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ABSTRACT

This thesis presents a new approach to solve the optimization of articulated structures and
especially looks into the performance of tensegrity systems compared to regular trusses. Volume
is the objective to minimize and a wide range of constraints can be considered from the required
mechanical constraints to more architectural ones. The resulting nonlinear non-convex mixed-
integer optimization problem is approached with a twofold algorithm. A global genetic algorithm
controls the connectivity and geometric variables while the cross-sectional area and prestress
forces variables are dealt with an internal sequential quadratic programming algorithm. The
performance of this approach is evaluated on a typical cantilever configuration.
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Résumé

Cette these présente une nouvelle approche dans le cadre de I’optimisation des structures
articulées. En particulier, la performance relative des systémes de tenségrité par rapport a de
simples treillis y est étudiée. Le volume est le critére d’optimisation et de nombreuses contraintes
sont considérées allant des prérequis en terme de comportement mécanique jusqu’a des
contraintes relevant plus de choix architecturaux. Le probléme mathématique d’optimisation
résultant est non convexe, non linéaire et mélange variables entiéres et continues. Sa résolution
est abordée a I’aide d’un algorithme en deux parties. Un premier algorithme général, de type
génétique, contrdle les variables associées a la géométrie et a la connectivité alors que,
’optimisation sur les variables correspondant a I’aire des éléments et & la précontrainte y résidant
est prise en charge par un algorithme secondaire, de type quadratique séquentiel. La performance
de cette méthode est évaluée sur un cas typique de poutre console.

Keywords : Optimisation, Tenségrité, Treillis, Algorithme génétique
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Introduction

Optimization is a concept that surrounds us everywhere. In people’s everyday decisions the
question of the optimal choice is asked. In Nature as well, the optimization process is present.
Shapes, materials, chemical reactions have been selected through many years of evolution.
Nowadays, depending on the industry, the look for optimality is not the same. In Industrial
Engineering, manufacturing processes will be studied and optimized as much as possible as it
will increase profits. In Civil Engineering though, practitioners tend to pick standard solutions as
a way to save money.

It is true that optimizing a quantity/price chart may be easier than trying to define a whole
structure but, numerical optimization capabilities have significantly increased over the last
decades. This thesis is an attempt to challenge this status quo and try to see how today’s
computational capabilities can solve a complex structural optimization problem.

The structural engineering problem chosen is the minimization of the mass of articulated
structures. Both trusses and tensegrity systems, which is a specific type of articulated structures,
are considered.

This document is composed of four parts. The first one presents the motivations for this research
and introduces tensegrity structures. In the second part, the optimization problem is formulated
in the typical framework of mathematical optimization. The third part is dedicated to present a
few examples to apprehend the method and obtain first results. Finally, the last part presents the
computational approach. Some results obtain numerically are displayed and discussed.
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1. Motivations and introduction to tensegrity structures

1.1 Motivations

One of the teachers' I had at MIT always uses the same slide for the introduction lecture of his
class on Structural Systems. It is a typical cantilever situation where a load is applied at a certain
distance from a wall. His argument is that Structural Engineering is not reduced to the sizing of
elements (for instance a beam here) but involves deciding how to transfer the load in the first
place and eventually making sure that the load path created is adequate. The problem is therefore
threefold and a designer must provide: a system, geometry and the scale or sizing (pending a
material has been chosen). Quite often there is a gap in practice between the geometry step and
the sizing. The former would be decided by an architect following aesthetics and functionality
criteria while the latter would be the structural engineer’s role. In the end, one would pick a
structural system out of the few we know so far, pick a typical (regular) geometry, and then size
the system.

Figure 1 : Cantilever situation

In this example one would argue that a beam is required. If by beam, one means a system that
can carry the bending moment which is generated by the support offset, then yes that is what is
needed. Now, there are several ways of transferring moment from one point to another. One

! Mr. Paul Edward Kassabian teaching 1.572 Structural Systems at MIT
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could be a solid beam, but another possibility could be a truss beam. Michell, showed the
optimal configuration for a frame structure in a cantilever situation with two given maximum
stresses (for the struts and ties) is one where all members have the same axial strain (Michell,
1904). Whatever the load value or the material chosen for the elements, the statement holds.
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Figure 2 : Optimal cantilever frame according to Michell (Michell, 1904)

This reasoning is valid when only yielding constraints are considered. Indeed, for buckling
constraints on compressive members, the relationship involves a critical force that varies with the
inertia of the cross-section and the length of the member. In general, the inertia of an element is
not a strictly increasing function of the area only. A solid rod is an exception as the inertia varies
with the square of the area; however, this cross-section type is known not to be efficient material
wise. Displacement constraints also have a complex expression. The stiffness of the whole
structure, and thus the area of each member, is involved.

A rich literature exists about the study of optimal geometries for different problems and
structural system. Some methods are heuristic like the determination of shells geometry by
studying reduced scale models (a famous example is the Sagrada Familia by A. Gaudi). Various
quantitative approaches have also been developed to find optimal geometries such that the term
“form-finding” was introduced. In itself the problem is generally complex and the solution relies
on numerical optimization capabilities.

Even if significant results exist, the lack of applications in the industry can be easily explained.
In a market economy, having tune-shaped structural members is substantially more expensive
than standardized elements for which construction methods are known and mastered. The

20



Construction sector is known for resisting innovation. Looking at the progress in 3D printing,
one could argue that this current state might change soon. The Figure below shows a new
method where a welding electrode is moved in space to 3D print with steel.

N

Figure 3 : Steel 3D printing at the Joris Laarman Lab in Amsterdam
(http://techxplore.com/news/2014-02-3d-metal-amsterdam-lab-video.html)

In a modern perspective where the design of a structure is controlled by structural (strength and
motion) and architectural requirements, my motivation in this text is to try optimizing a specific
class of structure called “Tensegrity”. The next section will introduce the matter.

1.2 Tensegrity structures

1.2.1 Definitions

The origin of Tensegrity systems goes back to the 1940s. The paternity is contested but it is safe
to say that two of the first people to study and use them were Richard Buckminster Fuller and
Keneth Snelson. The first one created the word from the contraction of the two words “tension”
and “integrity” (Lalvani, 1996) while the second referred to them as “floating compression”. A
commonly accepted definition was proposed in 2003 by the scientific community. A tensegrity
system is an articulated system in a state of stable prestress equilibrium composed of a
discontinuous set of compression members (bars or struts) and a continuous set of tension
members (cables or ties). In the canonical (regular) form, all the elements are rectilinear and the
ones of the same type have the same length.

To increase the richness of this class of structure, I extend the tensegrity definition relaxing the
regularity and continuity hypothesis on both struts and cables. This allows the formation of more
complex assembly such as in Figure 4 a). In (Skelton & de Oliveira, 2009), they use an even
broader definition where the compressive parts can have any geometry. This is a very fertile
extension as a lot of common objects fall into the tensegrity framework such as a bicycle wheel

21



where the spokes are the tension members and the wheel is the compressive part. For the rest of
this document, I will focus on rectilinear compressive bodies (which can still be connected
between each other). In a nutshell, a tensegrity system can then be viewed as a prestressed space
truss where tension members are cables and compression members are struts. Often, they are
classified depending on the maximum number of compressive elements joining at one node. The
bicycle wheel will then be a “class 1” tensegrity system.

g

Figure 4 : Two tensegrity systems — a) Snelson's X-piece (1948) and b) Bicycle wheel

b)

a)

Another interesting feature that is worth mentioning is the dualisation. Every tensegrity system
has a dual which is also a tensegrity system. The dual is obtained by inverting cables and bars in
the configuration. Note that it may not be stable.

1.2.2 A few mechanical considerations

Several models can be considered for the behavior of the two types of element composing a
tensegrity structure.

F - "
| >
| .
0 X
I
O EOUERE R
a) b)

-

Figure 5 : Mechanical Behavior of a) struts and b) cables from (Motro & Vassart, 2001)
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In the figure above, three behavior models for the members are represented. The bolded, full and
dashed lines correspond respectively to the ideal infinitely rigid, the linearized, and the real
behavior. Bars have a bilateral behavior while cables have a unilateral behavior. However, since
cables are better in taking tension than bars, in the following we assume bars have a unilateral
behavior that mirrors the cables’. Prestress in the system allows then some bilateral behavior for
the two types of members. Pretensioned cables will then be able to take some compression; they
will feel less tension than in the initial state.

It appears that steel cables have a significantly higher yielding limit while having a lower
effective elastic modulus compared to a standard steel rod. Typical numbers given in (Latteur,
2006) are E, = 170GPa for a cable strand effective Young’s modulus and f,, . = 1GPa for the
yielding point. Hence, by having cables in a structure we increased its strength but lower its
stiffness.

A counteracting effect to this loss of stiffness is the prestress in the tensegrity structure. Indeed,
prestressing a structure increases its geometric rigidity while no alteration on the physical
rigidity happened. To understand this, we can look at an analogy used in (Motro & Vassart,
2001).

> 4

B C

Figure 6 : Different states of a soccer balloon from (Motro & Vassart, 2001)

Let V be the volume of air inside the balloon and V, be the volume of the solid balloon envelope.
We distinguish three cases:

- A :V <V,, the balloon does not have a defined geometry. Depending on the loads applied to
it the system “moves”. It is kinematically indeterminate or statically unstable (hypostatic).

- B:V =V,, the geometry is unique and the system is statically and kinematically determinate
(isostatic). It can be referred to a null state of prestress.

- C: V>V, the pressure inside the balloon is higher than the atmospheric pressure. To
enforce equilibrium the system expands. Tension is created in the envelope. The geometry is
defined (slightly different than before). It is a statically indeterminate system (hyperstatic).
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Comparing the apparent stiffness, it is clear that deforming the system by the same amount is
more difficult in case C than B. The tradeoff, however, is a loss in the allowed stress range.

Similarly, a key parameter has been identified for regular tensegrity structures in (Motro &
Vassart, 2001). The analogous of the volume V is the ratior = g, where b is the length of the

bars and c is the length of cables. A specific value ry; (likel;), for which the system becomes
kinematically determinate, can be identified.

Let’s look now at a spring element of stiffness k and rest length [,. Let us compare the case
where the initial state corresponds to a null elongation, with the one where the initial state is
offset by [, — [y, i.e. the spring is prestressed. The associated prestress force is Fy = k( [, — [,).
Often, the stiffness of a spring is defined as the force required displacing the system of 1 unit of
length from its rest position. Depending on the unit length chosen the value of the force obtained
is the same as the value of the system stiffness in N. (unit of length)~1. One can view a state
of prestress as a new rest position. Hence, the force needed to create an elongation of 1 unit of
length chosen in the prestress system is F = k * 1 + F, > k * 1. See figure below.

F
E, N e e L
//
P4
kx1+F,
//
FO —47‘/

k=1 = ‘

iy |
&= — -
0 ll-—lo 0

Figure 7 : Different state of stress for a spring element

Another advantage of prestress lies in the fact that it virtually increases the force domain a
member can carry. In a prestressed concrete beam for instance, the bottom flange, which is
supposed to carry tension when the beam is under a positive bending moment, is precompressed.
This gives an extra capacity in tension. By knowing the forces in a system after application of the
design loads, one could potentially design the initial state in order to minimize the cross-
sectional area of the members. Say a particular member is supposed to carry 5kN of compression
after the external loads are applied on the system. Starting with an initial pretension of 2.5kN
reduces the absolute value of the force in the member by half (. But this only applies to bilateral
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truss members. Indeed, in order to symmetrize the loading on the member, it has to be able to
carry both tension and compression.

1.2.3 Applications of tensegrity structures

Because of its aesthetically pleasing aspect, the first applications of tensegrity structures were
artistic sculptures (e.g. Rainbow Arch by K. Snelson). Since cables do not need as much cross-
section area in comparison with bars, a system in which struts form a discontinuous set will give
the impression that compressive members are literally floating in the air. This is what K. Snelson
meant by “floating compression”.

Later, scientists set their sights on this specific class of structures. A famous application is the
tensegrity model of the cell mechanics. Prof. Donald E. Ingber reviewed the evidences
supporting the idea that the cytoskeleton in a cell would have a tensegrity architecture (Ingber,
2003). Figure 8 shows the main structural components in a cytoskeleton. On one hand, the Actin
Microfilaments, in red on A and abbreviated MFs in B, are the analogous of the cables. On the
other hand, the Microtubules, in green in A and abbreviated MTs in B, are the equivalent of the
struts. Another important mechanical component is the Extracellular matrix, denominated ECM
in B. The ECM is experiencing traction just like the attachments of a spider web would. The
whole system is active as the prestress can be modified depending on the situation.

Figure 8 : Endothelial cells under the microscope (A) and tensegrity model (B) from (Ingber,
2003)

Other structures in life have been identified as tensegrity such that muscles-bones systems.
Forecasting how prolific this concept would be, Prof. E. Ingber used the expression
“Architecture of Life” (Scientific American, 1998). After that, only one step leads to biomimicry.

In Engineering, the two main fields that showed interest for the tensegrity concept are the
aerospace sector and the civil sector. Except the pleasing architecture, one of the main
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advantages of this class of systems is their ability to change shapes without the need of a lot of
energy. This supports the life architecture idea as one of the key concepts in Nature is the
minimization of energy. Providing some energy and the right actuator, one can envision
tensegrity deployable structures. See (Rhode-Barbarigos, Schulin, Bel Hadj Ali, Motro, & Smith,
2012) for a study of the deployment of a ring pedestrian bridge. Another advantage is the ability
to support a multimodular architecture, i.e. a module is replicated, potentially at various scales,
to compose a larger structure. This can potentially add some redundancy in the system.

1.3 Literature review on the optimization of articulated structures

Many papers have been published on the optimization of articulated structures (trusses or
tensegrities). In most of them, see (Jarre, Kocvara, & Zowe, 1998) for instance, the geometry and
the connectivity of a structure are given for the optimization problem. They deal with the
question of finding the best load path by mapping a relevant portion of the space with fixed
locations nodes and starting with a maximal connectivity. At every turn if a node and/or a
member do not participate much, they are taken out of the problem. The geometry of the
structure is then refined.

Figure 9 : Cantilever truss optimization (Jarre, Kocvara, & Zowe, 1998)

This approach works and one can easily see that if the mapping is fine, the solution obtained will
be the good one in terms of geometry and connectivity. However, this creates a lot of variables
and limits the search to a small area.

In the following, a new approach is considered where both geometry and connectivity are

actually part of the optimization. A certain number of nodes have variable coordinates and the
connectivity can be seen as a set of binary variables; one for each pair of nodes in the system.
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2. Formulation of the optimization problem

In this section, the problem of the optimization of articulated structures is formulated, including
tensegrity systems, so that it falls into the typical mathematical formalism of optimization.

2.1 Data and choice of the variables

Starting with a load-carrying problem such as the cantilever example of section 1.1, one needs to
define what is given (data or parameters) and what is to be found (variables). In this section, the
formulation for the general problem is presented.

The data that is assumed to be given:

- The forces applied and the coordinates of the application points in given coordinate system

- The supports provided and the coordinates of the support points in a given coordinate system

- The materials (and thus their properties) out of which the members will be made of

The problem remains very general this way and many structural systems could potentially be
considered to carry the load to the supports.

Since the scope of work for this thesis is to study how tensegrity systems could potentially
provide a good solution in structural engineering, throughout the document we will compare the
solutions obtained with this class of structures against the ones obtained with regular truss
systems.

The decisions to be made to define a viable structure are then:

Regular Truss Tensegrity

Geometry Choose how many nodes to | Choose how many nodes to add to the
add to the problem and their | problem and their coordinates.
coordinates.

Connectivity For each pair of nodes choose | For each pair of nodes choose if a
if a member joins them. member joins them and if there is

whether it is a cable or a strut.

Scale For each member choose the | For each member choose the cross-
cross-sectional area. sectional area and the prestress

Table 1 Comparison of the design steps for truss and tensegrity
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In a nutshell, the tensegrity problem is the same as the truss with two extra decisions: the choice
between cables and bars and what prestress to put in the members.

To represent these decisions in the optimization process, there are several options in terms of
choice of variables. For instance, the prestress in a member could be represented either by its rest
length [y, or the actual prestress force Fy = k(I — ly); where k is the axial rigidity of the member
and [ is the length of the member in the initial state.

2.1.1 Geometry variables

Let N be the matrix of the nodes coordinates in the chosen coordinate system. At every line we
find the three, or two coordinates if we are in 2D, of a certain node. Some of the nodes are the
given supports and load application nodes. Let n be the number of added nodes to the system and
p be the total number of nodes. The coordinates of these n nodes are the geometric variables.

In order to avoid degenerative cases we forbid two nodes to have the same coordinates. Hence,
no member will have a length of 0.

5-

Figure 10 : Two configurations with one added point and different connectivities

2.1.2 Connectivity variables

One way to represent a connection between two nodes is to associate a binary variable for every
pair of nodes. If we number the elements in the following way:

C:  {GHelLplPli<j) - [o.222]
oy n . =3 .. .
@0 - h=T0Gj)=pi-1) - 5t
p(p-1)
The connectivity space is then C, = [0,1}“1' 2 ]] For an element of Cp, having a 1, a 0, at

place h means there is, respectively there is not, a member joining the pair of nodes (i, j) such
that h=p(i—1) — % +j—1i and1 < i <j < p. For tensegrity systems, the connectivity
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p(p-1)

space is bigger: €, = {—1,0,1}[[1’ 2 H 1 could be associated with cables and -1 with bars. The
total number of elements in a system is then:

m = Z|9h| for (8,) € C, or G,
h

A necessary condition for an articulated system to be stable is 3p —s < m, where s is the
number of supports provided to the system and m is the total number of elements. This stability

condition implies that only the following subset of €, or &, is worth looking at:

Dp={(6h)€ C,or¢, | Z|9h|23p—sl
h

The cardinal number of this subset is:

p(p-1)
2 plp—1)

2|

k=3p—s

Please note, factors 3 become 2 for plane structures.
In the following, though, I use an indirect method to represent the connectivity of the nodes.

For a member A, let €™ be the member’s connectivity matrix with respect to the whole system.
Its number of rows is equal to the total number of members and its number of columns is equal
to the total number of nodes. The general term of this matrix is:

N —1 ifa=hand b = isuchthat h =(i,j)
Céb) ={ 1 if a=handb = jsuch that h = {(i,j)
0 otherwise

The order of the pair (i,j) matters as we assume the member’s orientation is i towards j. The
connectivity matrix of the structure is then:

= Z cw
h

This matrix has only two non-zero coefficients on each line. For tensegrity structures, we add a
diagonal matrix £ with —1 or +1 on the diagonal deal with the choice between bar and cable for
each element.

2.1.3 Scale variables

Regarding scale variables, we will use a diagonal matrix A (living in a space isomorphic
to (R%)™) for which every coefficient on the diagonal represents the resisting cross-sectional
area of a member. For tensegrity structures only, we add a diagonal matrix 1 (also living in a
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space isomorphic to (R3)™) constructed in a similar manner than A with the rest length of the
members on the diagonal to represent the prestress. The relationship between Fy, diagonal
matrix with the prestress forces in the members, and I is the following:

m

mm _ ymm _
Fo = (£+21 E, —= . E,,)A(l(")) Y1-10)

E}p and E; being the Young’s modulus of the materials of which the bars and cables are made of.

2.1.4 Note on the configurations

For a truss system, two configurations can be distinguished: the initial and the deformed one,
obtained after application of the external loads.

For a tensegrity system now, there are three configurations. The “pre-initial” configuration is the
one for which the prestress has not been applied yet. The initial configuration is the one in state
of prestress equilibrium, which can be seen as a deformed configuration obtained from the “pre-
initial” state by applying the prestress loads. Similarly to a truss, the final configuration
corresponds to the deformed initial system under the external loads.

In some papers on tensegrity structures the three states of a system are considered. Since
knowledge of the “pre-initial” configuration’s geometry is not important for the optimization
problem, in the following I disregard it. What matters is the quantification of the prestress, which
is represented by the variables I¢¥, and to ensure the initial configuration is in prestress
equilibrium, which is enforced by a constraint (see section 2.2.2.3).

2.2 Formulation of the optimization problem

Notation precision: In the following, when operators are applied to diagonal matrices, they are to
be understood as the operation being applied to every diagonal coefficient.

2.2.1 Objective function

The matrix composed of the coordinates of the oriented vectors corresponding to the members
is CN. Hence, the diagonal matrix containing the length of all the members on its diagonal is:

= (CONY(CWN)T
)

The objective function we want to minimize can now be defined; it is the mass of the system.
Assuming a constant mass density, the volume can be substituted to the mass as the objective
function:

- Tr(l A) for regular truss structures
Tr(1(94) for tensegrity structures
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2.2.2 Constraints

A structure constructed as above is viable if and only if it meets the control requirements. This
includes both strength and motion specifications. Indeed, we do not want any member to fail or
the structure to move too much. These conditions translate into constraints on the variables
defined in section 2.1.

In the following, the small perturbations assumption is made. This allows the linearization of the
equilibrium equations, which can be written on the initial configuration, and the use of the
linearized model for the members” mechanical behavior. Dynamic could be considered if some
of the motion prescription take the form of a maximum acceleration but, for the scope of this
thesis we will limit ourselves to a static model. To derive the equilibrium equations, I use the
stiffness method (see Appendix 1).

2.2.2.1 Equilibrium equation

The static equilibrium equation for both a truss structure and a tensegrity structure is f = KU
(see Appendix 1). However, the only change is in the expression of the stiftness matrix K due to

the difference in stiffness between the two types of elements used in tensegrity.

The decomposition f=Q + R, with Q being the applied external forces and R being the reactions

forces of the supports corresponding to these external loads, holds for both trusses and
tensegrities. Indeed, one could write f=Q + R+ Ro — Qo, with Q¢ being the prestress loads

and R, the corresponding reaction, but, since a tensegrity is in prestressed equilibrium Ry —
QO = 0.

From the stiffness, we get two outputs: the generalized displacement vector U and the diagonal
matrix with on the diagonal the forces of the members in the deformed configuration F.

2.2.2.2 Constraints

There is a wide range of constraints that can be applied to the system. Here, I select only a few
that are essential.

e Stability constraint

For a structure to be viable it must be stable. The mathematical expression of this requirement 1s:

Where Ky is the extracted matrix from the system stiffness matrix corresponding to the non-
fixed degrees of freedom.

However, since a non-equality constraint does not fall into the typical mathematical framework
of optimization, we have two options:
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- Either modify the constraint in w — |det(Kpy)| < 0 with a parameter w chosen sufficiently
small.

- Disregard this constraint and modify the stiffness method so that it returns infinite
displacements if the structure is not stable.

In the following, we choose the second option.
e Strength constraints — Yielding of the members

This constraint represents the fact that no member in the structure is allowed to yield. The
mathematical expression for a truss is:

abs(F)A™1 - f,I™ < 0

For a tensegrity, this has to be true for the initial configuration as well as for the deformed
configuration:

g+ mm g—Jmm

abs(P)A™ = (= e == fyn) <0

L (et g—mm
abs(Fg)A™" — (—z—fyc - Tfy,b) <0

Where f, . and f,, , are the yield stresses of the bars and cables respectively. These values could
potentially be discounted to account for some safety.

e Strength constraints — Buckling of the compressive members

This constraint represents the fact that no struts in the structure is allowed to buckle. The
mathematical expression for a truss is:

max(—F,0) - m?EIl 2 <0

For a tensegrity, the constraints must be verified for both the initial and the deformed
configuration:

max(—F,0) — r2E, 10> < 0

max(—Fg, 0) — ITZEb”(O)—Z <0

In all these expressions, we have used the diagonal matrix I with the inertia of the members as
diagonal coefficients.

One could argue buckling is a false problem as the inertia could be adjusted by shaping the bars
appropriately. Indeed, the inertia represents how far the cross-sectional area is away from the
neutral axis. In an optimal behavior of compressive members, the buckling force would be equal
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to the yielding force so that there is no wasted material. For a member with a fixed length and
cross sectional area (to prevent yielding), one could play with the distance of this area from the
neutral axis to get the right inertia.

In pure compression, a necessary condition for optimality in buckling is a member which has

revolution symmetry about its neutral axis. Indeed, if it was not the case there would be a

privileged buckling direction. Easy solutions for compressive members’ shape would then be

solid rods or circular tubes. We have the two following relationships for these two cases:
AZ

4 3
Solidrod: | = & = &£ Circular tube with thin walls: I = TR3t = —
4 41 8mit?

Where [ is the inertia of the section, R is the radius of the section, 4 is the cross-sectional area
and t is the thickness of the walls for the tube case. For a fixed area, one could adjust the value
of the thickness to meet the buckling criterion. The smaller the thickness, the larger the inertia

would be but, the tradeoff is a large radius (R = z—i—t).

This is only looking at constant inertia members which are not an optimum. Indeed, cigar shapes,
for instance, perform better to prevent the first buckling mode. One could refine the shape further
but, it is an independent problem in itself.

Two options are available for the optimization problem:

- Consider buckling constraints with a specific type of compressive members’ geometry in
which case more complex geometries, like a tube, would add more variables to the problem.

- Disregard buckling constraints assuming this problem will be solved independently
afterwards by adjusting the geometry of each compressive member.

In the following, 1 use the first option and assume struts are solid rods to minimize the number of
variables.

e Motion constraints — Displacement
This constraint represents the control of the displacement of the structure.

The main output from the stiffness method (see Appendix 1) is the generalized displacement
vector U with the components of the displacements of each node in the structure. Given a
corresponding specified vector of maximum displacement for each degree of freedom Uy, this

constraint can be expressed:

abs(U) — Ug = 0

e Tensegrity specific constraints — Prestressed equilibrium

A tensegrity system must be in equilibrium in the initial configuration under the prestress loads.
This translates into a constraint on the set of initial forces in the members:
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Qoy = (9o,) =0

Where Qg is the generalized prestress load vector and ¢ is the permutation of [1,3p] introduced
in Appendix 1. With the notation of Appendixl, Qg is derived from Fy with the following
formula:

m
Q=) > (EBn = EX%, ) Fol " CNES:
a=1 h=1
h=¢(i)
An articulated structure is prestressable if and only if an autoequilibrated force field exists. For
this to be possible, the system has to be hyperstatic. Hence, an alternative to deal with this
constraint is to consider only a number of prestress force variables equal to the hyperstaticity of
the system and enforce equilibrium to obtain the prestress forces in the other members. This
method has the advantage of removing the only equality constraint we had so far and to decrease
the number of variables.

3

e Tensegrity specific constraints — Unilateral member

As mentioned before even though bars have a bilateral behavior in the following we assume they
cannot carry tension so that cables are selected. Hence, the constraints to ensure cables, struts,
carry only tension, compression respectively, are:

<0

(8—1’""‘ £+I"""F)
2 2

g—mm g+ Jmm
( 7 fom— F”)SO

e Architectural constraints

One could potentially add architectural constraint. For instance, on a tensegrity system we might
want to impose the radius of the bars to be sufficiently bigger compared to the radius of the
cables to have the “floating compression” feel described by Snelson. Mathematically, it could
look like (with the solid rods assumption):

- i <
B hgllfﬁl]}(shh/lhh) hg&lﬁ%(mm(ehhl‘lhh‘ 0))<0

This states that the lowest radius among the bars is sufficiently larger than the maximum radius
of the cables (as controlled by the parameter f > 0).

Another architectural constraint that could be imposed is having members that are slender
enough. It could be represented mathematically by (with the solid rods assumption):

VALt — s < 0
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6 > 0 is a slenderness ratio parameter to be specified.

e Feasibility constraints
Feasibility constraints could potentially account for construction constraints or a way to enforce
realistic solutions (e.g. avoiding clash between members in 3D). One could specify a minimum
length ¢ > 0 for the members and the constraint would be:

eI —-1<0

2.2.3 Important remarks on the formulation
In its current state the formulation has several flaws.

2.2.3.1 Rest lengths

Rest lengths are not ideal for direct use as variables if we plan pursuing in a numerical
optimization on a computer. Indeed, the rest lengths variables are not allowed to vary a lot. To
understand this let us write the yielding and unilateral member constraint differently. Let
h € [1, m] be a member number.

If g,;, = —1, member h is a strut and needs to verify:
L, < 10 < L
= thh = ~ &2
Ep

With £, , = 235MPa and E;, = 210,000M Pa the upper bound is equal to 1.00112  lp.
If €5, = +1, member h is a cable and needs to verify:
Inn
(1+%)

With f,, . = 1GPa and E. = 170G Pa the lower bound is equal to 0. 994152 * L.

<19 < 1,

l,, is a function of the geometric variables (coordinates of the nodes that are added to the

structure) and the interval of variation for lggl) will increase for large values of I, but it is not a

safe choice. As a result of this remark, when I(? is multiplied or divided it will be replaced by L.
In particular, the expression of the volume of the structure becomes the same for a trusses and
tensegrities. The axial rigidity of a member is also simplified.

Additionally, Fy will be preferred to I'® as the variable to represent prestress in tensegrity

structures. Indeed, a small change in length will induce large forces in the members.
Optimization algorithms can operate at a resolution that captures the variation of Fy.

35



2.2.3.2 Closure of the variables’ space

In an optimization problem, the solution might be reached on the border of the variable space.
For instance, x — i defined on ]1,3[ is maximum in 1 and minimum in 3. Both of these points

are not in the variable space. If we want the solutions to be in the feasible set of variables, the
variables’ space has to be closed. This is why all the constraints are defined with equality or less
than or equal inequality instead of strictly less than.

In our formulation of the problem, the variables’ space can be seen as the Cartesian product of
several sets:

For everyn € N,
Truss: (@), Gy 20, (An)) € 0,15 x 6 x (Ry)™

Tensegrity: ((Bh) (xi,¥i,21), (App), (Fohh)) € {-1,0, 1}[[ 2— Hx Gx (R:)™x (R)™
Where G = {(xl',yi, Zi) € (R3)n | Vhe [[1, m]],lh_h * 0}

G and (R} )™ are not closed which could cause a stability issue in the resolution of the problem.
This could potentially be resolved by imposing a constraint on the length of the member (see
section 2.2.2.2) and by modifying the area space to ([ag, +[)™ with a, a minimum area
parameter to be chosen. However, by doing so we might miss the optimum if the minimum
length and/or the minimum area chosen are too small. I will refer to this formulation as (F;).

A slightly different formulation that we are going to call (F,) of the problem could be
considered. Instead of deciding whether a member is joining every pair of nodes, one could

assume a maximal connectivity, i.e. all nodes are connected to each other, and allow A to live
p(p-1)

in(R,)
For everyn € N,

Truss: ((xi: Vi, Zi), (Ahh)) € (R%)" T

p(p—1)
2

Tensegrity:((04), (%0 Y02, (Ann), (Fory)) € (—1 305 | x (37 x (R,)™

The variables’ space is now closed and there are actually less variables than in the previous
formulation. The tradeoff, however, is the need to adjust the method used to solve the
equilibrium equations.
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2.2.3.3 Existence of the solution

Before actually trying to look for a solution, existence of a solution has to be proven. For every
n € N and every (68,), the resulting objective function is a continuous function of the

variables ((xi, Yir Zi), (App), (Fohh))’

(Fohh) lives in a compact space due the tensegrity constraints (see section 2.2.2.2). With
formulation (F,), the objective function is coercive in both the geometric variables (x;,y;, z;)
and the cross-sectional area variables (4py,) ; when ||((xi,yi,zi), (Ap))|| = +o0 we haveV -
+o0o0.

With formulation (F,) however, the objective function is not coercive. Indeed, if one member
has a length of 0 the corresponding area variable can go to infinity without affecting the volume
of the system. Hence, there is no point looking for a minimum with this formulation as there is
an infinite number of them.

Since there is a finite number of (8,) for every n € N and for all the reasons that have been
mentioned above, we know that for every n € N an optimum configuration exists. The sequence
of the corresponding minimum volumes can be called (V},),en. Optimizing a structure is then
reduced to the study of this sequence.

2.2.4 Summary
The mathematical formulation of the optimization problem is for every n € N:

minV (X)
XesS
For everyn € N, solve: g;(X) <0 forj €[1,q:]

hi(X) =0 fori € [1,qe,]
Where X is the global variable for the problem and S is the truss or tensegrity variables’ space as
in section 2.2.3.2. (gj) and (h;) are a selection of inequality and equality constraints to be

chosen. The table below summarizes the one that were introduced previously; some of them are
mandatory (underlined) and the others are optional.

Truss Tensegrity
Variables ((6), (1, 1,2), (Ann)) ((9;1), (i, Vi 20, (A, (Fohh))
i ’ p(p-1) @-1
Variables’ space {0’1}[[1;)@2 0] < G (ag, +oo])™ {_1'0’1}[[1;: 2] <o (2 en) x "
Objective function Tr(L A) Tr(L A)
Stability constraint” - R

2 Included by modifying the stiffness method (see section 2.2.2.2)
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Yielding constraint

abs(F)A™! — f,I™™ < ¢

1 £+ ymm g—mm
abs(F)A~1 — ( e — fy,,,) <0

4 (EFI™T g—rmm
abs(F)A~ — (So— e =S —p ) <0

Buckling constraint’

max(—F,0) — n2EIl"2 <0

max(—F,0) —7?E, 11”2 < 0

maX(-Fo, 0) - TTZEbIl_Z <0

Displacement

constraint

abs(U) —Ug < 0

abs(U) — Uy < 0

Prestressed equilibrium

Qon = (o) =0

Unilateral member

(s—Im”‘F .€+I"""F)<0
2 2 -

<0

£ —mm £+ Imm
( 2 6T ")

Floating compression

- i <
B hg‘%fﬁﬂ(fhhfqhh) hé‘&f}nﬂ(mm(ehh‘qhhr 0) =<0

Slenderness constraint

VALl — 5mm <

VA"l — s <

Minimum length®

eImMm —1<0

Table 2 Summary of the variables and expressions of the constraints and the objective function

? This assumes no optimization of the cross-section is conducted (see section 2.2.2.2)

* To ensure closure of the variables’ space (see section 2.2.3.2)
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3. First examples

As a first experiment, I study in this section the first two cases, n=0 and n=1, for both regular
trusses and tensegrities with a typical cantilever situation (see Figure 1) in 2D. This allows the
derivation of preliminary results and comparison of tensegrity and truss performance. 1 only
consider the mandatory constraints (see previous section).

When numerical applications are done, the following set of data would always be used:
- Applied Force:
P =3kN
- Geometry:
L=H =50cm
- Mechanical properties for the struts:

E, = 210GPa = 21,000kN.cm?
fyp = 235MPa = 23.5kN.cm?

- Mechanical properties for the cables:

E. = 170GPa = 17,000kN. cm?
f,c = 1000MPa = 100kN.cm?

- Displacement constraint factor:
a =360

For a problem with trusses, we will use only struts that can take both tension whereas for a
tensegrity arrangement struts carrying compression only and cables carrying tension only will be
used.

3.1 Truss optimization — No points added (n=0)

In this case we don’t have any geometric variables as we do not add any point to the problem.
Hence, we are left with a classic structural engineering problem where we need to size the cross-
section of the members as per the different constraints.

The optimization problem for an articulated structure as formulated in section 2 requires the
specification of the supports’ coordinates. One might argue the supports’ coordinates matter and
he would be right. Here, it is clear that there is an optimal configuration where the depth and the
location of the supports with the respect to the y = 0 line are optimal. The depth will have to be
big enough so that it decreases the required cross-sectional areas of the members but small
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enough so that their lengths do not increase too much. Because of the asymmetry caused by the
buckling constraint, the bottom support will tend to be as close as possible to the y = 0 line
without increasing the force in the bottom member too much. But these considerations depend on
how much force is applied. For the sake of this section argument, we will then stick with the
fixed supports as defined below.

~
~

<
L

Figure 11: Cantilever truss problem n=0

Let A; and A, be the cross-sectional areas of members 1 and 2 respectively. This system is

CREN 7,
=

internally isostatic and the forces in the members are F; = P = and F,

We now impose the constraints:

e Yield:

Where we have defined the parameters Ay = “;—‘l for=12.
y

e  Buckling:

ﬂ'ZEIi
—Fi — 1_2

L

il 8 i=12
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Where I; and [; are respectively the inertia and the length of member i. In the case of solid rods,

2
we have | = ‘g‘_;, hence the general formula can be simplified and we can define the buckling area

parameters A;, = 21; ,%};‘0) fori =1,2.

Ap .
—_— —
o= 1, =172

e Displacement at the tip:

Equating the external energy provided to the system to the strain energy we get:

1LFEF B
(1 +—2)—udSO

P\k; "k,

1L | LF:
b ey —uy <0
P(EA1 W

Where 1,4 is the maximum allowable displacement at the tip; typically ug = % with a ranging

from 200 to 500. Again we rewrite our constraint in an adimensional expression:
A A
1d | fad _ 4
Ay A
LF?

Where the displacement area parameters are A;g = e
d

Physically, the constraints state that no member should have an area too small. Because the two
members have the same length, the optimization of the volume of the system is equivalent to the
optimization of the sum of the area of the two members: A; + A,. Hence, we want A, and A, as
small as possible as per the constraints. The unconstrained minimum for the volume function is
obviously A; = A, = 0. If the displacement constraint is very lax, we get A; = Ay and A; =
max(Azy, Az,,). When the displacement constraint gets more stringent however, this affects the
areas to be chosen. Below is a graphic representation of the optimization.

w 2
- NS *

- n
- ———— 2
. w
S e o8 T

Figure 12: Surface plot of the volume function
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For the numerical application, we use the values specified at the beginning of section 3. Looking
at the feasible set of solutions in the plan (4;, 4;) we get the following graph.

o7
or

T T T T 1

o Aa A,

- l J.1 AZ

Direction to follow to minimize V
{ \
3}
Optimum
02—
Aly e
*“a1d
A2d A2y A2b
. | | | I L I L ] |
hi( (X 02 03 A aRaE ] i 3 [ 07 X} 09 1

Figure 13: Allowable member areas for & =360

The optimum for the problem is reached for (4,,4,) = (Aly, Azp) = (0.1427cm?,0.7972cm?)
and the corresponding volume is V"™ = 52.5427¢m3.

In fact, increasing the requirement in terms of displacement constraints up to @ = 500 does not
change the optimum in this configuration. This is mainly due to the small span of the beam.

3.2 Tensegrity optimization — No points added (n=0)

We are back to the same problem in terms of force applied and geometry except that we now
allow the use of cables which have a higher strength but lower stiffness compared to the struts.
Additionally, it is possible to prestress the system.

For a point to be in a prestressed state of equilibrium at least three members connecting to that
node are needed or two collinear members pending there is a stabilizing support.

Here, the system is not prestressable. Indeed, the node where the force P is applied will move for
any set of member forces different than (0,0). That being said let us solve the problem without
prestress. The only potential configuration is a cable for member 1 and a strut for member 2.
Please note this configuration is actually stable if and only if the load is pointing down.

Since the system is internally isostatic, the member forces do not depend on the stiffness of the
members. Hence, the expressions of the force in the members remain the same. Below is the new
expression of the different area parameters following the same method as before.
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Fori= 1.2

|Fil
Ay =—
4 fyi
max(—F;, 0)
A = 20 [~
L
l;F?
Aid B PEiud

To the problem parameters previously used for the truss, we need to add the mechanical
parameters for the cables. Let us assume E, = 17 000kN.cm ™2 and fyc = 100kN. iy

T T f e i -
s i
Ay Az
li A + Z =1
‘ Direction to follow to minimize V
g |
\
af- |
st \
\ \ Optimum
d ‘ \
| A1d s
!
| Aly
AZdJ_ A2y
R R T i T BT R P R T

Figure 14 : Allowable member areas for & =360

It is not clear on the graph above but the displacement constraint is governing for the cross-
sectional area of member 1.

The optimum for the problem is reached for (4;,4;) = (:—E—L,Azb) = (0.0976cm?,0.7972cm?)
; Azb
and the corresponding volume is V, "7 ) = 50.0190cm3.

Hence, the tensegrity configuration (even though it is not really stable for all loads) is a better

choice than the corresponding truss configuration. Even though cables are softer than bars the
additional strength helped reducing the volume by a small amount (—4.8%).
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3.3 Truss optimization — One added point (n=1)

As another point is added, the complexity of the problem increases significantly.

There are now multiple feasible connectivities. The necessary condition for the truss to be stable
1s 2 * 4 — 4 < m. The number of theses potential configurations to study is equal to:

6
20
k
k=4
We get 15+ 6 + 1 = 22 potential connectivity. If a member is used to connect the two
supports, it won’t contribute mechanically. All of the connectivity including this member can

thus be disregarded. We now have only 6 configurations left. The one below plus all the
configurations we get by removing one member only.

< >
L

Figure 15 : Truss configuration n=1

The connectivity arrangements for which we remove member 1, 3 or 5 are disregarded as well.
Indeed, the resulting structure will behave as the truss for n=0. No force is applied at the middle
node so it does not contribute to the equilibrium of the system. Member superposition is not
allowed.

Only two internally isostatic and one hyperstatic cases remain. Looking first at the internally
isostatic cases (corresponding to the removal of member 2 or 4), it appears both buckling and
yield constraints give a simple relationship like we have seen before in section 3.1 and 3.2 except
that now the A;;, and A;, depend on the geometric variables (x,y). This is true for any internally
isostatic truss. Indeed, forces in the members depend only on the geometry. For the same reason,
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the A;q in the displacement constraint depend on (x,y) as well but, the relationship is more
complicated. However, a necessary condition we can easily implement is A; > A;, for all i.

The function to optimize depends then only on the geometric variables (x, y):

Vix,y) = Z li(x,y). max (Aid (x,3); Aip (x,¥); Ay (x, y))

e Removing member 2

After exploring the (x,y) space (with a step size in both directions of 0.1cm) with the same data
as before we get an optimum of V,;, =48.3766cm® for (x,y)=(50,—11)
and (A4, Az, Ay, Ag) = (0.1573,0.7109,0,0.1551).

Note that we only looked at the necessary condition for the displacement constraint. Checking a
posteriori the displacement constraint with the optimum found we get:

A.

2 - 07687 <1
- A
L

Note as well that in this configuration member 4 does not take any force and thus can have an
area of 0. With the formulation of the problem in section 2, though, this member would have had
an area of a, and maybe the optimum would have been changed.

(50,-11)

S 1=50

Figure 16 : One potential optimal configuration for truss problem n=1

Below, we have a plan and a 3D view of the minimum volume Vnin depending on the values
of (x,¥). The axis of member 4 acts like a barrier between two potential regions or valleys. We
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can interpret the top valley as the structure asking for the missing member 2 that provided
suspension. The bottom valley can be seen as a way of reducing the buckling constraint on the
bottom member. The transition between the two valleys occurs for (x,y) = (50,0) which
corresponds to the location of the tip node. For this degenerated configuration, we get the same
results as for n=0 as the two nodes are rigidly linked.

g @ E = T o) * 7

Figure 17 : Plan view of the minimum volume function V,,;,, — Truss n=1 — member 2 removed

I7nvu'n (x: y)

Figure 18 : 3D view of the minimum volume function V,,;,, - Truss n=1 — member 2 removed

Please note that the volume has been capped at 150cm? in order to see the relevant part of the
design space.
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e Removing member 4

Following the same process, the optimum for this connectivity is V,;, = 30.1550cm? reached
for (x,y) = (25.8,—13.8) and (4,,4,,4;,As) = (0.0151;0.1334; 0.3961; 0.3897).

Checking a posteriori the displacement constraint with the optimum found we get:

Aig
: A_: =.016863 <. 1

L

(25.8,-13.8)

ST 1=50

Figure 19 : Another potential optimal configuration for truss problem n=1

Looking at our optimum point we see that all members participate in the transfer of the force P
to the supports. It is important to note the “moving” node is not located in the alignment of the
removed member (For the abscissa 25.8 the corresponding point on member 4 would have
been—12.1). It is edifying how the addition of a small member, namely 1, can increase
significantly the performance of the structure compared to the truss optimization with n=0.

Similarly to what was found when removing member 2, on figure 18 and 19 below we have a
barrier, where member 2 is, separating two valleys. The transition point between these two
valleys is the location of the tip node.
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Figure 20 : Plan view of the minimum volume function V,,;,, — Truss n=1 — member 4 removed

I7min(x» }’)

Figure 21 : 3D view of the minimum volume function V,,;,— Truss n=1 — member 4 removed

e Hyperstatic case

For this case all members are considered. Now, the complexity of the problem increases
dramatically as the area parameters (A ids Aip Aiy) depend on both the geometric variables and
the cross-sectional area of all the members in the system. Hence, exploring the variables’ space
1s no longer an option. To solve this problem, we explore the geometric variables’ space with a
step size of 0.1cm and call MATLAB’s “fmincon” solver to find the optimal cross-sectional areas
for the members for each pair of geometric variables. Setting the minimum area for a member a,
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to 0.01cm?, an optimum of Vj,;, = 46.0282 is found for (x,y) = (39.6,—13)
and (A;, Ay, As, A4, As) = (0.215;0.0816; 0.5701; 0.01; 0.3897).

Here, the system wants member 4 gone. This is why the minimum allowable area is obtained for
this element. Even if this is a small area, the forces in the system are changed drastically, and so
do the required area, compared to the isostatic case with member 4 removed. The optimum
volume is then higher.

The global optimum for a truss with n = 1 is thus the one found for the isostatic case with
member 4 removed.

o

N : T E ] L]

o

“o % o £l

Figure 22 : Plan view of the minimum volume function Vp,;, — Truss n=1 — hyperstatic case

Vmin(xJ }’)
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Figure 23 : 3D view of the minimum volume function V;p;,— Truss n=1 — hyperstatic case
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Something to notice 1s the fact that the minimum volume function does not explode as quickly as
in the 1sostatic cases when the added point is set in an awkward position for the structure. This is
due to the redundancy in the system. In an isostatic structure there is only one load path whereas
in a hyperstatic system there are several. Hence, if one path is not appropriate the load will find
another way to the supports whereas in the isostatic case it is not possible. Additionally, it is
interesting to see how a deep valley exists for (x, y) € [30,40] X [—20, —10]. This could also be
interpreted by redundancy in the structure. As the added point moves, a certain load path is
activated. However, when the point reaches the valley, the corresponding geometry is
particularly suitable for another load path which reveals itself to be more efficient.

3.4 Tensegrity optimization — One added point (n=1)

What was said in section 3.3 in terms of the configurations to be studied remains valid for
tensegrity structures. Three connectivity cases must be considered. Looking at the nodes’
equilibrium of the two isostatic cases, it is obvious that those systems are not prestressable. But
we can still optimize their without prestress.

e Removing member 2
Let (c;, S;)i=1,3.5 be the family of cosine and sine of the members’ orientation in the plane. Since

the system is isostatic, the forces in the elements can be determined by solving the nodes
equilibrium.

Cs
F,=P
CyS5 — C5Sy
Cq
FS -_ "P
C4S5 — C55,
C553 — (355
F, =F
6183 - C3Sl
€185 — €581
F; = F,
€183 — €351

Depending on the location of the added point, the forces will change sign.

Since the system is soft, due to the presence of cables, the method that consists in looking at the
value of V,,;, depending on the value of (x,y) does not work anymore. Indeed, the minimum

found with this method does not meet the displacement criterion (3;; ':—ifi = 1.1857 > 1).

The optimum in terms of the cross-sectional area of the members can still be found (see section
3.5). By exploring the variables space with a step size of 0.1cm in the x direction and 0.1cm in
the y direction, an approximation of the optimum is found: V,,;, = 47.1940cm? for (x,y) =
(50,-9.9) and (A4, A3, A4, A5) = (0.1405; 0.7200; 0; 0.1036). Members 3 and 5 are bars while
1 is a cable.
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It is the same type of minimum (the added point is located about 10cm below the load
application point) than the one found for the truss system except that we have a small decrease in
volume (—2.4%) thanks to the extra strength of the cable.

e Removing member 4

The expressions of the forces in the members have the same form as before except that (c,, S4) is
replaced by (c,, s,). Following the same method, an optimum of V,,,;,, = 28.2578cm? is reached
for (x,y) = (25.8,—13.5) and (44,45, 4,,As) = (0.0096,0.3986,0.1034,0.3888). Members 1
and 2 are cables while member 3 and 5 are bars.

Again, we have a solution which is very similar to the one obtained for a truss but slightly better
in terms of volume (—6.3%).

e Hyperstatic case

This is definitely the case with more richness so far. Indeed, this system is now prestressable. In
order to enforce an auto-equilibrated prestress force field, only one prestress force variable is
needed as the system is one time hyperstatic. Let Fgg be that variable. It lives

in [—- fy,pAs, fycA 5]. The other prestress forces in the members are:

C5S82 = €255
Fo1=Fys
€152 — 028
1S5 — C55;
Fo, =Fogs
C1S; — 025,
C5$4 - C455
Fo3 = —Fqs
C354 - C4S3
C3S5 — C5S3
Fo,=—Fys
C354 = €453

To solve the system, the function “fimincon” is called in MATLAB. Starting with a prestress of
Fy5 = 1kN with the corresponding connectivity due to the unilateral behavior of members and
ranging only on the positive side [O, fy,CAS] result in a local minimum that has a larger volume
compared to the previous cases (about 55¢cm?). The mirror configurations with a starting
prestress force in member 5 of Fg 5 = —1kN and looking only the negative range [— fy.pAs, O],
gives an optimum of about 65¢m? .

It appears here that the prestress in the system does not help saving materials.

3.5 Specific derivation for isostatic systems

The case of isostatic structures, in the particular cantilever situation, is simple enough so that we
can derive analytically the optimum cross-sectional areas for a fixed geometry. Indeed, the forces
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in the members depend only on the geometric variables; so do the quantities (At-d,Aib,A,-y).

Additionally, an isostatic tensegrity system is not prestressable. Besides, for a fixed geometry the
sign of the forces in the members is defined so there is only one choice possible in terms of
cables/bars.

Looking at section 3.1 and 3.2 will help understand how the arca optimum is found. Let n € N
be the number of added points to the problem and (x;, ¥;);-1., be the coordinates of these added
points. Assume A;3 ((x;, ¥;)i=1.n) > 0 for all i. Consider the following scenarios:

e Displacement constraint only

The optimal areas for the members are on the frontier defined by the curve:

m
Sae,
A

i=1

Picking one area variable, say the one corresponding to index m without any loss in generality (a
reindex could be performed), one can enforce the frontier condition by expressing it in terms of
the other variables:

Amd
A;
=370

The volume function is now a function of m — 1 variables:

~ A
V((ADimtmer) = Z LA, +
i=1 1~ Zm 1 ’fi

It is a strictly convex function and goes to infinity if one of the A; tends to A;; or +00. A unique
minimum thus exists and is found by annulling the gradient. For j € [1,m — 1] the partial
derivative corresponding to 4; is:

v AmaAia

_— ==
a4; 7™ LA
j 4 (1-3m A—d)

Setting this equal to zero, we get:

m—1
é‘_d A+ tmAmadja 1
A s l; Y
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Where we have kept the positive root of the square equation as the displacement constraint
imposes 1 — Zﬁ;l%‘i > 0.
i

Rewriting the equations corresponding to the nullity of the m — 1 partial derivatives in a
compact matrix form, the following system is obtained:
1
A 1
T : =1{:
1 1

Am—l

Where T is the (m — 1) X (m — 1) matrix whose general term is:
Agj fori#j
(M) = A lmAmaAja

Jd _
L

fori=j

The determinant of the matrix T can be calculated (see Appendix 3) and 1s equal to:

m-—1 l A A m-—1 m-1

midmdtid
[ ) ma] |
i=1 t i=1 j=1
j#i

Considering all the members in this expression are strictly positive the system is invertible and

the optimum areas for the members, that we will call( A;;), are found by inverting the system.
Amd

m—14id’

Note that A,,; is obtained with the formula 4,,, = >
1= gy,

In some degenerate cases, A;4((x;, ¥;)i=1.n) = 0 for certain values of i. This happens when a
member does not pick any load due to its orientation (see for instance 3.3 when member 2 is
removed). In these particular cases, the member does not contribute at all to the mechanical
equilibrium of the system but still has to be there to maintain stability. A minimum area can be
affected to it; it will just offset the value of the volume function. The reasoning above still
applies but the indexes corresponding to the null A;4 are not considered in the sum defining the
displacement constraint curve.

e All the constraints considered

Buckling and yielding constraints are now taken into account.

If Ay ((x, ¥i)i=1.n) < max (Aib((xi»yi)izl..n);Aiy((xi'yi)i=1..n)) for all { then the optimal area
for the members 1s Agozot) = max (Aib (i, ydi=1.n)s Aiy((xi: yi)i=1..n))-
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If for some A ((x;,¥i)i=1.n) > max (Aib((xi'yi)izl..n);Aiy((xi:yi)i=1..n))a the optimum is
changed. Let us partition [1,m] =1UJ, where I is the collection of indexes for which
A (x4, Y1) i=1.n) > max (Aib((xi;yi)i=1..n);Aiy((xityi)izl..n)) while | is the one for

which Ay (x4, Y1) i=1.n) < max (Aib((xiv Yidi=1.n); Aiy((xi:}’i)i=1..n))- Cases where some
members do not take forces are not considered (see remark above).

The optimum is then found by taking the minimum allowable area for all the members of indexes
in J/ and finding the optimum volume on the reduced displacement constraint curve. The matrix T
is then smaller and the system to solve to get the optimum values of (Af)je/ 1s:

1 1 — Z Aig
Ay ier max (Aib((xi:}’i)izl..n);Aiy((xi:yi)i=1..n))
T : = :
1 Z Ay
A 1=
-1 el max (Aib((xi: Vidi=1.n)s Aiy (x5, yi)izl..n))

Note that the derivation above accounted for only one displacement constraint.
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4. Computational approach to solve the general problem

4.1 Characteristics of the problem and approach

The optimization problem has been well-formulation in section 2 and we know a global
minimum exists. Finding it is the most difficult part though. Our case in particular is very
complex. Indeed the problem is non-convex and nonlinear and it includes both continuous and
integer variables (mixed-integer). Nowadays, numerical optimization works best for convex
nonlinear problem and some simple mixed-integer formulations.

4.1.1 Choosing the starting points

To non-convexity in itself will not cause any computational issue. The standard algorithm will
just converge to a local minimum which is the closest to the starting point which was provided to
it. It is then necessary to have a strategy to choose th