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Abstract

Basin hydrologic response pertains to the partitioning of precipitation into stream-

flow, evapotranspiration, and change in storage. The ability to explain or predict

the response has many applications e.g. flood forecasting, water budget studies, and

design of hydrological observing systems. However, explaining the response is chal-

lenging because it is the combined manifestation of many complex and interrelated

factors that naturally vary in space and time, and act over a variety of scales.

A possible key is better understanding of the space-time dynamics of the hydro-

logic state variable - the soil moisture field. This thesis uses the distributed hydrologic
model MOBIDIC that uses a single soil layer with dual compartments: a capillary and

a gravity reservoir composed of small, and large pores, respectively. Mass and energy

fluxes are simultaneously solved using simple linear equations. These make the model

computationally efficient. To improve soil moisture simulations, some model modi-

fications were introduced. MOBIDICs ability to simulate the magnitude range and

dynamics of soil moisture at the local scale is found comparable with a benchmark

model that uses non-linear soil physics relations.

We derive an entropy-based dimensionless measure of hydrologic complexity W
which measures the distance of a given soil moisture spatial probability distribution
from two limiting cases. Using 8 test basins with area of 100-103 km2 and represent-

ing semiarid, temperate, and humid climates, it is shown that W effectively tracks the

evolution of soil moisture distribution, and captures the interplay between vertical

and lateral fluxes. Furthermore, we investigate the relationship of W with observable

basin attributes and traditional measures of hydrologic response. Clear and logical

relationships emerge only after grouping basins based on similarity. For example, in

the semiarid basins, W increases with catchment area, infiltration ratio and baseflow

index. For basins of similar size, W is highest in temperate climate, consistent with

soil moisture being double-bounded so its variability peaks at intermediate condi-

tions. Finally, although not explicitly coded in MOBIDIC, hysteresis is evident in
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the discharge-storage plots. It emerges from the use of a dual-pore soil structure that
captures the threshold behavior of runoff. R- helps in understanding the mechanisms
involved.

Thesis Supervisor: Dara Entekhabi
Title: Bacardi and Stockholm Water Foundations Professor of Civil and Environmen-
tal Engineering and Earth, Atmospheric, and Planetary Sciences
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Chapter 1

Introduction

1.1 Motivation

The hydrologic response (HR) of a basin pertains to how precipitation is partitioned

into streamflow, evapotranspiration (ET), and change in storage. Streamflow can

be further partitioned into quickflow and baseflow; ET into evaporation and plant

transpiration; and storage into water in various reservoirs such as surface water,

soil moisture, and groundwater. As one of the main goals of hydrology, the ability

to explain the response or the spatiotemporal variability of the above mentioned

hydrologic fluxes and states has many important applications from flood forecasting

and risk management, to water budget studies, and to the design of efficient systems

for observing or modeling hydrologic variables. However, it is difficult to explain much

less predict the response because it is the combined manifestation of many complex

and interrelated factors that naturally vary both in space and time, and act over a

variety of scales.

1.2 Review of Related Literature

Many studies considered only the streamflow component of the hydrologic response

and how it is influenced by a single factor or class of factors such as routing processes

(Dunne and Black, 1970), catchment shape (Viessmann et al., 1977), topographic
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wetness index (Beven and Kirby, 1979, 1997), geomorphology (K. Gupta and Mesa,

1988; Rodriguez-Iturbe and Rinaldo, 1997; Lazzaro, 2008), and storm characteristics

( Vivoni et al., 2007). Other studies took a more holistic approach and investigated the

combined effects of various basin attributes then estimated individual effects using

techniques such as principal component analysis. Some of these studies are sum-

marized and compared in Table 1.1.The majority used stream gauge measurements

while Berger and Entekhabi (2001) used numerically-simulated streamflow, and (Cer-

dan et al., 2004; Buttle and McDonald, 2002; Buttle et al., 2004) used both observed

and simulated streamflow. Over the years the approach generally progressed in terms

of the number and coverage of basins used, the number and types of predictors and

measures of hydrologic response considered, and the complexity of numerical models

employed. However, the findings of these studies are inconsistent. For instance, the

interbasin variability of runoff ratio (streamflow Q divided by precipitation P) was

found to be controlled mainly by physiography(Zecharias and Brutsaert, 1988; Sefton

and Howarth, 1998), climate (Merz et al., 2006; van Djik, 2010), land use (Cerdan

et al., 2004), preferential flow paths and soil depth (Buttle and McDonald, 2002; But-

tle et al., 2004); or a combination of these attributes (Berger and Entekhabi, 2001;

Sankarasubramanian and Vogel, 2002).

Some studies recognize that basin response and hydrologic fluxes are functions

of distributed hydrologic states, most notably of soil moisture which controls the

partitioning of rainfall into infiltration and runoff, and also controls land surface

temperature through its effect on the partitioning of available energy into sensible and

latent heat fluxes. Based on a rich literature, the spatial distribution of soil moisture is

influenced mainly by the spatial variability of topography (Yeh and Eltahir, 1998; Liu

et al., 2012); soil properties (Western and Grayson, 2000; Kim et al., 2002; Famiglietti

et al., 1999, 2008); macropore and preferential flow paths (Brooks et al., 2009; Beven

and Germann, 2013) groundwater-surface water interaction (Levine and Salvucci,

1999; Kollet and Maxwell, 2008); vegetation (Eagleson, 1978; Ivanov et al., 2010); and

meteorological forcings e.g. precipitation (Entin et al., 2000; Western et al., 2003;

Vivoni et al., 2010). Moreover, soil moisture is dynamic due to the intermittency,
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seasonality, and inter-annual variability of meteorological forcings (Entekhabi et al.,

1995; Koster and Suarez, 1999). Both the spatial mean and variance of soil moisture,

i.e. its center of mass and distributional features, evolve over time.

1.3 The Need for Organizing Principles

The findings and conclusions of the various studies mentioned are inconsistent or

confusing to say the least. Beven (2006a) and Ebel and Loague (2006) explain that

because of uniqueness of place, the dominant processes and threshold levels can vary

significantly from basin to basin, thus resulting to unique hydrologic signatures. For

instance, the use of topographic indices has performed well in some cases but poorly in

others (Western et al., 1999). A possible key might come with better understanding

and model representation of soil moisture. In this light, Grayson et al. (1997) argued

that since soil is bi-modal with either local or nonlocal controls, realistic represen-

tation of hydrologic response cannot be achieved through the use of a single index.

Using soil moisture measurements at three adjacent hillslopes on a steep alpine terrain

in Italy, Penna et al. (2009) found that flow-related indices explain up to 42% of the

spatial variation of soil moisture, while radiation-related indices are not as important.

Some studies propose the use of similarity analysis or classification schemes. For

instance, based on catchment area, the hydrologic response of small basins is primarily

controlled by topography and soils (Robinson et al., 1995) or vegetation (Bisht, 2010);

while that of large basins is primarily controlled by climatic properties (Budyko,

1974; Vivoni et al., 2007; Nicotina et al., 2008) or geomorphology (Robinson et al.,

1995). For soil moisture, the dominant controls depend on both spatial and temporal

scales (Grayson and Wetern, 1998; Sk~ien et al., 2003; Wilson et al., 2004; Vivoni

et al., 2007; Famiglietti et al., 2008). Adding another dimension, based on analysis

of hillslope field studies in different parts of the world Lawrence and Hornberger

(2007) found that a classification based on climate regime (e.g. dry, intermediate, and

humid) explains the differences in soil moisture variability patterns. The magnitude

of spatial variance of soil moisture is controlled by the wilting point at dry states, by
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the hydraulic conductivity at intermediate states, and by the porosity at wet states.

In semiarid regions, the spatial variance of soil moisture generally increases with the

mean soil moisture (Fernandez and Ceballos, 2003). In humid regions, the variance

generally decreases as the mean soil moisture increases (Meyles et al., 2003; Teuling

and Troch, 2005). In temperature regions, the variance peaks at intermediate soil

moisture (Famiglietti et al., 1999, 2008; Lawrence and Hornberger, 2007).

This thesis recognizes the complexity and multi-dimensionality of hydrologic re-

sponse. Perhaps, instead of searching for universal relationships, the focus should

be on developing a classification scheme or a multi-dimensional chart (e.g. analo-

gous to the Periodic Table of Elements in Chemistry or the Linnaean Taxonomy in

Biology as suggested by Dooge (1986) and McDonnell et al. (2007a)) that has mul-

tiple dimensions such as space, time, and climate. In particular, this thesis tests

whether grouping basins according to climate and catchment area leads to a clearer

understanding of the spatiotemporal variability of hydrologic response. Moreover,

this thesis explores the use of the concept of entropy as an organizing principle, and

a possible link between a basin's micro-states e.g. distributed soil moisture, to its

macro-states e.g. streamflow. The test basins represent different spatial scales and

climates, and where applicable, multiple basin attributes and measures of hydrologic

response are used.

1.4 Thesis Outline

Chapter 2 describes the hydrologic model MOBIDIC which is the main tool used in

this research. The model will be compared with a few other hydrologic models to

point out its unique and key features. Next, the mass and energy balance of the

model, and the model modifications made for this thesis in order to improve soil

moisture simulations, will be discussed. Also discussed is the general procedure for

development of basin-specific MOBIDIC models, from data collection to model setup

and calibration.

Chapter 3 tests the ability of the improved MOBIDIC in simulating soil moisture
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at the local scale e.g. at a plan element. MOBIDIC-simulated soil moisture will be

compared with observations as well as with values simulated by a benchmark model

that uses non-linear soil physics relations for flow in the unsaturated zone. The

comparison is performed at two sites with contrasting climates.

Chapter 4 presents an entropy-based dimensionless index of hydrologic complexity

N which measures the relative distance of a given distribution of soil moisture from

two limiting distributions. N will be derived starting from the Martina and Entekhabi

(2006) index of hydrologic complexity. By using the concepts of differential entropy

and relative entropy, N is made discretization-invariant. The chapter concludes with

example applications of N to demonstrate how it can be used to better understand

the spatiotemporal variability of basin response and hydrologic fluxes in general, and

to answer specific science questions.

In Chapter 5, MOBIDIC and N are used to understand the hydrology of a rain

forest covered river basin in the Philippines. This chapter demonstrates in details

how a MOBIDIC model is developed for a specific basin, and it also illustrates the

kinds of hydrologic information and insights that the model can provide. Moreover,

this chapter investigates the dynamics of N and how it relates to the evolution of

the overall state of the basin and whether N captures the switching of dominant

hydrologic processes.

Having demonstrated that MOBIDIC can successfully simulate the dynamics of

soil moisture at the local scale (Chapter 2) and realistically capture the spatiotemporal

variability of the hydrologic fluxes and states of a river basin (Chapter 5), Chapter 6

uses MOBIDIC to model multiple basins with area of 100-103 km2 and representing

semiarid, temperate and humid climates. N is computed on the simulated variables

to answer the following science questions:

1. How do distributional features of soil water deficit evolve over time?

2. Is there hysteresis in the evolution?

3. Can the entropy-based measure of complexity N effectively track the evolution?

4. Can N be used to identify dominant hydrologic processes?
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5. What factors (physiography, spatial scale, climate, etc.) affect the distribution

and its evolution?

6. How are the distributional features related to basin response and hydrologic

fluxes?

The final chapter summarizes the key findings and contributions of this thesis.

Some future research directions are also suggested.
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Chapter 2

The Hydrologic Model MOBIDIC

This chapter describes the hydrologic model MOdello Bilancio Idrologico DIstributo

e Continuo (MOBIDIC) which is the main tool used in this research. The first

section gives an overview and general description of the model. This is followed by

a detailed description of the mass and energy balance. The next section discusses

the key modifications made in order to improve the representation of some hydrologic

processes and also significantly improve the numerical efficiency of the model. Finally,

the general procedure for applying MOBIDIC on specific basins, from data collection

to model validation, is outlined.

2.1 Introduction

More and more measurements of streamflow, soil moisture and temperature, piezo-

metric head, latent heat flux, and other hydrologic variables, are being collected

worldwide. These measurements are obtained through various methods such as mon-

itoring stations, distributed networks of sensors, field campaigns, and remote sensing.

The suitability of a certain method depends largely on the desired scale and reso-

lution, both in space and in time. Unfortunately, as discussed in the introductory

chapter, all observing methods or systems have shortcomings.

Numerical models can complement hydrologic observations. Incoming radiation

and precipitation are used in conjunction with water and energy balance models to
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simulate the evolution of state variables such as soil moisture and determine the water

and energy fluxes across the landscape. Harter and Hopmans (2004) describes how

hydrologic models have traditionally been used by two largely disconnected groups:

the watershed hydrologists who deal with macro-processes; and the soil physicists who

study soil properties and states at the laboratory or local scales. Watershed hydrol-

ogists typically use lumped or semi-distributed models such as TOPMODEL (Beven

and Kirby, 1979) and SAC-SMA (Burnash et al., 1973), which have been demon-

strated as highly capable in simulating streamflow. The computational timestep is

usually hourly, daily, or longer. The main shorthcomings of these models are that

i) they do not adequately account the spatial variability in landuse, topography and

other factors; and ii) they provide little or no information on the spatial variability

of hydrologic states and fluxes within the basin. On the other hand, soil physicists

who have detailed measurements of soil properties and states at the local to plot

scales, model unsaturated flow by discretizing the hydrologically active soil column

into several layers and using the nonlinear Richards equation (Richards, 1931),

86 OF _@- = -[K(O) ( + 1 (2.1)at 09Z 0Z _

where, K is the hydraulic conductivity, b pressure head, z elevation with respect to

a datum, 0 soil moisture, and t time (Milly, 1988). For numerical stability, the above

non-linear differential equation is solved using sub-hourly time steps.

Over the years, the modeling efforts of the two disciplines have started to converge.

The significant advances in computing, geographic information system (GIS), and the

increasing availability of remotely-sensed hydrologic datasets, have made feasible the

use of physics-based distributed hydrologic models (DHMs). These models discretize

the landscape in computational elements that are 101 - 10 3 m in the horizontal.

Adopting the practice in soil physics, many DHMs employ Richards equation and

discretize the hydrologically active soil layer into vertical layers that are 10-3 - 10-1

m thick. Some DHMs that use the Richards formulation are MIKE-SHE (Refshaard

and Storm, 1995) and ParFlow (Ashby and Falgout, 1996) that use grids for hori-
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zontal discretization; and PIHM (Qu and Duffy, 2007) and TRIBS (Ivanov et al.,

2004) that use triangulated irregular network (TIN) as horizontal elements, see Ta-

ble 2.1. Some simpler models such as the SAC-SMA (Burnash et al., 1973) represent

the soil as having dual compartments - saturated and unsaturated. More DHMs are

discussed by (Smith et al., 2004, 2012) under the context of the Distributed Model In-

tercomparison Projects 1 and 2. There are studies that demonstrate the advantages of

DHMs over lumped and semi-distributed model e.g. Bartholomes and Todini (2005);

Castelli et al. (2009); Smith et al. (2004); Vieux et al. (2004). Although promising,

the use of DHMs has its own challenges and criticisms including i) the need for a

high number of inputs, often at fine spatiotemporal resolutions; ii) the use of many

parameters (Luzio and Arnold, 2004; Duan et al., 2006) which makes the calibration

process tedious and raises the concern on equifinality Beven (2006a); and iii) the

high computational requirements (Smith et al., 2004, 2012). Hopefully, some of these

challenges will be overcome as better DHMs are developed and as the use of DHMs

mature, in general.

2.2 Overview of MOBIDIC

The main tool used in this research is the Modello Bilancio Idrologico DIstributo e

Continuo (MOBIDIC). It is a physics-based and distributed catchment hydrologic

model that simultaneously solves mass and energy balance. It was originally devel-

oped by Fabio Castelli at the University of Florence, Italy. Some modifications were

introduced in this thesis in order to make the representation of some processes more

realistic, especially to improve the ability of the model to simulate soil moisture.

Changes were also made to improve the numerical efficiency of the model. Previous

versions of MOBIDIC are described in Castelli et al. (2006, 2009).

MOBIDIC represents the hydrologic cycle as a system of reservoirs and the fluxes

of mass and energy between these reservoirs, see Figure 2.1. In order to account for

the different roles of gravity and capillary forces in moving and storing soil water, each

pixel (i.e. raster cell) of soil is divided into a gravitational compartment composed of
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Figure 2.1: The physical system described by MOBIDIC for a typical pixel; P is
precipitation, Ta air temperature, U wind speed, RH relative humidity, St total solar
radiation, T soil temperature, and 0 soil moisture

large pores, and a capillary compartment composed of small pores. For computational

parsimony, the soil moisture flux in the unsaturated zone is solved empirically instead

of using Richards equation.

MOBIDIC is written in Matlab with about a hundred subroutines. Topographic

and geomorphologic model inputs are processed in ArcGISTM. Groundwater dynamics

is modeled using either a linear reservoir model or a Laplace-type solver. Channel

routing can be done by the lag, linear, Muskingum, or Muskingum-Cunge method.

Surface reservoirs such as lakes and dams can be considered by specifying control

rules. Table 2.1 compares MOBIDIC with other DHMs.

2.3 Mass and Energy Balance

A schematic diagram of MOBIDIC's mass balance at a typical pixel, prior to the

modifications introduced by the author, is shown in Figure 2.2. This is simply wa-

ter balance because although MOBIDIC has a subroutine for contaminant fate and
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Figure 2.2: Schematic diagram of the mass balance for a typical pixel of MOBIDIC
prior to model modifications

transport, it is not used in this thesis. The soil is modeled as a single layer with

dual compartments, namely, the gravity reservoir composed of large pores that drain

under gravity, and the capillary reservoir composed of small pores that do not drain

under gravity. The water content states [LI of these reservoirs are Wg, and Wc, and

the per unit area volume capacities [L] are W9 ,max, and Wc,max, respectively, which

are parameterized as,

Wg,max =d (Osat - Of Id) (2.2)

Wc,max = d (Ofid - Ores ) ( 2.3 )

where, d is the thickness of the modeled soil layer, and 0 sat, Of Id, and 0 res, are the

volumetric soil moisture [-] at saturation, field capacity, and residual content, respec-

tively. The values of 0sat, Of Id, and 0 res are initialized as function of soil texture type

and using typical values reported by Rawis et al. (1982).

Within each computational timestep, dt [T], the hydrologic fluxes linking elements

across the landscape include infiltration-excess runoff RH, partial-area (saturation

from below) runoff RD, total runoff RT, return flow RR, and lateral subsurface flow
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QL. These water fluxes can be limited by the available water to be transported, the

transport capacity, or the available receiving storage. For each soil moisture storage

unit the infiltration I, the absorption Qas from Wg to Wc, the percolation Qper, and

the lateral subsurface flow QL, are formulated according to Equations 2.4 to 2.7,

I = min {#c(P + RT,up) + Ws, Ksdt, ( W,max - Wg)} (2.4)

Qas = min {Wg, (1 - Wc/Wc,max)} (2.5)

Qper =Y W9  (2.6)

QL =3Wg (2.7)

where, P is precipitation [L], Och the fraction of channelized flow, K, the soil satu-

rated hydraulic conductivity [L/T]; and K, y, and 3, are dimensionless parameters

with values from 0 to 1. The subscripts 'up' and 'down' denote incoming flow from

upstream cell(s), and outgoing flow to downstream cell, respectively; and QL,bypass

and RT,bypass [L] are the portions of the lateral subsurface and total surface runoff

from upstream cells that are routed directly to the downstream cell.

Infiltration fills the gravity storage at a rate limited by the saturated hydraulic

conductivity. Absorption flux Qas draws water from gravity storage into available

capillary storage. The parameter K is a linear rate coefficient. The water in gravity

storage is lost to percolation or to lateral subsurface flow. Both are again characterized

by linear rate coefficients 7 and /.

The conceptualization of soil water storage as gravity and capillary storage and

the flux relations shown in Equations 2.4 to 2.7, constitute the core of the simplified

modeling system. Infiltration fills the larger pores with gravity storage. Water is

moved from the gravity storage into the smaller capillary storage pores. Losses to

the groundwater and lateral flow are only from gravity storage. Simple linear rate

constants characterize the time scales of these exchanges. This simple representation

is based on physical considerations and they result in a parsimonious and computa-

tionally efficient modeling approach.
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Except during a precipitation event and the subsequent draining period, most of

the fluxes are inactive. During dry conditions, the only significant flux is ET which

occurs at the potential rate PET until W, is consumed. PET is determined through

a surface energy balance, as illustrated in Figure 2.3. From this, it follows that,

E = R, - H - G (2.8)

PET = ElpwLv (2.9)

where, E is the latent heat, 1, the net incoming radiation, II the sensible heat, G the

heat flux into the soil. pw the density of water, and L, the latent heat of vaporization.

(TO, qO, UO)

Rn E H T
I( Ts, qs)

G Vd)

T= constant

Figure 2.3: The surface energy balance of MOBIDIC at each computational unit

The turbulent fluxes are computed according to Equations 2.10 and 2.11 where,

pa is the density of air, Ca is the heat capacity of air, CH is the turbulent heat

exchange coefficient, and U is the wind speed; T and qa, are the temperature, and

specific humidity of air, respectively; and T, and q, are the temperature, and specific

humidity of the surface (combination of soil and vegetation), respectively.

H = paCaCHU(T - Ta) (2.10)

E = paLvCHU(q. - q.) (2.11)

The unknown surface temperature T, and soil heat flux G are estimated using the
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heat diffusion equation,

PCOT 0 OT (2.12)
%t Oz z

where, p, is the density, C, the heat capacity, k is the thermal conductivity, and T the

soil temperature. Equation 2.12 is integrated forward in time using a parsimonious

3-point vertical discretization:

T(z =0) T, (2.13)

T(z Zd) =Td (2.14)

T(z = zy) = Tconstant (2.15)

where, Zd and zy are the damping depths of daily, and yearly heatwaves, respectively.

The lower boundary condition is a constant temperature Tconstant roughly equal to

the annual mean air temperature. The upper boundary condition is,

OTS
k ( =9 -G (2.16)

2.4 Model Modifications: Processes

Modifications were made on the mass balance of MOBIDIC in order to make the

model more realistic, and applicable to diverse real-world settings. These include the

addition of plant/canopy reservoir and surface reservoir, the addition of an alternative

scheme for ET, and modifications of the conceptualization and formulation of lateral

subsurface flow. Moreover, soil moisture simulations are improved by i) adding control

rules for percolation; ii) adding a capillary rise module; and iii) introducing a modified

form of the linear reservoir model for groundwater dynamics.

2.4.1 Canopy Interception and Surface Storage

Figure 2.4 is a quick reference guide showing the revised schematic diagram and

formulations for the mass balance of MOBIDIC. This already incorporates the process

modifications that are now herein discussed in detail. First, notice that two water
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reservoirs have been added: i) the plant or canopy reservoir; and ii) the surface

reservoir e.g. for depressions and ponds. The per unit area volume capacities [L] of

these reservoirs are Wp,max and Ws,max, and the water content states are WP and W.,

respectively. Now, precipitation first encounters the vegetation canopy. Throughfall

precipitation reaching the ground either infiltrates into the soil, gets stored on the

surface, or becomes runoff.

2.4.2 Evapotranspiration

With the addition of the plant and surface reservoirs, evapotranspiration ET now has

three components: ET is from the plant reservoir, ET2 is from the surface reservoir,

and ET3 is from the soil capillary reservoir. These fluxes are computed sequentially

using simple formulations as shown in Equations 2.17 to 2.20. Note that the original

version of MOBIDIC only has ET3, which is limited by either W, or PET (since

ET1 = ET2 = 0).

ET = ET1 + ET2 + ET3  (2.17)

ET1 = min{Wp, PET} (2.18)

ET2 = min{We, PET - ET1} (2.19)

ET3 = min{W, PET - ET1 - ET2} (2.20)

Let Equation 2.20 be denoted as 'ET3 Model 0'. ET3 is shut-off only once W, is

empty i.e. when the soil is dried down to residual water content. The problem with

this simple scheme is that it does not mimic the gradual drying behavior of soil. In

reality, the ET efficiency ET/PET varies with soil moisture or plant-available soil

moisture, see e.g. Saxton et al. (1974) and Haan et al. (1982).

FT
ET efficiency = ET f (0) (2.21)

PET

So an alternative scheme, 'ET3 Model 1', is added. This scheme is formulated ac-

cording to Equation 2.22. This S-curve type equation was chosen because it mimics
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d
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to water table

Infiltration I = mintPch(P + RTUP) + Ws, KtAt, Wg,max - Wgl

Qas = mint W, K(i - Wc/Wc,max)1

Evapotranspiration ET = Z',= ET; ET1 = mintWp, PET}; ET2 =

ElT3 = min{Wc, (PET - ElT, - ET2)/(1 + exp( - 10S)))

S = (W + Wg)/(Wcmax + Wg,max); = constant

Percolation (or GW Seepage if negative)

Qper m yWg, W + - 1) W,max/2 }
mint[Wg,max - Wg - zw]/ 2,%Wmax - Wg}

Lateral Subsurface Flow QL = yWg

if

if

min{Ws, PET - ET1}

zw > 0

zw < 0

(dw/i$j)~4-(jj/4jj)~
Capillary Rise Qcap = Ksat j+(t/4j)~n+(i7-1)(d;/q1)"

Figure 2.4: A quick reference of the mass balance of the modified MOBIDIC for a

typical pixel
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Effective soil saturation, S = (Wc+W)/(Wcmax+W,max)

Figure 2.5: ET efficiency [-] vs. effective soil saturation S [-] using 'ET3 Model 1'

the nonlinear behavior of ET as function of the effective soil saturation S [-] and a

single parameter . The factor of 10 was set for convenience such that takes on

non-negative integer values (suggested value is 2 or 3). Figure 2.5 plots the resulting

ET efficiency curves for several values of , with the default value of 3 shown in red.

FT3= (PET - ET - ET2) (2.22)
1 + exp( - 10S)

S = (Wc + Wg)/(W,max + Wg,max) (2.23)

2.4.3 Percolation and Lateral Subsurface Flow

Based on Equations 2.6 and 2.7, percolation Qpe, and lateral subsurface flow QL are

simply the products of the water content of the gravity reservoir with the parameters

-y, and 3, respectively. First, let us examine whether these simplistic formulations are

realistic. Eagleson (1978) proposed the analytic solution for percolation,

40



Qper = K, s3+2m (2.24)

Figure 2.6 compares Qpe, normalized by K, computed using the analytic solution

and MOBIDIC's formulation, for different values of S and three representative soil

texture types. For MOBIDIC, -y was set equal to K,/Wg,max. For coarse soil e.g.

loamy sand, MOBIDIC gives higher Qpe, than the analytic value, while for fine soil

e.g. silty clay, it gives lower Qper. For soils with intermediate texture e.g. sandy clay

loam, Qpe, computed by MOBIDIC is about the same as the analytic value.

1

j
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0

0
-o
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0.4

0.3

0.2-

0.1r
0 0.3 0.4 0.5 0.6 0.7 8

Effective soil saturation, S = (W+Wg)I(Wmax+Wmax)

0.9

Figure 2.6: Comparison of the normalized percolation rate as a function of effective
soil saturation computed using MOBIDIC's approximation and the analytic solution
of Eagleson (1978), for 3 soil textures

Based on experience, -y is one of the important parameters of MOBIDIC. Thus,

an additional benefit from Figure 2.6 is the realization that a good initialization of -Y

is Ks/Wgmax. If anisotropy is assumed, as is most often the practice, this value can
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also be used to initialize the lateral subsurface parameter /3. These imply a possible

reduction of 2 degrees of freedom in MOBIDICs parameter space.

Still, with the current formulations, Qpe, and QL occur if and only if the soil

is wetter than field capacity. Moreover, an underlying assumption of Equation 2.6

is that the water table is deep and does not influence percolation. This is not the

case in floodplains, riparian zones, or many humid environments. A solution is to

use a piece-wise defined Qper, depending on the position of the groundwater table z"

relative to the modeled soil layer. To enable MOBIDIC to dynamically reconcile z"

and Wg, Qpe, is allowed to take negative values i.e. it is made bidirectional. Qper < 0

means that water is moving from groundwater into the gravity reservoir.

Figure 2.7 illustrates the 3 pairs of possible scenarios, where z is the depth [L]

below the surface (positive downward) and d is the thickness of the modeled soil. The

scenarios are vertically exaggerated for clarity. Typically, z" is below the bottom of

the modeled soil layer. If -lWg < (zn, - d)Wg,max, see Case A-1, then percolation

proceeds until W is empty. Otherwise, see Case A-2, percolation stops once W9 and

z. are in hydrostatic equilibrium. For this pair of cases,

Qper mi=n{ Wn , [Wg + (zw - d) (W/ax /2} if zw > d (2.25)

The second case is when zw is within the modeled soil layer. Either there is more

water based on z, than based on Wq (Case B-1), or vice versa. Water flows in the

direction that makes these state variables consistent. The equation for this case is

the same as that of the previous case except Qper can be negative.

Qper = minf{yW, [W + (zw - d) ( yax)1 /2} if 0 < zw < d (2.26)

In the third case, zw is above the land surface. At the beginning of a time step,

the gravity reservoir may or may not be full. Groundwater (or more correctly surface

water) will fill the gravity reservoir until it is consistent with zw (Case C-1) or until

Wg = Wgnax (Case C-2). This can be expressed by the following equation, with the
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Figure 2.7: Illustration of the cases when the position of the water table is inconsistent

with the content of the soil gravity reservoir
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first part accounting for Case C-1 and the second for Case C-2,

[z - (IW -- W]S w g,maxW) if z < 0 and (-z) < (Wg,max - W)
Qper = 2 (2.27)

W9 - Wgmax if z, < 0 and (-z) > (Wgmax - W)

which can be combined and written compactly as,

Qper = min{ (Wgmax - W) - zw] /2, Wg,max - W 9 } ifzw < 0 (2.28)

Combining Equations 2.25, 2.26, and 2.28, and simplifying, the final modified perco-

lation model is:

min{ yW, [Wg + (zw - d) (W'max /2} ifzw > 0
Qper =d (2.29)

mirn{[(Wg,max - Wg) - zw] /2, Wmax - W9} ifzw < 0

2.4.4 Capillary Rise

The soil capillary water storage unit can also receive water from capillary rise from

shallow water table. There are a number of available capillary rise models e.g. Gard-

ner (1958), Eagleson (1978), and Bogaart et al. (2008). They vary primarily based

on their parameterization of K, and the soil matric potential / [L] as function of soil

moisture. The capillary rise model of Salvucci (1993) shown in Equation 2.30 was

chosen because unlike other models, it allows direct calculation of capillary rise Qcap

[L] as function of V) and the representative distance dw [L] from the unsaturated soil

layer to the water table.

Qcap - ((dw 1)-" -d- (2.30)
1 + (V)/0)-4 + ( - 1)(d/1)-(.

where 01 [L] is the bubbling pressure, and y [-] is the product of the Brooks-Corey

pore-size distribution index, m [-], and the pore-size disconnectedness index, c [-].

Brooks and Corey (1964) is used to compute V),
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(2.31)

The required input of the capillary rise module is a map of soil texture type based

on US Department of Agriculture (USDA) classification. Then the lookup table shown

in Table 2.2 is used to extract soil parameters based on typical values reported by

Rawls et al. (1982). The depth to water table dw that is passed on as input to the

capillary rise module is computed depending on zw, see Figure 2.8. If the water table

is above the land surface (case A), dw is not computed and is automatically Qcap = 0

. If the water table is within the modeled soil layer (case B), dw = zw/2 since only

the portion of the soil above zw experiences capillary rise. If the water table is below

the modeled soil layer, dw = zw - d/2. Tests conducted using all soil texture types

and varying depth to water table and soil saturation, showed that the capillary rise

model yields Qcap with realistic values and correct dynamics.

Table 2.2: Lookup table of soil parameters for the capillary rise module of MOBIDIC.

Source: Rawls et al. (1982)

Soil Texture Osat Of id Ores Ks 01 I m
% % % mm/hr mm [-1

clay (< 30% clay) 47.5 39.6 9.0 6 856 0.165
clay loam 46.4 31.8 7.5 23 564 0.242
loam 46.3 27.0 2.7 132 401 0.252
loamy sand 43.7 12.5 3.5 611 206 0.553
silt 46.0 34.0 3.4 30 700 0.250
silty loam 50.1 33.0 1.5 68 509 0.234
silty clay 47.9 38.7 5.6 9 765 0.150
silty clay loam 47.1 36.6 4.0 15 703 0.177
sand 43.7 9.1 2.0 2100 160 0.694
sandy clay 43.0 33.9 10.9 12 795 0.223
sandy clay loam 39.8 25.5 6.8 43 594 0.319
sandy loam 45.3 20.7 4.1 259 302 0.378
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Figure 2.8: Possible water table positions relative to the modeled soil layer

2.5 Basin-scale Mass Balance

For long-term mass balance at the basin-scale, consider the system as composed of

the 4 water reservoirs modeled by MOBIDIC. Figure 2.9(a) shows the water fluxes

entering and leaving the system. If the basin boundary is a groundwater divide and

there are no transbasin water imports or exports, the water balance is,

= (P + Qca + Qbf) - (ET + Qper + QoUt) (2.32)

where, S is the net change in water storage, Qbf the baseflow, Q,t the total streamflow

at the outlet of the basin, and all other variables are as earlier defined and with units

of [L]. Equivalently, S is the sum of the changes in water content of all reservoirs,

(Wc+W g+Ws+WP)Ifinalinitial (2.33)

For multi-year simulations, the change in storage is negligible. Another convenient

system boundary for the mass balance includes the deep soil and groundwater aquifer,

and neglects internal fluxes, see Figure 2.9(b). This yields a simplified equation for

precipitation partitioning,

P = ET + Qout (2.34)
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Figure 2.9: Overall water balance of a basin considering the system is a) the modeled
soil layer; b) the modeled soil layer plus the groundwater aquifer

2.6 Model Modifications: Numerical Efficiency

MOBIDIC is written in MATLAB with several subroutines. Because it is a distributed

model, it deals with large matrices, which makes it computationally intensive. This

can be a limiting factor for applications across large domains and in ensemble mode.

Thus, several changes were also made to the source codes in order to improve its

numerical efficiency such that despite the increase in model complexity due to the

modifications in hydrologic processes representation, the current version of MOBIDIC

runs even faster than its previous version. In addition, code modifications were made

to minimize hardware requirements e.g. random access memory and storage space.

Conceptualize the model. Develop a schematic diagram.

Code the model.

Optimize for speed. Simplify, eliminate loops, vectorize matrices, etc.

Test & debug the code. Correct syntax errors, revise as needed.

Profile the code. Find the time-consuming functions or sections.

Figure 2.10: Procedure used to improve the numerical efficiency of MOBIDIC
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The numerical efficiency of MOBIDIC was improved using the procedure shown

in Figure 2.10. Before revising the codes, a conceptual diagram of the model must be

developed. Fortunately, MOBIDIC is already an existing model so it does not need

to be developed from scratch. Unfortunately however, since many subroutines have

been added and changes made to the original version, the current version is not well

organized and its performance is not optimized. Thus, considerable time was spent

in the sub-loop of profiling and revising the code, indicated by the feedback arrow .

Profiling of the code was done using MATLAB Profiler, which allows tracking

of parent-child relationship of each function/module, and automatically records the

number of calls and the time used by each (sub-) sub-routine. The Profiler allows

easy identification of time-consuming sections, which were then reviewed and revised

as possible. Profiling and revising of the codes were iterated until the performance

was acceptable. Some of the specific techniques used are:

" simplification and reorganization;

" elimination of loops and conditional statements;

" vectorization of matrices;

" use of common variables;

" use of consistent units;

" use of a basis of one time step (e.g. the unit for fluxes is [L]); and

" use of filters recognizing that often P =0, and Wg = 0 for most pixels

The test basin used to assess the improvement in the speed of MOBIDIC is the

Blue River Basin in Oklahoma. The basin was setup with 8.3x104 pixels, and the

model was run for one month at hourly time step on an IBM ThinkPad 64-bit 2.1GHz

IntelTMCore Duo processor. The total runtime was initially 1350 seconds, then reduced

to 310 seconds or a 78 percent reduction.
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2.7 Model Implementation

The main steps to develop a MOBIDIC model of a specific basin are the following:

" Review of literature especially hydrologic investigation and similar studies

" Data collection

" Processing, quality check, and preliminary analysis of data

" If possible and as needed, field work, sampling and/or monitoring

* Preparation of model inputs including options and settings

" Model calibration and validation

2.7.1 Collection and Preparation of Model Inputs

Figure 2.11 illustrates the input data of MOBIDIC.The inputs can be categorized

into four groups: GIS layers of basin properties; meteorological forcings; initial

and boundary conditions; and model parameters and settings. In recent years,

GIS data layers such as digital elevation model (DEM), aerial photos, and land

cover and soil maps, have become more readily available. For basins in the US,

most of these data layers can be downloaded for free from "The National Map"

(http://viewer.nationalmap.gov/) of USGS. Additional data can be obtained from

websites of research institutions and agencies at the state and local levels.

The collected GIS data are then imported into ArcGISTMfor visualization and pro-

cessing. Topographic and geomorphologic inputs are processed using the Hydrology

Toolbox. The processing steps are listed below.

1. Define the projection system of the DEM

2. Fill the pits of DEM

3. Create the map of flow directions using the D8 method of Tarbonton (1997)

4. Create the flow accumulation map
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Land cover (vegetation,
surface storage, albedo, etc.)

DEM (elevation, flow
directions, streams, etc.)

Soils (soil thickness,

porosity, ksat, etc.)

Aquifers - optional

+ Met. forcings (precip, air temp., solar radiation, wind speed, humidity)

+ Initial & boundary conditions

Figure 2.11: Data inputs of MOBIDIC

5. Delineate the river network and the basin boundary

6. Standardize the resolution, extent, and data format of each data layer

To automate these processes, a script was generated using the Model Builder of

ArcGISTM, see Figure 2.12. The script was later edited in Python,

Other required model inputs are land cover and soil maps, which are in turn

used to derive parameters such as albedo, turbulent heat exchange coefficient, canopy

interception capacity, and soil hydraulic conductivity. On the other hand, MOBIDIC

can output time series of streamflow at any point along the river network, and maps of

hydrologic fluxes (e.g. infiltration, runoff, and ET) and states (e.g. soil temperature

and water content of the soil capillary and gravity reservoirs).
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Figure 2.12: Example of how ArcGISTMModel Builder was used to automate the pro-

cessing of topographic and geomorphologic data inputs

2.7.2 Calibration and Validation

The simulation period usually covers a few years and is composed of a warm-up period

followed by a calibration period and a validation period. Having a warm-up period

minimizes errors caused by incorrect initialization of the model. Alternatively, model

spin-up can be performed until the simulated variables, esp. groundwater table and

soil moisture, are practically yearly cyclical. Model parameters are adjusted during

calibration. Once the model is satisfactory, the performance of the model is re-

evaluated on the validation period.

Global parameters are initialized based on typical literature values, plus informa-

tion on the specific basin being modeled, and previous experience with other basins.

Calibration is initially done manually. Once the parameter set seems correct, then

automatic calibration is performed to fine-tune the parameters. The entire calibration

process is guided by both objective and qualitative checks.
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The traditional use of a single-objective function as measure of model performance

has slowly been replaced by the use of multi-objective functions or multiple-criteria

measures that tests the models ability to match various aspects of the hydrologic

response (Gupta et al., 1998; Vrugt et al., 2003; Pokhrel et al., 2012). The objective

measures of model performance are evaluated using observed and simulated stream-

flow and/or soil moisture. The statistical metrics used are i) the bias B; ii) the

Pearson correlation coefficient R; iii) the modified index of agreement (Willmott,

1981); and iv) the Nash-Sutcliffe Efficiency index NSE (Nash and Sutcliffe, 1970).

The latter 2 metrics are commonly used in hydrologic studies (Krause et al., 2005;

Foglia et al., 2009; Segui et al., 2009). For n pairs of observed x, and modeled y

data, with mean values of T and Y, respectively, the metrics of model performance

are defined as follows:
n

Y (yi - Xi)

B = (2.35)

i=1

E(xi - T)(y, -

R = (2.36)

n

(y -X)2

IA =I n - = (2.37)

E(lyi yl± +lxi _ l)2

S(yi - Xi)2

NSE = I - (2.38)n

NSE ranges from -oc to unity. NSE < 0 means that the observed mean is a

better predictor than the model. Foglia et al. (2009) considers models with NSE

less than 0.2 as insufficient, 0.2-0.4 as sufficient, 0.4-0.6 as good, 0.6-0.8 as very
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good, and 0.8-1 as excellent. The overall objective function J used in calibration

is expressed in Equation 2.39 where w is a 4x1 matrix of weights of the individual

metrics, E w = 1. A perfect fit has J = 0 which corresponds to B = 0 , R = 1,

IA = 1, and NSE= 1.

J min{[BI, (1 - R), (1 - IA), (1 - NSE)] w} (2.39)

However, the ultimate objective of the calibration process, is not just to minimize

J. Emphasis is also given to the realism of the model. As mentioned, parameters

are constrained according to literature values. Moreover, other simulated hydrologic

fluxes and state variables are also plotted and qualitatively compared against obser-

vations and previously reported values.

2.8 Summary

This chapter describes the raster-distributed catchment hydrologic model MOBIDIC

which is the main tool used in this thesis. Its mass and energy balance is described.

Some model modifications were introduced to improve the representation of some

hydrologic processes especially for better simulation of the heterogeneity and dynam-

ics of soil moisture. These include i) the addition of plant and surface reservoirs;

ii) the use of a single-parameter S-type model of ET as function of soil saturation;

iii) the modifications of the conceptualization and formulation of lateral subsurface

flow; iv) the addition of control rules for percolation; v) the addition of a capillary

rise module; and vi) the use of a modified form of the linear reservoir model for

groundwater dynamics. Moreover, profiling and modification of the MATLAB codes

of MOBIDIC reduced its run time by about 78 percent. Finally, the general procedure

for developing a MOBIDIC model of a certain site or basin is outlined.
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Chapter 3

Simulations of Local Scale Soil

Moisture in a Catchment

Hydrologic Model

3.1 Abstract

Distributed and continuous catchment models are used to simulate water and energy

balance and fluxes across varied topography and landuse. The landscape is discretized

into plan computational elements at resolutions of 101 - 103 m, and soil moisture is

the hydrologic state variable. Increasingly, catchment models are used in conjunction

with replicates of forcings and parameters in order to generate an ensemble that

characterizes the uncertainty in the inputs and models. At the local scale and within

each of the spatial computational elements, the vertical soil moisture dynamics are

important. In catchment models these local scale processes are modeled using one-

dimensional soil columns. These hydrologically active soil columns are discretized

into layers that are 10-3 - 10-1 m thick. This treatment of local processes creates a

mismatch between the horizontal and vertical scales. Moreover, for applications across

large domains and in ensemble mode, this treatment can be a limiting factor due to

its computational demand. This chapter presents continuous multi-year simulations
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of soil moisture at the local scale using i) the physically-based distributed hydrologic

model MOBIDIC; and ii) a benchmark model - the legacy 1-D SHAW. SHAW was

chosen as the benchmark because it solves both mass and energy balance and it uses

non-linear soil physics relations for flow in unsaturated soils. Although MOBIDIC is

intended for basin-scale catchment modeling, and despite its use of a single soil layer,

simple partitioning of soil moisture into gravity (free) and capillary-bound water,

and linear parameterization of infiltration and some other fluxes, this study shows

that it can capture the more detailed dynamics implicitly included in the SHAW

model. The comparison is performed at two sites with different climates (semi-arid

and sub-humid).

3.2 Introduction

Soil moisture controls the partitioning of rainfall into infiltration and runoff, and it

controls land surface temperature through its effect on the partitioning of available

energy into sensible and latent heat fluxes. It is the hydrologic state variable in models

of surface water and energy balance. Its dynamics are affected by hydrometeorological

forcing of precipitation, radiation and atmospheric evaporative demand. Furthermore,

topography, landuse, soil properties and lateral exchanges across the landscape affect

its temporal evolution (Western and Grayson, 2000; Lawrence and Hornberger, 2007;

Vereecken et al., 2007; Ivanov et al., 2010; Liu et al., 2012; Beven and Germann,

2013).

There are various methods for measuring soil moisture, but unfortunately, as de-

scribed in the previous chapter, all current observing systems have their shortcomings.

Numerical models are used to complement hydrologic observations. Incoming radia-

tion and precipitation are used in conjunction with water and energy balance models

to simulate the evolution of soil moisture in the vadose zone and determine the water

and energy fluxes across the landscape. Harter and Hopmans (2004) describes how

hydrologic models have traditionally been used by two largely disconnected groups:

the watershed hydrologists (and recently also climate modelers) who deal with macro-
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processes; and the soil physicists who study soil properties and states at the labora-

tory or local to plot scales. Watershed hydrologists have traditionally used lumped or

semi-distributed models that treat the vadose zone as a zero-dimensional black box.

The computational timestep is usually hourly, daily, or even longer. Two examples of

these models are the semi-distributed models TOPMODEL (Beven and Kirby, 1979)

and SAC-SMA (Burnash et al., 1973) which have both been demonstrated as highly

capable in simulating streamiflow. Unfortunately, these models do not account for the

spatial heterogeneity in landuse, topography and other factors; and provide little or no

information on the spatial variability of hydrologic states and fluxes within the basin.

On the other hand, soil physicists who have detailed measurements of soil properties

and states at the local to plot scales, model unsaturated flow by discretizing the hy-

drologically active soil column into several thin layers, and solving Richards equation,

see Equation 2.1. For numerical stability, this nonlinear differential equation is solved

using sub-hourly time steps.

Over the years, the modeling efforts of the two disciplines have started to converge.

This convergence is probably best manifested by the emergence of physically-based

distributed hydrologic models (DHMs). These models discretize the landscape in

computational elements that are 101 - 10' m along the horizontal. Adopting the

practice in soil physics, many DHMs also employ Richards equation and discretize

the hydrologically active soil layer into vertical layers that are 10' - 10-1 m thick.

Some DHMs that use the Richards formulation include MIKE-SHE (Refshaard and

Storm, 1995) and ParFlow (Ashby and Falgout, 1996) that use grids for horizontal

discretization; and PIHM (Qu and Duffy, 2007) and TRIBS (Ivanov et al., 2004) that

use triangulated irregular network (TIN) as horizontal elements, see Table 2.1. Some

simpler models such as the SAC-SMA (Burnash et al., 1973) represent the soil as

having dual compartments - saturated and unsaturated.

The hydrologically active soil mantle is but a thin layer draped over the landscape,

and it serves as the intermediate water storage connecting the surface above and the

groundwater or deeper soil layers below. Because of the horizontal-to-vertical scale

disparity, flow dynamics in the soil are often treated in DHMs as one-dimensional i.e.
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lateral subsurface flow is considered negligible. Exceptions include MIKE-SHE and

ParFlow which solve the full 3-D Richards equation. This treatment is however very

computationally intensive as demonstrated by Kollet et al. (2010) who had to utilize

16,384 processors of a supercomputer to achieve reasonable run time for ParFlow

simulations of a basin on the order of 103 km 2 at fine spatial resolution (100 - 101 m

in the horizontal and 10-2 - 10-1 m in the vertical).

Models based on Richards formulation are useful when the vertical profile of soil

moisture is desired especially when the soil column is significantly non-homogeneous.

Information about the vertical soil structure is however often not available and highly

uncertain where available.

As discussed, the scales mismatch between the vertical and horizontal discretiza-

tion of DHMs (millimeters to centimeters in the vertical soil column versus tens to

hundreds of meters in the horizontal) leads to two main problems: 1) solving the

local scale vertical soil moisture dynamics based on Richards equation is computa-

tionally demanding; and 2) such fine vertical discretization increases the number of

parameters to calibrate, and state variables to initialize.

Moreover, although Richards equation is probably an appropriate model for unsat-

urated flow at the local scale, it is questionable whether it is an appropriate physical

model for watershed and regional scale applications (Beven, 1995; Beven and Ger-

mann, 2013; Harter and Hopmans, 2004). Using this equation for plan elements that

are in the order of 101-103, makes the implicit assumptions that the vertical dynamics

of soil moisture at the local scale is scale-invariant. In contrast, field measurements

show that soil hydraulic conductivity and pore properties related to the soil reten-

tion curve (of 40) vary significantly both in the horizontal and vertical (Gelhar et al.,

1992; Rubin, 2003; Zhang et al., 2004). Furthermore, the review paper of Beven

and Germann (2013) argues that the use of Richards equation to model field soil

should not be considered physics-based but rather a convenient conceptual approxi-

mation. They explained that the Darcy and Richards equations have dominated soil

physics in the last few decades because of the ready availability of numerical models

based on these formulations, despite the convincing evidence that their underlying as-
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sumptions, and carefully controlled experimental setups, are inappropriate for natural

conditions. They highlighted the importance of macropores and suggested the use of

at least a dual-pore soil structure. The catchment models TOPMODEL and SAC-

SMA use this structure. Other models that use this dual-pore soil structure are the

1-D model of Gerke and van Genuchten (1993), the 1-D model MACRO (Larsbo and

Jarvis, 2003; Roulier et al., 2005), and the 1-D/2-D/3-D model HYDRUS (Simrnek

and van Genuchten, 2008). In these three models, the soil column is composed of a

macropore and a matric compartment, and the water flow in the matric compartment

is still solved using Richards equation.

Salvucci and Entekhabi (1994) demonstrated that a simple bucket-type equilib-

rium model can accurately reproduce the long-term mean evaporation, infiltration,

and recharge, as well as the characteristic soil moisture profile. Using in situ mea-

surements of soil moisture, Walker et al. (2004) showed that -a simple bucket model

captures the seasonality of the measurements although it overestimates the mea-

surements during the dry-down period. They also showed that a Richards equation

based model accurately reproduced the measurements at most of the instrumented

soil depths. Finally, Guswa et al. (2002) found that for a woody African savanna, soil

moisture predictions from a bucket model and a Richards equation based model are

quite similar if plants can extract water from locally wet regions. However, similar

studies that compare the performance of a dual-porosity model and a Richards equa-

tion based model in simulating the daily or seasonal dynamics of hydrologic states

and fluxes are still not available.

This chapter tests the fidelity of a novel approach to modeling the soil moisture

state in distributed hydrologic models. In particular, the distributed hydrologic model

MOBIDIC which is the topic of the previous chapter, is used. Table 2.1 lists the

features of MOBIDIC, and compares it with some of the hydrologic models that have

been mentioned. A key feature of MOBIDIC is its use of a single layer of soil with

dual compartments - one for free water and another for capillary-bound water. This

representation accounts for both fast and slow processes. At the same time, it makes

the model computationally efficient. Furthermore it reduces the number of state
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variables in the overall dynamic modeling system. The fidelity of this approach to

local processes is tested by comparing its soil moisture dynamics with that resulting

from a numerical model that solves the vertical heat and moisture dynamics using

detailed physics.

The goal of this chapter is to demonstrate that MOBIDIC which has a dual-pore

structure, can simulate the dynamics of profile-averaged soil moisture as accurately as

models using multiple soil layers and Richards equation. In addition, since most of the

previous applications of MOBIDIC assessed its performance based mainly on stream-

flow which is an area-integrated flux, this chapter also demonstrates that MOBIDIC

is capable of correctly simulating the dynamics of soil moisture, soil temperature, and

evapotranspiration.

The next section gives an overview of the selected benchmark model - the

legacy 1-D SHAW. This is followed by sections describing the correspondence be-

tween SHAW and MOBIDIC variables, the measures of model performance, and the

two study sites. Tests are performed at two sites representing semi-arid and humid

contrasting conditions.

3.3 The SHAW Model

The Simultaneous Heat and Water (SHAW) models the transfer of heat, water, and

solute within a 1-D vertical profile composed of multi-layered and multi-species plant

cover, snow layer, dead plant residue layer, and multi-layered soil. It was first de-

veloped by Flerchinger and Saxton (1989) to simulate soil freezing and thawing, but

has since undergone numerous modifications and extensions. It is available for free

from the USDA Agricultural Research Service (ARS) Northwest Watershed Research

Center (NWRC) website (ftp.nwrc.ars.usda.gov). It was chosen as the benchmark

model for this study because i) it simultaneously solves mass and energy balance;

ii) it solves Richards equation for soil moisture; and iii) it has detailed treatment of

evapotranspiration (ET).

Figure 3.1 shows the physical system represented by the model. In SHAW, a soil
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Figure 3.1: The physical system described by the 1-D SHAW model; P is precipita-
tion, T is air temperature, u is wind speed, RH is relative humidity, St is total solar

radiation, T is soil temperature, and 0 is soil moisture

column is discretized into nodes. The fluxes between nodes are solved using implicit

finite-difference. The required inputs include general site information (e.g. location,

elevation, aspect); parameters for soil, snow, vegetation, and residue; meteorological

forcings (precipitation, air temperature, total solar radiation, wind speed, and relative

humidity); lower boundary conditions; and initial and final states for soil moisture

and temperature. Optional inputs are time series of water sources or sinks, and time

series of vegetation parameters. The latter, which includes canopy height, biomass,

leaf diameter, leaf area index (LAI), and effective root depth, is specified in this study.

Over the years, SHAW has been successfully used in various environments and for

different applications. For example, Flerchinger and Pierson (1997) used SHAW at

the Reynolds Creek Experimental Watershed in Idaho, to model plant canopy effects

on variability of soil moisture and temperature at three soil depths. For more details

about SHAW, please see Flerchinger (2000a,b).

A similar conceptual diagram showing the hydrologic processes represented at
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each computational unit of MOBIDIC is shown in Figure 2.1. In general, the two

models have a lot in common. The main difference is that MOBIDIC uses a single

soil layer and since it is a catchment model, it accounts for lateral movement of water

both on the surface and in the subsurface, as opposed to only vertical fluxes in the

1-D SHAW.

3.4 Correspondence Between SHAW and MOBIDIC

Variables

In order to compare the soil moisture dynamics between SHAW and MOBIDIC,

the parameters used in both models were selected as consistently as possible. For

example, the albedo, total soil depth and saturated water content are the same for

both models.

SHAW and MOBIDIC output different state variables. SHAW gives the volumet-

ric soil moisture Oi [-] at each soil node i, while MOBIDIC gives the equivalent water

depth W [L] stored as capillary and gravity water for its single soil layer. To allow

comparison, the results of the two models were converted to depth-averaged soil mois-

ture 0 [-]. Let the superscripts '0', 'S' and 'M', denote observed, SHAW-simulated,

and MOBIDIC-simulated variables, respectively. For SHAW, QS (super-script S) is

the depth-weighted average of the 0, values,

VS = D Odi (3.1)
i=1

where, D is the total soil depth or the sum of the thickness of each soil layer di [L],

di Zi+1/2 - i-1/2 i = 1, 2,3, .. , n (3.2)

For MOBIDIC, OM (super-script M) is the sum of the equivalent depth [L] of water

stored in the capillary reservoir WM, the gravity reservoir WM, and the time-invariant
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residual water content WM, normalized by D,

m = (Wc + WM + WrM)/D (3.3)

For a convenient comparison with the fluxes of precipitation and ET which have

units of [L], the soil moisture can also be expressed as equivalent depth,

WS = DOS (3.4)

WM= DOM (3.5)

Moreover, in order to show that MOBIDIC's partitioning of soil moisture into

gravity-water and capillary-bound water is realistic and has a correspondence in

SHAW, the total water content simulated by SHAW for the ith soil layer is par-

titioned into gravity water WS , and capillary water WS.. Water in excess of the field

capacity is considered free water, while water between residual water content and

field capacity, is considered capillary-bound.

{ di (OS - Ofsd) if 93 > l (3.6)
0 if otherwise

di (fId,i - O, ) if OZ > Ofldi

W -i = i (6- O, r) if Of 1d,i ;>- 6 > Ores (3.7)

0 if otherwise

By summing over the soil column, the total water stored in the gravity and capillary

reservoirs are obtained,
n

=S WS. (3.8)

i

= Wfi (3.9)
i=1

For a given site, the strategy is to first develop the SHAW model. Next, the depth-

averaged saturated water content of the calibrated SHAW model, Ost, is carried over
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to the MOBIDIC model as 0". Since the same soil depth is used for both models,

this fixes the sum of MOBIDIC's Wg,ma, and Wc,max, but the partitioning between

the two still needs to be calibrated.

Wg,max + Wc,max =Wf + Wf (3.10)

Once the MOBIDIC model is calibrated, its Wc,max is used to calculate SHAW's 0Sfads.

fd,i Wc,max / D (3.11)

3.5 Test Sites

The comparison was performed using two sites with contrasting climatic regimes. The

first site is the 'Lucky Hills' catchment in Walnut Gulch Experimental Watershed,

Arizona. The climate is semiarid with two-thirds of the annual precipitation occurring

during the North American Monsoon from July to September (Goodrich et al., 2008;

USDA-ARS, 2007). The site has a mild topography with deep groundwater table.

The vegetation is dominated by shrubs (creosote bush or Larrea tridentata) with

sparse grass (USDA-ARS, 2007) The soil is sandy and gravelly loam. Meteorological

data and measurements of soil moisture and temperature were downloaded from the

USDA-ARS Southwest Watershed Research website (http://www.wcc.nrcs.usda.gov).

Soil moisture is measured at seven depths (5, 15, 30, 50, 75, 100, and 200 cm). For

consistency, the SHAW model was setup with nine soil nodes with the two extra nodes

located at 0 and 300 cm. A subset of the calibrated soil parameters of the SHAW

model for this site is shown in Table 3.1.

The second site is the USDA Soil Climate Analysis Network (SCAN) station

'Mayday' in Yazoo, west central Mississippi (320 52" N, 900 31" W, elevation 33

m.a.s.1). Located on the Mississippi Delta, this site is characterized by thick clayey

alluvial soil, flat topography, shallow groundwater table, and agricultural land use.

Its humid subtropical climate is significantly influenced by the warm and moist air

often originating from the Gulf of Mexico. In contrast to Site 1, precipitation here
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Table 3.1: Calibrated soil properties of the SHAW model of Site 1. b and V) are the
Campbell pore-size distribution index, and air-entry potential, respectively; D1 and
D2, are the diffusion, and dispersion parameters, respectively

Z b 4'e Ks P 0 sat sand silt clay OM D1  D 2

cm - cm mm/hr kg/m3 - % % % % - [-]
0 5.8 -100 11.0 1380 0.19 63 22 15 1.0 2.8 .005
5 6.1 -120 10.0 1380 0.20 63 22 15 0.6 2.8 .005
15 6.1 -150 6.00 1380 0.20 63 22 15 0.5 2.8 .005
30 6.1 -200 3.00 1380 0.20 62 22 16 0.4 2.8 .005
50 6.5 -220 0.50 1420 0.21 62 22 16 0.3 2.8 .005
75 9.0 -300 0.35 1450 0.21 54 21 25 0.2 2.8 .005

100 9.5 -300 0.30 1600 0.20 53 22 25 0.1 2.8 .005
200 10.0 -300 0.25 1600 0.19 52 22 26 0.0 2.8 .005
300 10.0 -300 0.25 1600 0.19 50 22 28 0.0 2.8 .005

is almost evenly distributed throughout the year. Hourly meteorological data and

measurements of soil moisture and soil temperature were downloaded from the SCAN

website (http://www.wcc.nrcs.usda.gov/scan). Soil moisture and temperature are

measured at five depths (5, 10, 20, 50, and 100 cm). The SHAW model was setup

with eight soil nodes with the three extra nodes located at 0, 75, and 150 cm.

3.6 Calibration

The period simulated for both sites covered four years with the first being the warm-up

period, the second and third as the calibration period, and the last as the validation

period. The use of a real-year warm-up period greatly reduced possible errors that can

be caused by incorrect initialization of the model. To guide the manual calibration,

several objective and qualitative checks were performed. For both sites, the objective

part of the calibration process considered the equivalent depth of water stored in the

top 50 cm of soil only. Later, the calibrated model was also evaluated for the top

30 cm of soil. As additional check, modeled soil temperature timeseries were also

compared.

As objective measures of model performance, the percent bias PB and the Pear-

son correlation coefficient R, are used as statistical measures of goodness of fit. For
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soil moisture comparisons, the Nash-Sutcliffe Efficiency index NSE was also evalu-

ated. These statistical metrics are defined in Section 2.7.2. Moreover, the time series

of SHAW-simulated soil moisture at various depths were also plotted and visually

compared against observations. For MOBIDIC, the hourly time series and annual

total of fluxes e.g. of ET, were qualitatively checked and compared against reported

values.

3.7 Results and Discussion

3.7.1 Site 1 - Lucky Hills, Arizona

The soil moisture simulated by SHAW for the Lucky Hills site is plotted against

observed values in Figure 3.2. The magnitude range and temporal dynamics of 0 for

all of the seven nodes are consistent. Particularly, SHAW is capable of reproducing

the sharp difference between the drier and more dynamic top four soil nodes (z = 5,

15, 30, 50 cm) and the wetter and less dynamic bottom three nodes (z = 75, 100,

200 cm). Notice also that during precipitation events, the top four layers become

wetter than the deeper layers, a process called 'profile inversion'. This particular

phenomenon cannot be captured in single-layer models such as MOBIDIC.

Next, the modeled WS and WM for z = 0 - 50cm are plotted along-side observed

values in Figure 3.3. Both SHAW (PB = -1.8%, R = 0.89, NSE = 0.79) and

MOBIDIC (PB = -2.3%, R = 0.88, NSE = 0.76) accurately reproduced the obser-

vations for the 2-year calibration period. The performance in the validation period is

comparable, see Table 3.2. Moreover, the results show that MOBIDIC captured the

magnitude range but more importantly the temporal dynamics that are comparable

to those with SHAW. Figure 3.3 also shows the time series of observed precipita-

tion and the MOBIDIC-simulated ET. High ET occurs around Julian Day 200-300,

with maximum of about 5 mm/day. For the rest of the year, ET rarely exceeds 0.5

mm/day.

The calibrated 0
sati ranges from 0.19 to 0.21. Although low, these values are
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Table 3.2: Performance of the SHAW and MOBIDIC models of Site 1 for the cali-
bration period (year 2007 & 2008) and validation period (year 2009)

Model Depth Calibration Validation
cm PB R NSE P13 R NSE

Soil Moisture
SHAW 0-50 -1.8 0.89 0.79 3.4 0.83 0.77
MOBIDIC 0-50 -2.3 0.88 0.76 1.6 0.84 0.70
SHAW 0-30 -5.9 0.86 0.71 0.0 0.95 0.90
MOBIDIC 0-30 -1.9 0.86 0.70 2.2 0.87 0.89

Soil Temperature
SHAW Zd 1.7 0.98 2.3 0.98
MOBIDIC Zd -7.4 0.93 -5.9 0.93

realistic since the site is very gravelly and rocky. Using the Wc,ma. of the calibrated

MOBIDIC model, the derived values of Of ld,i are 0.12-0.13. To illustrate the adequacy

of the dual soil compartment of MOBIDIC, the MOBIDIC-simulated W, and Wg are

plotted against the corresponding values derived from the outputs of SHAW, see

Figures 3.4 a and b. Two plots are used to highlight the difference in the dynamics of

the capillary-bound and gravity water. The two models with contrasting level of detail

are in general agreement indicating that the MOBIDIC W, and W magnitude range

and temporal dynamics have correspondence in SHAW. Gravity storage is comparable

in magnitude to capillary storage in this semi-humid environment. Gravity storage

is filled during rain storms and it is emptied rapidly. The capillary storage water

has multi-day time scales in its dynamics. In contrast to gravity storage water the

recession in its dynamics lasts for months.

As a further check, the soil temperature was compared. Since MOBIDIC outputs

only the ground surface temperature and the temperature at diurnal damping depth,

Td', the latter was used. The corresponding values from the observed and SHAW-

simulated soil temperature profiles were arbitrarily defined as the temperature at the

minimum depth from the surface, where the change over the course of a given day

is at most 0.25 degree Celsius . The diurnal damping depth is a dynamic variable

that ranges from 0 to the depth of the modeled soil. Figure 3.5 shows the very good

agreement between the observed soil temperature and the values modeled by SHAW

(R = 0.98) and MOBIDIC (R = 0.93).
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Using the SHAW and MOBIDIC models calibrated for the top 50 cm, the per-

formance metrics were also evaluated for z = 0 - 30cm. Table 3.2 summarizes the

results for Site 1. The degradation of model performance in the validation period

is minimal. Actually, the performance even significantly improved for soil moisture

in the validation period for the top 30 cm. According to the NSE categorization of

Foglia et al. (2009), both models performed 'very good' to 'excellent'.
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Figure 3.5: Temperature at diurnal damping depth of Site 1

3.7.2 Site 2 - Mayday, Mississippi

In contrast to the semi-arid Site 1, Site 2 is located in a humid climate region. For this

site, the soil moisture simulated by SHAW (lines) are plotted alongside observations

(points) in Figure 3.6. The soil moisture generally increases and becomes more stable

with depth indicating the presence of a shallow water table. The soil node at z = 50

cm remained practically saturated during the entire simulated period. Overall, the

SHAW-simulated 0 time-series at the various depths track the field measurements

in terms of magnitude range and temporal dynamics.

Figure 3.7a plots the time series of observed precipitation and the MOBIDIC-

simulated ET. After precipitation wetting events, the evapotranspiration rate can

be as high as about 12 mm/day. During the rest of the year, ET is normally 1-3

mm/day.

As mentioned earlier, the three objective measures of goodness-of-fit were evalu-

ated using only the equivalent-depth of water stored in the top 50 cm of soil. For

the 2-year calibration period, SHAW performed 'good' (PB =-0.5%, R = 0.78,

NSE =0.57) while MOBIDIC performed 'very good' (PB =0.0%, R = 0.86,

NS 0.71), see Figure 3.7b. For the validation period, both models significantly

underestimated 0. As shown in Figure 3.7b, the soil column remained saturated

during almost the entire validation period whereas SHAW and MOBIDIC naturally

predicted the recession of 6 due to ET and drainage. A possible reason for the dis-
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crepancy is irrigation in upstream areas, which causes significant lateral subsurface

flow and raises the groundwater table, and which is not properly accounted in the

two models applied without upstream conditions.

Using the Wc,ma, of MOBIDIC, the derived field capacity of the 8 SHAW nodes

from top to bottom are 0.29, 0.30, 0.34, 0.37, 0.36, 0.31, 0.32, and 0.32, with a depth-

averaged value of 0.33. As expected of a site with shallow groundwater table, clayey

soil, and humid subtropical climate, the soil capillary reservoir remains full during

non-drought years, i.e. the soil remains at or above field capacity. The fluctuation of

the total soil moisture at this site is associated only with the soil gravity reservoir.

Figure 3.7c shows that the MOBIDIC-simulated WS and the equivalent values derived

from SHAW, W track one another in both magnitude range and dynamics. Again,

this indicates that MOBIDIC's dual soil compartment has correspondence in the

Richards equation based SHAW model.

The measured and modeled temperature at the diurnal depth are compared in

Figure 3.8. MOBIDIC has an excellent fit with PB = 0.0 and R = 0.95. SHAW has

a positive bias of 23% but still a high R of 0.93.

The values of the performance metrics for soil moisture and temperature for Site

2 are summarized in Table 3.3. Similar to the findings in Site 1, the results here show

that MOBIDICs simple dual pore storage model captures the essential local scale soil

moisture dynamics that is comparable to those simulated with a solver like SHAW.

Furthermore, the two models performed relatively better in Site 1 than in Site 2

because the former is well-represented by an independent vertical soil column, whereas

in the latter, lateral subsurface fluxes and groundwater interactions are important.
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Figure 3.6: Observed vs. SHAW-simulated soil moisture at Site 2

Table 3.3: Performance of the SHAW and MOBIDIC models of Site 2 for the cali-
bration period (water year 2006 & 2007) and validation period (water year 2008)

Model Depth Calibration Validation
cm PB R NSE PB R NSE

Soil Moisture
SHAW 0-50 -0.5 0.78 0.57 -5.0 0.34 -0.36
MOBIDIC 0-50 0.0 0.86 0.71 -4.5 0.46 -0.34
SHAW 0-30 -0.7 0.79 0.57 -6.5 0.42 -0.17
MOBIDIC 0-30 4.9 0.82 0.46 -1.3 0.51 0.14

Soil Temperature
SHAW Zd 23.2 0.93 21.9 0.92
MOBIDIC Zd 0.0 0.95 0.9 0.94
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3.8 Summary

The local scale (referring to vertical discretization of the soil column) in distributed

hydrologic models is modeled using grids with millimeters to centimeters spacing.

This is required for the stable and correct solution of vertical soil moisture dynamics

based on Richards equation. This local scale treatment is embedded in distributed

models with lateral gridding with tens to hundreds of meter scale. The distributed

models are applied across entire basins. The desired applications to larger domains

and in ensemble mode is limited by: 1) the computational demand of the detailed

treatment of local scale processes, and 2) the number of model states that need to be

initialized.

This study compared the effective performances of the two distinct approaches to

the characterization of the local scale. In the detailed approach a numerical solver of

the Richards equation for the vertical soil moisture dynamics (coupled to heat flow)

is used. In the simpler and computationally efficient and parsimonious conceptual

approach, a dual-pore characterization of a single soil unit is used. The various

hydrologic fluxes act on the two reservoirs in different ways. Also an exchange flux

links the two pore storages. This conceptual approach is based on physical reasoning

and it is embedded in the MOBIDIC distributed hydrologic model.

The soil moisture state variables simulated by the two models are compared to

field observations. The comparisons are made at two sites with contrasting climate

(semiarid and sub-humid).

The parameters that can be linked between the two models are constrained to

be comparable. The calibrated models are then compared with each other and the

observations. At each of the two sites, the magnitude range and temporal dynamics

of the gravity storage water and the capillary storage water are comparable. This

result is the basis for using the simplified local scale characterization to large-domain

and ensemble distributed hydrologic model applications.

Vertical structure in the soil column that is associated with horizons and parent

geology cannot be captured in the dual-pore conceptual approach. The application
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of models like MOBIDIC is applicable when the soil is homogeneous, or if there is

limited or no information on the soil vertical stratification. Finally the role of roots

and macropores cannot be captured or represented in both detailed and simplified

conceptual approaches. Extensive field observations are required before an approach

to these complications can be designed.
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Chapter 4

An Entropy-based Measure of

Hydrologic Complexity

4.1 Motivation

Basin response and hydrologic fluxes are functions of hydrologic states e.g. ground-

water table and soil moisture. In this study, the focus is on soil moisture, which

controls the partitioning of rainfall into infiltration and runoff, and also controls land

surface temperature through its effect on the partitioning of available energy into

sensible and latent heat fluxes. Based on a rich literature, the spatial distribution

of soil moisture in a basin is influenced by the spatial variability of topography (Yeh

and Eltahir, 1998; Liu et al., 2012); soil properties (Western and Grayson, 2000; Kim

et al., 2002; Famiglietti et al., 1999, 2008); macropore and preferential flow paths

(Brooks et al., 2009; Beven and Germann, 2013) groundwater-surface water interac-

tion (Levine and Salvucci, 1999; Kollet and Maxwell, 2008); vegetation (Eagleson,

1978; Ivanov et al., 2010); and meteorological forcings e.g. precipitation (Entin et al.,

2000; Western et al., 2003; Vivoni et al., 2010). Moreover, soil moisture is dynamic

due to the intermittency, seasonality, and inter-annual variability of meteorological

forcings (Entekhabi et al., 1995; Koster and Suarez, 1999). Both the spatial mean

and variance of soil moisture, i.e. its center of mass and distributional features, evolve

over time.
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Soil moisture can be expressed in several ways such as volumetric soil moisture

[L 3 /L3 ], depth-aggregated volume per unit area [L 3 /L 2 ], percent saturation, etc. Here

the available soil water storage Ve [L] which is particularly useful in water balance

analysis, is used. Interchangeably, V, can be referred to as the soil water deficit.

When the soil is saturated, Ve = 0, whereas when the soil is completely dry, Ve =

Ve,max which is simply the product of porosity and soil depth. Figure 4.1 shows the

conceptual diagram of the two end members of the possible spatial distributions of V,.

The left is the simplest case wherein V, is the same across the basin. The probability

density function f(V,) is a Dirac delta function as shown by the bottom plot. For this

case, the basin can be represented by a single bucket with deterministic hydrologic

response or spatially constant hydrologic fluxes. On the other extreme, the most

complex case is when f(V,) is equally likely to take any value within its range i.e.

it is uniformly distributed from 0 to Ve,max. For this case, the hydrologic fluxes are

spatially variable and the hydrologic response is complicated. Naturally of course, a

basin or a hillslope will have a spatial distribution of Ve that is intermediate between

these limiting cases. It is useful then to have a metric to quantify the distance of a

given distribution of Ve from these opposite extremes.

The marginal distribution of available soil water storage f(Ve) evolves in time

both in terms of its mean and distributional features. The specific science questions

that this study aims to answer are the following:

1. How do distributional features evolve over time?

2. What factors (physiography, vegetation, climate, etc.) affect the distribution

and its evolution?

3. Is there hysteresis in the evolution?

In this chapter, a dimensionless index of hydrologic complexity 'H is introduced.

To develop the index, we first look at a similar index introduced by Martina and En-

tekhabi (2006) to quantify the complexity of event rainfall-runoff relationship. The

theoretical basis of their index is reviewed and the sensitivity of their index to dis-

cretization is analyzed. Next, we go to improved measure of distance between two
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Figure 4.1: Conceptual diagram of the limiting cases: the soil water deficit is left)

the same across the basin; and right) uniformly distributed from zero to a maximum

value. Bottom plots show the PDF of Ve.

distributions where one is the reference distribution, which can be either of the two

limiting cases previously described. However, a limitation of this approach is that

both distributions must have the same support set. In hydrology, there are direct ap-

plications such as soil moisture which is naturally bounded. In this study, we use the

relative soil water deficit with values ranging from 0 to 1. The effects of discretization

and the universality of the new index is analyzed. This chapter concludes with an

example application of the index on a real basin that demonstrates the use of the

index to address the science questions.

4.2 The Hydrologic Complexity Index of Martina

and Entekhabi (2006)

Recognizing the inadequacy of hydrographs to capture the spatial variability of pro-

cesses within a basin, Martina and Entekhabi (2006) developed a novel method to

infer the marginal probability distribution of the characteristic antecedent soil water

deficit of a basin from time series of precipitation and streamflow which are often the
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most readily available hydrologic data sets. The method is based on the non-linearity

between storm precipitation depth and runoff volume. To quantify the complexity of

the rainfall-runoff relationship, they introduced a dimensionless index of hydrologic

complexity, denoted here as Wold to avoid later confusion, as:

N

- >3pi log(pi)

'Hold = 2 (4.1)
log(N)

where, P {Pi, P2, P3, .. , pi, ... , PN} are the discrete probabilities,

pi = F(Ve)i+1/ 2 - F(Ve)i-1/ 2  (4.2)

FV, is the cumulative probability distribution, and

N

pj = 1 for Nc{1,2,3 ... } (4.3)

The numerator of Equation 4.1 is the Shannon entropy H used in the field of infor-

mation theory. In other fields such as thermodynamics, H is referred to as discrete

or extensive entropy (Singh, 2011; Koutsoyiannis, 2014).

N

H - pi log(pi) (4.4)

The intention for normalizing H by log(N) is to restrict the values of Wold to

the interval [0,1] with 7 old= 0 for the simplest and told =1 for the most complex

basin, respectively. This normalization was also thought to make oWld independent

of numerical discretization. Although the definition was explained to be correct for

the two limiting cases, no rigorous proof was given. The remainder of this section

checks these claims, first for the two limiting cases then using a Beta distribution as

example of a basin with intermediate complexity.
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Dirac Delta

For the simplest case, as shown in Figure 4.1, the basin can be considered as a

single bucket with a spatially homogeneous available soil water storage V*.

corresponding probability density function (PDF) is the Dirac delta function

f(Ve) =
00

0

Ve V*

:Ve $ e

The

(4.5)

and the probability mass function (PMF) is

p(Ve) =
1 : V, =V*

0 : Ve# V*
(4.6)

By convention, 0 - log(0) = 0, which is consistent with

lim p log(p) = 0
p 40+

(4.7)

Also, log(1) = 0. Therefore, for this deterministic case, oRld= 0 irrespective of the

chosen N.

Uniform Distribution

For the most complex case wherein V, is uniformly distributed, the discrete probability

is given by p = {1/N, 1/N, .. . , 1/N}NXl. Following the definition in Equation 4.4,

the Shannon entropy for this distribution is,

H = - log('

= -NN N

(4.8)

= log(N)

This is the rationale of Martina and Entekhabi (2006) to normalize H by log(N)

so that for this most complex case, W 0 d = 1 for any N E {1, 2,3, ,. . .}
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Figure 4.2: Dependence of left) the Shannon entropy H; and right) the index of
hydrologic complexity 'old, on discretization (N = 1/Ax). The inset shows the PDF
of the relative available soil storage

Beta Distribution

Next, consider a random variable X with a beta distribution X ~ B(a, 13) where a

and 3 are shape parameters that are both positive. For notation, X is the set of

continuous values x or discrete values xi. Since this distribution is defined only for

x E [0, 1], let X be the relative available soil water storage [-]

X = Ve (4.9)
Ve,max

The PDF and PMF of this distribution are given by Equations 4.10 and 4.11, respec-

tively.

f xx) = 1 X)'I 1  (4.10)
B(a,#)

i = P(xi)
(i+1/2)Ax

= f(x) dx (4.11)
J(i- 1/2)Ax

= f(xi) Ax

For illustration, consider a = 2 and # = 5. Using this distribution, 106 discrete

values were generated then binned into N equal intervals. The N values tried range

from 102 to 104 which is equivalent to using Ax = 10-4 to 10-2. Figure 4.2 shows
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that both the Shannon entropy and the index of hydrologic complexity based on the

old definition, increase with N. The increase in H is intuitive because the entropy or

uncertainty increases with the number of possible microstates or outcomes. What is

less intuitive is that normalizing H by log(N) still does not make 7' ld invariant to

numerical discretization.

4.3 Development of a Revised Measure of Hydro-

logic Complexity

4.3.1 Shannon Entropy

To fully understand the reason for the discretization problem just discovered and

hopefully find a solution, the concept of entropy will be discussed in more details. For

a discrete random variable X with potential states {x1, x 2 , ... , xi,-- , XN} and PMF

p(x), the discrete or Shannon entropy as defined in Equation 4.4, can be expressed

more generally as,
N-

11 (X) = (xi) log____

N (4.12)

- ~ p(Xi) log(p(xi))
i=1

It can also be expressed as the expected value of the self information,

H(X) = E[-logp(x)] (4.13)

The base of the log function is arbitrary but e is adopted here, thus entropy has

units of "nats". Since 0 < p(x) < 1, it follows that the Shannon entropy is non-

negative and it is equal to 0 only in the degenerate case that X has a singular value

with probability of 1.

H(X) > 0 (4.14)

Based on e.g. Michalowicz et al. (2014), some important properties of Shannon
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entropy for arbitrary variables X and Y, and constant k, are:

1. It is transitive and symmetric.

(4.15)

2. It is invariant to translation.

H(X + k) = H(X) (4.16)

3. Multiplication with a constant results to an additive constant.

H(kX) = H(X) + logk (4.17)

4. It is maximal if all possible states are equiprobable.

H(pi, P2 , .. . , PN) < H(1/N, 1/N. . . , 1/N) (4.18)

5. The joint entropy (or uncertainty) in X and Y is no more than the individual

entropies, and are equal only if X and Y are statistically independent,

H(X, Y) < H(X) + H(Y) (4.19)

6. The entropy (or uncertainty) in X cannot increase once the state (or outcome)

or Y is known,

HI(X|Y) < H(X) (4.20)

84



4.3.2 Differential Entropy

Differential entropy (also known as continuous entropy) extends the concept of Shan-

non entropy to continuous probability distributions. For a continuous random variable

X with PDF f(x), the differential entropy is defined as (Michalowicz et al., 2014),

h(X) = - f (x) log f (x)dx (4.21)

where X = {xlf(x) > 0} is the support set of X.

Although Equation 4.21 seems to be a natural extension of Equation 4.13, the

transition from the discrete to the continuous case or vice versa must be handled very

carefully. To explain this, consider a random variable X with PDF f(x), and let X

be a discrete random variable where the probability of the outcome xo is

(k+1)A

p(x ) = / f(x)dx = Af(xk) (4.22)

The entropy of this discrete variable is

H(XA) - p(xt) logp(x )
k

- Af(xk)log [Af(xk)]
k

-A E f(k)logf(xk) -- A f(xk) logA (4.23)
k . k.

Taking the limit as A - 0. the first term on the right is the differential entropy

h(X A). Also, A f(xk) = 1, thus
k

H(XA) = h(XA) - logA (4.24)

Or rearranging,

h(XA) = H(XA) + logA (4.25)

Therefore, differential entropy is NOT the same as discrete entropy. Unlike discrete
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entropy, differential entropy can be negative. Particularly, as A -+ 0, logA -+ -00, so

as long as the discrete entropy is finite, the differential entropy is negative. Because

of this, the interpretation of entropy as a measure of uncertainty in the discrete case

cannot be used for differential entropy.

h(X) c (-oo, +oo) (4.26)

4.3.3 Kullback-Liebler Divergence

A modification of differential entropy that addresses its shortcomings is the Kullback-

Liebler divergence (DKL) also known as relative entropy, information divergence, or

information gain (Michalowicz et al., 2014).

For Continuous Random Variables

For a pair of continuous PDFs f(x) and g(x), DKL is defined as,

DKL f(x)log f (X)dx
JSf g(x)

(4.27)

where, Sf is the support set of f(x). An important property of DKL is that it is always

non-negative with DKL = 0 if and only if f(x) and g(x) have the same support

set andf(x) = g(x) everywhere in the support set. With the goal of obtaining a

dimensionless index of hydrologic complexity, let the reference distribution g(x) be

uniformly distributed in the interval [a,b],

I

g (X) =b - a

0

for a < x < b

otherwise
(4.28)
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By the definition in Equation 4.27,

DKL (f 1g) = Sf

/'Sf
= 

f

= 
Is

f(x)log (x) dx1

b - a

f(x) [logf(x) + log(b - a)] dx

f (x)logf (x)d + log(b - a) j

Since f f (x)dx = 1,

DKL (f g) =sf f(x)log (f(x)) dx + log(b - a)

The integral term is the negative of the differential entropy of f(x) as shown in

Equation 4.21, thus,

DKL (f 1) - -h(X) + log(b - a) (4.33)

If the support set Sf [0, 1], i.e. a = 0 and b = 1, the previous equation simplifies to

DKL(f 9 h(X) for x C [0,1] and g(x) ~ U[0,1] (4.34)

By definition, differential entropy is independent of Ax or N. Therefore, Equa-

tion 4.34 means that for a random variable X with PDF f(x) such that x E [0, 1] and

f1 f(x)dx = 1, then DKL (f 11g) is also independent of Ax or N. Moreover, because

DKL > 0, the negative of the differential entropy for this case is also non-negative i.e.

-h(X) > 0.

For Discrete Random Variables

For completeness, consider discretizing the continuous PDFs f(x) and g(x) to gen-

erate their equivalent PMFs p(x) and q(x). The KL-divergence of p(x) from the
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reference q(x) is,

DKL[Ax,6x] (pjq) - Z P(xk) 109 P(xk)

k q(xk)
(4.35)

Using the discretization Ax and 6x, respectively, the probability of discrete outcomes

can be expressed as,

(k+1)Ax

k AX

(k+1)6xq(xk =
k 6x

f(x)dx =Ax f(xXk)

7(x) dx = 6g(x k)

(4.36)

(4.37)

Substituting Equations 4.36 and 4.37 into Equation 4.35,

DKL[AX' 6XI (p 1q) Ax
k

f(Xk) logX f(Xk)
6Xg9(Xk)

If Ax = x, then

DKL (p q) AXf (Xk)ogXk
k

if Ax- 6 (4.39)

As done for the continuous case, let g(x) be uniformly distributed in the interval

[a,b], recall Equation 4.28. Then,

DKL(plq) AXf(Xk)log k
k

b-a

= Ax f(k) log f(Xk)
k

+ log (b - a) Ax f(xk)
k

As A -+ 0, the first term is the negative of differential entropy, while for the

second term, E Ax f(xk) = p(xk) = 1. So,
k k

DKL (P jq) = I f(xk) log (xk) dx + log (b - a)

= -h(X) + log (b - a)
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Finally, if the support set of X is the interval [0,1], i.e. a = 0 and b = 1, then

log(b - a) = 0 and the result is Equation 4.44. Again, the KL-divergence is equal to

the negative of the differential entropy which is independent of discretization.

DKL (plIq) = -h(X) for x E [0, 1] and q(x) ~ U[0, 1] (4.44)

To summarize, given a dimensionless random variable X defined in the interval

[0,1], the KL-divergence or relative entropy of either its continuous PDF f(x) or its

discrete PMF p(x), with respect to a uniform distribution in the interval [0,1], is equal

to the negative of the differential entropy of X and is independent of Ax or N.

As mentioned, since DKL > 0 it follows that -h(X) > 0. However, the value of

DKL ranges from 0 to +00. By taking the exponential of -DKL, the value can be

constrained in the interval [0,1],

0 < exp [-DKL (fI )]1

for xE [0,1], f (x)dx = 1, and g(x) ~ U[0, 1]

Or equivalently for the discrete case,

0 < exp [-DKL (p1q)] K 1

for x E [0, 1], E3k = 1, and q(x) ~ U[0, 1] (4.46)

k

4.3.4 Definition of the Revised Measure of Complexity

Now, we formally define R as a dimensionless measure of complexity of a dimen-

sionless random variable X with distribution f(x), for x E [0,1] and f' f(x)dx = 1,

as

- exp - f(x) logf(x) dx (4.47)
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Or equivalently, using Equations 4.21, 4.34, or 4.44,

W = exp [h(X)] for x E [0, 1] (4.48)

= exp [-DKL (f 1g)] for x C [0, 1] and g(x) U[0, 1] (4.49)

- exp [-DKL (pllq)] for x E [0, 1 and q(x) U[0, 1] (4.50)

In general, X can be any dimensionless random variable. In hydrology, the limi-

tation that X be in the interval [0,1] is not a major drawback since many hydrologic

variables are naturally bounded. For instance, soil moisture is bounded between zerol

and saturated soil moisture content, and normalizing by the latter yields relative soil

saturation or relative soil water deficit with values 0 to 1. In this thesis, unless other-

wise specified N is computed using the relative available soil water storage, Ve/Ve,max

[-], in place of X.

N is dimensionless and takes on values from 0 to 1, with N = 0 for the simplest,

and N = 1 for the most complex case, respectively. As check, if f(x) is a Dirac

delta (deterministic case or single-bucket), DKL = 00, SO N = 0. On the other hand,

if f(x) is a uniform distribution, DKL = 0, SO N = 1. Figure 4.3 shows the value

of N computed for these pair of limiting cases, plus two example distributions with

intermediate complexity. As shown, the value of N is practically invariant to the

number of bins used N, or Ax since Ax = 1/N. For direct comparison with NHld,

the third example (bottom right) uses the same distribution used in Figure 4.2.

As defined in Equation 4.47, N should be invariant to N or Ax. However, in actual

numerical implementation, the continuous PDF f(x) will be generated or derived from

a finite set of discrete values e.g. values from an observational network, or values

simulated for the nodes or pixels of a distributed hydrologic model. For instance,

the distributions used in Figure 4.3 were generated from 106 discrete values. For

these non-peaky distributions, it was observed that N is practically the same for

N = 101 - 10'. For peaky distributions such as shown in Figure 4.4, the choice of N

'In other applications, the wilting point or the residual soil moisture content can also be used as
the lower bound, in which case the resulting dimensionless variable is the effective soil saturation.
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can be critical. Nevertheless, as shown, as long as N is reasonable given the number

of discrete values used, the computed R should be close to the theoretical value. For

this example, the number of discrete points used is 106 so a reasonable N is 102 to

10'. N < 100 results to a binning that is too coarse to correctly capture the peak. On

the other hand, N > 10' results to a binning that is too fine such that the significance

of the peak is slightly diminished. Moreover, the error arising from the use of too

few bins is relatively more significant than using too many. However, this points a

limitation of the use of R which is the need for a high number of discrete values e.g.

> 10' so that a reasonable N e.g. > 102 can be used. This implies the need for long

timeseries if the analysis is over time, or many points if the analysis is over space.

For reference, a sample MATLABT"code for computing R of a discrete data set

'Xdata' is provided.

1 %% Sample MATLAB code to compute hydrologic complexity index

2

3 N = 100 % number of bins
4 dx = 1/N % width of a bin
5 xbin = 0+dx/2 : dx : 1-dx/2 ; % midpoints of bins

6

7 p = hist(Xdata,xbin) ; % histogram

8 p(p==O) = [] ; % ensures p*log(p)=0
9 P = p ./ Sum(p) ; % PMF

10
11 f = p ./dx % Convert PMF to PDF

12

13 DKL = sum(f.*log(f))*dx ; % KL-divergence

14

15 H = exp(-DKL) ; % hydrologic complexity index

4.4 Application of the Measure

In this section, for the purpose of demonstration only, W is applied to MOBIDIC-

simulated timeseries of soil moisture fields for a 103 sq. km. mountainous tropical

rain forest basin in southern Philippines. The modeled domain has 12,000 pixels and

the simulated period is 4-year long, originally at hourly timestep then aggregated to
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daily values. Detailed description of the basin and the model can be found in the

previous chapter.

4.4.1 Example 1

N is evaluated using the relative soil water deficit, x= Ve/Ve,max. Since MOBIDIC

uses a dual-compartmentalized soil, we can also look at the individual complexity of

the soil capillary and gravity reservoirs, N and Hg, respectively.

NH = N(X), X =Ve/V,max

WC w (XC), Xc VeC'/Ve,c,max (4.51)

g 71g (Xg), Xg Ve,g/Ve,g,max

In this example, xc and Xg are the relative water deficit of the soil capillary and gravity

reservoirs, respectively. Note that Ve,max = Ve,c,max + Ve,g,max, and the range of x, xc

and xg is the interval [0,1]. Later, a second example will use a different definition of

xc and xg based on their contribution to the total soil water deficit.

The top panel of Figure 4.5 shows the hyetograph and the evolution of N, N,

and Ng. Also shown are the PDFs f(x), f(xc), and f(xg), for three representative

days. The timeseries only displays the results for WY2010 which was chosen for

illustration as it includes an unusually dry period from February to June 2010. Several

observations can be made from this plot. First, consider only N shown as red line.

It has a median of 0.16 and mean of 0.19, which are closer to 0 than to 1, indicating

that overall the basin has low hydrologic complexity. During a typical year, N only

fluctuates a little around the median or characteristic value. In fact, the timeseries

of N for the other 3 years is very similar to that shown for June to September.

Now consider also the individual complexity of the capillary and gravity reservoirs.

When the basin is wet as is usual for this humid basin, see point 3, most of the capillary

reservoirs are saturated so f(xc) is close to a Dirac delta at Xc = 0, and thus Nc ~ 0.
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A physical interpretation is that fluxes related to the state of the capillary reservoirs,

such as ET is least complex, in this case ET occurs at the potential rate across the

basin. Meanwhile, since this basin is well-drained, the gravity reservoirs never become

completely saturated so xg and x are spatially variable, and as a result N9 > 0 and

N > 0. N is associated almost entirely on N. However, because of the definition of

X9 in Equation 4.51, the relative complexity N9 is not numerically equivalent to N.

In dry conditions (see point 1), the gravity reservoirs are empty so f(xg) is close

to aDiracdelta at =1, which yields Ng, 0. A physical interpretation is that

fluxes related to the state of the gravity reservoirs, such as percolation, and lateral

subsurface flow are least complex, in this case there are no fluxes. Meanwhile, x and

x, are spatially variable so N and N are positive. While it appears that for this

dry regime N has roughly the same magnitude as H, they are also not numerically

equivalent. For reference the mean of Ve,c,max is 262 mm and the mean of Ve,g,max is

151 mm.

Comparing points 1 and 3, it can be seen that f(x,) in the dry regime has a wider

spread than f(xg) in the wet regime, thus explaining why for this basin N is generally

higher when the basin is unusually dry. Point 2 shows an intermediate condition

wherein the total entropy of the system is attributed to the combined entropy of both

soil reservoirs.

Figure 4.6 shows N, N and N9 vs. the relative soil water deficit (all vs. total

deficit x). As can be seen, N ~~ 0 when the basin is wet because the capillary

reservoirs across the basin are saturated. N begins to increase at x ~ 0.35. N9

has opposite trend with N9 ~ 0 when the basin is dry since the gravity reservoirs

are mostly empty. N9 does not exactly go to 0 because the areas along drainage

lines remain wet. Ng is high when the basin is wet since there is spatial variation in

Ve,g/Ve,g,max. The total complexity N is the combined effect of Nc and Ng, however

as pointed out earlier, N 4 R, + N9 Since the basin is usually wet, N is most of
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Figure 4.5: Time series of the hydrologic complexity of the basin, the capillary reser-

voir, and the gravity reservoir. Also shown are three snapshots showing the spatial

PDF of relative soil water deficit in the dry, intermediate, and wet regimes.
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Figure 4.6: The hydrologic complexity index of the soil capillary reservoirs, soil grav-
ity reservoirs, and the (combined) soil reservoirs, vs. the relative soil water deficit.
Inset shows hysteresis. Red and blue arrows indicate drying and wetting directions,
respectively.

the time attributed only to 7H_,. Furthermore, the basin does not become completely

saturated nor dry but since soil moisture is bounded, W = W, = W9 = 0 at both

ends of the support. Finally, the looping behavior of N in the dry regime clearly

indicates hysteresis at the basin scale. Although it is not as clear from the scatter

plot, a looping behavior was also observed for the wet regime when the points were

plotted sequentially.

4.4.2 Example 2

This example is the same as the first one except for different definitions of x, and xg,

X = Ve/Ve,max

Xc = Ve,c/Ve,max

X9 -ve,g/Ve,maxW9

=1h,(xg),

= Nc (xc) ,

(4.52)
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Notice the use of the same normalizer Ve,max. This definition, as will be seen shortly,

is better for understanding the contribution of 7-, and N to the total complexity.

The support sets of x, and xg are still contained in the interval [0,11 so the definition

of the measure is still valid, but the maximum values of x, and xg are now < 1,

0< x <1

0 < x, < max (Ve,c,max/Ve,max) < 1 (4.53)

0 < x9  < max (Veg,max/Ve,max) < 1

The new results are shown in Figures 4.7 and 4.8. Since the definition of x is un-

changed, the overall complexity ' and its interpretations are also unchanged. How-

ever, the magnitude, range, and interpretations of xc, xg, 'H, and 71g, are different.

From the time series in Figure 4.7, it can be seen that the dynamics (trends) of 7H,

and 'Hg are the same as before but their magnitudes are reduced. This is because the

support sets of x, and xg are now just subsets of the interval [0,1]. In other words,

the maximum of W, and RH are < 1. However, one of the advantages of the new

definitions of xc and xg is that now, W is roughly equal to W, + 'g.

In wet conditions (e.g. point 3), the PDFs of x and x, are almost the same so

'H 'Hg. In dry conditions, when the gravity reservoirs are empty, the PDF of

Xg is not a Dirac delta but equal to the PDF of Ve,g,max/ (Ve,cmax + Veg,max), which

yields 'g = '* > 0 as can be seen by the flat blue line from February to mid

May. A physical interpretation of this is that when the gravity reservoirs are empty

across the basin, the available gravity storage (unit of [L]) is not spatially uniform

so this reservoir will have a spatially-variable effect on e.g. saturation-excess runoff.

However, unlike in the previous example, the positive complexity does not mean that

the other fluxes related to this reservoir such as percolation and lateral subsurface are

still complex because they are in this case zero throughout the basin. For this basin,

the capillary reservoir does not go near empty but if it does, 'H = 'H* > 0. In this
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Figure 4.7: Time series of the hydrologic complexity of the basin, the capillary reser-

voir, and the gravity reservoir. Also shown are three snapshots showing the spatial

PDF of relative soil water deficit in the dry, intermediate, and wet regimes.
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Inset shows hysteresis. Red and blue arrows indicate drying and wetting directions,
respectively.

limit, the capillary reservoir will cause complexity or variability in runoff response

but it can not be used to mean that there is still complexity in other fluxes related

to this reservoir such as ET.

In both examples, the definition of x is the same, so the values and interpretations

of the total complexity W are unchanged. The measure of complexity introduced here

was developed for any dimensionless random variable in the interval [0,1] so it is valid

in both examples. However, as shown, care must be taken in interpreting the values of

this metric computed using different variables, and relating the values with each other.

In a review on the use of entropy theory in hydrology, Singh (2011) noted that an

entropy-based analysis becomes complicated when dealing with multiple subsystems

or variables, and suggested that more work needs to be done. With the pair of

examples used, we showed that the physical interpretation, i.e. in relation to various

hydrologic fluxes and states, of the measure of hydrologic complexity, in particular of

'H, and Ng, should consider the definition of the variables used.
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4.5 Summary

Basin response and hydrologic fluxes are functions of hydrologic states e.g. soil mois-

ture. However, soil moisture is itself heterogeneous in space and dynamic in time.

To characterize the spatial distribution of soil moisture and understand its evolution,

we introduced a modified version of the Martina and Entekhabi (2006) dimensionless

index of hydrologic complexity N which measures the distance of a given distribution

from two limiting distributions: Dirac delta (simplest case) and uniform distribution

(most complex case). The modifications were done to make N discretization-invariant.

The key features of the index are: i) it is computed for random variables with values

strictly in the interval 0 to 1; ii) it is computed based on differential entropy instead of

Shannon entropy; iii) it uses the Kullback-Leibler divergence to ensure non-negativity;

and iv) it uses an exponential transformation so that its value ranges from 0 to 1,

with N = 0 for the simplest, and N = 1 for the most complex case, respectively.

For demonstration purposes only, we applied the index on MOBIDIC-simulated

timeseries of soil moisture fields of a real basin. N was computed from the spatial

distribution of total relative soil water deficit. Since a key feature of MOBIDIC

is the partitioning of each soil moisture storage unit into a gravity reservoir and a

capillary reservoir, we also investigated the complexity of these sub-systems, Nc and

Ng, respectively. It was shown that N, n, and Ng, can track the evolution of the

distributional features of soil moisture and can provide insights on the switching of

dominant hydrologic processes. Care must be taken in interpreting the values of the

index computed using different variables, and relating the values with each other

and to various hydrologic fluxes and states. Physical interpretations should consider

the definition of the variables used. Finally, although hysteresis is not explicitly

coded in MOBIDIC, this phenomenon is exhibited by the plots of N and N versus

soil moisture. These findings are just just preliminary with the main purpose of

demonstrating how N can be applied to address the science questions. More tests
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and analysis will be performed in the next chapters. Particularly, the analysis of

the factors affecting the characteristic value of 71 will be investigated using multiple

basins representing different spatial scales and climatic regimes.
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Chapter 5

Understanding the Hydrology of a

Tropical Rainforest Basin

5.1 Abstract

In this chapter, MOBIDIC is used to investigate a 103 sq. km. mountainous trop-

ical rain forest (TRF) basin in southern Philippines. Aside from being the first

application of MOBIDIC on a TRF basin, this chapter also demonstrates how a so-

phisticated hydrologic model can be developed using freely-available remotely-sensed

data, plus only minimal field observations and measurements. In order to understand

how the basin responds to interannual variability of rainfall, a 4-year period that

includes a dry year and a wet year was simulated. Based on the simulations, the

average annual rainfall of 3877mm was partitioned into 22% quick flow, 38% base

flow, 37% evapotranspiration, and 3% groundwater recharge. Canopy interception is

about 12% of the total rainfall. This study also investigates the dynamics of the re-

vised dimensionless measure of hydrologic complexity 71 which was found to behave

differently in the wet and dry regimes. The transition occurs when the dominant

processes in the basin switch between vertical and lateral fluxes. Moreover, although
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hysteresis is not coded in MOBIDIC, the simulated soil moisture fields clearly ex-

hibit this phenomenon. This hysteretic behavior emerges as a result of MOBIDIC's

use of a dual-compartmentalized soil which captures the different roles of capillary

and gravity-driven processes, as well as the threshold-dependent nature of lateral

subsurface runoff.

5.2 Introduction

Tropical rain forests (TRF) are important ecosystems that serve many environmental

and economic functions. Although much progress have been made in recent years,

the role and importance of TRFs in providing reliable water supply, minimizing flood

hazard, and controlling erosion, are still not well understood (Bruijnzeel, 2004; Dou-

glas et al., 2005; Lamb, 2011). For water supply in particular, more study is needed

to understand how a humid basin behaves during an unusually dry period. As TRFs

are increasingly threatened by deforestation, land conversion, and climate change,

there is an urgent need for more scientifically-based hydrologic assessments of these

ecosystems in order to better articulate their values and better design policies, infras-

tructures, and management strategies.

The dramatic advances in computing and remote sensing during the last few

decades, along with the improved understanding of hydrologic processes, have en-

couraged the use of physically-based distributed hydrologic models (DHMs). Unlike

lumped-models that treat a basin as a single bucket, DHMs resolve hydrologic fluxes

and states within the basin, use physically-meaningful parameters, and do not require

long time series e.g. of streamflow measurements for model calibration. Chapter 2

describes some specific DHMs, and discusses the merits and criticisms of DHMs in gen-

eral. An example application of DHM in TRF environment is Molicova et al. (1997)

who used TOPMODEL to study the streamflow dynamics of a 1-hectare catchment
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in French Guinea. Also notable is Lamb (2011) who assessed the impacts of land

cover changes on runoff for all major tropical forested river basins in the world using

a coarse-scale (0.50 grid) process-based water balance model. However, although the

use of DHMs for TRF basins seems promising, the applications are limited probably

because of the low technical capability in the region with respect to using DHMs, and

the lack of hydrologic data needed as inputs to these models.

In this study, MOBIDIC is used to investigate a 103 sq. km. mountainous TRF

basin in southern Philippines. This is the first application of MOBIDIC on a TRF

basin. Moreover, this chapter demonstrates how a sophisticated hydrologic model

in general can be developed using freely-available remotely-sensed global data sets

namely: digital elevation model (DEM) from the SRTM satellite, aerial photo from

GoogleEarth"M , rainfall measurements from the TRMM satellite, weather data from

a typical weather website, plus minimal field observations and flow measurements.

Furthermore, this study extends the works of Martina and Entekhabi (2006) who,

upon recognizing the inadequacy of hydrographs to capture the spatial variability

of processes within a basin, developed a method to infer the marginal probability

distribution of the characteristic antecedent soil water deficit across a basin using only

time series of precipitation and streamflow which are often the most readily available

hydrologic data sets. The method is based on the nonlinearity between storm depth

and runoff volume. They also introduced an entropy-based dimensionless measure of

hydrologic complexity which ranges in value from zero for the simplest, to one for

the most complex basin, respectively. The current study uses the revised measure of

hydrologic complexity 'W derived in the previous chapter.

The method employed here to develop the model of the basin, as well as the

method to infer sub-basin variability using only streamflow and rainfall time series,

both directly address the problem of hydrologic data scarcity in TRF environment.
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5.3 Methods and Data

5.3.1 Study Area

The study area is the 103 sq. km. Upper Tamugan River Basin (125'14' - 125'22' E

and 705' - 7012' N) located in the Province of Davao, in the southern island of Min-

danao, the Philippines. Figures 5.1(a-c) shows the location map, the 90-m resolution

DEM from the Shuttle Radar Topography Mission (SRTM) satellite, and the basin

boundary and river network that were derived from this DEM. The basin has a funnel

shape and is bounded in the southwest by Mt. Tipolog. The basin generally drains

north-east, with the two main tributaries being the Upper Tamugan River that drains

the northern and western parts of the basin, and the Panigan River that drains the

southern and eastern parts. The topography is mountainous with elevation of 400-

1905 m.a.s.l. and mean slope of 35%. The geology is characterized by thin clayey soil

underlain by porous volcanic tuff formation.

The landcover map was created by patching several tiles of aerial photos from

GoogleEarthTM , which were then geo-referenced and converted into a polygon shapefile

in ArcGISTM. As shown in Figure 5.2, 68% of the basin is covered by closed-canopy

dipterocarp forest and 26% by brushlands and woodlands. The remaining 6% is used

as farms (mostly subsistence upland cultivation) and human settlements.

The landcover map was then used to derive distributed basin properties such as

albedo, canopy interception capacity and turbulent heat transfer parameter. Other

distributed properties were set using simple linear functions. For example, the soil

depth h,,ji [L] was assumed to increase from 0.3 m on steep hillslopes to 1.2 m on the

valleys,

hoil= 1.2 - 0.9 S (5.1)
Smax

where s is the local slope and smax is the maximum slope in the basin. Each dis-

tributed basin property was calibrated using a corresponding global multiplier. Values
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Figure 5.1: Maps of the Upper Tamugan River Basin showing a) the SRTM DEM,

the basin boundary and river network derived from the DEM, and the location of the

staff gauge and nearby rain gauges (in parenthesis are mean annual rainfall); b) its

location (red dot) in southern Philippines; and c) its location relative to the sea and

a weather station at the regional airport

were constrained such that they are consistent with field observations and literature

values. The calibrated basin properties are shown in Figure 5.3.
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Figure 5.2: The Tamugan basin is covered by 68% forest, 26% brushlands and wood-
lands, and 6% farmlands and human settlements
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5.3.2 Meteorological Forcings

Like many tropical forested river basins particularly in South East Asia, the Upper

Tamugan Basin is not well-instrumented. The nearest weather station is at the Davao

City Airport located about 30 km to the east, see Figure 5.1(c). To address this, data

sets from various alternative sources were combined. Particular emphasis was given

to generating good rainfall and solar radiation forcings.

Historical rainfall record was obtained from the Tropical Rainfall Measuring Mis-

sion (TRMM) satellite for a 14-year period from Oct. 1, 1998 to Sept. 30, 2012

(water years, WY, 1999-2012). To offset the coarse spatiotemporal resolution of

TRMM, both temporal and spatial downscaling were performed. The temporal res-

olution of TRMM is 3 hours but in order to better represent the diurnal dynamics,

the MOBIDIC model was setup with an hourly time step. The temporal downscaling

was accomplished by first extracting the diurnal pattern of rainfall from the entire

data set, and then linearly-interpolating hourly mean values. Figure 5.5(b), shows

that the interpolated hourly values produce a smoother curve with a greater diurnal

amplitude.

The spatial resolution of TRMM is 0.25 so a single pixel (7 - 7.25 N, 125.25 -

125.5 E) practically covers the entire basin. Spatial downscaling was performed by

using the elevation and mean annual rainfall at 4 community-based rain gauges near

the foothills of the basin, as mapped in Figure 5.1(a). The mean annual rainfall P

[mm] appears to be a linear function of elevation z [m.a.s.l.] according to Equation

(5.2) with R 2 = 0.97.

P = 1603 + 1.69z (5.2)

Using ArcGISTM, 55 synthetic rain gauges were created and manually distributed

over the basin. Since the spatial pattern of rainfall is influenced by the landscape

but not as much by the micro-topography, no synthetic gauge was placed near rivers.
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Figure 5.4: a) Inter-annual variability of the TRMM rainfall; b) diurnal pattern of
TRMM rainfall at 3-hour (data) and 1-hour (interpolated); c) annual mean rainfall
fields at 90 m resolution

The hourly times series of rainfall at each of these locations were computed using

Equation (5.2). Finally, MOBIDIC has a built-in inverse-distance interpolation sub-

routine that generates the continuous rainfall fields. The inter-annual variability of

the TRMM-derived rainfall over the basin is shown in Figure 5(a). The basin-averaged

annual rainfall ranged between 2300 and 4300 mm, with a mean of about 3430 mm.

Figure 5(c) shows the spatial distribution of the mean annual rainfall, varying between

2370 mm at the mouth of the basin to about 4800 mm at the ridges. In addition,

storm events were extracted from the hourly rainfall time series, see summary in Ta-

ble 5.1. The mean storm event pours 23 mm over 11 hours, followed by 48 hours of

interstorm period.
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Table 5.1: Properties of storm events derived from TRMM data for WY1999-2012

Property Unit Min Median Mean Max
Storm depth mm 0.16 12 23 337
Storm duration hour 1 6 11 159
Storm interarrival time day 0.58 2.2 2.0 24
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Figure 5.5: Net solar radiation generated by multiplying the analytic values for clear-
sky with cloud factors based on qualitative description of conditions at the Davao
City Airport, matches well with direct measurements on April 21-29, 2013.

Hourly data on air temperature, relative humidity, and wind speed, for the regional

airport, were obtained from a typical weather website (www.wunderground.com).

The airport does not measure solar radiation but it gives a qualitative description of

the conditions e.g. scattered clouds, heavy rain showers, etc. So, the solar radiation

was computed as the product of the analytic value for solar irradiance at the top of the

troposhere as a function of latitude, longitude, and time of the day, see Bras (1990),

and a multiplier based on the reported weather condition. The multipliers shown in

Table 5.2 were first arbitrarily assigned then calibrated using direct measurements of

solar radiation at the Davao University (The Manila Observatory, 2013) for an 8-day

period from April 21 to April 29, 2013. The result of the calibration is shown in

Figure 5.5.
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Table 5.2: Multipliers of clear-sky solar radiation assigned to qualitative descriptions
of weather condition at the Davao City Airport

Qualitative Sky Condition Multiplier
Clear 0.68
Scattered Clouds 0.65
Partly Cloudy 0.60
Dust Whirls 0.55
Smoke 0.50
Light Sandstorm 0.48
Mostly Cloudy 0.45
Sandstorm 0.42
Light Rain Showers 0.40
Rain Showers 0.38
Haze 0.35
Overcast 0.32
Heavy Haze 0.30
Heavy Rain Showers 0.25
Light Rain 0.22
Rain 0.20
Heavy Rain 0.18
Light Thunderstorm 0.17
Light Thunderstorms and Rain 0.15
Thunderstorm 0.14
Thunderstorms with Hail 0.13
Thunderstorms and Rain 0.12
Heavy Thunderstorms with Hail 0.11
Heavy Thunderstorms and Rain 0.10
Unknown or No Data N/A

5.3.3 Groundwater Interaction

The soil layer modeled by MOBIDIC interacts with the groundwater through the ver-

tical fluxes of percolation and capillary rise. In addition, the bidirectional groundwater-

river interaction is modeled using a modified linear reservoir formulation (Domenico

and Schwartz, 1998). Unlike in typical applications where the outlet of a basin is used

as the single reference elevation, here, the reference assigned to each point is the stage

of its nearest river segment. The fluxes to and from the groundwater aquifer strongly

depend on the position of the groundwater table which was initialized as equal to

113



the height above nearest drainage (HAND) introduced by Nobre et al. (2011). To

minimize errors associated with initial conditions, each MOBIDIC simulation was

spun-up until the groundwater table was practically in steady-state.

5.3.4 Calibration

Scalar parameters and global multipliers of distributed parameters were calibrated

using several objective and qualitative checks. First, the goodness-of-fit between the

observed and simulated streamflow at the outlet of the basin was objectively evaluated

using the absolute bias and exceedance probability index. Other popular metrics such

as the Nash-Sutcliffe Efficiency Index (Nash and Sutcliffe, 1970) were not used because

the TRMM rainfall does not closely match the timing of the measured streaniflow.

However, it should be noted that the aim was not simply to get the best value of

the objective metrics, but to develop a realistic model. To reiterate, parameters were

constrained within typical literature values. Also the hourly time series and annual

total of fluxes e.g. of ET were qualitatively checked. Another criterion is that the

change in groundwater table elevation at each pixel between the start and end of the

4-year simulation is at most 20 cm.

5.3.5 Measure of Hydrologic Complexity

The fraction of precipitation that becomes runoff depends on the fraction of the basin

that is saturated (Dunne and Black, 1970). This is particularly true for forested basins

which have high infiltration capacity. To quantify the complexity of the rainfall-runoff

relationship, Martina and Entekhabi (2006) introduced an entropy-based dimension-

less index of hydrologic complexity Wold which ranges in value from zero to one.

Hold = 0 for the simplest basin which behaves like a single bucket with a spatially-

homogeneous (i.e. constant) available soil water storage Ve [L], whereas Wol = 1 for

a basin with V, uniformly distributed from 0 to a maximum value Ve,max.
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This thesis uses the revised dimensionless index of hydrologic complexity N de-

rived in the previous chapter, recall Equation 4.47. N is a function of the distribution

of the relative soil water deficit x [-1, x E [0, 1].

N = R-(x), X E [0, 1] (5.3)

In this 'direct method', x is equal to the MOBIDIC-simulated soil water deficit Ve

normalized by the total soil water storage capacity Ve,max at each pixel, Ve,max -

Wc,max + Wg,max. In addition, the characteristic or time-invariant N is also computed

using the 'indirect method' developed by Martina and Entekhabi (2006). In this

method, N is derived using only time series of precipitation and discharge which

are often the most readily available hydrologic data sets. x is extracted from the

nonlinear relationship between the event rainfall depth H, and the resulting quick

flow depth H, see Equation 5.5. Compared to Martina and Entekhabi (2006) who

used a Poisson-distributed rainfall and the smooth-minima technique (Institute of

Hydrology, 1980) for base flow separation, the indirect method employed here is more

straightforward because historical rainfall time series was used and the base flow and

quick flow components of the hydrograph were directly simulated by MOBIDIC. The

maximum storm depth H,max is used as normalizer .

Direct Method : x= Ve/Ve,max (5.4)

Indirect Method: X = Hs/Hs,max (5.5)
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5.4 Results and Discussion

5.4.1 Water Balance

For the simulated 4-year period, the average annual rainfall of 3877 mm was parti-

tioned into 60% streamflow, 37% ET, and 3% recharge to the regional groundwater

system. The streamflow contribution can be further partitioned into 22% quick flow

and 38% base flow. The vegetation intercepted about 12% of the total rainfall. It

was also found that the soil layer over the entire basin was at or above field capacity

for about 90% of the time. The values obtained for ET and canopy interception are

consistent with literature values reported for TRFs in the region e.g. in Dykes (1997).

The basin-averaged and daily-aggregated values of the TRMM-derived rainfall and

the MOBIDIC-simulated hydrologic fluxes and states for WY 2009-2012, are shown in

Figure 5.6. Notice from the top two columns that there are some mismatches between

the TRMM rainfall and the observed streamflow. For instance, a 150 mm rain on

Day 752 did not produce a proportional peak flow. Nonetheless, the dynamics (i.e.

shape of the rising and falling limbs) and amplitudes of the observed and modeled

streamflow are quite consistent (bias of 0.03 and exceedance probability index of 0.05).

The fit is very good especially for the base flow regime. The third row shows that

the potential and actual evapotranspiration, PET and ET [mm/d], as well as the

percolation, Qerc [5mm/d]. As expected for humid basins, ET is almost always equal

to PET. It can also be noticed that ET and Qperc are negatively correlated. The

bottom plot shows the equivalent water depth stored in the soil capillary reservoir

Wc [mm], soil gravity reservoir W. [mm], plant reservoir Wp [0.02 mm], and surface

reservoir W, [0.02 mm]. Except for Wc, the water stored in these reservoirs are peaky

and quickly respond to individual rain events. Furthermore, W, is almost always

saturated except during the abnormally dry period around Day 500 which caused a

reduction in base flow and ET.
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5.4.2 Hydrologic Fluxes and States

The time series of the basin-averaged groundwater table elevation [m.a.s.l.] is shown

in Figure 5.7(a). The range is about 0.8 m. Notice that the values at the start

and end of the 4-year period are almost the same. As a further check, Figure 5.7(b)

shows that the net movement of the groundwater table is less than 20 cm for all

points in the basin. Figure 5.7(c) shows the temporal mean groundwater table. The

dynamics of the groundwater table indicates how the basin is affected by the inter-

annual variability of rainfall. For instance, the unusually dry period from December

2009 to May 2010 caused a significant dip of the groundwater table, see the red box in

Figure 5.7(a). In contrast, the relatively wet WY 2012 did not raise the groundwater

table above its usual position. Thus, this TRF basin is more sensitive to drought

than to increased rainfall.

Figure 5.8(a-c) show the spatial distribution of the mean saturation [%] of the

soil capillary reservoirs Wc/Wc,max, soil gravity reservoirs Wg/Wg,max, and plant reser-

voirs Wp/W,max. First, in Figure 5.8(a), the map shows that the temporal mean of

Wc/ Wc,max is 90-100% and the spatial pattern is strongly influenced by both soil prop-

erties and topography. The probability density function (PDF) of this map shows

a Gaussian curve centered around 95% and an exponentially-shaped curve around

100%. The latter curve represents the areas on or along drainage lines that are al-

ways at or above field capacity, while the former curve represents the rest of the

basin. Next, Figure 5.8(b) shows that the spatial pattern of Wg/Wg,max is controlled

mainly by topography with the areas along drainage lines remaining saturated while

the rest of the basin is on average only about 5-25% full. This is realistic because of

the high hydraulic conductivity of the volcanic soil and the steep topography. Lastly,

Figure 5.8(c) shows that the spatial pattern of Wp/1Wp,max manifests the combined ef-

fects of vegetation and rainfall spatial variability. The plant reservoirs are on average

about 35-40% full.
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a) Basin-averaged position of groundwater table [m.a.s.l.]
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Year (Oct. 1, 2008 to Sept. 30, 2012)
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b) Net change [m] c) Mean [m.a.s.11
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Figure 5.7: Groundwater table [m.a.s.l.] simulated for WY 2009-2012: a) time series
of the spatial mean; b) net change [m] at each pixel; and c) temporal mean at each
pixel
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Figure 5.8: Maps and probability density function of temporal mean saturation [%] of
the a) soil capillary reservoirs; b) soil gravity reservoirs; and c) plant/canopy reservoirs
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Better understanding of the spatial distribution and improved estimates of mean

annual fluxes of ET, net runoff generation, and groundwater recharge, are useful for

water budget and environmental studies. As shown in Figure 5.9(a), the annual ET

ranges between 750 mm in the lower parts of the basin to about 1700 mm in the

upland riparian zones. This illustrates how ET in this basin is primarily controlled

by vegetation, and secondarily by water availability. Although the basin receives a

lot of rainfall, the ET can also be water-limited such as during the dry months and

occasional droughts.

The net runoff (surface plus sub-surface) generated per unit area (Qrun)net is

defined here as,

(Qrun)net = (Qrun + Qlat)down - (Qrun + Qiat)up (5.6)

where Qrun is surface runoff, Qiat is lateral subsurface flow, and the subscripts up and

down refer to inflows from upstream and outflows to downstream, respectively. All

fluxes have consistent units such as mm/year.

121



Figure 5.9: Maps of simulated mean annual a) ET; b) net runoff generation; and c)
percolation to deeper soil layers

Figure 5.9(b) shows that although the lowlands esp. the east and north-east

boundary of the basin receive less rainfall, they generate the most runoff per unit

area. This suggests that best management practices for these areas such as the

rehabilitation of riparian buffer zones might have significant impact on streamflow
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and water quality.

The mean annual percolation from the soil layer modeled by MOBIDIC to the

deeper soil layer or groundwater aquifer, is shown in Figure 5.9 (c). This generally

follows the decreasing soil hydraulic conductivity from the forested uplands to the val-

leys. For most of the basin, Qperc = 500-2000 mm/year. On some forested hillslopes,

Qperc is as high as 2000-9000 mm/year, while on the river network and riparian zones,

Qperc is low or even negative i.e. there is riot exfiltration or wetting from below.

5.4.3 Measure of Hydrologic Complexity

Indirect Method

Figure 5.10 shows the partitioning of the total streamflow into base flow and quick

flow. Base flow accounted for 63% of the streamflow and it remained high throughout

the 4-year period. From the quick flow time series, storm event runoff depth H, [mm]

was extracted. Figure 5.11 plots H, vs. the corresponding storm event rainfall depth

H, [mm]. Values were grouped into 10, then fitted with the integral of an incomplete

gamma function

f (Hs; k, 0) = '1 H -e- (5.7)
k F7(k)

where, k and 0 are the shape and scale parameters, respectively. The trendline

(k = 106, 0 = 0.46), was then used to generate the PDF of H, which in this method

is equivalent to Ve. Evaluation of Equation 4.47 yields 'W = 0.17.

Direct Method

Figure 13(a) shows time series of soil water deficit V, for WY 2011 which is a normal

year. The lines show the 5, 10, 50, 90, and 95 percentiles. As shown, about 5%

of the basin stays saturated year round, and the big jump in V, is within the 5 - 10 th

percentile. This means that although the basin receives a lot of rain, most of the basin
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Figure 5.10: Base flow and quick flow simulated for WY 2011-2012
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Figure 5.11: Runoff (quick flow) depth vs. rainfall depth for each storm event. Trend-
line is the integral of an incomplete gamma function.
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Figure 5.12: Time series of a) the percentiles of water deficit for WY 2011 (normal

year); and b) the deviations from the mean of each percentile relative to WY 2011

always have high Ve with median of 140 mm. Even during the intense storm in early

January 2011, 50% of the basin has Ve > 50 mm. Figure 13(b) shows the deviation

of percentiles of V, relative to the mean values of WY 2011. This plot illustrates the

significant difference between a normal year (WY 2010) and an unusually dry year

(WY 2011). The plot for WY 2009 and 2012 are not shown as they are similar to

that of WY 2011.

Figure 5.13 plots the time series of W and P for WY 2010-2011. The characteristic

71 is 0.19 which is in good agreement with the value of 0.17 obtained through the

indirect method, thus demonstrating the success of the indirect method in providing

insights about the spatial variability of Ve.
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Figure 5.13: Dynamics of the hydrologic complexity index W for WY 2010-2011.

To investigate further, Figure 15 plots W vs. the basin-averaged soil water deficit

Ve. The basin has a preferred state with an W of about 0.18 which corresponds to

Ve of about 140 mm. Interestingly, in this preferred state, most of the basin is at

field capacity. More interestingly, N behaves differently in the wet and dry regimes,

and exhibits hysteresis. In the wet regime, while rain causes a decrease in Ve across

the basin, the result is an initial increase in N because the differences in infiltration

capacity generally increase the overall variability of Ve. Once drainage and redistribu-

tion of water through surface and subsurface runoff become the dominant processes,

V increases while N decreases. The decrease in N means a decrease in spatial vari-

ability of V, or a decrease in the basin's complexity. This post-rainfall decrease in

spatial variability can be attributed to the homogenizing effect of vegetation (Ivanov

et al., 2010) and the influence of topography that leads to organization of wet ar-

eas along drainage lines (Grayson et al., 1997). These factors result to a bi-modal

distribution of Ve which has lower N compared to e.g. a wide uni-modal Gaussian

distribution. Meanwhile, for the dry regime, further drying increases Ve across the

basin which leads to an increase in N. From a dry state, rain initially decreases Ve

across the basin with little or no lateral flows. This results to only a slight decrease

in N. As additional rain further wets the basin, a threshold (which for this basin

is close to field capacity) will be reached, after which N steeply decreases. This
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Figure 5.14: Measure of hydrologic complexity vs. basin-averaged water deficit

threshold behavior has been reported in previous studies e.g. Grayson et al. (1997)

and Tromp van Meerveld and McDonnell (2006a), who explained this as a switch in

dominant processes from vertical to lateral fluxes.

The looping behavior of '- in the dry regime indicates hysteresis of soil moisture

at the basin scale. Although it is not as clear from Figure 15, a looping behavior

was also observed for the wet regime when the points were plotted sequentially. The

inset (bottom right) shows that the hysteresis loops in the dry and wet regimes have

opposite direction. The red arrow indicates drying while the blue arrow indicates wet-

ting. Hysteresis refers to the dependence of a system on not only its current state but

also on its past state (Joekar-Niasar et al., 2013; Camporose et al., 2014). This phe-

nomenon has long been observed since at least the pioneering works of Haines (1930)

in the field of soil physics. However, hysteresis is difficult to quantify or parameterize

esp. at the basin scale or even at the hillslope scale, so it is often ignored (Bras, 1990;

Jaynes, 1990; Beven, 2006b). Recognizing this challenge, O'Kane (2005) introduced

a simple way to insert rate-independent hysteresis in hydrologic models. Thus, the

hysteresis observed in this current study is an unexpected result since MOBIDIC does
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not explicitly account for this phenomenon. It is hypothesized that this hysteretic

behavior emerged as a result of MOBIDIC's use of a dual-compartmentalized soil

which captures the different roles of capillary and gravity-driven processes, as well as

the threshold-dependent nature of subsurface runoff as previously discussed.

The behavior of 71 in the dry regime can be further illustrated by plotting the evo-

lution of the probability distribution of Ve. During drying, as the mean Ve increases,

the distribution also becomes wider which corresponds to an increase in variability.

During initial wetting, the mean V, decreases but the distribution simply translates

to the left with little decrease in variability. Around field capacity, further wetting

causes a sharp decrease in spatial variability, as lateral subsurface flow become the

dominant process in the basin.

A few recent modeling studies also reported hysteresis in the plots of spatial

variability and mean of depth-averaged soil moisture e.g. Ivanov et al. (2010) for a

zero-order semiarid basin, and Vivoni et al. (2010) for a small arid river basin. They

explained that hysteresis, particularly macro-hysteresis, emerges from the interplay

between different basin properties (soil, climate, and vegetation) and is related to

the switch in dominant hydrologic processes i.e. vertical fluxes in dry conditions to

lateral flows in wet conditions. Their conclusions and explanations are similar to those

made in this study. Moreover, this research adds to the relatively small literature on

macro-hysteresis especially in TRF environment.
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Figure 5.15: Macro-hysteresis in the evolution of the probability distribution of soil
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5.5 Summary

The distributed hydrologic model MOBIDIC was used to understand the hydrology of

a mountainous tropical rain forest river basin in the Philippines. This chapter demon-

strated how a sophisticated hydrologic model can be developed for data-scarce envi-

ronment using freely- and readily-available SRTM DEM, GoogleEarthT Maerial photos,

TRMM rainfall, typical online weather data, and only minimal field observations

and flow measurements. For the simulated 4-year period, the average annual rainfall

of 3877 mm was partitioned into 22% quick flow, 38% base flow, 37% ET and 3%

groundwater recharge. The forest cover intercepted about 12% of the total rainfall,

and the soil layer was at least at field capacity for about 90% of the time.

This study also applies the revised dimensionless measure of hydrologic complex-

ity N. N was computed using two methods: first indirectly using only timeseries of

precipitation and streamflow, then directly using simulated soil moisture fields. The

close agreement of the N obtained from the two methods (0.17 and 0.19) demonstrates

the utility of the indirect method to provide insights about the spatial variability of

soil water deficit within the basin. Moreover, it was found that N behaves differently

in the wet and dry regimes. In the wet regime, an increase in soil moisture increases

N while drainage and drying causes the opposite. In the dry regime, further drying

increases N while rain causes the opposite albeit at much slower rate. Once the basin

has been wet to field capacity, additional rain causes a sharp decrease in N due to the

activation of lateral subsurface flows which lead to organization of wet areas along

drainage lines. Furthermore, this study shows that although hysteresis is not coded in

MOBIDIC, the simulated soil moisture fields clearly demonstrate this phenomenon.

The hysteretic behavior emerges as a result of the interplay between vertical and lat-

eral fluxes and the threshold-dependent nature of lateral subsurface flow. MOBIDIC's

use of a dual-compartmentalized soil appears to be able to realistically represent these

complex processes.
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Chapter 6

Spatiotemporal Variability of

Hydrologic Response: an

Entropy-based Approach

6.1 Abstract

Basin response and hydrologic fluxes are functions of hydrologic states, most notably

of soil moisture. However, characterization of soil moisture is challenging since it is

both heterogeneous in space and dynamic in time. This chapter applies the revised

dimensionless index of hydrologic complexity W on MOBIDIC-simulated timeseries

of soil moisture fields for eight test basins with area of 100-103 km2 and representing

semiarid, temperate and humid climates. Since a key feature of MOBIDIC is the

partitioning of each soil unit into a gravity reservoir and a capillary reservoir, the

complexity of these sub-systems, W, and Wg, respectively, were also investigated. It

was shown that 'h can effectively track the evolution of the spatial distribution of soil

moisture, and together with N and Wg, can capture the switching between vertical

and lateral fluxes as the dominant hydrologic processes. This chapter also explores
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what and how basin attributes affect N, and how N can be used to explain inter-basin

variability of hydrologic response. Clear and logical relationships are found only by

grouping basins with similar climate or size. For basins of similar size, N and N are

highest in temperate climate, consistent with soil moisture being lower- and upper-

bounded so its variability peaks at intermediate conditions. R, generally increases

with aridity since the capillary reservoirs are often saturated in the temperate and

humid basins i.e. they are less hydrologically active. For the semiarid basins, N,

N and Ng, are positively correlated with catchment area and infiltration ratio, but

negatively correlated with relief ratio; while R and Ng are positively correlated with

baseflow index. Moreover, although not explicitly coded in MOBIDIC, hysteresis

is exhibited in the discharge-storage and discharge-N plots, in both low- and high-

flow conditions. Hysteresis emerges from MOBIDIC's novel use of a dual-pore soil

structure which not only captures the different roles of capillary and gravity-driven

processes, but also mimics the threshold-like behavior of runoff generation. The use

of entropy-based measure of complexity helps understand the link between internal

patterns and states to lumped or macro processes and behaviors.

6.2 Introduction

The hydrologic response (HR) of a basin pertains to how precipitation is partitioned

into streamflow, evapotranspiration (ET), and change in storage. These fluxes can

be further partitioned e.g. streamflow into quickflow and baseflow. As one of the

main goals of hydrology, the ability to explain or predict the response or the spa-

tiotemporal variability of the above mentioned hydrologic fluxes and states has many

important applications from flood forecasting and risk management, to water budget

studies, and to the design of efficient systems for observing or modeling hydrologic

variables. However, as has been mentioned throughout this thesis, it is very difficult
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to explain the response because it is the combined manifestation of many complex

and interrelated factors that naturally vary both in space and time, and act over a

variety of scales.

Basin response and hydrologic fluxes are functions of distributed hydrologic states,

most notably of soil moisture. (Grayson et al., 1997) argues that a possible key to

collapsing the variability and complexity of basin response might come with better

understanding and model representation of soil moisture which controls the parti-

tioning of rainfall into infiltration and runoff, and controls land surface temperature

through its effect on the partitioning of available energy into sensible and latent heat

fluxes. However, characterization of soil moisture is itself challenging since it is both

heterogeneous in space and dynamic in time. Based on a rich literature, the hetero-

geneity of soil moisture is mainly caused by the spatial variability of topography (Yeh

and Eltahir, 1998; Liu et al., 2012); soil properties (Western and Grayson, 2000; Kim

et al., 2002; Famiglietti et al., 1999, 2008); macropore and preferential flow paths

(Brooks et al., 2009; Beven and Germann, 2013) groundwater-surface water interac-

tion (Levine and Salvucci, 1999; Kollet and Maxwell, 2008); vegetation (Eagleson,

1978; Ivanov et al., 2010); and meteorological forcings e.g. precipitation (Entin et al.,

2000; Western et al., 2003; Vivoni et al., 2010). Moreover, soil moisture is dynamic

due to the intermittency, seasonality, and inter-annual variability of meteorological

forcings (Entekhabi et al., 1995; Koster and Suarez, 1999). Both its spatial mean and

variance, i.e. its center of mass and distributional features, evolve over time.

This study believes that a possible key to unraveling the complexity of hydrologic

response is better understanding and model representation of the space-time dynamics

of the hydrologic state variable - the soil moisture field. The approach taken in this

thesis has the following unique features:

" focus on distributed soil moisture fields;

" use of a process-based distributed hydrologic model (MOBIDIC) which has a
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novel representation of soil moisture;

" use of an entropy-based dimensionless index of hydrologic complexity 'R which

measure the spatial distribution of soil moisture within a basin;

* use of test basins representing different spatial scales and climatic regimes; and

" grouping of test basins based on similarity e.g. similarity in climatic regime or

similarity in catchment area.

As mentioned, this thesis also recognizes the utility of better model representation

of soil moisture. To recall, Chapter 2 describes the advantages of process-based dis-

tributed hydrologic models (DHMs) over lumped or semi-distributed models. Chapter

3 discussed the horizontal-vertical scale disparity in catchment DHMs and demon-

strated that the single layer dual-pore soil structure of MOBIDIC can simulate the

magnitude range and dynamics of soil moisture at the local scale, with comparable

performance as that of a benchmark model that uses non-linear physics relation. The

computational efficiency of the former is advantageous for applications on large or

multiple domains such as in this study. Tromp van Meerveld and McDonnell (2006a)

adds that good DHMs should also be able to capture non-linear behaviors, particu-

larly hysteresis.

Hysteresis refers to the dependence of a system on not only its current state but

also on its past state (Joekar-Niasar et al., 2013; Camporose et al., 2014). This phe-

nomenon has long been observed since at least the pioneering works of Haines (1930)

in the field of soil physics. O'Kane and Flynn (2007) gives a review of hysteresis in

hydrology at different scales and for different process dynamics. Several mechanisms

have been proposed to explain hysteresis such as the flipping of the contact angle of the

air-water interface attached to soil particles (de Gennes et al., 2003), the branching

of a system near a threshold or a "critical" state (Phillips, 2003), and the switching

between vertical and lateral fluxes as dominant processes (Vivoni et al., 2010; Ivanov
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et al., 2010). In soil physics, hysteresis is commonly demonstrated by a looping pat-

tern in the relationship of soil matric potential and soil saturation. The Haverkamp's

GRIZZLY database contains probably the largest database of hysteretic soil moisture

measurements in the world (O'Kane, 2005; Beven, 2006a). In catchment hydrology,

hysteresis is typically demonstrated by a looping pattern in the discharge-storage plot,

where 'storage' can be groundwater table, soil moisture, etc. For instance, Camporose

et al. (2014) observed clockwise loop in the plot of groundwater table as a function

of discharge, where clockwise means that for a given discharge value the groundwater

table is lower in the rising than in the falling limb. In terms of the same variables,

Myrab0 (1997) and McDonnell et al. (2007b) observed clockwise loop for near-stream

areas and counter-clockwise loop for hillslopes.

While observations of hysteresis abound, this phenomenon is difficult to quantify

or parameterize in hydrologic models esp. at the basin scale or even at the hillslope

scale, thus it is often ignored (Bras, 1990; Jaynes, 1990; Beven, 2006b). Recognizing

this challenge, O'Kane (2005) presents a simple way to insert hysteresis in hydro-

logic models using a binary switch. O'Kane and Flynn (2007) presents more general

mathematical mechanisms of hysteresis using switches, thresholds, and branches. A

few modeling studies that explicitly attempted to model hysteresis are described in

Camporose et al. (2014).

However, a few recent studies show that hysteresis need not be explicitly coded

esp. in process-based DHMs. For instance, using a Richards equation based DHM,

Vivoni et al. (2010) observed hysteresis in the plots of spatial variability vs. mean

of depth-averaged soil moisture for a small arid river basin. The macro-hysteresis

was argued to be caused by the switching of controls on surface soil moisture vari-

ability, from precipitation during wetting stage, to landscape during drying stage.

Similarly, Ivanov et al. (2010) observed similar hysteresis for a zero-order semiarid

basin and explained that the observed macro-hysteresis is related to the switch in

135



dominant hydrologic processes i.e. vertical fluxes in dry conditions to lateral flows

in wet conditions. The evolution of soil moisture variability is said to depend on

whether topography-induced subsurface stormflow is triggered. Furthermore, the in-

terplay between different basin properties (soil, climate, and vegetation) modulates

the strength of hysteresis. Hysteresis is not explicitly coded in MOBIDIC so it is

interesting to see whether this non-linear behavior will be evident in the simulated

variables.

6.3 Methods

6.3.1 Measure of Hydrologic Complexity

This chapter uses the revised dimensionless measure of hydrologic complexity N de-

rived in Chapter 4, as an analysis tool and an organizing principle to better under-

stand the spatiotemporal variability of hydrologic response and fluxes. For clarity, N

is defined as,

'R = exp [- f(x) logf (x) dx] (6.1)

where x is the relative soil water deficit, with spatial distribution f(x) for x E [0, 1],

and fj f(x)dx = 1. Since MOBIDIC uses a dual-compartmentalized soil, the com-

plexity of the soil capillary and gravity reservoirs, N and -g, respectively, are also

investigated.

N =N(x), X=Ve/Ve,max

WC = HC (xC), xc = Ve'c/Vemax (6.2)

Ng = Ng (Xg) , g= Ve,g/Ve,max

The definitions of x, and xg are the same as those used in Example 2 in Chapter 4

(Section 4.4.2). Note the use of the same normalizer Ve,max. The range of x is the

interval [0,1] but since Ve,max = Wcmax + Wg,max, the range of xc and xg are only
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subsets of this interval,

Xc E 0, Wcmax/Ve,max] (6.3)

Xg E [0, Wg,max/Ve,max] (6.4)

X = Xc + Xg, X E [0, 1] (6.5)

As shown in Section 4.4.2, these definitions of xc and xg are good for understanding

the contribution of W, and 719 to the total complexity W. In this study, R, Wc, and

7-1 are applied on a number of test basins to answer the following science questions:

" How do distributional features of soil water deficit evolve over time?

" Is there hysteresis in the evolution?

" What factors (physiography, vegetation, climate, etc.) affect the distribution

and its evolution?

" How are the distributional features related to basin response and hydrologic

fluxes?

6.3.2 Test Basins

Table 1 lists the eight test basins used for this study. The first column shows the

basin ID with the letter denoting the climate ('S' for semiarid, 'T' for temperate,

and 'H' for humid) and the number denoting the size of the basin ('0', '1', '2', and

'3', means an area of about 100, 101, 102, and 103 sq. km., respectively). The last

column shows the dominant land cover and land use. The location maps of these

basins are shown in Figure 6.1. Basins SO, S1, S2, S3 and TO cover field sites of

the Soil moisture Sensing Controller and oPtimal Estimator (SoilSCAPE) Project,

see Moghaddam et al. (2013). T2 and T3 are tests basins in the Distributed Model

Intercomparison Project (DMIP), see Reed et al. (2004). Basin H2 is the study basin
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used in Chapter 5. Additional properties of the test basins are provided in Table 2.

Calibrated MOBIDIC models of each of the test basin was developed using 5.3x10 3 to

3.5x10 4 pixels, and 3-year simulation period at hourly time steps. Simulated hourly

variables were later aggregated to daily values.

6.3.3 Relationship of '- to Other Hydrologic Variables

Basin Attributes as Predictors of W

The characteristic distribution of soil moisture might be related to observable basin

attributes. To check this, the temporal mean of W, W, and 71g, were related to the

following basin attributes:

* Catchment area A [km 2 - a basic spatial scaling predictor.

" Median slope s50 [-] - the gradient along hillslopes, which influences both surface

and subsurface runoff. The median was chosen instead of the mean to avoid

bias from a few very steep points.

" logio(A/s 50 ) [km] - the basin-scale equivalent of the topographic wetness index

(TWI) of Beven and Kirby (1979).

" Relief ratio rr [-] - the range in elevation, Zmax - Zmin, normalized by the length

of the mainstream L. As opposed to S5O, this gives an estimate of the gradient

along channels.

* Drainage density Dd [km- 1 ] - the ratio of total stream length to A. High Dd

implies high channelization of precipitation and shorter residence time. This is

also indicates the extent of riparian zones.

" Mean soil moisture capacity Ve,max [m]. - the spatial mean of the product of

the saturated soil moisture content 0
sat [-] and the height d [m] of the modeled

soil layer.
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" Aridity Er/P [-] - the ratio between the annual mean potential evaporation

(computed based on Penman (1948)) divided by the annual mean precipitation.

" Infiltration ratio i/K [-] - the mean precipitation intensity during a storm

event, i., divided by K 8 . Typically, i/K, < 1 because i, is averaged over the

entire storm duration which includes short periods without rain.

N as Predictor of Hydrologic Response

The utility of W, 71, and 71g to explain the basin response is also investigated by

relating them with the traditional measures of hydrologic response listed below. The

overbar symbol indicates temporal average.

" ET efficiency ET/Ep - ratio of basin-averaged ET to the potential rate Ep

" Runoff ratio Q/P - fraction of precipitation that becomes runoff

" Baseflow index BFI (Qbf /Q) - fraction of streamflow contributed by baseflow

6.4 Results and Discussion

6.4.1 Basin-scale Partitioning of Precipitation

Calibrated MOBIDIC models were developed for each of the test basins. The basin-

scale partitioning of precipitation is shown in Figure 6.2. Looking at the test basins

altogether, there is no clear pattern. However, by grouping the basins based on

catchment area, clear and logical patterns emerge. As shown, for basins with similar

catchment area, the basin with higher median slope has higher runoff ratio and lower

ET efficiency. Basin TO has the lowest runoff ratio because in addition to having

the lowest median slope, it has anthropogenic features that increase its infiltration

capacity and allow impoundment of runoff. The net groundwater recharge constitutes
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only a small fraction of the annual precipitation in all the test basins especially in the

large basins where the spatial mean of percolation and channel leakage are balanced

by capillary rise and channel seepage.

The basins can also be grouped according to climate. Compare the four semiarid

basins by picturing columns 2, 3, 4, and 8 of Figure 6.2 together. SO and S2 have

relatively higher ET efficiency because they are mostly covered by woody savanna

whereas S1 and S3 are mostly covered by grasslands.

6.4.2 Hydrologic Complexity

Figure 6.3 shows the maps and PDFs of the characteristic relative soil water deficit

x for basin S1 which is the least complex with N = 0.05, and basin H2 which is the

most complex with R = 0.57. Clearly the map for T2 is much more complex than

that of S1. For the former, x spans almost the entire interval [0,1] and its f(x) is

closer to a uniform distribution than a Dirac delta. In contrast, the entire basin S1 is

often very dry so its map appears only in shades of blue and its f(x) is concentrated

near x = 0, making it more similar to a Dirac delta than a uniform distribution.

These mean that qualitatively, N is a correct measure of complexity.

Figure 6.4 shows the hyetograph and time series of N, Rc, and Ng for basins S2,

T2, and H2. First for the semiarid basin (top plot), there is marked seasonality with

most of the year being dry and the months of November to February receiving almost

all of the annual precipitation. The soil moisture distribution lags precipitation by

about a month. In dry conditions, most of the gravity reservoirs are completely

empty so Ng is low and its value corresponds to the complexity of the time-invariant

maximum capacity of the gravity reservoirs, N*,

N Ng (Ve,g,max/Ve,max) (6.6)
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Meanwhile, there is more spatial variability in x, so W, is higher and it contributes

most of the total complexity X. In wet conditions, the trend is reversed. Since the

capillary reservoirs are saturated, x, ~ 0 across the basin so W, -± 0. Meanwhile the

gravity reservoirs are variably saturated so W9 is high and it accounts for most of the

total complexity. Similar trends are seen in the timeseries of the humid basin (bottom

plot). The other two years simulated for this basin are similar to the wet months of

June to September. Although this basin receives a lot of rain, it has mountainous

topography and well-drained soil so the gravity reservoirs never become completely

saturated, hence x and xg are spatially variable, and as a result 71 > 0 and W9 > 0. In

the temperate basin (middle plot), the soil has intermediate total wetness year-round.

Most of the capillary reservoirs are completely or partially saturated so W, is low;

while most of the gravity reservoirs are either empty or only partially saturated so

WL is high and it accounts for most of the total complexity of the basin.

The right side of Figure 6.4 shows the 3-year median values. The median of W

is highest for T2 and roughly the same for S2 and H2. Moreover, as the climatic

wetness increases, the median of W, decreases. In terms of magnitude, the median of

-W is highest for T2. However, the relative contribution of the gravity reservoir to

the total basin complexity, -1/(-c + 71g), increases with climatic wetness. The op-

posite relationship is observed, for the relative contribution of the capillary reservoir,

Rc/(Wc + 71g). These indicate that the dominant controls on the spatial distribution

of hydrologic states and fluxes vary with climate.

In the timeseries of H2, the markers 1-3 are representative days with dry, inter-

mediate, and wet conditions, respectively. The PDFs of x, x,, and xg for these repre-

sentative days are illustrated in Figure 6.5. In dry conditions (point 1), most gravity

reservoirs are empty and most capillary reservoirs are variably saturated, so the cen-

ter of mass of f(xg) and f(x,), and consequently also of f(x), are far from 0 or 1, and

the complexity indices are all positive. A physical interpretation of this is that the
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heterogeneity of available capillary and gravity storage both have spatially-variable

effects on e.g. saturation-excess runoff. W, > 0 also indicates spatial variability of

fluxes related to the state of the capillary reservoirs, e.g. ET. As can be seen, f(x,)

has a wider spread than f(xg) so W, > Rq. In intermediate conditions (point 2),

f (xc) has shifted towards x, = 0 and is now less spread resulting to a decrease in

W,. On the other hand, f(xg) is practically unchanged since precipitation has so far

only wet the capillary reservoirs. Finally in wet conditions (point 3), f (x,) is roughly

a Dirac delta at x, = 0 thus H, - 0. Some physical interpretations are i) ET is

spatially deterministic, in this case it occurs at the potential rate across the basin;

and ii) the states of the capillary reservoirs do not cause variability in e.g. runoff.

Since f(x) and xg are the same, the total complexity of the basin is only due to the

complexity of available gravity storage.

Based on the definition of the hydrologic complexity index and the definition of

x, xc, and x9 used here, as the entire basin becomes completely saturated,

lim R = lim Wc = lim N 9 = 0 (6.7)
X--0 X-+0 X--0

On the other extreme, if the entire basin becomes completely dry,

lim 7 = W (Ve,max/Ve,max) = 0 (6.8)
X-+1

lim Nc = Nc (Wc,max/Ve,max) = c(6.9)

lim N =Ng (Wg,max/Ve,max) = IN* (6.10)
xg- -+1

Since '* and WN* are typically > 0, the sum of the complexity of the dual reservoirs

are usually higher than 'N in very dry conditions. For these conditions, the relative

contribution of the capillary and gravity reservoirs to the total basin complexity can

be evaluated by simply comparing the relative magnitude of 'Nc and 'Ng.
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In order to see the behavior of 'H, U,, and W9 between the two extreme conditions

and see the effects of wetting and drying, Figure 6.6 shows scatter plots of daily 'R,

WC, and 'g, vs. x. As expected, W, is close to 0 in wet conditions, then it increases

as the basin dries. Further drying, as can be seen in basin S2 and T2, eventually

causes a decrease in 'c. On the other hand, 79 is generally high when the basin is

wet (but not saturated) then decreases as the basin dries, and eventually approaches

7* at very dry conditions.

Figures 6.7-6.10 show the temporal mean of ', 'H, and ng of the 8 test basins

and their relationships with some of the tested basin attributes. The mean is used

instead of the median because it is more representative of the dynamic values. As

pointed in the analysis of basin-scale precipitation partitioning, it is difficult to see

relationships if all basins are analyzed together. Clearer and more logical relation-

ships are found by comparing only basins with similar climate or size. For instance,

Figure 6.7 shows how the complexity indices vary with aridity for basins of similar

spatial scale. Overall, the total complexity 'H (and also 'Hg) is highest in temperate

basins. This is consistent with the understanding that soil moisture is lower- and

upper-bounded, so its variability peaks at intermediate conditions, see e.g. Lawrence

and Hornberger (2007). Independently, 'Hc of S2 and S3 are higher than temperate

and humid basins of similar size because the capillary reservoirs are often saturated

in the temperate and humid basins i.e. they are less hydrologically active. Figure 6.8

shows that for the semiarid and temperate test basins, ', 'H, and 'H all increase with

catchment area log1 0 A (top row). This is logical because across smaller area, there is

naturally less variability in e.g. soil properties and land cover. The relationships with

the basin-scale topographic wetness index loglo(A/s 5o) (bottom row) are practically

the same as with log 10A, with marginal improvement for the semiarid basins and

marginal degradation for the temperate basins. Furthermore, Figures 6.9 and 6.10

show that ', 'H, and 'g of the semiarid and temperate basins are negatively cor-
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related to relief ratio, and positively correlated to infiltration ratio. Weaker or no

significant relationships were found for the other basin attributes considered.

The slope of the trendlines for 'H and W9 in Figure 6.8-6.10 are generally the

same for the semiarid and temperate basins. The linear relationships would have

been even better if Hg (and thus W) of basin T2 is somewhat lower. T2 has many

watering holes and infiltration ponds which although altogether covers only about

one percent of the basin, has significant impacts on the hydrology of the basin. It is

hypothesized that these structures artificially increase W, since they make some areas

wetter than they naturally should be while at the same time minimizing surface and

subsurface runoff which otherwise can have a homogenizing effect on soil moisture of

downstream areas. For future work, the calibrated models of the test basins can be

re-run without the anthropogenic factors. It is emphasized that the current study is

exploratory and more basins with various settings, scales, and climates, are needed

to verify the relationships found.

Figure 6.5 shows the relationship between the temporal mean of the complexity

indices with three traditional measures of hydrologic response. The top row shows

that the ET efficiency is practically independent of the complexity indices. In fact

and as expected, ET efficiency is mainly a function of aridity. The middle row shows

that the runoff ratio generally increases with H, HR, or Hg, but the relationships

are weak. The bottom plot shows a stronger positive linear correlation between BFI

and the three complexity indices. Notice that the relationships with runoff ratio or

BFI are stronger with H or Hg, than with H,, because the state of the capillary

reservoirs have less influence on runoff. Again, more basins are needed to verify these

relationships or the lack thereof.
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6.4.3 Hysteresis and Threshold Behaviors

The scatter plots of W in Figure 6.6 especially in the dry regime of basins H2 and T2,

show looping patterns which indicate hysteresis of soil moisture at the basin scale.

Although not as clear from these plots, looping patterns are also seen for the dry

regime of basin S2, and also for the wet regime of these basins when the points are

plotted sequentially one at a time. Hysteresis is not explicitly coded in MOBIDIC so

the observation of this non-linear behavior in simulated variables is an encouraging

result. The observed hysteretic behaviors emerge as a result of MOBIDIC's use of

a dual-pore soil structure which not only captures the different roles of capillary

and gravity-driven processes, but also mimics the threshold-like behavior of runoff

generation.

To better understand the nature of the observed hysteresis in the relationship of

W and storage, Figure 6.12 shows the evolution of the probability distribution of Ve

for basin H2 in dry conditions. As the mean Ve increases, the distribution widens,

thereby increasing W. During initial wetting, the mean V, decreases but the distri-

bution simply translates to the left with little change in the shape of f(Ve). Further

wetting causes significant narrowing of the PDF which corresponds to a sharp de-

crease in spatial variability. The threshold or critical state is when most soil elements

are at field capacity, above which gravity reservoirs start to fill-up which triggers

lateral subsurface flow leading to greater hydraulic connectivity of the landscape or

homogenization of the soil moisture fields.

Figure 6.5 shows hysteresis in the MOBIDIC-simulated discharge Q vs. the basin-

averaged relative soil water deficit Y and Q vs. W for basin H2 in dry conditions i.e.

low-flow regime, basin S2 in dry conditions, basin T2 in wet conditions i.e. high-flow

regime, and basin S2 in wet conditions, respectively. The red and blue arrows indicate

drying and wetting directions, respectively. The direction is easier to follow on the

left plots since increase in T means drying, i.e. arrow pointing to the right, while
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wetting is vice versa.

Focus first on the Q vs. I plots on the left. These plots can be flipped horizontally

to obtain the more common plots of discharge-storage, since relative saturation is

equal to one minus relative deficit. T is used here for consistency with the rest of the

Chapter and to allow easy cross-referencing with scatter plots of R vs. T in Figure 6.6.

The red arrows point to the right or towards increasing in TY, whereas the blue arrows

point to the left. Except for basin T2 in wet conditions, the loops are clockwise.

However the evolution is not unidirectional as the points can go back-and-forth along

a trajectory e.g. see the bottom left area of the plot for H2 in dry conditions which

show alternating wetting and drainage.

In addition to the horizontal components, the arrows also have vertical compo-

nents. The evolution of Q vs. IY has two limiting cases: i) a change in T with little

change in Q (mostly horizontal movement); or ii) a a change in Q with little change in

Yi (mostly vertical movement). The first case is when the dominant hydrologic fluxes

are vertical fluxes e.g. ET or wetting of the capillary reservoirs. The other case is

when lateral surface or subsurface runoff are the dominant processes.

In the left plots, a given T corresponds to non-unique values of Q. A possible

explanation is that a given I can have non-unique values of 7t as shown in Figure 6.6.

This is similar to the notion that a mean can have different associated variance.

Difference in R means difference in spatial distribution of relative soil water deficit,

which implies i) difference in the extent of runoff contributing area (either fully or

partly wet); and ii) difference in the heterogeneity or connectivity of wet areas. These

differences in spatial patterns result to differences in discharge for the same T.

The right plots of Figure 6.5 show Q vs. 71. Although the patterns are not

necessarily the same as those on the left, these plots also show hysteresis. As shown

in Figure 6.6, a given 71 can correspond to different values of T, and thus different

values of Q as shown here.
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For illustration, consider basin H2 in dry conditions. From the dry initial state

(7 0.36, Q 5, 200L/s), further drying decreases Q and increases W. Initial rain

typically decreases 7 with little change in Q as most of the rain are absorbed by

the capillary reservoirs. Occasionally if the rain is intense, some infiltration-limited

(i.e. Hortonian) runoff will be produced, and these are shown in the plots by a sharp

increase in Q during wetting, followed by a sharp decrease in Q during drainage.

Additional rain further decreases 7 and once a threshold is reached, 71 decreases to

low values while Q sharply increases. Again, the threshold is when most of the basin

is at or above field capacity, T 7 0.4. This threshold behavior of runoff generation

has been well analyzed in hydrological literature e.g. Zehe et al. (2005); Tromp van

Meerveld and McDonnell (2006a,b); Penna et al. (2013).

The Q vs. T plots for the high flow regimes also show hysteresis but the mech-

anisms are more complicated. As mentioned, counter-clockwise loop is observed in

basin T2 while a clockwise loop is observed in basin S2. Moreover, wetting can cor-

respond to either increase or decrease in Q. The differences and complications are

hypothesized to be related to differences in magnitude range and spatial distribution

of infiltration capacity, and differences in concentration time for both surface and

sub-surface runoff.

Hysteresis and threshold-like behavior are manifestations of non-linear hydrologic

response. According to Tromp van Meerveld and McDonnell (2006b), the detection

of these non-linear behaviors can be used as a benchmark for models to capture and

perhaps a way to classify behaviors of different hillslopes and basins. This study

shows that MOBIDIC with its use of a dual-pore soil structure is able to mimic

these non-linear behaviors, and more importantly, the mechanisms that cause these

behaviors to emerge are hydrologically meaningful. Moreover, the use of entropy-

based measures of hydrologic complexity helps understand the link between spatial

patterns and processes, or the micro-states of the basin to the macro-state (e.g. Q

147



and BFI) and the macro-behaviors (hysteresis and threshold behavior).

6.5 Summary and Conclusions

Basin response and hydrologic fluxes are functions of hydrologic states. In this study

the focus is on soil moisture. To characterize the spatial distribution of soil mois-

ture and understand its evolution in time, a revised formulation of the Martina and

Entekhabi (2006) dimensionless index of hydrologic complexity 'h which measures

the distance of a given distribution from two limiting distributions (Dirac delta and

uniform distribution), is used. The modifications make W discretization-invariant.

The revised n is based on differential entropy instead of Shannon entropy, and is

computed for a dimensionless random variable that is strictly in the interval [0,1].

Here the relative soil water deficit is used.

For demonstration, W is applied on 8 test basins with area ranging from 100-103

km 2 and representing semiarid, temperate and humid climates. Calibrated models

of these basins were developed using the distributed hydrologic model MOBIDIC.

Since a key feature of MOBIDIC is the partitioning of each pixel of soil into a gravity

reservoir and a capillary reservoir, the complexity of these sub-systems, 'H, and 'Hg,

respectively, were also investigated . It was shown that 71, n, and ng, can track the

evolution of the distributional features of soil moisture and can provide insights on

the switching of dominant hydrologic processes.

Furthermore, this study explored what and how basin attributes affect the char-

acteristic value of n, 71, and Wg, and how these indices can be used to explain

inter-basin variability in hydrologic response. Clear and meaningful relationships

were found only by grouping basins with similar climate or size. For basins of similar

size, n and 'H9 are highest in temperate climate, consistent with soil moisture being

lower- and upper-bounded so its variability peaks at intermediate values. n, gen-
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erally increases with aridity since the capillary reservoirs are often saturated in the

temperate and humid basins i.e. they are less hydrologically active. For the semiarid

and temperate basins, W, W, and W7, are positively correlated with catchment area,

basin-scale topographic wetness index, and infiltration ratio, but negatively corre-

lated with relief ratio; while W and Rt are positively correlated with baseflow index.

No significant relationships were found for the other basin attributes considered, as

well as with ET efficiency and runoff ratio. The current study is exploratory and it is

emphasized that more basins with various settings, scales, and climates, are needed

to verify the relationships found.

Hysteresis and threshold-like behavior are manifestations of non-linear hydrologic

response. The detection of these non-linear behaviors is a potential benchmark for

hydrologic models to capture and perhaps a way to classify behaviors of different hill-

slopes and basins. This study shows that although hysteresis is not explicitly coded

in MOBIDIC, the results clearly demonstrate this phenomenon. More importantly,

the mechanisms that cause these behaviors to emerge in the simulated variables are

found to be hydrologically meaningful. Hysteresis emerges as a result of MOBIDIC's

use of a dual-pore soil structure which not only captures the different roles of cap-

illary and gravity-driven processes, but also mimics the threshold behavior of runoff

generation. Moreover, investigation of these non-linear behaviors is aided by the use

of entropy-based measures of hydrologic complexity which help understand the link

between spatial patterns and processes or the micro-states of the basin (i.e internal

soil moisture distribution), to the macro-states e.g. Q and the macro-behaviors e.g.

hysteresis and threshold behavior.
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Table 6.1: Description of the test basins
ID Name and Location
SO Tonzi Ranch, CA
Si Vaira Ranch, CA
S2 Willow Creek Basin, CA
S3 San Joaquin R.B., CA
TO SoilSCAPE site, Canton, OK
T2 Baron Fork, Dutchmills, AR
T3 Blue River Basin, OK
H2 Tamugan Basin., Philippines

Climate
semiarid
semiarid
semiarid
semiarid
temperate
temperate
temperate
humid

Land cover/use
woody savanna
grassland, woody savanna, shrubland
woody savanna, grassland, shrubland
grassland, farmland, woody savanna
pasture with some trees
pasture, farmland, forest
grassland, farmland, woodlands
upland tropical rain forest
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Chapter 7

Summary, Major Contributions,

and Recommendations

7.1 Summary

The ability to explain or predict the hydrologic response of a basin has many appli-

cations. Unfortunately, although hydrologists have long sought for general organizing

principles to relate the hydrologic response of a basin to its features, the ability to

regionalize of extrapolate observations from one place to another or across different

scales, has not been realized. This is because the hydrologic response is the combined

manifestation of many complex and interrelated factors that naturally vary both in

space and time, and act over a variety of scales. Perhaps, a possible key is bet-

ter understanding and model representation of soil moisture which strongly controls

basin response and hydrologic fluxes. In this light, this thesis aims to improve our

understanding of the complexity and spatiotemporal variability of basin response and

hydrologic fluxes by i) using a distributed hydrologic model with a novel approach to

modeling soil moisture; and ii) using an entropy-based measure of hydrologic com-

plexity as an analysis tool and an organizing principle.
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The main tool used in this research is the distributed catchment hydrologic model

MOBIDIC which simultaneously solves mass and energy balance. A key feature of the

model is its use of a single layer of soil with dual compartments: a gravity reservoir

composed of large pores that drain under gravity, and a capillary reservoir composed

of small pores that do not drain under gravity. This representation accounts for

the different roles of gravity and capillary in storing and moving soil water, and at

the same time makes the model computationally efficient. Model modifications were

introduced to improve the representation of some hydrologic processes especially for

better simulation of soil moisture. These include i) the addition of plant and surface

reservoirs; ii) the introduction of a single-parameter S-type model of ET as function

of soil saturation; iii) the modifications of the conceptualization and formulation of

lateral subsurface flow; iv) the addition of control rules for percolation; v) the addition

of a capillary rise module; and vi) the use of a modified form of the linear reservoir

model for groundwater dynamics. Modifications were also done on the MATLAB

codes of MOBIDIC reducing run time by about 80 percent.

The ability of the improved MOBIDIC to correctly simulate the magnitude range

and temporal dynamics of soil moisture at the local scale e.g. at a plan element

was tested by comparing its simulated soil moisture against both observations and

values simulated by a benchmark model. The 1-D SHAW model was chosen as the

benchmark because it solves both mass and energy balance and it uses the nonlinear

Richards Equation to simulate flow in unsaturated soil. Using two sites with con-

trasting climates, it was shown that although MOBIDIC is intended for basin-scale

catchment modeling and despite its use of a single soil layer with dual compartments,

and linear parameterization of infiltration and some other fluxes, that it can capture

the more detailed dynamics implicitly included in the SHAW model. The comparison

was performed at two sites with contrasting climates.

This thesis also introduces a revised formulation of the Martina and Entekhabi
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(2006) dimensionless measure of hydrologic complexity 71 which measures the relative

distance of a given distribution of soil moisture from two limiting distributions. The

modifications make R discretization-invariant. The key features of R are: i) it is

computed for random variables with values strictly in the interval 0 to 1, here the

relative soil water deficit is used; ii) it is computed based on differential entropy

instead of Shannon entropy; iii) it uses the Kullback-Leibler divergence to ensure

non-negativity; and iv) it uses an exponential transformation so that its value ranges

from 0 to 1, with 71 0 for the simplest, and W = 1 for the most complex case,

respectively.

In Chapter 5, the improved MOBIDIC and the revised R are used to conduct

a detailed investigation of the hydrology of a tropical rain forest (TRF) river basin

in the Philippines. This demonstrates the details of how a MOBIDIC model is de-

veloped for a specific basin, and it also illustrates the hydrologic information and

insights that the model can provide. Moreover, aside from being the first application

of MOBIDIC on a TRF basin, this study demonstrates how a sophisticated hydrologic

model can be developed using freely-available remotely-sensed data plus only mini-

mal field observations and measurements. This is particularly useful in data-scarce

environments. For this basin, R behaves differently in the wet and dry regimes. The

transition occurs when the dominant processes in the basin switch between vertical

and lateral fluxes. The spatial distribution of soil moisture also exhibited hysteresis

and threshold-like behaviors.

The final chapter applies 71 on MOBIDIC-simulated hydrologic variables for eight

test basins with area of 100 - 103 km2 and representing semiarid, temperate and humid

climates. The results show that for basins with roughly the same catchment area,

higher median slope leads to higher runoff ratio and lower ET efficiency. This finding,

though rather simple, makes perfect hydrological sense (which is what we want) but

is not clear if all test basins are analyzed together. This highlights the need- for a
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systematic and multi-dimensional analysis framework or basin classification scheme

that will help collapse and unravel the complexity of hydrologic response.

W was evaluated using the simulated relative soil water deficit for each of the test

basins. Since a key feature of MOBIDIC is the partitioning of each pixel of soil into

a gravity reservoir and a capillary reservoir, the complexity of these sub-systems, W,

and Hg, respectively, were also investigated. It was shown that R can effectively track

the evolution of the distributional features of soil moisture, and together with W, and

Hg can capture the switching of between vertical and lateral fluxes as the dominant

hydrologic processes. This study also explored what and how basin attributes affect

the measures of hydrologic complexity and how these measures can be used to explain

inter-basin variability in hydrologic response. For basins of similar size, W and Hg are

highest in temperate climate, consistent with soil moisture being double-bounded so

its variability is maximal at intermediate values. Hc generally increases with aridity

since the capillary reservoirs are often saturated in the temperate and humid basins

i.e. they are less hydrologically active. For the semiarid basins, H, H, and Hg,

are positively correlated with catchment area, basin-scale topographic wetness index,

and infiltration ratio, but negatively correlated with relief ratio; while H and Hg are

positively correlated with baseflow index. The trends (slope direction) are generally

the same for the temperate basins.

Hysteresis and threshold-like behavior are manifestations of non-linear hydrologic

response. The detection of these non-linear behaviors is a potential benchmark for

hydrologic models to capture and perhaps a way to classify behaviors of different

hillslopes and basins. This study shows that although hysteresis is not explicitly

coded in MOBIDIC, it is exhibited in the plots of discharge vs. mean soil water

deficit, and discharge vs. H, both in low- and high-flow conditions. In addition,

the mechanisms that cause these behaviors to emerge in the simulated variables are

hydrologically meaningful. Hysteresis emerges as a result of MOBIDIC's use of a
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dual-pore soil structure which not only captures the different roles of capillary and

gravity-driven processes, but also mimics the threshold behavior of runoff generation.

The use of entropy-based measure of complexity helps understand the link between

internal patterns and states to lumped or macro processes and behaviors.

7.2 Major Contributions

The major contributions of this thesis are the following:

1. A more computationally efficient version of MOBIDIC with more realistic and

flexible representation of several hydrologic processes, was developed.

2. This thesis demonstrates that a simple and computationally parsimonious con-

ceptual approach using a dual-pore characterization of a single soil unit

" can perform as good as a numerical solver of Richards equation, in simu-

lating the magnitude range and temporal dynamics of depth-averaged soil

moisture at the local scale; and

" exhibits hysteresis and threshold behaviors.

3. A discretization-invariant dimensionless measure of hydrologic complexity U

was developed. It was shown how W can be used as a tool

" to understand the evolution of the spatial distribution of soil moisture;

" to investigate the link between spatial patterns or internal states, to lumped

basin processes or behaviors;

" to understand the interplay between various hydrologic processes; and

" to explain interbasin variability in hydrologic response.
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4. This thesis demonstrates how a sophisticated hydrologic model can be developed

using freely-available remotely-sensed data, plus only minimal field observations

and measurements.

5. This thesis presents the first application of MOBIDIC on a tropical rain forest

basin, and adds to the hydrological literature on these important and fragile

ecosystems.

6. This thesis emphasizes the multi-dimensionality of hydrologic response. It is

shown that clearer and meaningful relationships between measures of hydrologic

response and observable basin attributes can only be obtained if basins are

classified based on e.g. spatial scale or climatic regime.

7.3 Recommendations for Future Research

The following are some thoughts and recommendations for future research:

1. Chapter 6 is of exploratory nature and as mentioned, the relationship found

between the measures of hydrologic complexity (-, Nc, and Ng) with basin

attributes and traditional measures of hydrologic response, should be verified

using more test basins of various settings, spatial scales, and climates.

" Specifically, it would be nice to have other humid test basins with different

spatial scales.

" For climate sensitivity, having (additional) test basins across different lo-

cations is recommended.

" For spatial scale sensitivity, well-studied nested river basins can be used.

Other basins larger than 10' sq. km. should also be added.
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2. Apply the measures of hydrologic complexity on actual observations of soil

moisture fields such as from extensive networks of in-situ soil moisture sen-

sors or from remotely-sensed soil moisture products such as from SoilSCAPE

(http://soilscape.usc.edu), AirMOSS (http://airmoss.jpl.nasa.gov), and SMAP

(http://smap.jpl.nasa.gov).

3. Check the sensitivity of 'K to space-time resolution

e This thesis used daily-aggregated soil moisture fields, computed from a

model using hourly time-step. The effect of using different temporal reso-

lutions can be investigated.

e The simulated soil moisture fields can also be aggregated to coarser spatial

resolution.

4. The relationships between the space-time statistics (mean, median, variance,

kurtosis, etc.) of the measure and the statistics of distributed basin attributes

and forcings can also be investigated.

5. Synthetic experiments using spatially uniform precipitation, vegetation, and soil

types can be performed.

6. The utility of N as a measure of complexity or uncertainty of any random

variable in the interval [0, 1], not just hydrologic variables, should be explored.

7. The strategy of grouping basins based on similarity of attributes can be applied

to previous or future studies involving multiple basins.
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List of Acronyms

BFI

DEM

DHM

DMIP

ET

GW

HR

MOBIDIC

PET

RH

SHAW

SoilSCAPE

TRMM

TWI

WY

base flow index

digital elevation model

distributed hydrologic model

Distributed Model Intercomparison Project

evapotranspiration

groundwater

hydrologic response

Modello Bilancio Idrologico DIstributo e Continuo

potential evapotranspiration

relative humidity

Simultaneous Heat And Water

Soil moisture Sensing Controller and oPtimal Estimator

Tropical Rainfall Measuring Mission

topographic wetness index

water year
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List of Symbols

Note: Fluxes are based on 1 time step
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Symbol Definition Units

surface runoff parameter [-]

#3 lateral subsurface runoff parameter [-]

rq product of Brooks-Corey parameters m and c [-]

7 soil percolation parameter [-j

r soil absorption parameter [-1

parameter for ET; E 1, 2, 3, 4,5 [-]

#ch fraction of flow that is channelized [-1

matric potential [L]

V) bubbling pressure [L]

Pa density of air [M/L 3]

Ps density of soil [M/L 3]

Pw density of water [M/L 3]

O soil moisture (state variable) [-1

#'mod modeled basin-averaged 0 [-]
-obs
O observed basin-averaged 0 [-1

Of Id soil moisture at field capacity [-]

Osat soil moisture at saturation [-]

Osat soil moisture at saturation [-]

Ve total soil water deficit [L]

Ve,c water deficit of the soil capillary reservoir [L]

Ve,9 water deficit of the soil gravity reservoir [L]

Ve,max total water storage capacity of the soil [L]
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Symbol

A

B

C

Ca

Cs

CH

d

D

Dd

di

dt

dw

E

E

ET

ET1

ET2

ET3

f(x)

G

H

W

is

I

IA

Definition

catchment area

bias

Brooks-Corey pore-size disconnectedness index

heat capacity of air

heat capacity of soil

turbulent heat exchange coefficient

thickness of the modeled soil

total soil depth of SHAW

drainage density

thickness of ith soil layer of SHAW

computational time step

representative distance from the unsaturated soil

layer to the water table

Shannon entropy

latent heat

evapotranspiration

ET from the plant canopy

ET from the surface water

ET from the soil

probability density function of x

heat flux into the soil

sensible heat

dimensionless measure of hydrologic complexity

mean storm intensity

infiltration

index of agreement
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Units

[km 2]

[-]

[-I

[ML 2 T- 2 (- 1]

[ML 2T- 2 E- 1]

[-]

[L]

[L]

[-]

[L]

[T]

[L]

[-]

[L 2 T- 2 E- 1

[L]

[L]

[L]

[L]

[-]

[L2T- 2e- 11

[L2T-2e-- 1]

[I-]

EL/TI

[L]

[-]



Symbol

J

k

Ks

Le

m

NSE

P

PB

PET

p(x)

qa

qS

Q

Qas

Qbf

Qcap

QL

QL,bypass

Qout

Qper

R

RD

RH

Rn

Rr

RR

RT

Definition

overall objective function for calibration

soil thermal conductivity

soil saturated hydraulic conductivity

latent heat of vaporization

Brooks-Corey pore-size distribution index

Nash-Sutcliffe Efficiency index

precipitation

percent bias

potential evapotranspiration

probability mass function of x

specific humidity of air

specific humidity of the soil-vegetation continuum

basin discharge

absorption from W to W,

baseflow

capillary rise

lateral subsurface flow

QL that is directly routed downstream

total streamflow at the basin outlet, same as Q

percolation

Pearson correlation coefficient

Dunne runoff

Hortonian runoff

net incoming radiation

relief ratio

return flow

total runoff
176

Units

[-1

[MLT- 3 E- 1]

[L/T]

[J/M]

[-1
[-1

[L]

[%]

[L]

[-]

[-1
[-]
[L]

[L]

[L]

[L]

[L]

[L]

[L]

[L]

[-1
[L]

[L]

[L2T- 2e- 11

[-]

[L]

[L]



Symbol Definition Units

RT,bypass RT that is directly routed downstream [L]

s local slope [-]

S50 median slope [-I

Smax maximum slope in the basin [-]

S effective soil saturation [-I

S basin-averaged soil saturation [-]

S net change in water storage of a basin [L]

t time [T]

T soil temperature [P]

Ta air temperature []

Tconstant lower boundary condition for T []

roughly equal to the annual mean Ta

Td temperature at diurnal damping depth []

TS temperature of soil and vegetation continuum [P]

U wind speed [L/T]

x relative soil water deficit [-]

XC relative water deficit of the capillary reservoir 1-]

Xg relative water deficit of the gravity reservoir [-]

w 4 by 1 matrix of weights for PB, R, IA, and NSE [-]

we current content of the soil capillary reservoir [L]

Wc,max capacity of the soil capillary reservoir [L]

Wg current content of the soil gravity reservoir [L]

W,max capacity of the soil gravity reservoir [L]

WP current content of the plant/canopy reservoir [L]

Wp,max capacity of the plant/canopy reservoir [L]

WS current content of the surface reservoir [L]
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Symbol Definition Units

Ws,max capacity of the surface reservoir [L]

z depth below surface (positive downward) [L]

Zd damping depths of daily heatwaves [L]

zw depth to groundwater table [L]

ZY damping depths of yearly heatwaves [L]
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