
Implementation of a Python Version of a Scaled Boundary Finite Element
Method for Plate Bending Analysis

by

Lingfeng Chen

B.S. in Civil and Environmental Engineering

University of California, Berkeley, 2012

Submitted to the Department of Civil and Environmental Engineering Partial

Fulfillment of the Requirements for the Degree of

Master of Engineering in Civil and Environmental Engineering

at the M#*VE
Massachusetts Institute of Technology XHET NsiT

OF TECHNOLOGY

June 2014

@2014 Lingfeng Chen. All Rights Reserved. BRA RI ES

The author hereby grants to MIT permission to reproduce and distribute publicly paper and
electronic copies of this thesis document in whole or in part in any medium now known or

hereafter created.

Signature of

Certified by:

Certified by:

Author:
Signature redacted

Departm ent of Civil and Environmental Engineering

May 9, 2014

Signature redacted
Jerome J. Connor

Professor of Civil and Environmental Engineering
Thesis Supervisor

Signature redacted
Heii M. fepf

Chair, Departmental Committee for Graduate Students



2



Implementation of a Python Version of a Scaled Boundary Finite Element
Method for Plate Bending Analysis

By

Lingfeng Chen

Submitted to the
Department of Civil and Environmental Engineering on May 9, 2014

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Civil and Environmental Engineering

ABSTRACT

Common finite element programs for plate bending analysis are complicated and limited by the
common plate theories. Such programs are usually not user-friendly for designers to implement.
Lately, Hou Man et al. from the University of New South Wales has developed a technique for
unified 3D plate bending analysis using scaled boundary finite element analysis, which promises
to have little restrictions on plate thicknesses and faster convergence. This thesis presents an
implementation of a python version of their method, which, when combined with a modeling

program like Rhinoceros, aids designers in studying plate bending behavior under static loading.

It represents a first step in the development of interactive programs for structural design and
analysis of plates.

Thesis Supervisor: Jerome J. Connor

Title: Professor of Civil and Environmental Engineering





ACKNOWLEDGEMENT

First, I would like to express my gratitude to my thesis supervisor, Prof. Jerome J. Connor, who
has provided precious guidance and advice on my thesis.
Second, I am grateful to Hou Man from University of New South Wales, who has generously
helped with my understanding of the scaled boundary finite element method quoted in this thesis.
Third, I want to thank my parents for supporting my study at MIT, both financially and mentally.
Last but not least, I want to extend my gratitude to my instructors, my classmates and my friends
for their supports.

5



6



Table of Contents

A BSTRA CT .................................................................................................................................... 3

A CKN O W LED G EM EN T .............................................................................................................. 5

CH A PTER 1: IN TRO DU CTION ............................................................................................... 9

1.1 Background ........................................................................................................................... 9

1.2 Existing Finite Elem ent M ethods....................................................................................... 9

1.3 Existing D esign Tools......................................................................................................... 10

1.4 Objective and Scope ........................................................................................................... 11

CHA PTER 2: M ETH O DOLOGY ............................................................................................. 13

2.1 Scaled Boundary Finite Elem ent M ethod ....................................................................... 13

2.2 Unified 3D-based Technique for Plate Bending Analysis ............................................... 13

2.2.1 Isoparam etric Form ulation......................................................................................... 14

2.2.2 Scaled Boundary Finite Elem ent Equations ............................................................ 17

2.2.3 High-Order Spectral Elem ent .................................................................................... 18

2.2.4 Solution Custom for Thin to M oderately Thick Plate ................................................. 20

CHA PTER 3: PY TH ON IM PLEM EN TATION .......................................................................... 25

3.1 Python, Rhinoceros and Grasshopper .............................................................................. 25

3.2 O ther Utilized tools............................................................................................................. 25

3.3 Grasshopper Canvas............................................................................................................ 26

3.4 Python Codes ...................................................................................................................... 27

3.4.1 Im port........................................................................................................................... 27

3.4.2 Legendre-G auss-Lobatto Integration Points ............................................................ 28

3.4.3 G eom etry......................................... ............................................................................ 30

3.4.4 Generating Shape Functions, Derivatives and Jacobean Matrices ........................... 30

3.4.5 G enerating [E 0], [E'], [E 2] ........................................................................................ 32

3.4.6 A ssem bly of Stiffness M atrix .................................................................................. 33

3.4.7 Solver ........................................................................................................................... 33

CH A PTER 4: D ISCU SSION ........................................................................................................ 37

7



CHAPTER 5: CONCLUSION............................................39

REFERENCE............................................................................................ 41

8



CHAPTER 1: INTRODUCTION

1.1 Background

Analysis of plate and shell structures is an important topic in structural engineering since plates

are used everywhere in structures. A plate is a three dimensional object that is bounded by two

plane surfaces and a cylindrical surface [1]. Plates transfer loads through bending. Many structural

elements, such as floor slabs, gusset plates and bridge decks, can be modeled as plate structures.

As computer aided structural analysis for plates has become more viable, plate elements are now

used extensively in structures [1]. The exact solutions to the plate bending problems requires

solving fourth order partial differential equations, which is difficult for complex geometries. Thus,

numerical procedures such as finite element methods are used [2].

1.2 Existing Finite Element Methods

Compared to other several common finite element methods for plate bending analysis, an extended

scaled boundary finite element method yields general solutions to plate bending problems while

maintaining the balance between accuracy and efficiency. Common finite element methods

developed for plate bending problems tend to discretize objects with 2D plate finite elements

because using general 3D finite elements with high aspect ratio, or distorted shapes, would cause

large approximation errors while it is computationally expensive to use lots of low-aspect-ratio 3D

elements [2]. Although Mindlin/Ressiner theory can be applied to both thick and thin plates, the

stiffness matrices require additional stabilization process when reducing shear locking phenomena

it introduces. Shear locking phenomena happen when the elements become overly stiff as they

become thinner and their shear stiffness dominates [2]. Mixed/hybrid formulation includes

additional mechanical variables to be approximated independently from displacements; the p-

version finite element method looks into eliminating shear locking problems with high-order

elements, which uses greater numbers of element nodes in approximation [2]. Methods that are

based on the approaches mentioned above are still not sufficient to yield a generalized solution,

9



partly because the plate theories introduced in the governing equations in formulations are not

consistent with the 3D theory [2]. On the other hand, a pq-adaptive procedure for plate structures

is developed using 3D finite elements, but it remains questionable whether the approach is both

accurate and efficient [2]. Recently, Hou Man et al. from University of New South Wales in

Australia has proposed a generalized solution for plate bending problems by extending the scaled

boundary finite element method, which is a hybrid involving both the boundary element method

and the finite element method [2]. The technique uses 3D governing equations to avoid shear

locking issues, a scaled boundary finite element method to reduce the numbers of degrees of

freedom, high-order spectral elements, and Kirchhoff plate theory to further reduce the

computational expenses. The technique is promising in practice, but has not yet been implemented

in any commercial finite element analysis program at this time.

1.3 Existing Design Tools

When it comes to plate bending analysis, tools either are too complicated in setting up models or

lack user interactions for design purpose. Architectural design and modeling programs, such as

AutoCAD and Rhinoceros, usually do not come with finite element analysis tools. Multi-purpose

finite element analysis programs, such as ADINA and ANSYS, are complicated in creating finite

elements and setting up meshes. Structural finite analysis programs, such as SAP 2000 and GSA,

are not user friendly for structural design and modeling from scratch. Both types of finite element

analysis programs usually complement architectural modeling programs for complete structural

design and analysis which involves importing and exporting models of different types, which is

inconvenient for designers who desire rapid feedbacks on structural performance of their design.

Specialized programs, such as RAM Structural System, and plugins in architectural design and

modeling programs help remove the bottleneck in design process as stated above, but they still

impose restrictions on component types and dimensions on plate structures. Designers, especially

who don't often acquire the knowledge of plate theories, are still looking for an interactive tool

that can aid their design and analysis of plate structures simultaneously.

10



1.4 Objective and Scope

This thesis presents an implementation of Hou Man et al.'s method for plate bending analysis using

the programing language Python. It also presents an example of how the method can be extended

to existing modeling programs such as Rhinoceros, which would allow users to create interactive

tools for structural design and analysis of plates.

11



12



CHAPTER 2: METHODOLOGY

2.1 Scaled Boundary Finite Element Method

The scaled boundary finite element method (SBFEM) is a novel computational procedure with a

better balance between accuracy and efficiency than conventional numerical methods. The

SBFEM bases its coordinate system on three directions: a radial direction and two local

circumferential directions [3]. The boundary of the object is discretized with surface finite

elements in circumferential directions [3]. The governing partial differential equations can then be

transformed into ordinary differential equations in the radial coordinates, with coefficients

approximated using the finite elements created. The ordinary differential equations can then be

solved analytically [3]. Both attractive features of finite element and boundary element methods

are inherent in the SBFEM. Like the finite element methods, the SBFEM requires no fundamental

solution and it is not complicated to extend its applications to other spectrum [3]. No singular

integrals are introduced and the results are always symmetric [3]. Like the boundary element

methods, the SBFEM approximates the boundary elements only, reduces the special dimension by

one and strictly satisfies boundary conditions infinitely away [3]. Thus, extending the SBFEM to

solve plate bending problems would benefit the implementation in this thesis, by cutting down

computational expense and increasing accuracy with semi-analytical approaches.

2.2 Unified 3D-based Technique for Plate Bending Analysis

With SBFEM, a 3D-based finite element can be performed on plate structures without enforcing

thickness restrictions on plates. Hou Man et al. has developed such method to analyze bending

stress of plates under static loading and within linear elastic range of material properties [2]. The

method utilizes weak formulations and 3D governing equation, and work for both thick and thin

plates. The method is not limited by the kinematics of Kirchhoff plate theory, which is only used

to reduce the number of degrees of freedom and relate results to the conventional plate theory.

Analytical results on transverse direction can be obtained through ordinary differential equations.

The method also utilizes spectral element methods on in-plane dimensions to deal with elements

13



with curved boundaries and converge faster with fewer elements than conventional finite element

methods. In the following sections, selected equations from Hou Man et al.'s method are presented

[2] [4].

2.2.1 Isoparametric Formulation

Figure 1 shows a plate of constant thickness t. A Cartesian coordinate system is applied in the

model: the Z-axis lies along the transverse direction of the plate; the X- and Y- axes lie parallel to

the plane surfaces. An isoperimetric element is chosen to be a 2D rectangular plate. A Cartesian

coordinate system is also applied to the element, where ri- and C- lie in-plane at the bottom of the

element surface and parallel to the edge of the element.

top-plane (-
z *

Figure 1 3D Scaled Boundary Coordinates with Scaling Center at Infinity [2]

ux = ux (x, y, z), uy= uv (x, y, z), uz = uz (x, y, z) denote displacement components on the plate. {u}

={u (x, y, z)) = [uz, Ux, uY] T is the displacement vector. The strains () = ( (x, y, z)} are arranged

as

14

.. .. .......................... .... ........ .. ... mm -........... ...........



8
x

{e}{u} (1)
_xz_

With the differential operator

Oz 010

[L] > 0 (2)
0 ) 0

O y ax

0 0

aex a)z

From Hook's Law, the stresses {u} {a (x, y, z)} have linear relationships with {e}

{} v (3)

xy

where [C] is the elasticity matrix [5]

1, V1 0 0 0
__ 1 v 0 0 0

[C]=) (4)V

(1+v)(1-2v) o 2 ( -v)

0 0 0 0 1-2 0
2(1-v)

0 0 0 0 0 1-2v

The in-plane dimensions of the plate are discretized and transformed to the isoparametric elements

shown in Figure 1. Coordinates are interpolated using shape functions

[N] [N (qz, C)] =N 1 (qj, C), N2 (i. 4), .1 formulated in the coordinates q~ and C [2]

15



x(rq, )=[N]{x} (5a)

y(q,) =[N]{y} (5b)

Only x and y coordinates are required to transform to and from q and C coordinates. The SBFEM

here employs a scaling center at the infinity and translates the 2D mesh along z-direction. So

_ _I Y, -Y,7 a7 (6)J --x X"

where IJI is the determinant of the Jacobean matrix

LIX, -Y - Y,,, (8)

An element in [J], such as x,,, can be determined as

x,

x,= [N],, {x} = [N,, (q,), N 2 ,,J(,).] x2 (9)

An infinitesimal area in the x-y plane

dS = dxdy = IJdqd (10)

From equations (2) and (7), the differential operator is now

[L]=(bl +(,b 2 +(1 b 31
az 10r7 a{

where

1 0 0

0 0 0b 0 0
0 0 1I 0 1 0- ,

0 0 0
0 0g 0

lb 2= 0 0 " 
(13)

0 -X1 y

~{ 0 0

16



0 0 0
0 -_v,,7 0

b = 0 ' (14)
0 X,1 - 7

,77 0 0
-y 0 0

So the strain field can be expressed as

= b] Ju}, + [b2]u} +[3 bJul (15)

2.2.2 Scaled Boundary Finite Element Equations

The displacement field in the plate is represented semi-analytically in the z direction [2].

[N ] [0] [0] - u (z)j
{u} = [0] [N] [0] {ux(z)} =[N]{u(z)} (16)

-0] [0] [N]_- ju.,(z)j

From equations (15) and (16), the strain field can be represented semi-analytically by displacement

by {u (z)}

{} = [B'] {u(z)} + [B2]{u(z)} (17)

where

[B] = b'] [N] (18a)

B2 = [b] [N],, + [b'] [N], (18b)

and the stress field is expressed as

{oj = [C]([B' ]u (z)}" + [B2]u(z)}) (19)

Hou Man et al.'s derivation shows that both conditions in the following need to be satisfied:

{F(z,)}= -q(z,)} (20a)

{F(z 2)I ={q(z 2 )I (20b)

and

17



[Eo ]u(z)}1, + ([E]T -[E ]){u(z)} -[E2]{u(z))= {O} (21)

where {F (z)} is the external nodal force, {q (z)} is the internal nodal force expressed as

{q(z)} = [EO] {u(z) + [E' ]T {U (z)} (22)

and [E0], [E'] and [E2] denote the coefficient matrices

(EO = s([B'] [C](B']|Jjd77d4 (23a)

[El] = s [B2 ]T [C][B'] |Jdid (23b)

E 2 ]- s[B2]T [C][B2]|JId7dd (23c)

Equation (21) is the SBFEM equation in displacement for plate structure. [E)], [E'] and [E2] are

to be assembled using conventional finite element method.

2.2.3 High-Order Spectral Element

Hou Man et al.'s method discretizes the in-plane dimensions of the plate structure with high-order

spectral elements [2]. The 2D shape function [N] in the previous section is determined as the

product of two ID shape functions with respect to local q and coordinates, respectively. The two

1 D shape functions are defined similarly. With the local coordinate, take r as example, in a range

of -1 < il < 1, a 1 D element of order p has p+1 nodes. The nodal locations are determined using

Legendre Polynomials Ln. Ln is defined by the recurrence relation [6]

{ (q) = 1 (24)
Ln+ 1 (q) = 7L( n -l (7)

Except for the nodes on the two end, the p-i nodes in between are located at the Gauss-Lobatto-

Legendre points, which are the roots of

L' M = 0 (25)

where L 'p is the derivative of Lp [2]. The ID shape function is Lagrange polynomials

p+l

N, = )-7 (26)
k=l,ksl 77i - 7k

18



and it exhibits such property at the node q;

N 0 )= 6i (27)

where 6 is the Kronecker delta

I O ( ) (28)

The integration points happen to be at the nodes when Gauss-Lobatto-Legendre quadrature is used

for numerical integration, so the integration can be approximated with respect to individual node

iji [7]

p+1

F (q) dq wF (77, (29)

The weight wi at the point qi is

2

p(p+1)(L, (qi))2 (30)

So, for 2D integration, the shape function is obtained by

N, (77,) = Nk, (q) N, (e) (31)

where the local nodal number i is obtained from the nodal numbers k and I of the two 1 D shape

functions

i=(l-1)(p +1)+k (32)

Also, the 2D shape function exhibits such property

N',(77, 45)=k, (51 =15i. (33)

where

)=(/ -1)(p +1)+ a (34)

The weight can be obtained as [4]

W,= Wk W, (35)

The 3 x 3 submatrix of[E0] related to the ith andjth nodes is simplified as

[EO = y (Lb'] T [C][b'])|J| (36)

with

19



bl [C]bl]=G 1 0 (37)

where G is the shear modulus

G (38)
2(1 + v)

Note that [E0] only consists of positive diagonal blocks.

Similarly, the 3 x 3 submatrix of [El] can be expressed as

[E] =W[B7] [C][b']|J| (39)

The 3 x 3 submatrix of [E2] has to be evaluated element-by-element

(Ej = JjWa,6 B|ra{)[]( 9,, J| (40)
a=1 =1

2.2.4 Solution Custom for Thin to Moderately Thick Plate

Hou Man et al. have developed a general solution to the previous SBFEM equations for general

3D plate structures [2]. They have also obtained a tailored solution for thin plates that utilizes the

kinematics of the Kirchhoff plate theory to reduce the number of degrees of freedom and simplify

the results, where displacements and force resultants of the plate can be obtained directly [4]. The

tailored method is later implemented in this thesis.

General Solution for 3D Plate Structure

By introducing the variable [2]

{X(z))= (41)
{q (z)}

the SBFEM equation (21) can be transformed as

{X(z)} = -[Z]{X(z) (42)

20



with the coefficient matrix [Z] as

[Z]=E]'['] ] E (43)
- [ E [ +[E1][Eo]-'[E] - E][Eo]

The general solution to {X (z)} is in the form

{X (z)I = e-[z]z {c} (44)

where {c) are the integration constants and e-z is a matrix exponent, which can be approximated

using Taylor series

e-[Z]z _ -Zz (45)
i- O -

or Pad6 expansion, which converges more rapidly to the solution [4]

e [Zz '&[( -, (P(z)] (46)

where [P (z)] and [Q (z)] are polynomials of -[Z]z.

When substitute in zi = 0 for the bottom surface and z2 = t for the top surface, the SBFEM equation

(42) can be rewritten as [2]

{UB} ~ {FB}1
[S] {U = FT} (47)

with the stiffness matrix [S]

[S]=[/ (48)
LV I] -[ ]V22 ] ]2  I I [V22 I [V12 ]

where

IV]= e-Z= jIV] I[Vf12]] (49)
I[ 21 I [ 22 _1

The subscripts B and T denotes the bottom surface and the top surface respectively. [V/] is

approximated using either Taylor series as equation (45) shows or Pade expansion as equation (46)

shows.

21



Tailored Solution Using Kinematics of Plate Theory

Hou Man et al. use Pad6 expansion of order (2, 2) in their research since this is accurate enough

for thin to moderately thick plates; when "t /L << 1, where L is shortest span of the plate, higher

order terms of -[Z]z become negligible" [4]. In Pad6 expansion of order (2, 2), [P (z)] and

[Q (z)] in equation (46) are picked as below

[P(z)j = [ I -z [Z] +z 2 [V] (50)
2

[Q(z)] =[I]+ z[Z]+z 2 [V] (51)
2

with

[V]= [Z]2 (52)

By applying a transformation matrix [T] and kinematics of plate theory, the number of degrees of

freedom in the SBFEM equation (47) can be further reduced.

With

[IP] [I]
[T]=t 2 (53)

the displacement vector in SBFEM equation (47) can be transformed

{UB} G UT}-{UB}) l f{
{T] } I } (54)L{UT}T I -({uT}+{uB}) 1U}

[.2

where [0] means the rate of change of displacement over the thickness and {t} means the average of

displacements on the top and bottom surfaces. And with

-[I] -[I
[Tr]-T t 2 (55)

_ t 2

the forces in the SBFEM equation (47) can be transformed

22



Fl- {T 2 [T I (56)

where {M} is the difference of the forces of the surfaces multiplying half of the thickness and

{F} means the average of the forces on the surfaces.

For t /L << 1, using the transformations (54) and (56), the SBFEM equation (47) can be simplified

as

[{{6}} {{M}}
[s] M = tI(57)

with the stiffness matrix

](E [I]+t2 ] [E]T 1[s]=t IE 1) [l(58)
E([I]+ t2[V1])-t2 [V2|(

When applying the kinematics of plate theory, it is assumed that the out-of-plane deformations are

symmetric with respect to the mid-plane

{UTZ}={UBz}={U (59a)

And the in-plane deformations {u.} and {uy} are equal and opposite for the top and the bottom

surfaces

{UT} {U=-{u} =U } (59b)

Iu = -= {uy} 
(59c)

With the assumptions (59), the SBFEM equation (57) can be rewritten as

Lsi~~~~~ ~~~ (I 11]H ][s4 [s5 rs] o L(FTi-{FBZ
[Sil IS12 [13 s14] [s 1 s'161 20 (

Is21] Ls22 1 [s23 Is 24  Ls25 i s26] F--,,F

[N31] [s32] s33] IS34 [35] L36] 2 (FT -FBy > (60)
IS4 1] [S42 Fs4 3 ] ]44 [s45] s46 ] { UFTZ +jFBz

FS51IS s 5 2] F 5 3 ] [s 5 4 ] [S55 LI56] {0 FTx +1FBx}

Ls61] s62] Ls63] s 6 4] Is65] s66 _ {} f7, +{FB i

Eliminating the rows and columns with zero entries in the displacement vector, the SBFEM

equation (60) becomes

23



[s22] [S23] [s24] [ {M 1
S[s32] [s33] [s34] jl{}r =I {M, > (61)

[s42] [s43] [s44] {w} [

where the matrix on the left hand side is the submatrix of the stiffness matrix [s] defined in

equation (58), Oy and 0, are rotations about the in-plane axis, and w is the out-of-plane deflection,

or

{0,} =< tu,) (62)

{uz }

The stiffness matrix [s] defined in equation (58) can be assembled using submatrices of [V defined

in equation (52) and submatrices of [Z] defined in equation (43).

[Vu]= I ([ZI]2 +[12 ][Z 21 ) (63)

[V]= ([Z 21 ][Z]-[Z 11] [Z2 ]) (64)

[Z]=E [EO ]1[El (65)

[Z2 ]= -[E]' (66)

[Z2,]=-[E2] + [E'] [E' [E' ]T (67)

24



CHAPTER 3: PYTHON IMPLEMENTATION

3.1 Python, Rhinoceros and Grasshopper

Based on Hou Man et al.'s method presented in the sections above, the implementation in this

thesis uses the programing language Python. Python is a general purpose, object-oriented scripting

language that enforces the readability of codes [8]. Python can run on lots of different platforms.

It is free, even for commercial purposes [8]. The syntax is simple and high-level data structures

can be used [8]. A large amount of extension modules maintained by members of Python user

community can be installed to expand the scope of the application of Python. Many programs

could include a Python script editor and compiler to interpret written codes and provide

customizable functions. Thus, designers with or without programing background would embrace

Python for its simplicity and powerful capability.

Rhinoceros and grasshopper, prevalent tools in the design industry, can incorporate Python scripts

to allow desired functions. Rhinoceros is a commercial computer-aided design program aimed to

provide better user experience in 3D modeling. Grasshopper, a plugin of Rhinoceros, is a graphical

algorithm editor [9]. Users may create automated work flows by dragging Grasshopper

components into the Grasshopper canvas and connecting them. The Grasshopper components may

prompt inputs, perform arithmetic, implement commands in Rhinoceros, or display outputs. Users

may find the combination of Rhinoceros and Grasshopper convenient with form generating, basic

structural analysis and parametric modeling, which enables design options generated from initial

parameters. Both Rhinoceros and Grasshopper have numerous plugins users can find to extend the

usage. One of the Grasshopper plugins, GhPython allows user-defined Grasshopper components

using Python scripts [10]. With the aforementioned tools, the Python implementation of the

SBFEM can be compiled, or interpreted and run, in the modeling program for rapid feedback on

plate bending performance.

3.2 Other Utilized tools

25



Besides Rhinoceros, Grasshopper and GhPython, some other non-built-in tools are also used in

the example of Python implementation below. NumPy is a fundamental package for scientific

computing with Python [11] [12]. It provide modules that can create array objects of N-dimensions

and manipulate array objects resembling matrices with matrix operations. "utility.py" is a script

developed to contain handy functions for users of GhPython to use [13], functions including

unifying types of inconsistent Rhinoceros geometry objects. These tools, although not mandatory

for the implementation, would expedite the Python script writing in GhPython.

3.3 Grasshopper Canvas

Besides the Python script writing, the example below uses Grasshopper components to interact

with users. An example of Grasshopper definition is shown in Figure 2. Each link in between

components transfers the data from one output of the component on the left end of the link to the

input of that on the right end of the link. Titles of the components can be renamed for ease of

readability. On the left hand side of Figure 2, number sliders and panels are Grasshopper

components permitting users to input numbers. "Element Nodes" is a point geometry component

that can set and collect points in Rhinoceros modeling world. Analogously, "Element Edges" and

"Integration Points" are geometry components that collect the output lines and points. The white

color shows that the previews of the component are turned on and they are drawn in Rhinoceros

modeling world. "Python Lglnodes" and "Python Integration" are customized components created

through GhPython. The GhPython components can store Python scripts and compile them. They

also allows adding or removing inputs or outputs with editable names.

26



0.500O

* 20

Figure 2 Example Grasshopper Definition with GhPython Components

The example built here would allow people to compute the bending moments and transverse

deflections of a rectangular plate element with proper boundary conditions and loading inputs.

"Element Nodes" takes in four vertexes of the rectangular plate element either clockwise or

counterclockwise. "Python Lglnodes" takes in the number of node order to generate the positions

and the respective integration weights of integration nodes of a 1D spectral element. "Python

Integration" then receives the existing information and generates the corresponding integration

nodes on the elements and the stiffness matrix. With users manually input the boundary conditions

and loading information, "Python Integration" can then approximate the bending moments and

transverse deflections of each node. The following sections explain the functions of different parts

of the codes.

3.4 Python Codes

3.4.1 Import

In both "Python Lglnodes" and "Python Integration" components shown in Figure 2, the module

NumPy is imported at the beginning and renamed as "np" temporarily for shorthand as Code Block

1 shows. Due to some incompatibility issues at this time, a built in module called "clr" is imported

and add reference to "mtrand" to help the compiler import NumPy smoothly [12].

27



import clr
cr .AddReference ("mtrand")
import numpy as np

Code Block 1 Importing the Modide NumPy

In "Python Integration", some other useful modules are imported also, as Code Block 2 shows.

Rhino.Geometry helps to create and identify Rhinoceros geometry objects.

Ghpythonlib.components and rhinoscriptsyntax contain python interpretation of Rhinoceros and

Grasshopper commands. Sys is a Python built-in module that helps manage the logistics of the

compiler.

import sys
import utility
import ghpythonlib.components as ghc
import rhinoscriptsyntax as rs

import Rhino.Geometry as rg

Code Block 2 Importing Modules other than NumPy

Code Block 3 in "Python Integration" pre-processes its inputs. The points taken in are forced to be

converted to general Rhinoceros point geometry objects. "xp", "yp" and "zp" are the x, y, z

coordinates of the points in Rhinoceros modeling space. The positions and the integration weights

of the ID element nodes are converted to row vectors. "n" denotes the number of 1 D element

nodes.

## Import
points=utility. coerce3dpointlist (points)
xp,yp,zp=ghc.Deconstruct(points)
x=np . array (x)

w=np . array (w)

n=len (x)

Code Block 3 Pre-Processing (fInputs

3.4.2 Legendre-Gauss-Lobatto Integration Points

28



Code Block 4 in "Python Lglnodes" is a Python version of Greg von Winckel's MatLab code:

Legendre-Gauss-Lobatto nodes and weights [14]. Using recurrence definition of Legendre

polynomials, the codes generate ID Legendre-Gauss-Lobatto node positions and integration

weights based on the number of orders, and stored in "x" and "w" respectively.

Ni=N+1
x=-np.cos(np.pi*np.arange(O,N).T/N)

P=np.empty( (N1,N1))

xold=2
while (np.abs(x-xold)) .maxo>np.spacing(i):

xold=x;

P[:, 0 ] =1
P [ :, i]=x
for k in range (2, N1):

P[:,k]=((2*k-i)*x*P[:,(k-1)]-(k-i)*P[:, (k-2)])/k

x=xold-(x*P[:,N]-P[:,(N-1)])/(N1*P[:,N])

w=2/(N*Ni*P[:,N]**2)

x=x . tolist ()
w=w.tolist()

P=P. T

Code Block 4 Legendre-Gauss-Lobatto Integration Points fbr ID Elements

2D integration points and their integration weights are then generated with Code Block 5 in

"Python Integration". "xp4" and "yp4" stores the x and y coordinates of the element nodes

respectively. "Eta 1" and "Zeta 1" denotes the local coordinates of the element nodes. "w i" stores

the integration weights of the element nodes.

29

##Generate Integration Points

a=(+x) /2
xpi=(xp[3]-xp[0])*a+xp[Q]

xp2=(xp[21-xp[1])*a+xp[1]

yp1=(yp[31-yp[0])*a+yp[0]
yp2=(yp[21 -yp[1] ) *a+yp[1]

xp3=np. empty ( (n, n))

yp3=xp3.copy()
w =xp3.copy()

Eta=xp3.copy()

i=0
while i<n:

xp3[i]=(xp2[i]-xp1[i])*a+xp1[i]

yp3[i1=(yp2[i]-yp1[i])*a+yp1[i)
w_ [i]=w[i]*w

Eta[i]=x

i+=1



xp4=map (float, xp3.flatten (0))
yp4=map (float, yp3 . flatten (0))
w i-map(float,w .flatten(0))
Etal=map(float,Eta.flatten(0))

Zetal=map (float, Eta. flatten (1))

Code Block 5 Legendre-Gauss-Lohatto Integration Points Jfr 2D Elements

3.4.3 Geometry

For preview of the element shape, Code Block 6 in "Python Integration" generate the edges, nodes,

and the rectangle surface of the element in Rhinoceros modeling space. "L" denotes the shortest

span of the element.

##Show Geometry of the element

Int_p=[]

for (i,j) in zip(xp4,yp4):
Int_p.append(rg.Point2d(i,j))

Line= []

Length= []

i=0
while i<len(points):

a=ghc.ListItem(points, i)
b=ghc.ListItem (points, i+1)
Line.append(rg.Line(a,b))

Length.append(rs .Distance (a,b))
i+=1

L=float(np.mean(sorted(Length) [:2]))

Rec=ghc.Rectangle3Pt(points[0],points[1],points[2])

Area, Centorid=ghc .Area (Re c)
Code Block 6 Geometry (fElemtents

3.4.4 Generating Shape Functions, Derivatives and Jacobean Matrices

Code Block 7 in "Python Integration" defines a new object type called OneDShape which takes in

two arguments, or inputs, ID element node positions and position of one ID element node. The

OneDShape object can store the 1 D shape functions and the derivatives of the 1 D shape functions

it generates as attributes of the object. The rest of the codes in Code Block 7 generates 2D shape

30



functions and their derivatives with respect to either local coordinate directions. It also generates

the Jacobean matrices for each node.

##Generate Shape Functions, Derivatives, and Jacobean

Matrices

class OneDShape(object):
def init (self, x, xi):

self.x=x

self.x i=x i

self.n=len(self.x)

self.f=np.empty((1,self.n))

self.df=self.f.copy()

i=0
while i<self.n:

a=x i-x

a[i]=1

b=x[i]-x
b[i]=1

self.f[0,i]=np.prod(a/b)
ind=np.nonzero(a==0)

if np.size(ind)==O:
self.df[:,i]=self.f[0,i]*(np.sum(1/a)-1)

else:
a[ind]=1

self.df [0,i]

i+=1
=np.prod(a/b)

N=np.empty((n**2,n**2))
N_eta=N.copy()
N_zeta=N.copy()
det_J=[]
J=np.empty( (n**2,2,2))
inv J=J.copy()
i=0
while i<(n**2):

a=OneDShape(x,Etal[i])
b=OneDShape(x,Zetal[i])
N[i,:]=np.dot(a.f.T,b.f).flatten(l) #Each

node

line for each

N eta[i,:]=np.dot(a.df.T,b.f).flatten(1)

N zeta[i,:]=np.dot(a.f.T,b.df).flatten(1)
J[il[ 01[0=np.dot(xp4,N eta[i).T)
J[i][0][1]=np.dot(xp4,N zeta[ih.T)

J[i][1][0]=np.dot(yp4,N eta[i].T)

J[i][1][1]=np.dot(yp4,N zeta[i].T)

detJ.append(float(np.linalg.det(J[i])))
inv_JJ[i]=np.linalg.det(J[i])

i+=1

Code Block 7 Generating Shape Functions, Derivatives, and Jacobean Matrices

31



3.4.5 Generating [E 0 ], [E], [E 21

Coefficients [E], [E'] and [E2] defined in section 2.2.3 are then estimated and assembled with

Code Block 8, denoted as "E0", "El" and "E2" respectively.

al=E/(1+poisson)/(1-2*poisson)
a2=1-poisson

a3=(1-2*poisson)/2
C=np.zeros((6,6))
C[0:3] [:,0:3]=np.array([[a2,poisson,poisson], [poisson,a2,poisson], [po
isson,poisson,a2]])
C[3:6][:,3:6]=np.diag([a3,a3,a3])
C=al*C

bl=np.zeros((6,3))
b2=np.zeros((n**2,6,3))
b3=b2.copy()
B2il=np.empty((6,3))
B2i2=B2il.copy()
B2j2=B2il.copy()

bl[0,0]=1;bl[5,1]=1;bl[4,2]=1;
G=E/2/(1+poisson)
al=G*np.diag([2*(1-poisson)/(1-2*poisson),1,1])
Cbl=np.dot(C,bl)

E0=np.zeros((3*n**2,3*n**2))
E1=EO.copy()
E2=EO.copy()

a2=np.empty( (1,n**2))
indl=[]
ind2=[]
i=0
while i<(n**2):

a2[0,i]=w i[i]*detJ[i]
ind1=[i, (n**2+i),(2*n**2+i)]
j=0
while j<(n**2):

p=0
E2ij=np.zeros((3,3))
while p<(n**2):

J1=J[p][0,0]
J2=J[p][0,1]
J3=J[p][1,0]
J4=J[p][1,1]
b2[p][1,1]=J4;b2[p][3,2]=J4;b2[p][5,0]=J4
b2[p][2,2]=-J2;b2[p][3,1]=-J2;b2[p][4,0]=-J2
b3[p][1,1]=-J3;b3[p][3,2]=-J3;b3[p][5,0]=-J3
b3[p][2,2]=J1;b3[p][3,1]=J1;b3[p][4,0]=J1
B2i2=(1/detJ[p])*(b2[i]*Neta[p,i]+b3[i]*N_zeta[p,i])
B2j2=(1/detJ[p])*(b2[j]*Neta[p,j] ]+b3[j]*N zeta[p,j])
E2ij=E2ij+(wi[p]*np.dot(B2i2.T,np.dot(C,B2j2))*det J[p])

32



p+=1
B2il=b2[i]*Neta[j,i]+b3[i]*Nzeta[j,i]

Elij=wi[j]*np.dot(B2il.T,Cb1)
ind2=[j, (n**2+j), (2*n**2+j)]
El[np.ix_ (indl,ind2)]=Elij
E2[np.ix_ (indl,ind2)]=E2ij

j+=1
i+=1

for i in range(0,3):

EQ[(i*n**2):(i+l)*n**2][:,(i*n**2):(i+1)*n**21=np.diag((a2*al[i,i]).f

latten()

Code Block 8 Generating [E7, fE', [E1

3.4.6 Assembly of Stiffness Matrix

Code Block 9 in "Python Integration" assembles the stiffness matrix defined in section 2.2.4. "s_"

denotes the submatrix of the stiffness matrix that works with kinematics of Kirchhoff plate theory.

#Assembly of Z, V and s

Z 11=np.linalg.solve(EO,E1.T)
Z 12=-np.linalg.inv(EO)

Z_21=-E2+np.dot(El,np.linalg.solve(EO,El.T))

V 11=1./12*(np.dot(Z 11,Z_11)+np.dot(Z_12,Z_21))
V_21=1./12*(np.dot(Z 21,Z_11)-np.dot(Z_11.T,Z_21))

temp=np.eye(3*n**2)+(t**2)*V_11

a=np.dot(EO, temp)

b=E1. T
c=np.dot(E1,temp)-t**2*V_21

d=E2

s=t*np.vstack([np.hstack([a,bl),np.hstack([c,dl)])

ind b=np.arange (n**2, 4*n**2)
ind_a=np.hstack([range(O,n**2),range(4*n**2,6*n**2)1)
s =s[np.ix (ind b,ind b)]

Code Block 9 Sti/flness Matrix Assembly

3.4.7 Solver

33



Vectors of displacements, rotations about in-plane axes, transverse deflections, moments about in-

plane-axes, and transverse shear are initialed in Code Block 10 in "Python Integration". The

vectors are prefilled with zeros to save effort in inputting fixed displacements or zero loads.

##InitiaL Vectors
uz=np.zeros((n**2,1))
ux=uz . copy ()
uy=uz.copy()
thetay=uz .copy ()
thetax=uz.copy()
w=uz.copy()
My=uz.copy()
Mx=uz . Copy ()
Fz=uz .copy ()

Code Block 10 Initial Vectors

Then a user has to input the boundary conditions and loading information into the "Python

Integration" either through direct insertion of Python scripts or with the help of Grasshopper

components. This part needs to provide the indices of the free degree of freedom of "thetay",

"thetax" and "w" as "ind fl" "ind_f2" and "indf3" respectively, and those of the fixed degree

of freedom as "ind dl", "ind d2" and "indd3". Displacements and Loads on free degree of

freedom nodes needs to be filled in the vectors in Code Block 10. Note that in order to solve the

matrix, "ind_fl", "ind_f2" and "ind_f3" cannot be all empty, which implies there may be a lower

limit on the order of nodes.

Code Block 11 in "Python Integration" can then solve the SBFEM equations based on the

information mentioned above. The rotations about in-plane axes, transverse deflections, moments

about in-plane axes and transverse shear of each node can be output in lists "theta y", "thetax",

fw",t9 (My",n )akiMx" and "Fz".

ind f=np.hstack((inddfl,np.hstack((ind f2+n**2,indf3+2*n**2))))
ind -d=np .hstack ((ind -d1, np .hstack ((ind-d2+n**2, ind-d3+2*n**2) )) )
s_f f=s_ [np.ix_ (indf,ind_f)]
F_f=np.vstack( (My[np.ix (indfl, [0] ) ],np.vstack( (Mx[np.ix_(ind_f2, [0]
)],Fz[np.ix_ (indf3,[0])]))))
u f=np.linalg.solve(s_ff,F_f)

s df=s_ [np.ix_ (ind_d,indf)]
F d=np.dot(s_df,uf)

34



theta_y[np.ix_ (indfl,[0])]=uAf[ : np.size(ind_ffl)]
theta_x [np.ix_ (indf2,[0])]=uf [np.size(indfl): np.size(indf2)]
w[np.ix_ (indf3, [O])]=u f [np.size(indf2): np.size(indf3)]

My[np.ix_ (inddl, [0])]=F_d[O: np.size(inddl)]
Mx[np.ix_ (indd2,[0])]=F d[np.size(inddl): np.size(indd2)]
Fz[np.ix (ind d3,[O])]=F d[np.size(ind d2): np.size(ind d3)]

Code Block II Solving Matrices

35



36



CHAPTER 4: DISCUSSION

With the example of Python implementation shown in Chapter 3, users of Rhinoceros can study

the plate bending behavior in any style. Typically, when the whole structure is not fully designed,

designers can apply the Python implementation to perform customized check on the local plate

components in the design. Using Grasshopper components for various display techniques, one can

express the results in colors or some graphical patterns, which is visually straightforward.

Furthermore, when combined with a built-in Galapagos evolutionary solver in Grasshopper,

dimensions of plates can be optimized under designed boundary conditions and loadings. The

Python codes can be adapted to other modeling applications, which compile Python scripts as well.

Since it is preliminary, various aspects of the Python implementation need to be improved to be

practical. The codes can be extended to discretize plates with multiple elements and assemble the

stiffness matrices element-by-element. Plates with curved boundaries, uneven thickness or

complicated boundary conditions shall be identified with developed codes in the future. In

addition, Hou Man et al.'s method can be extended into the field of dynamics or shells to expand

the scope of the application of the methods.

37



38



CHAPTER 5: CONCLUSION

Although the Python implementation presented in this thesis can only perform static structural

analysis on a single rectangular plate with uniform thickness, simple boundary conditions and

simple loading, the Python codes can be extended easily to fully implement Hou Man et al.'s

technique for plate bending analysis. The technique permits little restriction on plate dimensions,

faster convergence and great reduction in computational expenses, which implies the future

development of the Python implementation will enable more practical, faster and generalized

procedures for analysis of plate structures. The implementation presented in this thesis represents

the first step in development of interactive programs for structural design and analysis of plates.

With highly customizable algorithm tools such as Python and Grasshopper and abundant sources

of their add-ons, designers will be able to integrate the design and analysis processes of plate

structures seamlessly with rapid feedbacks.

39



40



REFERENCE

[1] Ventsel, Eduard, and Theodor Krauthammer. Thin Plates and Shells: Theory, Analysis, and
Applications. New York: Marcel Dekker, 2001. Print.

[2] Man, H., C. Song, W. Gao, and F. Tin-Loi. "A Unified 3D-based Technique for Plate
Bending Analysis Using Scaled Boundary Finite Element Method."International Journalfor
Numerical Methods in Engineering 91.5 (2012): 491-515. Print.

[3] Wolf, John P. The Scaled Boundary Finite Element Method. Chichester, West Sussex,
England: J. Wiley, 2003. Print.

[4] Man, H., C. Song, T. Xiang, W. Gao, and F. Tin-Loi. "High-order Plate Bending Analysis
Based on the Scaled Boundary Finite Element Method."International Journalfor Numerical
Methods in Engineering 95.4 (2013): 331-60. Print.

[5] Bathe, Klaus-Jnrgen. Finite Element Procedures. S.l.: S.n., 2006. Print.

[6] Vosse, F.N Van De., and P.D Minev. Spectral Element Methods: Theory and Applications!
F.N. Van De Vosse and P.D. Minev. Eindhoven: Eindhoven U of Technology, Faculty of
Mechanical Engineering, 1996. Print.

[7] "17 Isoparametric Quadrilaterals." Web. 29 Apr. 2014.
<http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/IFEM.Ch 1 7.d/IFEM.Chl 7.pdf

[8] Sanner, Michel F. "Python: a programming language for software integration and
development." J Mol Graph Model 17.1 (1999): 57-61.

[9] "Grasshopper." - Algorithmic Modeling for Rhino. Web. 29 Apr. 2014.
<http://www.grasshopper3d.com/>

[10] "GhPython." Food4Rhino. Web. 29 Apr. 2014.
<http://www.food4rhino.com/project/ghpython>.

[11] "NumPy." NumPy - Numpy. Web. 30 Apr. 2014. <http://www.numpy.org/>.

[12] "Numpy and Scipy in RhinoPython." Steve Baers Notes. Web. 30 Apr. 2014.
<http://stevebaer.wordpress.com/2011/06/27/numpy-and-scipy-in-rhinopython/comment-
page-I/>.

[13] "Utility.Py." GitHub. Web. 30 Apr. 2014.
<https://github.com/mcneel/rhinopython/blob/master/scripts/rhinoscript/utility.py>.

41



[14] Von Winckel, Greg. "Legende-Gauss-Lobatto Nodes and Weights." MATLAB Central. 20
Apr. 2004. Web. <http://www.mathworks.com/matlabcentral/fileexchange/4775-legende-
gauss-lobatto-nodes-and-weights/content/lglnodes.m>.

[15] "16 The Isoparametric Representation." Web. 30 Apr. 2014.
<http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/IFEM.Chl6.d/IFEM.Chl6.pdf

[15] Birman, V. Plate Structures. N.p.: Springer, 2011. Print.

[17] Coldwell, Robert. "Lagrange Interpolation." N.p., n.d. Web. 30 Apr. 2014.
<http%3A%2F%2Fwww.phys.ufl.edu%2F-coldwell%2Fwsteve%2FFDERS%2FThe%2520
Lagrange%2520Polynomial.htm>.

[18] Felippa, Carlos A. "A Compendium of FEM Integration Formulas for Symbolic
Work." Engineering Computations 21.8 (2004): 867-90. Print.

[ 19] Ferreira, A. J. M. MA TLAB Codes for Finite Element Analysis: Solids and Structures.
Dordrecht: Springer Science & Business Media, 2009. Print.

[20] Kaveh, A. Computational Structural Analysis and Finite Element Methods. N.p.: n.p., n.d.
Print.

[21 ] Lepi, Steven M. Practical Guide to Finite Elements: A Solid Mechanics Approach. New
York: Marcel Dekker, 1998. Print.

[22] "Mcneel/rhinopython/utility.py." GitHub. N.p., n.d. Web. 30 Apr. 2014.
<https://github.com/mcneel/rhinopython/blob/master/scripts/rhinoscript/utility.py>.

[23] Natarajan, Sundararajan, Chongmin Song, Ean T. Ooi, and Irene Chiong. "Displacement
Based Finite Element Formulations over Polygons: A Comparison between Laplace
Interpolants, Strain Smoothing and Scaled Boundary Polygon Formulation." N.p., n.d. Web.
30 Apr. 2014. <http://arxiv.org/abs/1309.1329>.

[24] Song, Chongmin. "The Scaled Boundary Finite Element Method in Structural
Dynamics." International Journalfor Numerical Methods in Engineering77.8 (2009): 1139-
171. Print.

42




