.1 Message Protocol for Leader Election with General Scores
Input: priority score pi for each i E V
Output: status Si for each i E V
At each node i E V, simultaneously,

1. Initialization: Si <- U, MaxScore(0)(i) = pi, and MaxId(0)(i) - i.

2. For t = 1, 2, ... , d:

Update local values using:

MaxScore9t)(i) = max MaxScore(t 1) (j)
jEAf(i)U{i}

MaxIda (i) = j*,

where j* arg maxjeig aij)Uj MaxScore(t- 1) (j)

3. Si - F if i =Maxd(i).

Here we have assumed that the priority scores of the remaining nodes do not change

after some leaders are elected. However, if the scores do change (as they will in our

Stage I Algorithm 3.2.4), the algorithm can be easily modified to reset the local values

accordingly in Step 2 (a) of Algorithm 3.2.2.

Algorithm 3.2.2 Extended Leader Election: Electing the Nodes with the Top-i
Priority Scores with General Scoring Function

Input: priority score pi for each i E V
Output: Si for each i C V
Initialization: status Si <- U for each i C V

e Outer Iterations: repeat I times
At each node with status U,

1. MaxScore(0)(i) = pi and MaxId(0)(i) Z.

2. Inner Iterations: for t = 1, 2, . . . d:

- Update local values using:

MaxScoreNt(i) = max MaxScore(t--(j)
jECPu(i)U{i}

Maxldat(i) =

where J* argmaxjeg(j)u{i} MaxScoret(j).

3. Si <- F if i Maxld(i).

At each node i with status F,

1. MaxScore(0)(i) = -Min and Maxld(4)(i) = i.

2. Inner Iterations: for t = 1, 2, ... , d:

MaxScore (i) = max MaxScore t '1(j)
jENr(i)

Maxldo(i) =*

where j* arg maxjEA(i) MaxScore(t--(j).

Distributed Elimination of Tree Branches We now describe a distributed algorithm that

eliminates the tree branches. The high-level idea of this algorithm is that if we remove

the degree-0 or degree-1 nodes one by one (where new degree-1 nodes may appear as

nodes are removed), then the resulting graph will not have any tree branches. In this

algorithm, all nodes are initialized with status U. At each iteration, at node i with status

U, if |Nu(i)j, the size of .u(i), is less than or equal to one, then node i changes its

59Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

3

Figure 3.2: Elimination of tree branches. The current status of nodes 1, 2, 3,
and 4 (corresponding to the random variables xi, x 2 , X 3 , and x 4) are shown.
The status of node 2 will change to T at the end of this iteration according to
Algorithm 3.2.3.

status to T. Once a node has status T, it remains the same. Figure 3.2 provides an

illustrating example: At the current iteration, node 2 has status U while only one of its

neighbors has status U. Hence, the status of node 2 will change to T at the end of this

iteration. We summarize this distributed protocol in Algorithm 3.2.3.

The following Lemma 3.2.1 states the correctness of Algorithm 3.2.3. The proof of

Lemma 3.2.1 is provided in Appendix 3.6.

Algorithm 3.2.3 Elimination of Tree Branches
Input: the graph 9(V, S)
Output: status Si for each i E V
Initialization: Si +- U, for each i E V
At each node i with status U, simultaneously

o For t = 1, 2, ... , d:
Si +- T if |.Nu (i)I < 1.

At each node i with status T,
No action.

Lemma 3.2.1 : After running Algorithm 3.2.3, all nodes that are not on the tree branches

have status U regardless of d. If d is greater than the diameter of the graph, then every

node i that is on some tree branch has status T.

60

Distributed Protocol for Stage I Equipped with distributed algorithms for both leader

election and eliminating tree branches, we can of course simply alternate between these

two algorithms to elect the feedback nodes in a distributed manner. To further improve

the efficiency, we propose a message-passing protocol that combines Algorithm 3.2.2 and

Algorithm 3.2.3 by conducting the elimination of the tree branches and the election of

the leader simultaneously. In addition, this algorithm also includes the re-computation

of node scores as the sets Au(i) change from iteration to iteration.

As mentioned previously, at the beginning of the first stage, each node has status

U, meaning that it is undecided whether it is a feedback node or a tree node. During

message passing, its status may change to F (denoting the feedback nodes) or T (de-

noting the tree nodes). In this stage, the status of a node will remain the same during

this stage once it changes from U to F or from U to T. Any nodes with status U at the

end of the stage will change their status to T. We summarize this distributed protocol

in Algorithm 3.2.4.

In practice, different nodes may use different effective diameters di instead of a

uniform 1. Similarly, each node i may use different 1i instead of a single / (in Algorithm

3.2.4). We will discuss more on these parameters in Section 3.3, where we present the

integrated distributed protocol without the separation of stages.

Note that at each outer iteration Algorithm 3.2.4 may not always elect a feedback

node. Figure 3.9 shows an illustrating example. Assume that node 2 has the highest

priority score 0.8 among all nodes and that the effective diameter d = 5. At the end of

the first outer iteration, each node i will have MaxScore(i) = 0.8 and Maxld(i) = 2, but

node 2 is not elected as as a feedback node since its status has changed to T. However,

for every two outer iterations, at least one feedback node will be elected. will be elected

so that the total number of elected feedback nodes is between 1] and 1. We defer the

statement of this theoretical result and its proof to Section 3.4.

M 3.2.2 Stage 11: Initial Estimation

At the beginning of second stage, each node knows its own status, but in general it does

not know the status of other nodes.'(Every node keeps a list of inactive nodes (called

a priority list and denoted as Li at node i) with the corresponding priority scores. As

we mentioned before, initially the set of the inactive nodes is the set of elected feedback

10Although in theory more information about the statuses of other nodes can be inferred from
the messages, here we do not collect the extra information.

61Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Algorithm 3.2.4 Message Protocol for Stage I: Election of Feedback Nodes
Input: graphical model with information matrix J
Output: status Si for each i E V
At each node i with status U, simultaneously

1. Outer iterations: repeat for I times

(a) Compute pi = Zju (i) Jij1. Set

MaxScore(i) <- pi and MaxId(i) +- i.

(b) Inner iterations: for t = 1, 2, .. , di:

i. If IKu(i) < 1, then Si <- T.

ii. Update local values using:

MaxScore (i) = max MaxScore(t--(j)
jeru (i)U{i}

Maxld(t)(i) = J*

where j* = arg maxjcgu(j)u{i} MaxScore9-l)(j).

iii. Si <- F if i = Maxld(i).

(c) Si +- F if i = Maxld(i).

2. If Si = U, then Si +- T

At each node i with status T or F,
No action.

nodes and the set of the active nodes is the set of the non-feedback nodes. The nodes

in a priority list are sorted by their priority scores in descending order. Each list Li has

maximum capacity Ki and can only keep the nodes with the top-Ki priority scores if

the capacity is exceeded. In the following, for simplicity of notation, we use the notation

[Li]Ki to denote the truncation corresponding to keeping only the nodes with the top-

Ki priority scores in list Li. At the beginning of Stage II, at an active node i, we initiate

Li by including all neighboring inactive nodes, i.e.,

L'O' = [F)1K

62

(3.1)

(0)

as well as their corresponding scores. At an inactive node q, the list Lq is initiated by

including q itself and all other neighboring inactive nodes, i.e.,

L = [{q} U VF(q) Kq (3.2)

as well as their corresponding scores. Figure 3.3 gives an example of initializing the

priority lists: node 2 has status F and among its neighbors only node 1 has status F, so

its initial priority list _(O) = {2, 1} with corresponding scores 0.3 and 0.2. Node 4 has

status T and among its neighbors only node 2 has status F, so its initial priority list is

(0) {2} with score 0.3.

/ X1

(0

2 0.3

1 0.2

inactive nodes pri

3

X5

4
2 0.3

ority scores

inactive nodes priority scores

Figure 3.3: Priority lists at the start of Stage II

In the second stage, partial estimates of the means and variances for the active

nodes, as well as the "feedback gains"'" are computed by passing messages only among

the active nodes. The partial estimates are estimates of variances and means only on

the active subgraph without considering any edges involving the inactive nodes. Hence,

the protocol for computing the partial estimates is simply standard LBP. The feedback

"The "feedback gains" here directly correspond to the feedback gains in the standard FMP
algorithm (c.f. Section 2.2.3 and [161).

63Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

gains are intermediate results characterizing the effect of the inactive nodes on the exact

variances and means of the active nodes. As shown in [16] and in Section 2.2.3, the

messages for computing the feedback gains are essentially LBP messages with carefully

designed new potential vectors, each corresponding to an inactive node. The major

difference from the protocol in standard FMP (Algorithm 2.2.2) is that here each active

node initially does not know which nodes are the inactive nodes and can only pass

feedback gain messages after they receive such information.12 In this stage, the inactive

nodes do not participate in message passing, but merely monitor the priority lists at

their neighbors (except under some conditions to be explained, an inactive node may

convert to an active node and then follow the message protocol for active nodes). In

the following, for clarity, we use the superscript (t) to denote the values (e.g., messages

or locally stored values) at iteration t.' 3

Message Protocol at an active node First, we describe the message-update rules used

at an active node. The messages being passed include standard LBP messages and

messages for computing the feedback gains.

(a) Standard LBP Messages

Each active node i sends LBP messages AJisj and Ahisj to each of its active

neighbor j, which corresponds to computing the partial variances and the partial means

respectively. Ei and pi are locally stored values representing the current estimates of

the variance and mean of node i respectively.

The messages are updated using

AJt) - Jj..f iJitj. (3.3)2-4j -J2i \

,Ah = - J i j. t1)h(t-1) (3.4)

where

_ AJ~t1)(3.5)
uCAr (i)\{}

"As will be explained later, the priority list at an active node will expand or change upon
receiving feedback gain messages.

13 Note that the values with different superscripts use the same storage space, i.e., they over-
write previous values.

64

Sec. 3.2. Recursive FMP Described by Stages

hjt-l) - hi + Ah(tl') (3.6)
UCT (i)\{j}

and all messages have initial value zero. The local values Ei and pi are updated using

E = Ji + A J 1) 1 (3.7)
i GNT (i)

E (=E hi + A h) (3.8)
i ENT (i)

Note that while we have not been explicit about this previously, each of these messages

has protocol bits indicating both the identity of the sending node as well as the fact

that it is active.

(b) Messages for Feedback Gains

At each active node i, feedback messages AGi~ j {Ag ,j}qE, are sent to each

active neighbor j. Each individual message Ag_ can be viewed as an LBP message for

the mean (similar to Ahi~j) but using an auxiliary potential vector hq corresponding

to the feedback node q. The entries of this auxiliary potential vector are

(hq), 0 VI V M(q) (3.9)
Jiq ViE .A(q).

Hence, hq can be constructed locally by using the default value zero for nodes that are

not neighbors of node q and use local parameters Jiq for the nodes that are. Note that

each of these messages has protocol bits indicating the corresponding inactive node as

well as its score (and also which active node is sending the message).

Note that at an active node i, the list 4j may expand or change when node i receives

messages corresponding to other inactive nodes that are not its neighbors.' 4

At each iteration at an active node i, before sending out messages, the priority list

Li is updated using

2 = 1) U (UjeN(i) L. (3.10)

1 4 Some active nodes may not be neighbors of any inactive node, so they initially do not pass

feedback gain messages until they receive them.

65

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

(t-1)-1) 3

18 0.6

4 0.5 11 0.3

7 0.35 X1 X2 6 0.25

5 0.2 9 0.22

inactive nodes priority scores

inactive nodes priority scores X3t 1)

5 0.2

't)

8 0.6

4 0.5
inactive nodes priority scores

7 0.35

inactive nodes priority scores

Figure 3.4: Updating priority list at an active node

Figure 3.4 provides an illustrating example. At iteration t - 1, the priority lists of

nodes 1, 2 and 3 are each sorted by the priority scores. At iteration t, the priority list

at node 2 takes the union and is then truncated to satisfy the maximum capacity 4.

Then for each q E Lt, node i sends messages to each active neighbor j using

Ag = - (j 1) q -) (t- 1) ,(3.11)

where

((hq), + (Agq'i)(t-1) (3.12)
uEVT (i)\{j}

and (Agli)(tl) - 0 for q V £U10, i.e., the incoming messages have default value zero.

In addition to the messages, feedback gains Gi = {gf}qeZ are locally stored, where

each gq is updated using

66

(t1)
1 11 0.3

4 0.5 9 0.18

7 0.35 XX

2 0.2

inactive nodes priority scores

inactive nodes priority scores (t-1) 3

2 0.2

j t)
--- --4 0.5

7 0.35
inactive nodes priority scores 11 0.3

inactive nodes priority scores

Figure 3.5: Updating priority list at an inactive node

(gq)(t) = (h) + E (q t1)(3.13)

jENT(i)

and (-1) =t0 for q (t-)

Actions at an inactive node Each inactive node monitors the priority lists of its active

neighbors. At an inactive node q, its priority list Lq is updated using

Lt) L U UjENT(q)L't1))Kq (3.14)

Figure 3.5 provides an illustrating example where the priority list of the inactive
node 2 expands after taking the union and is truncated to keep 4 nodes.

After the priority list Lq is updated, if it does not include q itself, i.e., q V Li, then
node q converts to an active node:

Sec. 3.2. Recursive FMP Described by Stages 67

Sq +- T. (3.15)

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Algorithm 3.2.5 Message Protocol for Stage II: Initial Estimation
At each active node i, simultaneously

Initialization: L(= [KF(i)1 K
At each iteration t until convergence or timeout,

1. Send LBP messages to each j E AT():

AJ)) = J J3

32 i\j i\j

where J () J±UK+) J 21 t and h + Eucgr(j)\{f}Ah d .

2. Update priority list: , = [L(t-1) U (Uje KT(j) 'Sy1)

3. For all q L(t) and all j E KT(i), send messages

where q j)

q .

(hq), + uCAT()\{j} () and (Agq_)(t-) = 0 if

4. Update the local values by

(t (t)
i h +AJ)

i E~r(i) /

Aht
3 EArT (i)

(gq)(t) = E

where (Ag = 0 for q (t-1)

At each inactive node q, simultaneously

Initialization: Lq = [{q}j U F (q) Kq

At each iteration t until entering Stage III,

1. Update priority list L -=Lq

2. If q Lq), then Sq +- T

1) U U V(q)L

((he), +
E

JCNT (i)

for q E Lt

1))]Kq

68

Ag qi-+j
1)) - 1 (q (t 1)

jji 3

Emi =Ji +
.1

qg _

Sec. 3.2. Recursive FMP Described by Stages

Such a conversion happens when an inactive node receives too many feedback messages

about other inactive nodes with higher scores so that it is removed from its own priority

list. We can view it as a mistakenly elected inactive node returning to the active status

when later proved under-qualified.

We summarize the whole message-passing protocol used in the second stage in Algo-

rithm 3.2.5. The iterations (as indicated by t) stop when the messages have converged'1

or the maximum number of iterations allowed has reached (called timeout), which is

usually set so that LBP have converged.

* 3.2.3 Stage III: Recursive Correction

In the third stage, each of the still remaining inactive nodes "wakes up" and converts to

an active node when certain local conditions are satisfied. Before converting to an active

node, the node initiates a new kind of messages (called correction messages) which are

then passed among the active nodes to correct the partial estimates obtained in the

second stage. This roughly corresponds to Step 3 of the standard FMP algorithm,

although here it is done node-by-node as nodes wake up. At the same time, each of

the active nodes makes corrections to their locally stored values and then relays the

correction messages to neighboring active nodes without modification. In the following,

we describe the message-passing protocol at the inactive nodes and at the active nodes

respectively.

At an inactive node q: An inactive node q wakes up when both of the following condi-

tions are satisfied.

1. Node q itself has the lowest priority score in Iq.

2. The locally stored values (e.g., partial means, partial variances, and feedback

gains) at all of its active neighbors have converged.'(

Figure 3.6 provides an illustrating example of the local conditions: inactive node 2 has

the lowest priority score in its own priority list. If the local values at its neighbors have

converged, node 2 will initiate the correction messages and then change its status to T.

"There are various ways to quantify convergence. We can use for example the relative changes
of the values between two recent iterations

16We let the convergence information be passed to the neighboring inactive nodes so that
they know.

69

70 CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

'2 X3\
4 0.5 1111 F
7 0.35

\11 0.3

2 0.2 l0

inactive nodes priority scores ol

Figure 3.6: An inactive node waking up

After the conditions are satisfied, node q will do the following:

1. Delete itself from its own priority list: L(t) = L t-t)\{q

2. Compute the current estimates of the variance the mean (t, and the feed-

back gains G =t) {(g')(tq) } e using

E q) = Je- Jqj (t 1)(3.16)
j ENVT(q) 9

pq = qq Jj (11) (3.17)
jE£ T(q)

(gp) = E(tq) (hP)q - Jq 1 for p E L,) (3.18)
j GVT(q)

where (t-1) 0 if p Lt)

3. Forward the correction message Cq = {q, Eqq, Jgq, Gq, LIq} to its active neighbors.17

4. Change status to T.

17Here we intentionally do not use superscripts to emphasize that the correction messages are
sent once after all neighboring active nodes have convergence, and these messages are not sent
again by the waking node.

Sec. 3.2. Recursive FMP Described by Stages

At an active node i: When an active node i receives the correction message Cq

{q, Eqq, pq, Gq, £q} from some neighbor, and if that correction corresponds to an inactive

node on its list, it corrects its local values accordingly and then relays the correction

messages to other active neighbors. The following steps describe the protocol.

1. If q L ,(t) take no action.

2. If q C Lt) then

(a) Update its priority list by

=t) q U L j\{ q}. (3.19)

(b) Update the local values by

E =- + ((g q(t 1)) qq (3.20)

(t) (t1) _ (gq)(t1)Py = y - - - (3.21)

(g)(t) = (g) - (g) g for p E L(. (3.22)

(c) Forward the correction message Cq to its active neighbors.

At the end of the third stage, all nodes are active and all local values are updated to

account for the inference results for the entire graph. We obtain the variance i and

mean yj for all i E V.

In Algorithm 3.2.6, we summarize the whole protocol used in this stage. We provide

an illustrating example of running recursive FMP on a 4-by-4 grid in Figure 3.7. The

theoretical results on the correctness of the whole recursive FMP algorithm are post-

poned to Section 3.4. Those results show that this algorithm gives the same result as the

FMP algorithm in Section 2.2.3 under certain conditions. However, we emphasize that

our distributed algorithm allows much more flexibility, as different parts of the graph

may use different subsets of feedback nodes and that nodes can dynamically change

the set of feedback nodes to which they will pay attention. Our integrated protocol

in the next section will make this clear, and we demonstrate the performance of this

distributed algorithm for a very large graph in Section 3.5.

71

72 CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Algorithm 3.2.6 Message Protocol for Stage III: Recursive Correction
At an inactive node q:

At each iteration t, when the following two conditions are satisfied: 1) q itself has the
lowest priority score in Lq; and 2) local values at its active neighbors have converged,
then

1. Lqct) - L~-)fl

2. Compute the current estimates of the variance, the mean, and the feedback gains
at q using

>3Jqq Jqj -1
jeN(q)

j E T(q)

(g)t) = E t) (hP)q - Jqj (g))for p E ,

j CNT (q)

where (g) 0 if p (Lj)(t-1).

3. Send correction message Cq including Eqq, [q, and gp, Vp E 1q to active neighbors.

4. Sq <- T

At an active node i:
When correction messages corresponding to node q are received, then

1. Update the priority list by Lt) = qU Lit 1)\{q}] Ki

2. Update the local values by

+ = ((t-1) _ (t1)

(gp (1) = (gp)(t1) - (gq)(t-1) gp, for p E L.

3. Forward the correction message Cq to other active neighbors.

Sec. 3.2. Recursive FMP Described by Stages 73

12 3

9 10 11 12

13 14 16

(a) Stage II: nodes 4, 6, and 15 have
been elected as inactive nodes. Mes-
sages are passed among other nodes.

1 2 3 4

5 7 8

9 10 11 12

13 14 15 16

(c) Stage III: node 15 has become active
again. Correction messages from node
15 are being forwarded to other active
nodes.

12 3 4

9 10 11 12

13 14 16

(b) Stage III: node 4 has become active
again. Correction messages from node
4 are being forwarded to other active
nodes.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

(d) Stage III: all nodes are active nodes
now. Final correction messages from
node 6 are being forwarded.

Figure 3.7: Stage 11 (a) and Stage III (b-d) of recursive FMP. Shaded nodes
represent elected inactive nodes. Solid lines with arrows denote the edges where
messages are being passed.

73Sec. 3.2. Recursive FMP Described by Stages

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

E 3.3 Recursive FMP: Integrated Message-Passing Protocol

In Section 3.2, we have described the recursive FMP algorithm in three separate stages

(election of feedback nodes, initial estimation, and recursive correction), where we as-

sume that all nodes move to the next stage at the same time. However, this requires a

global communication protocol to signal when all the nodes are ready to move to the

next stage. Instead, we can avoid this completely in an integrated protocol in which

some nodes may move to the next stage earlier than others.

Specifically, in Stage I, once a node converts to status T or F, it does not have to

wait and can in fact immediately move to Stage II. This "early" stage transition not only

removes the need to synchronize the stages of all nodes, but also starts LBP message

passing earlier so that we can reach some local convergence faster than if we let the nodes

with status T just wait and stay in Stage I. Similarly in Stage II, some inactive nodes

can wake up before LBP on the entire active graph converges, which is beneficial when

different regions on the graph have different convergence rates or the active subgraph

has several connected components. Furthermore, when the algorithm parameters di, li
and Ki are different at different nodes i - V, an integrated protocol is not only more

efficient (by reducing the waiting time) but also is more natural to think about.

In Figure 3.8 we show the flowchart of our integrated protocol without the global

separation of stages. We use the following color and shape scheme to indicate compo-

nents with different categories of functionality. The two yellow rectangles with rounded

corners (Al and C9) are the start unit and end unit of the algorithm at each node

respectively. The diamond-shaped components in light blue (A4, A7, A8, A10, B5, B10,

B11, C5, and C8) are decision units where the next steps depend on whether the test-

ing conditions are satisfied. The yellow rectangles with angular corners (A5, B3, and

C7) are where messages are passed to or from neighbors. The rectangles in red with

angular corners (B1, B6, and C3) are where node status changes. The green rectangular

components (A6, B4, B9, and C4) denote "clock sync", which are used to indicate how

the operations at different nodes are synchronized. Only for the purpose of understand-

ing the synchronization, we can interprete the flowchart as whenever the "clock sync"

is passed through, we increment one time unit while other operations are completed

"instantaneously". Of course in practice, we only require that all operations between

two "clock sync" are completed within one time unit. The components A1-A10 can be

viewed as procedures in Stage I; the components B1-B11 can be viewed as procedures

74

A
l

S,
-

U

A2

z=
i

(R
e-

)c
om

pu
te

 p
ri

or
ity

 s
co

re
 p

,
A

3
M

ax
Id

(i
)

+
-i

,
M

ax
Sc

or
e(

i)
 <

-
p,

A
4

A
(i

)
1?

_

_

No

A
5

U
pd

at
e

M
ax

Sc
or

e(
i)

 &
 M

ax
Id

(i
)

6
+

A
6

C
0L

ok
 S

 n
e

'

A

IT
I

o. CD cc '1 C)

r

N
o-

61 B2
 X

,+
-

F
K

R
ec

ei
ve

 a
nd

 s
en

d
LB

P
m

es
sa

ge
s

B3

fr
om

 a
nd

 to
 X

 (
i)

B4

C
ck

Sy
nc

,,

B5 Lo
ca

l
va

lu
es

 c
on

ve
rg

e
or

 ti
m

eo
ut

?

I

B6

B7

B
8

4e
+-

eu

(U
,

4

B
9

';

oc
kS

81
0

E9 ye
s

B1
1

L
oc

al
 v

al
ue

s
at

V,

(i)
ha

ve
 c

on
ve

rg
ed

 &
i h

as
 th

e
lo

w
es

t s
co

re
 in

 4
, ?

Ca

x
, +

- -
e \

{i
}

U
pd

at
e

lo
ca

l
va

lu
es

 a
t i

 a
nd

C2
 s

en
d

co
rr

ec
tio

n
m

es
ss

ag
es

 t
o

AT
(i)

C
3

N
o

C
4

>
ks

y

CS

R
ec

ei
ve

d
an

y
N

,
co

rr
ec

tio
n

m
es

sa
ge

?

Ye
s 4

M
ak

e
co

rr
ec

tio
ns

 t
o

C6

oe
al

va
lu

es
 &

 u
pd

at
e

X
,

4
C7

Fo

rw
ar

d
co

rr
ec

tio
n

me
ssa

ge
s, t

o
X

,
Q

)

C8
X

=
O

 o
r t

im
eo

ut
?

Ye
s

C9

O
bt

ai
n

va
ri

an
ce

 I
&

 m
ea

np
,

A
7

Ye
s

A
8

M
ax

Id
(i)

 =
i?

no

A
9

z
+-

 z
 +

1

10
z>

?

LA (D -n Cu (b t- (A lu 1j) 0 0 C-, 0

41

Y

Y

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

in Stage II; and the components C1-C9 can be viewed as procedures in Stage III.

Finally, we note that at each node i the memory cost is O(Ki) and the communi-

cation cost per time unit is O(Ki) for each outgoing link from i and O(Kj) for each

incoming link from node i's neighbor j.

U 3.4 Theoretical Results

In this section, we present and prove some theoretical results on the convergence and

accuracy of recursive FMP. The theoretical results are easier to state and comprehend

under the framework with separate stages in Section 3.2. However, our conclusions still

apply in the integrated framework in Section 3.3. First in Proposition 3.4.2, we state the

conditions under which recursive FMP elects the same feedback nodes as the centralized

greedy algorithm (Algorithm 2.2.1). Then we present Proposition 3.4.5 which states that

if the elected feedback nodes form a full FVS, then under milder conditions the inference

results obtained by recursive FMP are exact. Next in Proposition 3.4.8, we provide a new

walk-sum interpretation of the correction messages, which further leads to a walk-sum

decomposition of the final inference results. Finally, we conclude that even when the

set of the elected FVS is not a full FVS, under some conditions the inference results by

recursive FMP are still consistent with running the hybrid FMP algorithm (Algorithm

2.2.2) with the same set of feedback nodes.

While these results make clear the precise connection to the much more centralized

FMP algorithm developed previously and reviewed in Section 2.2.3, it is crucial to

note that for large graphs, the conditions in the following results-e.g., conditions on

the effective diameters and capacities of nodes-may not hold, and, in fact, we may

not want them to hold. In that very important sense, the recursive FMP algorithm is

fundamentally a richer and, as we demonstrate via examples in Section 3.5, an extremely

effective algorithm, truly generalizing LBP and applicable to very large graphs.

For a fixed graph 9 = (V, S) and any set A c V, we use 9A to denote the subgraph

induced by the set A and we use d(9A) to denote the diameter of the graph gA. We

reiterate that throughout this section, F denotes the set of elected feedback nodes at

the end of Stage I and T equals V\F.

Assumption 3.4.1 : 1. All nodes use the same li = 1.

2. 9 T is connected.

76

Sec. 3.4. Theoretical Results

3. For every i E V, di > d(gT) + F|.

4. There are no ties in priority scores or ties are broken by a fixed rule.

Proposition 3.4.2 : Under Assumption 3.4. 1, there exists an integer ko between [] and

1 such that the set of feedback nodes elected by recursive FMP is the same set obtained

by running the centralized selection algorithm (Algorithm 2.2. 1) with ko iterations.

Proof. The set T can be partitioned into two sets as

T = Ta U Tb, (3.23)

where Ta denotes the set of nodes marked as status T when they were on some tree

branches (c.f. Step 1(b)i in Algorithm 3.2.4) and T denotes the set of nodes converted

to status T from U at the end of the algorithm (c.f. Step 2 in Algorithm 3.2.4). In

order to distinguish the node status at different outer iterations, we use U(m) to denote

the set of nodes with status U at the end of the m-th outer iteration (i.e., right after

running Step 1(c) in Algorithm 3.2.4) for m = 0, 1, 2, ... , 1. In particular,

U(1) = T (3.24)

U(0) = V. (3.25)

Furthermore, since nodes with status T or F never convert back to have status U again,

we have

V = U() : U(1) D U(2) D (1) = Tb. (3.26)

First, we prove that the subgraph !u>i) is connected. Let

T = T(') U T(2) U ... U T(l), (3.27)

where T(m) denotes the set of nodes converted to status T in the m-th outer iteration,

i.e., all nodes in T(m) is on some tree branch of gU_ 1). Then we have

U(O) : U(')UT((2) UT(2 UT(1) --- U(m) U TC)) ... Us U T(s))
(3.28)

77

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

In particular, for m = 0, 1 ... , 1 - 1, we have

U(m) u (UMiCs)) D U (UsiT)) (3.29)

and thus

U(:)D U (U-m+1T()) . (3.30)

According to Lemma 3.4.3 to follow, for m = 0,1,... 1 - 1, we have that nodes in

T(m+l) are on tree branches of gU(0U(UI T(s)) because nodes in T(m+l) are on tree

branches of gu(m) by definition and U(m) D u (U1=m+T(s)) D T(m+l). Hence, we

can clean T(), T(), T(M in order from the connected graph !T, or 9 U(lU(ui 1 T(S))
(where the clean-up of T(s) is from gU(l)u(ujmg(s))). Hence, all nodes in Ta = U_ T(s)

are on tree branches of QT. In addition, we have that !U(I)u(u-r 1T(s))) is connected for

each m = 0, 1, ... , I because the elimination of tree branches does not break a connected

graph (c.f. Lemma 3.4.3 to follow). In particular, gu() is connected.

Second, we prove that gu(m) is connected for all m = 0, 1, ... , 1. We use F(m) to

denote the set of feedback nodes elected in the m-th outer iteration (c.f. Step 1(c) of

Algorithm 3.2.4) for m = 1, 2... 1. Then we have U('- 1) = U(m) U T(m) U F(m). By

Step 1(c) in Algorithm 3.2.4, gF(m) cannot have any edges because otherwise different

nodes in F(m) cannot be elected in the same outer iteration since we assume no ties in

priority scores or fixed tie-breaker. Hence, any node in F(m) is connected to at least

two nodes in U(") U T(m) because otherwise they will have status T by Step 1(b)i in

Algorithm 3.2.4. In particular, FM' is connected to U(0 U T(0. Since we have proved

that gU()uT(l> is connected, we have that the subgraph gu(-u> is also connected from

U(= UM U T(M U F(l. By repeating this process, we have that U(m) is connected for

each m = 0, 1, .. ., 1.

Third, we prove that di > d(gU(my)) for all m = 0, 1,... , I and all i E V. We have

that

U(m) = U 1 U (U(1 T(s)) U (U1m+iF(s)) (3.31)

by definition. Since gu(m) is connected and !9(1)u(T's)) is connected, we have

that

d(gU(m)) <; d(9U) + I U1m+i F(s)|. (3.32)

78

Since T , ., T(') are tree branches of T =U U UM T(s)), we have that

d(u> d(gT) (3.33)

because the elimination of tree branches does not increase the diameter (c.f. Lemma

3.4.3).

Hence, for all m = 0, 1, ... 1,

d(g!(m)) d(!;) + I U m+1 F(s) (3.34)

< d(gT) + |F . (3.35)

Since by Assumption 3.4.1 di > d(gT) + Fl for all i E V, we have that di > d(g9(m))

for all i E V and all m = 0,1,...,l.

Fourth, we prove that when gu(o) has cycles the first feedback node is elected in at most

two outer iterations and it is the same node as chosen in the centralized algorithm. In

the first outer iteration of Algorithm 3.2.4, since di > d(g9(o)), all nodes on the tree

branches of gu(o) are marked as status T. Let i* be the node having the highest priority

score in U(O). There are two cases:

1) If i* V T(, i.e., node i* is not on any tree branch of gu(o), then i* (and only

i*) will be the first elected feedback node, which is exactly the same node as selected in

the centralized algorithm by performing graph cleaning following by choosing the node

with the highest score.

2) If i* E TM, i.e., node i* is on some tree branch of gQuo), then no node will

be elected in the first outer iteration because for each node i E U(0)\T(1), we have

Maxid(i) =_i* since the elimination of i* occurs after or at the same time as pi* is

passed to neighbors. In this case, no feedback node is elected, i.e., lF(M) - 0 and thus

UM1 does not have any tree branches (since previous tree branches T 1) are removed and

no new tree branches are created when F(1) = 0.) Hence, the second outer iteration is

equivalent to electing the node with the highest score on g!U(), which is again the same

node as chosen using the centralized algorithm.

We can repeat the same analysis for the following outer iterations and conclude

that every additional feedback node (before the remaining graph with status U becomes

cycle-free) is elected in at most two outer iterations, and the sequence of elected nodes is

the same as using the centralized selection algorithm. Therefore, there exists an integer

79Sec. 3.4. Theoretical Results

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

ko between [1] and I such that the set of elected feedback nodes are the same as the

set obtained by running the centralized selection algorithm (Algorithm 2.2.1) with ko

iterations.

D

Lemma 3.4.3 1. If a node i is on a tree branch of the graph g = (V, S) and '=
(V', E') is a subgraph of 9 such that i E V', then node i is also on a tree branch

of the subgraph g'.

2. The elimination of a tree branch does not break a connected graph.

3. The elimination of a tree branch does not increase the graph diameter.

4. If both 9 A and 9 AUB are connected, then d(gAUB) < d(gA) +| B|

The proof of Lemma 3.4.3 is provided in Appendix 3.6. We give a concrete example

of the case where one feedback node is elected in two consecutive outer iterations in

Figure 3.9.

The following Proposition 3.4.5 states the exactness of recursive FMP when the set

of feedback nodes F is a full FVS.

Assumption 3.4.4 : 1. F is a full FVS.

2. |F| I Ki, Vi E V.

3. The number of maximum allowed iterations for LBP in Stage II, i.e., the timeout,

is at least maxccc d(gc), where C is the set of all connected components of 9 T.

Now we introduce some additional notation that is used in the following part of this

section. In this proof, we use the following notation for submatrices. For any sets of

nodes A and B, we use JAB to denote the submatrix of the information matrix J taking

the rows in A and columns in B and hA to denote the subvector with entries in set A.

As an abbreviation, we use JA for JAA. In addition, we use Fm to denote the set of

feedback nodes with the top-(jFI - m) priority scores for m = 0,1, 2,..., F (i.e., the

set obtained by removing the nodes with the lowest m priority scores from F) and let

Tm = V\Fm. In particular, F = F and T = To = V\F. For all i E V, let Li denote the

priority list at node i at the end of Stage II (i.e., after running LBP).

80

X 4

MaxScore(2) = 0.8
Maxld(2) = 2 X

X1 22

X5

X8
XX7 2

(a) Before an outer iteration

X4

X5

X8
X

(b) After an outer iteration

Figure 3.9: An example of electing the feedback nodes. (a) Assume that node 2

has the highest priority score 0.8 and that d = 5. (b) At the end of the outer

iteration, each node i stores MaxScore(i) = 0.8 and Maxld(Zi) = 2, but node 2 is

not elected as as a feedback node since it has status T.

Proposition 3.4.5 : Under Assumption 3.4.4, recursive FMP converges and computes

the exact means and exact variances for all nodes.

Proof. In this proof, we first analyze the local mean and variance estimates at the end

of Stage II regardless of whether 9 T is connected. Next, we analyze the local estimates

after receiving correction messages, where we need to look at several cases.

Local Values at the End of Stage I Note that the priority lists at all the active nodes

are initially empty and the lists increase when the information about more and more

feedback nodes is received with the LBP messages. Eventually, nodes in the same

connected components of 9T have the same priority lists, which are subsets of F. Since

81Sec. 3.4. Theoretical Results

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Ki > IFol for all i E V, no feedback node will become active before the end of Stage II

(which may happen as in (3.15) when the maximum capacity is exceeded). Hence, in

Stage II, no node changes its status. Hence, the LBP messages are only passed among

each connected component of 9%O.

First, we give closed-form expressions for the local values (i.e., [i, Ei, gq, Vq E Li)
at each active node at the end of Stage II. To distinguish the local values at different

time steps, we use the following notation to represent the local values at each i E To at

the end of Stage II:

1. Vector pTO for the means, where each entry pwo equals the local mean estimate

"p ";

2. The vector Diag(E TO) taking the diagonal of ET, where each diagonal entry ET0

equals the local variance estimate "Eui";

3. Vectors gTo, for all q E F, where each entry g ', equals the local value "g q" for

q E Li and go, = 0 for q Li.

Because F0 = F is a full FVS, gro is a tree-structured graph and thus LBP on 9TO

converges within maxcec d(g0) iterations and gives exact inference results on 9TO, i.e.,

-O Jr hTo (3.36)

E 7 6 (J- 1)ji for all i C To. (3.37)

Equations 3.36 and 3.37 are true even when gro is not connected because in this case

LBP on gro is equivalent to LBP on each connected component of g9O.

In addition, from the definition of the auxiliary potential vector hq (c.f. (3.9)) and

our convention of using default value zero for g ,q when i Li, regardless of whether

9rO is connected and whether Li are the same for all i, we always have

g ', = J 0 JTo,q, for all q E F0 . (3.38)

Updated Local Values After Receiving Correction Messages Corresponding to Each Feed-

back Node As mentioned previously, it is possible that Li are different at different node

i depending on the graph topology. We first study the case where it is guaranteed to

have Li = F for all i E V and show that the local mean and variance estimates are

eventually the exact inference results. Then we analyze the case where it is possible to

82

3

X2 X1 X8

X4

X6

X10 X9

Figure 3.10: An example where gj, is connected but Li C F

have different priority lists at the end of Stage II and show that the inference results are

still exact. Note that even when 9T is connected, it is still possible to have Li C Fo,

which occurs when some feedback node q has no active neighbors. For example, in

Figure 3.10, 9T is connected but all neighbors of node 1 have status F and thus 1 Li

for any active node i. The scenario in Figure 3.10 is possible when the feedback nodes

1, 2, 3, and 4 are elected in order when they have the top-4 priority scores.

Case 1: gTO is connected and each node i E Fo is connected to at least one node in To

From the local update equations (3.10) and (3.14), we can see that the information

about all the feedback nodes is passed to all nodes with the LBP messages at the end

of Stage II and thus Li = Fo for all i E V.

Note that it is possible to have multiple different correction messages being for-

warded at the same time. Now we establish that the correction messages are initiated in

ascending order of their corresponding priority scores and that for any node i E V, the

nodes in Li are removed in ascending order of the corresponding priority scores regard-

less of which feedback node is closer to i on the graph. This is because a feedback node

q wakes up (and initiates its correction message) only when all nodes in Lq with lower

priority scores are removed, which are only triggered by the corresponding correction

messages. Hence, those correction messages are initiated and have reached q's active

neighbors before node q wakes up. So those correction messages would reach any other

nodes before q's correction messages do.

In the following, for m = 1,2, ... , IFo 1, we use the vector p1 Tm to denote the local

83Sec. 3.4. Theoretical Results

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

means at nodes in Tm after receiving m correction messages (i.e., those corresponding to

the feedback nodes with lowest-m priority scores). Note that the entries in pT1 are not

necessarily local means at the same time, but are defined as the local values right after

receiving the same number of correction messages. Similarly, we use Diag (ET-) and

g7'q to denote the local variances and local feedback gains after receiving m correction

messages.

Let q be the feedback node with the lowest priority score. We can re-write the

update equations (3.16) and (3.17) (which compute the local values at q when node q

wakes up) as

Eq(Jqq - Jo,qg o) (3.39)

pq = T (hq - JTo,qPIF) (3.40)

where pTo = Jj-hrT and gTo'q = J -Jo,q, for all q E F computed exactly by LBP in

Stage II.

According to Lemma 3.4.6 to follow, these update equations exactly give

E = (Ji) qq (3.41)

T4 = J- hT. (3.42)

The update equations (3.20) and (3.65) at the active nodes (which make corrections

to the local values after receiving correction messages corresponding to node q) can be

re-written as

Diag (E7-) = Diag (ETO + gT'7oERgT'q) (3.43)

Ty = TO- T gTo,q.PT / /iqg (3.44)

According to Lemma 3.4.6, these update equations exactly give

84

Diag (1]7) = Diag (3.45)

AT = JrihTI T. (3.46)

Combining equations (3.41), (3.42), (3.45) and (3.46), we have that

T = J- hlT (3.47)

Diag(E T) = Diag(Ji). (3.48)

The newly computed feedback gains at node q using equation (3.18) (when node q

wakes up) can be re-written as

Ti, P = q pq - ro,qgoP) , Vp E Lq\{q}. (3.49)

For each p E £q\{q}, viewing gT'lP as A in Lemma 3.4.6 and JT,,p as h in Lemma

3.4.6, we have that

gqq (Ji JTP) qq (3.50)

The feedback gains at nodes in To are then updated using (3.22), which can be

re-written as

Ti,p = gTp _ Tip Toq.gT0 O gqq 9g (3.51)

From (3.38), LBP in Stage II gives

gTOP = J-1 JTOp, Vp E q\{q} (3.52)

gToq = J<-l Jo,q (3.53)

Substituting (3.52) and (3.53) into (3.51), we can obtain

grT?- J 1-|JT - gqq J' 1 JTOq (3.54)
0 = To TOTp qqTooq(54

J+-J (JTo,p - (gqqP) JTo,q). (

85Sec. 3.4. Theoretical Results

(3.55)

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

By viewing JT,, here as h in Lemma 3.4.6, and gh'P as P in Lemma 3.4.6, we have

that
= (JJT) (3.56)

Combining (3.51) and (3.56), we can obtain

g~ 'P J J,, for all p E £q\{q}. (3.57)

Therefore, we have that

T = J-lhT1 (3.58)

Diag(ET) = Diag(Ji) (3.59)

g'T' = J_ JT,p for all p E F\{q}, (3.60)

where we have the same mathematical structure as in (3.36), (3.37) and (3.38). Also,

9T, is still connected and all nodes in F = F\{q} are connected to at least one node

in Ti (because F1 C F and T1 D TO). Hence, we can repeat the same process for

m = 2, 3, ... , F, all in Case 1 and eventually obtain the exact inference results

AT FI = J- 1 h (3.61)

Diag(ETNFI) = Diag(J-1). (3.62)

Case 2: the active subgraph 19TO is not connected, or gro is connected but some node

in F is not connected to any node in To In this case, it is possible that Li C F for

some i. At each connected component of T07, the correction messages are still initiated

in ascending order of the corresponding priority scores (of nodes in Li while possibly

skipping some feedback nodes in F).

We use Ci to denote all the nodes in the same connected component as node i. In

order for the same analysis in Case 1 to apply, we only need to show that the "imaginary"

correction messages corresponding to a node q Li (i.e., imagining q is put in Li by

an oracle) equal zero. Since the maximum allowed number of iterations is at least

maxcEc d(g 0), the only case where q C F but q V Li is when node q has no edge

connected to any node in C, i.e., JCi,q = 0. Thus, from (3.38), we have that g 0'4 = 0.
Hence, the local values at node i do not change after adding these "imaginary" correction

messages corresponding to q V Li from the update equations (3.20), (3.21) and (3.22).

86

We can repeat the same analysis whenever a feedback node is skipped and conclude that

the same steps of Case 1 still apply.

Therefore, we have completed the proof of Proposition 3.4.5.

D-

Lemma 3.4.6 : Let J =

J11 and h1 are scalars,

Jii

JiM

JM i s

vectors. We denote E = J-1

AT = J-'hT, and ET = J-1 .

9m be an invertible matrix and h = , where

an n-by-n matrix, and JM and hT are n-dimensional

WE E= J-lh, g = Jt-Iha
EM ET AT_

We have that

and

PT = Jil (hT - p1JM)

E- = E- + giE11g'1.

The proof of Lemma 3.4.6 is provided in Appendix 3.6.

Assumption 3.4.7 : 1. F| < Ki for all i E V;

2. JT, the model on the subgraph g is walk-summable;

3. The maximum number of iterations is sufficiently large to allow LBP in Stage II

to converge.

Now we define some new notation for the reminder of this section. For i E T, we

use L(O= {i1 , i2 , .. ,1 O } to denote the priority list at i at the end of Stage II (i.e.,

after LBP), where the elements are in the ascending order of the corresponding priority

scores. We use L(m) to denote the set obtained by removing the nodes with the lowest-m

priority scores from Lt(. For q G F, we use LO) to denote its priority list at node q just

jil-Eli = (1 -Jg)

Al = Eli (hi -JMIp

(3.63)

(3.64)

(3.65)

(3.66)

87Sec. 3.4. Theoretical Results

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

after it becomes an active node and similarly use Lq to denote the set obtained by

removing the nodes with the lowest-m priority scores from Lq(,). In particular, LO -Li

if i E T and L(0) C Li if i E F (since i E Li but i L().

The following Proposition 3.4.8 gives new walk-sum interpretations of some inter-

mediate results and correction terms in the recursive FMP algorithm.

Proposition 3.4.8 : Under Assumption 3.4.7 we have the following conclusions regard-

less of whether F is a full FVS or a pseudo FVS:

1. Recursive FMP converges.

2. At the end of Stage II, the local variance estimate at a node i G T equals the sum

of all backtracking self-return walks of i within 9 0).

3. Just after a node q E F coverts to an active node, the computed local variance

equals the sum of all self-return walks of q within the subgraph 9 V\Lo).

4. At any active node i (including those converted from an inactive node), after

receiving a correction message corresponding to node q, the variance correction

term in (3.20) equals the sum of all self-return walks of i within 9 \(> that

visit node q at least once, where m* is the node such that {q} = L**1)\L(M*),

i.e. L(M* is the priority list at node i right after the local correction.

Proof. In this proof, when not otherwise stated, the notation follows that in the proof

of Proposition 3.4.5.

First we prove Conclusion 1: Since the model on the subgraph 9T, i.e., JT, is walk-

summable, according to Proposition 2.2.3, LBP on !v converges and gives correct means

(for arbitrary potential vectors including the auxiliary ones for computing the feedback

gains) for that subgraph, i.e., after convergence we have that

=JO-i ho (3.67)

gTo'P - JIJO,PVP C F. (3.68)

Note that by the convention as in the proof of Proposition 3.4.5, gf'P = 0 when p

L(0). Also, by the same analysis as in the proof of Proposition 3.4.5, no feedback node

will become active before the end of Stage II (which may happen in (3.15) when the

88

Sec. 3.4. Theoretical Results

maximum capacity is exceeded). Since LBP in Stage II is the only iterative procedure

in the recursive FMP, we have that recursive FMP converges under Assumption 3.4.7.

From Proposition 2.2.4, we also have that at the end of Stage II, the local variance

estimate at a node i E T equals the sum of all backtracking self-return walks of i within

gv\LC().

To prove Conclusions 3 and 4, we consider two cases.

Case 1: !go is connected and each node i E FO is connected to at least one node in TO

Using the same analysis as in the proof of Proposition 3.4.5, we have that Li = F for all

i E V and the feedback nodes are removed from Li in ascending order of their priority

scores.

When the first feedback node q wakes up, the equation to compute the local variance

(i.e., (3.16)) is the same as Step 3 of the hybrid FMP constrained on g, with a single

feedback node q (c.f. (2.27) and (2.29)). Hence, ET is the exact inference result within

gT, according to Theorem 2.2.6. From (2.18), we have that the newly computed local

variance ETI equals the sum of all the self-return walks from q to q within 9T, = (0).
After an active node i receives the correction message corresponding to q, the vari-

ance correction term in the update equation (3.20) is the same as the correction term in

the hybrid FMP algorithm (c.f. (2.31)) constrained to g, with a single feedback node

q. According to Theorem 2.2.6, the updated local variance equals the sum of all the

backtracking walks of node i within grO plus all the self-return walks of node i within

9TI that visit node q. From Conclusion 1, we have that the correction term equals the

sum of all self-return walks of i within g, = 9\(O) that visit node q at least once.

Since gTP - J1 JJTO,, Vp E F from (3.68) and the update equations for the feedback

gains (c.f. (3.18) and (3.22)) only involve quantities that are computed exactly by

LBP (means computed from various potential vector and ET), we have that g7'lP -

J J,pVp E F1 .

Similar to the proof of Proposition 3.4.5, gT1 is still connected and all nodes in F 1

are connected to at least one node in T 1. Hence, we can repeat the same process all in

Case 1 and eventually obtain Conclusion 3 and 4.

Case 2: the active subgraph !9O is not connected, or g 0O is connected but some node

in FO is not connected to any node in To Again, we can follow the same analysis

as in the proof of Proposition 2.2.3 to show that the "imaginary" correction messages

corresponding to a node q Li are all zero. In order for Conclusion 3 and 4 to stand,

89

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

we only need to show that the corresponding "imaginary" walk-sums are also zero. This

is because no walk from node i can visit a feedback node q when q V Li (which can only

happen when q is not connected to Ci, the connected component of gT0 containing node

i) and thus the corresponding walk-sum is zero.

Therefore, we have proved the four conclusions in Proposition 3.4.8.

Theorem 3.4.9 : Under Assumption 3.4.7, recursive FMP gives the same inference

results as the hybrid FMP algorithm (Algorithm 2.2.2) with the same F, i.e., it gives the

correct means for all nodes and the correct variances for nodes in F and the calculated

variance of node i in T equals the sum of all the backtracking walks of node i within T

plus all the self-return walks of node i that visit F.

Proof. For the means, the same analysis as in the proof of Proposition 3.4.5 still applies.

This is because after convergence, LBP in Stage II gives the correct mean and feedback

gain estimates and all the update equations for the means only involve the values that

are computed exactly. Hence, the computed means are exact for all nodes in the whole

graph after convergence.

In the rest of this proof, we use 0(i Z) to denote the self-return walk-sum for node

i within the subgraph 1 and use #q(i 4 i) to denote the self-return walk-sum for node
bk) 9A~i within 9A that visit node q at least once. In addition, 0(i b i) denotes the sum
bk) 9A

of all the backtracking self-return walks within 9 A and Oq(i bk i) denotes the sum

of all the backtracking self-return walks within 9A that visit node q at least once.

Now we prove the statements for the variances. For any node q E F, when it first

becomes an active node, the newly computed local variance estimate equals

g (0)

#(q V q) (3.69)

according to Proposition 3.4.8. After adding all the correction terms for the variance,

the final variance estimate E*q satisfies

g (0) (0)I
V\LCq Jq \CS

E*q = -(4) q) + $q, (q q f q), (3.70)
S=1

90

where {q } = L£'-)\LC). The right hand side of (3.70) is exactly a decomposition of

all self-return walks from of q in the entire graph. Hence, the final variance estimate

E* is the exact variance on the entire graph according to (2.18).

For a node i E T, at the end of Stage II, according to Proposition 3.4.8, the local

variance estimate obtained at the end of Stage II equals

bk, gV\rf")
0(i 1 > i). (3.71)

Hence, according to Proposition 3.4.8, the final variance estimate Ei satisfies

bk, g ((0) V1(s)

S= (i i) + E 428(i - -> i), (3.72)
S-1

where {} -l

Using the same analysis as in the proofs of Proposition 3.4.8, when <0) C Li C F

the feedback nodes in F\Lj do not contribute to the walk-sums. Hence, (3.72) can be

re-written as

S (i bk,g9T i) J !9Tl

+ > , (3.73)
s=1

where {fs} =F_ 1 \F8 . The term Lih #(i !;T i) is exactly a decomposition of

the sum of all walks within the whole graph g that visit F.

Therefore, the calculated variance of node i in T equals the sum of all the back-

tracking walks of node i within T plus all the self-return walks of node i that visit F.

We have thus proved Theorem 3.4.9.

3.5 Experimental Results

In this section, we demonstrate the performance of recursive FMP using simulated

models on grids of various sizes as well as a large-scale GGM for estimating sea surface

height anomaly (SSHA).

91Sec. 3.5. Experimental Results

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Simulated Grids of Various Sizes

In this motivating experiment, we consider GGMs defined on grids of size s x s, where

s = 4, 6, 8, ... ,18, 20. For each size, we simulate 50 models with randomly generated

parameters. Specifically, the information matrix J and potential vector h are randomly

generated as follows: the entries of h are generated i.i.d. from a uniform distribution

U[-1, 1]; the sparsity pattern of J is determined by the graph structure and the non-

zero entries of J are also generated i.i.d. from U[-1, 1] with a multiple of the identity

matrix added to ensure J >- 0. We solve the inference problems (i.e., computing the

variances and means) using LBP and recursive FMP with various parameter settings.

The parameters in recursive FMP include di, the effective diameter; 1j, the number

of outer iterations in Stage I, and Ki, the maximum capacity of the priority list. In

this experiment, we use uniform parameters for all nodes, i.e., di = d, 1i = 1, and

Ki = K for all i E V. In addition, we let 1 = K for all algorithm settings and let

the maximum number of iterations (timeout) be twice the effective diameter. Since

the model sizes are moderate, we can compute the exact solution for comparison. In

particular, for each algorithm setting and each grid size, we compute the average error
_I I~c IE -_approxof variances, i.e., n | - , where Ei denotes the exact variance of node i

and Eapprox denote the approximate variance of node i computed by certain algorithm.

Furthermore, for each size, the final results are averaged over the 50 sets of randomly

constructed model parameters.

Our experimental results are presented in Figure 3.11, where the horizontal axis

represents the size of the grids and the vertical axis represents the logarithm of the

average error of variances. As shown in the plots, LBP has the worst performance

among all algorithm settings for all grid sizes. If we run recursive FMP with fixed

K = 2 and fixed d = 3 for all sizes, we obtain significant improvement in average error

over LBP for all sizes. If we let K grow logarithmically with respect to the total number

of nodes (i.e., K = [log(s 2)]) while using fixed effective diameter d = 3, then we obtain

further improvement on average error, but the error reduction is not very significant

compared with using fixed K = 2, indicating that the increased list capacity is not fully

utilized due to the fixed d. Finally, when we keep the relationship between K and s as

K = [log(s 2)] while also make d grow linearly with respect to s (in particular, d = 2s),18

then we can obtain further significant improvement compared with using K = [log(s 2)]

8 For grids of size s x s, the diameter of the graph grows linearly with respect to s.

92

93Sec. 3.5. Experimental Results

Error of variances for grids of size s x s
401

30|

0

I-

2

a)

CU

CU

'4-
0
0)
0
-j

20

10

0

-20

-30

-40'
4

I I I I II

6 8 10 12
Grid size s

14 16 18 20

Figure 3.11: Recursive FMP with different parameters performed on grids of

various sizes

and d = 319 Note that the size of a full FVS for grids of size s x s is 0(s 2), which

grows much faster with s than either of our choices of K. Compared with running

the hybrid FMP algorithm with a pseudo-FVS of size K, here in the recursive FMP

algorithm, different nodes have different local lists of feedback nodes, which provide

stronger local influence as they break more cycles in local regions. Our experimental

results here provide insight on the trade-off between memory/communication capacity

and inference accuracy. From Figure 3.11, we can also see that our algorithm is more

effective for larger graphs since the error of LBP grow much faster with the grid size.

19Note computations in Stage II scale linearly with d.

-M- LBP

K~og(s2),d=2s
2

e- K=Iog(s),d=3
-+- K=2,d=3

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Sea Surface Height Anomaly Data

In this experiment, we use sea surface height anomaly data, which is measured rel-

ative to seasonal, space-variant mean-sea level (the dataset is publicly available at

http://podaac.jpl.nasa.gov/dataset/). The raw data is preprocessed to have measure-

ments at 915 x 1080 different locations with latitudes between ±820 and a full 360' of

longitude.

We construct a grid of 988,200 nodes and connect the eastmost and westmost nodes

at the same latitudes because they are geographical neighbors. We then remove the

nodes that have invalid measurements (most of which correspond to land areas) and

obtain the final graph structure shown in Figure 3.12a. Using this underlying structure,

we build a GGM using the thin-membrane model [1]. We run recursive FMP with

uniform di = 200 and Ki = li = 15. Our distributed algorithm converges with the

specified parameters in a few seconds and the final estimates are plotted in Figure

3.12b.

* 3.6 Appendix for Chapter 3

Proof of Lemma 3.2.1

Lemma 3.2.1 : After running Algorithm 3.2.3, all nodes that are not on the tree branches

have status U regardless of d. If d is greater than the diameter of the graph, then every

node i that is on some tree branch has status T.

Proof. Consider the change of status to T as node elimination. Then Ku(i) equals the

set of node i's neighbors that are still on the graph. So, any node that changes status to

T is on a tree branch by definition of graph cleaning. Hence, after running Algorithm

3.2.3, all nodes that are not on the tree branches have status U regardless of d.

In the first iteration of Algorithm 3.2.3, all leaf nodes (nodes that have degree zero

or one) are eliminated. In the second iteration, every node on some tree branches that

is within distance one to its nearest leaf node is eliminated. Repeating this analysis,

we can show that every node on some tree branch is eliminated after d iterations if d

is greater than its distance to its nearest leaf node, which is at most the diameter of

the graph. Hence, after running Algorithm 3.2.3, if d is greater than the diameter of

the graph, then every node i that is on some tree branch has status T. We have thus

94

Sec. 3.6. Appendix for Chapter 3

80

60

40

20

0

-20

-40

-60

-80
0

95

Graphical Models for Sea Surface Height Anomalies

50 100 150 200 250 300 350
Longitude

(a) GGM for SSHA. For clarity, the grids are drawn coarser, and the edges connecting the

eastmost and westmost nodes are not shown.

-30 -20 -10 0 10 20 30

(b) Estimated SSHA with d = 200 and 1i = K = 15 for all i.

Figure 3.12: Estimating SSHA using recursive FMP

a

CD

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

completed the proof.

Proof of Lemma 3.4.3

Lemma 3.4.3 : 1. If a node i is on a tree branch of the graph g = (V, S) and g' =

(V', SE') is a subgraph of 9 such that i c V', then node i is also on a tree branch

of the subgraph g'.

2. The elimination of a tree branch does not break a connected graph.

3. The elimination of a tree branch does not increase the graph diameter.

4. If both 9A and 9 AUB are connected, then d(gAUB) < d(9A) +| BI.

1. Let il, i2 ,... ii be a sequence of nodes eliminated in the clean-up procedure on

graph 9 where il i. We follow the same sequence and remove those nodes from

graph 9'where we skip all i, V' for s = 1, 2,..., 1. Since ' c E, we have that

each node removal is a valid step of graph clean-up in 9' as well. Hence, i is also

on a tree branch of 9'.

2. Let 9 = (V, S) be a connected graph and {ii, i 2, ... Z1 } be any sequence of node

removal in a graph clean-up procedure, which requires that the degree of ii in 9
must be one or zero. Since 9 is connected, the degree of il in 9 is one. If 9 V\{i1
is disconnected, then i1 is connected to only one of the connected components of

!9 V\{ii and thus 9 is disconnected, which is a contradiction. Hence, 9 V\{ui} must

be a connected graph. We can repeat the same analysis for other nodes in the

sequence in order and conclude that the elimination of a tree branch does not

break a connected graph.

3. Let 9 = (V, E) be a graph and {ii, i 2 ,.. . i} be any sequence of node removal in

a graph clean-up procedure. If 9 is disconnected, we have d(9) = oc and thus

the conclusion is trivially true. When 9 is connected, let i* be the single node

that is connected to ii. Any path between two nodes different from ij does not

pass through i1 because otherwise i* will be included twice in the sequence which

is contradictory to the definition of path. Hence, after the removal of il, the

distance between any pair of nodes different from i1 remains the same (while in

96

the new graph, when computing the graph diameter, we do not need to consider

the distance between i1 and another node as i1 has been removed). Hence, we

have that the diameter of the graph does not increase after removing ii. By

repeating the same analysis for other nodes in the sequence in order, we conclude

that the elimination of a tree branch does not increase the graph diameter.

4. For any graph g* = (V*, S*) and any two nodes i, j E V*, we use dg.(i, j) to

denote the distance between node i and node j within graph g*.
First, we prove the conclusion for the case where B has a single node b1 A. For

any i 1 , i2 E A, we have that dgAu(B (1 2) A (ii,i 2) d(GA) because there are

no fewer choices of paths between i and i 2 on QAUB than on GA. Since GAUB is

connected, we can choose i* E A to be a node that is directly connected to bi. So,

for any i E A, dgms i1, bl) dg (iii*) + 1 z d(GA) + 1. Hence, when IB| = 1,

we have d(gAUB) < d(GA) + IB.

Second, when IBI has multiple nodes, since GAUB is connected there is at least

one node b, that is directly connected to A and thus by the previous case, 9 AU{b1}

is connected and thus d(GAu{b 1 }) < d(GA) + 1. Similarly, d(GAUfb 1 }Ufb 2 }) <

d(GAUfbi}) + 1 < d(GA) + 2. We can repeat the same analysis can conclude

that d(gAUB) d(GA) + B|.

We have completed the proof of Lemma 3.4.3.

Proof of Lemma 3.4.6

Lemma 3.4.6 : Let J i be an invertible matrix and h [, where
I i JT IhT

Ji and h1 are scalars, JM is an n-by-n matrix, and J and hT are n-dimensional

vectors. We denote E = J- , p [A i] J-'h, g = J--JM,
[M ET PT_

PT = J-lhT, and ET = J 1 . We have that

El = il1 - g (3.74)

P 1= El (hi - Jup (3.75)

97Sec. 3.6. Appendix for Chapter 3

CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

and

(3.76)

(3.77)

PT = JjFI (hT - pIJM)

TT -+ gl 11gi-

By taking the Schur complement of block JT in J, we have

E- = Jll - Ju'i JM- (3.78)

Since g = J-IJM, we get

E11 = (J11

Using the matrix inversion lemma, we have

ET = Jjl + (JF-JM) (Ji I - JJ1JM
1

(3.80)(Ji-1JiM) .

Substituting g = J 7-'JM, jl = ET and (3.79) into 3.80, we have

(3.81)

From the definition of E, we have

J Ell

Jr EM

E /

ET 1 = El
Onx1

01xn

Inxn I ,

(3.82)

where 0 nx 1 is the all-zero matrix of dimension n x 1, 01xn is the all-zero matrix of dimen-

sion 1 x n, and I,< is the identity matrix of dimension n x n. By matrix multiplication,

we have

JMEll + JTE M =0 (383)

and thus

From the definition of ti, we have

[[1

I

1

- JMg) (3.79)

ET =fT + gE 1 1 g1 .

J1 1

JM

EM - (JijM) E-ll. (3.84)

Ell

EM

S1

ET I [IhT
(3.85)

98

Sec. 3.6. Appendix for Chapter 3

and thus

/'i =E 1 1 h + EMhT. (3.86)

Substituting (3.84) into (3.86), we have

-1 = E 1 1 hi -

= Ez11 (i
where pT = JjhT.

Again by the definition of ft, we have

[J 1i

JM

Ji

JT I

E 11J; (Jj7hT)

- J' T),

PIi

AT I hT

hT

and thus

which gives

JMI + JTPT = hT,

PT = J 1 (hT - P1JM) .

Therefore, we have completed the proof of Lemma 3.4.6.

(3.87)

(3.88)

(3.89)I
(3.90)

(3.91)

99

100 CHAPTER 3. RECURSIVE FEEDBACK MESSAGE PASSING FOR DISTRIBUTED INFERENCE

Chapter 4

Sampling Gaussian Graphical

Models Using Subgraph

Perturbations

N 4.1 Introduction

In this chapter, we propose a general framework to convert iterative linear solvers based

on graphical splittings to MCMC samplers by adding a random perturbation at each

iteration. In particular, the algorithm can be thought of as a stochastic version of graph-

based solvers and, in fact, is motivated by the use of embedded trees in [32, :3] for the

computation of the mean of a GGMs. That approach corresponds to decomposing the

graph of the model into a tractable graph', i.e., one for which sampling is easy (e.g., a

tree), and a "cut" matrix capturing the edges removed to form the tractable subgraph.

The subgraphs used can have any structure for which efficient inference algorithms exist:

for example, tree-structured, low tree-width, or having a small FVS [16]. Much more

importantly, in order to obtain a valid sampling algorithm, we must exercise some care,

not needed or considered for the linear solvers in [32, 33], in constructing the graphical

models corresponding to both the tractable subgraph and to the set of variables involved

in the cut edges.

We give general conditions under which graph-based iterative linear solvers can be

converted into samplers and we relate these conditions to the so-called P-regularity con-

dition [341. We then provide a simple construction that produces a splitting satisfying

'Here the subgraph is a spanning subgraph, i.e., one that includes all of the vertices and a
subset of all edges.

101

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

those conditions. Once we have such a decomposition our algorithm proceeds at each

iteration by generating a sample from the model on the subgraph and then randomly

perturbing it based on the model corresponding to the cut edges. That perturbation

obviously must admit tractable sampling itself and also must be shaped so that the re-

sulting samples of the overall model are asymptotically exact. Our construction ensures

both of these. As was demonstrated in [32, 33], using non-stationary splittings, i.e.,

different graphical decompositions in successive iterations, can lead to substantial gains

in convergence speed. We extend our subgraph perturbation algorithm from stationary

graphical splittings to non-stationary graphical splittings and give theoretical results

for convergence guarantees. We propose an algorithm to select tractable subgraphs for

stationary splittings and an adaptive method for selecting non-stationary splittings.

The authors of [61] have proposed a sampling framework that generalizes and accel-

erates the Gibbs sampler. Previous work in [62] has shown that the Gibbs sampler is a

stochastic version of the Gauss-Seidel iteration for solving learning systems. The sam-

pling algorithm in [61] adds additional noises corresponding to the first or second order

Chebyshev coefficients to accelerate the Gibbs sampler. While the idea of converting

a linear solver to a sampler is also discussed in [61], their work is different from ours

because their algorithm does not consider graph structures in constructing the matrix

splitting that is used (i.e., the sparsity pattern of the base matrix remains the same

without considering any tractable subgraphs). Moreover, when multiple matrix split-

tings are used, the different splittings in [61] have differences only in the Chebyshev

coefficients while in our work, different matrix splittings correspond to different graph

structures.

Formally, the sampling problem considered in this chapter is to efficiently generate

samples from a GGM with underlying distribution A- 1 (h, J) with given model param-

eters h and J . We consider iterative samplers that produce a sequence of samples x()

for t = 1, 2,.... An iterative sampling algorithm is correct if the samples converge in

distribution to the target distribution A(p, E) where y = J-1 h and E = J- 1 . If the

process to generate this sequence is Gaussian, then the marginal distribution of each

iteration is fully described by its mean p(t) and covariance matrix E(t). In this case, the

convergence of the sampler is equivalent to pt() a A and E(t) -+ E as t - 00.

As we are especially interested in fast convergence to the target distribution, we

need a clear notion of convergence rate. In the study of MCMC samplers, convergence

rate is often measured by the total variation of the sample distribution from the target

102

Sec. 4.2. Sampling by Subgraph Perturbations with Stationary Graphical Splittings

distribution [24]. In this chapter, for convenience, we instead use the Euclidean norm

(denoted by 11 - 11) of the difference of the means and the Frobenius norm (denoted

by 11 . |IF) of the difference of the covariance matrices to measure the deviation of the

sample distribution from the target distribution. It can be shown that for non-degenerate

Gaussian models, the convergence in total variation is equivalent to the convergence in

the model parameters. In particular, we define convergence rate for the mean as

HI() -

and convergence rate for the covariance as

1 ||E(t+l) HF
TE = ln lim sup . (4.2)

2 twoc |F|(t) - E||F

4.2 Sampling by Subgraph Perturbations with Stationary Graphical Split-

tings

In this section, we introduce our subgraph perturbation sampling framework using sta-

tionary (fixed) splittings. First, we describe the general framework with an arbitrary

graphical splitting followed by theoretical results on convergence. We then describe a

local construction of the splitting that builds up the decomposition as a sum of rank-

one terms corresponding to each of the edges removed from the tractable graph. The

construction of this splitting is simple to perform at run time, leads to very efficient

sampling of the perturbation term required in the sampling algorithm, and ensures

convergence.

* 4.2.1 General Algorithm

Our sampling framework relies on a graph-based matrix splitting. Given the information

matrix J with underlying graph g (V, E), consider the splitting

J = JT - K, (4.3)

where JT has sparsity corresponding to a tractable subgraph9T = (V, ET) with ET C E,

and K has sparsity corresponding to the graph with edge set S\ET (See Figure 4.1).

Throughout this chapter, we assume that the splittings we consider are all graphical

103

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

splittings, i.e., both JT and K are symmetric matrices corresponding to undirected

graphs.

In [32] this type of splitting (although crucially without one of the further assump-

tions we will make) was proposed for the computation of the mean (but not covariance

or samples). In particular, when JT is non-singular the mean is computed using the

iterative equation

p(t+1) - j i K(IP + h) (4.4)

with the fixed-point solution ft = J-'h. Note that the sequence in (4.4) converges if and

only if p(J-1 K) < 1. For this to be efficient, the computation on the right-hand side

of (4.4) would need to be far simpler than solving for the mean directly, using the full

matrix J. The approach in [32] took JT to have tree structure (so that the computation

in (4.4) has linear complexity), although in principle it is possible to choose JT to have

other graph structures (e.g., as in [63]) that lead to tractable computations. Moreover,

while the approach is not limited to the following, the original idea in [32] and especially

in [33] is simply to "cut" edges from the graph, so that JT is obtained from J simply by

zeroing out the elements corresponding to the cut edges, and -K is the matrix whose

only nonzero elements are the values corresponding to those cut edges.

The high-level idea of our sampling algorithm is to further inject noise into (4.4), so

that the iterative linear solver becomes a stochastic process whose stationary distribution

is the target distribution K- 1 (h, J). However, the simple idea of constructing K by

copying the elements of J corresponding to cut edges may not be feasible for our sampling

algorithm. Rather, we need to ensure that K is chosen so that JT + K >- 0. Assuming

that we have a splitting that satisfies this condition, our iterative sampling algorithm is

given by:

x(t+1) = j 1 (Kx(t) + h + e(t+1)), (4.5)

where the perturbation e(t+1) is a Gaussian random vector, independent of all other

variables, with zero mean and covariance JT + K. The general sampling framework is

summarized in Algorithm 4.2.1.

In the next subsection we provide theoretical results showing that convergence of

the iteration in (4.4) for a graphical splitting is equivalent to the condition JT + K >- 0,
which in turn implies that the sampling method in (4.5) is well-defined. We also show

104

105Sec. 4.2. Sampling by Subgraph Perturbations with Stationary Graphical Splittings

9 10 11 12

13 1415 16

(a) Graph structure for J

9 1 112

13 14 15 16

(b) Graph structure for JT

5 68

9 10 11 12

13 14 15 16

(c) Graph structure for K

Figure 4.1: Decomposition of a grid: The grid shown in (a) can be decomposed

into a spanning tree (b) and a graph consisting of the missing edges (c)

that in this case, the sample distribution indeed converges to the correct distribution. In

the last part of this section, we provide a straightforward "local" edge-by-edge method

for constructing such a splitting that also directly yields an efficient generation of the

perturbation e(t+ 1.

1
2

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

Algorithm 4.2.1 Sampling by Subgraph Perturbations with Stationary Split-
tings

Input: J, h, and subgraph structure T
Output: samples with the asymptotic distribution .N-1(h, J)

1. Form JT and K.

2. Draw an initial sample x(o) from a Gaussian distribution.

3. At each iteration:

(a) Generate an independent sample e(t+1) with zero mean and covari-
ance matrix JT + K.

(b) Compute x(t+1) using the equation

x(t+) - J-- (h + Kx(t) + e(t+1))

4.2.2 Correctness and Convergence

In this subsection, we present theoretical results for the general subgraph perturbation

framework. Proposition 4.2.1 and Theorem 4.2.3 establish the correctness of Algorithm

4.2.1 as well as a convergence guarantee. Proposition 4.2.4 and Corollary 4.2.5 give

bounds on the convergence rate.

In general, a matrix splitting A = M - N is called a P-regular splitting if M is

non-singular and MT + N is positive definite [34]. The P-regularity condition has been

proposed in the study of iterative linear solvers as a condition for convergence [34, 64].
In our graphical splitting J = JT - K, since JT is symmetric, the P-regular condition

JT + K >- 0 is precisely the condition that the added noise term in our perturbation

framework is valid, i.e., that it corresponds to a random variable with positive definite

covariance. Therefore, our sampling framework provides a new interpretation of the P-

regularity condition-for graphical splittings as in (4.3), convergence of iterative solvers

as in (4.4) is equivalent to the noise in e(t+1) being valid. It has been shown in [32]

that the necessary and sufficient condition for the embedded tree algorithm to converge

with any initial point is p(Jj 1 K) < 1. In Proposition 4.2.1 we prove that this condition

is equivalent to the graphical splitting being P-regular, which further guarantees the

validity of the added noise in (4.5).

106

Sec. 4.2. Sampling by Subgraph Perturbations with Stationary Graphical Splittings

Proposition 4.2.1 : Assuming J >- 0 and that J = JT - K is a graphical splitting, the

condition p(J- IK) < 1 is satisfied if and only if the splitting is P-regular, i.e., the added

noise in Algorithm 4.2. 1 has a valid covariance matrix JT + K >- 0.

The proof of Proposition 4.2.1 is included in Appendix 4.6. The following Lemma

4.2.2 is used in the proof of Theorem 4.2.3, which is our main result in this section. The

proof of Lemma 4.2.2 is also deferred to Appendix 4.6.

Lemma 4.2.2 : Let A and B be square matrices. If 1) A is invertible; 2) A + B is

symmetric and invertible, then E = (A + B)- 1 is a solution of the equation AYZAT -

BEBT + AT - B.

The following Theorem 4.2.3 states that for graphical splittings, a convergent linear

solver can be converted to a convergent sampler with the same convergence rate.

Theorem 4.2.3 : For a valid GGM with information matrix J >- 0, let J = JT - K be

a graphical splitting. If the corresponding linear solver converges, i.e., p(Jj7-K) < 1,

then the sample distribution generated by Algorithm 4.2.1 is guaranteed to converge to

the target distribution and the asymptotic convergence rates r, for the mean and TZ for

the covariance are both equal to - ln p(Jj 1 K).

Proof. From Proposition 4.2.1, we have that JT + K >- 0, i.e., the covariance matrix of

the added noise is valid. It can be shown that with the initial sample distribution being

Gaussian, the iterations in Algorithm 4.2.1 generate a sequence of Gaussian samples,

with x(t) having mean p(') and covariance matrix E(. From Step 3(b) in Algorithm

4.2.1, we have

()t+1) +) I= E [Jj1(h + e(t+1) + Kx(t)) (4.6)

= J- (h + Kp()). (4.7)

Since p(Jj 1K) < 1, the mean p(t+1) converges to the unique fixed-point # satisfying

=J-1 (h + KA). (4.8)

So i = (JT - K)- 1 h = J-1 h, and thus p(t) converges to the exact mean i J-1h

with convergence rate r, = - In p(J 1K).

107

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

Now we consider the convergence of the covariance matrix. From Step 3(b) in

Algorithm 4.2.1, we have

E(t+1) = Cov {x(t+) (4.9)

= Cov {J-1(h + e(t+) + Kx(t)} (4.10)

= J (J + K + KEMtK) Ji (4.11)

= (JjlK)E (t)(J 1 K)T + J 1 (JT + K)J 1. (4.12)

This equation can be rewritten in vector form as

vec(E(t+)) [(Jj71 K) 9 (Jj1K)] vec(E(t)) (4.13)

+vec(Jj 1 (JT + K)Jj 1),

where vec(.) denotes the column vector obtained by stacking all the columns in its

argument and A 9 B denotes the Kronecker product of matrices A and B, i.e.,

a11B --- ainB

A B (4.14)

am1B ... amnB

where A is an m-by-n matrix [aijlmxn. From [65], p ((J- K) 9 (JijK)), the spectral

radius of the matrix (J-1 K) 9 (J 1 K), is p 2 (J- 1K) < 1. Hence the iterative equa-

tion (4.13) is guaranteed to converge to a unique fixed-point, denoted by vec($), with

asymptotic convergence rate - ln p2(Jj1K) in the Euclidean norm. Hence equation

(4.12) converges to a unique fixed-point matrix $Z. By Lemma 4.2.2, the fixed-point

solution $ = (JT - K)- 1 = J- 1 is exactly the target covariance matrix. Hence, the

convergence rate TE = -- 1ln p 2 (J- 1K) = - np(Jj1 K) since VA, I vec(A)II = I|AI|F.

This completes the proof of Theorem 4.2.3.

We have shown in Theorem 4.2.3 that the convergence rates for both the mean

and the covariance are - ln p(J-1 K). Naturally, we want to choose a splitting with a

small p(Jj 1K). This spectral radius is a highly nonlinear function of both JT and K,

and it is useful to have bounds that are simple (and monotonic) functions of K or JT

108

Sec. 4.2. Sampling by Subgraph Perturbations with Stationary Graphical Splittings

alone. The following Proposition 4.2.4 is adapted from Theorem 3 in [32]. For a valid

distribution with J >- 0, the condition of K >- 0 in Proposition 4.2.4 is sufficient to

ensure JT + K >- 0, which guarantees the convergence of Algorithm 4.2.1. In the next

subsection, we provide a local implementation of Algorithm 4.2.1 where the condition

K >- 0 is satisfied.

Proposition 4.2.4 : Consider a graphical splitting J = JT - K with J >- 0. If K >- 0,

then
Amax(K) < p(JjNK) < Amax(K) < 1 (4.15)

Amax(K) + Amax(J) Amax(K) + Amin(J) <

where Amax(-) and Amin(.) denote the maximum and the minimum eigenvalues respec-

tively.

Proof. Use Theorem 2.2 in [66] and let t = 1.

0

A simpler (and looser) bound that is much easier to compute (and hence can be

used in choosing K) is given in the following Corollary 4.2.5. We define the weight of

the i-th row of K are wi(K) = j IKijI and let w(K) = maxi wi(K).

Corollary 4.2.5 : In the same setting as in Proposition 4.24 we have p(J- 1 K) <
w(K)

w(K)+Amin(J) -

Proof. Since K >- 0, we have ANmax(K) = p(K). By Corollary 8.1.18 in [671, we have

that p(K) < p(K), where K takes the entry-wise absolute values of K. By Corollary

8.1.22 in [67], p(K) < maxi EjKij, so Amax(K) = p(K) < p(K) < w(K). This corollary

thus follows from Proposition 4.2.4.

4.2.3 Efficient Local Implementation

Given a graphical splitting J = JT - K, Algorithm 4.2.1 requires generating noise

vectors e(t) with zero mean and covariance JT + K >- 0. Depending on the splitting,

these random noise vectors may be difficult to generate. In this subsection, given a

tractable subgraph T, we provide a method to construct the splitting matrices JT and K

specifically so that the noise vectors et can be constructed efficiently and to guarantee

convergence. Moreover, our construction is entirely local with respect to the graph. In

109

110 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

this subsection, we focus on the construction of the splitting with a given subgraph and

postpone the selection of subgraphs to Section 4.4.

Let ET denote the set of edges in the subgraph T. We construct K to be sparse

with respect to the subgraph with edge set F\FT as follows. For each (i, j) E S\ET,

let K(2,j) = [-], and let [K('i)],, be the n-by-n matrix zero-padded

from K(2,j) i.e., the principal submatrix corresponding to rows (and columns) i and j
of [K(ii)]~n equals K(zj) while other entries are zero. It can be easily verified that

[K('j)]n > 0. We define K to be the sum of these rank-one matrices as

K = [K(i) 1. (4.16)
(i~j)CS\e&T

The matrix JT is then obtained by

JT = J + K. (4.17)

Note that JT is sparse with respect to T. Moreover, K is positive semi-definite and JT

is positive definite (since J is positive definite for a valid model).

At iteration t + 1 of the algorithm, rather than generating the noise vector e(t+1)

directly, instead we generate a noise vector 6(t+1) to be Gaussian with zero mean and co-

variance K, then let x(t+1) be a sample from the Gaussian distribution with information

matrix JT and potential vector Kx(t) + h + 6(t+1). Hence we have

x(t+1) Jj71(Kx(t) + h + 6(t+1)) + n(t+1), (4.18)

where n9(+1) is Gaussian with zero mean and covariance Jil. The above procedure is

equivalent to Algorithm 4.2.1 since 6(t+1) + JTn(t+)1 is equal in distribution to e(t+1),

whose covariance matrix is JT + K. Note that n(t+1) can be generated efficiently thanks

to the assumption that JT is tractable (e.g., if it is tree-structured, the sample can be

generated by forward sampling). Furthermore, the structure of K allows 6(t+1) to be

computed efficiently and locally: For each (i, j) E F\ST, let 6(j) be a two-dimensional

vector sampled from a zero-mean Gaussian distribution with covariance matrix K(zj).

Moreover, note that since each of the matrices K(2,j) is rank-one, we can generate each

of the 6('i) using an independent scalar sample drawn from the standard Gaussian

Sec. 4.3. Sampling by Subgraph Perturbations with Non-Stationary Graphical Splittings

distribution .A(0, 1) and then multiplying this by the vector [1, -sgn(Ji)]T J 3 I.We

then obtain &+1) by computing

E~+1 _ (i,j)] (4.19)
(ij)GE\eT

where [,(',j)] n is the n-dimensional vector zero-padded from 6('j), i.e., the i-th and j-th

entries of [&i)] take the two entries of &2,j)and all other entries of [6j)] are zero.

We have that JT + K >- 0 from our construction, so this constitutes a P-regular

graphical splitting. Hence according to Proposition 4.2.1 and Theorem 4.2.3, the sample

distribution converges to the target distribution. This local implementation is summa-

rized in Algorithm 4.2.2. The computational complexity of one iteration is CT+O(|SK),

where CT is the complexity of drawing a sample from the tractable subgraph T and

IEKI =I - STI is the number of edges missing from JT.

Algorithm 4.2.2 Sampling by Subgraph Perturbations with Local Implementa-

tion

Input: J, h, and T
Output: samples with the asymptotic distribution K-- 1 (h, J)

1. Construct JT and K using (4.16) and (4.17).

2. Draw an initial sample xo) from a Gaussian distribution.

3. At each iteration:

(a) Generate an independent sample 6(t+1) using (4.19).

(b) Generate a sample x(t+1) from A- 1(h + Kx(t) + ,(t+1), JT).

4.3 Sampling by Subgraph Perturbations with Non-Stationary Graphical

Splittings

In the previous section, we have introduced the subgraph perturbation algorithm with

stationary splittings. It is natural to extend Algorithm 4.2.1 to using multiple subgraphs

for different iterations (i.e., J = JTt - Kt at iteration t), which we refer to as non-

stationary graphical splittings. Using non-stationary graphical splittings for sampling

ill

112 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

is related to using non-stationary graphical splittings for inference (i.e., for computation

of the mean) [32, 33], but the additional constraint JT, + Kt > 0 is needed to ensure

that the added noise at each iteration is valid. In this section, we first summarize our

sampling algorithm using non-stationary graphical splittings in Algorithm 4.3.1 and then

present theoretical results on convergence. The results in this section provide theoretical

foundations for the adaptive selection of the splittings, which will be studied in Section

4.4.

Algorithm 4.3.1 Sampling by Subgraph Perturbations with Non-Stationary
Splittings

Input: J, h
Output: samples with the asymptotic distribution A- 1(h, J)

1. Draw an initial sample x(') from a Gaussian distribution.

2. At each iteration t for t = 1, 2, 3, ...

(a) Form a graphical splitting J = JT, - Kt, where JT, + Kt - 0.

(b) Generate an independent sample e(t+l) with zero mean and covari-
ance matrix JTt + Kt.

(c) Compute x(t+1) using the equation

x(t+1) = Jil (h + Ktx(t) + e(t+)).

The authors in [32] have studied the use of periodic splittings (i.e., using the set

of splittings {J = JTt - Kt}fL 1 in a periodic manner) for inference as a special case of

using an arbitrary sequence of splittings. In this case, the average convergence rate is

-I E In p(Jj1 Kt). While a non-trivial sufficient condition guaranteeing convergence
for a general P is difficult to find, the authors have given a sufficient condition for the

case P = 2. In [33] the inference problem for a GGM is solved by adaptively selecting

the next graphical splitting given the current error residual. The authors have proven

that if a GGM is walk-summable (c.f. [33]), then their algorithm converges to the correct

solution for an arbitrary sequence of splittings where the diagonal of each of the K's is

fixed to be zero.

In order for our non-stationary perturbation sampler to proceed, the noise covariance

Sec. 4.3. Sampling by Subgraph Perturbations with Non-Stationary Graphical Splittings

matrix at each iteration needs to be positive semidefinite (which is equivalent to the P-

regularity condition according to Proposition 4.2.1). Because of this extra constraint,

the conclusions for inference using non-stationary splittings do not directly apply to

sampling. In the following Theorem 4.3.1, we prove that as long as we have the condition

in the theorem, namely that each element in the set of splittings would produce by itself

a convergent stationary perturbation sampler, the use of any arbitrary sequence from

this set (including, of course, periodic selection) also leads to a convergent algorithm.

Theorem 4.3.1 : Consider a finite collection of graphical splittings S = { J = JT2 -

Ki} 1 . The non-stationary subgraph perturbation sampling algorithm (Algorithm 4.3.1)

converges to the target distribution with an arbitrary sequence of splittings chosen from

S if and only if the stationary sampling algorithm (Algorithm 4.2.1) converges to the

target distribution with each of the splittings in the sequence.

We now state several lemmas prior to proving Theorem 4.3.1. The proofs for these

lemmas are provided in Appendix 4.6.

Lemma 4.3.2 : If J >- 0 and the graphical splitting J = JT - K is P-regular, then there

exists e > 0 such that J - (Jj1K)T J (JgjK) > eJ.

Lemma 4.3.3 : For a positive definite matrix J, we define the induced matrix norm

I|A|Ij j as I|AI|j-,j = maxuzo , where the vector norm Iu||j is defined by ||u|j =

uT Ju.

For a P-regular graphical splitting J = JT -K, Lemma 4.3.3 states that IJj1KII j, <
1. In general it is not true that ||KJjiiJjgj < 1; however, the following Lemma 4.3.4

establishes that under mild conditions there exists an integer p such that the J-induced

norm of the product H U1KjJj is less than .

Lemma 4.3.4 : Consider J >- 0 and a sequence of P-regular graphical splittings {J

Jr - Ku,}. If the splittings are chosen from a finite number of distinct graphical

splittings { J = JT, - Ki}N 1, then there exists a positive integer p depending only on J

such that
p+m-1 1
I I ji u)ll _j< -

i=M

113

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

for any positive integer m.

Proof of Theorem 4.3.1

Proof. The necessity is easy to prove since for Algorithm 4.3.1 to proceed, the noise at

each iteration needs to be valid, which implies the convergence with each of the splittings

according to Proposition 4.2.1.

Now we prove the sufficiency. Similarly as in the proof of Theorem 4.2.3, we use

p(t) and E(t) to represent the mean and covariance matrix of the sample distribution at

iteration t. From Step 2 of Algorithm 4.3.1, we can prove that

p(t+1) - - 1K= (tt(t) - ') (4.20)

and

E(t+1) E = (J7Kt) (Et) - E) (J-'Kt)T. (4.21)

From Lemma 4.3.3, we have that I|J- Ktlj_,j < 1. Since S is a finite collection of

splittings, let Umax = maxjEs jlJj 1K-IIj<1. Hence

11p(t)- Ali = (J1Kj) (p() - M) Ili (4.22)

t

< 171 Kjl lj- (0) - plI| (4.23)

< ax (0 - i. (4.24)

Similarly,

100t) - = (J-1K) (Eo) - E(f J-K) (4.25)

J-+J
t

1J KE() - z fJ (KJ-) (4.26)
i=1 JgJ i=1 Jgj

Let p be the integer in Lemma 4.3.4. Then when t > p, we have that

114

Sec. 4.3. Sampling by Subgraph Perturbations with Non-Stationary Graphical Splittings

IIE "' - E I IJ-+JOax E(- E C, (4.27)

where C = max{5max, 6na, '} 0 and 6max = maxiEs jK Jj'fjgjj_ .

For a positive definite symmetric matrix J of finite dimension, there exist 0 <

Di < D 2 such that D1|Iv1|2 < IjvIjj < D 2 |jvfl 2 for any vector v and 0 < C1 C2

such that C1||AlIF J Ajjj < C21IlF for any matrix A. Hence, we have that

I(t) - ft12 < L2-ax H|' - 2 and |E(')- E F CUnaxI (t) - ZI1F. Therefore,

Algorithm 4.3.1 converges using this sequence of splittings. This concludes the proof of

Theorem 4.3.1.

D

Alternative Proof of Corollary 1 in [33]

One of the main results in [33] states that if the graphical model is walk-summable

then the embedded tree algorithm converges to the correct mean using any sequence

of graphical splittings {J= JT, - Kt} where each JT, corresponds to a tree-structured

graph and each K, corresponds to the cut edges and has zero diagonal. The original

proof in [33] uses walk-sum diagrams. Here we give an alternative proof using results

presented in this section.2

Proof. Consider the splittings used in [33], where Kt has zero diagonal and the nonzero

off-diagonal entries of K, take the opposite values of the corresponding entries in J. We

define Jt* = JT, + K, and thus the entries in Jt* have the same absolute values as the

corresponding entries in J. Since J is walk-summable, we have that Jt* is also walk-

summable by the definition of walk-summability (c.f. [54]). Since walk-summability

implies the validity of a model, we have that Jt* >- 0. By Lemma 4.3.3, we have that

J-Jj 1Ktj j < 1 for all t. Since there are a finite number of different splittings in

this setting, we can show the convergence using the same arguments as in the proof of

Theorem 4.3.1.

D

2 Note that our sampling algorithm requires additional constraints to ensure the validity of
the added noise. It is coincidental that the results in this chapter lead to an alternative proof
of one of the main results in [331.

115

CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

E 4.4 The Selection of Tractable Subgraphs

In this section, we discuss the selection of tractable subgraphs. First, we discuss how

to choose graph structures for stationary splittings; then, we propose an algorithm to

adaptively select tractable subgraphs for non-stationary splittings.

E 4.4.1 Select Subgraph Structures for Stationary Splittings

Using Tree-Structured Subgraphs

From the inequalities in Corollary 4.2.5, a heuristic is to choose K with small absolute

edge weights and at the same time ensure the rest of the graph is tree-structured. Hence,
the tree-structured subgraph is encouraged to contain strong edges. An effective method

is to find the maximum spanning tree (MST) with edge weights wij being the absolute

values of the normalized edge weights in J, i.e., wi3 = lJijl//JiiJj. The idea of using

an MST has been discussed in the support graph preconditioner literature [68] as well

as in the studies of the embedded tree algorithm for inference [33]. An MST can be

constructed using Kruskal's algorithm in ((m logn) time, where m is the number of

edges. This selection procedure is summarized in Algorithm 4.4.1.

Algorithm 4.4.1 Selecting a Tree-Structured Subgraph
Input: J >- 0
Output: a tree-structured subgraph T

1. Compute the normalized edge weights wi3 Jij / JiiJ for all (i, j) E S.

2. Compute the maximum spanning tree T using edge weights wi3 .

In our perturbation sampling framework, the tractable subgraphs can be structures

beyond trees. Here we also suggest several other tractable graph structures with existing

efficient inference and sampling algorithms.

Using Subgraphs with Low Tree-width

Graphical models with low tree-width have efficient inference and sampling algorithms

and have been widely studied. We can compute a low tree-width approximation JT to

116

Sec. 4.4. The Selection of Tractable Subgraphs

J using algorithms such as those in [69, 70, 401.

Using Subgraphs with Small FVSs

As mentioned in Section ??, an FVS is a set of nodes whose removal results in a cycle-

free graph and a pseudo-FVS is a set of nodes that breaks most, but not all, of the

cycles in the graph. The FMP algorithm described in Section ?? provides a tractable

inference algorithm for graphical models with small FVSs. This allows us to consider

a graph with a small FVS as the tractable subgraph in the framework developed in

this chapter. We can first use Algorithm 2.2.1 to select a set of nodes T constituting a

pseudo-FVS for the full graph. Then we compute a MST among the other nodes. We

choose our subgraph to be the combination of nodes F (with all incident edges) as well

as the MST of the remaining graph. Note that even though F is a pseudo-FVS of the

original graph, it is a true FVS of the subgraph, and therefore the algorithm from [16]

and Section ?? provides exact inference. Using this technique, there is a trade-off in

choosing the size of F: a larger set F means more computation per iteration but faster

convergence.

Using Spectrally Sparsified Subgraphs

Many widely used GGMs such as thin-membrane or thin-plate models have diagonally

dominant information matrices. Some recent studies have shown that the graph Lapla-

cian of a dense graph can be well-approximated by the graph Laplacian of graphs with

nearly-linear number of edges [711]. These spectrally sparsified graphs have efficient

inference and sampling algorithms and can also be used as tractable subgraphs.

4.4.2 Adaptive Selection of Graph Structures for Non-Stationary Split-

tings

In this subsection, we propose an algorithm to adaptively select the structure of the

subgraphs for non-stationary splittings. We explain our algorithm assuming that each

subgraph is tree-structured, but this algorithm can be extended to other tractable sub-

graphs such as those mentioned in the previous subsection.

From Algorithm 4.3.1, it can be shown that

P - ((t+ (-- 1 - J- 1) (h - Jy(, (4.28)

117

118 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

which characterizes the residual error for the mean. Similarly, for the sample covariance,

we have

E - E(t) (J-1 - J- 1) (J -- JE()J) (J- 1 - j-1)T. (4.29)

In [33] the authors have proposed an adaptive method using the walk-sum analysis

framework: at each iteration t + 1, choose the MST T7 in (4.28) with weights 6u' for

edge (u, v), where

Iu =I ht +1V (4.30)(Iht1 - LJU,Vl

and h(t) = h - j(t). 3 This adaptive method significantly improves the speed of conver-

gence for inference compared with using stationary splittings. In our case of sampling,

both the error for the mean and the error for the covariance matrix need to be con-

sidered. However, a similar relaxation for the covariance matrix based on (4.29) is too

computationally costly. Hence, we resort to an auxiliary inference problem with the

same information matrix J and the potential vector h* being the all-one vector. At

each iteration of our sampling algorithm, we use the subgraph adaptively selected based

on the auxiliary inference algorithm (i.e., choosing the MST with weight as in (4.30)

but using the potential vector h*).

* 4.5 Experimental Results

In this section, we present experimental results using our perturbation sampling algo-

rithms with both stationary graphical splittings and non-stationary graphical splittings.

In the first two sets of experiments, we use simulated models on grids of various sizes;

in the third example, we use standard test data of a power network of moderate size;

finally, we present results using a large-scale real example for sea surface temperature

estimation.

* 4.5.1 Motivating Example: 3 x 10 Grids

In this motivating example, we consider a simple 3 x 10 grid (Figure 4.2a). In the

simulated models, the model parameters J and h are randomly generated as follows:

3Note that here the matrix J is normalized to have unit diagonal.

the entries of the potential vector h are generated i.i.d. from a uniform distribution

U[-1, 1]; the sparsity pattern of J is determined by the graph structure and the non-

zero entries of J are also generated i.i.d. from U[-1, 1] with a multiple of the identity

matrix added to ensure J >- 0. We compare several sampling algorithms, namely basic

Gibbs sampling, chessboard (red-black) blocked Gibbs sampling (Figure 4.21)), forest

Gibbs sampling (Figure 4.2c, c.f. [29]), and our algorithm using a stationary splitting

(Figure 4.2d) selected with Algorithm 4.4.1 (listed as "1-Tree Perturbation" in Table

4.1). We randomly generate 100 sets of model parameters and compute the asymptotic

convergence rates. The average numbers of iterations (to reduce the covariance error in

half), i.e., the average log2 T, are shown in Table 4.1.

We also study the convergence rates using non-stationary splittings. For each gener-

ated model, we run Algorithm 4.3.1 for 20 iterations and obtain 20 tree-structured sub-

graphs adaptively selected using (4.30). Figure 4.3 shows the first four tree-structured

subgraphs adaptively selected on one of the generated models. We summarize the

asymptotic convergence rates in Table 4.2 for the following six cases: 1) the single

tree that gives the best convergence among the 20 trees4 ; 2) the worst single tree of the

20 trees; 3) alternating between the best pair of trees (by an exhaustive search among

all pairs of the 20 trees); 4) alternating between the worst pair of trees; 5) using the

first two adaptively selected trees (and alternating between them); and 6) using adap-

tively selected trees at each of the 20 iterations. From the results, we can see that using

different subgraph structures give significantly different performances. On average, the

best single tree can reduce the residual covariance error in half in 6 iterations while the

worst single tree takes 88 iterations. The best combination of two trees gives the best

convergence rate, but is included only as a benchmark, as exhaustive search is not com-

putationally feasible in practice. Using the sequence of adaptively selected trees gives

the second best performance while having much less computational complexity. The

sampling algorithm with non-stationary graphical splittings outperforms its stationary

counterpart even using the best single tree, which demonstrates the advantages of using

non-stationary graphical splittings for sampling.

4 The number of all spanning trees of a grid is very large (there are more than 9.41 x 10 9

spanning trees even for this small 3 x 10 grid, computed using recursive equations in [72]), which
makes it intractable to do exhaustive search among all spanning trees. In addition, for a fair
comparison with the adaptive method, the single tree is chosen from the 20 adaptively selected
trees.

119Sec. 4.5. Experimental Results

120 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

(a) (b)

(c) (d)

Figure 4.2: Sampling from a 3 x 10 grid using basic Gibbs sampling, chessboard

(red-black) Gibbs sampling, forest Gibbs sampling, and our subgraph perturba-
tion sampling using a stationary splitting. a) Graph structure of the 3 x 10 grid;
b) Chessboard (red-black) blocked Gibbs sampling: the set of black nodes and
the set of white nodes form two blocks; c) Forest Gibbs sampling: the set of
black nodes and the set of white nodes form two separate trees. At each itera-
tion of the forest Gibbs sampling, conditioned on one block, the other block is
sampled by forward sampling; d) Subgraph perturbation sampling using a fixed
tree-structured subgraph: the thicker red edges are edges in the tree-structured
subgraph while the thinner blue edges are edges in the cut matrix.

(a) First tree (b) Second tree

(c) Third tree (d) Fourth tree

Figure 4.3: Sampling from a 3 x 10 grid using non-stationary splittings. (a)-(d)
show the first four trees adaptively selected using (4.30) on one run.

Average number of iteration (to reduce
the covariance error in half)

Gibbs 42.842
Chessboard Gibbs 42.842

Forest Gibbs 18.846
1-Tree Perturbation 5.967

Table 4.1: Convergence rates of various sampling algorithms

Average number of iteration (to
reduce the covariance error in

half)

Best single tree of the first 20 trees 5.4365
Worst single tree of the first 20 trees 87.397
Best pair of trees of the first 20 trees 3.6513

Worst pair of trees of the first 20 trees 87.397
The first two trees adaptively selected trees 5.5236

All of the 20 adaptively selected trees 4.9719

Table 4.2: Convergence rates of subgraph
graphical splittings

perturbation using non-stationary

* 4.5.2 Using Subgraphs Beyond Trees

In this experiment, we study the convergence rates using different subgraph structures

on grids of various sizes. For each given structure, we randomly generate model pa-

rameters using the same method as in Subsection 4.5.1. We compute the numbers of

iterations needed to achieve an approximating error of E = 10- 5, i.e., the minimum t

such that E(t) - E:1F < . We run the subgraph perturbation algorithm on i-by-i grids

with l ranging from 3 to 30. For each grid, two different subgraphs are used: one is

a tree-structured subgraph, the other is a subgraph with an FVS of size [log 121. For

each size, we repeat the algorithm for 100 sets of random model parameters and the

results shown are averaged over the 100 runs. Since the sizes of the simulated models are

moderate, we are able to compute and compare with the exact solutions. As we can see

from Figure 4.4, our subgraph perturbation algorithm outperforms the Gibbs sampler

and the use of subgraphs with small FVSs gives further improvement on convergence

121Sec. 4.5. Experimental Results

122 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

rate.5

Number of Iterations Needed for Grids (F-=10-5

Gibbs Sampling
--- Perturbation Sampling Using Trees

..... .. E Using Subgraphs with Small FVSs

5 10 15 20 25
Number of Nodes on Each Row or Column

Figure 4.4: The performance of subgraph perturbation sampling using various

kinds of subgraphs on grids of size 3-by-3 to 30-by-30. The tractable subgraphs

used include tree-structured graphs and graphs with small FVSs.

U 4.5.3 Power System Network: Standard Test Matrix 494 BUS

In this subsection, we use standard test data from the Harwell-Boeing Sparse Matrix

Collection, which includes standard test matrices arising from a wide variety of scientific

and engineering disciplines. We use the test matrix corresponding to a moderately sized

(494 nodes) power system network6 . We first add a multiple of the identity matrix to

make the matrix positive definite and then normalize the matrix to have unit diagonal.

Note that a diagonally dominant covariance matrix is easy to sample from (consider

the extreme case of a diagonal matrix, which corresponds to independent Gaussian

5Note that more computation is involved at each iteration using FMP, but the complexity
grows slowly if, as in this example, we use FVSs of sizes that are logarithmic in the size of the
overall graph.

6The test matrix can be obtained from http://math.nist.gov/MatrixMarket/data/Harwell-
Boeing/psadmit/494 bus.html.

1000

900 -

800

0

E
z

700-

600-

500

400-

300-

200-

100F

0
0 30

Number of iterations (to
reduce the covariance error in

half)

Gibbs sampling (Gibbs) 32653
Subgraph perturbation with a tree 3491

(Embedded Tree)
Subgraph perturbation sampling with a 3452

1-FVS subgraph (1-FVS)
Subgraph perturbation sampling with a 2500

3-FVS subgraph (3-FVS)
Subgraph perturbation sampling with a 1944

5-FVS subgraph (5-FVS)

Table 4.3: Convergence rates using a single tree and subgraphs with FVS of
various sizes

variables) even with the basic Gibbs sampler, but they do not represent many real

applications. Hence, in order to study the models that are challenging for the Gibbs

sampler or other common algorithms (which is the scenario that we focus on in this

chapter), we add just enough diagonal loading to make the matrix positive definite. We

compare the performances of Gibbs sampling, subgraph perturbation sampling using a

tree-structured subgraph and using subgraphs with FVSs of sizes one, three and five. In

this experiment, we focus on stationary splittings since we are interested in comparing

the performances using different types of subgraphs. The experimental results are shown

in Table 4.3 and Figure 4.5. As these results show, for this problem using a single tree

subgraph reduces the number of iterations needed to achieve 50% error reduction by

almost an order of magnitude, and using a very small size-5 FVS cuts the number down

significantly further.

* 4.5.4 Large-Scale Real Example: Sea Surface Temperature

We also run the algorithm on a large-scale GGM built to estimate the sea surface

temperature (the dataset is publicly available at http://podaac.jpl.nasa.gov/dataset/).

The data are preprocessed to have raw measurements at 720 x 1440 different locations.

We construct a grid of 1,036,800 nodes with additional edges connecting the eastmost

and westmost nodes at the same latitudes since they are neighbors geographically. We

123Sec. 4.5. Experimental Results

124 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

Power System Network: 494 BUS

0 .8

0. -0- EmbeddedTree

N --- 3-FVS+++
4 0.5 +++5-FVS

z+

0.4
0 200 400 600 800 1000

Iteration

Figure 4.5: Perturbation sampling using various subgraph structures on a power

system network. The normalized error of the sample covariance is defined as

the ratio between the sample covariance error at each iteration and the initial

covariance error.

then remove the nodes that have invalid measurements (most of which correspond to

land areas). We construct a GGM with this underlying structure using the thin-plate

model [Ij. Note that because of the significant number of observations, the information

matrix for this model is far better conditioned than the one in the preceding section,

implying that far fewer iterations are needed to reach approximate convergence. The

structure of the resulting model is shown in Figure 4.6a and the tractable subgraph used

for our perturbation sampling algorithm is shown in Figure 4.6b (for clarity, we plot a

much coarser version and omit the edges connecting the eastmost and westmost nodes).

A sample from the posterior distribution after 200 iterations is shown in Figure 4.6c.

Sec. 4.5. Experimental Results 125

GGM for Sea Surface Temperature

_Ij
LU R4S

_:T I i M rT7-1

ET

I I I I I I f I I I

.......... ------

I z
MMI r -- rr ---- ------

IT I LLLj

50 100 150 200 250 300 350
Longitude

(a) The entire GGM for sea surface temperature

Subgraph Used for Sampling

I-I

-i~;~

50 100 150 200 250 300 350
Longitude

(b) The spanning tree used as a tractable subgraph

20 30
(c) Sea surface temperature in degrees (Celsius)

Figure 4.6: Perturbation sampling from a GGM for sea surface temperature esti-
mation

CU)

_j

-5(

50
C)

0

-50

0 10
W!_ I

50

0

126 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

U 4.6 Appendix for Chapter 4

Proof of Proposition 4.2.1

Proposition 4.2.1 : Assuming J >- 0 and that J = JT - K is a graphical splitting, the

condition p(J-7'K) < 1 is satisfied if and only if the splitting is P-regular, i.e., the added

noise in Algorithm 4.2.1 has a valid covariance matrix JT + K >- 0.

Proof. We first prove the sufficiency. If JT +K >- 0, then 2JT - J >- 0 and thus JT >- 0.
-1

Hence, J 1 >- 0 has a unique positive definite square root JT 2 >- 0. Then we have

1 1 1 1 1 1

0 _ JT 2 JJ 2 =JT2 (JT- K) JT2 = I_ JT2 KJT 2 . (4.31)

Hence, A (J IKJ) < 1, for all i, where Ai(.) denotes the i-th eigenvalue of the

argument. From the condition JT + K >- 0, we have that

1 - 1 - 1 - 1

I + J 2 KJ 2 = J 2 (JT+ K) JT2 > 0, (4.32)

and thus Ai(JT 2KJT) > -1, for all i. Because J-1K = JTI J KJT) JT, we

have that JI1 K has the same eigenvalues as JT 2 KJT 2 . Therefore, Ai (J+ 1-K) < 1

for all i and thus p(J- 1 K) < 1.

We now prove the necessity. If p(J-1 K) < 1, then I - J-1 K = J 1 J has positive

eigenvalues. Since J >- 0, J has a unique positive definite square root J-1 > 0, and

thus

0 .< JiJ-1j =< JA (JJ) J-. (4.33)

1

So we have J-1 >- 0. Hence JT >- 0 has a unique positive definite square root JT _ 0.
So JT2 K JT has the same eigenvalues as JT1K since JrT KJT 2 = J (Jj-K) J7

1 - 1 1 1

and thus p(JT 2KJT) < 1. Hence, I+ JT KJT2
_ 0, so

JT + K = JT2 I + JT K JT 2 Jr2 _ 0. .4
T, = -- e t(I ti)g.

(4.34)

Therefore, J = JT - K is a P-regular splitting.

F-

Sec. 4.6. Appendix for Chapter 4

Proof of Lemma 4.2.2

Lemma 4.2.2 : Let A and B be square matrices. If 1) A is invertible; 2) A + B is

symmetric and invertible, then E = (A + B)-' is a solution of the equation AEAT -

BEBT + AT - B.

Proof. It is equivalent to showing

A(A + B)-lAT = B(A + B)- BT + AT - B. (4.35)

To do so, consider

LHS = ((A + B) - B) (A + B)-A T (4.36)

=AT - B(A + B)-lAT (4.37)

=AT - B(A + B)-1 ((AT + BT) - BT) (4.38)

=AT - B(A + B)-'(A + B)T + B(A + B)-BT (4.39)

=AT -B+B(A+B)-'B T (4.40)

=RHS, (4.41)

where (a) is due to the assumption that A + B is symmetric.

D

Proof of Lemma 4.3.2

Lemma 4.3.2 : If J >- 0 and the graphical splitting J = JT - K is P-regular, then there

exists e > 0 such that J - (J-1K)T J (Jj-1K) S eJ.

Proof. Since J >- 0, there exists some 6 h > 6
1 > 0 such that 6 hI > J >- 61I. Hence,

to prove Lemma 4.3.2, it is sufficient to show that there exists > 0 such that J -

(J 1 K)T j (Jj-1K) > I, which is equivalent to showing that J- (J-1K)T j (J7-1K) >-

0.

127

128 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

J (I - JisJ) > 0

*J - (J + JJjJJ-IJ - 2JJj1 J) s 0

*2JJ-1 J - JJI1JJI' >- 0

(a) J1) (2JJI1 J - JJ- 1JJ 1J) (JT) 0

2 JT - J >- 0

-JT + K > 0,

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)

where (a) is due to that J and JT are both non-singular since J - 0 and JT =

J+(JT+K) >- 0.
2

Proof of Lemma 4.3.3

Lemma 4.3.3 : If J >- 0 and J = JT - K is a P-regular graphical splitting, then

oJf.KFoanj < 0.

Proof. For any ua f 0, we have that

(J-1Ku)T J (Jgj7Ku)

=uT ((J-1K)T j (Jj 1 K)) U

=UT ((Jj'K)T j (J-tK) - J)

(4.49)

(4.50)

(4.51)U + ur Ju

From Lemma 4.3.2, there exist e > 0 such that (J-1K)T J (J-tK)
Hence, we have (JI1Ku)T J (Jj- 1Ku) j (1 - e)uTJu, i.e., |JijKulj j

Thus for any u # 0, U
T

jU (1 - e) < 1. Hence, by the def

J-induced norm, we have that |J-1KIj|jj < 1.

-< (1 - e)J.

(1 - e)|ullj.

inition of the

D

J - (Jj--K)T j (Jj-tK) >- 0

j - (-1 - iiii),

Proof of Lemma 4.3.4

Lemma 4.3.4 : Consider J >- 0 and a sequence of P-regular graphical splittings { J =

- K,}1. If the splittings are chosen from a finite number of distinct graphical

splittings { J = JT2 - K.}N 1, then there exists a positive integer p depending only on J

such that
p+m-1

II f (Ku, J) IJ-j < (4.52)

for any positive integer m.

Proof. Since the sequence is arbitrary, without loss of generality, we only need to prove

for m = 1. Since 11 -IIjaj is an induced norm, there exists 0 < C1 < C2 depending only

on J such that C1IIAIIF < ||AIlj j < C211AIlF for any square matrix A. From Lemma

4.3.3, flJ- 1 KIlljaj < 1 for all i. Since there are finitely many distinct splittings, there

exists 0 < omax < 1 such that IIJj 1KiIIj, umx < 1 for all i. For induced norms, it

can be shown that I|ABIIj_,j < ||All_ IIBIIj- . Hence, there exists integer p depend-

ing only on J such that IIH PJj_ T I J- -+ L < H J- Kull < O-max < C. Since

the Frobenius norm is invariant to transposition, we have that J K |C F =

IH1 J ' Ku IIF, and thus

||j (KuiJ-) J- C2||Q (Kui J |IF (4.53)

C211 J1 Ku) IF (4.54)
i=p

< 11 J- K., ||j4j (4.55)
Z=p

C2 (4.56)-C1 2C2

12 - (4.57)2

This completes the proof.

E

129Sec. 4.6. Appendix for Chapter 4

130 CHAPTER 4. SAMPLING GAUSSIAN GRAPHICAL MODELS USING SUBGRAPH PERTURBATIONS

Chapter 5

Learning Gaussian Graphical Models

with Small Feedback Vertex Sets

U 5.1 Introduction

As mentioned in Section 2.2.3, given a GGM with underlying distribution A-1 (h, J) and

with an FVS of size k, the marginal means and variances can be calculated exactly with

computational complexity O(k 2 n) using the FMP algorithm proposed in [16], where

standard BP is employed twice on the cycle-free subgraph among the non-feedback

nodes while a special message-passing protocol is used for the FVS nodes. If we are not

explicitly given an FVS, though the problem of finding an FVS of minimal size is NP-

complete, the authors of [73] have proposed an efficient algorithm with computational

complexity O(min{mlogrn, n2 }), where m is the number of edges, that yields an FVS

at most twice the minimum size (thus the inference complexity is increased only by

a constant factor). As we will see, the complexity of such algorithms is manageable.

Moreover, as our experiments will demonstrate, for many problems, quite modestly sized

FVSs suffice.I

In this chapter, we study the family of GGMs with small FVSs. First in Section

5.2, we will provide some additional analysis of inference (i.e., the computation of the

partition function) for such models, but the main focus in this chapter is ML learning of

models with FVSs of modest size, including identifying the nodes to include in the FVS.

Next in Section 5.3, we investigate the scenario where all of the variables, including

any to be included in the FVS are observed. We provide an algorithm for exact ML

'For models with larger FVSs, approximate inference (obtained by replacing a full FVS by a
pseudo-FVS) can work very well, with empirical evidence indicating that a pseudo-FVS of size
O(log n) gives excellent results.

131

132 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

estimation that, regardless of the maximum degree, has complexity O(kn 2 + n 2 log n)

if the FVS nodes are identified in advance and polynomial complexity if the FVS is to

be learned and of bounded size. Moreover, we provide an approximate and much faster

greedy algorithm when the FVS is unknown. In Section 5.4, we study the scenario

where the FVS nodes are taken to be latent variables. The structure learning problem

now corresponds to the (exact or approximate) decomposition of an inverse covariance

matrix into the sum of a tree-structured matrix and a low-rank matrix. We propose

an algorithm that iterates between two projections, which can also be interpreted as

alternating low-rank corrections. We prove that even though the second projection

is onto a highly non-convex set, it is carried out exactly, thanks to the properties of

GGMs of this family. We also introduce an accelerated version that can further reduce

the computational complexity to ((kn 2 + n2 logn) per iteration. Finally in Section

5.5, we perform experiments using both synthetic data and real data of flight delays to

demonstrate the modeling capacity with FVSs of various sizes.

An important point to note is that the computational complexity of these inference

and learning algorithms depends simply on the FVS size k and the number of nodes n.

There is no loss in generality in assuming that the size-k FVS F is fully connected and

that each of the feedback nodes has edges to every non-feedback node. In particular,

after re-ordering the nodes so that the elements of F are the first k nodes (T V\F

denotes the set of non-feedback nodes of size n -k), we have that J = >- 0,
JM JT _

where JT >- 0 corresponds to a tree-structured subgraph among the non-feedback nodes,

JF >- 0 corresponds to a complete graph among the feedback nodes, and all entries of

JM may be non-zero as long as JT - jM j7j >- 0 to ensure J >- 0. Similarly, the

covariance matrix is denoted as E - F E 1 -1 >- 0. We refer to the family
[M ZT

of such models with a given FVS F as QF. Note that in general a graph does not have

a unique FVS and QF include all graphs that have F as one FVS. We refer to the class

of models with some FVS of size at most k as Qk. The family of graphs with FVSs of

size k includes all graphs where there exists an FVS of size k.

* 5.2 Computing the Partition Function of GGMs with Small FVSs

In graphical models, the computation of the partition function (c.f. Section 2.1 for def-

inition) plays an important role in many problems [74]. Previously, various algorithms,

Sec. 5.2. Computing the Partition Function of GGMs with Small FVSs

such as tree decomposition [74], variational methods [75], and Langevin Importance

sampling [761, have been used to compute the partition function. In this section, we

provide a new message-passing algorithm to compute det J, the determinant of J, and

hence the partition function of such a model, with computational complexity O(k 2n).

The high-level idea of our algorithm is to factorize the determinant of the whole

model into the product of (a) the determinant of the tree-structured subgraph 7T ex-

cluding the FVS; and (b) the determinant of the subgraph .F including only the FVS

nodes but with modified structure and parameters. 2 Factor (a) can be computed using

a tree decomposition method to be described in Lemma 5.2.2; and factor (b) is obtained

by computing the determinant of F directly, where the structure and parameters of

J are obtained using the FMP algorithm. In fact, the first round of LBP in FMP

can be used to compute factor (a) and to obtain 4 simultaneously. This algorithm is

summarized in Algorithm 5.2.1.

Proposition 5.2.1 states the correctness and the computational complexity of Al-

gorithm 5.2.1. The proof of Proposition 5.2.1 is deferred after we introduce Lemma

5.2.2.

Proposition 5.2.1 : Algorithm 5.2.1 computes det J exactly and the computational com-

plexity is O(k 2 n).

The following Lemma 5.2.2 provides a factorization of the determinant of a tree-

structured model, where the quantities in each factor can be computed using BP. The

proof of Lemma 5.2.2 is provided in Appendix 5.7.

Lemma 5.2.2 : If the information matrix J >- 0 has tree structure T = (V, S), then we

have

det (J)- = JPii 1 I d , (5.1)

where P = J- 1.

2 In fact, subgraph T corresponds to the submatrix JT and subgraph F corresponds to
JF - J!2JjMJAl, the Schur complement of JT in J.

133

134 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Algorithm 5.2.1 Computing the Partition Function When an FVS Is Given

Input: an FVS F of size k and an n x n information matrix J = F M
Ju JT

where JT has tree structure T with edge set ET.
Output: det J

1. Run standard Gaussian BP on T with information matrix JT to obtain
P = (J-1).. for all i E T, PJ = (JI1)ij for all (i, j) E ST, and (gP)=

(J-1 hP) for all i E T and p E F, where hP is the column of JM corresponding
to node p.

2. Compute jF with

(F) pq Jpq -

jEAf(p)nT

Jpj ,Vp, q E F

3. Compute det JF

4. Output

det J = (T

((i~j)ESr

pjpT _(pT 2

P3PT-E3ii iEV

Proof of Proposition 5.2.1

Proof. First, we show that JF computed in Step 2 of Algorithm 5.2.1 equals JF -

JjjJi 1 Jm. We have

gi h2 ... -hk] = J-ilJM (5.2)

from the definition in Step 1. From Step 2, we find that

gk]T
JF = JF - [1

PT) detJy.

JT g g2 ... k]

= JF - (j JM T (j1 JM)

= JF - JT M.

(5.3)

(5.4)

(5.5)

g 2 k _ = 1 h'

Sec. 5.3. Learning GGMs with Observed FVSs 135

Hence,

I -JT J-IJF
det J = det (det

0 I Ju

([I j-i JF
= det MT

(I J JTJ

=detJF -JMTJJM 0

= (det JF) x (det JT),

According to Lemma 5.2.2, we have

det (JT)- P = P

J T 1 0"])det
i

-- JI JIW I

2
PpT - (PT2

P; JJ \3U

which establishes the correctness of Algorithm 5.2.1.

Now we calculate the computational complexity. The first step of Algorithm 5.2.1

has complexity 0(n - k) using BP. Step 2 takes 0 (k 2(n - k)) and the complexity of

Step 3 is 0(k 3). Finally the complexity of Step 4 is 0(n) since 'T is a tree. The total

computational complexity is thus 0(k2n). This completes the proof of Proposition 5.2.1.

Note that if the FVS is not given in advance, we can use the factor-2 approximate al-

gorithm in [73] to obtain an FVS of size at most twice the minimum size with complexity

0(min{mlog n, n 2}), similarly as how we use the FMP algorithm for inference.

M 5.3 Learning GGMs with Observed FVSs

In this section, we study the problem of recovering a GGM from i.i.d. samples, where

all nodes including the feedback nodes in F are observed. The empirical distribution

tF ff 1.W
P(xF, XT) is parametrized by the empirical covariance matrix E = EFZ .1W

EZM ETj

propose learning algorithms for the following two case: 1) When an FVS of size k

is given, we propose the conditioned Chow-Liu algorithm, which computes the exact

ML estimate efficiently; 2) When no FVS is given a priori, we propose both an exact

(5.6)

(5.7)

(5.8)

(5.9)

(5.10)

135Sec. 5.3. Learning GGMs with Observed FVSs

136 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

algorithm and a greedy approximate algorithm for computing the ML estimate. In the

following analysis, with a slight abuse of notation, we use q(xA) to denote the marginal

distribution of XA under a distribution q(xV) for any subset A C V.

U 5.3.1 Case 1: An FVS of Size k Is Given.

According to Proposition 2.4.1 in Section 2.4, the ML learning problem is equivalent to

minimizing the K-L divergence between the empirical distribution and distributions in

the family considered. When a size-k FVS F is given, we have

PML (XF, XT)= arg min DKL (P(XF, XT) I (xF, XT)). (5.11)
q(XF,XT) GF

The following Lemma 5.3.1 gives a closed-form expression of the K-L divergence

between two Gaussian distributions. Lemma 5.3.1 is a well-known result and its proof

can be found in texts such as [58].

Lemma 5.3.1 : For two n-dimensional Gaussian distributions P(x) = .(x; 4, t) and

q(x) = /(x; p, E), we have

D(Pjjq) = (Tr(E-1) + (ft --)TE-1 (ji - 4) - nlndet (E-I)) . (5.12)

An immediate implication of Lemma 5.3.1 is that when learning GGMs we always

have that AML = 4 if there is no other constraint on the mean. Therefore, in the fol-

lowing analysis of this chapter, without loss of generality, we assume both the empirical

mean and the estimated mean are zero.

The optimization problem of (5.11) is defined on a highly non-convex set QF with

combinatorial structure: indeed, there are (n - k)n-k-2 possible spanning trees among

the subgraph induced by the non-feedback nodes. However, we are still able to solve

Problem (5.11) exactly using the conditioned Chow-Liu algorithm described in Algo-

rithm 5.3.1 .3 The intuition behind this algorithm is that even though the entire graph

3 Note that the conditioned Chow-Liu algorithm here is different from other variations of the
Chow-Liu algorithm such as in [77] where the extensions are to enforce the inclusion or exclusion
of a set of edges.

Sec. 5.3. Learning GGMs with Observed FVSs 137

is not tree-structured, the subgraph induced by the non-feedback nodes (which corre-

sponds to the distribution of the non-feedback nodes conditioned on the feedback nodes)

has tree structure, and thus we can find the best tree among the non-feedback nodes

using the Chow-Liu algorithm applied on the conditional distribution. To obtain a con-

cise expression, we also exploit a property of Gaussian distributions: the conditional

information matrix (the information matrix of the conditional distribution) is simply a

submatrix of the whole information matrix and does not depend on the values of the

conditioned variables. Hence, the integration over all variable values is not necessary in

computing the conditional mutual information.

In Step 1 of Algorithm 5.3.1, we compute the conditional covariance matrix using the

Schur complement, and then in Step 2 we use the Chow-Liu algorithm to obtain the best

approximate ECL (whose inverse is tree-structured). In Step 3, we match exactly the

covariance matrix among the feedback nodes and the cross-covariance matrix between

the feedback nodes and the non-feedback nodes. For the covariance matrix among the

non-feedback nodes, we add the matrix subtracted in Step 1 back to ECL. We denote

the output covariance matrix of Algorithm 5.3.1 as CCL(Z).

Algorithm 5.3.1 The Conditioned Chow-Liu Algorithm

Input: E >- 0 and an FVS F

Output: EML and EML

1. Compute the conditional covariance matrix ETIF T-

EMF EM'

2. Let ECL = CL(ZTIF) and 8 CL = CLE($TJF)-

3. SML CL andEML - F M^ - T
EM ECL -6 MEFEM 1.

The following Proposition 5.3.2 states the correctness and the complexity of Algo-

rithm 5.3.1. The proof of Proposition 5.3.2 is provided after we states Lemma 5.3.3.

Proposition 5.3.2 : Algorithm 5.3.1 computes the ML estimate EML with edge set EML

exactly with computational complexity O(kn 2 + n 2 log n).

We use QF,T to denote the family of distributions with a given FVS F and a fixed

138 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

tree structure T with edge set ET among the non-feedback nodes. The following Lemma

5.3.3 gives a closed-form solution that minimizes the K-L divergence in QF,T.

Lemma 5.3.3 :

min DKL(Pjjq) = -HP(x)+HP(xF)+ 1 HP(xixF)-- 1 IT(Xi;xjjxF), (5.13)
qEQF,'T

iCV\F (i,j) eT

where the minimum K-L divergence is obtained if and only if: 1) q(xF) = P(XF); 2)
q(xi, XjIxF,) = 1(Xi, XjIXF) for any (i, j) E ET.

The proof of Lemma 5.3.3 is included in Appendix 5.7.

Proof of Proposition 5.3.2

Proof. According to Lemma 5.3.3, the optimal solution of Problem (5.11) is given by

the left hand side (LHS) of (5.13) if we fix the FVS F and the tree structure T. When

we further optimize over all possible spanning trees among the non-feedback nodes,

the optimal set of edges among the non-feedback nodes can be obtained by finding the

maximum spanning tree of the subgraph induced by T with Ip(xi; xJ xF) > 0 being the

edge weight between i and j because all other terms in the LHS of (5.13) are invariant

to the selection of trees. 4

For Gaussian distributions, the conditional mutual information is only a function of

the conditional covariance matrix $ZTJF =T - tM:4
1 TMJ. Hence, finding the optimal

edge set of the tree part is equivalent to running the Chow-Liu algorithm with the input

being the covariance matrix ETIF. Let ECL = CLS($TIF) and ECL = CL(ETIF) and

denote the optimal covariance matrix as

EML EML)T-
EML [M ML j (5.14)

M T .

According to Lemma 5.3.3, we must have EML - ZF Since T is a spanning tree

among nodes in T, Lemma 5.3.3 implies that for all i E T, q(xF, Xi) = (xF, xi). Hence

we also have that EML M Furthermore, the corresponding conditional covariance

4 In fact, we have given an algorithm to learn general models (not only for GGMs, but also
for other models, e.g., discrete ones) defined on graphs with a given FVS F. However, we do
not explore the general setting in this chapter.

Sec. 5.3. Learning GGMs with Observed FVSs

matrix EMF Of EML must equal ECL, i.e.,

ZML =ZML - ZML (ZML)' (yMLT L.(15
TF LT EML F - M ECL. (5.15)

Therefore, we can obtain

E CL(ETIF) - FMZFZM. (5.16)

We also have that EML = SCL since 'ML is defined to be the set of edges among the

feedback nodes.

Now we analyze the computational complexity of Algorithm 5.3.1. The matrix ETIF
is computed with complexity O(kn 2). Computing the maximum weight spanning tree

has complexity O(n 2 log n) using Kruskal's algorithm (the amortized complexity can

be further reduced, but it is not the focus of this chapter). Other operations have

complexity 0(n 2). Hence, the total complexity of Algorithm 5.3.1 is 0(kn2 + n2 log n).

We have thus completed the proof of Proposition 5.3.2.

In many situations, computing the information matrix JML = E is also useful. A

straightforward method is to use direct matrix inversion, but the computational com-

plexity is 0(n 3). In the following part of this subsection, we describe an algorithm that

can make use of the intermediate results in Algorithm 5.3.1 to compute JML with com-

plexity 0(k 2 n), which is a significant reduction when k is small. Before we introduce

the algorithm we first state Lemma 5.3.4, which provides an algorithm to compute the

inverse of a given covariance matrix in linear time when the underlying model has a

known tree structure. The proof of Lemma 5.3.4 is deferred to Appendix 5.7.

Lemma 5.3.4 : If E >- 0 is given and we know that its inverse J = E-1 is sparse with

respect to a tree T = (V, S), then the non-zero entries of J can be computed using (5.17)

in time 0(n).

(I - deg(() _ + JZjc()) i = j E V

Jij (i, j) (5.17)

0 otherwise.

139

140 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Our efficient algorithm to compute JML = (ZML) 1 is summarized in Algorithm

5.3.2.

Algorithm 5.3.2 Compute JML = (ZML)< 1 After Running Algorithm 5.3.1
Input: EML and intermediate results in Algorithm 5.3.1

Output: JML = (EML< 1

1. Compute JTL using (5.17) with ECL as the input covariance matrix and ET
as the tree structure.

2. Compute jML = _ LVMLNl using sparse matrix multiplication.

3. Compute (EML)-1
(I

+ ((EML T jML) (EML (ML)) following the. order

specified by the parentheses using sparse matrix multiplication.

The following Proposition 5.3.5 states the correctness and the computational com-

plexity of Algorithm 5.3.2. Its proof is provided after we introduce Lemma 5.3.6.

Proposition 5.3.5 : The non-zero entries of JML = E can be computed with extra

complexity 0(k 2n) using Algorithm 5.3.2 after we run Algorithm 5.3.1.

Lemma 5.3.6 : (The Matrix Inversion Lemmas)

is invertible, we have

(A - BD-'C)--

-D- 1 C(A - BD-'C)-

-(A - BD-1 C)-1 BD-1

D- 1 + D- 1 C(A - BD-'C)-1 BD-1 I
(5.18)

A- 1 + A- 1 B(D - CA- 1 B)- 1CA-'
-(D - CA- 1B)- 1CA-1

-A-'B(D - CA- 1B)-1

(D - CA- 1B)-- 1

(5.19)

which implies that

(A - BD-1C) 1 = A- 1 + A--B(D - CA'B)-- 1CA- 1

A
If C IB

D

-1-[

[

A

C

or

A

C

B

D

B

D

-I

I
-1I

(5.20)

The proof of Lemma 5.3.6 can be find in standard texts such as [67].

Proof of Proposition 5.3.5

Proof. According to the proof of Algorithm 5.3.1, we have that JML (CL(iTIF)

has tree structure T. Hence, according to Lemma 5.3.4, the non-zero entries of JlLcan

be computed with complexity 0(n - k) using (5.17).

From (5.19) in Lemma 5.3.6, we have

J =M (LL)- (5.21)

which can be computed with complexity 0(k2n) by matrix multiplication in the "regular

order".5 Note that JMLEL is computed in 0(kn) since jTL only has 0(n) non-zero

entries.

Again, from (5.19), we have

JJL L T (L)) (5.22)

which has complexity 0(k 2 n) following the order specified by the parentheses. Note

that (PL) T JMLis computed in 0(kn) because jIL only has 0(n) non-zero entries.

Therefore, we only need an extra complexity of 0(k 2 n) to compute all the non-zero

entries of JML. This completes the proof of Proposition 5.3.5.

* 5.3.2 Case 2: The FVS Is to Be Learned

Structure learning becomes more computationally involved when the FVS is unknown.

In this subsection, we present both exact and approximate algorithms for learning mod-

els when an FVS of size no larger than k is to be learned.

For a fixed empirical distribution P(XF, XT), we define d(F), a set function of the

FVS F, as the minimum value of (5.11), i.e.,

d(F) = min DKL (P(XF, XT) q(XF, XT)). (5.23)
q(XF,XT)CQF

5In this example, "regular order" means first computing the inverse of EML and then following
the left-to-right order for matrix multiplication.

141Sec. 5.3. Learning GGMs with Observed FVSs

142 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Hence, obtaining the ML estimate in this case is equivalent to solving

min d(F). (5.24)
IFI<k

For any given F, the value of d(F) can be computed using Algorithm 5.3.1 and then

using (5.13) in Lemma 5.3.3. The ML estimate in this case, i.e., the solution of (5.24)

can be computed exactly by enumerating all possible FVSs of size k to find the

F that minimizes d(F). Hence, the exact solution can be obtained with complexity

O(nk+ 2k), which is polynomial in n for fixed k. However, as our empirical results

suggest, choosing k = 0(log(n)) works well, leading to quasi-polynomial complexity

even for this exact algorithm. That observation notwithstanding, the following greedy

algorithm (Algorithm 5.3.3), which, at each iteration, selects the single best node to

add to the current set of feedback nodes, has polynomial complexity for arbitrarily large

FVSs. As we will demonstrate in Section 5.5, this greedy algorithm works extremely

well in practice.

Algorithm 5.3.3 Selecting an FVS by a Greedy Approach
Initialization: F = 0
For t = 1 to k,

k* = arg min d(F_1 U {k}),
kEV\Ft-1

F = Ft_1 U {k*}.

M 5.4 Learning GGMs with Latent FVSs

In this section, we study the structure learning problem when the feedback nodes are

latent variables. Since the information matrix of the entire model is J = JF MT

iM JT
the marginal distribution of observed variables (the non-feedback nodes) has information

matrix J = = JT - JMJF1 J by taking the Schur complement. If the exact JT

is known, the learning problem is equivalent to decomposing a given inverse covariance

matrix JT into the sum of a tree-structured matrix JT and a rank-k matrix -JMJF- 17jT G

In general, the observations are noisy and we use the ML criterion:

qML (XF, XT) = arg min DKL(XxT)J|q(XT)), (5.25)
q(XF,XT)6QF

where the optimization is over all nodes (latent and observed) while the K-L divergence

in the objective function is defined on the marginal distribution of the observed nodes

only. In the following part of this section, we propose the latent Chow-Liu algorithm to

solve (5.25) in Section 5.4.1 and also provide its accelerated version in Section 5.4.2.

* 5.4.1 The Latent Chow-Liu Algorithm

In this subsection, we propose the latent Chow-Liu algorithm, an alternating projec-

tion algorithm that has a similar structure to the EM algorithm and can be viewed as

an instance of the majorization-minimization algorithm [781. The general form of the

algorithm is summarized in Algorithm 5.4.1.

Algorithm 5.4.1 Alternating Projection

1. Propose an initial distribution q(O)(XF, XT) E QF

2. Alternate between projections P1 and P2

(a) P1: Project to the empirical distribution:

(t)(XF, XT) = (XT)q (XF XT)

(b) P2: Project to the best fitting structure on all variables:

q(t+)(XF, XT) = arg min D((t)(XF, XT) q (XF, XT))
q(XF,XT)EQF

In the first projection P1, we obtain a distribution (on both observed and latent

variables) whose marginal (on the observed variables) matches exactly the empirical

6 1t is easy to see that different models having the same JAIJj JAI cannot be distinguished
using the samples, and thus without loss of generality we can assume JF is normalized to be

the identify matrix in the final solution.

143Sec. 5.4. Learning GGMs with Latent FVSs

144 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

distribution while maintaining the conditional distribution (of the latent variables given

the observed ones). In the second projection P2, we compute a distribution (on all

variables) in the family considered that is the closest to the distribution obtained in the

first projection. We find that among various EM type algorithms, this formulation is

the most revealing for our problems because it clearly relates the second projection to

the scenario where an FVS F is both observed and known (Section 5.3.1). Therefore,

we are able to compute the second projection exactly even though the graph structure is

unknown (which allows any tree structure among the observed nodes). Note that when

the feedback nodes are latent, we do not need to select the FVS since it is simply the

set of latent nodes. This is the source of the simplification when we use latent nodes for

the FVS: We have no search of sets of observed variables to include in the FVS.

The following Lemma 5.4.1 states that the K-L divergence decreases monotonically

using Algorithm 5.4.1 and also provides conditions for stationary points. The proof of

Lemma 5.4.1 is included in Appendix 5.7.

Lemma 5.4.1 : In Algorithm 5.4. 1, if Step 2(a) and Step 2(b) can be computed exactly,
then we have that

D(P(xT) Iq(t+l)(XT)) < D(P(xT) q() (XT)), (5.26)

where the equality is satisfied if and only if

Pt (xF, XT) = Pt1)(XF, XT)- (5.27)

In Algorithm 5.4.2, we summarize the latent Chow-Liu algorithm specialized for our

family of GGMs, where both projections have exact closed-form solutions and exhibit

complementary structure-one using the covariance and the other using the information

parametrization. In projection P1, three blocks of the information matrix remain the

same; In projection P2, three blocks of the covariance matrix remain the same.

As a rule of thumb, we often use the spanning tree obtained by the standard Chow-

Liu algorithm as an initial tree among the observed nodes. But note that P2 involves

solving a combinatorial problem exactly, so the algorithm is able to jump among different

graph structures which reduces the chance of getting stuck at a bad local minimum and

gives us much more flexibility in initializing graph structures. In the experiments, we

Algorithm 5.4.2 The Latent Chow-Liu Algorithm

Input: the empirical covariance matrix ZT

Output: information matrix J [JF
. J JT

1. Initialization: J(O) = [J(o)

M

I, where JT is tree-structured

JM)T

2. Repeat for t = 1,2,3,...

(a) P1: Project to the empirical distribution:

j~t)t-

M

Define jt (J(t))

(j~))T
1

+ J W(J W) (J)T

1
1*

(b) P2: Project to the best fitting structure:

T
CL(Z]) M z (t)

= CCL($'(t),

where t F t T MV-tF}

Define J(t+l) (t+1))-1 .

1 (:)T

will demonstrate that Algorithm 5.4.2 is not sensitive to the initial graph structure.

The two projections in Algorithm 5.4.2 can also be interpreted as alternating low-

rank corrections: indeed,

[o 0
In P1: JCt) = (T

0 (: T
+±

j(t) 1
J I (

J(t)>)-1 [i(t)_F F (5.28)

145Sec. 5.4. Learning GGMs with Latent FVSs

(t+) F
EF

(-T

146 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

and in P2 : E(t+ [CL (0TFF [[t t]
(5.29)

where the second terms of both expressions are of low rank when the size of the latent

FVS is small. This formulation is the most intuitive and simple, but a naive implemen-

tation of Algorithm 5.4.2 has complexity 0(n3) per iteration, where the bottleneck is

inverting full matrices J() and E(t+l). In Section 5.4.2 to follow, we introduce an accel-

erated version of Algorithm 5.4.2 that can reduce the overall computational complexity

to 0(kn2 + n 2 log n).

The following Proposition 5.4.2 states the correctness of Algorithm 5.4.2.

Proposition 5.4.2 Using Algorithm 5.4.2, the objective function of (5.25) decreases

with the number of iterations, i.e.,

DKL(A1(0,tT $ I)J|(0, ET+() <;T0 r|N0 9),(.0

where the equality is obtained if and only if

$ = $+0 .(5.31)

Proof of Proposition 5.4.2

Proof. Let p(xT) = M(O, tT), p(t) (xF, xT) = AF(O, E(t)). Then,

1 1 , I
(xT) = exp{- x2$-T x}, (5.32)

det (27rT)

p (xF lxT) = - p- I xF - ((TJt(t)) -1) 1

et (27)J

xF - t T}. (5.33)

Applying Algorithm 5.4.1, we have

P(') (XF, XT) = P(XT)q' (XF XT)

I XF MXF
oc exp{- ,] [(5.34)

2 XT i -1 + (t (j t) _I) T XT_

which gives the same expression as in P1 of Algorithm 5.4.2.

The next projection

q(t+l)(XF, XT) = arg min D (XF, XT) Iq(XF, XT)) (5.35)
q(xF,XT)GQF

has same form as the ML learning problem of (5.1 11) in Section 5.3.1, and therefore can

be computed exactly using Algorithm 5.3.1.

According to Lemma 5.4.1, we then see that

DKL(K(O, ZT) I IA(0, ET+)) < A(O, ZT) I|(0, ET)) (5.36)

and (t = Z(t+) is the necessary and sufficient condition for stationary points.

5.4.2 The Accelerated Latent Chow-Liu Algorithm

In this subsection, we describe the accelerated latent Chow-Liu algorithm, which gives

the same results as Algorithm 5.4.2 but has significant speedup. The key idea of this

accelerated version is to carefully incorporate the inference algorithms into the projection

steps, so that we are able to further exploit the power of the models and reduce the

per-iteration complexity to O(kn2 + n2 log n), which is the same as the complexity of

the conditioned Chow-Liu algorithm alone. This accelerated version is summarized in

Algorithm 5.4.3.

The following Proposition 5.4.3 states the correctness and the computational com-

plexity of Algorithm 5.4.3.

Proposition 5.4.3 : Algorithm 5.4.3 has computational complexity O(kn 2 ±n2 log n) and

gives the same results as Algorithm 5.4.2.

147Sec. 5.4. Learning GGMs with Latent FVSs

148 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Algorithm 5.4.3 The Accelerated Latent Chow-Liu algorithm

Input: the empirical covariance matrix ET

Output: information matrix J F JM

_ m JT

1. Initialization: J(O) -

2. Repeat

(a) AP1: Compute

[J(0)F

JM

I
J(0)M)

J(0

t$t = J~t -

M = -trY t,

where Y(t) = J J and t
(t)SF

Z (t)

(M) I.
(b) AP2: Compute E(t+l) and J(t+)=(t+))-' from j(t) using

rithm 5.3.1 and Algorithm 5.3.2 to obtain:

j(t+1)

Z(t+ 1) =

j(t+1)
F

j(t+i1)
M

M(t+1)F

Z(t+1)
M

(j(t+))T

SM)
j(t+1)T

(t+1))T
M

r(t+1)T

I'
I_

Proof. In P1 of Algorithm 5.4.2, we have

J =) F

j (t)
M

(J)
-)T

+± J(j(t)) -1 (J(OMT 1* (5.37)

Without explicitly computing j(t), we can directly compute E(t) = (j(t)) as follows.

Algo-

+ (Y~t) i:Ty~

Let A = J(), B = (J (O)T C = j(t) and D =- Jt(Jt)1(Jt)T).

From (5.19) in Lemma 5.3.6, we have

(- (JW + (J(t)>I (At))T (D - CA-1B)-1 (9)J (5.38)

t(t) (D - CA- 1B)-' = tT, (5.39)

and
(t) = ()). (5.40)

Again, from (5.19) in Lemma 5.3.6, we have that

M =- tJM JF. (5.41)

The equations (5.39)-(5.41) are the same as the equations in AP1 in Algorithm

5.4.3, and thus give the same results as P1 in Algorithm 5.4.2. It can be checked

that the matrix multiplications in equations (5.39), (5.40), and (5.41) have a combined

complexity of O(kn 2).

AP2 in Algorithm 5.4.3 can be computed with complexity O(n 2 k + n 2 log n) from

Proposition 5.3.2. Since AP2 in Algorithm 5.4.3 is the same as P2 in Algorithm 5.4.2,

they give exactly the same results.

Therefore, Algorithm 5.4.3 gives the same results as Algorithm 5.4.2 and the com-

plexity of Algorithm 5.4.3 is O(n 2 k + n2 log n) per iteration. We have thus completed

the proof for Proposition 5.4.3.

5.5 Experiments

In this section, we present experimental results for learning GGMs with small FVSs,

observed or latent, using both synthetic data and real data of flight delays.

E 5.5.1 Fractional Brownian Motion: Latent FVS

We consider a fractional Brownian motion (FBM) with Hurst parameter H = 0.2 defined

on the time interval (0, 1]. The covariance function is E(ti, t 2) = (t I2H + t 2 I2H _

149Sec. 5.5. Experiments

150 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Iti - t 2 2H). Figure 5.1 shows the covariance matrices of approximate models using

spanning trees (learned by the Chow-Liu algorithm), latent trees (learned by the CLRG

and NJ algorithms in [79]) and our latent FVS model (learned by Algorithm 5.4.2) using

64 time samples (nodes). We can see that in the spanning tree the correlation decays

quickly (in fact exponentially) with distance, which models the FBM poorly. The latent

trees that are learned exhibit blocky artifacts and have little or no improvement over the

spanning tree measured in the K-L divergence. In Figure 5.2, we plot the K-L divergence

(between the true model and the learned models using Algorithm 5.4.2) versus the size

of the latent FVSs for models with 32, 64, 128, and 256 time samples respectively. For

these models, we need about 1, 3, 5, and 7 feedback nodes respectively to reduce the

K-L divergence to 25% of that achieved by the best spanning tree model. Hence, we

speculate that empirically k = O(log n) is a proper choice of the size of the latent FVS.

We also study the sensitivity of Algorithm 5.4.2 to the initial graph structure. In our

experiments, for different initial structures, Algorithm 5.4.2 converges to the same graph

structures (that give the K-L divergence as shown in Figure 5.2) within three iterations.

* 5.5.2 Performance of the Greedy Algorithm: Observed FVS

In this experiment, we examine the performance of the greedy algorithm (Algorithm

5.3.3) when the FVS nodes are not latent, i.e., they are observed. For each run, we

construct a GGM that has 20 nodes and an FVS of size three as the true model. We

first generate a random spanning tree among the non-feedback nodes. Then the corre-

sponding information matrix J is also randomly generated: non-zero entries of J are

drawn i.i.d. from the uniform distribution U[-1, 1] with a multiple of the identity ma-

trix added to ensure J >- 0. From each generated GGM, we draw 1000 samples and

use Algorithm 5.3.3 to learn the model. For the 100 runs that we have performed, we

recover the true graph structures successfully. Figure 5.3 shows the graphs (and the

K-L divergence) obtained using the greedy algorithm for a typical run. We can see that

we have the most divergence reduction (from 12.7651 to 1.3832) when the first feedback

node is selected (See Figure 5.3b and Figure 5.3c). When the size of the FVS increases

to three (Figure 5.3e), the graph structure is recovered correctly.

Sec. 5.5. Experiments
151

FBM true model: KL=O Best Spanning Tree: KL=4.055 CLRG: KL=4.007

(b) (c)

NJ: KL=8.974

(d)

l-FVS: KL=1.881

(e)

Figure 5.1: Covariance matrix obtained using various algorithms and structures.

(a) The true model (FBM with 64 time samples); (b) The best spanning tree;

(c) The latent tree learned using the CLRG algorithm in [79]; (d) The latent tree

learned using the NJ algorithm in [79]; (e) The model with a size-one latent FVS

learned using Algorithm 5.4.2. The gray scale is normalized for visual clarity.

* 5.5.3 Flight Delay Model: Observed FVS

In this experiment, we model the relationships among airports for flight delays us-

ing models with observed FVSs (non-latent FVSs). The raw dataset comes from the

Research and Innovative Technology Administration of the Bureau of Transportation

(a)

151Sec. 5.5. Experiments

152 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

0 5 10 15 2
Size of Latent FVS

(a) 32 nodes

5 10 15
Size of Latent FVS

(c) 128 nodes

20

04

to3

62

V
0

2w

0

0

0

15

10

5

) 5 10 15 2
Size of Latent FVS

(b) 64 nodes

0 5 10 15
Size of Latent FVS

(d) 256 nodes

20

Figure 5.2: The relationship between the K-L divergence and the latent FVS size.
All models are learned using Algorithm 5.4.2 with 40 iterations.

Statistics. 7 It contains flight information in the U.S. from 1987 to 2008 including in-
formation such as scheduled departure time, scheduled arrival time, departure delay,
arrival delay, cancellation, and reasons for cancellation for all domestic flights in the
U.S. We want to model how the flight delays at different airports are related to each
other using GGMs. First, we compute the average departure delay for each day and
each airport (of the top 200 busiest airports) using data from the year 2008. Note that
the average departure delay does not directly indicate whether an airport is one of the
major airports that has heavy traffic. It is interesting to see whether major airports (es-
pecially those notorious for delays) correspond to feedback nodes in the learned models.

7The data we used in this experiment can be obtained at http://www.transtats.bts.gov/
OTDelay/ OT_DelayCausel.asp

o1.5

0.5

(

10
0
0

0

0

0

5

O)
0

?

----'

[

Sec. 5.5. Experiments 153

6 5 4 6
7 7

8 2

99

10 20

11 19

12 18
3 17

14 15 16 1

(a) TKue ModelI

6 5 4

8 2

9 l

10 20

12 19

12 3 17 8
14 15 16

(c) KL=1.3832

6
7

9

10

12

14

(e) K

6 5 4
7 3

8 2

9

10 20

11 12 819

13 17
14 1516

(b) KL=12.7651

6 5 4

8 0-2

9

10 20

(K .619

12(18

14 15 16

(d) KL=0.6074

5 4
3

2

20

19

18
17

15 16

L,=0.0048

Figure 5.3: Learning a GGM using Algorithm 5.3.3. The thicker blue lines repre-
sent the edges among the non-feedback nodes and the thinner red lines represent
other edges. (a) True model; (b) Tree-structured model (0-FVS) learned from
samples; (c) 1-FVS model; (d) 2-FVS model; (e) 3-FVS model.

153Sec. 5.5. Experiments

154 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

Figure 5.4a shows the best tree-structured graph obtained by the Chow-Liu algorithms

(with input being the covariance matrix of the average delay). Figure 5.4b, Figure 5.5a,

and Figure 5.5b show the GGMs learned using Algorithm 5.3.3 with FVSs of sizes 1,
3, and 10 respectively. It is interesting that the first node selected is Nashville (BNA),
which is not one of the top "hubs" of the air system. The reason is that much of the

statistical relationships related to those hubs are approximated well, when we consider

a 1-FVS approximation, by a spanning tree (excluding BNA) and it is the breaking

of the cycles involving BNA that provide the most reduction in K-L divergence over a

spanning tree. Starting with the next node selected in our greedy algorithm, we begin to

see hubs being chosen. In particular, the first ten airports selected in order are: BNA,
Chicago, Atlanta, Oakland, Newark, Dallas, San Francisco, Seattle, Washington DC,
Salt Lake City. Several major airports on the coasts (e.g., Los Angeles and JFK) are

not selected, as their influence on delays at other domestic airports is well-captured with

a tree structure.

* 5.6 Future Directions

Our experimental results demonstrate the potential of these algorithms, and, as in the

work [16], suggests that choosing FVSs of size O(log n) works well, leading to algorithms

which can be scaled to large problems. Providing theoretical guarantees for this scaling

(e.g., by specifying classes of models for which such a size FVS provides asymptotically

accurate models) is thus a compelling open problem. In addition, incorporating com-

plexity into the FVS-order problem (e.g., as in AIC or BIC) is another direction worthy

of consideration.

Sec. 5.6. Future Directions

(a) Spanning Tree

(b) 1-FVS GGM

Figure 5.4: GGMs with FVSs of sizes 0 and 1 for modeling flight delays. The red
dots denote the selected feedback nodes and the blue lines represent the edges
among the non-feedback nodes (other edges involving the feedback nodes are
omitted for clarity).

155

156 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

(a) 3-FVS GGM

(b) 10-FVS GGM

Figure 5.5: GGMs with FVSs of sizes 3 and 10 for modeling flight delays. The
red dots denote the selected feedback nodes and the blue lines represent the edges
among the non-feedback nodes (other edges involving the feedback nodes are
omitted for clarity).

Sec. 5.7. Appendix for Chapter 5 157

U 5.7 Appendix for Chapter 5

Proof of Lemma 5.2.2

Lemma 5.2.2 : If the information matrix J >- 0 has tree structure T = (V, 5), then we

have

det (J)- = Pi I-
iGV (ij)ES

P22 .P3 -p 2
it]I 3

PUiP 3

where P = J-1.

Proof. Without loss of generality, we assume the means are zero. For any tree-structured

distribution p(x) with underlying tree T, we have the following factorization according

to Proposition 2.1.1.

p(x) = J7p(xi)
2CV

(5.43)p(Xj, x3)
(i,j) EET x~~

For a GGM of n nodes, the joint distribution, the singleton marginal distributions,

and the pairwise marginal distributions can be expressed as follows.

1 11

(27r) (detJ)- 2

1 1 1
p (wi)) 1 exp{-- -xT P x}

(27r)- Pi i2

(5.44)

(5.45)

exp{--xT
2

P

Pj

P.

P
-I-1

x}. (5.46)

Matching the normalization factors using (5.43), we obtain

det ['2 3

det (J)- - J P2 fl LP 32 PJ

2ev (i2j)CE

(5.47)

(5.48)
PiiPjj

(5.42)

1
p(Xi, Xj) =

27r (det

1
P2

P.[Pu

Pi I

=flP22flI

2cv (23) E&

158 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

This completes the proof of Lemma 5.2.2.

El

Proof of Lemma 5.3.3

min DKL(1q) -H (x)+ H (xF)+ 1 Hp(xixF) - IP (xi; Xj I XF),qE QF,T
iCv\F (i,j)ET

(5.49)

where the minimum K-L divergence is obtained if and only if: 1) q(xF) = fXF); 2)

q(xi, xj xF,) = (Xi, Xj|XF) for any (i, j) E ST-

Proof. With fixed F and T,

DKL(Pllq) = f(x) log P(dxq(x)

= -Hp(x) - 3P(x) log q(x)dx

= -Hp(x) - JfP(x) log (q(xF)q(xTjxF)) dx

)I

(5.50)

(5.51)

(5.52)

dx (5.53)p(x) log q(xF)q(xrIxF)
iEV\F\r

= -H(x) - JP (xF) log q(xF)dxF - JP(xF, xr) log q (xr XF)dxF dxr

-
ieV\F\

J (xF, X,(i), xi) log q(xi lXF, x7r(i))dxFdxr(i)dxir
(5.54)

SH(X)+ H(xF) + D(PF qF) + HP(xrxF) + D(Pr|Flqr|F iF)

Hfi(xjjxF,,r(i)) + D(PiIF,r jjqiF,r PFr)+ V\
iEV\F\r

(c)
> -HP (x) + H (xF) + HP (xrIxF) +

iEV\F\r

where (a) is obtained by using Factorization 1 in Proposition 2.1.1 with an arbitrary root

node r; (b) can be directly verified using the definition of the information quantities, and

the equality in (c) is satisfied when qF = PF, qrjF = PrIF, and qilF,7r(i) pilF,7r(i), V E

Lemma 5.3.3 :

(5.55)

(5.56)

q (xi IXF, X,,r(i)

Hp (xi IxF,,r(i)),

Sec. 5.7. Appendix for Chapter 5
159

T\r, or equivalently when

q(XF) = 1(XF)

q(xi, xj IXF) = P(Xi, Xj XF), V(i,j) E ST.

(5.57)

(5.58)

Next, we derive another expression for (5.56). By substituting (5.58) into Factor-

ization s of Proposition 2.1.1, we have

= (XF)JJ*(idXF) I- j3(Xi, Xi XF)

A(Xi xF)1(Xj IxF)

Hence,

min
qCQF,T

D(Pj|q) = D(Pllq*)

-H (x)+ Hi(XF)+ S Hf(xi XF)
iEV\F

+ fiF,i,j(XF, Xi, Xj) log Ax(xi, Xj XF) dXFdxidxj
P(Xi XF)f(Xj XF)

=HP (x) + H (XF) +S HP (XiIXF)
iV\F

- PF,i,j (XF, Xi, Xj) log P (X XF)P(Xj IXF) dXFdxidxj
IP(Xi, xj XF)

- -HP(x) + H(fF) + E H(AIlF XF) - IP(Xi;X XF).
ieV\F (ij)e&E

(5.60)

(5.61)

(5.62)

(5.63)

(5.64)

This completes the proof of Lemma 5.3.3.

EZ

Proof of Lemma 5.3.4

Lemma 5.3.4 : If E >- 0 is given and we know that its inverse J = Y-1 is sparse with

respect to a tree T = (V, E), then the non-zero entries of J can be computed using (5.65)

in time O(n).

q* (x) (5.59)

159Sec. 5.7. Appendix for Chapter s5

160 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

(I - deg(i)) E-1 + IjN(i) E

Jij =

0

Proof. Since E >- 0, we can construct a Gaussian distribution p(x) with zero mean and

covariance matrix E. The distribution is tree-structured because J = E- 1 has tree

structure T. Hence, we have the following factorization according to Proposition 2.1.1.

p(x) = AP(xi) Hij C.p(XiPxj)'

1 1

A~x) = I J)_T-exp{-- -xI Jx}
(27) !(detJ) 2

27 (det

1Ei
2

Ei: 1

exp{ 2
2

x}. (5.69)

By matching the quadratic coefficients in the exponents, we have that

jeA (i) .E i

= (1 - deg(i)) E-1 +

E

(

and for (i, j) E E,

J2 J = (-[Eui

E32

Euj

Ei3
E- EEj

-I
12

(5.72)

(5.73)

I
ljV

(i, j) e.

otherwise.

(5.65)

where

(5.66)

1
p(xi) = i exp{

(27) 2Pi i 2

(5.67)

(5.68)

-1

[E

Eui

1)

-E.1) (5.70)

(5.71)

- EE-E)

pAzi, zy) =

- EijE-lEji

Sec. 5.7. Appendix for Chapter 5 161

The complexity of computing Jj for each (i, j) E S is 0(1) and the complexity of

computing each Jjj is O(deg i). Since EiEV deg(i) equals twice the number of edges,

which is O(n), the total computational complexity is O(n). This completes the proof

of Lemma 5.3.4.

Proof of Lemma 5.4.1

Lemma 5.4.1 : In Algorithm 5.4.1, if Step 2(a) and Step 2(b) can be computed ex-

actly, then we have that D(P(XT)||q(t'+)(XT)) < D(p(XT) jqW(XT)), where the equality

is satisfied if and only if P(t) (XF, XT) = (t+1) (XF, XT)-

Proof. For any t,

D(P() (XT, XF) q(t) (XF, XT)) (5.74)

= p(XT)q((XF XT) log P(X)q(t) (XF XT) dXFdXT (5.75)
IXT,XF q(t) (XF, XT)

- f (XT)q (XF XT) log T dXFdXT (5.76)
JXT,XF q(t) (XT)

= fP(X19 P(X dXT (5.77)
f Tq (XT)

=D (P (XT) lq(t) (XT)) (5.78)

By the definition of q(t+1) in step (b), we have

D(P(XT, XF) q(t+1)(XF, XT)) < D3(t) (XT, XF) jqI)(XF, XT)). (5.79)

Therefore,

D(P(XT) q(t) (XT)) (5.80)

=aD(p(t) (XT, XF) q(t) (XF, XT)) (5.81)

(b)
> D(Pt) (XT, XF) q(t+1) (XF, XT)) (5.82)

162 CHAPTER 5. LEARNING GAUSSIAN GRAPHICAL MODELS WITH SMALL FEEDBACK VERTEX SETS

= F (XT)qt)(XF XT) log q(XFXT) dXFdXT (5.83)
xT,XF q() (I l(XF, XT)

P(XT) XF XT) 1 PxT) dXFdXT
xT,XF q(t) (XT)

+ ± (XT q (XF XT) 109 q F) dXFdXT (5.84)
JXT,XF (x'X)lgq(t±1) (xFJxT) d x

= P(XT)log dXFdXT
XTq(t+l) (XT)d dT

+ P (XT)q (XF XT) log q(t) (XF IXT)P(XT) dXFdXT (5.85)
fXT,XF q t1)XF XT)*(XT)

=D((XT) I q(t+1) (XT)) + P(t) (XF, XT) log P(t) (XF, XT) dXFdXT (5.86)
JXT,XF P(t±1) (XF, XT)

=D(X(XT)I q(t+1) (XT)) + D(3(t) (XF, XT) [1 (t+1) (XF, XT)) (5.87)

(c)
>D(P(XT)IIq(t+ 1)(XT)), (5.88)

where (a) is due to (5.78), (b) is due to (5.79), and (c) is due to that

D(')(XF, XT) (t+l) (XF, XT)) > 0. (5.89)

Therefore, we always have D((XT)|I|q(t)) > D((XT) I q(t+1)).

A necessary condition for the objective function to remain the same is that

D(3(t) (XF, XT) I IP(t+ 1) (XF, XT)) = 0, (5.90)

which is equivalent to P(t) (XF, XT) = P(t+1) (XF, XF).

When P(t) (XF, XT) = fi(t+1)(XF, XF), under non-degenerate cases, we have

q(t) (XF, XT) - q(t+) (XF, XT) (5.91)

according to P2 of Algorithm 5.4.1 and thus a stationary point is reached.

Therefore, P(t) (XF, XT) =(t+l) (XF, XF) is a necessary and sufficient condition for

the objective function to remain the same. This completes the proof for Lemma 5.4.1.

D-

Chapter 6

Conclusion

The central theme of this thesis is providing efficient solutions to some challenging

problems in probabilistic graphical models which characterize the interactions among

random variables. In this chapter, we conclude this thesis by summarizing the main

contributions and suggesting some future research directions.

* 6.1 Summary of Contributions

Recursive Feedback Message Passing for Distributed Inference

Inference problems for graphical models have become more and more challenging with

the increasing popularity of very large-scale models. In particular, a purely distributed

algorithm is of great importance since centralized computations are often inefficient,

expensive, or impractical. In Chapter 3, we have proposed such a distributed algorithm

called recursive FMP to perform inference in GGMs. Recursive FMP extends the pre-

viously developed hybrid FMP algorithm by eliminating the centralized communication

and computation among the feedback nodes. In recursive FMP, nodes identify their

own status (e.g., whether they behave like feedback nodes) in a distributed manner. We

have shown that in recursive FMP the accuracy of the inference results are consistent

with hybrid FMP while allowing much more flexibility, as different parts of the graph

may use different subsets of feedback nodes. Furthermore, we have analyzed the results

obtained by recursive FMP using the walk-sum framework and provided new walk-sum

interpretations for the intermediate results and the added correction terms.

163

Sampling Gaussian Graphical Models Using Subgraph Perturbations

Efficient sampling from GGMs has become very useful not only in modeling large-scale

phenomena with underlying Gaussianity, but also in statistical models where a GGM

is one of several interacting components. In Chapter 4, we have proposed a general

framework for converting subgraph-based iterative solvers to samplers with convergence

guarantees. In particular, we have provided a construction where the injected noise

at each iteration can be generated simply using a set of i.i.d. scalar Gaussian random

variables. Moreover, we have also extended the perturbation sampling algorithm from

stationary graphical splittings to non-stationary graphical splittings since using multiple

subgraphs often gives much better convergence than using any of the individual sub-

graphs. Furthermore, we have studied the use of different kinds of tractable subgraphs

and provided an algorithm to adaptively select the subgraphs based on an auxiliary

inference problem.

Learning Gaussian Graphical Models with Small Feedback Vertex Sets

In general, a larger family of graphs represent a larger collection of distributions (and

thus can better approximate arbitrary empirical distributions), but often lead to com-

putationally expensive inference and learning algorithms. Hence, it is important to

study the trade-off between modeling capacity and efficiency. In Chapter 5, we have

studied the family of GGMs with small FVSs and presented several learning algorithms

for different cases. For the case where all of the variables are observed, including any

to be included in the FVS, we provided an efficient algorithm for exact ML estimation.

In addition, we have given an approximate and much faster greedy algorithm for this

case when the FVS is unknown and large. For a second case where the FVS nodes are

taken to be latent variables, we showed the equivalence between the structure learning

problem and the (exact or approximate) decomposition of an inverse covariance ma-

trix into the sum of a tree-structured matrix and a low-rank matrix. For this case, we

proposed an alternating low-rank projection algorithm for model learning and proved

that even though the projections are onto a highly non-convex set, they are carried out

exactly, thanks to the properties of GGMs of this family. Furthermore, we performed

experiments using both synthetic data and real data of flight delays to demonstrate the

modeling capacity with FVSs of various sizes.

164 CHAPTER 6. CONCLUSION

Sec. 6.2. Future Research Directions 165

* 6.2 Future Research Directions

Recursive Feedback Message Passing for Distributed Inference

The theoretical results we have presented in Chapter 3 have assumed that the local

capacity and the effective diameters are sufficiently large. However, in practice, the

local capacity and the effective diameters are often small due to the constraints on local

resources and computational power. It is of interest to seek additional theoretical results

on the convergence and accuracy in such cases. This is a challenging problem because

of the complex and heterogeneous message behaviors. Moreover, the algorithms and

analysis in Chapter 3 are presented assuming the underlying distributions are Gaussian.

In many applications of interest, the random variables of interest are non-Gaussian

(e.g., in Ising models). In such a setting, the idea of using a special message-passing

protocol for a special set of nodes can still apply, leading to a hybrid message-passing

algorithm similar to standard FMP. However, it is still an open problem to develop a

purely distributed algorithm where all node use the same integrated protocol.

Sampling Gaussian Graphical Models Using Subgraph Perturbations

In Chapter 4, we have discussed the use of different families of tractable subgraphs.

Using subgraphs in a richer family (e.g., the family of graphs with small FVSs compared

with the family of tree-structured graphs) increases the computational complexity per

iteration while reducing the number of iterations required for convergence. It is of

interest to obtain more theoretical results on this trade-off, which may lead to new

adaptive selection criteria that can choose graphs across different model families.

Learning Gaussian Graphical Models with Small Feedback Vertex Sets

In Chapter 5, our experimental results have demonstrated the potential of the pro-

posed learning algorithms, and, as in the work [16], suggests that choosing FVSs of

size O(log n) works well, leading to algorithms which can be scaled to large problems.

Providing theoretical guarantees for this scaling (e.g., by specifying classes of models for

which such a size FVS provides asymptotically accurate models) is a compelling open

problem. In addition, incorporating complexity into the FVS-order problem (e.g., as in

AIC or BIC) is another direction worthy of consideration.

166 CHAPTER 6. CONCLUSION

Bibliography

[1] D. Malioutov, J. K. Johnson, M. J. Choi, and A. S. Willsky, "Low-rank variance

approximation in GMRF models: single and multiscale approaches," IEEE Trans-

actions on Signal Processing, vol. 56, no. 10, pp. 4621-4634, 2008. 1, 2.1.3, 3.5,
4.5.4

[2] M. Sonka, V. Hlavac, and R. Boyle, Image Processing, Analysis, and Machine

Vision, 4th ed. Cengage Learning, 2014. 1, 2.1.3

[31 D. Heckerman and J. Breese, "Causal independence for probability assessment and

inference using Bayesian networks," IEEE Transactions on Systems, Man, and Cy-

bernetics, vol. 26, no. 6, pp. 826-831, 1996. 1

[4] C. Wunsch and P. Heimbach, "Practical global oceanic state estimation," Physica
D: Nonlinear Phenomena, vol. 230, no. 1-2, pp. 197-208, 2007. 1, .1, 2.1.3

[5] L.-W. Yang, X. Liu, C. J. Jursa, M. Holliman, A. Rader, H. A. Karimi, and I. Ba-

har, "iGNM: a database of protein functional motions based on Gaussian Network

Model," Bioinformatics, vol. 21, no. 13, p. 2978, 2005. 1.1, 2.1:3

[6] Y. Weiss and W. Freeman, "Correctness of belief propagation in Gaussian graphical

models of arbitrary topology," Neural Computation, vol. 13, no. 10, pp. 2173-2200,
2001. 1.1

[7] K. Murphy, Y. Weiss, and M. Jordan, "Loopy belief propagation for approximate

inference: an empirical study," in Proceedings of the 15th Conference on Uncertainty

in Artificial Intelligence (UAI), 1999, pp. 467-475. 1.1, 2.2.1

[81 D. Bickson, 0. Shental, and D. Dolev, "Distributed Kalman filter via Gaussian be-

lief propagation," in 46th Annu. Allerton Conf. Commun., Control, and Computing,
2008, pp. 628-635. 1.1

[9] M. Wainwright and M. Jordan, "Graphical models, exponential families, and vari-

ational inference," Foundations and Trends in Machine Learning, vol. 1, no. 1-2,
pp. 1-305, 2008. 1.1

167

[10] J. Yedidia, W. Freeman, and Y. Weiss, "Constructing free-energy approximations
and generalized belief propagation algorithms," IEEE Transactions on Information
Theory, vol. 51, no. 7, pp. 2282-2312, 2005. 1.1

[11] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, "Tree-based reparameteriza-
tion framework for analysis of sum-product and related algorithms," IEEE Trans-
actions on Information Theory, vol. 49, no. 5, pp. 1120-1146, 2003. 1.1

[12] D. Dolev, D. Bickson, and J. K. Johnson, "Fixing convergence of gaussian belief
propagation," in Information Theory, 2009. ISIT 2009. IEEE International Sym-
posium on. IEEE, 2009, pp. 1674-1678. 1.1

[13] Y. El-Kurdi, D. Giannacopoulos, and W. J. Gross, "Relaxed gaussian belief prop-
agation," in Proceedings of the International Symposium on Information Theory
Proceedings (ISIT). IEEE, 2012, pp. 2002-2006. 1.1

[14] C. C. Moallemi and B. Van Roy, "Convergence of min-sum message passing for
quadratic optimization," IEEE Transactions on Information Theory, vol. 55, no. 5,
pp. 2413-2423, 2009. 1.1

[15] N. Ruozzi and S. Tatikonda, "Message-passing algorithms for quadratic minimiza-
tion," arXiv preprint arXiv:1212.0171, 2012. 1.1

[16] Y. Liu, V. Chandrasekaran, A. Anandkumar, and A. S. Willsky, "Feedback message
passing for inference in Gaussian graphical models," IEEE Transactions on Signal
Processing, vol. 60, no. 8, pp. 4135-4150, 2012. 1.1, 1.2, 1.3, 2.2.3, 3.1, 3.2.1, 6, 8,
11, 3.2.2, 4.1, 4.4.1, 5.1, 5.6, 6.2

[17] M. K. Titsias, N. D. Lawrence, and M. Rattray, "Efficient sampling for Gaussian
process inference using control variables," Proceedings of Advances in Neural Infor-
mation Processing Systems (NIPS), vol. 21, pp. 1681-1688, 2008. 1.2

[18] R. Salakhutdinov, "Learning deep Boltzmann machines using adaptive MCMC," in
Proceedings of the International Conference on Machine Learning (ICML), vol. 27,
2010. 1.2

[19] A. E. Gelfand, "Model determination using sampling-based methods," in Markov
Chain Monte Carlo in Practice, W. Gilks, R. S., and S. D.J., Eds., 1996, pp. 145-
161. 1.2

[20] S. Fine, Y. Singer, and N. Tishby, "The hierarchical hidden Markov model: analysis
and applications," Machine learning, vol. 32, no. 1, pp. 41-62, 1998. 1.2

[21] T. Kailath, A. H. Sayed, and B. Hassibi, Linear Estimation. Prentice-Hall, 2000,
vol. 1. 1.2

168 BIBLIOGRAPHY

[22] K. Daoudi, A. B. Frakt, and A. S. Willsky, "Multiscale autoregressive models and

wavelets," IEEE Transactions on Information Theory, vol. 45, no. 3, pp. 828-845,
1999. 1.2

[23] M. I. Jordan, "Graphical models," Statistical Science, pp. 140-155, 2004. 1.2, 1.3,
2.1, 2.1.2, 2.1.3, 2.2.1, 2.3

[24] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. Citeseer, 2004. 1.2,
2.3, 4.1

[251 Y. Amit and U. Grenander, "Comparing sweep strategies for stochastic relaxation,"
Journal of Multivariate Analysis, vol. 37, no. 2, pp. 197-222, 1991. 1.2

[261 A. Thomas, A. Gutin, V. Abkevich, and A. Bansal, "Multilocus linkage analysis

by blocked Gibbs sampling," Statistics and Computing, vol. 10, no. 3, pp. 259-269,
2000. 1.2

[27] H. Rue, "Fast sampling of Gaussian Markov random fields," Journal of the Royal

Statistical Society. Series B (Statistical Methodology), vol. 63, no. 2, pp. 325-338,
2001. 1.2

[281 I. Porteous, D. Newman, A. Ihler, A. Asuncion, P. Smyth, and M. Welling, "Fast

collapsed Gibbs sampling for latent Dirichlet allocation," in Proceedings of the In-

ternational Conference on Knowledge Discovery and Data Mining (KDD), 2008,
pp. 569-577. 1.2

[29] F. Hamze and N. de Freitas, "From fields to trees," in Proceedings of the 20th

Conference on Uncertainty in Artificial Intelligence (UAI), 2004, pp. 243-250. 1.2,
2.3, 4.5.1

[30] G. Papandreou and A. L. Yuille, "Gaussian sampling by local perturbations," in

Proceedings of Advances in Neural Information Processing Systems (NIPS), 2010,
pp. 1858-1866. 1.2

[31] T. A. Davis, Direct Methods for Sparse Linear Systems. Society for Industrial and

Applied Mathematics, 2006. 1.2, 9

[32] E. B. Sudderth, M. J. Wainwright, and A. S. Willsky, "Embedded trees: estima-

tion of Gaussian processes on graphs with cycles," IEEE Transactions on Signal

Processing, vol. 52, no. 11, pp. 3136-3150, 2004. 1.2, 4.1, 4.2.1, 4.2.1, 4.2.2, 4.2.2,
4.3, 4.3

[33] V. Chandrasekaran, J. K. Johnson, and A. S. Willsky, "Estimation in Gaussian

graphical models using tractable subgraphs: a walk-sum analysis," IEEE Transac-

tions on Signal Processing, vol. 56, no. 5, pp. 1916-1930, 2008. 1.2, 2.2.2, 4.1, 4.2.1,
4.3, 4.3, 4.3, 2, 4.4.1, 4.4.2

169BIBLIOGRAPHY

BIBLIOGRAPHY

[34] J. M. Ortega, Numerical Analysis: a Second Course. Society for Industrial and
Applied Mathematics, 1990. 1.2, 4.1, 4.2.2

[35] J. Pearl, "A constraint propagation approach to probabilistic reasoning," Proceed-
ings of the 2nd Conference on Uncertainty in Artificial Intelligence (UAI), 1986.
1.3

[36] C. Chow and C. Liu, "Approximating discrete probability distributions with de-
pendence trees," IEEE Transactions on Information Theory, vol. 14, no. 3, pp.
462-467, 1968. 1.3, 2.4.3

[37] M. J. Choi, V. Chandrasekaran, and A. S. Willsky, "Exploiting sparse Markov and
covariance structure in multiresolution models," in Proceedings of the 26th Annual
International Conference on Machine Learning (ICML). ACM, 2009, pp. 177-184.
1.3

[38] M. L. Comer and E. J. Delp, "Segmentation of textured images using a multires-
olution Gaussian autoregressive model," IEEE Transactions on Image Processing,
vol. 8, no. 3, pp. 408-420, 1999. 1.3

[39] C. A. Bouman and M. Shapiro, "A multiscale random field model for Bayesian
image segmentation," IEEE Transactions on Image Processing, vol. 3, no. 2, pp.
162-177, 1994. 1.3

[40] D. Karger and N. Srebro, "Learning Markov networks: maximum bounded tree-
width graphs," in Proceedings of the 12th annual ACM-SIAM symposium on Dis-
crete algorithms. Society for Industrial and Applied Mathematics, 2001, pp. 392-
401. 1.3, 4.4.1

[41] P. Abbeel, D. Koller, and A. Y. Ng, "Learning factor graphs in polynomial time and
sample complexity," The Journal of Machine Learning Research (JMLR), vol. 7,
pp. 1743-1788, 2006. 1.3

[42] A. Dobra, C. Hans, B. Jones, J. R. Nevins, G. Yao, and M. West, "Sparse graph-
ical models for exploring gene expression data," Journal of Multivariate Analysis,
vol. 90, no. 1, pp. 196-212, 2004. 1.3

[43] M. E. Tipping, "Sparse Bayesian learning and the relevance vector machine," The
Journal of Machine Learning Research (JMLR), vol. 1, pp. 211-244, 2001. 1.3

[44] J. Friedman, T. Hastie, and R. Tibshirani, "Sparse inverse covariance estimation
with the graphical lasso," Biostatistics, vol. 9, no. 3, pp. 432-441, 2008. 1.3

170

BIBLIOGRAPHY 171

[451 P. Ravikumar, G. Raskutti, M. Wainwright, and B. Yu, "Model selection in Gaus-

sian graphical models: High-dimensional consistency of li-regularized MLE," Pro-

ceedings of Advances in Neural Information Processing Systems (NIPS), vol. 21,
2008. 1.3

[46] N. Friedman, D. Geiger, and M. Goldszmidt, "Bayesian network classifiers," Ma-

chine learning, vol. 29, no. 2, pp. 131-163, 1997. 1.3

[47] V. Chandrasekaran, P. A. Parrilo, and A. S. Willsky, "Latent variable graphical

model selection via convex optimization," in Proceedings of the 48th Annual Aller-

ton Conference on Communication, Control, and Computing (Allerton), 2010, pp.

1610-1613. 1.3

[48] S. Lauritzen, Graphical Models. New York: Oxford University Press, 1996. 2.1.2

[49] N. Friedman, M. Linial, I. Nachman, and D. Pe'er, "Using Bayesian networks to

analyze expression data," Journal of Computational Biology, vol. 7, no. 3-4, pp.

601-620, 2000. 2.1.3

[501 Y. Zhang, M. Brady, and S. Smith, "Segmentation of brain MR images through a

hidden Markov random field model and the expectation-maximization algorithm,"

IEEE Transactions on Medical Imaging, vol. 20, no. 1, pp. 45-57, 2001. 2.1.3

[51] F. R. Kschischang and B. J. Frey, "Iterative decoding of compound codes by prob-

ability propagation in graphical models," IEEE J. Sel. Areas in Commun., vol. 16,
no. 2, pp. 219-230, 1998. 2.1.3

[52] C. Crick and A. Pfeffer, "Loopy belief propagation as a basis for communication in

sensor networks," in Proceedings of the 19th Conference on Uncertainty in Artificial

Intelligence (UAI), vol. 18, 2003. 2.2.1

[53] R. McEliece, D. MacKay, and J. Cheng, "Turbo decoding as an instance of Pearl's

belief propagation algorithm," IEEE J. Select. Areas in Commun., vol. 16, no. 2,
pp. 140-152, 1998. 2.2.1

[54] D. M. Malioutov, J. K. Johnson, and A. S. Willsky, "Walk-sums and belief propa-
gation in Gaussian graphical models," The Journal of Machine Learning Research

(JMLR), vol. 7, pp. 2031-2064, 2006. 2.2.1, 2.2.2, 4, 2.2.2, 4.3

[55] V. V. Vazirani, Approximation Algorithms. New York: Springer, 2004. 2.2.3

[56] Y. Liu, "Feedback message passing for inference in Gaussian graphical models,"

Master's thesis, Massachusetts Institute of Technology, 2010. 2.2.3, 2.2.3

172 BIBLIOGRAPHY

[57] J. Gonzalez, Y. Low, A. Gretton, and C. Guestrin, "Parallel Gibbs sampling: from
colored fields to thin junction trees," in Proceedings of the International Conference
on Artificial Intelligence and Statistics (AISTATS), 2011, pp. 324-332. 2.3

[58] K. P. Murphy, Machine learning: a probabilistic perspective. MIT Press, 2012.
2.4.2, 5.3.1

[59] C. Bishop, Pattern Recognition and Machine Learning. New York: Springer, 2006.
2.4.2

[60] N. A. Lynch, Distributed algorithms. Morgan Kaufmann, 1996. 3.2, 3.2.1

[61] C. Fox and A. Parker, "Convergence in variance of Chebyshev accelerated Gibbs
samplers," SIAM Journal of Scientific Computing, vol. 36, pp. 124-147, 2013. 4.1

[62] A. Galli and H. Gao, "Rate of convergence of the Gibbs sampler in the Gaussian
case," Mathematical Geology, vol. 33, no. 6, pp. 653-677, 2001. 4.1

[63] Y. Liu and A. S. Willsky, "Learning Gaussian graphical models with observed or
latent FVSs," in Proceedings of Advances in Neural Information Processing Systems
(NIPS), 2013, pp. 1833-1841. 4.2.1

[64] D. P. O'Leary and R. E. White, "Multi-splittings of matrices and parallel solution
of linear systems," SIAM Journal on Algebraic Discrete Methods, vol. 6, no. 4, pp.
630-640, 1985. 4.2.2

[65] A. J. Laub, Matrix Analysis for Scientists and Engineers. Society of Industrial
and Applied Mathematics, 2005. 4.2.2

[66] 0. Axelsson, "Bounds of eigenvalues of preconditioned matrices," SIAM Journal on
Matrix Analysis and Application, vol. 13, no. 3, pp. 847-862, 1992. 4.2.2

[67] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge University Press,
1990. 4.2.2, 5.3.1

[68] M. Bern, J. R. Gilbert, B. Hendrickson, N. Nguyen, and S. Toledo, "Support-graph
preconditioners," SIAM Journal on Matrix Analysis and Application, vol. 27, no. 4,
pp. 930-951, 2006. 4.4.1

[69] N. Srebro, "Maximum likelihood bounded tree-width Markov networks," in Proceed-
ings of the 17th Conference on Uncertainty in Artificial Intelligence (UAI), 2001,
pp. 504-511. 4.4.1

[70] D. Shahaf and C. Guestrin, "Learning thin junction trees via graph cuts," in Pro-
ceedings of the International Conference on Artificial Intelligence and Statistics
(AISTA TS), 2009, pp. 113-120. 4.4.1

[71] D. A. Spielman and S.-H. Teng, "Spectral sparsification of graphs," SIAM Journal

on Computing, vol. 40, p. 981, 2011. 4.4.1

[72] M. Desjarlais and R. Molina, "Counting spanning trees in grid graphs," Congressus

Numerantium, pp. 177-186, 2000. 4

[73] V. Bafna, P. Berman, and T. Fujito, "A 2-approximation algorithm for the undi-

rected feedback vertex set problem," SIAM Journal on Discrete Mathematics,
vol. 12, p. 289, 1999. 5.1, 5.2

[74] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction

to variational methods for graphical models," Machine learning, vol. 37, no. 2, pp.

183-233, 1999. 5.2

[75] M. J. Wainwright, T. S. Jaakkola, and A. S. Willsky, "A new class of upper bounds

on the log partition function," IEEE Transactions on Information Theory, vol. 51,
no. 7, pp. 2313-2335, 2005. 5.2

[76] J. Ma, J. Peng, S. Wang, and J. Xu, "Estimating the partition function of graphical

models using langevin importance sampling," in Proceedings of the International

Conference on Artificial Intelligence and Statistics (AISTATS), 2013, pp. 433-441.

5.2

[77] S. Kirshner, P. Smyth, and A. W. Robertson, "Conditional Chow-Liu tree struc-

tures for modeling discrete-valued vector time series," in Proceedings of the 20th

conference on Uncertainty in Artificial Intelligence (UAI), 2004, pp. 317-324. 3

[78] M. A. Figueiredo, J. M. Bioucas-Dias, and R. D. Nowak, "Majorization-

minimization algorithms for wavelet-based image restoration," IEEE Transactions

on Image Processing, vol. 16, no. 12, pp. 2980-2991, 2007. 5.4.1

[79] M. J. Choi, V. Y. Tan, A. Anandkumar, and A. S. Willsky, "Learning latent tree

graphical models," The Journal of Machine Learning Research (JMLR), vol. 12,
pp. 1771-1812, 2011. 5,5.1, 5.1

173BIBLIOGRAPHY

