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Abstract

The need for optimized aviation lift planning is becoming increasingly important

as the United States and her allies participate in the Global War on Terror (GWOT).

As part of a comprehensive effort, our nation's fighting forces find themselves con-

ducting operations around the globe, with this trend likely to increase, even as budget

constraints limit the number of personnel and amount of equipment that is deployed.

While much attention has been given to airline schedule optimization and fleet plan-

ning. the challenge of Army Aviation lift planning is unique in that it must be able

to adapt to changing requirements and missions on a daily basis. In this thesis, we

model Army Aviation lift planning as a service network design problem, and propose

two heuristic algorithms, which compare favorably to current human planning sys-

tems. Furthermore, we apply these heuristic algorithms to long term asset planning

and capacity requirement estimation for future military scenarios, and analyze how

passenger flexibility affects the need for capacity.
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Chapter 1

Introduction

1.1 Research Motivation

Army Aviation lift aircraft are necessary to maintain a flexible and dynamic trans-

portation system for contingency operations around the world. As fewer resources

constrain our ability to sustain support operations, we must maximize utilization effi-

ciency of aircraft through proper planning. Furthermore, we must be able to adapt to

a wide range of geographic locations and missions, while operating in these changing

environments.

The author applies his operational experience as an aviation planner at the Army

company. battalion, and division levels to the problem of Air Mission Request (AMR)

scheduling and aircraft routing, as applicable to a future military scenario.

Two key ideas motivate the research in this thesis. First, it is fairly difficult

and time-consuming for a human planner to provide a near-optimal flight schedule,

especially if the number of aircraft and requested missions is large. Second, a human

planner has only limited capability for assessing the current maximum passenger

support level, and for recommending a required aircraft capacity based on a desired

support level.

19



1.2 Overview of Thesis

Chapter 2: Operational Analysis and Problem Description: We introduce

the reader to Army Aviation and motivate the problem addressed in this thesis. We

look at the organization of operational units, their interaction, and how air trans-

portation missions are supported. We present challenges that are currently faced by

aviation planners, and motivate the problem of flight scheduling and route planning

concerning helicopter lift aviation and Air Mission Requests (AMR).

Chapter 3: Model Inputs and Network Structure: We model the geographical

layout of Helicopter Landing Zones (HLZ), aircraft characteristics, and passenger

demand. Furthermore. we model the flight schedule and aircraft routing information

as a time-space graph where aircraft movement is represented by arcs and passenger

movement is represented by flow over those arcs.

Chapter 4: Model Formulation: We conduct a literature review of relevant

network flow formulations, and model the problem of AMR scheduling and aircraft

routing as a deterministic Service Network Design Problem (SNDP). We first present

an integer programming approach to this problem, SNDPOPT. We then present two

composite variable heuristic algorithms: the Maximum Marginal Return Algorithm

(MMRA), and the Maximum Total Return Algorithm (MTRA).

Chapter 5: Computational Analysis: We compare the run-time of the three

models (SNDPOPT, MMRA, MTRA) when different parameters affecting problem

size are changed, and show that large operational problems are intractable using

SNDPOPT. The heuristic algorithms we propose, however, are tractable and much

faster, even when the number of HLZs or time periods considered is large.

Chapter 6: Operational Analysis: We use both heuristic algorithms to generate

the flight schedule and aircraft routing information for two large operational scenarios,

over varying levels of demand, and compare their performance to that of a human

20



planner. We then look at how these heuristic algorithms can be used to estimate the

level of support that can be provided to units. given a fixed number of aircraft, and

an estimate of demand. We also look at how they can be used to estimate aircraft

requirements based on a desired level of support. Finally. we look at the impact of

passenger time-of-day travel flexibility on the number of missions and passengers that

can be supported with a fixed number of aircraft.

Chapter 7: Summary and Future Research: We summarize the work and

contributions of this thesis. and propose several areas of future research.

21
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Chapter 2

Operational Analysis and Problem

Description

2.1 History and Organization of U.S. Army Aviation

Army Aviation is a Maneuver. Fires. and Effects (MFE) branch of the U.S. Army.

Originally designated as the U.S. Army Air Corps in 1926. it was re-designated the

U.S. Army Air Forces in 1941. In 1946, the Air Force was created and U.S Army

Aviation became a branch of the U.S. Army [14]. Currently, the U.S. Army employs

a variety of manned aircraft, both rotary-wing (helicopters) and fixed-wing (planes)

(Table 2.1).

Most Army rotary wing aviation units are now organized into Combat Aviation

Brigades (CAB). with the exception of some legacy units. training support units,

and special operations aviation units. These CABs are generally assigned to an

army division. CABs may be designated in two ways: heavy or full spectrum. Full

Spectrum CABs have one Attack Reconnaissance Battalion (ARB) of AH-64 Apaches.

one Attack Reconnaissance Squadron (ARS) of OH-58 Kiowa Warriors, one Assault

Helicopter Battalion (AHB) of UH-60 Blackhawks. and one General Support Aviation

Battalion (GSAB) containing UH-60 Blackhawks, HH-60 MEDEVAC, and CH-47

Chinooks. Heavy CABs are similar to full spectrum CABs. except they have two

ARBs instead of an ARB and an ARS.

23



Aircraft Type Uses

UH-60 Blackhawk Rotary wing Utility / multipurpose

UH-72 Lakota Rotary wing Utility / multipurpose

UH-1 Huey Rotary wing Utility / multipurpose

HH-60 MEDEVAC Rotary wing Medical evacuation

CH-47 Chinook Rotary wing Cargo / multipurpose

OH-58 Kiowa Warrior Rotary wing Attack/reconnaissance

AH-64 Apache Rotary wing Attack/reconnaissance

AH-6 Little Bird Rotary wing Special operations

MH-60 Blackhawk Rotary wing Special operations

MH-47 Chinook Rotary wing Special operations

TH-67 Creek Rotary wing Trainer

C-12 Huron Fixed wing Cargo/transport

RC-12 Huron Fixed wing Reconnaissance

C-20 Gulfstream Fixed wing Cargo/transport

C-37 Gulfstream Fixed wing Cargo/transport

UC-35 Cessna Fixed wing Cargo/transport

Table 2.1: U.S. Army Aviation aircraft

In addition to aircraft battalions and squadrons, each CAB has an Aviation Sup-

port Battalion (ASB), which augments the maintenance capabilities of its sister bat-

talions and squadrons, and may also have an Air Traffic Services (ATS) Battalion and

an Unmanned Aerial Vehicle (UAV) Company. Currently, the active duty Army has

eleven divisional CABs and two separate CABs (assigned directly to an Army Corps

rather than an Army Division). Figure 2-1 shows a possible organization of units in

a Full Spectrum CAB.
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Full Spectrum Combat
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HHC Headquarters and
Headquarters Company

A Attack Reconnaissance Battalion
(24x AH-64 Apache)

Attack Reconnaissance Squadron
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Assault Helicopter Battalion
(30x UH-60 Blackhawk)

General Support Aviation Battalion
(20x UH/HH-60 Blackhawk)
(12x CH-47 Chinook)

- Aviation Support Battalion

Unmanned Aerial
Vehicle Company

Figure 2-1: Full Spectrum CAB

In order to properly equip units for decentralized operations, CABs can task orga-

nize their subordinate battalions, giving each one the ability to conduct full spectrum

operations. This means that within a brigade, aviation companies are cross-loaded

to provide every battalion with a similar set of aircraft and capabilities. The result-

ing battalions are called Task Forces (TF), where each Aviation Task Force has the

ability to conduct lift, attack and reconnaissance missions in their assigned areas of

operation.

In the operational scenarios considered in this thesis, a brigade or battalion-sized

Combined Arms Task Force is geographically spread out over its area of operations.

Its subordinate units include several task forces, to include a Full Spectrum Aviation

Task Force (Figure 2-2).
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Figure 2-2: Possible organization of a Combined Arms Brigade Task Force

2.2 Army Aviation Missions

Rotary wing assets are unique in that they have a broad spectrum of missions which

support the commander's intent. These missions are dictated by unit capabilities and

also the current needs of the commander. To ensure that units are meeting training

requirements for these missions, all Army units have a Mission Essential Task List

(METL) which describes proficiency requirements for individual and collective tasks.

In Army Aviation, the METL is specific to each type of aircraft. AH-64s and OH-
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58s conduct attack and reconnaissance missions. convoy escort, and other missions

suited to their capabilities. They may also act as an escort to utility (UH-60), cargo

(CH-47), and MEDEVAC (HH-60) helicopters.

Utility and Cargo helicopters are considered lift assets since they can carry pas-

sengers and cargo. Like attack and reconnaissance helicopters, they are versatile and

multi-mission platforms. They are capable of being used in many ways to accom-

plish a vast array of missions, not simply logistics or troop transport missions. As

an example, these units are capable of conducting air assaults, reconnaissance, Signal

Intelligence (SIGINT) collection and Command and Control (C2).

In this thesis, we consider logistical transport missions of personnel throughout

the area of operation, conducted by utility and cargo helicopters.

2.3 Lift Mission Planning and Execution

In a distributed operations environment, units operate from Forward Operating Bases

(FOB) or Combat Outposts (COP). Each FOB or COP usually has a Helicopter

Landing Zone (HLZ). An HLZ does not have to be inside a base, and can be designated

anywhere. Commanders must generally approve an HLZ before it can be used by

ensuring it meets minimum safety requirements, such as distance from obstacles and

slope conditions. In an emergency or other unplanned situation, however, it is at

the discretion of the Pilot-in-Command (PC) to pick a suitable landing area. The

subsection below takes the reader through the process of lift aviation planning as is

currently done in a deployed environment, from the submission of a request to the

execution of the flight.

2.3.1 Air Mission Requests

2.3.1.1 The Air Mission Request Form

To streamline the request and approval process for Army Aviation lift assets, units

must submit an Air Mission Request (AMR) whenever air support is requested. An

AMR is a paper or electronic form containing information about the requesting unit,
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the type of aviation support requested, and all pertinent details necessary for the

accomplishment of the mission, such as number of passengers and legs requested.

An AMR leg is an individual flight segment of an AMR. It specifies an origin HLZ

where the passengers will be picked up and a destination HLZ where the passengers

will be dropped off. AMRs may be composed of multiple AMR legs. Multi-leg AMRs

have more than one leg for the same day. This could be a round trip, or a multi-stop

mission.

Typical information submitted on the AMR is the following, and an example AMR

form is shown in Figure 2-3 1141.

" Requesting unit point of contact (POC) and contact information

" Mission description

" Requesting date of travel

" Number of legs, and, for each leg:

- departure HLZ, and earliest departure time

- arrival HLZ, and latest arrival time

- number of passengers

- amount of cargo (number of pieces, weight, and dimensions)

" Special instructions
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Figure 2-3: Example blank AMR form [14]

For example, a mission may require a group of ten Soldiers to travel from HLZ

A to HLZ B in the morning, then travel from HLZ B to HLZ C in the afternoon.

Finally, they may wish to return to HLZ A in the evening. An AMR that supports

this mission would be comprised of three AMR legs (Figure 2-4).
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AIR MISSION REQUEST (AMR)
SectkmILn- Completed by Requesting Un ifgncy (*Required Entry)

*Unit/Agency: *Date of Request:
POCInfo Rank/Namne Phone Ernail
*Primary
Alternate

Mission Data
*Date of Mission: Number/Type Aircraft:
*Purpose/ Scenario/Justification:

Route of Flight
Date/Time (ETA) PZor LZ (name, grid, or lat long) Remarks (ground time, load changes, etc.)

Passenger Informiation
*Number (attach manifest): TUntform/Equipment:_ Duty _ Combat Light _ Combat
SenlorPassenger Cag Df Honors Requested: _ Yes _No -

*Total Weight: External Loads: _Yes _No Special Handling: _Yes _ No
Numberof Containers: Height: Length: Width:
Mlssion Coordination Date/Time Location/Remarks
Initial Air Coordination Meeting
Air Mission Briefing
Remarks:

section 2 - Completed by Supporting Unkt
AMR Number Mission Number
AMR Approval/Routing status Initials Date
AMR Received by J35 AVN
Validated byJ35 AVN _Yes No
Verified as Authorized by CG _Yes No NA
CG Authorization is required due to:
AMR Received by AAOG
Initially Approved by CDR, AAOG Yes _No
AMR Received by 12th Aviation Battalion
Mission Assigned to Company/Crew
Final Mission Status _Completed _Changed _Cancelled
Remarks:



Figure 2-4: Example of completed AMR form

To allow enough time for the approval and planning process, AMRs are typically

submitted three or more days in advance. However, as emergencies arise, units may

also request expedited approval and planning. Figure 2-5 shows the AMR process

from its submission to execution. For high profile missions involving many parties,

where the AMR may not provide sufficient information, a Concept of the Operation

(CONOP) and Air Mission briefing (AMB) may also be required. The CONOP brief

is used to inform the requesting commander of the planning and execution time line
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AIR MISSION REQUEST (AMR)
Secto 1.- Comtpleted by tequsft Unit/AgeniY (-Required Entry)

*Unit/Agency: 1st Brigade *Date of Request: 25 May

POC Info Rank/Name Phone Email
* Primary CPT Doe

Alternate
Misshm Data

*Date of Mission: 1 June Number/Type Aircraft:
*Purpose/ Scenario/Justification:

Routine Movement

Route of :ight

Date/Time (ETA) PZ or LZ (name, grid, or lat long) Remarks (ground time, load changes, etc.)

0800 HLZ A

HLZ LEG
1330 HLZ C
1300 HLZ C
19 HLZ A LEG3

Passenger information
*Number (attach manifest): 10 Uniform/Equipment Duty _ Combat Light _Combat
Senior Passenger: COL Honors Requested: Yes _ No

Cargo Data
*Total Weight 0 lbs External Loads: Yes - No I Special Handling: _Yes _ No
Number of Containers: Height Length: Width:

NMi Coordination Date/Time Location/Remarks
Initial Air Coordination Meeting
Air Mission Briefing
Remarks:

Sect o 2 - Completed by &upotig Unft
AMR Number: Mission Number:

AM App al/u Status Initials Date
AMR Received by J35 AVN
Validated by J35 AVN _ Yes - No

Verified as Authorized by CG, JFHQ-NCR/MDW _Yes _No _NA

CG Authorization is required due to:
AMR Received by AAOG
Initially Approved by CDR, AAOG _Yes _-No

AMR Received by 12* Aviation Battalion
Mission Assigned to Company/Crew
Final Mission Status _Completed -Changed Cancelled

Remarks:



for the mission. The AMB brings together the requesting unit and aviation unit to

ensure that everyone is familiar with the mission.

2.3.1.2 AMR priorities

The Commander's Mission Priority List (CMPL) guides aviation planners in deciding

which AMRs to schedule if too many are submitted for a given time period (Table

2.2). AMRs that are scheduled are said to be supported. Because of the volume of

AMRs received, planners are not always able to accommodate all requests, and AMRs

must sometimes go unsupported, despite being initially approved by the aviation mis-

sion approval authority. If an AMR is unsupported, the requesting unit must then

submit another AMR for an alternate date* or appeal the decision to their higher

headquarters.

AMR mission Priority

Downed Aircraft Recovery 1 (highest)

Emergency leave 2

General Officer movement 3

Military Working Dog 4

Critical Equipment Repair 5

Religious Services 6

0-6 Colonel or equivalent 7

R&R leave 8

other 9 (lowest)

Table 2.2: Example Commander's Mission Priority List (CMPL)

2.3.1.3 AMR Form Routing

First, the requesting unit submits the AMR to their higher headquarters, who acts as

the first line of approval and review. The AMR is then sent to the aviation mission

approval authority, whose headquarters control the use of the aircraft. Once the AMR

has been approved, it is sent to the subordinate aviation headquarters for support

(Figure 2-5). Following approval, the supported unit has Direct Liaison Authorized

(DIRLAUTH) with the supporting aviation unit. If an aviation unit is the requester of
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an AMR, it must still be submitted to the aviation mission approval authority, unless

it can be executed without affecting the AMRs that have already been approved and

the mission risk does not necessitate higher headquarters approval.

Higher Headquarters

Aviation Mission
Approva lAuthority

Requesting Units Aviation Units

intermediate -Intermediate

Headquarters Avidtios

A *Flight Schedule
planning

Tactical route of
flight planning

AMR execution

Requesting __-_---_-_-_ ---_-_-Aviation
Unit DIRLAUTH once Company

AMR is approved

Figure 2-5: The AMR process

Figure 2-6 shows the AMR process for the case where the mission approval author-

ity is the Division G3. In this example, a company requesting lift support submits an

AMR to its battalion S3 Air, in the training and operations section of the battalion

headquarters. The battalion S3 Air reviews the AMR and submits it for approval to

the Brigade Aviation Element (BAE), which is the aviation planning cell inside a non-

aviation brigade. It is then reviewed and submitted to the Division G3 for approval.

Following approval, it is forwarded to the aviation brigade planning cell, who reviews

and assigns the AMR to one of its subordinate battalions (or Task Forces) for sup-

port. The aviation battalion planning cell assigns the AMR to one of its subordinate

companies and plans the flight schedule accordingly.
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Figure 2-6: AMR approval and routing for Division aviation assets

2.3.2 Flight Schedule Planning

Once an AMR is approved, the aviation unit subordinate to the mission approval

authority ensures that the flight schedule reflects support of the approved AMR, and

that it is executed. A flight schedule is planned and published so that all aircraft

crews and AMR requesters know at what time AMRs will be supported, and what

the route of flight will be.

2.3.2.1 Planning Horizon

The flight schedule is planned in the Future Operations (FUOPS) section of the avi-

ation battalion S3 or brigade S3 (Training and Operations section). The planning

horizon is generally just a few days for routine AMRs, but can be as long as sev-

eral weeks for high profile ones that require additional planning or coordination, a

CONOP, or an AMB.
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Figure 2-7 shows a series of rolling 72 hour planning cycles, with each followed by

a 24 hour execution window. In this example, flights that support AMRs scheduled

for day n + 3 are planned between day n and day n + 2. AMRs that begin and end

on different calendar days are planned for the day in which the mission begins.

Day n Day n+1 Day n+2 Day n+3 Day n+4 Day n+5

Figure 2-7: Planning and execution horizon

2.3.2.2 Aircraft Availability and Planning Characteristics

To give aviation planners the ability to allocate aviation resources several days out in

support of AMRs, a recurring availability of aircraft called the aircraft steady state

(Figure 2-8) is agreed upon by the aviation units who maintain and crew the aircraft,

and the aviation mission approval authority who controls their use . This agreement

allows independent flight schedule development to be handled at the battalion level

or higher. Aviation companies provide aircraft for specific periods of time every day,

and the times during which aircraft can be used generally remains constant from day

to day. To account for maintenance and crew requirements, the steady state only

promises what commanders can guarantee on a daily basis. Thus, if a commander

has ten helicopters, he may only provide six each day, if he anticipates rotating

four through maintenance. Some aviation units may have a separate surge capability

steady state which can provide more flight time for short durations, usually several

days. Some aviation units may also dedicate aircraft teams in the steady state to

support specific types of AMRs or missions.

34



0 0 10 20 0

The aircraftsteady state showswhich teans operate
during which time periods in each recurringcyde

Figure 2-8: Example steady state

Aircraft planning characteristics, such as maximum time aloft for each aircraft

type, average travel time between HLZs, and carrying capacity, are made by the

aviation planners so that the flight schedule can be planned independently from the

tactical route of flight. These can be calculated using the appropriate training man-

uals or agreed upon between the aviation planners and the aviation companies. Each

planning cell holds a daily flight scheduling meeting so that the aviation companies

who will be flying the actual missions can agree with the flight schedule and supported

AMRs.

2.3.3 Tactical Route Planning

Given the flight schedule and list of AMRs being supported, aircrews plan the tactical

route of flight. While the flight schedule provides the legs that the aircrews must fly,

they must still plan way-points, headings, and altitude for each leg of the flight,

taking environmental factors, enemy activity, and crew experience into consideration.

Aircrews may plan different tactical routes between two HLZs, due to these factors.

2.3.4 Mission Execution

On the day of execution, supported units rendezvous with aircraft teams at the time

and HLZs designated on the flight schedule. Real-time mission monitoring and con-

tingency planning is conducted by the Current Operations (CUOPS) section in the

Tactical Operations Center (TOC) at the Battalion level and higher. Thus, if weather
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or maintenance delays occur, the CUOPS section will reroute aircraft, or cancel flights

and/or AMRs.

2.4 Problem Motivation

With an anticipated downsizing of forces, we can anticipate the need to support

future operations around the globe with fewer resources. Furthermore, the trend

towards distributed operations puts additional stress and strain on aviation units.

Since aviation units are most often centralized in one hub of a designated geographical

area, maintenance activities and crew rotation are facilitated, but availability of lift

assets is strained since they must travel farther to service the entire area of operation.

Thus, proper planning is crucial to accomplishing mission objectives. Demand

considerations need to be carefully evaluated when determining the lift capacity to

allocate to each area of operations.

2.5 Problem Statement

Faced with these growing challenges, the optimization of resources is extremely im-

portant to the future of Army Aviation. In this thesis, we consider the problem of

scheduling and route planning for Army Aviation lift assets with the following goals:

1. Develop a model to provide near optimal scheduling and routing information

applied to the current AMR process.

2. Given a level of aircraft capacity, determine how many AMRs can be supported

on a daily basis.

3. Determine what aircraft capacity is needed to satisfy different probabilistic levels

of demand.

4. Determine the effect of increased passenger flexibility on the number of AMRs

that can be supported.
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Chapter 3

Model Inputs and Network Structure

The purpose of this chapter is to describe how the operational characteristics of the

aircraft, the AMR demand. and the geographic distribution of HLZs are modeled as

inputs to the models presented in Chapter 4.

3.1 Aircraft Teams

During military operations, helicopters generally fly as a team of two or more, for

cover and self-rescue purposes. We consider only teams of two and model them as a

single entity.

3.1.1 Aircraft Team Constraints

Aircraft team constraints fall into two categories: physical and operational. Physi-

cal constraints include maximum flight time due to fuel. and maximum weight limit.

Other physical constraints, such as the fuel burn rate depend on environmental con-

ditions (altitude and temperature) and gross weight. Since these factors are not

constant, a conservative estimate of average fuel burn rate will be used.

Operational constraints are imposed due to Standing Operating Procedures (SOP).

During visual meteorological conditions (VMC), rotary wing flight crews must plan

for a minimum of 20 minutes reserve at cruise burn rate during all phases of flight

113]. In addition, most SOPs limit the actual daily flight time per crew-member to
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eight hours. Following a period of eight hours of rest, crews may once again fly for

eight more hours. This flight hour limit can change depending on the mode of flight:

"day", "night unaided", "night-vision goggles", or a combination of these. There are

also weekly and monthly flying hour limits which dictate the maximum flight time

per aviator before a mandatory 24 or 48 hour rest period must be taken. Finally,

there are duty day constraints for aircrews, where an aircrew can only be "on call" for

a certain period of time (usually 12 hours) before they must be given 12 hours off.

These flight hour and duty day restrictions were developed to ensure that aircrews

do not suffer from acute or chronic fatigue and can operate the aircraft safely.

3.1.2 Aircraft Team Parameters

Each aircraft team f has associated parameters which are shown in Table 3.1. A set

F is created to contain all available aircraft teams.

Set Element Parameters Description

number of aircraft teams

aircraft team

Uf passenger capacity

TCYCLE flying hour limit per planning cycle

FLIGHT flying hour limit on each full tank of fuel

F TFUEL average refuel time required
Ff

f TLOAD average loading/unloading time

TSD minimum time required to shutdown

D cost of flight arc per time period

c/ cost of ground arc per time period

f first time period that team is availabletSTART _____________________
E last time period that team is availableTbEND .1:_Aircraftteamparameter

Table 3.1: Aircraft team parameters
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3.2 Air Mission Requests

3.2.1 Decision Window Model

The Decision Window Model (DWM) was introduced by the Boeing Airplane Com-

pany [9] and can be used to model the passenger flexibility of an AMR. An AMR

travel window., given separately for each leg of the AMR and bounded by the earli-

est departure and latest arrival times. is the time frame during which the AMR leg

must be supported. This is similar to the decision window of a commercial airline

passenger. in that the decision window is the time frame within which a traveler is

willing to travel. In the decision window model, the perceived travel time (arrival

time minus departure time) is known as delta-T (AT). and the traveler's flexibility

is his schedule tolerance (Figure 3-1).

Earliest Latest
Departure Arrival

Decision Window

AT
- Schedule Tolerance

Figure 3-1: Decision window (Boeing [9])

ATk represents the shortest possible flight time needed to accomplish leg k of

an AMR, and the schedule tolerance #k is the degree of flexibility that passengers

have on either end of their AMR leg (Table 3.2). A leg with #k = 0 means that, if

supported, leg k must be supported exactly at the requested times.

Airline Passenger Decision Theory AMR Leg k

AT Perceived travel time ATk Shortest flight time for AMR leg k

Schedule tolerance #k Schedule tolerance of AMR leg k

Decision window ATk + ok Travel window of AMR leg k

Table 3.2: DWM application to the AMR leg travel window

We assume that AMRs are submitted for the preferred day, that the window for
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each leg is equal to or wider than the shortest travel time. and that all departure

and arrival times within the travel window are satisfactory to the traveler. There is

generally more passenger demand than can be supported by the number of aircraft

teams. Therefore, an AMR leg with a larger decision window has more flexibility

and is more likely to be supported. As such, users of the system balance mission

priorities and their own flexibility when determining an acceptable travel window for

their passenger request. AMRs submitted with hard times (no flexibility) are usually

of high priority and in support of a high ranking officer or an important event.

3.2.2 AMR Parameters

Recall from Chapter 2 that each AMR may be comprised of several AMR legs. We

assume in the following chapters that for each AMR, all or none of its legs must

be supported (since AMR legs from the same AMR support the same mission, this

avoids partial support). Different teams, however, may support different AMR legs

from the same AMR.

Each AMR is modeled as a set L of AMR legs k. L is the set of all AMRs

{L 1, L 2 , ..., L,} and K is the set of all AMR legs {ki, k2 , ... } that can be supported.

Each AMR leg k has a parent AMR L, to which it is assigned (Figure 3-2).

L1  L2  L3  L4 L5

k1__ k2 k3 k4 k__k_ k7

K

Figure 3-2: AMR and AMR leg sets

Using the set of AMRs from Figure 3-2, a feasible solution could be the support
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of AMR legs {ki, k2, k5 , k6 , k7 } since AMRs L1 , L4 , and L5would be fully supported.

However, {ki, k3, k7} would not be a feasible set of supported AMR legs since AMRs

L, and L 2 only receive partial support.

Each AMR and the legs that compose it have associated parameters which are

collected or generated from the AMR form, and are shown in Table 3.3.

Set Subset Element Parameters Description

air mission request

r1L AMR mission number

PL number of AMR legs

air mission request ley

r/ L parent AMR mission number

r1k AMR leg number

w k number of passengers

E L vk value of AMR leg

bk- starting HLZ
k

bk+ ending HLZ

tk- earliest departure time from starting HLZ

tk+ latest arrival time at ending HLZ

cek cost of flight arc per time period

ATk direct flight time of AMR

#k schedule tolerance

Table 3.3: AMR parameters

3.3 Network Construction

3.3.1 Inter-Base Transport Model

3.3.1.1 Static Graph

In order to model the geographic distribution of HLZs. we construct a network. or

static graph (Figure 3-3 ). The network models physical distances between HLZs.

Each HLZ is an individual node in the graph, with arcs between every pair of nodes

and an associated flight time.
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30 min D

C 20 min

Figure 3-3: Static graph representation of a network of four HLZs

3.3.1.2 Time Periods

The total time period that we will model is divided into m smaller time periods

(to, t1 , t2..) of equal duration T. T is the set of all time periods. The unit time period T

reflects a reasonable duration with which flight time and ground time can be modeled.

A typical value for T, for the scenarios addressed in this thesis., is 10 or 15 minutes.

3.3.1.3 Time-Space Graph

The static graph is extended to include time periods in a time-space graph G(N, A).

Nodes represent the position of an aircraft team in a specific time period, and are

indexed by (HLZ, time period). Arcs no longer represent an average time distance

between bases as in the static graph, but rather a movement through the network of

an aircraft team or an AMR. The time-space graph is an acyclic network where flow

is always from left to right, or forward in time. In our formulations, the following

arcs are used:

Flight Arcs: Flight arcs connect nodes that represent different HLZs. For example,

if an aircraft team leaves HLZ A in time period ti and arrives at HLZ B in time period

t6, then we introduce a flight arc between nodes (A, 1) and (B, 3) to represent that

portion of the aircraft team schedule and route of flight (Figure 3-4). The horizontal

travel distance of a flight arc in time periods is the average amount of time for the

aircraft team to fly from the departure to the arrival HLZ.
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Base A A A

Base B B13

Base C

to t1 t2 t3 t4

Figure 3-4: Flight arc between two nodes in a time-space graph

Ground Arcs: Ground arcs connect nodes representing the same HLZ. They model

turn time, which is the amount of time an aircraft team spends on the ground between

flight legs. We distinguish four types:

" Waiting arcs represent waiting time on the ground of an aircraft team with

engines running.

" Shutdown arcs represent waiting time on the ground with engines shut down.

" Loading/unloading arcs represent the time spent picking up or dropping off

AMRs.

* Refueling arcs represent the time spent refueling.

Any activity that occurs at the same base over a period of time is modeled with a

ground arc. In Figure 3-5, we add a ground arc of length two time periods between

nodes (B, 1) and (B, 3) to represent the refueling of an aircraft team.
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Base A @O BQ O ©

Base B B,1 B,3

Base C

to t1 t2  t3  t4

Figure 3-5: Ground arc between two nodes in a time-space graph

Aircraft Team Paths An aircraft team path is a set of connected arcs through the

time-space graph. It represents an aircraft team schedule and route of flight. As long

as arcs are chosen from the feasible set of arcs and no operational constraints (fuel

available. etc) are violated, each possible combination of arcs represents a different

feasible path for that aircraft team.

1. Arcs describe the movement and activities (flight, waiting, shutdown,

loading/unloading, and refuel) of a specific aircraft team. Each path represents

an aircraft team schedule and route of flight. Since arcs model the transition of

a team in space and/or time, flight and ground arcs in the time-space graph are

specific to the operational characteristics of each aircraft team. Each aircraft

team has a path through G(N, A). Figure 3-6 shows an aircraft team that

starts at HLZ A in time period to and leaves for HLZ C in time period t1 ,

arriving in period t 2 . The aircraft team then departs in period t 3 and arrives at

base B in time period t 4 .

2. AMR flow on aircraft team arcs describe the specific route of flight of each

AMR. AMR flow is always constrained by the capacity of aircraft teams

flowing between the same nodes. Figure 3-7 shows an AMR that starts at HLZ

A in time period to and leaves on an aircraft team for HLZ C in time period ti,

arriving in period t 2 . The AMR is finished unloading from the aircraft team in

time period t 3.
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Base A AAA

Base B B,4

Base C C,2 C,3

to t, t2  t3  4

Figure 3-6: Aircraft team path in G(N, A) from node (A, 0) to node (B, 4)

Base A 0 

Base B

Base C

to t, t2 t3  t4

Figure 3-7: AMR flow in G(N, A) from node (A, 0) to node (C, 2)

A complete aircraft team path describes both the aircraft team arcs and AMR flow

on those arcs, for every AMR that is scheduled to fly on that aircraft team (Figure

3-8).

Base A A All

Base B B,4

Base C C 2 C 3

to t1 tz t, t4

Figure 3-8: Aircraft team path in G(N, A) from node (A, 0) to node (B, 4), with AMR flow
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3.3.2 Network Inputs

A number of variables and sets are defined to help formulate the problem in the next

chapter.

3 Total number of HLZs in the area of operations;

B Set of all HLZs i indexed from 1 to 3:

BFUEL Set of HLZs that have refuel capability for helicopters;

N The set of all nodes in the time-space graph. For every HLZ in B and

time duration in T, we create a node and index it by (b, t), where b is the

index of the HLZ in B. and t is the index of the time period in T;

NFUEL Subset of all nodes that have rotary wing refuel capability, NFUEL C N;

a An arc indexed by origin node and destination node{(o, ti), (d, tj)}, in-

dicating that it begins at node (o, ti) and ends at node (d, tj), and is of

duration Ta = tj - ti, where j > i;

A Set of all arcs in the time-space graph;

Af Set of all arcs in the time space graph for aircraft team f E F. Within

the set Af, we have the following:

Af Set of air arcs in the time-space graph for aircraft team f. Air

arcs are defined between nodes (o, ti) and (d, tj) where t, > ti,

tj - ti = f light time from o to d for team f, and o 7 d.

A__ Set of all ground arcs in the time-space graph for aircraft team

f. A ground arc is defined as an arc between nodes (o, ti) and

(d, tj) where tj > ti, and o = d. Within the set of all ground

arcs, we have the following:

Aw Set of all waiting arcs of length T. Waiting arcs areWAIT Se

defined between all pairs of nodes {(o, ti), (o, ti+1)};

Afw Set of all waiting arcs of length T that begin atWAITt et

time t;
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AfD Set of all shutdown arcs. Shutdown arcs are defined

between all pairs of nodes {(o, ti), (o, t, + D

AfD Set of all shutdown arcs that begin at time t;SD,t

A E Set of all refueling arcs of length TJUEL. Refu-FUEL i

eling arcs are defined between all pairs of nodes

{(o, ti), (o, ti + 7 UEL)

AUL Set of all refueling arcs of length f that beginFUEL,t 'FUEL

at time t;

A{OAD Set of all loading/ unloading arcs of length TfQAD.

Loading/unloading arcs are defined between all pairs

of nodes {(o, ti), (o, t + A

A A Set of all loading/ unloading arcs of length TfOADLOAD,t LA

that begin at time t;

Af- Subset of arcs in Af that leave node n;

Af+ Subset of arcs in Af that enter node n;

Af- Subset of arcs in Af that leave HLZ b;

Af + Subset of arcs in Af that enter HLZ b;

Af Subset of arcs in Af that enter or exit any node at time t;

Af Subset of arcs in Af that exit any node at time t;

Af + Subset of arcs in Af that enter any node at time t;

Af Subset of arcs in Af that begin at or before time period t, and[tdttm

end at or after time period tj;
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Chapter 4

Model Formulation

This chapter proposes three approaches to solving the problem of AMR scheduling

and aircraft team route planning. After conducting a review of relevant literature, we

propose an arc flow formulation to a service network design problem (SNDP) adapted

to our specific problem. Then, we consider two additional heuristic approaches.

4.1 Literature Review

In this section, we explore previous work and relevant research on multi-commodity

network flow (MCNF) problems and network design problems (NDP) in order to lay

the foundation for our models.

4.1.1 Multi-Commodity Network Flow Problem

As opposed to the minimum cost flow problem (MCF), which models the flow of one

commodity, the MCNF models the flow of several commodities. Different commodities

have different origins and destinations, and may have different physical characteristics

(Ahuja et. al. 11]).

We explore two formulations of the Multi-Commodity Network Flow (MCNF)

problem. The first is an arc-flow formulation approach to solving the optimal flow

of commodities over a fixed network. The second is a path-flow formulation of the

same MCNF problem. In these formulations, we assume that each commodity has
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one supply and one demand node.

4.1.1.1 Arc-Flow Formulation

Let x' be a decision variable which determines the amount of commodity k that flows

over arc (i, j). We define uij as the capacity of arc (i, j), and cij as the unit cost of

flow on arc (i, J). We define b' as the supply or demand of commodity k at node i. If

there is supply of commodity k at node i, bk > 0. If there is demand for commodity

k at node i, bk < 0. Ahuja et. al. [1] present the following arc-flow LP formulation

for the MCNF problem.

MCNFARC- mn c x4.1)
kcK (ij)EA

s.t.

Zx u j V(i, j) E A (4.2)
kcK

S xj- 5 x =bk ViGN,kCK (4.3)
j:(i,j)cA j:(j,i)cA

xk > 0 V(i,j) E A, k E K (4.4)

The objective function (4.1) minimizes the cost of flow through the network. Con-

straints (4.2) restrict the flow of commodities k E K over every arc to the capacity

of that arc. Constraints (4.3) ensure flow balance at each node. Constraints (4.4)

ensure that the flow of commodities is non-negative. The structure of the MCNF ARC

problem is such that the number of individual arcs drives the complexity of the the

problem.

4.1.1.2 Path Flow Formulation

An alternative way to model the MCNF problem is to assign flow to paths in the

network, as opposed to individual arcs. Each commodity k is assigned to a path,
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p. Each path is composed of a set of connected arcs. which denotes a specific flight

sequence. The decision variable x kis the fraction of commodity k that is assigned to

path p. Let r= 1 if arc (i, j) is assigned to path p, otherwise let -FP = 0. Let wk be

the flow requirement for commodity k. Let P be the set of all paths. We draw from

Ahuja et. al. [1], Koepke 111]. and Nielsen [121 to formulate the following path-based

MCNF problem.

MCNFPATH= min ck (4.5)
kcK pEP

s.t.

kWk 7 < u2  V(ij) A (4.6)
kcK pEP

= 1 Vk E K (4.7)
pEP

Xk>0 Vk E K, p E P (4.8)

The objective function (4.5) minimizes the cost of flow through the network. Con-

straints (4.6) restrict the flow of commodities k over every arc to the capacity of that

arc. Constraints (4.7) ensure that each commodity is transported in full. Constraints

(4.8) ensure that the flow of commodities is non-negative on all paths. The structure

of the MCNF problem presents both benefits and challenges to obtaining an optimal

solution. As opposed to the are flow formulation, there are fewer constraints, but

more decision variables, since the number of possible paths will generally be greater

than the number of arcs in the network. This means that the complexity is driven

by the number of feasible paths, which can increase exponentially as the size of the

network increases.

4.1.2 Network Design Problem

A problem that builds on elements of the MCNF problem is the NDP. In the MCNF

problem, the underlying network is fixed and we only optimize the flow of commodi-
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ties. In the NDP, on the other hand, we wish to find a time-space network G(N, A)

and the optimal flow over it (Ahuja et. al. [1]). Therefore. the NDP deals with

simultaneously finding the structure of the network and the flow of commodities on

that network so that a cost function is minimized. An NDP formulation has network

design decision variables for the structure of the network, and path decision vari-

ables for the flow of commodities. Ahuja et. al. [1] present the following arc-flow

NDP formulation (some notation changed for consistency with previously declared

variables).

NDPARC mm 1: ci xj E cijYij
k EK (ij)E A (ij)E A

(4.9)

s.t.

IN ij - xi
jCN jGN

1 if i is origin node of commodity k

-1 if i is destination node of commodity k

0 otherwise

w ij< U jyj
kcK

k K

x < y.j

k > o

xj

V(ij) E A

V(i, j) E A, k E K

V(i, j) c A, k c K

Yij E {0, 1} V(i, j) E A (4.14)

Each commodity k E K has a supply and demand node, and a flow requirement

wk. Ak is the fraction of commodity k that flows on arc (i, j), and yij is a binary
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decision variable indicating whether arc (i, j) is installed in the network. The capacity

of arc (i, j) is iti.

The objective function (4.9) minimizes the cost of the network and flow over the

network. ck is the cost of sending commodity k on arc (i, *), and cij is the fixed cost

for installing arc (i, J) in the network. Constraints (4.10) are flow balance constraints.

Constraints (4.11) ensure that the flow of commodities over each arc does not exceed

the capacity of that arc. Constraints (4.12) are forcing constraints that ensure that

there is no flow on arcs that are not installed in the network. Constraints (4.13) ensure

non-negative flow, and constraints (4.14) ensure that each arc is either installed or

not installed in the network.

This formulation is particularly useful when the network is not known. Trans-

portation problems are often modeled by a variant of the NDP. called the service

network design problem (SNDP). The SNDP is a specific form of NDP. where design

decision variables are forced to have balance of flow.

We reformulate the NDP formulation presented by Ahuja et. al. [1], as an arc-flow

SNDP. We use the aircraft team. AMR, and network structure defined in Chapter 3.

There is a set F of aircraft teams f. A is the set of all arcs on which AMRs can flow,

and Af is the set of arcs specific to vehicle f. We assume that we are given the origin

and destination node of each aircraft team f. Each AMR leg k E K has an origin

and destination node. and a flow requirement. wk. We define x kif as the fraction of

AMR leg k that flows on arc (i, ) Af, and yf3 as a binary decision variable. which

indicates if arc (i, j) is installed in the network. The capacity of arc (i, J) is uwi. We

define c k as the cost of sending AMR leg k on arc (i, J), and cfy as the fixed cost for

installing arc (i, j) e Af in the network.

53



- F 4
feF jeN

1 if i is origin node of AMR leg k

-1 if i is destination node of AMR leg k

0 otherwise

Vf E F, Vi E N

I
SF kxkK f
f GF kEN

x kf > 0

0 otherwise

V(i,j) EA
fEF

V(i,j) c A,k E Kf c F

V(i,j) E A, k c K, f E F

y1- C {0, 1} V(i,j) c A, f C F
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s.t.

S k 4XYj ±5 f5k 1:(izj i'E + f E (%, yf
k EK (i,j)E A f EF (ij)(EAf

(4.15)

x 
fGF jEN

(4.16)

jGN

1 if i is origin node of vehicle f

1 if i is destination node of vehicle f Vf E F, Vi e N

(4.17)

(4.18)

(4.19)

(4.20)

(4.21)



The objective function (4.15) minimizes the cost of the network (aircraft routes of

flight) and the flow of AMRs over it. Constraints (4.16) ensure flow balance of each

commodity through every node. Constraints (4.17) ensure flow balance of each vehicle

through every node. Constraints (4.18) ensure that the flow of commodities over each

arc does not exceed the capacity of vehicles using that arc. Constraints (4.19) restricts

each commodity to flowing on arcs that have been installed. Constraints (4.20) ensure

non-negative flow of commodities, and constraints (4.21) ensure that each arc (i, J)

is either installed or not installed.

4.2 Formulation as a Service Network Design Problem

In this section. we develop an SNDP formulation. SNDPOPT, to address the problem

of AMR scheduling and aircraft routing.

4.2.1 Decision Variables

Our formulation takes an arc-flow approach to solving the SNDP for aircraft team

arcs and AMR flow, given deterministic inputs. In this formulation, commodity path

flow variables are called AMR flow variables, because they represent the flow of AMRs

through the network. Similarly. network design decision variables are called aircraft

team arc variables. We define all variables used in this formulation below.

AMR flow decision variables

oL= 1 if AMR L is supported

0 otherwise

k= 1 if AMR leg k is supported

0 otherwise

f 1 if AMR leg k is supported on aircraft f on arc a

0 otherwise
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(k = total travel time of AMR leg k

c =art start of travel time of AMR leg k

eknd = end of travel time of AMR leg k

We introduce dummy AMR flow variables to ensure that all missions are supported,

either in real terms or by dummy variables. AMR flow on dummy variables do not

add value or cost to the objective function. Furthermore, flow is not constrained for

dummy variables other than for flow-balance. If an AMR is supported with dummy

variables, then it is unsupported on the flight schedule.

1 if AMR leg k flows on arc a
a (dummy variable)

0 otherwise

Aircraft team arc decision variables

1 if aircraft team f is scheduled on flight arc a

1i 0 otherwise

1

1

if aircraft team f is scheduled on waiting arc a

0 otherwise

if aircraft team f is scheduled on loading/unloading arc a

0 otherwise

if aircraftteam f

0

is scheduled on refueling arc a

otherwise

sf= 1 if aircraft team f is scheduled on shutdown arc a

0 otherwise

In order to formulate the problem, the structure of the time-space graph and addi-

tional variables are needed:
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(INI x JAI) incidence matrix for AMR flow variables, where:

1 if arc a starts at node n

-1 if arc a ends at node n Vn e N, a E A

0 otherwise

(INI x IAf ) incidence matrix for aircraft team flow variables, specific to

each aircraft team f. where:

Df (n, a) =I1 if arc a starts at node n

-1 if arc a ends at node n

0 otherwise

Vn E N, a c Af

(-y x INI) matrix indicating departure and arrival node for aircraft teams,

where:

1 if team f starts at node n

-1 if team f ends at node n

0 otherwise

Vn e N, f C F

(p x INI) matrix indicating demand data where:

wk if AMR leg k starts at node n

-wk if AMR leg k ends at node n

0 otherwise

Vn E N, k c K

(ILI x IKI) matrix where:

1 if leg k belongs to AMR L

0 otherwise
VL e L, k c K

M very large constant

4.2.2 Assumptions and Constraints

The SNDPOPT formulation models both the physical and operational aircraft con-

straints of the aircraft teams discussed in Section 1.1. and the AMR constraints
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discussed in section 2.1. In addition. we ensure integrality of aircraft team and AMR

flow through the network. We assume that the airspeed, loading/unloading time and

refuel time of each aircraft team and the carrying capacity remain constant through-

out the day. We also assume that HLZs have sufficient capacity for helicopter teams

to land, load/unload, refuel or wait, as the number of aircraft teams that we consider

in a typical planning window is not high enough to congest a typical HLZ. Further-

more, if we use a conservative estimate of flight times and refuel times, the schedule

will be flexible enough to accommodate multiple landings or refueling operations at

the same HLZ in the same time period.

4.2.3 Objective Function

The objective function establishes a tradeoff between value and cost. In order to

compare the three models, we must ensure that they measure value and cost in the

same way.

4.2.3.1 AMR Value

While AMRs are given a priority level, the Commander's Mission Priority List (CMPL)

does not specify the nature of the tradeoff between AMRs of different priority, tradeoff

being when we support several low priority AMRs at the expense of a high priority

AMR. Since the CMPL is used as a guide by planners, its application can be quite

subjective. A human planner uses experience and additional knowledge of current

operations to determine how the tradeoff between AMRs of different priority is han-

dled.

We separate AMR priorities into two tiers (several more may be used). The values

given to AMRs in the higher tier are orders of magnitude higher than those given

to AMRs in the lower tier. This prevents very high priority missions from being

unsupported at the expense of a collection of lower priority missions. At the same

time, there is flexibility within each tier to tradeoff AMRs. It allows AMR priorities

to be modeled more realistically, and tailored to each commander's guidance. In this

thesis, we consider six priority levels, with AMRs of priority 1-2 assigned to the first
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tier. and AMRs of priority 3-6 assigned to the second tier (Figure 4-1).

11

10T

9-

8-

7 -

6-

3

2

1 - TIER 2

010 1 2 3 4 5 6 7
AMR Prority

Figure 4-1: Conversion from AMR priority to value

The priority for each AMR L is translated into a value, vL, which is earned if the

AMR is supported, and is the sum of individual AMR leg values, vk.

vL=Zvk V E L
kEL

For the purpose of our formulations, we divide the total value of an AMR equally

between all of its legs, and add a constraint to ensure that AMRs must be supported

in their entirety.

4.2.3.2 Aircraft and Passenger Costs

In the objective function, the total cost is dictated by the costs of aircraft usage, cf

and c , and the cost of passenger movement, c'. The cost values that we consider are

not a strictly monetary, but are relative to the scale of AMR values, v

Aircraft Costs.

While we still want to gain the most value from the AMRs supported, we want to

do so for the lowest cost in terms of aircraft hours. Thus, given two solutions with

the same supported AMR value, the solution with the fewest flight hours should be

selected, which minimizes aircraft costs.

The issue of weighting flight versus ground arcs presents itself as well. We choose

to weight the cost of airborne time versus ground time according to the average fuel
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burn rate in each mode, as the scheduled maintenance and crew costs are the same

in either mode:

" Scheduled maintenance is dependent only on total flight hours, which Army

regulations define as the time when the aircraft leaves the ground for the first

time to the time when the engine(s) are shut down [4]. Therefore, there is no

additional required maintenance cost for an aircraft that flies one hour, than for

one that waits on the ground at engine idle for an hour.

" Crew costs are not increased with more flight hours, since these aircraft are

operated my military crews.

Passenger Cost.

The passenger cost of an AMR is modeled as the total travel time. The cost

of travel time, however, is subjective and depends on individual preferences, lost

productivity and individual schedule tolerance. We assume that passengers prefer to

spend the least amount of time flying as possible. Therefore, the minimum cost to

passengers is simply ATk for AMR leg k. If AMR leg k is being scheduled with total

travel time above ATk, the path will have a higher passenger cost, proportional to

the additional flight time.

We choose not to add a cost penalty due to transhipment of passengers during

an AMR leg because transhipment will already add additional required ground time,

which will be counted in the total travel time cost. Thus, any transhipment of pas-

sengers is already penalized in the model.

4.2.3.3 Objective Function Formulation

We now propose an objective function that formalizes the tradeoff between the AMR

value and cost. We assume an aviation planner prioritizes solutions as follows:

" First, maximize the total value of supported AMRs.

" If several solutions are of equal value, then select the one with the lowest aircraft

cost.
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e If several solutions are still equal, select the one with the lowest passenger cost.

Objective Function, = V okk-
kEK

S Y4Ta Ck k + Cf 5Ta + VaTa Ta
f EF (a7A kEK ckE-A +c~ aC+aa)

Fa AwAIT LOAD FUEL

(4.22)

The following variables are restated for convenience:

* Vk is the value of AMR k

" 6k is an indicator variable equal to 1 if AMR leg k is supported and 0 if not.

" of is the cost of one time period of a flight arc for aircraft team f.

" cf is the cost of one time period of a ground arc for aircraft team f.

" yaf is a binary decision variable indicating whether aircraft team f has flight are

a in its route.

* gf is a binary decision variable indicating if aircraft team f has waiting are a in

its route.

vf is a binary decision variable indicating if aircraft team f has loading/unloading

arc a in its route.

rf is a binary decision variable indicating if aircraft team f refueling arc a in its

route.

" Ta is the duration of arc a. ck is the passenger cost of one time period for AMR

leg k.

" (k is the total travel time of AMR leg k.
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4.2.4 SNDPOPT Model Formulation

SNDPOPT =

( aTa + Ckk±f
fEF (aE Af k K

max 5 vkok-

kEK

(a Ta +

aCAfWAIT

S
aE 4

f OAD

Vfta aaTa +L

a~U EL

S.t.

k k,f f
kK fGF

Vf E F,a E Af

7 yaTa +
a E XT

Df (n, a) ( y +

'\aEAf

5 9T! +
aeAfWAIT

5r +
acAFUEL

S
aEAfLOAD

Vf EF

(4.25)

Vn E N, k E K (4.26)

Va +aA s = E(f, n)

5 YgaTa +
aC AWAIT,t

Vn E N,

S
a EAfLOAD,t

f E F (4.27)

tT

a Ta <T FU EL 7aT

t~ia~ FU EL,t

StsTART) ... TEND - TFLIGHT - FLIGHT) ... END) , f c F

(4.28)

at UA afLOAD,t UALOAD,t a6AFUEL,t UEL,t

ES
SD , Dt U AfS~

Vt = 1...m -- 1,j E F
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(4.23)

(4.24)

vT~a + I: rf a- TCYCLE

aAD aEAFUEL

5 5 D(n, a) ( xk fwk + kWk =B(k, n)
f EF aEAf \fEF

Awg a

aEAfWAIT

t j

ya Ta +
t=ti (aC6

(4.29)



XE 'f + xk'f <1
I: E a6
fE aCA fEF a~

x 'f +±.< 1 Vai
fEF

Vk c K

,ay c A, k e K

kEK a E+k+
(bk+ k+)

kEK aEAk
(bk -tk-)

x kfM 5 v

aEALOADt

END FUEL) ,kcKfeF

(4.32)

x kf<M vf Vt=aE a

aCA+LOADt

S6j (L, k) = 0 LPL
kEK

f EF aCA p

1... (tEND UEL ,ke K,f EF

(4.33)

VL e L (4.34)

Vk E K (4.35)

_ \~xk,f
(start =x

acA-

x ~

= nd - start

Vk E K, f E F

Vk e K, f E F

Vk c K

x , a y, a a, stkktart, (end, k E {0,1}

Vk E K, a e A, f c F, L E L

(4.36)

(4.37)

(4.38)

(4.39)

The objective function (4.23) maximizes the total value of supported AMR legs minus

the cost of the aircraft team arcs and passenger flow. Constraints (4.24) restrict

the flow of personnel over all flight arcs to the capacity of aircraft going over those

arcs. This capacity constraint does not exist on the ground for we assume there is

enough space for personnel to load/unload and wait for flights. Constraints (4.25)

ensure that the total flight time of each crew does not exceed their allowed maximum
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flight time per planning cycle. Flight time is only counted during flight, waiting,

loading/unloading, and refueling arcs, and is not counted for shutdown arcs.

Constraints (4.26) conserve the flow of passengers at each node. Constraints (4.27)

conserve the flow of aircraft teams at each node. Constraints (4.28) ensure that

aircraft follow fuel-feasible paths. This is done by ensuring that all path segments of

duration greater than T LIGHT (minus shutdown arcs) have enough refueling arcs. If

any paths are not fuel feasible, then they will have at least one path segment that

violates one of these constraints. Constraints (4.29) ensure that there are never two

successive flight arcs for the same aircraft team.

Constraints (4.30) ensure that AMR legs are never scheduled on two successive flight

arcs to prohibit instantaneous transhipment. Constraints (4.31) ensure that AMR

legs are either supported or unsupported in their entirety, and that every time period

of each supported AMR leg is only supported by one aircraft team. Constraints (4.32)

and (4.33) ensure that there is at least a loading/unloading arc, or a refuel arc, before

and after every AMR flight arc.

Constraints (4.34) ensure that AMRs are supported or unsupported in their entirety

(either all legs supported or none). Constraints (4.35) define an indicator variable

for the completion of each AMR leg. Constraints (4.36), (4.37), and (4.38) define

the total travel time for each AMR. Constraints (4.39) are binary constraints on the

decision variables and ensure that AMRs and aircraft teams are not split up while

moving through the network.

4.3 Path-Flow Heuristic using Composite Variables

Solving the SNDP as an integer program presents several issues. First, the number

of decision variables and constraints increase exponentially as the number of nodes

in G(N, A) increase linearly. Second, the LP-relaxation of this formulation yields

fractional aircraft arcs and AMR flow, and provides a poor lower bound on the optimal

integer solution (Nielsen 112]).

We adopt a composite variable approach to mitigate some of these issues. The
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idea is to combine design decision variables and commodity decision variables into a

single decision variable. Many authors have conducted extensive research into the use

of this approach for optimizing large-scale network design problems. Armacost et. al.

13] use composite variables in formulating express shipment service network design

problems. Barnhart et. al. [5] present a model to solve the airline fleet assignment

problem using composite variables. Cohn [10] explores techniques that are used to

limit the number of composite variables, such as real-world operational rules and the

branch-and-price algorithm. As an application of composite variables to Air Mobility

Command's (AMC) channel route planning, Nielsen 112] uses a Composite Variable

Formulation (CVF) in addition to column generation techniques.

4.3.1 Composite Variable Formulation

To solve the SNDP using composite variables, we define the feasible set of aircraft

team path composite variables P. where each variable pf,\ in the set defines a specific

aircraft team route of flight, and also AMR legs supported by that team. Each path

composite variable pfA belongs to aircraft team f and is indexed by A, and has value

vfA. It has additional parameters. q1, AAfA and AkA which indicate the route of

flight and AMR schedule for that path (Table 4.1).

Set Subset Element Parameters Description

aircraft team path composite variable

A number of path

vf'A value of path

cf A cost of path

pf'A qf'A vector of dimension 1KJ, where

qf'A(k) 1 if AMR leg k is supported

0 otherwise

AfA set of arcs on path for team f
AkA set of arcs on path for AMR leg k

Table 4.1: Composite variable parameters
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4.3.2 Path Generation Heuristic Algorithm

The problem of scheduling aircraft teams and AMRs remains complex, even after

introducing composite variables, since the number of paths to consider in the set P is

very large. As opposed to using generic aircraft routes to solve the Fleet Assignment

Model (FAM) (Barnhart 171), or using the AMC channel route structure to narrow

the list of feasible paths (Nielsen [12]), daily AMR scheduling and route planning

does not have a set of fixed daily routes to serve as a template for paths. HLZs can

be visited by aircraft teams in any order and at any time.

Instead of searching for the entire set of feasible paths P, we use a heuristic ap-

proach to generate a smaller set, P*, of good paths for each aircraft team. We further

use several complexity reduction techniques (section 4.3.2.3) to reduce the total run-

time of the algorithm.

4.3.2.1 Algorithm Overview

We use a recursive path generation heuristic algorithm (PGHA), to generate feasible

paths. An example is illustrated in Figure 4-2. The algorithm follows a depth-first

with backtracking methodology, using the following rules for branching:

" At each node, check if any time, fuel, or capacity constraints are violated. If no

constraints are violated:

- If no AMR legs are on board, create a branch to return aircraft team to its

final destination base, and store completed path in Pf. Backtrack along the

tree to the last node where there remains unexplored branches.

- Create a new branch to pick up each AMR leg that can be supported from

the current time and position of the aircraft team.

- Create a new branch to drop off each AMR leg that is currently on board.

* Otherwise, discard current path, and backtrack along the tree to the last node

where there remains unexplored branches.
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-. Refueling Arc

------------------------------
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1,2,3- Order or Algorithm

yyPruned Node

Figure 4-2: Example showing the generation of feasible paths

In Figure 4-2, node (1) is created for an aircraft team start base and time. Next,

three alternative paths are considered based on requested AMR legs. In considering

the first alternative, we create nodes (2) and (3) to refuel then pick up AMRs 1 and 2.

This leads to another decision point where we have two alternatives. We first create

nodes (4) and (5), which drops off AMRs 1 and 2 before going to the ending HLZ for

the aircraft team.

We now have a feasible aircraft team path described by nodes (1) to (5) which is

stored in memory. Then, we consider the previous decision point that had additional

alternatives. From node (2), we create node (6). However, let us assume for this

example that this path violates a model constraint, such as fuel, time, or aircraft

capacity. Node (6) is then pruned from the tree. This process continues until all

branches are either completed or pruned. The final result in this example is five

feasible aircraft team paths described by unique root-to-leaf paths in the tree.
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Figure 4-3 shows how a tree path from root to leaf is decomposed into flight legs

for the aircraft team and AMRs. forming an aircraft team route of flight and AMR

schedule. AMR passenger flow is obtained from pickup and drop-off information

contained in the selected nodes of the tree, and the completed path is stored as a

composite variable. The bold arrows represent aircraft arcs through G(N, A) and the

thin arrows represent AMR passenger flow on those arcs.

Aircraft team path described by the tree path from
node 1 to node 5

1 D F

------------- -------- 1I--------------

12
2

S E

Figure 4-3: Example showing a feasible path

Throughout the execution of the algorithm, a current aircraft team path is kept

in memory along with all AMR legs that are supported by that team. The number

of possible branches created depends on the number of remaining AMRs that can

be supported, constrained by the team's availability window and remaining capacity,

and by the number of AMRs currently on board that still need to be taken to their

destination HLZ. When no additional AMRs can be picked up or dropped off, the

current branch is terminated, the current path is added to the list of feasible paths

Pf, and the algorithm returns to a previous decision point in the recursive tree. After

completing each decision, the current path is inspected for feasibility, and the current

branch is pruned if any constraints are violated. In this way, the algorithm cycles

recursively through a tree for each aircraft team f, where paths from root to leaf are

feasible.
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4.3.2.2 Algorithm Description

The PGHA algorithm is shown in Algorithm 1. The algorithms main procedure is

PGHA(f, K), which returns a set of feasible paths Pf for team f. given a set of

AMR legs K.

Algorithm 1 Path Generation Heuristic Algorithm (PGHA)

Procedure PGHA(f, K) {
Global variable Pf := {empty}
Local variable p := {empty}
Branch(f, p, K)
return Pf

end procedure }

Procedure Branch(f,p, K) {
if no AMR legs in K {

add path segment to p, from current node to ending node for f
end if }
for all AMR legs k no on board f do {

if k can be picked up {
add path segment to p, from current node to earliest departure
node for k
add k to list of AMRs on board f
if no fuel, time, or capacity constraints are violated {

Branch(f, p, K)
end if }

end if }
end do }
for k on

if k
board f do {
can be dropped off {
add path segment to p, from current node to droppoff HLZ of
remove k from list of AMRs on board f
remove k from K
if no more AMRs on board f {

add path segment to p, from current node to ending
node for f
if p has a higher value than other paths executing the
same AMRs {

remove other paths in Pf executing the same AMRs

k

add p to Pf
else if p is the only path executing its set of AMRs {

add p to Pf
end if }

end if }
Branch(f,p, K)

end if }
end do }
return

end procedure }
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The recursive procedure used by the algorithm is Branch(f, p, K), which con-

structs the path segments exemplified above in Figure 4-2. If a flight leg requires

additional fuel to pick up or drop off an AMR, we solve a shortest path sub-problem

to determine the best HLZ for refuel. Its solution provides the refuel HLZ that min-

imizes the deviation from the current route of flight. Fuel, remaining capacity, path

value, and path cost are tracked in the path composite variable at each step of the

algorithm, and updated whenever an are is added to the current path or an AMR leg

is completed. The full pseudo-code for the PGHA is provided in Appendix A.

4.3.2.3 Path Reduction Techniques

Several techniques are used to limit the number of branches explored and paths

created:

1. We only create path segments needed to directly support AMR legs, refuel, or

return to the aircraft home HLZ.

2. The shortest path sub-problem only picks one refuel HLZ, and only when refuel

is necessary to support an AMR.

3. When supporting an AMR, the algorithm does not branch to create several

different pick-up times, reducing the number of paths created. AMR pickups

and drop-offs are scheduled as close to the beginning of the travel window of

each leg as is feasible, based on the assumption that aircraft teams maximize

their chances of picking up more requests if they do not wait before picking up

or dropping off AMRs.

4. We only store in Pf the best path for each feasible sequence of supported AMR

legs. For example, if aircraft team path p/f supports the sequence of AMRs

{1, 5, 6}, and path pf,2 supports the sequence of AMRs {5, 1, 6}, then the path

with the highest value will be kept, and the other discarded.

Unlike paths created by solving SNDPOPT, the PGHA does not consider transhipment

of an AMR between different aircraft teams in the middle of a leg. While this is

feasible in practice, it may make the solution less robust in the face of unforecasted
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delays, because of logistics issues that arise in the event of weather or maintenance

delays. During the execution phase of the flight schedule, solutions that supports

each AMR leg with a single team will not be impacted by delays to other aircraft

teams. We also assume that it is better for an AMR to not be supported than to

be dropped off at an HLZ other than its destination. Passengers may be left for an

extended period of time at a foreign location with little logistics support.

4.3.2.4 Important Algorithm Property

The algorithm PGHA determines a set of feasible paths Pf, given an aircraft team

f, and set of AMR legs K. At any given iteration of Branch(f, p, K), the procedure

calls itself once to pick up every AMR leg available, and once to drop off every AMR

leg on board. Therefore, if at a given iteration there are three remaining feasible

AMR legs, and two AMR legs on board, the algorithm will explore five new branches.

As a result, we can state the following important property of PGHA:

Given PGHA(f, K) returns Pf, and PGHA(f, K') returns P'

If K' C K, then P'f C Pf (4.40)

This property says that if the set of AMR legs K' is a subset of K, then all paths

contained in P'V are also contained in Pf.

4.3.3 Set-Packing Problem Formulation

Once we select a set of heuristically generated paths P* for consideration, we must

choose the optimal subset of paths such that each aircraft team is assigned one path

at most, and each AMR leg is supported no more than once, and if an AMR leg

is supported, all legs from that AMR are also supported. This problem can be

formulated as a weighted variant of the maximum set packing problem (MSSP), which

we call MSPPH. Given each path has a set of supported AMR legs and associated

path value, the set packing problem picks a path for each aircraft team such that

all sets of supported AMR legs are pairwise disjoint (in other words, no two share
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a common AMR leg). and total value is maximized. Recall from Chapter 2 that we

want to ensure that if an AMR is supported, then all AMR legs from that AMR are

supported (not necessarily by the same aircraft team). Therefore, we specify this as

an additional constraint in the set packing problem.

Decision variables and data structures are defined as follows:

Binary Decision Variables

zf = 1 if path A is selected for team f

0 otherwise

k

0 L {
1 if AMR leg k is supported

0 otherwise

1 if AMR L is supported

0 otherwise

The following notation is restated for convenience:

pL number of AMR legs belonging to AMR L

J (IJI x IKI) matrix where:

qA

{ (L, k) 1 if leg k belongs to AMR L

J (0 otherwise

vector of length IKI indicating which AMR legs are supported on path

p'X where:

ql," (k) = 1 if leg k is supported on path pfA

0 otherwise
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Maximum Set Packing Problem Formulation

MSPPH= max : z,'' (vf'A - cfA (4.41)
f EF pf7A Gpf

S.t.

z fA < Vf c F (4.42)
pfAcpf

Z f'>A qf""(k) < 1 Vk E K (4.43)
pf,\eP*

5 6kj (L, k) = 0 LL VL G L (4.44)
kcK

zfA E {, i} VpfA E p* (4.45)

oL {01} VL c L (4.46)

6k {0,} Vk c K (4.47)

The objective function (4.41) maximizes the value of the total missions flown minus

the cost of those missions. Constraints (4.43) ensure that only one path is selected for

each aircraft team. Constraints (4.42) ensure that each passenger request is supported

at most by one aircraft team. Constraints (4.44) ensure that AMRs are supported or

unsupported in their entirety. Constraints (4.47) ensure that paths are either selected

or not in their entirety. Constraints (4.46) and (4.47) impose binary constraints on

AMR and AMR leg decision variables.

4.3.4 Maximum Total Return Algorithm

The Maximum Total Return Algorithm (MTRA. Algorithm 2) generates a set of

feasible paths P* by running the PGHA on the entire set of AMR legs, K, for each

aircraft team. then solving MSPPH to select the best paths.
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Algorithm 2 Maximum Total Return Algorithm (MTRA)

1 for each aircraft team f E F do {

2 if f is identical to another aircraft team f for which Pi has

already been computed {

3 P: P

4 else

5 Pf PGHA(f, K)

6 end if}

7 end do }

8 solve MSPPH using the set

P* = {Pf,Vf E F}which returns pfA for each team f

4.3.5 Maximum Marginal Return Algorithm

The Maximum Marginal Return Algorithm (MMRA) is a greedy algorithm for AMR

scheduling and route planning. The intuition behind this algorithm is that when the

set of requested AMR legs becomes large., generating paths may require significant

computation time due to the recursive nature of the Path Generation Heuristic Algo-

rithm (PGHA). Therefore, instead of calling the PGHA once for each aircraft team

on the entire set K, as we do for MTRA, we call it several times on smaller subsets

of K. The algorithm works as follows:

" We divide the set of AMRs into subsets, such that the subsets are ordered from

highest value AMRs to lowest.

" We generate feasible paths from the first subset, using PGHA, then select a path

for each aircraft team using MSPPH. We discard any AMR legs that are not

supported in the current solution.

" The set of supported AMRs is taken from the current solution, and augmented

with the next subset of AMRs that have not yet been considered.

* New paths are generated using PGHA, and a new solution is computed using

MSPPH. We discard any AMRs not supported in the newest solution.
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e We continue this process until all subsets of AMRs have been added in. and

select the last solution generated by MSPPH as the final solution.

In this manner, we sequentially re-optimize using different sets of AMRs. Any AMRs

that improve the objective function are kept, while AMRs that do not are discarded.

Once an AMR has been discarded, it is not reconsidered in future iterations. MMRA

is shown in Algorithm 3.

Algorithm 3 Maximum Marginal Return Algorithm (MMRA)

1 divide set of AMRs L into n pairwise independent ordered value sub-sets Li, such that

S= L1 U L2 U.. U J 7 , Vi > v'i+1and each sub-set Li contains all

AMR legs k E L for each AMR L c Li

£*:= {empty}

v*:= 0

pf*:= {empty} Vf E F

for i := 1 to n do {

£' := L* U Li

for each aircraft team f E F do {

P'f := PGHA(f, K') where K' is the set of AMR legs in J'

solve MSPPH using the set P* { P'f, Vf E F

returns pf'A for each team f
end do }

if (vA - cf'A)> v*{
fEF

pf*:= pfA Vf F

v*:= E (v' - cfA)

fEF

L*:= set of supported AMR legs Vpf*

end if }

end do }
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4.3.6 Analytic Solution Comparison

We show below that the solution value provided by MMRA cannot exceed the solution

value provided by MTRA.

1. Recall from Property (4.40) that if K' C K, thenPf CP'f, as generated by

PGHA. Thus, the set of paths generated in MTRA by PGHA with inputs f and

K contains all paths generated in MMRA with inputs f and any subset of K.

2. It follows that if pf'A C p'f, then pf,' C Pf. Every path contained in P'f is also

contained in Pf.

3. These results follow for every aircraft team f.

4. Let ZhRA be the value returned by MTRA, and let ZJeR be the value re-

turned by MMRA, for a set of aircraft teams F, and a set of AMR legs K.

5. For Given sets F and K, MTRA solves MSPPH for each set of paths Pf, and

MMRA solves MSPPH for a subset of paths P'f C Pf. It follows that:

Z R <; Z< JF, (4.48)

We have shown that for a particular set of aircraft teams and AMR legs, the value

returned by MMRA cannot exceed the value returned by MTRA. This makes sense

intuitively, as we would expect a solution given by the greedy approach, which suc-

cessively considers subsets of K, to be lower than an approach that considers all of

K.

4.4 Chapter Summary

In summary, we formulated the problem of AMR scheduling and aircraft team route

planning for Army Aviation as a service network design problem, SNDPOPT, and as

maximum set packing problem, MSPPH, given a set of heuristically generated aircraft

team path composite variables from the PGHA. We then proposed two algorithms

to generate a heuristic solution: the Maximum Marginal Return Algorithm and the
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Maximum Total Return Algorithm. MMRA is a greedy algorithm that iteratively

considers subsets of total demand, while MTRA considers the entire set of AMR

demand in one iteration (Figure 4-4).

Model 2

MTRA

PGHA

MSPPH

Heuristic
Solution

Model 3

MMRA

PGHA

MSPPH
)

Heuristic
Solution

Figure 4-4: Comparison of modeling approaches
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Chapter 5

Computational Analysis

In this chapter, we evaluate the three models described in chapter 4 for computational

efficiency. All models were run on an Intel i73770k Windows 8 computer system using

Python 2.7 as the programming language, PuLP as the Integer Program modeler and

IBM ILOG CPLEX@ as the commercial Integer Program solver.

5.1 User-Defined Parameters

The models developed in Chapter 4 require the user to input parameters to model the

physical characteristics of the aircraft teams, AMRs, and time-space graph G(N, A).

Of these parameters. we treat certain ones as fixed, and others as variable.

5.1.1 Fixed Parameters

Fixed parameters model the duration of a time period, cost parameters, and certain

characteristics of an aircraft team. They do not change between test cases, and reflect

fixed operational or model data. Table 5.1 shows the list of fixed parameters and

their values. We select r = 10 minutes as the unit time period. All flying, waiting,

refueling and shutdown times are modeled in increments of 10 minutes. We model

aircraft teams with similar characteristics to a team of UH-60 Blackhawk helicopters.

Accordingly, we select the team capacity, vf, as 40 passengers. and the cost of fuel

for one flight time period, cf, equal to the cost of three ground periods (3 cf). This
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models an average fuel consumption rate difference between these two modes. The

cost of one flight time period is normalized at 1, with the cost of AMR flow, ck, set

equal to 1/10. This ensures that AMR flow is weighted the least in our objective

function. The maximum flight time per tank of fuel, _TFLIGHT, corresponds to the

average flight time available on one tank of fuel at cruising airspeed, without cutting

into the required fuel reserve time of 20 minutes in visual meteorological conditions

(VMC). We opt for a conservative estimate, and, for our purposes, we assume a

constant fuel burn rate in all modes of flight, while in reality aircraft use less when

on the ground than when in the air. The refuel time, ffUEL, and the passenger

loading and unloading time, TLOAD, are given average operational values based on

the author's experience.The minimum shutdown time, f, is set at 30 minutes and

can be changed to reflect different operational needs. Since it usually takes up to 15

minutes to shutdown or start an aircraft, aircrews will only want to shutdown if they

have at least an additional 15 minutes on the ground. Otherwise, we assume they

will stay on board with the engines running and wait.

Parameter Description Value

T unit time period 10 minutes

ck cost of AMR flow per time period 110

c/ cost of air are per time period 1

cf cost of a ground are per time period 1

Vf passenger capacity 40 seats

TSD minimum shutdown time 30 minutes

fLIGHT max flight time per tank of fuel 120 minutes

fFEL refuel time 20 minutes

LOAD passenger loading/unloading time 10 minutes

Table 5.1: Fixed parameters

5.1.2 Variable Parameters

The overall problem size is dictated by variable parameters. They are changed be-

tween tests or between iterations of the same experiment. Table 5.2 shows the list

of variable parameters. The Characteristics of G(N, A), such as the number of time
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periods, m, and the number of HLZs. / are variable parameters. In addition, we

consider the number of aircraft teams, the number of AMR legs, p, the number of

passengers per AMR. wk, and schedule tolerance. <k, as variable parameters. From

Chapter 3. the schedule tolerance of an AMR leg is the degree of flexibility that pas-

sengers have on either end of their AMR leg. and is defined by the travel window of

an AMR leg minus the shortest feasible flight time for that AMR leg.

Parameter Description

m number of time periods

f3 number of HLZs

-y number of aircraft teams

p number of AMR legs

w k passengers per AMR leg

#k schedule tolerance

Table 5.2: Variable parameters

5.1.3 Demand Distribution

Given a certain level of AMR demand, certain AMR parameters are randomly gen-

erated. These parameters reflect the specifics of the AMR, such as the number of

passengers, the starting and ending HLZs, and travel window. In the test cases in

this chapter, AMR parameters for each AMR L and AMR leg k are uniformly dis-

tributed as shown in Table 5.3. unless stated otherwise for different test cases.

AMR Parameter Description Value

w k number of passengers on AMR leg k U ~ (1,20)

vk value of AMR leg k U {10, 9, 8, 0.3, 0.2, 0.11 x 104

bk- starting HLZ of AMR leg k U ~ (All HLZs)

bk+ ending HLZ of AMR leg k U ~ (All HLZs)

tk- earliest departure time from starting HLZ U ~ (All time periods)

tk+ latest arrival time at ending HLZ tk- + ATk + #k, s.t. tk+ <t"

pL number of legs belonging to AMR L U ~{1, 2}

Table 5.3: Randomly generated AMR parameters
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5.2 Sensitivity Analysis

In this section, we conduct a sensitivity analysis to determine the effect of different

variable parameters on algorithm run-time.

5.2.1 Test 1: Increase in Network Size

We run SNDPOPT, MTRA, and MMRA on test scenarios of increasing network size,

by varying both the number of time periods and the number of HLZs (Table 5.4). We

maintain the number of teams, AMR legs, passengers per AMR, and AMR schedule

tolerance constant.

Parameter Description Value

m number of time periods variable

/3 number of HLZs variable

-y number of teams 1

p number of AMR legs 3

wk passengers per AMR leg 8

<ok schedule tolerance 30 min

Table 5.4: Test 1 variable parameters

Figure 5-1 shows the relative increase in run-time for SNDP OPT per change in these

variables

SNDPOPT -- 3 HLZs
PT / - -- 4- HLZs

- 6 HLZs
+-7 HLZs

110 HLZs
- HLZs

i I j -.-- OHH s

10
Time periods
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00.3
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C
01of:
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I
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Figure 5-1: Computational performance vs. network size
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82

1000[
C
0
0a)

a)
E

0::

500

0
5

I I 0
5



tial increase in run-time, when the number of time periods and or number of HLZs is

increased (Figure 5-1). While the number of decision variables increases linearly, the

number of constraints approximately doubles for every additional time period and

HLZ (Table 5.5). We are not able to compute a solution for problems that have over

one million constraints. so this model scales poorly to larger problems.

The Maximum Total Return Algorithm (MTRA) and Maximum Marginal Return

Algorithm (MMRA). however, show a constant run-time when the number of time

periods and HLZs increases, with MMRA showing much faster run-times than MTRA.

Time Periods HLZs AMR legs Decision Variables Constraints run-time (sec)

5 3 3 678 5,719 2.02
5 4 3 1,122 16,682 4.87
5 5 3 1,622 35,987 10.50
5 6 3 2,186 66,154 21.14

5 7 3 2,994 126,651 46.06
5 8 3 3,950 222,682 110.82
5 9 3 5,038 366,307 213.94

5 10 3 6266 571,386 491.78
10 3 3 2,638 95,374 31.17
10 4 3 4,002 225,717 102.44
10 5 3 5,562 443,052 285.69
10 6 3 7,336 775,099 763.26
10 7 3 9,484 1,307,986 intractable

11 6 3 8,870 1,139,371 intractable

13 5 3 9,606 1,343,585 intractable
14 4 3 8,322 1,002,952 intractable

15 3 3 6,698 643,613 575.51
16 3 3 7,762 868,881 981.80
17 3 3 8,910 1,150,077 intractable

Table 5.5: SNDPOPT computational statistics

Figure 5-2 shows the time period vs. HLZ tractability region for SNDP OPT, where

we consider a problem with one aircraft team and 3 AMR legs. In this case, we

consider any problem "intractable" when we are not able to solve it with our current

computer configuration (described in the chapter introduction).
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Figure 5-2: SNDPOPT tractability region (IF= 1, JK= 3)

5.2.2 Test 2: Increase in Number of Aircraft Teams

The run-time of our heuristic algorithms favors scenarios where the aircraft teams

have identical characteristics, since MTRA and MMRA only compute a set of fea-

sible paths for each type of aircraft team. Therefore, this test is divided into two

parts. We first consider increasing the number of identical aircraft teams, and then

we consider increasing the number of different aircraft teams. Table 5.6 shows the

variable parameters for this test.

Parameter Description Value

m number of time periods 10

# number of HLZs 3

- number of teams variable

p number of AMR legs 6

w k passengers per AMR 10

qok schedule tolerance 30 min

Table 5.6: Test 2 variable parameters

Case 1: Increasing the Number of Identical Aircraft Teams

Here, we increase the number of identical teams from one to eight, with each

aircraft team available during the entire time period considered (Figure 5-3). The

run-time for SNDPOPT model increases exponentially for every additional aircraft

team. For both MTRA and MMRA. the run-time increases very slowly and nearly

linearly.
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Figure 5-3: Run-time vs. number of identical aircraft teams

Case 2: Increasing the Number Different Aircraft Teams

In this case, we increase the number of different aircraft teams, with each aircraft

team available during the entire time period considered. The run-time for SNDP OPT

is nearly identical to the run-time in Case 1, showing that the characteristics of each

aircraft team have little effect on the run-time of this model. For both MTRA and

MMRA, the run-time again increases linearly, just as in Case 1. However, the run-

time for MTRA is much higher, on average, than in Case 1. This is explained by

the fact that the algorithm must compute a new set of feasible paths for each type

of aircraft team. The run-time of MMRA remains lower than MTRA, and about the

same as in Case 1.
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5.2.3 Test 3: Increase in Number of AMR legs

For this test, we want to determine the effect of increasing the number of AMR legs

considered on run-time. Table 5.7 shows the variable parameters defined for this test.

We also split this test into two cases to determine the model behavior when one, and

then when two different aircraft teams are considered.

Parameter Description Value

m number of time periods 10

/3 number of HLZs 3

7 number of teams 1

p number of AMR legs variable

W k passengers per AMR 10

<k schedule tolerance 30 min

Table 5.7: Test 3 variable parameters

Case 1: One Aircraft Team

In this case, we increase the number of AMR legs considered from 1 to 14 (Figure

5-5). As a result, the run-time increases for the three models. For SNDP OPT, the av-

erage run-time increases somewhat linearly over the range of the experiment. MTRA

experiences an exponential growth in run-time, while MMRA run-time increases ex-

ponentially, but much slower than MTRA.

E 2500 -SNDPPT
4200 --- MTRA

-2000 -MMRA

F 1500-

0 1000 -

0

U1) 500

4-

15 10 15
Number of requested AMR legs

Figure 5-5: Run-time vs. number of AMR legs (one aircraft team)
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Parameter Description Value

m number of time periods 10
/3 number of HLZs 3
-y number of teams 1
p number of AMR legs 6

k passengers per AMR leg variable
- schedule tolerance 30 min

Table 5.8: Test 4 variable parameters

Case 2: Two Aircraft Teams

In this case, we consider two aircraft teams and again increase the number of

AMR legs from 1 to 14 (Figure 5-6). The run-time increases for all models (SNDP OPT

cannot be solved for cases where demand is greater than 8 AMR legs on the computer

running the experiment). However, we note that the rate of increase for the run-time

of SNDPOPT is greater than that of MTRA and MMRA, while the run-time of MMRA

remains slightly lower than that of MTRA.

Cl)

E 2500 ---- SNDPW OPTa)
2000 --- MTRA

.. MMRACo 10
. : 1500 -*

1000 -

500
a)E -4

4_j 0 0 0 8 -0

5 10 15
Of Number of Requested AMR legs

Figure 5-6: Run-time vs. number of AMR legs (two aircraft teams)

5.2.4 Test 4: Increase in Number of Passengers per AMR

For this test, we consider one aircraft team and six AMR legs, and vary the number

of passengers per AMR leg (Table 5.8).

Figure 5-7 shows the run-time vs. the number of passengers per AMR. As the

number of passengers per AMR leg increases from 1 to 40, the run-time of SNDP OPT

remains constant, while the run-time of MTRA and MMRA decreases, on average.

This is because the Path Generation Heuristic Algorithm (PGHA), which is used by
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MTRA and MMRA, creates additional branches based on remaining aircraft capacity.

If AMRs have a higher passenger count, then remaining aircraft capacity is lower, on

average, thus fewer recursive branches are created to pick up additional AMRs. In

the small time-space graph G(N, A) that we consider, SNDPOPT has a much longer

run-time than the other two models. This is expected from the results of Test 1.

3
ISNDPOPT

2
0
E

C
40

--- MTRA
o MMRA

00 000000-000

10 20 30 40
Number of passengers per AMR leg

Figure 5-7: Run-time vs. number of passengers per AMR

5.2.5 Test 5: Increase in Schedule Tolerance per AMR

In this test, we change the schedule tolerance of the AMR legs,

other fixed and variable parameters constant (Table 5.9).

Parameter Description Value

m number of time periods 10

/3 number of HLZs 3

7 number of teams 1

p number of AMR legs 6

wk passengers per AMR 10

<k schedule tolerance variable

while maintaining all

Table 5.9: Test 5 variable parameters

Figure 5-8 shows the run-time vs. schedule tolerance. The schedule tolerance does

not affect the run-time of SNDPOPT, on average, while the tun-time of MTRA and

MMRA increases exponentially, albeit at a very low rate. This is because of the
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way that PGHA finds feasible paths. If each AMR is available to be picked up and

dropped off during a longer time period, then there is a higher probability that it can

be supported. Therefore, the number of paths created by PGHA is increased as the

schedule tolerance of each AMR increases.

150

g 100

-SNDPOPT
E
;50 -G-MTRA

SoMMRA

0 20 40 60
Schedule tolerance per AMR (min)

Figure 5-8: Run-time vs. schedule tolerance

5.2.6 Summary and Discussion

Table 5.10 summarizes the qualitative effect of each variable parameter on total run-

time. Discussion Points:

" Increasing the number of time periods, m, or the number of HLZs, #, increases

the run-time of SNDPOPT, but not of MTRA or MMRA. This is because the Path

Generation Heuristic Algorithm (PGHA) only builds route segments with a goal

of picking up or dropping off AMRs, so many possible route segments are not

considered. On the other hand, SNDPOPT considers every feasible aircraft team

are and AMR flow combination in G(N, A), therefore the number of decision

variables and constraints increase at a much faster rate than the size of G(N, A).

" Increasing the number of aircraft teams, y, or the number of AMR legs, p,

increases the run-time of all models. The run-time of SNDP OPT increases expo-

nentially, when the number of aircraft teams is increased, while it increased at

a linear rate for MTRA and MMRA. The integer program SNDPOPT considers

all possible combinations of aircraft arcs and AMR flow, for all aircraft teams.
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Parameter Description Change Model run-time

m number of time periods increase SNDPOPT increase
MTRA no change
MMRA no change

set B
BI number of HLZs increase SNDPOPT increase

MTRA no change
MMRA no change

set F
jFJ number of aircraft teams increase SNDPOPT increase

MTRA increase
MMRA increase

set K
p = JKJ number of AMR legs increase SNDPOPT increase

MTRA increase
MMRA increase

W passengers per AMR increase SNDPOPT no change
MTRA decrease
MMRA decrease

<k schedule tolerance increase SNDPOPT no change
MTRA increase
MMRA increase

Table 5.10: Computational analysis results

Therefore, as the number of aircraft teams increases linearly, the number of vari-

ables and constraints created by SNDPOPT also increases linearly, but as a result

the run-time is increased exponentially.

" Increasing the number of passengers per AMR, wk, does not have a measurable

effect on the run-time of SNDPOPT, but decreases the run-time of MTRA and

MMRA. SNDPOPT still considers the same number of aircraft arcs and passenger

flow for different numbers of passengers per AMR, but MTRA and MMRA, which

use the Path Generation Heuristic Algorithm, compute fewer paths because the

aircraft teams are more quickly filled to capacity.

" Increasing the schedule tolerance for each AMR, #k , does not have a measurable

effect on the run-time of SNDPOPT, but increases the run-time of MTRA and

MMRA. SNDPOPT still considers the same number of aircraft arcs and passenger

flow for different numbers of passengers for each AMR, but MTRA and MMRA

compute more paths, because a greater number of feasible AMR pickup and drop-
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off schedule combinations exists (Chapter 4). This has the effect of increasing

the run-time of both MTRA and MMRA exponentially as schedule tolerance is

increased linearly.
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Chapter 6

Operational Analysis

This chapter focuses on operational analysis and contains several major sections. We

compare the solution that each model provides to the problem of AMR scheduling

and aircraft routing, for problem sizes that SNDPOPT is able to solve. Then. we

compare the solution of the Maximum Marginal Return Algorithm (MMRA) to that

of the Maximum Total Return Algorithm (MTRA). We also compare the solution of

both models against one developed manually. similar to what is done in practice. In

addition. we discuss how these heuristic algorithms can be used as a tool in the lift

planning process. Finally, we look at how changes in schedule tolerance affect service

and capacity estimations.

6.1 Comparison Across All Models

In this section. we address problem sizes that all models are able to solve. in order to

gain insight into how the heuristic models (MTRA and MMRA) perform, compared

to the optimal solution provided by SNDPOPT.

6.1.1 Test Scenarios

We consider a static graph containing three HLZs (Figure 6-1). where one aircraft

team is available from HLZ 'C'. Since the number of time periods for our test scenarios

will be small. we set the maximum flight time before refueling. TfLIGHT, to eight time
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Figure 6-1: Test scenario static graph

periods, or 80 minutes, and the refuel duration, TJUEL, to one time period, or 10

minutes.

For Test Scenario 1, we consider one UH-60 Blackhawk team over twelve time

periods, with a demand of 10 AMR legs . For Test Scenario 2, we consider two UH-60

Blackhawk teams over a ten time periods, with a demand of seven AMR legs (Table

6.1).

Parameter Description Test Scenario 1 Value Test Scenario 2 Value

m number of time periods 12 10

3 number of HLZs 3 3

- number of teams 1 2

p number of AMR legs 10 6

wk passengers per AMR U[1,201 U[1,20]

qok schedule tolerance 100 min 100 min

vk leg value 1000 1000

Table 6.1: Test scenario parameters

6.1.2 Results and Discussion

We ran 100 iterations for each scenario, randomizing AMR leg origin and destination

nodes uniformly over the time-space graph, G(N, A), subject to a schedule tolerance,

q*, of 100 minutes.

The results for both test scenarios are shown in Figure 6-2. In Test Scenario 1,

MTRA achieved a solution within 5% of SNDPOPT in 95% of the cases. MMRA

achieved within 5% of SNDPOPT in 50% of the cases. In test Scenario 2, both MTRA

and MMRA achieved the same results, within 5% of SNDPOPT in 97% of the cases,
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and within 15% of SNDPOPT in 100% of the cases.
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Figure 6-2: Test scenario histogram of supported AMR legs

In both test scenarios, SNDPOPT supported an equal or greater number of AMR

legs than MTRA and MMRA. Table 6.2 shows the average number of supported AMR

legs of each model, for these test scenarios. On average, the best heuristic algorithm

result (MTRA) achieved an average number of supported AMR legs within 1% of

SNDPOPT for both small test scenarios.

Model Test Scenario 1 Average Test Scenario 2 Average

SNDPOPT 5.62 5.98

MTRA 5.60 5.97

MMRA 5.00 5.97

Table 6.2: Average number of supported AMRs

Solving the service network design problem optimally on a small network G(N, A),

with few aircraft teams and AMRs is very fast, but larger networks prove to be very

hard for SNDPOPT. While the formulation guarantees an optimal solution, it may be

intractable for problems of meaningful size.

6.2 Operational Scenarios Description

We describe two larger, realistic, and quite different scenarios, based on the author's

operational experience, which reflect actual geographical conditions in Afghanistan.
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We use these scenarios to compare the solutions generated by MTRA and MMRA.

6.2.1 Scenario 1

Geographical Layout

The geography for this scenario is similar to the terrain in the south and western

parts of Afghanistan, and corresponds to an area over which an Aviation Battalion

Task Force may operate. The elevation changes due to terrain are minimal, and

helicopters operate point-to-point between HLZs, assuming sufficient fuel. In this

scenario, the Aviation Task Force is located at HLZ Alpha (Figure 6-3), and consists

of two lift companies of ten UH-60 Blackhawk helicopters each.

Figure 6-3: Operational Scenario 1: satellite overview

Figure 6-4 shows the flight time in minutes between certain pairs of HLZs. The

list of inter-HLZ flight times is shown in Table 6.3. Bold numbers indicate that the

direct flight time exceeds the fuel capacity of the UH-60 Blackhawk.
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Figure 6-4: Operational Scenario 1: Flight time diagram

A B C D E F G H I J

A 0 60 80 100 90 20 40 70 90 130

B 0 60 70 40 80 100 120 140 160

C 0 20 30 100 120 140 120 140

D 0 60 120 140 160 140 160

E 0 110 130 160 160 170

F 0 20 40 80 110

G 0 30 70 110

H 0 80 120

1 0 40

J 0

Table 6.3: Operational Scenario 1: Inter-HLZ flight time (min)

HLZ Characteristics

This scenario consists of 10 HLZs, each at a different base (FOB or COP) (Table

6.4).
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HLZ Name Helicopters Stationed Refuel Capable Base Population

Alpha 20xUH-60 Yes 1000

Bravo None No 200

Charlie None Yes 200

Delta None No 100

Echo None Yes 300

Foxtrot None No 100

Golf None No 800

Hotel None Yes 100

India None No 200

Juliet None Yes 100

Table 6.4: Operational Scenario 1: Base and HLZ configuration

6.2.2 Scenario 2

Geographical Layout

The geography for this test scenario reflects the terrain in the northeastern parts

of Afghanistan (Figure 6-5). Though the geographical distance between bases is

shorter, on average, than in Scenario 1, the terrain creates barriers to air travel,

forcing helicopters to operate along specific valley corridors. The Aviation Task Force

is located at HLZ Alpha, and consists of the same number of aircraft as in Scenario

1. Figure 6-6 shows the flight time in minutes between certain pairs of HLZs.
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Figure 6-5: Operational Scenario 2: Satellite overview
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Figure 6-6: Operational Scenario 2: Flight time diagram
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The list of inter-HLZ flight times is shown in Table 6.5.

A B C D E F G H I J K L M N

A 0 20 40 40 40 50 60 70 50 70 80 80 30 30

B 0 20 20 50 60 70 80 60 80 90 100 50 30

C 0 40 70 80 90 100 80 100 110 110 70 50

D 0 70 80 90 100 80 100 110 110 70 50

E 0 10 20 30 10 30 40 40 70 60

F 0 10 20 20 40 60 60 80 70

G 0 10 30 50 60 60 90 80

H 0 40 60 70 70 100 90

1 0 20 30 30 80 70

J 0 10 10 100 90

K 0 20 120 110

L 0 120 110

M 0 50

N 0

Table 6.5: Operational Scenario 2: Inter-HLZ flight time (min)

HLZ Characteristics

This scenario models HLZ and base characteristics in the same manner as Scenario

1. These are shown in Table 6.6.
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HLZ Name Helicopters Stationed Refuel Capable Base Population

Alpha 20xUH-60 Yes 700

Bravo None Yes 400

Charlie None No 100

Delta None No 100

Echo None Yes 300

Foxtrot None No 100

Golf None No 100

Hotel None No 100

India None No 100

Juliet None Yes 400

Kilo None No 100

Lima None No 100

Mike None No 200

November None Yes 200

Table 6.6: Operational Scenario 2: Base and HLZ configuration

6.2.3 Aircraft and Passenger Data

AMR Execution Window

The daily AMR execution window we consider for both operational test scenar-

ios is a 20 hour period (Figure 6-7). The aircraft steady state provides five UH-60

Blackhawk helicopter teams, each available for a 10 hour block of time. Flight crews

must be available for a ten hour continuous period of time, but have different flight

hour restrictions during that time. Teams 1 and 2 fly during daylight hours, so our

assumed SOP allows them up to 8 hours of flight time. Team 3 flies a combination of

day and night vision goggles, so they are allowed up to 7 hours of flight time. Teams

4 and 5 are flying primarily night vision goggles. with some day-time flying, so they

are allowed up to 6 hour of flight time during their shift.

Flights are continuously supported from 0600 to 0200 the next day, with a 4 hour

reset period built in for scheduled maintenance. With a total of twenty aircraft

stationed together in each scenario, the remaining aircraft, beyond the 10 in service

here. are assumed to be in maintenance, participating in deliberate combat operations.
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or used as spares to ensure steady state availability.

Aircraft Team Steadv State
2&00 OWI00- 10 2f 1 300 1 4M

hrs avail.)
7hrs avail.)

Figure 6-7: Steady state support diagram

AMR Parameters

We assume that demand originating and terminating at each HLZ is directly pro-

portional to the population density around that HLZ (Figures 6.4 and 6.6). Since

AMR leg demand is more likely to originate in the morning and in the afternoon,

simulating day-trip behavior, we assume a bimodal distribution of demand with local

maxima at 9:00 and 17:00. We also assume a number of passengers for each AMR

leg that is uniformly distributed over [1,20].

PDF 010

0600 0800 1200 1600
Earliest Departure Time

2000

Figure 6-8: Probability density function of passenger demand
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6.2.4 Summary of Aircraft Team and AMR Parameters

A summary of aircraft team and AMR parameters used for Scenarios 1 and 2 is

shown in Table 6.7.

Set El. Parameter Description Value

y number of aircraft teams 5

aircraft team

Vf passenger capacity 40

TCYCLE flying hour limit per planning cycle see figure 6-7

TfLIGHT flying hour limit on each full tank of fuel 120 min

f ,ygt average refuel time required 20 min
FTUEL

f U average turn time 10 min

SD minimum time required to shutdown 30 min

c/ cost of flight arc per time period 1

cf cost of ground arc per time period 3

tfSTART first time period that team available see figure 6-7

tE last time period that team is available see figure 6-7

Set El. Parameter Description Value

p number of AMR legs 30

air mission request leg

w k number of passengers U ~ [1, 20]

V k value of AMR leg tiered (see Chap. 4)

bk- starting HLZ prop. to pop. size

K bk+ ending HLZ prop. to pop. size
k

tk- earliest departure time see Figure 6-8

tk+ latest arrival time tk+ + AT k + ok

ck cost of flight arc per time period 1

/ITk shortest flight time of AMR leg distance(bk- -+ tk+)

<k schedule tolerance of AMR leg 100 minutes

Table 6.7: Aircraft team and AMR parameters
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6.3 Heuristic Model Comparison

In the context of Army Aviation lift planning, an optimal flight schedule and aircraft

routing maximizes a function of AMR value, and aircraft and passenger cost. The

models described in Chapter 4 maximize first and foremost the value of total AMRs

supported. Then, if two solutions are of equal value, they select the one with the

lowest aircraft cost. Finally, if two solutions are still of equal value, they select one

with the lowest passenger cost.

In this section, we take the perspective of three different parties to look at different

aspects of the solution.

e The Commander is interested in the objective function value vs. number of

AMR legs requested, and number of AMR legs supported vs. number of AMR

legs requested.

9 Maintenance personnel are interested in the average flight and turn time per

AMR leg vs. number of AMR legs supported.

e AMR passengers are interested in the average AMR delay vs. number of AMR

legs supported.

We define the following terms:

The support level is the average number of AMR legs that can be supported, given

a fixed aircraft capacity. The support rate is the number of supported AMRs divided

by the total number of requested AMR legs. Aircraft load factors are the number

of passengers divided by the number of seats. In airline terms, passengers that want

to fly but are not supported are said to be spilled [8]. We use this term to describe

non-supported AMRs in our model.

6.3.1 Objective Function Value vs. AMR Legs Requested

As AMR demand increases, MTRA is able to achieve a slightly higher objective

function value than MMRA (Figure 6-9). A higher objective function for MTRA is

expected from our analytical analysis of the objective function values in Chapter 4.
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Figure 6-9: Objective function value vs. requested AMR legs

The gap between MTRA and MMRA objective functions increases as the number

of requested AMR legs increases, but is also small. In fact, the greedy algorithm,

MMRA, performs almost as well as MTRA in these two scenarios.

Further study is conducted using Operational Scenario 1, and different value func-

tions (Tiered, Equal, Linear) shown in Table 6.8.

AMR Value
AMR Priority { Case 1 (Tiered) Case 2 (Equal) I Case 3(Linear)

1 100,000 1,000 6,000

2 90,000 1,000 5,000

3 80,000 1,000 4,000

4 3,000 1,000 3,000

5 2,000 1,000 2,000

6 1,000 1,000 1,000

Table 6.8: Value function comparison

Figure 6-10 shows the impact that the chosen value function and aircraft capacity

have on the objective function value. As aircraft capacity increases, the gap between

the performance of MMRA and MTRA decreases, on average, for the same level

of demand. With a greater aircraft capacity relative to demand, MMRA performs

almost as well as MTRA.
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Figure 6-10: Impact of capacity and AMR value function on the solutions of MTRA and MMRA

6.3.2 AMR legs Supported vs. AMR Legs Requested

Figure 6-11 shows the average number of supported AMR leg vs. the number of

requested AMR legs. As demand increases, the marginal number of additional sup-

ported AMRs decreases.
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Figure 6-11: Number of supported AMR legs vs. number of requested AMR legs

Using Operational Scenario 1 and Table 6.8, we examine the effect of aircraft

capacity and the AMR value function on the number of AMRs supported (Figure

6-12). Interestingly, Case 1 (tiered value function) results in the lowest number of

supported AMRs, on average. We can attribute this to the fact that only half of

the AMR legs are of high value, thus the algorithm attempts to support these first

above all others (with no trade-off between the first and second tiers), lowering the

available capacity for low priority AMRs. Furthermore, as aircraft capacity increases,

the gap between the number of AMR legs supported by MMRA and MTRA decreases,

on average, for the same level of demand. This follows the analysis in the previous

section where, with a larger aircraft capacity relative to demand, MMRA performs

almost as well as MTRA.
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Figure 6-12: Impact of capacity and AMR value on relative performance

6.3.3 Average Flight and Turn Time per AMR Leg:

Figure 6-13 shows the average flight and turn time per supported AMR leg, as a

function of the number of supported AMR legs. Again, there is little difference

between the results of each model. Each model experiences a slight decrease in average
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flight and turn time per AMR, until four or five AMR legs are supported. Then, as

the number of supported AMR legs increases, the average flight and turn time per

AMR leg increases before leveling off. We see a decrease again, when the number of

supported AMR legs becomes high. A reasonable explanation for the early decrease is

that the additional flight time from the first and last flight legs causes a high average

flight and turn time per AMR leg when the number of AMR legs supported is low.

These flight legs are needed for the aircraft teams to go to the first pick-up HLZ and

return from the last drop-off HLZ. As the number of supported AMR legs increases,

we assume passengers may be less likely to have a direct flight, so the average flight

and turn time per AMR leg increases.

a~ Operational Scenario 1 Operational Scenario 1
E 500 E 500-

-- MTRA -- MTRA
-2 400 o MMRA 400 oMMRA

300 300

200 200 --o \620

2 100- 100-

_ 0 ,,0
L 5 10 15 2 5 10 15

Number of supported AMR legs Number of supported AMR legs

Figure 6-13: Average flight and turn time per AMR leg vs. number of supported AMRs

A likely explanation for the later decrease in average flight and turn time per AMR

leg, as the number of supported AMR legs becomes large, appears to be the presence

of a short haul bias. Consider an example where there are two requested AMR legs

of equal value. The minimum direct flight time, ATk, needed to support the first

is twice that of the second. If unable to support both AMR legs, the algorithm will

favor the shorter leg because it results in the same value earned, for a lower aircraft

and passenger cost. It is biased in favor of the shorter leg since it returns more value

per flight time. Trading off of AMRs in favor of shorter legs does not mean that the

objective function is poorly designed. By favoring shorter legs when demand exceeds

capacity, we are able to support a higher total value of AMRs. This is a reminder that
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weighting of AMR values should be carefully designed to reflect what is important to

the planner. One could weight AMRs of equal value according to their flight distance

to remove the short haul bias, but this may not necessarily reflect the priorities set

forth in the CMPL.

6.3.4 Average Delay per AMR Leg vs. Number of Supported AMR Legs

The average AMR delay is calculated by subtracting the shortest possible travel time

(ATk), from the actual travel time of each AMR leg. The total delay that an AMR leg

can experience is limited by the schedule tolerance, <k. Figure 6-14 shows the average

AMR delay, in minutes, experienced per AMR leg as the number of supported AMR

legs increases.
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Figure 6-14: Average AMR delay vs. number of supported AMR legs

The average delay per supported AMR behaves in the same manner for both

models. On average, however, MTRA experiences a slightly higher average delay.

Interestingly, as AMR demand becomes large, the average delay per AMR begins to

stabilize or decrease slghtly.

This decrease or leveling off of average AMR delay may be explained by the pres-

ence of a low passenger bias. Given two AMR legs of the same value, the algorithm

will favor the one with the fewest passengers since it increases the likelihood that

additional AMRs can be supported. To remove the low passenger bias, one would

have to change the AMR value scheme, and weight the value of each AMR leg by the
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number of passengers it contains. Again, this may not reflect the priorities set forth

in the CMPL.

6.4 Model Comparison to Human Planner

To assess the applicability of these models in an operational scenario, it is necessary

to see how they perform compared to a human planner. The author, using his oper-

ational experience, planned several test cases by hand, and compared the solution to

that of each heuristic algorithm.

We first ordered AMR legs by departure time and created a feasible solution,

favoring high value AMR legs. Then, we attempted to include additional AMR legs

into the schedule, which sometimes created the need to swap AMR legs between

aircraft teams or substantially changes routes of flight.

Some aspects that make manual planning difficult are the following:

" It is hard to look at the big picture, in terms of what is being requested, when

the number of AMR legs is large.

" Fuel considerations mean the total flight time between fuel stops must be tracked

as the schedule is built.

" Aircraft capacity considerations require available seats to be tracked as the sched-

ule is built.

" Multi-leg AMRs add complexity since we must support all legs of an AMR or

none.

For these reasons, it is often much easier and faster to sort AMR legs by departure

time and create a sequential plan without considering all possible combinations. That

plan is then updated with additional AMR legs, if possible. This also reflects actual

planning conditions, since additional AMR legs are routinely received by the planning

cell after the AMR schedule and aircraft routing has been created, requiring constant

updates.
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For this experiment, we used Operational Scenario 1, with an AMR demand of

ten single leg AMRs, ten 2-leg AMRs, and a schedule tolerance of 3 hours. Table 6.9

shows the difference in solution between the human plan and the heuristic algorithm

plans. For the human solution, we timed the first solution obtained, as well as the

best solution obtained.

Iteration 1
Model Solution Time (sec)

MTRA 898,846 1034

MMRA 797,830 252

Human (first attempt) 789,851 920

Human (best attempt) 898,835 1450

Iteration 2

Model Solution Time (sec)

MTRA 746,255 146

MMRA 715,150 25

Human (first attempt) 689,360 850

Human (best attempt) 745,368 1120

Iteration 3

Model Solution Time (sec)

MTRA 845,240 340

MMRA 818,230 55

Human (first attempt) 756,421 710

Human (best attempt) 846,188 1280

Table 6.9: Heuristic vs. manual solutions

Three iterations of this experiment were timed to compare with the solution run-

times of MTRA and MMRA. Both MTRA and MMRA had a significant advantage

in terms of run-time. In two out of three cases, both MMRA and MTRA were able

to achieve a higher solution value than the first flight schedule developed manually.

In all cases, with enough time, the human planner was able to generate a better

solution than MMRA, and support the same or a better value of AMR legs than

MTRA.

A human planner is capable of solving some complex scheduling problems in very
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good time. With the help of a map, some routes are intuitively more efficient than

other. The difference between the human plan and the plan generated by the heuristic

algorithms, therefore. was most notably the time needed to reach a solution.

We summarize both the computational results and operational analysis of the three

models and the human planning method in Table 6.10.

Model Run-Time Solution Quality

SNDPOPT Slow / Intractable Best

MTRA Medium Medium

MMRA Fastest Worst

Human (first attempt) Medium Medium

Human (best attempt) Slow Medium/Best

Table 6.10: Model Comparison

6.5 Model Application to Lift Planning

6.5.1 Short-Term Planning

The Maximum Total Return Algorithm and the Maximum Marginal Return Algo-

rithm can be directly integrated into the lift planning process. They are scalable over

a large operational area, incorporating multiple aircraft teams and AMRs. Input

parameters can also be adjusted to reflect changing operational constraints.

As a short term planning support tool, they can propose very good solutions to

Army Aviation planners based on deterministic AMR demand. These algorithms

generate a complete AMR schedule and flight routes for the desired day. Combined

with a human planner's ability to consider more factors than are modeled in these

algorithms, they may be used by the FUOPS section of an Aviation Brigade of Bat-

talion Task Force to help human planners plan the AMR schedule and actual routes

of flights (Figure 6-15).

As a decision support tool, they can help the mission approval authority determine

which AMRs can be supported, given existing resources.
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Figure 6-15: Algorithm use as decision and planning support tool

6.5.2 Long-Term Planning

6.5.2.1 Support Level Estimation

As a long-term planning support tool, we can use MTRA or MMRA to estimate the

number of AMR legs that can be supported on a daily basis. Consider the results

shown in Figure 6-16, based on the aircraft steady state and AMR parameter dis-

tribution given in Operational Scenario 1 (Section 6.2.2). As the AMR demand is

increased, the rate at which additional AMR legs are supported begins to decrease.

For small numbers of AMRs requested, we are able to support almost 100% of re-

quests. The spill in these cases is negligible.
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Figure 6-16: Effect of demand on support level

However, after approximately five AMR legs (for an average of 50 total passengers

moved) in this scenario, the marginal number of AMR legs supported per additional

AMR leg requested begins to decrease.

Given a current aircraft steady state configuration, we can estimate, for a given

demand, the corresponding average support level and support rate. In this example,

we can support seven AMR legs (70% of demand) if daily demand is estimated to

be 10 AMR legs (Figure 6-17). Inherent variability of demand may push the support

rate higher or lower on some days. In this example, the support rate drops below

70% with a demand higher than 10 AMR legs.
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Figure 6-17: Estimating support level

We are able to estimate the spill rate, as a function of AMR demand and current
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aircraft capacity. Continuing with our example, for 2 AMR legs, on average, the

current aircraft team configuration can support all requested missions (Table 6.11).

Beyond this level of demand, there will be an average spill rate as indicated in the

table.

Legs Requested I Legs Supported Spill j Spill Rate

2 2 0 <1%

5 4 1 20%

8 6 2 25%

10 7 3 30%

15 9 6 40%

20 10 10 50%

Table 6.11: AMR spill table

6.5.2.2 Capacity Requirement Planning

Capacity requirement planning is an important part of planning any contingency

operation. For a distributed operations scenario of similar size to the operational

scenarios considered in this thesis, the heuristic algorithms can be very useful in

assisting human planners in determining the number of air assets required.

While an aircraft steady state can be configured in a number of ways, we make

the following assumptions:

* There is a finite number of aircraft teams available, which depends on the total

number available in the Task Force as well as housing for the crew, maintenance,

and parking considerations.

* We use 24 hour planning cycle, with the aircraft team steady state configuration

covering certain periods as dictated by the commander.

" Demand is more likely to originate in the morning and late afternoon.

* Separate planning allocates additional aircraft needed for other lift missions such

as air assault, VIP support, and spares. Therefore we only find a required steady

state applied to AMR support.
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It is sensible to overlap multiple teams during periods of peak demand, if demand

exceeds the capacity of one team. Figure 6-18 shows the different aircraft steady

states used in this analysis, from three teams up to eight teams.

Aircraft Team Steady State

TeamTee 3: 2xU- (8 (6 hrt avrsi jviE Te -2U-5 7fth5
vi.

Team 1: 2xUR-60 (8 fft hrs a!_ li
ETeam 2: 2xUH-60 (8 ft hrs avail.

Team 3: 2xUt

Team L 2xUH-60 (8 flt hrs avail.)
ETeam 2: 2xUH-60 (8 flt h avail.)

Team 3: 2xUt

Team 1: 2xUH460 (8 fft hrs avail.)
Team 2: 2xUHH (8 fit hrs 2va!LL

Team 4: 2xUI

'A
E-

W-

Figure 6-18: Aircraft team steady state

Capacity Estimation

Figure 6-19 shows the average support level vs. demand, given an assumed AMR

leg schedule tolerance, <pk, of 180 minutes (Operational Scenario 1). The dotted line

represents a 100% average support rate of requested AMRs.

Regardless of the number of teams and their configuration, as the number of re-

quested AMR legs increases, the average support rate begins to decrease. Each line

represents a support level by a different aircraft steady state from Figure 6-18.

117

fit hrs avall.
Team 4: 2xUH-60 (6 ftt hrs avail

flt hrs avail
Team 4: 2xUH-60 (6 fit hrs avai
Team 5: 2xUH460 16 ft hrs vi

flt hrs "val.
flt hrs avail
Team s: 2xUH-60 (6 flt hrs avail.)
Team 6- 2xUH-60 (6 flt hrs avail)



En
20

< 15

0
- 10

4-

L5

E
z 5 10 15

Number of requested AMR legs
20

Figure 6-19: Effect of capacity on support level

With each curve, we can determine the estimated spill rate, given the demand. In

this example, if we assume a daily mission requirement of 10 AMR legs for an average

of 100 total passengers, we can interpret Figure 6-20 as follows:

" If demand is assumed to be 11 AMR legs per day, six aircraft teams can support

on average 10 AMR legs, for an average spill rate of 9%

* If demand is assumed to be 12 AMR legs per day, five aircraft teams can support

on average 10 AMR legs, for an average spill rate of 20%

" If demand is assumed to be 14 AMR legs per day, four aircraft teams can support

on average 10 AMR legs, for an average spill rate of 29%
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Figure 6-20: Estimating required capacity
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6.6 Impact of Increased Schedule Tolerance

We can assume that increased schedule tolerance also increases, on average, the objec-

tive function value and number of AMR legs that can be supported, since larger AMR

travel window allows for more paths to be created by the Path Generation Heuristic

Algorithm. For Operational Scenario 1, increasing the average schedule tolerance of

all requested AMR legs has a positive effect on the number of AMR legs that can

be supported (Figure 6-21). Interestingly, in this scenario, the support level increase,

due to increasing the schedule tolerance from three to four hours, is larger than the

support level increase gained from increasing the number of teams from three to four.

_: 20

< 15
S- -3 teams, 3 hrs sched. tol.

0 -3 teams, 4 hrs sched. tol.
10- -3 teams, 6 hrs sched. tol.

--4teams, 3 hrs sched. tol.

5

z 5 10 15 20
Number of requested AMR legs

Figure 6-21: Comparing increased schedule tolerance and capacity

In another experiment, we see that the level of increase in support level caused

by an increase in schedule tolerance depends on the aircraft capacity provided and

the level of demand (Figure 6-22). In every scenario that we considered, using dif-

ferent capacities and AMR demand, the most gains were achieved in the beginning

as schedule tolerance was increased. As we further increased the passenger schedule

tolerance, we observed a decreasing marginal return of AMR legs supported.

The increase in supported AMR legs was most pronounced for cases where AMR

demand was high. Intuitively, if aircraft teams provide sufficient capacity for the

current level of demand, then increasing schedule tolerance will have very little effect

on the objective function. If, on the other hand, aircraft teams cannot support
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some AMR legs because of timing constraints, then increasing the schedule tolerance

(creating a larger feasible travel window) for each AMR leg will have a greater effect

on the number of supported AMR legs.

U,

w 20-
-e-3 teams, 5 AMR legs

< 15 -- 3 teams, 15 AMR legs
I-e 5 teams, 5 AMR legs

o -5 teams, 15 AMR legs
-

1 0
-E-7 teams, 5 AMR legs

7teams, 15 AMR legs

5--- 9 teams, 5 AMR legs

-- 9 teams, 15 AMR legs
E
z 0 2 4 6

Schedule tolerance (hrs)

Figure 6-22: Effect of schedule tolerance on support level

This has important implications for Army Aviation lift planning. If we consider a

distributed operations scenario with limited resources, an alternate way to increase

the number of AMR missions supported, aside from increasing the available resources,

is to require an increased schedule tolerance from requesting units. In fact, in practice

this is already being done when the number of resources constrain the operational

mission.

As discussed in Chapter 2, the process of AMR submission, approval, and schedul-

ing is much more dynamic than how it appears. With Direct Liaison Authorized

(DIRLAUTH), aviation planners can contact units to request flexibility in their AMR

in order to ensure support. When faced with the prospect of shifting their mission

rather than canceling, units are often able to adjust their schedule. While the AMR

was not originally submitted with a large schedule tolerance, the process of communi-

cation between planner and requester leads to a de facto increased schedule tolerance,

in some cases.

Furthermore, this concept is applied in Army Aviation lift planning through a

different type of mission support: ring routes. The analogy can be made between a

ring route for aircraft teams and a bus route. Weekly routes are published ahead of
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time, and units can sign up for available space. Sometimes this is done through the

AMR process with a specification on the AMR form that this request is for a ring

route, and sometimes units have stand-alone web programs or separate processes in

place specifically designed for ring route requests. By incorporating a ring route into

the schedule, however, units are able to constrain low priority demand to the ring

route. and reduce the number of AMRs submitted.
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Chapter 7

Summary and Future Research

We have shown that the problem of Air Mission Request (AMR) scheduling and

aircraft route planning, when modeled as a service network design problem (SNDP).

can become intractable with an comprehensive integer programming approach. We

have also shown that a tractable heuristic model can perform very well compared

to a human aviation planner. Both the Maximum Total Return Algorithm (MTRA)

Maximum Marginal Return Algorithm (MMRA) provide an effective and flexible tool

to solving this problem. While the work in this thesis looked primarily at a specific

part of the overall set of Army Aviation missions, we feel that the work and methods

used are an important step towards future work in this area.

7.1 Summary of Contributions and Results

An overview of the contributions and findings of this thesis is outlined below:

e We propose an integer programming service network design problem formula-

tion, SNDPOPT, to the challenge of AMR scheduling and route planning. We

derive the inputs to this model from the AMR form, the geographical layout and

characteristics of Helicopter Landing Zones, and the aircraft steady state supply

provided.

o We propose two heuristic algorithms to solve the service network design for-

mulation (MTRA. MMRA). Both make use of the Path Generation Heuristic
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Algorithm (PGHA) in order to derive a feasible set of composite variables repre-

senting aircraft team paths and AMR flow. MMRA is a greedy algorithm which

considers AMRs in order from highest to lowest value. MTRA is a comprehensive

algorithm which looks at all AMRs at once.

" We show that problems of realistic size are intractable for SNDPOPT, using a

computer configuration and software that would normally be accessible to an

aviation planner. MTRA and MMRA, on the other hand, are tractable for

problems of this size.

" We show that solutions generated by MTRA are within 5% of optimal in 95%

of the cases for problem sizes that the three models can solve.

" We show that solutions generated by MTRA are marginally better than those

generated by MMRA. Solutions generated by MTRA, however, come at a higher

cost in terms of computation time. We show that solutions generated by MTRA

and MMRA both have advantages over a human plan, in solution time and

aircraft and passenger cost.

" We discuss how these heuristic algorithms can be used as a short-term plan-

ning tool to help aviation planners develop the AMR schedule and flight routes,

and how they can be used as a decision-support tool for the mission approval

authority to determine which AMRs can be supported.

" We propose a method to estimate the AMR support level that can be sustained,

given an estimate of demand and an acceptable AMR spill rate. This was demon-

strated on an operational scenario using MTRA.

* We propose a method to estimate capacity requirements, given a required sup-

port level. We see that this estimate also depends on an estimate of demand and

acceptable spill rate.

" We look at the impact of AMR schedule tolerance on support level. We conclude

that increasing the schedule tolerance by only a marginal amount can lead to

significant gains in support. In fact, the gains achieved outperform gains achieved
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by increasing the number of aircraft teams in some cases. We relate this concept

back to the current operational model of a ring route being used in the field

by aviation units, to increase their AMR support level without increasing their

steady state capacity.

7.2 Future Research

Below, we propose several areas of work and research that would not only be beneficial

to the problem modeled in this thesis, but also to military aviation optimization in

general.

e Test and Validate models in this thesis on actual operational data. While military

passenger movement data is classified in most cases, we feel that this is the best

way to validate the efficiency of the models. In most cases, these records are

kept for several years or more. Actual operational data would help validate

parameter assumptions and demand probability distributions that were used.

Even though the author has made every effort to provide the most realistic

operational scenarios, only a true set of operational data can be used to validate

the model performance against actual human performance.

e Extend models to include cargo. In this thesis we modeled AMR demand as

a number of passengers. The number of bags and cargo carried by passengers

was accounted for in the seat capacity parameter, by decreasing the number of

available seats on an aircraft team by the average number of bags and cargo

carried by a full aircraft team. However, another model could use the additional

cargo information on the AMR form and generate a mapping of passengers and

cargo to available space on each type of aircraft team.

* Extend models to include risk. The work in this thesis concentrated primarily

on using deterministic inputs to generate the flight schedule and aircraft team

routing. This analysis does not take into account the risk level of the flight

schedule, or the enemy situation. Future work could develop a risk function

associated with every HLZ based on the threat level and number of landings
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performed. The objective function for each model would take into account the

maximum level of risk tolerated by the commander.

* Conduct research on the application of MTRA on developing an n-day redistribu-

tion of A MRs. The models in this thesis were run on the assumption that AMRs

submitted for a certain day need to be resubmitted if they are not supported

in the flight schedule. While this is generally true in practice, many aviation

planners have taken the initiative to redistribute certain AMRs on neighboring

days where the passenger load is lower. Future work could look at the solution

improvement achieved by allowing redistribution of certain AMRs to other days,

which is in effect increasing the schedule tolerance to several days or more.

* Develop a dynamic reallocation algorithm based on the heuristic models in this

thesis. Once the flight schedule and aircraft routing has been completed in the

Future Operations (FUOPS) section, execution monitoring of the plan is con-

ducted in the Current Operations (CUOPS) section in the Tactical Operations

Center (TOC). Throughout the day, additional missions arise that require a real-

location of resources. Extensions of the models discussed in this thesis could look

at AMR cancellation procedures based on priority and cost. Depending on the

current time, some AMRs have already been executed, some are in the process

of being executed, and some have yet to be executed. A new algorithm could

recommend cancellations and rerouting of aircraft in order to support new high

priority missions, by looking at where aircraft physically are located in space

and time, and the combined effect of rerouting aircraft and canceling AMRs.
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Appendix A

Path Generation Heuristic Algorithm Pseudo-Code

1 Procedure PGHA(f,K) {
2 Global variable Pf := {empty}
3 Local variable p := {empty}
4 Branch(f,p,K)
5 return Pf
6 end procedure }

1 Procedure Branch(f, p, K) {
2 K := K-{AMR legs in K that must end before the current time}
3 if K == {empty} {
4 Gotoend(f,p)
5 end if }
6 KLIST :={AMR legs in K that are not on board in f}
7 for k c KLIST do {
8 if current capacity and current time permit picking up k {
9 if current fuel permits picking up k {
10 [fi,pi, Kierror] := Gotostart(f,p, k, K)

11 if error == 0 {
12 Branch(fi, pi, K)

13 end if}
14 else {
15 [f2,P2, error] := Getfuel(f,p, Shortestfuel(f, o))

where o is the origin HLZ of k
16 if current capacity and time permit picking up k

and error == 0 {
17 [fh,p 3 ,K 3error] := Gotostart(f 2 ,p 2,k,K)
18 if error == 0 {
19 Branch(f3 , p 3 , K 3)
20 end if}
21 end if}
22 end if}
23 end if}
24 end do }
25 for k on board f do{
26 if current time permits dropping off k on time {
27 if fuel permits dropping off k {
28 [fi ,piK 1 , error] := ExecuteAMR(f,p,K, k)
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29 if no more AMRs on board f {
30 Gotoend(fi,pi)
31 end if }
32 Branch(fi, pi, K 1 )
33 else {
34 [f2, P2, error] := Getfuel(f, p, Shortestfuel(f, d))

where d is the destination HLZ of k
35 if current capacity and time permit dropping off k

and error == 0 {
36 [fhp3, K 3 , error] := ExecuteAMR(f 2 ,P2, K, k)
37 if error == 0 {
38 if no more AMRs on board f {
39 Gotoend(f 3 , p3)
40 end if }
41 Branch(f 3, p3 , K 3)
42 end if}
43 end if}
44 end if}
45 end if}
46 end do}
47 return
48 end procedure }

1 Procedure Gotostart (f, p, k, K) {
2 [f, p, K, error] := RemoveAMRs(f, p, K)
3 if k is the first AMR leg of the day {
4 if the pickup HLZ of k is the current HLZ {
5 add shutdown arc to p, from current time to earliest

pickup time of k
6 else {
7 add shutdown arc to p, from current HLZ to pickup HLZ of k
8 add flight arc to p, from current HLZ to pickup HLZ of k
9 end if }
10 else if this is not the first pickup of the day {
11 if the pickup HLZ of k is the current HLZ {
12 if f D is greater than the time remaining until the earliest

pickup time of k {
13 if current HLZ is refuel capable and f not have full fuel

on board{
14 add refuel arc to p
15 add passenger flow to p
16 end if }
17 add shutdown arc to p, from current time to earliest

pickup time of k
18 add passenger flow to p, from current time to earliest

pickup time of k
19 else {
20 if there is enough time to refuel before the earliest pickup

time of k {
21 add refueling arc arc to p
22 add passenger flow to p
23 add waiting arc to p, from current time to earliest

pickup time of k
24 add passenger flow to p, from current time to earliest

128



pickup time of k {
25 else {
26 add waiting arc to p, from current time to earliest

pickup time of k {
27 add passenger flow to p, from current time to earliest

pickup time of k {
28 end if}
28 end if }
30 else { (the current HLZ is not the pickup HLZ of k)
31 if current time is before earliest pickup time of k {
32 if destination refuel capable and there is enough time to

refuel before earliest pickup time of k {
33 add flight arc to p, from current HLZ to pickup

HLZ of k
34 add passenger flow to p, from current HLZ to pickup

HLZ of k
35 add refuel arc to p
36 add passenger flow to p
37 else if current HLZ refuel capable and there is enough

time to refuel before earliest pickup time of k {
38 add refuel arc to p
39 add passenger flow to p
40 add flight arc to p, from current HLZ to pickup

HLZ of k
41 add passenger flow to p, from current HLZ to pickup

HLZ of k
42 else {
43 add flight arc to p, from current HLZ to pickup

HLZ of k
44 add passenger flow to p, from current time to earliest

pickup time of k
45 end if }
46 if the time until earliest pickup of k is greater

than r D

47 add shutdown arc to p, from current time to earliest
pickup time of k

48 else {
49 add waiting arc to p, from current time to earliest

pickup time of k
50 add waiting arc to p, from current time to earliest

pickup time of k
51 end if }
52 else { (current time is not before earliest pickup time of k)
53 add flight arc to p, from current HLZ to pickup

HLZ of k
54 add passenger flow to p, from current time to earliest

pickup time of k
55 end if}
56 end if}
57 end if }
58 add AMR leg k on board f
59 if the current capacity of f is negative, or any AMRs on board are

past their latest arrival time {
60 error := 1
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61 end if }
62 [f,p, K, error] := RemoveAMRs(f,p, K)
63 return [f, p, K, error]
64 end procedure }

1 Procedure Gotoend (f, p, K) {
2 if we are at the ending base for team f {
3 add shutdown arc to p, from current HLZ to ending HLZ for f
4 else if enough fuel to fly to ending HLZ {
5 add flight arc to p, from current HLZ to ending HLZ for f
6 else {
7 [f, p, error] := Getfuel(f, p, Shortestfuel(f, d))

where d is the destination HLZ of AMR leg k
8 add flight arc to p, from current HLZ to ending HLZ for f {
9 end if }
10 if no fuel or time constraints are violated form team f {
11 if p supports the same AMR legs as other paths in Pf {
12 if p is more valuable than these paths {
13 add p to Pf
14 else {
15 add p to Pf
16 end if}
17 end if}
18 return
19 end procedure }

1 Procedure Shortestfuel(f, b)
2 a current HLZ of team f
3 q a
4 mindistance := M (where M is a very large constant)
5 for each refuel-capable HLZ i, do {
6 if remaining fuel allows travel to i {
7 if Distance(a, i) + Distance(i, b) < mindistance {
8 mindistance := Distance(a, i) + Distance(i, b)
9 q:= i
10 end if}
11 end do}
12 end do }
13 return q

1 Procedure RemoveAMRs(f, p, K){
2 for all AMRs k on board f do {
3 if current HLZ is the destination HLZ of k {
4 if current time is before latest arrival time of k {
5 remove k from on board team f
6 remove k from K
7 add value of k to p
8 else {
9 error := 1
10 end if}
11 end if}
12 end do }
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13 if any AMRs were unloaded {
14 add unloading arc to p
15 add passenger flow to p
16 end if }
17 return I f, p, K,error]
18 end procedure }

1 Procedure ExecuteAMR(f, p, K, k) {
2 [f,p, K, error]:= RemoveAMRs(f,p, K)
3 add flight arc to p, from current HLZ to destination HLZ of AMR leg k
4 add passenger flow to p, from current HLZ to destination HLZ of

AMR leg k
5 [f, p, K, error] RemoveAMRs(f, p, K)
6 return [f, p, K, error]
7 end procedure }

1 Procedure Getfuel(f, p, q) {
2 add flight arc to p, from current HLZ to HLZ q
3 add passenger flow to p, from current HLZ to HLZ q
4 add refueling arc to p
5 add passenger flow to p
6 return Ifp]
7 end procedure }
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Appendix C

Sets, Parameters, and Variables

Aircraft Teams

Set Elements Parameters Description

-Tnumber of aircraft teams

aircraft team

Uf passenger capacity

TC§YCLE flying hour limit per planning cycle

TFLIGHT flying hour limit on each full tank of fuel

FfUEL average refuel time required
Ff

f T LOAD average loading/ unloading time

f minimum time required to shutdown

' f cost of flight arc per time period

cf cost of ground arc per time period

tsrART first time period that team is available

tEND last time period that team is available
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Air Mission Requests

Set Subset Element Param. Description

air mission request

r/L AMR mission number

pL number of AMR legs

air mission request leg

rIL parent AMR mission number

/ AMR leg number

wk number of passengers

L L vk value of AMR leg

bk- starting HLZ
k

bk+ ending HLZ

tk- earliest departure time from starting HLZ

tk+ latest arrival time at ending HLZ

ck cost of flight arc per time period

ATk direct flight time of AMR

#k schedule tolerance

Path Composite Variables

Set Subset El. Param. Description

aircraft team path composite variable

A number of path

vfA value of path

cfA cost of path

p fA q'A vector of dimension IKI, where

{(k) 1 if AMR leg k is supported

1 0 otherwise

AfA set of arcs on path for team f

AkA set of arcs on path for AMR leg k
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Network Data

/3 Total number of HLZs in the area of operations;

B Set of all HLZs i indexed from 1 to 0;

BFUEL Set of HLZs that have refuel capability for helicopters;

N The set of all nodes in the time-space graph. For every HLZ in B and

time duration in T, we create a node and index it by (b, t). where b is the

index of the HLZ in B. and t is the index of the time period in T;

NFUEL Subset of all nodes that have rotary wing refuel capability, NFUEL C N;

a An are indexed by origin node and destination node {(o, ti), (d, tj)}, in-

dicating that it begins at node (o, ti) and ends at node (d, t). and is of

duration Ta = tj - ti, where j > i;

A Set of all arcs in the time-space graph;

Af Set of all arcs in the time space graph for aircraft team f E F. Within

the set Af, we have the following:

Af Set of air arcs in the time-space graph for aircraft team f. Air

arcs are defined between nodes (o, ti) and (d, tj) where t > ti,

tj -tj = flight time from o to d for team f, and o f d.

A Set of all ground arcs in the time-space graph for aircraft team

f. A ground arc is defined as an arc between nodes (o, ti) and

(d, tj) where tL > ti. and o = d. Within the set of all ground

arcs. we have the following:

AfwAIT Set of all waiting arcs of length 7. Waiting arcs are

defined between all pairs of nodes {(o, ti), (o, ti+,)};

AwTt Set of all waiting arcs of length T that begin at

time t;

AfSD Set of all shutdown arcs. Shutdown arcs are defined

between all pairs of nodes {(o, ti), (o, t + D
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Af~ Set of all shutdown arcs that begin at time t;SD,t

AFUEL Set of all refueling arcs of length TfUEL. Refu-

eling arcs are defined between all pairs of nodes

{(o, ti), (o, ti + f UEL

AfUELt Set of all refueling arcs of length T UEL that begin

at time t;

A{OAD Set of all loading/unloading arcs of length TLOAD'

Loading/unloading arcs are defined between all pairs

of nodes {(o, ti), (o, t2 + TfOAD

AfOAD~t Set of all loading/unloading arcs of length TiOAD

that begin at time t;

Af- Subset of arcs in Af that leave node n;

Af+ Subset of arcs in Af that enter node n;

Af- Subset of arcs in Af that leave HLZ b;

Af+ Subset of arcs in Af that enter HLZ b;

Af Subset of arcs in Af that enter or exit any node at time t;

Af~ Subset of arcs in Af that exit any node at time t;

Af+ Subset of arcs in Af that enter any node at time t;

Af Subset of arcs in Af that begin at or before time period tj and[tit3]

end at or after time period tj;

D (INI x JAI) incidence matrix for AMR flow variables, where:

1 if arc a starts at node n

D (n, a) -1 if arc a ends at node n VnEN, acA

0 otherwise
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(INI x jA 1) incidence matrix for aircraft team flow variables, specific to

each aircraft team f, where:

Df (n, a) =I1 if arc a starts at node n

-1 if arc a ends at node n

0 otherwise

Vn e N, a E Af

('y x INI) matrix indicating departure and arrival node for aircraft teams,

where:

1 if team f starts at node n

-1 if team f ends at node n

0 otherwise

Vn E N, f E F

(p x INI) matrix indicating demand data where:

wk if AMR leg k starts at node n

-wk if AMR leg k ends at node n

0 otherwise

Vn e N, k e K

(ILI x IKI) matrix where:

1 if leg k belongs to AMR L

0 otherwise

VL E L, k E K

vector of length IKI indicating which AMR legs are supported on path

P fA where:

1 if leg k is supported on path pf'A

0 otherwise
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E(f, n)

B

B(k, n)

J

J (L,k) =

q A

qA (k) =



AMR Flow

L {1

6 k

k~f {1

Decision Variables

if AMR L is supported

0 otherwise

1 if AMR leg k is supported

0 otherwise

if AMR leg k is supported on aircraft f on arc a

0 otherwise

1 if AMR leg k is scheduled on arc a
a (dummy variable)

0 otherwise

art = start of travel time of AMR leg k

ekn = end of travel time of AMR leg k

(k = total travel time of AMR leg k

Aircraft Team Arc Decision Variables

f 1 if aircraft team f is scheduled on flight arc a

0 otherwise

if aircraft team

if aircraft team

1 if aircraft team f

0

waiting arc a

loading/unloading arc a

is scheduled on refueling arc a

otherwise

if aircraft team f is scheduled on shutdown arc a

0 otherwise
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1

f is scheduled on

0 otherwise

i f is scheduled on

0 otherwise

gv{= {
rv=

sl= {
5f{

1



Composite Variable Path Decision Variable

zfA = 1 if path A is selected for team, f

0 otherwise

139



THIS PAGE INTENTIONALLY LEFT BLANK

140



Appendix B

Abbreviations and Acronyms

AHB Assault Helicopter Battalion

AMB Air Mission Brief

AMC Air Mobility Command

AMR Air Mission Request

ARB Attack Reconnaissance Battalion

ARS Attack Reconnaissance Squadron

ASB Aviation Support Battalion

ATS Air Traffic Services

BAE Brigade Aviation Element

C2 Command and Control

CAB Combat Aviation Brigade

CMPL Commander's Mission Priority List

CONOP Concept of the Operation

COP Combat Outpost

CUOPS Current Operations (section)
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CVF Composite Variable Formulation

DIRLAUTH Direct Liaison Authorized

DWM Decision Window Model

FAM Fleet Assignment Model

FOB Forward Operating Base

FUOPS Future Operations (section)

GSAB General Support Aviation Battalion

GWOT Global War on Terror

HLZ Helicopter Landing Zone

MCF Minimum Cost Flow Problem

MCNF Multi-Commodity Network Flow Problem

MEDEVAC Medical Evacuation

METL Mission Essential Task List

MFE Maneuver. Fires. and Effects

MMRA Maximum Marginal Return Algorithm

MSPP Maximum Set Packing Problem

MTRA Maximum Total Return Algorithm

NDP Network Design Problem

PC Pilot-in-Command

PDF Probability Density Function

PGHA Path Generation Heuristic Algorithm

POC Point of Contact
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S3 Training and operations section of battalion or brigade headquarters

SIGINT Signal Intelligence

SNDP Service Network Design Problem

SOP Standing Operating Procedures. The military uses Standing Operating

Procedures. rather than Standard Operating Procedures. because a mili-

tary SOP refers to a unit's unique procedures, and may not be the same

across all units.

TF Task Force

TOC Tactical Operations Center

TTPs Techniques, Tactics and Procedures

UAV Unmanned Aerial Vehicle

UAS Unmanned Aerial Systems

VMC Visual Meteorological Conditions
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