
Essays on Dynamic Games and
Mechanism Design

by

Ruitian Lang

B.S. Mathematics and Physics

Massachusetts Institute of Technology, 2009

SUBMITTED TO THE DEPARTMENT OF ECONOMICS IN PARTIAL

FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY IN ECONOMICS

MASSACHUSETTS INSTTlE
AT THE OF TECHNOyOGy E

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
JUN 1 2014

June 2014 LI LIBRARIE-S I
@2014 Ruitian Lang. All Rights Reserved.

The author hereby grants to MIT permission to reproduce and to distribute

publicly paper and electronic copies of this thesis document in whole or in part

in any medium now known or hereafter created.

Signature redacted
Author

Certified by

Certified by

Accepted by

Department of Economics

April 15, 2014

Signature redacted
Daion emoglu

Elizabeth and James Killian Profeqsorp f gonomics

Signature redacted
/ N- Robert Gibbons

Sloan Distinguished Professor of Management and Economics

Signature redacted McalGentn
Michael Greenstone

3M Professor of Environmental Economics, Public Economics, Labor Economics

Chairman, Department Committee of Graduate Thesis





Essays on Dynamic Games and
Mechanism Design

by

Ruitian Lang

Submitted to the Department of Economics on June 8th, 2014 in Partial

Fulfillment of the Requirements for the Degree of Doctor of Philosophy in

Economics

ABSTRACT

The dissertation considers three topics in dynamic games and mechanism design. In

both problems, asymmetric information causes inefficiency in production and allocation.

The first chapter considers the inefficiency from the principal's inability to observes the

agent's effort or cost of effort, and explores its implication to the principal's response to

the combination of the output and the signal about the cost of effort. For example, the

principal may punish the agent more harshly for low output when signals suggest that

cost of effort is high when the effort is of high value for the principal. This chapter also

classifies the long-run behavior of the relationship between the principal and the agent.

Depending on whether the agent is strictly risk-averse and whether he is protected by

limited liability, the state of the relationship may or may not converge to a stationary

state and the stationary state may nor may not depend on the initial condition.

The second chapter considers the re-allocation of assets among entrepreneurs with dif-

ferent matching qualities, which contributes to the growth of the whole economy. Due

to reasons that are not explicitly modeled, assets are not automatically allocated to

entrepreneurs who are best at operating them from the beginning, and this inefficiency

is combined with inefficiency in the asset market and potential imperfection of labor

contracting. When asset re-allocation can become a main source of economic growth,

this chapter argues that imperfection in the labor contracting environment may boost

the economic growth.

The third chapter assumes that the agent's output is contractible but he can privately

acquire more information about his cost of production prior to contracting. Compared

to the optimal screening contract, the principal's contract in this case must not only

induce the agent to "tell the truth", but also to give the agent the incentive to acquire

appropriate amount of information. This may create distortion of allocation to the most



efficient type and whether this happens is related to the marginal loss incurred by the

principal from the cost of information acquisition.

Thesis Supervisor: Daron Acemoglu

Title: Elizabeth and James Killian Professor of Economics

Thesis Supervisor: Robert Gibbons

Title: Sloan Distinguished Professor of Management and Economics

Thesis Supervisor: Juuso Toikka

TItle: Assistant Professor of Economics



Contents

Contents

List of Figures

List of Tables

1 Optimal Informal Incentives and Long-Run Dynamics in a Fluctuating
Environment
1.1 Introduction .................

1.1.1 Related Literature . . . . . . . . .
1.2 The Model . . . . . . . . . . . . . . . . .
1.3 Preliminaries . . . . . . . . . . . . . . . .

1.3.1 The equilibrium frontier . . . . . .
1.3.2 The first-order approach . . . . . .

1.4 Optimal informal incentives . . . . . . . .
1.4.1 Optimal response to the fluctuating
1.4.2 Evolution of effort level . . . . . .

1.5 Long-run Dynamics . . . . . . . . . . . .
1.5.1 The main result . . . . . . . . . .
1.5.2 Sketch of the proof . . . . . . . . .
1.5.3 Long-run effects of the initial state

1.6 Extension . . . . . . . . . . . . . . . . . .
1.7 Conclusion . . . . . . . . . . . . . . . . .
1.8 Appendices . . . . . . . . . . . . . . . . .

1.8.1 Appendix A: proofs . . . . . . . .

e

1.8.2 Appendix B: long-run dynamics with

5

7

9

1
1
7
9

12
12
16
20
20
24
27
27
34
37
41
43
45
45
63

nvironmient

commitment

2 Relationships in a Market: Contract Enforcement and Asset
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.2 The M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . ..
2.3 The Partnership Game and Determination of Asset Price . .

2.3.1 The strong contracting environment . . . . . . . . . .
2.3.2 The weak contracting environment . . . . . . . . . . .

2.4 The Equilibrium Growth Path . . . . . . . . . . . . . . . . .
2.4.1 Comparative statics . . . . . . . . . . . . . . . . . . .
2.4.2 A "two-type" example . . . . . . . . . . . . . . . . . .

2.5 A Continuum of Contracting Environment . . . . . . . . . . .
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Re-allocation
. . . . . . . 69
. . . . . . . 72
. . . . . . . 76
. . . . . . . 77
. . . . . . . 80
. . . . . . . 84
. . . . . . . 86
. . . . . . . 88
. . . . . . . 92
. . . . . . . 95

5

69



6

2.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

3 Optimal Mechanisms with Information Acquisition 109
3.1 Introduction ................................... 109
3.2 The M odel ................................... 112

3.3 The Two-Type Case ...... .............................. 115
3.3.1 Additional distortion and inefficiency at the top ............. 115
3.3.2 Investing in a risky project: an example . . . . . . . . . . . . . . . 118

3.4 The Linear M odel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

3.4.1 Value of information and the role of the prior . . . . . . . . . . . . 122

3.4.2 Characterizing the conditional optimal allocations . . . . . . . . . 125
3.4.3 The discrete type space . . . . . . . . . . . . . . . . . . . . . . . . 126

3.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
3.5.1 Binary information acquisition . . . . . . . . . . . . . . . . . . . . 130
3.5.2 A success-failure experiment . . . . . . . . . . . . . . . . . . . . . . 137

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .140
3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143

4 References 149



List of Figures

1.1 The equilibrium frontier under limited liability . . . . . . . . . . . . . . . 14
1.2 Branches of the frontier under limited liability . . . . . . . . . . . . . . . . 14
1.3 The equilibrium frontier without limited liability . . . . . . . . . . . . . . 15
1.4 Branches of fronter without limited liability . . . . . . . . . . . . . . . . . 16
1.5 Evolution of the agent's effort in the bad environment . . . . . . . . . . . 33
1.6 Simulated cumulative distribution function of the invariant distribution r 34

2.1 Fraction of low-quality asset owners who sell their assets. . . . . . . . . . 91
2.2 Long-run aggregate output as a function of aL. . . . . . . . . . . . . . . . 91

7





List of Tables

9





Chapter 1

Optimal Informal Incentives and

Long-Run Dynamics in a

Fluctuating Environment

1.1 Introduction

In a long-run relationship between a risk-neutral principal and a risk-averse agent, the

scope of their cooperation can change over time. In its most extreme form, the change

involves the termination of their relationship: the principal fires the agent. Even if the

relationship continues forever, the agent's effort level can also change over time depend-

ing on realizations of outputs on the equilibrium path. Two questions can be asked

about the dynamics of the relationship. First, how does the state of the relationship

changes in response to the agent's effort? Secondly, will the relationship converges to a

stationary state in the long run, and if so, does the stationary state depend on its initial

state?

The two questions are related. The answer to the first question characterizes the tran-

sition from the state in one period to the state in the next. The long-run limit can

be thought of as a result of iterating this transition law, although the formal analysis

is much more complicated as the state can take values in a continuum. The charac-

terization of the optimal response to the agent's output is a solved problem under the

standard assumptions of the moral hazard theory (such as Monotone Likelihood Ratio

1
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Property and Convex Distribution Function Condition). However, this framework is not

general enough to analyze some relationships within and between firms and explain the

observed empirical patterns. The common feature of the applications briefly described

below has the common feature that there are shocks to the agent's cost of effort, and it

is natural to study the optimal response to public signals about the shock, also referred

to as the environment, in addition to outputs.

The model studied in this paper can be used to study at least three types of relationships

in the real world. In a relationship between a buyer and a seller, the seller has more

information about cost of production which may fluctuate over time. While the buyer

does not know the seller's cost precisely, she may have access to news that is correlated

with the seller's cost. In the problem of corporate governance, the CEO is expected

to make effort to generate profits and to resist temptation of diverting the firm's cash.

The CEO has more information about the effort required to reduce cost or to find new

investment opportunities and the temptation of diverting than the board, but the board

can use competitors' performances as proxies to the environment. Finally, the model

can be used to study the employment relationship in which the employer can choose how

much bonus to pay to the agent but her cost of cash payment depends on the liquidity

of the firm which is subject to exogenous shocks.

Using a data set of relationships between Kenyan flower exporters and foreign buyers,

Macchiavello and Morjaria (2012) shows that exporters performed differently during a

conflict in Kenya that substantially increased their costs of labor. In addition, divid-

ing exporters into a group directly affected by the conflict and a group not directly

affected, the authors find that an exporter's contract in the following season (measured

by its existence, price, and quantity) is more responsive to his performance during the

conflict period if he is in the group directly affected by the conflict. This finding is

hard to explain by both classical theories which imply that the principal (foreign buyer)

should insure the agent (exporter) against low output generated by bad luck and the-

ories of relative performance evaluation1 . The study of optimal informal incentives in

this paper explains this finding and the study of long-run dynamics asks further how

the performance differences among exporters arise and whether they should exist in the

long run.

'See Jenter and Kanaan (forthcoming) for a theoretical framework of relative performance evaluation
and empirical evidence from corporate governance that suggests that such evaluation is only used to a
very limited degree.
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We model the evolution of state in an optimal equilibrium of the repeated game between

the principal and the agent as a Markov process, and the state is their continuation

payoffs. The study of the transition probabilities characterizes the optimal response to

the output and the environment, or the short-run dynamics. On the other hand, the

ergodic theory of such processes can be used to study the long-run performance of the

relationship for any given discount factor. As alluded to before, unlike Markov chains

on a countable state space, this Markov process has a continuum state space, and its

ergodic theory requires some regularity conditions. An important step is to establish the

connection between these regularity conditions and assumptions on the principal-agent

relationship. For tractability and interpretation reasons, the baseline model focuses on

a simple performance problem: whether the performance of the relationship is robust to

the shock to the agent's cost. Then it is shown that the ergodic theory can be applied

to a more general setting.

There are at least three possible types of long-run behaviors of the optimal equilibrium.

The state of the relationship may converge to a unique stationary state independent of

its initial state, may converge to a unique wide-spread distribution independent of its

initial state, or may converge to a limit that depends on the initial state. It will be shown

that in the baseline setting, the limit distribution is independent of the initial state and

the path, and is non-degenerate: its support is all the extreme points of the equilibrium

payoff set on the Pareto frontier. It will also be shown how the other two types of limit

behaviors arise when we change assumptions on the agent's payoff function.

These results have implications for the long-run performance difference problem in or-

ganizational economics (see Chassang (2010) for example) 2 . Due to the dependence

of the agent's effort level on history, organizations with the same production function

and the same initial condition can develop different expected outputs over time. When

the limit distribution of state is non-degenerate, performance differences exist in the

long run if they exist in the short run. On the other hand, when the limit distribution

is independent of the initial state, the organization that currently enjoys the highest

performance will not lead forever: the performance leader in the group changes over

time. This mean-reversion behavior is due to the agent's diminishing marginal utility
2 See Bailey, Hulten, Campbell, Bresnahan, and Caves (1992), Syverson (2004), Foster, Haltiwanger,

and Syverson (2008) for empirical studies of persistent performance differences, and see Syverson (2011)
for a survey. Gibbons and Henderson (2012) propose that some of these performance differences are
rooted in management practices that rely on relational contracts.
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of consumption, which makes it hard to provide him with incentives when his expected

continuation payoff is high due to past successes.

By focusing on temporary fluctuations in a relationship where the principal cannot

commit to a long-term contract, the paper leaves out dynamics driven by (a) Bayesian

updating about the value of the relationship and (b) a complete long-term contract. The

value of a relationship may be affected by the agent's ability and the profitability of the

principal's business, and Bayesian updating about the value is a potentially important

driver of dynamics, but it is hard to attribute observed performance differences among

well established firms or plants in mature industries to Bayesian updating. In contrast,

temporary fluctuations always exist in these firms or plants and generate performance

difference in the long run. Therefore, the analysis in this paper complements the analysis

of dynamics driven by Bayesian updating.

Dynamics under the optimal long-term contract have been studied fruitfully in the lit-

erature, especially in continuous time. However, a complete long-term contract between

the principal and the agent does not always exist. For example, the principal can freely

fire the agent or refuse to renew a short-term contract in many applications. It will

be shown that the long-run limit of the dynamics under a complete contract is very

different from the limit without commitment. In particular, under the optimal complete

contract, the relationship eventually converges to a stationary state in which the agent

receives payment in every period but does not exert any effort, which can never happen

when the principal cannot commit to such a contract.

This paper models the relationship between a principal and an agent as a repeated

game: no party has commitment power. The risk-neutral principal can reward the

risk-averse agent with cash, and the agent cannot save, so the principal controls the

agent's consumption path. On the other hand, the agent bases his choice of effort on

a privately observed exogenous state of environment, which is either "good" or "bad".

The agent's cost of effort is higher in the bad environment. Output is a noisy measure of

the agent's effort. At the end of each period, a signal about the environment is publicly

observed. Limited liability is often an important constraint on the principal's payment

to the agent, so the variant model with limited liability will be considered in parallel to

the baseline model without limited liability.
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There are three main sets of results. The first is concerned with how dynamics arise in

the first place. As long as the agent is expected to exert effort in the good environment,

his continuation payoff increases if he produces high output and decreases if he produces

low output. This result is independent of the signal about the environment. On the

other hand, the magnitude of the difference in the agent's continuation payoff depends

on that signal. In turn, the agent's continuation payoff determines his effort in the next

period, and this feedback drives the dynamics of the relationship. When the common

discount factor of the principal and the agent on future payoffs is sufficiently high, the

agent's efforts in both environments decrease with his continuation payoff. Therefore, an

agent who has accumulated many high outputs tends to exert lower effort in the future

until his continuation drops to a lower level as a result of the lower output. However,

when the agent is protected by limited liability, the result is very different. When the

agent's expected payoff is very low, it is very costly or even impossible for the principal

to provide the agent with incentives, so the agent stops exerting effort as his expected

payoff approaches zero. Therefore, the performance of a principal-agent relationship

without limited liability exhibits mean-reversion behavior, while the performance of one

with limited liability does not always do so.

The second set of results provides sufficient conditions under which the state of the

relationship converges over time in the optimal equilibrium. When the agent is strictly

risk-averse, and the distributions of output and the signal about the environment satisfy

some regularity conditions, the optimal continuation equilibrium is uniquely determined

by the principal's and the agent's expected payoffs, and the probability distribution of

their payoffs converge in the long run. Moreover, the limit distribution is independent

of the initial state and thus of any information in a finite horizon. In the baseline model

without limited liability, the support of the limit distribution is all the extreme points

on the Pareto frontier of the equilibrium payoff set. If this distribution is thought of

as the distribution of states of independent organizations, the fact that it has a broad

support means that there will be performance difference in the long run, but the top

and bottom performers will be re-shuffled over time. When the agent is protected by

limited liability, however, the limit distribution is the unit mass at the payoff of the

static equilibrium; in other words, eventually the principal and the agent start playing

the static equilibrium forever. Intuitively, the agent stops exerting effort when his payoff

is low under limited liability, which implies that the relationship cannot bring itself out



6

of a low state, and thus will be eventually absorbed by the lowest possible state, the

static equilibrium payoff.

As the above result only holds when the agent is strictly risk-averse, the third result

illustrates what happens when the agent is risk-neutral at sufficiently high consump-

tion levels and is protected by limited liability. In this case, every optimal equilibrium

path converges to a stationary state, but the limit state depends on the initial state.

Therefore, relationships with the same production function but different initial states

may have very different expected output in the long run. In particular, some relation-

ships will enter a stationary regime with efficient effort from the agent in every period,

while other relationships will be terminated. This shows that persistent performance

difference may arise purely from the optimal dynamic response to the agent's output

and information about a fluctuating environment.

The main contribution of this paper is to characterize the optimal equilibrium of a

principal-agent relationship without commitment for all discount factors, and to char-

acterize different types of long-run behaviors of the optimal equilibrium in a unified

framework. Many papers in the dynamic game literature are content with the char-

acterization of the equilibrium payoff set and the difference equation that governs the

equilibrium dynamics. However, in a continuum state space it is not obvious how one can

iterate this difference equation to learn about the long-run behavior of the relationship.

Sometimes the equilibrium dynamics is simple enough and the long-run behavior of the

relationship is easy to predict. (See Li and Matouschek (2013) for an example.) The

current paper provides tools that can potentially be used to characterize the long-run

behavior of more complicated relationships.

The remainder of the paper is organized as follows. Section 1.1 reviews the related liter-

ature. Section 2 presents the model. Section 3 characterizes the equilibrium payoff set

and derives the difference equation that describes the evolution of the agent's expected

continuation payoff. Section 4 applies results in Section 3 to the study of short-run

dynamics. Section 5 states and proves the main result on the long-run dynamics, and

also gives an example that violates some assumptions of the main convergence theorem

and generates persistent performance differences. Section 6 applies the technique used

in Section 5 to a setting that allows for continuous effort and more general monitoring

structure. Section 7 concludes.
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1.1.1 Related Literature

The paper is related to several literatures. First, it uses the framework of repeated

games with imperfect public monitoring originated by Abreu, Pearce, and Stacchetti

(1990). Many papers apply this framework to characterize equilibria of repeated games

that arise in applications. For example, Athey and Bagwell (2001), and Athey, Bagwell,

and Sanchirico (2004) study the cartel problem, and Sannikov (2007) studies dynamic

games in continuous time. Compared to these papers, the current paper focuses on the

principal-agent relationship, in which the long-run limit is particularly interesting as it is

related to the issue of persistent performance differences that has been actively studied

in organizational economics recently.3

The problem of convergence has been studied in macroeconomics in the context of the

long-run economic growth. Important contributions related to this paper include Green

(1987), Spear and Srivastava (1987), Thomas and Worrall (1988 and 1990), and Kocher-

lakota (1996). Tools developed in these papers are used to prove stronger modes of

convergence than convergence in distribution, such as convergence in probability and

almost sure convergence. In the baseline model without limited liability considered in

this paper, the limit distribution is non-degenerate, and the state does not converge in

probability, so tools developed in the above papers are not likely to apply.

When the common discount factor of the principal and the agent is close to one, very

general and precise characterization of the equilibrium payoff set can be given. This

folk-theorem literature includes the classic papers by Fudenberg and Levine (1994) and

Fudenberg, Levine and Maskin (1994). More recent installments include Escober and

Toikka (2013), H6rner, Takahashi, and Vieille (2013), and Barron (2013). However,

these characterizations do not always offer useful insights for discount factors far below

one, which are central in this paper.

Another related literature studies relational contracts, including Macleod and Malcom-

son (1989), Baker, Gibbons and Murphy (1994, 2002), and Levin (2003), among others.

This literature often assumes that both the principal and the agent are risk-neutral and

have deep pockets, and predicts stationary optimal equilibria. In contrast, this paper

explicitly assumes that the agent is risk-averse or is protected by limited liability, and

explores the implications of these assumptions on equilibrium dynamics.

3 See Syverson (2011) and Gibbons and Henderson (2012) for surveys.
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The optimal use of ex post public information about the agent's cost of effort has been

studied in the mechanism design literature by Riordon and Sappington (1988), and

Cremer and McLean (1988). Assuming transferable utilities, these papers show that

the first-best outcome can be implemented even if signals about the environment or the

correlations among players' types are far from perfect. Recent developments in this lit-

erature allow for non-transferable utilities. For example, Gary-Bobo and Spiegel (2006)

studies the setting with limited liability. The current paper shows how insights from

this literature help us understand the dynamics of repeated principal-agent interactions

without commitment.

There is a recent literature of optimal dynamic contracts, although unlike this paper,

most papers in this literature assume that the principal can commit to a long-term

contract. For example, Sannikov (2008) predicts separation and retirement on the equi-

librium path, but retirement can happen only when with commitment. DeMarzo and

Sannikov (2006) and Biais, Mariotti, Plantin, and Rochet (2007) study optimal dynamic

financial contracts. Zhu (2013) discusses a class of contracts (called the Quiet-Life con-

tracts) in which the agent shirks from time to time on the equilibrium path. Similar

to his result, shirking is also used as a reward in this paper, but here such shirking is

always combined with cash rewards, while in Zhu's Quiet-Life contract the principal

never rewards the agent through cash payment.

Various papers analyze the determinants of a player's continuation payoff other than his

performance measure. For example, the reputation literature argues that the response

to a player's performance also depends on the belief about his type. However, papers

such as Ghosh and Ray (1996) assume that one of the two types is behavioral and

the relationship is immediately terminated following the revelation of a bad type. It is

not clear how these models can be generalized to accommodate changing environments.

Similarly, Watson (1999) and Watson (2002) proposes a model which allows the bad

type to cooperate to a certain degree, but these papers require that the scale of the

cooperation is increasing over time before the relationship is terminated. There is little

empirical evidence that a firm's size grows until the dismissal of its CEO though.

Another possible driving force of dynamics is the persistence in the exogenous envi-

ronment. For example, McAdams (2011) studies future equilibrium path on a state.

However, he assumes that both the state and players' actions are commonly observable
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and conclude that the players' joint future equilibrium payoff is higher if the current

state is better. This result does not explain the dependence of payment-performance

sensitivity on the environment. The reputation literature

Two closely related papers, Fong and Li (2012) and Li and Matouschek (2013), also

study equilibrium dynamics with non-transferrable utilities. Fong and Li (2012) analyzes

dynamics in a principal-agent model with limited liability assuming that the agent is

risk neutral and the output is binary. The current paper focuses on the case where the

agent is risk averse, but also considers the risk neutral case, where it generalizes their

result to a setting where the agent may be risk averse for low consumption. Li and

Matouschek (2013) studies a principal-agent model in which the effort of the agent (the

firm's manager in their paper) is observed. The observability of the agent's effort makes

the long-run behavior of their model different from the long-run behavior of the model

with moral hazard considered in this paper.

1.2 The Model

A principal (she) and an agent (he) interact repeatedly at time t = 0, 1,2,.... In each

period, the agent chooses an unobservable effort with a cost depending on an exogenous

state variable 9 t, which is privately observed by the agent. Specifically, the following

events happen in period t:

1. The principal proposes a payment bt to the agent. A negative bt means a payment

of -bt from the agent to the principal.

2. The agent accepts or rejects the payment.

3. The agent observes a state variable et C {B, G}, and chooses effort et C {0, 1}.

4. The output Xt and a signal Zt are publicly observed. Xt depends only on et, and

Zt depends only on E9.

The stage game can be interpreted as a short-term "contract" with an unverifiable

outcome. Under this interpretation, bt is the wage payment specified in the contract. In

the literature, it is usually assumed that when the agent rejects the contract, the stage

game ends. This assumption is not important in the current setting, as in the optimal
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equilibrium, the agent always chooses zero effort after rejecting the contract. In many

applications, the agent is protected by limited liability, which adds the constraint that

bt > 0. The assumption that neither output Xt nor the signal Zt is verifiable implies

that any reward or punishment must be implemented through future interactions. Since

the principal cannot commit to a long-run contract, there is an endogenous bound on

the amount of reward and punishment that she can impose: if she promises too high a

reward, she would prefer walking away to honoring the promise.

The above model will be referred to as the "baseline model" or the "model without

limited liability". In many applications, the agent is protected by limited liability, so

bt cannot be negative. The model with this additional constraint is referred to as the

"model with limited liability". Most of the analysis applies equally well to both models,

and it is interesting to compare their dynamics, so these two models will be developed

in parallel.

In what follows, the state variable et is often referred to as the "environment", and is

assumed to be i.i.d. over time. Let pio be the probability that E9 = 0 for 0 E {B, G}.

The i.i.d. assumption means that although there is fluctuation in the environment, it is

not persistent. For simplicity, both the environment and the effort are assumed to be

binary, where B and G mean bad and good environment respectively, and 0 and 1 mean

"no effort" and "effort" respectively. This assumption will be relaxed in Section 6.

The environment does not affect the distribution of output Xt conditional on effort et;

it affects only the agent's cost of exerting effort. There is an ex post public signal Zt

about the environment that allows the principal to adapt incentives to the environment.

It is assumed that both Xt and Zt have probability densities with monotone likelihood

ratios. Specifically, Xt has density g(x, e) conditional on the effort e, and Zt has density

f (z, ) conditional on the environment 0. Moreover, g(x, 1)/g(x, 0) is non-decreasing

in x and f(z, G)/f(z, B) is non-decreasing in z. The assumption that the signal about

the environment and the signal about the effort are separate makes the discussion of

optimal response to the environment and the comparison to the empirical evidence easier.

Section 6 discusses what happens when this assumption is relaxed.

One application where the principal does not observe the agent's cost of effort but has

access to an ex post noisy measure of it is Macchiavello and Morjaria (2012)'s study of

Kenyan flower exports during a period of domestic conflict. In the relationship between
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a Kenyan flower exporter (the agent) and a foreign buyer (the principal), bt is the

price of flowers for the coming season t, and et is the exporter's effort of hiring and

monitoring labors to pick and process flowers. The cost of labor fluctuates over time,

and will be captured by the environment et, which is privately observed by the exporter

and potentially different for different exporters. On the other hand, the foreign buyer

may have access to some public indicator Zt on the environment E8, which may reflect

whether there is a conflict in the country that causes exporters to lose their labor forces

and whether the exporter is located in the region directly affected by the conflict.

Both the principal and the agent discount future payoff by 6 E (0,1). The principal's

average payoff is (1 - 6) Et t(Xt - bt) and the agent's is (1 - 6) Et(u(bt) - cetet).

The function u represents the agent's utility from consuming the wage payment and is

assumed to be a strictly increasing, twice differentiable and weakly concave function.

The second term in the agent's payoff, -ce),et, represents the cost of his effort. Effort

level "zero" (or no effort) is costless, while the cost of effort level "one" depends on the

environment. It is assumed that cB > cG > 0. Since the cost of effort is always positive,

the stage game has a unique Bayesian Nash equilibrium in which no payment or effort

happens. We normalize the two players' payoff functions so that both of them receive

payoff zero in this equilibrium. In particular, E[Xtlet = 0] = 0, and u(O) = 0. Let

y = E[Xt let = 1], the expected output when the agent exerts effort.

The solution concept is Perfect Public Equilibrium (PPE). Public randomization is al-

lowed explicitly. Specifically, an i.i.d. random variableqt ~ U[O, 1] is publicly observed

after payment bt is made and before the agent chooses his effort. 4 The public history

at the beginning of period t, ht-, contains {(br, 9., Xr, Z)} ;;'. The wage offer bt and

the agent's decision of acceptance or rejection depends on ht-1, and the agent's effort

depends on htl, Et, and qt. Alternatively, one can imagine that the agent chooses a

map from the environment to the effort based on ht-1 and 77 in Period t. This map will

be denoted by et = (est, eGt), where eet is the effort the agent plans to choose if E8 = 0.

Since the signals about the principal's action and the agent's action are separate, the

game has the product structure defined in Fudenberg and Levine (1994). As a result,

every sequential equilibrium is payoff equivalent to a PPE.

4There is no need to introduce public randomization for the payment bt as the principal always prefers
paying u-'(E[u(b)) to paying a random payment bt.
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1.3 Preliminaries

This section provides some characterizations of the equilibrium frontier. After the dis-

cussion of the construction of the equilibrium frontier in Section 3.1, the main charac-

terization results are proved in Section 3.2. There are two parallel but related ways to

proceed from that section. Section 4 studies its implication to the short-run dynamics

and characterizes the optimal informal incentives. It explains some empirical findings

that are inconsistent with conventional wisdom. Section 5 studies the long-run dynam-

ics, focusing on the possible types of long-run behaviors of the state variable w and how

its long-run behavior depends on the agent's utility function u.

1.3.1 The equilibrium frontier

The equilibrium frontier V(w) is defined as the principal's maximum payoff from an

equilibrium that gives the agent payoff w. An equilibrium is called optimal if the prin-

cipal's and the agent's expected payoffs are (w, V(w)) for some w. This paper focuses

on the dynamics in optimal equilibria. Since the agent can always guarantee himself a

payoff of zero by rejecting any negative payment b and never exerting any effort, there

is no equilibrium in which the agent's payoff is negative. On the other hand, feasibility

and individual rationality impose an upper bound on the agent's payoff. Let ?D be the

agent's maximum equilibrium payoff. Then V is defined on [0, fv3]. It is easy to show that

V(f) = 0.5 Due to public randomization, V is concave on [0, zT], and the equilibrium

payoff set is {(w, v) : 0 < v < V(w)}.

Since the payment bt is publicly observed, in analyzing the optimal equilibria, it can be

assumed without loss of generality that all deviations regarding bt cause the permanent

switch to the static Bayesian Nash equilibrium, and the principal's continuation payoff

should always be on the frontier without deviations regarding bt. In other words, if the

agent's expected continuation payoff at the beginning of Period t is wt, then the princi-

pal's expected continuation payoff is V(wt) unless deviations regarding bt, happened for

some t' < t. In what follows, a history is called on the equilibrium path if it contains no

deviation regarding payment b.

'Suppose that V(fv) > 0. Then the principal can always gives the agent equilibrium payoff iv- + ilon
for sufficiently small e > 0 by increasing the up front payment bo in the first period.
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To construct the program that characterizes V, it is helpful to start with the principal's

maximum payoff FeV when she induces the agent to exert a given effort profile e

(eB, eG):

.FeV(w) max(1 - 6)(-u-1 (h) + E[X le]) + 6E[V(wc(X, Z))le]; (1.3.1)
we,h

s.t. (1 - 6)(h - E[ceee]) + 6E[wc(X, Z)le] = w; (1.3.2)

(2eo - 1)6{E[wc(X, Z)10, e = H] - E[wc(X, Z)10,e = L]} > (1 - 6)co, for 11dth.)

In the program, wc(x, z) is the agent's continuation payoff if the realization of (X, Z)

is (x, z), and h = u(b) is the agent's utility from consuming the payment. It is more

convenient to use h as the choice variable instead of b since doing this makes both

constraints in the above program linear in choice variables. The first constraint, Eq.

(1.3.2), is the principal's promise-keeping constraint. It states that the agent receives the

promised expected payoff w if he chooses the effort profile e. Eq. (1.3.3) is the agent's

incentive-compatibility constraint, which states that the agent's gain in continuation

payoff by exerting effort is no less than (no more than) the cost of effort in environment

0 if he is supposed to exert effort (not to exert effort, respectively) in that environment.

The principal's maximum payoff is obtained by "concavifying" maxe FeV(w). Specifi-

cally, the principal's maximum payoff FV(w) is given by

"-w w -w'-
FV(w) = max , ,, ,..Fe'V(w') + _,, / ,Fe"V(W"). (1.3.4)

e',e" w'<w,w">w W - W W - W

Since the principal cannot commit not to walk away, her continuation payoff cannot

be negative. Therefore, we set FV(w) = -oo if the objective function on the right

hand side of Eq. (1.3.4) is always negative. By Abreu, Pearce, and Stacchetti (1990),

the equilibrium frontier V can be found by iterating F starting from the feasible and

individually rational payoff frontier. The frontier decreases over the iteration, and the

limit is the equilibrium frontier V: FV = V.

Figure 1 shows an equilibrium frontier generated by numerical simulation under the

limited liability assumption. Figure 2 shows the .FeV's corresponding to this equilibrium

frontier. By comparison, Figure 3 shows an equilibrium frontier generated by numerical

simulation without limited liability, and Figure 4 shows the corresponding FeV's.
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FIGURE 1.1: The equilibrium frontier under limited liability

u(b) = ex lb, Cw = 3, CG = 1, liB =0.2, and y = 15. X and Z are both binary.

Prob(X = hiet = 1) = Prob(X( =iuee 1= 0) = 0.8, and Prob(Z ge = G) =

Prob(Ze = biE t B) =t0.7.
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FIGURE 1.2: Branches of the frontier under limited liability

There are several features worth noticing. First, the equilibrium frontier is monotonic

in the example without limited liability (Figure 3), and is not monotonic in the example

with limited liability (Figure 1). Under limited liability, V(O) = 0, and when w is close

to zero, it is not possible to induce any effort from the agent. Intuitively, for w close

to zero, the punishment that the principal can impose on the agent for low output is

very limited, so incentives must be primarily provided through reward. This means that

the agent receives rent because he can also receive the reward (although with smaller

probability) when he does not exert effort. As w approaches zero, the rent eventually

exceeds w, implying that it is not possible to induce effort. Indeed, repeating the static
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FIGURE 1.3: The equilibrium frontier without limited liability
u(b) 1 - exp(-b), cB 0.367, CG = 0.2, AB = 0.2, and y = 1. Xt and Zt are both
binary. Prob(Xt = hjet = 1) = Prob(Xt = 1jet = 0) = 0.8, and Prob(Zt = gI8t = G) =

Prob(Zt = bl8t = B) = 0.7.

equilibrium is the unique PPE in which the agent receives expected payoff w = 0. This

does not happen when the agent is not protected by limited liability since the principal

can then first ask for a payment from the agent. Formal arguments will be given in

Section 3.2.

Secondly, the optimal effort profile e depends on the agent's expected payoff w (Figure 2

and 4). To provide incentives, the agent's expected continuation payoff wt must change

over time. Consequently, the equilibrium effort profile e may also change over time.

When there are two organizations with the same production function but independent

draws of output conditional on the agents' efforts, 6 the two agents' expected continuation

payoff wt will differ, which leads to different effort profile and thus different expected

output between the two organizations. In other words, performance difference can result

from noise in output without any persistent uncertainty about the production function.

An interesting question is whether this type of performance different can persist in the

bWhether the environmental shock Ot is common to the two organizations is not important for this
discussion
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FIGURE 1.4: Branches of fronter without limited liability

long run or the two organizations' performances will converge over time. This is the

central question in our study of the long-run behavior of the equilibrium in Section 5.

Thirdly, the curves FeV intersect each other transversally in Figures 2 and 4. This

implies that the transition from one effort profile to another is through a range in w on

which V is linear. In general, the optimal equilibrium involves public randomization on

a linear segment of V. The transversality of the inter s will play an important role in

Section 5.

1.3.2 The first-order approach

To prepare for the study of short-run dynamics in Section 4 and long-run dynamics in

Section 5, this subsection first proves the differentiability of the equilibrium frontier V,

and then shows that the program Eqs. (1.3.1)-(1.3.3) can be solved using the first-order

approach.

If repeating the static equilibrium is the only PPE of the repeated game, there will be

nothing to characterize. This happens when the agent's incentive-compatibility con-

straint Eq. (1.3.3) can never be satisfied for eG = 1. The following assumption will be

maintained throughout to ensure that Eq. (1.3.3) can be satisfied with strict inequality

at least in the good environment:
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Assumption 1. (1 - 6)-'&D f [g(x, 1) - g(x, 0)]+dx E (cG, CB) U (CB, oc).

Here ?D = sup{w : V(w) > 0} is the agent's maximum equilibrium payoff. The strongest

incentive that the principal can provide is the left hand side of the inequality: the agent's

continuation payoff w is zero if the realization of output, x, is such that g(x, 1) <; g(x, 0)

and w = iv if g(x, 1) > g(x, 0). The first-order approach is valid when there exists

some choice variables that satisfy Eq. (1.3.3) with strict inequality. For this reason,

Assumption 1 rules out the possibility that the left hand side equals CG or cB.

In the program Eqs. (1.3.1)-(1.3.3), the choice variables are wc and h. It is therefore

unsurprising that some characterization results are stated in terms of wc, the agent's

continuation payoff. However, this quantity is usually not empirically observable. The

following proposition relates the agent's expected continuation payoff wt at the beginning

of Period t to the payment bt in that period, which is more likely to be observable by

econometricians. A by-product is the differentiability of equilibrium frontier V.

Proposition 1. Assume that the agent is not protected by limited liability. Then V is

differentiable on (0, 7D), and in every optimal equilibrium, V'(wt) = -1/u'(bt) on the

equilibrium path if wt E (0, fv3).

Proof. Consider the program Eq. (1.3.1)-(1.3.3) at some w E (0, ). The principal can

give the agent expected payoff w + c instead by adjusting h. Therefore,

V(w + e) V(w) + (1 - )u-'(h(w)) - (1 - 6)u- (h(w) + (1 - 6)-e) , (1.3.5)

where h(w) is the optimal choice of h in the program at w. The right hand side is

differentiable in c, and the derivative at c = 0 is -1/u'(u- 1 (h(w))). Now the concave

function V is bounded from below by a differentiable function in a neighborhood of

w, and the bound is tight at w. Therefore, V is differentiable at w with derivative

-1/u'(u-1(h(w))). Notice that u-1(h(w)) is the optimal payment at w. L

The proof is a standard envelope-theorem argument. When u is strictly concave, V'(wt)

is weakly decreasing in wt, and u'(bt) is positive and strictly decreasing in bt, so bt is

weakly increasing in wt. This is intuitive: if the principal promises the agent higher

continuation payoff, she starts paying it off by making a higher up-front payment. The
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proposition also implies that V' < 0, so the equilibrium frontier is monotonically de-

creasing. In particular, V(O) > 0.

Now we are ready to write down the first-order condition for the program Eqs. (1.3.1)-

(1.3.3).

Lemma 1. Assume that the agent is not protected by limited liability and that Assump-

tion 1 holds. Consider a w E [0, tiv] such that V(w) = FeV(w) for some e at w. Then

there exist KB and KG such that

hGf(Z, G) + I'Zf (Z, B)
V'(wc(x, z)) - V'(w) = [Z,_G)_+_ _ (Z,_B)_X, 1) - g(X, 0)}.

JG9(x, eG)f (z, G) + Bg(X, eB)f(z, B) [g(
(1.3.6)

Proof. In the program Eqs. (1.3.1)-(1.3.3), the objective function is concave in the

choice variables and the constraints are linear in the choice variables. Therefore, the

strong duality holds as long as there exists some wc and h that satisfies Eq. (1.3.2) and

satisfies Eq. (1.3.3) with strict inequality. (cf Proposition 5.3.1 of Bertsekas (1999).) By

Assumption 1, there exists wc that satisfies Eq. (1.3.3) with strict inequality. One can

then choose h so that Eq. (1.3.2) is satisfied. Therefore, there exist Lagrange multipliers

-y for Eq. (1.3.2) and (2eo - 1)KO for Eq. (1.3.3) so that

1 0-
u'(u-1 (h)) = '

V'(wc(x, z)) + -Y [-(X, 1) - g(X, 0)].
PG9(x, eG)f(z, G) + PBg(x, eB)f(z, B)

Proposition 1 and the first equation implies that y = -V'(w). 0

When V(w) > FeV(w) for all e, a public randomization is strictly optimal. The solution

to the program Eqs. (1.3.1)-(1.3.3) does not characterize the true evolution of the

agent's continuation payoff. Therefore, the above lemma only considers the case when a

particular e is optimal and there is no need of public randomization. In Eq. (1.3.6), KB

and KG are the Lagrange multipliers of the constraint Eq. (1.3.3) for 6 = B and 0 = G,

respectively. The Lagrange multiplier of the promise-keeping constraint Eq. (1.3.2)

proves to be -V'(w). Eq. (1.3.6) should be understood to allow for corner solution in

the following sense: wc(x, z) = iv- if and only if the right hand side of Eq. (1.3.6) is less

than or equal to V'(i) - V'(w), and wc(x, z) = 0 if and only if the right hand side of

Eq. (1.3.6) is greater than or equal to V'(0) - V'(w).
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Now consider the case where the agent is protected by limited liability. As one can see

from Figure 1, the equilibrium frontier is not monotonic when the agent is protected by

limited liability. In general, the condition that V'(wt) = -1/u'(bt) does always hold.

The following assumption will be helpful in establishing the differentiability of V:

Assumption 2. g(x, 1)/g(x, 0) and f(z, G)/f(z, B) are strictly increasing and continuous

in x and z, respectively.

Proposition 2. Assume that the agent is protected by limited liability. Under Assump-

tions 1 and 2, the following holds:

1. V is differentiable on (0, iv-). If on the path of an optimal equilibrium, V'(wt) <

-1/u'(0), then V'(wt) = -1/u'(bt); if V'(wt) > -1/u'(0), then bt = 0.

2. Eq. (1.3.6) still holds when V(w) = heV(w) for some e.

3. V(0) = 0 and V is linear in a neighborhood of zero, and the unique PPE with

w = 0 is repeating the static equilibrium forever.

Proof. See Appendix A. 0

In fact, the differentiability of V when the right derivative of V is smaller than -1/u'(O)

can be derived as in Proposition 1. Assumption 2 helps us prove the differentiability of V

at smaller w. In that case, the limited liability constraint is binding, but the principal can

adjust reward for high output to accommodate change in the agent's expected payoff.

The numerical simulation shown in Figure 1 does not satisfy Assumption 2, as both

the output X and the signal about the environment Z are binary, and the equilibrium

frontier there is not differentiable. Assumption 2 will always be maintained when we

study the limited liability case.

Notice that when the agent is protected by limited liability, bo = 0 if V'(wo) = 0. In other

words, there is no up-front payment in the principal-optimal equilibrium. Intuitively,

the principal has incentive to delay cash payment when the agent is protected by limited

liability. The final assertion of the proposition opens up the possibility of "termination":

when wt reaches zero, the principal and the agent will repeat the static equilibrium from

then on, and in this case we say that their relationship is "terminated". Of course, we

do not know yet whether wt will reach zero with positive probability on the equilibrium
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path; this will be addressed in Section 5. Recall that when the agent is not protected by

limited liability, V(O) > 0, and the payoff pair never leaves the frontier on the path of an

optimal equilibrium, so termination does not happen in any optimal equilibria without

limited liability.

Starting from Eq. (1.3.6), one can study how w, depends on x and z, and how the

agent's effort in the next period depends on w, in turn. The key step is to find out the

signs of KB and KG. This will be done in the next section. Alternatively, one can treat

Eq. (1.3.6) as the difference equation that describes the transition from wt to wt+1, and

then study the long-run behavior of the stochastic dynamical system. This approach

pays more attention to the probability distribution of wc(X, Z) than to the function wc

itself, and will be taken up in Section 5.

1.4 Optimal informal incentives

1.4.1 Optimal response to the fluctuating environment

This subsection studies how wc(x, z) depends on x and z and compares the result with

some empirical evidence. To gain intuition consider first the risk-neutral benchmark

where u(b) = b.

By Proposition 1, V'(w) = -1 for all w E [0, zil]. Using Eq. (1.3.2), we can rewrite the

objective function in the program Eqs. (1.3.1)-(1.3.3) as

(1 - 6)E[X - ceeele] + 6V(0) - 6w.

None of the choice variables appear in this new objective function. As a result, the

optimal choice of wc(x, z) can be made independent of z:7 when eR = eG = 1, choose

wC(x) so that

6 Jwc(x)[g(x, 1) - g(x,0)]dx = (1 - 6)CB;

when eB = 0 and eG = 1, choose wc(x) so that

6 wc(x)[g(x, 1) - g(x,0)]dx = (1 - 6)cG-

7The case eB = eG = 0 is trivial. The choice of eB = 1 and eG = 0 can never be optimal: it is
dominated by eB = eG = 1 if y > cG, and it is dominated by eB =eG = 0 if y < cB.
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In words, when the principal wants the agent to exert effort in both environments, the

agent gains (1- 6 )cB in future payoff (and loses (1 - J)co immediately) by exerting effort

in either environment; when the principal wants the agent to exert effort only in the

good environment, the agent gains (1 - 6 )cG in future payoff by exerting effort in either

environment. In the former case, the agent receives "rent" in the good environment,

as he strictly prefers exerting effort to not exerting effort, and in the latter case, the

principal creates an unnecessary incentive of (1 - 6 )cG in the bad environment. The

risk-neutral case is special in that neither of these is costly.

When the agent is risk-averse, V will not be linear. Then the principal wants to reduce

the spread of the agent's continuation payoff as much as possible while respecting his

incentive-compatibility constraint. When eB = eG = 1, this means that the principal

wants to reduce the strength of incentive in the good environment compared to the

risk-neutral benchmark. When eB = 0 and eG = 1, reducing the spread in wc calls for

minimizing the agent's "incentive" in the bad environment, or "insuring" him against

noise in output in the bad environment.

To reduce the agent's incentive in Environment 9 from the risk-neutral benchmark,

the principal can reduce wc(x, z)[g(x, 1) - g(x, 0)] for some z. However, this also re-

duces the agent's incentive in the other environment. To respect the agent's incentive-

compatibility constraint in the other environment, the principal has to raise wc(x, z) [g(x, 1)-

g(x, 0)] for some other z. Intuitively, the optimal adjustment reduces wc(x, z) [g(x, 1) -

g(x, 0)] for those z that suggest that the environment is likely to be 0, while raises

wc(x, z) [g(x, 1) - g(x, 0)] for other z. This intuition is confirmed by the following propo-

sition, which is derived from the first-order condition Eq. (1.3.6). In stating this propo-

sition, it is convenient to call an output level x "high" if g(x, 1) > g(x, 0) and "low" if

g(X,1) < g(x,0).

Proposition 3. Under Assumptions 1 and 2, for every wo E [0, 7-v], there exists an optimal

equilibrium that gives the agent expected payoff wo with the following property:

" On the equilibrium path, wt+1 > wt if output Xt is "high", and Wt+1 Wt if Xt

is "low", as long as eGt = 1;

" If est = eGt = 0 at this history, then wt+1 is independent of Xt and Zt.



22

" If eBt = 0 and eGt = 1 at this history, then wt+1 is weakly increasing in Zt if Xt

is high, and wt+1 is weakly decreasing in Zt if Xt is low;

" If eBt = eGt = 1 at this history, then Wt+1 is weakly decreasing in Zt if Xt is high,

and Wt+i is weakly increasing in Zt if Xt is low;

In any optimal equilibrium, wt+1 is independent of Zt for all realizations of Xt only if

V is linear on the convex hull of {wt+1(xt, zt)} U {wt}

An output x is high when the likelihood ratio g(x, 1)/g(x, 0) is greater than one. The

first assertion of the proposition is that the principal rewards the agent by raising his

expected continuation payoff when he produces a high output, and punishes him when

he produces a low output. 8 In fact, when eGt = 1, both nG and KB in Eq. (1.3.6) are

non-negative, so V'(wc(x, z)) - V'(w) and g(x, 1) -g(x, 0) have the opposite signs. Since

V' is decreasing, this implies that wc(x, z) - w and g(x, 1) - g(x, 0) have the same sign.

When the agent is not expected to exert effort in any environment, the principal does

not want any spread in his continuation payoff, so wt+1 should be constant. When the

agent is expected to exert effort only in the good environment, the principal reduces his

incentive in the bad environment compared to the risk-neutral benchmark by offering the

agent higher reward for high output and harsher punishment for low output when the

signal Zt is high, which suggests that the environment is likely to be good. In fact, in this

case the agent's incentive-compatibility constraint is not binding in the bad environment,

so KG 0 and KB = 0 in Eq. (1.3.6). This leads to the desired monotonicity in Zt. When

the agent is expected to exert effort in both environments, the same intuition suggests

the opposite monotonicity in Zt. In this case, r1B pBI1G/p1LG, and the monotonicity of

wt+1 in Zt follows.

As mentioned in Section 3.2, the agent's continuation payoff is often not observable by

the econometrician. Fortunately, when u is strictly concave, Propositions 1 and 2 allow

us to translate the monotonicity of wt+1 in Zt directly to the monotonicity of bt+ in

Zt. The comparison between wt+1 and wt can be similarly translated to the comparison

between bt+ and bt. Therefore, if the econometrician groups observations by the level of

output, and regresses bonus payment at the beginning of Period (t + 1) and at the end

8This result may not be true when eB = 1 and eGt = 0, since in this case KG in Eq. (1.3.6) may be
negative.
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of Period t on a public signal about the environment at Period t, he should coefficients

of the opposite signs for high and low outputs. Moreover, the monotonicity indicates

whether the agent is expected to exert effort in the bad environment.

The problem with the above regression scheme is that since output is a continuous

variable, it is hard to group observations according to output. A more common design is

to regress bonus payment on the output, the public signal about the environment, and

their interaction. When the agent is expected to exert effort in both environments, Eq.

(1.3.6) implies that V'(wc(x, z)) has increasing differences in x and z. When u(b) = log b,

Proposition 1 implies that V'(w) = -b, so the principal's payment at the end of Period t

and at the beginning of Period (t+ 1), bt+i, as decreasing differences in xt and zt, and one

expects a negative coefficient on the interaction term in the above difference-in-difference

regression.

An example is the empirical study by Macchiavello and Morj aria (2012) of Kenyan flower

exporters. It seems that the foreign buyers expected the exporters to fulfill their delivery

commitment even when there was shock to cost of labor. They show that reliability

during the violence positively correlate with their survival rate and volume in the future

for exporters in the region that is affected by the violence (the "conflict region"), and

such correlation is not significant for exporters in the region that is not affected by the

violence (the "non-conflict region"). This is consistent with the theoretical prediction

with high effort expected in both states. When the foreign buyer receives the signal that

suggests a shock (which means that he learns that the exporter is in the conflict region),

he tends to reward those exporters who deliver during the crisis with higher volume in

the future, and punish those who do not deliver with lower volume and even termination

of the relationship. When the signal suggests that there is no shock (which means that

the exporter is in the non-conflict region), both the reward and the punishment are

smaller.

Conventional wisdom holds that the risk-neutral principal should insure the risk-averse

agent against exogenous shocks that can affect his output, so the punishment should

be less harsh when ex post public information suggests that the environment is tough.

However, the empirical findings of Macchiavello and Morjaria (2012) does not support

this hypothesis.
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1.4.2 Evolution of effort level

The previous subsection characterizes how the agent's continuation payoff evolves over

time, as the optimal response to his output and information about the environment. To

understand the evolution of his effort level, it remains to characterize its dependence on

his continuation payoff. In general, this characterization is difficult to obtain, as the cost

of giving Player 1 incentive not only depends on the slope of the equilibrium frontier, but

also on how "concave" the frontier is in different regions. Indeed, Figure 2 shows that

the dependence of the agent's effort on his continuation payoff may not be monotonic.

When both parties are sufficiently patient, the equilibrium frontier V and the FeV's

are close to the first-best limit. The dependence of the agent's effort e on his expected

payoff w in the optimal equilibrium can be deduced from its counterpart in the first

best. In the first best, the probability that the agent exerts effort in Environment 0, qo,

solves the following program:

maxqo,h Lpoqoy - u- 1(h)

s.t. h - E pegoco = w.
0

Since no incentive in continuation payoff is needed in the first best, the above program

is a purely static. The objective function is the principal's expected payoff, and the

constraint is the promise-keeping constraint, the analogue of Eq. (1.3.2). One can

eliminate h and show that q9 maximizes the following expression:

E pSqay - u-1  W + E poco).
0e /

It is easy to see that qB > 0 only if qG = 1, and both qB and qG are decreasing in w.

Therefore, as w increases, the optimal expected efforts (qB, qG) change from (1, 1) to

(0,1) and then to (0,0) under the first best, while one or two of these regimes may be

missing. The transition from one regime to another is through a non-empty range of w

for which a randomization is strictly optimal: qB E (0, 1) or qG E (0, 1).

By the Nash-threat folk theorem of Fudenberg, Levine, and Maskin (1994), the equi-

librium frontier converges uniformly to the first-best frontier on [W1, Wh] for all wi > 0

and Wh < WEB, where 17VFB is the highest payoff that the agent can receive in the first
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best when the principal's payoff is non-negative. Therefore, on each such closed interval

[w, wh], the effort (eB, eG) in the equilibrium changes from (1, 1) to (0, 1) and then to

(0, 0) as w increases in the optimal equilibrium, while one or two of these regimes may

be missing, and the transition between two regimes is through a non-trivial range of w

for which public randomization is strictly optimal in the first period.

The above discussion also makes it clear that this pattern of decreasing effort in con-

tinuation payoff comes from the fact that the agent has decreasing marginal utility of

consumption. As the agent's expected payoff increases, his value of compensation de-

creases, and therefore the optimal effort decreases. Proposition 3 shows that the agent's

continuation payoff increases when his output is high and decreases when his output is

low. The combination of the above two results shows that an agent who has produced

a series of high outputs will enter a region with high compensation but weak incentives.

His expected output in the next period is thus lower. Conversely, an agent who has

produced a series of low outputs will have strong incentives, and his expected output

in the next periods will be higher. This mean-reversion behavior helps us understand

why the effect of the initial state vanishes over time when we discuss the long run limit

of the equilibrium path in the next section. Interestingly, effort may be decreasing in

expected payoff in the optimal equilibrium even when a single effort level prevails in the

first best for all w. In the numerical simulation shown in Figures 3 and 4, the parameters

are chosen so that (1, 1) is always optimal in the first best, while the agent's effort in

the bad environment is still decreasing in w. Intuitively, the agent's marginal utility of

consumption is always diminishing and it is always harder to provide incentives to an

agent with high expected utility, regardless what the optimal effort level is in the first

best.

In the context of corporate governance, decreasing effort in expected payoff means that

successful CEOs enjoy temporary "easy life" with weak incentives yet high compen-

sation. This finding is broadly consistent with the empirical literature of endogenous

governance structure of firms. For example, Schoar and Washington (2011) shows that

managers of the firms whose performance beat analysts' consensus forecast for multi-

ple times are more likely to call for special shareholder meetings and propose changes

in governance structure that are good for themselves and bad for share holders. A bad

governance structure typically allows a manager more freedom to pursue his own interest

and weakens his incentive to maximize the shareholders' value.
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The mean-reversion discussed above breaks down in the model with limited liability. In

this case, it is not possible to provide the agent with incentives when his continuation

payoff is close to zero, so on the whole domain [0, ?D] of the frontier, the agent's effort

always increases in w for w close to zero. As illustrated in Section 5.3, difference in the

initial state may be amplified and lead to permanent difference in the long run in the

model with limited liability.

Although it is hard to characterize the dependence of effort on the agent's expected

payoff w for discount factor far below one, it is easy to characterize the range of w in

which the agent does not exert effort in either environment.

Proposition 4. Suppose that e = (0,0) is optimal for some w E [0, fv]. If V'(w) < 0,

then e = (0, 0) is optimal for all i E [w, fv-]. If V'(w) ;> 0 (which can happen only in the

model with limited liability), then e = (0, 0) is optimal for all fZ E [0, w].

To understand the intuition behind this proposition, first consider the model without

limited liability. Then the proposition says that the effort profile (0, 0) can prevail in the

optimal equilibrium only for w sufficiently close to Cv. This result holds for all discount

factor 6. Zero effort in both environments is the extreme example of a successful agent's

"easy life" discussed above. The connection between diminishing marginal utility of

consumption and increasing cost of incentive provision is easier to convert to a formal

proposition in this extreme case. Notice that the agent's continuation payoff will be

strictly lower than his current expected payoff when (0,0) is optimal, so eventually

his expected payoff w leaves the region where zero effort prevails. In other words, the

extreme easy life with zero effort is temporary. This is different from the permanent

"retirement" in Sannikov (2008). In the model with limited liability, zero effort also

prevails for w close to zero, as it is not possible to provide the agent with any incentives

in this case, as discussed before.

Zhu (2013) studies the optimal dynamic contract in a continuous-time principal-agent

model. He shows that the contract may allow the agent to shirk on the equilibrium path

as a way to reward him, and calls such a contract a "quiet-life" contract. There is one

important difference between his quiet-life contract and shirking in the optimal equilib-

rium characterized in Proposition 4. In a quiet-life contract, the principal's payment to

the agent is constant over time and independent of whether the agent is supposed to

exert effort. In the model considered in this paper, an "easy life" is a combination of
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high compensation and weak incentive: the agent's compensation will be lower after his

easy life ends.

1.5 Long-run Dynamics

In this section, we study the long-run behavior of optimal equilibria. In particular,

we want to know whether two optimal equilibria with different payoff pairs (w', V(w'))

and (w", V(w")) will become close to each other in the long run, and if so, in what

sense. The main result in Section 5.1 shows that under some assumptions, the agent's

expected continuation payoff wt converges to a unique distribution which is independent

of its initial value wo. The result will not be very interesting if wt cannot summarize the

future path of the optimal equilibrium, so this issue will be addressed before the main

result is stated. Section 5.2 sketches the proof of the main result. Besides presenting the

result on the baseline model, the paper also studies how changes in assumptions affect

the limit distribution of wt. Specifically, Section 5.1 compares the limit distributions in

models with and without limited liability, Section 5.3 studies the case where the agent

is protected by limited liability but otherwise risk-neutral, and Appendix B studies the

case where the principal can commit to a long-term contract. The differences between

the limit distributions of different settings are discussed in the context of persistent

performance difference: whether the performances of two organizations with independent

shocks will differ in the long run. The main result will be generalized to a setting that

allows for continuous effort and more than two environments in Section 6.

1.5.1 The main result

The main result on the long-run dynamics is concerned with the distribution of wt, the

agent's expected continuation payoff at the beginning of Period t. For convenience, we

will refer to it as the "state" of the equilibrium. This should not be confused with the

state of the environment et. An event that happens in the first period of an optimal

equilibrium with the agent's expected payoff being w will be called an event "at w".

However, if two very different equilibria deliver the same payoff pair (wt, V(wt)), the

"state" does not completely determine the future path of the equilibrium and is not
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very useful. Therefore, it is desirable to have that the optimal equilibrium with payoff

pair (w, V(w)) is unique for every w E [0, 17].

Unfortunately, this uniqueness result is not true in general. For example, we have seen

that when the agent is protected by limited liability, V(O) = 0, and no effort can be

induced for w close to zero. Let w, be the lowest w such that no public randomization is

needed and the agent exerts effort at least in one environment at w. Then for w E [0, WS],

one optimal equilibrium involves a public randomization between termination of the

relationship (w = 0) and resuming the production at w. Alternatively, if -1 w ; w8 ,

playing the static equilibrium in the first period and starting the next period at 6- 1w

can also be optimal, since this gives the agent and the principal payoff (w, 6V(-w)),

and V is linear on [0, w,]. Another possibility is that at an intersection Fei V and Fe2 V

for some el :A e2, the two effort profiles give the same payoff. However, unless the

two curves are also tangent to each other at the intersection, a public randomization is

strictly optimal at the intersection.

Let WI = {w : V is linear in a neighborhood of w}. In other words, {(w, V(w)) w E

Wr} is the set of all non-extreme points of the equilibrium frontier {(w, V(w)) w E

[0, F]}. Moreover, no public randomization is possible at w W1. We have seen that

the optimal equilibrium at w may not be unique when w E WI. The next proposition

shows that once wt leaves WI, it never returns to it.

Assumption 3. iD is not in the closure of W1. When the agent is not protected by limited

liability, 0 is not in the closure of WI either.

Proposition 5. Suppose Assumptions 1-3 holds, w 0 W and an effort profile e is optimal

at w. Then the optimal choice w, in the program Eqs. (1.3.1)-(1.3.3) is such that

wc(x, z) E WI for (x, z) with Lebesgue measure zero. Furthermore, if both w, and CV,

are optimal in the program, then wc(x, z) = iDC(x, z) almost everywhere.

Proof. See Appendix A. L

When the continuation payoff pair in an optimal equilibrium is almost always an extreme

point of the equilibrium payoff set, the model is said to have the "bang-bang" property.

Abreu, Pearce and Stacchetti (1990) establishes a sufficient condition for the bang-bang

property. For w not in the closure of WI, KB and KG in Eq. (1.3.6) cannot both be zero,

and the proof of the bang-bang property is essentially the same as APS's proof. The only
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difference is that we do not require the likelihood ratio functions to be analytic; they

only need to be continuous and strictly monotonic. The case where w is at the boundary

of WI is more complicated. In this case WI has a connected component (w', w") and

w = W' or w = w". It is possible that KB = rG = 0, but since w is at the boundary of

[w', w"], it can be shown that wc(x, z) must be at the boundary {w', w"} too for almost

all (x, z) and is unique. The reason is that otherwise FeV can be linearly extended

beyond w, violating the assumption that w is at the boundary of WI. This extension

argument fails when w = 0 or i-D. Therefore, we make Assumption 3. When the agent is

protected by limited liability, 0 is in the closure of WI, but we have seen that the unique

equilibrium at zero is repeating the static equilibrium forever.

Assumption 3 is an assumption on an endogenous object, the equilibrium frontier V.

Nevertheless, considering that there are standard algorithms for computing the equi-

librium frontier (see Phelan and Townsend (1991)), being able to predict the long-run

behavior of the state based on information about V is still valuable. In practice, it means

that no public randomization is needed at both ends of the equilibrium frontier, and it

is optimal to induce effort at least in the good environment when w = 1iD. When As-

sumption 3 fails, the main result, Theorem 1, still holds when we assume that whenever

w is in a linear segment of V, the principal and the agent publicly randomize between

the two end points of the linear segment.

By this proposition, as long as wo WI, wt E WI with probability zero for all t. This

result allows us to ignore the possibility of wo E WI for now and return to it after we

establish the main result for all wo 0 W1 . Now the only possible multiplicity of optimal

equilibrium comes from the multiplicity of the optimal effort profile e. We assume that

it does not happen:

Assumption 4. For each w WI, the optimal effort profile e is unique at w, and will be

denoted by e(w).

As mentioned above, two different effort profiles e and e' are both optimal at w only if the

curves FeV and TeV intersect and are tangent to each other at w. Since this tangency

is constrained to be true in the construction of V, and there are only finitely many

curves to consider, it is conjectured that Assumption 4 holds for generic parameters.

This conjecture remains to be checked.
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Under Assumptions 1-4, the optimal equilibrium starting from each w E [0,fd] \ W,

is unique up to events with probability zero. Therefore, the equilibrium dynamics is

characterized by the evolution of the state wt. The final assumption needed for the

main result is the following:

Assumption 5. u is strictly concave, and g(x, 1)/g(x, 0) is bounded away from both zero

and infinity.

It contains two parts. First, it assumes that the agent is strictly risk averse. If the agent

is risk neutral over a wide range of payment level, then it may be possible to implement

an optimal stationary relational contract such that the payment is always in that risk

neutral range on the equilibrium path, and there is no dynamics. Section 5.3 discusses

the case where the agent is protected by limited liability and otherwise risk neutral,

and shows that the conclusion of Theorem 1 is not true there. Secondly, Assumption 5

requires that the output cannot be an arbitrarily precise signal about the agent's effort.

This rules out incentive schemes similar to Mirrlees (1975). It will imply that no matter

what the current state of the relationship is, the principal has to use both "carrot" and

"stick" substantially to provide incentives in every optimal equilibrium.

Theorem 1. Under Assumptions 1 to 5, there exists a unique probability distribution

7r on [0, f] such that in every optimal equilibrium, the probability distribution of wt

converges to 7r in the following sense: suPAE3([oj) IProb(wt E A) - 7r(A)l -+ 0 as

t -+ oo, where the supremum is taken over all Borel subsets of [0, z1].

Roughly speaking, the theorem says that the difference in the initial condition wo van-

ishes in expectation as time approaches infinity. To build more intuition, consider two

organizations with the same production function but independent draws of output con-

ditional on the agents' efforts. The environmental shock E8 may or may not be common

to both organizations. Since their draws of outputs are independent, even if they start

with the same initial state wo, which may be determined by the market condition and

the bargaining power of principals and agents, the state wt will be different in the two

organizations after a while. Since the agent's optimal effort level e depends on w as

can be seen from Figure 2, the two agents may exert different efforts at each Period t,

leading to different expected output. In other words, conditional on public information

up to time t, the two organizations may have different expected output. This can be

called a transient performance difference.
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It is natural to ask whether the transient performance difference will persist over time. In

other words, whether the organization with higher performance will continue to outper-

form the other organization, or the performances of the two organizations will converge

over time. The theorem gives an answer under its assumptions: the expected output

in Environment 0, yE[eo(wt)], will converge to y f 7r(w)d7r(w), as time t approaches in-

finity. In fact, the expectation of every bounded function a of the state w, E[a(wt)],

will converge to f a(w)dr(w), a limit that is independent of the initial state. Moreover,

since the dynamical system can be released at any time, the expectation of a(wt) con-

ditional on public history up to time s also converges as t -+ oo and s is kept fixed:

E[a(wt)lhs] -+ f a(w)d7r(w). The probability distribution 7r will be referred to as the

unique invariant distribution.

However, this theorem only asserts convergence of the distribution, and it does not imply

convergence in probability unless the invariant distribution 7r is a point mass. In the

two-organization example, convergence in probability means that the difference between

their states w) and w is close with high probability: Prob(wt') - W ( > C) -_ 0

as t -+ oo. In fact, this probability will bounded away from zero for every c > 0 in the

baseline model where the agents are not protected by limited liability. In this case, it

is hard to fully characterize the invariant probability distribution 7r, but the following

proposition shows that ir has a "full" support.

Proposition 6. The support of 7r is [0, fv-] \ WI, 7r({O}) > 0, and 7r({'fv}) > 0.

The proof of this proposition relies on the lemmas that lead to Theorem 1, and thus

will be presented after the proof of Theorem 1 in Appendix A. By this proposition,

the limit distribution 7r is non-degenerate. If the shocks E9 and Xt - E[Xtlet] in two

organizations are independent, then the joint distribution of their states w and w(2

are also independent, and thus in the long-run their states do not converge. Let yt) =

yE[e(j)] be the expected output of Organization i at period t. Then unless the agent's

effort level is constant over the whole state space [0, fv-],9 the two organizations' yt will

be different in the long-run. The fact that their states converge to a limit distribution

7r that is indepdent of the initial state implies that the expectation of their performance
(1) (2)difference yt - Y ) has expectation zero, but the variance of it is positive and converges

to a constant. Therefore, there is performance difference in the long run, but the leader
9When the discount factor 5 is close to one, the optimal effort level at each w is close to the optimal

effort level at the feasible frontier at w.
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will change over time so that no organization has a higher long-run expectation of yt.

Section 4.2 provides a heuristic discussion of the evolution of the effort level and why it

may exhibit mean-reversion.

Figures 5 and 6 show simulation result on the probability distribution of wt for the

numerical example without limited liability. The equilibrium frontier has been shown

in Figure 3. The parameters are chosen so that it is always optimal for the agent to

exert effort in both environments in the first best. Figure 4 shows that the agent always

exerts effort in the good environment in every optimal equilibrium. Therefore, the main

concern is whether the agent exerts effort in the bad environment. When he does, the

output of the organization is robust against shocks to the cost of effort.

Figure 5 shows the evolution of the expected effort in the bad environment over time

for the two extreme initial states, wo and fv, which correspond to the principal-optimal

equilibrium and the agent-optimal equilibrium respectively. For a discount factor of 0.7,

convergence to the long-run limit is relatively quick, and the effect of the initial condition

vanishes: two organizations that start from the principal's best state and her worst

state have the same expected output in the long run. Figure 6 shows the cumulative

distribution function of the invariant distribution 7r. As expected, it is independent of the

initial state, has full support, and has point masses at wo and tb. Although both output

Xt and the signal about the environment Zt are binary, so the bang-bang property of

Proposition 5 does not hold, the CDF is almost flat in the linear segment of V, and in

this example the unique optimal equilibrium on the linear segment of V involves public

randomization in the first period. Figure 6 illustrates that the convergence of expected

effort in the bad environment to a long-run limit is not due to the convergence of wt to

a stationary state, and the process cannot enter a cycle either. The full-support result is

not a consequence of binary effort choice, as Section 6 shows that the same result holds

in a setting with continuous effort choice.

When the agent is protected by limited liability, the invariant probability distribution

is clearly the unit mass at zero. This is because when wo = 0, wt = 0 for all t, so the

unit mass at zero is an invariant distribution, and the theorem says that it is the unique

invariant distribution. If repeating the static equilibrium is interpreted as the termina-

tion of the relationship, the theorem implies that in a principal-agent relationship with

limited liability, the relationship is eventually terminated with probability one. Notice
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FIGURE 1.5: Evolution of the agent's effort in the bad environment
The agent always exerts effort in the good environment. The two curves correspond to
two different initial states: wo = 0 and wo = CD = 0.378. The sample size is 10,000. The
discount factor is 3 = 0.7.

that this result holds for all 6 < 1. Therefore, although V(w) converges to the feasible

and individually rational frontier as 3 -+ 1 for w > 0, in the long run the state w will not

stay close to wo even when 3 is close to one. This suggests that the characterization of

the long-run dynamics is not trivial even if one can characterize the equilibrium frontier.

The folk theorem gives a good approximation of the equilibrium frontier for 3 close to

one, but it does not contain information about the long-run dynamics in this case.

Appendix B studies the long-run dynamics under the optimal long-term contract as-

suming that the principal can commit to such a contract, and shows that the limit

distribution of state is very different from that of the no-commitment model discussed

above. Under the assumption that the agent is not protected by limited liability and his

marginal utility of consumption converges to zero as consumption goes to infinity, 10 wt

eventually enters a "retirement" regime that was characterized in Sannikov (2008). In

this regime, the principal makes a constant payment to the agent in each period, and the

agent does not exert effort and enjoys a constant continuation payoff. The full support

result or Proposition 6 and the long-run performance difference are gone. Notice that

the principal's continuation payoff in the "retirement" regime is always negative, so this

'()This assumption is satisfied by both the exponential utility and the power function utility.
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FIGURE 1.6: Simulated cumulative distribution function of the invariant distribution
7r

For each curve, all samples are released with the same initial value (wo = 0 for the blue
curve and wo = F' for the red curve), and the empirical CDF is computed at t = 200.
The sample size is 10,000.

regime does not exist when the principal cannot commit to a long-term contract. There-

fore, the long-run dynamics of a model with commitment is not a good approximation

to its counterpart without commitment. If one is interested in the long-run behavior of a

principal-agent relationship, he/she has to first learn whether the principal can commit

to a long-term contract and then choose the right model.

1.5.2 Sketch of the proof

In this subsection we sketch the proof of Theorem 1, and the details will be in Appendix

A. The proof uses the ergodic theory of discrete-time Markov processes. For details of

the theory and relevant definitions, we refer the reader to Meyn and Tweedie (2009)

(henceforth MT). Assumptions 1-5 are maintained throughout.

The probability distribution of wc(X, Z), the state in the next period, is uniquely de-

termined by the state w in the current period for w E [0, F] \ Wi. To emphasize the

dependence of w, on w, we will use the notation wc(x, z; w) from now on. Define

P(w, W) = Prob(wc(X, Z; w) E W)
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for w C [0, f] \ WI and Borel subsets W c [0, fv]. Then when wt E [0,zi'] \ W, P(wt,-)

is the probability distribution of wt+1 conditional on wt in the optimal equilibrium.

The set WI consists of countably many connected components, or disjoint open sets. If

w is in a connected component (w', w") of WI, then define

P(w,W)= 1/ ,P(w',W)+ ,, -wt P(w", W)
W/ -wt W/ -wt

for all Borel subsets W of [0, iD]. In other words, P(w, -) is defined by convex combination

of P at the end points w' and w" for w E (w', w"). We have thus defined the Markov

transition probability P(w, -) for all w E [0, zD]. The transition probability can be iterated

to give P'(w, -) such that P"(wt, -) is the probability distribution of wt+, conditional

on wt in the optimal equilibrium. The transition probability also induces an operator T

on bounded measurable functions:

Ta(w) = a(w')P(w, dw'). (1.5.1)

In words, Ta(w) is the expectation of Ta(wi) if wo = w.

Notice that when wt E WI, P(wt, -) is not necessarily the probability distribution of

wt+1 conditional on wt. However, we have seen that when wo V W1, wt V WI almost

surely for all t, so if we can show that the Markov process converges to a unique invariant

distribution 7r, we will know that the distribution of wt converges to 7r for wo W.

Then a separate argument will be given for wo C W1 .

The proof is based on the following result from the ergodic theory of Markov processes

(MT, Theorem 13.0.1):

Theorem 2. If the Markov process is an aperiodic positive Harris chain, then there

exists a unique invariant probability measure 7r such that for every initial state w E S,

supAEB(S) IPn(w, A) - 7r(A)j -+0 as n -+ oo.

Here S is the state space of the Markov process, which is the compact set [0, zC] in our

model. A Markov process on a compact state space is a positive Harris chain if it is a

T-chain with a reachable state w* (MT, Theorem 18.3.2). A state w* is reachable if for

every neighborhood 0 of w* if E P(y, 0) > 0 for all y C S. A Feller and p-irreducible

Markov process is a T-chain if it has an open small set with positive 4' measure, or the
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support of 0/ has non-empty interior (MT, Propositions 6.2.5 and 6.2.8). A set C is

called small if there exists a non-trivial measure v on B(S) such that for some m > 0,

P' (x, B) ;> v(B) for all x E C and B E B(X).

The rest of the proof is to check that all the conditions in the theorem are satisfied by

the transition probability P constructed above. The key steps are the following two

lemmas:

Lemma 2. T maps continuous functions to continuous functions: for every continuous

function a, Ta(wn) -+ Ta(w) if w, -+ w.

Lemma 3. In any non-trivial optimal equilibrium, the state wt reaches every interval

[w', w"] C [0, zD] with positive probability, provided that V'(w') > V'(w"). More pre-

cisely, Prob(wt E [w', w"] for some t > 0) > 0 if V'(w') > V'(w"). In addition, the state

reaches zero and f with positive probability.

The first lemma shows that our Markov process has the Feller property: its operator

T preserves continuity. This result is true by construction when w" is a sequence in

Wi. It is also easy to prove when w, is in [0, f] \ WI and the Lagrange multipliers KB

and KG in Eq. (1.3.6) are not both zero at w, since in this case wc(x, z; w.) converges

to wC(x, z; w) for almost all (x, z), which can be proved using convergence of Lagrange

multipliers. The proof of the lemma when KB = KG = 0 is more involved. In this case,

wC(x, z; w) is not characterized by the first-order condition Eq. (1.3.6). The proof uses

the weak* convergence technique similar to the proof of Theorem 5 of APS, since in

infinite dimensions, sequential compactness only holds for the weak* topology.

The second lemma is about the irreducibility and aperiodicity of the Markov process. It

states that starting from every wo > 0, every extreme point of the frontier can be reached.

When the agent is not protected by limited liability, the state zero is not absorbing, so

all extreme points of the frontier can also be reached from wo = 0. When the agent is

protected by limited liability, the state zero is absorbing, and the lemma asserts that

from every initial state, there is positive probability that the process is absorbed by zero;

in other words, the relationship is terminated. This lemma has implications about the

support of the limit distribution. When the agent is not protected by limited liability,

the support of 7r must be the set of all extreme points [0, 'ii] \ W with a point mass at

zero. When the agent is protected by limited liability, the support of gr must contain
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zero and assign w = 0 a positive mass. In fact, Theorem 1 eventually implies that the

unit mass at zero is the unique invariant distribution of the Markov process.

The conditions in Theorem 2 can easily be verified using the two lemmas. It implies

that the Markov process converges to the unique invariant distribution 7r. To prove

Theorem 1, it remains to show that it is true when wo E WI. The idea is as follows.

Since the agent's utility u is strictly concave, staying in a linear segment of V forever

means that the payment bt to the agent stays the same at all on-path histories, which

implies that there is no incentive. This is impossible unless the principal and the agent

repeats the static equilibrium and the agent is protected by limited liability, in which

case the steady state has been reached. Once the state leaves WI, it never comes back,

and the convergence result for w E [0, fv] \ W implies that the process converges to 7r

once it leaves WI.

1.5.3 Long-run effects of the initial state

Although Assumptions 1-5 are not necessary for the convergence result in Theorem 1,

there are some obvious examples that violate at least one of the assumptions and do

not have the convergence result. In this subsection, we consider the case where the

agent is protected by limited liability, but is risk-neutral at sufficiently high levels of

consumption: u(b) is strictly concave for b < bo and u(b) = uo + b for b > bo, where

bo is a non-negative number and uo is a constant. For simplicity, we also assume that

y > CB, so it is efficient to exert effort in the bad environment.

The model in this subsection is a generalization of the model considered in Fong and Li

(2012). They do not consider the fluctuating environment, and assume that the agent's

is risk neutral at all levels of consumption (corresponding to bo = 0) and the output Xt is

binary. It turns out that the model has an additional structure when Xt has continuous

density, and allows us to have a slightly stronger result on the long-run dynamics.

If the payment is always above bo, then the model becomes a standard model of relational

contract with transferable utility. In particular, one should expect the existence of

stationary equilibria. In this setting, an equilibrium is called stationary if it always

stays on the linear segment of the frontier V with slope -1 on the equilibrium path.

Since y > CB, we will focus on stationary equilibria in which the agent exerts effort in
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both environments. Suppose that stationary equilibria exist and let wm be the agent's

minimum payoff in any stationary equilibrium. Using Eq. (1.3.2) to rewrite the objective

function in Eq. (1.3.1), we can reduce the program Eqs. (1.3.1)(1.3.3) to the following

for stationary equilibria:

V(w) = max (1 - )(y - E[cel) + &V(w) - (1 - J)(w - uo) (1.5.2)
hku(bo),wc~wm

s.t. (1 - 3)(h - E[ce]) + 6E[wc(X, Z)Ie = (1, 1)] = w; (1.5.3)

6 J wc(x, z)[g(x, 1) - g(x, 0)]f(z, 9)dxdz > (1 - 6)ce. (1.5.4)

Notice that the objective function is independent of the choice variables. Therefore,

V(w) = y - O' pece - w + uo as long as the constraints Eqs. (1.5.3) and (1.5.4)

can be satisfied for some choice of h > u(bo) and w, we. In particular, if there

exists a stationary equilibrium with payoff pair (w, V(w)) and V(w) > 0, then there

exists stationary equilibrium that gives the agent payoff (w + 6) for e G (0, V(w)] since

the principal can provide the additional payoff to the agent by increasing the up-front

payment. Therefore, when a stationary equilibrium exists, it exists for all w E [WM, w],

and tF = = y - E[ce] + uO, the maximum surplus that can be created in equilibrium.

The following proposition characterizes the lower bound wm:

Proposition 7. If there exists a stationary equilibrium, then V is linear on [WM, tiv] where

= 9, and wm = w(Wm), where the function w is defined by the following program:

w(w) = min (1 - 6)(u(bo) - E[ce]) + 6E[wc(X, Z)Ie = (1, 1)]; (1.5.5)
Wc(X,Z)E [W,s]

s.t. 6 wc(x, z)[g(x, 1) - g(x, 0)]f(z, 8)dxdz > (1 - J)cO. (1.5.6)

Moreover, V'(w) > -1 for w < wi. Conversely, if there exists a w.. such that W(wm) =

wm, then a stationary equilibrium exists for all w E [WM, 9]. Finally, w always has a

fixed point when 9 is sufficiently big.

The w(w) defined in Eqs. (1.5.5)-(1.5.6) is the agent's minimum expected payoff that

admits an incentive compatible continuation payoff function valued on [w, 9]. Clearly,

the up front payment at w, is bo. The proposition also asserts that if w has a fixed point,

then there exists a stationary equilibrium. Therefore, the existence of a fixed point of w

is a necessary and sufficient condition for the existence of a stationary equilibrium. In

addition, the slope of the equilibrium frontier is bigger than -1 for w < wm, so when wm
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exists, there exists a stationary optimal equilibrium at w if and only if w is on the linear

segment of V with slope -1. In what follows, assume that a stationary equilibrium

exists.

Now the Markov process no longer has a unique steady state. In fact, once wt enters

[WM, iv], it does not come out by definition of stationary equilibrium. Therefore, the

state of the Markov process may end up at zero or in [wM, zD] in the long run. The

following proposition says that these are the only possibilities:

Proposition 8. For any initial state wo, Prob(wt E {0} U [w, t]) converges to one.

The proof still uses the ergodic theorem Theorem 2. As mentioned above, the Markov

process does not have a unique invariant distribution 7 any more, but we can change

the state space to make the invariant distribution unique. In particular, we create a new

state space S from [0, 7D] by identifying 0 and all points in [wM, 3]. This trick does not

spoil the Markov property as once the state enters {0} U [wm, fv-] which is now a single

state, it stays there. The proof of the proposition verifies that all conditions in Theorem

2 hold, and non-extreme initial values can be handled as in Theorem 1. It is easy to see

that the unique invariant distribution is the unit mass at {0} U [wM, W].

The previous proposition shows that the state cannot stay in (0, wm) forever, but it does

tell us whether it converges to zero or enters the regime of stationary equilibria. This

issue is addressed in the following proposition:

Proposition 9. If wo E (0, wm), then wt is absorbed by zero with positive probability,

and is absorbed by [wm, iiJ] also with positive probability.

In general, computing absorption probability of a Markov process is non-trivial. For-

tunately, in order to prove this proposition, it suffices to use a martingale property of

V'(wt) related to the inverse Euler equation of Rogerson (1985).

Proof. Notice that when w,(x, z) E (0, ?Z) for almost all (x, z), the first-order condition

Eq. (1.3.6) implies that

E[V'(w,(X,Z)) -V'(w)|e] = ipo [V'(wc(x, z)) - V'(w)]g(x,eo)f(z,O)dxdz
0

- E Jiof (Z, O)[g(x, 1) - g(x, O)]dxdz
0

=0.
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This implies that E[V'(wt+1)Iwt] = V'(wt). However, this martingale property is spoiled

by corner solutions. Suppose that the state wt never reaches zero. Then there are only

corner solutions at fvi, so V'(wt) is a bounded sub-martingale. By Doob's martingale

convergence theorem, it converges a.s. and in L' to some k,. Proposition 7 implies that

wt is absorbed by {0} U [win, 'zD] with probability one, and by assumption wt never reaches

zero, so wt is eventually absorbed by [wM, izD] and thus k, = -1 almost surely. However,

E[ko] = -1 < V'(wo), violating the property of a sub-martingale. Therefore, wt is

absorbed by zero with positive probability. When the state never reaches [wM, zD], V'(wt)

is a bounded super-martingale, and thus converges to some km a.s. and in L'. The

property of a super-martingale requires that V'(wo) E[V'(wt)] E[kO] = V'(0) for

all t. However, Proposition 2 then implies that the principal never makes any payment,

and thus Wo = 0, a contradiction. L

Therefore, in this example the limit distribution of wt will depend on the initial state.

In particular, the performance of an organization currently at state zero and the per-

formance of an organization currently in the regime of stationary equilibria will not

converge. Moreover, whenever the initial state is not already zero or stationary, it

reaches zero and the stationary regime both with positive probability. In other words,

persistent performance difference may arise from this initial state.

The martingale convergence theorem relies on the first order condition Eq. (1.3.6). Fong

and Li (2012) considers a model where the output is binary and the agent is risk averse

for all positive levels of consumption. When effort is binary and b = 0, wc(x; w) is

determined by the two constraints Eq. (1.3.2) and (1.3.3) and the first-order condition

Eq. (1.3.6) plays no role. (The equilibrium frontier V is not differentiable in their paper.)

The above discussion shows how their result generalizes to the case when the agent is

risk neutral for b above some bo 0 when the output is assumed to have probability

density.

In the literature of organizational economics, many models attribute persistent perfor-

mance difference to persistent uncertainty about the environment and information flow

about it. PPD arises because the organization may stop learning about the persistent

environment before finding the efficient scheme under full information. Examples include

Chassang (2010) and Halac, Kartik, and Liu (2013). These models often only consider

a single organization. When there are two or more organizations, and the uncertainty
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about the environment (such as the value of a new technology) is common to all orga-

nizations, each organization can learn from one another, and the cost of doing that is

very different from learning by experimenting by itself. It is not clear whether the PPD

created by the stoppage of learning is robust.

The PPD created in this model is different. The environment is i.i.d. over time, so there

is no persistence in the environment. However, the future equilibrium path depends

on the state variable wt, which depends on history. The dynamics is driven by the

principal's keeping her promise about the agent's future payoff, and the evolution of

wt in one organization does not affect the evolution of wt in another. Therefore, if

an organization is in a bad state (close to zero), it cannot improve its performance by

observing the superior performance of another organization and learning from it. In

industries with high information flow between participants, the evolution of wt may be

an important factor in persistent performance difference.

1.6 Extension

The ergodic theory developed in the previous section applies to more general settings

than the model with binary effort and binary environment. In this section, we demon-

strate that the type of convergence in Theorem 1 also holds in a setting that allows for

continuous effort and any finite number of states. However, dealing with the limited lia-

bility constraint is more difficult in this more general setting, and will be left for future

research.

Keep timing as the same as the baseline model. Now assume that the environment et

can take a value on a general finite set, and the agent's effort et is a real number in

[0, 1]. The cost of the agent's effort is co(e), which is assumed to be twice continuously

differentiable and convex, for every 0. Moreover, c',(O) > 0 for every 0. At the end of

each period, a signal Zt with domain Q is publicly observed, where Q is a connected open

subset of a finite dimensional Euclidean space." The distribution of Zt only depends

on et and et and is linear in et. Specifically, the probability density function of Zt

conditional on et and Ot is etf,(z, Ot) + (1 - et)fo(z, Ot), where for each 0, f,(-,0) and

fo(-, 0) are analytic functions on Q. The assumption of linearity in et makes it easy to

"More generally, Q can be a finite-dimensional connected analytic manifold, such as a Riemann
surface.



42

verify the validity of the first-order approach. The assumption that fi (-, 0) and fo(-, 0)

are analytic is restrictive, and is made to facilitate the prove the bang-bang property of

the optimal equilibrium.

The principal's payoff at Period t is R(Zt) - bt for some measurable function R on Q,

and the agent's payoff at Period t is u(bt) - E[ce (et)]. As mentioned above, the agent

is not protected by limited liability, so bt can be any real number. Notice that there is

no Xt in this model: the agent's output is R(Zt). Normalize the payoff function so that

u(O) = 0, and E[R(Zt)Ie = 0] = 0 in every environment. Let

yo = E[R(Zt)Ie = 1, 0] = JR(z)fi(z, )dz.

Then the expected output in Environment 0 when the agent exerts effort eo is eeyo.

The equilibrium frontier V and its domain [0, fi] is defined as before. Consider the

following program:

.FV(w) = max -(1 - J)E[yeee - u 1 (h)] + 6E[V(wc(Z))Ie]; (1.6.1)
W,,h,e

s.t. (1 - J)E[h - ce(ee)] + JE[wc(Z)Ie] = w; (1.6.2)

6J Wc(Z)[fi(Z,0) - fo(z,0)]dz = (1 - 6)c'(eo). for every 0..(1.6.3)

This is the analogue of the program Eqs. (1.3.1)-(1.3.3). One difference is that the effort

level e is now a choice variable. Since the agent's continuation payoff is linear in e and

his cost of effort is convex, his IC constraint is given by the first-order condition Eq.

(1.6.3). The equilibrium frontier V is the "concavification" of TV.

Proposition 1 still applies. In particular, V is monotonically decreasing and continuously

differentiable. Now both the objective function and the constraints are continuously

differentiable in the choice variables, so there exist Lagrange multipliers ro for (1.6.3)

so that at optimality,

ZerNe[fi(z,06) - fo(z,0)]V, (WC(Z; W)) - V, (W) =0 .o1 Z ) Z ) (1.6.4)
E0 po [ee(w)fi(z, 0) + (1 - eo(w))fo(z, W)]

Notice that the Lagrange multiplier for Eq. (1.6.2) is -V'(w) by Proposition 1. Since

the objective function in Eq. (1.6.1) is not concave in the choice variables, the first order
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condition may not be sufficient for optimality. Fortunately, the sufficiency is never used

in the proof of Theorem 1.

It is still assumed that f > 0. As before, let W = {w E (0, iv-) : V is linear on

a neighborhood of w}, and assume that Assumptions 3 and 4 hold. The monotone

likelihood ratio assumption and Assumption 2 are replaced by the assumption that

fi(, 0) and fo (., 0) are analytic. Finally, u is still assumed to be strictly concave, and

fi(-, 0)/fo(-, 0) is bounded away from zero and infinity on Q for all 6.

Proposition 10. Under the above assumptions, Prob(wt+i G Wilwt 0 WI) = 0. More-

over, there exists a unique probability distribution 7r on [0, zv] such that in every optimal

equilibrium, supAEB([o,fi]) IProb(wt E A) - 7r(A) -4 0 as t -+ oo. Moreover, the support

of -r is [0, fv] \ Wi, 7r({0}) > 0, and ir({13}) > 0.

This result is the combination of Proposition 5 and Theorem 1 in this new setting. In

fact, the proof of this result simply checks that the proof of the two old results applies in

this setting with small modifications. For example, the proof of Proposition 5 relies on

the strict monotonicity of the likelihood ratio functions, and the proof of the bang-bang

property in this setting relies on fact that zeros of an analytic function are isolated,

which is closer to the proof of the bang-bang property in APS.

Therefore, we have seen that the mathematical tool of Markov processes applies to a

more general setting than the binary-effort-binary-environment baseline model, and the

optimal equilibria of this more general model still have the ergodic property of Theorem

1. However, this generalization is not without price. First, dealing with limited liability

is more difficult because the differentiability of V cannot be established in the straight

forward way of Proposition 1. Secondly, the assumption that the probability density

functions are analytic is very restrictive, and rules out many potentially interesting

density functions. Thirdly, results in Section 4 that relate the characterization of the

equilibrium frontier to empirical evidence are lost.

1.7 Conclusion

In a principal-agent relationship, optimal dynamic response to output and environment

gives rise to rich dynamics when the agent is risk-averse and/or protected by limited
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liability. The optimal dynamic response generates empirical implications that are dif-

ferent from the conventional wisdom and sometimes fits data better. In the long-run,

characteristics of equilibrium may or may not converge to a fixed distribution, which

opens way towards persistent performance difference. Interesting questions can also be

asked about finite-time evolution of the agent's effort level, but will be left for future

research.



45

1.8 Appendices

1.8.1 Appendix A: proofs

This appendix collects proofs of results that are not included in the main text.

Proof of Proposition 2. We first prove the third assertion. Suppose in equilibrium

the agent exerts effort in environment 9. Consider the following program:

minw, wc(x, z)g(x, O)f(z, O)dxdz

s.t. -c(X, z)[g(x, g(x, 0)]f(z, )dxdz > CO.

Under Assumption 1, the strong duality holds for this linear program, so the optimal

solution minimizes the Lagrangian f wC(x, z)[g(x,0) - A(g(x, 1) - g(x,0))]f(z,0)dxdz

for some A > 0. Clearly, the solution involves setting wc(x, z) = Cv for x above some

threshold and wc(x, z) = 0 for x below that threshold. The value of the program is some

positive number _LO. Now consider the program Eqs. (1.3.1)-(1.3.3). Since the agent

can always choose not to exert effort in either environment and h > 0, his payoff is at

least

pAO f wc(x, z)g(x, 0)f(z, 9)dxdz.

Since wc satisfies Eq. (1.3.3) with eo = 1, the above expression is at least 6pOX0.

Therefore, when w < 6 1OIe, it is impossible to induce effort in environment 9. Conse-

quently, .FeV(w) = -oo for e / (0,0) and w < w, = min{SPBwB, JAGWG}. Therefore,

V(0) = 0, and for w < w, the optimal equilibrium either involves the two players' play-

ing the static equilibrium in the first period, or involves a public randomization in the

first period. In the latter case, V is locally linear on w. In the former case, it is optimal

to set wc(x, z) independent of (x, z) due to the concavity of V, so wc(x, z) = 6-1w and

V(w) = JV(6- 1 w), which means that V is linear on [0, 6-1w]. We conclude that V is

linear on [0, w,].

Now we turn to the second assertion of the proposition. In order to prove the strong

duality, we need to show that there exists some (h, w,) that satisfies Eq. (1.3.2) and Eq.

(1.3.3) with strict inequality. It is easy to see that such an (h, w,) does not exist if and
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only if

w = min -(1- 5) > pocoe + 6 Wc(X, z)g(x, eo)f(z, O)dxdz (1.8.1)

s.t. (2eo - 1)5 wc(xz)[g(x, 1) -g(x,O)]f(z,9)dxdz > (1- 6)co. (1.8.2)

(If w is bigger than the value of the above program, choose wc as in the program, modify

it a bit so that the IC constraints are satisfied with strict inequality12 and then choose

a positive h.) For greater w, the strong duality holds, which leads to the following

first-order conditions:

1
1(h)) = y; (1.8.3)

V'(wC(x, z)) = -y - Gf(Z, G) + Bf(zg(, 8.4)
pG9(x, eG)f (z, G) + PBg(x, eB)f (z, B)

Here y is the Lagrange multiplier for Eq. (1.3.2), and to is the Lagrange multiplier for

Eq. (1.3.3). When V is not differentiable, the second condition means that the right

hand side is between the left and right derivatives of V at wc(x, z).

The solution to the program Eqs. (1.8.1)-(1.8.2) involves setting each wc(x, z) to be

either 0 or i. Either way V(wc(x, z)) = 0. This implies that e $ (1,0), since in that

case the IC constraint for 0 = B must be binding, and asking the agent to exert effort

in the bad environment does not change either player's continuation payoff but does

increase the principal's payoff in the current period. Moreover, the value of the program

is zero when eB = eG = 0. We have seen that Eq. (1.3.6) holds when w = 0. It remains

to consider the possibility that e = (1, 1) or (0, 1). In the latter case, it is easy to see

that the IC constraint for 0 = B in the program Eqs. (1.8.1)-(1.8.2) is not binding.

Due to Assumption 1, with positive probability wc(X, Z) = 0 and g(X, 1) > g(X, 0).

Now when the agent's expected payoff increases from w to w + c, the principal can

raise wc(x, z) with g(x, 1) > g(x, 0) to accommodate this increase without spoiling the

agent's IC constraints. For sufficiently small c, the increase in wc(x, z) can be bounded

by w,. This results an increase in the principal's payoff by V'(0)e. However, this choice

of the agent's continuation payoff is not optimal, as under Assumption 2, the support of

V'(wc(x, z)) should be a connected by Eq. (1.8.4). Therefore, V(w+E) > V(w)+V'(0)e,

12 This is possible under Assumption 1.
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contradicting the concavity of V. To sum up, Ve(w) cannot be optimal when w solves

the program Eqs. (1.8.1)-(1.8.2). Consequently, the first-order conditions Eqs. (1.8.3)-

(1.8.4) always hold for some -y, KB, and IG.

Now we prove the differentiability of V. Suppose that in the program Eqs. (1.3.1)-(1.3.3)

at w E (0, fv), the optimal choice of h is strictly positive. Then the proof of Proposition

1 applies and shows that V is differentiable at w and V'(w) = -1/u'(u-1(h(w))). When

the optimal h is zero, Eq. (1.3.5) still holds for positive c, and taking the right derivative

of both sides at f = 0 yields that V'(w+) > -1/u'(0). Therefore, V is differentiable

whenever V'(w+) > -1/u'(0). Let wd = inf{w : V' is differentiable on (w, 17)}.

Suppose that wd > 0. If V'(wd+) < -1/u'(0), then V is differentiable at Wd and the

right derivative of V is continuous at wd. This implies that the right derivative of V

is smaller than -1/u'(0) in a neighborhood of we, and thus V is differentiable on this

neighborhood, a contradiction. Therefore, V'(wd+) > -1/u'(0), and thus h(w) = 0

for all w < Wd. We show that V is differentiable at all w E (6 wd, Wd] to derive a

contradiction.

Consider a w E (6Wd, Wd]. If a public randomization is strictly optimal at w, V is locally

linear at w and thus differentiable. It remains to consider the case where V(w) = FeV(w)

for some e. By Eq. (1.3.2), wc(X, Z) > wd + -1 with positive probability, where

_= W - wd. By Eq. (1.8.4) and the continuity of the likelihood ratios, the set of

(x, z) such that wc(x, z) > Wd + ' is open. Therefore, there exists A = [X1, X2] x [z1, Z2]

such that a) wC(x, z) > Wd + for (x, z) E A; b) g(x, e)f(z, 0) > 0 on A for all e and 0;

and c) g(xi,1) - g(xi,0) has the same sign as g(x2,1) - g(x2,0). Choose xm E (X1, X2)

and zm E (z1, z2), and let

Deoi j g(x, e)f(z, 0)dxdz,
SBi

for e E {0, 1}, 0 E {B, G}, and i {1, 2,3,4}, where B1 = [xi, xm] x [zi, zm], B 2 =

[Xi,Xm] X (Zm, Z2], B3 = (Xm, X2] x [zi, zm], and B4 = (Xm, X21 X (Zm, Z2].

For e = (C1, E2, E3), define Wc(x, Z; c) by

t(x, z; c) = wc(xz) +E, , if (x,z) E Bj, i = 1,2,3;

wc(x, z) , otherwise.
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Replacing w, with fve in the program Eqs. (1.3.1)-(1.3.3), we see that the left hand sides

of Eq. (1.3.2), (1.3.3) with 0 = B, and (1.3.3) with 0 = G are linear functions of E, with

Jacobian matrix

E poDeei, E0 poDeO,2 E0 poDeoO,3
J = 5 (2 eB - 1)(DlB,l - DOB,) (2 eB - 1)(DB,2 - DOB,2) (2 eB - 1)(DlB,3 - DOB,3)

(2 eG - 1)(DIG,l - Do0,1) (2eG - 1)(DlG,2 - DOG,2) (2 eG - 1)(DlG,3 - DOG, 3 )

Notice that

Di,1 - DOB,_ DiB,3 - DO,3 - fZm f(z, B)dz f 2 f(z, B)dz DlB,2 - DOB,2

D1G,1 - DOG,1 D1G,3 - DOG,3 ft m f(z, G)dz fM f(z, G)dz D1G,2 - DoG,2

and that for e E {0, 1},

2 
XM

(D1G,1 - DOG,1) j g(x, i)dx - (DiG,3 - DOG, 3 ) g(x, i)dx

Xlm X2 X2 Xm ZM

[jXr g(x, 1)dxj g(x, O)dx - g(x,1)dxj g(x, 0)dx] f(Z, G)dz < 0.

Compute the determinant of J by first subtracting (2 eB - 1)(DlB,l - DOB,1)/[(2eG -

1)(D1G,1 - DOG,1)J times the third row from the second row and then expanding by

the second row. We see that the sign of detJ is the same as the sign of -( 2 eB -

1)(2eG - 1)(DlG,2 - DOG,2). In particular, detJ : 0. Therefore, for sufficiently small

77, a change of the agent's expected payoff by q can be accommodated by changes in

(El, E2, E3) without changing the left hand sides of the IC constraints, and furthermore,

(E1, E2, E3) are linear functions of q. When q is sufficiently small, maxi Iq(,q)I < /2, so

the principal's payoff is differentiable in the Ei's and thus in 7. It is also easy to see

that the derivative at q = 0 is the -y in Eq. (1.8.4). Therefore, the concave function

V is bounded from below by a differentiable function in a neighborhood of w and the

bound is tight at w, so V is differentiable at w and the derivative is -- y. This holds

for all w E (6 wd, Wd], contradicting the definition of Wd. Therefore, V is differentiable

on (0, i), and the derivative is -y in Eq. (1.8.4) when V(w) = Ve(w). Therefore, Eq.

(1.3.6) holds.

Proof of Proposition 3. First consider the case where eB = eG = 0. Ignore the

agent's IC constraints in both environments for now. Then the principal maximizes

E[V(wc(X, Z))] with the only constraint being on E[wc(X, Z)]. Since V is concave, it
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is always optimal to make wc(x, z) independent of both x and z. Clearly, this choice

satisfies the agent's IC constraints.

Next consider the case (eB, eG) = (0, 1). Ignore the incentive-compatibility constraint for

0 = B for now. Then KB = 0 in Eq. (1.3.6). The monotone likelihood ratio property of

f implies that the right hand side of Eq. (1.3.6) is weakly increasing in z for low output,

and weakly decreasing in z for high output, and the sign of the right hand side of Eq.

(1.3.6) is the opposite to the sign of g(x, 1) - g(x, 0). Therefore, V'(wc(x, z)) V'(w)

and V'(wc(x, z)) is weakly increasing in z for low output x; V'(wc(x, z)) 5 V'(w) and

V'(wc(x, z)) is weakly decreasing in z for high output x. Since V' is weakly decreasing,

this implies the desired result.

For each high output x, since F(., G) first-order-stochastically-dominates F(-, B),

Jw c(x, z)f(z, B)dz < J wC(x, z)f(z, G)dz,

and for each low output x, the reverse inequality holds. This implies that

J wC(x, z)(g(x, 1) - g(x, 0))f(z, B)dxdz < J wc(x, z)(g(x, 1) - g(x, 0))f(z, G)dxdz.

Hence, the agent's incentive is weaker in the bad environment, and his incentive-compatibility

constraint for 0 = B is automatically satisfied.

The monotonicity of w, in z is trivial only if KG = 0. In this case, V'(wc(x, z)) = V'(w)

for all x and z, so V is linear on the convex hull of the union of support of w, and {w}.

Finally, consider the case where eB = eG = 1. Then clearly KB 0 and KG 0, sO

the first assertion of the proposition follows. When KG = 0, the argument used in the

previous case implies the desired monotonicity of w,(x, z) in z, and the monotonicity is

trivial if and only if KB = KG = 0.

When KG > 0 the monotonicity of the right hand side of Eq. (1.3.6) on z depends on

the sign of ABKG - /IGKB. When PBKG > AGKB, the right hand side of Eq. (1.3.6) is

strictly increasing in z for low output x and strictly decreasing in z for high output x.

Therefore, the optimal wc(x, z) is strictly decreasing in z for low output x and strictly

increasing in z for high output x. The argument in the previous case then implies that the

agent's incentive is strictly weaker in the bad environment, which cannot be true when
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the incentive-compatibility constraint is binding for 0 = G. Therefore, OBKG PGrB-

This gives the desired monotonicity result. Clearly, the monotonicity result cannot be

trivial in this case, as that would imply that the agent's incentive is independent of

the environment, contradicting to the assumption that his IC constraint is binding for

0 = G.

Proof of Corollary 1. Propositions 1 and 2 allows us to replace V'(wc(x, z)) in Eq.

(1.3.6) by -1/u'(bt+i), which is a decreasing and linear function of bt+1 when c2 is

quadratic. Since pBG PGKB, the third term on the left hand side of Eq. (1.3.6) has

decreasing differences in x and z. Hence, bt+i has decreasing differences in Xt and Zt

Proof of Proposition 4. First consider the case where V'(w) < 0. Let V be the

concavification of maxe (0,0) .FeV, the principal's maximum payoff when the agent is

not allowed to shirk in the first period. Since (0,0) is optimal at w, the agent's optimal

continuation payoff can be chosen as independent of (x, z) and will be denoted by w'.

Then

V(w) = -(1 - 6)u 1 (h) + 6V(w') SV(w').

Since V'(iG) V'(w) < 0 for all i > w, the above inequality implies that w' < w.

On the other hand, Eq. (1.3.6) implies that V'(w) = V'(w'). Therefore, V is linear

on [w', w]. There exists c > 0 so that for iv G (w, w + E), the principal receives payoff

at least V(w) + V'(w)(fv - w) by inducing zero effort in the first period and giving

the agent the same first-period payment and a continuation payoff of w' + J-'(& - w).

(In fact, e can be chosen as 3(w - w').) Since V is concave and weakly below the line

through (w', V(w')) and (w, V(w)) at w' and at w, it is weakly below the line on [0, tI ].

Therefore, zero effort continues to be optimal on [w, W + 6). This argument can be used

for all w < I, so

sup{ E [w, D] : (0, 0) is optimal on [w,3]} =fv.

This proves the first assertion of the proposition.

Next consider the case where the agent is protected by limited liability and V'(w) > 0.

Then the payment in the first period is zero, the agent's continuation value can be chosen

as a constant, namely & 1 w, and V(w) = JV(J-1w). This means that (0,0), (w, V(w))
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and (- 1w, V(6- 1 (w))) are on the same line. It is then easy to see that (0,0) is also

optimal for all Cv E [0, W].

Proof of Proposition 5. First consider the case where max{IiB, KG} > 0. If pBKG =

pGI-B, then eB = eG = 1 and by Eq. (1.3.6), V'(wc(x, z)) is independent of z and strictly

decreasing in x. Since V'(W) is a countable set, {(x, z) : wc(x, z) E Wi} has measure

zero. Next consider the case where KB = KG = 0. We prove the following result:

Lemma 4. If KB = KG = 0 for some w V WI, then (eB, eG) # (1, 0), w is at the boundary

of a connected component (w', w") of WI, W" - w' > (1 - )&'cG, wc(x, z) f {w', w"}

for almost all (x, z). Finally, if both w, and zCv are optimal, then wc(x, z) = i-(x, z)

almost everywhere.

Proof. We only need to consider the non-trivial case where (eB, eG) / (0,0). Since

KB = KG = 0, V'(wc(x, z)) = V'(w) for all x and z. However, w, cannot be identically

equal to w due to the incentive-compatibility constraint, so w is at the boundary of

a connected component (w', w") of WI. Notice that V is linear on [w', w"], so the

analysis of the risk-neutral benchmark applies here and implies that the principal's

payoff does not depend on the choice w, as long as the IC constraints can be satisfied.

If (eB, eG) = (1,0), then J f(w" - w')[g(x,1) - g(x,0)]+dx > (1 - 6)cB, and thus both

(eB, eG) = (1, 1) and (eB, eG) = (0, 0) can be implemented. When (I-J)y > -SV'(w)cG,

(1, 0) is dominated by (1, 1), and when (1 - 6)y < -- V'(w)cB, (1, 0) is dominated by

(0,0).

Now assume that w = w'. Consider the following program:

w1(w) = min(1-6)(h(w)-E[ceee]) +6 yjo Jvc(x, z)g(x, eo)f(z, O)da(d4.5)

s.t. @C(X, Z) E [W' , W"i; (1.8.6)

(2eo - 1)61 'i-c(x, z) [g(x, 1) - g(x, 0)]f(z, O)dz > (1 - 6)co. (1.8.7)

Here h(w) is the optimal choice of h in the program Eqs. (1.3.1)-(1.3.3) at w. Since wc is

feasible in the above program, w1(w) <; w. Suppose that w1(w) < w. Then (h(w), fv,) is

feasible in the program Eqs. (1.3.1)-(1.3.3) for FeV(wj(w)). Since both wc and 'Cec only

take values in [w', w"], ibc gives the principal payoff V(w) -(w-w(w))V'(w). Therefore,

V(wj(w)) > .FeV(wi(w)) V(w) - (w - wi(w))V'(w), which implies that V is linear on

[wi(w), w"], a contradiction. Therefore, wi(w) = w. If Eq. (1.8.7) cannot be satisfied
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with strict inequality, then clearly wc(x, z) = w" for all high output x and wc(x, z) = w'

for all low output x. Suppose that Eq. (1.8.7) can hold with strict inequality. Then

the linear program can be solved using the dual method, and the solution calls for

ii3c(x, z) E {w', w"} for almost all (x, z). If the there are two optimal choices of ziv, that

differ on a set with positive measure, their convex combination is also optimal, but will

take values on (w', w") for (x, z) with positive measure, a contradiction. Therefore, the

solution is unique up to (x, z) with zero measure, and coincides with wc(x, z).

If w = w", then consider the program Eqs. (1.8.5)-(1.8.7) with the min replaced by

max. The same extension argument shows that the value of the new program is w, and

the uniqueness and the bang-bang property of the solution follow. 0

It remains to prove the uniqueness of the optimal w,. Assume that i- is also optimal and

wC : ziv on a set with positive measure. Then (wc + zZvc)/2 is also optimal and strictly

dominates wc and iivc unless V is linear on the convex hull of {wc(x, z), zi,(x, z)} for

almost all (x, z). Therefore, wc(x, z)zi3c(x, z) E W whenever wc(x, z) : '-c (x, z) (except

perhaps for some (x, z) with zero measure). The discussion of the case max{KB, KG} > 0

implies that this is possible only when KB = KG = 0 for both w, and fZc. However, this

possibility is ruled out by the lemma.

Proof of Lemma 2. When w is in the closure of WI and w, is a sequence in WI, the

construction of transition probability implies that supAEB([o,fD]) IP(w, A) -P(w, A)I -+ 0

as n -+ oo, so Ta(wn) -+ Ta(w). In what follows, assume that wn is a sequence in

[0, zD] \ WI. Then w E [0, iD] \ WI too. Suppose that Ta(wn) does not converge to Ta(w).

Then there is a subsequence of wn whose image under Ta is bounded away from Ta(w).

Therefore, it suffices to show that every sequence in [0, ?D] \ W that converges to w has

a subsequence whose image under Ta converges to Ta(w).

Since e(w) is unique, e(wn) -+ e(w). WLOG, assume that e(wn) = e(w) for all n. Notice

that this implies that the probability distribution of (X, Z) is independent of n since

its probability density is E. geg(x, eo(Wn))f(z, 0). If e(w) = (0, 0), then w,(x, z; w) is

independent of x and z, V'(wc(x, z; w)) = V'(w), and V(w) = -(1 - 6)u- 1 (h(w)) +

6V(wc(x, z; w)). Therefore, wc(x, z; w) : w unless w = V(w) = 0. This implies that w

is in the closure of WI. The same is true for all wn. Since wn ( Wr for any n, Wn = w

for all n. There is nothing to prove. In what follows, assume that e(w) $ (0,0).
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Let 'nGn, and KBn be the Lagrange multipliers in Eq. (1.3.6) for w", and let .G,OO, NB,oo

be the Lagrange multipliers in Eq. (1.3.6) for w. Suppose that (KGn, KBn) does not con-

verge to (-G,oo, "B,,oo). Then there exists a subsequence of {(KGn, r'Bn)} that converges

to some (RG, RB) '(G,oo, -B,o) - WLOG assume that the subsequence is {(r.Gn, rBn)}

itself.

First assume that (RG, RB) 5 (0,0). Then replacing KG and r-B in Eq. (1.3.6) at w by RG

and RB yields some fc(x, z). In case for some (x, z) there are many w,(x, z) that satisfy

Eq. (1.3.6), pick one arbitrarily. Then unless V' is not strictly decreasing at i-vc(x, z),

wc(x, z, wn) -+ iv-c(x, z). By Proposition 5, the (x, z) such that V' is not strictly decreas-

ing at ?Dc(x, z) has Lebesgue measure zero. Therefore, iic(x, z) is feasible for the program

Eqs. (1.3.1)-(1.3.3) at w, and E[V(wc(X,Z;wn))e(un) + E[V( CGc(X,Z))Ie(w)]. By

the continuity of V, zT'c(x, z) is optimal. By Proposition 5, tic = wc(., -; w) almost

everywhere, implying that (RG, RB) = (iG,oo, KB,,o), a contradiction. The above ar-

gument also shows that wc(x, z; wn) converges to wc(x, z; w) for almost all (x, z) when

(RG, 'B) $ (0,0), which implies that Ta(Wn) -+ Ta(w) by the dominated convergence

theorem.

Next assume that (RG, RB) = (0, 0). Let [w',w"] = (V')-(V(w')). If w' = w", then

the argument used in the previous paragraph shows that wc(x, z; Wn) converges to w' for

almost all (x, z), which violates the IC constraint. Therefore, w" > w'. Since 9H/9L is

bounded, the support of V'(wc(X, Z; wn)) converges to {V'(w')} as n -+ oc. Therefore,

for all (x, z) such that Eq. (1.3.6) holds for all n (which includes almost all (x, z)), every

convergent subsequence of {wc(x, z; wn)} converges to a number in [w', w"].

Denote the domain of (x, z) by Q. Now view L (Q) as the dual of L'(Q) (under the

Lebesgue measure). Since L'(Q) is separable, the weak*-topology on {v C L (Q) :

IVIIL <; N} is metrizable and sequentially compact by the sequential version of the

Banach-Alaoglu theorem. Therefore, there exists a subsequence of (w,(-, -; wn), V(wc(-, .; Wn)))

that converges to some (i7,c, f)) in weak-* topology on L (Q). WLOG assume that the

subsequence is (w,(-, -; wn), V(wc(-, -; wn))) itself. Let L = {(i, f)) : f = V'(w')iJ' + #}

be the line that contains (w', V(w')) and (w", V(w")). We have seen that for almost all

(x, z), every converging subsequence of {wc(x, z; wn)} converges to a number in [w', w"],

so for almost all (x, z), V(wc(x, z; wn)) - V'(w')wc(x, z; Wn) - -* 0. By the dominated
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convergence theorem,

J [V(wc(x, z; w")) - V'(w')wc(x, z; W") - /Jg(x, e)f(z, 9)dxdz -+ 0,

as n -+ oo for all (e,0) E {0,1} x {B, G}. Therefore,

I [' (x, z) - V'(w')ibc(x, z) - #]g(x, a)f(z, 9)dxdz = 0.

On the other hand, using the argument in the proof of APS's Theorem 5, we can show

that D < V Oc, almost everywhere. Therefore,

J [V(sC(x, z)) - V'(w')iic(x, z) - O]g(x, a)f(z, O)dxdz > 0.

However, V is concave, so the whole equilibrium frontier is below the line L. Therefore,

iD(x, z) = V(iiv,(x, z)) and wc(x, z) E [w', w"] for almost all (x, z). Weak*-convergence

implies that C(x, z) satisfies the constraints Eqs. (1.3.2) and (1.3.3), and the conti-

nuity of V further implies that ii, is optimal in the program of Eqs. (1.3.1)-(1.3.3) at

w. By Proposition 5, fv, = w,(-, -; w) almost everywhere. However, this means that

(IB,oo, KG,oo) = (0, 0) = (RB, RG), a contradiction. Therefore, (K'B,, KG) -+ (0, 0) =

(KB,oo, rG,oo). This implies that w = w' or w = w". The above argument also shows

that wc(x, z; wn) converges to wc(x, z; w) in the weak*-topology.

Fix an e > 0. Since a is continuous on the compact space [0, F], there exists an 7 > 0

such that Ia(w(')) - a(w(2))I < E/3 whenever Iw(1) - W (2)1 < . Also, choose M >

maxc a(i) - mine a(@). In fact, we can choose 7 and M so that

we+ 771 fa(w") - a(w')j < ( (1.8.8)
i3M i6(W" -w)

We have seen that w' < liminfn+oo WC(x, z; w') lim supn,. eW,(x, z; wn) < w" for al-

most all (x, z). Therefore, Prob(supn>, wC(X, Z; Wn) > w"+) -+ 0 and Prob(infn>m wc(X, Z; wn) <

W' -77) -+ 0 as m -+ oo. Find an Ni such that Prob(supnNl wc(X, Z; wn) > w"+ 77) <

c/(6M) and Prob(infn N, wc(X, Z; wn) < w'-q) < E/(6M). Let bn = Prob(wc(X, Z; wn) >

w"Ie(w.)), and b = Prob(wc(X, Z; w) ;> w"Ie(w)). Then Prob(wc(X, Z; Wn) w'Ie(wn))

1 - b, by the bang-bang property established in Proposition 5. Then

Ta(w) = ba(w") + (1 - b)a(w'), (1.8.9)
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and for n > N1 ,

|Ta(wn) - baa(w") - (1 - bn )a(w')I

[Prob(wc(X, Z; w)> w" + y) + Prob(wc(X, Z; w,) <w' - 7)] M +

332E

The above estimate is obtained by replacing a(wC(x, z; Wn)) by a(w") when wc(x, z; wn)

w" and replacing a(wc(x, z; wn)) by a(w') when wc(x, z; wn) <w W'. When

W'/ - 'q !5 W.(X, Z; Wn) < W"I + 77,

the error for each (x, z) is bounded by c/3; when the above inequality does not hold, the

error for each (x, z) is bounded by M. Therefore,

ITa(w) - Ta(wn)| < |bn - b||a(w") - a(w')| + E. (1.8.10)

Now consider the function 1 : [0, iv-] -+ R defined by l(f) = iv- - w'. Then the same

calculation shows that

Tl(w) = (w" -w')b;

IT l(wn) - (w" - w')bn| < ±+ .

Therefore,

(w" - w')|b - bn 5 ITl(w) - Tl(wn)I ± + t. (1.8.11)

Since 1 is a linear function, and wc(x, z; wn) converges to wc(x, z; w) in the weak*-

topology, Tl(wn) -+ Tl(w). There exists an N 2 such that for n > N 2,

|a(w") - a(w')I|Tl(w) - Tl(wn)| < 6(w" w'). (1.8.12)

Combining Eqs. (1.8.8), (1.8.10), (1.8.11), and (1.8.12), we see that when n > max{N1, N2},

ITa(w) - Ta(wn)I < Ia(w") - a(w')I 2<WI/ W/ 3M 3)T~w)±~~

This shows that Ta(wn) -* Ta(w).



56

Proof of Lemma 3. The first-order condition Eq. (1.3.6) and the continuity of gH9L

and fG/fB implies that the support of V'(wc(X, Z; w)) is an interval at every on-path

history. Therefore, the support of {V'(wt) : t > 0} is an interval [kj, kh]. We show that

the right end point must be V'(0), and the same argument can be used to show that the

left end point is V'(Gi).

Lemma 5. kj < kh unless the equilibrium is trivial: wo = 0 and the agent is protected

by limited liability.

Proof. Suppose that kj = kh. Then Propositions 1 and 2 and the strict concavity of u

implies that bt is the same at all on-path histories, and therefore the agent's incentive

is always zero, so the only thing players can do is to repeat the static Bayesian Nash

equilibrium. E

Suppose that kh < V'(0). Let wi = inf{w : V'(w) < kh}. Then wI > 0, and wi WI.

First suppose that e(wl) = (0,0). Then the program Eqs. (1.3.1)-(1.3.3) at w, has a

unique (x, z)-independent optimal choice of we, which will be denoted by wc(wi). If

kh > -1/u'(0), then w,(wl) = J-1 lw > wl, and V'(&-'wl) = V'(wi) by Eq. (1.3.6),

but this contradicting the construction of wi. If kh < -1/u'(0), then V(wc(wi)) =

6J-V(wi) > V(wi), which implies that w,(w ) < wi. However, one can then extend

V linearly to the right of w unless wl = fv-. The linear extension contradicts the

construction of wi, and that w, = iv violates Assumption 3. Therefore, e(wi) = (0,0).

By Assumption 4, there exists e > 0 so that e(wl) is strictly optimal for w E [w 1 , w + e).

Choose e small enough so that

E < min{6'-(1 - 6)cG, fv - wj; and define (1-8-13)

max{ - supx 1 - 9L (X)9H (X) sup 9H (X)/L() - 1} (1.8.14)
inf1 - gL(x)/gH(x) infxgH(X)/9L(X) - 1

M = max{M,M 1 }. (1.8.15)

By construction, V'(wl + e) < V'(wj). Since V is differentiable, there exists a w12 E

(wi, wi + c) so that
kh - V(W12) _ 1 (1.8.16)

kh -V'(w +e) 1+ M

Lemma 6. If w E [w, w12], then with positive probability, V'(wc(x, z; w)) > kh.
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Proof. By construction e(wl) is strictly optimal at w. The agent's incentive constraint

in an environment 0 in which ee(wl) = 1 can be written as

WC(X, z; W)[9(,)- g(x, 0)]f (z, O)ddz > (I6)co. (1.8.17)

Suppose that wc(x, z; w) c [wz, wi + El for almost all (x, z). Then

wc(x, z; w)[g(x, 1) - g(x, O))fo(z)dxdz < JE[g(x,1) - g(x, 0)]+f(z, 6)dxdz < c.

However, E is less than the right hand side of Eq. (1.8.17) by construction, a contradic-

tion. Therefore, w,(X, Z; w) is out of the interval [wl, wi + C] with positive probability.

Suppose that w,(X, Z; w) > w, + E with positive probability. Since the likelihood ratio

functions are continuous, Eq. (1.3.6) implies that V'(wc(X, Z; w)) achieves its maximum

and minimum with probability zero. Therefore, there exist non-empty intervals (Xi, x2 )

and (z1, Z2) in the support of Xt and Zt, respectively, such that V'(wc(x, z; w)) < V'(wi+

E) for x C (X1 , X2) and z C (z1, Z2). WLOG assume that 9H(X1) - 9L(x1) and 9H(X2) -

9L(x2) have the same sign. Suppose that 9H(Xl) > 9L(x1). Then by Eq. (1.3.6),

inf V'(wc(X, z; w)) - V'(w) g(x, 0) - g(x, 1) pGf(z, G)g(xi, eG(w)) + pBf (z, B)g(xi, eB(w))
X V'(w) - V'(wc(Xi, z; w)) x g(X1 , 1) - g(X1, 0) [pGf(z, G)g(x, eG(W)) + pBf (z, B)g(x, eB(w))

by the monotonicity of the second fraction in z and the definition of M in Eq. (1.8.14).

Therefore, with positive probability,

,V'(W) - V'(Wc(z1, Z; W))
V (wc(x,z;w)) > V'(w)+ V

M

> V'(w) + 1 [V'(w) - V'(wj + f)]
1 M1

> 1MV'(W12) - V V(WI +,E)

=kh.

The last step uses Eq. (1.8.16). The case where g(xi, 1) < g(xi, 0) can be treated in the

same way.

If w,(x, z; w) < wl with positive probability, then V'(wc(x, z; w)) > V'(wi) = kh with

positive probability by the bang-bang property in Proposition 5. I
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By construction of wi, Player l's expected payoff at on-path histories reaches [w1, W12]

with positive probability. This implies that with positive probability the slope of V' at

the agent's expected payoff in the next period is strictly bigger than kh, a contradiction.

Therefore, kh = V'(0). The same argument shows that k, = V'(i).

Now we know that kh = V'(0) in any optimal equilibrium. Define wI, e, and w12 as

before. The above lemma now shows that Player l's expected payoff is zero at the

beginning of the second period with positive probability if the equilibria starts at some

w E [w1 , W12], and thus with positive probability (eventually) for equilibria that start

anywhere on the frontier.

Proof of Theorem 1.

We first prove the desired result for optimal equilibria that start at w W. Define the

measure ) to be the Lebesgue measure on [0, i-] \ WI if the agent is not protected by

limited liability, and define 0 to be the unit mass at zero if the agent is protected by

limited liability. By Assumption 3, the interior of [0, Zv] \ WI contains a neighborhood

of Fv, so 0 is not trivial and its support has a non-empty interior when the agent is not

protected by limited liability. Lemma 3 implies that from every initial state wo, the state

eventually enters every set A with positive O-measure. Therefore, the Markov process is

4'-irreducible. It also has the Feller property by Lemma 2. Propositions 6.2.5 and 6.2.8

of MT implies that the Markov process is a T-chain if the agent is not protected by

limited liability. When he is protected by limited liability, V is linear in a neighborhood

of 0, so there exists an c > 0 such that infwE(oE) P(w, {0}) > 0, which means that (0, f)

is a small set of the Markov process. By Propositions 6.2.5 and 6.2.8 of MT again, the

Markov process is a T-chain in this case too. Lemma 3 implies that the state zero is

always reachable. The state space is compact, so Theorem 18.3.2 of MT implies that

the Markov process is positive Harris recurrent. Finally, the process is aperiodic since

P(0, {0}) > 0 whether or not the agent is protected by limited liability. Therefore,

Theorem 2 applies, and proves the convergence of P'(w, -) to the unique invariance

distribution of the Markov process for all w E [0, iD]. This proves the theorem for the

case where wo C [0,iC] \ W1.

When w E WI, P(w, -) may not describe the true distribution of the continuation payoff.

We need a separate argument to show that the distribution of wt converges to 7r. Each

optimal equilibrium can be associated with a T = min{t > 0 : wt V W1 }. Then T is
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a stopping time. Moreover, wt stays in a single connected component of WI for t < T,

and wt E WI with probability zero for t > T. By what we have shown, for each n > 0,

suPAEB([0,i]) IProb(wt E AIT = n) - -7r(A)j -+ 0 as t -* oo. To prove the theorem, it

remains to show that either T < oo with probability one, or Prob(wt E AIT = oc) =

7r(A) for all A.

Lemma 7. Let (w', w") be a connected component of WI. Then (eB, eG) = (0, 0) is

not optimal anywhere on (w', w") unless the agent is protected by limited liability and

w' = 0.

Proof. Suppose that (eB, eG) = (0, 0) is optimal at some w c (w', w"). First consider the

possibility that V'(w) 0, which happens only if the agent is protected by limited liabil-

ity. Then the up front payment is zero by Proposition 2, so wc(x, z; w) = 6-w, and thus

V(w) = SV(6 1 w). However, this means that (0,0), (w, V(w)), and (5-'w, V(6-'w))

are on the same line, which implies that w' = 0.

Now assume that V'(w) < 0. Let [WO, WOh] be the maximal connected set that contains

w on which eB = eG = 0 is optimal everywhere. Then V'(woh) < 0. The program Eqs.

(1.3.1)-(1.3.3) at Woh has a unique (x, z)-independent optimal choice of we, which will

be denoted wc(woh). Since V(woh) 6V(wc(woh)), so Wc(woh) < woh. The first-order

condition Eq. (1.3.6) further implies that V is linear on [wc(wo), woh]. However, one

can then extend F(0,0) V linearly to the right of WOh unless WOh = f. That woh = w

is ruled out by Assumption 3, and the linear extension contradicts the construction of

WOh. 0

Let (w', w") be the connected component that contains the initial state wo. If eB =

eG = 0 is optimal somewhere on (w', w"), then w' = 0 and the agent is protected by

limited liability. Hence, bt = 0 for all t when T = cc. Clearly, the unique invariance

distribution of the Markov process is the unit mass at zero, so when T < cc, wt -+ 0

in probability. Therefore, wt -+ 0 in probability unconditional on T. In what follows,

assume that eB = eG = 0 is never optimal on (w', w").

The strict concavity of u implies that bt = b' = (u')-1 (-1/V'(w')) as long as wt G

[w', w"]. If T > n with probability one, then the agent can guarantee himself an expected

payoff of (1 - 6n)bt by not exerting any effort in any period, and receives payoff at most

(1 - 6n)bt + jnF. Therefore, his incentive of exerting effort is at most 6"D, which
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approaches zero as n -+ oo. By continuity, there exists N > 0 and E > 0 such that if

Prob(T > N) > 1 - E, then the principal cannot induce the agent to exert effort even

in the good environment. Therefore, for every optimal equilibrium starting on [w', w"],

Prob(T > N) 1 - E. It follows by induction that Prob(T > kN) (1 - E)k, so

Prob(T = oo) = 0.

Proof of Proposition 6. Fix an open subset W of [0, ?iv] \ Wi. Then Lemma 3 implies

that every optimal equilibrium enters W with positive probability. However, if the

distribution of the initial state is 7r, the distribution of wt is 7r for all t. Therefore, 7r

must assign positive probability to W. The same argument shows that 7r({O}) > 0 and

ir({F}) > 0. Finally, the proof of Theorem 1 implies that every optimal equilibrium

enters [0, iD] \ W and stays there with probability one. Therefore, the support of 7r is

[0,iD] \ W.

Proof of Proposition 7. First assume that a stationary equilibrium exists. Then we

have seen that iD = 9 and a stationary equilibrium exists for every w E [Win, iD]. Now

consider the program Eqs. (1.5.5)-(1.5.6). Suppose that the value is strictly less than

WM. Then there also exists a stationary equilibrium at that value, contradicting the

definition of win. Now let Cv9, = inf{w : V'(w) = -1}. Suppose 'J'm < wim. Then

since Cvrn + V(Giim) = §, the optimal equilibrium at fvm must induce effort e = (1,1)

from the agent in every period on the equilibrium path. In particular, e(ii3m) = (1, 1).

Consider the program Eqs. (1.3.1)-(1.3.3) and a number A E (0,1). Then Aw (x, z; ibm)+

(1 - A)wc(x, z; wm) is feasible at AXim + (1 - A)wm, and it gives the principal payoff

strictly higher than AV(fvm) + (1 - A)V(Wm) unless V is linear on the convex hull of

{wc(x, z; iM), wC(x, z; WM)} for almost all (x, z). However, this means that there exists a

stationary equilibrium at i-m, contradicting the definition of Win. Therefore, V'(w) > -1

for w < wm.

Now assume that Wm solves Eqs. (1.5.5)-(1.5.6). Clearly, the solution of the linear

program has the bang-bang property: wc(x, z) E {wm, 9} for almost all (x, z). Let

A = {(x, z) : wc(x, z) = 9}. Consider the following automaton. There are two states, 1

and 2. In State 1, the principal makes up-front payment bo, and in State 2, the principal

makes a payment of (1 - 6)- 1(9 - w.) + bo. In both states, the agent exerts effort in

both environments, and the state in the next period is 2 if and only if (X, Z) E A. The

game starts at state 1. By definition of A, the strategy profile satisfies the agent's IC
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constraint Eq. (1.3.3). It will be an equilibrium if the principal's continuation payoff is

nonnegative in both states. Let v, be her expected payoff at State 1. Then her payoff

at State 2 is vi -,§ + wm. By Eq. (1.3.1),

vi = (1 - 6)(y - bo) + 6[vi - Prob((X, Z) E AjeB = eG= 1)(9 - Wm)]-

By Eq. (1.5.5),

Wm = (1 - 6)(u(bo) - E[ce]) + 5[w, + Prob((X, Z) E AjeB = eG = 1)(.§ - wm)]-

Adding the above two equations together leads to v, = y - E[ce] - Wm + uo = 9 - Wm.

Therefore, the principal's payoff in State 1 is 9 - wm > 0, and her payoff is State 2 is 0.

The proposed automaton is indeed an equilibrium.

Notice that w is a convex function and is thus continuous. Also, w(O) > 0 as long as

6 f 9[g(x, 1) - g(x, 0)]+dx > (1 - 6 )CB. Therefore, to show that w has a fixed point, it

suffices to show that w(w) < w for some w > 0. Let

(1 - 6 )cB
WB f 6[g(x, 1) - g(x, O)]+dai

Then when w = WB, there exists a unique w, that satisfies Eq. (1.5.6): wc(x, z) = WB

for all low x and w,(x, z) = 9 for all high x. Now

w(wB) = (1 - J)(u(bo) - E[ce]) + 6WB + J[9 - wB]Prob(g(X, 1) > g(X, 0)IeB = eG = 1).

Therefore, W(wB) < WB if

WB > (u(bo) - E[ce]) + JcBProb(g(X, 1) > g(X, 0)JeB = eG = 1)
f [g(x, 1) - g(x, 0)]+dx

Notice that the right hand side is independent of §, while the left hand side is linearly

increasing in 9. Therefore, the WB > w(wB) for sufficiently big 9.

Proof of Proposition 8. Define a binary relation ~ on [0, 'Cv] by setting w' ~ w" if

and only if w' = w" or w', w" C {0} U [wm, i]. Let S = [0, f-]/ ~ with the topology

of the circle. Denote the image of 0 under the quotient map by so. Then the Markov

transition probability P(s, .) is well defined in the new state space S for s 74 so. Define

P(so, -) to be the unit mass at so. Then it is easy to verify that Lemmas 2 and 3 hold
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for the Markov process on S as long as the initial state in Lemma 3 is not so. Notice

that a continuous function a on [0, i] induces a continuous function on S if and only if

a(O) = a(w) for all w E [win, iv]. It is straight forward to show that the Markov process

is i/-irreducible when 4' is the unit mass at so.

Since V is linear in a neighborhood of 0, and the proof of Lemma 3 implies that the

probability that w,(X, Z; w) ;> w, is bounded from below for w in a neighborhood

of win. Therefore, a neighborhood of so in S is a small set of the Markov transition

probability P. Therefore, the Markov process is a T-chain. The state so is reachable,

so the process is positive Harris recurrent. Finally, since P(so, D) = 0 for all D that

does not include so, the process is aperiodic. Therefore, the aperiodic ergodic theorem

applies. Clearly, the unique invariant distribution is the unit mass at so.

Proof of Proposition 10. Fix a w E [0,,@] \ W. Then the right hand side of Eq.

(1.6.4) is an analytic function of z. When the analytic function is a constant, wc(z; w)

lies in a connected component (w', w") of WI for almost all z. Since w V WI, there

exists a sequence w, E [0, 'iD] \ (Wi U {w}) that converges to w. WLOG, assume that

the (w - wn)'s all have the same sign. When w, < w for all n, V cannot be linearly

extended to the left of w, so

w = min(1-6)(h-E[ceeel)+6E[zZc(Z)e]

s.t. 6j Ic(z)[fi(z, 6) - fo(z, 0)]dz = (1 - 6)c' (ee).

This implies that wc(z) E {w', w"} for almost all z. When wn > w for all n, w is the

solution of the above program with min replaced by max, and we will have wc(z) E

{w', w"} for almost all z. Therefore, wc(z) is at the boundary of WI for almost all z

when the right hand side of Eq. (1.6.4) is a constant. When the right hand side of Eq.

(1.6.4) is not a constant, {z : V'(wc(z; w)) = k} is a discrete set for every k since the

zeros of an analytic function are isolated. On the other hand, V'(W) is a discrete set,

so {z : wc(z; w) E WI} is a countable set and thus w,(Z; w) C WI with probability zero.

As before, define the transition probability by setting P(w, W) = Prob(wc(Z) E Wje(w))

for w WI, and using convex combination for w C WI. In the proof of Lemma 2, we

need to focus on the case where e(wn) converges. Then a (w(-; wn), V(wc(-; wn))) that

converges in the weak*-topology on L (Q) gives an optimal choice of w, in the program
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Eqs. (1.6.1)-(1.6.3) at w. The rest of the proof of Lemma 2 can be used without changing

a word. Since the right hand side of Eq. (1.6.4) is continuous and Q is connected, the

support of wc(Z; w) is connected for all w. The proof of Lemma 3 is based on the

boundedness of likelihood ratio from zero and infinity and the strict concavity of u.

These are assumed in this setting too, so Lemma 3 also holds.

Therefore, the Markov process is has the Feller property and is V)-irreducible where ? is

the Lebesgue measure on [0, C] \ Wi. The support of 0 contains a neighborhood of iD by

Assumption 3, so the Markov process is a T-chain. The state zero is reachable and the

state space is compact, so the process is positive Harris recurrent. Since P(0, {0}) > 0,

the process is aperiodic. Now the proposition holds when wo V WI by Theorem 2. The

case where wo E Wi can be handled the same way as in the proof of Theorem 1.

1.8.2 Appendix B: long-run dynamics with commitment

In this appendix, we study the long-run dynamics when the principal can commit to a

long-term contract. For simplicity, we focus on the case where the agent is not protected

by limited liability. Without the fluctuating environment et, this will be the discrete

time analogue of Sannikov (2008) without limited liability. The analysis is not much

different from the no-commitment case: it only removes the constraint that V > 0 so the

agent's expected utility w can potentially be arbitrarily large. However, we will see that

the long-run dynamics will be very different. In particular, the state wt will eventually

be absorbed to a counter-intuitive "retirement" regime.

To begin with, we first estimate an upper bound of the frontier V by ignoring the agent's

incentive-compatibility constraint for a moment. The only constraint is feasibility then.

We have V(w) 5 Vf(w), where

Vf(w) max -u- 1 (h) + poqoy;
qBqch

s.t. h - E poqoco = w.
0
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In this program, q0 is the probability that the agent exerts effort in Environment 9.

Eliminating h, we see that qB and qG maximizes

-u 1 w +ZE pioco + E pieqy.

We make the following assumption:

Assumption 6. limb->. u'(b) < CG/y.

Both the commonly used exponential utility and power function utility satisfies this

condition. Under this assumption, for sufficiently large w, it is optimal to choose qB =

qG = 0, SO Vf(w) = -u 1 (w). Since there is no incentive-compatibility constraint to

worry about for these w, the payoff pair (w, u-1(w)) can be implemented by a long-term

contract. Therefore, V(w) = -u- 1 (w) for sufficiently large w. Let wr = inf{w : V(w) =

-u-1(W)}.

The solution to the program Eqs. (1.3.1)-(1.3.3) is still characterized by the first-order

condition Eq. (1.3.6). Define Wi = {w E (0,wr) : V is linear on a neighborhood of

w}. Assume that Assumptions 2, 4, and 5 hold, and assume in addition that 0 is not in

the closure of WI. Then Proposition 5 holds, and one can define the Markov transition

probability P as in Section 5.2.

Proposition 11. In every optimal equilibrium, wt converges to a random variable wx

almost surely, and w, > w>r almost surely.

Proof. WLOG assume that wo 5 Wr. Since zero is the only possible corner solution of

Eq. (1.3.6), V'(wt) is a super-martingale. Moreover, since g(x, 1)/g(x, 0) is bounded

away from zero and infinity, wc(x, z; w) is bounded as long as the Lagrange multipliers

KB and KG are bounded. Clearly, there exists a K > 0 such that if IKB > K or

IKGI > K, then for all w C [0, Wrl, wc(x, z; w) cannot satisfy either IC constraint with

equality. Therefore, there exists wM < 00 such that wc(x, z; w) < wM for all w E [0, Wr]-

Moreover, wc(x, z; w) = w for w > Wr. Therefore, wt 5 wM almost surely. By Doob's

martingale convergence theorem, V'(wt) converges a.s. and in L1 to some random

variable ko.

Suppose that there exists a k C (V'(wr), V'(0)] such that ko = k with positive prob-

ability > 0. Let [w', w"] = (V')- 1 (k). Proposition 5 and the argument in the last
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paragraph of the proof of Theorem 1 applies, and implies that wt E (w', w") with proba-

bility zero for all t. Lemma 3 also applies when the initial state is in (0, wr), and implies

that the state reaches {0} with positive probability when the process starts at w' or w".

Define the operator T as in Eq. (1.5.1). Then there exists n > 0 and f > 0 such that

TnV'(w')-V'(w') < -2c and TnV'(w") -V'(w") < -2c. Since V' is continuous and the

Markov process P has the Feller property, TnV' is also continuous, and there exists q > 0

such that TnV'(w) - V'(w) < -c for w E (w' - 1q, w'] U [w", w" + q). Since V'(wt) con-

verges to k, a.s., there exists tk > 0 such that Prob(wt E (w'-q, w']U[w", w"+q)) > /2

for all t > tk. Therefore,

1
E[V'(wt+n)] = E[T"V'(wt)] < E[V'(w)] - e,2

for all t > tk, where we have used the fact that T"V'(wt) = E[V'(wt+n)wt. However,

E[V'(wt)] converges to E[ko,,], a contradiction. Therefore, k, = k with zero probability

for every k E (V'(wr), V'(0)]. In particular, k, E V'(W) with zero probability. Hence,

WO = (V') 1 (kc) is well-defined up to events with probability zero, and wt converges

to wo a.s..

Define q : [0,oo) -+ [0,wr] by q(w) = w for w C [O,wr] and q(w) = wr for w > Wr.

Define the Markov transition probability P on [0, wr] by

P(w, W) = P(w, W), if Wr W (1.8.18)

(P(w,W U [Wr,OO)), if Wr E W.

Let t be the T-operator defined in Eq. (1.5.1) for P. Each continuous function a on

[0, wr] can be extended to [0, oo) by setting a(w) = a(wr) for w > wr, and then

Ta(w) = a(w')P(w, dw') = a(w')P(w, dw')

by construction. Lemma 2 still applies and says that P has the Feller property. The

above equation implies that P also has the Feller property, and t maps a continuout

function to a continuous function.

Let 7r be the probability distribution of wo, and

r(W) = P(,W) dir(w).
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Suppose that 7r $ -r. Since 7r and r are both finite measures on the compact metric space

[0, w,], they are both regular by Theorem 7.1.4 of Dudley (2002). By Theorem 7.4.1 of

Dudley (2002), there exists a continuous function ao on [0, w,] such that f ao(w)dir(w) $

f ao(w)dir(w). Since ao is continuous and bounded,

Jao(w)d&r(w) = E[ao(q(w,))] = lim E[ao(q(w,))j; (1.8.19)

Jao(w)dir(w) = tao(w)d&r(w) = lim E[tao(q(wtn))]. (1.8.20)

However, for each t,

E[Tao(q(wt))] = E [Jao(w')P(q(w), dw')] = E[ao(q(wt+i))], (1.8.21)

where we used the fact that P(q(wt), -) = P(wt, -), which follows from the fact that

WC(z Z; w) = w for w > wr. Combining Eqs. (1.8.19)-(1.8.21) shows that f ao(w)dir(w) =

f ao(w)d-r(w), a contradiction. Therefore, 7r is an invariant distribution of the Markov

process on [0, wr] with transition probability P.

It is easy to check that Lemma 3 holds for P, which implies that every invariant proba-

bility measure of P assigns positive probability to {wr}. (See also the discussion of the

case without commitment.) By Theorem 1.7 of Hairer (2010), P has a unique probability

measure, the unit mass at Wr. Therefore, w, Wr with probability one. L

The proof is an application of Doob's martingale convergence theorem. Notice that w,

depends on the initial state wo in general, but for every initial state, Prob(wt Wr)

converges to one as t -+ oo.

Therefore, as long as Assumption 6 holds, the relationship almost surely eventually

enters a regime where the agent does not exert any effort and the principal makes

a constant payment every period. This is exactly the "retirement" regime in Sannikov

(2008). Notice that V(w) < 0 for all w > Wr, so "retirement" can never happen when the

principal cannot commit to a long-term contract. However, the principal's commitment

power makes all information about the invariant distribution of the Markov process in 4.2

lost in the long run. Therefore, the model with commitment is not a good approximation

of the model without commitment in terms of long-run dynamics.
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In Sannikov's model, both zero and the retirement regime are absorbing. However, when

the agent is not protected by limited liability, the state zero is not absorbing. In fact,

when the agent is protected by limited liability, the martingale convergence argument

used in the proof of the proposition implies that wt converges to some random varialbe

wo, and wo c {O} U [wr, oo) with probability one. The argument in the proof of

proposition 8 shows that wO = 0 with positive probability and wO ;> w, with positive

probability, if wo E (0, Wr).





Chapter 2

Relationships in a Market:

Contract Enforcement and Asset

Re-allocation

2.1 Introduction

In a principal-agent relationship, when the agent's performance is not verifiable by a

third party, a formal incentive contract cannot be written. If his performance is observ-

able by both the principal and the agent and they interact repeatedly, the principal can

still provide incentive to the agent through a "relational contract". In general, the lack

of formal contract reduces the surplus that can be created by the relationship. However,

the reduction in pair productivity can benefit the whole economy if it facilitates the

transfer of assets from inefficient managers to efficient managers by making it harder for

less efficient managers to survive.

In order to formally explore this possibility, this paper studies a market of relationships.

Specifically, each relationship consists of a principal, an agent and an asset, and assets

can be traded in the market. The economy consists of a continuum of principals, agents,

and assets, and the productivity of a relationship depends both on the agent's effort

and on the matching quality between the asset and the relationship which is unknown

until the principal owns the asset. Under some conditions, the productivity of each

69
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relationship is constant over time, and the growth of the aggregate output of the whole

economy comes from the trading of assets and the increase in the average matching

quality in all relationships associated with the trading.

The surplus in every relationship depends on the contracting environment. As mentioned

above, the lack of formal incentive contracts reduces the surplus in every relationship.

However, if this reduction is particularly big for relationships in which the matching

qualities between the principals and the assets are low, more principals sell their assets

in the economy without formal incentive contract. Consequently, the limit distribution

of matching qualities is better in this economy. It is therefore interesting to ask whether

this effect dominates the reduction of output in the productive relationships and leads

to higher output and higher welfare in the economy without formal contract.

There are many reasons why the initial allocation of assets may be sub-optimal. For

example, there may be friction in the credit market so that the initial asset owners are

those who can afford assets and not those who are good at managing them. This paper

does not explicitly model these frictions. Instead, it assumes that the asset market

is frictionless except for a deadweight loss associated with every trade, and explores

the dynamics of asset re-allocation in both the environment with formal contracts (the

strong contracting environment) and the environment without formal contracts (the

weak contracting environment).

Specifically, there are continuums of entrepreneurs (principals), workers (agents) and

assets. Each asset is initially owned by an entrepreneur. In each period, the entrepreneur

can either sell her asset on an asset market or keep her asset and hire a worker. The

assets are scarce resources so that current asset owners have all the bargaining power in

the asset market and the entrepreneur who owns an asset has all the bargaining power

in the contract with the worker. After a transaction of asset takes place, the asset

remains unproductive for the current period, and the new owner learns the matching

quality between herself and the asset. When the entrepreneur hires a worker, the worker

chooses an effort that is not observed by the entrepreneur, but the effort generates

a binary output which is publicly observable. An important assumption is that the

worker's output and the entrepreneur's payment are observed by every agent in the

economy. Therefore, if an entrepreneur reneges her payment in the weak contracting

environment, she can be punished even if she hires a new worker.
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There are three main sets of results. The first set is concerned with whether the asset

market is stationary. The market is called stationary if the asset price offered by each

asset owner is constant over time. In the strong contracting environment, the asset

market is always stationary. In the weak contracting environment, the asset price is a

fixed point of an increasing function, and the asset market is stationary if that increasing

function has a unique fixed point. Intuitively, since the current asset owner has all the

bargaining power, she will offer the price equal to the value of the asset to a new owner.

Since the potential buyer does not know her matching quality with the asset, there is no

private information in the asset market. However, in the weak contracting environment,

the value of the asset may depend on the future asset prices in a way that leads to an

non-constant asset price.

The second set of results characterizes optimal relationships in a stationary asset market.

In such an asset market, a new asset owner either sells her asset immediately or keeps

the asset forever. Moreover, when she keeps her asset forever, the surplus created from

the asset is constant over time. The intuition is simple: since the asset price will not

change in a stationary asset market, there is no point of keeping an asset if the owner

finds that her matching quality with the asset is low. It is obvious that the relationship

in the strong contracting environment produces constant surplus, while the same result

in the weak contracting environment follows from Levin (2003).

Finally, in a stationary asset market, the aggregate output of the economy converges to

a limit in the long run, and the distance between the output at time t and the limit

shrinks exponentially over time. As mentioned above, the growth of the aggregate output

is driven by the re-allocation of assets. Since the asset owners whose matching qualities

with their assets are above a threshold keep their assets forever, eventually all assets fall

into hands with high enough matching qualities and the aggregate output reaches its

long-run limit. This long-run limit can be characterized analytically, so it can be shown

when this long-run limit is higher in the weak contracting environment.

This paper is related to several literatures. The literature of relational contracts con-

siders incentives in the weak contracting environment. Examples include Macleod and

Malcomson (1989), Baker, Gibbons, and Murphy (1994, 2002) and Levin (2003). Most

of these papers consider a single relationship. By considering an asset market, the cur-

rent paper shows that factors that reduce productivity of every relationship may benefit
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the economy as a whole.

There are also papers that relate the performance of a single relationship to market

forces, an early example of which is Shapiro and Stiglitz (1984), and there are also

recent papers like McAdams (2011) and Halac (2012). Kranton (1996) and Eeckout

(2006) also study relationships with re-matching. However, none of these papers have

a market of relationships or assets and pose the problem in the context of economic

growth.

In macroeconomics, Jovanovic (1979 and 1982) are early papers studying productivity

shocks that motivate the consideration of matching qualities between entrepreneurs and

assets in this paper. Bloom (2009) shows through a numerical simulation the contribu-

tion of this re-allocation process to growth of economies. Hsieh and Klenow (2009) use

establishment-level data in India and China to show the potential of growth in those

countries through re-allocation. Song, Storesletten, and Zilibotti (2011) argue that the

initial inefficient allocation of resources is due to the inefficiencies in the credit market,

so the resources initially belong to firms who have more cash than those who are more

productive.

The remainder of the paper is organized as follows. Section 2 outlines the assumptions of

the model. Section 3 analyses the Pareto optimal formal and informal incentive contracts

between one employer and one employee, taking the market conditions as exogenous.

Section 4 analyses the full market equilibrium and characterizes the growth path of

the economy. Section 5 describes an extension that allows for a continuous measure

of enforceability of incentive contracts in the spirit of Baker (1992) and Baker (2002).

Section 6 concludes. The proofs that are not included in the main text are collected in

the appendix.

2.2 The Model

In a discrete time economy, there is a continuum of assets of mass one, a continuum of

entrepreneurs of mass N > 1, and a continuum of workers of mass N E (1, N). Each

entrepreneur can own at most one unit of asset, and hire at most one worker in each
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period of time1 . Each entrepreneur has an matching quality a with each asset, which

is independent across entrepreneurs and assets and drawn from a distribution at the

beginning of the game, whose CDF is F with support [q, d], where a > 0. Allowing

each entrepreneur to own more than one unit of assets naturally raises the question of

whether productivity of different assets owned by the same entrepreneur are the same,

and thus distinguishes the interpretations of a as the entrepreneur's innate ability or as

the quality of the matching between the entrepreneur and each asset. This will be left

for future research.

At the beginning of the first Period, Period 0, each unit of asset is owned by an en-

trepreneur, and the distribution of the initial matching qualities is given by the cumu-

lative distribution function FO, which is taken as exogenous and may not may not be

the same as F. This assumption captures the idea that the initial allocation of assets is

inefficient. This inefficiency may be caused by friction in the credit market as described

in Song, Storesletten and Zilibotti (2011), but is not explicitly modeled here, and after

the initial allocation of assets there is no more friction in the credit market in the sense

that every entrepreneur can afford an asset. I also assume that each entrepreneur ob-

serves her matching quality with an asset only after she owns the asset. This assumption

prevents the allocation of assets becoming efficient after a single period during which

only entrepreneurs with the highest abilities bid to buy the assets previously owned by

entrepreneurs with lower abilities. Alternatively, a can be interpreted as the quality of

the matching between an entrepreneur and an asset, and thus unknown prior to the

formation of the match. In each period of time, the following events happen:

1. The matching quality between each asset owner and her asset is observed by ev-

eryone in the economy.

2. Each entrepreneur who owns an asset decides whether to sell her asset.

'Allowing each entrepreneur to hire more than one worker makes the characterization of optimal
incentive contracts more difficult. When the output of the firm is the sum of contribution from all
its employees, the optimal formal incentive contract for each employee is the set of optimal incentive
contract based on his own contribution, but the optimal informal incentive contract has a more compli-
cated structure. The friction introduced by the informal incentive contracts remains the same, though
somewhat alleviated due to the smaller fluctuation in total output, and vanishes when the number of
employees in a firm approaches infinity. When the output of the firm depends on the contribution from
each employee in a more general way, the problem of team incentive arises.
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3. Each entrepreneur who decides to sell her asset is randomly matched with an

entrepreneur who does not own an asset, and makes a take-it-or-leave-it offer. If

it is accepted, the buyer gets the asset.

4. Each entrepreneur who decides not to sell her asset offers a wage w and incentive

payment schedule m(.) to her current employee (in case she employed someone in

the previous period) or a randomly matched worker. Here m is a function of the

worker's performance z to be defined later.

5. For each matched pair of entrepreneur and worker, the worker chooses to accept

or reject the wage offer. If the wage offer is rejected, both the entrepreneur re-

ceives zero payoff in the current period. Each unemployed worker receives an

unemployment benefit of b > 0, no matter whether he is offered a contract.

6. If a wage offer is accepted, the wage w is paid, and the worker chooses a level of

effort e E [0, 1] at a private cost c(e). We assume that c is a strictly increasing,

twice continuously differentiable function. We also assume that c(0) = 0, c'(0) > 0,

and c"(e) > 0 for all e E [0, 1].

7. Within each pair of matched entrepreneur and worker, an outcome z E {0, 1}

is realized and observed by every agent in the economy, where Pr(z = lie) = e

where e is the effort chosen by the worker; the output is y = az where a is the

entrepreneur's matching quality with the asset, and makes an incentive payment.

Throughout the analysis, we assume that c'(1) > d, which would imply that it is never

optimal to choose effort e = 1 in equilibrium. All agents in the economy are risk neutral,

and discount future payoffs by 6. In each period, an entrepreneur's payoff is p is she sells

her asset at price p, -p if she buys an asset at price p, zero if she does not own an asset,

or has a contract offer turned down by a worker, and (az - w - m) if she has a contract

accepted by a worker and pays wage w and bonus m. In each period, a worker's payoff

is b if he is not matched with an entrepreneur or rejects a contract offer, or w + m - c(e)

if he accepts a contract offer and exerts effort e.

Each worker's effort is observed by himself, and the matching quality a, the outcome

z and monetary payment w and m that are offered and realized associated with each

current owner of the asset is publicly observed. On the other hand, once an asset

transaction takes place, information about its previous owner is forgotten. This means
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that the resale value of an asset does not depend on actions taken by the current owner.

Even if the current owner of an assethas deviated from the equilibrium path, the next

owner can treat it as a new asset. This is similar to the "fresh start" assumption of

McAdams (2011). The solution concept is public perfect equilibrium in pure strategy

with one restriction, as stated in Assumption 1 later.

It follows from the timing that once matched, an entrepreneur and a worker will work

together until the entrepreneur sells her asset or the worker rejects a contract offer, and

until then they do not directly interact with any other agents. Therefore, it is possible to

analyze the interaction between an entrepreneur and a worker, taking the market price

of assets and the worker's payoff from being unemployed as given. I call this interaction

the partnership game between the entrepreneur and the worker, and will study it in

detail in the next section.

We distinguish between the strong contracting environment and the weak contracting

environment. In the strong contracting environment, the entrepreneur has to make the

promised incentive payment m(z) upon the realization of z. In the weak contracting

environment, the entrepreneur can choose whether to make the promised incentive pay-

ment. It is assumed that the entrepreneur has all the bargaining power in the negotiation

of labor contracts to capture the idea that the labor force has a bigger mass than assets.

As a result, all the surplus in the employment relationship accrues to the entrepreneur

in the strong contracting environment, as will be shown in the next section. However,

the same result is not necessarily true in the weak contracting environment, due to the

multiplicity of equilibriums in repeated games. To facilitate the comparison between the

two contracting environments, we make the following assumption:

Assumption 7. In each employment relationship, the entrepreneur and the worker choose

strategies on the Pareto frontier, unless at least one of the two parties have reneged in

the current partnership, at which point they play the static Nash equilibrium if no one

quits.

This assumption is similar to Assumption 2 in Halac (2013). It implies that an en-

trepreneur cannot be punished for choosing one equilibrium of the partnership game

over another. However, she focuses on a single partnership, and I also study the forma-

tion of new partnership through new matching or transaction of assets.
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To capture the idea that the entrepreneurs have a bigger mass than assets, it is assumed

that in an asset transaction the seller has all the bargaining power. In fact, when the

mass of entrepreneurs, N, is sufficiently big, and all entrepreneurs are ex ante the same,

the chance that each entrepreneur will get an asset is slim. Therefore, assuming that

the seller captures all the surplus from an asset transaction seems reasonable.

In this paper, we focus on the asset market, has a very simplistic model of the labor

market, and completely leave out the product market of the economy. In particular, we

will not discuss how entrepreneurs with assets compete against each other in the product

market. As a result, an important aspect that is missing from the model is the effect of

the distribution of asset owners' abilities on the price in the product market and thus the

profit of all asset owners. In fact, as we will show in Section 4, the distribution of asset

owners' abilities improves over time in the sense of first order stochastic dominance, and

that may cause a drop in the price of the product market and reduce each asset owner's

profit, but this is left for future research. Another consequence of competition in the

product market is that the consumer surplus will be non-zero, and thus in general, the

social welfare of the economy is not equal to the total monetary payoffs of entrepreneurs

and workers. Due to this consideration, we will measure the performance of the whole

economy by its aggregate output, the sum of az over all asset owners, instead of the

total monetary payoffs of entrepreneurs and workers.

2.3 The Partnership Game and Determination of Asset

Price

This section characterizes the equilibriums in both contracting environments. In particu-

lar, we will focus on whether the asset price is constant over time, and discuss properties

of such an equilibrium. Section 3.1 studies the strong contracting environment, where

the equilibrium is unique and the asset price is always constant over time, and Sec-

tion 3.2 studies the weak contracting environment and gives conditions under which an

equilibrium with constant asset price exists and is unique.

In order to focus on the partnership game between an entrepreneur and a worker, We

first introduce a lemma stating that for the entrepreneur in a partnership, the resale
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price of assets and the worker's outside option can be taken as parameters that are

independent of her own strategy.

Lemma 8. Fix a contracting environment. In each period, all sellers of assets offer the

same price. All entrepreneurs who does not own assets at the beginning receive total

payoff of zero. In particular, the seller receives the whole surplus in an asset transaction.

Similarly, all workers receive payoff b/(1 - 5), the payoff from being unemployment.

This lemma applies to both contracting environments, and fleshes out the implications

of the assumptions about bargaining powers. Since the sellers have all the bargaining

power in asset transactions, the price of assets is independent of the seller's value if the

transaction breaks down, and is equal to the buyer's continuation value. Similarly, since

the entrepreneur has all the bargaining power in wage negotiation, the worker cannot

receive more than his outside option in expectation in an employment relationship.

However, the lemma does not pin down the asset price in the market, nor does it imply

that the price is constant over time. The remaining of this section is devoted to the

determination of asset price and the value of an asset for entrepreneurs with different

abilities.

2.3.1 The strong contracting environment

Let pt be the equilibrium market price of assets at time t, and V(s) (a) the value of assets

at time t in a matching of quality a. Then the asset owner chooses the contract (w, m)

and recommended level of effort e to solve the following program:

V') (a) = max max{pt, [a - mi]e - mo(1 - e) - w + 6Vs(a)}
t w~,m,e +

s.t. e E argmaxj[mi - mo]E - c(e);

w + mie + mo(1 - e) - c(e) > b.

Here m, is the bonus payment when z = 1 is realized, and mo is the bonus payment

when z = 0 is realized. The first constraint is the worker's incentive compatibility

constraint, and the second constraint is the worker's participation constraint. Using

the transformation i-v = w + mo and ~il = mi - mo, one can set mo = 0 without loss

of generality. Solving for w from the constraints, one can rewrite the entrepreneur's

objective function as max{pt, ae - c(e) - b + 6VWt(a). Therefore, the optimal effort
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choice is min{(c)- 1 (a), 1}, which can be implemented by choosing m, = a. Let

g(a) = max ae - c(e). (2.3.1)
eE[0,1]

Then

Vt()(a) = max{pt, g(a) - b + JV, (a)}.

By Lemma 1, the price of assets pt is equal to the expected value of an asset, so pt =

6f V (&)dF(&). Define an operator T on Ll(F), the integrable functions on [a, d] with

respect the probability measure F as follows:

T(V) = max{5J V(5)dF(d), g - b + 6V}. (2.3.2)

Then V(s) = T(Vs ).

Theorem 3. There exists a unique equilibrium in the strong contracting environment.

The equilibrium has the following properties:

a) the asset price p is constant over time, is independent of the initial distribution of

asset owners' abilities and satisfies the following equation:

p = Jmax{(1 - 6)-1 [g(a) - b],p}dF(a); (2.3.3)

b) the value of an asset in a matching with quality a is given by max{p, (1- )- 1 (g(a) -

b)}; and

c) there exists ac) E [a, d] such that after receiving an asset, an entrepreneur sells the

asset immediately if her matching quality with the asset a is lower than some threshold

a , and never sells the asset otherwise. In fact, ac") is given by the following equation:

1 [g(a(s)) b] = p. (2.3.4)
1-3

Proof. It is easy to see that IIT(V')- T(V")j < 5|1V'-V"I for V', V" E L1 (F), so T is a

contraction on Ll(F) and has a unique fixed point Vf in Ll(F). Let p = 6 f Vf (a)dF(a)

and a( ) be given by Eq. (2.3.4). Then the strategy profile described in the theorem is

an equilibrium.

Suppose a strategy profile is an equilibrium. Then it is still an equilibrium for a different

distribution of the initial asset owners' abilities, and neither p nor the value function
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depends changes. Therefore, the set of equilibrium value functions is independent of

the distribution of the initial asset owners' abilities. Let V be the set of V(s)'s that

can arrive in equilibrium. Then V C L1(F), and moreover |VII (1 - J)'g(a) for

every V E V, since V (a)(') E [0, (1 - J) 1 g(d)] for all a and in every equilibrium. Since

the continuation game in Period t is the same as the original game with a different

distribution of the initial asset owners' abilities, so Vt(*) E V in every equilibrium. Now

in every equilibrium Vi(s) = T(VO), so by induction V C Tt (V) for every positive

integer t. The fact that T is a contraction mapping implies that V must be a singleton,

consisting of the unique fixed point of T. E

The key feature of the unique equilibrium is that the asset price is constant over time

and is independent of the distribution of the matching quality between current asset

owners and their assets. The reason is that for those entrepreneurs who just receive a

new asset and those without an asset, the continuation game is the same as the original

game, and presence of other entrepreneurs does not change their payoff. Therefore, every

period is a fresh start. The above argument makes it clear that this independence is a

consequence of the lack of competition among asset owners in either the labor market

or the product market. In the labor market, there is an excess supply of homogeneous

labor force, and every asset owner can hire a worker at the lowest wage. In the product

market, I assume that there is no competition. Nontrivial competition in either market

will remove the independence of entrepreneurs' payoff on the distribution of existing

matches' qualities, and is likely to remove the independence of price of time and thus to

introduce the problem of the optimal time to sell an asset. For that reason, this paper

does not study competition in the product market or the labor market.

A consequence of constant asset price is that an entrepreneur who newly acquires an

asset either sells it immediately or keeps it forever. When her matching quality with

the asset is lower than ac , keeping the asset for one period delivers her a payoff lower

than (1 - 6)p, and the price will not change the next period, so she should not wait

if she decides to sell her asset. From an asset's perspective, its owner changes every

period until it falls into the hand of an entrepreneur with matching quality higher than

a. , and then it does not enter the asset market any more. This fact great simplifies

the characterization of the aggregate output of the economy, which will be taken up in

Section 4.
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This property of equilibriums with constant asset prices is independent of the contracting

environment. Therefore, we will explicitly seek for such an equilibrium in the weak

environment, and then try to determine whether every equilibrium has a constant asset

price.

2.3.2 The weak contracting environment

When the outcome is not verifiable by a third party, an entrepreneur has to make cred-

ible promise on the bonus payment to her employee. Specifically, upon the realization

of the good outcome, she must weakly prefer paying the promised bonus to continue

her relationship with the employee to reneging. By Assumption 1, reneging leads to

a permanent switch to the static Nash equilibrium between the entrepreneur and all

workers, so the entrepreneur will not be able to induce effort from any workers in the

future, and has to sell her asset. Hence, the maximum credible bonus payment depends

on the resale price of the entrepreneur's asset. This dependence is absent in the strong

contracting environment, and makes the analysis in the weak contracting environment

more complicated.

In particular, it is not straight forward to establish the uniqueness of equilibrium and the

independence of asset price over time in the weak contracting environment. However,

we will have an informal discussion of the optimal relational (informal) contract under

the assumption of constant asset price, both to generate useful intuition and to set

up building blocks in the formal analysis. If the asset price is indeed constant in an

equilibrium, the equilibrium will be called stationary. Let V(w)(a, p) be the maximum

equilibrium payoff of an asset owner with matching quality a when paired with a worker,

assuming that the asset price remains constant at p over time. Since neither a nor p

changes over time, the value V(w) (a,p) is also independent of time. Assumption 1 implies

that every asset owner who did not renege before will receive this payoff.

Assumption 1 also implies that as soon as the entrepreneur reneges, she can induce

no worker to exert effort in the future, and thus her best choice is to sell her asset

immediately. This implies that the value of the relationship for her is Vw) (a, p) - p to

her, and the maximum bonus that she can credibly promise to pay is 6[V(w)(a,p) -p]+.

The value of the relationship for the worker is zero, as he will always get his outside



81

option2 . Therefore, V(w) (a, p) solves the following program:

V(w)(a,p) = max e(a - mi) - (1 - e)mo - w + 6V(w)(a, p);
W,M,e

s.t. e E argmaxg(mi - mo)E - c( );

emi + (1 - e)mo + w - c(e) b;

mz 5 [V(w)(a,p) - p]+, for z E {0, 1}.

The first and the second constraints are the worker's incentive compatibility constraint

and participation constraint, respectively. The third constraint is the bound on the

maximum credible bonus payment, which will be called the "no-reneging" constraint.

Clearly, the third constraint is never binding for z = 0 at optimality, and one can assume

WLOG that mo = 0. Solving for m, and w from the first two constraints, one can rewrite

the above program as

V(w)(a,p) = maxae - c(e) - b + 6V(w)(a,p); (2.3.5)
e

s.t. c'(e) : 6[V(w)(a, p) -p]+. (2.3.6)

Since c'(0) 0, if a positive number V(w)(a,p) solves the above program, it has to be

at least as big as p. The maximum number V(w) (a, p) that solves the above program

will be taken as the definition of the function V(w) : [a, a] x [0, oo) -+ [0, oo) evaluated

at the point (a, p), and I put V(w) (a, p) = 0 if no positive number V(w) (a, p) satisfies the

program Eqs. (2.3.5)-(2.3.6).

Proposition 12. There exists ai(p), a2(p) E [a, a] such that a,(p) a2 (p) and the fol-

lowing holds: when a < al(p), Vw)(a,p) = 0; when a E [al(p),a2(p)), Vfw)(a,p) E

(p, (1 - 6)-1 (g(a) - b)), and is strictly decreasing in p; when a > a2 (p), V(w)(a,p) =

(1 - 6)-1(g(a) - b).

21 have assumed that incentive payment is made immediately after the realization of z, and the worker
is always kept at his outside option as in the beginning of a new relationship. Alternatively, part of the
incentive payment can be made through future wages. Levin (2003) shows that this extra option does
not increase the entrepreneur's maximum equilibrium payoff.
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Proof. It amounts to check that the following values of al (p) and a2 (p) have the desired

properties, and that V(W)(ai(p),p) > p.

ai(p) = inf a E [ ma,] : [ae - c(e) - b] - 6c'(e) > p

a2(p) = inf a E [a, ]: a < (g(a) - b) - p.

(Note that by its definition Eq. (2.3.1), g is a convex function, and the inequality

in the definition of a2(p) does not hold for a = 0, so that a > a2 (p) implies that

a < 15-(g(a) - b) - 6p.) To see that V(w)(ai(p),p) > p, it suffices to notice that if e is

the effort in the optimal relational contract when a = ai(p), then ai(p)e - c(e) - b =

(1 - 6)V(w)(a, p) > (1 - 6)p > 0, which implies that V(w)(a, p) - p > 6-1 c'(e) > 0. E

The proposition implies that when the asset price remains constant at p, asset owners

with matching quality lower than a1 (p) will sell their assets immediately, and asset

owners with matching quality at least as high as a, (p) strictly prefers to keep their assets

if they did not renege before. Notice that the asset owner's payoff has a discontinuity in

a at ai(p): her payoff will be p if a < ai(p), but strictly higher than p if a > ai(p). This

is because a finite effort has to be induced in every period to sustain cooperation, but

the no-reneging constraint Eq. (2.3.6) and the assumption that c'(0) ;> 0 implies that

this requires a strictly positive future surplus V() (a, p) - p.

Suppose that an asset owner with quality a who did not renege before receives maximum

equilibrium payoff V(a) in an relationship, and V is constant over time. Then a new

asset owner that did not renege before can decide whether to keep the asset or sell it,

and thus receiving payoff max{V(a),p}. By Lemma 1, the asset price is P(V), where

P(V) satisfies

P(V) = 5 fmax{V(a), P(V)}dF(a). (2.3.7)

The above equation uniquely defines map P : L 1(F) -+ R. Indeed, P (V) can be obtained

by iterating the map h(p) = 3 f max{V(a), p}dP(a), which is a contraction on R. Define

7r : [0, oo) -+ [0, oo) by

ir(p) = P(V(W)(.,p)). (2.3.8)

Since Vw)(a,p) is weakly decreasing in p for all a and P(V) is increasing in V, 7r is a

weakly decreasing function. The above discussion implies that if there is a stationary
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equilibrium, then the asset price p must be a fixed point of 7r. Conversely, if p is a fixed

point of 7r, then one can construct an equilibrium in which every asset owner with quality

at least ai(p) uses the optimal policy in Eqs. (2.3.5)-(2.3.6). The following proposition

summarizes what we have found so far.

Proposition 13. Assume that F has a probability density. Then 7r is continuous and has

a unique fixed point. In this case, there exists a unique stationary equilibrium in the

weak contracting environment that satisfies the following properties: a) the asset price

p is the unique fixed point of the function 7r and is independent of the distribution of the

initial asset owners' qualities; b) upon acquiring an asset, an entrepreneur with quality

a sells it immediately if a < a, (p) where a, is defined in Proposition 1, and keeps it to

receive payoff V(w)(a,p) if a > al(p).

As expected, the stationary equilibrium in the weak contracting environment also has

the desired property that an asset owner either sells her asset immediate or keeps her

asset forever in equilibrium. Furthermore, the stationary equilibrium is unique. This

uniqueness result is due to the fact that 7r is weakly decreasing. Intuitively, when the

asset price p decreases, every asset owner can promise higher incentive payment and thus

receive more profit by keeping her asset, which increases the resale value of an asset.

On the other hand, the stationary equilibrium exists when F has a probability density.

A counter example can be constructed where F does not have a density and there is no

stationary equilibrium.

This proposition characterizes the stationary equilibrium. It does so through a fixed

point problem of the mapping p '-+ P(V(w) (-, p)). However, it is not obvious that every

equilibrium will be stationary. This is why we will develop a stronger theorem that

says that under some conditions an equilibrium has to be stationary. Before stating

that theorem, we remark that the argument that is used to establish the existence

and uniqueness of equilibrium in the strong contracting environment does not apply in

the weak contracting environment because the counterpart of the operator ' in this

environment would not be a contracting in general. Indeed, it is easy to see that the

operator 7F preserves continuity, and would also be a contraction on C([a, a]) under the

uniform norm if it were a contraction on L1 (F), which would imply that its unique fixed

point would be a continuous function. However, we have seen in Proposition 1 that in

general the value function in the weak contracting environment is not continuous.
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Theorem 4. If F has a density and 7r o ir has a unique fixed point, then the stationary

equilibrium described in Proposition 2 is the unique equilibrium.

The unique fixed point of 7r is trivially a fixed point of 7r o 7r, and the theorem requires

that 7roir does not have any other fixed points. The proof of the theorem uses a technique

similar to the elimination of conditionally dominated strategies found in the literature

of bargaining. It constructs a shrinking sequence of intervals that bound the equilibrium

asset prices that can arise in equilibrium. The condition that 7r o 7r has a unique fixed

point implies that the sequence of intervals eventually shrinks to a point.

Before concluding this section, we briefly compare the analyses of the strong and the

weak contracting environment. In the strong contracting environment, the value of keep-

ing an asset is independent of the asset price, and therefore the existence and uniqueness

of equilibrium can be established under fairly weak conditions. Moreover, the unique

equilibrium is stationary. On the other hand, in the weak contracting environment,

we add the additional assumption that F has density to establish the existence and

uniqueness of the stationary equilibrium, and establishing the uniqueness of equilibrium

in general requires an even stronger assumption that 7r o 7r has a unique fixed point.

In the strong contracting environment, an asset owner's continuation payoff is a con-

tinuous function of her matching quality, while in the weak contracting environment

there is a discontinuity at ai(p). The intuition for this discontinuity is that there is

a positive feedback in the program Eqs. (2.3.5)-Vw2: a higher future surplus allows

the asset owner to promise a higher bonus, which further increases the surplus that

can be created from her partnership with the worker. One thing in common between

the unique equilibrium in the strong contracting environment and the unique stationary

equilibrium in the weak contracting environment is that the asset price in equilibrium is

independent of the distribution of the initial asset owners' qualities. Again, this is due

to the lack of competition among entrepreneurs in both the labor market and the final

product market.

2.4 The Equilibrium Growth Path

The previous section focuses on the partnership game between an asset owner and a

worker. This section studies the performance of the economy as a whole over time.
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In this section, it will be assumed that F has a density, and in the weak contracting

environment we will focus on the unique stationary equilibrium no matter whether the

condition in Theorem 2 holds.

The starting point is the observation that in both contracting environments, there is a

threshold quality a, such that upon acquiring an asset, an entrepreneur sells the asset if

she discovers that her matching quality with the asset is below ac, and keeps her asset

forever otherwise. In the latter case, an asset owner with quality a produces an output of

y(a) every period, where y is strictly increasing in a. In fact, in the strong contracting

environment, a, is the a( 5 defined in Eq. (2.3.4), and y(a) = a min{1, (c')- 1 (a)}; in

the weak contracting environment, a, is al(p) where p is the equilibrium asset price,

and y(a) = a(c)- 1(6V(w)(a,p) - Sp) if a E [al(p), a2(p)] and y(a) = a min{1, (c')-'(a)}

if a > a2 (p). In what follows, we will also denote the a, in the weak contracting

environment by alw).

Proposition 14. Assume that upon acquiring an asset, an entrepreneur with ability a

sells the asset in the next period if a < ac, and keeps the asset to generate output y(a)

in every subsequent period if a > a. Then the total output of the economy is

/a 1 - F(ac)t-
1  a

Y = J y(a)dFo(a) + Fo(ac) 1 F -] y(a)dF(a), (2.4.1)
ac -F(ac) ac

where FO is the distribution of the initial asset owners' abilities.

In Eq. (2.4.1), the first term is the contribution from entrepreneurs who initially own

assets and decide to keep their assets, and is independent of time. The second term is the

contribution from entrepreneurs who acquired assets in the game. This term increases in

t, as in each period some entrepreneurs acquire assets, keep them, and produce output

in all subsequent periods. Note that Y = fa y(a)dFo(a), as in the first period only

those who initially own assets can produce, and

lim Y = Y,=] y(a)dFo (a) + Fo(ac) 1 y(a)dF(a). (2.4.2)
t-+oo c 1 - F(ac) ac

Therefore, Eq. (2.4.1) can be rewritten as

Yt = Y + [1 - F(ac)t '](Yo - Yi). (2.4.3)



86

In this equation, Y. is the long-run limit of the total output, and F(a,) characterizes

how fast the output converges to its long-run limit. Indeed, Eq. (2.4.3) can be further

rewritten as Y - Y = F(ac)t-l[Y, - Yi], so the gap between Y and Y shrinks

geometrically, and is reduced by a half over approximately - ln 2/ ln(F(ac)) periods.

Therefore, the smaller F(a,) is, the faster Y converges to Y. Next I will discuss how

Yi, Y, and F(ac) depend on the contracting environment and parameters.

2.4.1 Comparative statics

Proposition 15. Let p(w) be the asset price in the unique stationary equilibrium in the

weak contracting environment, and p(') the asset price in the unique equilibrium in the

strong contracting environment. Then p(W) < p(s). Moreover, both p(S) and p(w) are

strictly decreasing in b and strictly increasing in F in the sense of first order stochastic

dominance.

This proposition is not surprising as the asset price is increasing in the asset owners'

payoff by keeping their assets, which is decreasing in the unemployment benefit, increas-

ing in their abilities, and lower in the weak contracting environment. A less trivial result

is the following.

Proposition 16. In both the strong and the weak contracting environments, the critical

level of ability a, is strictly increasing in the level of unemployment benefit, b, as long

as a, < d.

There are two effects of b on ac : the direct effect and the indirect effect. The direct

effect is that a higher unemployment benefit lowers the surplus that can be created

in an employment relationship, thus requires a higher asset owner's ability to enter

production. The indirect effect is that a higher unemployment benefit lowers the market

price of assets as shown in Proposition 4, and thus reduces the value of the entrepreneur's

outside option, which lowers the minimum ability level for production. Proposition 5

says that the direct effect always dominates the indirect effect. Therefore, a higher

unemployment benefit would increase the minimum ability level for production.

In the strong contracting environment, the output from each individual entrepreneur

y(a) is independent of b. Therefore, Proposition 5 implies that Y is decreasing in b, and

F(a,) is increasing in b, so the convergence to the limit output will be slower. However,
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Y, is strictly increasing in a, and thus in b unless FO(ac) = 0, as can be directly checked

from Eq. (2.4.2). Therefore, though a higher unemployment benefit lowers total output

in the economy temporarily, and slows down its convergence to the long-run level, it does

increase the long-run level of output by facilitating asset reallocation: more low-ability

entrepreneurs are willing to sell their assets now as a result of a higher unemployment

benefit.

In the weak contracting environment, for each fixed a, y(a) depends on b. To see this

point, define /(w)(a, p) = V(w)(a,p) + (1 - )- 1 b. Then Eqs. (2.3.5) and (2.3.6) can be

rewritten as

0(w)(a, p) = maxae - c(e) +J ')(a,p);
e

s.t. c'(e) ; 6 [w)(a,p) 1 6-

The proof of Proposition 5 implies that (1-6) -b+p is increasing in b, and thus (w)(a, p)

is decreasing in b as the constraint is tigher for a higher b, which implies that the effort

level is weakly decreasing in b. Therefore, in the weak contracting environment, y(a) is

weakly decreasing in b for all a. Therefore, Y is decreasing in b, but the dependence

of Y, on b is ambiguous. Intuitively, in the weak contracting environment, though

a higher unemployment benefit facilitates asset reallocation by increasing ac, it also

reduces surplus that can be created in each employment relationship, and thus reduces

effort and output in those relationships where the no-reneging constraint Eq. (2.3.6) is

binding.

It is obvious that for each fixed a, the partnership between an entrepreneur and a worker

can generate higher output and higher profit in the strong contracting environment than

in the weak contracting environment. However, since the distribution of asset owners'

abilities are endogenous and different in the two environments, it is not obvious which

environment delivers higher long-run output Y. Making the output contractible has

three effects. First, as shown in Proposition 4, the market price of assets is higher.

Secondly, for each fixed a, the output that can be generated by an asset owner with

ability a increases. Thirdly, the dependence of a, on the asset price p changes. Indeed,
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I have shown in Eq. (2.3.4) and Proposition 1 that

g(a(')) - maxa(S)e - c(e) = b + (1-6)p(');

max a(')e - c(e) - c'(e) = b+(1-6)p(w).

Therefore, a(S) would be smaller than a(W) if p(S) were equal to p(W). Even though

p(s) > p(W), it is still possible that ac") < a w) in equilibrium, which implies that fewer

asset owners are willing to sell their assets in the strong contracting environment, and

thus may reduce the long-run output of an economy. The next subsection discusses a

"two-type" example that illustrates this possibility.

2.4.2 A "two-type" example

In this subsection, we discuss a "two-type" example that illustrates how the long-run

aggregate output depends on the distribution of matching quality a. In this example,

the cost of effort c(e) = 2e 2, and the CDF of a is the following:

0, ifa<aLl-E;

F(a) = < (a - aL + E), if a E [aL - E, aL + I;

AL, if a E [aL + E, aH);

1, if a>aH-

Here PL E (0, 1), 0 < E < aL < aH - C. In other words, F consists of a point mass of

(1-L) on aH and a mass PL uniformly distributed on [aL - E, aL + C]. Call asset owners

with quality aH the high-quality owners, and other asset owners low-quality owners. We

are interested in the limit c -+ 0, and the reason to introduce this continuum is to ensure

the existence of the stationary equilibrium in the weak contracting environment. Let

pH = 1 - PL. The following assumption will be maintained:

Assumption 8. la + la + b < aH < a - 2b) + ! + b.

The goal is to determine how the stationary equilibrium and the long-run aggregate

output depends on aL in the limit e -+ 0. Clearly, all high quality asset owners keep

their assets in any stationary equilibrium. It remains to find whether low-quality asset

owners keep their assets. Let qE(aL) be the fraction of low-quality asset owners who sell
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their assets, and

qo+(aL) = lim qE (aL)-

The following proposition characterizes the limit of q,(aL) for c -+ 0 in the strong

contracting environment:

Proposition 17. Consider the strong contracting environment under Assumption 2. Then

an employee working for a high-quality asset owner exerts effort one. Let

I6p1H(2aH - a)a + 2(1 - J)ab
aLS = ~I. (2.4.4)1 - JpL

Then qo+(aL) = 1 if aL < aLS, and qo+(aL) = 0 if aL > aLS-

The proposition says that qo+(aL) is not continuous in aL. In fact, in this case qo+(aL)

is equal to the indicator that the low-quality asset owners sell their assets when E = 0.

In that case, the asset price is p = Jp6 IVH/(1 - VPL) when all low-quality asset owners

sell their assets, and it is strictly optimal for a low-quality asset owner to do so when

p > maxe (aLe - ae2 - b). Assumption 2 implies that the optimal choice of e is less than

one for aL in a neighborhood of aLS, and the inequality holds if and only if aL < aLS-

In the strong contracting environment, the asset price changes continuously with q,

and a low-quality asset owner is indifferent between keeping and selling her asset when

aL = aLS, so she prefers to keep her asset when aL > aLS.

In the weak contracting environment, we have the following proposition:

Proposition 18. Consider the weak contracting environment under Assumption 2. Then

an employee working for a high-quality asset owner exerts effort one. Let

aLW1 = a + aLS; (2.4.5)
16

aLW2 = + aLS- (2.4-6)
6(1 - JPL)

Then qo+(aL) = 1 if aL aLW1, qo+(aL) = 0 if aL ! aLW2, and qo+ is linear on

[aLW1, aLW2l-

In this case, qo+ is a continuous function. In particular, go+ is strictly between zero and

one for aL between aLW1 and aLW2: for these values of aL only a fraction of low-quality

asset owners sell their assets. Furthermore, an asset owner's payoff is discontinuous in
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her quality in this case: her payoff jumps up by a finite amount when her quality exceeds

the threshold a1 (p) in Proposition 1, and she strictly prefers keeping her asset when her

quality equals the threshold. This discontinuity is related to the fact that there does

not exist a stationary equilibrium when e = 0 and aL E (aLW1, aLW2). The proof of the

proposition is the application of the general Proposition 1 to this special case.

As expected, both aLW1 and aLW2 are bigger than aLS, which means that low-quality

asset owners are more likely to sell their assets in the weak contracting environment.

However, the difference between aLw2 and aLS vanishes as 6 approaches one. This is also

intuitive: the lack of formal contracts is not important when all agents are sufficiently

patient.

Figure 1 shows how qo+(aL) depends on aL in both contracting environments in a nu-

merical simulation. In this simulation, aH = 2, 6 = 0.8, a: = 1, b = 0, and pL = 0-9- It

is straight forward to compute that aLS = 0.926, aLW1 = 1.176, and aLW2 = 1.819. As

expected, qO+ in not continuous in the strong contracting environment, and is linear on

[aLW1, aLW2] in the weak contracting environment.

Figure 2 shows how the long-run aggregate output, Y, depends on aL, where it is

assumed that FO = F, so the initial distribution of matching quality is the same as

the population distribution. The first thing to notice is that Y" is not monotonic in

aL: when aL is small, low-quality asset owners sell their assets, which leads to a high

long-run output; when low-quality asset owners keep their assets, the long-run output

is increasing in their quality.

It is interesting to compare the long-run aggregate outputs in the two contracting en-

vironment. When aL 5 aLS, all low-quality asset owners sell their assets in both con-

tracting environment, and Assumption 2 implies that the no-reneging constraint in the

weak contracting environment is not binding for high-quality asset owners, so long-run

outputs are the same in both environments. When aL E (aLS, aLW1], all low-quality

asset owners sell their assets in the weak contracting environment, and all of them keep

their assets in the strong contracting environment, so long-run output is higher in the

weak contracting environment. When aL E (aLW1, aLW2], some low-quality asset owners

keep their assets in the weak contracting environment, and the no-reneging constraint

is binding for them, so their outputs are lower than in the first best. An increase in aL

has two effects on Y, in this region. First, more low-quality asset owners keep their
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called the "level effect". The composition effect lowers the long-run aggregate output,

while the level effect raises it. In the strong contracting environment, Y" is increasing

in aL as long the level effect is present. In the weak contracting environment, Y" is

not monotonic in aL as the two effects act simultaneously. Since the low-quality asset

Environment s
Environment w

2

Environment s
- Environment w -

2

---

1

1

1 1.8



92

owners who keep their assets are less efficient in the weak environment, the aggregate

output is lower in the weak environment when qo+(aL) is close to zero. Finally, when

aL > aLW2, all low-quality asset owners keep their assets in both environments. The

long-run aggregate output in the weak contracting environment is weakly lower than in

the strong contracting environment, and strictly so when the no-reneging constraint is

binding for the low-quality asset owners. Therefore, if the initial distribution of assets

is not efficient in a developing country, and aL is between aLs and aLW1, the country

will have a higher long-run GDP in the weak contracting environment.

Hsieh and Klenow (2009) documents the improvement of asset distribution in China

from 1998 to 2005. It turns out that the labor legislation was weak in China during

that period. The new Labour Contract Law took effect in 2008, and the old Labour

Law was in effect from 1995 to 2007. The old Labour Law had a few weak points that

had been exploited by employers to extract rents from employees. For example, every

contract can contain a probation period, and an employer can sign a short-term contract

with an employee with a relatively long probation period and fire the employee after

the probation period. The new Labour Contract Law fixes this issue and others, and

strengthens the contracting environment. However, the improvement of asset allocative

efficiency documented in Hsieh and Klenow (2009) happened during the era of the old

Labour Law.

2.5 A Continuum of Contracting Environment

In the discussion so far, I have considered two extreme contracting environment: the

strong contracting environment in which the first best can be achieved in every matching

of an asset owner and a worker, and the weak contracting environment in which no

enforceable incentive contract can be written. This section extends the model to allow

for a continuum of contracting environment indexed by a real number 6, which measures

the strength of the contracting environment. This extension both builds a bridge between

the two extreme contracting environment and helps to flesh out the economic meaning

of the measurability of output.

This extension is based on the multi-tasking moral hazard model proposed by Baker

(1992) and Baker (2002). In each period, an imperfect performance measure is generated
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and can be verified by the court, where "imperfect" means that it is not always equal to

the revenue generated for the entrepreneur. Correspondingly, the worker can choose an

action e that does not generate revenue, but boosts the performance measure, in addition

to the normal effort e. Specifically, I replace steps 6 and 7 in the timing described in

Section 2 by the following:

6'. If a wage offer is accepted, the wage w is paid, and the worker chooses effort e E [0, E]
and manipulation action e E [0, E} at a private cost c(e) + cE(f). I assume that both

c and c, are strictly increasing, twice continuously differentiable and have strictly

positive second derivatives. I also assume that c(0) = cE(0) = c'(O) = c'S(0) = 0.

7'. Within each pair of matched entrepreneur and worker, an output z = (Zr, zf) E

{ 0, 1})2 is realized and observed publicly, where zr and z1 are independent con-

ditional on (e, c), Pr(zr = le, e) = e, and Pr(zf = le, E) = e cos 6 + c sin 0. The

entrepreneur receives cash azr, and a bonus payment is made. To make sure that

all probabilities are between 0 and 1 for all 0, I assume that E2 + E2 < 1.

I assume that zr is not verifiable by a third party, but zf is. Therefore, the incentive

scheme m(zr, zf) has the following interpretation: the incentive contract specifies that

the entrepreneur pays the worker bonus m(0, 0) when zf = 0 and m(0, 1) when z1 = 1;

in addition, the entrepreneur promises to pay the worker m(1, zf) - m(0, z1 ) if zr = 1,

which she can choose whether to deliver. Though zf does not measure the entrepreneur's

revenue, it can be useful in providing incentives, because the maximum bonus payment

that the entrepreneur can credibly promise to pay associated with zr is bound by the

future surplus, while there is no such bound for bonus associated with zf.

Here 0 E [0, 7r/2] is the characteristic of the contracting environment. When 0 is small,

the correlation between Zr and zf is high, and zf can become a useful incentive instru-

ment. When 0 is big, zf mainly depends on the manipulation action f, which is socially

costly. Therefore, the smaller 0 is, the stronger the contracting environment is. In par-

ticular, 0 = 0 and 0 = 7r/2 are equivalent to the strong contracting environment and

the weak contracting environment discussed in Section 2, respectively. In what follows

I will assume that 0 E (0, 7r/2).

To analyze the equilibrium in this multi-tasking environment, first consider the asset

owner's payoff when she uses purely formal contracts, so that m(Zr, zj) is independent
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of zr. Then reneging is not possible, and the asset owner's payoff from production

Vf(a, 6) is independent of the asset price:

(1 - 6)V(a, 6) = maxae - c(e) - c(c) -b;
e,E,m

s.t. (e,c) E argmax(jz)m(acos 6 + sin6) - c() -cE(E).

The constraint in the above program is the worker's incentive compatibility constraint,

and I have used his participation constraint to eliminate the wage w and rewrite the

entrepreneur's objective function. When 6 > 0, the first best cannot be achieved: though

the entrepreneur is free to choose incentives of arbitrary strength, any incentive would

induce a positive manipulation c, which is a social waste.

Let V(a, p, 6) be the maximum equilibrium continuation payoff that an asset owner with

ability a can receive by keeping her asset, when the asset price remains constant at p

over time. Then V(a, p, 6) is the maximum solution to the following program:

V(a,p,6) = maxae-c(e) -cE(e) -b+V(a,p,6);
e,E,m

s.t. (e, E) E argmax( ,g)(ecos6 + Esin6)[e(m(1, 1) - m(1, 0)) + (1 - e)(m(0, 1) - m(0, 0))I +

+em(1,0) + (1 - e)m(0, 0) - c(6) - c,(Z);

m(1, zf) - m(0, zf) <; J[V(a,p, 6) - max{Vf (a, 6),p}]-, for zf E {0, 1}.

The first constraint is the worker's incentive compatibility constraint, and the second

constraint is the entrepreneur's no-reneging constraint. There are two differences be-

tween this constraint and Eq. (2.3.6). First, this constraint has to be satisfied for both

values of zf, which means that the bonus promise made by the entrepreneur has to

be credible for both values of z1 . Secondly, on the right hand side p in Eq. (2.3.6) is

replaced by max{V (a, 6), p}, since after reneging the entrepreneur has the option to

keep her asset and use purely formal contracts. I will still follow the convention that

V(a, p, 6) = 0 if the above program does not have a positive solution.

Lemma 9. Suppose that V(a,p, 6) > 0 for some (a,p, 6). Then there is always an

optimal incentive scheme m for (a,p, 0) such that m(0, 0) = 0, and m(1, 1) - m(0, 1) =

m(1, 0) - m(0, 0).
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Using this lemma, the program of V(a, p, 6) can be rewritten in terms of m, = m(1, 1) -

m(O, 1) = m(1, 0) - m(0, 0) and mf = m(O, 1) - m(0, 0):

V(a, p, 0) = max ae - c(e) - c()- b + V(a,p, 0); (2.5.1)
e,E,M,,M

s.t. (e, E) E argmax(E,i)mf(Ecos0 +sin0) + me - c(a) - cE(E)(2.5.2)

mr <; J[V(a, p, 0) - max{p, V (a, 0)}]+. (2.5.3)

Proposition 19. Let 7ro(p) = P(V(.,p,9)) where P is defined in Eq. (2.3.7). Then

Proposition 2 and Theorem 2 hold with -r replaced by uro.

This proposition implies that the analysis of the equilibrium growth path in Section

4 applies to every contracting environment 0. In particular, for every 0 there exists

ac(0) E [a, a] such that asset owners with abilities a < a,(0) sell their assets immediately,

and asset owners with a > ac(0) keep their assets for ever. The final proposition in this

section shows that purely formal contracts almost never exists in equilibrium.

Proposition 20. Fix 0 > 0. Then in the unique stationary equilibrium, for all but at

most one a E (ac (0), a], every entrepreneur with ability a relies on informal incentives

(i.e. chooses mr > 0).

Intuitively, since informal incentive ties the agent's compensation directly to the prin-

cipal's revenue, it is s superior incentive device than the formal contract. Therefore,

in generic case the principal always adds an informal component to the compensation

scheme. This proposition gives a reason why informal incentives prevail in the real world.

This does not contradict the intuition that the outcome should converge to "fully formal

contract" when 0 -+ 0. As 0 -4 0, Vf(a, 0) converges to the first-best payoff, and feasi-

bility means that V(a, p, 0) - max{p, Vf (a, 0)} is zero or close to zero, and Eq. (2.5.3)

implies that the informal component of the incentive, mr, is small.

2.6 Conclusion

In this paper, we study the market of assets when the value of each asset is generated

through an employment relationship. The reallocation of assets can become a tempo-

rary source of economic growth when the initial allocation of assets is not efficient. By
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comparing two contracting environments and the unique stationary equilibrium for dif-

ferent values of the unemployment benefit, we show that some factors that negatively

affect output and surplus in a single relationship may benefit the whole economy when

reallocation of assets is ongoing. This paper leaves out the interaction between asset

reallocation and competition among businesses in the labor and final product market,

which can be interesting and is left for future research.
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2.7 Appendix

Proof of Lemma 1. Since the sellers own all the bargaining power, each seller will offer her

buyer's continuation value when the buyer refuses to buy in the current period, but this

continuation value is independent of the seller's own strategy. This proves the first claim.

Let pt be the market price of assets at period t and V the value of an asset for its buyer,

which does not depend on the identity of the asset due to Assumption 1 and does not

depend on the identity of the buyer either since without owning assets all entrepreneurs

are the same. Clearly, Vt 5 maxeE[O,1I(1 - 5)-1(E - c(e)) < oo, the entrepreneur's first-

best payoff when she has the maximum ability d. Let A = supt(V - pt). Then in

each transaction, the buyer's continuation value without buying the asset is at most

3TA , if she successfully buys an asset T periods later, which is assumed to happen with

probability qr when she uses the optimal strategy. The buyer's continuation value is at

most q qrjTA < 6A. Since the seller has all the bargaining power, she offers the

price of at least pt = V - 6A. This holds for all t, so A = supt(V - pt) JA, which

implies that A = 0. The proof that workers receive no surplus is similar.

Proof of Proposition 2. We have seen that a fixed point of 7r gives rise to a stationary

equilibrium, and in a stationary equilibrium the asset price has to be a fixed point of

ir. It remains to show that 7r is continuous and has a unique fixed point. According to

Proposition 1 and Eq. (2.3.7),

7r(p) = J V(w)(a, p)dF(a) + 67r(p)F(ai(p)).

Therefore,

7r(p) =a V()(a,p)dF(a). (2.7.1)
1 - 6F(al(p)) Jai(p)

Let

=(a) max (1 - J)-1[ae - c(e)] - 6-c'(e). (2.7.2)
ec[O,1]

Then -y is a weakly increasing and convex function, since its objective function is strictly

increasing and linear in a for e > 0. Let ao = sup{a : y(a) 5 0}. Then for a > ao,

the optimal effort is positive, and thus y is strictly increasing. In what follows I restrict

the domain of 7 to [ao, oc). The proof of Proposition 1 implies that ai(p) = -y-1(p +

(1 - 6)- 1 b), so ai is a strictly increasing and concave function. In particular, a, is
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a continuous function. Define (a,x) = (1 - 6)- 1 [a(c')- 1 (Jx) -. c((')-1(6x))]. Then

for a E [a,(p), a2 (p)], VMw)(a,p) = ((a, VMw)(a,p) - p). Since c is twice continuously

differentiable and c"(x) > 0 for all x E [0, 1], 6(a, x) is continuously differentiable in x.

It is also easy to see that a(/Ox is strictly increasing in a. The implicit function theorem

implies that unless 06/&x(a, V(w) (a, p) - p) = 1, V") (a, p) is continuously differentiable

in p. However, O9/ox(a, V(w)(a,p) - p) = 1 when a = a,(p). Therefore, V(w)(a,p)

is continuously differentiable in p for a c (a,(p), a2(p)). For a > a2(p), Vw)(a, p) is

independent of p. The continuity of 7r follows from Eq. (2.7.1), the continuity of F, al,

and V(a, .), and the dominated convergence theorem.

Now ir(0) > 0 and 7r(p) = Jp < p for p > (1 - 5)- 1(g(a) - b). Therefore, 7r has a fixed

point in (0, (1 - 5)- 1(g(d) - b)). Since 7r is weakly decreasing, the fixed point is unique.

Proof of Theorem 2. Let pt be the asset price in Period t. Then after acquiring an

asset at period t, an entrepreneur can always sell the asset in the next period, receiving

proceeds 3pt+i. Therefore, the value of an asset in Period t is at least 6pt+i, and by

Lemma 1, pt > Jpt+i in every equilibrium.

It is clear that an asset owner's optimal decision on whether to sell her asset does not

depend on the realized outcomes in the past, unless she reneged before. Suppose that in

an equilibrium it is optimal for an asset owner with ability a to sell her asset t periods

after she acquires the asset. Then the future surplus is zero for her (t - 1) periods after

her acquisition of the asset, and thus she cannot credibly promise any bonus payment in

the (t - 1)th period since acquisition. Consequently, there cannot be any output in the

(t - 1)th period since her acquisition, and it must be optimal for her to sell her asset in

the (t - 1)th period. (Waiting for one more period cannot strictly improve her payoff

as I have shown that pt-1 > Jpt in equilibrium. By induction, it must be optimal for

her to sell her asset immediately. Therefore, upon acquiring an asset, an entrepreneur

either keeps the asset for ever or sells the asset immediately after observing her ability.

I refer to her payoff in the former case by her payoff from by keeping her asset. I first

establish two lemmas.

Lemma 10. If the asset price is at most (at least) p in every period in an equilibrium,

then the continuation payoff of an asset owner with ability a by keeping her asset is at

least (at most, respectively) V(w) (a, p) starting from every period
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Proof. Assume that the asset price is at most p in every period in an equilibrium. Then

every entrepreneur with ability a > a1 (p) (which is defined in Proposition 1) has the

option to adopt the optimal policy in the solution to the program Eqs. (2.3.5)-(2.3.6)

that defines V(w) (a, p) and thereby receive payoff V(w) (a, p), and the no-reneging con-

straint is satisfied in every period since a lower p only relaxes that constraint. Therefore,

an asset owner with ability a will receive continuation payoff of at least V(w) (a, p) by

keeping her asset, as long as she did not renege before.

Now assume instead that the asset price is at least p in every period in an equilibrium.

Suppose that an asset owner with ability a earns continuation payoff v > V(w) (a, p) by

keeping her asset starting from some period. Then adopting her strategy when the asset

price is constantly at p would satisfy all the IC, IR and no-reneging constraints as a lower

asset price relaxes the no-reneging constraints, so V(w) (a, p) > v by the construction of

V(w) (a, p), a contradiction. Therefore, an asset owner with ability a can ear at most

continuation payoff V(w) (a, p) by keeping her asset starting from every period. L

Lemma 11. If in an equilibrium, the continuation payoff of an asset owner with ability

a by keeping her asset is bounded from above (below) by V(a) for F- almost every

a E [a, a] starting from every period, and V E L' (F), then the asset price is at most (at

least, respectively) P(V).

Proof. Let Vt(a) be the continuation payoff of an aset owner with ability a by keeping her

asset starting from period t. Then V (a) E [0, Vw) (a, 0)] for all a and t by the previous

lemma. Let pt be the asset price in period t. Then upon acquiring an asset at period

t, an entrepreneur with ability a can either keep her asset and receives continuation

payoff JVt+1(a) or sell her asset in the next period and receives payoff 6pt+l. Therefore,

pt = h(Vt+j,pt+1 ) for all t, where

h(V,p) = Jmax{V(a),p}dF(a), for V E L'(F),p E [0, oo).

By construction P(V) is a fixed point of h(V, .). It is easy to see that h is weakly

increasing in p, and h is also weakly increasing in V in the sense that if V'(a) V"(a)

for F-almost every a E [a, a], then h(V', p) > h(V", p) for all p c [0, oo). Moreover, for

every V E L 1 (F), Ih(V, p') - h(V, p") I < 5p' - p"I for all p', p" E [0, oc).
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Now suppose that V1(a) V(a) for F-almost every a E [_, d] and all t, but A =

supt(P(V) - pt) > 0. Then for every t,

P(V) - pt

= h(V, P(V)) - h(Vt+1, pt+1)

= [h(V,1P(V)) - h(Vpt+1)] + [h(Vpt+1) - h(Vt+1,pt+1)]

-:: J(MV)- Pt+1)++ 0

< 6A.

This holds for all t, so A = sup P(V) - pt 6A. This implies that A < 0 or A = oo.

However, P(V) E [0, JV(d)] and pt [0, 6(1 - 6)-1(g(d) - b)] for all t, so A < 0, a

contradiction. The other half of the lemma can be proved in the same manner. E

Now I return to the proof of Theorem 2. Let lo = 0, uo = P(V(w)(-, 1o)) - rr(lo) where

7r is defined in Eq. (2.3.8), and recursively define in = ir(un_1) and un = 7r(ln) for all

positive integers n. Then using the above two lemmas and by induction , one can show

that pt E [ln, un] for all n in every equilibrium. The monotonicity of 7r and the fact that

10 = 0 < 11 implies that (la) is a weakly increasing sequence, while (un) is a weakly

decreasing sequence. Let l = imneo in, and uo = limnso Un. Then the continuity

of 7r implies that l. = P(V()(., uvo)), and uoo = P(V(w)(., l0)). Therefore, both l0

and u. are fixed points of 7r o 7r. Consequently, 1oo = uo,, and an equilibrium has to be

stationary.

Proof of Proposition 3. Let mt be the total mass of assets sold in Period t. In every period

t, the entrepreneurs who newly acquire assets are randomly drawn from the distribution

F, so the distribution of these entrepreneurs' abilities is given by F. Among them, those

with abilities lower than a, sell their asset in the next period, and each entrepreneur

either seller her asset immediately or keeps her asset forever, so mt+1 = F(ac)mt. The

same argument implies that mi = FO(a,). Therefore, by induction mt = Fo(ac)F(ac)t-1.

The distribution of the abilities of those entrepreneurs who acquire assets in Period

t > 1 and decide to keep their assets is F conditional on the event that a > a,, so the

distribution function is 1_ F(a) la>ac. By induction, this is also the distribution

function of the abilities of all asset owners in period t who did not own assets at the
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beginning, for all t. Their total mass is mi - mt = Fo(ac)(1 - F(ac)tl], and thus their

total output is Fo(ac)[1 - F(ac)t 1][1 - F(ac)] 1 fa y(a)dF(a). The initial asset owners

who have abilities at least as high as ac keep their assets and produce total output

fa y(a)dFo(a) in every period. This proves Eq. (2.4.1).

Proof of Proposition 4. In the strong contracting environment, each entrepreneur with

ability a > a, (p(')) can choose to keep her asset for ever and receive payoff (1 -

6)-1 (g(a) - b), which is at least as big as V(w)(a,p(w)) because it is the value of the

program Eqs. (2.3.5)-Vw2 without the constraint. Therefore, V(s)(a) V(w)(a,p(w))

for a > ai(p(w)). The inequality also holds for a < ai(p(w)) as V(w)(a,p) = 0 in that

case. It is easy to see that p(S) = P(V(s)). That P(V) is the limit of the iteration

of the contraction mapping p -* 6 f max{V(a),p}dF(a) implies that p(s) = P((s)) >

P(V(w)(., p(w))) = p(W).

Let V(a) = (1-6)[g(a)-b]. Then V(s)(a) = 1 (a) for a > a *). Therefore, 5 f max{(a), p(s)}dF(a) =

6 f max{V(s)(a),p(s)}dF(a) = p(s), which means that P(V) = p(s). Since V is strictly

decreasing in b, p(S) is also strictly decreasing in b. Finally, p(W) is strictly decreasing in

b because V(w) (a, p) is strictly decreasing in b, and p(W) is the unique fixed point of the

map p -+ P(Vw) (-,p)). Monotonicity with respect to F can be proved in the same way.

Proof of Proposition 5. First consider the strong contracting environment. By the proof

of the previous proposition, p(s) = P(V) where P(a) = (1 - 5) 1 [g(a) - b]. There-

fore, p(s)(b) = -g f p)(b)[9(a) - b]dF(a) + F(a s)(b))p(s)(b), where I have made the

dependence of b explicit. Differentiating both sides yields

dp(s) __ 6(1 - F(a~s) (b))) ±3~~~b)dp(s) dais) gas)()dp~s J(.- ~acs)()))+JF(afs) (b)) db~s -F'(a(s) (b)) s) [(1-J)-l (g(a(s) (b))-b)-p(s) (b)],

but the last term is zero by Eq. (2.3.4). Therefore,

dp(s) 6[1 - F(a s)(b))] 1

db (I - J) [I - JF(acs) (b))] -

Therefore, (1 - 6)p(s)(b)) + b is strictly increasing in b, which implies that ass) is strictly

increasing in b since g(a s)) = (1 - 3)p(s) + b.
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Now consider the weak contracting environment. Let a = dp(w) /db. Suppose that

a < -1/(1 - 6). By the proof of Proposition 1, 7(a1 ) = p+ (1 - 6)-lb where Y is defined

in Eq. (2.7.2). The inverse function theorem implies that 7'(ai)(-"' = a + (1 - 6)-1. It

is easy to see from Eq. (2.7.2) that -y is a convex function, and the envelope theorem

implies that y'(ai) = (1 - 6)-le > 0. Therefore,

da a + (1 - J)-1
db y(a)(2.7.3)

Defining Ow)(a,p) - V(w)(a,p) + (1 - 6)-lb, the program Eqs. (2.3.5)-(2.3.6) can be

rewritten as

(w)(a, p) = maxae - c(e) + SV(w)(a,p);
e

s.t. c'(e) < [Q9(w)(ap) - - .

Consider the case where p = p(W)(b). When a < -1/(1 - 6), the constraint becomes

looser for a higher b, and therefore Q(w) (a, p(w) (b)) is increasing in b, which implies that

dV(w)(a,p(w)(b))/db > -(1 - 6)-1 for all a > ai(p). Now differentiating both sides of

the equation

p w)(b) = 6 V(w)(a, p(w)(b))dF(a) + 6F(ai)p(w)(b)

yields that

a > 6[1 -F(ai)] + F(ai)a - 6f(al) [V(w)(al, p(w)) _ p(W)],

where f is the probability density of the distribution F. Substituting in Eq. (2.7.3)

yields that

a > 6[1 -F(a)] + 6F(ai)a - f1 f(ai)[l+ (1 - 6)a][V(w)(a,p(w)) - p(w)].- 1 -6 a (ai)

The last term is non-negative since a < -1/(1 - 6), and a < +[1-F(al)I ± F(ai)a when

a < -1/(1 - 6), a contradiction. Therefore, a > -1/(1 - 6), and thus a, is increasing

in b by Eq. (2.7.3).
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Proof of Proposition 6. For an employee working for a high-quality asset owner, the

optimal effort is min{aH/a, 1}, which equals one by Assumption 2. Let

VH 1  aH - a- , (2.7.4)

the payoff of a high-quality asset owner. Suppose that all low-quality asset owners sell

their assets. Then the asset price p satisfies

p = 6 (ILP ± IHVH),

since an asset owner who finds herself to have low matching quality will sell her asset

and receive 6p. Therefore, p = 6AHVH(1 - JAL)- It is optimal for an asset owner with

quality (aL + E) to sell her asset if

(I - 6 )p ;> max ((aL ,E)e - ae2 _b

Assume that the constraint that e < 1 is not binding. Then the optimal effort on the

right hand side of the inequality is (aL + e)/a, and the inequality is satisfied when

aL 2a6H(1 - 6)VH + 2a(1 - 6L)b pH(2aH - ) + 2(1 - )b = aLS-
(1- 6

pL) 1-JL
(2.7.5)

Assumption 2 implies that the effort (aL+6)/a is indeed below one. Therefore, qo+(aL) =

1 when aL < aLS-

Next suppose that all low-quality asset owners keep their assets. Then the payoff

of an asset owner with quality aL + E is at most [maxe((aL + E)e - ae2 - b] =

1 [ (a )2 - b] where the constraint that e < 1 is ignored. Therefore, the asset price

p < 6(pHVH+(1-6)<1PLE[(2a) 1 (aL±)-b]) = [HVH +- b

where F is uniformly distributed on [-E, c]. It is optimal for an asset owner with quality

(aL - E) to keep her asset if

(1J- )p < max ((aL Ee - ae2-b
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Assuming that the constraint that e < 1 is not binding, we see that the above inequality

holds if
(aL- f)- b (1 - 6 )0pHVH + JAL (a 2 - b+ 

It is straight forward to show that this inequality holds when aL aLS + O(C), and

(aL - 6)/a is indeed below one for (aL - e) in a neighborhood of aLS under Assumption

2. Therefore, qo+(aL) = 0 for aL > aLS-

Proof of Proposition 7. Suppose that the fraction of low-quality asset owners who sell

their assets is q. Let e(q) = 2qf - E, the q-quantile of the uniform distribution on [-6, 6].

Then asset owners with quality lower than aL + e(q) will sell their assets. Therefore, the

asset price is

P= 6 IPHV(')(aH,p) + PL(1 - q)E[V(w)(aL + Z,p)k > e(q)I}, (2.7-6)
1 - SJA~q

where F is uniformly distributed on [-6, E]. Since V(w)(aL + F,p) < V(w)(aH, p) for all E,

6
P 1 - (1 - PLq)V()(aH, p) V (aH ,p).1 - oPiq

Suppose that the no-reneging constraint Eq. (2.3.6) is not binding for a = aH. Then

V(')(aHp) = VH = aH - 2 - b, where VH is defined in Eq. (2.7.4). If follows that

a < J(VH - 6VH) S(VH - p) under Assumption 2, so V(w)(aH, p) is indeed equal to

VH and an employee working for a high-quality asset owner always exerts effort one.

Eq. (2.7.6) can now be rewritten as

P = [PHVH + AL(1 - q) V()(aL + e(q),p) + 77E(q)], (2.7.7)1 - Jpiq

where qc(q) = PL(1 - q)E[V(w)(aL + Z,p)W > e(q)] - pL(l - q)V(w)(aL + e(q),p). It is

easy to show that 77,(q) 0 for all q and e SUPqE[0,1] 77E(q) -+ 0 as c -+ 0. Let

s = 5[V(w) (aL + ft(q), p) - p]. (2.7.8)

Combining Eqs. (2.7.7) and (2.7.8) to eliminate p yields that

V(w)(aL + fr(q), p) = 1 [(1 - 6 lLq)s + 62[HVH + 6277(q)]- (2.7.9)
J(1 - PL)
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The program Eqs. (2.3.5)-(2.3.6) at aL + e(q) can now be rewritten as

1 [(1 - pLq)s + 6 2 !HVH + j max e _ a 2
J(1 - IL)= eE[0,1 1 2a --

s.t. ae < s,

where a = aL + e(q). Assume that the constraint that e < 1 is not binding and the

no-reneging constraint is binding. Then

I [(1 6pLq)s + j2 LHVH + 02
rE(q)] ( - - bI

J(1 - J51L) 1-6 a 2a

This quadratic equation has a solution if and only if

aLE~) (1 - 6 ) (1 -JALq) 2 2a(1 -63(..0

where we have used Eqs. (2.7.4) and (2.4.4) to eliminate VH and b. Since Eqs. (2.3.5)-

(2.3.6) should not have a solution for lower a, the above inequality holds with equality

unless q = 0. When q = 1, Eq. (2.7.10) should not hold. Sending c -4 0 yields that

S(1- 6)(1 - Jptq)
aL = 6 (1 - 6 PL) Q+aLS,

when q E (0, 1), and aL is weakly greater than the right hand side when q = 0 and aL

is weakly smaller than the right hand side when q = 1.

Proof of Lemma 2. The worker's incentive compatibility constraint leads to two first-

order conditions:

c'(e) = cos [e(m(1,1) -m(1,0)) + (1 -e)(m(0,1) -m(0,0))] +

+(e cos0 + E sin 0)[m(1,1) - m(1, 0) - m(0,1) + m(0, 0)] + m(1, 0) - m(0, 0);

c'(c) = sin9[e(m(1,1) -m(1,0)) + (1 -e)(m(0,1) -m(0,0))].
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I use the second equation to eliminate m from the first term on the right hand side of

the first equation and rewrite the system as

c'(e) = c'(e)cotO+ (ecos9+EsinO)[m(1,1)-m(1,0) -m(0,1) +m(0,O)] +m(1,0) -m(0,0);

c'(c) = sin9[e(m(1,1) -m(1,0)) + (1- e)(m(0,1) -m(0,0))].

For a fixed (e, E), the above is a linear system of the four components of m. I solve

for m(1, 1) and m(0, 1) assuming that m(1, 0) and m(0, 0) are given. This can be done

because the coefficient matrix of (m(1, 1), m(O, 1)) is

ecosO+esinO -ecos6-csin9

e sin 0 (1 - e) sin 0

whose determinant is always positive unless e = f = 0, which would imply that V(a, p, 6) =

0. It is also clear from the first equation that (m(1, 1) - m(0, 1)) is decreasing in m(1, 0),

and m(1, 1) - m(0, 1) -+ -Foo as m(1, 0) -+ ±oo.

Now adding a constant simultaneously to the four components of m does not change

any of the constraints, so m(0, 0) can be assumed to be zero. Since the map m(1, 0) -+

m(1, 1) - m(0, 1) maps the real line onto the real line, when the no-reneging constraint

is not binding, it is always possible to choose m(1, 0) so that m(1, 1) - m(0, 1) =

m(1, 0). When the no-reneging constraint is binding, at optimality max{m(1, 1) -

m(0, 1), m(1, 0) - m(0, 0)} must be minimized among all m that satisfies the first-order

conditions. Since (m(1, 1) - m(0, 1)) is decreasing in m(1, 0), at optimality m(1, 1) -

m(0, 1) = m(1, 0) = m(1, 0) - m(0, 0).

Proof of Proposition 8. The proofs of Proposition 2 and Theorem 2 go through with

only one modification: at the beginning of the proof of Theorem 2 one can now show

that pt ;> (1 - 3)Vf (a, 0) + 6pt+1 in environment 0, as every asset owner can choose to

use the optimal formal contract to produce for one period and then sell her asset, and

using this one can prove that following fact is still true: if an asset owner decides to sell

her asset at some point, it is never optimal for her to wait.

Proof of Proposition 9. Suppose that for some a > ac(p) it is optimal to use the optimal
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purely formal contract. Then Vf (a, 0) > p. In the program Eqs. (2.5.1)-(2.5.3), the

worker's incentive compatibility constraint, Eq. (2.5.2), can be replaced by the following

first-order conditions:

c'(e) = mf cos+m,;

c',(E) = mf sin0.

Therefore, mr = c'(e) - c'(c) cot 0. Since the entrepreneur's payoff from a stationary

relational contract is (1 - )-1[ae - c(e) - c,(c) - b], there exists a relational contract

for which the no-reneging constraint Eq. (2.5.3) is not binding if and only if there exists

(e, C) such that

c'(e) - c' (c) cot 0 < 6[(1 - 6)-1(ae - c(e) - c,(E) - b)] - 6V 1 (a, 0).

This is equivalent to the condition that yo(a) > (1 - 6)- 1b + Vf (a, 0), where

-yo(a) = max 1 [ae - c(e) - c,(E)] - 5-1 [c'(e) - c',(c) cot 0]. (2.7.11)
e, 1- 5

However, the definition of V directly implies that (1 - J)-1 + Vf(a, 0) is the value

of the above program with the additional constraint that c'(e) - c'(e) cot 0 = 0, so

-yo(a) J (1 - 5)1 + Vf (a, 0) for all a, and strictly so for all but one a since the optimal

e in Eq. (2.7.11) is independent of a, and thus the equality c'(e) - c',(e) cot 0 = 0 holds

at optimality for at most one a. As long as -yo(a) > (1 - 5)- 1b + Vf (a, 0), there exists a

relational contract in which the no-reneging constraint Eq. (2.5.3) is not binding, which

implies that the value of this relational contract is strictly above V (a, 6); therefore, the

value of the optimal relational contract is also strictly above V (a, 0).





Chapter 3

Optimal Mechanisms with

Information Acquisition

3.1 Introduction

Contract theory and organizational economics have been concerned with asymmetric

information for decades, and this literature has been fruitful in identifying inefficiencies

in organizations and transactions, as well as drawing implications about organizational

design. However, for simplicity, most papers assume that agents are endowed with

different information; for example, one party has superior information about the state

of nature at the beginning of the game. This paper explores the situation in which one

party may gather some information, but only at a cost.

In many real world applications, asymmetric information arises from differential cost of

gathering and processing information. For example, in the decision making literature,

dating back to Crawford and Sobel (1982), it is often assumed that the agent has superior

information about the state of nature. Yet in the real world, it is not impossible for

the principal to gather the same information, but the principal chooses not to do either

because she lacks the expertise to process the information effectively, or her opportunity

cost of time is bigger than the agent's. Therefore, assuming that the agent is endowed

with superior information is only a simplification. In fact, in many papers, the agent

is referred to as an "expert" to emphasize that he has the specific skill to gather and

process information, but he is not an "insider" in the sense that he only has access to

the public information, which should also be accessible to the principal. In all these

109
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settings, the real difference between the agent and the principal is the cost of acquiring

information, instead of access to information.

On the other hand, even though the agent can acquire information at a lower cost than

the principal, he often needs to spend time and resources to do so. In the real world, it

is not uncommon for a consultant to spend months collecting data before he can provide

meaningful advice. The same is true in the classical regulation literature, dating back to

Baron and Myerson (1982) and Laffont and Tirole (1986). The product to be produced

by the firm is often a specialized one, so it is not obvious that the firm would have superior

information about the cost of production without actually producing it. Consequently,

the firm may need to perform some cost analysis before signing the contract in order to

learn the cost of production, which is costly. Therefore, it would be interesting to check

whether the result provided in the literature of information transmission, expert advice

and regulation is robust when the agent's superior information comes at a cost, and the

agent's effort to acquire information is not contractible.

This paper considers the classical screening problem in which the principal offers the

agent a menu of allocations and transfers, except that the agent can choose his effort

to acquire information. The effort of information acquisition, as well as the information

itself, is assumed to be uncontractible. The goal is to characterize the optimal contract

(mechanism) from the principal's perspective. In some simple cases, a very detailed

characterization can be obtained and contrasted with the situation when the agent's

superior information is costless.

Under suitable risk-neutrality and single-crossing assumptions on the agent's payoff func-

tion, the paper shows that the agent is always "information-loving": he would like to

acquire the maximum amount of information if information were free. The reason is

that under these assumptions the agent's payoff in the mechanism is a convex function

of his posterior expectation of the signal. The result mentioned above then becomes a

corollary of Jensen's inequality. Furthermore, the agent's decision on information acqui-

sition has a close analogue in financial economics: the agent's signal acts as the value

of an underlying asset and his payoff in the mechanism is the exercise payoff of an op-

tions contract. Therefore, the agent's information acquisition problem is reduced to the

problem of pricing an options contract.
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The characterization of the optimal mechanism relies on the solution to the "options

pricing" problem mentioned above, but the characterization is simple and gives many

economic insights when the information acquisition is assumed to be binary: the agent

acquires either no information or all information. In this case, the paper shows that the

optimal mechanism depends on the cost of information acquisition. When the cost is

low, with costless information (often referred to as the "second best" in the screening

literature) remains implementable. When the cost is higher, deviation from the second

best is required to give the agent more informational rent. In particular, the allocation

to the highest type may no longer be efficient; instead, the allocation for higher types

will be upward distorted for high information acquisition cost.

However, the deviation from the second best does not necessarily reduce the total sur-

plus. In fact, the paper illustrates that in some cases the allocation in the optimal

mechanism with costly information acquisition is more efficient than the second best

allocation. This raises the following issue: when the information acquisition action is

contractible, whether contracting on that is beneficial. It is shown that it contracting

on information acquisition does not have to improve the total surplus.

Another situation in which characterization of the optimal mechanism is relatively easy is

when the agent chooses the probability that the true distribution is revealed to him. This

setting is similar to those considered in Aghion and Tirole (1997) and Zermeno (2011).

In this case, the agent chooses his information acquisition action from a continuum,

and it is possible to compare information generated under first best and information

generated in the optimal mechanism. A sufficient condition for the latter is smaller is

given in the paper.

The paper is related to the previous works on mechanism design with information ac-

quisition. In particular, the set up in Cramer et al (1998b) is a specialization of the

model considered in this paper. It is argued that the shadow cost of information ac-

quisition for the principal must be smaller than 1 (Lemma 2), which is true in their

modified Baron-Myerson model, but does not necessarily hold in the more general case,

as illustrated in Section 3 of this paper. Cr6mer et al (1998a) and Cramer and Khalil

(1992) consider strategic information acquisition prior to contracting, in the sense that

the information becomes costless after the agent signs the contract with the principal.

In their terminology, this paper considers "productive" information acquisition.
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Shi (2008) considers the design of optimal auctions, and Lewis and Sappington (1997)

considers a model with moral hazard, both of which consider the problem of endogenous

information acquisition, but in settings slightly different from this paper. Bergemann

and Vilimdki considers efficient mechanism design, while this paper considers optimal

mechanism design.

The paper is also related to the literature on decision making with information acqui-

sition, dating back to Lambert (1986) and Demski and Sappington (1987). A common

feature in that literature is that distortion in decisions may arise in the optimal contract

to induce information acquisition, which is similar to the spirit of the current paper.

However, in the risk neutral settings such as Inderst and Klein (2007) and Zermeno

(2011), the decision maker never takes the safe action too often. This paper shows that

this needs not be true in more general environments, especially when the agent also has

a stake in the outcome. (See Section 3.2 for details.)

The rest of the paper is organized as follows. Section 2 presents the general setup of

the model and discusses assumptions. Section 3 analyzes the two-type environment

with binary information acquisition. Section 4 provides some characterization of the

optimal mechanism in the more general setting. Section 5 studies two relatively tractable

examples. Section 6 concludes.

3.2 The Model

In the model there is a principal (she) and an agent (he) trying to make a decision x

(also referred to as the allocation) based on the state of nature 0. The payoffs of both

parties depend can depend on both x and 0. It is assumed that x is the only contractible

variable, and the parties have transferable utility. The principal and the agent have a

common prior on 0, but the agent can acquire more information at his own cost. It is

assumed that the agent acquires information after the contract is offered and before he

decides whether to sign the contract. Formally, the timing is as follows:

1. The principal offers a contract.

2. The agent observes the offer, chooses an information acquisition action n from a

feasible set K at cost c(n), and observes the signal produced by n. Based on that,
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he decides whether to sign the contract. If he rejects the contract, the game ends

and each party gets outside value 0.

3. If the agent chooses to contract with the principal, he chooses an allocation-transfer

pair from the menu offered by the principal, which is then implemented. The

agent's payoff is u(0, x) + t - c(n) and the principal's payoff is 7r (6, x) - t.

The timing is identical to the timing in Cremer et al (1998b). This is the closest analogue

to the classical screening problem: the agent can decide whether to sign the contract

after he acquires private information, so the contract offered by the principal essentially

has to satisfy the interim participation constraint. A remaining degree of freedom is

whether the agent acquires information before or after the contract is offered. The

difference is discussed in Cremer et al (1998b), and the key point is that in equilibrium

the agent may choose some mixed information acquisition strategy before the contract

is offered, which will make the analysis of optimal contract much harder. Therefore,

in this paper, I focus on the setting in which the agent acquires information after the

contract is offered. The solution concept is sequential equilibrium.

A different but related timing is that the agent and the principal have already signed

a contract, but the agent is protected by limited liability, and the principal can still

commit to a contract before the agent collects information. The analysis below still

holds, except that the interim participation constraint will be replaced with the limited

liability constraint. Limited liability is usually assumed in the decision making literature,

such as Inderst and Klein (2007) and Zermeno (2011).

It is assumed that payoffs of both the agent and the principal can depend on both the

decision x and the state of nature 6. On one hand, this is different from the regulation

problem as in Baron and Myerson (1982), where the regulator's payoff does not depend

on the state of nature (the agent's cost of production). This is not an innovation of this

paper, as the procurement model considered in Lewis and Sappington (1997), among

other models, also allows the principal's payoff to depend on the state of nature. Unlike

Cremer et al (1998b) which considers a variant of the Baron-Myerson model, the shadow

cost of information acquisition for the principal can be bigger than one, which makes

efficiency at the top fail. On the other hand, this is different from the decision making

literature dating back to Lambert (1986), where the agent's payoff does not depend on
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the state of nature (the probability that each outcome occurs). In fact, in the decision

making literature, it is usually assumed that the agent's payoff does not depend on the

decision x either. As shown later in this paper, the general setting delivers a richer

set of phenomena. Unlike that literature, there can be both underinvestment and over-

investment in the risky project.

The set K of information acquisition actions is assumed to have the following structure.

There is a stochastic process {Z1}nEN in discrete or continuous time. The probability

distribution of this stochastic process depends on the state of nature, 9. The set of

actions K is a set of stopping times of this stochastic process. If the agent chooses

n E K, then he observes {zm}m<n. For example, M can be N itself, in which case the

agent has to decide when to stop acquiring information before he observes anything; K

can also the the set of all stopping times of the stochastic process, in which case the

agent can decide when to stop contingent on the signals already observed. Denote the

filtration generated by this stochastic process by {F}nEN-

The seemingly strange assumption about K is designed to capture the idea that the

agent never "forgets": if n < n', then Fn C .Tn, and the agent has more information

under n' than under n. The simplest example is that K = N = {0, 1}, zo = 0 and

z1 = 9. In this case the agent chooses either not to acquire information (n = 0) or to

acquire all the relevant information (n = 1). This is the setting used in both Cr6mer et

al (1998b) and in Lambert (1986). This setting is tractable and generates clear economic

insights, so a substantial fraction of this paper will focus on this setting too. However,

some of the general characterization applies to more general information process and the

setting used here leads to a natural analogue to the option pricing problem in financial

economics, as presented in Section 4. Here are too examples of the information process:

Example 1. Let e C A(") where " is a finite set, u(9, x) = ZEGa fi(', x)9( ) and

7r(9, x, t) = E = r( , X, t)9( ) for some functions ii and r. Let the agent and the

principal has the Dirichlet prior about 9, and zn a random draw from E with probability

distribution 9. Then the posterior belief about 9 is still a Dirichlet distribution.

Example 2. Let N = [0,1] and r be a random variable independent of 9 and uniformly

distributed on [0,1]. Assume that z, = zo V E for n < r and z,, = 9 for n > r. In this

case, the agent chooses the probability that the state of nature is observed. This is the

setting used in Aghion and Tirole (1997) and also discussed in the context of decision

making in Zermeno (2011).
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3.3 The Two-Type Case

3.3.1 Additional distortion and inefficiency at the top

This section considers the case when E = {OL,OH} where OL < OH. Assume that

X C R and that u(O, x) is increasing in 0 and has increasing differences in 0 and x.

Consider the particular information structure in which N = {0, 1}, zo = 0 and zi = 0.

In other words, the agent can choose to observe nothing or observe the state of the

world 0. The common prior is that Pr(O = OH) = q. Let K = c(1) - c(O), the cost of

observing 0. I call a mechanism informative if it induces the agent to choose n = 1, and

call a mechanism uninformative otherwise. By the revelation principal, an informative

mechanism can be written as {(XL, tL), (XH, tH)}. The next proposition characterizes

all incentive compatible informative mechanisms.

Proposition 21. A mechanism {(XL, tL), (XH, tH)} is incentive compatible if and only if

both of the following constraints are satisfied:

U(OL, XL) +tL > 0; (3.3.1)
K K

U(OH, XL) - U(OH, XH) + - < tH - tL _ U(OL, XL) - U(OL, XH) - (3.3.2)
q 1-q

Proof. The standard IC constraints read

U(OL, XL) + tL U(OL, XH) + tH;

U(OH, XH) ± tH > U(OH, XL) + tL-

These imply that the participation constraint for OH is redundant, so the only relevant

participation constraint is Eq. (3.3.1). The IC constraints are equivalent to the following

inequality:

U(OH, XL) - U(OH, XH) tH - tL : U(OL, OL) - U(OL, XH)- (3-3.3)

The agent has incentive to acquire information if and only if

q[u(OH, xH)+tH]+(1-q)[U(OL, XL)+tLl > max {q[U(OH, xi ti](1-q) [u(OL, Xi)+till-
iE{L,H}

This constraint is equivalent to Eq. (3.3.2) and implies Eq. (3.3.3). El
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Several useful observations can be made:

1. In the mechanism design problem without information acquisition, tH - tL =

U(OH, XL) - U(OH, XH) at optimality ("second best"). When information is costly,

this scheme fails to induce information acquisition no matter how small the cost K

is. The intuition is that in that scheme the type OH is indifferent between telling

the truth and reporting OL, and therefore there is no gains from always reporting

OL to telling the truth, which implies that the agent has no incentive to acquire

information. Therefore, an informative mechanism must concede more rent to the

high type.

2. Proposition 1 implies that an allocation rule (XL, XH) can be implemented by some

transfer rule if and only if

K K
U(OH, XL) - U(OH, XH) + -- U(OL, XL) - U(OL, XH) -- - (3.3.4)

q -q

When K = 0, this is equivalent to the monotonicity condition XL 5 XH given

the single-crossing assumption I have made. When K > 0, Eq. (3.3.4) imposes

a stronger condition that monotonicity. Intuitively, the allocations for different

types have to be sufficiently different to justify the cost of acquiring information.

3. The additional distortion created by information acquisition depends on K/q and

K/(1 - q). Therefore, the distortion is bigger when q is closer to 0 or 1. In fact,

when q is very close to 0 or 1, it would be optimal not to acquire information

because the distortion caused by information acquisition incentive is too big and

the benefit of screening is small.

Now consider the optimal informative mechanism. Clearly, the principal chooses tL and

tH such that Eq. (3.3.1) and the left half of Eq. (3.3.2) holds with equality. Therefore,

the optimal allocation rule solves the following program (P):

maxXLXH q[lr(OH, XH) + U(OL, XL) + U(OH, XH) - U(OH, XL)] + (1 - q)[lr(OL, XL) + U(OL, XL)] - K

K K
s.t. U(OL, XL) - U(OL, XH) -- > U(H, XL) - U(OH, XH) + -

1-q q
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Let (x*, x*) be the solution to the program without the constraint; i.e. the second best

allocation in the standard screening problem. Let H(K) be the principal's payoff in the

optimal informative mechanism.

Proposition 22. (x*, x*) is the allocation in the optimal informative mechanism if and

only if
K K
- + <u(OL, X*) + u(OH, XH) - U(OL, XH) - U(OH, *). (3.3.5)
q 1 -q

In this case fl'(K) = -1. Assume in addition that X is an interval, r(O, .),u(O, -) are

continuously differentiable on X and 7r(O, -) + u(O, -) is concave, then in the optimal

informative mechanism, XH > x* and XL X* when Eq. (3.3.5) is violated, in which

case 1'(K) < -1.

Proof. The first part is obvious from Proposition 1. Let S(0, x) = 7r(0, x)+u(9, x). Then

the first-order condition for XH can be written as

qSx(OH, XH) + A [ux(OH, XH) - Ux(OL, XH)] = 0,

where A is the Lagrange multiplier, which is positive when Eq. (3.3.5) is violated. By

the single-crossing property of u, ux(OH, XH) - uz(OL, XH) 0, SO Sx(OH, XH) 0. Since

Sx(OH, X*g) = 0 and S(OH, ') is concave, XH xH*. Similarly, XL satisfies the following

first-order condition:

(1 - q)S(OL, XL) - (A + q)[Ux(OH, XL) - U (OL, XL) = 0,

and x* satisfies the same condition with A = 0. Since ux(OH, XL) - U (OL, XL) > 0,

XL L

To obtain H'(K), apply the envelop theorem to the program (P):

[I'(K) = -1 - [q(1 - q)]4A,

where A > 0 is the Lagrange multiplier of the constraint. Therefore, f'(K) = -1 when

the constraint is not binding and H'(K) < -1 when the constraint is binding. l

Proposition 2 implies that when K is below some critical value, introducing the cost of

acquiring information does not change the optimal allocation. The only distortion is that
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the high type receives a higher rent. However, when K is bigger, the optimal allocation

will be different, and in particular, the "efficiency at the top" fails: the allocation to

the high type receives upward distortion. Furthermore, since an increase in K not only

increases the agent's rent, but also creates more distortion in the allocation, the shadow

cost of information acquisition for the principal, -II(K), is bigger than one when the

second best allocation is not implementable.

A similar result is delivered in Lewis and Sappington (1997) in the presence of moral

hazard, but the intuition remains the same: when the cost of information is big, to

induce information acquisition the contract has to make it costly enough for the low

type to imitate the high type, which leads to upward distortion for the high type and

(further) downward distortion for the low type. However, the same result does not arise

in the Baron-Myerson like model considered in Cremer et al (1998b) as in their setting

the shadow cost of information acquisition cannot exceed 1 (their Lemma 2). In this

sense, the phenomena that can arise in the general setting considered in this paper is

richer than in Cremer et al (1998b). The caveat is that when K is big, it might not

be optimal for the principal to induce information acquisition in the first place, so the

"inefficiency at the top" never arises. The next subsection illustrates with an example

that the inefficiency at the top can arise even when it is optimal to induce information

acquisition.

3.3.2 Investing in a risky project: an example

In this example, the principal is the general manager of an organization, and the agent

is the head of a division. The division head proposes a project, which would yield total

surplus xR if it succeeds and 0 if it fails, where x > 0 is investment in this project.

The relevant information is the probability 0 with which the project will succeed. Due

to the lack of expertise, the manager has to delegate the acquisition of information to

the division head, but the investment can only be funded by the general manager, at a

convex cost I(x). The intuition is that the manager may have some alternative use of

the fund, and the marginal opportunity cost of fund is increasing in the investment. The

division head has share a of the total surplus, and the manager has share (1 - a), where

a C (0, 1) is exogenously given. To sum up, the agent's payoff is u(O, x) + t = aOxR + t,

and the principal's payoff is 7r(O, x) - t = (1 - a)OxR - I(x) - t. The investment x is
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contractible, but the outcome of the project is not, so transfer can only depend on x, but

not on 0. The reason that the outcome is not contractible might be that the outcome

is hard to evaluate. For example, the project might be some organizational innovation,

whose benefit can only be evaluated against some counterfactual, which is hard to put

into a contract. Another possible interpretation is that there is some long-run benefit of

the project that cannot be verified by the time the transfer has to be paid.

Assume that by investing K > 0, the agent can learn whether the probability of success

is OH or OL, where OH > OL. The common prior is that Pr(O = OH) = q. Let 0 =

qOH + (1 - q)OL. Let g(b) = argmax.>Obx - I(x). It is easy to see that g is increasing

in b. When I is continuously differentiable and strictly convex, g is simply the inverse

function of I'. Then the first best investment is given by xFB(0) = g(OR), if both the

information 0 were costless and contractible. The second best investment is given by

XH = (OH R);

x4B = QLR- (OH - OL)R .
XL 9 OLR -1 - q

Not surprisingly, there is no distortion for the high type, and downward distortion

for the low type. An immediate observation is that the loss from adverse selection is

increasing in a. Therefore, the organization is more efficient when a is smaller, from

the perspective of ex ante organizational design. If a is the attribute of the project

instead of the attribute of the organization, then the comparative statics imply that

projects whose benefit accrues more to the principal are handled more efficiently in the

organization. This will no longer hold when the information is costly.

When the information is costly and not contractible, the optimal informative and unin-

formative mechanism are characterized by the following proposition:

Proposition 23. When K < Kc, the allocation in the optimal informative mechanism

is (xsB, XB); when K > K, XH XSB and 4 SB < 4B in the optimal informative

mechanism, where

Kc = q(1 - q)aR(OH - OL)(XH XB (3.3.6)
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In the optimal uninformative mechanism, the optimal investment is

g( 0 R), if K > (1 - q)aR(O0 - OL)g(O0R);
X =

g((1 - a)9oR + aOLR), otherwise.

Proof. The characterization of the optimal informative mechanism follows directly from

Proposition 2. The optimal uninformative contract (X, t) solves

maxx,t (1 - a)9Rx - I(x) - t;

s.t. a0Rx +t > 0;

max{0, -t - aQLRx}(1 - q) < K.

The second constraint says that the agent has no incentive to acquire information: the

benefit of acquiring information is that he avoids the loss max{0, -(a9LxR + t)} when

0 = OL (by rejecting the contract when 9 = OL), and the cost is K. Solving the program

gives the equations in the proposition. 0

The characterization of the optimal uninformative mechanism is the analogue of the

corresponding result in Cramer et al (1998b). For big K, the investment maximizes the

total surplus for 0 = 00, the prior belief. For smaller K, in order to "deter" information

acquisition, investment is reduced to curb the potential loss that the agent will incur

when his type is low, which is equal to his benefit of acquiring information.

Since the agent's payoff is proportional to aR, it should not be surprising that K, is

proportional to aR also. This implies that sometimes the principal's payoff is higher for

higher a, as when K is close to Kc, a higher a helps the principal to avoid additional

distortion from information inducing. (When X is a discrete set, the principal's loss

may be substantial when K exceeds Kc.)

Note that sB is increasing in OH and xSB is increasing in OH and decreasing in OL, so

Eq. (3.3.6) implies that K, is increasing in OH and decreasing in OL. This is intuitive:

when OH is bigger and OL is smaller, the informational rent for the high type is bigger,

and the cost for the uninformative agent to immitate the high type is also bigger, so

the total benefit of acquiring information is bigger, and can thus sustain a higher cost

of information. Finally, since xSB is bounded from below and XsB is independent of q,
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K, approaches zero if q approaches zero or one. This is also intuitive: when the agent is

almost sure about his type ex ante, he does not want to acquire information under the

second-best contract.

To see that upward distortion can arise in the optimal mechanism, consider a contin-

uously differentiable and strictly convex cost function I for which I'(0) E (OoR, OHR)-

Then g(OOR) = 0, and no investment is made in the optimal uninformative mecha-

nism and the principal's payoff is zero. The principals payoff from the optimal infor-

mative mechanism is qOHRg(OHR) - I(9(OHR)) - K. By Eq. (3.3.6), K, = q(1 -

q)aR(OH - OL)9(OHR), which is proportional to a, so the principal's payoff is positive

when K = K, if a is sufficiently small. When K > Kc, in the optimal informative

mechanism XH = K/[q(1 - q)aR(OH - OL)] since Eq. (3.3.4) must hold with equality

and Proposition 3 implies that XL = 0. Since I is continuous in xH and XH is continuous

in K, the principal's payoff is also continuous in K. Therefore, there exists an f > 0

such that for K E (Kc, Kc + e), the principal's payoff is positive and XH > HB in the

optimal informative mechanism.

Proposition 3 implies that when K > K, and it is optimal for the principal to induce

information acquisition, there is over-investment when 0 = OH and underinvestment in

0 = OL- In other words, the principal invests too much when the signal is favorable and

too little when the signal is unfavorable, compared to both second best and first best.

The result partially extends to the case with general type space, as Section 5 shows. This

is in contrast to the result obtained in the decision making literature such as Inderst

and Klein (2007) and Zermeno (2011). There the intuition is that the principal can find

out the true state of nature only if she takes the risky action, so to motivate information

acquisition, she takes the risky action too often. In the investment problem discussed

here, both over-investment and under-investment in the risky project can happen, even

though it is still true that the principal can find out the true state of nature (whether

the project succeeds) only if she invests in the risky project.

From the mechanism design perspective, it is not surprising that under-investment, or

downward distortion, can happen under asymmetric information. The reason why in

the decision making literature taking the safe action too often cannot happen is that

in some sense there is no room for downward distortion. To fit the decision making

problem into the framework here, I extend the allocation space to {0, 1} x R, where the
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first component d is the decision (0 for the safe action and 1 for the risky action), and

the second component x is the bonus paid to the agent if the risky action is taken and

successful. As usually done in the decision making literature, I assume that the agent

does not derive utility from the decision, so his utility is given by OXld=l +t and d = 0 is

equivalent to x = 0 for him. Under the first best (when the agent's superior information

becomes contractible), x = 0 always no matter what d is. Therefore, changing d from 1

to 0 is not a distortion that changes the agent's incentive. Consequently, if any distortion

needs to be created to satisfy the agent's IC constraints, it should be making x nonzero

and changing d from 0 to 1 when necessary. Usually x < 0 is ruled out by model

assumptions, so the only possible distortion is to pay positive bonus to the agent and

sometimes takes d = 1 even when the safe action yields higher total surplus in order

to give the agent more bonus. (The decision making literature usually assumes limited

liability instead of participation constraint, so the framework here needs to be modified

slightly to adapt to that scenario.)

3.4 The Linear Model

Unfortunately, the mechanism design problem with more than two types is harder to

solve. Therefore, I focus on the special case when the agent's payoff is linear in his

type, as it is easier to obtain some useful results and insights in this case. Specifically,

I assume that ), X C R and u(O, x) = Ohl(x) + ho(x), where hl is a nonnegative and

increasing function. Assume that there exists x0 E X such that hi(xo) = ho(ro) = 0

so that letting the agent leave is a possible allocation. It is straight forward to extend

the analysis to the case where u(8, x) = g(6)hi(x) + ho(x) for a positive and strictly

increasing g, as one can refer to g(6) as the "state of nature".

3.4.1 Value of information and the role of the prior

In general, E,[O] can be any convex combination of elements of E, so it is necessary to

consider all 0 in the convex hull of . To simplify the notation, I denote the convex hull

of E by E in this section. (Equivalently, I assume that E is an interval.)
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The agent's conditional expected payoff is given by

En[u(O, x) + t] = E,[O]hi(x) + ho(x) + t.

Therefore, if the agent chooses to stop acquiring information at time n, he acts as if the

true state of the world were En[0]. By the revelation principle, the principal has to offer

{(x(O), t(O)) : 0 E e} such that

0 E argmaxg6hi(x(6)) + ho(x(6)) + t(6).

(This is without loss of generality even if some 0 E E appears with zero probability as

the conditional expectation in equilibrium.)

Let

V(O) = Ohi(x(O)) + ho(x(O)) + t(O). (3.4.1)

The single-crossing property (in this context, the monotonicity of hi) and the envelop

theorem implies that

1. x(O) is weakly increasing in 0;

2. V(O) = f0 hi(x(6))dO+ V(Oo) for all 00, 0 E).

Combining the above, one obtains that

V'(0) = hi(x(0)), (3.4.2)

which is weakly increasing in 0. Therefore, V is a convex function.

If the agent chooses to stop observing the signal at n, his payoff (gross of the cost of

acquiring information) is V(E[OjFY]). (Depending on whether the agent is allowed to

choose when to stop contingent on the observed signals, n and n' may be deterministic

times or stopping times of the signal process {zn}.) Now consider two times n and n'

with n' < n. Then Jensen's inequality implies that

E[V(E[O|Tn])|.Fn'] > V(E[E[OI|Ej||En]) = V(E[|.oFrn1).
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Therefore, at any point n', the agent is always willing to acquire more information if the

information were free. At time n', the expected value of the information arriving from

n' to n is given by the difference

E[V(E[OE|nI)|Fn'I - V(E[ [|Fn,]).

To simplify the notation, denote E[OIYF] by On. Then clearly {OI,} is a martingale. Let N
be the set of all information acquisition strategies. For example, when the agent cannot

decide whether to stop acquiring information contingent on the observed signals, K = N;

when the agent can decide whether to stop acquiring information in any contingent way,

A is the set of all stopping times of the process {zn}. The agent's problem is

max E[V(n) - c(n)].
nEA

This problem has an analogue in financial economics. Imagine that On is the value

of some underlying asset, and V(O) is the payoff from exercising an option when the

value of the underlying asset is 0. When the agent's has to decide the time to stop ex

ante, the objective becomes E[V(9n)] - c(n) where the first term is the value of the

European option which matures at n, so the agent is choosing among the European

options mature at different time. When the agent's can decide when to stop contingent

on observed signals, the agent's problem is equivalent to the problem of exercising an

American option, and c(n) plays the role of dividend in the option pricing problem.

A trivial observation is that the value of an option depends on the initial value of the

underlying asset. Therefore, the agent's information acquisition strategy depends on

E[OI.FoI. Similarly, the agent's information acquisition strategy under a fixed allocation

rule depends on his prior. Unlike the classical screening problem without information

acquisition, the prior distribution of 0 enters the problem in two ways. First, it affects the

principal's objective function as in the classical screening problem. Secondly, it affects

the agent's information acquisition strategy, and thus the design of the mechanism,

which should induce information acquisition. When the principal and the agent have

different priors (both of which are common knowledge), the principal needs to use the

agent's prior to check whether the allocation induces an appropriate level of information
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acquisition. In contrast, the agent's prior plays no role when information comes at no

cost to the agent.

3.4.2 Characterizing the conditional optimal allocations

Given an information acquisition strategy n E K and an allocation rule x : -+ X,

Each information acquisition strategy n' E M leads to a distribution over E = [_, 0],

whose cdf is denoted by F(n'). By the envelop theorem, the agent's payoff from n' is

J V(0)dF(n')(6) - c(n') = J 11 - F(n')(0)] hi(x())dO - c(n').

Lemma 12. The allocation rule x and the information acquisition strategy n E K can

be implemented if and only if x(9) is nondecreasing in 0 and

J F(n)(0)h1 (x(0))d0 + c(n) JF(n')()hi((6))dO + c(n') for all n' E K. (3.4.3)

Proof. The standard theory of mechanism design implies that the IC constraints are

equivalent to envelop theorem formula V(0) = f hi(x(0))dO combined with the mono-

tonicity constraint. The IR constraint is binding only for type 0 since hi(x) 0 for all

x. The inequality in the lemma is a mere restatement of the optimality of n as shown

in the discussion preceding the lemma.

Under the information strategy n, the total transfer to the agent is

J [V(0) - u(9, x(0))]dF(n) (0) = - j u(0, x(0))dF(n) (0) + J1 - F(n)(0)] hi(x(0))d0.

Consider the principal's problem of conditional optimal allocation, defined as the optimal

allocation under a given n E K. By Lemma 1, this allocation solves the following

program:

maxx J[7r(0, x(0)) + u(0, x())]dF") (0) - 1 - F(n)(0)] hi(x(0))d0,

s.t. x'(0) > 0;

J F(n)(0)hi(x(0))d0 + c(n) J F(n')(0)h1 (x(0))d0 + c(n'), for all n' c K.
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Solving the above program when K is an infinite set, especially a continuum, may require

the variational method. To get some insight, consider the case when K is a finite set.

Let f(n) be the p.d.f. associated with F('). Ignoring the monotonicity constraint, one

can write down the Lagrangian:

L(x) = S(, x()) - 1- F hi(x(9)) - nA ( ) - F() hi(x(O)) f(n)(9)d9- An,[c(n)-c(n')]
f (() n'EAf f ()1E

(3.4.4)

where S(9, x) = ir(9, x) + u(9, x) is the total surplus, and An's are the Lagrange multi-

pliers.

Therefore, the effect of costly information acquisition amounts to a correction to the

informational rent term, and its sign may vary. There are several consequences:

1. The distortion in x(9) is different from the case when information is costless. In

particular, some of the x(9) may receive upward distortion.

2. There is no ex ante reason to expect that x(9) is strictly increasing. Without the

correction from costly information acquisition, monotonicity of x is guaranteed

by the monotonicity of hazard rate and supermodularity of S. However, in this

case, it is hard to judge whether the correction term is increasing or decreasing

in 9 (fixing x(9)). Therefore, the monotonicity constraint cannot be ignored in

general.

3. Though the integrand of the Lagrangian equals S(j, x(6)) when 9 = 6, efficiency

at the top needs not hold. When the monotonicity constraint is binding in a neigh-

borhood of 9, distortion is created by the dependence of the Pontryagin multiplier

of the monotonicity constraint on x(O).

3.4.3 The discrete type space

In this subsection, I assume that UnEK suppE[9IFn] is a finite set, and write it as

{1, ... , OM} where Oi < 93 for i < j. Then each information acquisition strategy n C K
determines a probability distribution over {1, ... , OM}. Let

q fl) = Pr(E[IF] = 9), iCE{1, ..., M}, nCEK, (34(3.4.5)
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and c(n) be the (expected) cost of n E K.

In principle, this is a special case of the general setting discussed in the previous sub-

section. However, when the type space is discrete, a better characterization of feasible

allocations through linear programming can be obtained without resorting to Lemma 1.

This characterization also sheds light on the problem of conditional optimal allocations,

as the simple example in Section 5.1 will illustrate.

Consider the following problem:

1. given an allocation rule x = (x(61), ..., x(OM)) and an information acquisition strat-

egy n E K, whether there exists a incentive compatible mechanism such that the

agent finds that n is optimal and reveals his type truthfully;

2. if such a mechanism exists, what is the minimum cost (for the principal) of imple-

menting the allocation rule and the information acquisition strategy.

This amounts to the solution of the following linear program (LP):

M

mint q "nlt,;
i= 1

s.t. u(Oj, xj) + ti > 0, for all i;

u(Oj, xi) + tj > u(0j, xj) + tj, for all i, j;

[u(O, x) + i" - c(n) 5[u(G, x) + iq - c(n'), for all n' E K.

In particular, an allocation rule x and information acquisition strategy n can be imple-

mented if and only if the above linear program has a solution. Note that the IC and

IR constraints are independent of the distribution over {1, ..., OM}. The following two

lemmas hold without assuming the linear form u(Oi, xi) = Oih(xi), and therefore are

interesting for their own sake.

Lemma 13. If u is increasing in 0, has increasing differences in 0 and x, and each n E K

determines a probability distribution over E = {1, ... , OM} at cost c(n), then (x, n) can

be implemented if and only if there exists si c [0, i] for i = 2, ..., M such that

M M

(Q) - Q~n) si > E (Q l) - Q ) [u(Oi, xi_1)-u(Oj_1, xij_)]+c(n)-c(n'), for all n' E K,
i=2 i=2

(3.4.6)
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where

M
QWf) E (WQ " qj" Pr(O > Oil n'),

j=i
i= u(9i, xi) + u(O- 1 , xi- 1 ) - u(Gi, xi_1 ) - u(Gi-_, xi).

Proof. The single-crossing property of u implies that the non-local IC constraints are

all redundant. That u is increasing in 0, together with the IC constraints, implies that

the participation constraints are redundant except the constraint for the lowest type.

Therefore, the IR and IC constraints can be written as

U(O1, Xi) + ti > 0;

u(Oi i-1) - u(i, Xi) ti - ti_1 5 u(Oi-_, i_1) - u(6i-, xi), for i = 2, ..., M.

Clearly, the participation constraint for 01 will be binding at optimality. Let si =

ti - ti_1 - [u(Gi, xi_1) - u(9i, xi)] for i = 2, ... , M. Then the IC constraint can be written

as 0 < si 5 i for i = 2,..., M. Also,

i j

u(Oi, xi)+ti = u(95, Xi)-u(9i, xi)+Z[sj+u(Oj, xj-1)-u(j, xj)] = E[sj+u(9j, xj._)-u(o6-1, xj_ 1 )].
j=2 j=2

Therefore, the maximum payoff associated with a particular n' E K is

M

qi >Z[sj+u(Oj, xj_1)-u(Oj_1, xj_1)]-c(n') = Z[sj+u( 3 , xj_1)-u(j-1, xj_1)]Q .n -c(n').
i j=2 j=2

Therefore, t is feasible if and only if sj E [0, 6j] and

M

S[si + u(Oi, Xi_1) - u(6i-_, Xi_1)I (QSkn - Q c(n') - c(n), for all n' E K.
i=2

Not surprisingly, Lemma 2 is a special case of Lemma 1 when u(0, x) = Ohl (x) + ho (x).

Specifically, Eqs. (3.4.3) and (3.4.6) are equivalent, as they both express the idea that

V(On) - c(n) > V(On,) - c(n') for all n' G K. The constraint that si C [0, 6i] is equivalent
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to the monotonicity x(C) for the following reason. The envelop theorem implies that

si = hi(x())dC - (Ci - Ci_ 1)h(x(Ci_ 1 )). (3.4.7)
Oi-1

If x is monotonic, then h(x(C)) E [h(x(C4_ 1)), h(x(i))] for all C E [Oil1, i], so si E [0,

Conversely, given an si E [0, ], the fact that i 0 implies that x(Ci) > x(i-1), and

one can choose 0 E [j-1, Oi] such that

si= (0 - i_1)h(x(Ci_1)) + (Ci - C)h(x(Ci)) - (Ci - Cii-)h(x(Ci_1)).

Setting x(6) = x(C_1) for C E [Ci- 1, 0] and x(6) = x(Ci) for 6 E [, Ck]. Then x is non-

decreasing in C, and Eq. (3.4.7) holds. Therefore, Lemma 2 and Lemma 1 are equivalent

when the type space is discrete. However, the linear formulation in Lemma 2 is more

tractable analytically and easier computationally, so I will use this linear programming

formulation in what follows when the type space is discrete.

Lemma 14. If Eq. (3.4.6) holds in Lemma 2 for some s with si E [0, i], the minimum

total transfer is given by

M M M

Q Q [U(C, xi_1) - u(Ci-_, xi_1)] - q n)u(0,, X) + Q n) (3.4.8)
i=2 i=1 i=2

where (s!) is the vector s that minimizes >'i Q n)si among those that satisfy Eq. (3.4.6)

and lie between 0 and i.

Proof. This is obvious from the proof of Lemma 2.

The first term in Eq. (3.4.8) is the usual "informational rent" term in the classical

screening problem, the second term represents the expected utility that the agent de-

rives from the allocation, and the third term is the additional rent that arises from the

information acquisition problem. By construction, the third term is nonnegative, and

its dependence on x creates additional distortion in the problem of choosing the optimal

X.

As mentioned above, Lemmas 2 and 3 do not impose the linear structure on u(C, x), nor

do they assume that the posterior expectations of Ci form a martingale (as they must do

if they come from Bayesian updating), so they are applicable in more general situations.
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For example, the agent can exert effort n E K to improve the distribution of signal 0 (in

the sense of first-order-stochastic-dominance, for example.) For example, the model can

describe job assignment with unobservable human capital: the agent chooses an effort

n E K to acquire human capital, and the outcome is a level of human capital 0. The

principal offers a contract consisting pairs of job and wage. Lemmas 2 and 3 characterize

the optimal contract that induces the appropriate effort of acquiring human capital and

lets the agent self-select the optimal job.

3.5 Applications

In this section, I discuss two examples of the linear model developed in the previous

section: binary information acquisition, and a success-failure experiment. The goal is to

illustrate some qualitative effect of the costly information acquisition.

3.5.1 Binary information acquisition

Suppose that the agent can either exert effort and observe a signal 0 with support

{01,...,Ok-1,Ok+1,...,OM} with distribution Pr(O = Oj) = qj, j $ k. or exert no effort

and observe no signal, in which case the expectation of 0 is Ok E (Ok-1, Ok+1). To simplify

notation, set qk = 0. The cost of acquiring information is c. An informative mechanism

is a mechanism under which the agent chooses to exert effort in equilibrium. Then

in an informative mechanism, there is only one constraint associated with information

acquisition in the linear program (LP):

M M

E (Qi - lisk) si _> (lik - Qi) [u(6i, Xi_1) - u(Oi_1, Xi_1)] + c, (3.5.1)
i=2 i=2

where Q. = =2j as usual. Clearly, the allocation x can be implemented in an

informative mechanism if and only if the above inequality holds when si = i for all

i > k and si = 0 for all i = k. In other words, the following inequality holds:

M M

E Q4 ;> (li k - Qi)[u(Oi i_1) - u(Oi,' i_1)] + c. (3.5.2)
i=k+1 i=2
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Suppose the allocation rule in the optimal informative mechanism is x = (xi, ... , xv). In

what follows, distortion is defined as the difference between x and the first best allocation

given by x E argmaxx7r(0i, x) + u(0i, x). Assume that u and 7r are differentiable in x

and 7r + u is concave in x. Let 1(c) be the principal's payoff in the optimal informative

mechanism. Then there are four cases:

Case 1 the right hand side of Eq. (3.5.2) is negative. In this case, (LP) is solved

by si = 0 for all i, and the allocation solves the classical screening problem; i.e.

the second-best allocation and transfer rule in the classical screening problem are

incentive compatible and optimal. In particular, there is downward distortion for

all i < M and no distortion for i = M. The principal's payoff does not depend on

c in this region.

Case 2 the right hand side of Eq. (3.5.2) is zero. In this case, (LP) is solved by si = 0

for all i, but a perturbation in xi may cause the right hand side of Eq. (3.5.2) to

become positive. In this case, II'(c) < 0, as the allocation has to be adjusted when

c increases to make the right hand side of Eq. (3.5.2) remain zero. However, in

this case II'(c) ;> -1 as the principal can also choose to keep the allocation the

same and increase transfers si to types i > k, and this is a one-for-one transfer of

the two parties' utility.

Case 3 the right hand side of Eq. (3.5.2) is positive, but Eq. (3.5.2) holds with strict

inequality. In this case the implementability of x is not a concern, so Eq. (3.5.2) is

not binding in the problem of choosing x. However, Eq. (3.5.1) holds with equality

with si = 0 for i < k, and thus the value function of the linear program (LP) is

k M

E[u(Oi, xi-1) - u(i-1, xi-1)] - qiu(Oi, xi) + c.
i=2 i=1

Therefore, Xk+1, ... , xm are not distorted from the first best, but X1, ... , Xk_1 are

downwardly distorted more compared to Case 1. Since Eq. (3.5.2) is not binding

in this case, the allocation x1 , ... , xM does not depend on c in this region, but

the principal "reimburse" the agent's cost of information through the additional

transfers sk+1, ... , SM, so H'(c) = -1.

Case 4 Eq. (3.5.2) holds with equality. In this case, the value function of the linear

program (LP) is the same as in Case 3, but the constraint Eq. (3.5.2) is binding.
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After substituting in the definition of i, Eq. (3.5.2) can be rewritten as

k M

- >(1 - Qi)[u(i,xi-1 ) - u(Oi,xi-1)]+ E Qi[u(Oi,xi) - u(i1,xi)] c.
i=2 i=k+1

By the single-crossing property of u, the left hand side is increasing in xi for

i> k +1 and decreasing in xi for i < k -1. Therefore, in this case there is upward

distortion for Xk+1, ... , xM, and the downward distortion for X1 , ... , Xk-1 is bigger

than in Case 2. The envelop theorem implies that lI'(c) < -1 in this case, as not

only does the principal reimburse the agent's cost of information, she also distorts

the allocation further to induce information acquisition.

Let xSB be the second best allocation. Then the above discussion can be summarized

in the following proposition:

Proposition 24. The allocation in the optimal informative mechanism is xSB if

M

c Z(Qi - 1i<k)[U(O, i_1) - u(Oi,x_1 )], (3.5.3)
i=2

where it is understood that 4 B = xS 1 . The principal's payoff does not depend on c

when Eq. (3.5.3) holds. Let xTB be the solution to the following program:

M k

max, E qiS(Oi, xi) - Z[u(Oi, xi_1) - u(-1, xi-1)] - c (3.5.4)
i=1 i=2

k M

s.t. E(Qi - 1)[u(Oi,xi) - u(Oi-i,x i_)]+ E Qi[u(Oi,xi) -U(Oi_1,xi)(3_55)
i=2 i=k+1

Then xTB is the allocation in the optimal informative mechanism if

M

c> Z(Qi - 1i<k)[u(Oi, x_ 1) -U(Oj_1, z_1
i=2

Furthermore, TB > Xo'B for i = k± 1,..., M, with equality when Eq. (3.5.5) is not

binding; xTB < XsB for i = 1, ... , k - 1, with strict inequality if I is twice continuously

differentiable and I'(O) = 0.

Proof. This is straight forward from the discussion of the previous section. L
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Therefore, the allocation for types 01, ... , Ok-1 is always downwardly distorted compared

to the first best allocation. The allocation for types 0 k+1, ... , OM, on the other hand,

is weakly bigger than the second best (when information is costless), and may have no

distortion or upward distortion compared to the first best. In particular, efficiency at

the top may fail, though the allocation for the top type is never downwardly distorted.

Note that the right hand side of Eq. (3.5.3) equals zero when M = 3, so in the two-type

case lI'(c) < -1 always. In this sense, the two-type case is not representative.

The economic intuition is as follows. The informational rent is increasing in the alloca-

tion to the lower types. When there is cost of acquiring information, the principal has

incentive to reduce the rent for Ok and to increase the rent for types higher than the prior

type Ok, as informational rent for higher types can be captured only if the agent acquires

information. To achieve this goal, the principal increases the allocation to types higher

than Ok and reduces the allocation to types lower than Ok from the second best solution.

(Note that though reducing allocation to lower types also reduces the informational rent

for types 02, ---, Ok-1, this effect is dominated by the reduction of rent for the prior type.)

Recall the example of investing in a risky project. Proposition 4 implies that the principal

invests below the first-best level when the signal is unfavorable, meaning that Oi is below

the prior. The principal invests above the second best level when the signal is favorable

and c is moderate, and may invest at or above the first best level when c is sufficiently

big.

One interesting observation from Proposition 4 is that the solution xTB to the program

Eqs. (3.5.4) and (3.5.5) does not necessarily deliver lower total surplus than xSB. Com-

pared with xSB, the downward distortion is aggravated for types below the prior but

mitigated or even reverted for types above the prior under xTB. Therefore, it should

not be surprising that the total surplus delivered by xTB can exceed what xSB delivers.

This is indeed the case at least in a very special situation, in which there is no way to

downwardly distort the allocation for low types. The next proposition states this fact

formally for the general linear model with binary information acquisition:

Proposition 25. Consider the linear model with M = {0, 1}. Suppose that X C R+ and

x7B = 0 for i = 1, ..., k, and the cost of information acquisition satisfies the following
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condition:

M M

Q, [u(9i, XF) - u(O_1, XFi)] < c < MQ [U(O,, XFB) - U(O,_1, XfB ,
i=k+1 i=k+1

(3.5.6)

then the optimal informative mechanism implements the first best allocation.

Proof. See the appendix.

It should be noted that the principal still prefers the second best allocation and transfer

to the outcome of the optimal informative mechanism even in this case, but the second

best allocation and transfer rule cannot be implemented when information acquisition

is not contractible.

Now I demonstrate that the parameter set described in Proposition 5 can be nonempty

in the investment example given in Section 3.2 (with a more general type space E).
Assume that e = {OL, OM, OH}, and the agent's signal has distribution Pr(O = 6h) = qi,

i = L, M, H. In addition,

X, if X < O;

I(X) = (1+ r)x - rxo, if x E (xo, x1 ];

00, if X > X1 ,

where r > 0 is a given constant. The intuition is that the organization has cash xO with

no good alternative use, and can obtain fund at shadow cost r when x < xi, but it would

be prohibitively costly to invest more than x1. Assume that E[O]R < 1, OHR > 1 + r

and

1<9MR<min 1+ qH a(OH - OM)R, 1 + r
qM

so that B =0, xFB = xi, and xSB X B = 0. Eq. (3.5.6) now reads

qH(OH - OM)OaxoR < c < qH(OH - OM)axlR. (3.5.7)

If this condition is satisfied, then the optimal informative mechanism implements the

first best allocation. Moreover, when

c < qM(OMR - 1)xO + qH[(OH R - 1 - r)x1 + rxo],
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it is optimal to induce information acquisition. (The right hand side is the total surplus

generated by the information, but it is easy to check that in the optimal informative

mechanism the agent gets zero informational rent, net of the cost of acquiring informa-

tion.) All of the above conditions hold when, for example, when R = 2, r = !, a =

,H = 17 OM 7L = 0, qH qM = qL and c E (IX0, 1Xi).

One useful observation from the constraint Eq. (3.5.7) is that in order to implement the

first best in the optimal informative mechanism, a cannot be too small. (When a is too

small, the principal overinvests under favorable signals.) This is in contrast with the

comparative statics obtained under the second best, which implies that the organization

is more efficient when a is smaller. Intuitively, it is good to give the agent stake in the

total surplus to motivate him to acquire information without distorting the investment.

The comparison between the optimal informative mechanism and the second best raises

the following question: if there is a monitoring technology or institutional innovation that

makes the effort of information acquisition contractible, is it always beneficial to contract

on that? For example, the agent's cost of effort may come from hiring a consultant, but

that cost may be verifiable, though the principal still lacks the expertise to interpret

the consultant's report or it is prohibitively costly for her to do so. Obviously, this

discussion only makes sense when n is deterministic.

When n becomes contractible, the principal can refuse to contract with the agent in

Step 2 of the timing. Therefore, if the agent does not make the desired level of effort to

acquire information, instead of imitating some other type and getting positive payoff,

he can only get his outside option now. Therefore, Eq. (3.4.3) becomes

IF (n)hi(x(O))dO + c(n) < c(n'), for all n' $ n.

As this constraint is looser than Eq. (3.4.3), the principal's payoff is weakly higher in

this case. Therefore, it the monitoring technology that makes n contractible is free, the

principal always weakly prefers contracting on n.

On the other hand, whether contracting on n improves total surplus of the organization

is a more subtle question. Part of the advantage of contracting on n for the principal

is that by worsening the agent's payoff from deviation she bears less burden of the cost

c(n) compared to the case when n is not contractible. However, from the organization's
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perspective, the full cost of information acquisition has to be deducted from the organi-

zation's total surplus. Therefore, for the organization, it boils down to the comparison of

the total surplus from the allocation. Even though it is easier to implement the second

best allocation when n is contractible, it is not ex ante clear whether the total surplus

becomes higher, as the second best allocation itself suffers from downward distortion for

all but the highest type. The next proposition states that in some circumstances, being

able to contract on n is detrimental for the organization.

Proposition 26. Consider the discrete linear model with binary information acquisition

K = {0, 1} and prior type 0 k, and let xSB be the second best allocation. Assume that

X is an interval, S(O, x) = 7r(0, x) + u(O, x) is continuously differentiable and concave in

x and hi(x) is convex in x. Moreover, xB < XB < ... < XMj. Then contracting on n

reduces total surplus for some value of c(1) if the following condition is satisfied:

qiSx (0j, x B)(Qi+l1 - z<k-1)(Z+1 - O)h'(X B)

i5k qSxx (9, XB) - Qi+1(0i+1 - O) hk(X B)

Proof. See the appendix. l

The intuition of the condition is as follows. As mentioned before, when the information

acquisition constraint is binding, the downward distortion for types with Oi lower than

Ok is aggravated and the distortion for types with 0, higher than Ok is mitigated. The

condition precisely states that the second effect dominates the first for the total surplus.

As an example, consider the problem in the previous subsection with I(x) = X2/2. Then

the condition in the proposition reduces to

E(01+1 - 0,)2 -1 +l(Qi+1 - li<k-1) > 0,
i:Ak

where we have substituted in the second best allocation xi = OiR - q- 1Qi+i(Oi+1 -
Os), where Ok - Ok-1 should be understood as Ok+1 - Ok-1 as Ok represents the prior

type. This condition can be satisfied when (Oi+1 - Oj) is sufficiently big for i > k.

Therefore, contracting on n, though beneficial for the principal, may be detrimental for

the organization in some circumstances.

The final proposition in this subsection characterizes the allocation in the optimal infor-

mative mechanism for a more general type space E = [0,6], showing that the economic
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insights developed above extend to the more general case. Its proof relies heavily on

Lagrange (geometric) multipliers, so the following assumptions are made for the strong

duality theorem (existence of the multipliers) in Bertsekas (1999) to apply:

Assumption 9. hi(X) is a convex set, and the function S(9, h-'(-)) is concave on hi(X)

for every 9.

Assumption 10. For all relevant c, there is a non-decreasing allocation F : E -+ X such

that

[I - F(9)]h1(.(9))d9 - h1(.(9))d9 > c.

Proposition 27. Assume that the total surplus S(9, x) = 7r(9, x) + u(9, x) has increasing

differences in 0 and x. Let xFB and xSB be the first-best and second-best allocations,

respectively. Let x(9; c) be the allocation and II(c) be the principal's payoff in the

optimal informative mechanism when the cost of information is c. Then

i) x(9-; c) XsSB() for all 0 < 90, and x(9+; c) XsB(9) for 9 > 90, where x(9-) and

x(9+) denote the left and right limits at 9, respectively;

ii) there exists E > 0 such that x(9; c) = xsB(9) for all 9 for c < E;

iii) II(c) is a non-increasing concave function in c;

iv) when 11'(c) < -1, x(0+; c) ;> xFB () for 9 > Oo.

Proof. See the appendix.

3.5.2 A success-failure experiment

In this subsection, I consider such an information acquisition technology described in

Example 2 of Section 2. As before, I assume that the agent's utility is u(9, x) = Ohi(x) +

ho (x) for some nonnegative and strictly increasing function hi. Let S(9, x) = r(, x) +

u(9, x) be the total surplus, which is assumed to have increasing differences in 9 and x.

The goal here is to compare the investment n in information acquisition in the optimal

mechanism and under first best.

Given an allocation rule x and a transfer rule t, let V(9) = max u(9, x(6)) + t(6). The

envelop theorem implies that the agent's IR and IC constraints (except for the conditions
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for information acquisition) are equivalent to the following conditions:

V(0) = e hi(x())dd; (3.5.8)

X'(0) ; 0. (3.5.9)

Therefore, if the agent chooses effort n E [0, 1], his expected payoff is

n J V()dF()+(1-n)V(Oo)-c(n) = n j [1-F(O)]hi(x())d+(1-n) j hi(x(O))dO-c(n).

Since this function is concave in n, n E [0, 1] is optimal if and only if the following

first-order condition is satisfied:

[I - F(O)]hi(x())d - j hi(x())dO - c'(n) = 0. (3.5.10)

The principal's payoff is

E[7r(O, x(6))-t()] = E[S(O, x(9))-V(O)] = E[S(9, x(6))] -n J V()dF(6)-(1-n)V(0o).

Using Eqs. (3.5.8) and (3.5.10), the above function becomes

n S(O, x(9))dF(O) + (1 - n)S(Oo, x(Oo)) - 0 hi(x(0))dO - nc'(n).

Let 11(n) be the principal's expected payoff from the optimal mechanism conditional on

n E [0, 1]. Then

11(n) = max n S(0, x(6))dF(0) + (1 - n)S(Oo, x(0o)) - hi(x(O))dO - nc'(n),

(3.5.11)

subject to Eqs. (3.5.9) and (3.5.10). To apply the strong duality theorem, assume that

Assumptions 1 and 2 hold, with c in Assumption 2 replaced with c'(n). Let n* be the

maximum of H and x* be an optimal allocation conditional on n*. Then the envelop

theorem implies that n* satisfies the following first-order condition

/ S(O, x*())dF(O) - S(Oo, x*(0o)) - c'(n*) - (n* + A)c"(c*) = 0, (3.5.12)

where A is the Lagrange multiplier for the constraint Eq. (3.5.10). On the other hand,

the first-best allocation xFB(0) maximizes S(G, x) for every 0 G E, and the first best
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information acquisition satisfies

0
nFB E argmaXnnf S(,XFB(0))dF(0) + (1 - n)S(00,XFB (G0)) - c(n).

Hence, nFB satisfies the following first-order condition:

S(0, XFB(0))dF(0) - S(00, xFB(00)) - c(nFB) = 0. (3.5.13)

The following lemma gives a sufficient condition for n* to be less than or equal to nFB

and some characterization of the allocation in the optimal mechanism.

Lemma 15. If A > 0, then i) x*(0o) = xFB(Oo); ii) x*() xFB(0) for all 0 < Oo and

x*(0+) xFB(0) for all 0 > 00, where x*(0-) and x*(0+) are the left and right limits

of x* at 0, respectively; and iii) n* < nFB, with strict inequality if c is strictly convex.

Proof. See the appendix. 0

To understand the intuition of the lemma, recall that when A > 0 the constraint Eq.

(3.5.10) is equivalent to the same expression with the equality replaced with ">". In

this case, the agent would acquire less information than the desired level n* without

incentives, so the principal has to concede part of the benefit of information to the

agent. This implies that the marginal benefit of information for the principal is less than

its first-best level. Therefore, less information is acquired in the optimal mechanism.

The second assertion in the lemma roughly says that there is a downward distortion

for 0 < 00 and upward distortion for 0 > 00, and this statement is precise when F is

absolutely continuous with respect to the Lebesgue measure.

The problem with Lemma 4 is that it is stated in terms of the Lagrange multiplier

A, whose sign is hard to determine without solving the whole program Eqs. (3.5.11),

(3.5.9) and (3.5.10). The next proposition gives a sufficient condition which can be

checked without solving the program.

Proposition 28. Assume that the p.d.f. of F is bounded away from zero. Then n* < nFB

if the following condition is satisfied:

j [1 - F(0)]h1(xFB(0))d0 - j h1 (xFB())d0 < C(nFB).
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Moreover, under the above condition, n* < nFB if c is strictly convex.

Proof. See the appendix. 0

The condition given in this proposition has a very intuitive interpretation: insufficient

information (compared to first-best) is produced in the optimal mechanism if the agent

prefers acquiring less information than nFB under the allocation rule xFB. What is not

clear from Proposition 8 (and Lemma 4) is that whether n* < nFB when the conditions

stated in the proposition or the lemma do not hold. In that case, x*(0o) may be distorted,

which makes the comparative statics more complicated. This is left for future research.

3.6 Conclusion

The main contribution of this paper is to set up a principal-agent model that allows for

general endogenous information acquisition, and to analyze the cases of binary infor-

mation acquisition and success-failure experiment. It is shown that results obtained in

previous works such as Cremer et al (1998b) and Lewis and Sappington (1997) arise in

the general model too, but more interesting phenomena can also happen. The consid-

eration of the success-failure experiment in this context and the sufficient condition for

less-than-efficient information acquisition is an innovation of this paper.

As the set up of the model is relatively general, there can potentially be a wide range

of applications. These include investing in risky projects, human capital acquisition,

regulation and procurement among others. In particular, when the information acqui-

sition is binary or of the form of a success-failure experiment, the analysis in Section 5

delivers interesting comparative statics, that can be tested empirically or compared to

other models.

From a theoretical perspective, the analysis here can be extended in several directions.

First, it would be interesting to have an example with contingent information acqui-

sition (optimal stopping) which admits a closed-form solution. This will provide new

economic insights in a broader range of applications, as well as check the robustness of

the predictions in Section 5.
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A second extension is to the case with more than one agents. Though optimal auctions

have been studied by privous works such as Shi (2008), more interesting multi-agent

mechanisms with endogenous information acquisition are yet to be explored. For ex-

ample, the agent may engage in a tournament or compete for the scarce resources, and

it would be interesting to see how the agents' effort of acquiring information and the

distortion in the allocation depend on the number of agents.

In many applications, 0 is interpreted as the probability that some event happens. For

example, in the investment problem considered in Section 3.2, 0 is the probability that

the risky project succeeds. However, in reality their might be multiple outcomes and

decisions must be made. For example, the principal needs to allocated resources in

more than one risky projects. In this case, 0 becomes an element of a simplex, but

the agent's (and the principal's) payoff is still linear in 0. This calls for a generalized

framework which allow both 0 and x to be multi-dimensional. The question for future

research is whether there exists some appropriate single-crossing condition to guarantee

the convexity of the agent's value, and whether the comparative statics analogous to

those in Section 5 can be obtained when information acquisition technology is as in that

section.

Finally, it is worth considering the repeated interaction between the principal and the

agent. Besides the standard constraints that relate the implementable outcomes to the

patience of the parties in the relational contract literature, the repeated game can also

give the agent additional incentives to acquire information. For simplicity, consider

the case when the state of nature 9 evolves as a Markov process, and the principal's

continuation strategy can depend on the state of nature that agent reported in the past

but not on the actual past state of nature. Then the ergodic distribution of the agent's

report is determined by the transition matrix of the Markov process, assuming that the

agent always chooses the information acquisition action that the principal recommends

and tells the truth. Therefore, any deviation in the empirical distribution of the agent's

reports from the ergodic distribution can be punished by the principal, and this makes it

more difficult for the agent to choose another level of information and imitate some type.

For example, in the binary information acquisition case, if the principal recommends the

agent to acquire information, the agent can always choose not to do so and imitate some

type 9' that leads to the highest expected payoff. In the repeated interaction, however,

the principal can detect this because the probability that the state of nature is always 9' is
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very low. However, studying the repeated interaction carefully requires more machinery

and is beyond the scope of this paper.
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3.7 Appendix

Proof of Proposition 5.Let x be the allocation in the optimal informative mechanism.

Suppose the right hand side of Eq. (3.5.2) is not positive at optimality. Then xi X xFB

for all i. In particular, xi = 0 for all i < k. The single-crossing property of u implies

that u(Oi, Xi_1) - u(9i-ix i_1) 5 u(Oi, X F'_) - u(Oi_, X F_) for i = 2, ..., M. Therefore,

M M

E(1isk-Qi)[u(i._1)--u(Oi1,xi1)I+c -- Qi[u(Gixi)-u(Oi_,x N)]±c >0,
i=2 i=k+l

a contradiction. Therefore, the right hand side of Eq. (3.5.2) is positive, and x solves

the following program:

k

maxx E qiS(i,xi) - [u(i,i-i) -u(i 1 ,xii)] -c
i i=2

k M

s.t. (Qi - 1)[u(Oi, xi_ 1) - u(9i-_, xi_1)] + Qi[u(O, xi) - u(Oi_1, Xi)] > c.
i=2 i=k+1

Clearly, x = xFB maximizes the objective function, ignoring the constraint. Eq. (3.5.6)

implies that the constraint is satisfied by xFB.

Proof of Proposition 6. Under the assumption, the second best allocation satisfies the

following first order condition:

qiSx(0i, xi) - Qi+1(Gi+1 - Oi)h'(xi) = 0, for i $ k.

Let co be the maximum cost of information acquisition such that the second best allo-

cation is implementable when n is not contractible. Then when c is in a neighborhood

of co, the allocation in the optimal informative mechanism satisfies the following first

order condition:

qiSx(9 , xi) - [(1 - A)Qi+1 + Alik-1](i+1 - Oi)h'(xi) = 0, for i $ k,

where A is the Lagrange multiplier and A > 0 when c > co. The implicit function

theorem implies that

Oxi Qi+1 - li<k-1(Oi+1 - Oi)h'(xi)
OA qiS (Oi, xi) - [(1 - A)Qi+ 1 + A11 k_1](Oi+1 - Oi)h"(xi)
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This implies that for A close to 0, oc/OA is positive and bounded away from both 0 and

oo. Therefore, there exists 61 > 0 such that the map from A to c is a local diffeomorphism

for A E (0, &). In particular, for c close to co, the monotonicity constraint for xi is not

binding and xi satisfies the above first order condition. The condition in the proposition

states that a Ej qjS(9j, xi)/&A > 0 when A = 0. This implies that there exists 62 E (0, 61)

such that the total surplus in the optimal informative mechanism is increasing in A for

A E [0, 62) and thus increasing in c for c E [co, co + e) for some E > 0. On the other hand,

by the strict monotonicity of x B, the rent for the prior type is positive, so for c close

to co, the second best allocation is still implementable when n is contractible.

Lemma 16. Let F be a probability distribution over E = [ , 9], X c R, h a strictly

increasing function on X and S : E x X -+ R a function with increasing differences.

Fix 0o E (E,9). For Al, p 2 E R, let x(-; Al, P2) : E -+ X be a solution to the following

program:

maxx(.) j S(9, x(9))dF(9) + pi j [1 - F(9)]h(x(9))d9 + P2 00 h(x(9))d;

s.t. x is weakly increasing.

Then for any /21, A2, Y', 2 E R,

i) if Y'2 P2 and IL -ti 5 [12-A 2 with at least one strict inequality, then x(9-; A', P') K

x(9; Al, Y 2) for all 0 < 0o; and

ii) if p' > p, then x(9+; p', L') > x(9; Al, A2) for all 0 > 9o.

Proof. Suppose x(-; p', p') > x(; Ai, /2) for some 9 < 0. Let

01 = inf{ E [0, 9] : x(9; p4,p'2) > X( ; l, P2) for all O E [, 0]};

02 = sup{ E [0, 00] : x(G; pI, P'2) > x(O; Pi, P 2) for all 9 E [0,7]}.
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Then by assumption 01 < 0 - 2 5 0o and x(6; i, M'2) > x(0; Ai, /2) for all 0 E (01, 02)-

Let

x(01+; 1, P2), if x(01; 1i, P'2) x(01+; 1, P2);
x =

x(01; P1, P2), if x(01; /1, A') > x(01+; P1, P2);{ x(02-; ,'2), if x(0 2; Ai1 , 2 ) > x(02-; P,'2);

x(02; A', P'), if x(02; Ai,,U2) < x(02-; P, P')-

Consider the following program (P')

maxX:[01 ,02 1 x S(0, x(0))dF(0)+ A1 [1 - F(0)]h(x(0))d0 +A2 j h(x(O))d,

s.t. x is weakly increasing;

x < x(0) 5 t for all 8 E [01, 02],

where the first integral in the objective includes the end point 01 if and only if x(0 1; p', P') >

x(01+; Pi, A2) and includes the end point 02 if and only if x(02; p1, .2) < X(02-; P', I')-

Define x, : [01,02] -+ x as follows: x1(0) = x(0;/P1 ,/p2 ) for 0 E (01,02); xi(01) =

X(01;pi1,/p2) if 01 is included in the first integral in the objective of (P') and xi(01) =

X(01+;g1,L2) otherwise; x1(0 2 ) = x(02;/Pl,P 2 ) if 02 is included in the first integral in

the objective of (P') and x1(02) = x(02-; Al, P2) otherwise. Define X2 the same way for

x(-; I', p'). Then by construction, x1 solves the program (P') when (A1,ft2) = (Al, A2),

and x 2 solves the program (P') when (Al, A 2 ) = (14, ,'2). Therefore,

02 0O2 f
0

2

S(0,x1(0))dF(0) + A1] [1 - F(0)] h(xi(0))dO + A2 ] h(x1())dO >
0 1 61 JO1

SS(, x2 (0))dF(0) + p1 [1 - F(0)]h(x2(0))dO + P2 h(x2(0))d;

S (0,X2())dF(0) + PJ [1 - F(0)]h(x2 (0))dO + p'J h(x2(0))dO >
J01 1 2 1

02 f02 02

S(0, x1(0))dF() + p4 [1 - F(0)]h(x1())dO + ' h(x1(O))dO.
JO1 01 fo1

Adding the inequalities up, one obtains that

02J [(I4 - pi)(1 - F(0)) + (p' - P2 )][h(x 2 (0)) - h(xi(0))]dO > 0
fo1 12
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By assumption, (p'i - pi)(1 - F(O)) + (p' - A2) < 0 and h(X2 (9)) > h(xi(9)) for all

9 E (01, 02), a contradiction. Therefore, x(9-; ',p') x(9; pi,jp2 ) for all p 'o*

ii) can be proved in the same way.

Proof of Proposition 7. Let 00 = E[9], the prior of 0. By Lemma 1, the allocation in the

optimal mechanism solves the following program:

11(c) = maxx(.) J S(9, x(9))dF(9) - j (1 - F(9))hi(x())d;

s.t. x is non-decreasing;

[1 - F(9)Jh1(x(9))d9 - 0 hi(x(9))d > c.

I will refer to the second constraint as the information inducing constraint. Using the

method of Lagrange multiplier, Therefore, x(9; c) solves

II(c) = maxx(.) j S(0, x())dF(0) - (1 - A) 0(1 - F(O))hi(x(9))d9 - A hi(x(0))d0 - Ac;

s.t. x is non-decreasing,

where A > 0 is the Lagrange multiplier. The envelop theorem implies that 1'(c) =

-A < 0. Moreover, Lemma 5 implies that x(0-; c) is decreasing in A for 9 < 0 and

x(9+; c) is increasing in A for 0 ;> Oo. The left hand side of the information inducing

constraint is increasing in x(9) for 9 > Oo and decreasing in x(0) for 0 < 9o. Since the

discontinuities of a monotonic function have Lebesgue measure zero, the left hand side

of the information inducing constraint is increasing in A. Therefore, A is increasing in

c. This implies that H'(c) is decreasing in c, x(0-; c) is decreasing in c for 0 < 90 and

x(9+; c) is increasing in c for 0 > 0o. The second best allocation coincides with the

allocation in the optimal informative mechanism when A = 0, which happens when

C < [1 - F(O)]hi(xSB (g))d - hi(x SB(0))dO.

Lemma 5 also implies the comparison between x(-; c) and xSB stated in the proposition.

Finally, xFB solves the program in Lemma 5 with pi = A2 = 0, so Lemma 5 implies

that x(0+; c) > XFB(0) for 0 > Oo when A = -II'(c) > 1.
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Proof of Lemma 4. The result is trivial if n* = 0. In what follows assume that n* > 0.

Lemma 5 implies that x*(O-) 5 XFB(0) for all 0 < 0o and x*(0+) xFB(0) for 0 > Oo-

Therefore, x*(9o-) < xFB(GO) - x*(Go+), which implies that x*(O0) = xFB(9O), as

XFB (G0) maximizes S(0o, x).

The second claim follows directly from Lemma 5.

Finally, by Eq. (3.5.12),

0
c'(n*) = S(9,x*(9))dF(9) - S(9o,x*(9o)) - (n* +A)c"(n*)

Applying the definition of xFB to the first term, the result that xFB (O) = x0 (o) to the

second, and the fact that (n* + A)c"f(n*) > 0 to the third, one obtains that

c' (n*) _< S(GXFB(G))dF(G) - S(G0, xFB (00)) = cl(nFB),

with strict inequality if c is strictly convex and thus c"(n*) > 0. Therefore, the second

assertion follows from the convexity of c.

Proof of Proposition 8. Suppose n* > nFB. Clearly, A > 0 if and only if the left hand

side of Eq. (3.5.10) is less than the right hand side, when (xTBn*) is substituted in,

for all solution xTB to the following program:

maxx(.) n* j S(G, x())dF(G) + (1 - n*)S(Go, x(9o)) - j hi(x(G))dG;

s.t. X'(G) > 0.

Lemma 5 can be applied to any xTB to show that xTB (G) = xFB(Go), XTB(G_)

xFB(0) for all 0 < Go. Clearly xTB(G) = XFB(9), a.s. F, and thus almost everywhere

with respect to the Lebesgue measure. Therefore,

[1-F()]h(xTB())d h(XTB(G))dG < [1-F(G)]h1(xFB FB

Combining this with the condition in the proposition, one obtains that

j[ - F(G)]h1(xTB (O))d - j hi(xTB(G))dG < c(nFB) <cd(n*),
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for all xTB, which implies that A > 0. By Lemma 4, n* < nFB, a contradiction.

Therefore, n* < nFB. Note that A > 0 even when n* = nFB, so n* < nFB when c is

strictly convex.
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