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Abstract

Anomalous transport, understood as the nonlinear scaling with time of the mean square
displacement of transported particles, is observed in many physical processes, including
contaminant transport through porous and fractured geologic media, animal and human
foraging patterns, tracer diffusion in biological systems, and transport in complex networks.
Understanding the origin of anomalous transport is essential, because it determines the
likelihood of high-impact, low-probability events and therefore exerts a dominant control
over the predictability of a system. The origin of anomalous transport, however, remains a
matter of debate.

In this thesis, we first investigate the pore-scale origin of anomalous transport through
sandstone. From high-resolution (micron-scale) 3D numerical flow and transport simula-
tion, we find that transport at the pore scale is markedly anomalous. We demonstrate that
this anomalous behavior originates from the intermittent structure of the velocity field at
the pore scale, which in turn emanates from the interplay between velocity heterogeneity
and velocity correlation. Finally, we propose a continuous time random walk (CTRW)
model that honors this intermittent structure at the pore scale and captures the anomalous
3D transport behavior at the macroscale.

To show the generality of our finding, we study transport through lattice networks with
quenched disorder. We again observe anomalous transport originating from the interplay
between velocity heterogeneity and velocity correlation. We extend the developed CTRW
model to capture the full multidimensional particle transport dynamics for a broad range of
network heterogeneities and for both advection- and diffusion-dominated flow regimes.

We then study anomalous transport through fractured rock at the field-scale. We show
that the interplay between heterogeneity and correlation in controlling anomalous trans-
port can be quantified by combining convergent and push-pull tracer tests because flow re-
versibility is strongly dependent on correlation, whereas late-time scaling of breakthrough
curves is mainly controlled by velocity heterogeneity. Our transport model captures the
anomalous behavior in the breakthrough curves for both push-pull and convergent flow ge-
ometries, with the same set of parameters. Moreover, the inferred flow correlation length
shows qualitative agreement with geophysical measurements. Thus, the proposed corre-
lated CTRW modeling approach furnishes a simple yet powerful framework for character-
izing the impact of flow correlation and heterogeneity on transport in porous and fractured
media.



Finally, we propose a joint flow-seismic inversion methodology for characterizing frac-
tured reservoirs. Traditionally, seismic interpretation of subsurface structures is performed
without any account of flow behavior. With the proposed methodology, we reduce the un-
certainty by integrating dynamic flow measurements into the seismic interpretation, and
improve the predictability of reservoir models by this joint use of seismic and flow data.
This work opens up many possibilities of combining geophysical and flow information for
improving subsurface characterization.

Thesis Supervisor: Ruben Juanes
Title: Associate Professor of Civil and Environmental Engineering
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Chapter 1

Introduction

1.1 Anomalous transport: the breakdown of Fick's law

Understanding flow and transport through subsurface is essential for improving forecasts,

management, and risk assessment of many underground technologies, including geologic

nuclear waste disposal [17], geologic CO 2 storage [137]; oil and gas production from frac-

tured reservoirs [84], enhanced geothermal systems [118], shale-gas development [31, 30],

and groundwater contamination and remediation [58, 69]. Since subsurface consists of rock

which is highly porous and often fractured, the prediction of flow and transport through sub-

surface requires understanding of flow and transport through porous and fractured media.

The transport of mass through porous media is traditionally described with two pro-

cesses: advection and dispersion where advection is the translation of the mass following

the mean flow direction and the dispersion describes the spreading of the mass. Since

Adolf E. Fick introduced the diffusion equation (Fick's law) in 1855 [54], Fick's law still is

the dominant framework that describes dispersive transport processes in porous materials,

nuclear materials, pharmaceuticals, population dynamics, neurons, semiconductor doping

process, etc. Implicit in Fick's law is that the time evo-lution of the mean square displace-

ment (MSD) of passive tracers increases linearly with time, MSD - t. However, the

generality of Fick's law has been questioned since 1926 when L. F Richardson observed

how particles disperse in the atmosphere [122]. Again in 1948, Richardson studied the

relative displacements of pairs of submersed floats over a fixed interval of time on the west
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Figure 1-1: Illustration of the manifestations of anomalous transport. (a) After a point
injection of tracers (red star), anomalous transport often shows a strongly non-Gaussian
concentration field as opposed to a Gaussian concentration field for Fickian dispersion. (b)
Tracer concentration measured from the fixed control plane shows early time breakthrough
and long tailing for anomalous transport. (c) Time evolution of mean square displacements
shows nonlinear increase in time for anomalous transport.

coast of Scotland and observed the clear breakdown of Fick's law, MSD ~ P a 1 [123].

Since then, anomalous (non-Fickian) transport has been widely observed in many do-

mains: transport in amorphous semiconductors, contaminant transport through porous and

fractured geologic media, animal foraging, human travel, and diffusion of passive tracers

in turbulent flows, to name just a few. The signatures of anomalous behavior are non-

Gaussian or multipeaked plume shapes, early breakthrough, long tailing of the first pas-

sage time distribution, and nonlinear scaling of the MSD-effects that cannot be captured

by a traditional advection-dispersion formulation [Fig. 1-1]. Understanding the origin of

the slow-decaying tails in probability density is essential, because they determine the like-

lihood of high-impact, low-probability events and therefore exert a dominant control over

the predictability of a system.

The focus of this thesis is anomalous transport through porous and fractured media.

Despite the broad relevance of flow and transport through geologic porous media, our un-

derstanding still faces significant challenges due to the almost ubiquitous observation of

anomalous transport behavior, from laboratory experiments in packed beds [76, 108], sand
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columns [95] and real rock samples [130, 14] to field-scale experiments [56, 88]. Different

mathematical models have been proposed to reproduce anomalous transport by replicating

the broad (power-law) distribution of velocity; these include multirate mass transfer [63],

fractional advection-dispersion [102], and continuous time random walk (CTRW) mod-

els [10, 12].

In this thesis, we investigate the origin of anomalous transport through porous and frac-

tured media, and propose a parsimonious stochastic transport model capable of capturing

anomalous transport. We first identify the origin of anomalous transport in 3D porous

rock using high-resolution 3D numerical flow and transport simulation at the pore scale.

To show the generality of our finding, we then extend our model to Darcy-scale transport

through lattice networks. We then apply the developed model to study field-scale anoma-

lous transport through fractured geologic media. Finally, we propose a joint flow-seismic

inversion methodology for characterizing fractured reservoirs.

1.2 Numerical experiments on 3D real rock

In the first part of this thesis (Chapter 2), we study the origin of non-Fickian particle trans-

port in 3D porous media by simulating fluid flow in the intricate pore space of real rock. We

simulate Stokes flow at the same resolution as the 3D micro-CT image of the rock sample,

and simulate particle transport along the streamlines of the velocity field [Fig. 1-2(a)]. We

find that transport at the pore scale is markedly anomalous: longitudinal spreading is su-

perdiffusive, while transverse spreading is subdiffusive. We demonstrate that this anoma-

lous behavior originates from the intermittent structure of the velocity field at the pore

scale, which in turn emanates from the interplay between velocity heterogeneity and veloc-

ity correlation [Fig. 1-2(b)]. Finally, we propose a continuous time random walk model that

honors this intermittent structure at the pore scale and captures the anomalous 3D transport

behavior at the macroscale. These results have been submitted for publication [80].
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Figure 1-2: (a) Three-dimensional normalized velocity magnitude (IvI/-V) through a Berea
sandstone sample of size 1.66 mm (approximately 8 pore lengths) on each side; blue and
cyan solid lines indicate two particle trajectories. The domain is discretized into 3003 vox_
els with resolution 5.55 pum (approximately 0.03 pore lengths). (b) Velocity autocorrelation
function shows power-law decay of Lagrangian velocity in time. Inset: transition time dis-
tribution shows broad distribution following truncated power-law.

1.3 Anomalous transport through lattice fracture networks

In the second part of this thesis (Chapter 3), we extend our findings to transport through

lattice fracture networks. Flow through lattice networks with quenched disorder exhibits

strong correlation in the velocity field, even if the link transmissivities are uncorrelated.

This feature, which is a consequence of the divergence-free constraint, induces anomalous

transport of passive particles carried by the flow. We show that, for lattice fracture net-

works, the interplay between this strong velocity correlation and velocity heterogeneity is

again the origin of anomalous transport. We extend the developed CTRW model to cap-

ture the full multidimensional particle transport dynamics for a broad range of network

heterogeneities and for both advection- and diffusion-dominated flow regimes. The model

captures the anomalous longitudinal and transverse spreading, and the tail of the mean first

passage time observed in the Monte Carlo simulations of particle transport. We show that

reproducing these fundamental aspects of transport in disordered systems requires honor-

ing both the correlation and the heterogeneity in the Lagrangian velocity. These results
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Figure 1-3: Particle distribution at a fixed time after injection at the origin (red star).

have been published in Physical Review Letters and Physical Review E [78, 77].

1.4 Field experiment on fractured granite

In the third part of this thesis (Chapter 4), we study anomalous transport through frac-

tured rock at the field scale [Fig. 1-4(a)]. Quantitative modeling of flow and transport

through fractured geological media is challenging due to the inaccessibility of the under-

lying medium properties and the complex interplay between heterogeneity and small-scale

transport processes such as heterogeneous advection, matrix diffusion, hydrodynamic dis-

persion, and adsorption. This complex interplay leads to anomalous (non-Fickian) transport

behavior, and we show that the interplay between heterogeneity and correlation in control-

ling anomalous transport can be quantified by combining convergent and push-pull tracer

tests because flow reversibility is strongly dependent on correlation, whereas late-time scal-

ing of breakthrough curves is mainly controlled by velocity heterogeneity [Fig. 1-4(b)(c)].

In the framework of the developed CTRW model, flow heterogeneity and flow correlation

are quantified by a Markov process of particle transition times that is characterized by a dis-

tribution function and a transition probability. Our transport model captures the anomalous
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Figure 1-4: (a) Satellite image of the Ploemeur field site where we conducted field-scale

tracer transport experiment through fractured granite (modified from Google Earth). Inset:

map showing the location of Ploemeur, France. (b) Schematic of the convergent tracer tests

conducted. (c) Schematic of the push-pull tracer tests conducted.

behavior in the breakthrough curves for both push-pull and convergent flow geometries,

with the same set of parameters. Thus, the proposed correlated CTRW modeling approach

furnishes a simple yet powerful framework for characterizing the impact of flow correlation

and heterogeneity on transport in fractured media. These results have been submitted for

publication [81].

1.5 Joint flow-seismic inversion for characterizing frac-

tured reservoirs

In the fourth part of this thesis (Chapter 5), we propose a joint flow-seismic inversion

methodology for characterizing fractured reservoirs. Traditionally, seismic interpretation
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of subsurface structures is performed without any account of flow behavior. Here, we

present a methodology to characterize fractured geologic reservoirs by integrating flow and

seismic data. The key element of the proposed approach is the identification of the intimate

relation between acoustic and flow responses of a fractured reservoir through fracture com-

pliance. By means of synthetic models, we show that: (1) owing to the strong (but highly

uncertain) dependence of fracture permeability on fracture compliance, the modeled flow

response in a fractured reservoir is highly sensitive to the geophysical interpretation; and

(2) by incorporating flow data (well pressures and production curves) into the inversion

workflow, we can simultaneously reduce the error in the seismic interpretation and im-

prove predictions of the reservoir flow dynamics. These results have been published in a

conference paper and in preparation for journal publication [79].

1.6 Conclusions and future work

In the last chapter of this thesis (Chapter 6), we conclude by summarizing the intellec-

tual contributions of this thesis to understanding anomalous transport through porous and

fractured media, and we discuss possible future work that could build on this thesis.
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Chapter 2

Numerical experiments on 3D real rock

In this Chapter, we first investigate the pore-scale origin of anomalous transport through

sandstone. From high-resolution 3D numerical simulation on real 3D rock, we rigor-

ously identify the physical origin of observed anomalous transport and develop a predictive

stochastic model.

2.1 Background

Fluid flow and transport in porous media is critical to many natural and engineered pro-

cesses, including sustainable exploitation of groundwater resources [66, 60], seawater in-

trusion into coastal aquifers [53], enhanced oil recovery [114], geologic carbon seques-

tration [71, 137], geologic nuclear waste disposal [154], water filtration and membrane

technology [131], and drug delivery and chemical signaling through living tissue [50].

Despite the broad relevance of flow and transport through geologic porous media, our

understanding still faces significant challenges. One such challenge is the almost ubiq-

uitous observation of anomalous (non-Fickian) transport behavior, from laboratory exper-

iments in packed beds [76, 108], sand columns [95] and real rock samples [130, 14] to

field scale experiments [56, 88]. The signatures of anomalous behavior are early break-

through, long tailing of the first passage time distribution, non-Gaussian or multipeaked

plume shapes, and nonlinear scaling of the mean square displacement-effects that can-

not be captured by a traditional advection-dispersion formulation. Different mathematical
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models have been proposed to reproduce anomalous transport, by replicating the broad

(power-law) distribution of velocity; these include multirate mass transfer [63], fractional

advection-dispersion [102], and continuous time random walk (CTRW) models [10, 12].

In addition to velocity heterogeneity, recent studies have pointed out the importance

of velocity correlation in the signature of anomalous transport [90, 39, 78]. In particular,

numerical simulations using smoothed particle hydrodynamics of flow and transport on

simple 2D porous media suggest that longitudinal spreading is strongly modulated by the

intermittent and correlated structure of Lagrangian velocity [35], which is also observed in

laboratory experiments in 3D glass bead packs [34]. Moreover, fundamental understanding

on the impact of velocity heterogeneity and correlation on transverse spreading is poor. It

is known that transverse spreading largely controls overall mixing and, as a result, many

chemical and biological processes in natural systems [13, 139, 151, 138, 126].

In this Chapter, we study flow and particle transport through real rock (Berea sand-

stone), imaged at the pore scale via micro-computed tomography (micro-CT imaging). We

observe strongly non-Fickian spreading behavior in both longitudinal and transverse di-

rections, and find complementary anomalous behavior: longitudinal spreading is superdif-

fusive, while transverse spreading is subdiffusive. We show that the interplay between

pore-scale velocity correlation and velocity heterogeneity is responsible for the observed

anomalous behavior. We then develop a stochastic transport model for 3D porous media

that incorporates the microscale velocity structure. To show the generality of the proposed

framework, we also investigate the impact of particle injection rule on the macroscopic

spreading. Finally, we further simplify our stochastic model such that it has only two

parameters: one for flow heterogeneity and the other for flow correlation. We show the

predictability of the simplified model, and discuss the potential applicability.
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Figure 2-1: Areal porosity variation along the longitudinal direction. Areal porosity varies
between 0.15 and 0.23. Volumetric porosity of the 3D sample rock is 0.18. Insets: 2D
porosity maps at three different locations. White indicates pore space and black indicates
solid rock.

2.2 Fluid flow and particle tracking through Berea sand-

stone

We analyze the 3D Lagrangian velocities of a Newtonian fluid flowing through a cube

sample of Berea sandstone rock of size L = 1.66 mm on each side. Micro-CT is used to

obtain the 3D image of the porous structure at a resolution of 5.55 Am (3003 voxels). Image

segmentation identifies each voxel as either solid or void. The characteristic length of the

mean pore size is A, ~ 200 gm [109], which is used to define the nondimensional distance

x = x/Ac (the sample has ~ 8 characteristic pore lengths in each direction). The porosity

and pore structure variation along longitudinal direction shows complex porous structure

of Berea sandstone [Fig. 2-1].

We simulate Stokes flow (incompressible steady viscous flow) through the pore geom-

etry of the Berea sandstone with no-slip boundary conditions at the grain surfaces, using

a standard finite volume method [113, 16, 15]. We impose constant pressure boundary

conditions at the inlet and outlet faces. The Eulerian velocity field v exhibits a complex

structure, with multiple preferential flow channels and stagnation zones [Fig. 2-2(a)]. To

confirm the incompressible steady viscous flow, we calculate mean velocity along longi-
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tudinal direction [Fig. 2-3(a)]. As expected, x-directional mean velocity stays constant

confirming the incompressible steady viscous flow. The transverse velocities fluctuates

around 0. If we compute the effective mean velocity (average velocity over pore space), we

obtain V- = 6.37ptm/s, ig = -0.16pm/s, and -- -0.26pm/s. The heterogeneity of the

flow field can be characterized by the probability density function of Eulerian velocity field

[Fig. 2-3(b)]. In all directions, Eulerian velocity shows strongly heterogeneous distribution

with power -0.5. The overall structure of the probability distribution between longitudi-

nal and transverse direction is similar but longitudinal direction has higher probability for

larger velocity. 29% of the pore space has velocity larger than the mean velocity (-2) and

71% of the pore space has velocity smaller than the mean velocity (T-). This indicates

that there are a few preferential paths and large number of stagnation zones. Probability

density function of Lagrangian velocities sampled equidistance in time shows slope -0.75

[Fig. 2-3(b)inset]. This implies higher probability of having small velocities for Lagrangian

velocity distribution compared to Eulerian velocity distribution. This is because the parti-

cles with small velocities are sampled much more compared to fast velocities if we sample

equidistance in time.

To study the transport properties, we simulate the advection of particles along stream-

lines of the stationary 3D flow field. We trace streamlines using a semianalytical formula-

tion to compute entry and exit positions, and transit times, through each voxel traversed by

individual streamlines [109]. To initialize the streamlines, we place 104 particles at the inlet

face, following a flux-weighted spatial distribution through the pore geometry. To obtain

particle trajectories that are long enough to observe macroscopic behavior, we concatenate

particle trajectories randomly within the same class of the flux probability distribution (we

have confirmed that the flux distribution at inlet and outlet faces are virtually identical). To

ensure representative statistics of transverse displacement, we reinject a particle (following

the same flux-weighted protocol) whenever its distance to one of the lateral boundaries is

less than 2 voxels. We compute the mean Lagrangian velocity across all trajectories, V, and

define the characteristic time to travel the average pore size as T A = Ac/V, which is used to

rescale time. Two particle trajectories are shown in Figure 2-2(a).

We first analyze the time evolution of Lagrangian mean velocity and Lagrangian veloc-
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Figure 2-2: (a) Three-dimensional normalized velocity magnitude (IvI/V) through a Berea
sandstone sample of size 1.66 mm (approximately 8 pore lengths) on each side; blue and
cyan solid lines indicate two particle trajectories. The domain is discretized into 3003 vox_
els with resolution 5.55 pm (approximately 0.03 pore lengths). (b) Cross section of the
Berea sandstone at rescaled distance G = "I = 4.16, showing the pore space (white) and
solid grains (black). The average porosity (fraction of void space in the sample) is approx-
imately 18.25%. (c) Cross section of the velocity magnitude at rescaled distance (. = 4.16
(warm colors correspond to higher velocities), illustrating the presence of preferential flow
paths.
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Figure 2-3: (a) Average velocity along longitudinal direction. From the incompressibility,
x-directional mean velocity stays constant. Transverse (y, z) directional velocity has fluc-
tuations around 0 velocity. (b) Probability density functions for Eulerian velocities in each
direction. For all directions, we can observe very broad distribution of velocities (more
than ten orders of magnitude). Inset: Probability density functions for Lagrangian veloci-
ties in each direction. The slope is 0.75 which is steeper than the slope for Eulerian velocity
distribution.

ity variance for ensemble of particles in all directions [Fig. 2-4]. We observe power law

decay of Lagrangian velocity mean and variance indicating nonstationarity of Lagrangian

statistics. The nonstationarity and the power-law decay originates from the flux-weighted

injection and the strongly heterogeneous velocity field. Theflux-weighted injection places

large number of particles to high velocity zone, and particles experience heterogeneous

velocity field and slowly converges to stationary velocity field.

To further investigate Lagrangian transport behavior, we analyze individual particle tra-

jectories. The temporal evolution of the Lagrangian velocity and acceleration for a particle

indicate strongly intermittent behavior, both in the longitudinal (x) and the transverse (y, z)

directions of the flow, alternating between long periods of stagnation and bursts of high

variability [Fig. 2-5(a)(b)]. Similar intermittent behavior in the longitudinal direction has

been observed in a 2D porous medium consisting of a random distribution of disks [35].

In the transverse direction, particles with high positive velocities jump to high negative

velocities-an anticorrelation that was also observed in the particle transport through sim-

ple lattice networks [78].
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Figure 2-4: (a) Time evolution of Lagrangian mean velocity. Longitudinal Lagrangian
velocity follows power 0.2 and in transverse directions Lagrangian mean velocity converges
to 0. (b) Time evolution of Lagrangian velocity variance. Both longitudinal and transverse
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Figure 2-5: (a) and (b) Time series of the normalized Lagrangian velocity and acceleration,
respectively, for the blue particle trajectory in Fig. 2-2(a). The Lagrangian statistics exhibit
strongly intermittent behavior in both longitudinal and transverse directions.
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2.3 Non-Fickian spreading and intermittency

To investigate the impact of the observed intermittent behavior of individual particles on

the macroscopic spreading of the ensemble of particles, we compute the time evolution

of the longitudinal and transverse mean square displacements (MSD) with respect to the

center of mass of a point injection, i.e., initializing every particle's starting position to an

identical reference point. For the longitudinal direction (x), the MSD is given by o (t)=

((X(t) - (X(t))) 2 ) where (-) denotes the average over all particles. The same definition

is applied to the transverse directions to compute o2 and a2 . At early times, longitudinal

MSD exhibits ballistic scaling, o ~, t 2 , characteristic of perfectly correlated stratified

flows [141]. After this initial period, the MSD follows a non-Fickian superdiffusive scaling

2 (t) ~ tI' 5 . The MSD in the transverse directions also scales as 2 , a 2 ~ t 2 at early

times but, in contrast, then slows down to an asymptotic non-Fickian subdiffusive scaling

Y , o .to-8 (Fig. 2-6).

Our hypothesis is that the observed non-Fickian anomalous spreading is a consequence

of the observed intermittent behavior in the Lagrangian velocity. To quantify the intermit-

tent behavior, we compute the velocity increment probability density function (PDF). The

Lagrangian velocity increment associated to a time lag T is defined as ATv = v(t+T) - v(t)

where v(t) = [X(t + T) - X(t)]/T. The velocity increments are rescaled with respect to

their standard deviation, ATv/ATv. We find that the velocity increment PDFs in both the

longitudinal and transverse directions collapse (Fig. 2-7(a)); an indication that intermit-

tent behavior is equally significant in all directions. This multidimensional intermittency

originates from the combined effect of the 3D pore structure and the divergence-free con-

straint on the velocity field, which results in a misalignment between the local velocity and

the mean flow direction. The PDF of the velocity increments is characterized by a sharp

peak near zero, and exponential tails. The peak reflects the trapping of particles in stagna-

tion zones, while the exponential tails indicate that large velocity jumps are also probable

due to the strong heterogeneity in the velocity field-a signature of the observed inter-

mittency [35, 34]. As T increases, the slope of tail increases and the peak becomes less

prominent. However, even after four characteristic advective time, the velocity increment
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Figure 2-6: Time evolution of the centered second spatial moments from particle-tracking
simulation. In the x-direction, particle dispersion is superdiffusive with slope - 1.5, and
in the y and z directions, dispersion is subdiffusive with slope - 0.8.

PDF is still strongly non-Gaussian showing the persistent anomalous nature of the pore

scale fluid transport (Fig. 2-7(b)). This non-Gaussian character indicates that pore-scale

fluid flow cannot be modeled using the Langevin description with white noise [138].

2.4 Lagrangian velocity correlation structure and origin

of anomalous transport

From velocity increment pdf, we observed signature of flow intermittency as the sharp

peak near zero and exponential tails. The peak represents strong flow correlation due to

stagnation zones, and exponential tail represents strong velocity fluctuation from heteroge-

neous velocity field. Now we formulate the time evolution of second spatial moments as

a function of flow correlation and flow heterogeneity to investigate their respective impact

on particle spreading.

41



p (a) A01(b)

- - E ) r /1 0
10

10 "-1

0a) (10

.Z -22
10 

20 2
CL 3 a.

10

-04 -4'
100

-10 -5 0 5 10 -10 -5 0 5 10
AV/UAv, Av/ A,

Figure 2-7: (a) Probability density distributions of the normalized Lagrangian velocity
increments in x, y and z directions, for a time lag T = rA/4. Velocity increments are nor-
malized with respect to their standard deviation cvi, i = x, y, z. (b) Change in probability
distributions for different time lags. The tailing decreases as the time lag increase, but the
distribution is still non Gaussian even for the lag time of 4TA.

Let Xv (T, q) be the velocity autocorrelation between times T and q,

__ ([v(T) - (v(T))][v(q) - (v(r))])
xv(T,) (T) (2.1)

where of(rj) is the variance of the Lagrangian velocity at time T. Velocity autocorrelation

functions at different T values in longitudinal and transverse direction (Fig. 2-8) shows

long range correlation in longitudinal direction and short range correlation in transverse

direction.

From the definition of the MSD [3], we can express MSD as,

or (t) 2 dn c (1) d 'v(T)v(T, 'q). (2.2)
0 0

When the velocity standard deviation, aO(T), follows slow decay in time with respect

to Xv(T, TI) (we confirmed this), the MSD can be approximated as

o (t) : 2 d r (7) dT Xv (T, q). (2.3)

To study the independent roles of velocity heterogeneity and velocity correlation on spread-
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t values. We can observe the fluctuation of velocity autocorrelation functions with respect
to the average autocorrelation function, < Xv,(t, t + T) >t , due to the nonstationarity
of the Lagrangian statistics. (b) Transverse Lagrangian velocity autocorrelation (green),
XvV (t, t + T), for multiple t values.

ing, we define Tv'(t) = fJ d (q) and Ibv(t) = f d77 fo7 dT Xv(T, 1), respectively. In

both longitudinal and transverse direction, neither velocity heterogeneity nor velocity cor-

relation alone can explain the observed anomalous spreading in our system [Fig. 2-9(a)].

Therefore, advective particle spreading is determined by the interplay between velocity

heterogeneity and velocity correlation.

To study velocity autocorrelation structure in time and space, we compute the average

velocity autocorrelation as a function of time and space [Fig. 2-9]. From our qualitative

and quantitative analysis of intermittency in the Lagrangian statistics [Fig. 2-5 and Fig. 2-

7, respectively], it is not surprising that the longitudinal velocity autocorrelation, Xv., is

slow-decaying in time [Fig. 2-9(b), inset]. Moreover, while the transverse velocity auto-

correlation, Xv,, decays faster in time, this does not mean that it has short-range correlation;

indeed, the absolute magnitude of the transverse velocity, Iv,, exhibits broad-range tem-

poral autocorrelation [Fig. 2-9(b), inset], highlighting the crucial fact that the transverse

velocity is mean-reverting but strongly correlated in time-a phenomenon also observed in

turbulence for velocity increments [106].

The Lagrangian correlation structure is drastically different as a function of space, in-
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Figure 2-9: (a) Time evolution of the centered second spatial moments in the longitudinal
direction from particle tracking simulation (solid line), prediction from eq (2.3) (black
dotted line), and estimations from velocity heterogeneity alone (T, (t), orange dotted line)
and velocity correlation alone (<D,(t), green dotted line). The orange and green lines are
shifted along the y axis for clarity. Inset: Time evolution of the centered second spatial
moments in the transverse direction. (b) Longitudinal (x, red) and transverse (y, blue)
Lagrangian velocity autocorrelation as a function of space along the longitudinal direction.
All functions are short-ranged. Inset: Longitudinal (red) and transverse (blue) Lagrangian
velocity autocorrelation as a function of time. Note the strong, long range, correlation of
the longitudinal velocity vx and the absolute value of the transverse velocity, ivy 1.

stead of time-a key insight first pointed out in [90] for Darcy flow in heterogeneous media.

The longitudinal and transverse velocity autocorrelation, as a function of space , are all

short-ranged and decay exponentially [Fig. 2-9(b)].

2.5 Continuous time random walk model

The exponential decay of autocorrelation is characteristic of Markov processes [125], which

suggests that the effective pore scale velocity transitions in space can be captured by a one-

step correlated model in space. We propose a correlated CTRW macroscopic model [90,

142], where the velocity heterogeneity structure and the one-step velocity correlation are

characterized by a velocity transition matrix derived from the pore scale 3D simulations [90,

78]. The velocity transition matrix is the only input to our model.

We denote by rm1(v jv) the transition probability density to encounter a velocity vc
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after n + m steps given that the particle velocity was v after n steps (here ( refers to

any of the space directions, X, y, z). To evaluate the discrete transition probability from

the simulated 3D particle trajectories, we discretize the particle velocity distribution into

N = 100 classes with equiprobable binning, v( C Uj=_(v , v ), and define the rn-step

transition probability matrix:

k±1 j+1 +

Tm(klj) j dv( dv' rn (v(Iv')pv) j dv~p(v,), (2.4)

where p(v') is velocity probability distribution function. The one-step velocity tran-

sition matrix (T 1), in longitudinal and transverse directions, is shown in Fig. 2-10. For

the longitudinal direction, the high probabilities along the diagonal of T reflect the strong

persistence in the magnitude of longitudinal velocity. For the transverse direction, this ef-

fect is also present, but in addition we observe high probability values along the opposite

diagonal, as a result of the transverse velocity anticorrelation due to local flow reversal

[Fig. 2-2(d)].

Average particle motion can be described by the following system of Langevin equa-

tions:

~n+ o v(nA() _____tfl 4+ A( , tn+1= +v, (2.5)
I v( (nAO ) |v((nA() I

where x =, y, z. We choose Ax = A,/4, Ay = A,/8 and Az = A,/8, based on the char-

acteristic correlation length of the exponential decay of the spatial velocity autocorrelation

[Fig. 2-9(a)]. We assume that the sequence of Lagrangian velocities {v((nAr) } _ can be

approximated by a Markov process, and thus fully characterized by the one-step transition

probability density T, (Fig. 2-10). Particles start with initial velocities chosen randomly

from the velocity distribution and the velocity transition is determined probabilistically

following the one-step transition matrix.

The proposed correlated CTRW model accurately predicts the plume evolution in all

space directions, as evidenced by the longitudinal and the transverse projections of parti-

cle density at fixed times and by the MSDs in both longitudinal and transverse directions

(Fig. 2-11). The model captures nicely the early ballistic regime, the late time scaling,
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for different values of the space transition Ax/Ac. The velocity correlation decreases as

the sampling distance Ax increases. (d,e,f) Transverse (y) transition matrix with N =
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Figure 2-11: (a) Time evolution of the centered second spatial moments from particle-
tracking simulation (solid line) and the prediction with correlated CTRW (dotted line).
Inset: Time evolution of the mean particle pair distance. We do not see the exponen-
tial increase in the particle pair distance up to 1OOTA. Therefore, chaotic advection is not
the mechanism for anomalous transport. (b)Longitudinal projection of the particle density
distribution at fixed times (t = TA, 5TA and IOTA) from direct pore-scale simulation (solid
line), and the correlated CTRW model prediction (dotted line). Inset: Transverse projection
of the particle density distribution at fixed times (t = 2TA and IOTA) from direct simula-
tion (solid line) and the respective CTRW model prediction (dotted line). Different colors
indicate different times.

and the transition time, without any fitting parameters. Recently, it has been demonstrated

that the chaotic advection is inherent to the porous media flow [94]. To investigate the

existence of chaotic advection in our porous media system, we compute the time evolution

of average particle pair distance as shown in the inset of Figure 2-11(a). At least at the

time scale of our interest, we can not observe the exponential increase in the particle pair

distance. Therefore, we can confirm that the velocity correlation is the main driver for the

anomalous transport rather than the chaotic advection in our system.

Taken together, our findings point to the critical role of velocity intermittency at the pore

scale on transverse particle spreading and, consequently, on mixing and reactive transport

processes in porous media flows.
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2.6 Impact of particle injection rule: flux weighted injec-

tion vs volume injection

In previous chapters, we have used flux weighted (proportional) injection, where the num-

ber of injected particle in each pore space is proportional to local flux, as an initial particle

placement rule. In this section, we compare the flux weighted injection case with volume

injection case. We define volume injection as injecting equal number of particles in each

pore space. Both injection scenarios can occur in real porous media flow. For example, to

understand the underground contaminant flow characteristics, volume injection is relevant

since contaminants occupy pore space equally. However, when we artificially inject tracer

into groundwater system, flux weighted injection is more relevant since more number of

tracers will be injected at high flux zone. We compare two injection cases to study the im-

pact of injection rule on spreading and to show the generality of our framework by applying

it to two different cases.

Since volume injection has much more number of particles in stagnation zones, La-

grangian mean velocity is significantly faster for flux weighted injection (8.70 Pm/s) com-

pared to volume injection (4.84 pm/s). When the underlying flow field is stationary, the

volume injection gives stationary Lagrangian statistics since the ensemble of particles rep-

resent stationary flow field. For flux weighted injection, particles in the preferential path get

trapped and this causes decrease in Lagrangian mean velocity in time. Lagrangian velocity

distribution computed at every tA shows stationary distribution for volume injection and

strongly time dependent distribution for flux weighted injection (Fig. 2-12(a)). The aver-

age Lagrangian velocity distribution for flux weighted injection shows smaller probability

to sample small velocities (Fig. 2-12(b)). As shown in Figure 2-13, both first and second

moments of velocity are much less time dependent for volume injection case compared to

flux weighted injection case.

We now investigate the impact of injection rule on macroscopic spreading behavior.

There are three main interesting differences between the two cases (Fig. 2-14). First, we

can clearly observe that the spreading is smaller for volume injection case compared to

flux weighted injection case. Second, transition from ballistic to anomalous scaling occurs
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Figure 2-14: MSD for two different injection rules. We can observe clear difference be-
tween the two cases.

later in time for volume injection case. Third, anomalous scaling in longitudinal direction

converges to a (t) ~ tI.5 for both cases. However, in transverse direction, volume injection

shows normal scaling, o (t) ~t, whereas flux weighted injection shows subdiffusive

scaling, U2 (t) ~ tO.8.

We now compare velocity autocorrelation for the two difference injection rules. Ve-

locity autocorrelation for volume injection case has stronger correlation (Fig. 2-15). This

originated from particles in stagnation zones. Velocity of a particle in stagnation zone has

strong correlation for long time as shown in the single particle trajectory (Fig. 2-5). Since

volume injection has much more number of particles in stagnation zones, velocity autocor-

relation for volume injection case has stronger correlation in time.

To investigate the role of velocity correlation and velocity heterogeneity on particle

spreading, we now further develop eq (2.3). For second order stationary velocity process,

o (t) = U2 and x,(ti, t 2 ) = Xv(t2 - ti). Therefore, we can further simplify eq (2.3) as,

2 (t ) ~ 2 U2 dr dTXv(T).
X ~ V O f

(2.6)

The prediction from eq (2.6) shows excellent match with the particle tracking simu-
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Figure 2-15: Velocity autocorrelation for the two different injection rules. Volume injection
case shows stronger correlation for both longitudinal and transverse directions.

lation in all directions (Fig. 2-16(a)). Also, we confirmed that eq (2.6) fails to predict

flux-weighted injection case since eq (2.6) requires second order stationary process. The

generality of correlated CTRW model can be tested by applying it to volume injection case.

As shown in Figure 2-16(b), correlated CTRW accurately predicts particle spreading at all

times showing the general applicability of our model. The Markovianity assumption can be

also understood by comparing transition matrices in time and in space (Fig. 2-17). Due to

the long range velocity correlation in time for particles in stagnation zones, velocity tran-

sition in time shows strong correlation for small velocities and cannot be approximated as

Markov process.

2.7 Effective correlated CTRW

In CTRW, 4(t)dt is defined as the ensemble averaged probability of a particle experiencing

transition time t [41]. $(t) can be obtained by measuring the distribution of Lagrangian ve-

locity sampled in space. Figure 2-18 shows Lagrangian transition time distribution sampled

in space and in time for two different injection rules. 4'(t) for CTRW should be measured

with volume injection and sampled in space.
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We can also relate the probability density function of the velocity p(v) and time <(t)

as following. Say p(v) ~ va and 0(t) ~ t-". From 7P(t)dt = p(v)dv and dt = d-v,

we can relate a and / as / a + 1. We observed a = -0.75 for Lagrangian velocity

distribution sampled in equidistance in time (Fig. 2-12(b)). This is equivalent to 3 = 0.25

which is consistent with Figure 2-18(a).

The transition time distribution for CTRW should be sampled equidistance in space

which gives / = 0.8 (Figure 2-18(a)). In CTRW theory, for / < 1, a2 ~ t 2 3 in longitudinal

direction and a2 ~ tO in transverse direction. Therefore, CTRW theory predicts o ~ t1.6

and a 2  t0 8 . This is consistent with what we observed for flux-weighted injection but not

for volume injection where o t . The CTRW theory explains scaling of second spatial

moments only with velocity distribution. However, we showed that the anomalous transport

originates from the interplay between velocity heterogeneity and correlation (eq (2.3)).

To reduce the number of parameters in the developed correlated CTRW model, we sim-

plify the model with two independent parameters: / that characterizes velocity heterogene-

ity and A that characterizes velocity correlation. / can be measured from the distribution

of Lagrangian transition times sampled in space where we observed as 0.8. A determines

characteristic correlation length which can be measured from either transition matrix or ve-

locity autocorrelation function. The full description of the simplified model can be found

in 4.4.3. As can be seen in the Figure 2-18(b), the model accurately captures the spatial

spreading at all times with / = 0.8 and A = 2A,. / determines late-time scaling and A

determines the transition from ballistic to anomalous scaling.

2.8 Discussion

We have identified the pore-scale origin of anomalous transport as the competition between

flow correlation and flow heterogeneity. From the understanding of the origin of anomalous

transport, we have successfully developed predictive transport model that properly honors

flow heterogeneity and correlation. We further simplified the developed model by reducing

the number of parameters to two: one for heterogeneity and one for correlation. Now we

study the generality of our finding in the following chapter.

53



(a) 10

-Flux weighted in space
- Volume injection in space
- Volume injection in time
- Flux weighted in time

10

-82 1.25
10 2

-12
10 1.8

10 0 10 4 10 8
trasition time

(b)

U)
0
C
CO

CO

0.
Cl)

12

10

10i~=O

10 no correlation

10,

14 L___-

10-1 100 10 1 102

time, t/'TA
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Chapter 3

Anomalous transport through lattice

fracture networks

3.1 Background

Anomalous transport, understood as the nonlinear scaling with time of the mean square

displacement of transported particles, is observed in many physical processes, including

contaminant transport through porous and fractured geologic media [10], animal foraging

patterns [147], freely diffusing molecules in tissue [155], tracer diffusion in suspensions of

swimming micro-organisms [93], and biased transport in complex networks [111].

Anomalous transport often leads to a broad-ranged particle distribution density, both

in space and time [135, 18, 102]. Understanding the origin of the slow-decaying tails

in probability density is essential, because they determine the likelihood of high-impact,

"low-probability" events and therefore exert a dominant control over the predictability of

a system [77]. This becomes especially important when human health is at risk, such as

in epidemic spreading through transportation systems [2] or radionuclide transport in the

subsurface [104].

Past studies have shown that high variability in the flow properties leads to anomalous

transport [18, 10]. Depending on the nature of the underlying disorder distribution anoma-

lous behavior can be transient or persist to asymptotic scales [143, 41]. The continuous

time random walk (CTRW) formalism [129, 87] offers an attractive framework to under-
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stand and model anomalous transport through disordered media and networks [8, 10, 111].

The CTRW model is intrinsically an annealed model because the disorder configuration

changes at each random-walk step. A particle that returns to the same position experiences

different velocity properties. The validity of the CTRW approach for average transport in

quenched random environments has been studied for purely diffusive transport [e.g., 18]

and biased diffusion [e.g., 90, 40, 39, 77]. Most studies that employ the CTRW approach

assume that transition times associated with particle displacements are independent of each

other, therefore neglecting velocity correlation between successive jumps [9]. Indeed, a

recent study of transport on a lattice network has shown that CTRW with independent

transition times emerges as an exact macroscopic transport model when velocities are un-

correlated [77].

However, detailed analysis of particle transport simulations demonstrates conclusively

that particle velocities in mass-conservative flow fields exhibit correlation along their spa-

tial trajectory [5, 90, 103]. Mass conservation induces correlation in the Eulerian velocity

field because fluxes must satisfy the divergence-free constraint at each intersection. This,

in turn, induces correlation in the velocity sequence along a particle trajectory. To take

into account velocity correlation, Lagrangian models based on temporal [115, 103] and

spatial [5, 90] Markovian processes have recently been proposed. These models success-

fully capture many important aspects of the Lagrangian velocity statistics and the particle

transport behavior. In particular, the study of Le Borgne et al. [90] shows that introducing

correlation in the Lagrangian velocity through a Markov process in space yields an accu-

rate representation of the first and second moments of the particle density. The model is

restricted, however, to particle trajectories projected onto the direction of the mean flow,

and the study leaves open the question of whether spatial Markov processes can describe

multidimensional features of transport.

Here, we investigate average transport in divergence-free flow through a quenched ran-

dom lattice from the CTRW point of view. We introduce a multidimensional spatial Markov

model for particle velocity, and confirm that the model exhibits excellent agreement with

Monte Carlo simulations. We show that accounting for the spatial correlation in the La-

grangian velocity is essential to capture the fundamental macroscopic transport behavior.
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3.2 Random Lattice Network

We consider a lattice network consisting of two sets of parallel, equidistant links oriented

at an angle of ±a with the x-axis. The distance between nodes is I [Fig. 3-1]. Flow through

the network is modeled by assuming Darcy's law [3] for the fluid flux uij between nodes i

and j, uij = - kij ( - Di)/l, where Di and (Di are the flow potentials, and kij > 0 is the

conductivity of the link between the two nodes. Imposing mass conservation at each node i,

3 u,, = 0, leads to a linear system of equations, which is solved for the flow potentials

at the nodes [Fig. 3-2]. A link from node i to j is incoming for uij < 0 and outgoing

for uij > 0. We denote by eij the unit vector in the direction of the link connecting i

and j. A realization of the random lattice network is generated by assigning independent

and identically distributed random conductivities to each link. Therefore, the k values in

different links are uncorrelated. The set of all realizations of the quenched random network

generated in this way form a statistical ensemble that is stationary and ergodic. To study

the impact of the network heterogeneity on transport, we take log-normal distribution for k

distribution and the variance of the log-normal distribution determines the heterogeneity.

We study a simple flow setting of mean flow in the positive x-direction, by imposing a

no-flow condition at the top and bottom boundaries of the network, and fixed values of the

potential at the left (D = 1) and right (4 = 0) boundaries.

Once the fluxes at the links are known, we simulate transport of a passive tracer by

particle tracking. We neglect diffusion along links, and thus particles are advected with

the mean flow velocity between nodes. When particles arrive at nodes, they follow either

complete mixing or streamline routing (no mixing) rules [Fig. 3-3]. The complete mixing

assumes that Peclet numbers at nodes are very small that particles are well mixed within the

link. Thus, the link through which the particle exits a node is chosen randomly with flux-

weighted probability. For streamline routing, Peclet numbers at nodes are very high that

particles essentially follow streamline and cannot jump between streamlines. The complete

mixing and streamtube routing rules are the two extremes where the former is diffusion

dominated and the latter is advection dominated. In reality, local Peclet number at node

and the intersection geometry determines the strength of mixing at nodes that is somewhere
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Figure 3-1: (a) Schematic of the homogeneous lattice network considered here, with two
sets of links with orientation ±ct = ±w/4 and spacing 1 = 1. Boundary conditions are
imposed to realize liner flow geometry. (b) Schematic of the heterogeneous lattice network.
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Figure 3-2: (a) Pressure field for log-normal conductivity distribution with variance 0, (b)
Pressure field for log-normal conductivity distribution with variance 1 (c) Pressure field for
log-normal conductivity distribution with variance 5.
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between complete mixing and streamline routing.

Particle transfer probabilities from node i to node j (pij) for complete mixing is as

follows:

pi = uij , (3.1)
P k Uik(.

where the summation is over outgoing links only, and pij = 0 for incoming links. This

implies that the particle transition is determined only with outgoing flux distribution and

not the incoming fluxes. The equation (3.1) applies to the cases with three outgoing fluxes

and one outgoing fluxes for both complete mixing and streamtube routing. However, for

two outgoing fluxes, streamline routing has different transition probability as following.

[1, Uadj > Uin P 0, tadj > Uin
Padj =Popp (3.2)

, Uadj < U Uiin - iadj , adj < Uin

Figure 3-3 illustrates the dramatic difference between the two mixing rules. When

the two incoming links and the two outgoing links have same fluxes, the particles from

incoming link partitions equally into the two outgoing links for the complete mixing rule.

However, for the streamline routing case, all of the particles transit to the adjacent link.

Therefore, the local mixing at the node may lead to the different global spreading behavior.

The Langevin equations describing particle movements in space and time are

v(xn)1
xn+1 = X + I- , tn+1 = tn + . (3.3)

IV(xn)| I V(xn) I

If x, is the position of the ith node, the transition velocity is equal to v(xn) = uijeij with

probability pij define in (3.1) and (3.2). The velocity vector v in the following is expressed

in (v, 0) coordinates, in which v = v Icos(yo)/I cos(o) is the velocity along a link with

(= arcos(v,/Iv ) and 0 = sin(o)/ sin(p)1, so that v = [v cos(ce),|v10 sin(a)]t . Note that

o can only assume values in {-a, a, 7r - a, 7r + a}.

The system of discrete Langevin equations (3.3) describes coarse-grained particle trans-

port for a single realization of the quenched random lattice. Particle velocities and thus tran-
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(a) Complete mixing (b) Streamline routing

Figure 3-3: Schematic for the two different mixing rules when the two incoming links and
the two outgoing links have same fluxes. (a) Complete mixing rule. (b) Streamline routing
rule.
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Figure 3-4: (a) Schematic of the lattice network considered here, with two sets of links with
orientation ±a = ±r/4 and spacing I = 1. (b) Particle distribution at nodes (represented
by circles of different sizes) at t = 30 for a single realization after injection at the origin at
t = 0.
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sition times depend on the particle position. The particle position at time t is x(t) = Xnt,

where nt denotes the number of steps needed to reach time t. The mean particle density

is P(x, t) = (6(x - xa,)), where the angular brackets denote both the noise average over

all particles in one realization and the ensemble average over all network realizations. We

solve transport in a single disorder realization by particle tracking based on Eq. (3.3) with

the initial conditions xo = 0 and to = 0 [Fig. 3-4(b)]. From this, we obtain the mean

particle density P(x, t) by ensemble averaging.

The fracture heterogeneity and mixing rule has significant impact on the evolution of

mean particle density [Fig. 3-5]. Increase in heterogeneity increases particle spreading in

both transverse and longitudinal directions. Impact of mixing rule is significant for net-

works with low heterogeneity. Complete mixing at nodes significantly enhances transverse

spreading while longitudinal spreading is independent of the mixing rule.

3.3 Average Transport Behavior

We study the average transport behavior on lattice networks for a given conductivity distri-

butions and mixing rules at nodes (either complete mixing or streamline routing). We run

particle tracking simulations in 102 realizations of an ensemble of random lattices charac-

terized by a lognormal k distribution with three different variance -2 = 1 5. The use

of a lognormal distribution is motivated by measurements of conductivity in many natural

media [128]. The lattice size is 51 x51 nodes and, in each realization, we release 104 parti-

cles at the origin. The average transport behavior is studied in terms of the spatial particle

density P(x, t), its mean square displacements in longitudinal and transverse directions

and the distribution of the first passage time, tf(x), at a control plane at a distance x from

the inlet.

Figure 3-6 shows the time evolution of the longitudinal and transverse spreading. In

both directions, spreading shows ballistic regime (- t2) at early time and evolves to anoma-

lous scaling. The Monte Carlo simulation shows that the longitudinal mean square dis-

placement (MSD) with respect to the center of mass evolves faster than linear with time

(slope of 1.2 ~ 1.4) [Fig. 3-6(a)(c)(e)]. There is no noticeable difference between complete
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Figure 3-5: Particle distribution at fixed time after injection at the origin (red star). In low
heterogeneity, transverse spreading significantly increases for complete mixing. Spreading
is similar between streamtube routing and complete mixing for high heterogeneity.
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mixing and streamline routing cases. However, increase in conductivity variance (hetero-

geneity) significantly increases MSD and we can also observe the change in the scaling.

Transverse MSD with respect to the center of mass evolves linearly with time for com-

plete mixing case, and slower than linear with time (slope of 0.8 ~ 1) for streamline

routing case. Different from longitudinal direction, transverse MSD has noticeable differ-

ence between complete mixing and streamline routing cases. Complete mixing rule has

significantly higher MSD for small heterogeneity and the difference diminishes as hetero-

geneity increases. Also, note that increase in heterogeneity has clear impact for streamline

routing but not for complete mixing case. This is because complete mixing rule itself max-

imizes transverse spreading so that increase in heterogeneity has no significant impact. For

streamline routing, network heterogeneity is the only source of transverse spreading and

we can clearly observe transverse spreading increases as heterogeneity increases.

The impact of mixing rule is also clearly shown with probability distribution of trans-

verse particle positions when particles exit a control plane at a fixed distance x from the

inlet [Fig. 3-7]. For small conductivity variance, change in mixing has major impact of

transverse spreading. However, as conductivity variance increases, the difference between

the two mixing rules reduces. First passage time (FPT) distributions for different con-

ductivity heterogeneity and mixing rules at nodes are shown in Fig. 3-8. Conductivity

heterogeneity has clear impact on FPT, but the mixing rules has negligible impact of FPT.

In summary, conductivity heterogeneity has major impact on longitudinal spreading and

mixing rule has major impact on transverse spreading.

To develop a transport model for the observed average particle density P(x, t), we study

average particle movements from a CTRW point of view. This could be done, for example,

by interpreting first-passage time distributions in the CTRW framework and inferring an

optimal distribution of transition times [9]. Here we follow a different rationale and analyze

the ensemble statistics of the Lagrangian velocities because the CTRW model is based on

the assumption that particle velocities sampled at given spatial positions along an average

trajectory form a Markov process.
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Figure 3-6: Time evolution of second spatial moments for complete mixing (solid line) and

streamline routing (dashed line). (a) Longitudinal spreading with conductivity variance

0.1. (b) Transverse spreading with conductivity variance 0.1. (c) Longitudinal spreading
with conductivity variance 1. (d) Transverse spreading with conductivity variance 1. inset:

Change in the time evolution of transverse spreading for complete mixing with increasing
variance. (e) Longitudinal spreading with conductivity variance 5. inset: Change in the

time evolution of longitudinal spreading for complete mixing with increasing variance. (f)
Transverse spreading with conductivity variance 5. inset: Change in the time evolution of
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3.4 Spatial Markov Property.

To characterize average particle movement from a CTRW point of view, we study the en-

semble statistics of the series of Lagrangian velocities experienced by particles along indi-

vidual trajectories. We consider the transition probability density to encounter a velocity v

after n + m steps given that the particle velocity was v' after n steps, which in the variables

(v, 0) reads

rm (,) 0 1V', 1 ')=

(6 [V - V(Xn+m)] 6o,o(xn+m)) V(Xn)V',9(XnO' . (3.4)

To evaluate the transition probability numerically, the particle velocity V is discretized

into classes, ii E _1i(vj, vj+) with N = 50. The discretization can be either equiprob-

able or logarithmic scale. The logarithmic scale has better discretization for low velocities

which has major role on anomalous transport. We define the transition probability matrix

/V+1 V 1+1 v +1

Tm(,0|j,0') = d] du'rm(v, 0|v',0')p(v',0') ] du'p(t',0'). (3.5)
fv'" J3 Lii

In 2D lattice networks, there are sixteen possible transitions which are described by

multi-dimensional transition matrix [Fig. 3-8]. The transition matrices can be obtained nu-

merically from ensemble of particle trajectories. The transition matrices for two different

heterogeneity distributions and mixing rules are shown in Fig. 3-10, 3-11, 3-12, 3-13, 3-

14, 3-15, 3-16, and 3-17. For small heterogeneity, the difference in the transition matrix

between complete mixing rule and streamline routing rule is clear. This difference dimin-

ishes as heterogeneity increases. The impact of heterogeneity on particle transition matrix

is significant. As heterogeneity increases, the probability of transitions with backward tran-

sition increases.

The aggregate transition matrix Tm(ilj) = E 0,0, Tm(i, 0lj, 0') shown in Fig. 3-18a

for m = 1, clearly indicates that particle velocities are correlated (5 velocity classes are

assigned to negative velocities and 95 velocity classes are assigned to positive velocities.).

The relatively large probabilities in the upper-left and lower-right corners of the transition
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Figure 3-11: Velocity transition matrix with equiprobable binning for U2 = 0.1 and
streamline routing rule. Only four transitions that have forward movement in longitudinal
direction are possible out of sixteen possible transitions. Also, note that the probability for
up-down and down-up forward transitions have significantly higher probabilities compared
to up-up and down-down forward transitions.
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Figure 3-12: Velocity transition matrix
mixing rule.
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Figure 3-13: Velocity transition matrix with log-scale binning for a 2
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Figure 3-17: Velocity transition matrix with log-scale binning for a-2 = 5 and streamline
routing rule.

matrix reflect flow reversal.

The series of Lagrangian velocities v(xn) - v,, along particle trajectories can be ap-

proximated as a Markov process, if the transition matrix satisfies the Chapman-Kolmogorov

equation [e.g., 125], which in matrix form reads

Tn(i, 1j, 0') ZTnm(i, Oh', 6")1Tm(', O"|j, 0'). (3.6)

Specifically, for a Markov process, the m-step transition matrix Tm is equal to the m-fold

product of the 1-step transition matrix T1 with itself as Tm = Tm. Figure 3-18c shows

the transition probabilities for m = 5 steps conditional to a low (j = 5) and high (j = 90)

velocity class given by T5 , which is obtained by direct Monte Carlo simulations, and under

the Markov assumption from T5 . The Markov model predicts accurately the transition

probabilities, as well as the return probability for any number of steps [Fig. 3-18b, inset].

Our analysis suggests that the Markov model captures the Lagrangian velocity statistics

accurately. We repeated the analysis for truncated power-law and the absolute value of

Cauchy distributions of conductivity, and found that the Markovianity assumption holds
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Figure 3-18: (a) Aggregate transition matrix for N = 100 velocity classes distributed with
logarithmic scale. (b) Transition probabilities after m = 5 steps from direct Monte Carlo
computation (blue solid line) and calculated from the Markov assumption (green symbols).
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o), and a high velocity class (j = 90, *). Inset: probability of returning to the same initial
velocity class as a function of the number of steps for a high initial velocity (class j = 90).

for these conductivity distributions too. Therefore, a CTRW characterized by a one step

correlation in velocity is a good approximation for describing average transport.

3.5 Continuous Time Random Walk Model.

Particle movements in the random lattice can, on average, be described by the following

system of Langevin equations

vn
xn+1 = Xn + 1 V

I
tn+1 = tn + .

|vn I

We have already shown that the series of Lagrangian velocities {vn} lO is well approxi-

mated by a Markov process and thus fully characterized by the one-point density p(v) =

((v - vn)) and the one-step transition probability density

ri(vlv') = (O(v - Vn+1))IVnV'. (3.8)
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The particle density can be written as

P(x, t) = dv(6(x - x,,) (v - v,)), (3.9)

in which nt = max(nlta < t), x is the position of the node at which the particle is at time

t, and v is the velocity by which the particle emanates from this node. Equation (3.9) can

be recast as

P(x, t) = dv dt'R(x, v, t') (3. 1Oa)

in which we defined

R(x, v,t') = (Q(x - x,) (v - v,) -

n=O

(3. 1Ob)

The latter satisfies the Kolmogorov type equation

R(x, v, t) = 6(x)p(v)6(t) + I dv'r1 (vlv')

x Jdx'6(x - x' - lv'/ v' )R(x', v', t - l/Iv'). (3. 1Oc)

For independent successive velocities, i.e., ri(vlv') = p(v), one recovers the CTRW

model [e.g., 129]

t

P(x, t) = dt'R(x, t') dT dxo(x, T),
i-t' J

where R(x, t) satisfies

R(x, t) = 6(x)6(t)

dt'R(x', t')4'(x - x', t - t')

(3.11 a)

+ Jdx'
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and the joint transition length and time density is given by

V)(x, t) = dv'p(v')6(x - lv'/ v'1)6(t - 1/Jv'J). (3.11 c)

In the following, we refer to system (3.10) as correlated CTRW because subsequent

particle velocities are correlated, and to model (3.11) as uncorrelated CTRW because sub-

sequent particle velocities are uncorrelated.

3.6 Model Prediction

Based on the identified Markovianity of particle transitions, the developed correlated CTRW

model is applied to study the predictability of the model. The predictions of the developed

correlated CTRW model shows excellent match with the Monte Carlo simulations for three

different heterogeneity and the different mixing rules that we studied [Fig. 3-19, 3-20, 3-

21].

To confirm long-time predictability of the developed model, we study the lattice size of

500x 500 nodes and, in each realization, we release 103 particles at the origin in 103 real-

izations. The following results are for variance u k1, = 5. We compare the results obtained

from direct Monte Carlo simulations to correlated CTRW and uncorrelated CTRW. Cor-

related CTRW is parametrized by the one-step transition matrix T1 determined from nu-

merical Monte Carlo simulations. Uncorrelated CTRW is parametrized by the Lagrangian

velocity distribution p(v), which is obtained from Monte Carlo simulations as well.

The particle distribution is non-Gaussian and characterized by a sharp leading edge

and an elongated tail [Fig. 3-22]. The non-Gaussian features persist even after the center of

mass has travelled a distance of about 100 links in the direction of the mean flow. Correlated

CTRW captures the shape of the particle plume with remarkable accuracy, including its

leading edge, peak, transverse spread, and low-probability tail near the origin. Ignoring

the correlated structure of the Lagrangian velocity leads to predictions of longitudinal and

transverse spreading that deviate from the direct Monte Carlo simulation [Fig. 3-22, insets].

Figure 3-23a shows the time evolution of the longitudinal and transverse spreading.
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Cumulative FPT distribution.

The Monte Carlo simulation shows that the longitudinal mean square displacement (MSD)

with respect to the center of mass evolves faster than linear with time (slope of 1.33). Both

the scaling and the magnitude of the longitudinal spreading are captured accurately by

correlated CTRW. The model also reproduces accurately the magnitude and time scaling of

the transverse MSD. The uncorrelated model underpredicts the magnitude of longitudinal

spreading.

Nonlocal theories of transport, including CTRW, are often invoked to explain the em-

pirical observation that the first passage time (FPT) distribution is broad-ranged [10]. Early

arrival and slow decay of the FPT is also observed in our model system, even when the con-

ductivity distribution is lognormal and has zero spatial correlation [Fig. 3-23(b)]. The cu-

mulative FPT distribution from the Monte Carlo simulation exhibits a significantly slower

decay than uncorrelated CTRW. This behavior is accurately captured by correlated CTRW,

suggesting that the velocity correlation along particle trajectories is responsible for the

emergence of the observed asymptotic behavior.

3.7 CTRW model with effective parameterization

The proposed model utilizes Markov property of velocity transitions and takes one-point

density p(v) and the one-step transition probability density r1 (vlv') as two inputs. Some

might argue that the model has to many parameters since the transition matrix (T1) has
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Figure 3-24: (a) Velocity autocorrelation function for U2 1 and a1 2k 5. For both
cases, we can accurately fit exponential correlation function with A = 31. (b) Probability
distribution functions of transition time in longitudinal direction. (c) Comparison between
the MSD from MC simulations and CTRW model. Our effectively parameterized CTRW
can accurately predict the time evolution of MSDs. Without correlation, we underestimate
MSD (green line).

N by N values where N is the number of velocity bins. However, the core information

we need from ri(vlv') is the strength of the velocity correlation and it can be effectively

parameterized with single value. The full description of the simplified model can be found

in 4.4.3. To validate CTRW model with effective parameterization, we parametrized the

model with measured correlation length and the velocity probability distribution function

(Fig. 3-24(a)(b)). For both kj, k = 1 and ' 4 k = 5 conductivity fields, we can obtain corre-

lation length A in the order of 31 where l is the link length. The modeling result is shown in

Fig. 3-24(c) that shows accurate predictability for both oj k = 1 and or 2 = 5 conductivity

fields. The detailed structure of velocity transition matrix might be important in different

settings, however, the proposed effective parameterization shows excellent predictability

for lattice networks.

3.8 Discussion

We have shown that the divergence-free condition arising from mass conservation is the

source of strong and nontrivial correlation in the Lagrangian velocity, even when the un-

derlying conductivity field is completely uncorrelated. Accounting for such correlation

in the velocity is important to obtain quantitative agreement for the mean particle density
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and the FPT distribution. Here, we have proposed and validated a spatial Markov model

of transport on a lattice network that explicitly captures the multidimensional effects as-

sociated with changes in direction along the particle trajectory. Finally, we suspect that

correlation in the Lagrangian velocity exerts an even more dominant control over mixing

(understood as the decay of the variance of the particle density [91, 73, 140]) than it does

on spreading. We now further extend our findings to field-scale anomalous transport.
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Chapter 4

Field experiment on fractured granite

4.1 Background

Understanding flow and transport through fractured geologic media is essential for improv-

ing forecasts, management and risk assessment of many subsurface technologies, including

geologic nuclear waste disposal [17], geologic CO2 storage [137]; oil and gas production

from fractured reservoirs [84], enhanced geothermal systems [118], shale-gas development

[31, 30], and groundwater contamination and remediation [58, 69]. Moreover, if we con-

ceptualize fractured geologic media as a network system, this knowledge can be extended

to other physical processes, including disease spreading through river networks [124] and

the air transportation system [112], urban traffic [85], and nutrient transport through pref-

erential paths in biofilms [150].

There are two main sources of uncertainty for transport through fractured media: uncer-

tainty in the fracture structural properties, including fracture aperture, roughness, location

and connectivity describing fracture geometry; and uncertainty in the physical transport

processes impacting the flow and transport such as advection, diffusion, dispersion and ad-

sorption. The fracture structural properties and the physical transport processes are inter-

dependent, and may lead to anomalous transport. Anomalous transport, understood as the

nonlinear scaling with time of the mean square displacement of transported particles, is a

characteristic feature of transport through porous and fractured geologic media [10, 12, 8].

The uncertainty in fracture structural properties affects transport in two major ways.
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First, heterogeneity in fracture conductivities gives rise to slow and fast velocity zones,

which result in a broad range of particle transport velocities. As fracture heterogeneity in-

creases, the velocity distribution also becomes more heterogeneous, thereby impacting the

macroscopic transport. Second, the network of interconnected rock fractures form complex

hydrodynamic pathways that impact the flow correlation structure. Fracture length impacts

velocity correlation since the velocity within each fracture is highly correlated. There-

fore, the fracture structural properties impact both the transport velocity distribution and

flow correlation. In practice, however, the fracture structural information is very limited

and only a few dominant properties, such as relative fracture aperture and dominant major

fractures, are identifiable [46].

Heterogeneous advection, matrix diffusion, hydrodynamic dispersion and adsorption

are the four key physical transport mechanisms that impact transport of nonreactive tracers

through fractured media. Heterogeneous advection, which results from the separation of

mass into different flow channels, can be partially reversible when the flow field is reversed.

Matrix diffusion is an irreversible process that describes mass exchange between fractures

and the surrounding rock matrix. Hydrodynamic dispersion is a local mixing phenomenon

within the fracture that always increases in the direction of flow. Adsorption is the adhesion

of dissolved tracers to solid surfaces. For nonreactive tracers, all these physical phenomena

can be understood as either an advective or a diffusive process. Heterogeneous advection is

an advective process, and matrix diffusion, hydrodynamic dispersion, and adsorption can

be understood as diffusive processes. The interplay between advective and diffusive pro-

cesses determines the strength of flow correlation. An advective process tends to maintain

the velocity, whereas a diffusive process tends to erode the velocity correlation. The compe-

tition between advective and diffusive processes is therefore manifested by the reversibility

of flow. Advection is a reversible process: when flow is reversed, the spreading caused

by heterogeneous advection collapses back. In contrast, diffusion is an irreversible pro-

cess: particle spreading cannot be collapsed by reversing the flow. The physical transport

mechanisms also impact the Lagrangian velocity distribution. For example, heterogeneous

advection induces a broad velocity distribution via the combination of slow paths and fast

paths, matrix diffusion via the trapping of tracers in the rock matrix, and adsorption via the
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adhesion of particles onto the rock surface.

In summary, the complex interplay between fracture structural properties and physical

transport processes determine the average particle transport behavior via flow correlation

and flow heterogeneity. Recent studies have shown that tracer transport through fractured

and porous media is strongly modulated by the particle velocity distribution and velocity

correlation [90, 78, 35, 80]. Here, we develop a stochastic model of transport that recog-

nizes the impact of both flow heterogeneity and flow correlation as an integral part of its

ability to make predictions of transport at the field scale.

4.2 Field experiments

A signature of anomalous transport in the field is the late-time tailing of breakthrough

curves (BTCs), that is, time series of tracer concentration at the pumping well. Break-

through curves are affected by both the underlying fracture structural properties and the

physical transport processes such as advection, diffusion, dispersion and adsorption. Thus,

they are sensitive to both flow heterogeneity and flow correlation.

We build on the seminal observation by [144], who suggested that the combination

of different tracer tests could be used to reduce the uncertainty in the characterization of

fractured media. Here, we propose a framework to combine single-well (push-pull) and

two-well (convergent) tests to extract transport parameters.

4.2.1 Field site and tracer-test setup

We conducted a series of field tracer tests under forced hydraulic gradient in a saturated

fractured granite formation close to Ploemeur, France [46] (Figure 4-1). Geologically, the

site is located at the contact between the underlying fractured granite and the overlying mica

schist. The matrix permeability of granite is extremely low and, therefore, groundwater

flows mainly through the network of fractures.

For this study, we used two boreholes, B1 (83 m deep) and B2 (100 m deep), which

are 6 m apart. Previous work [46, 47] has identified four major conductive fractures inter-

secting B1, labelled B1-1 (24 m deep), B1-2 (50 m), B1-3 (63 m) and B1-4 (79 m), and
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Figure 4-1: (a) Satellite image of the Ploemeur field site (modified from Google Earth).
Inset: map showing the location of Ploemeur, France. (b) Outcrop of fractured granite at the
Ploemeur field site. (c) Photo from the installation of double packer system in B 1 borehole.

four major conductive fractures intersecting B2, labelled B2-2 (56 m), B2-3 (59 m), B2-4

(79 m) and B2-5 (97 m). We designed and conducted convergent and push-pull tests at two

different fractures: B 1-2 and B 1-4. Regional flow is negligible compared to the flow from

injection and withdrawal at the boreholes, as confirmed by tracer dilution tests conducted

at B 1-2 and B 1-4 under regional flow conditions. As a tracer, we used fluorescein, which

is widely used for groundwater tracing and known to be non-reactive, insensitive to pH and

salinity, and moderately resistant to adsorption and photochemical bleaching [136].

Convergent tracer test

In the convergent test, we inject a known mass of tracer into an injection borehole (B 1) and

measure the tracer concentration at the pumping borehole (B2) (Fig. 4-2(a,b,c)). To place

the tracer at the target fracture, we installed a double-packer at the injection borehole at two

different depths, targeting the B 1-2 and B 1-4 fractures in separate experiments. To form a

stationary, radial convergent flow configuration, a constant pumping rate was established

at borehole B2 throughout the experiment. Once a stationary pressure field is achieved,

we inject the tracer at borehole B 1 for a short duration compared to the total duration of
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Figure 4-2: Schematic of the tracer tests conducted. (a,b,c) Convergent test with tracer

placement at borehole B 1 and pumping from borehole B2. Two different fracture planes at
different depths (B 1-2 and B 1-4) are used for two separate tests. (d,e,f) Push-pull test from

borehole B 1. The same two fracture planes (B 1-2 and B 1-4) are used.

the experiment, and at a small injection rate (<1% of the pumping rate at B2). When the

injection of tracer is completed, we recirculate the fluid inside the double-packer system to

prevent the tracer from continuing to leak into the formation.

Push-pull tracer test

In the push-pull test, we first inject a known mass of tracer into borehole B 1, and continue

to inject fresh water for a fixed duration of time ("push" phase). We then reverse the

flow and pump water from the same borehole with the same flow rate ("pull" phase), and

measure the arrival tracer concentration (Fig. 4-2(d,e,f)). Again, a double-packer system

was installed to isolate the injection into the desired fracture plane.

4.2.2 Field test results

Additional details on the conditions and parameters of the field experiments are given in

Table 4.1, and the measured BTCs are shown in Figure 4-3. As expected, the BTCs are

broader for the convergent tests than for the push-pull tests, given that in the latter the

spreading during the "push" phase is partially recovered during the "pull" phase. Indeed,

the degree to which the initial tracer spreading is reversed is an indication of the strength
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of velocity correlation.

Analyzing the two convergent tests, we note that the power-law late-time scalings are

different, exhibiting a slope of ~1.75 for B 1-2 and - 1.85 for B 1-4. This difference reflects

different velocity distributions, and can be interpreted as different levels of heterogeneity,

with the gentler slope (broader velocity distributions) corresponding to a higher level of

heterogeneity.

Motivated by these field observations, we review existing theoretical transport models,

and develop a new model that takes into account both flow correlation and flow heterogene-

ity.

Table 4.1: Details of the conditions and parameters of the four tracer experiments.

Experimental parameters Experiments

B 1-2 convergent B 1-2 push-pull B 1-4 convergent B 1-4 push-pull
Tracer injection fracture B 1-2 B 1-2 B 1-4 B 1-4

Withdrawal borehole / fracture B2 B 1-2 B2 B 1-4
Flow configuration convergent push-pull convergent push-pull

Tracer injection depth 50.5 m 50.5 m 78.7 m 78.7 m
Packer system at B 1 double packer double packer double packer double packer
Packer system at B2 single packer single packer single packer single packer

Injection rate 1 L/min 6 L/min 1 L/min 5 L/min
Injection duration 15 min 30 min 15 min 80 min
Withdrawal rate 120 L/min 6 L/min 100 L/min 5 L/min

Injected mass 5 g 0.1 g 1.5 g 0.4 g
Peak arrival time 30 min 57 min 35 min 140 min

Peak concentration 590 ppb 353 ppb 312 ppb 690 ppb
Mass recovery 96 % 89 % 99 % 87 %

Late-time tailing slope ~ 1.7 - 1.85

4.3 Existing models of transport

Various approaches have been proposed to model flow and transport through fractured

media, ranging from equivalent porous medium approaches that represent the fractured

medium as a single continuum [110, 145], to discrete fracture networks that explicitly rep-

resent fractures as entities embedded in the surrounding matrix [86, 24, 107, 75, 105, 82,

99, 104, 100, 37, 132]. Dual porosity models are, in some sense, in between these two
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Figure 4-3: Measured breakthrough curves (BTC) for the tracer tests we conducted, in
the form of a normalized time (peak arrival at dimensionless time of 1) and normalized
concentration (such that the area under the BTC is identically equal to 1). (a) BTCs for
fracture plane B 1-2. (b) BTCs for fracture plane B 1-4.

extremes, and conceptualize the fractured-porous medium as two overlapping continua,

which interact via an exchange term [11, 52, 98, 58].

Stochastic models that account for the observed non-Fickian global transport behavior

in fractured media include continuous-time random walks (CTRW) [8, 77, 78], fractional

advection-dispersion equations (fADE) [7], multirate mass transfer (MRMT) [63, 25, 88],

stochastic convective stream tube (SCST) models [4], and Boltzmann equation approaches

[5]. All of these models are valid under their own assumptions, and have played an im-

portant role in advancing the understanding of transport through fractured media. Among

these models, the MRMT and SCST approaches have been applied to model non-Fickian

tracer transport in both push-pull and convergent tests [64, 101, 4].

Below, we briefly revisit the basic formulations of the classical advection-dispersion,

stochastic-convective streamtube and multirate mass transfer models for radial flow geome-

tries, and discuss their ability to capture BTCs for convergent and push-pull tests.

4.3.1 Advection-dispersion equation (ADE) model

The classical advection-dispersion equation (ADE) in radial coordinates is given by
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dc(r, t) k, Oc(r, t) a k, O2 c(r, t) 0, (4.1)
at r Or r Or,

where a is dispersivity and k, = Q/(27rbe ) with Q the flow rate and beif the effective trans-

port aperture [89]. Since we will use a Lagrangian modeling approach in the following, we

formulate the advection-dispersion model in terms of radial particle trajectories. This can

be done by rewriting (4.1) in terms of a conserved variable in radial coordinates,

p(r, t) = 27beffrc(r, t), (4.2)

which is the particle density per unit radial length. Inserting the latter into (4.1) we obtain

ap(r,t) a kr a2 ak,at)+ -P(r, t) - 2  -p(r, t) = 0. (4.3)at Or r (r2 r

The equivalent Langevin equation is given by

dr(t) _ kr 2ackv
= + t) (4.4)

dt r(t) r(t)

where r (t) is a Gaussian white noise of zero mean and unit variance. Here and in the

following, we employ the Ito interpretation of the Langevin equation (4.4) [125]. The

particle density is given in terms of the radial trajectories as p(r, t) = (6[r - r(t)]), and by

virtue of (4.2), we obtain for the concentration distribution

c(r, t) = (6[r - r(t)]). (4.5)
2-berff [

The angular brackets (-) denote the average over all solute particles.
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The solute breakthrough curve at a distance r, from the injection point r(O) is given

in terms of the probability density function of the particles' first arrival times at the radius

r = r(0) + rc,

Ta = inf {t| Ir(t) - r(O) ;> rc} , (4.6)

which is defined by

f(T) = (6(T - Ta)). (4.7)

The mean solute arrival time at a radius r, is given by

(Ta) = [r(O) + rc]2 - r(O()2(2k) =(4.8) 2kV

which is also the peak arrival time.

4.3.2 Stochastic convective stream tube (SCST) model

Stochastic convective streamtube models assume that transport occurs along independent

streamtubes. Transport within streamtubes is one-dimensional, and there is no mass ex-

change between individual streamtubes [33, 28, 59, 4]. Thus, these models are sometimes

called minimum mixing models. For uniform mean flow, transport in a single radial stream-

tube of type w is given by [59, 4]

Oc, (X, t) k, ac, (r, t) ak, 02 C,(r, t)
at r Or r ar 2  0

where k, is given by k, = Q,/(27b~o,) with Q, the flow rate, b, the typical aperture and

#, the porosity of the streamtube, and a is the dispersivity. The total solute concentration
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c(r, t) is given by the average of c,(r, t) over all streamtubes

C(r, t) = JdwP (w) c, (r, t), (4.10)

where P(w) denotes the distribution of streamtubes. Macroscopic solute dispersion here

is caused predominantly by velocity contrasts between streamtubes. Transport is fully re-

versible for a = 0. The only irreversible transport mechanism in this framework is disper-

sion along the streamtubes.

The Lagrangian formulation of transport in a single streamtube W is identical to (4.4)

because transport along a streamtube is given by the radial advection-dispersion equa-

tion (4.9). In many realistic flow and transport scenarios, radial dispersion can be disre-

garded because its effect on solute spreading is negligible compared with advective het-

erogeneity. For a = 0, the Langevin equation (4.4) for a single streamtube w reduces

to

dr,(t) k (4.11)
dt re t)

Consequently, in the case of an instantaneous solute injection, and using (4.5), we obtain

the following expression for the total solute concentration (4.10),

c(r, t) = 2 1b dwP(w)#$-16[r - r,(t)]. (4.12)

The solute arrival time T at a distance r, in a single streamtube is given by

[rc + r(0)]2 - r(0)2

TO = 2 ks b (4.13)

The total solute breakthrough is given by averaging the deterministic arrival timesT,, over
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the ensemble of streamtubes, which is characterized by the distribution Pk, (k) of km,

f (T) = dkPw (k)6[T - T(k)]. (4.14)

For a push-pull tracer test, we immediately see that the breakthrough curve is given by

f(T) = 6(t - 2tp), where tP is the push time. The solute arrival time at the injection point

is simply twice the push time because of the full reversibility of transport, as described

by (4.11).

4.3.3 Multirate mass transfer (MRMT) model

The MRMT model considers solute transport under mass transfer between a single mobile

zone and a series of immobile zones. Fast solute transport in the mobile zone and solute

retardation in the immobile zones can lead to non-Fickian spatial distributions and break-

through curves, and in general to an increase of solute dispersion. Solute mass conservation

in the mobile domain is expressed in radial coordinates by

ac (r, t) #mkv 8cm(r, t) _ amkv a 2 cm(r, t) - im Dcim(r,t) (4.15)
at r 8r r ar2 at

where Om and #im are the (average) porosities of the mobile and immobile continua, re-

spectively, k, = Q/(27bom) with Q the flow rate and b the width of the injection interval,

and a is the dispersivity. Mass transfer between the mobile and immobile regions is linear

and thus, assuming zero initial conditions in the immobile regions, the mobile cm(r, t) and

immobile cim(r, t) solute concentrations are related by [38]

Cim(r, t) = dt'cp(t - t')Cm(r, t'), (4.16)

where p(t) is the memory function that encodes the specific mass transfer mechanism

[63, 65, 25, 38, 43]. For linear first-order mass exchange, p(t) determines the distribution
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of transfer rates between mobile and immobile regions [63]. For diffusive mass transfer, it

encodes the geometries and the characteristic diffusion scales of the immobile regions [43].

Combining (4.15) and (4.16), we write the temporally non-local single-equation MRMT

model

ac (r, + a dt'p(t - t')c(r, t')
at at 0

± Omk, acm(r, t) oz Onk, 2cm (r, t) (4.17)
r ar r ar2

It has been shown that the MRMT model is equivalent to CTRW models characterized

by uncoupled transition length and time distributions, and to time fractional advection-

dispersion models [38, 134, 6]. The MRMT model was employed by [64] to intepret break-

through curves for radial push-pull tracer tests in fractured dolomite. [88] used a CTRW

implementation of MRMT to simulate breakthrough curves for radial push-pull tracer tests.

The MRMT models and its equivalent CTRW and fADE formulations describe solute dis-

persion as an irreversible process. In these modeling frameworks, retardation events that

essentially cause macroscopic solute dispersion are independent. Thus, transport is irre-

versible upon flow reversal.

As in the previous section, we formulate the radial MRMT model (4.17) in a Lagrangian

framework. Following the approach employed in [88], we implement MRMT in terms of

the continuous time random walk

kr 2akeAs
rn+1 = rn + -As + (4.18a)

rn rn

tn+1 = tn + As + TnAs, (4.18b)

where the n are identical independently distributed Gaussian random variables with zero

mean and unit variance, and As is an operational time increment. The dimensionless ran-

dom time increments n are identical independently distributed random variables with the

distribution density @(T). For rn = 0, the system (4.18) is identical to the discretized
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version of (4.4) in the Ito interpretation.

The continuous time random walk (4.18) is equivalent to (4.17) in the limit of small As

with the identification [38]

#M _ -*(AAs)(1 + AAs)
irn AAso*(AAs) '

where L-1{-} denotes the inverse Laplace transform, 0*(A) is the Laplace transform of

0<(t), and A the Laplace variable. Here and in the following, Laplace-transformed quantities

are marked by an asterisk.

The distribution of solute arrival times for both convergent and push-pull tracer tests is

obtained from the individual particle arrival timesT, = inf(t, r, - rol > r,) as

f (T) = 6(T - Ta), (4.20)

where the overbar (-) denotes the average over the ensemble of all particles characterized

by the stochastic series of dimensionless retention times {r}. Notice that the arrival time

distribution in the push-pull case does not reduce to a delta-density, as in the SCST model.

Solute transport is irreversible in the MRMT approach.

4.3.4 Comparison of ADE, SCST and MRMT models

The traditional ADE formulation presented in section 4.3.1 does not have the ability to

capture anomalous transport, manifested as a power-law tailing in BTCs. To overcome this

limitation, SCST and MRMT models have been applied to explain BTCs for convergent

and push-pull tests. To show the fundamental difference between the two models, we run

both convergent and push-pull simulation with the two models. For the MRMT model, we

employ the Pareto waiting time distribution

93



- - - MRMT convergent
-- -MRMT push-pull

-SCST convergent
-SCST push-pull

1.75

I kA44

10 1

time/timeeak
102

Figure 4-4: Comparison of the breakthrough curves (BTC) for the MRMT and SCST mod-

els characterized by the distributions (4.21) and (4.22) with 3 = 1.75, To = 0.005 and

ko = 200, respectively. The BTCs for the convergent and push-pull scenarios are almost

identical in the MRMT approach because solute spreading is irreversible. In contrast, the

BTC for the convergent and push-pull scenarios in the SCST model are drastically different:

in the absence of local dispersion, the BTC in the push-pull scenario is a delta distribution

due to the perfect velocity correlation within each streamtube, i.e., full reversibility.
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O(T) = ( T > To, (4.21)

with 0 < 0 < 2. For the distribution of the k, in the SCST approach we employ the

distribution

Pk,(k) = k < ko. (4.22)
ko ko

The distributions (4.21) and (4.22) for the MRMT and SCST models, respectively, give

identical slopes for the long time behavior of the BTCs in the convergent tracer tests. In

Figure 4-4, we show the modeling results for MRMT and SCST models. We can see

the clear distinction between the two models. Since MRMT does not have a mechanism

to capture the reversibility of advective spreading, the BTCs of convergent and push-pull

tests are almost identical. In contrast, the stream tube model assumes perfect correlation

in velocity, and we observe perfect reversibility in the BTC for the push-pull tracer test

in the absence of local dispersion within streamtubes. In reality, there always exists both

irreversible diffusive and reversible advective processes, and our objective is to develop a

stochastic model that recognizes the competition between the two processes.

4.4 Continuous time random walks (CTRW) with corre-

lated velocities

As discussed in Section 4.3.4, the SCST and MRMT frameworks represent transport mod-

els that exhibit full reversibility and complete irreversibility, respectively. The break-

through curves obtained from convergent and push-pull tracer tests at the Ploemeur frac-

tured aquifer, however, exhibit neither full reversibility nor complete irreversibility (Fig-

ure 4-3). Here we develop a stochastic model based on a correlated CTRW approach

[90, 78, 35, 80], with the following two design criteria: Lagrangian velocity correlation
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that captures flow reversibility, and particle velocity distribution that captures flow hetero-

geneity.

4.4.1 Model formulation

The starting point for the model is the Langevin equation (4.4) in differential form

kodt kodt
dr (t) = + 2c V & (t). (4.23)

r (t) r(t)

By defining the differential space increment ds = kvdt/r(t) [42, 39], equation (4.23) trans-

forms into

dr(s) = ds + v/2adsG(s), (4.24a)

dt(s) = kNods. (4.24b)

Discretizing this system in s and setting As = e gives the following system of equations

for the particle trajectories in space and time coordinates, or in other words, a CTRW,

rn+1 rn + f + V 2akf, (4.25a)

frn
tn+1 =tn + k .(4.25b)

Notice that this CTRW is characterized by a radially dependent time increment. It is by

definition equivalent to (4.3) in the limit of small f < L, with L a macroscopic observation

scale.

We generalize this CTRW heuristically in order to account for variability in radial par-

ticle velocities that may be induced by spatial variability in hydraulic conductivity and

retardation properties of the medium. Notice that the transport velocity depends on both

hydraulic conductivity and porosity. [90] and [78] demonstrated that the impact of flow het-
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erogeneity on large scale solute transport can be quantified in terms of CTRWs whose time

increments form a Markov chain based on the observation that the series of Lagrangian

particle velocities form a Markov process.

We define here a radial correlated CTRW that allows to vary the flow correlation (per-

sistence of particle velocities) and flow heterogeneity (distribution of particle velocities),

to represent and quantify both correlation and heterogeneity-induced anomalous transport

features, and to discriminate between them [39]. Thus, we generalize the stochastic pro-

cess (4.25b) of particle times according to

n+1= tn + frn, (4.25c)
kv

where the dimensionless time increments {Tn} form a Markov chain characterized by the

marginal distribution density o (7) of initial increments To and the one-step transition prob-

ability density o1(TT'). The Chapman-Kolmogorov equation for the n-step transition time

density />(TIT') reads

/n(TrT') = dT/"<nm(TrT")m(T"T'). (4.26)

The density / (T) of random increments T after n steps is given by

n(T) = dT'gn(TIT')o(T'). (4.27)

We set here 4o(T) = O(T) equal to the steady state density, which is an eigenfunction of

the transition density )I(TT') and therefore4' (T) = Q(r). This is equivalent to assuming

that particles sample velocities from the steady state Lagrangian velocity distribution from

the beginning. Equations (4.25a) and (4.25c) constitute the equations of motion of solute

particles in the proposed radial correlated CTRW approach, where O(r) determines the

flow heterogeneity and 41(TIT') determines the flow correlation.
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4.4.2 Limiting cases

In the following, we briefly determine the limits of the system (4.25a) and (4.25c) for fully

correlated and fully uncorrelated dimensionless time increments {Tn}.

Fully correlated case

In the limit of fully correlated {rT}, i.e., <i(TT') = 6(T - T'), where 6 denotes the Kro-

necker delta, equations (4.25a) and (4.25c) reduce to

rn+1 = rn + f + /2 ()n, (4.28a)

tn+1 =tn + kL ,(4.28b)

where we defined the constant k, = k,/rT with T, the perfectly persistent increment, which

is distributed according to $(T). Each T, or km, represents a streamtube in the sense of the

SCST model. In fact, just as (4.25a) and (4.25b) are equivalent to (4.3), so is system (4.28),

which constitutes the equivalence of (4.28) and (4.9). Therefore, the fully correlated case

of the proposed model is equivalent to the SCST model.

Fully uncorrelated case

In the limit of fully uncorrelated {T}, i.e., i(Tr') = O(T), the system (4.25a) and (4.25b)

is equivalent to the following non-local radial advection dispersion equation [45]

C(rt) + dt M(r, t - t')c(r, t') - 2 M(r, t - t')c(r, t') = 0,at r (r r C )r 2

(4.29)

with the radially dependent memory function
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M(r, t) = L-1 ATk(rW*[ATk(r)1 (4.30)
1 - 0*[ATk(r)]

We defined Tk(r) = fr/k, for compactness. The memory function depends explicitly on

the radial position through the radially dependent time scale Tk(r). This model is similar to

the MRMT model (4.17), except for the radial dependence of the memory function (4.30).

The conditions of their equivalence are discussed in [45].

4.4.3 Model implementation

The proposed CTRW with correlated transition times (4.25a) and (4.25c) is solved us-

ing random walk particle tracking. The model has three key transport characteristics: the

probability distribution of the dimensionless time increments, 4(T), the one step transition

probability that quantifies the velocity correlation, V)'1(Tr-'), and the local dispersivity, oz.

Here we present how to characterize 4'(T) and /1(T T'), and explain in detail the random

walk particle tracking algorithm used to solve for the BTCs in the convergent and push-pull

scenarios.

Transition probability and correlation

To independently control velocity heterogeneity and velocity correlation, we describe the

Markov process {T} with the steady state distribution, ?1(T). The continuous non-dimensional

transition times T are discretized into N classes, T eJUe (Tj, Tj1], such that the transition

probabilities between the classes are represented by the N x N transition matrix T, with

components

/ i+1 r T+ 1 f+1

T = dT] dT'<i(TT')(T') ] dT'O(T'). (4.31)

Here, we choose equiprobable binning such that
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Figure 4-5: Key transport characteristics of our proposed CTRW model. (a) V)(7) follows

the truncated Pareto distribution (4.40). The slope of the power law, 3, characterizes the

flow heterogeneity of the fractured medium. As 3 decreases, the flow heterogeneity in-

creases. (b) Number n, of correlation steps given by (4.35) as a function of parameter a

for N = 100 velocity classes. By changing the value of the diagonal, a, we can systemat-

ically vary the strength of the velocity correlation from the uniform transition matrix that

is equivalent to the uncorrelated velocity field to the identity matrix that represents a fully

correlated velocity field.

/TiT+ 
1

1
(4.32)

With this condition, T is a doubly stochastic matrix, which therefore satisfies

N N

ZTiJ = ZTi = 1.
i=1 j=1

(4.33)

For a large number of transitions, the transition matrix converges towards the uniform ma-

trix,

(4.34)lim T' = 1
n-+oo i2 N'

whose eigenvalues are 1 and 0. Thus, correlation can be measured by the convergence of

T towards the uniform matrix. The correlation length is determined by the decay rate of

the second largest eigenvalue X2 (the largest eigenvalue of a stochastic matrix is always 1).

100
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The correlation function is defined by C(n) = Xn, which can be written as

1
nc = n - , )

C(n) = exp -
nc

(4.35)

where nc is the correlation step number. Thus, we define the dimensionless correlation

length A as

A = nj
rc

(4.36)

with f the spatial discretization of the correlated CTRW model.

Here we consider a simple transition matrix model, in which all diagonal entries are

fixed to a constant a, and the remaining entries are equal to (1 - a)/(N - 1),

Ti = a6i + N ( - 6ij). (4.37)

The diagonal value of a < 1 determines the correlation strength. A value of a = 1 implies

perfect correlation, which renders the N-dimensional unity matrix, Ti = 6i. For a =

1/N, all transitions are equally probable, and the transition matrix is equal to the uniform

matrix with Ti = 1/N; see Figure 4-5b. The transition matrix (4.37) has the eigenvalues

Xi = 1 and

Na - 1
X2 = N I (4.38)

such that we obtain for the dimensionless correlation length (4.36)

1 N>1t 1

Tc In (N -1) T
(4.39)
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Thus, the correlation length A is uniquely determined by the value of a.

For the steady state transition time distribution, <(r), we use the truncated Pareto dis-

tribution,

(T) =_3 T < T < T 2 . (4.40)
T, T2

We fix the mean of the transition time distribution to 1, which ensures that the mean ar-

rival time in the correlated CTRW model (4.25c) is equal to the one in the homogeneous

model (4.25b). Furthermore we enforce a given ratio of rT = T2 /T1 such that the power-law

range covers the power-law regime observed in the breakthrough curves (see Figure 4-3).

This determines T i as

1 - #3 1 - r
1= T (4.41)

#3 4r/ - 1

This bounds the value of T1 between ln(rT)/(rT - 1), which is the limit of (4.41) for 3 -+ 0,

and (r + 1)/(2rT), which is the value of (4.41) for 3 2. For large contrasts r 1, T 1

is approximately in (1n(r)/r, 1/2].

The transition time distribution (4.40) is illustrated in Figure 4-5. The slope 0 of the

truncated Pareto distribution describes the velocity heterogeneity. As # decreases, the

transport becomes more anomalous because the probability of experiencing large transition

times increases. Therefore, smaller 3 can be understood to represent higher flow hetero-

geneity, as is well known in the CTRW modeling framework [10].

In summary, the proposed transport model controls the velocity heterogeneity and the

velocity correlation with two independent parameters: the slope of the Pareto distribution,

3, and the normalized correlation length A.
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Simulation of convergent tracer tests

For the simulation of the convergent scenario, all the particles are injected at the injection

well at ro = ri, with ri the radial distance between injection and pumping well. The

convergent BTCs are obtained by recording the particle travel times at the well radius r,

of the pumping well at a radial distance of r, = ri - r. The detailed procedure is:

1. Assign the desired values to km, a, A 0, and f.

2. Simulate the sequence of particle positions and times according to (4.25a) and (4.25c).

3. Sample particle arrival times at r, and obtain the BTC.

Simulation of push-pull tracer tests

The implementation for the push-pull scenario is similar to the one for the convergent

scenario. Here, particles are injected at ro = r, with r, the radius of the injection well.

Particles travel radially outwards until the push duration tpush. Then, the radial direction is

reversed and particles travel back to the injection well until they reach the well radius rT.

The algorithmic steps are identical to those of the convergent test, except that step 2 is split

into its "push" phase and the flow reversal "pull" phase.

4.5 Model behavior and field application

In this section, we study the model behavior of the proposed correlated CTRW model (4.25)

depending on the three parameters a, # and A. We then apply the model to the experimental

data presented in Section 4.2 to explore the predictive capabilities of the model through the

simultaneous prediction of BTCs in both convergent and push-pull tracer tests.

4.5.1 Model behavior

We first consider the dependence of the peak arrival time on dispersivity a, the heterogene-

ity distribution as parameterized by /, and the heterogeneity correlation as parameterized
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Figure 4-6: Sensitivity analysis for the peak arrival time on the three parameters of our
CTRW model. (a) Change in peak arrival times for a = 0.3 with varying A. Different
curves represent different degrees of velocity heterogeneity (0 = 0.5, 0.6, 0.8, 1, 1.2, 1.4).
(b) Change in peak arrival times for A = 0.2 with varying a. Different curves represent
different # = 0.5, 0.6, 0.8, 1, 1.2, 1.4.

by A. Notice that the mean arrival time is the same in all cases because the model imple-

mentation detailed in the previous section forces the mean arrival of the correlated CTRW

model (4.25c) to be equal to the one for the homogeneous CTRW model (4.25b). The min-

imum arrival time is obtained in the perfectly correlated CTRW, i.e., a = 1 in (4.37), which

gives A = oc, and it is approximately

T2

tminT F r2k (4.42)
2kV

which can be obtained directly from (4.25c) by setting T, = T, the minimum non-dimensional

transition time. For the perfectly correlated model, the minimum arrival time is at the same

time the peak arrival. As A decreases, the peak arrival time increases due to loss of flow

coherence, as illustrated in Figure 4-6a.

The simple estimate (4.42) for the fully correlated case also indicates how the peak

arrival depends on #. Recall that 71 depends on / as given in (4.41): it increases with in-

creasing # up to a maximum of 1/2 for / = 2. From this, we conclude that the peak arrival

time increases with increasing /, as illustrated in Figure 4-6. This may seem counter-

intuitive at first. Notice however, that we force the mean of V)(r) to be equal to 1 for a
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given range r>. Thus, as 3 becomes smaller, this means that as the probability of large

transition times increases, T, must decrease.

Finally, the dispersivity a has essentially no impact on the peak arrival time, as illus-

trated in Figure 4-6b. This is intuitively clear when considering the mean arrival time (4.8)

for the homogeneous model, which at the same time is the peak arrival time. It is com-

pletely independent of a, given that a only impacts the spreading about the mean arrival

time.

In Figure 4-7, we plot tracer BTCs for a set of random walk particle tracking simula-

tions for the convergent and push-pull scenarios for various combinations of a, 0, and A.

Different features of the BTCs are sensitive to variation in a (dispersivity), 0 (heterogene-

ity) and A (correlation).

The dispersivity a mainly impacts the early time behavior of the convergent BTCs. As

expected, a decrease in a leads to a slight increase of the early arrivals due to the reduced

particle dispersion (Figure 4-7a). Neither the late time tailing nor the peak position are

affected by changes in a. For the push-pull scenario, a decrease in a decreases the relative

dispersion of particle arrival times about the peak arrival times (Figure 4-7b). As for the

push-pull test, the late-time scaling is not affected by the value of a.

For fixed A, an increase in / leads to a decrease in BTC tailing in both the convergent

and push-pull scenarios, as expected in the CTRW modeling framework [10] (Figures 4-

7c,d).

The correlation length A impacts the early time BTC in the convergent scenario. We

have already seen in Figure 4-6a that the peak arrival time increases with decreasing A.

Figure 4-7e shows that also the relative distance between the minimum arrival time and the

peak arrival decreases with increasing A. This behavior is caused by the fact that the par-

ticles sample a narrower window of the spectrum of transition times because of increased

coherence. This leads to a decrease in the relative dispersion of early arrival times. For the

push-pull scenario illustrated in Figure 4-7f, the implact of A is more dramatic. The relative

spread of arrival times about the peak arrival time decreases for increasing A, which reflects

the partial reversibility of the transport process in the presence of flow correlation. In the

limit of a perfectly correlated scenario for A = oc, i.e., a = 1 in (4.37), the BTC is identical
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to the one for a homogeneous medium, which is fully characterized by the dispersivity a

(Figure 4-7f).

It is important to emphasize the difference between varying dispersivity a and correla-

tion length A. While increasing A and decreasing a have qualitatively similar impacts on

the relative early arrival times, their impacts on the BTC are very different. First, the peak

arrival is essentially independent of dispersivity a, but depends strongly on correlation A.

Secondly, the limit A = oc renders the BTC in the push-pull scenario identical to the one

for a homogeneous medium because of full reversibility: no tailing is observed. For a = 0,

the strong BTC tailing in the push-pull scenario at long times remains unchanged.

4.5.2 Field application

We now test whether our CTRW model with correlated velocities is able to capture the

transport behavior observed in the field, as evidenced by the BTC in the tracer tests. In

particular, we address the central question of whether tracer tests under different flow con-

figurations (convergent and push-pull tests) can be explained with the same set of model

parameters.

We perform a comprehensive comparison between the measured BTCs and the simu-

lated BTCs over the entire three-dimensional space of possible parameter values for disper-

sivity a, velocity disorder /, and velocity correlation A. We compute the mean square error

(MSE), combined for the convergent and push-pull tests over the entire range of measured

data for each test. The MSE surfaces for each of the fracture planes (B 1-2 and B 1-4) are

shown in Figure 4-8 over the -A space, for a value of a close to the optimum. These

surfaces show the existence of a single minimum in the MSE surface, corresponding to the

optimum choice of model parameters that best matches both the convergent test and the

push-pull test. These values are: a = 0.03, 3 = 0.75 and A = 0.22 for fracture Bl-2,

a = 0.02, 4 = 0.80 and A = 0.06 for fracture B 1-4.

This suggests that B 1-2 has similar dispersivity (a), slightly higher heterogeneity (smaller 4),

and significantly larger flow correlation (larger A) than B 1-4. One way to qualitatively

(but independently) confirm this result is by comparing the characteristic fracture length
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Figure 4-8: Plot of the mean square error (MSE) between modeled and measured BTCs
for different model parameters. The error is for the combined differences of the convergent
and push-pull tests. (a) MSE for the B1-2 fracture with a value a = 0.03. The global
minimum is for a = 0.03, 3 = 0.75 and A = 0.22. (b) MSE for the B1-4 fracture with a

value a = 0.02. The global minimum is for a = 0.02, # = 0.80 and A = 0.06.

in the field with the flow correlation length inferred from our model. Recently, ground-

penetrating radar (GPR) data was combined with hydrological data to infer the fracture

geometry at the same site [46]. Interestingly, this study reports fracture lengths that are

larger but of the same order of magnitude (meter scale), and an average fracture length that

is larger for B 1-2 than for B 1-4; a finding that is consistent with our results.

The actual comparison between our model and the field data is shown in Figure 4-

9. Our model accurately reproduces the BTCs of both push-pull and convergent tests.

Therefore, our CTRW with one-step correlation in velocity is a parsimonious, yet accurate,

approximation for describing macroscopic transport in fractured media.

4.6 Summary and Conclusions

In this Chapter, we have proposed a unified framework to characterize transport in frac-

tured media and account for both velocity heterogeneity and flow correlation. We first

presented results from convergent and push-pull tracer tests in a fractured-granite subsur-

face observatory near Ploemeur, France. The field data suggest that flow correlation and

flow heterogeneity are the key controlling transport properties. In particular, the BTCs

recorded in the field demonstrate the more reversible character of tracer spreading for the
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Figure 4-9: Comparison of measured and modeled BTCs for both convergent and push-
pull tests, modeled with the same set of parameters. (a) B 1-2 fracture; model parameters
a 0.03, 3 = 0.75, and A = 0.22. (b) B1-4 fracture; model parameters a = 0.02,
3 = 0.80, and A = 0.06.

push-pull test compared with the convergent test; an indication of the importance of flow

correlation.

Based on the field evidence, we have proposed a stochastic transport model that in-

corporates local dispersivity, flow heterogeneity (Lagrangian velocity distribution), and

flow correlation (Lagrangian velocity correlation) as the three key transport processes, each

characterized by a single parameter (a, 3 and A, respectively). We have shown analytically

that our model embodies other existing models of transport as particular cases: it is equiv-

alent to the MRMT model under the assumption of negligible velocity correlation, and to

the SCST model under the assumption of infinite correlation.

In contrast, our model is designed to capture the interplay between velocity heterogene-

ity and flow correlation, which we have illustrated with a sensitivity analysis of different

metrics of the BTCs (early arrival time, peak arrival time, and late-time concentration de-

cay) on the model parameters. The simplicity and versatility of our model has allowed us

to perform a robust interpretation of the field tests, since the BTCs of both convergent and

push-pull tests are retrieved accurately with the same set of parameters.

Our results raise important questions about modeling choices to simulate mixing and

spreading in geologic media. For example, our model captures observations for both push-

pull and convergent BTCs with scale-independent local dispersivity, in contrast with the

traditional ansatz of a dispersivity that increases with the observational scale [57]. Be-
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cause our model accounts for macroscopic features with A and 3, it permits removing the

(spurious) scale dependence of local dispersivity a.

Finally, because our model distinguishes between the spreading caused by advective

processes (A) and diffusive processes (a), we speculate that it may provide an avenue to

model not only tracer spreading but also fluid mixing [91, 92, 44, 73, 36, 27, 74]. The

prediction of mixing and spreading rates in field-scale experiments remains, however, an

exciting open question.
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Chapter 5

Joint flow-seismic inversion for

characterizing fractured reservoirs

5.1 Background

Characterizing fractured geologic formations is essential in hydrogeology, exploration geo-

physics and petroleum engineering. For example, flow behavior in fractured media is es-

sential to the design and performance assessment of nuclear waste disposal [32, 119]. Sim-

ilarly, much of the oil and gas reserves worldwide are from reservoirs that are naturally

fractured [83]. The relevance of fracture characterization has only increased in recent years

with the growth of unconventional resources like oil and gas shale [48]. Determining the

effectiveness and sustainability of hydrocarbon production in those environments depends

critically on our ability to characterize natural and induced fractures [149, 49].

Traditionally, seismic interpretation and flow modeling have been performed indepen-

dently. Both in hydrogeologic applications and the upstream oil and gas industry, reser-

voir modeling typically follows a unidirectional workflow. From an interpretation of seis-

mic surveys and other geophysical and geological data, a structural reservoir model-with

reservoir geometry and faults-is built. Facies data and inference are then used to popu-

late reservoir properties (like porosity and permeability) on a fine grid known as a static

model (or geomodel). The number of cells in the geomodel is typically too large to per-

form reservoir flow studies, so a dynamic model is built from either upscaling procedures
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or multiscale techniques, which solves the reservoir flow equations on a coarser grid. The

rock physics properties (like porosity and permeability) and reservoir dynamics properties

(like relative permeability and capillary pressure) are then modified to history-match pro-

duction data. By then, all feedback to the originating seismic data, and often much of the

geologic realism, is lost.

During the last two decades, joint flow-geophysics inversion has received much atten-

tion, especially in the context of hydrogeophysics [68]. Most of joint inversion algorithms

can be classified into two approaches: using close relation between geophysical and hydro-

logical parameters [127, 96, 72, 67], and using zonation estimates where hydrological and

geophysical estimates are assumed to follow similar zonation structure [70, 97]. Rubin et

al.[127] proposed the first method to estimate a synthetic hydraulic conductivity field by

combining sparsely sampled hydrologic data with densely sampled seismic data assuming

the accurate relationship between seismic velocity and hydraulic conductivity is known.

However, this relationship is site specific and hard to know a priori. Hyndman et al.[70]

used split inversion method to extract the geometry of lithologic zones and successfully

estimated seismic velocity field and conductivity field by combining seismic and tracer

transport data. This approach do not require strong correlation between geophysical and

hydrological parameters. Key assumption behind the work was that the zonation of seismic

velocity field and hydraulic conductivity field is identical. Also, the problem is limited to

relatively simple geometry. Since this work do not rely on the direct link between seismic

and flow properties, this method has limited application for complex geologic structures

such as fractured media.

Seismic interpretation in challenging geologic environments like naturally-fractured

reservoirs is plagued with uncertainty [23]. Due to the great uncertainty, there is very

limited study of joint interpretation of hydrologic and geophysical data on fractured geo-

logic media [26, 46]. Therefore, there is a pressing need for a work that combines multiple

measurements for characterizing fracture geologic media. In this study we combined in-

verted geophysical data from novel double-beam method with hydrologic data which are

linked via petrophysical relation.

The goal of our work is twofold: on one hand, reduce that uncertainty by incorporating
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dynamic flow measurements into the seismic interpretation; on the other, improve the pre-

dictability of reservoir models by making joint use of seismic and flow data. The basic tenet

of our proposed framework is that there is a strong dependence between fracture perme-

ability (which drives the flow response) and fracture compliance (which drives the seismic

response). This connection has long been recognized [146, 120], and recent works have

pointed to the potential of exploiting that connection [19, 116, 148, 156]. Here, we pro-

pose a formal approach to improved characterization of fractured reservoirs, and improved

reservoir flow predictions, by making joint use of the seismic and flow responses.

5.2 Overall framework

Our approach seeks to combine seismic scattered wavefield data that provides spatial esti-

mates of fracture orientation, spacing, and compliance [51, 157] with flow data (pressure

and concentration, or saturation, values) at a number of well locations. The fracture com-

pliance values obtained from seismic data analysis are related to permeability through a

rock-physics model [146, 120, 19, 116]. Both the seismic data and the rock-physics model

contain potentially significant uncertainty. By combining the flow and seismic data in a

single inversion we hope to obtain an improved estimation of the subsurface permeability

field that can be used to predict reservoir flow.

The general workflow is shown in Figure 5-1. Our proposed framework is rather gen-

eral and can be applied to field data, but here we restrict our exposition and validation to

synthetic computer models. The starting point for the synthetic models is a 'true' com-

pliance field, which entails generating: (1) a fracture network, which can disordered but

have certain geometric statistics (fracture density, length and orientation); (2) elastic com-

pliance of the individual fractures, which also exhibits a predefined geospatial distribution

(mean, variance, and correlation length). This model of interconnected discrete fractures,

embedded in a reservoir matrix located at depth, is the common physical model from which

seismic and flow response is determined.

The true compliance field (CT) and true permeability field (KT) are related via a prede-

fined rock-physics model, KT = f(CT, a), where a denotes a set of parameters governing
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the functional relation between CT and KT (Figure 5-1). The strong correlation between

fracture compliance and permeability can be ascertained from simulations of fluid flow and

elastic deformation on rough-walled fractures (Figure 5-2a, see next section). The objec-

tive is then to infer the true compliance field and compliance-permeability relationship by

a procedure that unifies seismic and flow modeling.

Seismic modeling. We first run a forward seismic model on the true compliance field

(CT) to generate the detailed wavefield [133, 29, 51]. We then treat this wavefield blindly,

without knowledge of the underlying structure, to estimate the seismic compliance (CM)

by means of the double-beam method [157]. The error in the estimated compliance field,

c = CT - Cm, has different scale and often exhibits a strong spatial correlation with the

actual compliance field CT; something that points to the need to model (re-scale and de-

trend) this error to reduce this dependence. Methodologically, this implies a transformation

Cm - CD - C"m such that the error in the transformed variable, e", = CT - C"m, is

only weakly dependent on the underlying (and unknown) true compliance field. This error-

modeling of the compliance introduces a set of parameters, 4, that needs to be estimated.

Flow modeling. The flow response relies on the compliance-to-permeability relation,

from which we generate the fracture-permeability field KT. We simulate fluid flow and

solute transport on this permeability field, from which we extract a dynamic record of

pressure (PT) and production curves (ST) at a discrete set of locations that represent well

measurements. These records are subject to measurement errors, and therefore we denote

the accessible, measured quantities as Pm and Sm, respectively. The set of parameters aZ

generating this response via the compliance to permeability relation: KT = f(CT, a) are

of course unknown. We run the flow model (Gp) and transport model (Gs) on estimates

KfT(, 4) to obtain simulated responses PT and ST. The sets of parameters & and 4 are then

estimated by minimizing the error between the measured (Pm, SM) and modeled (PT, ST)

flow response. While sophisticated estimation and inversion procedures exist, our work

employs a straightforward least-squares minimization procedure:

min (P - Gp((&, 4))) sl - Gs(KT(&, 2)))

min 2 +2
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5.3 Fluid flow and elastic deformation on rough-walled

fractures

To convert seismic scattering measurements into data useful for hydrologic modeling, a

physical relation between fracture compliance and fracture permeability is needed. To show

the close relation between the fracture compliance and fracture permeability, we perform

simulations of fluid flow and elastic deformation on rough-walled fractures. Following

[19], we further extend the methodology of [20] to better represent the correlated structure

of fracture roughness and aperture and implement the method of [1] and [22] to run efficient

simulation of elastic contact problems.

We first numerically construct synthetic rough-walled fractures using the spectral syn-

thesis method (Figure 5-2(a)) [21, 117, 61]. Spectral analysis decomposes each surface

into two components: a power spectral density function and a phase spectrum. The power

spectral density of a real fracture surface exhibits power law decay as a function of wave

number k (inverse of wavelength, A) where the exponent is determined by the fractal dimen-

sion (Df) of the fracture surface [21, 62, 117, 20]. The phase spectrum on the other hand

is often observed to be nearly a random process independent of frequency (white noise).

Further, compared to a single fracture surface, the fracture aperture, the difference between

top and bottom fracture surface, has a lower power spectral density for long wavelengths

and a value for short wavelengths. This reflects the fact that the top and bottom surfaces

are highly correlated for long wave lengths [20, 61]. To incorporate this observation into

the numerical synthetic rough surface generator, [20] introduced a critical wavelength (Ac)

where two surfaces are perfectly matched above the critical wavelength and completed

independent below the critical wavelength. [61] extended Brown's method to allow the

surfaces to be matched at long wavelengths and gradually mismatched as wavelength de-

crease. However, [61] still assumed zero correlation between two surfaces below the critical

wavelength and the way they generate partially correlated phases leads to different variance

between the phases of top and bottom surfaces.

Therefore, we propose a method that allows gradual change in correlation strength as

a function of wavelength, A, and conserves variance between phases of top and bottom
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Figure 5-1: Overall framework for joint flow-seismic inversion. The above framework

shows how seismic and flow models are integrated to better characterize fractured reser-

voirs.
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surfaces. First, we define a critical wavelength, A, = 1/kc, where the correlation between

the top and bottom surface is 0.5. Second, we define the correlation (-Y) of the phases

between top and bottom fractures as a function of frequency, k = 1/A, as follows: y
erf (_kk )±. As can be seen in the inset of Figure 5-2(b), correlation gradually decreases

2

from perfect correlation (1) to zero correlation (0) as frequency increases. As defined, -y is

0.5 at k = kc and 0 determines the rate of the change in correlation. As an example, the

inset of Figure 5-2(b) shows -y for three different values of 0.

To construct top and bottom fracture surfaces that follow the correlation structure -y,

we assign random phases R1 for the top surface and generate phases R 2 for the bottom

surface such that R 2 have correlation -y with R 1. To assign R 2, we mix the two random

variables (R 1 , R 3) to come up with a new random variable (R 2) such that R 2 and R1 have

the correlation -y as following: R 2 = 7yR 1 + 1 - -y2R3 [55]. Once the phases have been

set appropriately, we then obtain the two surfaces by performing inverse Fourier transform

of the combined power and phase spectra. After the two surfaces are generated, we define

the standard deviation of surface heights (c-f) and the mean distance (D) between top and

bottom surfaces. Figure 5-2(a) shows the top single surface and a fracture aperture for

three different 0 values with fixed D which gives the minimum distance between top and

bottom surfaces to be 0 (no penetration). In summary, we generate the fracture aperture

field with four main parameters: the fractal dimension (Df) that defines the slope of the

power spectral density, the critical wave length (Ac), the rate of change in correlation (0),

and the standard deviation of the fracture profile (c-f).

From the generated fracture aperture, we obtain the compliance via an elastic defor-

mation simulation on the synthetic rough surface subject to confining stress. This method

is explained in detail in [1] and [22], so we only describe the procedure briefly here. We

consider only normal stress and the medium to be linearly elastic. As the mean distance be-

tween the top and bottom surfaces (D) decrease, the region with interpenetration between

top and bottom surface emerges. The medium is assumed to be linearly elastic and we con-

strain deformation such that there is no penetration between the two surfaces. The stress

field (S(x, y)) that satisfies no penetration can be obtained using an iterative method. Ana-

lytical solution for vertical/normal displacement due to a point force on an elastic half space
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(b) Power spectral density for three different 0 values. Change in power spectral density is

smoother as we increase 6. Inset: correlation function (-y) for different 0 values.
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is known as the Boussinesq solution (B(r) = (1) 1 where G is the shear modulus and v27rG r

is the Poisson's ratio). The normal displacement (w(x, y)) due to the stress field S(x, y)

is obtained by convolution of the Boussinesq solution: w(x, y) = f f S(x', y')B(r)dx'dy'.

The solution is obtained via a two-dimensional fast Fourier transform. We iteratively up-

date S(x, y) until the stress field satisfies the zero penetration boundary condition [146].

To run the simulation with realistic values, we used 0.25 for Poisson ratio's and 10GPa

for shear modulus. These are realistic values for Berea Sandstone under confining stress

around 30MPa [121]. By solving the elastic deformation problem for different values of

D, we obtain average normal stress (S) over the fracture surface for fixed D as following:

9 = f f S(x, y)dxdy/L 2 . From the definition of the fracture compliance, we obtain the

compliance as C = .

We perform a fluid flow simulation for incompressible fluid with constant viscosity

and density on the final solution of elastic deformation simulation for given D. We con-

sider each aperture value represents the width of the parallel plate. Therefore, we ap-

ply lubrication approximation, and we can obtain Darcy type equation for mean velocity,

u = l - VP, where b is the aperture, p is the viscosity and P is pressure. From continuity12p

equation, we obtain following equation: V -q = 0 where q = ub. We obtain pressure by

solving the continuity equation with the following boundary condition: constant pressure

boundary condition at the left and right boundaries and no flow boundary condition for the

top and bottom boundaries. Finally, we obtain the hydraulic aperture using following re-
b3  W

lation between total outgoing flux and the hydraulic aperture: QO = - h1a" RP,

where PR is the fixed pressure at the right boundary, PL is the fixed pressure at the left

boundary, W is the width the fracture surface and L is the length of the fracture surface.

By plotting the obtained compliance value with the hydraulic aperture, we can obtain

the functional relation between the compliance and permeability (Figure 5-3(b)). We typi-

cally obtain concave shape for the functional relation. However, it is true that also different

shapes can exist depending on the rock type [120]. The dependence of the functional re-

lation on the fracture characteristics has to be further investigated. In this study, we take

the compliance-permeability relation shown in Figure 5-3(b). We tested our framework for

three different types of the functional relation: linear, convex, concave and confirmed the
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framework is equally powerful. The only potential limitation is when the permeability has

not enough sensitive with respect to the compliance.

5.4 Seismic inversion on orthogonal discrete fracture net-

works

We test our approach on discrete fracture networks consisting of two sets of parallel,

equidistant, connected fractures oriented at an angle of 0 and 90 degrees with respect to

the x-axis (Figure 5-3(a)). The fracture spacing is uniform and equal to 80m. On average,

the value of x-directional compliance is two times larger than the y-directional compliance.

Our compliance values vary between 10-10 and 10- m/Pa which is the realistic range

at the field scale [153]. We construct a spatially-correlated compliance field that follows

a lognormal distribution with an exponential autocorrelation function in space (Figure 5-

3(a)). We simulate seismic shot gathers using a 3D staggered grid finite-difference method

[29, 152, 51]. For seismic inversion, we apply the double-beam method [157] to estimate

the modeled seismic compliance field CA.

5.5 Error model for the compliance field

By analyzing Cm obtained from the double-beam method, we find that the compliance

measurement has to be re-scaled and de-trended. As can be seen in Figure 4a, Cm has

different scale with CT and should be re-scaled. In other words, the mean value of mea-

sured compliance field ,(Cm), is significantly larger than the mean value of true compli-

ance field, (CT), and has to be corrected. Therefore, we introduce re-scaling factor, #30,
where C' = 0oCK such that (C'm) = (Cm). The re-scaled error, e' = CT - C , is

highly correlated with CT itself (Figure 5-4). From the point of view of estimation, this

is of course undesirable because it would require a priori knowledge of the true compli-

ance field. Thus, one must introduce an error model that effectively de-trends the modeled

response and weakens its dependence on the true compliance field. Our error correction

model is motivated by the scatter plot between CT - C and CT, which shows a linear trend
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Figure 5-3: (a) True compliance field of the orthogonal discrete fracture networks that we
study. Each link has length equal to 80m and has a compliance value between 1010 and
10-9 m/Pa. (b) Functional relation between fracture compliance and permeability obtained
from simulation of fluid flow and elastic deformation on rough-walled fractures for three
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can observe that the pressure values between the compliance of 1010 and 10-9 m/Pa are
around 30 MPa.
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Figure 5-4: (a) True compliance field for the orthogonal discrete fracture network, inter-
polated to show the smoothed compliance field (CT). (b) Modeled compliance field from
double beam seismic model (Cm). Note that the modeled compliance field has to be re-
scaled to have same mean value with the true compliance filed. (c) Difference between true
compliance field (CT) and re-scaled seismic interpreted compliance field (C'M). We find
a strong spatial correlation between the error (e',) and the true compliance field (CT). (d)
Error (CT - C'M) with respect to centered CT (CT - (C'M)). We observe that C'm is com-
pressed compared to CT, and there is a linear relation between the error and the centered

CT.
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(Figure 5-4d). From Figure 5-4d, we observe that e'c = CT - C'I =r (CT - (C'VI) + E

where E is a random spatial variable that exhibits a much lower correlation with CT. From

these observations, and reorganizing, (1 - T)CT = (1 - 'r)/oCI -+ /o7(CA - (CM)) + C.

Therefore, we define C"A = !o[Cm + /1(Cm - (Cm))] with 01 = 1/(1 - 7]) > 0 but

unknown, and e", = CT - C"A = c can be modeled as an independent random function.

5.6 Flow and transport model

We study a simple flow setting: a no-flow condition at the boundaries of the fracture net-

work, and fixed pressure values at the injection well (P = 1 at the lower-right corner for

scenario 1, at the lower-left corner for scenario 2 and the left center for scenario 3) and

production well (P = 0 at the upper-left corner for scenario 1, at the upper-right corner for

scenario 2 and the right center for scenario 3) (Figure 5-5). We simulate flow through the

fracture networks by assuming Poiseuille's law for the fluid flux uij between nodes i and j,
uij = -kij (P - P)/l, where Pi and P are the fluid pressure values and kij is compliance-

dependent fracture permeability. Imposing mass conservation at each node i and assuming

incompressible flow, >3 uij = 0, leads to a linear system of equations, which is solved for

the pressure values simultaneously at all the nodes. Once the fluxes at the links are known,

we simulate transport of a passive tracer by particle tracking. We neglect diffusion along

links, and thus particles are advected with the flow velocity between nodes. We assume

complete mixing at the nodes. Thus, the link through which the particle exits a node is

chosen randomly with flux-weighted probability [78]. This particle-tracking simulation al-

lows us to compute the breakthrough curves (first-passage time distribution) of the tracer

at the production well.

5.7 Unifying flow and seismic measurements: least squares

To characterize fracture compliance field, we unify flow and seismic measurements. Pres-

sure and production curves can be obtained by solving the pressure and transport equations

with the permeability field obtained from the CT field. The objective is to find the set of
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(b) Training scenario 2

Figure 5-5: (a) First flow scenario used in estimation. Quarter five-spot flow geometry

with a single injection well (green circle) and a single production well (blue circle). There

are four observation wells (red circle) that measures borehole pressure. (b) Second flow

scenario used in estimation. A single injection well (green circle) at the left center and a

single production well (blue circle) at the right center. (c) Flow scenario used to test the

predictability of estimated permeability field. Quarter five-spot flow geometry in different

diagonal direction compared with first flow scenario. Predictive scenario is not used in the

estimation step.

parameters, ce (which characterizes the functional relation between KT and CT, Figure 5-

3b), and #3 (which characterizes the error model of the compliance field, Figure 5-4d) by

minimizing the objective function in Equation (5.1), that is, the sum of the squares of the

difference between measured and simulated pressure (PM and PT) and the difference be-

tween measured and simulated tracer production curves (SM and ST) from the seismically-

interpreted compliance field. As input for our least squares minimization procedure we

used two flow scenarios (scenariol and scenario 2), each with four pressure observation

wells and measured well pressure data and one breakthrough curve (Figure 5-5). Global

optimization algorithm is applied to find a set of parameters (a, 3) that minimize our ob-

jective function. As can be seen in Figure 5-4, modeled compliance field (Cm) provides

excellent information on relative compliance values and structural organization of com-

pliance field. However, the modeled compliance field have very different scale and trend

with the true compliance field. Since flow data is sensitive to absolute and relative value of

compliance field, we unify flow and seismic measurement to estimate the true compliance

field. To test the predictability of our estimated compliance field, flow scenario that is not

used in the estimation step is used for verification (Figure 5-5(c)).
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5.8 Joint inversion results

From joint inversion of seismic and flow data, we show that the fracture field can be accu-

rately characterized. Figure 5-6 shows a summary of the results obtained from our frame-

work. We highlight three main results:

1. The find that the error modeling of the compliance field was very effective: the error

of the modified compliance (e", = CT - C"m, Figure 5-6a) is much lower than the

error of the original modeled compliance (e, = CT - Cm, Figure 5-4), and exhibits

virtually no spatial correlation with the true compliance.

2. The functional relation between compliance and permeability was estimated accu-

rately (Figure 5-6b), despite the paucity of dynamic flow data used.

3. The improvements in the estimates of the compliance field and the compliance-

to-permeability relation lead to dramatic improvements in the predictability of the

model, as evidenced by the ability of the model to predict the production curve for a

different flow scenario (scenario 3 that is an injector in the left-center and a producer

in the right-center, Figure 5-5(c)) in which the injection and production wells are

located on a diametrically-different pattern (Figure 5-6c).

5.9 Conclusions

We have presented a new framework for joint inversion of seismic and flow data for im-

proved characterization of fractured reservoirs. The key ingredient of our approach is to

recognize that the seismic response and the flow response are linked through a fracture

compliance-to-permeability rock-physics relationship. We show that seismic and flow data

is complementary where seismic modeling provides structural organization and relative

values of compliance field and flow data provides information to re-scale and de-trend the

modeled compliance field. Our methodology is rather general, and was designed to be ap-

plicable to real field data, where the true compliance field is unknown, the compliance-to-

permeability relationship is uncertain, and the flow data are noisy. Here, we have illustrated
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Figure 5-6: (a) Difference between the true compliance field (CT) and the corrected

seismically-interpreted compliance field (C"A), which shows that the corrected compli-

ance error (e", = CT - C"A) is small and virtually independent of the true compliance

field CT. (b) Estimated compliance-permeability relationship from joint flow-seismic in-

version (blue line) accurately captures the true compliance-permeability relationship (red

line); the green line is the initial input for our least square procedure. (c) Tracer produc-

tion curves before (green solid line) and after inversion (blue solid line) compared with the

measurements (red solid line). The dashed lines show the performance of the model in pre-

dictive mode, in which the model is used after inversion to predict the flow response for a

different well configuration (a quarter-five spot with injector in the upper-left and producer

in the lower-right corner).
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the potential of the framework through synthetic computer models of fractured reservoirs.

We have shown that integrating seismic interpretation (through the double-beam method

[51]) with flow modeling leads not only to robust parameter estimation, but also to reser-

voir flow models that are more predictive. Our methodology will be extended to more

challenging setting where fracture network has random spacing. Also, more sophisticated

inversion and data assimilation techniques will be applied. If our workflow is shown to be

effective for general fracture network system, the methodology will be applied to real field

data.
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Chapter 6

Conclusions and future work

6.1 Intellectual contributions

In this thesis, we first identified the origin of anomalous transport at pore scale and devel-

oped a predictive transport model that incorporates the identified physical origin of anoma-

lous transport. The generality of our findings and the applicability of the developed model

is shown for Darcy-scale transport through lattice fracture networks and finally applied to

field-scale tracer transport experiments. Our parsimonious transport model, in the form of

correlated CTRW, accurately predicts the anomalous transport behavior from pore scale to

field scale. Thus, the proposed correlated CTRW modeling approach furnishes a simple

yet powerful framework for characterizing flow and transport through porous and fractured

media. Finally, we proposed joint flow-seismic inversion framework to better characterize

fractured geologic media.

Following are the summary of the research highlights.

1. We identified pore-scale origin of anomalous transport in real rock: the interplay

between flow correlation and velocity heterogeneity (Chapter 2).

2. Based on the understanding of the origin of anomalous transport, we proposed the

predictive transport model in the form of correlated CTRW (Chapter 2).

3. Our findings on pore-scale transport through real rock is extended to Darcy-scale

transport through lattice fracture networks (Chapter 3).
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4. Our transport model captured the full multidimensional particle transport dynamics

for a broad range of network heterogeneities and for both advection- and diffusion-

dominated flow regimes (Chapter 3).

5. Proposed a field tracer test methodology that quantifies flow correlation and velocity

heterogeneity (Chapter 4).

6. Our transport model captures the anomalous behavior in the field breakthrough curves

for both push-pull and convergent flow geometries, with the same set of parameters

(Chapter 4).

7. Based on the identified relation between fracture permeability and fracture compli-

ance, we proposed a joint flow-seismic inversion framework (Chapter 5).

8. The joint flow-seismic inversion reduced the error in the seismic interpretation and

improved predictions of the reservoir flow dynamics. (Chapter 5).

6.2 Future work: laboratory experiments using microflu-

idics

We have investigated the origin of anomalous transport through 3D real rock (Chapter 2)

and lattice fractures (Chapter 3). Both works relied on numerical simulation and the com-

plementary follow up research will be conducting particle tracking experiment and particle

image velocimetry using microfluidics. Microfluidics experiments will allow direct visu-

alization of Eulerian velocity field and Lagrangian trajectories. This will lead to more

rigorous validation of our findings. Moreover, the impact of anomalous transport on reac-

tive transport and bacteria transport can be studied using microfluidics which often is very

challenging with numerical simulations.
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6.3 Future work: Joint flow-seismic inversion

There are many exciting open questions regarding joint flow-seismic interpretation. Rela-

tionships among geophysical properties and rock fracturing have been extensively studied,

but relatively few studies relate the underlying geometrical and mechanical properties of

the fractured rock to permeability. Using forward models, the quantitative relation between

fracture geometry and stress-dependent properties including permeability, electrical con-

ductivity, and seismic velocity could be identified. This will lead to a new inverse method

that integrates various geophysical and flow measurements for better characterization of

underlying fractured media. Also, there are not many laboratory experiments relating flow

and geophysical measurements. Well controlled laboratory experiments on joint flow and

geophysical measurement can lead to the better understanding of the link between flow and

geophysical responses.
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