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Abstract

The first chapter consists of my job-market paper. The foreclosure rate of subprime mortgages
increased markedly across 2003-2007 borrower cohorts-subprime mortgages originated in 2006-
2007 were roughly three times more likely to default within three years of origination than mortgages
originated in 2003-2004. Many have argued that this surge in subprime defaults represents a
deterioration in subprime lending standards over time. I quantify the importance of an alternative
hypothesis: later cohorts defaulted at higher rates in large part because house price declines left
them more likely to have negative equity. Using loan-level data, I find that changing borrower and
loan characteristics explain approximately 30% of the difference in cohort default rates, with almost
of all of the remaining heterogeneity across cohorts attributable to the price cycle. To account for
the endogeneity of prices, I employ a nonlinear instrumental-variables approach that instruments
for house price changes with long-run regional variation in house-price cyclicality. Control function
results confirm that the relationship between price declines and defaults is causal and explains the
majority of the disparity in cohort performance. I conclude that if 2006 borrowers had faced the
same prices the average 2003 borrower did, their annual default rate would have dropped from 12%
to 5.6%.

The second chapter is joint with David Autor and Parag Pathak. Externalities from the attributes
and actions of neighborhood residents onto the value of surrounding properties and neighborhoods
are central to the theory of urban economics and the development of efficient housing policy. This
paper measures the capitalization of housing market externalities into residential housing values
by studying the sudden and largely unanticipated 1995 elimination of stringent rent controls in
Cambridge, Massachusetts, which had previously muted landlords' incentives to invest in their
properties and altered the assignment of residents to locations. Pooling administrative data on the
universe of assessed values and transacted prices of all Cambridge residential properties between
1988 and 2005, we find that rent decontrol genrated substantial, robust price appreciation at
decontrolled units and nearby never-controlled units, accounting for an estimated 30 percent of
the $7.8 billion in Cambridge residential property appreciation during this period. The majority
of this contribution is due to induced appreciation of never-controlled properties, while residential
investments can explain only a small fraction of the total.

The third chapter is joint with Denis Chetverikov and Bradley Larsen. We present a methodology
for estimating the distributional effects of an endogenous treatment that varies at the group level
when there are group-level unobservables, a quantile extension of Hausman and Taylor (1981).
Standard quantile regression techniques are inconsistent in this setting, even if the treatment is
exogenous. Using the Bahadur representation of quantile estimators, we derive weak conditions
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on the growth of the number of observations per group that are sufficient for consistency and

asymptotic normality. Simulations confirm the superiority of this grouped instrumental variables

quantile regression estimator to standard quantile regression. An empirical application finds that

low-wage earners in the U.S. from 1990-2007 were significantly more affected by increased Chinese

import competition than high-wage earners. We also illustrate the usefulness of the estimation

approach with additional empirical examples from urban economics, labor, regulation, and empirical

auctions.

Chapter 1 Keywords: Mortgage Finance, Subprime Lending, Foreclosure Crisis, Negative Equity

Chapter 2 Keywords: Urban Economics, Residential Externalities, Rent Control, Price Regula-

tions

Chapter 3 Keywords: Quantile Regression, Instrumental Variables, Panel Data, Wage Inequality,

Import Competition
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Chapter 1

Why Did So Many Subprime
Borrowers Default During the Crisis:
Loose Credit or Plummeting Prices?

1.1 Introduction

Subprime residential mortgage loans were ground zero in the Great Recession, comprising over 50%

of all 2006-2008 foreclosures despite the fact that only 13% of existing residential mortgages were

subprime at the time.1 The subprime default rate-the number of new subprime foreclosure starts

as a fraction of outstanding subprime mortgages-tripled from under 6% in 2005 to 17% in 2009.

By 2013, more than one in five subprime loans originated since 1995 had defaulted. While subprime

borrowers by definition have been ex-ante judged as having greater default risk than non-subprime

mortgages, many have pointed to the disproportionate growth in the share of defaults by subprime

borrowers as evidence that the expansion in subprime lending was a major contributing cause to

the housing crash of 2007-2009.

Why did the performance of subprime loans decline so sharply? A focal point of the discussion

has been the stylized fact that subprime mortgages originated in 2005-2007 performed significantly

worse than subprime mortgages originated in 2003-2004.2 This is visible in the top panel of Figure

'Statistics derived from the Mortgage Bankers Association National Delinquency Survey. There is no standardized
definition of a subprime mortgage, although the term always means a loan deemed to have elevated default risk.
Popular classification methods include mortgages originated to borrowers with a credit score below certain thresholds,
mortgages with an interest rate that exceeds the comparable Treasury Bill rate by 3%, certain mortgage product
types, mortgages made by lenders who self-identify as making predominantly subprime mortgages, and mortgages
serviced by firms that specialize in servicing subprime mortgages. For the purposes of this paper, subprime mortgages
are defined as those in private-label mortgage-backed securities marketed as subprime, as in Mayer et al. (2009). For
an estimate of the effects of foreclosures on the real economy, see Mian et al. (2011).

2 See JEC (2007), Krugman (2007b), Gerardi et al. (2008), Haughwout et al. (2008), Mayer et al. (2009), Demyanyk
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1, which uses data from subprime private-label mortgage-backed securities to show this pattern for

2003-2007 borrower cohorts. 3 Each line shows the fraction of borrowers in the indicated cohort

that defaulted within a given number of months from origination.4 The pronounced pattern is

that the speed and frequency of default are higher for later cohorts-within any number of months

since origination, more recent cohorts have defaulted at a higher rate (with the exception of the

2007 cohort in later years). For example, within two years of origination, approximately 20% of

subprime mortgages originated in 2006-2007 had defaulted, in contrast with approximately 5% of

2003-vintage mortgages.

A popular explanation for the heterogeneity in cohort-level default rates over time is that loosening

lending standards led to a change in the composition of subprime borrowers, potentially on both

observable and unobservable dimensions (e.g. JEC, 2007 and COP, 2009). Others (e.g. Krugman,

2007a) blame an increase in the popularity of exotic mortgage products (for example, so-called

balloon mortgages, which do not fully amortize over the mortgage term, leaving a substantial

amount of principal due at maturity). The observed heterogeneity in cohort-level outcomes seen in

Figure 1 could be generated by a decrease in the ex-ante creditworthiness of subprime borrowers

over time or if the characteristics of originated mortgages became riskier. A third possibility is

that price declines in the housing market-national prices declined by 37% between 2005-2009-

differentially affected later cohorts, who had accumulated less equity when property values began

to plummet. Being underwater-owing more on an asset than its current market value-could

be an important friction in credit markets leading to a higher likelihood of default. Borrowers

during a period of high price appreciation who have insufficient cash flow to make their mortgage

payments can sell their homes or use their equity to refinance into a mortgage with a lower monthly

payment. By contrast, if underwater homeowners cannot afford their mortgage payments, their

alternatives are limited-lenders are often unwilling to refinance underwater mortgages or allow

short sales (where the purchase price is insufficient to cover liens against the property). 5 The

and Van Hemert (2010), and Bhardwaj and Sengupta (2011) for examples of contrasting earlier and later borrower

cohorts.
3 This data will be discussed at length in Section 1.3. The analysis stops in 2007 because by 2008 the subprime

securitized market was virtually nonexistent-the number of subprime loans originated in 2008 in the data fell by

99% from the number of 2007 originations.
4 Following Sherlund (2008) and Mayer et al. (2009), I measure the point in time when a mortgage has defaulted

as the first time that its delinquency status is marked as in foreclosure or real-estate owned provided it ultimately

terminated without being paid off in full.
5 Underwater homeowners may also default strategically to discharge their mortgage debt if they deem the option

value of holding onto their property to be low. Bhutta et al. (2010) find that the property value of the median

strategically defaulting borrower is less than half of the outstanding principal balance. Genesove and Mayer (1997)

show that, all else equal, highly levered sellers also set higher reservation prices.
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pattern of cohort default hazards could therefore come from four sources: price declines, changes in

observable borrower characteristics, changes in unobservable borrower characteristics, and changes

in mortgage product characteristics.

In this paper, I investigate the relative importance of each of these potential causes of declining

cohort outcomes to understand what caused the increase in subprime defaults during the Great

Recession. The counterfactual question I ask is whether 2003 borrowers (the best performing

cohort) would have defaulted more like 2006 borrowers did if instead they had taken out mortgages

in 2006 (when the worst performing cohort did). If so, then it is less plausible that deteriorating

lending standards and risky mortgage products were a key driver of the surge in subprime defaults.

On the other hand, if 2003 borrowers would have defaulted at a lower rate even after adjusting for

observable borrower characteristics, loan characteristics, and market conditions, this would imply

important differences in unobserved borrower quality across cohorts.6

To answer these questions, I estimate semiparametric hazard models of default using a panel of

subprime loans that combines rich borrower and loan characteristics with monthly updates on loan

balances, property values, delinquency statuses, and local price changes. I find that differential

exposure to price declines explains 60% of the heterogeneity in cohort default rates. I also estimate

that the product characteristics of subprime mortgages-but not the borrower characteristics-play

an important role, accounting for 30% of the rise in defaults across cohorts. Conditioning on all three

channels (price changes and loan and borrower characteristics) explains almost the entire change in

cohort-level default rates, suggesting that the effect of any decline in unobserved borrower quality

(e.g. from a deterioration in the accuracy of mortgage applications) was negligible. Returning to

the counterfactual question posed above, my results imply that if 2006 borrowers had faced the

prices that the average 2003 borrower did (i.e. at the same number of months since origination),

2006 borrowers would have had an annual default rate of 5.6% instead of 12%.7 Furthermore, I find

that if 2003 and 2006 borrowers had taken out identical mortgage products in addition to having

faced the same prices, they would have defaulted at nearly identical rates.

House prices are an equilibrium outcome dependent on factors related to default risk. Whatever

their source, price declines may have a causal effect on defaults. However, the potential for price
6 Note that even absent a significant change in cohort quality, subprime lending could have had a sizable effect

on the economy through feedback between subprime defaults and price declines. Isolating the causal effect of prices
on defaults is thus an input into the larger question of what was the net impact of subprime lending on the housing
market.

71 measure the annual default rate within five years of origination as 12 times the average fraction of existing
loans that default each month.
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changes and defaults to be caused by a third factor may lead to estimating a spurious relationship

between price changes and defaults. In other words, some of the sources of price shocks may also

have direct effects on the unobserved quality of borrowers and hence on defaults. A prominent

hypothesis is that subprime penetration itself may subsequently have caused price declines and

defaults, as suggested by Mayer and Sinai (2007), Mian and Sufi (2009), and Pavlov and Wachter

(2009). In short, a credit expansion could amplify the price cycle, initially increasing prices from

the positive demand shock as the pool of potential buyers grows. However, if the credit expansion

involves a decrease in average borrower quality, this process will eventually lead to an increase in

defaults, accelerating price declines. Thus, even though individual borrowers are price takers in the

housing market, their unobserved quality may be correlated with the magnitude of price declines,

resulting in biased estimates of the causal effect of prices on default risk.

The possibility of such a process makes it difficult to determine whether price changes actually

cause defaults or if the defaults that are observed simultaneously with price declines are driven

by the same latent factors driving prices and would therefore have occurred even absent any price

changes. This impediment to estimating the causal effect of prices on defaults is also a challenge in

estimating whether there were quality differences across cohorts. If unobserved quality differences

affect both defaults and price declines, not taking into account the endogeneity of prices could lead

to an underestimate of heterogeneity in cohort quality and an overestimate of the role of prices in

affecting defaults.

To isolate the portion of cohort default rates driven by price changes from changes in unob-

served borrower quality which also affect prices. I exploit plausibly exogenous long-run variation in

metropolitan-area house-price cyclicality. As observed by Sinai (2012), there is persistence in the

amplitude of house-price cycles-cities with strong price cycles in the 1980s were more likely to

have strong cycles in the 2000s. I use this historical variation in house-price volatility to construct

counterfactual price indices, which are unrelated to housing market shocks unique to the 2000s

price cycle, e.g. because price volatility in the 1980s occurred well before the widespread adoption

of subprime mortgages. Indeed, I show below that my instrument does not predict differential

subprime expansion. Nevertheless, I also present evidence that areas that have cyclical housing

markets also have cyclical labor markets. To address the possibility that price results could be

explained by local labor shocks (an increase in the unemployment rate may cause defaults and

depress prices), I verify that my results are robust to controlling for local unemployment rates. 8

8 Mayer (2010), Mian (2010), and Mian and Sufi (2012) argue that price declines first caused unemployment in
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To my knowledge, this paper is the first to instrument for prices to address the joint endogeneity

of prices and defaults in estimating the causal effect of price changes on defaults. While many

researchers have looked at the relationship between house price appreciation and defaults, none of

them have addressed the possible endogeneity of house price changes. For example, the common

practice of imputing changes in property values using a metropolitan area home price index, al-

though free from property-specific price shocks, does not address the concern that price changes at

the metropolitan area level are themselves the outcome of demand and supply shocks that are likely

correlated with unobserved borrower quality. Using a nonlinear instrumental variables approach

to account for the endogeneity of covariates in a hazard model setting. I confirm that prices are

endogenous, they are an important determinant of default, and they explain over half of the cohort

pattern in default rates.

Figure 2 illustrates the differential effect that declining home prices had on origination cohorts

by plotting the median mark-to-market combined loan-to-value ratio (CLTV) of each cohort of

borrowers over time. 9 The beginning of each line shows the median CLTV at origination for

mortgages taken out in January of that cohort's birth year. Thereafter, each line shows the median

CLTV of all existing mortgages in the indicated origination cohort.10 Each cohort's median CLTV

began rising in 2007 as prices declined nationwide. However, there are two main differences between

early and late cohorts. First, origination CLTVs increased over time-the median 2007 CLTV

was 10 percentage points higher than the median 2003 CLTV, lending credence to the argument

that underwriting standards deteriorated. Second, earlier cohorts' median CLTVs declined from

origination until 2007 as prices rose (increasing the CLTV denominator) and as borrowers made

their mortgage payments, reducing their indebtedness (the CLTV numerator), with the former effect

dominating because of the low amount of principal paid off early in the mortgage amortization

schedule. By contrast, later cohorts had not accumulated any appreciation or paid down any

principal, as prices fell almost immediately after their origination dates. By early 2008, more than

one-half of borrowers in both the 2006 and 2007 cohorts were underwater, and by early 2009, more

than one-half of the 2005 cohort was underwater. Using variation in price changes across cities

and cohorts and controlling for CLTV at origination, the empirical specifications below allow me to

the recent recession.
9 The combined loan-to-value ratio (CLTV) of a mortgage is the sum of all outstanding principal balances secured

by a given property divided by the value of that property. The data used in Figure 2 estimate market values from
CoreLogic's Automated Valuation Model, see Section 1.3 for more details.

1 Having a high CLTV at origination (equivalent to having a small down payment) is highly correlated with default
risk and is routinely factored into the interest rates charged by lenders.
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identify the causal effect of prices on defaults, differentiating between differences in negative equity

prevalence across cohorts explained by high CLTVs at origination (a measure of cohort quality)

and less opportunity to accumulate equity before price declines begin.

Suggestive evidence that the prevalence of negative equity affected economic outcomes is the bot-

tom panel of Figure 1, which shows the cumulative prepayment probability by cohort-the fraction

of each cohort's mortgages that had been paid off within the given number of months since origina-

tion. 1 The pattern across cohorts is exactly reversed from the cohort heterogeneity in default rates

depicted in the top panel-more recent borrowers prepaid their mortgages much less frequently and

at slower rates than borrowers from 2003-2005. Given the evidence that later cohorts were more

likely to be underwater, the contrast between the cohort-level trends in defaults and prepayments is

consistent with the notion that underwater borrowers in distress default and above-water borrowers

in distress prepay.12

The differing experiences of the Pittsburgh and Minneapolis metropolitan areas serve as a motivat-

ing case study for the conceptual experiment in which this paper engages using geographic variation

in prices. Although they had similar subprime market shares, these two cities had very different

price cycles-Pittsburgh did not have much of a cycle, whereas Minneapolis home prices had a price

cycle similar to the national average (see top panel of Figure 3).1 As a consequence, the bottom

panel of Figure 3 shows that the fraction of Pittsburgh subprime homeowners that were underwater

stayed roughly constant at 30%, while the fraction of Minneapolis subprime homeowners who were

underwater increased from under 20% before 2006 to over 35% by the middle of 2008.

The contrast between Pittsburgh and Minneapolis also extends to default rates. The top panel of

Figure 4 shows that Pittsburgh cohorts defaulted at very similar rates, with later cohorts actually

defaulting less than earlier cohorts by the end of the period. By comparison, in Minneapolis, where

prices followed a boom-bust pattern, earlier borrower cohorts defaulted at a much lower rate than

later cohorts. The bottom panel of Figure 4 shows that approximately 15% of Minneapolis subprime

mortgages originated in 2006-2007 had defaulted within 12 months of origination, whereas only 5%

"1Note that prepayment has a specific meaning in mortgage finance. As the issuer of a callable bond, a mortgage

borrower has the prerogative to pay back the debt's principal balance at any time, releasing them of further obligation

to the lender. In practice, this is done through refinancing or selling the home and using the proceeds to pay back the

lender. See Mayer et al. (2010) for a discussion of mortgage prepayment penalties, an increasingly common feature

of subprime mortgages.
1 2Note that this pattern could also be generated by cohort quality if riskier borrowers prepay less frequently, e.g. if

they are less likely to trade-up to a more expensive home.
1 3According to Mayer and Pence (2008), 16% and 17% of mortgages originated in 2005 were subprime in Pittsburgh

and Minneapolis, respectively.
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of 2003-2004 mortgages had defaulted within the same time frame. The contrasting pattern across

cohorts in Pittsburgh and Minneapolis suggests that the relative lack of a price decline and stable

prevalence of negative equity in Pittsburgh may explain why default risk appears constant across

Pittsburgh cohorts relative to Minneapolis, where an increasing share of underwater borrowers

seems to have led to a rapid increase in default rates.

The strategy of this paper is to generalize the Pittsburgh-Minneapolis comparison to a comprehen-

sive national dataset by including loan-level controls for the changing composition of borrowers in

each locale and by isolating exogenous variation in each city's price cycle. Intuitively, I compare

cohorts in areas with different price cycles (and thus different predicted availability of sell/refinance

options for borrowers) to estimate whether they also had different default patterns after adjusting

for observable underwriting characteristics.

There is a broad literature on the determinants of mortgage default. 4 A number of studies have

examined the proximate causes of the subprime foreclosure crisis in particular (see Keys et al.,

2008, Hubbard and Mayer. 2009, Mian and Sufi, 2009. and Dell'Ariccia et al.. 2012). Kau et

al. (2011) find that the market was aware of an ongoing decline in subprime borrower quality.

Corbae and Quintin (2013) provide a model demonstrating how a period of relaxed underwriting

standards could lead to a mass of mortgages originated to borrowers who would subsequently be

extraordinarily sensitive to price declines.

Several papers have tried to quantify the relative contributions of underwriting standards and

housing market conditions in the increase in the subprime default rate over time (all treating

metropolitan area home price changes as exogenous) and have generally found a residual decrease

in cohort quality. Sherlund (2008) concludes that leverage is the strongest predictor of increasing

default risk and decreasing prepayment risk among subprime loans. Gerardi et al. (2008) use

data through 2007 to ask whether lenders, investors, and rating agencies should have known that

price declines would induce widespread defaults. Gerardi et al. (2007) examine the importance of

negative equity. Krainer and Laderman (2011) examine the correlation between prepayment and

default rates and find that declines in prepayment rates are strongly correlated with increases in

default rates, particularly among borrowers with low credit scores. Bajari et al. (2008) estimate

a dynamic model of default behavior on subprime mortgage data from 20 metropolitan areas and

find evidence supporting both lending standards and price declines as drivers of default.

1 4 For example, Deng et al. (2000), Foote et al. (2008), Pennington-Cross and Ho (2010), and Bhutta et al. (2010).

19



Other papers analyze differences in default or delinquency across cohorts. Mayer et al. (2009)

demonstrate heterogeneity in the early default rates of origination cohorts and examine a series

of bivariate correlations over time to document that loosening down payment requirements and

declining home prices are both highly correlated with increases in early defaults. Bhardwaj and

Sengupta (2012) estimate the cohort effects in default and prepayment hazards to be inversely

related-later cohorts defaulted relatively more and prepaid relatively less. The most closely related

study to this one is Deinyanyk and Van Hemert (2011), which explicitly considers vintage effects in

borrower quality and finds that prices played a much more important role than observable lending

standards in explaining early delinquencies. Using data ending in 2008, they conclude that the

bulk of the deterioration in cohort quality was due to unobservables, suggesting that the lending

boom coincided with adverse selection among borrowers.

In summary, existing work has focused on whether changing underwriting standards (originated

loan characteristics) explain changing default rates or whether prevailing market conditions such

as negative equity were acute in areas where many borrowers are defaulting. They all find that a

much larger portion of the deterioration in cohort quality is explained by home prices than ex-ante

borrower characteristics. In contrast to these papers, with the benefit of several more years of data

on the 2003-2007 subprime borrower cohorts and an instrumental-variables strategy, I am able to

make causal inferences about the effect of price changes on default rates.

The paper proceeds as follows. Section 1.2 discusses the empirical strategy. I describe the data and

compare the observable characteristics of borrower cohorts in Section 1.3. Identification concerns in

the context of a hazard model are detailed in Section 1.4, along with a description of the estimator.

After presenting initial descriptive estimates of the determinants of default that drive the cohort

pattern, Section 1.5 presents the instrumental variables strategy and my main results, and Section

1.6 explores the economic mechanisms through which price declines affect default rates. Using my

preferred empirical specification, I estimate cohort-level default rates under several counterfactual

scenarios in Section 1.7. In Section 1.8, I conclude by summarizing my main findings and briefly

discussing policy implications.
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1.2 Empirical Strategy

Many factors determine default risk. Underwriting standards and market conditions, each pre-

dictive of future idiosyncratic income shocks and changes in prepayment opportunities, interact

to generate defaults. Loose underwriting standards increase default rates because equally sized

negative income shocks are more likely to prevent borrowers with high debt-to-income ratios from

making mortgage payments and because borrowers with riskier income are more likely to have a

negative shock that prevents them from making their mortgage payments. After a period of sus-

tained price growth, younger loans are also relatively more sensitive to price declines because they

have not accumulated as much equity and are thus more apt to be underwater and constrained in

their ability to sell or refinance their mortgage. If an equal share of each cohort has an income shock

that prohibits them from paying back their mortgage, cohorts with positive equity will simply sell

their homes or refinance into mortgages with better terms. Later cohorts, on the other hand, have

no such option and will default.

The objective of the hazard models presented below is to examine the relative importance of each of

these factors by comparing loans with differing underwriting characteristics and in areas with differ-

ing price cycles to estimate how much of the heterogeneity in cohort default rates is explainable by

each factor. Comparing observationally similar loans (i.e. by controlling for underwriting standards

and loan age with a flexible baseline hazard specification) within a geography that were originated

at different times allows in to take advantage of temporal variation in house prices within a ge-

ographic region. Likewise, comparing observationally similar loans taken out at the same time

but in different cities utilizes spatial variation in house prices. To account for the endogeneity of

the house price series of each geographic area, I estimate counterfactual price series by mapping

each area's 1980-1995 house price volatility onto the most recent price cycle, as discussed in detail

in Section 1.4 below. This setup allows me to decompose observed cohort heterogeneity into its

driving factors by successively introducing additional controls that explain away the differences in

cohort default rates.

1.2.1 Hazard Model Specification

I specify the origination-until-default duration as a proportional hazard model with time-varying

covariates. Although the data are grouped into monthly observations, the proportional hazards
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functional form allows estimation of a continuous-time hazard model using discrete data (Prentice

and Gloeckler, 1978 and Allison, 1982). Let the latent time-to-default random variable be denoted

r, and let the instantaneous probability (i.e. in continuous-time) of borrower i in cohort c and

geography g defaulting at month t given that borrower i has not yet defaulted specified as

Pr (TE (t - , t] r > t - ) (.1lim = A(Xic9(t), t) (1.1)

= exp(X g(t) 3)Ao(t) (1.2)

where Ao(.) is the baseline hazard function that depends only on the time since origination t, and

Xicg(t) is a vector of time-varying covariates that in practice will be measured at discrete monthly

intervals. The proportional hazards framework assumes that the conditional default probability

depends on the elapsed duration only through a baseline hazard function that is shared by all

mortgages. A convenience of this framework is that the coefficient vector 13 is readily interpretable

as measuring the effect of the covariates on the log hazard rate.

Combining a nonparametric baseline hazard function with covariates entering through a paramet-

ric linear index function results in a semiparametric model of default. The specification for the

covariates is

X~cg(t)13 = e +i± + p - APricesig(t) + &g (1.3)

where -Yc and a are cohort and geographic fixed effects, respectively; WB and WL are vectors of bor-

rower (B) and loan (L) attributes, measured at the time of mortgage origination; and APricesicg(t)

is a measure of the change in prices faced by property i at time t. 15 Borrower characteristics include

the FICO score (a credit score measuring the quality of the borrower's credit history), debt-to-

income (DTI) ratio (calculated using all outstanding debt obligations), an indicator variable for

whether the borrower provided full documentation of income during underwriting, and an indicator

variable for whether the property was to be occupied as a primary residence. Attributes of the

mortgage note include the origination combined loan-to-value ratio (using all open liens on the

property for the numerator and the sale price for the denominator), the mortgage interest rate,

and indicator variables for adjustable-rate mortgages, cash-out refinance mortgages (when the new

1 5 A natural concern with including fixed effects %g in a nonlinear panel data model like this is the incidental

parameters problem, which arises when the observations per group g is small and the number of groups grows with
the sample size such that no progress is made in reducing the variance of the estimated fixed effects. Unlike a panel
with fixed effects for each individual, the details of this application suggest this is not a significant worry. The number
of observations per geography is already quite large, and as the total number of observations increases, the number
of metropolitan areas in the U.S. remains fixed, leading to consistent estimates of ag.
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mortgage amount exceeds the outstanding principal due on the previous mortgage), mortgages with

an interest-only period (when payments do not pay down any principal), balloon mortgages (non-

fully amortizing mortgages that require a balloon payment at the end of the term), and mortgages

accompanied by additional so-called piggyback mortgages.

The cohort fixed effects '> are the parameters of interest. As 2003 is the omitted cohort, the

estimated baseline hazard function represents the conditional probability of default for a 2003

mortgage of each given age. The -yc parameters scale this up or down depending on how cohort

c mortgages default over their life-cycle, conditional on X and relative to 2003 mortgages of the

same duration. Successively conditioning on geographic fixed effects, borrower characteristics, loan

characteristics, and price changes reveals the extent to which each factor explains the systematic

variation in default risk across cohorts. The estimated 'c without conditioning on any covariates are

a measure of the average performance of each cohort. Conditioning on prices, the yc are an estimate

of the quality of each cohort, where quality is estimated using an ex-post measure (defaults).

Conditioning on observable loan and borrower characteristics and prices, the >e represents the

latent (i.e. unobserved) quality of each cohort. If cohort-level mortgage performance differences

were driven by borrower unobservables, or if the explanatory power of the observables declined over

time, then this would be captured by the cohort coefficients after controlling for all observables.

1.3 Data and Descriptive Statistics

In this section I briefly describe the data sources used in my analysis.

CoreLogic LoanPerformance (LP) Data. The main data source underlying this paper is the

First American CoreLogic LoanPerformance (LP) Asset-Backed Securities database, a loan-level

database providing detailed information on mortgages in private-label mortgage-backed securities

including static borrower characteristics (DTI, FICO, owner-occupant, etc.), static loan character-

istics (LTV, interest rate, purchase mortgage, etc.), and time-varying mortgage attributes updated

monthly such as delinquency statuses and outstanding balances. 16 The LP data record monthly

loan-level data on most private-label securitized mortgage balances, including an estimated 87%

16 Using LP data is standard in the economics literature for microdata-based analysis of subprime and near-prime
loan performance. See Sherlund (2008), Mayer et al. (2009), Demyanyk and Van Hemert (2011), and Krainer and
Lederman (2011) for examples. See GAO (2010) for a more complete discussion of the LP database and comparison
with other loan-level data sources.
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coverage of outstanding subprime securitized balances. Because about 75% of 2001-2007 subprime

mortgages were securitized, this results in over 65% coverage of the subprime mortgage market.17

My estimation sample is formed from a 1% random sample of first-lien subprime mortgages orig-

inated in 2003-2007 in the LP database. resulting in a final dataset of over one million loan x

month observations. 18

Table 1 reports descriptive statistics for static (at time of origination) loan-level borrower and

mortgage characteristics. On these observable dimensions, it is clear that subprime borrowers

comprised a population with high ex-ante default risk.19 The average subprime borrower in my data

had a credit score of 617, slightly above the national 25th percentile FICO score and substantially

below the national median score of 720 (Board of Governors of the Federal Reserve System, 2007).

Among borrowers who reported their income on their mortgage application, the average back-end

debt-to-income ratio, which combines monthly debt payments made to service all open property

liens. was almost 40%, well above standard affordable housing thresholds. More than half of the

loans in my estimation sample were for cash-out refinances. where the borrower is obtaining the

new mortgage for an amount higher than the outstanding balance of the prior mortgage. As of

April 2013, when my data end, 24% of the mortgages in my sample have defaulted and 50% have

been paid off, leaving 26% of the loans in the data still outstanding.

Table 2 presents descriptive statistics by origination cohort. The distribution of many borrower

characteristics is stable across cohorts. Average FICO scores, DTI ratios, combined loan-to-value

ratios (measured using all concurrent mortgages and the sale price of the home, both at the time

of origination), documentation status, and the fraction of loans that were owner-occupied or were

taken out as part of a cash-out refinance are roughly constant across cohorts.2 0 While there is

substantial evidence that, pooling prime, near-prime, and subprime mortgages, borrower charac-

teristics were deteriorating across cohorts (see JEC, 2007), the lack of a noticeable decrease in

1 7 See Mayer and Pence (2008) for a description of the relative representativeness of subprime data sources. Foote

et al. (2009) suggest that non-securitized subprime mortgages are less risky than securitized ones.
18As mentioned above, for my purposes a subprime loan is one that is in a mortgage-backed security that was

marketed at issuance as subprime. I additionally drop mortgages originated for less than $10,000 and non-standard

property types such as manufactured housing following Sherlund (2008).
19 0ne measure of the elevated default risk inherent to subprime mortgages Gerardi et al. (2007), who find that

homeownership experiences begun with a mortgage from a lender on the Department of Housing and Urban Devel-

opment subprime lender list have a six times greater default hazard than ownership experiences that start with a

prime mortgage.
2 0 Note that the at-origination CLTVs reported here use the sale price of the home for its value, whereas the

contemporaneous (mark-to-market) CLTVs in Figure 2 use estimated market values. If the divergence between these

two measures over time is an important predictor of default, it will affect the magnitude of the estimated cohort main
effects, which capture all unobserved factors changing across cohorts.
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borrower observables in my data is consistent with observations from Gerardi et al. (2008) and

Demyanyk and Van Hemert (2011) who argue that the declines within the population of subprime

borrowers were too small to account for the heterogeneity in performance across cohorts.2 1 Among

mortgage product characteristics, however, there are important differences across cohorts, includ-

ing a marked increase in prevalence of interest-only loans, mortgages with balloon payments, and

mortgages accompanied by additional liens on the property. This finding of relatively stable bor-

rower characteristics and large changes in certain mortgage characteristics is consistent with the

findings of Mayer et al. (2009).

Specifications which directly examine the effects of negative equity make use of a novel feature of the

LP dataset: contemporaneous combined loan-to-value ratios (CLTVs), which are a measure of the

total amount of debt secured against a property relative to its market value. To calculate the CLTV

numerator, CoreLogic uses public records filings on additional liens on the property to estimate

the total debt secured against the property at origination. For the denominator, CoreLogic has an

automated valuation model (popular in the mortgage lending industry) that uses the characteristics

of a property combined with recent sales of comparable properties in the area and monthly home

price indices to impute a value for each property in each month.

CoreLogic Home Price Index. For regional measures of home prices, I use the CoreLogic

monthly Home Price Index (HPI) at the Core Based Statistical Area (CBSA) level. 22 These in-

dices follow the Case-Shiller weighted repeat-sales methodology to construct a measure of quality-

adjusted market prices from January 1976 to April 2013. They are available for several property

categories-I use the single family combined index, which pools all single family structure types

(condominiums, detached houses, etc.) and sale types (i.e. does not exclude distressed sales). Each

CBSA's time series is normalized to 100 in January 2000.

The CoreLogic indices have distinct advantages over other widely used home price indices. The ex-

tensive geographic coverage (over 900 CBSAs) greatly exceeds the Case-Shiller index, which is only

available for twenty metropolitan areas and the FHFA indices, which cover roughly 300 metropoli-

tan areas. Unlike the FHFA home price series, CoreLogic HPIs are available for all residential

2 1 Still, the nationwide decline in underwriting standards was driven in part by the subprime expansion: Even
though the composition of the subprime borrower population was relatively stable over time, subprime borrowers
represented a growing share of overall mortgage borrowers.

2 2 There are 955 Core Based Statistical Areas in the United States, each of which is either a Metropolitan Statistical
Area or a Micropolitan Statistical Area (a group of one or more counties with an urban core of 10,000-50,000 residents).

25



property types, not just conforming loans purchased by the GSEs. Finally, its historical coverage-

dating back to 1976-predates the availability of deed-based data sources such as DataQuick that

allow researchers to construct their own price indices but generally start only as early as 1988. I

match loans to CBSAs using each loan's zip code, as provided by LP, and a 2008 crosswalk between

zip codes and CBSAs available from the U.S. Census Bureau.23

Other Regional Data. For specifications that examine the importance of local labor market

fluctuations. I use Metropolitan Statistical Area and Micropolitan Statistical Area unemployment

rates from the Bureau of Labor Statistics (BLS) Local Area Unemployment Statistics series.2 4 I

also use publicly available Home Mortgage Disclosure Act (HMDA) data to calculate the subprime

market share in a given CBSA x year by merging the lender IDs in the HMDA data with the

Department of Housing and Urban Development subprime lender list as in Mian and Sufi (2009).25

HMDA data discloses the census tract of each loan, which I allocate proportionally to CBSAs using

a crosswalk from tracts to zip codes and then from zip codes to CBSAs.

1.4 Estimation and Identification

1.4.1 Estimation

Arranging the data into a monthly panel with a dependent variable defaultigt equal to unity

if existing mortgage i defaulted in month t, the likelihood h(t) of observing failure for a given

monthly observation must take into account the sample selection process. Namely, loans are not

observed after they have defaulted, so the likelihood of sampling a given observation is a discrete

hazard, which conditions on failure not having yet occurred. Suppressing dependence on X, the

2 3 Available at http: //www. census.gov/population/metro/data/other.html.
2 4 Available at http: //www. bis. gov/lau/home. htm.
2 5 Using the HUD subprime lenders list to mark mortgages as subprime results in both false positives and false

negatives: lenders who self-designate as predominantly subprime certainly issue prime mortgages as well, and non-

subprime-identifying mortgage lenders also issue subprime mortgages. See Mayer and Pence (2008).
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discrete hazard is

h(t) Pr(defaultj = 1)

Pr(T E (t - 1, t] T > t - 1)

= f (T)dT/S(t - 1)

(F(t) - F(t - 1))/S(t - 1)

1 - S(t)/S(t - 1)

where f(.) and F(.) are the density and cumulative density of T, the random variable representing

mortgage duration until failure, and S(-) = 1 - F(.) is the survivor function, the unconditional

probability that observed mortgage duration exceeds the given amount of time. Using the familiar

identity that S(t) = exp(-A(t)), where A(.) is the integrated hazard function A(t) = f A(T)dr, I

can rewrite the likelihood of observing failure for a given observation to be

h(t X) = 1 - exp(-A(t) + A(t - 1))

= 1 - exp - f1 exp(X (T)'/) Ao(T)dT

where the last line used the specification of A(.) in equation (1.2). If time-varying covariates are

constant within each discrete time period (for example if the observed value of Xt represents the

average of X(T) for T E (t - 1, t]),

h(t X) = 1 - exp (- exp(Xi')(Ao(t) - Ao(t - 1))) . (1.4)

where Ao(.) is the integrated baseline hazard Ao(t) = f Ao(T)dT.

Incorporating this likelihood of observing defaulticgt = 1, each month x loan observation's contri-

bution to the overall log-likelihood is

iet =defaulticgt- log(h(t|Xicqt)) + (1 - defaulti,,t) log(1 - h(t|Xiet)). (1.5)

I can then estimate the hazard model parameters of equation (1.2) by Quasi-Maximum Likelihood

(MLE) in a Generalized Linear Model framework where the link function G(.) satisfying h(t) =
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G-'(X' ± 4t) is the complementary log-log function

G(h(t)) log(- log(1 - h(t))) = Xt' + log(Ao(t) - Ao(t - 1))

Estimating a full set of dummies 4t allows for the baseline hazard to be fully nonparametric a la Han

and Hausman (1990).26 The estimates of the baseline hazard function represent the average value

of the continuous-time baseline hazard function Ao(.) over each discrete interval Aot = , Ao(T)dT

and are obtained as Aot = exp(Vt). Under the usual MLE regularity conditions, estimates of 1 and

4' will be consistent and asymptotically normal.

1.4.2 Identification

The proportional hazard model is identified-iniplying that the population objective function is

uniquely maximized at the true parameter values-under the assumptions that 1) conditional on

current covariates, past and future covariates do not enter the hazard (often termed strict exogene-

ity), and 2) any sample attrition is unrelated to the covariates (Wooldridge, 2007).2 Stated in terms

of the conditional distribution F(-+-) of failure times T, the strict exogeneity and non-informative

censoring assumptions are met provided

F (717 > t - 1, {Xicgs, cis}[1) = F(T T > t - 1, Xicgt)

where ci, is an indicator for whether loan i was censored at time s. In principle, if lags or leads

of the covariates enter into A. the strict exogeneity condition can be satisfied by including them as

explanatory variables in the vector Xjc9t.

An important form of censoring in mortgage data arises from borrowers paying back their mortgages

in full. Mortgages that have been prepaid are treated as censored because all that can be learned

about their latent time until termination by default is that it is at least as long as the observed

elapsed time until prepayment. Technically, any such hazard model with multiple failure types is a

competing risks model, which can be generalized to accommodate the potential dependence of one

26 Alternatively, V4t can be thought of as estimating a piecewise-constant baseline hazard function. As discussed
above in the context of the geographic fixed effects, the incidental parameters problem is not a concern here since
increases in sample size (the number of loans) would not increase the number of V) needing to be estimated.

2 7 The linear-index functional form assumption that the effect of covariates on the hazard is linear in logs is not
necessary for identification and is made for the sake of parsimony and convenience in interpreting the coefficients.
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risk on shocks to another. Under the assumption there is no unobserved individual heterogeneity

in the default hazard (or that unobserved heterogeneity in the default and prepayment hazards are

independent at the individual level), competing risks models can be estimated as separable hazard

models with observations representing other failure types treated as censored. 28 As in Gerardi et

al. (2008), Sherlund (2008), Foote et al. (2010), and Demyanyk and Van Hemert (2011), I adopt

this approach and focus on estimation of the default hazard.29 I also verify the robustness of my

main results to allowing for unobserved heterogeneity in the default hazard.

Turning to causality, the key identifying assumption for the estimated coefficient It in equation

(1.3) to be interpretable as the causal effect of the decline in property values is that fluctuations

in home prices and unobserved shocks to default risk are independent. 30 To illustrate how the

exogeneity of X affects estimates of 13 in a hazard model setting, consider the case of time-invariant

covariates and no censoring. In this simplified setting, the exogeneity condition necessary for the

maximum likelihood estimates of the hazard model parameters to represent causal effects is that

the probability of failure (conditional on reaching a given period) is correctly specified in (1.2) and

(1.3). Again, letting T be the random variable denoting the mortgage duration until failure, the

formal condition is

lim E -TE t- ] A(Xieg, t) X, T > t - =0 (1.6)

where 1(.) is the indicator function. Analogous to omitted variables bias in a linear regression, this

condition would be violated if there were an omitted factor w which affects default rates and is not

independent of X. In this case, misspecification leads to violation of the exogeneity assumption

because w affects failure, is not in A, and survives conditioning on X. To see this, suppose that the

true instantaneous probability of default conditional on T > t - is not A(X, t) but is

I(X, w, t) = exp(X,3 + w)Zo(t),

28See Heckman and Honor4 (1989) for a full discussion of identification in competing risks models.29The most well-known example of allowing for correlated default and prepayment unobserved heterogeneity is
Deng et al. (2000), who jointly estimate a competing risks model of mortgage termination using the mass-points
estimator of McCall (1996).

30This condition is stronger than price and default shocks being uncorrelated and is required in non-additive
models. See Imbens (2007) for a discussion.
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where both X and w may depend on t. Then

lim E -(t < T <_t]) A(X,t) XT > t - = E [(X, w, t) X] - A(X, t)

=E [ew exp (X13)Io(t) IX] - A(X, 0)

If w and X are independent, then the exogeneity condition becomes

E EeW exp(XO)Ao(t) X] - A(X, t) = exp(X3)E [e'] Io(t) - exp(X3)Ao (t).

Thus, the presence of independent w simply scales the estimate of the baseline hazard function. In

other words, the baseline hazard function estimated without controlling for w will be estimating

E [ew] Io(t)-but the estimation of the slope coefficients will be unaffected and the exogeneity

condition of equation (1.6) will hold in expectation. However, if w and X are not independent,

then the omission of w leads to a violation of equation (1.6), and estimated /3 will not represent

the marginal effect of X on default, as discussed in Section 1.5.2 below. 31

In the general case, even independent unobserved heterogeneity will affect the conditional distribu-

tion of TrX (and hence the estimated coefficients), a common obstacle in nonlinear panel models.

Lancaster (1979) introduced the Mixed Proportional Hazard (MPH) model where the heterogene-

ity enters in multiplicatively (additively in logs). 32 Conditional on unobserved heterogeneity E, the

hazard function becomes

A(t Xicgt, Ej) = exp(X'e9 tf + &)Ao(t). (1.7)

The literature on unobserved heterogeneity in duration models has broadly found that ignoring un-

observed heterogeneity biases estimated coefficients down in magnitude. Intuitively, the presence

of E induces survivorship bias-loans with low draws of e last longer and are thus overrepresented

in the sample relative to their observables. Individuals whose observable characteristics put them

at a high ex-ante risk of default and yet have lengthy durations are likely observed in the sample

because they have low unobserved individual-specific default risk (high latent quality). The nega-

tive correlation between X and E induced by the sample selection process can prevent consistent

3 'Estimating a proportional hazard model with no censoring and time-invariant covariates is equivalent to a

linear regression of log duration on the covariates (Wooldridge, 2007). This illustrates why this special case permits

unobserved heterogeneity provided it is independent of the covariates; in a linear model, additive unobservables affect

the consistency of the parameter estimates only if they are correlated with the covariates.
3 2Elbers and Ridder (1982) showed that the MPH model is identified provided there is at least minimal variation

in the regressors.
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estimation of 0.

Equation (1.7) pins down the conditional distribution F of latent failure times r to be

F(TIXicgt, E)= 1 - exp (-A((tjXiegt, :i))

where A(-jX, E) is the integrated hazard. Specifying the distribution of E to have cumulative dis-

tribution function G(-), the distribution F(TXicgt) of TrX is then obtained by integrating out

E:

F(T|Xicgt) j F(T|Xicgt, Ei)dG(Ei).

Finally, the modified likelihood h(t X) of observing failure at time T E (t - 1, t] is

h(tlX) = 1 - S(tjX)/5(t - 1|X) (1.8)

where the new survivor function is denoted S(-JX) = 1 - F(-X). Estimation then proceeds by

replacing h(.-X) with h(-X) in the log-likelihood expression of equation (1.5). After presenting

my main results, I verify that my results are robust to the presence of independent unobserved

heterogeneity by specifying E ~ N(0, a2 ) so that G(E) = <(6/o-), where <b(.) is the standard normal

cumulative density function. 33

1.4.3 Isolating Long-Run Variation in Housing Price Cycles

One example of an omitted factor that may be correlated with X is the expansion of subprime

credit, which may initially increase prices as a positive shock to the demand for owner-occupied

housing, as suggested by Mayer and Sinai (2007), Mian and Sufi (2009), and Pavlov and Wachter

(2009). If the credit expansion leads to a decrease in the quality of the marginal borrower, prices

will eventually fall as these riskier borrowers default, depressing prices both from a positive shock

to the supply of owner-occupied housing on the market and from negative foreclosure externalities

(see Hartley, 2010 and Campbell et al., 2011).34 Thus, the expansion of subprime credit may be
33 There is a large literature on the relative merits of parametric assumptions on the baseline hazard function and

the unobserved heterogeneity distribution. See Lancaster (1979), Heckman and Singer (1984), Han and Hausman
(1990), Meyer (1992), Horowitz (1999), and Hausman and Woutersen (2012).

3 4 Dagher and Fu (2011) provide an example of the mechanism behind such an expansion: counties that had
significant entry of non-bank mortgage lenders had stronger growth in credit and prices, as well as stronger subsequent
increases in defaults and decreases in prices. Brueckner et al. (2012) offer a model of how price increases could
fuel lender expectations and further credit expansion. Berger and Udell (2004) also discuss empirical evidence of
underwriting standards deteriorating during a credit expansion.
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an omitted variable that directly affects both defaults (by decreasing the quality of the marginal

subprime borrower) and prices, potentially leading to a spurious estimated relationship between

prices and defaults. A related worry from the perspective of the exogeneity condition in equation

(1.6) is that areas with the strongest price declines are also likely the areas hit hardest by the

recession. If a negative employment shock simultaneously causes both defaults and price declines,

then local labor market strength may be an important omitted variable that biases the estimates

towards finding an effect of prices on default. Below, I discuss how I account for each of these

potential biases.

To address these endogeneity concerns, I develop an instrument that isolates the long-run com-

ponent of each Core Based Statistical Area's (CBSA) price cycle and is arguably independent of

contemporaneous shocks to prices or default rates, e.g. from credit or labor market fluctuations.

The CoreLogic repeat-sales price index for each CBSA, discussed in greater detail above, provide

a measure of the relative level of nominal house prices in a given CBSA x month, denoted here as

HPIgt. Sinai (2012) notes that a similar set of metropolitan areas had large 1980s and 2000s price

cycles. Using this persistence, I determine the portion of a CBSA's price cycle that is predictable

using only the historical cyclicality of that city. First, I form a summary measure -g4 quantifying

the long-run cyclicality of CBSA g defined as the standard deviation of monthly changes in the

CoreLogic repeat sales home price index from 1980-1995

(1
cP - 1 >(zAHPIt - AHPIg12 (1.9)

where T = 180 is the number of months over which the standard deviation is calculated; T is the

set of months from January 1980 to December 1995, inclusive; AHPIgt = HPIgt - HPIgt_; and

AHPI is the average value of AHPIqt for CBSA g and t E T.15 Figure 5 shows the average

value of the CoreLogic repeat sales home price index by quartile of -P. The persistence in price

volatility isolated by the first stage is visible: the average price cycle in the late 2000s was much

more pronounced for CBSAs that had stronger price cycles in the 1980s, that is, higher quartiles

of -p have monotonically stronger price cycles.

351 calculate the standard deviation of the first differences in the HPI variable to emphasize the importance of the
(low-frequency) price cycle. CBSAs with high variance of HPI in levels (as opposed to high AHPI) could simply be
areas that had sustained price growth or high-frequency volatility.
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1.5 Results

1.5.1 Results Treating Price Changes as Exogenous

Table 3 reports estimates of equation (1.2) using the estimator described above, treating price

changes as exogenous to offer initial estimates of the relationship between price changes, under-

writing standards, and cohort-level differences in default rates. I cluster all standard errors at the

CBSA level to account for area-specific shocks to the default rate in inference. All specifications

include nonparametric controls for the baseline hazard function. 36  Column 1 includes only co-

hort fixed effects to quantify the pattern of declining cohort-level performance from Figure 1 in a

hazard-model framework. These coefficients can be interpreted as the change in the log hazard rate

and imply, for example, that subprime loans in the 2007 cohort had a default hazard 73 log points

greater than the 2003 cohort (the omitted category). These unadjusted cohort coefficients are large

and precisely estimated, implying that the probability of a 2005-2007 cohort mortgage defaulting

in any given month conditional on the mortgage having survived to that month is more than twice

as high as 2003 cohort mortgages. Colunn 2 adds fixed effects for each CBSA in the sample (570

fixed effects) to verify that cohort differences are not driven by the geographic composition of later

cohorts. Conditioning on CBSA fixed effects does not materially affect the estimated differences in

cohort default hazards.

Columns 3 and 4 add borrower characteristics and loan characteristics, respectively, as detailed

in Section 1.3. The coefficients on these credit risk factors all have intuitive signs. Borrowers

had higher default rates if they lacked full income documentation, were not owner-occupants, or

had lower FICO scores and higher DTI ratios. Mortgages defaulted more frequently if they were

non-fixed rate mortgages. had higher CLTVs or interest rates, or were accompanied by additional

liens. Column 3, which includes only borrower characteristics, shows that the adjusted default

hazard of earlier cohorts is higher than in column 1, suggesting that, relative to 2003 borrowers,

2004 and 2005 subprime borrowers underperformed relative to what would be expected based on

their individual attributes. For 2006-2007 cohorts, the differential default hazard is lower than

in column 1, although the average decrease between column 1 cohort effects and columni 3 cohort

effects is approximately zero. The inability of borrower characteristics to substantively explain the

3 6 The baseline hazard controls consist of an indicator variable for each possible value of loan age from 1-70 months,
with the final indicator variable also turned on for all values of loan age exceeding 70 months. The estimated baseline
hazard functions resemble the hump-shaped baseline hazards of Deng et al. (2000) and are available from the author
on request.

33



cohort-level differences is not surprising given the summary statistics reviewed above showing that

the mean observable attributes of borrowers are not changing much across cohorts. 37 The results

of column 4 tell a different story: including controls for loan characteristics and not borrower

characteristics explains on average 24% of the unadjusted cohort effects estimated in column 1.

This suggests that the loan characteristics that were changing across cohorts were an important

driver of defaults. Conditioning on both borrower and loan characteristics together in column 5

reduces the residual cohort heterogeneity (i.e. the column 4 coefficients relative to the column 1

coefficients) by an average of 29%.

To get a sense of which covariates are most important in explaining the cohort pattern, I estimated

the specification of column 5, leaving out one characteristic at a time. Three characteristics stand

out as contributing substantially the attenuation of the estimated cohort effects: the balloon and

interest-only dummies and the loan interest rate. As the interest rate should represent everything

that the market knew about the riskiness of the loan, its importance reenforces that priced observ-

ables are important in predicting the cohort-level default pattern. The importance of the balloon

and interest-only indicators is consistent with Table 2, which showed that balloon mortgages and

interest-only mortgages were the two product characteristics that changed the most across cohorts

and thus had the strongest potential to explain cohort-level defaults.

Column 6 drops all borrower- and loan-level covariates and instead controls for the 12-month change

in log of the CoreLogic repeat-sales Hone Price Index (HPI), defined at the CBSA-level as

A log(HPI.qt) - log(HPIic.t) - log(HPIcgtq2) (1.10)

where HPlicgt is the value of the CoreLogic repeat-sales price index for CBSA g in the calendar

month corresponding to loan i having a duration of t. 38 This variable is a strong predictor of default.

The coefficient on the 12-month change in log HPI implies that properties experiencing the 75th

percentile 12-month price change (+5%) would have a 33% lower hazard than properties exposed

to the 25th percentile 12-month change in prices (-5%), corresponding to an approximately one

percentage point decrease in the annual default rate. Controlling for the 12-month change in prices,

3 7 While individual borrower characteristics do not explain much of the differences in default, rates across cohorts,
they are individually strong predictors of default, as evidenced by the large increase in the log likelihood value between
columns 2 and 3.

38I index HPI by i as well to emphasize that in my notation t refers to event time (i.e. loan age). Even though

HPI only varies by CBSA x calendar month, for example, not all six-month old (t = 6) mortgages in CBSA g have
the same HPI value.

34



the cohort effects in column 6 are lower than the estimates in column 5. showing that price changes

in the most recent 12 months seem to be more closely related to observed cohort heterogeneity

than borrower and loan characteristics. The residual differences in default rates across cohorts

decrease on average by 50% (depending on the cohort) relative to the baseline cohort coefficients

in column 1.

Controlling for both borrower and loan characteristics and price changes leaves little cohort-level

heterogeneity unexplained. The estimates in column 7 of the latent quality of each cohort (i.e. the

portion of cohort outcomes not attributable to price changes or individual-level controls) are sta-

tistically insignificant with the exception of the 2005 cohort. While statistically significant, more

than 70% of the unadjusted estimate of the difference between the 2003 and 2005 cohorts (column

1) is explained by prices and observables.

These results illustrate that observable loan characteristics and prices play important roles in

explaining the heterogeneity in default rates across origination cohorts, together explaining on

average 95% of the cohort disparities in column 1.39 In particular, places where price declines are

greater have higher default rates, and the incidence of these price declines is disproportionately

borne by later cohorts. I now turn towards developing causal estimates of the impact of prices on

default behavior.

1.5.1.1 Unobserved Heterogeneity

This section examines the robustness of the above results to misspecification from ignoring inde-

pendent unobserved heterogeneity E by allowing the true hazard model to be specified as in (1.7).

The results of maximizing the sample log-likelihood function described by (1.5), replacing h(tJX)

with h(tJX) defined in equation (1.8) and modeling e ~ A(0, o,), are presented in Table 4. There

are two important caveats in comparing these results to the results of Table 3. Because of the

computational burden of maximizing the likelihood while integrating out the unobserved Gaussian

heterogeneity, columns 1-4 do not include geographic fixed effects or cluster standard errors by

CBSA as in the rest of the paper. Column 5 includes state fixed effects to test how sensitive the

3 9 The additional explanatory power gained from controlling for prices and characteristics simultaneously suggests
that there are important interactions between prices and loan and borrower characteristics. One implication of
the proportional-hazard framework is that interactions between the covariates is implicit: the cross-partial of the

hazard function with respect to two covariates is the hazard function times the product of the two coefficients on
the covariates. For example, this multiplicative relationship between the covariates allows for price declines to have
larger effects for riskier borrowers.
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point estimates are to controlling for constant differences across regions.

Column 1 shows that the unadjusted differences in default rates across cohorts is even nore pro-

nounced when accounting for independent unobserved heterogeneity than the baseline results of

column 1 of Table 3. I account for this by comparing the adjusted cohort coefficients in columns 2-5

to column 1 of Table 4. Including borrower and loan characteristics in column 2 explains 32% of

cohort heterogeneity-the average decrease in the estimated cohort dummies. Controlling instead

for 12-month price changes in column 3 reduces the residual difference in the default hazard across

cohorts by an average of 68%. Conditioning on both price changes and loan and borrower charac-

teristics in column 4 explains 92% of the cohort differentials in column 1. The total explanatory

power of prices and observables is attenuated somewhat by including state fixed effects in column

5, where the combination of prices and observables explains 81% of the cohort pattern in column 1.

Still, only the 2005 cohort is statistically significant at the 95% confidence level, and these standard

errors are likely a lower bound because they do not allow for spatial correlations in default risk.

Taking columns 4 and 5 together, as before, the 2005 cohort is the only borrower cohort to have

a default hazard that is statistically distinguishable from the 2003 cohort hazard after adjusting

for prices and loan and borrower observables, although these covariates explain 73% (column 5) to

81% (column 4) of the 2005 cohort coefficient in column 1. I conclude that the qualitative pattern

of Table 3 is robust to allowing for independent unobserved heterogeneity: prices explain over 60%

of cohort heterogeneity in default risk and combined with borrower and loan characteristics explain

approximately 90% of the increase in defaults across cohorts.

1.5.2 Nonlinear Instrumental Variables Estimation

As discussed above, the interpretation of these results as causal requires the strong assumption that

changes in the average default risk of a given area are not the cause of local price changes unless they

are captured by loan and borrower covariates. Because defaults themselves cause price declines, this

assumption is likely to be violated by any shock to area default risk. The demand shock resulting

from the credit expansion may initially increase prices, and eventually a higher share of riskier

borrowers may exacerbate price declines. In this way, if price changes are endogenous to subprime

penetration and subprime growth reduces unobserved borrower quality, then the estimation would

misattribute much of the increase in defaults to price changes instead of to differences in unobserved

cohort quality. A second way that price declines may be endogenous to other factors that also affect
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default risk is from fluctuations in local labor market conditions. Adverse local labor shocks may

simultaneously decrease prices (negative demand shock for owner-occupied housing) and increase

defaults (negative income shock to existing mortgage borrowers).

The potential for changes in local house prices to themselves be a function of contemporaneous

shocks to the default hazard through subprime lending or employment shocks necessitates instru-

menting for prices. To instrument in this nonlinear setting, I use the control function approach (see

Heckman and Robb, 1985). This estimator involves conditioning on a consistent estimate of the

endogeneity in the endogenous explanatory variable and in a linear model is equivalent to two-stage

least squares. 40

To see why the control function approach solves the endogeneity problem, suppose again that

there exists an omitted variable w in the default hazard equation, which is not independent of X.

Labeling the true hazard function A(-), if

A(X, w, t) = exp(X3 + Lo)Ao(t) = e' exp(X!3)Ao(t).

If I do not control for w in estimating this model, the resulting 3 coefficients will be estimating a

different object than the marginal effect of X on the log hazard. Formally, the exogeneity condition

introduced in equation (1.6) above now fails:

E [default - A(X,t)|X,T > t] =E [.(X, w, t) X] - A(X, t)

=E [ew JX] A(X, t) - A(X, t)

[exp(X/3 + f(X)) - exp(X)] Ao(t)

j 0

where E(ew X) = f(X) because X and w are not independent. Thus, under misspecification,

the coefficients on X will not converge to the marginal effect of X on the log hazard and instead

combine both the direct effect of X on default and the indirect effect of w on default after projecting

onto X.

Conditioning on an estimate of the endogenous component of X solves this problem. Let the

4 0 Unlike a linear model, consistency of the control function approach in a nonlinear model relies on the instru-
ment and the endogenous portion of the endogenous explanatory variable being independent (as opposed to just
uncorrelated).
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right-hand side endogenous variable be specified as

A\Prices =- Z 1111 + Z 2 112 + v

where the endogeneity problem arises because v and w are not independent. The key identifying

assumption is that the instruments Z 1 and included right-hand side controls Z 2 (the elements of X

apart from APrices) are independent from v and w. Conditioning on v then satisfies the exclusion

restriction

E [defaultt - A(X,v,t) X,V,T > t] = E [~(X,w,t)IXv -- A(X,tv)

=E [ewlv] A(X, t, v) - A(X, t, v)

= (exp(g(v)) - exp(pi + p2v)) exp(X3)Ao (t)

where g(v) = E(e v). If the conditional expectation E(ew I'v) = exp(pi + p2V), then this condition

will hold, and controlling for a consistent estimate of v will be sufficient to allow estimation of the

partial effect of X on the log hazard. This will be satisfied exactly if w conditional on v is distributed

normally: if WIv ~ /(p2v, 2 p1) then &1v is distributed log normally with mean E(ewv) = exp(pi +

p2v). If the conditional distribution of w given v is non-normal, then controlling linearly for v in

the hazard model relies on the quality of the linear model as a first-order approximation to the

conditional mean function. As a robustness check, below I consider third- and fifth-order series

approximations to the log of the conditional expectation function, e.g. log (E(eo v)) = E pkvk

and find that the results are insensitive to this flexibility.

1.5.2.1 First Stage

The instrument set for the price change variable is the long-run cyclicality measure -g interacted

with calendar-month indicator variables. The first stage for the 12-month price change is then

A log(HPIicgt) -- 1(s t + to(i)) + Z2,icgt72 - Vicgt (1.11)
S

where Z2icgt contains the same covariates as equation (1.3) above-cohort effects, geographic fixed

effects, loan and borrower characteristics, and the nonparametric baseline hazard function to ensure

that predicted values from equation (1.11) are orthogonal to the other controls in equation (1.2).
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The function to(i) evaluates to the calendar time of loan i's origination date, and the r, coefficients

are turned on when the observation on loan i at t months after origination corresponds to calendar

month s.

Table 5 reports the results from estimating equation (1.11) by OLS with standard errors clustered

at the CBSA level. Column 1 includes just the instrument set and no other controls. The statistical

relationship between actual price changes and the interactions between the cyclicality measure and

calendar time is strong-the instruments explain 50% of the variation in twelve-month CBSA-level

house price changes. Adding controls for the baseline hazard and CBSA fixed effects in column 2

improves the overall fit slightly (R 2 increases to .56). Including loan and borrower characteristics

in column 3 does not affect the partial F-statistic, which tests the joint hypothesis that all of the

coefficients on the instrument set are zero, suggesting that weak instruments are not a problem in

this setting. The cohort coefficients in columns 2 and 3 illustrate that later cohorts were exposed

to stronger price declines than earlier cohorts, in part by virtue of selection-younger loans are

statistically more likely than older loans to not have terminated.

To provide intuition for how this instrument operates, I compute counterfactual price indices by

regressing log home price indices on geographic fixed effects and an interaction of ay with calendar-
9

month indicators as follows

log(HPIgt) = ceg + 7rsUof - 1(s =_ t) + Ugt (1.12)
S

where HPIgt is the value of the CoreLogic home price index in CBSA g in calendar month t.

The estimated -^r, shift the baseline log HPI of each CBSA (ag) according to the cross-sectional

relationship each calendar month between prices and 1980s price volatility. 41 Predicted values

logHPIgt from this regression provide an alternative time series of home prices in geography g

based on the quasi-fixed tendency of home prices in geography g to cycle up and down.

Figure 6 shows the actual log home price series for 2003-2013 (left-hand panel) along with predicted

values from equation (1.12) (right-hand panel). The left-hand panel shows that the actual HPI

series are characterized by idiosyncratic deviations from the national trend, i.e. price shocks that

potentially arise from such factors as local credit expansions and local labor market fluctuations

4 1 It is worth pointing out that equation (1.12) does not control for main effects for each date. While this loads
much of the national month-to-month variation in house prices onto the 7rt, date effects are the very object the hazard
model seeks to explain. As they aren't instruments and they don't belong in the second-stage, I purposefully omit
them here.
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that may also independently affect default rates. It is precisely the effects of these types of shocks

that the instrument is designed to abstract from. Because nothing in equation (1.12) allows for

differential price trends across CBSAs, the predicted time series in the right-hand panel all change

in the same direction each month, differing only in the magnitude of the price change depending

on their historical price volatility. To the extent that the actual price paths reflect time-varying

local housing market changes, each line on the right is an estimate of the counterfactual price path

that might occur absent local price shocks that are potentially driven by factors that also affect

local default risk. Intuitively, my empirical strategy instruments for the actual price series on the

left with the predicted price series on the right.

1.5.2.2 Exclusion Restriction

The necessary exclusion restriction for the IV results to be unbiased estimates of the causal effect

of price changes is the independence of the size of a CBSA's 1980s price cycle (ut) from any

other factors that affect default (besides prices). Note that with CBSA fixed effects. it is not a

threat to identification if cyclical areas are fundamentally different from acyclical areas in some

time-invariant way (e.g. an inherently risky area may always have both higher defaults and larger

price swings). However, this exclusion restriction would be violated if pro-cyclical areas (high up)

have pro-cyclical trends in prices and the credit risk of borrowers. For example, if high-up areas

had more rapid subprime growth, then up may proxy for changes in unobserved borrower quality

in CBSA g. Similarly, if high-u p areas have greater unemployment rate fluctuations. these adverse

shocks to local aggregate demand could increase defaults (through an income shock) and decrease

prices (through a demand shock).

Figures 7 and 8 offer graphical evidence that subprime shares and unemployment rates-adjusting

both for CBSA fixed effects-did not vary systematically with up. The relevant period is different9

for each endogeneity concern. Figure 7 plots the annual adjusted subprime share of HMDA-covered

mortgages originated in 2003-2007 by quartiles of a". There is no apparent relationship between

(7 and subprime originations-places with historically large price cycles do not seem to have been

any more prone to subprime credit expansion. 4 2 Figure 8 shows that the top quartile of up had

around a 1 percentage point lower unemployment rate in recession than the bottom quartile.

4 2Note that the same fact is not true about the relationship between subprime originations and the size of the late

2000s price cycle-areas that originated the highest share of subprime mortgages indeed had stronger (contempora-
neous) price cycles, further evidence of the need for instrumenting.
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Regression versions of these tests tell a somewhat different story. I test whether there is a first stage

for the annual subprime share of all residential mortgage originations and the monthly unemploy-

ment rates by re-estimating equation (1.11), replacing the dependent variable with the subprime

share of mortgages originated in each cohort and with the monthly unemployment rate in each

CBSA. Consistent with Figure 7, the pattern of estimated coefficients fri for the subprime share

first stage is nearly completely flat and statistically insignificant, showing that loans from areas

with higher historical price volatility were no more likely to have been originated during a rel-

atively large subprime credit expansion. However, unlike in Figure 8, the estimated -r1 in the

unemployment regression mimic the national trends in the unemployment rate, with historically

cyclical areas having differentially lower unemployment rates leading up to the recession and more

quickly rising unemployment rates thereafter. This illustrates that areas with historically cyclical

housing markets also have cyclical labor markets and that national labor market changes load onto

the instruments. From this analysis, I conclude that oT successfully allows isolation of the effect of9

prices on defaults in a world where price declines and borrower quality are not jointly determined

but that instrumental variables estimates are likely confounded by changing labor market condi-

tions. An important caveat is that housing market changes can also affect labor markets (see Mian

and Sufi, 2012). To the extent that the observed correlation between my instrument and labor

market outcomes is an effect of the price cycle and not vice versa. then the instrument captures the

total causal effect of price changes. However, because of the difficulty in ascertaining which caused

which, I treat the relationship between the instrument and unemployment as a threat to validity.

To account for this unemployment channel, I present additional control function specifications be-

low that also control for the unemployment rate, thereby isolating the variation in prices that is

not correlated with local labor market shocks or local subprime expansion. 43

1.5.2.3 Control Function Results

Table 6 employs a nonlinear IV control function approach, which accounts for the endogeneity of

price to the credit expansion by controlling for the first-stage residuals biegt in the default hazard

icyt - +Wis +1W OL + p - APricese 9 t + KVicgt + ag (1.13)
4 3 The relationship between house price cyclicality and labor market cyclicality hints at the economics behind why

some areas may be more cyclical than others. Areas with high housing supply elasticity, potentially arising from
geographic constraints, land-use regulations, or credit market regulations, could be pro-cyclical in both markets.
Similarly, areas with an industry mix that makes them particularly sensitive to recessions or commodity price shocks
may experience coincident fluctuations in housing and labor.
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where , = A log(HPI) - A log HPI and AlogHPI is fitted from equation (1.11). To account for

the generated regressor problem in inference (Pagan, 1984 and Murphy and Topel, 1985), I also

report bootstrapped standard errors in brackets below clustered standard errors. The generated

regressor problem arises because v depends on an unknown parameter vector 7r, as seen in equation

(1.11). Consistently estimating 7r in a first stage to generate b does not affect the consistency

of parameters estimated in (1.13). However, by treating ' as fixed, i.e failing to account for the

correlation between the estimation error in -r and the error in estimating /, the usual asymptotic

standard errors will generally be understated unless K, = 0. The block bootstrap solves this by

mimicking the data-generating process. In this setting, individual mortgages are resampled with

replacement instead of month x loan observations being drawn with replacement as would be the

approach of standard nonparametric bootstrap. The two stages (estimating f) from (1.11) and

estimating equation (1.13)) are then run on each bootstrapped sample and the resulting bootstrap

standard errors are the empirical standard deviation of each element of /3 across 200 bootstrap

replications.

Column 1 of Table 6 repeats column 6 of Table 3, controlling for the 12-month change in prices

and not conditioning on borrower or loan observables WB and WL. Column 2 additionally controls

for the residuals ieicgt, estimated from OLS on equation (1.11) (omitting loan and borrower char-

acteristics in the construction of the residuals). The coefficient on the price change variable is still

large and significant-borrowers experiencing a 1% price decline over the previous year have a 4.4%

higher conditional probability of default. The adjusted cohort differences are smaller in column 2

than column 1, meaning that after accounting for endogeneity, the role of prices in explaining the

default pattern is larger. Comparing column 2 to the benchmark differences in cohort performance

measured in column 1 of Table 3, controlling and instrumenting for prices without controlling for

borrower or loan characteristics explains 60% of the difference in unadjusted cohort outcomes. The

statistical significance of the coefficient . on the residual is equivalent to a Hausman test for the

endogeneity of price changes, similar to a Rivers and Vuong (1988) test for endogeneity in a probit

model, confirming that price changes are endogenous.

To address the correlation between the instrument and local labor market shocks, column 3 also

controls for the monthly CBSA unemployment rate, measured in percentage points. 44 Conditional

on the covariates in the column 3 specification, a one percentage point increase in the local un-

4 4The sample size decreases slightly in specifications controlling for unemployment rate because of one CBSA for

which BLS does not estimate monthly unemployment rates.
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employment rate is associated with a decrease in the default hazard by 2%. The counterintuitive

sign on the monthly unemployment rate and the increase in the magnitude of the coefficient on

prices from -4.4 to -4.5 suggests that price results are not driven by correlation between price

shocks and local labor shocks. The estimated differences in cohort quality in column 3 do not differ

substantively from column 2.

The bootstrapped standard errors in columns 2 and 3 (in brackets) are in general much larger

than the standard errors clustered at the CBSA level (in parentheses), representing a high degree

of variability in the estimated residuals ii across bootstrap samples using the control function

approach. However, the relative stability of the coefficient magnitudes suggest that the patterns

described above hold at least qualitatively. Further, because the asymptotic standard errors are

correct under the null hypothesis Ho : K = 0, the conventional t-statistic on the fitted residuals is

still a valid test of exogeneity.

The next three columns additionally control for borrower and loan characteristics. The estimated

cohort effects in these specifications capture the latent quality of each cohort, i.e. the heterogeneity

in cohort-level default rates not explained by ex-ante observable quality or price changes. Column

4 repeats column 7 of Table 3 for convenience, controlling for price changes in addition to all of the

other controls. Column 5 reports control function estimates of this specification. The coefficient on

the price change variable increases in magnitude from -3.9 to -4.6. The coefficient on the endoge-

nous portion of the 12-month change in house prices is again positive and significant. Importantly.,

I cannot reject that each of the cohort latent quality measures is statistically indistinguishable from

zero with the exception of the 2005 cohort, as before. Moreover, the estimated cohort effects in

column 4 are each smaller than those in column 3 which treat prices as exogenous. Column 6 again

controls for the monthly unemployment rate. The magnitude of unemployment on default is almost

identical as in column 3, suggesting that the unemployment rate does not interact meaningfully

with loan and borrower characteristics. The price effects-both the main effect and the residuals-

are strengthened by the inclusion of the unemployment rate control, although this difference is

not statistically significant. Each of the cohort effects is attenuated slightly from cohuinn 5. The

specifications in columns 5 and 6 both explain 95% of the unadjusted differences in cohort default

rates in column 1 of Table 3.

Interestingly, the bootstrapped standard errors in columns 5 and 6 are much more similar to

their asymptotic counterparts than the bootstrapped standard errors of columns 2 and 3. Unlike
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columns 2 and 3, the results of columns 5 and 6 are robust to bootstrapping the standard errors.

This suggests that much of the instability of the bootstrap estimates in columns 2 and 3 is driven

by not controlling for loan and borrower characteristics, which explain a substantial amount of

individual heterogeneity in default risk.

A consistent pattern in Table 6 is that instrumenting (columns 2, 3, 5, and 6) increases the mag-

nitude of the estimated effect of price changes relative to not instrumenting (columns 1 and 4).

An explanation for this is the positive sign on the estimated coefficient k on the residuals. While

the partial effect of a price shock v on the log of the default hazard-equal to /L + r, because the

residuals enter into the X0 index through both APrices and v-is strongly negative in each spec-

ification, the effect of an exogenous change in prices captured by P alone is much greater. This is

consistent with some degree of treatment effect heterogeneity-if price declines arising from shocks

that are correlated with default risk (e.g. credit market changes) have a weaker effect on defaults

than price declines induced by, for example, national price declines unrelated to local credit market

fluctuations, then isolating the exogenous variation in prices would increase the estimated price

effect.

Table 7 addresses the possibility that the conditional distribution of the endogeneity is misspecified.

As mentioned above, controlling for v linearly in X3 relies on the assumption that the omitted

default risk factors w are distributed normally condition on v. In general, if W Iv % /V then E(ew v) =

g(v) p1 + P2V. In this case. the specification of X,3 needs to be augmented to include a consistent

estimate of log(g(v)), which I approximate using third- and fifth-order polynomials in the fitted

residuals, e.g. log (g(vicgt)) - E o Pk cgt. Columns 1-3 do not control for borrower or loan

characteristics. Column 1 is repeated from column 1 of Table 6 for convenience. Column 2 adds

the residuals squared and the residuals cubed. These coefficients are strongly significant, and a

likelihood ratio test for the hypothesis that p2 = P3 = 0 rejects, pointing to likely non-normality of

the unobserved heterogeneity that is correlated with price shocks. However, the slope coefficients

are relatively unaffected from the additional flexibility in the estimate of log (E(ew v)). Column

3 adds fourth- and fifth-order terms, which again do not noticeably affect the estimated effect of

prices or differences in the latent quality of cohorts. The estimated coefficients p on the powers

of the residuals in column 3 are very imprecise, and a likelihood ratio test fails to reject that

P4 = P5 = 0. Columns 4-6 in Table 7 repeat the specifications in columns 1-3, additionally

controlling for borrower and loan characteristics. The same patterns are apparent: powers of the
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residuals are jointly significant, rejecting the exogeneity of price changes, and the estimated effects

of the covariates are relatively unchanged.

The control function results of Tables 5 and 6 are consistent with the results of Table 3, providing

evidence that there is a large causal effect of price declines on defaults. Even after accounting

for the endogeneity of the effect of prices on default risk and controlling for local labor market

conditions, there is little evidence that unobserved borrower quality declined across 2003-2007

cohorts. Comparing the asymptotic and bootstrapped standard errors, that pattern of Table 6

holds that the bootstrapped standard errors are greatly affected by the inclusion of micro-level

covariates as controls. The bootstrapped standard errors in columns 1-3 are often an order of

magnitude larger than the corresponding asymptotic ones, while the bootstrapped standard errors

of columns 4-6 are an average of only 29% higher than the asymptotic standard errors.

In summary, this section was concerned with determining how much of the pattern across origination

cohorts in default rates was due to differences in the observed characteristics of mortgage borrowers

in each cohort-both the creditworthiness of the individual borrowers and the characteristics of their

mortgages-and differences in their exposure to price declines. The results confirm that prices and

mortgage characteristics are both are important, with price changes causally explaining at least

60% of the increase in cohort default rates.

1.6 Mechanisms

I now turn towards identifying the causal mechanisms through which prices affect default rates by

testing for negative equity having a causal impact on defaults and whether this explains cohort

heterogeneity. The intuition offered above centers around the differential effect of price declines

on later cohorts in pushing them underwater, as seen in Figure 2. Mortgage borrowers who are

underwater have elevated default risk. Distressed borrowers (i.e. borrowers unable to make their

monthly mortgage payments) who have positive equity have two main alternatives to default. First,

if interest rates have gone down or if borrowers qualify for a lower interest rate because they have

more equity from paid down mortgage principal and accumulated price appreciation, they can

refinance into a mortgage with a lower monthly payment, using the new mortgage to repay the

original one. 45 Second, they can sell their home and use the proceeds to pay off their outstanding
4 5 Relatedly, a home equity line of credit can also be used to borrow additional funds secured by unrealized capital

gains. These funds can be used to temporarily make mortgage payments.
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mortgage debt and move into a more affordable housing situation. Neither of these options is

readily available to distressed borrowers who are underwater. Lenders are normally unwilling to

originate a refinance mortgage to someone who has zero equity. let alone negative equity. Selling a

house secured by a mortgage in a negative equity position (known as a short sale) requires either

coming up with sufficient cash to pay the shortfall between the sale price and the outstanding debt

or working with the lender to secure forgiveness of the remaining debt. By definition, distressed

borrowers are unlikely to have ample savings, making the former unlikely. Lenders are also wary

of agreeing to short sales, partly because of asymmetric information about the borrower's current

and future finances. An additional source of elevated default risk comes from the possibility that

underwater borrowers will default strategically.46

Empirically testing that the reason price declines explain the bulk of cohort heterogeneity is through

the prevalence of negative equity presents several practical challenges. First, the extent to which

borrowers are current with their monthly payments is related to their unobserved quality. I in-

strument for the actual balance of the mortgage with the scheduled balance calculated using the

origination interest rate as if the borrower had paid back a 30-year fixed-rate mortgage on schedule.

Second, constructing a measure of negative equity status requires knowing the current market value

of the home, an unknown (and endogenous) quantity that must be estimated by the borrower as

well as the econometrician. CoreLogic provides such a measure using their Automated Valuation

Model that imputes property values in each month for each subprime mortgage in the data. As

this estimated value is partly a function of nearby market prices and therefore affected by CBSA-

level shocks, I instrument for this valuation using the origination loan amount and counterfactual

price indices computed using the historical volatility instruments. Third, because the prepayment

obstacles faced by borrowers depend on the total debt of all loans secured against their home,

measuring negative equity necessitates knowing updated information about additional liens. Not

observing updated information on the outstanding balance of additional liens, I assume that all

second mortgages have not been paid down. Although this introduces additional measurement

error into the estimated balances, which are already affected by local public records access policies,

instrumenting for outstanding balances using scheduled balances solves this problem.

4 6 Strategic default is when a borrower who has available cash flow to make mortgage payments defaults anyway,
exercising a put option on the property. This is optimal if the option value of holding onto the property (i.e. expected

future price appreciation) is lower than value of discharging the debt, net any cost of defaulting (see Foote et

al., 2008). In other words, borrowers may find it advantageous to default if they do not expect future prices to rise

quickly enough.
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I define the variable Underwaterit for whether the current CLTV of a loan, estimated by Core-

Logic based on the outstanding debt owed to all outstanding liens and contemporaneous market

conditions, is greater than 100%. I first present estimates that do not account for the endogeneity

of CLTV. Table 8 contains default hazard specifications of the form above, replacing APrices with

functions of CLTV

Xicgt/ = Wc + WBGOB + WjOL + r'q(CLTVit) + ag. (1.14)

Controlling for q(CLTV) = 1(CLTV > 1) = Underwater in addition to loan and borrower charac-

teristics and CBSA fixed effects in column 1 of Table 8 shows that underwater mortgages have more

than double the conditional default probability of mortgages that are not underwater. There is

substantial unexplained cohort heterogeneity in column 1-even after adjusting for location, mort-

gage age. borrower and loan characteristics, and the estimated negative equity status, differences in

cohort default rates relative to the 2003 cohort are all positive and significant, with the exception

of the 2007 cohort. Compared with column 7 of Table 3, the underwater indicator variable explains

much less cohort heterogeneity than the 12-month change in prices. Columns 2 of Table 8 tests

whether this is driven by the functional form restriction on q(-) by controlling for a linear spline in

the current CLTV that allows for a location and scale shift in the effect of CLTV in several bins:

J

q(CLTVit) =E 1(CLTVit E CI) x (aj + bCLTVt) (1.15)
j=1

where J indexes the set C consisting of J CLTV intervals {[0, 80), [80, 85), [85, 90). ..., [150, oe)}.

Adding flexibility in the specification of the leverage function q(-) further decreases the adjusted

differences across cohorts but only explains on average an additional 8% of the differences in the

latent quality of cohorts. The specification in column 2 explains 62% of the cohort-level differences

in default.

To see whether prices still explain cohort heterogeneity even conditional on underwater, i.e. to test

whether the effect of prices is driven entirely by negative equity, column 3 additionally controls

for the twelve-month change in log HPI. Adding in the price change variable in addition to the

linear spline controls significantly affects the estimated cohort heterogeneity relative to column 2

but also relative to column 7 of Table 3, which is identical to column 3 except for the inclusion

of q(CLTV). This suggests that CLTVs and prices interact in explaining defaults. Controlling

47



for both price changes and current CLTVs reduces the 2006 and 2007 cohort differences to be

strongly negative-controlling for a flexible function of their relative equity. the price changes they

faced, and loan and borrower characteristics, 2006-2007 borrowers defaulted less than would be

expected. The estimated latent quality of the 2004-2005 cohorts positive and significant, with the

2005 estimate smaller and the 2004 result larger than the results in Table 3 that do not control for

current CLTVs. The coefficient on the price change variable is large and significant.

There is a large relationship between defaults and negative equity and evidence that prices also affect

defaults in other ways than through negative equity. Still, caution is required interpreting these

results because mark-to-market leverage (CLTV) could be correlated with unobserved borrower

quality. I now discuss an instrumental-variables strategy to account for this endogeneity.

1.6.1 Instrumenting for Loan-to-Value Ratios

The main obstacle in interpreting the results in columns 1-3 of Table 8 is the endogeneity of

CLTVs, which are the ratio of loan principal balances and property values. To the extent that

borrowers whose unobserved quality is low (high) pay back their mortgages more slowly (rapidly),

loan balances (and hence CLTVs) will be determined in part by unobserved borrower quality.

Similarly, borrowers with lower unobserved quality may take out mortgages with slow amortization

schedules that leave them more likely to be underwater. To address the endogeneity of CLTV

numerators, I calculate the scheduled loan principal amount at each month since origination if

borrower had taken out a 30-year fixed interest rate loan with same origination interest rate and

purchase price and was current on all payments time.47 Using the amortization formula,

Scheduled Principalit = Mi (1 + ri)t ( f.,)360 (( + ,.)t -
(1+ r,)360 - I

where Ali is the purchase price of property i, t is the loan age in months, and ri is the origination

interest rate divided by 12.

To account for the endogeneity in purchase prices, I compute what the purchase price of the home

would have been if the borrower had taken out only a first-mortgage for the same dollar amount at

the conforming loan limit (80% of purchase price). In logs, using this predicted purchase price is

equivalent to using the log of the origination amount as an instrument. Finally, with the predicted

47Cunningham and Reed (2013) refer to this as a synthetic mortgage IV strategy.
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home price indices, I can calculate an alternative measure of the change in a property's value since

origination using the predicted HPI series

Appreciationigt = log HPIgt - log HPIg,

where log HPI are the predicted values from estimating equation (1.12).

Before presenting first stage results, in FIgure 9 I illustrate graphically the statistical relationship

between each of the three instruments and the corresponding component of CLTVs. Diagonal lines

depict the fitted bivariate linear regression line. Panel I plots actual log principal balances versus

scheduled log principal balances. The fit is very strong and the slope of the bivariate regression line

is close to 1, showing the tight relationship between traditional amortization schedules and loan

balances. The most noticeable deviation is the presence of many outliers well below the regression

line, representing people that paid their mortgages back faster than scheduled. Instrumenting

will address the possibility that their faster payback is a signal of these borrowers' unobserved

(high) quality. Panel II plots actual log sale prices against log origination amounts. The average

relationship between origination balances and actual sale prices is not far off from a setting where

all borrowers took out mortgages at 80% of the sale price of the home, in which case there would

be a perfect fit between log origination amount and log sale price with an intercept of log(1.25)

and a slope of 1. The most obvious outliers are those well above the regression line-borrowers

who took out mortgages with much lower leverage (i.e. through a larger downpayment in the case

of sales or from accumulated equity in the case of refinances). Using log origination amounts

as an instrument to explain CLTVs will account for any correlation between actual sale prices,

initial leverage, and unobserved borrower quality. Panel III plots assessed property values against

counterfactual property values

Value = 1.25 x Origination Amount x exp(Appreciation)

to show the predictive power of the generated instrument Appreciation. The workhorse behind

this relationship is the long-run price cyclicality instrument a' used to predict HPI values and sub-

sequently impute appreciation-since-origination and corresponding counterfactual property values.

There is a clear positive relationship between counterfactual property values and assessed values.

Positive deviations from the regression line represent homes in areas and months with much higher
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prices than would be predicted based on the 1980s price cycle of that city. Negative deviations

represent homes where price declines have been more acute than expected a priori. Instrumenting

for actual assessed values will address the potential for these price changes to be correlated with

unobserved borrower default risk.

The first stage for CLTV is a linear regression of CLTV on the scheduled loan balance, the loan

origination amount, predicted appreciation using the counterfactual price series, and the usual

controls Z 2

CLTViegt =ZI 9tTi + Z2,icgtT2 + Vicgt (1.16)

where the instrument set consists of

Z1,1g( log(Scheduled Principalit) log(Origination Amounti) Apprccationigt )

Table 9 reports the results of estimating equation (1.16) by OLS with clustered standard errors.

Note that missing data-loans for which CoreLogic has not estimated a contemporaneous CLTV

in a given month-reduces the sample size of specifications involving CLTV from 1.2 to 1.0 million

monthly loan observations. Column 1 reports results of regressing CLTV on Z1 without control-

ling for Z 2 . The relationship between each of the instruments and CLTV values is large and very

precisely estimated. Mortgages with higher origination amounts (positive predictors of sale prices)

have lower CLTVs. Mortgages with higher scheduled principal balances have higher CLTVs. Mort-

gages with higher predicted appreciation have lower CLTVs. Adding cohort indicator variables,

baseline hazard controls, and CBSA fixed effects in column 2 strengthens the estimated effect of

origination amounts and scheduled principal and attenuates the effect of predicted appreciation on

the CoreLogic contemporaneous CLTVs. The cohort pattern confirms the trends in median CLTVs

plotted in Figure 2, showing that later cohorts have much higher CLTVs. Successively controlling

for borrower and loan characteristics in column 3 and price changes in column 4 continues the

trend. The instruments are still powerful predictors of CLTVs. Column 5 additionally controls

for the monthly CBSA unemployment rate. Local labor market conditions are clearly correlated

with CLTVs: the coefficient on the unemployment rate suggests that the equity share of property

values in areas with high unemployment rate is lower. Controlling for the unemployment rate, the

predicted appreciation instrument is no longer significant. Still, the partial F-statistic for the joint

significance of the instruments is above 200 in every column.
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Columns 4-6 of Table 8 report the results of estimating the default hazard function after incorpo-

rating ieigt from equation (1.16) into the linear index X0 in equation (1.14).48 Column 4 includes

the underwater indicator variable as a parsimonious summary of the causal influence of negative

equity on default conditional on the CLTV residuals, price changes, and price change residuals.

Columns 5 and 6 instead control for a linear spline in q. The estimated effect of prices is large and

significant across all specifications, showing an elasticity of default with respect to price declines of

-3 to -5. ieaning that for a fixed CLTV. a 1% price decline increases the default hazard by :3-5%.

The effect of being underwater on default is still significant but greatly attenuated from column

1, suggesting that holding prices fixed, a mortgage being underwater causes the default hazard

to be 33% higher (28 log points) than that of above-water mortgages. This suggests that some

of the performance differences across cohorts that columns 1-3 attributed to negative equity were

actually unobserved differences in borrower quality across cohorts that affected both defaults and

equity. Indeed, the CLTV residuals are significant in columns 4-6, rejecting the null hypothesis

that CLTVs are exogenous.

Comparing columns 3 and 5, the estimated cohort differences after controlling and instrumenting

for price changes and mark-to-market leverage are slightly smaller than the corresponding estimates

column 3 that do not account for the endogeneity of prices or CLTVs. Continuing a trend in my

findings, the specification in column 5 is more successful at explaining the default rates of later

cohorts than earlier cohorts, suggesting that that negative equity was a more important factor in

late-cohort defaults than early cohort defaults. While highly predictive of individual defaults, the

smaller effect of CLTV controls on earlier cohort default rates is consistent with earlier cohorts'

CLTVs not having increased as much (see Figure 2).

Because local labor market fluctuations are not excludable from my instrument, I control directly

for the unemployment rate in column 6 of Table 8. As in Table 6, conditional on all of the other

controls, mortgages in cities with increased unemployment rates are slightly less likely to default-a

one percentage point increase in the local unemployment rate decreases the default hazard by 5%.

Accounting for local labor market fluctuations does not materially affect the estimated coefficients

on prices or CLTV residuals. However, including the unemployment rate decreases the measure of

the difference in latent quality between the 2003 and 2004-2005 cohorts enough to be statistically

48Imbens and Wooldridge (2007) discuss the control function approach when the estimating equation contains
several non-linear functions of the right-hand side endogenous variable. Under the assumption that the unobserved

component of default risk is independent of the instruments (the control function exclusion restriction), controlling

for the fitted residuals of CLTV is sufficient to instrument for any function of CLTV.
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insignificant.

Taken together, the results of Table 8 provide several explanations about the mechanisms through

which price declines cause defaults, decomposing cohort-level differences in default rates into four

factors: borrower and loan characteristics, price declines, and local economic conditions. Negative

equity is a prominent channel and explains much of the the relationship between cohort default

rates and price changes, especially among later borrower cohorts. Another important factor is

unemployment., which may cause and be caused by price declines (Mian and Sufi. 2012). Neverthe-

less, prices affect default risk in other ways besides their effect on default through equity and their

correlation with local economic conditions. The role of price expectations is one likely explanation

for prices having such a strong relationship with default even conditional on negative equity. If

buyers' expectations of future prices are correlated with recent price changes, even above-water

borrowers wishing to sell in areas experiencing recent price declines may be unable to in the face of

a thin market of patient buyers. Still, there is strong evidence that negative equity is responsible

for much of the effect of prices on defaults and that the differential prevalence of negative equity

across cohorts explains a significant portion of the observed increase in cohort-level default rates.

1.7 Estimating Counterfactual Default Rates

Using the control function specification estimated in column 5 of Table 6 as my preferred specifica-

tion, I calculate average default rates for each cohort using counterfactual explanatory variables as

an estimate of the impact of the price and mortgage characteristics channels. Using the estimated

coefficients, predicted values h are an estimate of the probability each loan defaulted for each month

it existed. By equation (1.4),

hicgt = 1 - exp(- exp(X e/3 + 4bt)

where 4't are nonparametric estimates of the log baseline hazard function between time t - 1 and t

as discussed in Section 1.4.1. I aggregate these individual default probabilities to calculate cohort-

level average default rates, which I annualize multiplying by twelve. The predicted average annual

default rate for cohort c is then defined as

12
Default Rate, = x >3 

t<60
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where N, is the number of cohort-c monthly loan observations in the sample of loans within five

years of origination. I limit the sample to observations on loans within five years of origination

to facilitate comparisons across cohorts. Because I define default to occur the first month that a

mortgage is marked as in foreclosure or real-estate owned, this rate is similar to the average number

of foreclosure starts in each month divided by the number of loans that were extant during that

month.

Table 10 shows the counterfactual default rates for eight scenarios, each representing a different

combination of counterfactual price paths and loan characteristics. The first row reports the actual

default rates for each cohort. The actual spread between the default rates of 2003 and 2006

mortgages was 8.2 percentage points. The model's predicted default rates using observed covariates

(not shown) match the actual default rates to 2-3 decimal places, suggesting that this parsimonious

model fits the data quite well. Rows 2 and 3 estimate the average default rates that would have

prevailed if all mortgages had the characteristics reported in Table 2 of the average 2003 (row 2)

or 2006 (row 3) mortgage. Default rates would have been lower if the characteristics of mortgages

had not changed over time, especially for later borrower cohorts. If all borrowers had taken out the

average 2006 mortgage, row 3 shows that default rates would have been roughly one percentage

point higher for 2003-2005 cohorts and lower for 2006-2007 cohorts. The spread between the 2003

and 2006 cohorts is cut in half by fixing mortgage characteristics. However, even if the composition

of mortgage products did not change from 2003-2006-a conceptual upper bound on the effect of

stricter mortgage regulation, the 2006 cohort would have still defaulted 3.7 percentage points more

frequently than the 2003 cohort.4 9

The remaining rows experiment with counterfactual price paths. Rows 4-6 use actual individual

loan characteristics and three alternative price scenarios. Row 4 assigns each loan to have the

average price change that 2003-cohort loans faced at the same number of months since origination.

Row 5 does the same exercise using the prices to which 2006-cohort loans were exposed, and row

6 looks at the effect of flat prices-0% price growth over the life of the mortgage. As expected,

mortgages from every cohort would have defaulted much less if they had experienced several years

of rapid price appreciation, as did 2003-cohort mortgages. Ceteris paribus, if 2006-cohort mortgages

had faced the same prices that the average 2003 mortgage did, their default rate would have been

5.6% instead of 12%. Similarly, if 2003-cohort mortgages had faced the prices that the average

4 9 Note that this statement assumes that holding mortgage product characteristics fixed would not have affected
aggregate prices.
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2006 mortgage faced, their default rate would have been 8.5% instead of 4.2%. The counterfactual

default rates for the scenario in which there is no price growth is predictably in between the 2003

and 2006 price scenarios. The spread between the 2003 and 2006 cohorts seen in row 1 is mostly

gone in rows 4-6, showing that if they had faced the same prices, the 2006 cohort default rate

would have been at most 2.5 percentage points higher than the 2003 default rate.

The final two rows report default rates under the counterfactual of constant prices and mortgage

characteristics. The combination of fixed prices and mortgage characteristics explains the entire

difference in the unadjusted cohort default rates of column 1, with the 2006 cohort predicted

to outperform the 2003 cohort if both had faced the same (zero) price growth and had taken out

mortgages with the characteristics of either the average 2003-cohort mortgage (row 7) or the average

2006-cohort mortgage (row 8). As a measure of the latent quality of each of these cohorts, rows 7

and 8 suggest that there were no important declines in unobserved borrower quality across subprime

cohorts. Using the zero price growth scenarios as a benchmark, it seems that the low and high

actual default rates experienced by the 2003 and 2006 cohorts, respectively, were not particularly

representative of the relative quality of these cohorts. Intuitively, this makes sense-by historical

standards, neither the 2003 nor 2006 price paths seem to have been particularly normal.

1.8 Conclusion

There has been an active debate about the surge in the subprime default rate in the mid- to late-

2000s, with blame being placed on risky mortgage products, risky borrowers, and price declines.

The accompanying analysis has focused on contrasting the relative performance of late and early

cohorts to tease out these stories. Diverse views of the cause of this deterioration in cohort-level

mortgage outcomes have motivated strong opinions about the appropriate regulator response to the

subprime default crisis. Advocates of stricter mortgage lending regulation argue that the cohort

pattern represents a deterioration in underwriting standards over time, i.e. the lending of riskier

mortgage products to riskier borrowers, and that these looser standards were the main precipitating

factor in the crash.

This paper demonstrates why the cohort comparison is potentially misleading: cohorts may differ

not only in their composition (loan and borrower characteristics) but crucially in the degree to

which they were affected by price fluctuations. I ascertain the relative contribution of each of these
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factors by combining observable loan and borrower characteristics with data on price changes in a

model that explains 95% of the heterogeneity in cohort performance. Decomposing the observed

deterioration in subprime loan performance, I find that the differential impact of the price cycle

on later cohorts explains 60% of the rapid rise in default rates across subprime borrower cohorts.

Loan characteristics, especially whether the mortgage had an interest-only period or was not fully

amortizing, are important as well and explain 30% of the observed default rate differences across

cohorts. Changing borrower characteristics, on the other hand, had little detectable effect on

cohort outcomes. While quite predictive of individual default, borrower characteristics simply did

not change enough across cohorts to explain the increase in defaults.

The results of this paper suggest a scope for underwriting standards to ex-ante affect mortgage

outcomes and for ex-post programs such as principal reduction and loan modifications that reduce

the frictions associated with being underwater. 0 Such policies may interact: all else equal, mort-

gages with lower origination CLTVs are less sensitive to price declines. Nevertheless, the view that

borrower quality declined across subprime cohorts on unobservable dimensions is inconsistent with

the results of this paper. I find that if 2006 borrowers had faced the prices that the average 2003

borrower did, 2006 borrowers would have had an annual default rate of 5.6% instead of 12%. I

conclude that a 2003 borrower taking out the average 2006 mortgage in 2006 would be no less likely

to default than a 2006 borrower in the same circumstances.

5 0 0f course, the presence of ex-post remedies may induce moral hazard. See Mayer and Hubbard (2009), Wheaton

(2010), Feldstein (2011), and the enacted Home Affordable Modification Program for examples of loan modification

programs and proposals, many designed to preserve incentives for responsible borrowing and maintenance.
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Figure 1. Cumulative Default Probability by Origination Cohort
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months since origination. Default is measured as the first time that a
loan's delinquency status is marked as in foreclosure or real-estate owned

provided it ultimately terminated without being paid off in full.

Prepayment means repayment in full, i.e. through refinancing or selling.
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Figure 2. Median Combined Loan-to-Value Ratio Over Time by Cohort
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Notes: Figure shows the median current combined loan-to-value ratio (CLTV) of
subprime borrowers for existing subprime mortgages in each cohort in each calendar
month in percentage points. Current CLTVs are calculated by LoanPerformance as the
total outstanding principal on a loan divided by an automated assessing model's estimate
of the market value of each home.
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Figure 3. Prices and Negative Equity Prevalence:

Pittsburgh vs. Minneapolis
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Notes: Top panel shows the CoreLogic repeat-sales home price index

for the Minneapolis and Pittsburgh Metropolitan Statistical Areas

(MSA). Both series have been normalized to 100 in January 2000.

Bottom panel shows shows the fraction of all outstanding subprime

borrowers that were underwater in each calendar month in the

indicated MSA. Underwater is determined by the current combined

loan-to-value ratio (CLTV) for a loan being above 100%. CLTVs are

calculated by CoreLogic as the total outstanding principal on a loan

divided by an automated assessing model's estimate of the value of

each home.
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Figure 4. Cumulative Default Probabilities:
Pittsburgh vs. Minneapolis
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Notes: Graphs show the cumualtive default probability of each cohort

in the Pittsburgh and Minneapolis CBSAs, respectively. Each line

shows the fraction of that cohort that had defaulted within a given

number of months since origination. See Figure 1 notes for more

details.
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Figure 5. Persistence of House Price Cyclicality:

Average Home Price Index by Quartile of a
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Notes: Figure plots month average HPI values by cyclicality quartile. Cyclicality is

measured as the standard deviation of one month changes to the log home price index from

1980-1995, as defined in equation (5) in the text. Each series has been normalized to 100 in

January 2000.
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Figure 6. Observed and Predicted Home Price Indices

1. Actual log(HPI)
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Notes: Figure plots observed log home price indices and predicted indices using long-run
variation in the price cycle. The right-hand panel lines show the predicted values from a
first stage regression of log(HPI) on CBSA fixed effects and the instrument set, as specified
in equation (8) in the text.
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Figure 7. Subprime Market Share by Long-Run Price Cyclicality Quartile
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Notes: Figure shows average subprime market share by quartile of the price cyclicality

measure defined by equation (5). Subprime market shares are calcualted using HMDA

data as the fraction of mortgages originated in a given year that were made by a lender

on the HUD subprime lender's list in any year and adjusted for CBSA fixed effects.
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Figure 8. Unemployment Rates by Long-Run Price Cyclicality Quartile
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Notes: Figure shows average filtered unemployment rates by quartile of the price

cyclicality measure defined by equation (5). Unemployment rates are obtained from the

Bureau of Labor Statistics Local Area Unemployment Series and are adjusted for CBSA
fixed effects and then filtered with a HP filter with lambda = 1,600.
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Figure 9. First-Stage Plots for Combined Loan-to-Value Ratio
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Notes: Panel I plots actual log principal balances versus log

balances corresponding to the 30-year fixed-rate mortgage

amoritization schedule. Panel II plots log sale prices against

log origination amounts. Panel III plots property values

against counterfactual values, imputed using home price

indices predicted using long-run local variation in home-price

cyclicality. Diagonal lines show the fitted bivariate linear
regression line.
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Table 1. Summary Statistics

mean sd mil max
Default 0.24 0.42 0 1
Prepaid 0.50 0.50 0 1
Censored 0.26 0.44 0 1
2004 Cohort 0.23 0.42 0 1
2005 Cohort 0.29 0.46 0 1
2006 Cohort 0.26 0.44 0 1
2007 Cohort 0.08 0.28 0 1
FICO Score 617.26 59.12 432 881
Debt-to-Income (non-missing) 0.40 0.10 0 0.9
DTI missing 0.26 0.44 0 1
Combined LTV 0.85 0.14 0 1.57
Interest Rate 7.27 1.33 1 13
Full Documentation 0.68 0.46 0 1
Owner Occupied 0.92 0.28 0 1
Cash-out Refi 0.54 0.50 0 1
Adjustable Rate 0.54 0.50 0 1
Interest-only 0.13 0.34 0 1
Balloon 0.09 0.28 0 1
Has 2nd Lien 0.20 0.40 0 1

N = 32,172
Notes: Default, prepaid, and censored are indicator variables for a
mortgage's termination type. The remaining characeteristics are measured
at time of orignation. Full documentation, owner occupied, cash-out
refinance, adjustable rate, interest-only, balloon mortgage, and has second
lien are all indicator variables for the given characteristic. See Section 3 in
the text for more details.
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Table 2. Summary Statistics by Cohort

Default

Prepaid

FICO Score

Debt-to-Income (non-missing)

DTI missing

Combined LTV

Interest Rate

Full Documentation

Owner Occupied

Cash-out Refi

Adjustable Rate

Interest-only

Balloon

Has 2nd Lien

Observations

2003

0.11

(0.31)

0.76
(0.43)

617.00
(61.85)

0.39
(0.10)

0.26

(0.44)

0.83
(0.13)

7.23
(1.29)

0.71
(0.45)

0.91
(0.28)

0.57
(0.50)

0.61
(0.49)

0.03
(0.16)

0.01
(0.10)

0.07
(0.25)

4407
Notes: Table reports means and standard deviations in parentheses of individual loan

characteristics by borrower cohort. See notes to Table 1 for further details.
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2004

0.13
(0.34)

0.71
(0.45)

618.15
(61.15)

0.39
(0.10)

0.23
(0.42)

0.84
(0.13)

6.78
(1.21)

0.70
(0.46)

0.91
(0.28)

0.57
(0.49)

0.63
(0.48)

0.11

(0.31)

0.00
(0.04)

0.15
(0.36)

7251

Cohort

2005

0.25
(0.43)

0.52
(0.50)

618.59
(59.68)

0.40
(0.10)

0.32
(0.47)

0.86
(0.14)

6.89
(1.18)

0.68
(0.47)

0.92
(0.28)

0.53
(0.50)

0.57
(0.50)

0.21

(0.41)

0.02

(0.15)

0.24
(0.42)

9444

2006

0.36
(0.48)

0.28
(0.45)

616.08
(56.48)

0.41

(0.10)

0.21

(0.41)

0.86
(0.14)

7.89
(1.25)

0.67
(0.47)

0.92
(0.27)

0.51
(0.50)

0.45
(0.50)

0.13

(0.33)

0.21
(0.41)

0.28
(0.45)

8336

2007

0.32
(0.47)

0.18
(0.38)

614.33
(54.72)

0.41
(0.10)

0.24

(0.43)

0.84
(0.15)

8.07
(1.39)

0.68
(0.46)

0.91
(0.29)

0.58
(0.49)

0.34
(0.47)

0.09
(0.29)

0.28
(0.45)

0.16
(0.37)
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Table 3. Effects of Loan Characteristics and Prices:

Default Hazard Model Estimates

(1) (2) (3) (4) (5) (6) (7)

2004 Cohort 0.217*** 0.223*** 0.290*** 0.234*** 0.188*** 0.137** 0.094

(0.072) (0.071) (0.073) (0.069) (0.069) (0.068) (0.066)

2005 Cohort 0.717*** 0.709*** 0.747*** 0.564*** 0.519*** 0.407*** 0.190***

(0.100) (0.097) (0.097) (0.089) (0.087) (0.075) (0.068)

2006 Cohort 0.954*** 0.984*** 0.820*** 0.556*** 0.579*** 0.470*** 0.045

(0.130) (0.129) (0.128) (0.118) (0.121) (0.093) (0.086)

2007 Cohort 0.734*** 0.800*** 0.613*** 0.424*** 0.466*** 0.235*** -0.107

(0.120) (0.116) (0.120) (0.112) (0.116) (0.083) (0.084)

12-month Alog(HPI) -3.685*** -3.857***
(0.131) (0.152)

CBSA FE n y y y y y y

Borrower Characteris n n y n y n y

Loan Characteristics n n n y y n y

Observations 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716

Log likelihood -44,335 -43,574 -42,642 -43,186 -42,498 -43,142 -42,033

Notes: Table reports maximum-likelihood estimates of the default hazard model given in

equations (2) and (3) in the text. All specifications include indicator variables for each value of

loan age as a non-parametric baseline hazard. Standard errors in parentheses are clustered at

the CBSA level.
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Table 4. Default Hazard Model Estimates: Allowing for Unobserved Heterogeneity

(1) (2) (3) (4) (5)

2004 Cohort 0.254*** 0.188** 0.130** 0.078 0.113*
(0.073) (0.082) (0.056) (0.063) (0.065)

2005 Cohort 0.924*** 0.674*** 0.372*** 0.172*** 0.250***
(0.077) (0.078) (0.052) (0.059) (0.061)

2006 Cohort 1.361*** 0.865*** 0.380*** 0.006 0.117*
(0.096) (0.082) (0.052) (0.061) (0.064)

2007 Cohort 1.079*** 0.682*** 0.110* -0.186*** -0.039
(0.097) (0.093) (0.060) (0.070) (0.074)

12-month Alog(HPI) -4.063*** -4.743*** -4.139***
(0.103) (0.128) (0.140)

Borrower Characteristics n y n y y
Loan Characteristics n y n y y
State Fixed Effects n n n n y
Observations 1,224,716 1,224,716 1,224,716 1,224,716 1,224,716
Log likelihood -44,295 -43,140 -43,631 -42,476 -42,284
Notes: Table reports maximum-likelihood estimates of the default hazard model given in
equations (2) and (7) in the text. All specifications include indicator variables for each
value of loan age as a non-parametric baseline hazard. Standard errors in parentheses
are homoskedastic MLE standard errors.
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Table 5. Effect of Long-Run Cyclicality on Price Changes:
First-Stage Results

(1) (2) (3)

2004 Cohort -0.011*** -0.012***
(0.003) (0.003)

2005 Cohort -0.031*** -0.031***
(0.007) (0.007)

2006 Cohort -0.053*** -0.051***
(0.011) (0.011)

2007 Cohort -0.064*** -0.059***
(0.013) (0.012)

Baseline hazard n y y
CBSA FE n y y
Borrower covariates n n y
Loan covariates n n y
Observations 1,224,716 1,224,716 1,224,716
R-squared 0.497 0.559 0.562
Partial F-stat 49.04 31.23 30.97
Notes: Table estimates first stage specifications detailed by
equation (11) by OLS. Dependent variable is the 12-month
change in the log house price index. The instruments are
calendar month indicator variables interacted with the historical
cyclicality measure defined by equation (9) in the text. Standard
errors are clustered by CBSA.
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Table 6. Effect of Accounting for Endogeneity of Prices:

Control-Function Estimates of Default Hazard

(1) (2) (3) (4) (5) (6)

2004 Cohort

2005 Cohort

2006 Cohort

2007 Cohort

12-month Alog(HPI)

Alog(HPI) Fitted Residuals

Unemployment Rate

CBSA FE
Borrower Characteristics

Loan Characteristics

Observations

Log likelihood

0.137**
(0.068)

0.407***
(0.075)

0.470***
(0.093)

0.235***

(0.083)

-3.685***
(0.131)

y
n

n

1,224,716

-42,305

0. 127*

(0.068)

[0.1721

0.362***
(0.076)
[0.195]

0.393***
(0.095)
[0.242]

0. 147*
(0.088)

[0.256]

-4.356***
(0.352)

[0.872]

0.941**

(0.431)
[0.9181

y
n

n

1,224,716
-43,138

0. 123*

(0.068)
[0.1581

0.357***
(0.075)
[0.178]

0.403***
(0.093)
[0.212]

0.177**
(0.087)
[0.203]

-4.479***
(0.325)
[0.817]

1.138***

(0.413)
[0.851]

-0.020**
(0.008)
10.022]

y
n

n

1,223,448
-43,103

0.094
(0.066)

0.190***

(0.068)

0.045
(0.086)

-0.107
(0.084)

-3.857***
(0.152)

y
y

y
1,224,716
-42,033

0.083
(0.066)
[0.105]

0.142**

(0.068)
[0.104]

-0.034
(0.089)
[0.079]

-0.195**

(0.089)

[0.084]

-4.576***
(0.362)
[0.413]

1.004**
(0.448)
[0.463]

y
y

y
1,224,716

-42,029

0.078
(0.066)

[0.106]

0.134**
(0.066)

[0.098]

-0.028
(0.086)
[0.074]

-0.170*
(0.087)
[0.076]

-4.722***
(0.335)

[0.387]

1.236***
(0.433)
[0.431]

-0.021**
(0.009)
[0.011]

y
y

y
1,223,448

-41,993

Notes: Table reports maximum-likelihood control-function estimates of the default hazard

model given in equations (2) and (7) in the text. Fitted residuals are estimated from a linear

first stage regression of the 12-month change in the log price index on the instruments and

remaining controls. All specifications include indicator variables for each value of loan age as a

non-parametric baseline hazard. Standard errors in parentheses are clustered at the CBSA

level. Standard errors in brackets are from 200 block bootstrap replications.
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Table 7. Effect of Allowing a Flexible Endogeneity Distribution:

Nonparametric Control-Function Estimates of Default Hazard

(1) (2) (3) (4) (5) (6)

2004 Cohort

2005 Cohort

2006 Cohort

2007 Cohort

12-month Alog(HPI)

Alog(HPI) Fitted Residuals

(Alog(HPI) Fitted Residuals)2

(Alog(HPI) Fitted Residuals) 3

0.127*

(0.068)
[0.172]

0.362***
(0.076)
[0.1951

0.393***
(0.095)
10.2421

0. 147*
(0.088)
[0.2561

-4.356***
(0.352)
[0.872]

0.941**

(0.431)
10.918]

0. 120*

(0.067)
[0.1661

0.337***
(0.070)
[0.196]

0.358***
(0.089)
[0.242]

0.122

(0.087)
[0.257]

-4.737***
(0.402)
[0.9461

0.263
(0.494)
11.045]

-4.513***
(1.580)
[2.710]

23.690**
(9.852)
110.317]

(Alog(HPI) Fitted Residuals) 4

(Alog(HPI) Fitted Residuals)5

CBSA FE
Borrower Characteristics

Loan Characteristics

Observations

Log likelihood

Notes: See Table 5 notes.

y
n

n

1,224,716

0. 120*

(0.067)
[0.1661

0.339***
(0.071)
10.198]

0.359***
(0.089)
[0.244]

0.121

(0.087)
[0.2591

-4.658***
(0.403)
[0.970]

0.615
(0.552)
[1.093]

-1.215

(4.205)
[6.134]

-7.211

(32.970)
[28.550]

-75.177
(65.940)
[93.464]

282.743
(446.678)
[394.651]

y y
n n

n n

1,224,716 1,224,716
-43.138 -43.114 -43,111

0.083
(0.066)
[0.1051

0.142**

(0.068)
[0.1041

-0.034
(0.089)
[0.079]

-0.195**
(0.089)
[0.0841

-4.576***
(0.362)
[0.4131

1.004**
(0.448)
10.463]

y

y

y
1,224,716

0.077
(0.065)
10.1051

0.117*

(0.064)
10.1081

-0.066
(0.086)
[0.081]

-0.219**
(0.091)
[0.084]

-4.944***
(0.415)
[0.4591

0.413

(0.494)
[0.543]

-4.841***
(1.791)
[1.854]

19.707**
(8.849)
[8.665]

y

y

y
1,223,448

0.077
(0.065)
[0.105]

0. 120*

(0.064)
[0.109]

-0.065
(0.087)
[0.082]

-0.219**
(0.092)
[0.084]

-4.877***
(0.415)
[0.465]

0.699
(0.567)
[0.558]

-1.764
(4.238)
[4.071]

-4.513
(28.217)
[24.8501

-71.583
(64.402)
[77.720]

195.488
(381.055)
[356.268

y
y

y
1,224,716

-42,029 -42,007 -42,006
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Table 8. Effect of Current Combined Loan-to-Value Ratio on Default Hazard:
Control Function Results

(1) (2) (3) (4) (5) (6)

2004 Cohort

2005 Cohort

2006 Cohort

2007 Cohort

Underwater

12-nonth Alog(HPI)

CLTV Fitted Residuals

0.202***

(0.066)

0.424***

(0.075)

0.317***

(0.096)

0.143

(0.096)

0.683***

(0.060)

0.188***

(0.064)

0.348***

(0.068)

0. 159*

(0.083)

-0.055

(0.084)

0.127**

(0.063)

0.138**

(0.063)

-0.185**

(0.076)

-0.417***

(0.078)

-3.221***

(0.237)

Alog(HPI) Fitted Residuals

Unemployment Rate

CLTV Linear Spline
Observations

Log likelihood
Notes: Table reports

n y y
1,037,581 1,037,581 1,037,581
-35,935 -35,723 -35,477

maximum-likelihood estimates of the

0.116*

(0.064)

0. 126*

(0.066)

-0.162**

(0.078)

-0.372***

(0.081)

0.284***

(0.052)

-4.693***

(0.333)

0.007***

(0.000)

1.579***

(0.406)

n
1,036,611
-35,444

default hazard model given in

0. 110*

(0.064)

0.133**

(0.064)

-0.125

(0.079)

-0.292***

(0.089)

-4.718***

(0.382)

0.092

(0.063)

0.095

(0.063)

-0.146*

(0.077)

-0.279***

(0.085)

-4.814***

(0.371)

0.013*** 0.011***
-0.001 (0.001)

2.252***

(0.500)

y
1,037,581
-35,379

2.170***

(0.495)

-0.050***

(0.013)

y
1,036,611
-35,329

equations (2) and (14) in the text. Current combined loan-to-value ratios (CLTVs) are
calculated by LoanPerformance as the total outstanding principal on a loan divided by
an automated assessing model's estimate of the market value of each home. Underwater
is an indicator for CLTV>1. The linear spline is defined by equation (15) in the text. All
specifications include individual loan and borrower characteristics, CBSA fixed effects,
and indicator variables for each value of loan age as a non-parametric baseline hazard
function. Standard errors in parentheses are clustered at the CBSA level.
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Table 9. First-Stage Results for Combined Loan-to-Value Ratios

(1) (2) (3) (4) (5)

log(Origination Amount) -0.640*** -0.724*** -0.950*** -0.958*** -0.968***
(0.047) (0.043) (0.047) (0.046) (0.046)

log(Prinicipal Balance) 0.787*** 0.917*** 1.063*** 1.066*** 1.076***
(0.044) (0.042) (0.047) (0.046) (0.046)

Predicted Appreciation -1.265*** -0.627*** -0.610*** -0.602*** -0.103
(0.162) (0.137) (0.138) (0.137) (0.100)

2004 Cohort -0.001 0.003 0.001 0.019***
(0.008) (0.007) (0.007) (0.007)

2005 Cohort 0.030** 0.038*** 0.024** 0.072***
(0.013) (0.013) (0.012) (0.013)

2006 Cohort 0.091*** 0.110*** 0.084*** 0.146***
(0.021) (0.022) (0.020) (0.023)

2007 Cohort 0.156*** 0.173*** 0.145*** 0.190***
(0.028) (0.028) (0.026) (0.027)

12-month Alog(HPI) -0.326*** -0.204***
(0.024) (0.032)

Unemployment Rate 0.052***

(0.006)

Baseline hazard n y y y y
CBSA FE n y y y y
Borrower covariates n n y y y
Loan covariates n n y y y
Observations 1,037,581 1,037,581 1,037,581 1,037,581 1,036,611
R-squared 0.242 0.355 0.423 0.428 0.462
Partial F-stat 239.10 331.70 232.29 231.66 221.20
Notes: Table estimates first stage specifications detailed by equation (16) by
OLS. Dependent variable is current combined loan-to-value ratio, calculated
by CoreLogic as the total outstanding principal on a loan divided by an
automated assessing model's estimate of the market value of each home.
Standard errors are clustered by CBSA.
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Table 10. Counterfactual Annual Default Rates by Cohort

Counterfactual Scenario Default Rate by Cohort

Prices Loan Characteristics 2003 2004 2005 2006 2007 Overall

(1) Actual Actual 4.2% 5.3% 9.2% 12.0% 9.8% 8.7%

(2) Actual 2003 3.7% 4.6% 7.0% 7.4% 6.5% 6.2%

(3) Actual 2006 5.3% 6.6% 9.9% 10.5% 9.2% 8.8%

(4) 2003 Actual 4.1% 4.6% 5.6% 5.6% 4.4% 5.1%

(5) 2006 Actual 8.5% 9.4% 11.3% 11.0% 8.4% 10.2%

(6) No price change Actual 6.3% 6.9% 8.2% 7.9% 6.0% 7.4%

(7) No price change 2003 5.3% 5.7% 6.0% 4.7% 3.9% 5.3%

(8) No price change 2006 7.6% 8.1% 8.5% 6.8% 5.6% 7.5%

Observations 115,567 193,554 281,346 285,277 106,764 982,508

Notes: Table reports estimated annual default rates under the indicated counterfactual scenarios

for prices and loan characteristics. Annual default rates are defined as 12 times the average

fraction of loans that default in each month, measured over all existing loans within five years of

origination. Scenarios using actual characteristics retain observed covariates. Scenarios using a

given year's prices replace all price changes with the average price changes faced by the given

year's borrowers at each value of loan age. Scenarios using a given year's loan characteristics

assign all loans the average characteristics from the indicated cohort.
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Chapter 2

Housing Market Spillovers: Evidence

from the End of Rent Control in

Cambridge Massachusetts

with David H. Autor and Parag A. Pathak

Introduction

Spillovers from the attributes and actions of neighborhood residents onto the value of surrounding

properties and neighborhoods are central to the theory of urban economics and the development of

efficient housing policy (Fujita, 1991; Glaeser and Gyourko. 2009). Credibly identifying and quan-

tifying these external effects, however, poses a significant empirical challenge because key features

of the housing market equilibrium-in particular, who lives where, the quality and quantity of

housing, the levels of local public goods and amenities, and what prices prevail-are all determined

simultaneously in equilibrium.1

This paper exploits an unusual, large scale policy change, the elimination of rent control in Cam-

bridge, Massachusetts in 1995, to quantify the capitalization of residential housing market external-

ities onto the value of residential real estate. From December 1970 through 1994, all rental units in

See Kasy (2013) for a recent discussion of the nonparametric identification in location choice models with social
externalities.
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Cambridge built prior to 1969 were regulated by a far-reaching rent control ordinance that placed

strict caps on rent increases and tightly restricted the removal of units from the rental stock. The

legislative intent of the rent control ordinance was to provide affordable rental housing. and at the

eve of rent control's elimination in 1994, controlled units typically rented at 40-plus percent be-

low the price of nearby non-controlled properties-though maintenance and amenities in controlled

units tended to be sub-par (Sims, 2007).2

The policy change that provides the identifying variation for our study is the swift elimination of

Cambridge's rent control law via a state-wide ballot initiative. In November 1994, the Massachusetts

electorate passed a referendum to eliminate rent control by a narrow 51% to 49% margin, with nearly

60% of Cambridge residents voting to retain the rent control ordinance. Thus, rent decontrol in

Cambridge, which commenced only two months after the November 1994 referendum, was voted

into law by Massachusetts cities and towns that had never experienced rent control, while ironically,

the three Massachusetts municipalities with active rent control regimes-Cambridge, Boston, and

Brookline, each of which voted to maintain rent control-were overruled by the state-wide majority.3

Alongside its swift and largely unanticipated elimination, two unusual features of Cambridge's rent

control ordinance make it well suited to credibly identify the effects of rent control on residential

housing markets. First, because the rent control ordinance only applied to a fixed, non-expanding

set of residential units-specifically, non-owner occupied rental houses. condominiums, or apart-

ments built prior to 1969-controlled and never-controlled units stood side by side in Cambridge

neighborhoods on the eve of rent control removal, thus offering a tight temporal and geographic

framework for assessing the impact of the law on residential property prices.4 Second, although

roughly a third of residential units were controlled prior to elimination (see Figure 1), this fraction

frequently exceeded sixty percent in neighborhoods that had older housing stocks and a substantial

share of renters at the time of rent control's enactment in 1970. This sizable cross-neighborhood

variation allows us to assess localized price effects by comparing pre- and post-removal price ap-

preciation among both decontrolled and never-controlled properties in neighborhoods that differed

in their 'rent control intensity' -that is, the share of residential units that were controlled.

2 Using microdata from a 1987 Abt Associates study commissioned by the City of Cambridge (Finkel and Wallace,
1987), we estimate that quality-adjusted rents were approximately 44 percent lower at controlled units than at
observably similar non-controlled units.

3 As discussed in Sims (2007), the Boston and Brookline rent control regimes were far less comprehensive than in
Cambridge.

4 If an owner-occupied residential unit built before 1969 were put up for rent, it could be subject to rent control.
Our informal understanding based on discussions with Cambridge homeowners of that era was that such rentals were
rare and often arranged discreetly to avoid the notice of the Rent Control Board.
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Our conceptual model and empirical work distinguish two channels through which rent decontrol

may affect the market values of residential properties. The first, which we term the direct ef-

fect, reflects the capitalization of landlords' newfound ability to charge market rents. Absent any

change in residential investments or neighborhood characteristics-and assuming that price controls

were binding-rent control removal should directly raise the ownership value of formerly controlled

properties by uncapping rents and, simultaneously, increasing the returns to landlord investments.

The second channel. which we term the indirect effect. enIc(mipasses the multiple complementary

mechanisms by which rent decontrol may affect the desirability of surrounding properties: owners

renovate and modernize decontrolled units, raising their rental values; affluent tenants who par-

ticularly value these amenities rent these units as incumbents depart in the face of rising prices;

higher income tenants move into nearby never-controlled properties, attracted by the amenities of

an improved housing stock and more affluent neighbors; property owners make further investments

in both decontrolled and never-controlled units as overall tenant income levels rise. 5

Distinct from the 'direct' effect of decontrol, which by definition operates only on formerly con-

trolled properties., the indirect channel may affect the market value of both decontrolled and never-

controlled properties by increasing the desirability of the neighborhoods in which they're located.

While our analysis does not allow us to further decompose the indirect effect into its constituent

components (investment, reallocation, and the complementarities between the two), historical evi-

dence suggests that each of these channels was relevant. Because Cambridge's Rent Control Board

was unlikely to grant rent increases following property improvements, it was widely perceived that

rent control muted owners' incentives to maintain and improve controlled properties. 6 Consistent

with this view, Sims (2007) finds that chronic maintenance problems-such as holes in walls or

floors, chipped or peeling paint and loose railings-were more prevalent in controlled than non-

controlled units during the rent control era, and that this differential fell substantially with rent

control's elimination. The end of rent control also spurred substantial tenant turnover. Cam-

bridge's rent control law was intended to enable less affluent tenants to reside in units that would

command high rents under a market allocation, particularly the dense neighborhoods proximate

5 Increases in residential investment after rent decontrol do not divide cleanly into direct or indirect effects: absent
spillovers, decontrol should raise the return to renovations and repairs of ill-maintained decontrolled units (a direct
effect); the complementarities among tenant incomes, neighborhood amenities, and the quality of the housing capital
stock should raise the return to investments at both decontrolled and never-controlled units (an indirect effect).6 Leonard (1981) notes that the Board limited the allowable rate of return on investments at a "relatively low"
level deemed "fair," which made improvements both comparatively unprofitable and difficult to finance. Rent Control
Board records indicate that applications for rent adjustments were infrequent-once per decade for a typical unit.
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to Cambridge's major universities, commercial centers, and transportation hubs. While there

was no formal mechanism to allocate controlled units to low-income households, limited quantita-

tive evidence indicates that less affluent residents and students were overrepresented in controlled

units-though a significant number of units were also occupied by wealthy professionals. 7 As we

show below, exit rates from formerly controlled units spiked in the years immediately following

rent decontrol. And given the substantial accompanying increases in rents, it is likely that the new

cohorts of renters were significantly more affluent than the tenants they replaced. Our analysis

will capture the net effect of these potentially mutually reinforcing channels on the market value

of Cambridge residential real estate.

Regulations are widespread in housing markets, and rent controls are arguably among the most

important historically (Friedman and Stigler, 1946; Glaeser and Gyourko, 2009). Because they

directly manipulate the price mechanism, they are likely to reshape the allocation of residents

to locations, the incentives for investment and maintenance of controlled units, and the supply,

demand, quality and allocation of units in the non-controlled sector. The modern era of U.S. rent

controls began as a part of World War I-era price controls and as a reaction to housing shortages

following demographic changes immediately after the war (Fetter, 2013). While the prevalence

of rent control as a housing market policy has decreased since this period, rent control and rent

stabilization plans are still in place in many U.S. and European cities (Arnott, 1995). New York

City's system of rent regulation affects at least one million apartments, while cities such as San

Francisco, Los Angeles, Washington DC, and several California and New Jersey cities have various

forms of rent regulation. Rent control remains a topic of active debate among affordable housing

advocates.

The early empirical literature on rent control focuses on its effects on the supply of housing services

(Olsen, 1972) and the incentives of landlords to invest in building quality (Frankena, 1975; Gyourko

and Linneman, 1989). A second strand of this literature examines how below-market rents may

encourage individuals to spend effort to obtain cheap housing, leading to a misallocation of housing

(Suen, 1989; Glaeser and Luttmer, 2003; Sims, 2011). Fallis and Smith (1984) examine how the

impact of rent control on the uncontrolled sector depends on the allocation mechanism in the

7 A 1998 study commissioned by the City of Cambridge found that sitting residents of formerly controlled units had

mean annual earnings in 1997 of $35,650 versus $43,630 among tenants of market rate units and $41,340 among tenants

of formerly controlled units who had taken residence after rent control removal (Atlantic Marketing Research, 1998).
Sims (2007) calculates that 67 percent of residents of rent controlled units in Boston, Brookline, and Cambridge were
in the bottom two quartiles of the income distribution. At the same time, blacks were substantially underrepresented
in controlled units.
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controlled sector. Wang (2011) investigates the impact of privatization of housing that was owned

and allocated by the state in urban China. Her analysis, like ours, shows that the degree of

misallocation of assets prior to privatization impacts the expected change in prices.

Sims (2007) undertakes the first empirical analysis of the end of rent control in Massachusetts.

exploring its impacts on the supply of rental properties and their rental prices. Sims shows that

the elimination of rent control spurred substantial rent increases in Massachusetts towns that had

binding rent control laws in 1994 (Boston, Brookline and Cambridge) and led to significant increases

in the quality and quantity of rental housing available. Distinct from Sims' work, we analyze rent

control's effect on the market value (rather than rental prices) of the entire residential housing

stock (not simply rental units) in Cambridge and distinguish its effects on decontrolled properties

and never-controlled properties. 8

Our work is also related to studies of neighborhood revitalization and gentrification. both of which

may generate spillover benefits to surrounding areas (Hurst, Guerrieri and Hartley, 2013; loannides,

2003; Rossi-Hansberg, Sarte and Owens, 2010; Schwartz, Ellen, Voicu and Schill, 2006). Studies

by Linden and Rockoff (2008) and Pope (2008) of the housing market impacts of the arrival of

registered sex offenders into a neighborhood consider allocative externalities in residential housing.

Recent interest in measuring external effects in housing has been spurred in part by historically high

levels of foreclosures and the concern for their impact on immediate neighbors and neighborhoods

(Campbell, Giglio and Pathak, 2011; Hartley, 2010; Mian, Sufi and Trebbi, 2011).9

Our analysis draws on a uniquely detailed geographic and economic database sourced from Cam-

bridge administrative record that enumerates the exact location of all rent controlled units, the

assessed value of each house and condominium in 1994 and 2004, the transacted price of each resi-

dential property sold between 1988 and 2005, the movement of properties across various residential

and non-residential uses (e.g., houses that were converted to condominiums), and the permitted

investment expenditures at each residential location. We additionally use 10 years of Cambridge

City Census data to document the rapid turnover of residents of formerly controlled units following

the end of rent control. These sources permit direct estimation of changes in residential real estate

prices induced by rent decontrol.

8 Sims (2007) further explores spillovers from decontrol onto the rental price of never-controlled units, but his

data do not allow sufficient precision to draw firm conclusions.
9 1n addition, a number of papers present evidence that subprime mortgage lending may lead to price appreciation

in neighborhoods where housing credit was historically in short supply (Mian and Sufi, 2009; Landvoigt, Piazzesi and

Schneider, 2012).
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We find compelling evidence that the elimination of rent control raised the market values of both

decontrolled and never-controlled properties. Our main estimates imply that during the rent control

era, rent controlled properties were valued at a discount of about 45 to 50 percent relative to

never-controlled properties with comparable characteristics in the same neighborhoods, and that

their assessed values rose by 18 to 25 percent relative to never-controlled properties following rent

decontrol. This differential appreciation should primarily reflect the direct effect of rent decontrol

on the market value of formerly controlled units generated by the potential for owners to charge

market rents, the option to convert rental units into condominiums, and the flow of returns from

associated capital investments.

To assess whether rent control density affected the desirability of neighborhoods over and above

its direct effect on controlled properties, we next calculate a rent control exposure measure for

each residential unit that is equal to the fraction of other residential units within a 0.20 mile ra-

dius that were subject to rent control as of 1994. A central finding is that post-decontrol price

appreciation was significantly greater at units that had a larger fraction of formerly controlled neigh-

bors: residential properties at the 7 5 th percentile of rent control exposure gained approximately

13 percent more in assessed value following decontrol than did properties at the 2 5 th percentile of

exposure. This differential appreciation of properties in rent control intensive locations was equally

pronounced among decontrolled and never-controlled units, suggesting that rent control removal

spurred overall gains in neighborhood desirability.

These findings are robust to many alternative measures of rent control intensity, to rich controls for

property-level characteristics (such as age, lot size, and number of bedrooms and bathrooms), and

to the inclusion of detailed geographic fixed effects and neighborhood trends that allow price levels

to vary across Cambridge neighborhoods and to trend over time within them. Data on transaction

prices for all properties sold in Cambridge between 1988 - 2005, which provide an alternative

source for measuring changes in market values, yield comparable estimates of spillover effects to

those found using the assessor's data.

One channel through which the removal of rent controls may have raised Cambridge housing values

is by spurring additional capital investments. Using administrative data on residential expenditures

permitted by the Cambridge Inspectional Services, we find that aggregate annual permitted building

expenditures increased dramatically for both houses and condominiums after 1994, rising from $21

million per year between 1991-1994 to $45 million per year between 1995 and 2004. Moreover,
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the incidence of permitting-though not investment expenditures per unit-rose differentially at

formerly controlled properties in the years immediately following rent control removal. But the

total value of Cambridge residential investments in these 10 years was less than one quarter as

large as the estimated increment to Cambridge residential housing values induced by rent control

removal, suggesting that the allocative rather than the investment channel is the more important

explanation for the post-1994 rise in the market value of never-controlled properties.

The economic magnitude of the effect of rent control removal on the value of Cambridge's housing

stock is large, contributing $2.0 billion of $7.7 billion in Cambridge property appreciation in the

decade between 1994 and 2004. Of this total effect, only $300 million is accounted for by the direct

effect of decontrol on formerly controlled units (holding exposure constant), while $1.7 billion is

due to the indirect effect. Notably, the majority of this indirect effect ($1.1 of $1.7 billion) stems

from the differential appreciation of never controlled units. Combining both direct and indirect

effects, our estimates imply that more than half (55 percent) of the capitalized cost of rent control

was borne by owners of never-controlled properties.

The paper proceeds as follows. Section 2.1 provides additional detail on the enactment, enforcement,

and removal of rent control in Cambridge. Section 2.2 describes a simple model of housing markets

in the presence of rent control to guide our empirical analysis (the Theory Appendix contains the

model). Section 2.3 describes data sources and our empirical strategy. Section 2.4 presents our

main results using property assessments, while Section 2.5 presents results on the time path of the

capitalization of rent decontrol using transaction prices. Section 2.6 reports on our investigation of

permitting and investment activity and Section 2.7 considers economic magnitudes. We conclude

with a discussion of areas for further investigation.

2.1 Cambridge Rent Control: Enactment, Enforcement, and Re-

moval

2.1.1 Rent control adoption and elimination

In 1970, the Massachusetts state legislature enacted a statute allowing cities and towns with popu-

lations over 50,000 to implement rent control to "alleviate the severe shortage of rental housing..." 10
10Quoted from "An Act Enabling Certain Cities and Towns to Control Rents and Evictions", 1970 Mass. Acts

842.
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Boston, Brookline, Cambridge, Lynn, and Somerville each adopted a rent control plan, with Cam-

bridge moving first in 1970 and keeping the ordinance longer than any other city. Lynn repealed

its plan in 1974 and Somerville in 1979. Boston allowed for decontrol of vacant units in 1976 and

Brookline began to phase out its system prior to the state-wide repeal, though both cities still had

a significant number of controlled units in 1994 (Cantor, 1995).) In Cambridge, rent control was

seen as an integral part of the city's affordable housing program.

Cambridge's initial rent control policy adopted in 1970 applied to all non-owner-occupied rental

housing built before 1969. It did not apply to structures built after January 1, 1969, to owner-

occupied condominiums, or to non-residential structures converted to rental properties after this

time. Oversight of the rent control law rested with the Cambridge Rent Control Board, whose

official charter was to ensure that landlords obtained a fair net operating income. The Board

established maximum allowable rents for each controlled property with the aim of fixing landlord net

operating incone at inflation-adjusted 1967 levels. In the 1970s and 1980s, the Board authorized a

series of across-the-board rent increases ranging from 1.15 to 3.1 percent, intended to cover increases

in heating costs, operating costs, and property taxes (Rent Control Board, 1982). Landlords could

also apply to raise prices above the scheduled increases, but these variances were rarely sought or

granted in practice, in part because the application required supporting petitions, extensive legal

documentation, and significant time investment. 12

Distinct from many cities, Cambridge's rent control policy did not allow for so-called "vacancy

decontrol," whereby controlled rental units were returned to market-rate rents after protected

tenants moved out. Landlords therefore faced an incentive to remove units from the rental stock,

which they accomplished by converting substantial numbers of rental units to condominiums and

selling them to owner-occupants. To prevent the controlled rental stock from being depleted, the

city council passed in 1979 the "Removal Permit Ordinance," which substantially restricted the

removal of controlled units from the rental stock and complicated the conversion of controlled units

into owner-occupied condominiums. 13

The development that ultimately lead to rent control's elimination was the Cambridge Small Prop-

"See Epple (1988) for a game-theoretic model of communities' decisions to adopt rent control.
1 2 A legendary incident involves Harvard Philosophy Professor Robert Nozick extracting a settlement of over

$30,000 in the 1980s from his landlord, famed classicist and novelist Eric Segal, for overcharging rent, described in
Tucker (1986).

13 This ordinance required proof that removal would not aggravate the housing shortage and would "benefit the
persons sought to be protected" by the rent control statute (Cantor, 1995). The ordinance was subsequently amended
following difficulties with enforcement, which were made salient by the fate of the so-called "condo martyrs" -owners
who were prosecuted for occupying their own controlled properties before the completion of a conversion.
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erty Owners Association's successful effort to place rent control on the state-wide ballot in 1994.

Putting rent control to a state-wide vote diluted the strong support that rent control enjoyed in

the three municipalities with extant rent control ordinances (Boston, Brookline, and Cambridge).

Rent control was eliminated by a slim 51 to 49 percent margin in November 1994, despite nearly

60 percent of Boston, Brookline, and Cambridge voters voting to retain the current regime. Just

two months later in January of 1995, a majority of properties were decontrolled. A last-minute

legislative compromise, however, allowed disabled, elderly, and low-income renters to retain their

current units at their controlled rents for up to two years. Though only a small share of residents

received rent control extensions, this compromise likely created some uncertainty about whether

decontrol was final-at least until the grandfathering period expired in 1997 with no further controls

in place. 14

2.1.2 The post decontrol regime

The elimination of rent control catalyzed a series of rapid changes in the Cambridge rental market,

beginning with rising rents. A 1998 survey commissioned by the City of Cambridge (Atlantic

Marketing Research, 1998) found that nominal Cambridge median rents rose by 40 percent between

1994 and 1997 for tenants of formerly controlled units who either remained at these units or moved

to other non-controlled units. Median rents rose by only 13 percent for sitting tenants of never-

controlled units in the same time period.

Rising rents spurred a sharp increase in resident turnover at formerly controlled units after 1994,

which we document by constructing a panel of all Cambridge adults ages 17-plus by street address

using city voter registration records for the years 1991 through 2000.15 On average, 26.9 percent

of Cambridge residents changed locations annually, with the highest turnover rates found among

apartment residents (33.5 percent), followed by residents of condominiums (29.7 percent) and houses

(23.2 percent).

1 4 Shortly after the referendum, the state legislature adopted a bill extending rent control for five years. The
Governor vetoed this bill and later signed an alternative on January 3, 1995 that granted rent control extensions
of one year (two years if the rental building had more than 12 units) to renters whose incomes were below 60% of
the median for the Boston MSA (or 80% of the MSA median for disabled and elderly renters). Sims (2007) reports
that about 3,000 of approximately 21,000 tenants applied for exemptions while Haveman (1998) reports that 9.4% of
tenants were eligible to apply.

1 5State law (M.G. L. ch. 51.4) requires an annual listing of all adult residents for voter registration, regardless of
voter status, including name, street address, gender, date of birth, occupation, and nationality. City Census books
from 1991-2000 were double-entry hand keyed and assembled into a panel using name and address matching, as
described in the Data Appendix.
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We assess whether turnover rates at formerly controlled units rose differentially after 1994 by fitting

linear probability models of the following form:

NEWijt =- g + 6t + AIRCj + A2RCj x Postt + Eijt, (2.1)

where NEWijt is an indicator equal to one if resident i in unit j in year t was not present in that unit

in the prior year. In this model, RCj is an indicator equal to one if unit j was rent controlled in 1994,

-Yg is a vector of 1990 Census block group dummies, 6t is a vector of year dummies, and Postt is an

indicator for years 1995 onwards. Prior to 1995, residents of controlled units were not significantly

more likely to turnover than residents of non-controlled units. 16 Following decontrol, the turnover

differential between formerly controlled and never-controlled units rose by 5.4 percentage points,

with an even larger increase at condominiums (Table 1).

Figure 2 depicts both the evolution of this turnover differential using a variant of equation (2.1)

in which the rent control indicator is interacted with a set of year dummies. Turnover rates at

decontrolled units spiked by 4 percentage points relative to never-cont rolled units in the first year

of decontrol and continued to climb to 10 percentage points over the next three years. Thus, the

process of resident reallocation and neighborhood change spurred by decontrol took multiple years

to unfold. Interestingly, Figure 2 also shows that turnover rates at never-controlled units changed

little following decontrol.

A sharp increase in residential property investments also followed the end of rent control. The

number of building permits issued per residential unit for improvements and new construction

increased by approximately 20 percent after 1994, and annual permitted expenditures roughly

doubled in real terms (Table Al). Elimination of the "Removal Permit Ordinance" allowed a

substantial number of decontrolled houses, apartments, and non-residential units to be converted

to condominiums. From 1994 to 2004, Cambridge's stock of residential houses decreased by 6

percent, while the stock of condominiums increased by 32 percent, with 45 percent of this increase

accounted for by conversion of houses to condominiums (Table A2). 17 At the same time, the

16 Subsequent columns reveal that this result is driven by composition. Focusing only on apartments and con-
dominiums, residents of controlled units were significantly less likely to turn over than residents of non-controlled
units-consistent with the idea that controlled units had scarcity value. Residents of controlled houses, by contrast,
were significantly more likely to turnover than residents of non-controlled houses, but this likely reflects the fact that
most non-controlled houses were owner-occupied whereas controlled houses were renter-occupied.

1 7 These calculations use the Cambridge Assessor's databases from 1995 and 2005, reflecting the status of properties
in 1994 and 2004, respectively. We count each unit in multi-family houses separately to meaningfully compare the
supply of housing across different structure types and in different periods. The stock of units in houses in Cambridge
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fraction of residential units available as rental properties rose by six percentage points (Sims, 2007)

This combination of sizable rent increases, rapid turnover of incumbent renters, rising residential

investment, and outward shifts in the supply of both condominiums and rental properties were

likely in net to have changed the quality of the Cambridge residential housing stock, the allocation

of residents to neighborhoods, and the availability of residential units for both rent and sale.

2.2 The Direct and Indirect Effects of Rent Control

The Theory Appendix presents a stylized model of the housing market, summarized here, that

considers the relationship between rent control and prices of both controlled and non-controlled

properties. In the model, a city consists of N neighborhoods with a continuum of locations in each

neighborhood. Potential residents choose locations to maximize utility defined over consumption

of housing services, a non-housing composite good, and local amenities. Residents have identical

preferences and differ only in their income levels. Profit-maximizing landlords choose the level of

maintenance at each location, and this level is increasing in the price of housing services.

We assume that amenities in a neighborhood depend on the housing maintenance levels and the

income distribution of residents in the neighborhood, where higher maintenance and higher in-

come neighbors are also more desirable and hence contribute more to neighborhood amenities.

This formulation creates positive feedback from the extent of maintenance, residents' income, and

neighborhood amenities. In the free market equilibrium (absent rent controls), rents are higher in

neighborhoods with greater amenities due to higher maintenance and the presence of higher income

neighbors.

We consider the imposition of rent controls at the initial free market equilibrium by assuming that

a rent control authority caps the rent of some units in a neighborhood at below their free market

level. Since landlords choose maintenance levels facing a regulated price, maintenance levels and

hence housing services are lower at controlled units. The combination of reduced rents and lower

maintenance has one of two effects on incumbent residents: either they are sufficiently compensated

by reduced rents so that they remain at their current locations, although the bundle of maintenance

and amenities is not optimized for their income levels; or alternatively, they choose to relocate to

areas with higher amenities and higher rents. In the latter case, they will be replaced by residents

decreased from 14,722 in 1994 to 13,861 in 2004 and the stock of condominiums rose from 7.220 to 9.561 units.
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who prefer lower housing services, i.e., those with lower incomes. 18 The average income at controlled

locations therefore weakly declines following the imposition of rent control.

Since neighborhood amenities are a function of the maintenance of all units in a neighborhood and

the neighborhood income distribution, the level of amenities at non-controlled locations in these

neighborhoods-as well as maintenance and rents-are also impaired by rent control. This in turn

causes lower income residents to move into non-controlled locations. Thus, rent control causes

inefficiently low maintenance and misallocation of residents at both controlled and non-controlled

locations within a neighborhood.

Decontrol unwinds these effects. Prices rise due directly to the lifting of the cap, and indirectly due

to improved maintenance and increased production of local amenities throughout the neighborhood.

At non-controlled locations, the price increase will be greater in neighborhoods where a larger

fraction of locations were controlled, where the capped price ceiling was set further below the market

price level, and where controls induced larger resident misallocation relative to the free market

setting. The lifting of controls allows an additional, direct price increase at formerly controlled

locations.

The model also offers a simple welfare interpretation of any direct and indirect price effects of rent

decontrol. Price increases at decontrolled locations reflect three forces: a mechanical 'uncapping'

effect, which reflects a transfer from renters to owners; a price increase reflecting improved main-

tenance, which generates increased landlord surplus net of the resource cost of maintenance; and

a price increase reflecting greater neighborhood amenities due to improvements in maintenance

and changes in resident types nearby. While the latter two effects reflect economic gains, the first

does not. The price increase at decontrolled locations is therefore likely to substantially exceed the

economic gains from decontrol at these locations.

Induced price increases at non-controlled locations following decontrol reflect the capitalization into

house values of two of these three forces: improved maintenance (or, more generally, housing invest-

ments), and greater neighborhood amenities (both due to sorting and capital improvements at other

properties). Therefore, the increase in prices at non-controlled locations, net of the additional re-

source costs expended on maintenance and improvements, can be used to assess the external effects

of decontrol-that is, the spillovers. We quantify these spillovers below by estimating the increase

1 8 1f the incumbent renter is dissatisfied with the new price-services pair. this pair can only be preferred by a lower

type.
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in market value of never-controlled units and netting out the components plausibly attributable to

investment.

2.3 Data and Measurement

We briefly discuss our data sources and measurement of rent control intensity in this section., with

further details in the Data Appendix.

2.3.1 Cambridge real estate

There are approximately 15,000 taxable parcels of land in the city of Cambridge organized into

unique geographic units known as "map-lots." The foundation for our dataset is a snapshot of

the entire universe of residential real estate from the 1995 Cambridge Assessor's File, from which

we construct the residential housing structures file. 19 Each record includes the map-lot identifier,

address, owner's name and address, usage, and property tax assessment as of January 1994. Usage

categories are designated as commercial or residential, and residential categories are further subdi-

vided into condominiums, single-family, two-family, and three-family houses, multi-unit apartment

complexes, and mixed residential-commercial structures. In calculating rent control intensity be-

low, we treat any usage code where individuals are likely to live as a residential structure. Our

analysis of assessed values and transactions is limited to houses and condominiums, which comprise

the market for residential real estate.

We identify rent controlled properties from historical records of the Cambridge Rent Control Board

obtained via a Freedom of Information Act (FOIA) request.20 We merge rent control structures to

the Assessor's file using the map-lot identifier and address information coded in the Rent Control

Board file. Rent controlled records that could not be matched via map-lot identifiers were hand-

matched to the corresponding street address. Due to limitations of the Rent Control Board data,

it was often not possible to determine which specific units in a multi-unit building were controlled.

This creates a potential econometric pitfall: if we were to inadvertently code some controlled units

as never-controlled, our data analysis could erroneously detect spillovers that reflect nothing more

1 9 This database was constructed by double-entry hand-keying the four bound volumes of the 1995 Cambridge

Assessor's Commitment Books, which were provided to us by the Cambridge Historical Commission.
2 0 While we filed our own FOIA request with the City of Cambridge, we ultimately utilized the file obtained by

David Sims through an earlier FOIA because its coverage appeared more complete.
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than appreciation of formerly controlled units after decontrol. To be conservative, we code all units

on a map-lot as rent controlled if any unit at that map-lot was controlled in 1994. It is therefore

very unlikely that there are controlled units that we fail to capture. Conversely, when measuring

the rent control intensity of a given geographic area, we calculate the fraction of residential units-

rather than structures-that are rent controlled. 21 This is also conservative in that it prevents us

from overestimating units' exposure to other controlled properties.

Figure 1 illustrates the prevalence of rent control in Cambridge, with dark circles indicating con-

trolled properties. In 1994, 22 percent of all residential structures and 38 percent of residential

units were subject to rent control. The dense neighborhoods close to the two major universities

and proximate to the subway that bisects Cambridge from east to northwest contain high concen-

trations of renters and multi-unit structures and thus had relatively high rent control intensity. The

largely owner-occupied area of Southwestern Cambridge features a higher fraction of single unit

houses and hence had relatively low rent control intensity. It bears emphasis that our statistical

analysis abstracts from these gross geographic differences in rent control intensity by comparing

changes in residential prices among properties that differ in their proximity to controlled units but

lie within relatively small neighborhoods.

We append two databases to analyze the impact of rent decontrol on market capitalization, the

first enumerating property assessments and the second enumerating real estate transactions. The

1995 and 2005 Cambridge Assessor's files, which report property valuations from 1994 and 2004,

provide the assessed appreciation of each extant property from the year prior to rent decontrol

to nine years thereafter. The second is a commercial database provided by the Warren Group

that enumerates all changes in ownership of residential properties for the years 1988 through 2005.

Sourced from records of deeds, these data log each real estate transaction, including sale price,

address, map-lot, number of bedrooms and bathrooms, lot size, year built, and property type. We

exclude commercial properties such as apartment buildings from the analysis because such sales

are rare and transact at heterogeneous prices that are in some cases extremely high.

Assessments and transactions provide complementary means to measure the capitalization of rent

control's end. Assessments, our preferred measure, contain the universe of residential properties

along with assessed market values at two points in time, immediately prior to rent control removal

and ten years later. Assessments may offer a lagging indication of residents' changing willingness

2 1Our data always allow us to calculate the share of units in a building that are controlled, though we often cannot
determine which specific units these are.
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to pay for locations, however, and could differ from market valuations due to discretionary aspects

of the assessment process. The sales data, in contrast, include both market prices and a rich set of

property characteristics for locations where transactions take place, and, because they are available

annually,provide a clearer picture of the trajectory of property price changes. Only a small percent-

age of residential units transact each year, however, and hence the sales data contain information on

an incomplete and potentially non-representative set of residential units (we subsequently analyze

whether rent control impacted the composition of transacted properties).

Table 2 presents descriptive statistics for the assessed Cambridge residential houses and condomini-

ums used in our analysis, comprising 15,475 properties in 1994 and 17,505 in 2004.22 Slightly more

than half of these properties are houses. Rent controlled properties account for 29 percent of all

residential properties, with condominiums comprising the substantial majority. Because the vast

majority of Cambridge houses were and are owner-occupied, only 12 percent of houses were ever

subject to rent controls. 23 House prices rise substantially in real terms during our sample period:

the average 1994 assessed value of a decontrolled condominium is $116,000, while it is $351,000

in 2004-an increase of 111 log points. 24 Houses typically have higher assessed value than condo-

miniums, and in both periods, decontrolled houses and condominiums have lower values on average

than never-controlled houses.

2.3.2 Measuring rent control intensity (RCI)

Gauging each residential property's rent control exposure requires a metric that specifies which

nearby units should be counted in the unit's reference set-that is, to which units it is 'exposed'-

and how the rent control status of these reference units should be aggregated into an exposure

index. For most analyses, we calculate the rent control status of the surrounding units to which

a given property i is exposed by summing the number of controlled units within a surrounding

geography g and dividing it by the sum of all residential units J. (controlled and non-controlled)

2 2 Note that a property may contain multiple units, e.g., a multi-family house.
2 3The house and condominium designations in Table 2 reflect the property's residential category at the time of

assessment.
2 4 Prices are deflated by the Consumer Price Index for All Urban Consumers, Series Id CUUROOOOSAOL2. This

index is an average for U.S. cities and excludes the price of shelter since we do not wish to confound the outcome
measure, house price appreciation, with the numeraire.
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in that geography:2 5

RCi~) xY> RCj (g).
RC ~.g j54

In a subsequent sensitivity analysis, we calculate each unit's rent control exposure as an exponen-

tially declining function of its distance from all other controlled and never-controlled properties in

the city.

The second input into the exposure measure is the choice of a surrounding geography. One potential

set of geographies is supplied by the U.S. Census Bureau, which subdivides the area of cities into

three increasingly fine geographic units: tracts, block groups and blocks, of which there are 30,

89, and 587, respectively, in Cambridge containing at least one assessed house or condominium. 26

While these pre-defined Census geographies have the virtue of allocating Cambridge land parcels

into exhaustive, mutually exclusive geographic units, they have two substantial drawbacks for our

analysis. One is that the Census geographies do not necessarily correspond to any specific notion of

neighborhoods or proximity. For example, Census blocks frequently divide streets down the center,

so that units on opposite sides are assigned to different blocks, which is clearly undesirable for

measuring spillovers from nearby properties. The second is intrinsic to any allocation of geography

into non-overlapping parcels: units closer to the perimeter of a geography are treated differently

from units located in its center. For example, for a residential unit located on the northern edge

of a geography, its neighbors 50 feet to its south will contribute to the unit's rent control exposure

measure whereas its neighbors 50 feet to its north will not. By contrast, for a unit located in

the center of a geography, its equidistant neighbors contribute equally to its rent control exposure

measure.

To avoid both drawbacks of using fixed geographies, our preferred measure of a unit's rent control

exposure is the fraction of residential units within a fixed straight line radius of 0.10, 0.20, and 0.30

miles of that unit that were controlled as of 1994. This radius exposure construct non-prejudicially

selects the residential units that are physically closest to the reference unit 27 To provide a feel for

2 5Although our analysis of assessed values and transactions excludes apartment buildings, both controlled and

never-controlled apartments contribute to the numerator and denominator of our exposure measure. Each rental unit

within a multi-family house is counted separately in both the numerator and denominator. The RCI determination

for a condominium structure excludes all other units in that structure.
26 These units have average land areas of 0.22, 0.07, and 0.01 square miles respectively in Cambridge, housed an

average of 3,145, 986, and 135 residents in 1990, and contained a mean of 1,292, 428, and 63 residential units in 1990.

Additional details on the size, population, and number of structures and units in Census geographies are contained

in Table A3.
2 7 Because we calculate RCI using only Cambridge properties, the radius-based RCI for properties close to the

City's edge excludes nearby units that lie outside the city. To address this source of potential mis-measurement, we
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the area encompassed by these radii, Figure 1 plots concentric rings of appropriate scale overlaid

on the Cambridge map.

Our main estimates are based on rent control intensity measured at a radius of 0.20 miles, which

corresponds to about 0.13 square miles-an area larger than a block group but smaller than a tract

in our sample. For the typical residential property, 34 percent of the surrounding units within a

0.20 radius are rent controlled. As shown in Table 2, condominiums are in neighborhoods with more

rent control than houses, and both decontrolled houses and condominiums tend to be in more rent

control intensive neighborhoods than their never-controlled counterparts. For instance, in 1994, 32

percent of units surrounding a typical never-controlled condominium are controlled, compared to

45 percent for decontrolled condominiums. There is also considerable cross-sectional variation in

rent control intensity. Across all assessed properties, the standard deviation of RCI measured at

0.20 miles is 17 percentage points, and the range of the RCI measure spans from 0 to 72 percent.

2.4 Capitalized Effects of Rent Decontrol: Evidence from Assess-

ments

Our illustrative model suggests that the capitalization of rent decontrol should accrue through three

channels: the direct effect on decontrolled properties of the elimination of price controls and con-

dominium conversion restrictions and associated investments; the indirect effect of decontrol on the

desirability of neighborhoods in which controlled properties were located, stemming from improve-

ments in neighborhood amenities-e.g., better upkeep, more desirable neighbors-and potentially

affecting the market value of both decontrolled and never-controlled properties; and finally, broader

increases in the desirability of Cambridge as a residential location, which may accrue city-wide.

Our econometric model recognizes each of these channels. We fit equations of the form:

log(YA) = +yg + 6t + 'Xi + A RCj + A2 - RCIi + p1 -RCj x Postt + p2.RCIj x Postt + Eigt, (2.2)

where YA is the real assessed value of property i in neighborhood g in year t, y, are fixed effectsigi

representing different geographies, 6t are year effects, and Xi are property characteristics such as

have verified that our findings are robust to discarding properties on all Cambridge block groups that directly abut
the towns of Somerville, Arlington, Belmont, Watertown (except those that border the Charles River, the sizable Mt.
Auburn Cemetery, or the light rail system in the southeast of Cambridge).
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housing type (condominium, single family, two-family or three-family house). The dummy variable

RCi is equal to one for properties that were rent controlled in 1994 (prior to the law's repeal), while

the Post indicator is equal to one for 2004. Of central importance to the analysis, the variable RCI

measures the fraction of units nearby to i that were controlled as of 1994. Our main specifications

code "nearby" units as those within a 0.20 mile radius of a given property, but we subsequently

explore alternative definitions. Recognizing that real estate prices of nearby properties are not

independent, we generally cluster the standard errors at the level of Cambridge block groups.

The coefficient p1 estimates the direct effect of rent control removal on the assessed value of formerly

controlled properties by contrasting the change in value of controlled versus never-controlled prop-

erties following the end of rent control, holding constant unit characteristics, cross-neighborhood

differences in residential real estate prices and over-time, and city-wide changes in residential real

estate prices. The coefficient p2 estimates the indirect effect of rent decontrol on the value of decon-

trolled and never-controlled properties by contrasting changes in the value of units in geographies

with high rent control intensity relative to those with low rent control intensity, again holding

constant property characteristics, neighborhood effects, and time effects. Finally, any effects of

decontrol that accrue city-wide-that is, are not limited to decontrolled properties or the neigh-

borhoods in which they were located-are absorbed by the time effects 6t. Since these time effects

soak up any macroeconomic factor affecting the value of Cambridge's housing stock in this time

period, we do not interpret the evolution of 6 t as a causal effect of rent decontrol. 28

For p1 and P2 to provide unbiased estimates of the direct and indirect effects of rent decontrol on the

market value of residential properties, it must be the case that the elimination of rent controls-

and resulting neighborhood level changes-must not have been fully anticipated by households

and landlords. This appears plausible in light of the fact that the rent control law was narrowly

eliminated (51 to 49 percent) by a state-wide referendum in which a large majority of Cambridge

residents voted against rent decontrol. 29 Additionally, our identification requires that conditional

on detailed geographic and time effects. the variable representing a property's exposure to rent

decontrol (RCI xPostt) is uncorrelated with other unmeasured factors within neighborhoods that

28We hesitate to interpret the coefficients on the RC main effect and RCI x RC (coefficients Al and A2) as causal
effects of rent control status or rent control intensity since these variables will also pick up unobserved factors that
determined rent control status and rent control intensity at the time that rent control was adopted in 1970 (for
example, the age of the residential housing stock and the fraction of nearby units that were owner occupied versus
rented).

29,To the degree that rent decontrol (and any resulting neighborhood effects) were foreseen by incumbent and
potential owners, buyers and renters, these effects would substantially capitalize into values before rent control was
removed, which would work against our finding either a direct or indirect effect of rent decontrol on prices.
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affect local house prices., change contemporaneously with rent control removal, but yet are not

caused by the elimination of rent control. It is difficult to state precisely what these factors would

be since the most obvious candidates (e.g., improvements in neighborhoods) are plausibly caused

by rent control removal. We subsequently present event-study graphs with the transaction price

sample that strongly suggest that the effect of rent control intensity on house prices is not present

prior to the elimination of rent control and evident thereafter. In many instances, we also estimate

a richer version of equation (2.2) in which we interact the RCI measure with both the rent control

main effect and the RC x Post term. This triple-difference specification allows the indirect effect of

rent control intensity to differ between controlled and never-controlled properties in both the rent

control and decontrol eras.

The end of rent control in 1995 coincided with a period of nationwide house price appreciation,

which raises the possibility of confounding price trends. The time effects 6t in our estimating

model will absorb these changes to the degree that they affect the overall price level of Cambridge

housing. They will not absorb any differential appreciation in rent control-intensive neighborhoods,

which might hypothetically occur if, for example, the U.S. housing boom of the early 2000s spurred

an influx of lending (and associated price appreciation) in rent control-intensive neighborhoods

(Mian and Sufi, 2009). We address this concern by estimating specifications containing tract-by-

year interactions, in addition to 89 geographic main effects for Cambridge block groups, thereby

allowing the rate of appreciation to differ across Census tracts.

2.4.1 Appreciation of decontrolled properties

Table 3 presents baseline estimates of equation (2.2) for the causal effect of rent decontrol on

assessed values of decontrolled properties from 1994 to 2004 using the full set of 15,475 residential

properties. Column 1 reports a parsimonious specification containing only an RC main effect, an

RC x Post indicator, and a set of dummies for year-of-sale and structure type (condominium, two

family house, three family house). Prior to rent decontrol, the assessed value of controlled (RC)

properties averaged 50 log points below the assessed value of never-controlled (non-RC) properties.

3 0 The RC main effect estimates do not admit a causal interpretation, as noted above. A property's rent, control
status in 1994 is a function of the property's year of construction and its residential and occupancy status (rental vs.
owner-occupied) as of 1971, which in turn are likely to be correlated with the fixed characteristics of the property,
its maintenance and appearance, as well as the desirability of its surrounding neighborhood. While the rent control
main effect is robustly large and negative in all cases, this may reflect omitted property attributes and not the causal
impact of rent control.
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Following decontrol. this gap closed by 22 log points. Columns 2 through 4 refine the precision of

the comparison by adding a set of dummy variables that sweep out cross-neighborhood differences

in price levels and trends. Column 2 adds block group effects, which absorb average assessed

values within narrow block groups (averaging 0.07 square miles). Here, the model is identified by

contrasting the change market value of decontrolled and never-controlled units within block groups.

Column 3 adds tract by year dummies, thus allowing each of the 30 Census tracts in Cambridge

(averaging 0.22 square miles in area) to have a different overall appreciation rate. The final column

includes a fixed effect for each residential location or map-lot (a total of 9,497 map-lots). This

demanding specification, which absorbs the RC main effect, contrasts the map-lot level change in

assessed values between map-lots that contained controlled units versus those that did not, again

allowing for different price trends across 30 Census tracts.

Across all specifications. the rent control main effect is highly robust and highly stable. demon-

strating that decontrolled units appreciated substantially relative to never-controlled properties.

These initial estimates do not distinguish, however, between the direct and indirect channels that

may jointly contribute to this appreciation. In particular, since decontrolled properties are typ-

ically located in neighborhoods with above average levels of rent control intensity (Table 2), the

RC x Post term estimated above captures a combination of direct decontrol effects and indirect

(micro-neighborhood level) effects stemming from the greater desirability of formerly rent control-

intensive locations. Our next set of estimates distinguishes these two effects.

2.4.2 Direct and indirect effects of rent decontrol

Table 4 augments the simple difference-in-difference models above with a measure of the rent con-

trol exposure of each residential property (denoted RCI and calculated using a 0.20 mile radius),

as well as an interaction term between the RCI measure and a post-1994 indicator variable. This

term measures the degree to which properties with greater rent control exposure saw differential

appreciation following decontrol. The inclusion of the RCI and RCI x Post measures also changes

the interpretation of the RCI x Post main effect. Whereas previously this variable measured the

differential appreciation of decontrolled versus never-controlled properties averaging (implicitly)

across more and less rent control-intensive areas, the RCI x Post coefficient in the augmented speci-

fication measures the differential appreciation of RC relative to non-RC properties in a hypothetical

location with no other surrounding controlled properties (that is, RCI = 0).
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The base specification in column 1, which contains only year of sale and structure type dummies

in addition to the RC and RCI terms. finds that properties with higher rent control exposure had

lower value in the decontrol era, and that this differential was substantially reduced in the period

following decontrol. Specifically, the point estimate of -0.58 on the RCI measure indicates that a

property at the mean level of rent control exposure of 0.32 was assessed at approximately 19 log

points below a property with zero exposure. We do not take the main effect of the RCI variable

to be causal, however, since it is likely to be correlated with the many factors that determined

which properties were controlled in 1971. Conversely, the coefficient of 0.33 on the RCI x Post

indicator implies that 56 percent of this price differential was erased in the years after decontrol.

Under our identifying assumption that these unobserved factors are quasi-fixed or are not spuriously

correlated with rent control intensity across local areas, the RCI x Post interaction may be viewed

as a causal estimate of the indirect effects of rent control on the market value of surrounding units

(both formerly and never-controlled). The fact that both the RC main effect and the RCI x Post

coefficients fall in magnitude relative to the Table 3 estimates (which exclude the RCI measure)

reveals that the lower market value of RC properties stems in part from the fact that they were

situated in more rent control-intensive locations.

We explore the robustness of these initial relationships by applying the control variables used above:

block group fixed effects, tract-year effects, and map-lot fixed effects. While these covariates reduce

the precision of the RCI main effect, the point estimates remain large and statistically significant.

The coefficient of primary interest (RCI x Post) increases in magnitude with the inclusion of tract-

year effects. Column 3 obtains an estimate for the RCI x Post coefficient of approximately 55 log

points, while in column 4 the estimate is 48 log points, implying that a residential property at the

75th percentile of rent control exposure gained approximately 13 percent more in assessed value

following decontrol than a property at the 2 5th percentile of exposure. 31

These first four estimates constrain the indirect effects of rent control to be identical for never-

controlled and decontrolled units. In practice, these effects may differ. Indeed, if the indirect

effect were only present for decontrolled units, this would suggest that the indirect effect is not

operating through the hypothesized localized amenity channel (which we would expect to affect

both property types). The models in columns 5 through 7 demonstrate that both decontrolled

and never-controlled properties benefit from the indirect effect of rent control removal. In the

3 'The 25th and 75th percentiles of the RCI distribution are 0.464 and 0.199. The implied interquartile effect is

0.126 = 0.475 x (0.464 - 0.199).
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most demanding specification in column 7, which includes map-lot fixed effects and tract by year

dummies, we estimate an RCI x Post coefficient of 0.42 for never-controlled properties and 0.61 for

decontrolled properties. Both are significantly different from zero, and the data do not reject the

hypothesis that these coefficients are of the same magnitude.

Notably, the models that allow for separate indirect effects for controlled and never-controlled

properties also find that the RC discount is only approximately half as large as was implied by

the earlier models that do not include interaction terms between RCI and rent control status-

approximately 23 rather than 48 log points-and that this RC discount was fully offset by the

post-decontrol appreciation of decontrolled properties. By implication, approximately half of the

estimated RC discount detected in columns 1 through 3 of the table is accounted for by the fact

that RC units were situated in more rent control-intensive locations, and that rent control exposure

differentially lowered their value. While our conceptual model is silent on why the indirect effect of

rent control is greater for controlled than never-controlled properties, one speculative explanation

is that deferred maintenance and poor property management were more acute in locations where

a larger fraction of properties was controlled. This conjecture would also be consistent with our

finding of greater relative appreciation of decontrolled than never-controlled units in rent control-

intensive locations-though as above., this differential is not statistically significant.

2.4.3 Variation across property types

Table 5 explores the potentially differing consequences of rent decontrol for the assessed values of

houses and condominiums. 3 2 Across the two panels, the direct impact of rent decontrol on controlled

houses is substantially smaller than the corresponding estimate for condominiums, a pattern that

may be due to the greater extent of upgrading at controlled condominiums. 3 3  For residential

houses (upper panel), we estimate an indirect effect coefficient on the value of residential houses

of approximately 20 log points, implying that a house facing the mean level of RCI of 0.37 would

experience an additional 7.4 log points of appreciation relative to a non-exposed house following

rent decontrol. When allowing for separate indirect effects for decontrolled and never-controlled

houses (columns 3 and 4), we find that the indirect effect for decontrolled houses is 20 to 50 percent

3 2 To simplify exposition, we display only the interaction terms between post-decontrol and the RC and RCI terms,
suppressing the included main effects of these variables.

3 3 As discussed in section 2.7, Cambridge building permit data indicate that annual city-wide investments in
decontrolled condominiums increased by 206 percent in the post versus pre-decontrol period while the corresponding
increase for decontrolled houses was 120 percent (Table Al).
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larger than for never-controlled houses, although we are unable to reject the equality of the two

regression coefficients. Adding 9, 497 map-lot fixed effects to the regression model in column 4

decreases precision such that the indirect effect estimates for houses become insignificant, though

magnitudes are only modestly affected.

The parallel analysis for condominiums in the lower panel finds significant indirect effects of rent

decontrol on both decontrolled and never-controlled condominiums. The indirect effects for con-

dominiums are greater than for houses, although standard errors are also considerably larger. The

point estimate of 0.49 in column 2 implies differential appreciation of 18.2 log points for a condo-

minium at the mean level of rent control exposure relative to a non-exposed unit. As is the case

with houses, adding a map-lot fixed effect for each land parcel containing condominiums (1, 450

fixed effects) reduces or eliminates the statistical significance of the indirect effect point estimates.

The number of condominiums in Cambridge rose by one third between 1994 and 2004, with al-

most half of this rise due to the conversion of existing houses to condominiums. This substantial

change in the housing stock implies that part of the rise in assessed values may be due to capital

improvements in residential units, particularly condominiums, rather than solely changes in the

value of ownership stemming from decontrol (e.g., the option to charge higher rents or convert the

unit to owner-occupied status). Notably, this concern applies only to the direct effects estimates

of rent decontrol on decontrolled units, which may conceivably combine both the investment and

ownership channels. For the indirect effects we measure, this source of variation-spillovers from

local housing investments spurred by rent decontrol-is not a concern; indeed, this is one of the

key causal channels through which we hypothesize the indirect effects operate. 34

To explore the importance of the investment channel, we undertake two exercises. We first re-

estimate the main models for direct and indirect effects of decontrol on houses and condominiums

while excluding all units that changed usage categories, e.g. converted condominiums, between

1994 and 2004. Then, in section 2.6, we directly explore the role of investments using Cambridge

residential building permit data.

When dropping converted properties from the regression estimates in the final two columns of Table

5. we find little effect on the direct or indirect effect point estimates for houses. This is sensible since

3 4 The converse concern applies, however: if localized spillovers spur additional investments at decontrolled units,
this may contribute to the estimated direct and indirect effect, meaning that our interpretation of the direct effect
estimate is unduly restrictive. However, to the degree that these spillover-induced investments are greater in more
rent control-intensive locations, as we anticipate, the indirect effect coefficient should correctly capture this channel.
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only one in ten houses changed status during the ten-year window. Consistent with our reasoning

above, however, the estimated direct effect of rent decontrol on condominium values is substantially

reduced when converted properties are excluded-falling by as much as 35 percent between columns

3 and 5-while the indirect effects estimates are substantively unaffected.35 These results suggest

that the direct effects estimates capture both capital improvements and changes in ownership value

spurred by decontrol, particularly for condominiums. The indirect effects estimates, however, are

not affected (conceptually or empirically) by abstracting from the substantial investments made in

converted units.

2.4.4 Testing alternative measures of rent control intensity

Our estimates so far employ a measure of rent control intensity calculated over a 0.20 mile radius

from each Cambridge map-lot. We explore the sensitivity of the results to this choice by employing

two sets of alternative measures, one that varies the geography over which rent control intensity is

calculated, and one that varies how the weight given to surrounding properties decays with distance.

These robustness tests employ the final (most exhaustive) specification in Table 4, which includes

fixed effects for each individual map-lot and tract-by-year dummies that account for differing rates

of property appreciation across all thirty Cambridge Census tracts.

The upper panel of Table 6 reports estimates using RCI measures calculated at differing geographies.

The first three columns calculate RCI at radii of 0.10, 0.20 and 0.30 miles, respectively (hence,

column 2 replicates our main specification from Table 4). Column 4 instead uses an RCI measure

calculated at the level of 587 Census blocks. Distinct from the radius-based measures, Census

blocks comprise a set of contiguous, non-overlapping geographic subdivisions. These blocks may

not, however, correspond to any specific notion of neighborhood or proximity, particularly since

residential units on opposite sides of the same street are often assigned to different blocks.

The direct impact of decontrol is relatively insensitive to the geography of the RCI measure. Across

specifications, this effect averages 13 to 15 log points, which is generally not significant.3 6 The

indirect effect estimates are somewhat more sensitive. The largest indirect effect estimate comes

from the 0.30 mile radial RCI measure, though this effect is statistically indistinguishable from

3 5 This is logical since excluding converted units from the regression should not eliminate the indirect effect of

investments made at these units on the value of non-converted units.
3 6 As shown in Table 4, the RC main effect is generally a much smaller and less precise in models that include three

way interactions between the RC, RCI and Post variables, reflecting the fact that prior to rent decontrol, controlled

units were valued at the greatest discounts in more rent control-intensive neighborhoods.
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the 0.20 mile measure. Estimates using the Census block group based RCI measure are generally

insignificant, which is consistent with our observation that block boundaries do a poor job of

capturing neighborhood proximity.

An important conceptual limitation of the radius-based measure is that it puts equal weight on each

residential unit within a specified radius of a given map-lot, while simultaneously according zero

weight to all other units in Cambridge. It seems plausible, however, that the interactions among

residential units decline with distance, so that nearby units matter more for a unit's rent control

intensity as perceived by occupants and potential buyers, while more distant units matter less.

To explore this idea empirically, we employ an alternative measure of rent control intensity that

places greatest weight on nearby units and less weight on more distant units. Specifically, we use

an exponential decay function to calculate the RCI of each unit i as a function of its distance from

all other RC (rent controlled) units j : i in Cambridge, where the weight given to each unit j is

declining in its distance from i. Let dij be the distance between units i and j measured in miles

and A < 0 be a negative constant, J be the complete set of residential units in Cambridge, and RCj

be a dummy variable equal to 1 if unit j is rent controlled and 0 otherwise. Our distance-based

measure of RCIA is:
RCj - x Adi

CI" = > RC3  .(2.3)

Like the primary RCI measure, the measure RCIA lies on the unit interval. The difference between

RCIA and RCI is that the weight given to surrounding units in RCJV is a continuous, declining

function of distance from i whereas for RCI, the weighting function is flat over the area of the

designated radius, and then is equal to zero outside of that area.

The lower panel of Table 6 reports estimates of this decay-based RCI measure using values of A

ranging from -12 to -3, where lower (more negative) values of A give greater weight to nearby

units and higher values of A give greater weight to more distant units. To illustrate the operation

of our weighting function, the first several rows of the panel display the weight accorded to units at

0.10, 0.20, and 0.30 miles from each reference unit relative to units at 0.01 in the RCI calculation.

All four values of A accord a weight that is close to unity to properties within a radius of 0.01 miles

and under, whereas more negative values of A places substantially less weight on distant units. 3 7

For example, at A = -12, units at 0.20 and 0.30 miles receive weights of 0.10 and 0.03 relative

to the weight at 0.01 miles, respectively. In contrast, with A = -3, these units receive relative

3 7 Units at distance zero always receive a weight of one since e = 1.
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weights of 0.57 and 0.42, which are substantially greater. The estimated direct and indirect effects

of rent decontrol on residential property appreciation are both stable and robust across the four

parameterizations of the decay function. In all cases, the indirect effects estimates are statistically

significant for both decontrolled and never-controlled properties, and are comparable in magnitude

to the radius-based measures-though if anything, the decay-based estimates are more robust.

One pattern evident in both panels of Table 6 is that the estimated magnitude of the indirect

effect rises when we use an RCI measure that gives greater weight to more distant properties (by

employing a wider radius or a more gradual decay function). A likely explanation for this pattern is

that employing a broader RCI measure provides more information about the extent of a unit's RCI

exposure; that is, a given high (or low) RCI value obtained over a larger radius (or slower decay

function) implies that the relevant unit is more (or less) deeply surrounded by other controlled

units. This should in turn imply a larger indirect effect of RCI on market values. Logically, the

variance of the RCI measure declines as its scope broadens as shown in the lower row of each panel,

so the size of the standardized effect rises less rapidly than do the RCI point estimates.38

Alongside the robustness tests in Table 6, we have in the online appendix explored a variety of

alternative and complementary identification strategies that probe the key results. One potential

limitation of our primary approach stems from the non-parallelism between the RCI measures and

the geographic dummy variables used as controls. While the radius-based RCI measure in many

cases partially overlaps multiple block groups, each map-lot in the regression is associated with

only a single block group fixed effect. To explore sensitivity to this choice, we created a set of

"rolling" block fixed effects. For each map-lot, we identify each Census block (of which there are

587) whose centroid lies within 0.2 miles of the map-lot and assign these block dummies to the

map-lot. These non-mutually exclusive block fixed effects are then used in place of the conventional

block group fixed effects in the regressions (see Table B1). We perform an analogous exercise for the

exponential decay specifications, where all block dummies in Cambridge are fractionally assigned

(summing to unity) to each map-lot as a decaying function of the distance between the map-lot and

block centroids (see Table B1). Motivated by the fact that our radius-based rent control intensity

cannot account for the characteristics of non-Cambridge properties bordering the city, we perform

a third specification test that obviates this issue by excluding all Cambridge block groups that

border non-Cambridge properties (see Table B2). All three of these sensitivity exercises, reported

38At maximal radius, the RCI measure is identical for all Cambridge units save for each map-lot's own effect on
the RCI measure (since units are not counted in their own RCI measures).
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in the online appendix, yield estimates that are highly comparable in magnitude and precision to

our primary estimates above.

2.5 The Time Path of Rent Decontrol Capitalization

Because our assessor data covers only two points in time, 1994 and 2004, they do not shed light

on how residential real estate prices evolved prior to decontrol or in the years thereafter. We turn

to housing transaction data to complete this picture. We begin with simple "event study" plots of

the main (ffect of rent control status on real estate transactions, estimated with the equation

2005

log(Yig ) = 1g+ 6t + /3'Xi + > (RCi x 6t)p1.t + eigt, (2.4)
t=1988

where Y S is the real sales price of residential unit i located in block group g in year t, the vectorsigt

-xg and 6t contain fixed effects for block groups and year of sale, and the X vector contains a rich set

of property characteristics, sourced from deed records and summarized in Table A4, including the

count of rooms, bathrooms, and bedrooms, the unit's interior square footage, a quadratic in lot size

and a dummy for lot size equal to zero (commonplace for condominiums), and a quadratic in the

log of property age and a dummy for missing year built. All controls are interacted with dummies

for structure type (condominium, single family home, multi-family home) since the hedonic value

of these attributes may differ across types, and structure type dummies are further interacted with

quadratic time trends to allow for differing price trends. Standard errors are clustered at the block

group level. Figure 3 plots the key coefficients (pi,t) from equation (2.4), which correspond to

by-year estimates of the rent control price differential measured relative to the omitted reference

year of 1994.

The relative price of RC properties increased by roughly 10 log points over the first three years

following decontrol, declined very modestly between years three and four, and then rose almost

continuously thereafter. By the end of the sample in 2005, RC properties had increased in market

value by almost 30 log points relative to nearby non-RC properties with similar characteristics. The

increasing cumulative effect of decontrol on transaction prices parallels the evidence above on the

evolution of resident turnover, which also rose immediately following decontrol and then generally

trended upward through the end of the sample window. Both results suggest that changes in the

desirability of locations and neighborhoods induced by decontrol likely took years to unfold.
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We plot the indirect effects of rent decontrol on the value of never-controlled and decontrolled

properties in Figure 4 using a specification analogous to equation (2.4) augmented with RCIxYear

terms. 39 Indirect price effects of decontrol on the sale prices of never-controlled properties begin to

accumulate immediately following decontrol, attain statistical significance by the fifth year following

decontrol (1999), and continue to rise through the end of the sample, yielding a point estimate of

0.60 log points in 2005 (p < 0.01). Indirect effects estimates for decontrolled properties (panel

II) offer a similar picture of post-decontrol appreciation: the indirect effect for decontrolled units

varies in sign and is generally insignificant in the pre-decontrol years; following decontrol, the point

estimates are strongly positive in 10 of 11 years and are statistically significant at p < 0.10 in 7

of 11 years. Though the event study plot is substantially noisier for decontrolled than for never-

controlled properties, this likely reflects the fact that there are only half as many transactions of

decontrolled units between 1988 and 2005 (4,802 relative to 9,987).

Table 7 explores these relationships in further detail. The first three columns provide estimates

of the direct effect of decontrol on the market value of formerly controlled properties. The esti-

mates range from 6 to 11 log points as we add block group fixed effects and controls for property

characteristics (column 2) .40 Taking advantage of the additional years of data available from the

transactions sample, column 3 adds linear and quadratic trends for each of the 30 Census tracts

(also interacted with property types) to allow for the flexible evolution of real estate prices over

time within fine geographies. These controls have little impact on magnitudes or precision. Subse-

quent columns introduce the RCI measure to estimate indirect effects. The coefficient of interest

in column 4 (RCIxPost) is 21 log points, which is in the lower range of estimates obtained using

the assessor's sample (Table 4). As Figure 3 suggests, however, both the direct and indirect effects

of rent decontrol cumulate over the sample window, so that the average post-decontrol effect is

smaller than the long run effect estimated by the long difference specifications used with the Asses-

sor data. Adding flexible geographic trends (column 5) slightly reduces the indirect effect estimate

and increases its standard error.

Columns 6 and 7 report estimates where the indirect effect of rent control exposure on prices is per-

mitted to differ between decontrolled and never-controlled properties. The indirect effect estimates

39 The specification is estimated separately for never-controlled and decontrolled units and hence RC x Year effects

are not included.
4 0That the addition of property-specific covariates in column 2 substantially reduces the magnitude of the baseline

price differential between RC and non-RC properties (from 30 to 20 log points) is consistent with the data summarized

in Table A4, which indicates that RC properties are situated on smaller lots and in older structures, and in the case

of condominiums, provide less square footage than non-RC properties.
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are statistically indistinguishable between decontrolled and never-controlled units, though they

are generally larger for decontrolled properties and more precisely estimated for never-controlled

properties (consistent with Figure 4). In the final column. which includes all prior covariates plus

tract-specific quadratic trends. the point estimates for the indirect effects are no longer significant

at conventional levels, though the point estimates are little affected.

Echoing the results from property assessments, the transaction data models suggest that the price

penalty for rent control exposure was substantially greater for controlled than never-controlled

houses in the rent control era. Accounting for this differential in columns 5 through 7 reduces

the magnitude of the estimated RC price discount prior to decontrol. For example, the RC point

estimate of -17 log points in column 6 is quite comparable to the RC point estimates in Table

4 that use property assessments and allow for separate RCI slopes for RC and non-RC units.

While the direct effect of decontrol on RC units appears modestly smaller in magnitude in the

transaction-based models than in the assessinent-based inodels. this again likely reflects timing,

with the assessment-based models using a 10-year long change and the transaction-based models

using a series of annual observations.

The transaction sample also provides an opportunity to explore the concern that assessed real estate

values may not accurately reflect market prices. We examined this issue by constructing a matched

assessor's sample for properties that transacted in 1994 and 2004, and we used this matched set to

perform parallel estimates of the direct and indirect effects of decontrol on assessed and transacted

property values in Table A5. These models yield a close match between the estimated decontrol

impacts on assessed values and transaction prices and, moreover, the match is particularly close

for houses. 4 1 This comparison suggests that the transaction and the assessor's sample provide

complementary and broadly consistent measures of valuations.

We also explored the possibility that rent decontrol had positive indirect effects on the market value

of properties close by Cambridge, focusing on the adjoining town of Somerville, Massachusetts. For

this exercise, we assembled residential transaction records for Somerville analogous to those used

above for Cambridge, limiting the sample to residential units located in Census tracts and block

groups that abut either the Somerville-Cambridge border (North of Cambridge) or the Somerville-

4 An additional complexity in comparing the assessed versus sale values of condominiums is that we are unable to

determine which specific unit among the assessed condominiums units at a map-lot is transacted. Consequently, we

include matched assessor data for all units at the map-lot where one or more unit transacts. This leads to a sample

of 7,897 condominium assessments matched to the 937 units that were transacted in 1994 or 2004.
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Medford border (North of Somerville). Comparing properties along these two Somerville borders,

in Table A6 we find robust evidence that Cambridge-bordering properties appreciated by 7 to 10

percent more than did Medford-bordering properties with the same observable characteristics. This

pattern is consistent with the hypothesis that improvements in Cambridge neighborhood amenities

following decontrol also increased the desirability of locations bordering Cambridge.

The online appendix reports on additional robustness tests that investigate price appreciation in

neighboring towns, explore the potential importance of the increase in subprime credit in lower-

income Cambridge neighborhoods during this time period, and test for correlations between rent

control-intensity and changes in the composition of Cambridge properties that transact. These

many specification tests. in combination with our prior estimates using assessed property values,

confirm that alongside its direct effects on the market value of formerly controlled units, rent

decontrol had robust indirect impacts on market values. Both decontrolled and never-controlled

properties in Cambridge that were more exposed to controlled units saw differential appreciation

in the post-decontrol regime. Before benchmarking the economic magnitudes of these direct and

indirect effects, we briefly consider one plausible channel through which they may have operated:

property investments.

2.6 The Impact of Rent Decontrol on Property Investments

Cambridge experienced an overall investment boom after the end of rent control. Total permit-

ted investment at houses and condominiums rose from $83 million in the period 1991-1994 to

$455 million in the period 1995-2004, while annual investment expenditures roughly doubled at

three of four property types-decontrolled houses, never-controlled houses, and never-controlled

condominiums-and roughly tripled at decontrolled condominiums (Table Al). While fewer than

one in twenty-five residential units receives a building permit annually, this fraction increased sub-

stantially following decontrol-by 17 and 7 percent among never-controlled and decontrolled houses,

4 2 Somerville is bordered by Cambridge, Arlington, Medford, Everett, and Charlestown. Its two longest borders by
a considerable stretch are those with Cambridge in the South and Medford in the North. The transactions data we
assemble are also sourced from the Warren Group files, used for the price analysis immediately above, and contain
the identical data elements and years of coverage.

4 3 As detailed in the Data Appendix, our analysis in this section draws on a database of all building permits issued
by the Cambridge Inspectional Services Department for years 1991 through 2005, including property address and
proposed expenditure. Since permits can be filed either for a structure (e.g., a multi-unit condominium complex)
or for any unit in a structure, we attribute a permit at a given structure to only one unit in that structure when
computing permitted units in Table Al.
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and by 38 percent and 45 percent among never-controlled and decontrolled condominiums. 44 Was

this increase in residential investment caused by rent decontrol?

An event study of the direct impact of decontrol on permitting activity (Figure 5) shows a sharp,

statistically significant differential rise in permitting activity and investments at decontrolled rel-

ative to never-controlled properties during the first five years following decontrol.4 5 Relative to

never-controlled units, the annual permitting probability at decontrolled units rose by 2.5 to 3.0

percentage points while permitted investment expenditures per decontrolled unit rose by $1,000-

$1,500 dollars. We find no evidence, however, that decontrol indirectly caused permitting or in-

vestments to rise in decontrolled or never-controlled units with higher rent control exposure (not

shown). Thus, any indirect effect of decontrol on residential investments that took place was not

localized to highly rent control-exposed units-though it remains plausible that decontrol helped

to spur the city-wide investment boom documented in Table Al. One factor that may obscure any

direct expenditure effect in our analysis is low statistical power: the vast majority of investment

expenditures are zero, while the mean and variance of expenditures at permitted units are high and

rising (Table Al, Panel III). However, unless increased investment occurred along dimensions that

do not require permits and hence are not observed in our data-e.g., repairs and maintenance that

are not structural and do not alter major systems the pattern of results appears to rule out very

large differential expenditure effects at formerly controlled units. We consider an upper bound on

the contribution of induced investments to post decontrol property appreciation in the next section.

2.7 The Capitalized Value of Rent Decontrol in Cambridge

How economically large are the direct and indirect effects of rent control estimated above? We

answer this question by benchmarking our estimates against the overall level of house price ap-

preciation in Cambridge using the Cambridge Assessor's Database as our measure of the value of

the housing stock. Panel I of Table 8 presents information on the assessed value of the Cambridge

housing stock in 1994 and 2004. Between 1994 and 2004, the assessed value of houses and con-
44 We cannot exclude the possibility that the incentives to file for investment permits, or to accurately report

investment costs on building permits, were affected by the rent control regime; for example, a landlord of a controlled
unit might have been more likely to declare investment activity to justify a price increase to the Rent Control Board.4 5 By matching the permit data to the structures file, we observe permitting activity at every structure and
hence our investment analysis sample is a balanced panel of structures by year, though the majority of permitting
observations are zeros. We regress investment expenditure on a rent control indicator and the rent control indicator
interacted with various post measures, controlling for year of sale dummies, and the number of units and its square
(for multi-unit structures), structure type and structure times post interactions.
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dominiums rose from $4.7 billion to $12.5 billion in constant 2008 dollars, a gain of 163 percent.

Notably, appreciation of decontrolled units exceeded that of never-controlled units by a substantial

margin: 219 percent relative to 152 percent, and these gains were larger among both decontrolled

houses (185 percent versus 147 percent) and decontrolled condominiums (237 percent versus 166

percent).

What was the contribution of rent decontrol to these gains? We compute the direct and indirect

contributions of rent decontrol to these valuations by applying our most conservative regression

estimate, which includes map-lot fixed effects and Census tract trends (Table 4. column 7), to

calculate the counterfactual price change at each location between 1994 and 2004, assuming that

rent control had remained in place. While the aggregate value of decontrolled houses and condo-

miniums increased from $785 million to $2.5 billion between 1994 and 2004, our estimates imply

that had rent control not been eliminated, this gain would have been $849 million smaller, with

$310 million due to the (foregone) direct effect of decontrol and an additional $539 million due to

the (foregone) indirect effects on decontrolled properties. By implication, slightly more than half

of the $1.7 billion appreciation of decontrolled properties between 1994 and 2004 can be accounted

for by rent decontrol.

Though never-controlled units do not (by definition) benefit directly from decontrol, the indirect

effects of decontrol are substantial. Our estimates imply that of the $6.0 billion gain in the assessed

value of never-controlled houses and condominiums between 1994 and 2004, $1.1 billion (13 percent)

of this gain is due to the indirect effects of rent decontrol on never-controlled properties, with $822

million accruing to houses and $306 million to condominiums.

Putting these components together, we calculate that decontrol added almost exactly $2.0 billion

to the value of the Cambridge housing stock between 1994 and 2004, with 84 percent of this effect

due to the indirect effect of rent decontrol. While the share of post-decontrol appreciation between

1994 and 2004 induced by rent control removal was substantially larger for decontrolled than never-

controlled properties (49 versus 19 percent), the never-controlled segment of the market received

the largest increase in capitalization from rent control's removal: $1.1 billion versus $849 million.

By implication, prior to decontrol, the never-controlled sector bore more than half of the incidence

of rent control regulation.

Can the increase in residential investments documented in section 2.6 account for these price im-

pacts? Total permitted residential investments averaged $45.5 million between 1995 and 2004
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(Table Al). 46 In the four years prior to decontrol, these expenditures averaged $20.8 million. To

benchmark the maximal estimate for the capitalized value of these investments, consider a case

where the entire $24.7 million in annual expenditures could be causally attributed to rent decon-

trol, where each dollar of expenditure led to a dollar of price appreciation, and where there was no

subsequent depreciation of these investments during this ten year interval. In this case, we would

conclude that only 12 percent of the appreciation of Cambridge residential properties between 1994

and 2004 was due to increased investments induced by rent decontrol ($247 million of $1,977 bil-

lion), leaving the remaining 88 percent accounted for by the capitalization of other benefits of rent

decontrol. A parallel set of calculations implies that increased investments can explain at most 18

percent of the indirect effect of decontrol on the value of never-controlled properties, and at most

6 percent of the total (direct + indirect) effect of decontrol on the value of formerly controlled

properties. In fact, our event study estimates in Figure 5 imply that decontrol can account for

no more than $82 million of the total increase in Cambridge residential investments in the years

following decontrol, all of it concentrated on decontrolled properties. 47

2.8 Conclusion

The largely unanticipated elimination of rent control in Cambridge, Massachusetts in 1995 affords

a unique opportunity to identify spillovers in residential housing markets. This paper exploits

the sharp cross-neighborhood contrasts in the fraction of units that were decontrolled to assess

the localized price spillovers to never-controlled properties as well as to quantify direct effects

on decontrolled properties. Our main finding is a large and significant positive indirect effect of

decontrol on the valuation of properties that were exposed to controlled units, leading on average to

a 16 percent increase in the value of residential units between 1994 and 2004. We further document

that rent controlled properties were valued at a substantial discount relative to never-controlled

properties, and that rent decontrol eliminated a substantial part of this differential, raising the

assessed values of these properties by approximately 13 to 25 percent.

4 6The permitted investment cost may somewhat understate the full economic costs of housing investments since

the property owner may also invest considerable oversight time on property improvements, and these costs are not

included in building permits. Moreover, if the property owner must tie up working capital (or equivalently, obtain a

construction loan) while improvements are made, then the full economic cost of investments should also include the

opportunity cost of capital during the interval between investment and realized returns.
4 7 For this calculation, we assume that decontrol caused each of the 5,439 decontrolled units extant as of 2004

(Table 2) to receive on average of $1,500 per year of additional investment between 1996 and 2001 (Figure 6). This

places an upper bound on additional induced expenditures during these years of $49 million. Accounting for the 95

percent confidence interval surrounding this estimate, this number is $82 million.
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The contribution of decontrol to the capitalized value of the Cambridge residential housing stock

in this period corresponds to a total of $2.0 billion. While the direct effects on decontrolled

properties were larger in percentage terms than the effects on never-controlled properties, the

stock of controlled properties was smaller and less valuable than the never-controlled stock. As a

consequence, indirect effects on never-controlled properties account for more than half (56 percent)

of the decontrol-induced increase in the value of the housing stock.

Because under any reasonable set of assumptions, increases in residential investment stimulated

by rent decontrol can explain only a small fraction of these indirect effects, we conclude that

decontrol led to changes in the attributes of Cambridge residents and the production of other

localized amenities that made Cambridge a more desirable place to live. This possibility is also

highlighted by our theoretical model, though we are not able to thoroughly examine it with our data.

Glaeser and Luttmer (2003) argue that non-price rationing under rent control leads to a mismatch

between renters and apartments and provide evidence that this allocative inefficiency is large in

New York City's rent control plan. It is therefore reasonable to conjecture that the unwinding

of allocative distortions significantly contributed to Cambridge's residential price appreciation.

Additional empirical analysis with rich micro-level attributes of residents, however, will be needed

to shed further light on rent control's allocative consequences.

A key issue in the evaluation of price controls is the tradeoff between the surplus transferred from

landlords to renters and the deadweight loss from quality or quantity undersupply. Viewed in this

light, some portion of the price gains we measure at decontrolled properties are transfers from

renters back to landlords. However, our analysis highlights the importance of another welfare

consequence of price controls: the indirect effect on the desirability of housing in rent control-

intensive locations. Our results indicate that the efficiency cost of Cambridge's rent control policy

was large relative to the size of the transfer to renters. In particular, only 16 percent of the

capitalized value of rent decontrol reflects a direct impact on decontrolled units, with the remainder

due to indirect effects of rent control exposure on the amenity value of Cambridge residential units.

These findings are germane to economic analysis of housing market regulations and, more broadly,

the impacts of other place-based policies. The mechanisms by which rent decontrol impacts never-

controlled housing-increased maintenance, upgrading of local amenities, and potentially more

efficient sorting of consumers to housing-are likely present in other settings involving residential

housing. Our results provide evidence that residential spillovers are large and important in housing
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markets, and suggest that public policies related to housing should consider not only direct impacts

but also indirect impacts on neighboring properties and residents.
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Theory Appendix

We ground our empirical analysis in a stylized equilibrium model of the housing market that

considers the relationship between rent control, neighborhood amenities, and house prices.

Neighborhoods. A city consists of n =1, ..., N neighborhoods. There is a continuum of locations

in each neighborhood indexed by f E [0, 1]. The pair (f, I.) refers to location f in neighborhood m.

Landlords. Each location is owned by an absentee landlord who decides on the level of maintenance

m. Maintenance includes inputs such as painting, upgrading, and repairs. These produce housing

services according to the following increasing and concave technology

h = f (m).

While the model is static, we interpret housing services as a per-period flow variable. The price of

housing services, p, is a per-period price.

The cost of maintenance is given by an increasing and convex function c(m). The problem of the

landlord is to choose a maintenance level m to maximize profits:

max ph - c(m).
m

The first-order condition for an interior solution implies that maintenance is an increasing function

of the price of housing services. Denote this function as 'rt* = n(p) where m'(p) > 0.

Residents. Residents have preferences given by:

U(c, h) = Ac-h'

where c is a composite commodity and h is housing services. A is the total level of amenities in the

neighborhood. The price of housing at location f in neighborhood n is denoted p,(f), so a resident

who lives at (f, n) faces the budget constraint

c + pn(f)hn(f) = Y,

where y denotes income. The only heterogeneity in the model comes from differences in income y
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between residents. The outside utility for a resident with income y is denoted by Uy.

Amenities depend on neighborhood attributes. To capture the most relevant dimensions for our

study, we assume that amenities are increasing in the overall level of maintenance and income of

residents as follows:

A' = f(m-(o~yn(f))Odf.

Here, m(C) denotes the maintenance level at location f in neighborhood n and yn(f) denotes the

income of residents in neighborhood n residing at location f and /3 E [0, a). The equilibrium concept

is based on spatial equilibrium, with free-entry and perfect mobility of residents.

Equilibrium definition. An equilibrium is a triple (y,(f), p,(e), h(f)) where y,(t) is the resident

income, pn(C) is the price, and hn(f) is the level of housing services for each neighborhood n and

location f such that

" each resident obtains at least their outside option,

* no resident wishes to move to another neighborhood or location within a neighborhood, and

" landlords maximize profits.

Benchmark model. We impose particular functional forms to keep the model tractable. For the

supply side, assume that housing services are produced by the linear technology f(m) = m and the

costs of maintenance are quadratic c(m) = >m2 . These assumptions imply that the optimal level

of maintenance at each location is exactly equal to the price of housing services:

M* p.

The demand for housing services decreases with price:

h = ay/p.

Next, we assume that the distribution of income among potential residents consists of N distinct

levels of y, which we order from highest to lowest, y1 > ... > YN-

We first solve for the equilibrium without rent control as a baseline. We then consider the controlled

equilibrium and develop implications for how prices, maintenance, and resident allocation will be

affected by decontrol.
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Equilibrium without rent control

We consider a symmetric equilibrium where all residents with income y, live in neighborhood n.

The log indirect utility V for a resident of neighborhood n at location e is:

In V(p (f), y,) = ln(As) + In y, - a ln pn(f) + ln((1 - a)I-a')

Free-entry and perfect mobility of residents implies that in all locations f in neighborhood n, each

resident's utility is equal to U,. Hence, the price of housing services at each location f is:

1
ln(pn(f)) =-(In A, + Inyn - InU + ln((1 - a)--aa). (2.5)

The value of neighborhood amenities comes from the fact that landlords optimally set the level

of maintenance to the price of housing services and in the candidate equilibrium all residents of

neighborhood n have income yn. Therefore,

ln(pn()) = fh- In mn(t)df + (1 + ) In y, - In y,, + n((1 - a)-"aa) =ln(m, (E)).

Symmetry among landlords implies that maintenance levels within a neighborhood are the same

at each location location, so that

1
ln(mn) = - (#nm, + (1 + 0) In y, - In U, + ln((1 - a)'-W)) .

This relationship captures the feedback between overall maintenance in the neighborhood and

location specific maintenance choices. The maintenance levels in the uncontrolled economy m' are

1In(Mn) = ((I + ) In yn - In UYn + In((1 - a) 1-a" a n)

and prices are identical at all locations f within neighborhood n. Using the expression for the level

of maintenance, the price of housing p' in neighborhood n in the economy without rent control is:

1 1ln(pn)= ((1 + /) In y, - In U,, + ln((1 - a)-a') = ln(p').

The pricing equation illustrates intuitive patterns under our parameter assumptions (1 > a > > ;

0). Prices are higher in neighborhoods when residents have more income and they are lower when
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residents have better outside options. Landlords invest more in response to exogenous improvements

in neighborhood quality because more investment in the neighborhood raises amenities, which raises

prices, and landlords set maintenance in response to prices.

Equilibrium with rent control

Let RC, C [0, 1] denote the set of rent controlled locations in neighborhood 'n. Suppose that a

fraction A, of locations are rent controlled and 1 - A, are not. We first examine the pricing and

maintenance decisions at controlled locations.

Rent controlled locations. Suppose the rent control authority sets prices at controlled loca-

tions Pn(t), and we assume that for each controlled location, the controlled price is less than the

corresponding price in the uncontrolled economy, f (,) < p".

This price will determine the level of maintenance according to the producer's first-order condition.,

which yields:

?;n(J) = ()

In turn, the amount of housing services at location f is given by:

hn (M = f (tn(0)) = Pn(M).

Uncontrolled locations. Spatial arbitrage determines the prices of uncontrolled locations and,

hence. the arbitrage relation in equation (2.5) determines prices. Since Fo,(#) = fji() and landlords

are symmetric at uncontrolled locations, the level of amenities in the controlled economy is:

In A' = ( ln(( ))dnF + (1 - A,) In mn + In yn(V)df .
fE RC, f//

As with the uncontrolled economy, we focus on the equilibrium where yn(=) yn for all uncontrolled

locations f. This yields:

InA -= ( (ln(Pn(f )) + In yn(f)) d + (1 - A,)(ln mn + ln yn)
\n 1 (fRC,

Since it is set by the rent control authority, the price of all controlled locations in neighborhood n

may differ at each location, so we cannot further simplify the first term. For controlled locations,
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the income of a resident y,(f) depends on the way that residents are assigned to controlled housing.

Let

An j ln(K ())d and Ank, j ln(y.(t))cd.

Since pn(e) < p', it is clear that

I < ln(p').

While we do not explicitly model how residents are assigned to controlled housing, we assume that

n < In yn,

which implies that the rationing mechanism imposed by rent control yields misallocation relative

to the equilibrium in the uncontrolled economy.4 8 The basis for this assumption is the following.

If, prior to the implementation of rent control, the allocation were as in the symmetric equilibrium

without rent control above, then once rent control is implemented, maintenance levels and hence

housing services fall at controlled units (since landlords choose maintenance levels facing a regulated

price). The combination of reduced rents and lower maintenance has one of two effects on incumbent

residents: either they are sufficiently compensated by reduced rents so that they remain at their

current locations, although the bundle of maintenance and amenities is not optimized for their

income; or alternatively, they choose to relocate to areas with higher amenities and higher rents.

In the latter case, they will be replaced by residents who prefer lower housing services, i.e., those

with lower income levels. The average income at controlled locations will therefore weakly decline

following the imposition of rent control.

As a result, amenities in neighborhood n in the presence of rent control are given by:

In A' = 0[An(KI + K ) + (1 An)(ln mn + In yn)].

To compute the level of maintenance in uncontrolled locations in the presence of rent control, we

follow similar steps to find:

ln(mr) - [An(Ki + K,) + (1 + 13(1 - An)) In yn - In Cy + ln((1 - a)l-an
a - /3(l - An) n n

48See, e.g., Suen (1989) for a canonical model of rationing in the presence of price controls. Bulow and Klemperer
(2012) further investigate how consumer surplus is impacted by rationing and develop a model of rationing with
rent-seeking.
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We can write this in terms of the level of maintenance at uncontrolled locations in the economy

without rent control:

ln(m') = -In(m") + An [K + ]- A lnyn 

Pna-0(1- An) n1(l- An)

Summing up, since neighborhood amenities are a function of the maintenance of all units in a

neighborhood and the income of residents, the supply of amenities at non-controlled locations in

neighborhoods with rent controls-as well as maintenance and rents is also impaired by rent con-

trol. This causes lower income residents to move into non-controlled locations. Hence, imposition

of rent control causes inefficiently low maintenance and misallocation of residents at both controlled

and non-controlled locations within a neighborhood.

The effect of rent control removal on rents, maintenance and resident allocation

Consider finally the impact of rent decontrol on prices at uncontrolled locations. To form this

comparative static, we compare price levels in the economy without and with rent control:

1 1
A ln(pn(C)) =ln(p~njC)) - ln(pj (i)) =- AAn -A - A ]

indirect effect,

I [ln(m') - K + [ln y, - iK] 1 (2.6)0-7(1- An) n no _I, o

-maintenance effect>O allocative effect>O.

This expression shows that the end of rent control generates price impacts on uncontrolled locations

through two channels in the model. For a given neighborhood, under rent control maintenance

is inefficiently low and there are allocative inefficiencies due to the assignment of residents at

controlled locations. This expression also illustrates three natural comparative statics. When a

neighborhood has a higher fraction of locations that are controlled (An increases), the change in

prices for locations without rent control increases. As ., increases (as would be expected when

the prices of controlled locations are further depressed from their market values), the change in

the price of uncontrolled locations due to the elimination of rent control also increases. Moreover,

when there is greater misallocation due to the rent control (KT decreases), the elimination of rent

control further increases prices.

The price impact due to the end of rent control for formerly controlled locations involves an addi-
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tional term which can be decomposed as follows:

ln(p()) - ln(X )) = (ln(p() - In (p () + (ln(p()) - ln())) . (2.7)

indirect effect direct effect

The first term, the indirect effect, is the price change for uncontrolled locations due to the end

of rent control, which is in turn due to maintenance and allocative effects as in equation (2.6).

The second term, the direct effect, is the price change in a controlled economy going from a rent

controlled location to an uncontrolled location. For a formerly controlled location, the direct effect

of the end of rent control is larger when the controlled price at the location is further depressed.

The following proposition summarizes the relevant considerations from this model:

Proposition 1. When rent control ends, the price change for uncontrolled locations is greater for

neighborhoods

" with a larger fraction of locations with rent control (A t),

* where the price of controlled locations is further depressed from their market price (KJ )

* where there is greater misallocation of resident types relative to the types in the uncontrolled

economy (K2 4).

Furthermore, when rent control ends, controlled locations experience an additional price increase

due to the direct effect of decontrol.

This model shows the difficulty involved in distinguishing between direct and indirect effects at

decontrolled locations. When rent control ends, there is a direct price effect due to the formerly

controlled location being priced by the market. However, there is also an indirect effect as neigh-

borhood amenities improve due to increases in maintenance and the income of residents, leading

to higher prices. This in turn leads a landlord to invest in additional maintenance. For empirical

purposes, at decontrolled locations, the direct and indirect channels cannot be readily distinguished

because each affects the equilibrium level of the other.

The model's simplicity also imposes some limitations for our setting. First, the price of housing

services is an abstraction that allows for no distinction between house prices and rents, which

might be especially relevant in a dynamic setting. The model does not therefore allow for realistic
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dynamics to capture expectations of neighborhood appreciation and the option value of ownership.

Second, amenities within a neighborhood are assumed to be pure public goods, so residents have

no desire to substitute between locations within a neighborhood. If housing services were instead

differentiated, there might be substitution between different locations within a neighborhood. In

this case, new construction stimulated by the end of rent control might have a price impact at

nearby uncontrolled housing (due to increased housing supply). Third, residents are identical in

the model except for their income: within a neighborhood, all residents at uncontrolled locations

(though not generally at controlled locations) have the same level of income and, due to spatial

arbitrage, obtain the same utility. Finally, the model focuses on one housing market, and does

not consider neighboring markets that do not have rent control. Although it is not modeled, it is

possible that residents at previously controlled locations move out of Cambridge, and that residents

in these neighboring towns move into Cambridge with the end of rent control.
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Figure 1. The Geography of Residential Properties and Rent Control in Cambridge, Massachusetts

Arlington

Belmont

Cambridge

Somerville

Radi Inmil"

Watertown

BoonBoston

Notes. Cambridge residential properties as of 2008 are marked with gray circles. Map-lots that were rent-controlled

as of 1994 are overlaid with red circles. Concentric circles in the top right depict radii of 0.1, 0.2, and 0.3 miles.
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Figure 2. Residential Turnover in Cambridge Controlled relative to Never-Controlled
Units, 1992 - 2000
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Figure plots coefficients on RC x Year variables from an event-study regression where the

dependent variable is an indicator equal to one if resident was not present in current Cambridge

unit in prior year (and zero otherwise). RC is an indicator for a location that was rent controlled

in 1994. This specification includes an RC main effect, year controls, structure type dummies,

and geographic fixed effects for the 91 block groups in the 1990 Census containing addresses

listed in the Cambridge City Census. 95% confidence intervals are constructed from robust

standard errors clustered by block group. The vertical line in 1994 indicates the year preceding

rent control removal.
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Figure 3. Event Study for Direct Effect of Rent Decontrol on
Transaction Prices of Decontrolled Units, 1988 - 2005
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Figures plot RC x Year coefficients from event study regressions where dependent
variable is log sale price, winsorized to the first percentile separately for houses and
condominiums. RC is an indicator for a location that was rent controlled in 1994.
Regression also includes year dummies, block group fixed effects, structure type main
effects and quadratic time trends, and controls for property characteristics: total
rooms, bathrooms, bedrooms, interior square feet, lot size and its square, a dummy for
lot size zero, log property age and its square, and a dummy for property age missing, all
interacted with structure type dummies. Robust standard errors are clustered by block
group. Vertical line in 1994 designates the year preceding rent decontrol.
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Figure 4. Event Study for Indirect Effect of Rent Decontrol on Transaction Prices of Never-Controlled and
Decontrolled Properties, 1988 - 2005
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Figures plot RCI x Year coefficients from event study regressions of log sale prices, winsorized to the first
percentile for houses and condominiums. RCI is calculated over a 0.20 mile radius. Panels A and B are
estimated using never-controlled and formerly controlled properties. See Figure 3 notes for specification
details. Robust standard errors are clustered by block group. Vertical line in 1994 designates the year
preceding rent decontrol.
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Figure 5. Event Studies for the Direct Effect of Rent Decontrol on Investment Activity
at Formerly Controlled Units, 1991 - 2005

1. Probability of Permitted Investment
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Figure plots coefficients on RC x Year variables from event study regressions where the

dependent variable is (left panel) an indicator for whether a structure received a building

permit and (right panel) the permitted expenditure at a structure (including zeros). RC is an

indicator for a location that was rent controlled in 1994. Investment expenditures are

winsorized by structure type and year to the 99.5th percentile. Both specifications include an

RC main effect, year fixed effects, geographic fixed effects for the 89 Cambridge block groups in

the 1990 Census containing assessed properties, structure type indicators, and a quadratic in

the number of units in condominium structures. 1994 is the omitted RC x Year category. Robust

standard errors are clustered by block group. The vertical line in 1994 indicates the year

preceding rent decontrol.
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Table 1. Turnover at Cambridge Residential Locations, 1992-2000

Dependent Variable: Indicator Equal to One if Resident was not at Location in Prior Year

All Properties Houses Condominiums Apartments

(1) (2) (3) (4)

Mean of
Dependent

RC

RC x Post

N

0.269
(0.197)

-0.003
(0.008)

0.054***
(0.008)

310,949

0.232
(0.178)

0.073***
(0.008)

0.025***
(0.008)

172,996

0.297
(0.209)

-0.035**

(0.016)
0.076***

(0.022)

70,558

0.335
(0.223)

-0.056**
(0.026)
0.057**
(0.025)

67,395

Dependent variable is an indicator equal to one if resident was not present in current unit in

prior year (and zero otherwise). RC is an indicator for a location that was rent controlled in 1994

and Post is an indicator for year 1995 and after. All specifications include year controls, structure

type dummies, and geographic fixed effects for the 91 block groups in the 1990 Census

containing addresses listed in the Cambridge City Census. Robust standard errors clustered by

block group are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table B2. Effects of Rent Decontrol and Rent Control Intensity on Assessed Values
by Structure Type Dropping Block Groups Bordering non-Cambridge Properties

(1) (2) (3) (4) (5) (6)

1. Houses
RC x Post 0.091*** 0.073*** 0.023 -0.007 0.080*** 0.034

(0.016) (0.013) (0.042) (0.024) (0.016) (0.044)
RCI x Post 0.420*** 0.317*** 0.434***

(0.089) (0.095) (0.085)
Non-RC x RCI x Post 0.403*** 0.297*** 0.423***

(0.088) (0.095) (0.084)
RC x RCI x Post 0.597*** 0.525*** 0.556***

(0.154) (0.121) (0.159)

HO: No Spillovers 0.000 0.000 0.000
H.: Spillovers Equal 0.123 0.003 0.310
R-squared 0.847 0.850 0.847 0.850 0.850 0.850
N 12,407 12,407 12,407 12,407 11,415 11,415

11. Condominiums
RC x Post 0.335*** 0.343*** 0.397** 0.269** 0.322*** 0.218

(0.050) (0.042) (0.166) (0.134) (0.046) (0.166)
RCI x Post 0.230 0.691** 0.101

(0.171) (0.283) (0.197)
Non-RC x RCI x Post 0.283 0.571** -0.040

(0.185) (0.276) (0.126)
RC x RCI x Post 0.123 0.744** 0.213

(0.321) (0.326) (0.358)

H0: No Spillovers 0.290 0.042 0.819
HO: Spillovers Equal 0.670 0.594 0.530
R-squared 0.701 0.710 0.701 0.710 0.712 0.712
N 14,140 14,140 14,140 14,140 10,131 10,131

Block group FEs y y y y y y
Tract Trends - y - y - -

Excluding Converted - - - - y y
Notes. Dependent variable is log assessed value. Assessed values are from 1994 and 2004. RCI is calculated
based on a radius of 0.20 miles. RCI is demeaned so that the main rent control effect is the price differential for
the average rent controlled property. Post is an indicator for year equal to 2004. Year fixed effects and block
group fixed effects are included in all regressions. Block group fixed effects correspond to each of the 88
Cambridge block groups containing assessed properties using 1990 Census boundaries. Tract trends are tract x
post dummies for each of 30 tracts from the 1990 Census. Two-family and three-family house dummies are
included in the top panel. Test for No Spillovers report p-vaues from tests that RCI x Post or Non-RC x RCI x Post
and RC x RCI x Post coefficients are zero. Test for Spillovers Equal reports p-value for hypothesis that these
latter two coefficients are equal. Robust standard errors clustered by 1990 block group are in parentheses.
p<0.01, ** p<0.05, * p<0.1
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Table 3. Effects of Rent Decontrol on Assessed Values

Dependent Variable: Log of Assessed Property Value (1994, 2004)

(1) (2) (3) (4)

RC -0.504*** -0.504*** -0.515***
(0.075) (0.052) (0.052)

RC x Post 0.217*** 0.227*** 0.249*** 0.221***

(0.039) (0.037) (0.034) (0.040)

Block Group FEs No Yes Yes No

Tract Trends No No Yes Yes

Map-lot FEs No No No Yes
R-squared 0.605 0.759 0.763 0.938

N = 32,980. Sample is all assessed Cambridge houses and condominium properties

in 1994 and 2004. RC is an indicator for a location that was rent controlled in 1994

and Post is an indicator for year equal to 2004. Year fixed effects and structure-

type dummies are included in all regressions. Block group fixed effects correspond

to the 89 Cambridge block groups in the 1990 Census containing assessed

properties. Tract trends are tract x Post dummies for each of 30 tracts from the

1990 Census. Map-lot FEs are dummy variables for each of the 9,497 residential

parcels in Cambridge. Map-lot FEs absord the RC main effect in column 4. Robust

standard errors clustered by 1990 block group are in parentheses.
*** p<0.01, ** p<0.05, * p<0.l

125



Table 4. Effects of Rent Decontrol and Rent Control Intensity on Assessed Values
Dependent Variable: Log of Assessed Property Value (1994, 2004)

(1) (2) (3) (4) (5) (6) (7)

RC -0.440*** -0.484*** -0.503*** -0.232 -0.217
(0.057) (0.050) (0.052) (0.188) (0.184)

RC x Post 0.175*** 0.196*** 0.233*** 0.208*** 0.202* 0.174 0.132
(0.038) (0.036) (0.034) (0.040) (0.114) (0.107) (0.114)

RCI -0.581* -0.792 -0.938*
(0.325) (0.479) (0.494)

RCI x Post 0.328** 0.258* 0.545*** 0.475***
(0.136) (0.138) (0.191) (0.180)

Non-RC x RCI -0.568 -0.686
(0.546) (0.561)

Non-RC x RCI x Post 0.281* 0.514** 0.415*
(0.168) (0.227) (0.220)

RC x RCI -1.211** -1.416**

(0.535) (0.555)
RC x RCI x Post 0.249 0.651*** 0.607**

(0.215) (0.231) (0.256)

Block Group FEs No Yes Yes No Yes Yes No
Tract Trends No No Yes Yes No Yes Yes
Map-Lot FEs No No No Yes No No Yes
HO: RCI x Post coeffs equal 0.909 0.598 0.514
R-squared 0.611 0.761 0.765 0.938 0.764 0.767 0.938
Number of observations is 32,980. RCI is calculated over a 0.20 mile radius and de-meaned. RC is an indicator for a
location that was rent controlled in 1994 and Post is an indicator for year equal to 2004. RC and RC x RCI main effects
are absorbed by map lot fixed effects (FEs) in columns 4 and 7. Year fixed effects and structure type dummies are
included in all regressions. Block group FEs correspond to the 89 Cambridge block groups in the 1990 Census containing
assessed properties. Tract trends are tract x Post dummies for each of 30 tracts from the 1990 Census. Map-lot FEs are
dummy variables for each of the 9,497 residential pracels in Cambridge. Test of the equality of the RCI x Post
coefficients reports p-values from tests that Non-RC x RCI x Post and RC x RCI x Post coefficients are equal. Robust
standard errors clustered by 1990 block group are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 5. Effects of Rent Decontrol and Rent Control Intensity on Assessed Values

by Structure Type
Dependent Variable: Log of Assessed Property Value (1994, 2004)

(1) (2) (3) (4) (5) (6)

1. Houses
0.024 0.035
(0.023) (0.036)

0.035 0.035
(0.023) (0.032)

Non-RC x RCI x Post

RC x RCI x Post

HO: RCI x Post coeffs equal

R-squared
N

0.194*

(0.103)
0.315**

(0.130)

0.080

0.855 0.984 0.855
16,239 16,239 16,239

11. Condominiums
0.361*** 0.276**

(0.135) (0.131)
0.235* 0.236*
(0.132) (0.136)

Non-RC x RCI x Post

RC x RCI x Post

HO: RCI x Post coeffs equal

R-squared

N

0.678**
(0.308)
0.648**
(0.291)

0.925

0.714 0.889 0.714
16,741 16,741 16,741

Block Group FEs Yes No Yes No Yes No

Map-Lot FEs No Yes No Yes No Yes

Tract Trends Yes Yes Yes Yes Yes Yes

Excluding Converted No No No No Yes Yes

Structures

RCI is calculated over a 0.20 mile radius. RC is an indicator for a location that was rent controlled in 1994

and Post is an indicator for year equal to 2004. In specifications that include RC, RCI, Non-RC x RCI or RC x

RCI interacted with Post, main effects of these variables are included but not tabulated. Year fixed effects

(FEs) and structure type dummies are included in all regressions. Block group FEs correspond to the 89

Cambridge block groups in the 1990 Census containing assessed properties. Map-Lot FEs are a set of

dummies for each residential parcel (8,453 for houses, 1,450 for condominiums). Tract trends are tract x

Post dummies for each of 30 tracts from the 1990 Census. Final columns exclude units that change usgage

categories between 1994 and 2004. Robust standard errors clustered by 1990 block group are in

parentheses. *** p<0.01, ** p<0.05, * p<O.l
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RC x Post

RCI x Post

0.065***
(0.011)
0.205*
(0.103)

0.045***
(0.016)
0.200
(0.144)

0.197
(0.142)
0.227
(0.196)

0.782
0.984
16,239

0.192**
(0.095)
0.232*
(0.128)

0.553
0.858
14,917

0.190
(0.135)
0.231
(0.181)

0.675
0.983
14917

RC x Post

RCI x Post

0.354***
(0.038)
0.669**
(0.256)

0.345***
(0.037)
0.492**
(0.211)

0.397
(0.258)
0.569**
(0.266)

0.586

0.889
16,741

0.443**
(0.205)
0.722**
(0.323)

0.398

0.725
11,778

0.454**
(0.206)
0.724**

(0.328)

0.429

0.89
11778



Table 6. Effect of Rent Decontrol and Rent Control Intensity on Assessed Values for
Various Rent Control Intensity Measures

Dependent Variable: Log of Assessed Property Value (1994, 2004)

1. RCI Defined Over Varying Geographies
(1) (2) (3) (4)

0.10 miles 0.20 miles 0.30 miles
Census Block

Group

I. Varying the Geographies Used to Measure RCI

RC x Post

Non-RC x RCI x Post

RC x RCI x Post

HO: RCI x Post coeffs equal
Std Dev of RCI measure

0.132
(0.089)
0.185
(0.143)

0.377**
(0.183)
0.379
0.192

0.132
(0.114)
0.415*

(0.220)
0.607**
(0.256)
0.514
0.165

0.149

(0.125)
0.477*
(0.245)

0.646**

(0.281)
0.594
0.145

0.128
(0.098)
0.095

(0.177)
0.318

(0.228)
0.367
0.179

Geographic FEs Map-Lot Map-Lot Map-Lot Map-Lot

11. Varying the Weighting Scheme Used to Measure RCI

Weight @ 0.1 mile/ 0.01 mile
Weight @ 0.2 mile/ 0.01 mile
Weight @ 0.3 mile/ 0.01 mile

RC x Post

Non-RC x RCI x Post

RC x RCI x Post

HO: RCI x Post coeffs equal
Std Dev of RCI measure

(1)
X=-12
0.34
0.10
0.03

0.124
(0.124)

0.407**
(0.193)

0.580**
(0.243)
0.504
0.190

(2)
X = -9

0.44
0.18
0.07

0.129
(0.136)

0.499**
(0.223)

0.665**
(0.280)
0.555
0.179

Geographic FEs
Tract x Yr FEs

Map-Lot Map-Lot Map-Lot Map-Lot
Yes Yes Yes Yes

N=32,980. In panel I, RCI is calculated over geographies reported in column headings.
In panel 11, RCI is calculated using an exponential decay weighting scheme (see
equation (3) in the text). RC is an indicator for a location that was rent controlled in
1994 and Post is an indicator for year equal to 2004. Year fixed effects (FEs), tract x
year dummies, and individual Map-Lot FEs are included in all specifications. Robust
standard errors clustered by 1990 block group (89 groups) are in parentheses.
p<0.01, ** p<0.05, * p<0.1

128

(3)
X = -6
0.58
0.32
0.18

0.136
(0.155)

0.598**
(0.261)

0.758**
(0.345)
0.617
0.160

(4)
X = -3
0.76
0.57
0.42

0.134

(0.208)
0.629**
(0.264)
0.802*

(0.457)
0.683
0.117



Table 7. Effects of Rent Decontrol and Rent Control Intensity on Transaction Prices, 1988 - 2005

Dependent Variable: Log Sale Price

(1) (2) (3) (4) (5) (6) (7)

RC -0.305*** -0.204*** -0.193*** -0.189*** -0.185*** -0.166*** -0.161***
(0.043) (0.024) (0.024) (0.025) (0.024) (0.025) (0.024)

RC x Post 0.060* 0.106*** 0.086*** 0.087*** 0.079*** 0.079*** 0.068***
(0.030) (0.026) (0.027) (0.026) (0.025) (0.025) (0.024)

RCI -0.510* -0.494
(0.305) (0.317)

RCI x Post 0.205*** 0.166*
(0.056) (0.098)

Non-RC x RCI -0.305 -0.276
(0.274) (0.275)

Non-RC x RCI x Post 0.197*** 0.132
(0.067) (0.089)

RC x RCI -0.884** -0.883**
(0.360) (0.368)

RC x RCI x Post 0.246* 0.246

(0.146) (0.177)

Block Group FEs No Yes Yes Yes Yes Yes Yes

Property Characteristics No Yes Yes Yes Yes Yes Yes

Quadratic Tract Trends No No Yes No Yes No Yes

HO: RCI x Post coeffs equal No No No No No 0.773 0.512
R-squared 0.318 0.674 0.681 0.675 0.682 0.678 0.684

N=14,789 Cambridge house and condominium properties transacted during 1988 through 2005. Prices are winsorized by

structure type at the first percentile. RCI is defined over a 0.20 mile radius and demeaned. RC is an indicator for a location

that was rent controlled in 1994 and Post is an indicator for year is 1995 or afterwards. All specifications include year of

sale dummies and structure type dummies. Property Characteristics, each interacted with structure type, include number

of total rooms, bathrooms, bedrooms, interior square footage, a dummy variable for zero lot size, a quadratic in lot size, a

dummy variable for missing year built, a quadratic in the log age of the structure, and a quadratic time trend for each

structure type. Block group fixed effects correspond to each of the 88 Cambridge block groups in the 1990 Census

containing transacted properties. Columns 5 and 7 include quadratic tract trends for each of 30 Census tracts. Test for No

Spillovers reports p-values from tests that RCI x Post or Non-RC x RCI x Post and RC x RCI x Post coefficients are zero. Test

for Spillovers Equal reports p-values from tests that these latter two coefficients are equal. Robust standard errors

clustered by 1990 block group are in parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Table 8. Estimated Direct and Indirect Contributions of Rent Decontrol to Changes in Cambridge Assessed
Residential Property Values, 1994 to 2004 (in millions of 2008 dollars)

1. Assessed Housing Values

2004
Assessed

(mil$)
Change 1994 - 2004

11. Estimated Effects of Decontrol on Housing

Increase in Value ($) Increase in Value (%)

Direct Indirect Direct Indirect
Effect Effect Effect Effect

Houses
Condominiums

All

Houses
Condominiums

All

Houses
Condominiums

All

$267
$518
$785

$2,961
$1,017

$3,978

$3,229
$1,535
$4,763

$760
$1,746
$2,507

$7,320
$2,699
$10,020

$8,081
$4,446
$12,526

$493
$1,228
$1,722

$4,359
$1,683
$6,042

$4,852
$2,911
$7,763

a. Decontrolled Units
185% $94
237% $216
219% $310

b. Never-Controlled Units
147% n/a
166% n/a
152% n/a

c. All Units
150% $94

190% $216
163% $310

Assessed values are from the 1995 and 2005 Cambridge Assessor's databases, reflecting property valuations as of 1994 and
2004, respectively. Counterfactual log property values are estimated separately for houses and condos using the
specification in column 7 of Table 4. Counterfactuals for RCI effects subtract Non-RC x RCI x Post and RC x RCI x Post effects
and counterfactuals for the direct effect of decontrol subtract RC x Post effects from actual log property values. Aggregate
effects in 2008 dollars are calculated by summing exponentiated counterfactual log property values.
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1994
Assessed

(mil$)

$149

$390
$539

$822
$306

$1,128

$971

$696
$1,667

18%
19%
19%

n/a
n/a
n/a

1%

6%
3%

29%
34%
33%

13%
13%
13%

14%
20%
16%



Table Al. Cambridge Residential Building Permitting Activity, 1991 through 2004:

Permits Issued and Permitted Expenditures

Houses
Never Controlled Decontrolled

Condominiums

Never Controlled Decontrolled

1991- 1995- 1991- 1995- 1991- 1995- 1991- 1995-
1994 2004 1994 2004 1994 2004 1994 2004

Permits

Pr(Permit)

E[Units I Permit]

Total
Per Unit

Mean

SD
Median
Min

Max

1,507
0.030
1.72

4,385
0.035
1.72

259
0.029
2.54

1. Permits Issued

694 247

0.031 0.014
2.81 12.06

852
0.019
10.95

185

0.011
15.69

II. Annual Expenditure (1,000s of 2008 dollars)

14,044 29,954 1,588 3,486 3,723 7,595 1,451

1.11 2.37 0.72 1.57 0.82 1.67 0.34

672
0.016
16.34

4,435

1.05

Ill. Annual Expenditure per Permitted Unit (1,000s of 2008 dollars)

37.3 68.3 24.5 50.2 60.3 89.1 31.4 66.0

164.5 178.0 46.8 105.6 190.2 338.4 118.1 269.6

10.3 18.0 8.3 13.8 12.4 19.3 11.2 19.2

0.1 0.1 0.4 0.3 0.5 0.3 0.4 0.4

5,675.5 4,365.5 451.2 1,208.9 2,121.2 6,589.3 1,480.1 4,450.

Data source is the universe of Cambridge Inspectional Services permits issued during 1991 through

2004. If a structure receives multiple permits in a given year, we sum these expedentitures and treat

them as a single permit. When calculating units permitted or expenditures per unit in a year, we

attribute the structure's permitted status and expenditures to only one unit. Expenditures are

converted to real 2008 dollars using the Consumer Price Index for All Items Less Shelter for All Urban

Consumers, Series Id: CUUROOOOSAOL2, Not Seasonally Adjusted.
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Table A2. Property Conversions, 1994-2004:
Status in 1994 of Units that Were Designated as Houses and Condominiums in 2004

2004 Houses 2004 Condominiums
Formerly Never All Condo- Formerly Never

1994 Structure Type All Houses Controlled Controlled miniums Controlled Controlled

Same as 2004 13,480 (97.3%) 1,567 (89.9%) 11,913 (98.3%) 7,085 (74.1%) 3,507 (76.2%) 3,578 (72.1%)

Convertedfrom 381 (2.7%) 177 (10.1%) 204 (1.7%) 2,476 (25.9%) 1,093 (23.8%) 1,383 (27.9%)
Houses 1,058 (11.1%) 151 (3.3%) 907 (18.3%)
Condominiums 20 (0.1%) 3 (0.2%) 17 (0.1%)
Apartments 153 (1.1%) 115 (6.5%) 38 (0.3%) 647 (6.8%) 599 (13%) 48 (1%)
Other Residential 50 (0.4%) 35 (2%) 15 (0.1%) 347 (3.6%) 284 (6.2%) 63 (1.3%)
Non-Residential 158 (1.1%) 24 (1.4%) 134 (1.1%) 424 (4.4%) 59 (1.3%) 365 (7.4%)

Total 13,861 1,744 12,117 9,561 4,600 4,961
Counts and conversion rates are calculated from Cambridge Assessor's databases, reflecting property characteristics as of 1994

and 2004. The "Other Residential" category includes structures zoned as boarding houses, mixed use, or multiple houses on a

single parcel.
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Table A3. Descriptive Statistics for Population and Residential Units and Structures for Various

Geographies

Mean Std Dev Min Max Median

Area (sq miles)
1990 Census Population
2001 Residential Units

1994 Rent Control Units

2001 Residential Structures
1994 Rent Control Structures

Count of Blocks

Area (sq miles)
1990 Census Population

2001 Residential Units

1994 Rent Control Units

2001 Residential Structures
1994 Rent Control Structures

Count of Block Groups

Area (sq miles)
1990 Census Population
2001 Residential Units

1994 Rent Control Units

2001 Residential Structures
1994 Rent Control Structures

Count of Tracts

Area (sq miles)
1990 Census Population
2001 Residential Units
1994 Rent Control Units

2001 Residential Structures
1994 Rent Control Structures

Count of Maplots

0.01
135.05

62.77

22.92

18.53

4.08

0.02
162.71

58.71
34.48

12.08
3.77

1. Census Blocks
0.00 0.53
0.00 2833.00
0.00 441.00
0.00 236.00
0.00 81.00
0.00 21.00

587

11. Census Block Groups

0.07
986.17

428.15
155.75
122.93

27.26

0.22
3144.73
1291.68
470.77

365.00
80.90

0.13
3160.48
1141.15

422.34
348.40

80.15

0.07
506.00
253.62
155.19

58.53
16.30

0.17
1291.67

510.60
341.71

149.06

30.41

1765.02

573.10
330.59
116.72

46.52

0.01
98.00
23.00
6.00
9.00
3.00

89

0.56
3093.00
1418.00
854.00
382.00
61.00

Ill. Census Tracts
0.05 0.72

1736.00 7123.00
336.00 2984.46
101.00 1534.00
117.00 860.00
27.00 156.00

30

IV. 0.2 mile radius
0.13 0.13
0.00 15796.90
5.00 3427.54
0.00 1702.00
1.00 676.00
0.00 180.00

10,968
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0.00
99.00
45.00
11.00
16.00
3.00

0.05
836.00
387.00
107.00
124.00
24.00

0.16
2650.00
1244.07
379.50
338.50
73.00

0.13
2935.48
1066.16
376.00
351.00
77.00

Panels I through III provide statistics for all census geographics containing at least one assessed

residential housing structure. Panel IV provides statistics for the universe of 0.2 mile radius

geographies, centered at each residential housing structure.



Table A4. Descriptive Statistics for Transacted Properties

Houses
Never Controlled

Condominiums
Decontrolled

1988-1994 1995-2005 1988-1994 1995-2005
Never Controlled

1988-1994 1995-2005 1988
Decontrolled
-1994 1995-2005

12.84 13.26 12.59 13.03
(0.69) (0.74) (0.67) (0.67)

Total Rooms 9.16 9.40 10.24 10.27
(3.33) (3.43) (3.57) (3.67)

12.56 12.81 12.20 12.57
(0.51) (0.55) (0.56) (0.55)

4.77 5.03 4.40 4.41

(1.53) (1.91) (1.60) (1.55)

4.05 4.10 4.56 4.61
(1.69) (1.72) (1.80) (1.85)

2.77 2.81 2.93 2.91
(0.94) (0.95) (0.87) (0.85)

2.00 2.12
(0.78) (0.96)

1.68 1.75
(0.70) (0.81)

1.57 1.63 1.17 1.24
(0.67) (0.75) (0.44) (0.52)

2363.41 2387.34 2408.88 2409.76 1202.67 1269.57 927.85 949.69
(1131.25) (1071.66) (920.96) (902.49) (834.76) (819.75) (434.02) (449.68)

Has Lot (y/n) 0.99 0.99
(0.11) (0.09)

0.99 0.99
(0.09) (0.09)

0.02 0.04 0.04 0.03
(0.14) (0.19) (0.18) (0.17)

4211.71 4253.09 3320.15 3462.02 113.24 157.66 191.18 151.38
(3433.26) (3437.64) (1964.22) (2031.41) (1595.75) (1145.06) (1222.04) (1148.19)

Year Built 1903.25 1903.31 1890.81 1892.71
(36.93) (37.81) (24.67) (24.94)

1944.51 1935.16 1915.12 1916.42
(44.72) (45.58) (27.94) (30.86)

1,624 2,599 255 336 2,138 3,626 1,446 2,765
Sample includes Cambridge houses and condominiums transacted during 1988 through 2005. Sales price, winsorized by
structure type to the 1st percentile, are converted to real 2008 dollars using the Consumer Price Index for All Items Less
Shelter for All Urban Consumers, Series Id: CUURO000SAOL2, Not Seasonally Adjusted. Has Lot indicates whether property
has a non-zero lot size.
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Table A5. Comparison of Estimated Relationship between Rent Control Status, Rent Control

Intensity, and Transacted Prices vs. Assessed Values for Units Transacted in 1994 and 2004

Dependent Variable: Log of Transacted or Assessed Price

Transacted Prices

(1) (2)

Assessed Values: Transacted Units

(4) (5) (6)(3)

RC x Post

RCI x Post

Non-RC x RCI x Post

RC x RCI x Post

N

RC x Post

RCI x Post

0.199 0.127
(0.124) (0.125)

0.606**
(0.294)

1. Houses

0.352** 0.114

(0.163) (0.078)

0.736***
(0.278)
-0.539
(0.828)

685 685 685

0.163** 0.085
(0.072) (0.068)

0.512**
(0.200)

0.059
(0.081)

0.452**

(0.189)

0.194
(0.137)

0.522***
(0.193)
-0.172
(0.615)

652 652 652

II. Condominiums

0.073 0.168**
(0.063) (0.071)

0.133*
(0.074)
0.255
(0.201)

0.122*
(0.069)

Non-RC x RCI x Post 0.406 0.110
(0.280) (0.294)

RC x RCI x Post 0.709** 0.516
(0.291) (0.366)

N 937 937 937 7,897 7,897 7,897

Samples includes houses (Panel 1) and condominiums (Panel 11) that transacted in 1994 and 2004.

Regression models follow column 5 of Table 4. In columns 4-6, the dependent variable is the assessed

value of any unit that is on a map lot at which at least one unit transacted in the given year. The

number of observations for houses is larger in columns 1-3 than in columns 4-6 because a unit may

transact more than once per year. The number of observations for condominimums in columns 4-6 is

larger than in columns 1-3 because condominium structures contain multiple units. We observe the

market price for transacted units and the assessed price for all units in the structure but cannot

determine which specific unit in a structure has transacted. In specifications that include RC, RCI, Non-

RC x RCI or RC x RCI interacted with Post, main effects of these variables are also included but not

tabulated. Robust standard errors clustered by 1990 block group are in parentheses. See notes to

Table 6 for additional details. *** p<0.01, ** p<0.05, * p<0.1
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Table A6. Somerville Border Analysis
Dependent Variable: Log of Transacted Price

All Houses
(1) (2)

Condominiums

(3)

Cambridge Tract x Post

Observations

R-squared

Cambridge BG x Post

1. Neighboring Census Tracts
0.069*** 0.066**

(0.023) (0.028)

5,700 4,398
0.606 0.598

0.059
(0.050)

1,302
0.637

11. Neighboring Census Block Groups
0.102** 0.101* 0.018
(0.042) (0.050) (0.085)

Observations 2,775 1,991 784
R-squared 0.617 0.607 0.646
Sample includes transactions in Somerville that take place in a census tract or block
group either abutting Cambridge (on the South) or Medford (on the North). Year fixed
effects, property characteristics, and Census tract fixed effects included in all
specifications. Robust standard errors clustered by 1990 block group are in
parentheses. *** p<0.01, ** p<0.05, * p<0.1
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Online Appendix

Data Appendix

Assessor's Data

The Cambridge Assessor's Database delineates the universe of residential housing located on each

Cambridge "map-lot," which is Cambridge's internal land parcel numbering system. We assembled

Assessor's data for 1995 and 2005, containing property valuations as of January 1 of the prior

year (thus. we designate these files as "1994" and "2004" property assessments in the text). We

obtained from the Cambridge Historical Commission and subsequently digitized bound copies of

the 1995 Commitment Books, which contain the property type classification and assessed value

of each Cambridge property, used for property tax purposes. We obtained a copy of the 2005

Assessor's Database in electronic form directly from the Cambridge Assessing Department. Unlike

the 2005 data, the 1995 Commitment Books do not enumerate the number of units at each structure.

In place of this enumeration, we use a file provided to us by Clifford Cook of the Cambridge

Planning Department that contains the count of units in each structure at each map-lot in 2001.

To calculate the latitude and longitude of each map-lot, we merged a geocoded version of the 2008

Assessor's Database provided by the MIT GIS Laboratory. We identified structure type conversions

by comparing the structure types assessed at each map-lot in 1994 and 2004. The combined

Assessor's files, augmented with structure counts and latitude and longitude data, comprise our

residential structures file. For all assessment, transaction and investment data, we inflated nominal

dollar values to 2008 dollars using the All Items Less Shelter CPI for All Urban Consumers, Series

Id: CUURO000SA0L2, Not Seasonally Adjusted, available from http://data.bls.gov/cgi-bin/srgate,

last accessed May 2012.

Decennial Census Data

To determine the 1990 Census block, block group, and tract corresponding to each map-lot code,

we used ESRI ArcMap and MassGIS ArcGIS shape-files containing Census geography boundaries,

which allowed us to match map-lots to geographies by latitude and longitude. We obtained block

group-level demographic data for the cities of Cambridge, Malden, Medford, and Somerville from

the 1990 Census Summary Tape Files (STF-1 and STF-3), which enumerate detailed demographic
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and housing data by block group using either a 100 percent extract (STF-1) or 15 percent sample

(STF-3) of the 1990 Census of Populations.

Rent Control Data

Our measure of rent control status and the geographic distribution of rent controlled properties

is drawn from the (now defunct) Cambridge Rent Control Board's database of actively controlled

properties as of 1994. This database was generously provided by David Sims of Brigham Young

University, who obtained it from the City of Cambridge via an earlier Freedom of Information Act

request. The Rent Control Board database lists the address and map-lot code of all structures that

were actively rent controlled as of 1994. We designate a given map-lot as rent controlled for the

purpose of our analysis if there are any actively rent controlled units on the map-lot as of 1994.

Sales Data

Data on transactions of houses and condominiums from 1988 and 2005 in Cambridge, Malden,

Medford, and Somerville are from the residential real estate sales database, which was purchased

from the Warren Group, a commercial vendor that assembles real estate data from town deeds

offices. Since not all changes in ownership are conventional sales, we eliminated transactions that

do not appear to be standard arms-length transactions, specifically: transactions where deeds are

marked as coming from a foreclosure process or bearing a land court certification; transactions

where the last name of the buyer or seller appears in the name of the party on the other side of the

transaction; transactions involving the Cambridge Housing Authority or affordable housing entities

such as Just-A-Start; properties where a seller and a buyer buy and sell the same property from

each other on the same day: property share transactions, identified as an individual being on the

same side of multiple transactions of the same property on the same day or the same individual

being on both sides of any transaction; and transactions where the buyer resells the property later

the same day. We also removed transactions with zero total rooms or zero interior square footage

and retain only one copy of any duplicate transaction (those with the same street address, sale date,

and price). In cases where the year built field for a given transacted property was missing, we first

attempted to fill it in with the listed year built from other transactions for that property. For the two

percent of transactions where year built could not be identified, we imputed its value as the mean

year built for its structure type. In regressions that include property characteristics, we include a
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dummy variable equal to one if the year built value was imputed. We excluded 359 rent controlled

condominium sales made between November 21, 1989 and December 31, 1989, during which time

a portion of the rent control statute limiting condominium conversions and sales was temporarily

overturned by the Massachusetts court. 49 To reduce the influence of outliers, we winsorized sales

prices by structure type to the first percentile for the entire sample. Thus, transaction prices are

defined as Pi = max {Pi, ps(i),(.01) }, where pi is the (real) reported sales price of property i, and

Ps(i),(.01) is the first percentile of housing sale prices for structure type s(i).

Investment Data

To measure residential investments, we obtained from the Cambridge Inspectional Services Depart-

ment a database of all residential building permits issued by the City of Cambridge between 1991

and 2005. For 389 permits missing expenditure amounts but containing information on the permit

fee, we replaced the missing expenditure value with 100 times the 1% permit fee. We removed

duplicate permits and permits that were not designated for residential properties. specifically those

that mention a non-residential usage in the description field (e.g., business, office. tent, educational,

store, mixed, commercial, research, etc.). Since the investment permit data do not contain map-lot

codes, we pooled the Assessor's Database with the Cambridge Rent Control Board database and

the 2001 structures file to form a crosswalk between address strings and map-lot codes. For permits

lacking an address string that matched to a map-lot code, we matched the permit to the nearest

map-lot code based on straight-line distance, calculated using the StreetMaps USA address locator

in ArcGIS. To construct our investment analysis sample, we merged the investment data to the

housing structures file using map-lot codes to determine rent control status, proximity to rent con-

trol, property type, and geographic location. We summed all permitted expenditures at a map-lot

in a year to form an annual panel of residential map-lot codes containing total expenditure for each

map-lot and winsorized real investment expenditures to the 9 9 .5th percentile for each structure

type and year.

49See Massachusetts Supreme Judicial Court 406 Mass. 147, detailed at

http://masscases.com/cases/sjc/406/406massl
47 .html, last accessed May 2012. The City of Cambridge was

able to quickly revise the rent control statute to comply with the court ruling while again limiting the conversion

and sale of rent controlled apartments.
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Cambridge City Census Data

To build a longitudinal panel database of all adult Cambridge residents for the years 1991 through

2000, we digitized the Cambridge City Census files from 1991 through 2000, obtained from the

Cambridge Election Office. to form a comprehensive list of adult Cambridge residents containing

for each resident full name, address, birth year, occupation, country of birth, and optionally, gender

and political party. Cambridge collects and makes publicly available these data in accordance with

Massachusetts law requiring each municipality to conduct an annual census for purposes of voter

registration and state reimbursements. We contracted with Equifax, Inc., a major U.S. credit

bureau, to match the names and addresses of the approximately 436,000 adult Cambridge residents

(39,000 to 48,000 unique individuals per year) identified in the city census. Equifax provided a

unique identification number for each queried Cambridge resident. which allowed us to link residents

across years and addresses to identify individuals who remained at the same address in consecutive

years. Because the City Census files do not contain map-lot codes., we matched the address of each

resident to its map-lot using the crosswalk between map-lot code and address strings constructed

for the investment analysis sample.

Abt Associates Survey Data

We analyzed rent differentials at controlled relative to non-controlled units using data from an Abt

Associates study (Finkel and Wallace, 1987) commissioned by the City of Cambridge to gather

data on the characteristics of households living in rent controlled housing. These data, provided to

us by Clifford Cook of the Cambridge Planning Department, enumerate contract rent, rent control

status, tenant awareness of rent control status, unit characteristics (bedrooms, bathrooms, total

rooms, an indicator for elevator in building, and indicators for whether furnishings, heat, electricity,

or water were included in the rent), zip code, and variables indicating unit condition for a sample

of 906 units.

Merging Assessor, Transaction, Investment and Geographic Data

To form the analytic sample for assessments and transactions, we mapped the housing structures

file by latitude and longitude to 1990 U.S. Census geographies (tracts, block groups, and blocks)

using a spatial join in ArcGIS. We merged the combined database to the Rent Control Board file
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according to map-lot code or, where necessary, street address. We calculated Rent Control Intensity

(RCI) at each map-lot as the fraction of housing units within a given radius, according to longitude

and latitude, that were rent controlled (excluding the map-lot's own rent control status from the

calculation).

To pair RCI information with transactions data, we merged the Warren Group data with the housing

structures file by map-lot code. For transactions with a missing map-lot code or with a map-lot

code that did not merge with the structures file, we queried the street address in Cambridge's online

property database (http://www2.cambridgema.gov/fiscalaffairs/propertysearch.cfm) and recorded

the online entry's map-lot code.

Additional Empirical Results

Price appreciation in adjoining cities

The decade following the elimination of rent control in Cambridge saw substantial housing price ap-

preciation throughout Massachusetts. For example, the Federal Housing Finance Agency's OFHEO

house price index (HPI) of single-family houses for the Boston Metropolitan Statistical Area (MSA),

an area corresponding to 97 towns including Cambridge (which accounts for 3% of the total MSA

population), shows a 270 percent increase from the first quarter of 1995 to the first quarter of

2005.50 This backdrop of rising real estate prices raises a potential concern that the price ap-

preciation in Cambridge that we attribute to rent decontrol might instead reflect aggregate house

price trends. Since our empirical strategy compares price appreciation across local areas within

Cambridge. this aggregate phenomenon is only a threat to our identification strategy if it leads to

differential appreciation at formerly rent control-intensive locations for reasons that are unrelated

to rent decontrol.

One way to explore this concern is to compare price appreciation in rent control-intensive locations

in Cambridge to comparable locations in surrounding Massachusetts towns that did not have rent

control in this time period. We implement this comparison by analyzing housing transaction data

for the three nearby cities: the adjoining city of Somerville, which abuts Cambridge; the city of

Medford, which abuts Somerville; and the city of Malden, which abuts Medford. These transactions

5 0Genesove and Mayer (2001) also document price appreciation in downtown Boston's condominium market during

the 1990s.
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data are also sourced from the Warren Group files, used for the price analysis immediately above,

and contain the identical data elements and years of coverage. 5 1

To perform the comparison, we create a Predicted RCI ('P-RCI') measure for Cambridge and

surrounding towns, first by regressing the Cambridge block group level RCI measure on 18 distinct

block group attributes available from the 1990 Census Summary Tape Files (STF) to obtain a

forecasting relationship between census block group attributes and RCI in Cambridge. 52 We next

use the model to predict the P-RCI value for each block group in Cambridge, Somerville, Malden,

and Medford. Finally, we explore the relationship between P-RCI and residential real estate price

appreciation within all four cities. Table B3 presents estimates.

As a benchmark. the first pair of models in Panel I presents the relationship between actual RCI

and pre-post decontrol price appreciation at never-controlled house and condominium properties

in Cambridge between 1988 and 2005." The RCI measure in this specification is computed at

the 1990 Census block group level. Panel II presents an identical set of estimates where the

observed RCI measure is replaced by P-RCI. For Cambridge houses, the point estimate for the

the Post x P-RCI variable is reassuringly similar to the estimate using the actual RCI measure.

This suggests that we may be able to use the statistical relationship between RCI and block group

census attributes to construct a proxy for RCI in non-Cambridge towns. The correspondence is not

as close for Cambridge condominiums, however, which limits the informativeness of this exercise

for this property type.

The next four panels of Table B3 perform the comparison exercise using transaction data from

Somerville, Malden, and Medford. Panel III pools these three cities. Distinct from the pattern for

Cambridge houses, we detect neither a significant negative relationship between P-RCI and house

5 1 A caveat to this approach is that it is widely perceived in the Cambridge area (though nowhere documented to
our knowledge) that the displacement of Cambridge residents following decontrol-both those leaving decontrolled
units and those fleeing rising rents-spurred gentrification of parts of Medford and Somerville. Lending some credence
to this hypothesis, Atlantic Marketing Research (1998) reports that 58 percent of Cambridge renters who moved out of
their decontrolled units between 1994 and 1997 left Cambridge. In general, we would expect this potential spillover to
surrounding cities to bias us towards finding similar differential rises in property prices in non-Cambridge comparison
neighborhoods.

5 2The 18 block group attributes are population density, median family income, the fraction of commuters using
public transportation, average owner tenure (the average tenure in years of owner-occupants at their current resi-
dence), average renter tenure, the fraction of owner-occupied housing units that were built before 1970, the fraction
of renter-occupied units built before 1970, the fraction of units that are condominiums, the fraction of residents that
are renters, the number of residents within non-family households (e.g. roommates), average age, median contract
rent, the average residential property value, the fraction of residents self-identifying as white, the fraction of residents
self-identifying as Asian, the fraction of housing units that are vacant, the fraction of housing units in structures with
at least 20 units, and the fraction of housing units in structures with 5 to 19 units

5 3 We exclude decontrolled properties from this exercise since no such properties exist in the comparison cities.
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transaction prices in the pre-decontrol period nor a significant positive relationship between P-RCI

and house transaction prices in the post-decontrol period. Panels IV, V, and VI report estimates

separately for the three non-Cambridge cities. These models find inconsistently signed relationships

between P-RCI and house transaction prices in Somerville, Malden, and Medford. One surprising

result, however, is that the point estimate for P-RCI x Post for Medford houses is similar to the

analogous estimate for Cambridge houses and is significant at the 5 percent level-though unlike in

Cambridge, the relationship between P-RCI and house transaction prices in Medford is small and

statistically insignificant in the pre-decontrol period. While this result is disconcerting inasmuch

as Medford did not have rent control. we are inclined to view this as a chance finding given the

evidence in the prior three panels.

A second pattern in Table B3 is that for all towns except Cambridge, we find evidence of a sub-

stantial decline in the transaction prices of condominiums in block groups with high P-RCI in the

post-decontrol period. Placing this result in context, it bears note that Massachusetts experienced

a substantial increase in condominium construction and conversions in urban neighborhoods in

this period, and this supply shift may have lowered prices. Comparing the non-Cambridge condo-

minium results to those for Cambridge, one potential inference is that condominium prices in rent

control-intensive neighborhoods in Cambridge would have fallen substantially after 1994 had it not

been for the end of rent control. Given the many complexities surrounding condominium supplies

and prices in this time period, however, we remain agnostic on this point.

Changes in the Composition of Properties Transacted

Because not all properties transact before or after the end of rent control, a concern in interpreting

models involving the prices of transacted properties is that non-random selection of properties into

transaction could lead to biased estimates of the causal effects of interest. To examine selection

into transaction, we estimated Seemingly Unrelated Regression (SUR) models that explore how the

characteristics of transacted properties vary with rent control status and rent control intensity in

Tables B4 and B5.54 For houses, shown in Table B4, we detect no individually or jointly significant

pre-post decontrol changes in the relationship between rent control status, rent control intensity, and

selection into transaction. There are some compositional differences for condominiums. however,

5 4 The regression specification for these models is comparable to those above, except in place of house values, we

use as dependent variables a, vector of property characteristics and the full set of equations is fit simultaneously to

allow for hypothesis testing across equations.
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shown in Table B5. Condominiums that transact after 1994 at decontrolled locations have 0.15

fewer total rooms than those that transact prior to 1995 and they are more likely to be recently

built. Moreover, the number of total rooms and bedrooms in transacted decontrolled condominiums

increases after 1994 in rent control-intensive neighborhoods, a pattern consistent with upgrading of

these locations. The chi-squared test for the joint significance of these relationships confirms that

the end of rent control saw a shift in the composition of transacted condominiums, which suggests

some caution in drawing conclusions using the transaction price data for condominiums.

As a second method of addressing potential composition biases in the transaction sample, in Table

B6, we re-estimated the Table 7 models for price appreciation using only the subset of units that did

not change structure type between 1994 and 2004 (typically reflecting condominium conversions).

thus reducing the samples of house and condominium transactions by 6 and 21 percent respectively.

This sample restriction reduces the estimated indirect effect of decontrol on never-controlled units

by approximately 25 percent and on decontrolled units by approximately one-half. The greater

effect on decontrolled units in turn reflects the fact that a substantial number were converted to

condominiums and renovated, which likely contributed to their price appreciation.

Availability of Subprime Credit

To examine the possibility that the appreciation of Cambridge properties in formerly rent control

intensive neighborhoods was driven in part by the availability of subprime lending into lower income

neighborhoods (Mian and Sufi, 2009). in the bottom panel of Table B6. we again re-estimated the

Table 7 specifications while excluding transactions in which the mortgage lender is listed as a

subprime lender by the U.S. Department of Housing and Urban Development. 5 5 As it turns out,

only two percent (311) of our sample of 14,789 transacted properties in Cambridge were financed by

subprime lenders, and hence excluding these observations has no substantive effect on the findings.

5 5 This follows the approach of Gerardi, Shapiro and Willen (2007a), who use U.S. Department of Housing and
Urban Development data to construct a list of subprime lenders.
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Table B1. Effects of Rent Decontrol on Assessed Values with Alternative Block

Group Control Strategies
Dependent Variable: Log of Assessed Property Value (1994, 2004)

(1) (2) (3)

1. All
RC x Post 0.220*** 0.196*** 0.200***

(0.036) (0.035) (0.037)
Non-RC x RCI x Post 0.514** 0.418** 0.465**

(0.227) (0.209) (0.212)
RC x RCl x Post 0.651*** 0.674*** 0.734***

(0.231) (0.226) (0.239)

N 32,980 32,779 32,779
R-squared 0.767 0.846 0.849

II. Houses
RC x Post 0.060*** 0.061*** 0.057***

(0.011) (0.012) (0.011)
Non-RC x RCI x Post 0.194* 0.208* 0.193*

(0.103) (0.109) (0.106)
RC x RCI x Post 0.315** 0.247* 0.265*

(0.130) (0.133) (0.134)

N 16,239 16,155 16,155
R-squared 0.855 0.902 0.917

1ll. Condominiums
RC x Post 0.350*** 0.329*** 0.332***

(0.040) (0.039) (0.040)
Non-RC x RCI x Post 0.678** 0.369 0.395

(0.308) (0.260) (0.271)
RC x RCI x Post 0.648** 0.603** 0.687**

(0.291) (0.268) (0.261)

N 16,741 16,624 16,624
R-squared 0.714 0.836 0.828
Fixed Effects Block Group Rolling Exponential

Decay
RCI is calculated over a 0.20 mile radius and demeaned. RC is an indicator for a

location that was rent controlled in 1994 and Post is an indicator for year equal to

2004. Year fixed effects and structure type dummies are included in all regressions.

All specifications include tract trends, which are tract x Post dummies for each of 30

tracts from the 1990 Census. Block group fixed effects correspond to the 89

Cambridge block groups in the 1990 Census containing assessed properties. "Rolling"

block fixed effects assign units to non-mutually exclusive Census block dummies by

identifying each Census block whose centroid lies within 0.2 miles of a residential

map-lot and assigning these block dummies to the map-lot. "Exponential Decay"

specifications are block fixed effects based on an exponential decay (with lambda=1),

where all block dummies are fractionally assigned (summing to 1) to each map-lot as

a decaying function of the distance between the property's map-lot and the block

centroid. Robust standard errors clustered by 1990 block group are in parentheses.
*** p<0.01, ** p<0.05, * p<O.1
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Table B2. Effects of Rent Decontrol and Rent Control Intensity on Assessed Values
by Structure Type Dropping Block Groups Bordering non-Cambridge Properties

(1) (2) (3) (4) (5) (6)

1. Houses
RC x Post 0.091*** 0.073*** 0.083*** 0.064*** 0.080*** 0.076***

(0.016) (0.013) (0.015) (0.012) (0.016) (0.015)
RCI x Post 0.420*** 0.317*** 0.434***

(0.088) (0.094) (0.085)
Non-RC x RCI x Post 0.403*** 0.297*** 0.423***

(0.088) (0.094) (0.084)
RC x RCI x Post 0.597*** 0.525*** 0.556***

(0.153) (0.120) (0.159)

HO: No Spillovers 0.00 0.00 0.00
H.: Spillovers Equal - - 0.122 0.00305 - 0.309
R-squared 0.847 0.850 0.847 0.850 0.850 0.850
N 12,407 12,407 12,407 12,407 11,415 11,415

II. Condominiums
RC x Post 0.335*** 0.343*** 0.336*** 0.335*** 0.322*** 0.324***

(0.050) (0.041) (0.053) (0.041) (0.046) (0.045)
RCI x Post 0.230 0.691** 0.101

(0.170) (0.282) (0.196)
Non-RC x RCI x Post 0.283 0.571** -0.040

(0.185) (0.275) (0.126)
RC x RCI x Post 0.123 0.744** 0.213

(0.321) (0.325) (0.357)

HO: No Spillovers 0.289 0.0415 0.818
H0 : Spillovers Equal 0.669 0.593 0.528
R-squared 0.701 0.710 0.701 0.710 0.712 0.712
N 14,140 14,140 14,140 14,140 10,131 10,131

Block group FEs y y y y y y
Tract Trends - y - y - -

Excluding Converted - - - - y y
Notes. Dependent variable is log assessed value. Assessed values are from 1994 and 2004. RCI is calculated

based on a radius of 0.20 miles. RCI is demeaned so that the main rent control effect is the price differential for
the average rent controlled property. Post is an indicator for year equal to 2004. Year fixed effects and block
group fixed effects are included in all regressions. Block group fixed effects correspond to each of the 88
Cambridge block groups containing assessed properties using 1990 Census boundaries. Tract trends are tract x
post dummies for each of 30 tracts from the 1990 Census. Two-family and three-family house dummies are
included in the top panel. Test for No Spillovers report p-vaues from tests that RCI x Post or Non-RC x RCI x Post

and RC x RCI x Post coefficients are zero. Test for Spillovers Equal reports p-value for hypothesis that these

latter two coefficients are equal. Robust standard errors clustered by 1990 block group are in parentheses.

p<0.01, ** p<0.05, * p<0.1
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Table B3. Placebo Estimates of the Relationship between Imputed Rent Control Intensity and Property

Price Appreciation in Cambridge and Adjoining Cities, 1988 - 2005

Dependent Variable: Log Sale Price

Condo-
Houses miniums

(1) (2)

I. Cambridge: Actual RCI

-0.183 -0.257
(0.112) (0.226)

0.261*** 0.063
(0.088) (0.093)

4,223 5,764

IV. Somerville

-0.162
(0.133)
-0.090
(0.151)

6,605

0.238
(0.555)
-0.406
(0.507)

1,868

Condo-
Houses miniums

(3) (4)

II. Cambridge: Predicted RCI

-0.203** -0.504*
(0.096) (0.256)

0.278*** -0.055
(0.092) (0.102)

4,223 5,764

V. Malden

0.023
(0.077)
0.052
(0.066)

6,506

-0.176
(0.172)

-0.562***
(0.171)

1,197

Condo-
House miniums

(5) (6)

Ill. Somerville, Medford
and Malden

-0.034 0.101
(0.057) (0.205)
0.088 -0.574***

(0.055) (0.206)

17,270 3,346

VI. Medford

-0.056
(0.079)
0.174**

(0.086)

4,159

0.832***
(0.268)

-1.201***

(0.278)

281

Sample includes never-controlled houses and condominiums in Cambridge and surrounding cities transacted during

1988 through 2005. Prices are winsorized by structure type and city at the first percentile. Actual RCI is Rent

Control Intensity calculated at the 1990 Census block group level. Predicted RCI is imputed for Cambridge and non-

Cambridge block groups from an OLS regression of Cambridge block group RCI on 1990 Cambridge Census block

group characteristics. All specifications include the controls used in column 1 of Table 7. Panel IllI additionally

includes a full set of city by year effects. Robust standard errors clustered by 1990 block group are in parentheses.

*** p<0.01, ** p<0.05, * p<0.1
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Table B4. Seemingly Unrelated Regression Estimates for Changes in Attributes of Transacted Houses Following
Rent Control Removal

Total
Rooms

(1)

Interior
Bathrooms Bedrooms Sqft (10s)

(2) (3) (4)

Lot Size

Sqft (100s)
(5)

ln(Age)
(6)

x2 Test
(row)

(7)
(7)

Constant

RC x Post

RCI x Post

Constant

RC x Post

Non-RC x RCI x Post

RC x RCI x Post

HO: No Spillovers
HO: Spillovers Equal

7.26***
(0.36)
-0.16
(0.20)
0.20

(0.46)

8.10***
(0.38)
-0.09
(0.21)
0.46
(0.48)
-1.92
(1.43)

0.257

0.114

2.46***

(0.12)
-0.05
(0.06)
0.03

(0.14)

2.46***
(0.12)
-0.04

(0.07)
0.06
(0.15)
-0.24

(0.45)

0.792

0.518

1. Models with Common RCI Effect

3.16*** 204.17*** 23.40***
(0.22) (13.20) (4.19)
-0.00 1.53 1.62
(0.12) (7.04) (2.38)
0.02 18.09 -0.44
(0.28) (15.83) (5.35)

11. Models with RC x RCI Interactions

3.17***

(0.22)
0.03

(0.13)
0.19

(0.30)
-1.14

(0.88)

0.350

0.151

204.17***

(13.20)
2.87

(7.27)
22.36

(16.70)
-18.13
(49.45)

0.380

0.437

25.91***
(4.46)
2.09

(2.46)
1.54

(5.64)
-15.26
(16.70)

0.634

0.340

4.83***

(0.11)
-0.09
(0.06)
0.04

(0.13)

4.76***

(0.10)
-0.09
(0.06)
0.03

(0.14)
0.11

(0.41)

0.939

0.856
N = 4,814. Table reports estimates from Seemingly Unrelated Regressions of characteristics of transacted houses on 1994
rent control status and Rent Control Intensity (RCI) calculated at the 0.20 mile radius. All specifications include main effects
for RC, RCI or Non-RC x RCI and RC x RCI, year of sale dummies, structure type dummies, block-group fixed effects, and an
indicator for whether year built was imputed. Column 7 reports Chi2(6) tests for the null hypothesis that the given row's
coefficients are jointly equal to zero (with p-values in parentheses). Test for No Spillovers reports p-values from tests that
RCI x Post or Non-RC x RCI x Post and RC x RCI x Post coefficients are zero. Test for Spillovers Equal reports p-values from
tests that these latter two coefficients are equal. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1

6.44

(0.38)
3.13

(0.79)

6.04

(0.42)
4.22

(0.65)
2.43

(0.88)
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Table B5. Seemingly Unrelated Regression Estimates for Changes in Attributes of Transacted Condominiums

Following Rent Control Removal

Total Rooms Bathrooms

(1) (2)

Interior
Bedrooms Sqft (10s)

(3) (4)

x2 Test
Has Lot In(Age) (row)

(5) (6) (7)

Constant

RC x Post

RCI x Post

Constant

RC x Post

Non-RC x RCI x Post

RC x RCI x Post

HO: No Spillovers

HO: Spillovers Equal

3.41***

(0.17)

-0.15**
(0.07)
0.04
(0.22)

3.40***

(0.16)
-0.19***

(0.07)
-0.28
(0.26)
0.71*
(0.38)

0.101

0.033

1.50***

(0.07)
0.03

(0.03)
-0.19**

(0.08)

1.59***
(0.06)
0.03

(0.03)
-0.17
(0.10)
-0.24
(0.15)

0.072

0.668

1. Models with Common RCI Effect

1.43*** 91.64*** 1.05***

(0.08) (7.34) (0.02)
-0.03 -2.67 0.02***
(0.04) (2.95) (0.01)
0.04 -4.50 -0.00
(0.11) (9.16) (0.02)

11. Models with RC x RCI Interactions

1.49***

(0.09)
-0.05
(0.04)
-0.12
(0.13)
0.40**
(0.20)

0.082

0.028

97.19***
(6.66)
-3.46
(3.02)
-9.62

(11.09)
6.54

(16.19)

0.633

0.410

1.04***

(0.02)
0.02**
(0.01)
0.01
(0.03)
-0.02
(0.04)

0.873

0.605

N=9,975. Table reports estimates from Seemingly Unrelated Regressions of characteristics of transacted condominiums on

1994 rent control status and Rent Control Intensity (RCI) calculated at the 0.20 mile radius. All specifications include main

effects for RC, RCI or Non-RC x RCI and RC x RCI, year of sale dummies, structure type dummies, block-group fixed effects,
and an indicator for whether year built was imputed. Has Lot is a dummy variable for whether the transacted

condominium had an accompanying lot. Column 7 reports Chi2(6) tests for the null hypothesis that the given row's

coefficients are jointly equal to zero (with p-values in parentheses). Test for No Spillovers reports p-values from tests that

RCI x Post or Non-RC x RCI x Post and RC x RCI x Post coefficients are zero. Test for Spillovers Equal reports p-values from

tests that these latter two coefficients are equal. Standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.l
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2.01***

(0.09)
-0.55***

(0.04)
0.09
(0.13)

2.51***

(0.11)
-0.55***

(0.04)
0.02

(0.15)
0.25

(0.22)

186.46
(0.00)
9.77

(0.13)

180.96
(0.00)
17.86
(0.01)
2.70
(0.85)

0.531

0.399



Table B6. Relationship between Rent Control, Rent Control Intensity and Transaction Price, 1988 - 2005:
Eliminating Units that Were Converted from their 1994 Structure Type and Transactions Financed by

Subprime Lenders
Dependent Varaiable: Log Sale Price

All transactions Houses

(1) (2) (3) (4) (5)
Condominiums

(6) (7) (8)

1. Eliminating Converted Structures

RC x Post 0.072***
(0.027)

RCI x Post 0.145***
(0.055)

Non-RC x RCI

x Post

RC x RCI x

Post
N

0.099
(0.069)

0.155**
(0.070)
0.093

(0.150)
12,402 12,402

RC x Post 0.088***
(0.026)

RCI x Post 0.204***
(0.058)

Non-RC x RCI

x Post

RC x RCI x

Post
N
Quadratic
Tract Trends

0.057
(0.068)

0.191***
(0.068)
0.256*
(0.146)

14,478 14,478

0.061 0.093**
(0.072) (0.045)

0.361***
(0.082)

0.069
(0.102)
0.085

(0.174)
12,402

0.023
(0.067)

0.121
(0.091)
0.249

(0.177)
14,478

0.104** 0.106**
(0.046) (0.047)

0.389***
(0.091)
0.054
(0.282)

4,527 4,527

0.290**
(0.136)
-0.034
(0.297)
4,527

0.076**
(0.031)
0.029

(0.072)

0.072** 0.065**
(0.028) (0.027)

-0.025
(0.107)
0.149
(0.154)

7,875 7,875

II. Eliminating Subprime Lenders

0.085**
(0.041)

0.339***
(0.079)

0.096** 0.097**
(0.042) (0.043)

0.361***
(0.086)
0.092
(0.253)

4,706 4,706

y

0.268**
(0.126)
-0.013
(0.282)
4,706

0.095***0.081***
(0.030) (0.029)
0.152**
(0.073)

0.074
(0.086)
0.317**

(0.154)
9,772 9,772

y

-0.153
(0.146)
0.195

(0.180)
7,875

0.071**
(0.027)

-0.014
(0.130)
0.307

(0.197)
9,772

y
Table reports estimates for all residential transactions, and houses and condominums separately following Table

7. Panel I drops transactions of units in structures converted from their 1994 structure type. Panel 11 drops

transactions with mortgages from lenders identified by HUD as issuing subprime mortgages. Robust standard
errors clustered by 1990 block group are in parentheses. See Table 7 notes for additional details. *** p<0.01, **

p<0.05, * p<0.1
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Chapter 3

IV Quantile Regression for

Group-level Treatments, with an

Application to the Effects of Trade on

the Distribution of Wages

with Denis Chetverikov and Bradley Larsen

3.1 Introduction

In classical linear panel models, when time-invariant unobservables are correlated with included

variables, unit fixed effects are commonly used to obtain identification. While this approach yields

consistent estimates of coefficients on time-varying characteristics, it rules out the identification of

effects of any time-invariant variables, as these variables are eliminated by the within-group trans-

formation. In an influential paper, Hausman and Taylor (1981) demonstrated that within variation

can be used to identify the coefficients on time-dependent (individual-level) covariates., and then

exogenous between variation can be used to identify coefficients of any time-invariant (group-level)

covariates. 1 Our paper provides a robust method of estimating the effect of group-level endogenous

'To clarify the broad applicability of the estimator to a variety of settings, we depart from the usual panel-

data terminology and refer to panel units as groups (instead of as individuals) and to within-group observations as

individuals or micro-level observations (instead of as time observations).
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covariates on the distribution of outcomes, a quantile extension of the Hausman and Taylor (1981)

classical linear panel estimator. We demonstrate that standard quantile regression techniques, such

as Koenker and Bassett (1978), are inconsistent in this setting, and that existing instrumental vari-

ables methods for quantile regression do not apply. We find that our estimator is computationally

simple to implement and, when group-level unobservables are present, substantially outperforms

traditional methods for obtaining distributional effects of a group-level treatment.

Our paper makes the following theoretical and practical contributions. First, we show how to use

the Bahadur representation of quantile estimators to derive weak conditions on the growth of the

number of observations per group that are sufficient for the consistency and (mean-zero) asymptotic

normality of our estimator. Note that theoretical results for the classical linear panel model do

not require these tools, as the linear panel model admits the linear fixed effect estimator, which

is unbiased. This feature of linearity allowed Hausman and Taylor (1981) to derive a consistent

estimator of coefficients corresponding to the group-level endogenous covariates using asymptotics

where the number of observations per group is fixed. In contrast. quantile estimators are generally

biased in finite samples, raising challenges for obtaining a consistent estimator of these coefficients in

a quantile panel data model. However, quantile estimators are asymptotically unbiased, motivating

us to adopt the Bahadur representation to obtain our theoretical results.

The estimator we propose is of practical significance in situations in which the researcher has

data on a group-level endogenous treatment and has micro-level data on the outcome of interest

within each group. For example, a researcher may be interested in a policy which varies across

states and wish to examine the effects of the policy on the within-state distribution of individual

outcomes. The estimator consists of 1) performing quantile regression within each group to estimate

effects of micro-level covariates, or., if no micro-level covariates are included, calculating the desired

quantile for the outcome within each group; and 2) applying two-stage least squares (2SLS) to

the group-level quantiles. Importantly, as in Hausman and Taylor (1981), micro-level covariates

can be used as internal instruments for the endogenous group-level treatment if they satisfy the

exogeneity condition. Alternative approaches for IV quantile regression, in which the researcher

is concerned with an individual-level treatment being correlated with unobservables, such as the

situations described in Abadie, Angrist and Imbens (2002) or Chernozhukov and Hansen (2005),

do not apply in this setting. Angrist and Pischke (2009) described IV quantile methods as "a

relatively new development and not yet as flexible as conventional 2SLS." An advantage of the
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estimator proposed here is that it is as flexible as 2SLS.

Even in the absence of endogeneity, standard quantile regression will be inconsistent in this set-

ting, as demonstrated below, given that an additive unobservable component breaks the quantile

structure. Our approach, on the other hand, consists of a linear second stage, in which the additive

unobservable component is not problematic. Intuitively, when group-level variables are exogenous

and there are no individual-level covariates-a special case of our general model-the second-stage

estimator reduces to a between estimator with group quantiles replacing group means, equivalent to

the minimum distance estimator proposed in Chamberlain (1994) and discussed further in Angrist,

Chernozhukov and Fernaindez-Val (2006). It is also useful to note that the additive unobservables

in our model, when uncorrelated with group-level included variables, are akin to left-hand side

measurement error. While posing no problems for linear models, left-hand side errors-in-variables

can severely bias quantile estimation, as we demonstrate below. 2 To our knowledge, this use of the

Chamberlain (1994) estimator to solve the bias introduced by group-level unobservables in quantile

models (or, equivalently, left-hand side measurement error), while still allowing for the estimation

of group-level treatments, has not before been discussed.

As in Hausman and Taylor (1981), estimating coefficients corresponding to group-level covariates

requires estimating coefficients corresponding to micro-level covariates in a first stage. Estimating

the effects of micro-level covariates in classical panel data models can be easily accomplished by

taking differences or by (Icincaning observations within groups. This trick, however. does not work

in the quantile panel data model because it breaks the quantile structure. A possible alternative

in the panel data model is to jointly estimate group-level effects together with the effects of micro-

level covariates. This procedure is computationally burdensome, however, because the number of

parameters in the quantile optimization problem in this case is at least as big as the number of

groups in the data set, which is typically large. 3 We find, in Monte Carlo experiments, that jointly

estimating group-level effects takes over 130 times as long as our approach.4

2 Hausman (2001), footnote 11, also pointed out that left-hand side measurement error will bias quantile regression
estimates. See Hausman, Luo and Palmer (2014) for an EM algorithm-based solution to left-hand side measurement
error in quantile models.

3 Koenker (2004), Lamarche (2010), Galvao and Wang (2013), and Galvao (2011) all highlighted the computational
challenge present when estimating large numbers of fixed effects in quantile models. Koenker (2004) explained how
sparse matrix approaches can be used to aid computation in some cases.

4 Note that, even when no group-level unobservables are present-meaning standard quantile regression is con-
sistent in addition to grouped quantile regression being consistent-the grouped quantile regression approach still
provides computational advantages over standard quantile regression. A prime example is a model with state fixed
effects where the group is a state-by-year combination, as in many policy analyses; grouped quantile regression ignores
state fixed effects in the first stage and then accounts for them linearly in the second stage, greatly reducing the num-
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A final contribution of practical significance is that standard errors for the proposed estimator can

be obtained using traditional robust variance estimators for 2SLS, making inference particularly

simple. We demonstrate that the estimator is consistent and asymptotically normal. We also show

the existence of confidence bands for the coefficient of interest which hold uniformly over a set

of quantiles of interest, and present subsampling and bootstrap approaches for estimating these

confidence bands.

Section 3.2 presents the model and discusses its relationship to existing models. Section 3.3 provides

several motivating examples of settings in which this estimation approach can be useful, drawing in

part on papers which applied special cases of our approach but which did not discuss the consistency

of the estimator. The first example comes from Angrist and Lang (2004). who estimated the effect

on the lower tail of student test scores when urban students were reassigned to suburban schools

through Boston's Metco program. The second example is Larsen (2012b), who estimated the effect

of teacher certification laws on the distribution of teacher quality. The third example comes from

Palmer (2011), and illustrates the use of our estimator in an IV setting, measuring the effects

of suburbanization on urban decline. The final example suggests a new test of the symmetric.

independent private values assumption in English auctions which could be used in a non-IV setting

or in an IV setting given appropriate instruments for the number of bidders.

In Section 3.4 we discuss the estimator in detail. We examine the general case in which the

researcher has individual-level outcome data and a treatment that varies by group, where the

treatment is correlated with an additive, unobservable, group-level element. We describe the steps

to the general grouped IV quantile estimator and its special cases. We then provide an example

demonstrating that standard quantile regression is inconsistent in this setting.

Section 3.5 derives the asymptotic properties of the estimator. Our theoretical results are based

on the asymptotics where both the number of groups and the number of observations per group

grow to infinity. In contrast with other papers studying quantile panel data models, our results on

asymptotic (mean-zero) normality hold under a weak assumption that the number of observations

per group grows at least as quickly as the square-root of the number of groups (up to logarithmic

terms). Other papers require at least linear growth; see, for example, Kato and Galvao (2011) and

Kato, Galvao and Montes-Rojas (2011). This gives an advantage when the number of observations

per group is relatively small in comparison with the number of groups.

ber of parameters to be estimated in the quantile model and hence reducing the computational burden significantly.
See Section 3.3 for further discussion.
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We present Monte Carlo simulations in Section 3.6 demonstrating the performance of our estimator.

Findings indicate that, when the treatment variable is endogenous, group-level unobservables lead

to bias in standard quantile regression. The grouped IV quantile estimator, on the other hand, has

very low bias. The simulations also demonstrate that standard quantile regression is biased even

if the treatment variable is exogenous, as group-level unobservables bias quantile regression just as

left-hand side measurement error would. The grouped approach derived in this paper again has

very low bias in this setting. We show that these results are true even with few groups and few

individual observations per group.

Section 3.7 presents our main empirical application. which studies the effect of trade, in the form

of increased import competition from China, on the distribution of wages within US local labor

markets. We build on the work of Autor, Dorn and Hanson (2013), who studied the effects of

Chinese import competition on average wages in local labor markets. In this setting, if there exists

an unobservable component to wages in each local labor market, standard quantile regression

would be inconsistent, and existing instrumental variables approaches to quantile regression are

not applicable. Using the grouped IV quantile regression approach, we find that Chinese import

competition harmed low-wage earners more than high-wage earners, particularly for females, an

effect which is overlooked by traditional 2SLS.

To the best of our knowledge. our paper is the first to present a framework for estimating dis-

tributional effects as a function of group-level covariates. There is. however, a large literature

studying quantile models for panel data when the researcher wishes to estimate distributional ef-

fects of individual-level covariates. See, for example, Koenker (2004), Abrevaya and Dahl (2008),

Lamarche (2010), Canay (2011), Galvao (2011), Kato et al. (2011), Kato and Galvao (2011), Galvao

and Wang (2013), and Arellano and Bonhomme (2013). Our paper also contributes to the growing

literature on IV treatment effects in quantile models, such as Abadie et al. (2002), Chernozhukov

and Hansen (2005). Lee (2007), Chesher (2003), and Imbens and Newey (2009). Our paper differs,

however, in that this literature focuses on estimating distributional effects when the treatment is

correlated with an individual-level quantile rather than focusing on group-level, additive unobserv-

ables.

We will use the following notation. Let c and C denote generic strictly positive constants that

are independent of n but may vary at each appearance. Let I| - | denote the Euclidean norm. Let

B(x, r) denote a ball with the center at x and radius r in a metric space that should be clear from
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the context. The symbol : signifies weak convergence, and l (U) for a set U denotes a set of

bounded functions on U. All proofs are contained in the Appendix.

3.2 Model

We study the following model for the response variable yig of individual i in group g,

yig zg (Ujg) + X' /(uig) + E(uig, rlg), (3.1)

where zig and T g are d,- and dx-vectors of individual and group-level observable covariates (xg

contains the constant), rJg is a vector of group-level unobservable covariates, and uig is a scalar

random variable representing individual heterogeneity. To turn this model into a quantile regression,

we assume that for any given value of (zig, Xg , rg) on its domain, Yig is increasing in njg, and uig is

distributed uniformly on [0, 1]. Given these assumptions, the conditional uth quantile of yi9 given

(zjg, X9 , 'f/g) is

Qyigjzigxgrg(u) = z y(u) + X,'f(u) + E (u, ry).

We assume that a researcher has data on G groups with Ng individuals within group g, g = 1, ... , G.

In this paper, we are interested in estimating and performing inference on the parameter 0(u)

representing the effect of observable group-level covariates either for some particular value of index

u or for a set of indices U.

In this model, zigy('uig) is the individual effect, and x'>(uig) + e(uig, rig) is the group effect. We

allow for arbitrary correlation between these effects. The unobservable component E(7ig, rg) is

modeled as a general nonparametric function. Thus, we also allow for arbitrary nonlinear effects

of the group-level unobservable covariates. In addition, note that we do not need to specify the

dimensionality of rig, which may be either a scalar or a vector.

In many applications, it is likely that observable covariates zig and xg are related to the unobservable

't g. Therefore, we assume that zig and xg are endogenous in the sense that rig is not independent

of zig and xg. Under the endogeneity of zig and xg, #(u) is not identified without further as-

sumptions. To achieve identification, we assume that there exists a de-vector of instruments wg

satisfying E[E(u, rjg) wg] = 0 (mean-independence) and E[wgx'] is nonsingular (relevance). These

are well-known conditions from the classical instrumental variable estimation theory. However, as

156



in Hausman and Taylor (1981), since we consider the group (panel) structure of the data, some

components of w9 can be internal instruments, that is, if some component k of zig, denoted z (k)

is exogenous in the sense that E[e(u, r) z 0, then we can use, say, EliNg Z(k as an

instrument. Note that one sufficient condition for mean-independence is that t/g is independent of

Wg. Our mean-independence, however, is a slightly weaker condition since it is required only for a

particular value u of interest.

Our problem in this paper is different from that studied in Koenker (2004), Kato et al. (2011),

Galvao and Wang (2013), and Kato and Galvao (2011). Specifically, they considered a quantile

panel data model which, in our framework, would be written as

yig zg'Y('Uig) + ag('uig) (3.2)

where cg (.) represents the group-level fixed effect, and the researcher is interested in estimating H(-).

In a rigorous study. Kato et al. (2011) showed that their fixed effect quantile regression estimator

(-) is asymptotically (mean-zero) normal if the following condition holds: G2/ min= 1 ,...,G Ng + 0

as G - oc (up-to logs). Note that this condition is stronger than that required in this pa-

per for asymptotic (mean-zero) normality of our estimator /(.) of Q(u) in model (3.1), which is

G1/2/ ming=1 ,...,a Ng -* 0 (up-to logs). This difference is likely to be explained by the fact that we

are interested in estimating a different object. Further. Kato and Galvao (2011) suggested a fixed

effect smoothed quantile regression estimator '(-) of y() in model (3.2). They showed that their

estimator is asymptotically (mean-zero) normal if G/ ming=1 ....,G Ng -i 0. In addition, they derived

the asymptotic bias when ming.1,...,G Ng is of the same order as G and obtained a bias-corrected

estimator.

Our model is also different from that studied in , who considered an extension of Hausman and

Taylor (1981) to cover non-linear panel data models. Formally, they considered a non-linear panel

data model defined by the following equation:

E [p(yjg, z'gy + xo + Eg)] = 0

where o(-, -) is a vector of moment functions and eg is the group-level effect. As in this paper.

the authors were interested in estimating the effect of group-level covariates (coefficient 3) without

assuming that Eg is independent (or mean-independent) of xg but assuming instead that there
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exists an instrument wg satisfying E[Eg'wg] = 0. Importantly, however, they assumed that p(.,.)

is a vector of smooth functions, so that their results do not apply immediately to our model. In

addition, required that ming=1,...,G Ng/G > c for some c > 0 uniformly over all G > 2 to prove

that their estimator is asymptotically (mean-zero) normal. In contrast, as emphasized above, we

only require, up-to logs, that ming=1,...,G Ng/V -± oc as G -+ oc; the improvement comes from a

better control of the residuals in the Bahadur representation.

A strong assumption in our model is that the distribution of unobserved individual heterogeneity

Uig is not allowed to vary across groups. This assumption restricts possible interpretations of qig.

However, our model does allow for the distribution of observed individual-level covariates zig to vary

across groups. as well as for the unobserved group shocks to differentially affect quantiles within a

group through E(u, 7g). Our model also allows for groups to vary because of group-level covariates.

Extending our results to allow for varying distributions of unobserved individual heterogeneity

would require some other assumptions or richer data structures like those in Athey and Imbens

(2006).

Finally, we emphasize that in contrast with classical linear panel data models, we assume that both

the number of groups G and the number of individuals in each group Ng are large. In other words,

we study asymptotics where Ng goes to infinity for every g 1 , G as the number of groups G

increases. This gives a relevant approximation in many empirical applications.

3.3 Examples of Grouped IV Quantile Regression

To help the reader envision applications of our estimator, in this section, we provide several moti-

vating examples of settings for which our estimator may be useful. Note that each of the following

examples involves estimation of a treatment effect that varies at the group level with all endogene-

ity concerns also existing only at the group level.5 As described in more detail in Section 3.4, the

estimator is performed in two steps:

1. If no micro-level covariates are included, calculate the desired quantile for the outcome within

each group. If micro-level variables are present, perform quantile regression for each group

5 This is in contrast to settings where the endogeneity exists at the individual level, i.e. when the individual
unobserved heterogeneity is correlated with treatment. Such situations require a different approach than the one
presented here, e.g. Chernozhukov and Hansen (2005), Abadie et al. (2002), or other approaches discussed in Section
3.1.
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and save the intercept term (the regression constant) from the regression for each group

(analogous to partialling out in a linear model).

2. Estimate 2SLS (or OLS if the treatment is exogenous) of the group-level quantiles (or group-

level quantile regression constants) on the group-level treatment and any group-level controls.

Example 1: Peer Effects of School Integration

Angrist and Lang (2004) studied how suburban student test scores were affected by the reassignment

of participating urban students to suburban schools through Boston's Metco program. Before

estimating their main instrumental variables model, the authors tested for a relationship between

the presence of urban students in the classroom and the second decile of student test scores by

estimating

QyigjtJrngjt,sgjtgjt (0 .2 ) = a9 + /j + -(t + 6mrgt + Asgit + gjt (3.3)

where Q9 .ti,(0.2) represents the second decile of student test scores within a group, where each

group is a grade g x school j x year t cell. The variables saqt and mqjt denote the class size and

the fraction of Metco students within each g x j x t cell, and ag, , and -yt represent grade, school,

and year effects. The unobserved component, gjt, is analogous to the E(.2, 71g) of our model.

Angrist and Lang (2004) estimated equation (3.3) by OLS, which is equivalent to the non-IV

application of our estimator with no micro-level covariates. Similar to their OLS results on average

test scores, they found that classrooms with higher proportions of urban students have lower second

decile test scores. Once they instrumented for a classroom's level of Metco exposure, the authors

found no effect on average test scores. However, by not estimating model (3.3) by 2SLS, they were

unable to address the causal distributional effects of Metco exposure.

Example 2: Occupational Licensing and Quality

Larsen (2012b) applied the estimator developed in this paper to study the effects of occupational

licensing laws on the distribution of quality within the teaching profession. This application uses

a difference-in-differences approach. Similar to Example 1, the explanatory variable of interest is

treated as exogenous and the researcher is concerned that there may be unobserved group-level
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disturbances. In this application, a group is a state-year combination (s, t), and micro-level data

consists of teachers within a particular state in a given year.

Let qijt, represent the quality of teacher i in state s who began teaching in survey year t, where

quality is proxied for by a continuous measure of the selectivity of the teacher's undergraduate

institution. qist is modeled as

qist =s (uist) + At(uist) + Law,'tOuist) + E(uist , 7st) (3.4)

where -y is a state effect, At is a year effect, and Law t is a three-element vector containing dummies

equal to one if a subject test, basic skills test, or professional knowledge test was required in state

s in year t.

Because no micro-level covariates are included, the grouped regression can be obtained by simply

selecting the uth quantile of quality in a given state-year cell,

Qq stJLaw.tist (u) = y5(u) + At(u) + Law',(u) + E(u, qst) (3.5)

The grouped quantile estimator is obtained via OLS on equation (3.5). Larsen (2012b) found that,

for first-year teachers, occupational licensing laws requiring teachers to pass a subject test lead to

a small but significant decrease in the upper tail of quality, suggestive that these laws may drive

some highly qualified candidates from the occupation.

This example highlights another useful feature of grouped IV quantile regression. Including state-

level effects in a standard quantile regression drastically increases the computational time, and in

some cases, standard estimation packages fail to reach convergence with large numbers of nuisance

parameters. However, because in this example each group (a state-year combination) corresponds

to only one of these nuisance fixed effects (a state), there is no need to estimate state effects in the

first-stage regression, and they can instead be estimated in the second-stage linear model.

Example 3: Distributional Effects of Suburbanization

Palmer (2011) applied the grouped quantile estimator to study the effects of suburbanization on

resident outcomes. This application illustrates the use of our estimator in an IV setting. In this

application, a group is a metropolitan statistical area (MSA), and individuals are MSA residents.
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As an identification strategy, Palmer (2011) used the results of Baum-Snow (2007) in instrumenting

suburbanization with planned highways. 6

The model is

AQg IXg,q. 7 (U) = 0(u) - suburbanizationg + 'y1(U) + i (U, ig)

suburbanization 7r(u) - planned highway rays9 + -'-2(U) + g (u)

where AQjxg sqij,(u) is the change in the uth quantile of log wages yigt within an MSA between

1950 and 1990 and xg is a vector of controls (including a constant) conditional upon which planned

highway rays9 is uncorrelated with qg and g(u). The variable suburbanizationg is a proxy measure

of population decentralization, such as the amount of decline of central city population density. 0(u)

is the coefficient of interest, capturing the effect of suburbanization on the within-MSA conditional

wage distribution. For example. if the process of suburbanization had particularly acute effects on

the prospects of low-wage workers, we may expect 3(u) to be negative for u = 0.1. For a given u,

the grouped IV quantile approach estimates /3(u) through a 2SLS regression.

Example 4: Testing the Symmetric, Independent, Private Values Assumption in

English Auctions

This example describes a test of the symmetric, independent, private values (IPV) assumption in

English auction models. The example illustrates the use of the grouped quantile estimator in an

IV or non-IV setting, where individual-level covariates are included. In this example, a group is a

particular value of B, the number of bidders present at the auction, and an individual observation is

the transaction price from a particular auction sale. 7 Assuming bidding follows the standard button

auction model and bidders play the weakly dominant truth-telling equilibrium, the transaction price

will be the second-order statistic of buyer valuations, and a necessary condition for the symmetric

IPV setting is that quantiles of the distribution of these transaction prices should increase in the

number of bidders.

To test this assumption, one can group auction sales together based on the number of bidders

6 fBaum-Snow (2007) instrumented for actual constructed highways with planned highways and estimated that

each highway ray emanating out of a city caused an 18% decline in central-city population.
7Note that the test suggested here would not be useful if the researcher is concerned with unobservables at

the individual auction level rather than at the level of the number of participants. In the former case, alternative
instrumental variables quantile regression methods would be appropriate.
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present at the sale (B). Let g = 1, ..., G denote these groups. Let pig represent the transaction

price from auction i in group g, and let B. represent the number of bidders present at the sale. Let

Pig be written

Pig = a(uig) + /(uig)Bg + -y(uig)Xig + E(uig, 'rg)

where Xig represents observable auction heterogeneity. The term qg captures group-level unob-

servables which specifically affect prices in auctions in which there are Bg bidders present. If the

number of bidders, B . is treated as exogenous. grouped estimation can be performed by first doing

u-quantile regression of pig on Xig and a constant, separately for each group, and then regressing

this constant on B9 using a linear regression. If Xig is not included in the equation, our grouped

estimator consists of simply selecting the uth quantile of bids for each group and regressing this

quantile on B 9 .8

If instead the number of bidders is treated as endogenous, that is, qg affects prices as well as the

number of bidders participating, then the second step of the grouped estimator would be replaced

with 2SLS using an instrument for the number of bidders. For example, Haile, Hong and Shum

(2003) studied US timber auctions and developed a different test of the IPV assumption which also

relies on instrumenting for the number of bidders present. The authors used the numbers of nearby

sawmills and logging firms as instruments for the number of bidders.

3.4 Estimator

In this section, we develop a two-stage estimator. Our main emphasis is to derive a computationally

simple, yet consistent. estinator. In the first stage. for each group g and each quantile index u

from the set U of indices of interest, we estimate u-quantile regression of yig on zig and the constant

using the data {(yig, zig) :i 1, ... , Ng} by the classical quantile regression estimator, which can

be written as
Ng

(u), .(u)) = arg min + 3 p(yig - zig h - a),
(h,a)CRdz+1

8 Larsen (2012a) applied this approach to data from wholesale used-car auctions and finds a positive and significant
coefficient on the number of bidders present for most quantiles tested, consistent with the symmetric IPV assumption.
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where p,,(-) is a "check" function of Koenker and Bassett Jr (1978), i.e. pu(x) = (u - I{x < O})x.9

Define

ag (u) = xg/ 3 (u) + E(U, 7g),

(19(u) = xg3(u) + 6(u, Jg) + vg(u)

where vg (u) = 6g(u) - %i (u).

The second stage consists of estimating a 2SLS regression of cg(u) on X9 using w9 as an instrument

to get an estimator 0(u) of (u), i.e.

O(U) = (X'Pw X (X'P -A(u))

where we use matrix notation X = (x1,... XG)', W = (Wi1,...,WG), A(u) G((1(U), --- ,G(u))

and PIV = W(W'W)- 1W'. Intuitively, as the number of observations per group increases, Vg

shrinks in absolute value, and we obtain a classical instrumental variables problem. The theory

presented below provides a lower bound on the growth of the number of observations per group

that is sufficient to achieve consistency and asymptotic normality of )(u).

Note that in the first stage we run the quantile regression inidepen(eIntly for every group. Another

approach would be to estimate all parameters {ag(u) : g =1..., G} jointly. This would provide an

efficiency gain given that, in this model, individual-level effects -y(u) are group-independent. This

is the approach taken up in Koenker (2004) and Kato et al. (2011) for quantile regression with

panel data. Although our method is less efficient, it is computationally much less demanding since

only few parameters are estimated in each regression, which can greatly reduce computation times

in large datasets with many fixed effects. In addition, our approach is flexible in the sense that it

yields consistent estimators even if -y(-) varies across groups.

Two special cases of the estimator are worth noting. First, if no individual-level covariates zig are

included, the first stage simplifies to selecting the uth quantile of outcome variable yig within each

group. Second, if xg is independent of 7g, OLS of 69(u) on xg may be used rather than 2SLS. When

there are both no individual-level covariates and no endogeneity, the grouped IV quantile regression

estimator simplifies to the minimum distance estimator described in Chamberlain (1994).

9 Note that there may be some efficiency gains from estimating parameters jointly for the whole index set U. For

simplicity, however, we do not consider this possibility in the paper.
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In summary, the steps of our estimator are

1. 1. Run u-quantile regression of yig on zi9 and a constant for each group, g = 1. ..., G. If zig

is not included, simply select the uth quantile of yi 9 within each group.

2. 2. Perform 2SLS regression, regressing the estimated constants from each group (or, with no

individual-level covariates, the uth quantile of Yiyg within each group) on xg, instrumenting

with u79 . If endogeneity is not a concern, instead perform OLS of the estimated constants on

X9.

Standard errors may then be obtained using standard approaches for robust standard errors for

2SLS or OLS (heteroskedasticity or autocorrelation-robust, clustered, etc.) as if there were no first

stage, as demonstrated in Section 3.5. Section 3.5 also derives subsampling procedures that are

suitable for constructing uniform confidence bands for the case when the researcher is interested in

the set U of quantile indices u.

To conclude this section, we provide an example demonstrating that the classical quantile regression

estimator is not consistent in our setting even if group-level covariates are exogenous. Consider the

following model:

yig= -D 1(uig) + x9 I- 1 (Uig) + rg (3.6)

where observations are independent across g. 4(.) is the cdf of a N(O, 1) random variable, xg equals

1 with probability 1/2 and equals 0 otherwise, 71 is a N(0, 1) random variable that is independent

of xl, and each ui, is distributed uniformly on [0, 1] and is independent of 71 and across i. In this

model, conditional on x, = 0, yig is distributed as a N(0. 2) random variable, and conditional on

X9 = 1, yig is distributed as a N(0, 5) random variable. Therefore, the uth quantile of yig given

£9 equals v'- 1 (u) if x£ = 0 and equals V5'11-1(u) if £g = 0. Therefore, running a u-quantile

regression of yig on xg (and a constant) would give an estimator of the coefficient of xg converging

in probability to (v -- )I 1 (u), whereas the true coefficient on xg in model (3.6) is -1 (u). We

conclude that the classical quantile regression estimator is not consistent in our setting.

3.5 Asymptotic Theory

In this section. we first formulate our assumptions. Then we present the main theoretical results

of the paper.
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3.5.1 Assumptions

Let Fig(.) and fig(.) denote the conditional cumulative distribution function of yig and its derivative

given group-level information, respectively. Let Eg = E[. x 9 , i7]. Denote

Jg (u) = Eg [(1, zg)'(1, z )fig(cg(u) + Zg(u) ]

Let ci, C 1, c2, C 2 , C3, C 3 be strictly positive constants. We will assume the following regularity

conditions:

A1 (Design). Observations are independent across groups. In addition, {(yig, zig), i = 1, ... , Ng}

are independent and identically distributed group-level information.

A2 (Covariates). |jzjgjj < C1 and Jljxgj < C1.

A3 (Instruments). (i) For all u E U, E [E(u, )|wg] = 0. (ii) E wg|12 ] < C1. (iii) All eigenvalues

of E[w w'] and all singular values of E[ugx',] are bounded in absolute value away from zero by cl.

A4 (Coefficients). For all u,u2 E U, ||y(ui) - Y(u2)1 < C2 |u1 - u21 and I0(u1) - O(u2)H1 <

C2 I1U - U2|-

A5 (Noise). (i) For all ui, u2 G U, IE(i, 71g) - E(u2,qg) I < C2 ul - u2 - (ii) For some i- e U,

EL[Q(u, ig) 1] < C1. (iii) E (|e(ti, ng) 2wgw,|11 < C1.

A6 (Matrix Jg(u)). (i) For all u E U, all eigenvalues of Jg(u) are bounded from below by c1. (ii)

For all U1, U2 E U, |J (u) - J l(u 2 )I I < 21 -U 2 1/ 2 .

A7 (Density). (i) For all u E U, fig(.) is continuously differentiable in B(a(u) + z ^(u), c2) with

the derivative f 9l(-) satisfying Ifig (x) < C 3 for all x E B(ag (u) + zg' (u), c2) and |fig(ag(u) +

z 97(u)I) > c3. (ii) For all u E U and x E B(ag(u) + z$ -Y (u), c2), fig(x) C3.

A8 (Growth Condition). v/Gmaxg=1,...,c(log (Ng)/Ng) - 0 as G -* oc.

A9 (Quantile Indices). U is a compact set included in (0, 1).

Assumption 1 imposes the restriction that group observations form a random sample from some

population of groups. In addition, this assumption excludes conditional inter-dependence across

individuals within groups given group-level information. The latter condition can be relaxed but

would require more technically involved arguments. Assumption 2 can always be satisfied by a
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suitable transformation of the data. Assumption 3 is an identification condition. Assumptions

4 and 5 are continuity conditions. In addition, Assumption 5 requires sufficient integrability of

the noise E(u, rg), which is a mild regularity condition. Assumption 6 holds if all eigenvalues

of E9 [(1, z/_)'(1, z'g)] are bounded away from zero, which is a standard condition in regression

analysis, and fjg(ag(u) + zj' (u)) is bounded away from zero as well. Assumption 7 is a mild

regularity condition that is often imposed in quantile regression analysis. Assumption 8 implies

that the number of observations per group grows sufficiently fast and gives a particular growth

rate that suffices for our results. Note, however, that our growth condition is rather weak and

only requires that the number of observations per group grows as the square root of the number

of groups, up-to logarithmic terms. Finally, Assumption 9 excludes quantile indices that are too

close to boundaries because parameters corresponding to quantiles close to boundaries are harder to

estimate. Thus, our estimator should be suitable for situations where the researcher has micro-level

data on individuals within a group, and each group is assumed to come from a large population,

such as a city, state, school district, etc.

3.5.2 Results

We now present our main results. We start with deriving a sub-gaussian bound for the quantile

estimator (Theorem 1). This bound plays an important role in deriving the asymptotic distribution

of our estimator, which is given in Theorem 2. Further, in Theorem 3, we show how to estimate

the asymptotic covariance of our estimator. Finally, we provide a subsampling method to obtain

uniform over u E U confidence bands for the parameter of interest {/3(u), u E U} in Theorem 4.

Theorem 1 (Sub-gaussian tail bound). Let Assumptions 1-9 hold. Then for all g = 1,..., G,

P (sup (&g (u), g (u)')' - (ag (u), yg(u)')'I > X _ CeCX2N9

and so

P (sup &(u) - ag(U)| > x < Ce-2N (3.7)

for some constants cC > 0 that depend only on C1, C1, C2, C2, C3, C3.

Remark 1. The bound provided in Theorem 1 is non-asymptotic. In principle, it is also possible

to calculate the exact constants in the inequality (3.7). We do not do that because it is not needed

166



for our results. Theorem 1 also applies to a general quantile estimator and, thus, might be of

independent interest. The theorem implies that large deviations of the quantile estimator from the

true value are extremely unlikely. E

Theorem 2 (Main convergence result). Let Assumptions 1-9 hold. Then

(Q(-) - 3(-)) -> G(-), in f (U)

where G(-) is the zero-mean Gaussian process with uniformly continuous sample paths and covari-

ance function C(u1, 12) = J(U1.U2)S' where S = (QXWQ;&Qw) 1 QxwQ-1 and J(Ui 112)

E [F(ui, qg)E (U2, qg) Wsm']

Remark 2. (i) This is our main convergence result that establishes the asymptotic behavior of

our estimator. Note that we provide the joint asymptotic distribution of our estimator for all

u E U. In addition, Theorem 2 implies that for any u E U, G(f3(u) - 0(u)) -> N(O, V). where

V = SJ(u, u)S', which is the asymptotic distribution of the classical 2SLS estimator.

(ii) In order to establish the joint asymptotic distribution of our estimator for all u E U, we have

to deal with G independent quantile processes {6g(u) - ao (u), u E U}. Since G -+ 00, classical

functional central limit theorems do not apply. Therefore, we employ a non-standard but powerful

Bracketing by Gaussian Hypotheses Theorem, which is also related to majorizing measures for

Gaussian processes; see Theorem 2.11.11 in Van der Vaart and Wellner (1996).

(iii) In contrast with the analysis in Hausman and Taylor (1981), our model and estimators does

not necessarily yield E[6 9 - ag wg] = 0 because quantile estimators have finite-sample bias whereas

a similar condition holds in Hausman and Taylor (1981) since the fixed effect estimator in the

classical panel data model is linear. For this reason, it would secim impossible at first glance to

derive a consistent estimator of 0(u) when Nq is bounded from above uniformly over all g =1, ... , G

and G > 2. We note, however, that quantile estimators are asymptotically unbiased, and so we use

Bahadur representation of quantile estimators to derive weak condition on the growth of Ng relative

to G, so that consistent estimation of 0(u) is indeed possible. Specifically, we prove consistency

under Assumption 8, which states that, up-to logs, ming=1,..., Ng/C - oo as G - oo, which is a

mild growth condition in comparison with those typically required in the analysis of quantile panel

data models; see, in particular, Section 3.2. D

The result in Theorem 2 derives the asymptotic behavior of our estimator. In order to perform
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inference, we also need an estimator of the asymptotic covariance function. For all u1, U2 E U, let

C(71, 712) = SJ(7i, 2 )S'

where

S = (QG.XAGQ'wGXW) G,XWG ww,

G

(u1, u 2 ) = (Ui) - x'>(ul))(6g(u2) - X',I(u2))wgwg) /G,
g=1

G,xw = 'W/G, and QG,ww = WIG.

We show that e(ui, U2 ) is consistent for C(ui, U2 ) uniformly over U1, u 2 E U.

Theorem 3 (Estimating C(., -)). Let Assumptions 1-9 hold. Then ||C(ui, u 2 ) - C(U1, u2)= op(1)

uniformly over U1, u2 E U.

Remark 3. Theorems 2 and 3 can be used for hypothesis testing concerning /(u) for a given

quantile index u E U. In particular, we have that

v'GC(u, u))-1/2((u) _ >(U)) N(0, 1). (3.8)

Importantly for applied researchers, Theorems 2 and 3 demonstrate that heteroskedasticity-robust

standard errors for our estimator can be obtained by traditional White (1980) standard errors where

we proceed as if &g(u) and x'$j were equal to a (u) and x'(u), respectively, that is, as if there were

no first-stage estimation error. Similarly, traditional approaches for estimating autocorrelation-

robust or clustered standard errors can be obtained in the usual way.

Finally, we show how to obtain confidence bands for O(u) that hold uniformly over U. Let /3(u)1

and /(u)j denote jth components of 3(u) and 3(u), respectively, that is /3(u) = ((u)1, ... , O(u)d)'

and /3(u) = (() 1, .,(7)d,)'. Let D C 1, ... , dx denote a subset of components of / a researcher

is interested in. Define

T max sup v'I(e(u, u)j)-1/ 2((u)j - /3(u)j)l (3.9)jED 71GU

where C(u, u)jj denotes the (j, j)th component of C(u, u), and let cla denote the (1 - a) quantile
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of T. Then uniform confidence bands of level a for 3(u)j can be constructed as

-( TIj 1/2 C(t j 1/2-

L(u)i - cla G ) , (U)j + ci 1G . (3.10)

These confidence bands are infeasible. however, because ci-a is unknown. We suggest estimat-

ing cl-a by subsampling. Assume that subsample size b satisfies b -+ oc but b/G - 0. For a

subsample of groups {g1.......},run the second step of our estimator (2SLS regression) to obtain

N(ugi, ... , gb) using the data {x. Wg, &g}gE{Y ,..Yb}* Then calculate T(gi, ... , gb) using equation

(3.9) with /(u, 91, ... , Yb)j and /3(u)j replacing f3(u)j and 03(u)j, respectively, and b replacing G over

all (or many) subsamples of size b. Then ci-, can be estimated as the (1 - a) empirical quantile of

the sample {T(gi, ... , gb) } where {g1, ... g} varies over all (or many) subsamples of groups of size

b. Denote this estimator by 1_. Then a feasible version of uniform confidence bands is given by

equation (3.10) with a1-a replacing ci-a. The validity of these confidence bands is established in

the following theorem.

Theorem 4 (Validity of Uniform Confidence Bands). Let Assumptions 1-9 hold. In addition,

suppose that all eigenvalues of E[E(u,rqg)2 wgw are bounded away from zero uniformly over all

u E U. Then

e1'~j /2 1('~j /2-( 3(u) E[(u)j - 1-a / u)j + 1-a

for allu EUandj ED

Remark 4. (i) Uniform confidence bands are typically larger than the point-wise confidence bands

based on the result (3.8). The reason is that uniform confidence bands are constructed so that the

whole function {f3(u), u E U} is contained in the bands with approximately 1-a probability whereas

point-wise bands are constructed so that for any given u e U, 0(u) is contained in the bands with

approximately 1 - a probability. Which confidence bands to use depends on the specific purposes

of the researcher.

(ii) It is also possible to estimate c1, by other bootstrap procedures. For example, one can use

the multiplier bootstrap. Specifically, let el, ..., c0 be an i.i.d. sequence of N(0, 1) random variables
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that are independent of the data. Then the multiplier bootstrap statistic is

T B 
-1/2 G

TB max sup (0(711, I)jj) 1 ~ [E (vg((g 7) - X, i(?1)) / j

where [-]j denotes the jth component of the vector. Then the multiplier bootstrap critical value

f-a is the conditional (1 - a) quantile of TB given the data. Using techniques developed in

Chernozhukov, Chetverikov, and Kato (2012, 2013a, 2013b), one can show that Theorem 4 holds

if (1 - a) is replaced by B(I _ ) II

3.6 Simulations

In order to investigate the properties of our estimator and compare to traditional quantile regression,

we generate data according to the following model:

Yi= zigy(ujg) + xgOj(uig) + EI(uig, rg) (3.11)

The variable xg is correlated with 77g, where

Xg = ±FWg + 7g + Vg (3.12)

and wg, v., and zig are each distributed exp(O.25*N[0, 1]), while uig and 77g are both distributed

U[0, 1]. The quantile coefficient functions are y(u) = O(u) - U1/2, and 5(u, _) u7. The parameter

Tr = 1.

In addition to the case where xg is endogenous, we also examine two special cases. First, we examine

the case in which x9 is exogenous, meaning 79 does not enter (3.12). Second, we examine the case

where x9 is exogenous and no group-level unobservables are included, meaning 9 = 0. The latter

corresponds to the case in which standard quantile regression will be unbiased.

We perform our estimator and standard quantile regression for each decile (u = 0.1, ... , 0.9) with the

number of groups (G) and the number of observations per group (N) given by (N, G) = (200,200),

(200,25), (25,200), (25,25). 10,000 Monte Carlo replications were used. The results are displayed

in Figures 3-1 and 3-2.

Figure 3-1 displays the simulation results with a large number of groups (G = 200). Panels on
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Figure 3-1: Bias of Grouped Estimator vs. Quantile Regression; 200 Groups
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Notes: Figures show mean bias for 10,000 Monte Carlo simulations with 200 groups. The number

of observations per group is indicated above each column, and the group shock type is indicated

by each row's y-axis labels. The solid (blue) line represents the bias of the grouped IV quantile

regression estimator, the dashed (red) line represents the bias of standard quantile regression, and

the dotted (black) line marks the horizontal axis. Panels (a) and (b) display the results when the

treatment variable is endogenous to the group-level unobservables, panels (c) and (d) display the

results when the treatment is exogenous but there still exist unobservables at the group-level, and

panels (e) and (f) display the results when no group-level unobservables are present, and hence

standard quantile regression should be unbiased.
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Figure 3-2: Bias of Grouped Estimator vs. Quantile Regression; 25 Groups

N=25 N=200
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Notes: Figures show mean bias for 10,000 Monte Carlo simulations with 25 groups. The number
of observations per group is indicated above each column, and the group shock type is indicated
by each row's y-axis labels. The solid (blue) line represents the bias of the grouped IV quantile
regression estimator, the dashed (red) line represents the bias of standard quantile regression, and
the dotted (black) line marks the horizontal axis. Panels (a) and (b) display the results when the
treatment variable is endogenous to the group-level unobservables, panels (c) and (d) display the
results when the treatment is exogenous but there still exist unobservables at the group-level, and
panels (e) and (f) display the results when no group-level unobservables are present, and hence
standard quantile regression should be unbiased.
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the left of Figure 3-1 use few individuals per group (N = 25) and panels on the right use many

individuals per group (N = 200). In each panel, the solid (blue) line represents the bias of the

grouped IV quantile regression estimator, the dashed (red) line represents the bias of standard

quantile regression, and the dotted (black) line marks the horizontal axis.

Panels (a) and (b) demonstrate that, in the presence of endogeneity, the bias of the grouped

estimator is significantly lower than that of standard quantile regression. Panels (c) and (d) display

the results when xg is exogenous but t1, is still non-zero, meaning that there are still group-

level unobservables (or, equivalently, left-hand-side measurement error) which standard quantile

regression would not account for. In this case, standard quantile regression is biased, while the

grouped estimator performs well. 10 The final panels. (e) and (f), display the results when Xg

is exogenous and no group shocks are included (r7, = 0). In this situation, standard quantile

regression is unbiased, and is somewhat less biased than the grouped estimator. However, the bias

of the grouped estimator is also very low, as can be seen from the scale of the vertical axis. A

comparison of the panels on the left to the panels on the right suggests that the bias of the grouped

IV quantile estimator decreases somewhat as the number of individuals per group grows large, while

a decrease in the bias of standard quantile regression is not apparent.

To illustrate the computational burden which our estimator overcomes, we re-estimated (3.11) with

-) and group-level fixed effects estimated jointly in one large, first-stage quantile regression (rather

than estimating group-by-group quantile regression). We found that in the (N, G) = (25, 200) case

the joint estimation took over 35 times as long as the total time required for the group-by-group

estimation. In the (N, G) = (200, 200) case, the joint estimation took over 130 times as long as the

group-by-group estimation.

The simulation results for the few-groups case (G = 25) are displayed in Figure 3-2. A similar

pattern emerges to that in Figure 3-1. Even with small N and small G, the grouped estimator

clearly outperforms standard quantile regression whether xg is endogenous or exogenous, as seen

in panels (a) and (c). Panel (e) demonstrates that, with no group-level shocks, quantile regression

may still have bias when few individuals (N = 25) are included in each group. This bias decreases

as N increases to 200, as seen in panel (f). Overall, the results are indicative that if group-level

unobservables are present-whether they be exogenous or endogenous-the grouped estimator can

have significantly less bias.

1 0For the case where p3() is linear in u, standard quantile regression is biased toward the median estimator, 3(0.5).
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3.7 The effect of Chinese import competition on

the distribution of local wages

3.7.1 Background on wage inequality

Over the past 40 years, wage inequality within the United States has increased drastically. Autor,

Katz and Kearney (2008) documented that, from 1963 to 2005, the change in wages for the 90th

percentile earner was 55% higher than for the 10th percentile earner. Economists have engaged

in heated debates about the primary causes of the rising wage inequality-such as globalization,

skill-biased technological change, or the declining real minimum wage-and how the importance

of these factors has changed over the years. See, for example, Leamer (1994), Krugman (2000),

Feenstra and Hanson (1999), Katz and Autor (1999), as well as many other papers cited in Feenstra

(2010) or in Haskel, Lawrence, Leamer and Slaughter (2012).

Recent work in Autor et al. (2013) (hereafter ADH) focused on import competition and its effects

on wages and employment in US local labor markets. ADH studied the period 1990-2007, when

the share of US spending on Chinese imports increased dramatically from 0.6% to 4.6%. For

identification, the authors used spatial variation in manufacturing concentration, showing that

localized US labor markets which specialize in manufacturing were more affected by increased

import competition from China. The authors found that those markets which were more exposed

to increased import competition in turn had lower employment and lower wages.

We contribute to this debate by studying the effect of increased trade, in the form of increased

import competition, on the distribution of local wages (rather than on the average local wages as in

ADH). Given that we exploit the same variation in import competition as in ADH, we first describe

the ADH framework below and then present our results.

3.7.2 Framework of Autor, Dorn, and Hanson (2013)

To study the effect of Chinese import competition on average domestic wages, ADH used Census

microdata to calculate the mean wage within each Commuting Zone (CZ) in the United States.1

"The concept of commuting zones was developed by Tolbert and Sizer (1996). The United States is covered
exhaustively by 722 Commuting Zones, each roughly corresponding to a local labor market.
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The authors then estimated the following regression:

A1n 71it = 't + /1AlPWJf + Xij3 2 + Eit (3.13)

where A In wit is the change in average log weekly wage in commuting zone i from decade t to

decade t + 1, Xit are characteristics of the commuting zone and decade, and -yt are decade effects.' 2

The variable of interest is AIPWif, which represents the decadal change in Chinese imports per

US worker, given by

L AMUC
AIPWt = Li

J

where Lijt is the employment in period t in commuting zone i in industry j, Lit is the total

employment in commuting zone i in period t, Ljt is the total US employment in industry j in

period t, and AM(1(7 represents the change in US imports from China in industry j from period t

to t + 1.

To address endogeneity concerns (i.e. that imports from China may be correlated with unobserved

labor demand shocks), the authors instrumented for imports per worker using a measure of import

exposure which replaces the change in Chinese imports to the U.S. in a given industry., AM{ 0 ,

with the change in Chinese imports to other similarly developed nations for the same industry,

AM 0 0 , given by the following:13

L AMOC
AIP t = L Lit

Using this 2SLS approach, the authors found that a $1,000 increase in Chinese imports per worker

decreases the average log weekly wage in the commuting zone by -0.76 log points. When estimated

separately by gender, the effect was more negative for males (-0.89 log points) and less so for females

(-0.61 log points).' 4

1 2 We have changed the notation slightly from that in ADH in order to improve clarity for our application.
1 3 Specifically, ADH used Chinese imports to Australia, Denmark. Finland, Germiaiiy, Japan, New Zealand, Spain,

and Switzerland.
1 4 As discussed by ADH, the presence of an extensive margin labor supply response-imports affecting not only

wages but whether individuals are employed-makes these results likely a lower-bound for the effect on all workers

because we don't observe wages for the unemployed population.
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3.7.3 Distributional effects of increased import competition

We build on the ADH framework to analyze whether low-wage earners were more adversely affected

than high-wage earners by Chines import competition. To apply the grouped IV quantile regression

estimator to this setting, we replace A ln wit, the change in the average log weekly wage in the

commuting zone i from period t - I to t. in equation (3.13) with A ln w', the change in the T-

quantile of log wages in commuting zone i from period t - 1 to t. Therefore, a group is this setting

is a given commuting zone in a given year. We calculate these quantiles using millions of micro-

level observations from the Census Integrated Public Use Micro Samples for 1990 and 2000 and

the American Community Survey for 2006-2008, matching these observations to commuting zones

following the strategy described in ADH. We instrument for AIPWY using AIPWP as described

above. 15

Several remarks are useful at this point regarding applying the grouped IV quantile framework.

As explained in Section 3.1, standard quantile regression techniques would be inconsistent in this

setting both because of the endogeneity of AIPWy and because of the presence of the unobservable

additive term Ei. Moreover, existing methods for handling endogeneity in quantile models would

not correct these issues because the endogeneity consists of a group-level treatment being corre-

lated with the group-level unobservable additive term. Recall that existing methods for quantile

regression in endogenous settings are only suited for the case where the individual-level unobserved

conditional quantile itself is correlated with the treatment. Also note that, because no micro-level

covariates are included in this application, the first-stage estimation simply consists of selecting the

T-quantile within each group rather than performing quantile regression for each group. Finally,

note that the thought experiment behind asymptotics in this application is that the estimator is

consistent as the number of groups (722 commuting zones in two decades) and the number of

individuals within each group both grow large.

Figure 3-3, 3-4, and 3-5 display the results of the grouped IV quantile regression estimator for the

full sample, for males only, and for females only. Each figure displays T-quantile estimates for

T E {0.5, 1, ..., 0.95}, along with pointwise 95% confidence bands about each estimate. The figures

also display the 2SLS effect found in ADH and 95% confidence intervals corresponding to their IV

estimate of Chinese import penetration on the change in CZ-level average wages.

15 We also follow ADH by weighting observations by CZ population in period t - 1 and by clustering at the state
level.
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Figure 3-3: Effect of Chinese Import Competition on Conditional Wage Distribution: Full Sample
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Notes: Figure plots grouped IV quantile regression estimates of the effect of a $1,000 increase in

Chinese imports per worker on the conditional wage distribution (/1 in equation (3.13) in the text

when the change in average log wages for Commuting Zone i between time period t -1 and t A ln wit

is replaced with the change in the T-quantile of log wages A ln w'). The dashed horizontal line

is the ADH estimate of 01 in equation (3.13). 95% pointwise confidence intervals are constructed

from robust standard errors clustered by state and observations are weighted by CZ population, as

in ADH. Units on the vertical axis are log points.

Each figure provides evidence that Chinese import competition affected the wages of low-wage

earners more than high-wage earners. For all three samples, the estimated causal effect of Chinese

import penetration is less negative for higher quantiles of the conditional wage distribution. Fur-

thermore, in each case, we can reject an effect size of zero for all quantiles below the median but

cannot for all quantiles above the median. The point estimates are suggestive that the average

negative effect of Chinese import penetration is primarily driven by large negative effects for those

in the lower tail, where the effect is twice as large in magnitude as the average effect. For example,

Figure 3-3 demonstrates that for most wage-earners (from the 0.35 quantile and above) the effect

of Chinese import competition was one-third smaller in magnitude than the effect on the average

estimated by ADH.

Despite this distributional heterogeneity, for the full sample of wage-earners (Figure 3-3) and for
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Figure 3-4: Effect of Chinese Import Competition on Conditional Wage Distribution: Males Only
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Notes: Figure plots grouped IV quantile regression estimates for the male-only sample of the effect

of a $1,000 increase in Chinese imports per worker on the male conditional wage distribution

(#1 in equation (3.13) in the text when the change in average log wages for Commuting Zone i

between time period t - 1 and t A In wi is replaced with the change in the r-quantile of log wages

A In wa). The dashed horizontal line is the ADH estimate of #1 in equation (3.13). 95% pointwise

confidence intervals are constructed from robust standard errors clustered by state and observations

are weighted by CZ population, as in ADH. Units on the vertical axis are log points.

the male-only sample (Figure 3-4), the effect on the average estimated by ADH is contained in

the confidence band of the quantile estimates at nearly every quantile, implying that it would be

difficult to reject that there is indeed a constant, negative effect of Chinese import competition on

wages at each point in the wage distribution. By contrast, in the female-only sample (Figure 3-5),

most quantiles above 0.7 yield positive point estimates, with a 95% confidence band lying strictly

above the estimated average effect from ADH. This is suggestive not only that low-earning females

were more negatively affected than high-earning females by increased import competition, but that

wages at the top of the female conditional wage distribution may even have increased in response

to import penetration. This example highlights a distinction which would have been missed if one

were to focus only on the average impact of import competition.
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Figure 3-5: Effect of Chinese Import Competition on Conditional Wage Distribution: Females Only

C)

--------- AD P-------- Es--------- ---- ADH-95%-C-nf-d-n--- nt-r-a-

0

I

(#1 ~~ Pneoain(31) inhtt whenmathage 95% averag ne InwaesfrvCmaln Zn

between time period t - I and t A In wit is replaced with the change in the r-quantile of log wages
A In w'). The dashed horizontal line is the ADH estimate of 01 in equation (3.13). 95% pointwise

it
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3.8 Conclusion

In this paper, we present a quantile extension of Hausman and Taylor (1981), providing an approach

for estimating distributional effects of a group-level treatment variable. The estimator is computa-

tionally simple, consisting of the following steps: 1) for each group, perform quantile regression of

the outcome on individual-level covariates and on a constant; 2) perform a linear regression of the

group-level constants on the group-level treatment. If the treatment is correlated with group-level

unobservables, this linear regression should be a 2SLS regression. We provide a rigorous deriva-

tion of the asymptotic properties of this estimator and demonstrate its consistency and asymptotic

normality, as well as provide an approach for obtaning uniform confidence bands.

A n i)a ashedchion to the setting of Autor et al. (2013) highlights the usefulness of our
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estimator in providing a method to detect the presence of distributional heterogeneity in group-

level treatment effects using the same identification assumptions required for 2SLS estimates to be

valid. Monte Carlo simulations show that this estimator has much lower bias than standard quantile

regression in the presence of the group-level shocks that are ubiquitous in applied microeconomic

models. We find this improvement over standard quantile regression both in the case where the

group-level treatment is exogenous and in the case where it is endogenous. Finally, several applied

microeconomics examples illustrate the potential of this estimator for widespread practical use.
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3.A Proofs Appendix

In this Appendix. we first prove some preliminary leinnias. Then we present the proofs of the

theorems stated in the main part of the text. In all proofs, c and C denote strictly positive generic

constants that depend only on c1 , C1, c2, C2, c3 , C3 but whose value can change at each appearance.

We will use the following additional notation. Denote Zig = (1, zi 9)', 6g (u) = (ag(u). -(u)')', and

6g (u) = (6zg(u), j(u)')'. Let A(u) = (al(u), ... , aG(u))' and

W(u) (X'Pw X)-1(X'P A(u)). (14)

For q. 6 E Rd2+1, and i E U, consider the function f76, : Rz x R -- R defined by

f"61 1 (z, y) = (1, z')(1{y < (1, z') } - U).

Let F { ,, R d+1; U C U1}, i.e. F is the class of functions fy,, as q, 6 vary over Rdz+l

and u varies over U. For 6 E Rdz+1 and u E U, let the function h6, :Rdz x R - Rdz+1 be defined

by

h6, (z, y) = (1, z')'(1{y < (1, z')} - U).

Let hk,6,u denote kth component of . Let k {hk,6,u : 6 E Rdz+i; a E U}. Note that Wk C T

for all k = 1, ... dz + 1.

We will also use the following notation from the empirical process literature,

Ng

G 9(f) =3 (f(zig, yig) - Eg[f (zig, yig)]) / VNg

for f E For f E Nk.

Preliminary Lemmas

In all lemmas, we implicitly impose Assumptions 1-9.
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Lemma 1. There exist constants c, C > 0 such that

E g [h6,u(zig, yig)] - Jg(u)(6 - 6g(u))| Cl S - Sg(u) H2, (15)

Eg [( - 6g (u))'h6,(zi , yig)] ;> C11 - q(u) 2 . (16)

for all i E U and S E Rdz+1 satisfying 1|6 - 6g(u)| < c.

Proof. Second-order Taylor expansion around Sg(u) gives

Eg[h6,u(zig, yig)] = Eg[Zig(l{yig < ZIg6} - u)] = Eg[Zig(F(Z'g6) - u)]

Eg [Zig (F(Z'g 6g(u)) - U)] I+ Jy (u)(6 - 6g (u)) + rn(u).

where r,(u) is the remainder. The first claim of the lemma follows from the facts that Eg [Zig (Fg(Z' 6g (u))-

u)] = 0, which holds because Zjgog(u) is the conditional uth quantile of yig, and that |jrn(u)Hj <

C1OH - 6g(u)112 for some C > 0 by Assumptions 2 and 7.

To prove the second claim, note that if IS - 6g(u)II is sufficiently small, then 11(6 - 6g(u))'rn(u) <

c116 - Sg(u)fl 2 for an arbitrarily small constant c > 0. On the other hand,

(6 - g(u))'Jg(u)(6 - Sg(u)) > c11S - Sg(u)112

for some c > 0 by Assumption 6. Combining these inequalities gives the second claim. El

Lemma 2. Consider the function class F defined in the beginning of the Appendix. We have that

F is a VC subgraph class of functions. Moreover, for all k = 1, ... , d, + 1, 7-k is a VC subgraph

class of functions as well.

Proof. A similar proof can be found in Belloni, Chernozhukov and Hansen (2006). We present the

proof here for the sake of completeness. Consider the class of sets {x E Rdz+ 2 : a'x 0} with a

varying over Rdz+2 . It is well known that this is a VC subgraph class of sets, see, for example,

exercise 14 of chapter 2.6 in Van der Vaart and Wellner (1996). Further, note that

{(z, y, t) : f7,6,(z, y) > t} ({y < (1, z')6} n {(1, z')r > t/(1 - u)})

U ({y > (1, z')S} n {(1, z')r < -t/u}) .
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Therefore. the first result follows from Lemma 2.6.17, parts ii and iii. in Van der Vaart and Wellner

(1996). The second result follows from the fact that Wk c .F. E

Lemma 3. There exist constants c, C > 0 such that

E g sup ||G 9 (h6,(u)) - G h6,(v),v)||2 < Ce
UEU:[u-vl<c

for all c E (0,c) and v E U.

Proof. We have

Eg9 sup |hG 9(hs9 ,u) - G9(hsg(v),v)|12

_ u1Egu [ UIu-Ic2
dz-+1

< Eg sup |Gg(hk.6) - G 9 (hk,qg (v),v)|2

k= UEU:|U-VI<(

Consider the function F : Rdz x R -> R given by

F(z, y) = C (1{y - (1, z')5(v), vj < Ce} + c)

for some sufficiently large C > 0. By Assumptions 2, 4, and 5, ||6g(u) - 6g(v)II < Clu - vl, and so

IZ'g(6g(u) - 6g(v))| CIu - 11 for some C > 0. Therefore, for all u (E U satisfying 1u, - 7| 1 ,

hk,S(u),u(Zig, Yig) - hks)I),I,(zig, yig) F(zi9 , yig).

Note that E9 [F 2 (zig, yig)] < Cc for some C > 0 by Assumption 7. By Lemma 2, Wk is a VC

subgraph class of functions. So, applying Theorem 6, part (ii), from Appendix B with F as an

envelope yields

Eg sup |G9(hk,6,,u) - (G9hk,g(vY).v) 2 Cc
UEU:ju-v< I

for all k = 1 . dz + 1 and some C > 0. The claim of the lemma follows. El
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Lemma 4. There exist constants c,C > 0 such that

Eg sup sup
_iEU 6ERdz+1:l j6 - 6 g ()H

HIG9(h16,U) - (G9(h6g (U),U)

< C(e + 1/ /Ng) log (1/(e + 1/ N9 ))

for all e E (0, c).

Proof. We have

Eg sup sup
UEU 6ERdz+1 11 _-6g(it) 11<-

dz+1

< C E
k=1

| G 9 (h6.1 ) - Gg(hsg(u),u)

Eg sup sup
.UEU 6ERdz+1:jj6_6,(Uj<

for some C > 0. Consider the function class

Rk = hk,6,7t - hk,6,(U),, : u EU; 116 - 6g(u)H ' }.

We have that ilk C T - F. Therefore, it follows from Lemma 2 that 7Hk has a polynomial uniform

entropy. In addition, all functions from 7Hk are bounded in absolute value by some constant C > 0.

Applying Theorem 6, part (i), from Appendix B yields

E9 sup G9(f)
_feGk I

XAl

< CEgq Xn + f
V/1 + log (1/x)dxj

for some C > 0 where , - supE g f (zig, yig) /Ng. Further, integrating by parts gives

1
log(1/x)d= X /log(1/X) + Ix0X 1/ /log(1/x)dx < CX N/log(1/X)

for some C > 0 and all X E (0, 1). Therefore,

sup |G9(f)1 I CEg [Yn + (Xn A 1) log(1/(Vn A 1))]
J

SC (Eg[xI] + Eg[XyI A 1] log(1/E xr, A 1]))
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where in the last line we used the fact that the function 1(x) = Xlog (1/x) is concave. Indeed,

calculations show that

i'(x) log (1/i) - 1/ (2 log (1/x))

l"(x) -1/ (2x /log (1/x)) - 1/ (4x log3/2(1/X)) < 0.

Now, to bound Eg[Xn], we apply Theorem 6, part (ii), from Appendix B. This theorem is applicable

because the function class {|f I : f E fN(k} also has polynomial uniform entropy since for any random

variables X and Y, we have

E[(|X| -|Y||2] = E [X 2 ] + E[Y 2 ] - 2E [XY|]

< E[X 2 ] + E[Y 2 ] - 2E[XY] < E[(X - Y) 2 ].

This gives

Eg[n -< C (c + 1/ VN) (21)

for some C > 0 where we also used the fact that for all f E 7 k, Eg[ f(zig, yigI] < Cc. Combining

(21) with (17), (18), (19), and (20) gives the asserted claim. E

Lemma 5. Uniformly over u c U,

G

- S J(u)G9(h) )' I/' O(1).
g=1

Proof. To prove this lemma, we apply Theorem 5 from Appendix B with the semi-metric p(ul, U2)

C 'ui -2 I for U1, u2 E U and some sufficiently large constant C > 0. Clearly, p is Gaussian-

dominated. Define v,(u) = J -1 (u)G9(h6,(.),) and

Zk,m,g(U) = Vk,g(U)Wrn,g/ /

where vk,g(u) and wmg denote kth and mth components of vg(u) and wg correspondingly. Then
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for any a > 0,

E
G

g=1

G

g=1

sup IZk,m,g (u)I1 sup IZk,m,g(u) > a

E sup Z ,m,g (U)1 sup IZk,rn,g (u)| > a /a
.UEU UEUI

< CE sup
Lucu

sup
UEU

I G9(hSg(u).u)II2W 1M

|Vk.g(U)Wm.g| > Ga}1 /a

sup (G9 (h6,(u), u)|wm,g > fGa /a

CE sup G{(hj,6 (U),U)2W 1 sup G9(h, 6g(u),u)wg >

for some C > 0 where we used Assumption 6. Note that Tj,6g(u)-u E T and for some C > 0,

hj,6 g(71),,(zig, yig)I < C for all j = 1., d + 1. Therefore, combining Lemma 2 and Theorem

6, part (ii), from Appendix B yields E,[supUu G9(h ,6 (U),U) 2] < C. Combing this inequality

with Assumption 3 implies that E[supUe G9(hj.6 (s),) 2 w%,J < C for some C > 0. So, by the

Dominated Convergence Theorem, L - 0 as G -+ o, which gives the condition (i) of Theorem 5.

Further, for any U1, U2 E U,

G

E [(Zk,m,g(UI) - Zk,m,g(U2)) 2]
g=1

< E [(Vk.g(U1)

< CE [IlJgy (ui) - JI(u2 ) 121 |G9(h6,(ui),ui 2W

+ICE [IIJA(u 2 ) |2 IlG9(h 6,(ui).u1 - h6g (U2)u2 2 W ]

for some C > 0. Since Eg[j G9(h<,.uI))12] < C and |Jj- 1(U1) - J+l(u2 )| 2  Clui

C > 0 by Assumption 6, we have

£ [H|J/ 1(u1) - J 1 (U2)|12 | G9(h6g(u),u) 112W2 Cui -'g]

for some C > 0. Further, IJ- 1 (u2)jj < C by Assumption 6 and

dz+1

E9 [1G 9 (l 6h,(U1 ),U - h6g(U2).u2) 1|2] E[(hk,6(ui),ui - hk,6g(U2),U2)2
k=1

U21 for some

C 111 -'a')2L
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d,+1

jI=
1

v'Ga//dz + 1 I/a = L

Vk,g (U2))2 g



Therefore,

E [1'- 1 (712)|2 G9 (hg(u1).1 - h69(u2),1 2)I 2%] < C 1i71 - 112

for some C > 0, and so

E [(Zk,m,g(UI) - Zk,mn,g(U2)) 2 ] < C u1 - u 2 1 < P2 (u1 , u2),
g=1

which is condition (ii) of Theorem 5.

Finally, condition (iii) of Theorem 5 holds because for any F > 0 and v c U,

G

sup t2 P
t> g1

sup
uEU:p(u,v)<c

G

< E sup
g=1 [uEU:p(uv)<c

< E2/2 + CE sup

jZk,mg(U) - Zk,m,q(V)l > t

Zk,n,g(U) - Zkm.g() )21

Gg(h(U),u- h 6g(v)v)W2 'g
< E2

for some C > 0 where we used Markov inequality in the second line, and the same argument as in

the verification of the second condition and Lemma 3 in the third line (recall also that the constant

in the definition of p is sufficiently large).

The claim of the lemma now follows by applying Theorem 5.

Proofs of Theorems

Proof of Theorem 1. Since pu(.) is convex, for x > 0, (|9 Ql()

if
Ng

inf inf fr,6q(u)+ r,u(zzg,
uCU rjERdz+l11n111 1

-g (u)II < x for all u E U if and only

yig)/Ng > 0. (22)

Now, it follows from Lemma 1 (inequality (16)) that inequality (22) holds if

Ng

inf inf (fr1,6g(u)+xi, U(Zig, Yig) - Eg[fr.69 (u)+x+7 ,j(zig, yig)]) /Nq > -CX,
UEU r7ERdz+1; 11711 *
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for some sufficiently small c > 0, which in turn follows if

inf inf G9 (f,,6) > -cx Ng. (23)
UGUd 7,6ERdz+1; I q 11=I

Note that for any r E Rdz+1 satisfying 11r1 = 1, 1f,6, l < 2 Zig| < C for some C > 0 by Assumption

2. In addition, it follows from Lemma 2 and Theorem 2.6.7 in Van der Vaart and Wellner (1996) that

the conditions of Theorem 7 hold for the function class {f ,,6 E F : u E U; , 6 E Rdz+1; 1}'

Therefore, Theorem 7 shows that inequality (23) holds with probability not smaller than

1 - Cexp(-cx2Nq)

for some c, C > 0. The asserted claim follows. E

Proof of Theorem 2. The proof consists of two steps. First, we show that -V(3(u) - )(u)) op(l)

uniformly over u E U where 0(u) is defined in (14). Second. we show that VG((-) - 1(.)) G(-)

in f (U). Combining these steps gives the result.

Denote QG,xw = X'W/G and QG,ww W'W/G. Then

G-()(u) - )(u)) - G.xw Gx G,xw (G,ww W(A(a) A(u))/ G).

By Assumptions 1 and 3, X'W/G -v E[xgw'], W'W p E[wgw ], and

1 - Gx G Gx GxwGww -+p Q QQ S (24)

where Qxw = E[x w'] and Qww E[w w']. Therefore, to prove the first step. it suffices to show

that
G

S(u) = 5g(u) - 6g(u))w'j/V'U = op(1)
g=1

uniformly over u G U (recall that &g(u) - ag(u) is the first component of 6g(u) - 6g(u))
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Write S(u) = SI(u) + S2(u) where

Si (u)

S2(U)

G

-> Jg-1 (u)G(h6,(u),u)w/ |GNg,
g=1

= (G ( 9h6,)G9(h u) + / 9g(6g (u) - 6g (u))) w/ GN9 .
g=1

Consider Si(u). Combining Assumptions 2, 3, 6, and 8 gives

EI Si(U)112 ] < C/ min Ng - 0.
g=1, ...,IG

so S,(u) = oj(1). Lemma 5 shows that this convergence holds uniformly over u E U.

Consider S 2 (u). Let

Kg= K log (Ng)/Ng (25)

for some sufficiently large constant K > 0. Let DG be the event that

max sup 11 g(u) - 6g (u)| < Kg,
g=1,..G U

and let D' be the event that DG does not hold. Using Theorem 1, choose a constant K sufficiently

large so that

P (sup ||3g(u) - 6g(u)II > Kg)
uEu < CI~q-3

for some C > 0. By the union bound, P(Dc) < CGNg3. By Assumption 9, CGNg 3 - 0.

Therefore,

S2(U) = S2(u)1{DG} I S 2(u)1{D} = S2(u)1{DG} -- opM()

uniformly over u E U. Further, J S2(U)I1{DG} < CIEC'1 (r,g + r2,g + r3,g)/ GNg where

r1,g = sup sup Jg- (u)(G9(h6,) - G9(hg (?j)),J |wg|
uGU 6ERdz+1 I6-6 9g(u)lKg

Ng

J- 1 (u) heg (u)u

r3,g = sup sup E9 [
uEU 6JRdz+1:lj6- g (u)jj<K

(zjg,yjg)/ N |Iw|,

Ng (Jg- 1 (i)h6,u(zig, yig)
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By Lemma 4, E[ri,g] < C log (Ng)/ 1N for some C > 0. By the optimality of S9 (u) and since yig

has a continuous conditional distribution, r2,g < C|wg||/ N9 , and so E[r2 ,g] < C/ N9 for some

C > 0. Finally, by Lemma 1,

E [ri3 ,] < C TNK2 0 log (Ng)/ IN

for some C > 0. Hence, by Assumption 8,

E [suP |S 2 (u)|1{DG}]
UEU .I

<C G max (log(Ng)/Ng)=o(1),
g=1,...,G

implying that G(/(u) - (u)) = op(1) uniformly over u E U and completing the first step.

To prove that G( (.) - ((.)) # G(.) in f (U) (the second step), note that by Assumption 5,

IIWg(E(ui,7g) - -(U2,r7g))l I C I Wg| tI - U2|,

and by Assumption 3, E[lwg 2 ] < C for some C > 0. Therefore, combining Theorems 2.7.11 and

2.5.6 of Van der Vaart and Wellner (1996) implies that G_1 wge(., i7,)/ C G (-) in f (U) where

G(.) is the Gaussian process with uniformly continuous sample paths and covariance function

E[5G(u1)(2)'] = E[E(U1, qg )E(U2, T/g)Wg W']

Combining this convergence result with that in (24) gives the second step. E

Proof of Theorem 3. Equation (24) in the proof of Theorem 2 gives S ->p S. Therefore, it suffices

to prove that |J(ui, u 2 ) - J(U1, U2 )= op(1) uniformly over U1, U2 E U.

Note that ag (u) - xgO = E(u, r7g). Hence,

X'(O(u) - O(u)) + E(u, rg) = I1,g(u) 12(U) + Eu, 'r/g)

where I1,,(u) = &,(u) - ag(u) and 12(u) = x'3((u) - 0(u)). Further, we have

C9

G

E(E(ui, rjg)E(U2, r/q),ag w')/G -+p J(Ui, U2)
,q=1

uniformly over U1, u2 E U by the uniform law of large numbers with bracketing (Theorem 2.4.1 in

190

dg (W - X' = (6g(u -- ag (W))



Van der Vaart and Wellner (1996)). In addition,

G G

S (Ii,g(ui)I1,g(u2 )wgw')/G K2W W , /G + op(1)
g=1 g=1

< maxKp(1) + op(l) op(l)
g=1, ...,G

uniformly over U1, U2 E U as in the proof of Theorem 2 (see equation (25) for the definition of Kg).

Further,

G G

5(I1,g(U1)E(U2, rtg)wgW')/CG K9  6E(U2, 1/g) W'Wg' /G + op(1)
Y=1 g=1

G

S5 Kg sup l(71, rjg) w' + op(1) = op ()
g=1 U +OP O

uniformly over 11, U2 E U where the last equality follows because it follows from Assumption 5 that

E s |E(urig) wg'j j C

uniformly over U2 E U for some C > 0. Similarly,

G

S(I2 (ul)I2(u2)wgw')/G <
g=1

G

(I2(ui)E(u2, iqg)wgw')/G
g=1

uniformly over U1, u2 E U. Finally,

G

5 (I1.,(u1)I2(u2)wgW')/G <
g~1

Csup 10/(u) - j3(u)fl (1)UEU
G

< C j jjE(U2,TJg)WgW' q sup 1)(u) - 3(u)J IG = op(1)
g=1 E

G

CYKg jjww'j| sup |(u) -13(u)||/G+op(l) = op(l)

uniformly over u1, U2 E U. Combining these inequalities gives the asserted claim. E

Proof of Theorem . It follows from assumptions on singular values of Q1 v and eigenvalues of Q,,,
and E[E(u, rig) 2wgw'] that all eigenvalues of C(u, u) are bounded away from zero uniformly over

u E U. Combining Theorems 2 and 3 and using the Continuous Mapping Theorem then implies

that the statistic T converges weakly to some continuous distribution. Further, the statistic T
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calculated over a subsample of size b converges to the same distribution since our theory applies to

this statistic (in particular, Assumption 8 clearly holds for the subsample). The rest of the proof

consists of applying a standard argument for subsampling consistency; see, for example, Theorem

15.7.1 in Lehmann and Romano (2005).

3.B Tools Appendix

In Appendix A, we used several results from the Theory of Empirical Processes that are used rarely

in econometrics literature. For ease of reference, we describe these results in this section.

A semi-metric p: F x F -+ R+ is called Gaussian if it can be defined as

p(f,g) = (E[(G(f) - G(g))2])2

where G is a tight, zero-mean, Gaussian random element in 1'(F). A semi-metric p is called

Gaussian-dominated if it is bounded from above by Gaussian metric. In particular, it is known

that any semi-metric p satisfying

f log N(s, F, p)d, < 00

is Gaussian-dominated; see discussion on page 212 in Van der Vaart and Wellner (1996).

Theorem 5 (Bracketing by Gaussian Hypotheses). For each n, let Z, ..., Zn,,1 be independent

stochastic processes indexed by an arbitrary index set F. Suppose that there exists a Gaussian-

dominated semi-metric p on F such that

() E [11ZnzI {jT 1 Znj~ y F> T11] -- 0, for every q > 0,

(ii) E [(Zn (f) - Za,(g)) 2 ] P2 (f, g), for every f, g,
i=1

Mn

(iii) sup t 2P sup |ZrI(f) - ZiM(g)I > t < E2

for every p-ball B(e) c F of radius less than E and for every n. Then the sequence = 1 jZnj -

E[Zn ]) is asymptotically tight in ' (F). It converges in distribution provided it converges marginally.
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Proof. See Theorem 2.11.11 in Van der Vaart and Wellner (1996).

Theorem 6. Let F be a P-measurable class of measurable functions with measurable envelope

function F. Then

(i) || sup Gn(f)Rp Cp J(OflF)j FjHn|Hp,
f E.7F

(ii) sup Gn(f) ||,p < CpJ(1, F) FJFJ|, 2Vp, 1 < P.
f E F

Here ,, = supfTey |lf ||,| F|,|, where || . ||, is the L 2 (P ,,)-semi-norm, and the constant Cp depends

only on p.

Proof. See Theorem 2.14.1 in Van der Vaart and Wellner (1996).

Theorem 7. Let F be a class of functions f : X - [0,1] that satisfies

~Ksup N (E, C, L 2(Q)) < - , for every 0 < E < K

where supremum is taken over all probability measures Q. Then for every t > 0,

P~nP n)) : ( Dt)V 2 t2
P sup|(Gn(f)j - e-C

for a constant D that depends on K only.

Proof. See Theorem 2.14.13 in Van der Vaart and Wellner (1996). E
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