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Abstract

This thesis consists of three methodological contributions to the literature on the regression discontinuity
(RD) design. The first two chapters develop approaches to the extrapolation of treatment effects away from
the cutoff in RD and use them to study the achievement effects of attending selective public schools, known
as exam schools, in Boston. The third chapter develops an adaptive bandwidth choice algorithm for local
polynomial regression-based RD estimators.

The first chapter develops a latent factor-based approach to RD extrapolation that is then used to estimate
effects of exam school attendance for inframarginal 7th grade applicants. Achievement gains from Boston
exam schools are larger for applicants with lower English and Math abilities. I also use the model to predict
the effects of introducing either minority or socioeconomic preferences in exam school admissions. Affirmative
action has modest average effects on achievement, while increasing the achievement of the applicants who
gain access to exam schools as a result.

The second chapter, written jointly with Joshua Angrist, develops a covariate-based approach to RD
extrapolation that is then used to estimate effects of exam school attendance for inframarginal 9th grade
applicants. The estimates suggest that the causal effects of exam school attendance for applicants with
running variable values well away from admissions cutoffs differ little from those for applicants with values
that put them on the margin of acceptance.

The third chapter develops an adaptive bandwidth choice algorithm for local polynomial regression-based
RD estimators. The algorithm allows for different choices for the order of polynomial and kernel function.
In addition, the algorithm automatically takes into account the inclusion of additional covariates as well as
alternative assumptions on the variance-covariance structure of the error terms. I show that the algorithm
produces a consistent estimator of the asymptotically optimal bandwidth and that the resulting regression
discontinuity estimator satisfies the asymptotic optimality criterion of Li (1987). Finally, I provide Monte
Carlo evidence suggesting that the proposed algorithm also performs well in finite samples.

Thesis Supervisor: Joshua Angrist
Title: Ford Professor of Economics

Thesis Supervisor: Parag Pathak
Title: Associate Professor of Economics
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Chapter 1

Exam Schools, Ability, and the Effects of

Affirmative Action: Latent Factor

Extrapolation in the Regression

Discontinuity Design

1.1 Introduction

Regression Discontinuity (RD) methods identify treatment effects for individuals at the cutoff value deter-

mining treatment assignment under relatively mild assumptions (Hahn, Todd, and van der Klaauw, 2001;

Frandsen, Frolich, and Melly, 2012).1 Without stronger assumptions, however, nothing can be said about

treatment effects for individuals away from the cutoff. Such effects may be valuable for predicting the ef-

fects of policies that change treatment assignments of a broader group. An important example of this are

affirmative action policies that change cutoffs substantially.

Motivated by affirmative action considerations, this paper develops a strategy for the identification and

estimation of causal effects for inframarginal applicants to Boston's selective high schools, known as exam

schools. The exam schools, spanning grades 7-12, are seen as the flagship of the Boston Public Schools

(BPS) system. They offer higher-achieving peers and an advanced curriculum. Admissions to these schools

are based on Grade Point Average (GPA) and the Independent School Entrance Exam (ISEE). The RD design

generated by exam school admissions nonparametrically identifies causal effects of exam school attendance

for marginal applicants at admissions cutoffs. Abdulkadiroglu, Angrist, and Pathak (2014) use this strategy

'Cook (2008) provides an extensive treatment of the history of RD. See also the surveys by Imbens and Lemieux (2008),
van der Klaauw (2008), Imbens and Wooldridge (2009), Lee and Lemieux (2010), and DiNardo and Lee (2011).
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and find little evidence of effects for these applicants.2 Other applicants, however, may benefit or suffer as

a consequence of exam school attendance.

Treatment effects away from RD cutoffs are especially important for discussions of affirmative action at

exam schools. Boston exam schools have played an important role in the history of attempts to ameliorate

racial imbalances in Boston. In 1974 a federal court ruling introduced the use of minority preferences

in Boston exam school admissions as part of a city-wide desegregation plan. Court challenges later led the

Boston school district to drop racial preferences. Similarly, Chicago switched from minority to socioeconomic

preferences in exam school admissions following a federal court ruling in 2009.3

This paper develops a latent factor-based approach to the identification and estimation of treatment effects

away from the cutoff. I assume that the source of omitted variables bias in an RD design can be modeled

using latent factors. The running variable is one of a number of noisy measures of these factors. Assuming

other noisy measures are available, causal effects for all values of the running variable are nonparametrically

identified. In related work on the same problem, Angrist and Rokkanen (2013) postulate a strong conditional

independence assumption that identifies causal effects away from RD cutoffs. The framework developed here

relies on weaker assumptions and is likely to find wider application. 5

I use this framework to estimate causal effects of exam school attendance for the full population of

applicants. These estimates suggest that the achievement gains from exam school attendance are larger

among applicants with lower baseline measures of ability. I also use the latent factor framework to simulate

effects of introducing either minority or socioeconomic preferences in Boston exam school admissions. These

reforms change the admissions cutoffs faced by diffent applicant groups and affect the exam school assignment

of 27-35% of applicants. The simulations suggest that the reforms boost achievement among applicants.

These effects are largely driven by achievement gains experienced by lower-achieving applicants who gain

access to exam schools as a result.

In developing the latent factor-based approach to RD extrapolation I build on the literatures on mea-

surement error models (Kotlarski, 1967; Hu and Schennach, 2008; Evdokimov and White, 2012) and (semi-

)nonparametric instrumental variable models (Newey and Powell, 2003; Darolles, Fan, Florens, and Renault,

2011).6 Latent factor models have a long tradition in economics (Aigner, Hsiao, Kapteyn, and Wansbeek,

1984). In the program evaluation literature, for instance, latent factor models have been used to identify the

joint distribution of potential outcomes (Carneiro, Hansen, and Heckman, 2001, 2003; Aakvik, Heckman, and

Vytlacil, 2005; Cunha, Heckman, and Navarro, 2005; Battistin, Lamarche, and Rettore, 2013), time-varying

2
Dobbie and Fryer (2013) find similar results in an RD study of New York City exam schools.

3
The use of affirmative action in exam school admissions is a highly contentious issue also in New York City where a federal

complaint was filed in 2012 against the purely achievement-based exam school admissions processdue to disproportionately low

minority shares at these schools.
4
This is similar to ideas put forth by Lee (2008), Lee and Lemieux (2010), DiNardo and Lee (2011), and Bloom (2012).

However, this is the first paper that discusses how this framework can be used in RD extrapolation.
5
For other approaches to RD extrapolation, see Angrist and Pischke (2009), Jackson (2010), DiNardo and Lee (2011), Dong

arid Lewbel (2013), Cook and Wing (2013), and Bargain and Doorley (2013).
6

See also the surveys by Hausman (2001), Blundell and Powell (2003), Chen, Hong, and Nekipelov (2011), and Horowitz

(2011) as well as the references therein.
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treatment effects (Cooley Fruehwirth, Navarro, and Takahashi, 2011), and distributional treatment effects

(Bonhomme and Sauder, 2011).

The educational consequences of affirmative action have mostly been studied in post-secondary schools

with a focus on application and enrollment margins. Several papers have studied affirmative action bans

in California and Texas as well as the introduction of the Texas 10% plan (Long, 2004; Card and Krueger,

2005; Dickson, 2006; Andrews, Ranchhod, and Sathy, 2010; Cortes, 2010; Antonovics and Backes, 2013,

forthcoming). Howell (2010) uses a structural model to simulate the effects of a nation-wide elimination of

affirmative action in college admissions, and Hinrichs (2012) studies the effects of various affirmative action

bans around the United States. Only a few studies have looked at the effects of affirmative action in selective

school admissions on later outcomes (Arcidiacono, 2005; Rothstein and Yoon, 2008; Bertrand, Hanna, and

Mullainathan, 2010; Francis and Tannuri-Pianto, 2012).

The rest of the paper is organized as follows. The next section outlines the econometric framework.

Section 3 discusses extensions of this approach to fuzzy RD and settings with multiple latent factors. Section

4 discusses identification and estimation of the latent factor model in the Boston exam school setting. Section

5 reports latent factor estimates. Section 6 uses the model to analyse effects of affirmative action. Section 7

concludes.

1.2 Latent Factor Modeling in a Sharp RD Design

1.2.1 Framework

Suppose one is interested in the causal effect of a binary treatment D E {0, 1} on an outcome Y E Y that

can be either discrete or continuous. Each individual is associated with two potential outcomes: Y (0) is the

outcome of an individual if she is not exposed to the treatment (D = 0), and Y (1) is the outcome of an

individual if she is exposed to the treatment (D = 1). The observed outcome of an individual is

Y = Y (0) (1 -D) +Y(1) D.

In a sharp Regression Discontinuity (RD) design the treatment assignment is fully determined by whether

the value of a continuous covariate R E R, often called the running variable, lies above or below a known

cutoff c. 7 That is, the treatment assignment is given by

D = 1(R>c).

I ignore the presence of additional covariates to simplify the notation. It is possible to generalize all the

results to allow for additional covariates by conditioning on them throughout.
7 1n a fuzzy RD the treatment assignment is only partially determined by the running variable. I discuss this extension in

Section 1.3.1.
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The sharp RD design allows one to nonparaietrically identify the Average Treatment Effect (ATE) at the

cutoff, E [Y (1) - Y (0) 1 R = c], under the conditions listed in Assumption A. Assumption A.1 restricts the

marginal density of R to be strictly positive in a neighborhood of the cutoff c. Assumption A.2 restricts the

conditional cumulative distribution functions of both Y (0) and Y (1) given R to be continuous in R at the

cutoff c.8 Finally, Assumption A.3 requires that the conditional expectations of Y (0) and Y (1) exist at the

cutoff c. Under these assumptions, the Average Treatment Effect at the cutoff is given by the discontinuity

in the conditional expectation function of Y given R at the cutoff, as shown in Lemma 1 (Hahn, Todd, and

van der Klaauw, 2001).

Assumption A.

1. fR (r) > 0 in a neighborhood around c.

2. Fy(o)In (y r) and Fy(1)In (y | r) are continuous in r at c for all y E Y.

3. E [|Y (0)| R =c],E [|Y (l)H| R =c] < oc.

Lemma 1. (Hahn, Todd, and van der Klaauw, 2001) Suppose Assumption A holds. Then

E [Y (1) - Y (0) 1 R = c] =lim { E [Y I R = c +6] - E [Y | R = c - 6]}1.
sto

Lemma 1 illustrates the power of sharp RD as it nonparametrically identifies the Average Treatment

Effect at the cutoff under relatively mild assumptions. However, there is not much one can say about the

Average Treatment Effect away from the cutoff without stronger assumptions. Figure 1-1 illustrates this

extrapolation problem. To the left of the cutoff one observes Y (0) as these individuals are not assigned to

the treatment whereas to the right of the cutoff one observes Y (1) as these individuals are assigned to the

treatment. The relevant counterfactual outcomes are instead unobservable.

To motivate the importance of extrapolation away from the cutoff, suppose one wanted to know the

Average Treatment Effect for individuals with R = ro to the left of the cutoff. For these individuals one

observes E [Y (0) 1 R = ro], but the counterfactual E [Y (1) 1 R = ro] is unobservable. Similarly, suppose one

wanted to know the Average Treatment Effect for individuals with R = r1 to the right of the cutoff. For

these individuals one observes E [Y (1) 1 R = ri], but the counterfactual E [Y (0) 1 R = ri] is unobservable.

In this paper I develop a latent factor-based solution to the extrapolation problem. Consider a setting

in which R is a function of a latent factor 0 and disturbance vR:

R = gR (0,VR)

where gR is an unknown function, and both 0 and VR are potentially multidimensional. Suppose, for instance,

that R is an entrance exam score used in admissions to a selective school. Then, it is natural to interpret R

8Continuity of the conditional expectation functions of the potential outcomes is enough for Lemma 1. However, continuity
of the conditional cumulative distribution functions of the potential outcomes allows one to also identify distributional treatment
effects (Frandsen, Frolich, and Melly, 2012).
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as a noisy measure of an applicant's academic ability.

Figure 1-2 illustrates the latent factor framework when both 0 and vR are scalars and R = 0 + vR.

Consider two types of individuals with low and high levels of 0, 0" and 0 high. Furthermore, suppose that

0 'l" < c and 0 high > c . Then, if there was no noise in R, individuals with 0 = 0'" would not receive the

treatment whereas individuals with 0 = ghigh would receive the treatment. However, because of the noise

in R some of the individuals with 0 = 010" end up to the right of the cutoff, and similarly some of the

individuals with 0 = 0 high end up to the left of the cutoff. Thus, both types of individuals are observed with

and without the treatment.

I assume that the potential outcomes Y (0) and Y (1) are conditionally independent of R given 0, as

stated in Assumption B. This means that any dependence between (Y (0) , Y (1)) and R is solely due to two

factors: the dependence of Y (0) and Y (1) on 0 and the dependence of R on 0.

Assumption B. (Y (0), Y (1)) IL R 10.

Lemma 2. Suppose that Assumption B holds. Then

E [Y (1) - Y (0) 1 R = r] =E {E [Y (1) - Y (0) 106] 1 R =r

for all r e R..

Lemma 2 highlights the key implication of Assumption B. Under this assumption, the conditional Average

Treatment Effect given R = r, E [Y (1) - Y (0) 1 R = r], depends on two objects: the latent conditional

Average Treatment Effect given 0, E [Y (1) - Y (0) 10], and the conditional distribution of 0 given R, fOIR.
9

Thus, the identification of the Average Treatment Effect away from the cutoff depends on one's ability two

identify these two objects. In the selective school admissions example Assumption B means that while Y (0)

and Y (1) may depend on an applicant's academic ability, they do not depend on the noise in the entrance

exam score.

Figure 1-5 illustrates this by considering again the identification of the Average Treatment Effect for

individuals with R = ro to the left of the cutoff and for individuals with R = r1 to the right of the cutoff.

As discussed above, the shap RD design allows one to observe E [Y (0) fR ro] and E [Y (1) R =

and the extrapolation problem arises from the unobservability of E [Y (1) fR ro] and E [Y (0) fR =r.

Suppose the conditional expectation functions of Y (0) and Y (1) given 0, E [Y (0) 10] and E [Y (1) 10],

depicted in Figure 1-3, are known. In addition, suppose the conditional densities of 0 given R = ro and

R = ri, faiR (0 1 ro) and fOaR (9 1 rl), depicted in Figure 1-4, are known. Then, under Assumption B, the

9
For all the results in this section it is enough to assume that Y (0) and Y (1) are conditionally mean independent of R

given 0. However, the full conditional independence assumption stated here allows also for the extrapolation of distributional
treatment effects away from the cutoff. I do not discuss this in detail as it is a straightforward extension of the results presented
below.
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counterfactuals E [Y (1) 1 R = ro] and E [Y (0) 1 R = r1] are given by

E[Y(1) R=ro] = E{E[Y(1) 0] |R=ro}

E [Y (O)|R = r1] = E{E [Y (0)J ] |R = r1} .

There is only one remaining issue: how does one identify the latent conditional Average Treatment Effect

given 0, E [Y (1) - Y (0) 10], and the conditional distribution of 0 given R, fOJR? If 0 was observable, these

objects could be identified using the covariate-based approach developed by Angrist and Rokkanen (2013).

However, here 0 is an unobservable latent factor which complicates the identification of E [Y (1) - Y (0) | 0]
and foRl. 10 To achieve identification, I rely on the availability of multiple noisy measures of 0. To simplify

the discussion, I consider in this section a setting in which 0 is unidimensional. I discuss an extension of the

approach to settings with multidimensional latent factors in Section 1.3.2.

I assume that the data contains three noisy measures of 0, denoted by M, A 2 , and A/ 3 :

A = gAl 1 (0, uA1 )

A12  =gA (0, VAI,)

A 3  =gA 3 (0, M 3 )

where gj 11, gAl, and g9A 3 are unknown functions, and vt', m 1vAI and vMA3 are potentially multidimensional

disturbances. I focus on a setting in which is R is a deterministic function of at least one or potentially many

of these measures, but it is possible to consider a more general setting that allows the relationship between

R and Al to be stochastic. Going back to the selective school example considered above, one might think of

M, as the entrance exam score whereas A/ 2 and Al 3 might be two pre-application baseline test scores.

I require 0, Al 1 , and M 2 to be continuous but allow Al 3 to be either continuous or discrete; even a binary

Al 3 is sufficient. I denote the supports of 0, M 1, M 2 , and Al 3 by 0, M 1 , M 2 , and M 3 . I occasionally also

use the notation M = (M 1 , 1 2 , A/ 3) and M M 1 x M 2 x M 3. I leave the properties of the latent factor

0, the unknown functions 91, 92, and 9M3 as well as the disturbances VAM, vM2 , and VM 3 unspecified for

now. I return to them below when discussing alternative sets of assumptions allowing for the identification

of the measurement model.

1.2.2 Parametric Illustration

To provide a benchmark for the discussion about nonparametric identification of the latent factor model, I

begin by considering the identification of a simple parametric model. I assume linearity and normality in

the measurement models for M 1 and A/ 2 but leave the measurement model for A13 flexible. In addition, I

1OThe covariate-based approach by Angrist and Rokkanen (2013) can be in certain cases used for extrapolation even if the
conditional independence assumption holds only for a latent factor. For this assumption to work, one needs to assume that the
running variable contains no additional information about the latent factor once one conditions on a set of covariates.
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assume linearity in the latent outcome models E [Y (0) 10] and E [Y (1) 10].

The measurement model takes the following form:

Mi 0 + vAJ,

'[2 PA12 + A M2 0 + VM 2

A13 =g (0, v1 3 )

where AKM2 , CoV (0, M 3) # 0, and

[10o (M3) 07-2 (M3) 0 0

v/1, | 13 ~N 0 , 0 01-2 (M3) 0.

VM2 0 ( (M3)
LA! L 1L Al 3)

In order to pin down the location and scale of 0, I have normalized pu1 , = 0 and AA1 1l 1 without loss of

generality.

The latent outcome model takes the following form:

E [Y (0) 0] = ao +000

E [Y (1) 0] = a, + 010

I assume that the potential outcomes Y (0) and Y (1) are conditionally independent of M given 0. Formally.,

(Y (0) , Y (1)) 11 M 106.

This means that the noisy measures of 0 are related to the potential outcomes only through 0. Consequently,

they can be used as instruments to identify the relationship between the potential outcomes and 0.

Given the simple parametric specification, the identification of foA depends on one's ability to identify

the unknown parameters PA'12 and A1 2 , uo, a 2~(7 , and U
2 . These can be obtained from the moments
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of the joint distribution of A/1, Al2 , and A/I 3 by noticing that

E [M 1 A/13]

E [M2 ]

Var [MI1 M 3]

Var [M 2 AM3]

Cov [MI, M 2 A13]

CoV [M 1 , M3]

CoV [Al 2 , A/13]

= po (MA)

= PIA 2 + A M2 E [pio (M 3 )]

= c-0 (M 3) + o l (M 3 )

= AAI 2o- (M 3) + I (MI3 )

= AA1 2 o-2 (M3)

- Cov [0, M3]

= AA 2Cov [0, M 3].

As long as AAl 2 , CoV (0, M 3 ) 5 0, as was assumed above, the unknown parameters are given by

Po (Al 3 )

AA12A l2

2- (MAl)

o (A 3 )

1/1 (Al3 )

E [Mi -Al 3]

CoV [Al 2 , A/13]
Cot [M 1 , A/ 3]
E [A/ 2 ] - AA JE [1o (M3 )]

Cov [M 1 , MI2 A' 3]
A M~k

Var [Al NL3 ] - o-T (MA)

Var [A/ 2 Al13 ] - A 12 o- (A 3 ).

These parameters fully characterize the conditional joint distribution of 0, M 1 , and A/ 2 given Al 3 . The joint

distribution foAl is then given by

fOA (0, m) foAl1 ,A 2tM 3 (0, Mi, m 2 I M 3 ) fl 3 (M3 )

Let us now turn to the identification of E [Y (1) - Y (0) 0 0]. Given the simple parametric specifications

for E [Y (0) 0] and E [Y (1) 10], the identification of E [Y (1) - Y (0) 10] depends on one's ability to identify

the unknown parameters ao, O0, a 1 , and 01. These can be obtained from the moments of the conditional

distribution of Y given M and D and the conditional distribution of 0 given M and D by noticing that

E [Y A=m 0 ,D =0] E [Y(0)1M= m0 ,D=0]

= E{E[Y(0) 0]1 M = m0 ,D=0}

- ao +oE [0 M = mD=0]

E [Y M =mlD =1] =-E [Y(1)1 M = m,D =1]

= EE[Y (1) 0]11 M = ml, D =1}

= , i+ 1E [0M =,m', D =1]

17



for all m 0 E M 0 and m1 E M'.

The unknown parameters are given by

E [0 M = m 0 '1 , D = 0]

E [0 M = MO,2 , D = 0]

E [0 M =n'2 , D =1]

E [0 M = rn, 2 , D 1]

I
I

- 1
E [Y M = m 0 '1 , D = 0]

E [Y M = nO,2 , D = 0]

E [Y M =m' 1 ,D 1]

E [Y M =m, 2 ,D 1]

where m 0' o,n0
,
2 E M0 and n1'1 , m1 ,2 E M.These parameters fully characterize E [Y (0)

and consequently E [Y (1) - Y (0) 10]. The above result requires that the matrices

1 E[01

1 E[01

1 E[01

1 E[01

M

M

M

M

= m 0'1 D = 0]
= mO 2, D = 0]

= m ,j iD = 1]

= mn1,2, D = 1]

0], E [Y (1) 10],

I
I

are full rank which is implied by the assumptions on the measurement model.

Finally, the conditional expectation functions of Y (0) and Y (1) given R

E [Y (1) 1 R = r] as well as the conditional Average

are given by

Treatment Effect given R = r, E [Y (1) - Y (0) 1 R = r],

E[Y(0)|R=r] = E{E[Y(0)10]|R=r}

= ao+3OOE [0 R=r]

E[Y(1)1R=r] = EY(0E[Y(1) R=r}

= 1+ 01E [ R = r]

E [Y (1) -Y (0)1R = r] =(a, -ao) +(01 - o) E [ 1R =r]

for all r E R.

In this example I have imposed strong parametric assumptions to illustrate the identification of the latent

factor model. However, these assumptions are not necessary for identification. In the following sections I

relax the distributional and functional form assumptions on the measurement model as well as the functional

form assumptions on the latent outcome model.
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1.2.3 Identification of the Latent Factor Distribution

1.2.3.1 Linear Measurement Model

I continue to assume a linear measurement model for M 1 and A/ 2 but leave the measurement model for A/ 3

flexible. The measurement model takes the following form:

AlI = + vm, (1.1)

A12  A'12 + AM2O + VN12 (1.2)

-/ 3  = gA 3 (0, VAI)

where AA1 2 # 0, E [vAJ 10] = E [vM2 | 0] = 0. Assumption C lists conditions under which one can obtain

nonparametric identification of fo,m using standard results from the literature on latent factor models as

well as an extension to Kotlarski's Lemma (Kotlarski, 1967; Prakasa Rao, 1992) by Evdokimov and White

(2012).

Assumption C.

1. The relationship between M 1 , M 2 , and 0 is as given in equations (1.1) and (1.2).

2. 0, v51 ,, and V 1
M 2 are jointly independent conditional on AI.

3. Cov [0, M 3] # 0 and E [|0 | A3] < oc, E [v, | MA3 ] = E [As2 M z] = 0 a.s.

4. One of the following conditions holds:

(a) The real zeros of the conditional characteristic function of vAI, given A1 3 and its derivative are disjoint,

and the conditional characteristic function of vA13 given AMI 3 has only isolated real zeros.

(b) The conditional characteristic function of v1 , given M 3 is analytic.

Assumption C.1 imposes linearity on the measurement models for M 1 and A/ 2 as discussed above. To

pin down the location and scale of 0, I again use the normalization pU, = 0 and Am 2 = 1. In addition, I

assume that A M 2 # 0 to guarantee that A/ 2 contains information about 0. Assumption C.2 restricts 0, vm1 ,

and vm, to be jointly independent conditional on M 3 . An important implication of this is that there cannot

be heteroscedasticity in vm, and v5 1, with respect to 0. Assumption C.3 requires that A13 is correlated with

O and that both vM, and vA1 are mean independent of A13 . In addition, I assume that the conditional mean

of 0 given M 3 exists, thus ruling out distributions with particularly fat tails (e.g. the Cauchy distribution).

Lastly, Assumption C.4 imposes restrictions on the conditional characteristic functions of vm, and v5I2

given Al:3 . This assumption is best understood by considering first the original Kotlarski's Lemma (Kotlarski,

1967; Prakasa Rao, 1992). This lemma requires that the conditional characteristic functions of 0, vAs, and

vM2 given M 3 do not have any real zeros (such characteristic functions are typically called nonvanishing).1 1

This is a common assumption in the measurement error literature (Chen, Hong, and Nekipelov, 2011). It is

"1 A nonvanishing characteristic function is closely related to (bounded) completeness of a location family. Therefore, it can
be seen as requiring that the distribution varies sufficiently as a function of the location parameter. See the related discussion
and references in Section 1.2.3.2.
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satisfied by most standard distributions, such as the normal, log-normal, Cauchy, Gamma, Laplace, x2 and

Student's t-distribution. However, it is violated by, for instance, uniform, triangular, and truncated normal

distributions as well as by many discrete distributions.

Assumption C.4 uses recent work by Evdokimov and White (2012) to relax the assumptions of Kotlarski's

Lemma. Condition (a) allows for real zeros in the conditional characteristic functions of vM, and vM2

given MA3 . This substantially expands the class of distributions that allow for the identification of foM.

Condition (b) requires the conditional characteristic function of u, given M 3 to be analytic while imposing

no restrictions on the conditional characteristic function of vM2 given M3 . Analyticity is a property satisfied,

for instance, by distributions with exponentially bounded tails, such as the normal and Gamma distribution as

well as distributions with bounded support. Importantly, neither one of these conditions imposes restrictions

on the conditional characteristic function of 0 given MV,3.

Theorem 1 states the identification result. Given the normalizations imposed on the linear measurement

model, the covariance and mean independence assumptions imply that AMA is given by the ratio of the

covariance between M 2 and Al 3 and the covariance between M, and M 3 . This amounts to using M 3 as an

instrument for M1 in a regression of A12 on M1 as M1 is an imperfect measure of 0. The means of M1 and

M 2 can then be used to obtain PA12 . Suppose for a moment that the conditional distributions of 0, 1
1 , and

vl 2 given M 3 were known up to a finite number of parameters. In this case one could, subject to the relevant

full rank condition, identify the distributional parameters from a finite number of moment conditions. The

rest of Theorem 1 uses the assumptions on the conditional characteristic functions to generalize this strategy

to a infinite-dimensional problem. Under these assumptions, the conditional distributions of vv1 and vM
2

given M3, fvAl 1l 3 and f 12 1l1, as well as the conditional distribution of 0 given M 3 , foIM 3 , can be uniquely

determined from the conditional distribution of Al1 and M 2 given Al 3 , fM 1 ,M2JA1 3 . Together with the marginal

distribution of Al 3 , f-63 , this allows one to then construct foM.

Theorem 1. Suppose Assumption C holds. Then

PM2 = E[M2]-A M2 E [M]

CoV [M 2 , M 3]A M
2  CoV [M 1 , Al 3]

In addition, the equation

fAI 1 ,M AI 3 (mi, m 2 M 3 )

f 1 1 3 (mi - 0 i n 3 ) fvM 2 IM 3 (M 2 -- PM2 - AM 2 0 in 3 ) fo I 3 (0 in 3 ) dO

for all m1 E M 1, M 2 E M 2 , and M 3 E M 3 admits unique solutions for f 3 1 1Al 3 , fAIMM3, and foIM 3 .

Consequently, the joint distribution foA is identified.
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1.2.3.2 Nonlinear Measurement Model

The linear imeasurement model considered in Section 1.2.3.1 provides a natural starting point for the dis-

cussion regarding the identification of fo,,. However, this model imposes important, and potentially unsat-

isfactory, restrictions on the relationship between the latent factor 0 and the measures AM1 and M 2 . First,

both M 1 and A12 are assumed to depend linearly on 0. Second, 0, vip , and 'A1 2 are assumed to be jointly

independent conditional on M 3. This rules out, for instance, heteroskedasticity in vA1 and VM 2 with respect

to 0. In this section I discuss an alternative set of identifying assumptions that address these concerns.

For this purpose I use results by Hu and Schennach (2008) who study nonparametric identification and

estimation in the presence of nonclassical measurement error.

I return to the general measurement model that took the form

A11  =g, (0, All )

M 2  gAl 2 (0, A 2 )

Ml3 9M 3 (0, L" A 3 )

Assumption D lists the conditions under which the joint distribution foA is nonparametrically identified in

this setting (Hu and Schennach, 2008; Cunha, Heckman, and Schennach, 2010).

Assumption D.

1. fOM (0, m) is bounded with respect to the product measure of the Lebesgue measure on 0- x M1 x M2

and some dominating measure p on M 3 . All the corresponding marginal and conditional densities are also

bounded.

2. A 1, M 2 , and AM 3 are jointly independent conditional on 0.

3. For all 0'.0" e , fA 3 1o (M 3 0') and fM 3Io (m 3 0") differ over a set of strictly positive probability

whenever 0' , 0".

4. There exists a known functional H such that H [fA,1 o (- |)] = 0 for all 0 C e.
5. folj, (0 | m 1 ) and fM1 \iJ 2 (MI1  n 2 ) form (boundedly) complete families of distributions indexed by i1 E

M 1 and M 2 C M 2 -

Assumption D.1 requires 0, Al 1 , and M 2 to be continuos but allows A/ 3 to be either continuous or

discrete. Furthermore, it restricts the joint, marginal and conditional densities of 0, M 1, M 2 , and A1 3 to be

bounded. The support of the joint distribution foM, on the other hand, is allowed to be either rectangular

or triangular. Assumption D.2 restricts VAI,, V
1
M2 , and VAI 3 to be jointly independent conditional on 0 while

allowing for arbitrary dependence between 0 and these disturbances. Importanly, this assumption allows

for both heteroscedasticity and correlation in the measurement errors in M 1, M 2 , and M 3 . Assumption D.3

requires the conditional distribution of M 3 given 0 to vary sufficiently as a function of 0. This assumption

can be satisfied, for instance, by assuming strict monotonicity of the conditional expectation of Al 3 given
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0. More generally this assumption can be satisfied if there is heteroscedasticity in M 3 with respect to 0.

Assumption D.4 imposes a normalization on the conditional distribution of M 1 given 0 in order to pin down

the location and scale of 0. This normalization can be achieved by, for instance, requiring the conditional

mean, mode or median of M 1 to be equal to 0.

Lastly, Assumption D.5 requires that the conditional distributions fol, and fM1 lM2 are either complete

or boundedly complete.12 The concept of completeness, originally introduced in statistics by Lehmann

and Scheffe (1950, 1955), arises regularly in econometrics, for instance, as a necessary condition for the

identification of (semi-)nonparametric instrumental variable models (Newey and Powell, 2003; Blundell and

Powell, 2003; Chernozhukov and Hansen, 2005; Blundell, Chen, and Kristensen, 2007; Chernozhukov, Imbens,

and Newey, 2007).13 It can be seen as an infinite-dimensional generalization of the full rank condition that is

central in the identification of various parametric models based on Generalized Method of Moments (Hansen,

1982).14 Intuitively, the completeness condition requires that foIA, and fN I M2 vary sufficiently as functions

of M, and M 2 . One way to see this is to consider the assumption of L2 -completeness which lies in between

completeness and bounded completeness in terms of its restrictiveness.15 It can be shown that the conditional

distribution of X given Z, where X and Z denote generic random variables, is L 2-complete if and only if

every nondegenerate square-integrable function of X is correlated with some square-integrable function of Z

(Severini and Tripathi, 2006; Andrews, 2011).

An unsatisfactory feature of completeness assumptions is that, unlike the full rank condition in finite-

dimensional models, these assumptions are generally untestable (Canay, Santos, and Shaikh, forthcoming).

However, there has been some work on providing sufficient conditions for various forms of completeness

of certain classes of distributions, such as the location, scale and exponential families, in both statistics

(Ghosh and Singh, 1966; Isenbeck and Ruschendorf, 1992; Mattner, 1992; Lehmann and Romano, 2005)

and econometrics (D'Haultfoeuille, 2011; Hu and Shiu, 2012).16 In addition, some papers in the literature

have focused on characterizing classes of distributions that fail the completeness assumption but satisfy the

weaker bounded completeness assumption (Hoeffding, 1977; Bar-Lev and Plachky, 1989; Mattner, 1993).

Finally, Andrews (2011) and Chen, Chernozhukov, Lee, and Newey (2013) have provided genericity results

that imply that L 2 -completeness holds almost surely for large classes of nonparametric distributions.1 7

12 Let X and Z denote generic random variables with supports X and Z. fxIz (x I z) is said to form a (boundedly)

complete family of distributions indexed by z E Z if for all measurable (bounded) real functions h such that E [h (X)] < o,
E [h (X) I Z] = 0 a.s. implies h (X) = 0 a.s. (Lehmann and Romano, 2005).

13Completeness is sometimes stated in the literature on (semi-)nonparametric instrumental variable models in terms of

injectivity of the conditional expectation operator (Hall and Horowitz, 2005; Darolles, Fan, Florens, and Renault, 2011; Horowitz,
2011). Some authors also refer to completeness as strong identification (Florens, Mouchart, and Rolin, 1990).

1 4
Notice that if the generic random variables X and Z are both discrete with finite supports X = {xi,..,XK} and

Z = {z1,.,ZL }, the completeness assumption becomes the full rank condition P [rank (Q)= K] 1 where QkI =

P [X = Ik I Z = z1] (Newey and Powell, 2003).
1 5

The definition of L
2
-completeness is analogous to the definition given above for (bounded) completeness with the exception

that the condition needs to hold for all measurable square-integrable real functions h (Andrews, 2011). Thus, L
2
-completeness

lies in between completeness and bounded completeness in the sense that completeness implies L
2
-completeness which in turn

implies bounded completeness.
16

For instance, the assumption of a nonvanishing characteristic function discussed in Section 1.2.3.1 is a necessary condition

for completeness and a necessary and sufficient condition for bounded completeness of a location family (Ghosh and Singh,
1966; Isenbeck and Ruschendorf, 1992; Mattner, 1992).

17 See also Santos (2012) for a related discussion on the uniform closeness of complete and incomplete distributions.
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Theorem 2 states the identification result by Hu and Schennach (2008). Given the conditional joint inde-

pendence assumption, one can write down the integral equation given in the theorem relating the observed

conditional joint distribution of M, and M3 given f13 , f 1 3 IA1 2, to the unobserved distributions f 1 0,

f 3 lo, and folIA 2 . Futhermore, this relationship can be expressed in terms of linear integral operators that

makes the problem analogous to matrix diagonalization in linear algebra. Using invertibility of some of the

operators, provided by the (bounded) completeness assumption, one can obtain an eigenvalue-eigenfunction

decomposition of an integral operator that only depends on the observed fAI. Given the additional assump-

tions, this decomposition is unique, and the unknown densities fMyllo, fJ3 10, and folM 2 are given by the

eigenfunctions and eigenvalues of this decomposition. This allows one to then construct foM.

Theorem 2. Suppose Assumption D holds. Then the equation

fA1 1 ,M3 IA12 (Mi1 , m3 'M2 ) ful 1o (in I 1) fI3 io ("13 10) foAil, (0 i M 2 ) dO

for all nI1 C M 1 , T4 2 E M 2 and Tr3 C M 3 admits unique solutions for fm, lo, f 3 lo, and fOIAI 2. Consequently,

the joint distribution foA is identified.

1.2.4 Identification of the Latent Conditional Average Treatment Effect

Having identified the joint distribution of 0 and M, foA, and the conditional distribution of 0 given R,

fOIR, the only missing piece in the identification of E [Y (1) - Y (0) 1 R] is the latent conditional Average

Treatment Effect E [Y (1) - Y (0) 10]. The identification of this is based on the identification of the latent

conditional expectation functions E [Y (0) 10] and E [Y (1) 0 0]. These functions can be identified by relating

the variation in the conditional expectation of Y given A/ and D, E [Y M, D], to the variation in the

conditional distribution of 0 given M and D, f0l1M,D to the left (D = 0) and right (D = 1) of the cutoff. This

problem is analogous to the identification of separable (semi-)nonparametric instrumental variable models

(Newey and Powell, 2003; Darolles, Fan, Florens, and Renault, 2011). Assumption E lists the conditions

under which E [Y (0) 10] and E [Y (1) 0 0] are nonparametrically identified for all 0 C 0.

Assumption E.

1. (Y (0) , Y (1)) _L M/ 106.

2. 0 < P [D = 1 |0] < I a. s.

3. foJitr,D (0 'i
0 , 0) and foIMD (0 iM

1
, 1) form (boundedly) complete families of distributions indexed by

in0 M 0 and Mi e M 1 .

Assumption E.1 requires that the potential outcomes Y (0) and Y (1) are conditionally independent of

the measures Al given the latent factor 0. In other words, the measurement errors in Al are not allowed

to affect Y (0) and Y (1).18 Assumption E.2 states a common support condition that guarantees that the
18 This condition is often referred to as nondifferential measurement error (Bound, Brown, and Mathiowetz, 2001; Carroll,

Ruppert, Stefanski, and Crainiceanu, 2006).
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conditional supports of 0 to the left and right of the cutoff c coincide. This means that the subset of M

entering R must be sufficiently noisy measures of 0 so that for all 0 E E the realized value of R can lie on

both sides of the cutoff with strictly positive probability.

Finally, Assumption E.3 imposes a similar (bounded) completeness condition as in Assumption D for

the identification of the nonlinear measurement model. Here the vector M is used as an instrument for 0,

and the (bounded) completeness conditions can be thought of as an infinite-dimensional first stage condi-

tion. A sufficient condition for this assumption to be implied by the (bounded) completeness conditions in

Assumption D is that M 1 does not enter R, and that there exists some (m I, m) C x M such that

fO,M 2 ,M 3 ID (0, md, m I d) > 0 for all 0 c 0, d = 0, 1.

Theorem 3 states the identification result. The conditional independence assumption allows one to

write down the integral equations given in the theorem. Under the (bounded) completeness assumption,

E [Y (0) 10] and E [Y (1) 10] are unique solutions to these integral equations. Finally, the common support

assumption ensures that both E [Y (0) 10] and E [Y (1) 101 are determined for all 0 E 0.

Theorem 3. Suppose Assumption E holds. Then the equations

E [Y M m0 , D 0] E {E [Y (0) 10] M =m, D 0}

E [Y M ml, D 1] E {E [Y (1) 10] M ml, D 1}

for all m0 e MO and ml E M admit unique solutions for (bounded) E [Y (0) |0] and E [Y (1) 10] for all

0 C 0. Consequently, E [Y (1) - Y (0) |0] is identified.

1.3 Extensions

1.3.1 Extrapolation of Local Average Treatment Effect in Fuzzy RD

In fuzzy RD the treatment is only partly determined by whether the running variable falls above or below

the cutoff c: some individuals assigned to the treatment may end up not receiving the treatment while

some individuals not assigned to the treatment may end up receiving the treatment. Thus, in fuzzy RD the

probability of receiving the treatment jumps when the running variable R crosses the cutoff c but by less

than 1:

limP [D = 1 | R = r +6] > limP [D = 1 I R

Let Z denote the treatment assignment that is a deterministic function of the running variable:

Z = 1 (R ;> c)
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Each individual is associated with two potential treatment status: D (0) is the treatment status of an

individual if she is not assigned to the treatment (Z = 0), and D (1) is the treatment status of an individual

if she is assigned to the treatment (Z = 1). Using this notation, the observed outcome and the observed

treatment status can be written as

Y Y (0) + (Y (1) - Y (0)) D

D D (0) + (D (1) - D (0)) Z.

It is possible to categorize individuals into four mutually exclusive groups according to their compliance

with treatment assignment (Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996): (1) individuals

who receive the treatment whether or not they are assigned to the treatment are called always-takers (D (0) =

D (1) = 1), (2) individuals who do not receive the treatment whether or not they are assigned to the treatment

are called never-takers (D (0) = D (1) = 0), (3) individuals who receive the treatment if they are assigned to

the treatment and do not receive the treatment if they are not assigned to the treatment are called compliers

(D (0) = 0, D (1) = 1), and (4) individuals who receive the treatment if they are not assigned to the treatment

and do not receive treatment if they are asssigned to the treatment are called defiers (D (0) = 1, D (1) = 0).

I rule out defiers by assuming that being assigned to the treatment can only make an individual more likely

to receive the treatment. This corresponds to the monotonicity assumption in the instrumental variables

literature (Imbens and Angrist, 1994; Angrist, Imbens, and Rubin, 1996). Once defiers have been ruled

out, fuzzy RD allows one to nonparametrically identify the Local Average Treatment Effect (LATE) for

the compliers at the cutoff, E [Y (1) - Y (0) 1 D (1) > D (0) , R = c]. This is the group of individuals whose

treatment status changes at the cutoff as they become eligible to the treatment. Since the treatment status

of never-takers and always-takers is independent of treatment assignment, fuzzy RD contains no information

about the Average Treatment Effect for these two groups.

Assumption F lists conditions under which the Local Average Treatment Effect is nonparametrically

identified. Assumption F.1 restricts the marginal density of R, fR, to be strictly positive in a neighborhood

around the cutoff. Assumption F.2 imposes the monotonicity assumption stating that crossing the cutoff can

only make an individual more likely to receive the treatment. In addition, it requires that this relationship

is strict for at least some individuals at the cutoff, ensuring that there is a first stage. Assumption F.3

requires the conditional expectations of the potential treatment status to be continuous in R at the cutoff.

Assumption F.4 imposes continuity on the conditional cumulative distribution functions of the potential

outcomes for the compliers.19 Finally, Assumption F.5 requires that the conditional expectations of Y (0)

and Y (1) exist at the cutoff.

Assumption F.
1 9 Continuity of the conditional expectation functions of the potential outcomes for compliers is enough for Lemma 3. However,

continuity of the conditional cumulative distribution functions allows one to also identify distributional treatment effects for

the compliers (Frandsen, Frolich, and Melly, 2012).
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1. fj (r) > 0 in a neighborhood around c.

2. lim P [D (1) > D (0) 1 R = r ± 6] = 1 and lim P [D (1) > D (0) 1 R = r + 6] > 0640 640
3. E [D (0) | R = r] and E [D (1) | R = r] are continuous in r at c.

4. FY(0)1D(0),D(1),R (y 10, 1, r) and Fy (1)1D(0),D(1),R (Y 10, 1, r) are continuous in r at c for all y E Y.

5. E [Y (0) 1 D (1) > D (0) , R = c] , E [Y (0) 1 D (1) > D (0) , R = c] < oc.

The identification result is given in Lemma 3 (Hahn, Todd, and van der Klaauw, 2001). Under Assumption

F, the Local Average Treatment Effect can be obtained as the ratio of the difference in the limits of the

conditional expectation of Y given R = r, E [Y R = r], as r approaches c from right and left, and the

difference in the limits of the conditional expectation of D given R = r, E [D R = r], as r approaches c

from right and left. In other words, any discontinuity observed at the cutoff in the conditional expectation

of Y given R is accredited to the treatment through the corresponding discontinuity at the cutoff in the

probability of receiving the treatment.

Lemma 3. (Hahn, Todd, and van der Klaauw, 2001) Suppose Assumption F holds. Then

E [Y R c + 6] - E [Y R c -6]
E [Y (1) - Y (0) 1 D (1) > D (0), R = c] =lim

61o E [D R c + 6] - E [D R c - 6]

Assumption G lists conditions under which the Local Average Treatment Effect for compliers at any

point r in the running variable distribution, E [Y (1) - Y (0) 1 D (1) > D (0) , R = r], is nonparametrically

identified in the latent factor framework. Assumption G.1 requires that the potential outcomes Y (0) and

Y (1) and the potential treatment status D (0) and D (1) are jointly independent of R conditional on the

latent factor 0. Assumption G.2 imposes the monotonicity assumption for all 0 E . Assumption G.3

imposes this relationship to be strict at least for some 0 E .

Assumption G.

1. (Y (0) , Y (1), D (0) , D (1)) _L R 0.

2. P [D (1) > D (0) 0] = 1 a.s.

3. P [D (1) > D (0) 0] > 0 a.s.

The identification result is stated in Lemma 4. Under Assumption G, the Local Average Treatment Effect

for complier at R = r is given by the ratio of the reduced from effect of treatment assignment on the outcome

and the first stage effect of treatment assignment on treatment status at R = r.

Lemma 4. Suppose Assumption G holds. Then

E {E [Y (D (1)) - Y (D (0)) 0] R =r}
E [Y (1)-Y(0) DE(1) >D(0), =r] E{E[D (1) - D (0) 10] 1 R =r}

for all r (E R.
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Assumption H lists the conditions under which the latent reduced form effect of treatment assignment

on the outcome, E [Y (D (1)) - Y (D (0)) 10], and the latent first stage effect of treatment assignment on

the probability of receiving the treatment, E [D (1) - D (0) 10], are nonparametrically identified from the

conditional distribution of Y given M and Z, fylpz, and the conditional distribution of D given M and Z,

fDIA,z. Assumption H.1 requires that the potential outcomes Y (0) and Y (1) and the potential treatment

status D (0) and D (1) are jointly independent of -N given 0. In other words, the measurement errors

in M are assumed to to be unrelated to (Y (0) , Y (1) , D (0) , D (1)). Assumption H.2 repeats the common

support assumption from Assumption E whereas Assumption H.3 is analogous to the (bounded) completeness

condition in Assumption E.

Assumption H.

1. (Y (0), Y (1), D (0), D (1)) l M 0.

2. 0 < P [D =1 0] < 1 a.s.

3. fopw,z (0 m, 0) and fojAf,z (0 in , 1) form (boundedly) complete families of distributions indexed by

m 0 E M 0 and m1 C M 1 .

Theorem 4 states the identification result. Together with Lemma 4 this result can be used to nonpara-

metrically identify the Local Average Treatment Effect for compliers at any point in the running variable

distribution. The proof of Theorem 4 is analogous to the proof of Theorem 3.

Theorem 4. Suppose Assumption H holds. Then the equations

E [Y M = m0 , D = 0] = E {E [Y (D (0)) 0] M = m 0 , D = 0}

E [Y M = ml, D = 1] = E {E [Y (D (1)) 0] |M = ml, D = I}

E [D 1M = m0 ,D = 0] = E {E [D (0) 101] M = m0 , D = 0}

E [D M = A/1, D = 1] = E f{E [D (1) | 0] | A/ = mni, D = I1}

for all ro C Ro and r1  ,1 admit unique solutions for (bounded) E [Y (D (0)) | 0], E [Y (D (1)) |0],

E [D (0) 10], and E [D(1) 0] for all0 C 0.

1.3.2 Settings with Multiple Latent Factors

Section 1.2 focused on the identification of the measurement and latent outcome models in the presence of

a one-dimensional latent factor 0. However, it is possible to generalize the identification results to a setting

with a K-dimensional latent factor 0 =( 0 ,. . . ,OK). Instead of three noisy measures required in the one-

dimensional case, the K-dimensional case requires the availability of 2 x K + 1 noisy measures. To be more

exact, this setting requires one to observe two noisy measures for each latent factor Ok, k = 1,.. . , K, as well

as one measure that is related to all K latent factors. 20

2 0
1t is possible to allow for this measure to be multidimensional by, for instance, containing an additional K measures for

each latent factor Ok, k = 1,. .. , K.
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Formally, I assume that the data contains 2 x K + 1 noisy measures given by

M = gitk Ok,v k J=1 ,..., K

2 = 2 (kv2)gMk, k=1 ,...,K

M3 = gw (01,...,OK,vMA3 )

where gOMk, ga, k =1,... , K, and gM3 are unknown functions, and vMk, vk' , k 1, ... , K, and VM3 are

potentially multidimensional disturbances. I focus on a setting in which is R is a deterministic function of at

least one but potentially many of the measures for each 0 k, k = 1, ... , K. However, it is possible to consider

a more general setting that allows the relationship between R and M to be stochastic. Going back to the

selective school example of Section 1.2.1, one might think of R as being the average score in two entrance

exams in English and Math, M1 and M2, that are noisy measures of English and Math ability, 01 and 02.

M1, M2, and M 3 might instead consist of pre-application baseline test scores in English and Math.

I require 0k, Mk, and Mk = 2 _ 1-,..., K, to be continuous but allow M 3 to be either continuous or

discrete; even a binary M 3 suffices for identification. I denote the supports of Ok, MIk, Mjk 1, ... ,K,

and M 3 by Xk, M, M , k = 1,...,K, and M 3. In addition, I use ) = 6 1 X ... X OK to denote the

support of 0 (1,. . . ,OK), M 1 = X - X MK andM 2 = M1 X -.. X K to denote the supports

of M 1 = (II. a M M,. ., M 2 ), and M M1 x 2 M 3 to denote the support of

M = (M 1 , M 2, M3 ).

The introduction of multiple latent factors only affects Assumption C and Theorem 1 regarding the

identification of foj in the linear measurement model. Assumption D and Theorem 2 regarding the iden-

tification of foM in the nonlinear measurement model apply instead directly to this setting as long as one

interprets 0 and M as defined above (Hu and Schennach, 2008). The same holds for Assumption E and

Theorem 3 regarding the identification of the Average Treatment Effect away from the cutoff in sharp RD as

well as for Assumption H and Theorem 4 regarding the identification of the Local Average Treatment Effect

away from the cutoff in fuzzy RD.

Thus, I focus here on the identification of foM in the linear measurement model

Mf =Ok + ugk , k = ,...,K(1.3)
(14

M k = Pug + Agk~ + Vek , k =,...,K (1.4)

Mh = 9M 3 (01, O.,K, VM 3)

where AAIA # 0, E VMk I Ok = E [vA 10,] = 0, k = 1, ... , K. Assumption I lists modified conditions

under which one can obtain nonparametric identification of fom in this setting.

Assumption I.

1. The relationship between Mk, k4 and Ok, k = 1,..., K, are as given in Equations (1.3) and (1.4).
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2. Ok, 1"Rk, and VBk are jointly independent conditional on MA for all k = 1,... , K.

3. CoV [Ok, M 3 ] # 0, E [|Ok| | M3 ] < oc, E vAIk A 3 ] E [V, M = 0 for all k 1,..., K.

4. One of the following conditions holds:

(a) The real zeros of the conditional characteristic functions of vk., k = 1,..., K, given M3 and their

derivatives are disjoint, and the conditional characteristic functions of VAk, k = 1,...,K, given A' 3 have

only isolated real zeros.

(b) The conditional characteristic functions of VAM , k = 1,... , K, given M 3 are analytic.

5. The components of vA, = (VA1,. . .V and Vj (VK,...,VgK are jointly independent condi-

tional on M 3 .

6. The real zeros of the conditional joint characteristic functions of vA 1, and VM 2 given A 3 are disjoint.

Theorem 5 states the identification result. The proof of this theorem is similar to the proof of Theorem

1.

Theorem 5. Suppose Assumption I holds. Then

P[1  = E[M1] -AAIkE[f , k=1,...K

A Cov [M2i, M3 ]
S Cov (M,3]'

In addition, the equation

f 1,AIA1 3 (mi, m 2 i M 3 )

Kkk

/ i f, (mT - 0 k in 3 ) fAk A|M3 M2 -M k -A1Ok M3
k=1

X fO IA3 (Ok I m 3 ) dO

for all m, E A 1 , M 2 E M 2 , m 3 E M 3, admits unique solutions for f, AkIA, fmkIAI3 , k 1,... ,K, and

fOIA/ 3 . Consequently, the joint distribution foA is identified.

1.4 Boston Exam Schools

I use the latent factor-based approach to RD extrapolation developed in the previous two sections to study the

causal effects of attending selective public schools, known as exam schools, in Boston for the full population of

applicants. This section describes the empirical setting and data as well as the identification and estimation

of the latent factor model in the empirical setting.

29



1.4.1 Setting

Boston Public Schools (BPS) includes three exam schools that span grades 7-12: Boston Latin School, Boston

Latin Academy, and John D. O'Bryant High School of Mathematics and Science. Latin School, founded in

1635, is the oldest and most selective out of the three exam schools, and it is also the first public school and

oldest still existing school in the United States. Latin School enrolls about 2,400 student. Latin Academy,

founded in 1877, is the second oldest and second most selective exam school in Boston. It enrolls about 1,700

students. O'Bryant, founded in 1893, is the youngest and least selective out of the three exam schools. It

enrolls about 1,200 students.

The exam schools differ considerably from traditional Boston public schools in terms of student perfor-

mance. In the U.S. News & World Report high school ranking in 2013, for instance, Latin School, Latin

Academy and O'Bryant formed the three best high schools in BPS, and ranked as 2nd, 20th, and 15th in

Massachusetts. Furthermore, in 2012, the exam schools were among the four best schools in BPS in terms of

the share of students scoring at a Proficient or Advanced level in the Massacusess Comprehensive Assesment

System (MCAS) tests in English, Math, and Science.2 1 Similarly, the exam schools formed the three best

schools in BPS in 2012 in terms of both average SAT scores and 4-year graduation rates.22

The fact that exam school students, on average, outperform other BPS students in terms of MCAS/SAT

scores and graduation rates is not surprising given the considerable differences in student composition between

the exam schools and traditional Boston public schools. For instance, the exam schools enroll a considerably

higher share of white and Asian students as well as a higher share of female students than BPS as a whole.

Limited English proficiency, special education, and low income rates are also negligible among exam school

students when compared to other Boston public schools.

In addition to student composition, the exam schools differ from traditional Boston public schools along

several other dimensions. The exam schools have a higher share of teachers who are licensed to teach in the

area in which they teach, as well as a higher share of core academic classes that are taught by teachers who

hold a valid Massachusetts license and have demonstrated subject matter competency in the areas they teach.

Exam school teachers are also older than teachers at other Boston public schools. The student/teacher ratio

is much higher at the exam schools, but this is to a large extent explained by the small number of students

requiring special education.

There are also considerable differences between the exam schools and traditional Boston public schools in

terms of their curricula. The curriculum at both Latin Academy and Latin School emphasizes the classics, and

students at these schools take mandatory Latin classes, whereas the curriculum at O'Bryant focuses on Math

and Science. Moreover, the exam schools offer a rich array of college prepatory classes and extracurricular

activities, and enjoy to a varying extent additional funding that come from alumni contributions.
2 1

MCAS is a state-mandated series of achievement tests introduced for the purposes of No Child Left Behind.
2 2 AII of the exam schools are also among the few schools in BPS that have won the Blue Ribbon Award from the US

Department of Education. In addition, Latin School was listed as one the top 20 high schools in the US by U.S. News & World

Report in 2007.
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All of the exam schools admit new students for grades 7 and 9, but in addition to this O'Bryant also

admits some students for grade 10. In order to be admitted to one of the exam schools, a student is

required to be a Boston resident. Students can apply to the exam schools from both inside and outside

BPS. Each applicant submits a preference ordering of the exam schools to which they are applying. The

admissions decisions are based on the applicants' Grade Point Average (GPA) in English and Math from

the previous school year and the fall term of the ongoing school year as well as the applicants' scores on the

Independent School Entrance Examination (ISEE) administered during the fall term of the ongoing school

year. The ISEE is an entrance exam used by several selective schools in the United States. It consists of five

sections: Reading Comprehension, Verbal Reasoning, Mathematics Achievement, Quantitative Reasoning,

and a 30-minute essay. Exam school admissions only use the first four sections of the ISEE.

Each applicant receives an offer from at most one exam school, and waitlists are not used. The assignment

of exam school offers is based on the student-proposing Deferred Acceptance (DA) algorithm by Gale and

Shapley (1962). The algorithm takes as inputs each exam school's predetermined capacity, the applicants'

preferences over the exam schools, and the exam schools' rankings of the applicants based on a weighted

average of their standardized GPA and ISEE scores. These rankings differ slightly across the exam schools

as for each school the standardization and ranking is done only within the pool of applicants to that school.

The DA algorithm produces exam school-specific admissions cutoffs that are given by the lowest rank

among the applicants admitted to a given exam school. Since applicants receive an offer from at most one

exam school, there is riot a direct link between the exam school-specific running variables (an applicant's

rank among applicants to a given exam school) and the exam school offers. However, as in Abdulkadiroglu,

Angrist, and Pathak (2014), it is possible to construct a sharp sample for each exam school that consists of

applicants who receive an offer if and only if their running variable is above the admissions cutoff for the

exam school in question. Appendix B describes in detail the DA algorithm and the construction of the sharp

samples.

1.4.2 Data

The main data for this paper comes from three sources provided by the BPS: (1) an exam school application

file, (2) a BPS registration and demographic file, and (3) an MCAS file. These files can be merged together

using a unique BPS student identification number. In addition, I use the students' home addresses to merge

the BPS data with Census tract-level information from the American Community Survey (ACS) 5-year

summary file for 2006-2011.23

The exam school application file consists of the records for all exam school applications in 1995-2009.

It provides information on each applicant's application year and grade, application preferences, GPA in

English and Math, ISEE scores, exam school-specific ranks, and the admissions decision. This allows me to

reproduce the exam school-specific admissions cutoffs (the lowest rank among applicants admitted to a given
2 3 See Abdulkadiroglu, Angrist, and Pathak (2014) for a more detailed description of the BPS data.

31



exam school). I transform the exam school-specific ranks into percentiles, ranging from 0 to 100, within

application year and grade. I then center these running variables to be 0 at the admissions cutoff for the

exam school in question. Thus, the running variables give an applicant's distance from the admissions cutoff

in percentile units. Finally, I standardize the ISEE scores and GPA to have a mean of 0 and a standard

deviation of 1 in the applicant population within each year and grade. 24

The BPS registration and demographic file consists of the records for all BPS students in 1996-2012. It

provides information on each student's home address, school, grade, gender, race, limited English proficiency

(LEP) status, bilingual status, special education (SPED) status, and free or reduced price lunch (FRLP)

status.

The MCAS file consists of the records for all MCAS tests taken by BPS students in 1997-2008. It provides

information on 4th, 7th, and 10th grade MCAS scores in English, and 4th, 8th, and 10th grade MCAS scores

in Math. In the case of retakes I only consider the first time a student took the test. I construct middle

school and high school MCAS composites as the average MCAS scores in 7th grade English and 8th grade

Math and 10th grade English and Math. I standardize the 4th grade MCAS scores in English and Math as

well as the middle school and high school MCAS composite scores to have a mean 0 and a standard deviation

of 1 in the BPS population within each year and grade.

Lastly, I use the ACS 5-year summary file for 2006-2011 to obtain information on the median family

income, percent of households occupied by the owner, percent of families headed by a single parent, percent

of households where a language other than English is spoken, the distribution of educational attainment,

and the number of school-aged children in each Census tract in Boston. I use this information to divide the

Census tracts into socioeconomic tiers as described in Section 1.6.1.

I restrict the sample to students who applied to the exam schools for 7th grade in 2000-2004. I focus on

7th grade applicants as most students enter the exam schools in 7th grade, and their exposure to the exam

school treatment is longer. This is also the applicant group for which the covariate-based RD extrapolation

approach by Angrist and Rokkanen (2013) fails. The restriction to application years 2000-2004 is done

in order to have both 4th grade MCAS scores and middle/high school MCAS composite scores for the

applicants. I exclude students who apply to the exam schools from outside BPS as these applicants are more

likely to remain outside BPS and thus not have follow up information in the data. In addition, I exclude

students with missing covariate or 4th grade MCAS score information.

Table 1.1 reports descriptive statistics for all BPS students as well as the exam school applicants in

the estimation sample. Column (1) includes all BPS students enrolled in 6th grade in 2000-2004. Column

(2) includes the subset of students who apply to the exam schools. Columns (3)-(6) include the subsets of

applicants who receive no exam school offer or an offer from a given exam school. Exam school applicants are

a highly selected group of students, with markedly higher 4th grade MCAS scores and lower shares of blacks

and Hispanics, limited English proficiency, and special education than BPS students as a whole. Similarly,
2 4

The exam school application file only contains a combined index of GPA in English and Math.
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there is considerable selection even within exam school applicants according to their exam school assignment,

with applicants admitted to a more selective exam school having higher 4th grade MCAS scores and lower

shares of blacks and Hispanics, limited English proficiency, and students eligible for free or reduced price

lunch.

1.4.3 Identification and Estimation

Throughout the rest of the paper I use Z E {0, 1, 2, 3} to denote the exam school assignment of an applicant

where 0 stands for no offer, 1 for O'Bryant, 2 for Latin Academy and 3 for Latin School. Furthermore, I use

S C {0, 1, 2, 3} to denote the enrollment decision of an applicant in the fall following exam school application

where 0 stands for traditional Boston public school, 1 for O'Bryant, 2 for Latin Academy, and 3 for Latin

School. Lastly, I use R 1, R 2 , and R 3 to denote the running variables for O'Bryant, Latin Academy, and

Latin School.

As discussed in Section 1.4.1, each applicant receives at most one exam school offer that is determined

by the DA algorithm. The exam school assignment of an applicant is a deterministic function of her running

variables and application preferences, denoted by P,

Z = gz (RI, R 2 , R3, P)-

The running variables are deterministic functions of the applicant's scores in the Reading Comprehension,

Verbal Reasoning, Mathematics Achievement, and Quantitative Reasoning sections of the ISEE, denoted by

M , M M2', and M3A, as well as her GPA in English and Math, denoted by G,

YR. (M2AE IE M2, M",G) , s = 1, 2, 3.

In addition, the data contains 4th grade MCAS scores in English and Math, denoted by MF and MAI.

I treat the 4th grade MCAS score in English and the scores in the Reading Comprehension and Verbal

Reasoning sections of the ISEE as noisy measures of an applicant's English ability, denoted by OE,

M YEgljE (OE, VAIE) k =1,2, 3.

I treat the 4th grade MCAS score in Math and the scores in the Mathematics Achievement and Quantitative

Reasoning sections of the ISEE instead as noisy measures of an applicant's Math ability, denoted by 0 M,

MA/ = ggg y , AIr) k = 1, 2, 3.

The test scores are strongly correlated with each other, but this correlation is far from perfect: some of

the applicants scoring well in one test perform badly in another test. This can be seen from the scatterplots
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and correlation in Figure 1-8 and Table 1.4. Consistent with the latent factor structure specified above, test

scores measuring English ability are more highly correlated with each other than with test scores measuring

Math ability, and vice versa. The only exception to this is 4th grade MCAS score in English that is most

highly correlated with 4th grade MCAS score in Math. There is also a clear time-pattern among test scores

measuring a given ability: the ISEE scores measuring the same ability are more highly correlated with each

other than with the 4th grade MCAS score measuring the same ability.

Let Y (s), s = 0, 1, 2, 3, denote potential outcomes under different enrollment decisions, and let S (z),

z = 0, 1, 2, 3, denote potential enrollment decisions under different exam school assignments. I assume that

the potential outcomes and enrollment decisions are jointly independent of the test scores conditional on

English and Math abilities and a set of covariates, denoted by X. Formally,

({y (s)} o , {S (z)} e)LL M I, X,

where M = (ME, M2, MA3 , M", M2
1 , M3f). The covariates included in X are GPA, application prefer-

ences, application year, race, gender, SES tier as well as indicators for free or reduced price lunch, limited

English proficiency, special education, and being bilingual. I also assume that there is sufficient noise in the

ISEE scores so that conditional on the covariates it is possible to observe an applicant with a given level of

English and Math ability under any exam school assignment. Formally, this common support assumption is

given by

0 < P [Z = z 10, X] < 1, z = 0, 1, 2,3.

Together these two assumptions can be used to identify causal effects of different exam school assignments

on either enrollment or achievement, as discussed in Section 1.2. I make two additional assumptions that

allow me to also identify causal effects of enrollment at a given exam school as opposed to a traditional

Boston public school for the compliers who enroll at the exam school if they receive an offer and enroll at a

traditional Boston public school if they receive no offer. First, I assume that receiving an offer from exam

school s as opposed to no offer induces at least some applicants to enroll at exam school s instead of a

traditional Boston public school. Second, I assume that this is the only way in which receiving an offer from

exam school s as opposed to no offer can affect the enrollment decision of an applicant. 25 Formally, these

first stage and monotonicity assumptions are given by

P [S (s) = s, S (0) = 0 0, X] > 0, s =1, 2, 3

P [S (s) -= s', S (0) = 8" 0 , X] = 0, S' 7 s, s" :? 0.

251 also assume in general that receiving an offer from exam school s can only induce an applicant to attend this school as

opposed to another school. This rules out, for instance, the case in which an applicant is induced to enroll at Latin School as
opposed to Latin Academy by receiving an offer from O'Bryant as opposed to no exam school offer.
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In the estimation I approximate the conditional joint distribution of English and Math ability by a

bivariate normal distribution,

OE X N AOX (0E (7E M

X p70EO (-E 2

To ensure a valid variance-covariance matrix I use the parametrization

[7 2o 0 E0 Al 1i [ LO 1 L11 1
170OA F, A ] [ (72L21 W22 0 W22

I also approximate the conditional distributions of the test scores using normal distributions given by

01 E , X N y X+ AAIE , exp (TYME + 6,QE E 122

M 0, X N (p X + A A_1, exp (YAI + S AIO ) , k = 1, 2,3,

where ptME PAlM 0 and PA 1M = 1 to pin down the location and scale of the abilities as discussed

in Section 1.2.3. Thus, I restrict the conditional expectations of the measurements to depend linearly on

ability and allow for heteroskedasticity in the measurement error with respect to ability. Finally, I restrict

the measurements to be jointly independent conditional on the abilities and covariates.

Let D, (z) = 1 (S (z) = s), s = 0, 1, 2, 3, denote indicators for potential enrollment decisions under

different exam school assignments, and let Y (S (z)) denote potential outcomes under different exam school

assignments. I approximate the conditional expectations of D, (z) and Y (S (z)) using the linear models

E [D, (z) 0, X] = D(z)X + DD(z)OE ± (z)

E [Y (S (z)) 0, X] = a ( X + /y(S(z))-E + MO

where z = 0,1, 2,3.

The identification of the measurement and latent outcome models specified above follows directly from

the nonparametric identification results presented in Sections 1.2 and 1.3. I illustrate this in more detail in

Appendix C by providing moment equations that identify these particular parametric models.

I estimate the parameters of the measurenient model using Maximum Simulated Likelihood (MSL). I use

500 random draws from the conditional joint distribution of 0 given X, folx, to evaluate the integral in the
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conditional joint density of M given X, fNIIx. For a given observation fix is given by

fzvx (m I X; p, A, y,W)
.3

= 11 fMOX (mn 10, X; yA, y, 6) fmm 10,X (mm" 10, X; p, A, -y, 6)
.k=1

x foIx (0 X; w)dO

where the conditional densities fM , ox, JM 1 X, k 1, 2,3, and foIx are as specified above.

I estimate the parameters of the latent outcome models using the Method of Simulated Moments (MSM)

based on the moment equations

S[DY M, X, Z] = a(Z)X + 3 ,(Z) E [E M, X, Z] + !O'(z)E [OM M, X, Z]

E [Y M, X, Z = aY(S(z))X + /y(S(z))[ XE [0M I M, X, Z]

for Z = 0, 1. 2,3. The conditional expectations E [OE I M, X, Z] and E [Om I M, X, Z] are computed using

the MSL estimates of the measurement model and 500 random draws from foIx. The weighting matrix in

the MSM procedure is based on the number of observations in the (M, X, Z) cells. This implies that the

parameters of the latent outcome models can be estimated in practice by running a regression of Ds or Y

on X, E [OE I M, X, Z], and E [OM I M, X, Z] using observations with Z = 0, 1, 2,3.

The standard errors presented below are based on nonparametric 5-step bootstrap using 500 replications

(Davidson and MacKinnon, 1999; Andrews, 2002). For each bootstrap sample I re-estimate the measurement

model using the original estimates as initial values and stop the MSL procedure after five iterations. I then

re-estimate the latent outcome models using these MSL estimates. This provides a computationally attactive

approach for taking into account the uncertainty related to both step of the estimation procedure due to the

slow speed of convergence of the MSL estimation.

1.5 Extrapolation Results

1.5.1 Effects at the Admissions Cutoffs

To benchmark the latent factor model-based estimates, I begin with RD estimates of causal effects of exam

school attendance for marginal applicants at the admissions cutoffs in the sharp samples. Figures 1-6a and

1-6b plot the relationship between the running variables and the probabilities of receiving an offer from and

enrolling at a given exam school in windows of +20 around the admissions cutoffs in the sharp samples.

The blue dots show bin averages in windows of width 1. The black solid lines show fits from local linear

regressions estimated separately to the left and right of the cutoffs using the edge kernel and a bandwidth

computed separately for each exam school using the algorithm by Imbens and Kalyanaraman (2012). Figures
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1-7a and 1-7b show the same plots for average middle school and high school MCAS composite scores.

Table 1.2 reports the first stage, reduced form, and Local Average Treatment Effect estimates correspond-

ing to Figures 1-6 and 1-7. The estimates are based on local linear regressions using the edge kernel and a

bandwidth that is computed separately for each exam school and MCAS outcome using the algorithm by

Imbens and Kalyanaraman (2012).26 The first stage and reduced form models are given by

Ds = ZaFS - FSZS+ 7FSRs, + 6
FSZS x R, + XrrFS +

Y = aRF + ORFZ + -RFRS +6RFZ, x R, + X'?TRF - 6

where D, is an indicator for enrollment at exam school s in the following school year, Y is the outcome of

interest, Z, is an indicator for being at or above the admissions cutoff for exam school s, R, is the distance

from admissions cutoff for exam school s, and X is a vector containing indicators for application years and

application preferences. The first stage and reduced form estimates are given by OFS and ORF, and the

Local Average Treatment Effect estimate is given by the ratio . In practice this ratio can be estimated

using weighted 2-Stage Least Squares (2SLS).

Figure 1-6a confirms the sharpness of exam school offers as functions of the running variables in the sharp

samples discussed in Section 1.4.1: the probability of receiving an offer from a given exam school jump from

0 to 1 at the admissions cutoff. However, as can be seen from Figure 1-6b and the first stage estimates

in Table 1.2, not all applicants receiving an offer from a given exam school choose to enroll there. The

enrollment first stages are nevertheless large. An offer from O'Bryant raises the probability of enrollment at

O'Bryant from 0 to .78 at the admissions cutoff whereas offers from Latin Academy and Latin School raise

the probability of enrollment at these schools from 0 to .95 and .96.

Exam school offers have little effect on the average middle school and high school MCAS composite scores

of the marginal applicants, as can be seen from Figures 1-7a and 1-7b and the reduced form estimates in

Table 1.2. The only statistically significant effect is found for middle school MCAS composite score at the

Latin Academy admissions cutoff: an offer from Latin Academy is estimated to reduce the average score by

.181o-. According to the corresponding Local Average Treatment Effect estimate in Table 1.2, enrolling at

Latin Academy leads to a .191n- reduction in the average score among compliers at the admissions cutoff.

Table 1.3 repeats the estimations separately for applicants whose average 4th grade MCAS scores fall

below and above the within-year median. The first stage estimates show large enrollment effects at the

admissions cutoffs for both lower-achieving and higher-achieving applicants. These effects are similar in

magnitude to the effects estimated for the full sample. The reduced form and Local Average Treatment

Effect estimates for applicants with low average 4th grade MCAS scores are relatively noisy due to small

sample size, but there is some evidence of treatment effect heterogeneity by prior achievement, a point I

return to in Section 1.5.2. The reduced form estimate suggests that an offer from O'Bryant increases average

26
As rioted by Calonico, Cattaneo, and Titiunik (2014), the algorithm by Irnbens and Kalyanaraian (2012) may generate

too large bandwidths. However, my findings are not sensitive to alternative ways of choosing the bandwidths.
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high school MCAS composite score by .204o- at the admissions cutoff among applicants with low average 4th

grade MCAS scores. The corresponding Local Average Treatment Effect estimate suggests that enrolling at

O'Bryant increases the average score among the compliers at the admissions cutoff by .275a-. The reduced

form and Local Average Treatment Effect estimates for applicants with high average 4th grade MCAS scores

are similar to the estimates for the full sample.

It is important to note the incremental nature of the RD estimates reported above. Applicants just below

the O'Bryant admissions cutoff do not receive an offer from any exam school, meaning that the counterfactual

for these applicants is a traditional Boston public school. On the other hand, the vast majority of applicants

just below the Latin Academy admissions cutoff receive an offer from O'Bryant, and the vast majority of

applicants just below the Latin School admissions cutoff receive an offer from Latin Academy. Thus, the

reduced form and Local Average Treatment Effect estimates for Latin Academy and Latin School should be

interpreted as the effect of receiving an offer from and enrolling at a more selective exam school. I return to

this point in Section 1.5.3.

1.5.2 Estimates of the Latent Factor Model

Before investigating effects away from the admissions cutoffs I briefly discuss the main estimates of the

latent factor model. Figure 1-9 shows the underlying marginal distributions of English and Math ability

in the population of exam school applicants. I have constructed these distributions using kernel density

estimates based on simulations from the estimated measurement model. The marginal distributions look

relatively normal which is expected given the joint normality assumption on the conditional distribution of

the abilities given covariates. The mean and standard deviation of English ability are 1.165 and .687. The

mean and standard deviation of Math ability are 1.121 and .831. Figure 1-10 shows a scatterplot of English

and Math abilities. The relationship between the abilities is relatively linear which is expected given the joint

normality assumption on the conditional distribution. The correlation between English and Math ability is

.817.

Table 1.5 reports estimates of the factor loadings on the means and (log) standard deviations of the

measures. As discussed in Section 1.4, I pin down the scales of the abilities by normalizing the factor

loadings on the means of 4th grade MCAS scores to 1. The estimated factor loadings on the means of ISEE

scores are instead slightly above 1. The estimated factor loadings on the (log) standard deviations of ISEE

scores in Reading Comprehension and Verbal Reasoning and 4th grade MCAS score in Math suggest that

the variances of these measures are increasing in ability. The estimated factor loadings on the (log) standard

deviations of ISEE scores in Mathematical Achievement and Quantitative Reasoning and 4th grade MCAS

score in English are small and statistically insignificant.

Table 1.6 reports estimates of the factor loadings on enrollment (First Stage) and middle school and high

school MCAS composite scores (Reduced Form) under a given exam school assignment. For no exam school

offer in Column (1) the enrollment outcome is enrollment at a traditional Boston public school. For an offer
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from a given exam school in Columns (2), (3), and (4) the outcome is enrollment at the exam school in

question. The estimated factor loadings on enrollment are largely negative, suggesting that applicants with

higher ability are less likely to attend a given exam school if they receive an offer (or a traditional Boston

public school if they receive no offer). However, the opposite is true for Latin School.

Unlike for enrollment, the estimated factor loadings on middle school and high school MCAS composite

scores are positive, large in magnitude, and higly statistically significant. This is not surprising: applicants

with higher English and Math abilities perform, on average, better in middle school and high school MCAS

exams in English and Math irrespective of their exam school assignment. A more interesting finding arising

from these estimates is that the factor loadings tend to be larger in magnitude under no exam school offer

than under an offer from any given exam school. This is especially true for high school MCAS composite

scores. This suggest that applicants with lower English and Math abilities benefit more from access to exam

schools. I return to this point below.

1.5.3 Effects Away from the Admissions Cutoffs

The estimates of the latent factor model can be used to construct empirical counterparts of Figures 1-1 and

1-5 that illustrate the extrapolation problem in sharp RD and the latent factor-based approach to solving this

problem. Figure 1-11 plots the latent factor model-based fits and extrapolations of the potential outcomes

in the RD experiments for the sharp samples over the full supports of the running variables. The blue dots

show bin averages in windows of width 1. The black solid lines show the latent factor model-based fits, and

the dashed red lines show the latent factor model-based extrapolations. I smooth the fits and extrapolations

with a local linear regression using the edge kernel and a rule of thumb bandwidth (Fan and Gijbels, 1996).

The fits and extrapolations are defined as

E [Y (S (z"")) I R, = r], s = 1, 2, 3

E [Y (S (z'f)) IRS =,r] , s =1,2,3

where the counterfactual assignment z'f is an offer from exam school s for applicants below the admissions

cutoff and an offer from the next most selective exam school for the applicants above the admissions cutoff

(no exam school offer in the case of O'Bryant).

Figure 1-Ila plots the fits and extrapolations for middle school MCAS composite scores. For O'Bryant the

fits and extrapolations lie on top of each other, suggesting that receiving an offer from O'Bryant has no effect

on the average score of either marginal applicants at the admissions cutoff or inframarginal applicants away

from the admissions cutoff. Similarly, the extrapolations for Latin Academy reveal that the negative effect

of receiving an offer from Latin Academy found for marginal applicants at the admissions cutoff in Section

1.5.1 holds also for inframarginal applicants away from the admissions cutoff. For Latin School the picture

arising is markedly different. The extrapolations suggest that receiving an offer from Latin School has no
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effect on the average score of inframarginal applicants above the admissions cutoff. Inframarginal applicants

below the admissions cutoff would instead experience, on average, achievement gains from receiving an offer

from Latin School.

Figure 1-11b plots the fits and extrapolations for high school MCAS composite scores. For all three exam

schools the extrapolations suggest little effect from receiving an offer for inframarginal applicants above the

admissions cutoffs, with the exception of applicants far above the O'Bryant admissions cutoff for which the

effect is negative. For inframarginal applicants below the admissions cutoffs the picture arising is instead

markedly different. For all three exam schools the extrapolations suggest a positive effect from receiving an

offer for applicants failing to gain access to the exam school in question.

Table 1.7 reports estimates of the extrapolated first stage and reduced form effects of an offer from a

given exam school on enrollment and middle school and high school MCAS composite scores. In addition,

the table reports estimates of the extrapolated Local Average Treatment Effects of enrolling at a given exam

school on middle school and high school MCAS composite scores for the compliers. The estimates are for

the full population of applicants in the sharp samples. The estimates for middle school MCAS composite

scores show no effect of an offer from or enrolling at O'Bryant. Offer from Latin Academy and Latin school

are instead estimated to reduce the average score by .229c and .214a. The corresponding Local Average

Treatment Effect estimates are 0.236a for Latin Academy and .0226o for Latin School. The estimates for

high school MCAS composite scores show large positive effects for all three exam schools. The reduced form

and Local Average Treatment Effect estimates are .252o and .293o for O'Bryant, .279, and .290c for Latin

Academy, and .199c and .209, for Latin School.

Table 1.8 reports the same estimates separately for applicants below and above the admissions cutoffs.

The first stage estimates reveal that the effects of an offer from a given exam school on enrollment at this

school are larger among inframarginal applicants below the admissions cutoffs than among inframarginal

applicants above the admissions cutoffs. The reduced form and Local Average Treatment Effect estimates

for middle school MCAS composite scores show similar negative effects of an offer from and enrolling at

Latin Academy as in Table 1.7 both below and above the admissions cutoff. The negative Latin School

effect reported above is instead entirely driven by inframarginal applicants below the admissions cutoff.

The reduced form and Local Average Treatment Effect estimates for high school MCAS composite scores

confirm the above findings of large positive effects on the average score of inframarginal applicants below

the admissions cutoffs. There is instead little evidence of effects for inframarginal applicants above the

admissions cutoffs.

Similar to the RD estimates at the admissions cutoffs discussed in Section 1.5.1, the above estimates

should be interpreted as incremental effects of receiving an offer form or enrolling at a more selective exam

school. Thus, these estimates leave unanswered the question of how receiving an offer from or enrolling

at a given exam school versus a traditional Boston public school affects achievement. Table 1.9 addresses

this question by reporting the estimates of the extrapolated first stage and reduced form effects of receiving
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an offer from a given exam school versus no offer from any exam school on enrollment at the exam school

in question on middle school and high school MCAS composite scores. In addition, the table reports the

extrapolated Local Average Treatment Effect estimates of the effect of enrolling at a given exam school

versus a traditional Boston public school on middle school and high school MCAS composite scores for the

compliers in the full population of applicants.

According to the estimates for middle school MCAS composite scores, offers from Latin Academy and

Latin School versus no exam school offer reduce the average score by .275o and .319a. The corresponding

Local Average Treatment Effects of enrolling at a given exam school versus a traditional Boston public

school are -. 288u for Latin Academy, and -. 330c for Latin School. There is instead no evidence of effects

for O'Bryant. The estimates for high school MCAS composite scores are small in magnitude and statistically

insignificant.

Table 1.10 reports the same estimates separately for applicant who receive no exam school offer and

for applicants who receive an exam school offer. The estimates for middle school MCAS composite scores

show similar negative effects of an offer from and enrolling at Latin Academy and Latin School as in Table

1.9 among both applicant groups. The estimates for high school MCAS scores reveal instead substantial

heterogeneity in the treatment effects. The estimates suggest that receiving an offer from a given exam school

versus no offer from any exam school has large positive effects among lower-achieving applicants failing to

gain access to the exam schools. The reduced from effects are .334o for O'Bryant, .429u for Latin Academy,

and .428a for Latin School. The corresponding Local Average Treatment Effects of enrolling at a given

exam school versus a traditional Boston public school are .376, for O'Bryant, .435c for Latin Academy, and

.448c for Latin School. The estimates for higher-achieving applicants gaining access to the exam schools

are instead negative and large in magnitude. The reduced from effects are -. 268o for O'Bryant, -. 300o

for Latin Academy, and -. 348o for Latin School. The corresponding Local Average Treatment Effects are

-. 353o for O'Bryant, -. 325o for Latin Academy, and -. 353o for Latin School.

1.5.4 Placebo Experiments

A natural concern regarding the results in the previous section is that they are just an artifact of extrapola-

tions away from the admissions cutoffs. To address this concern, I study the performance of the model using

a set of placebo experiments. I start by dividing the applicants receiving a given exam school assignment

z = 0, 1, 2, 3 in half based on the within-year median of the running variable distribution for this popula-

tion.2 7 I re-estimate the latent outcome models to the left and right of the placebo cutoffs and use the

resulting estimates to extrapolate away from these cutoffs. All of the applicants both to the left and to the

right of the cutoffs in these placebo RD experiments receive the same exam school assignment. Thus, the

extrapolations should show no effects if the identifying assumptions are valid and the empirical specifications

provide reasonable approximations of the underlying data generating process.

2 7 For applicant receiving no offer I use the average of their exam school-specific running variables.
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Figure 1-12 plots the latent factor model-based fits and extrapolations in the placebo RD experiments. 2 8

Figure 1-12a plots the estimates for middle school MCAS composite scores, and Figure 1-12b plots the

estimates for high school MCAS composite scores. The blue dots show bin averages in windows of width

1. The black solid lines show the latent factor model-based fits to the data. The dashed red lines show the

latent factor model-based extrapolations. I smooth the fits and extrapolations with a local linear regression

using the edge kernel and a rule of thumb bandwidth (Fan and Gijbels, 1996). For both outcomes and for

each exam school assignment the fits and extrapolations lie on top of each other, thus providing evidence

supporting the identifying assumptions and empirical specifications. The only notable exceptions to this can

be seen for high school MCAS composite scores far below the placebo cutoff for applicants receiving no offer

from any exam school and far above the placebo cutoff for applicants receiving an offer from O'Bryant.

Table 1.11 reports estimates of the placebo reduced form effects on middle school and high school MCAS

composite scores. The estimates are shown for all applicants as well as separately for applicants below and

above the placebo cutoffs. The estimated effects are small in magnitude and statistically insignificant, thus

providing further support for the validity of the results presented in Section 1.5.3.

1.6 Counterfactual Simulations

1.6.1 Description of the Admissions Reforms

Estimates of treatment effects away from the exam school admissions cutoffs are useful for predicting effects of

reforms that change the exam school assignments of inframarginal applicants. A highly contentious example

of this is the use of affirmative action in exam school admissions. I use the estimates of the latent factor

model to predict how two particular affirmative action reforms would affect the achievement of exam school

applicants.

The first reform reintroduces in the admissions process minority preferences that were in place in the

Boston exam school admissions in 1975-1998. In this counterfactual admissions process 65% of the exam

school seats are assigned purely based on achievement. The remaining 35% of the exam school seats are

reserved for black and Hispanic applicants and assigned based on achievement. The assignment of seats

within each group is based on the DA algorithm discussed in Section 1.4.1.

The second reform introduces in the admissions process socioeconomic preferences that have been in

place in the Chicago exam school admissions since 2010. In this counterfactual admissions process 30% of

the exam school seats are assigned purely based on achievement. The remaining 70% of the exam school

seats are divided equally across four sosioeconomic tiers and assigned within them based on achievement.

The assignment of the seats within each group is again based on the DA algorithm.

I generate the socioeconomic tiers by computing for each Census tract in Boston a socioeconomic index

281 transform the running variables into percentile ranks within each year in the placebo RD experiments and re-centered
them to be 0 at the placebo cutoff for expositional purposes.
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that takes into account the following five characteristics: (1) median family income, (2) percent of households

occcupied by the owner, (3) percent of families headed by a single parent, (4) percent of households where a

language other than English is spoken, and (5) an educational attainment score. 29 The socioeconomic index

for a given Census tract is given by the sum of its percentile ranks in each five characteristics among the

Census tracts in Boston (for single-parent and non-English speaking households 1 minus the percentile rank

is used). I assign each BPS student a socioeconomic index based on the Census tract they live in and divide

the students into socioecomic tiers based on the quartiles of the socioeconomic index distribution in the BPS

population within each year.

To study the effects of the two reforms I reassign the exam school offers based on the counterfactual

admissions processes, considering only applicants in the estimation sample described in Section 1.4.2. I use

as the capacity of a given exam school in a given year the number of offers it made to the applicants in the

estimation sample in that year. The latent factor model then allows me to predict average middle school

and high school MCAS composite scores based on the reassigned exam school offers. 30

An important feature of both of the reforms is that they cause substantial changes to the admissions

cutoffs faced by the exam school applicants. This means that if there is considerable treatment effect

heterogeneity in terms of the running variables, predictions of the effects of the reforms based on treatment

effects at admissions cutoffs are likely to be misleading. Based on the results in Section 1.5, this is the

case for Boston exam schools. Thus, it is a first-order issue to take this heterogeneity into account when

predicting the effects of the reforms.

As with all counterfactuals, there are other dimensions that may chance as a result of the reforms.

First, the reforms potentially affect the composition of the pool of exam school applicants as some student

face a decrease and some students an increase in their ex ante expected probability of being admitted to

a given exam school. 3 1 Second, the reforms will lead to changes in the composition of applicants who are

admitted and consequently enroll at the exam schools. These changes may affect the sorting of teachers

across schools (Jackson, 2009) and the way teaching is targeted (Duflo, Dupas, and Kremer, 2011) as well

as affect achievement directly through peer effects (Epple and Romano, 2011; Sacerdote, 2011).

However, the above discussion should riot be seen as a concern regarding the latent factor-based extrapo-

lation approach per se. It is possible to address the above caveats by building a richer model that incorporates

these channels into the latent factor framework. For instance, one can build a model of the exam school

application behavior of BPS students along the lines of the work by Walters (2013) on Boston charter schools

and incorporate this into the latent factor framework. I leave this and other potential extensions for future

29 The educational attainment score is calculated based on the educational attainment distribution among individuals over

the age of 25: educational attainment score = 0.2 x (% less than high school diploma) + 0.4 x (% high school diploma) + 0.6 x

(% some college) + 0.8 x (% bachelors degree) + 1.0 x (% advanced degree).
3 OThis exercise is closely related to the literatute on evaluating the effects of reallocations on the distribution of outcomes.

See, for instance, Graham (2011), Graham, Imbens, and Ridder (2010), and Graham, Iinbens, and Ridder (2013).
31For instance, Long (2004) and Andrews, Ranchhod, and Sathy (2010) find the college application behavior of high school

students in California and Texas to be resposive to affirmative action and other targeted recruiting programs. However, the

evidence on this is somewhat mixed (Card and Krueger, 2005; Antonovics and Backes, 2013).
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research as they are outside the scope of this paper.

1.6.2 Simulation Results

The introduction of either minority or socioeconomic preferences substantially affects exam school assigments:

27 - 35% of applicants are affected by the reforms. This can be seen from Table 1.12, which reports the

actual and counterfactual exam school assignments under the two reforms. This is also evident in Table 1.13

that reports the admissions cutoffs faced by different applicant groups under the counterfactual admissions

process. The counterfactual admissions cutoffs are expressed as distances from the actual admissions cutoffs.

Minority applicants would face substantially lower admissions cutoffs under minority preferences than under

the current admissions process whereas the opposite is true for non-minority applicants. Similarly, applicants

from lower socioeconomic tiers would face lower admissions cutoffs under socioeconomic preferences than

under the current admissions process.

Table 1.14 reports descriptive statistics for the exam school applicants based on their counterfactual

assignments under minority and socioeconomic preferences. The most notable compositional changes caused

by the two reforms can be seen among applicants receiving an offer from Latin School. Under both counter-

factual admissions processes, Latin School admits students with considerably lower average 4th grade MCAS

scores in English and Math. Similarly, the share of blacks and Hispanics among the admitted students to

Latin School would more than double under minority preferences and close to double under socioeconomic

preferences. Furthermore, the average 4th grade MCAS scores in Math and English are higher and the

shares of blacks and Hispanics lower among the applicants receiving no offer from any exam school under

both counterfactual reforms. Changes in the composition of applicants receiving offers from O'Bryant and

Latin Academy are instead less marked.

I use the estimated latent factor model to predict potential outcomes for the exam school applicants

under the counterfactual admissions processes. These predictions can be used to evaluate whether the

changes in exam school assignments caused by the two reforms translate into effects on achievement. To

answer this question, Table 1.15 reports Average Reassignment Effects (ARE) of the reforms on middle

school and high school MCAS composite scores. The Average Reassignment Effect is given by the difference in

average potential outcomes among the exam school applicants under the counterfactual and actual admissions

processes:

3

E [Ycf - yact] = P [Zcf = z] E [Y (S (z)) | Z -f = z]
z=O

3

- p [Zacg = z] E [Y (S (z)) | Zact = z]
S8=0

where Zct and Zc'f are an applicant's actual and counterfactual exam school assignments. The table

reports estimates both for the full population of applicants and for applicants whose exam school assignment
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is affected by the reforms.

The introduction of minority preferences would have no effect on the average middle school MCAS

composite score among exam school applicants. However, this masks substantial heterogeneity in the effects

across minority and non-minority applicants. The estimates suggest that the reform would reduce the

average score among minority applicants by .028, and increase it among non-minority applicants by .043u.

The estimated effects are larger among the affected applicants: -. 084a for minority applicants and .113o for

non-minority applicants. The estimates for high school MCAS composite scores suggest that the introduction

of minority preferences would increase the average score by .023a among all applicants and by .062o among

affected applicants. There is less marked heterogeneity in these effects across minority and non-minority

applicants, but the effects are somewhat larger for minority applicants.

The introduction of socioeconomic preferences would have no effect on the average middle school MCAS

composite score among exam school applicants. However, there is considerable heterogeneity in the effects

across applicants from different socioeconomic tiers. The estimates suggest that the reform would reduce

the average score among applicants from the lowest socioeconomic tier by .032a and increase the average

score among applicants from the highest socioeconomic tier by .041o. The estimated effects are larger among

the affected applicants: -. 092o for the lowest socioeconomic tier and .133o for the highest socioeconomic

tier. The estimates for high school MCAS composite scores suggest that the introduction of socioeconomic

preferences would increase the average score by .015u among all applicants and by .050a among affected

applicants. There is again considerable heterogeneity in the effects across applicants from different socioe-

conomic tiers. The reform would increase the average score by .068a among applicants from the lowest

socioeconomic tier and by .054o among applicants from the highest socioeconomic tier.

There are two mechanisms at work behind these estimates. First, the reforms lower the admissions

cutoffs faced by minority applicants and applicants from lower socioeconomic tiers. This leads to more

lower-achieving applicants, who experience achievement gains from exam school attendence, to gain access

to the exam schools. Second, the reforms increase the admissions cutoff faced by non-minority applicants

and applicants from higher socioeconomic tiers. This leads to some of the higher-achieving applicants, who

experience achievement losses from exam school attendance, to lose their exam school seats.

1.7 Conclusions

RD design allows for nonparametric identification and estimation of treatment effects for individuals at

the cutoff value determining treatment assignment. However, many policies of interest change treatment

assignment of individuals away from the cutoff, making knowledge of treatment effects for these individuals

of substantial interest. A highly contentious example of this is affirimative action in selective schools that

affects admissions cutoffs faced by different applicant groups.

The contributions of this paper are two-fold. First, I develop a new latent factor-based approach to the

45



identification and estimation of treatment effects away from the cutoff in RD. The approach relies on the

assumption that sources of omitted variables bias in an RD design can be modeled using unobserved latent

factors. My main result is nonparametric identification of treatment effects for all values of the running

variable based on the availability of multiple noisy measures of the latent factors. Second, I use the latent

factor framework to estimate causal effects of Boston exam school attendance for the full population of

applicants and to simulate effects of introducing either minority or socioeconomic preferences in exam school

admissions.

My findings highlight the local nature of RD estimates that show little evidence of causal effects for

marginal applicants at admissions cutoffs (Abdulkadiroglu, Angrist, and Pathak, 2014). The estimates of the

latent factor model suggest that achievement gains from exam school attendance are larger among applicants

with lower baseline measures of ability. As a result, lower-achieving applicants who currently fail to gain

admission to Boston exam schools would experience substantial achievement gains from attending these

schools. The simulations predict that the introduction of either minority or socioeconomic preferences in

exam school admissions boosts average achievement among applicants. This is largely driven by achievement

gains experienced by lower-achieving applicants who gain access to exam schools as a result of the policy

change. These findings are of significant policy-relevance given ongoing discussion about the use of affirmative

action in exam school admissions.

I focus in this paper on the heterogeneity in causal effects of exam school attendance based on the running

variables used in the admissions process. This is a first-order concern when predicting effects of admissions

reforms that widely change the exam school assignments of inframarginal applicants. However, as with all

counterfactuals, there are other dimension that may change as a result of these reforms. First, affirmative

action might lead to changes in the application behavior of students (Long, 2004; Andrews, Ranchhod, and

Sathy, 2010). Second, affirmative action causes changes in student composition that may affect the sorting of

teachers across schools (Jackson, 2009) as well as the way teaching is targeted (Duflo, Dupas, and Kremer,

2011). Finally, the changes in student composition may affect achievement directly through peer effects

(Epple and Romano, 2011; Sacerdote, 2011). It is possible to model these channels in the latent factor

framework, but this is left for future research.

Boston exam schools, as well as other selective schools, are a natural application for latent factor-based

RD extrapolation as admissions are based on noisy measures of applicants' latent abilities. However, the

approach is likely to prove useful also in other educational settings, such as gifted and talented programs

(Bui, Craig, and Imberman, forthcoming) and remedial education (Jacob and Lefgren, 2004; Matsudaira,

2008). Moreover, the approach is likely to prove useful in health settings where treatment assignment is

based on noisy measures of individuals' latent health conditions. Such settings include, for instance, the

use of birth weight to assign additional medical care for newborns (Almond, Doyle, Kowalski, and Williams,

2010; Bharadwaj, Loken, and Neilson, 2013). As illustrated by the findings for Boston exam schools, local

effects identified by RD do not necessarily represent the effects of policy interest. Latent factor-based RD
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extrapolation provides a framework for investigating external validity in these and other RD designs.
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Public School Students and Exam School Applicants

Exam School
All

BPS

(1)
Female 0.489

Black 0.516

Hispanic 0.265
FRPL 0.755
LEP 0.116
Bilingual 0.315
SPED 0.227
English 4 0.000
Math 4 0.000
N 21,094

Notes: This table reports

grade students in Boston

All

Applicants

(2)

0.545

0.399

0.189

0.749

0.073

0.387

0.043

0.749

0.776

5,179
descriptive st

No

Offer

(3)
0.516

0.523

0.223

0.822

0.109

0.353

0.073
0.251

0.206

2,791

O'Bryant

(4)
0.579

0.396

0.196
0.788

0.064

0.420

0.009

0.870

0.870

755
atistics for 2000-2004. The All

Assignment
Latin

Academy

(5)
0.581

0.259

0.180

0.716

0.033

0.451

0.006

1.212

1.275

790
BPS column

Latin

School

(6)
0.577

0.123

0.081
0.499

0.004

0.412

0.009

1.858
2.114

843

includes all 6th
Public Schools in who do not have missing covariate or 4th grade MCAS

information. The All Applicants column includes the subset of students who apply to Boston exam
schools. The Assignment columns include the subsets of applicants who receive an offer from a given
exam school.
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Table 1.2: RD Estimates for the First Stage, Reduced Form and Local Average Treatment Effects at the

Admissions Cutoffs

Latin Latin

O'Bryant Academy School

(1) (2) (3)

Panel A: Middle School MCAS
First 0.775*** 0.949*** 0.962***

Stage (0.031) (0.017) (0.017)

Reduced -0.084 -0.181*** -0.104

Form (0.060) (0.057) (0.079)

LATE -0.108 -0.191*** -0.108

(0.078) (0.060) (0.082)

N 1,934 2,328 1,008

Panel B: High School MCAS

First 0.781*** 0.955*** 0.964***

Stage (0.034) (0.018) (0.018)

Reduced 0.047 -0.021 -0.086

Form (0.055) (0.044) (0.052)

LATE 0.060 -0.022 -0.089

(0.070) (0.046) (0.054)

N 1,475 1,999 907

Notes: This table reports RD estimates of the effect

of an exam school offer on exam school enrollment

(First Stage), the effect of an exam school offer on

MCAS scores (Reduced Form), and the effects of

exam school enrollment on MCAS scores (LATE).

Heteroskedasticity-robust standard errors shown in

parentheses.
* significant at 10%; ** significant at 5%;

significant at 1%
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Table 1.3: RD Estimates for the First Stage, Reduced Form and Local Average Treatment Effects at the
Admissions Cutoffs: Heterogeneity by Average 4th Grade MCAS Scores

Low 4th Grade MCAS Composite High 4th Grade MCAS Composite
Latin Latin Latin Latin

O'Bryant Academy School O'Bryant Academy School
(1) (2) (3) (4) (5) (6)

Panel A: Middle School MCAS
First 0.734*** 0.917*** 1.000*** 0.780*** 0.956*** 0.961***
Stage (0.072) (0.056) (0.000) (0.033) (0.017) (0.017)

Reduced 0.059 0.130 -0.095 -0.122* -0.200*** -0.084
Form (0.127) (0.199) (0.214) (0.065) (0.056) (0.082)

LATE 0.080 0.142 -0.095 -0.157* -0.209*** -0.088
(0.173) (0.215) (0.214) (0.083) (0.059) (0.085)

N 420 246 681 1,348 1,802 921

Panel B: High School MCAS
First 0.742*** 0.944*** 1.000*** 0.797*** 0.942*** 0.964***
Stage (0.074) (0.055) (0.000) (0.033) (0.022) (0.017)

Reduced 0.204** -0.029 -0.272 0.017 -0.029 -0.093*
Form (0.099) (0.141) (0.186) (0.054) (0.052) (0.053)

LATE 0.275** -0.031 -0.272 0.021 -0.030 -0.097*
(0.136) (0.150) (0.186) (0.068) (0.055) (0.055)

N 531 567 436 1,129 974 909

Notes: This table reports RD estimates of the effect of an exam school offer on exam school

enrollment (First Stage), the effect of an exam school offer on MCAS scores (Reduced

Form), and the effects of exam school enrollment on MCAS scores (LATE). The estimates

are shown separately for applicants whose average 4th grade MCAS scores fall below and

above the within-year median. Heteroskedasticity-robust standard errors shown in

parentheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.4: Correlations between the ISEE Scores and 4th Grade MCAS Scores

ISEE MCAS
Reading Verbal Math Quantitative English 4 Math 4

(1) (2) (3) (4) (5) (6)
Panel A: ISEE

Reading 1 0.735 0.631 0.621 0.670 0.581
Verbal 0.735 1 0.619 0.617 0.655 0.587
Math 0.631 0.619 1 0.845 0.598 0.740
Quantitative 0.621 0.617 0.845 1 0.570 0.718

Panel B: MCAS
English 4 0.670 0.655 0.598 0.570 1 0.713
Math 4 0.581 0.587 0.740 0.718 0.713 1.000

N 5,179
Notes: This table reports correlations between the ISEE scores and 4th grade MCAS scores.

Table 1.5: Factor Loadings on the
Scores

Means and (Log) Standard Deviations of the ISEE and 4th Grade MCAS

ISEE MCAS
Reading Verbal Math Quantitative English 4 Math 4

(1) (2) (3) (4) (5) (6)
Panel A: Factor Loading on Mean

01. 160*** 1.180*** 1
(0.029) (0.032)

Om 1.135*** 1.119*** 1
(0.025) (0.024)

Panel B: Factor Loading on (Log) Standard Deviation

oE 0.081*** 0.152*** 0.016
(0.023) (0.015) (0.016)

Om 0.019 -0.013 0.124***

(0.020) (0.016) (0.014)

N 5,179
Notes: This table reports the estimated factor loadings on the means and (log) standard deviations of

the ISEE and 4th grade MCAS scores. Standard errors based on nonparametric 5-step boostrap shown

in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.6: Factor Loadings on Enrollment and MCAS Scores Under a Given Exam School Assignment

No Latin Latin
Offer O'Bryant Academy School

(1) (2) (3) (4)
Panel A: Middle School MCAS

First Stage

OE

Reduced For

OE

N

First Stage

OEd

Reduced For

-0.001

(0.007)
-0.008

(0.006)
n

0.570***

(0.052)
0.633***

(0.050)

2,490

-0.001

(0.011)
-0.012

(0.008)

0.446***

(0.062)
0.604***

(0.056)

-0.073

(0.069)
-0.035

(0.059)

0.476***

(0.087)
0.601***

(0.067)

-0.107**

(0.050)
0.011

(0.031)

0.190**

(0.089)
0.742***

(0.067)

0.016

(0.011)
0.023

(0.015)

0.439***

(0.063)
0.464***

(0.063)

690 728 793

Panel B: High School MCAS

-0.025

(0.076)
-0.059

(0.061)

0.282***

(0.067)
0.346***

(0.070)

-0.102*

(0.053)
0.012

(0.030)

0.217*

(0.066)
0.267***

(0.057)

0.003

(0.009)
0.027**

(0.012)

0.239***

(0.046)
0.158***

(0.044)

N 1,777 563 625 793

Notes: This table reports the estimated factor loadings on

enrollment (First Stage) and MCAS scores (Reduced Form)

under a given exam school assignment. First Stage refers to

enrollment at a traditional Boston public school in the No

Offer column and enrollment at a given exam school in the

other columns. Standard errors based on nonparametric 5-step

boostrap shown in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.7: Extrapolated First Stage, Reduced Form, and Local Average Treatment Effects in the Exam

School-Specific RD Experiments

Latin Latin

O'Bryant Academy School

(1) (2) (3)

Panel A: Middle School MCAS

First 0.869*** 0.971*** 0.950***

Stage (0.033) (0.013) (0.017)

Reduced -0.047 -0.229** -0.214***

Form (0.093) (0.100) (0.080)

LATE -0.054 -0.236** -0.226***

(0.108) (0.103) (0.084)

N 3,029 3,641 4,271

Panel B: High School MCAS

First 0.858*** 0.962*** 0.950***

Stage (0.038) (0.021) (0.018)

Reduced 0.252*** 0.279*** 0.199***

Form (0.068) (0.075) (0.061)

LATE 0.293*** 0.290*** 0.209***

(0.081) (0.079) (0.064)

N 2,240 2,760 3,340

Notes: This table reports latent factor model based-

estimates of the effect of an exam school offer on

exam school enrollment (First Stage), the effect of

an exam school offer on MCAS scores (Reduced

Form), and the effects of exam school enrollment

on MCAS scores (LATE) in the RD experiments.

Standard errors based on nonparametric 5-step

boostrap shown in paretheses.

* significant at 10%, ** significant at 5%, **

significant at 1%
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Table 1.8: Extrapolated First Stage, Reduced Form, and Local Average Treatment Effects in the Exam
School-Specific RD Experiments: Heterogeneity by the Running Variables

Below Admissions Cutoff Above Admissions Cutoff
Latin Latin Latin Latin

O'Bryant Academy School O'Bryant Academy School
(1) (2) (3) (4) (5) (6)

Panel A: Middle School MCAS
First 0.904*** 0.992*** 0.960*** 0.749*** 0.891*** 0.906***
Stage (0.041) (0.015) (0.020) (0.016) (0.018) (0.031)

Reduced -0.050 -0.234* -0.245** -0.038 -0.211*** -0.080
Form (0.118) (0.123) (0.097) (0.034) (0.061) (0.076)

LATE -0.055 -0.236* -0.255** -0.051 -0.237*** -0.088
(0.132) (0.124) (0.101) (0.045) (0.069) (0.085)

N 2,339 2,913 3,478 690 728 793

Panel B: High School MCAS
First 0.892*** 0.984*** 0.959*** 0.758*** 0.885*** 0.920***
Stage (0.050) (0.027) (0.021) (0.017) (0.021) (0.029)

Reduced 0.343*** 0.362*** 0.281*** -0.021 -0.005 -0.091*
Form (0.089) (0.092) (0.075) (0.034) (0.046) (0.054)

LATE 0.385*** 0.367*** 0.293*** -0.028 -0.006 -0.099*
(0.102) (0.097) (0.079) (0.045) (0.053) (0.059)

N 1,677 2,135 2,601 563 625 739

Notes: This table reports latent factor model based-estimates of the effect of an exam school
offer on exam school enrollment (First Stage), the effect of an exam school offer on MCAS
scores (Reduced Form), and the effects of exam school enrollment on MCAS scores (LATE)
in the RD experiments. The estimates are shown separately for applicants whose running
variables fall below and above the admissions cutoffs. Standard errors based on
nonparametric 5-step boostrap shown in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.9: Extrapolated First Stage, Reduced Form, and Local Average Treatment Effects for Comparisons

between a Given Exam School and Traditional Boston Public Schools

O'Bryant

(1)
Panel A:

0.767***

(0.017)

-0.059
(0.048)

-0.077
(0.063)

Latin Latin

Academy School

(2) (3)

Middle School MCAS

0.956*** 0.967***

(0.009) (0.016)

-0.275*** -0.319***

(0.074) (0.079)

-0.288*** -0.330***

(0.078) (0.082)

4,701

First

Stage

Reduced

Form

LATE

N

First

Stage

Reduced

Form

LATE

N

High School

0.948***

(0.013)

0.049

(0.058)

0.052
(0.062)

MCAS

0.968***

(0.016)

0.024

(0.064)

0.025

(0.066)

3,704

Notes: This table reports latent factor model based-

estimates of the effect of receiving an offer from a

given exam school versus no offer at all on

enrollment at this exam school (First Stage), the

effect of receiving an offer from a given exam

school versus no offer at all on MCAS scores

(Reduced Form), and the effect of enrollment at this

exam school versus a traditional Boston public

school on MCAS scores (LATE). Standard errors

based on nonparametric 5-step boostrap shown in

paretheses.

* significant at 10%, ** significant at 5%,

significant at 1%
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Table 1.10: Extrapolated First Stage, Reduced Form, and Local Average Treatment Effects for Comparisons
between a Given Exam School and Traditional Boston Public Schools: Heterogeneity by Exam School Offer
Status

No Exam School Offer Exam School Offer

Latin Latin Latin Latin

O'Bryant Academy School O'Bryant Academy School

(1) (2) (3) (4) (5) (6)
Panel A: Middle School MCAS

First 0.901*** 0.994*** 0.958*** 0.749*** 0.927*** 0.986***

Stage (0.040) (0.016) (0.024) (0.016) (0.010) (0.005)

Reduced -0.051 -0.246* -0.279** -0.069 -0.307*** -0.363***
Form (0.117) (0.138) (0.117) (0.074) (0.048) (0.051)

LATE -0.057 -0.248* -0.292** -0.092 -0.332*** -0.368***

(0.131) (0.140) (0.122) (0.099) (0.052) (0.052)

N 2,490 2,211

Panel B: High School MCAS

First 0.887*** 0.987*** 0.955*** 0.758*** 0.925*** 0.987***

Stage (0.049) (0.030) (0.026) (0.017) (0.010) (0.005)

Reduced 0.334*** 0.429*** 0.428*** -0.268*** -0.300*** -0.348***

Form (0.088) (0.105) (0.094) (0.066) (0.048) (0.052)

LATE 0.376*** 0.435*** 0.448*** -0.353*** -0.325*** -0.353***
(0.102) (0.110) (0.098) (0.087) (0.053) (0.053)

N 1,777 1,927

Notes: This table reports latent factor model based-estimates of the effect of receiving an

offer from a given exam school versus no offer at all on enrollment at this exam school (First

Stage), the effect of receiving an offer from a given exam school versus no offer at all on

MCAS scores (Reduced Form), and the effect of enrollment at this exam school versus a

traditional Boston public school on MCAS scores (LATE). The estimates are shown

separately for applicants who do not receive an exam school offer and for applicants who

receive an exam school offer. Standard errors based on nonparametric 5-step boostrap

shown in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.11: Extrapolated Reduced Form Effects in Placebo RD Experiments

No Latin Latin

Offer O'Bryant Academy School

(1) (2) (3) (4)

Middle

School

MCAS

High

School

MCAS

0.002

(0.063)

2,490

-0.057
(0.067)

1,777

Panel A: All

-0.000
(0.089)

690

0.080
(0.071)

563

Applicants

0.042

(0.071)
728

-0.041

(0.058)
625

-0.023

(0.072)
793

-0.008

(0.051)

793

Panel B: Below

-0.081 0.015
(0.099) (0.070)

1,244 344

-0.133 0.027

(0.105) (0.064)

887 280

Panel C: Above

0.085 -0.015

(0.053) (0.131)

1,246 346

0.020 0.133

(0.059) (0.099)

890 283

Placebo Cutoff

0.034 -0.034

(0.057) (0.065)
362 395

-0.028 0.027

(0.057) (0.049)

311 368

Placebo Cutoff

0.050 -0.013

(0.125) (0.112)

366 395

-0.054 -0.044

(0.091) (0.082)

314 371

Notes: This table reports latent factor model-based estimates of

the effects of placebo offers on MCAS scores. The estimates

are shown for all applicants and separately for applicants whose

running variables fall below and above the placebo admissions

cutoffs. Standard errors based on nonparametric 5-step

boostrap shown in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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Table 1.12: Actual and Counterfactual Assignments under Minority and Socioeconomic Preferences

Actual Assignment

No Latin Latin

Counterfactual Offer O'Bryant Academy School

Assignment (1) (2) (3) (4)

Panel A: Minority Preferences

No Offer 2418 221 113 39
O'Bryant 280 129 133 213
Latin Academy 88 389 268 45

Latin School 5 16 276 546

Panel B: Socioeconomic Preferences

No Offer 2579 159 39 14

O'Bryant 203 319 146 87
Latin Academy 9 106 403 272
Latin School 0 171 202 470

Notes: This table reports the actual assignments and the

counterfactual assignments under minority and socioeconomic

preferences in the exam school admissions.

Table 1.13: Counterfactual Admissions Cutoffs for Different Applicant Groups under Minority and Socioe-
conomic Preferences

Latin Latin

O'Bryant Academy School

(1) (2) (3)
Panel A: Minority Preferences

Minority -14.1 -20.6 -31.9

Non-Minority 15.8 12.4 7.8

Panel B: Socioeconomic Preferences

SES Tier 1 -20.4 -26.4 -32.9
SES Tier 2 -6.6 -11.7 -16.1

SES Tier 3 -2.5 -7.2 -17.1

SES Tier 4 8.0 2.1 -5.1

Notes: This table reports the differences between the actual

admissions cutoffs and the counterfactual admissions

cutoffs under minority and socioeconomic preferences in

the exam school admissions.
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Table 1.14: Composition of Applicants by the Counterfactual Assignment under Minority and Socioeconomic
Preferences

Female

Black

Hispanic

FRPL

LEP

Bilingual

SPED
English 4

Math 4

Female

Black

Hispanic

FRPL

LEP

Bilingual

SPED
English 4

Math 4

N

No

Offer

(1)

0.502
0.430

0.182

0.810
0.116

0.386

0.073
0.277
0.277

0.514

0.499

0.223

0.813
0.107
0.359

0.073

0.261
0.217

2,791

Notes: This table reports

Latin

O'Bryant Academy

(2) (3)
Panel A: Minority Preferences

0.588 0.629

0.440 0.386
0.220 0.203
0.771 0.715

0.030 0.022

0.396 0.380

0.009 0.013

0.981 1.215

0.963 1.289

Panel B: Minority Preferences

0.572 0.597

0.360 0.295

0.191 0.143

0.728 0.673

0.058 0.030

0.423 0.39 1

0.012 0.006

1.067 1.309

1.146 1.365

755

descriptive

790
statistics for the

applicants by their counterfactual assignment under

socioeconomic preferences in the exam school admissions.

minority and
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Latin

School

(4)

0.572
0.274

0.172
0.556
0.018
0.391

0.005

1.668
1.781

0.575
0.203

0.120
0.624

0.017
0.445

0.006

1.556
1.744

843

exam school



Table 1.15: Average Reassignment Effects of Introducing Minority or Socioeconomic Preferences into the
Boston Exam School Admissions

Minority Preferences Socioeconomic Preferences

Applicant Group Applicant Group

All Non- All SES SES SES SES
Applicants Minority Minority Applicants Tier I Tier 2 Tier 3 Tier 4

(1) (2) (3) (4) (5) (6) (7) (8)
Panel A: All Applicants

Middle 0.001 -0.028*** 0.043*** 0.007 -0.032*** -0.005 0.004 0.041***

School (0.005) (0.007) (0.010) (0.005) (0.011) (0.006) (0.007) (0.011)
MCAS 4,701 2,741 1,960 4,701 948 1,113 1,155 1,468

High 0.023*** 0.027*** 0.017* 0.015*** 0.024** 0.011* 0.006 0.018*
School (0.004) (0.007) (0.009) (0.005) (0.011) (0.006) (0.005) (0.010)
MCAS 3,704 2,086 1,618 3,704 737 876 901 1,190

Panel B: Affected Applicants

Middle 0.003 -0.084*** 0.113*** 0.024 -0.092*** -0.021 0.021 0.133***
School (0.014) (0.021) (0.026) (0.019) (0.032) (0.027) (0.031) (0.034)
MCAS 1,670 932 738 1,294 328 263 241 426

High 0.062*** (0.025) 0.046** 0.050*** 0.068** 0.044* 0.026 0.054*
School (0.011) (0.017) (0.020) (0.016) (0.031) (0.023) (0.024) (0.029)
MCAS 1,367 754 613 1,100 265 223 208 404

Notes: This table reports the latent factor model-based estimates of the effects of minority and socioeconomic

preferences on MCAS scores. The estimates are shown for all applicants and separately for the applicant groups who

face different admissions cutoffs after the reforms. The estimates are also shown separately for the affected

applicants whose exam school assignment is altered by the reforms. Standard errors based on nonparametric 5-step

boostrap shown in paretheses.
* significant at 10%, ** significant at 5%, *** significant at 1%
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1.9 Appendix A: Proofs

Proof of Lemma 2 The result follows directly from the Law of Iterated Expectations. U

Proof of Theorem 1 Notice first that the means of M, and 1M 2 as well as covariances between Al 1 and

M 3 and between M 2 and A/13 can be written as

E [MI] E [0]

E [M 2 ] = 1 
M 2 + A M2 E [0]

Cov [A/1, M 3  = Cov [0,W]

Cov [M 2, M3] A M2 COV [0, M31

From these equations one can solve for the parameters I'AM2 and AAM2 that are given by

CoV [112 , A/ 3]A M2 = Cov [0, M3]

P0 =2 [M 2 ] - A12 E [M].

Let us now introduce two new random variables, Al 2 and D'M2 , that are defined as

~1
fl 2 = (A2 -- lAM2 )AM

2

1
M2, = VA12.

Thus, M, and Al 2 can be written as

MI = 0+VAII

A" 2 = 0+VM2 .

Depending on whether Assumption C.4.a or Assumption C.4.b holds, Ml and A(2 satisfy either Assumption

A or Assumption B in Evdokimov and White (2012) conditional on Al 3 . In their notation M = 0 and,

depending on the assumptions imposed on vAI1 and VA1 2 , either Y = M1, Y 2 = A 2 , U1 = vAr 1 , and U2 = VA 2

or Y = A/ 2, Y2 = MI, U1 = M2, and U2 = vA,. The identification of the conditional distributions fvM, 1A1 3

fFIM I M3and foM.3 follows from either Lemma 1 or Lemma 2 in Evdokimov and White (2012) depending

on whether Assumption A or Assumption B is satisfied. The conditional distribution f"2I A1 and the joint
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distribution fom are given by

fv2 I A13 (vM 2 I n3 )

foA (0, m)

1 1
= f (lMI VM 2 I m3A M 2  A M 2

= fM, IM (mI - 0 M3) fvM 2 IM3 (M 2 - I'M 2 - A M 2O I M 3 )

X foIM 3 (0 1 M 3 ) fM 3 (M 3 ) .

Proof of Theorem 2 Assumptions D.1, D.3, D.4, and D.5 correspond to assumptions 1, 3, 4, and 5 in

Hu and Schennach (2008) with y = M 3 , x = M, z = M 2 , and x* = 0 in their notation. Furthermore, as

shown in Cunha, Heckman, and Schennach (2010), Assumption D.2 is equivalent to Assumption 2 in Hu and

Schennach (2008). The identification of the conditional distributions fI1 io, fN3FO, and fOIM 2 then follows

from Theorem 1 in Hu and Schennach (2008). The joint distribution fo,m is given by

fo,M (0, iM) f:1 1o (in 0 1) fA 3 Io (m 3 10) foI M 2 (0 i M 2 ) fAI 2 (in 2 )

Proof of Theorem 3 Assumption E.1 allows one to write down the integral equations

E [Y M =in0 , D = 0]

E [Y M =Tml, D = 1]

SE {E[Y (0) 0] M = m0,D 0}

= E {E[Y (1) 0] M = m 1, D 1}.

The uniqueness of the solutions to these equations follows directly from Assumption E.3. To see this, suppose

that in addition to E [Y (0) 10] there exists some E [Y (0) 10] such that

P { E [Y (0) 10] # [Y (0) 10] > 0

also satisfying the above equation for all m 0 E MO. Thus,

E{E[Y (0) 0]--[Y (0)10] R=ro,D=0} 0

for all mi0 E MO, and by Assumption E.3., this implies that E [Y (0) 0] - k [Y (0) 10] = 0 for all m0 c MO,

thus leading to a contradiction. An analogous argument can be given for the uniqueness of E [Y (1) 10].

Finally, Assumption E.2 quarantees that E [Y (0) 10] and E [Y (1) 10] are determined for all 0 E . N
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Proof of Lemma 4 Using Assumptions H.1 and H.2, one can write

E {E [Y (D (1)) - Y (D (0)) 10] 1 R = r}

E [Y (D (1)) - Y (D (0)) 1 O]foIR (0 1 r) dO

E [Y (1) - Y (0) |D (1) > D (0), 0] P [D (1)

E [Y (1) - Y (0) D (1) > D (0), 0, R = r]

x P [D (1) > D (0) 0 , R = r]1 fOIR (0 1 r) dO.

> D (0) 1] fOIR (0 jr) dO

(1.5)

Furthermore, using the fact that

P [D (1) > D (0) 106, R = r] fOlR (0 10r

= fOIR (0, D (1) > D (0) |r)

= P [D (1) > D (0) 1 R r] fO R,D(0),D(1) (0 r, 0, 1),

Equation (1.5) becomes

E {E [Y (D (1)) - Y (D (0)) | 0] 1 R =r

=P [D (1) > D (0) 1 R = r]

x fE [Y (1) - Y (0) | D (1) > D (0), 0, R = ]fOIR,D(O),D(1)(0 ,1)d

= P [D (1) > D (0) 1 R (1.6)

Using similar arguments, one can write

E {E [D (1) - D (0) 10] R r}

E [D (1) -

P [D (1) >

= P [D (1) > D

D (0) 101 foIR (0 1 r) d0

D (0) |0] foIR (0 1 r) d0

(0) 1 R =rJfOR,D(O),D(1) (0 r, 0,1) dO

(1.7)

The result then follows from Equations (1.6) and (1.7). U

Proof of Theorem 4 The proof is analgous to the proof of Theorem 3. U
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Proof of Theorem 5 Notice first that the identification of pIMk, AMk, f,4 , fMk IM 3 , and fOkIM 3

follows directly from Assumptions 1.1-1.4 using Theorem 1 for all k =1, ..., K. The only remaining issue is

the identification of foAl1 3 . Let us start by defining new random variables

1

AM 22

Thus, M 1  (Ml,..., Mf) and M 2 =(2L.-, M 2  can be written as

Mi = 0 + VM,

12 = 0 + M 2

where 0 = (1,.. , 2) VM, = (v 1 1, . . .,vK), and vAI2 = ( 2 ,. .

Now, using Assumption 1.5, the conditional characteristic functions of

can be written as

M1 and N/ 2 given M 3 , #5M1 I 3 and

(m1 m3)

(M2 m3)

(1.8)

(1.9)

where

0vM, Al 3 (in1  in 3 ) =

0ivAI 2 M3 (M 2 iM 3 ) =

K

f kIA13 (mik I M3)
k=1

GOMA2 I M 2 1 M3)

where the conditional characteristics functions 1 , A3, OB (b), O MJAI2 1l 3 , and 0,, (b) are known. Thus, the

only unknown in this relationship is the conditional characteristic function of 0 given M 3 , 0O1M,, that can

be obtained from Equations (1.8) and (1.9):

fM I, N13 (tim3)

0 0 OIM 3  (t 113) - 'M 2  
M 3 (tim 3

) O F'M 2 
1M 3  (t i 3 ) 3 0

+^r12 1M3 (tIm3)

O'AM2 1M3 (tim 3 ) O'AI2 1A 3 (t in 3 ) 3 0

Assumption 1.6 quarantees that #0IM 3 (t im3 ) is identified for all t E R.

Finally, the conditional characteristic functions 0IM 3 , OVM, IM3 , and 0 #AI M 3 uniquely determine the

corresponding conditional distributions foIM 3 , f 1, Al3 , and fOM2IM3. The conditional distribution fM2| M 3
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and the joint distribution fol are then given by

fvI 2|IM 3 (VAf 2  I n3)

fo,m (0, mn)

K I

k= l 2 f 2 A (M 2AVAm3

f-- If A3 (ri 1 - 0 i m3 ) fA1 2 IMA3 M 2 - P'1M2 - AAJ 2  I Tni3

x foA 3 (0 1m3) fI 3 (mn 3 )

where /'M2 K(
4in-' 'I#M2) and A2 = diag (AlK 2, .A) 2 ) -
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1.10 Appendix B: Deferred Acceptance Algorithm and the Defini-

tion of Sharp Samples

The student-proposing Deferred Acceptance (DA) algorithm assigns the exam school offers as follows:

" Round 1: Applicants are considered for a seat in their most preferred exam school. Each exam schools

rejects the lowest-ranking applicants in excess of its capacity. The rest of the applicants are provisionally

admitted.

" Round k > 1: Applicants rejected in Round k - 1 are considered for a seat in their next most preferred

exam school. Each exam schools considers these applicants together with the provisionally admitted

applicants from Round k - 1 and rejects the lowest-ranking students in excess of its capacity. The rest

of the students are provisionally admitted.

The algorithm terminates once either all applicants are assigned an offer from one of the exam schools or

all applicants with no offer are rejected by every exam school in their preference ordering. This produces an

admissions cutoff for each exam school that is given by the lowest rank among applicants admitted to the

school. By definition none of the applicants with a ranking below this cutoff are admitted to this school. On

the other hand, applicants with a rank at or above this cutoff are admitted to either this school or a more

preferred exam school depending on their position relative to the admissions cutoffs for these schools.

The DA algorithm-based admissions process implies that only a subset of the applicants to a given exam

school that clear the admissions cutoff are admitted to this school. There are three ways in which an applicant

can be admitted to exam school s given the admissions cutoffs:

1. Exam school s is the applicant's 1st choice, and she clears the admissions cutoff.

2. The applicant does not clear the admissions cutoff for her 1st choice, exam school s is her 2nd choice,

and she clears the admissions cutoff.

3. The applicant does not clear the admissions cutoff for her 1st or 2nd choice, exam school s is her 3rd

choice, and she clears the admissions cutoff.

However, it possible to define for each exam school a sharp sample that consist of applicants who are admitted

to this school if and only if they clear the admissions cutoff (Abdulkadiroglu, Angrist, and Pathak, 2014).

The sharp sample for exam school s is the union of the following three subsets of applicants:

1. Exam school s is the applicant's 1st choice.

2. The applicant does not clear the admissions cutoff for her 1st choice, and exam school s is her 2nd

choice.

3. The applicant does not clear the admissions cutoff for her 1st or 2nd choice, and exam school s is her

3rd choice.

76



Note that each applicant is included in the sharp sample for at least one exam school (the exam school they

listed as their first choice), but an applicant can be included in the sharp sample for more than one exam

school. For instance, an applicant who does not clear the admissions cutoff for any of the exam schools is

included in the sharp samples for all three schools.
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1.11 Appendix C: Identification of the Parametric Latent Factor

Model

In this appendix I discuss moment conditions that give identification of the parametric measurement and

latent outcome models. I ignore the presence of covariates in this discussion as this can be handled straight-

forwardly by conditioning on them throughout.

Identification of the Measurement Model

Under the parametric measurement model specified

can be written as

E [Mk]1

E [Mk]

E (M$[3][M_A

CoV [Mk ,Mj]

Coy (M k, kl]

Coy (MM]

CoV [MEM] 3

in Section 1.4 the mean and covariances of the measures

= POk

= 1-tyl +Ahk 1p0k

= /I1 +AM 11p0k

Aj k 0'

AAIkk

2 3

for k E, Al. From these equations one can solve for 2ok, , OEOM s and AA that are given by

NI2 ~ ~ 2o[i,~oy[ME [Mk]
Co10 IMM

CoV [Mt, M31
COV[I_[k, Mj ]

C k M, kj]

B [M] -

2 Cov[Mk, M]

k'O

0-oEM =COV [Mk, M ]
rOk AMk

2

for k E, M, provided that Coy [Mk, M~k] , Coy [Mk, AM3] :A 0, k =E, M.
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Furthermore, the conditional means and covariances of the measures can be written as

E [M4 34]"

Coy [ ,M 34]

=E _A/[| k

E [64 3A<14]

AAIk=Var [Ok I A12

CoV [ , M k ] = AggVar [6k /143

From these equations one can solve for E(k [ M/ 2k], E [6k A3] Vav k 344], and

Var [6I -3] that are given by

E [k A/12.] = E [344 344]

E[k I M4] E [ 1 |3]

Var [ 3 M2]

Var [Ok A1I]

Co' [314 k, 34 H 344]
AAjk

Coy [~334H34
CO[Ak A/k* A1

for k = E,M.

Finally, the conditional variances of the measures can be written as

= [Var 13 1 Ok] I 31] + Var [E [344 Ok] A12

E exp (2 (Wk + 6AXk Ok) 3 -/1M +Var [6k I A2]

exp (2 (-,k+ E [64 \ 3 j] k + Var [64 3412] 6sk) + Var [64 |42]

E [Var [314 I] 3 14] + Var [E [344 |6] I 3]

E exp (2 (-,,k + 6(,k) Ok) Al] + A 2 Var [6k M3]

exp (2 (ink+ E [Ok A134] 6S + Var [Ok A I3k ) 2 + A 2 kVar [64 3243]

E [Var [M31 k] | 14] + Var [E [Mk 6 k] I 32]

= E exp (2 (injk + 6AIk Ok) A2 + A1 Var [6k A2]

= exp (2 ('YJ\ + E [6k 1A2] 6Alk +Var [Ok 4A2] 62 + A,,, Var [k I A132]3

which can be further modified as

2 log (Var [34 M] - Var [Ok A412k]

log (Var [344 3 4] - A Var [6k A14 ]

2 log (Var [M34 M] - Aik Var [6k I Al2)

- Ajk + E [Ok A14] 6Mk + Var [Ok MkA14

1 +F B [Ok |3f] SMk + Var [Ok 314] k2

7 +j EiB [Ok \ A12] 6M + Var [6k |4 2
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for k = E, M.

Thus, the parameters N, IYA , YA1 2k , 6Mk, YMk, and 6Ag can be solved from

log (Var [Mfk

log (Var [Mk

Ag k+ E 10k

-M[ k+ E 0k

'log (Var [k4

log (Var M

YM k + E [Ok

SYMk+ E [Ok

log (Var [M3

log (Var [M'1

'yA4 + E [Ok

-Yj k+ E 10k

m, k

M2

M3

fk

M3

M3

Mk

fk

= 
1 ]

iM2]

iM1]

~mi]

- m2]

iM1]

= in 1]

-=1m2]

- Var [Ok Mk = i 1 ])

- Var (2k = M 2 ])

6Ak + Var [Ok |Mk =

- A2n Var [9k | 7=

±u +Var [9k | 7 -

6A1k + Var [Ok |M =

- A2 Var [Ok FA13k =

- A2  Var [Ok M =

±Mk+ Var [Ok |AI =

j +Var [Ok A/M2=

1]62

n2] W

mi]

n2] )

ni] 62

2
m2

m2] M

n1] )

m12] 62

provided that the matrices

1

1

1

1

1

1

F [0k

E [Ok

E [Ok

F [0k

F [9k

E [0k

Mk

-Nk
1 k

M3

= M 1]

= M 2 ]

= M1 I

= M2]1

= mj]

= M
2 ]

+ 2Var

+ 2Var

+ 2Var

+ 2Var

+ 2Var

+ 2Var

are of full rank.

Identification of the Latent Outcome Models

Under the parametric latent outcome model specified in Section 1.4 the conditional expectation of an outcome

Y can be written as

E [Y | M,Z] =E [Y (S(Z)) ZI M, Z]

= Gy~s~z))S+ ypsz))E [OE I M, Z] + Oy"s(z))E [OA, I M, Z]
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for Z = 0, 1, 2, 3. Thus., the parameters ay(S(z)), OE (S(z)), and 0yA(S(z)) can be solved from

E [h (Y, S) M = m, Z]

E[h (Y, S) M =mz, Z]

E [h (Y, S) M =n , Z]

aY(S(z))

Y(S(Z))

Y(S(Z))

I
I

= T, Z] E [OMv

=m ,Z] £ [QAI

=2m, Z] E [OAi

SmZ] E [OAI
= M Z]E(

= m ,Z] E [Oi

= mfZ] [OA

M= Mf ZAl = Z][1

Al m, Z]

where mf, m , m c MZ, provided that the matrix

£ [OE AI = Al , Z]

E [OE A'[ = MA , Z]

E [OE [F A m1, Z]

E [OA\ M m, Z]

£ [OAJ Al =n, Z]

£ [OA l - mf, Z]

is of full rank. The identification of aD,(Z), D , (Z) (Z), Z 0,1,2,3, is analogous.
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Chapter 2

Wanna Get Away? RD Identification of

Exam School Effects Away from the

Cutoff

(Joint work with Joshua Angrist)

Both the tie-breaking experiment and the regression-discontinuity analysis are particularly sub-

ject to the external validity limitation of selection-X interaction in that the effect has been

demonstrated only for a very narrow band of talent, i.e., only for those at the cutting score...

Broader generalizations involve the extrapolation of the below-X fit across the entire range of

X values, and at each greater degree of extrapolation, the number of plausible rival hypotheses

becomes greater.

- Donald T. Campbell and Julian Stanley (1963; Experimental and Quasi-Experimental De-

signs for Research)

2.1 Introduction

In a regression discontinuity (RD) framework, treatment status changes discontinuously as a function of an

underlying covariate, often called the running variable. Provided conditional mean functions for potential

outcomes given the running variable are reasonably smooth, changes in outcome distributions at the as-

signment cutoff must be driven by discontinuities in the likelihood of treatment. RD identification comes

from a kind of virtual random assignment, where small and presumably serendipitous variation in the run-

ning variable manipulates treatment. On the other hand, because the running variable is usually related to
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outcomes, claims for unconditional "as-if random assignment" are most credible for samples near the point

of discontinuity. RD methods need not identify causal effects for larger and perhaps more representative

groups of subjects. Our epigraph suggests this point was no less apparent to RD's inventors than to today's

nonparametricians.

A recent study of causal effects at Boston's selective public schools - known as "exam schools" - highlights

the possibly local and potentially limiting nature of RD findings. Boston exam schools choose their students

based on an index that combines admissions test scores with a student's grade point average (GPA). Ab-

dulkadiroglu, Angrist, and Pathak (2014) use parametric and non-parametric RD estimators to capture the

causal effects of exam school attendance for applicants with index values in the neighborhood of admissions

cutoffs. In this case, nonparametric RD compares students just to the left and just to the right of each

cutoff. For most of these marginal students, the resulting estimates suggest that exam school attendance

does little to boost achievement.1 But applicants who only barely manage to gain admission to, say, the

highly selective Boston Latin School, might be unlikely to benefit from an advanced exam school curriculum.

Stronger applicants who qualify more easily may get more from an elite public school education. Debates

over affirmative action also focus attention on inframarginal applicants, including some who stand to gain

seats and some who stand to lose their seats should affirmative action considerations be brought in to the

admissions process.2

Motivated by the question of how exam school attendance affects achievement for inframarginal appli-

cants, this paper tackles the theoretical problem of RD identification for applicants other than those in the

immediate neighborhood of admissions cutoffs. Our first tack extrapolates parametric models for condi-

tional mean functions estimated to the left and right of cutoffs. As noted by Angrist and Pischke (2009), in

a parametric framework, extrapolation is easy.

As it turns out, functional-form-based estimation procedures fail to produce compelling results for the

empirical question that motivates our theoretical inquiry. The resulting estimates of exam school effects

away from the cutoff are mostly imprecise and sensitive to the polynomial used for extrapolation., with or

without the implicit weighting induced by a nonparametric bandwidth. We therefore turn to a conditional

independence argument that exploits a key feature of most RD assignment mechanisms: treatments is

assigned as a deterministic function of a single observed covariate, the running variable. The association

between running variable and outcome variables is therefore the only source of omitted variables bias in RD

estimates. If, for example, the running variable were randomly assigned, or otherwise made independent of

potential outcomes, we could ignore it and analyze data from RD designs as if from a randomized trial.

The special nature of RD assignment leads us to a conditional independence assumption (CIA) that

identifies causal effects by conditioning on covariates besides the running variable, with an eye to eliminating

the relationship between running variable and outcomes. It's not always possible to find such good controls,

'In an RD study of New York exam schools, Dobbie and Fryer (2013) similarly find little evidence of gains for admitted

applicants at the cutoff.
2 Duflo, Dupas, and Kremer (2011) use a combination of RD and a randomized trial to document treatment effect hetero-

geneity as a function of the running variable in a study of tracking in Kenyan elementary schools.
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of course, but, as we show below, a straightforward statistical test isolates promising candidates. As an

empirical matter, we show that conditioning on baseline scores and demographic variables largely eliminates

the relationship between running variables and test score outcomes for 9th grade applicants to Boston exam

schools, though not for 7th grade applicants (for whom the available controls are not as good). These results

lay the foundation for a matching strategy that identifies causal effects for inframarginal 9th applicants.

Our estimates of effects away from the cutoff are mostly in line with RD estimates of causal effects at

the cutoff. In particular, away-from-the-cutoff estimates suggest BLS attendance has little effect on either

math or English achievement, while the O'Bryant school may generate some gains, especially in English

Language Arts (ELA). The ELA gains for successful O'Bryant applicants approach one-fifth of a standard

deviation. Perhaps surprisingly, therefore, those who seem most likely to gain from any expansion in exam

school seats are relatively weak applicants who currently fail to gain admission to Boston's least selective

exam school. Ultra-high ability applicants, that is, BLS applicants who easily clear the threshold for Boston's

most selective public school, are likely to do well with our without the benefit of a BLS experience, at least

as far as standardized test scores go.

2.2 Causal Effects at Boston Exam Schools

Boston's three exam schools serve grades 7-12. The high-profile Boston Latin School (BLS), which enrolls

about 2,400 students, is the oldest American high school, founded in 1635. BLS is a model for other exam

schools, including New York's well-known selective high schools. The second oldest Boston exam school is

Boston Latin Academy (BLA), formerly Girls' Latin School. Opened in 1877, BLA first admitted boys in

1972 and currently enrolls about 1,700 students. The John D. O'Bryant High School of Mathematics and

Science (formerly Boston Technical High) is Boston's third exam school; O'Bryant opened in 1893 and now

enrolls about 1,200 students.

The Boston Public School (BPS) system spans a wide range of peer achievement. Like many urban

students elsewhere in the U.S., Boston exam school applicants who fail to enroll in an exam school end up

at schools with average SAT scores well below the state average, in this case, at schools close to the 5th

percentile of the distribution of school averages in the state. By contrast, O'Bryant's average SAT scores fall

near the 40th percentile of the state distribution of averages, a big step up from the overall BPS average, but

not elite in an absolute sense. Successful Boston BLA applicants find themselves at a school with average

scores around the 80th percentile of the distribution of school means, while the average SAT score at BLS is

the fourth highest among public schools in Massachusetts.

Between 1974 and 1998, Boston exam schools reserved seats for minority applicants. Though quotas are

no longer in place, the role of race in exam school admissions continues to be debated in Boston and is the

subject of ongoing litigation in New York. Our CIA-driven matching strategy is used here to answer two

questions about the most- and least-selective of Boston's three exam schools; both questions are motivated
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by the contemporary debate over affirmative action in exam school admissions. Specifically, we ask:

1. How would infrainarginal low-scoring applicants to O'Bryant, Boston's least selective exam school, do

if they were lucky enough to find seats at O'Bryant in spite of falling a decile or more below today's

O'Bryant cutoff? In other words, what if poorly qualified O'Bryant applicants now at a regular BPS

school were given the opportunity to attend O'Bryant?

2. How would inframarginal high-scoring applicants to BLS, Boston's most selective exam school and one

of the most selective in the country, fare if their BLS offers were withdrawn in spite of the fact that

they qualify easily by today's standards? In other words, what if highly qualified applicants now at

BLS had to settle for BLA?

The first of these questions addresses the impact of exam school attendance on applicants who currently

fail to make the cut for any school but might do so with minority preferences restored or exam school

seats added in an effort to boost minority enrollment. The second question applies to applicants like Julia

McLaughlin, whose 1996 lawsuit ended racial quotas at Boston exam schools. McLaughlin was offered a seat

at BLA, but sued for a seat at BLS, arguing, ultimately successfully, that she was kept out of BLS solely by

unconstitutional racial quotas. The thought experiment implicit in our second question sends high-scoring

BLS students like McLaughlin back to BLA.

2.2.1 Data

The data used here merge BPS enrollment and demographic information with Massachusetts Comprehensive

Assessment System (MCAS) scores. MCAS tests are taken each spring, typically in grades 3-8 and 10.

Baseline (i.e., pre-application) scores for grade 7 applicants are from 4th grade. Baseline English scores for

9th grade applicants come from 8th grade math and 7th grade ELA tests (the 8th grade English exam was

introduced in 2006). We lose some applicants with missing baseline scores. Scores were standardized by

subject, grade, and year to have mean zero and unit variance in the BPS population.

Data on student enrollment, demographics and test scores were combined with the BPS exam school

applicant file. This file records applicants' current grade and school enrolled, applicants' preference ordering

over exam schools, and applicants' Independent Schools Entrance Exam (ISEE) test scores, along with each

exam schools' ranking of its applicants as determined by ISEE scores and GPA. These school-specific rankings

become the exam school running variables in our setup.

Our initial analysis sample includes BPS-enrolled students who applied for exam school seats in 7th

grade from 1999-2008 or in 9th grade from 2001-2007. We focus on applicants enrolled in BPS at the time

of application (omitting private school students) because we're interested in how an exam school education

compares to regular district schools. Moreover, private school applicants are much more likely to remain

outside the BPS district and hence out of our sample if they fail to get an exam school offer. Applicants

who apply to transfer from one exam school to another are also omitted.
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2.2.2 Exam School Admissions

The sharp CIA-based estimation strategy developed here is predicated on the notion that exam school offers

are a deterministic function of exam school running variables. Exam school running variables are constructed

by ranking a weighted average of ISEE scores and applicants' GPAs at the time of application. In practice,

however, Boston exam school offers take account of student preferences over schools as well as their ISEE

scores and GPAs. Students list up to three exam schools for which they wish to be considered, in order of

preference. Admissions offers are determined by a student-proposing deferred acceptance (DA) algorithm,

using student preferences and school-specific running variables as inputs. The DA matching process com-

plicates our RD analysis because it loosens the direct link between running variables and admissions offers.

As in Abdulkadiroglu, Angrist, and Pathak (2014), our econometric strategy begins by constructing analysis

samples that restore a deterministic link between exam school offers and running variables, so that offers are

sharp around admissions cutoffs. A description of the manner in which these sharp samples are constructed

appears in the appendix. 3

The sharp RD treatment variable is an offer dummy, denoted Dik, indicating applicants offered a seat

at school k, determined separately as a function of rank for applicants in each school-specific sharp sample.

For the purposes of empirical work, school-specific ranks are centered and scaled to produce the following

running variable:
100

rik = --- X (Tk - Cik), (2.1)
Nk

where Nk is the total number of students who ranked school k (not the number in the sharp sample). Scaled

school-specific ranks, rik, equal zero at the cutoff rank for school k, with positive values indicating students

who ranked and qualified for admission at that school. Absent centering, scaled ranks give applicants'

percentile position in the distribution of applicants to school k. Within sharp samples, we focus on a window

limited to applicants with running variables no more than 20 units (percentiles) away from the cutoff. For

qualified 9th grade applicants at BLS, this is non-binding since the BLS cutoff is closer to the top of the 9th

grade applicant distribution than the .8 quantile.

In sharp samples, offers are determined by the running variable, but not all offers are accepted. This

can be seen in Figures 2-la and 2-1b, which plot school-specific offer and enrollment rates around O'Bryant

and BLS admissions cutoffs. Specifically, the figures show conditional means for sharp sample applicants in

a one-unit binwidth, along with a conditional mean function smoothed using local linear regression (LLR).4

3
Instead of defining sharp samples, a dummy for threshold crossing (qualification) can be used to instrument fuzzy offers.

The extension of our CIA approach to fuzzy designs is discussed in Section 2.5, below. The construction of sharp sample
produces an asymptotic efficiency gain, however, since those in the sharp sample are compliers in a setup that uses qualification
as an instrument for offers (this is implied by results in Frolich (2007) and Hong and Nekipelov (2010), which show that the
ability to predict compliance reduces the semiparametric efficiency bound for local average treatment effects.)

4
For school k, data in the estimation window were used to construct estimates of E[yi rik], where y is the dependent variable

and rik is the running variable. The LLR smoother uses the edge kernel,

Kerie) = i te b 1 (1 - in

where h is the bandwidth. The bandwidth used here is a version of the DesJardins and McCall (2008) bandwidth (hereafter,
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As can be seen in Table 2.1, which reports estimates that go with these figures, 72% of 7th graders offered

a seat at O'Bryant enroll there, while among 9th grade applicants offered an O'Bryant seat, 66% enroll.

Enrollment rates are much higher for those offered a seat at BLS, while many applicants not offered a seat

at BLS end up at Boston's second most selective exam school, BLA. At the same time, movement up the

ladder of exam school selectivity is associated with dramatic changes in peer composition. This can be seen

in Figure 2-2a and 2-2b, which plot peer achievement of applicants' classmates (as measured by baseline

MCAS scores), for applicants within 20 percentile points of the O'Bryant and BLS cutoffs.

2.2.3 Results at the Cutoff

As a benchmark, we begin with estimates for marginal applicants. Figures 2-3a and 2-3b show little evidence

of gains in 10th grade math scores for 7th grade applicants offered exam school seats. On the other hand,

among both 7th and 9th grade applicants, 10th grade ELA scores seem to jump at the O'Bryant cutoff. The

figure also hints at an O'Bryant-induced gain in math scores, though only for 9th grade applicants.

Our estimators of the effect of an exam school offer are derived from models for potential outcomes. Let

Ypi and Yoi denote potential outcomes in treated and untreated states, with the observed outcome determined

by

yi = Yoi + [Y1i - Yoi]Di.

In a parametric setup, the conditional mean functions for potential outcomes given the running variable are

modeled as:

E[Yoilr] = fo(ri)

E[Yi1 irji = p + fi(ri),

using polynomials, fj(ri); j = 0, 1.

Substituting polynomials in E[yilrg] = E[Yoilri] + E[Yi - Yoilri]Di, and allowing for the fact that the

estimation sample pools data from different test years and application years, the parametric estimating

equation for applicant i observed in year t is:

Yit = at + Z jpj + Z &die + (1 - Di)fo(ri) + Dif1 (ri) + pDi + nit (2.2)

This model controls for test year effects, denoted at, and for application year, indexed by f and indicated

by dummies, dip. The model also includes a full set of application preference dummies, denoted pij. 5 The

effects of the running variable are controlled by a pair of pth-order polynomials that differ on either side of

DM) studied by Imbens and Kalyanaraman (2012), who derive optimal bandwidths for sharp RD using a mean square-error
loss function with a regularization adjustment. The DM smoother (which generates somewhat more stable estimates in our
application than the bandwidth Imbens and Kalyanaraman (2012) prefer) is also used to construct nonparametric RD estimates,
below.

5
As explained in the appendix, this controls for applicant-preference-group composition effects in the sharp sample.
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the cutoff, specifically:

fj (ri) = 7rir + .+ + 7r1 jry; j = 0, 1. (2.3)

The benchmark estimates set p = 3.

Non-parametric RD estimators differ from parametric in three ways. First, they narrow the estimation

window when the optimal data-driven bandwidth falls below 20. Non-parametric estimators also use a

tent-shaped edge kernel centered at admissions cutoffs, instead of the uniform kernel implicit in parametric

estimation. Finally, non-parametric models control for linear functions of the running variable only, omitting

higher-order terms. The nonparametric estimating equation is:

yit at + o(3jBpij + Z Yedie + 1o (I - D)ri +-I 1Diri + pDi + 1lit

at + S /jpj + 56edif + '70Tj + -y*Dr + pDi + lit (2.4)

Non-parametric RD estimates come from a kernel-weighted LLR fit of equation (2.4), estimated separately

in the sharp sample of applicants to O'Bryant and BLS.

Consistent with the figures, estimates of (2.2) and (2.4), reported in Table 2.2, show little in the way

of score gains at BLS. But the non-parametric estimates suggest an O'Bryant offer may boost 10th grade

ELA scores for both 7th and 9th grade applicants. Other estimates are either smaller or less precise, though

among 9th grade O'Bryant applicants, we see a marginally significant effect on math. Other estimates, not

reported here, present a broad picture of small effects on 7th grade exam school applicants tested in 7th and

8th grade (see Abdulkadiroglu, Angrist, and Pathak (2014) for nonparametric estimates of effects on middle

school scores.) Results for the 10th grade ELA scores of O'Bryant applicants offer the strongest evidence of

an exam school gain.

2.2.4 To Infinity and Beyond: Parametric Extrapolation

The running variable is the star covariate in any RD scene, but the role played by the running variable is

distinct from that played by covariates in matching and regression-control strategies. In the latter, we look to

comparisons of treated and non-treated observations conditional on covariates to eliminate omitted variables

bias. As Figure 2-4 highlights, however, in an RD design, there is no value of the running variable at which

both treatment and control subjects are observed. Nonparametric identification comes from infinitesimal

changes in covariate values across the RD cutoff. As a practical matter, however, nonparametric inference

procedures compare applicants with covariate values in a small - though not infinitesimal - neighborhood to

the left of the cutoff with applicants whose covariate values put them in a small neighborhood to the right.

This empirical comparison requires some extrapolation, however modest. Identification of causal effects away

from the cutoff requires a more substantial extrapolative leap.

In a parametric setup such as described by (2.2) and (2.3), extrapolation is easy though not necessarily
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credible. For any distance, c, we have

p(c) = E[Y1 - Yoi lri = c] = p + 7r'c + 7r* c2 + ... + r*c', (2.5)

where r* = 7r1 - r1 0 , and so on. The notation in (2.5) masks the extrapolation challenge inherent in

identification away from the cutoff: potential outcomes in the treated state are observed for ri = c > 0,

but the value of E[Yoilri = c] for positive c is never seen. The dotted lines in Figure 2-4 show two equally

plausible possibilities, implying different causal effects at ri = c. It seems natural to use observations to the

left of the cutoff in an effort to pin down functional form, and then extrapolate this to impute E[Yolri = c].

With enough data, and sufficiently well-behaved conditional mean functions, fo(c) is identified for all values

of c, including those never seen in the data. It's easy to see, however, why this approach may not generate

robust or convincing findings.

The unsatisfying nature of parametric extrapolation emerges in Figures 2-5a and 2-5b. These figures

show observed and imputed counterfactual 10th grade math scores for 7th and 9th grade applicants. Specif-

ically, the figures plot nonparameteric estimates of the observed conditional mean function E[Yoir = c]

for O'Bryant applicants to the left of the cutoff, along with imputed E[Yr =i c] to the left. Similarly,

for BLS applicants, the figures plot nonparametric estimates of observed E[Y;jr, = c] for applicants to the

right of the cutoff, along with imputed E[Yijrj = c] to the right. The imputations use linear, quadratic,

and cubic specifications for fj(ri). These models generate a wide range of estimates, especially as distance

from the cutoff grows. For instance, the estimated effect of BLS attendance to the right of the cutoff for 9th

grade applicants changes sign when the polynomial goes from second to third degree. This variability seems

unsurprising and consistent with Campbell and Stanley (1963)'s observation that, "at each greater degree

of extrapolation, the number of plausible rival hypotheses becomes greater." On the other hand, given that

fo(ri) looks reasonably linear for ri < 0 and fi(ri) looks reasonably linear for ri > 0, we might have hoped

for results consistent with those from linear models, even when the specification allows something more

elaborate.

Table 2.3, which reports the estimates and standard errors from the models used to construct the fitted

values plotted in Figure 2-5, shows that part of the problem uncovered in the figure is imprecision. Estimates

constructed with p = 3 are too noisy to be useful at c = +/ - 5 or higher. Models setting p = 2 generate

more precise estimates than when p = 3, though still fairly imprecise for c > 10. On the other hand, for

very modest extrapolation (c = 1), a reasonably consistent picture emerges. Like RD estimates at the cutoff,

this slight extrapolation generates small positive estimates at O'Bryant and small negative effects at BLS

for both 7th and 9th grade applicants, though few of these estimates are significantly different from zero.6

6 Paralleling Figure 2-5, the estimates in Table 2.3 are from models omitting controls for test year, application year and
application preferences. Estimates from models with these controls differ little from those reported in the table.
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2.2.4.1 Using Derivatives Instead

Dong and Lewbel (2013) propose an alternative to parametric extrapolation based on the insight that the

derivatives of conditional mean functions are nonparametrically identified at the cutoff (a similar idea appears

in Section 3.3.2 of DiNardo and Lee, 2011). First-order derivative-based extrapolation exploits the fact that

f (c) fj(0) + fM(0) . c. (2.6)

This approximation can be implemented using a nonparametric estimate of f (0).

The components of (2.6) are estimated consistently by fitting linear models to fi (ri) in a neighborhood

of the cutoff, using a data-driven bandwidth and slope terms that vary across the cutoff. Specifically, the

effect of an offer at cutoff value c can be approximated as

p(c) -p- +* c, (2.7)

with parameters estimated using equation (2.4). The innovation in this procedure relative to LLR estimation

of (2.4) is in the interpretation of the interaction term, -*. Instead of a bias-reducing nuisance parameter,

7* is seen in this context as identifying a derivative that facilitates extrapolation. As a practical matter, the

picture that emerges from derivative-based extrapolation of exam school effects is similar to that shown in

Figure 2-5.

2.3 Call in the CIA

RD designs take the mystery out of treatment assignment. In sharp samples of applicants to Boston exam

schools, we know that exam school offers are determined by

Di = 1[r, > 0].

This signal feature of the RD design implies that failure to control for ri is the only source of omitted

variables bias in estimates of the causal effect of Di.

Armed with precise knowledge of the source of omitted variables bias, we propose to identify causal

effects by means of a conditional independence argument. In sharp samples, Boston exam school offers are

determined by measures of past achievement, specifically ISEE scores and students' GPAs. But these are

not the only lagged achievement measures available. In addition to demographic variables that are highly

predictive of achievement, we observe pre-application scores on MCAS tests taken in 4th grade and, for high

school applicants, in 7th or 8th grade. Conditioning on this rich and relevant set of controls may serve to

break the link between running variables and outcomes.7

7
Cook (2008) credits Goldberger (1972a) and Goldberger (1972b) for the observation that when treatment status is de-

90



To formalize this identification strategy, we gather the set of available controls in a covariate vector, xi.

Our conditional independence assumption (CIA) asserts that:

CONDITIONAL INDEPENDENCE ASSUMPTION (CIA)

E[YiJrj, xi] = E[Yji fx]; j = 0, 1

In other words, potential outcomes are assumed to be mean-independent of the running variable conditional

on xi. We also require treatment status to vary conditional on xi:

COMMON SUPPORT

0 < P[D, = 1jxj] < I a.s.

The CIA and common support assumptions identify any counterfactual average of interest. For example,

the average of Yoj to the right of the cutoff is:

E[YoijDi = 1] = E{E[YIjx, Di = 1]|Dj = 1} = E{E[yjjxI, Di = 0]jD = 1}, (2.8)

while the average treatment effect on the treated is identified by a matching-style estimnand:

E[Y1 -- YoijDj = 1] = E{E[yjjxj, Di = 1] - E[yjjxj, Di = 0]|Di = 1}.

2.3.1 Testing and Bounding

Just as with conventional matching strategies (as in, for example, Heckman, Ichimura, and Todd (1998) and

Dehejia and Wahba (1999)), the CIA assumption invoked here breaks the link between treatment status

and potential outcomes, opening the door to identification of a wide range of average causal effects. In this

case, however, the prior information inherent in an RD design is also available to guide our choice of the

conditioning vector, xi. Specifically, by virtue of the conditional independence relation implied by the CIA,

we have:

E[Yi1 K|r, xi, ri > 0] = E[YI x] = E[Yijjxj, ri > 0],

so we should expect that

E[yj jri, xi, Di = 1] = E[yj xi, Di = 1], (2.9)

to the right of the cutoff. Likewise, the CIA also implies:

E[Yoiri, xi, ri < 0] = E[Yoi xi] = E[Yoi xj,ri < 0],

termined solely by a pre-treatment test score, regression control for pre-treatment scores eliminates omitted variables bias.

Goldberger credits Barnow (1972) and Lord and Novick (1972) for similar insights.
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suggesting we look for

E[yj Iri, xi, Di = 0] = E[y Ixi, Di = 0], (2.10)

to the left of the cutoff.

Regressions of outcomes on xi and the running variable on either side of the cutoff provide a simple test

for (2.9) and (2.10). Mean independence is stronger than regression independence, of course, but regression

testing procedures can embed flexible models that approximate nonlinear conditional mean functions. In

practice, simple regression-based tests seem likely to provide the most useful specification check since such

tests are likely to reject in the face of any sort of dependence between outcomes and running variable, while

more elaborate specifications with many free parameters may lack the power to detect violations.8

Concerns about power notwithstanding, the CIA is demanding and may be hard to satisfy. A weaker and

perhaps more realistic version limits the range of running variable values for which the CIA is maintained.

This weaker bounded conditional independence assumption asserts that the CIA holds only over a limited

range:

BOUNDED CONDITIONAL INDEPENDENCE ASSUMPTION (BCIA)

E [Yi Iri, xi, I ri I < d] = E [YjI xi, I ri I < d]; j = 0, 1

Bounded CIA says that potential outcomes are mean-independent of the running variable conditional on xi,

but only in a d-neighborhood of the cutoff. Testing BCIA, we look for

E[y Iri, xi,0 < ri < d] = E[yi xi,0 < ri < d] (2.11)

to the right of the cutoff, and

E[yilri, xi, -d < ri < 0] = E[yjIxj, -d < ri < 0] (2.12)

to the left of the cutoff.

At first blush, the BCIA evokes nonparametric RD identification in that it leads to estimation of casual

effects inside an implicit bandwidth around the cutoff. An important distinction, however, is the absence

of any promise to make the d-neighborhood smaller as the sample size grows. Likewise, BCIA requires no

choice of bandwidth or local polynomial smoothers with an eye to bias-variance trade-offs. Rather, the

largest value of d that appears to satisfy BCIA defines the playing field for CIA-based estimation.

Beyond providing an opportunistic weakening of the CIA, the BCIA assumption allows us to avoid

bias from counterfactual composition effects as distance from the cutoff grows. Moving, say, to the left of

the BLS cutoff, BLS applicants start to fall below the BLA cutoff as well, thereby changing the relevant
8
Fan and Li (1996), Lavergne and Vuong (2000), Ait-Sahalia, Bickel, and Stoker (2001), and Angrist and Kuersteiner (2011)

develop nonparametric conditional independence tests.
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counterfactual from BLA to O'Bryant for BLS applicants not offered a seat there. The resulting change

in Yj (where potential outcomes are indexed against BLS offers) is likely to be correlated with the BLS

running variable with or without conditioning on xi. To argue otherwise requires the distinction between

BLA and O'Bryant to be of no consequence. BCIA avoids the resulting composition bias by requiring that

we not extrapolate too far to the left of the BLS cutoff when looking at BLS applicants.

2.3.2 Alternative Assumptions and Approaches

A weaker alternative to the CIA asserts conditional independence between average causal effects and the

running variable, instead of between potential outcomes and the running variable. This leads to a Conditional

Effect Ignorability (CEI) assumption, similar to that introduced by Angrist and Fernandez-Val (2010) in an

instrumental variables setting. For our purposes, CEI can be described as follows:

CONDITIONAL EFFECT IGNORABILITY (CEI)

E[Y1 -- YWj Iri, xj] = E[Y1 j - Yoj xj]

In an RD context, CEI means that, conditional on xi, we can ignore the running variable when computing

average causal effects, even if potential outcomes are not individually mean-independent of the running

variable. 9

CEI has much of the identifying power of the CIA. For example, given CEI, the effect of treatment on

the treated can be written as:

E[Y1j - Yoj Dj = 1] E{E[yjxi, ri = 0+] - E[yi xi, ri = 0-] Dj = 1}, (2.13)

where E[yj xi, ri = 0+] and E[y, xi, ri 0-] denote right- and left-hand limits of conditional-on-xi expec-

tation functions for outcomes at the cutoff. In other words, this CEI assumption identifies causal effects

away from the cutoff by averaging a set of nonparametrically identified conditional-on-covariates effects at

the cutoff.

In practice, CIA-based estimates seem likely to be more useful than those derived from equation (2.13).

For one thing, not being limited to identification near the cutoff, CIA-based estimation uses much more

data. Second, CEI relies on the ability to find a fair number of observations near the cutoff for all relevant

covariate values, a tall order in many applications. Finally, CEI is harder to assess. CEI implies that the

derivative of the conditional average treatment effect given covariates should be zero at the cutoff; as noted by

Dong and Lewbel (2013), this derivative is non-parametrically identified (and given by the interaction term

in the nonparametric estimating equation, (2.4)). In practice, however, samples large enough for reliable

nonparametric estimates of conditional mean functions can be expected to generate inconclusive estimates

9
Lewbel (2007) invokes a similar assumption in a setup using exclusion restrictions to correct for classification error in

treatment status.
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of derivatives. Not surprisingly, therefore, our experiments with CEI estimators for Boston exam school

applicants failed to produce estimates that seem precise enough to be useful.

Battistin and Rettore (2008) also consider matching estimates in an RD setting, though they don't exploit

an RD-specific conditional independence condition. Rather, in the spirit of Lalonde (1986), Battistin and

Rettore validate a generic matching estimator by comparing non-parametric RD estimates with conventional

matching estimates constructed at the cutoff. They argued that when matching and RD produce similar

results at the cutoff, matching seems worth exploring away from the cutoff as well.

Other related discussions of RD identification away from the cutoff include DiNardo and Lee (2011) and

Lee and Lemieux (2010), both of which note that the local interpretation of nonparametric RD estimates

can be relaxed by treating the running variable as random rather than conditioning on it. In this view,

observed running variable values are the realization of a non-degenerate stochastic process that assigns

values to individuals of an underlying type. Each type contributes to local-to-cutoff average treatment

effects in proportion to that type's likelihood of being represented at the cutoff. Since "type" is an inherently

latent construct, this random running variable interpretation doesn't seem to offer concrete guidance as to

how causal effects might change away from the cutoff. In the spirit of this notion of latent conditioning,

however, we might model running variables and the conditioning variables in our CIA assumption as noisy

measures of a single underlying ability measure. In ongoing work, Rokkanen (2014) explores RD models

where identification is based on this sort of latent factor ignorability in a structural econometric framework.

Finally, moving in a different direction, Jackson (2010) outlines an extrapolation approach that identifies

inframarginal effects at exam schools in Trinidad and Tobago by exploiting the fact that students with

the same running variable (a test score) can end up at different schools, depending on their preferences.

Jackson (2010) identifies effects away from the cutoff by differences-in-differences style contrasts between

infra-marginal high- and low-scoring applicants with different rankings. Cook and Wing (2013) explore a

similar idea, offering supportive Monte Carlo evidence for a hybrid differences-in-differences/RD approach.

2.3.3 CIA-based Estimators

We economize on notation by omitting explicit conditioning on running variable values falling in the [-d, d]

interval; expectations in this section should be understood to be conditional on the largest value of d that

satisfies BCIA. Where relevant, the constant c is assumed to be no bigger than d in absolute value.

At specific running variable values, the CIA leads to the following matching-style estimand:

E [Y1 i -YjIri = c] =

E{E[yi xi, Di = 1] - E[yi xi, Di = 0] ri = c} (2.14)

Alternately, on the right-hand side of the cutoff, we might consider causal effects averaged over all positive
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values up to c, a bounded effect of treatment on the treated:

E[Y1 -- YoiJO < ri < c] =

E{E[yilzi, Di = 1] - E[yj xi, Di = 0]10 < ri < c} (2.15)

Paralleling this on the left, the bounded effect of treatment on the non-treated is:

E[Yij -YOI| - c < ri < 0] =

E{E[yj >ij, Di = 1] - E[y1xi, Di= 0]| - c < Ti < 0} (2.16)

We consider two estimators of (2.14), (2.15) and (2.16). The first is a linear reweighting estimator

discussed by Kline (2011). The second is a version of the Hirano, Imbens, and Ridder (2003) propensity

score estimator based on Horvitz and Thompson (1952). We also use the estimated propensity score to

document common support, as in Dehejia and Wahba's (1999) pioneering propensity score study of the

effect of a training program on earnings.

Kline's reweighting estimator begins with linear models for conditional means, which call be written:

E[yijxj, Di = 0] = x'0 (2.17)

E[yjjxj, Di = 1] = x'#1

Linearity is not really restrictive since the parametrization for x'#3 can be rich and flexible. Substituting in

(2.14), we have

E[Y1 - Yojri = c]

(01 - O0)'E[x jri = c], (2.18)

with similar expressions based on (2.15) and (2.16).

Let A(xi) -- E[Djjxj] denote the propensity score. Our propensity score weighting estimator begins with

the observation that the CIA implies

£ Y(1 -- Di) I E[Yoj]
1 - A(xi)x]

E y, Di1
A(xi)

Bringing these expressions inside a single expectation and over a common denominator, the treatment effect
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on the treated for those with 0 < ri < c is given by

E[Yli - YoiJO < ri < c] = E yi[Di - A(xi)] P[0 < ri < c14 (2.19)
- A(xi) [1 - A(xi)] P[0 < ri < c] } -

Similar formulas give the average effect for non-treated applicants and average effects at specific, possibly

narrow, ranges of running variable values. The empirical counterpart of (2.19) requires a model for the

probability P[O < ri < clxi] as well as for A(xi). It seems natural to use the same parameterization for both.

Note also that if c = d, the estimand in (2.19) simplifies to

E[Y1, - Yoi lDi = 1] = E yi[Di - A(i)]
S[I -- A(xi)]E[Di]'

as in Hirano, Imbens, and Ridder (2003).10

2.4 The CIA in Action at Boston Exam Schools

We start by testing BCIA in estimation windows that set d equal to 10, 15, and 20. Regressions used for

testing control for baseline test scores along with indicators of special education status, limited English pro-

ficiency, eligibility for free or reduced price lunch, race (black/Asian/ Hispanic) and sex, as well as indicators

for test year, application year and application preferences. Baseline score controls for 7th grade applicants

include 4th grade math and ELA scores, while for 9th grade applicants, baseline scores include 7th grade

ELA scores and 8th grade math scores.

CIA test results, reported in Table 2.4, show that conditioning fails to eliminate the relationship between

running variables and potential outcomes for 7th grade applicants; most of the estimated coefficients are

significantly different from zero for both 10th grade math and ELA scores. At the same time, test results for

9th grade applicants seem promising. Most test statistics (that is, running variable coefficient estimates) for

9th grade applicants are smaller than the corresponding statistics for 7th grade applicants, and only one is

significantly different from zero (this is for math scores to the left of the BLS cutoff in the d = 20 window).

It should be noted, however, that few 9th grade applicants fall to the right of the BLS cutoff. CIA tests for

BLS applicants with Di 1 are forgiving because the sample for this group is small. 1

We complement formal CIA testing with a graphical tool motivated by an observation in Lee and Lemieux

(2010): in a randomized trial using a uniformly distributed random number to determine treatment assign-

ment, this number becomes the running variable for an RD design. The relationship between outcomes

and running variable should be flat, however, except possibly for a jump at the quantile cutoff which de-

')The expectations and conditioning here refer to distributions in the sharp sample of applicants for each school. Thus,
treatment effects on the treated are for treated applicants in a school-k sharp sample. When the estimand targets average
effects at specific ri - c, as opposed to over an interval, the probabilities P[ri = c~xi] and P[ri = c] needed for (2.19) become
densities. Note also that the estimand in (2.19) can be written E [wliyi - woiyi], where E [woi] = E [wii) - 1. As noted by
Imbens (2004), however, this need not hold in finite samples. We therefore normalize the sum of these weights to be 1.11 The unchanging sample size to the right of the BLS cutoff as d shrinks reflects the high BLS admissions threshold for 9th
grade applicants: the d = 10 limit isn't binding for BLS on the right.

96



termines proportion treated. Our CIA assumption implies this same pattern. Figure 2-6 therefore plots

10th grade math and ELA residuals constructed by partialing out xi against running variables in a d = 20

window. The figure shows conditional means for all applicants in one-unit binwidths, along with conditional

mean functions smoothed using local linear regression. Consistent with the test results reported in Table

2.4, Figure 2-6 shows a strong positive relationship between outcome residuals and running variables for

7th grade applicants. For 9th grade applicants, however, the relationship between outcome residuals and

running variables is essentially flat, except perhaps for ELA scores in the BLS sample.

The difference in CIA test results for 7th and 9th grade applicants may be due to the fact that baseline

scores for 9th grade applicants come from a grade closer to the outcome test grade than for 7th grade

applicants. In combination with demographic control variables and 4th grade scores, 7th or 8th grade

MCAS scores do a good job of eliminating the running variable from 9th graders' conditional mean functions

for 10th grade scores. By contrast, the most recent baseline test scores available for 7th grade applicants

are from 4th grade tests.1 2 In view of the results in Table 2.4 and Figure 2-6, the CIA-based estimates that

follow are for 9th grade applicants only.

Columns 1-4 of Table 2.5 report linear reweighting estimates of average treatment effects. These are

estimates of E[Y1 i - YoJ0 < ri < d] for BLS applicants and E[Y1i - Yoil - d < ri < 0] for O'Bryant

applicants, in samples that set d equal to 10, 15, and 20. The estimand for BLS is

E [Y1 - Yoi|0 < ri < d]

(#1- o)'E[xiJ0 < ri < d], (2.20)

while that for O'Bryant is

E [Yl - Yi - d < ri < 0]

= (41 - /3o)'E[xi - d < ri < 01, (2.21)

where 0o and j31 are defined in (2.17). The BLS estimand is an average effect of treatment on the treated,

since treated observations in the estimation window must have positive running variables. Likewise, the

O'Bryant estinnand is an average effect of treatment on the non-treated.

As with RD estimates at the cutoff, the CIA results in Table 2.5 show no evidence of a BLS achievement

boost. At the same time, results for inframarginal unqualified O'Bryant applicants offer some evidence of

gains, especially in ELA. The miath estimates range from .09a when d = 10 to .16a when d = 20, though

the estimate effect for d = 10 is only marginally significantly different from zero. Linear reweighting results

for the ELA scores of O'Bryant applicants are clear cut, however, ranging from .18o to .2u and significantly

different from zero for each choice of d. The CIA estimates are remarkably consistent with the corresponding

1 2 The addition of quadratic and cross-subject interaction terms in baseline scores fails to improve CIA test results for 7th
grade applicants.
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RD estimates at the cutoff: compare, for example, the CIA estimates in columns 1 and 3 of Table 2.5 to the

nonparametric O'Bryant RD estimates at the cutoff of .13o- (SE-.07) in math and .18(- (SE=.07) for ELA,
shown in column 3 of Table 2.2.

Figure 2-7 completes the picture on effects away from the cutoff by plotting linear reweighting estimates

of E[Y2|ri = c] and E[YoJri = c] for all values of c in the [-20,20] interval. To the left of the O'Bryant

cutoff, the estimates of E[Yoilri = c] are fitted values from regression models for observed outcomes, while

the estimates of E[Y3|ri = c] are implicitly an extrapolation and labelled accordingly. To the right of the

BLS cutoff, the estimates of E[Y1 lr= c] are fitted values while the estimates of E[Yoilri = c] are an

extrapolation. The conditional means in this figure were constructed by plugging individual values of xi into

(2.17) and smoothing the results using local linear regression." The figure presents a picture consistent with

that arising from the estimates in Table 2.5. In particular, the extrapolated BLS effects are small (for ELA)

or noisy (for math), while the O'Bryant extrapolation reveals a remarkably stable gain in ELA scores away

from the cutoff. The extrapolated effect of O'Bryant offers on math scores appears to increase modestly as

a function of distance from the cutoff, a finding probed further below.

2.4.1 Propensity Score Estimates

CIA-based estimation of the effect of exam school offers seems like a good setting for propensity score

methods, since the conditioning set includes multiple continuously distributed control variables. These

features of the data complicate full covariate matching. Our logit model for the propensity score uses the

same control variables and parametrization as were used to construct the tests in Table 2.4 and the linear

reweighting estimates in columns 1-4 of Table 2.5.14

The estimated propensity score distributions for admitted and rejected applicants exhibit a substantial

degree of overlap. This is documented in Figure 2-8, which plots the histogram of estimated scores for

treated and control observations above and below a common horizontal axis. Not surprisingly, the larger

sample of O'Bryant applicants generates more overlap than the sample for highly selective BLS. Most score

values for untreated O'Bryant applicants fall below about .6. Each decile in the O'Bryant score distribution

contains at least a few treated observations; above the first decile, there appear to be more than enough for

accurate inference. By contrast, few untreated BLS applicants have covariate values for which a BLS offer

is highly likely. We should therefore expect the BLS counterfactual to be estimated less precisely than that

for O'Bryant.

It's also worth noting that because the sample contains no BLS controls with propensity score values above

.8 (or .9 in one window), the BLS estimates fail to reflect outcomes for applicants with admissions probabilities

above this value. Figure 2-8 documents other noteworthy features of conditional-on-score comparisons: the

O'Bryant treatment effect on the non-treated implicitly compares the many non-treated applicants with low
13

Smoothing here uses the edge kernel with Stata's default bandwidth.14
Propensity score models for the smaller sample of BLS applicants omit test date and application preference dummies.
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scores to the fewer (though still plentiful) treated O'Bryant applicants with scores in this range; the BLS

treatment effect on the treated compares a modest number of treated applicants, more or less uniformly

distributed across score values. with corresponding untreated observations, of which many more are low-

scoring than high.

The propensity-score-weighted estimates reported in columns 5-8 of Table 2.5 are remarkably consistent

with the linear reweighting estimates shown in columns 1-4 of the table. In particular, the estimates here

suggest most BLS students would do no worse if they had had to go to BLA instead, while low scoring

O'Bryant applicants might enjoy substantial gains in ELA were they offered a seat at O'Bryant. At the same

time, the propensity score estimates for BLS applicants reported in columns 6 and 8 are highly imprecise.

These BLS estimates are not only much less precise than the corresponding O'Bryant estimates, the standard

errors here are two-four times larger than those generated by linear reweighting for the same samples. Linear

reweighting looks like an attractive procedure in this context.

2.5 Fuzzy CIA Models

Estimates of the effect of O'Bryant offers on the ELA scores of 9th grade applicants are reasonably stable as

distance from the cutoff grows. By contrast, the estimated effect of O'Bryant offers on math scores appears

to increase as window width or distance from the cutoff increases. In a window of width 10, for example,

estimated O'Bryant math effects are only marginally significantly different from zero, while the estimate

in a window of width 20 is almost twice as large and significant (at .16c- with a standard error of .05a).

Taken at face value, this finding suggests that the weakest 9th grade applicants stand to gain the most

from O'Bryant admission, an interesting substantive finding. Omitted variables bias (failure of CIA) seems

unlikely to explain this pattern since the relevant conditional independence tests, reported in columns 1 and

5 of Table 2.4, show no violations of CIA.

An alternative explanation for the pattern of O'Bryant math estimates plotted in Figure 2-7 begins with

the observation that exam school offers affect achievement by facilitating exam school enrollment. Assuming,

as seems plausible, that exam school offers affect outcomes solely through enrollment (that is, other causal

channels, such as peer effects, are downstream to enrollnment), the estimates in Table 2.5 can be interpreted

as the reduced form for an instrumental variables (IV) procedure in which exam school enrollment is the

endogenous variable. The magnitude of reduced form comparisons is easier to interpret when the relevant

first stage estimates scale these effects. If the first stage changes as a function of the running variable,

comparisons of reduced form estimates across running variable values are meaningful only after rescaling.

In principle, IV methods make the appropriate adjustment. A question that arises here, however, is how to

interpret IV estimates constructed under the CIA in a world of heterogeneous potential outcomes, where the

15The standard errors reported in this table use a bootstrap with 500 replications. Bootstrap standard errors provide

asymptotically valid confidence intervals for estimators like (2.19) since, as note by Hirano, Jinbens, and Ridder (2003), the
propensity-score-weighting estimator is asymptotically linear. As noted at the end of Section 2.3.1, estimates based on CEI
instead of the CIA are imprecise. Still, the general pattern is similar, suggesting positive effects at O'Bryant only.
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average causal effects identified by IV potentially vary with the running variable.

We estimate and interpret the causal effects of exam school enrollment by adapting the dummy treat-

ment/dummy instrument framework outlined in Abadie (2003). This framework allows for unrestricted

treatment effect heterogeneity in potentially nonlinear IV models with covariates. The starting point is

notation for potential treatment assignments, W0 i and W 12, indexed against the instrument, in this case,

exam school offers indicated by Di. Thus, Woi indicates (eventual) exam school enrollment among those not

offered a seat, while Wli indicates (eventual) exam school enrollment among those offered a seat. Observed

enrollment status is

Wi = Woi(1 - Di) + Wi2 D i .

The core identifying assumption in our IV setup is a generalized version of CIA:

GENERALIZED CONDITIONAL INDEPENDENCE ASSUMPTION (GCIA)

(Yi, Y1i, WOi, Wli) -L rik I Xi

GCIA can be assumed to hold in a d-neighborhood of the cutoff as with BCIA. We also maintain the

common support assumption given in Section 2.3.

The GCIA generalizes simple CIA in three ways. First, GCIA imposes full independence instead of

mean independence; this seems innocuous since any behavioral or assignment mechanism satisfying the

latter is likely to satisfy the former. Second, along with potential outcomes, the pair of potential treatment

assignments (Woi and W1i) is taken to be conditionally independent of the running variable. Finally, GCIA

requires joint independence of all outcome and assignment variables, while the CIA in Section 2.3 requires

only marginal (mean) independence. Again, its hard to see why we'd have the latter without the former.

2.5.1 Fuzzy Identification

As in Section 2.3.3, the expectations in this section should be understood to be conditional on the largest

value of d that satisfies GCIA.

2.5.1.1 Local Average Treatment Effects

In a local average treatment effects (LATE) framework with Bernoulli treatment and Bernoulli instruments,

the subset of compliers consists of individuals whose treatment status can be changed by changing the

instrument. This group is defined here by W1i > Woi. A key identifying assumption in the LATE framework

is monotonicity: the instrument can only shift treatment one way. Assuming that the instrument Di satisfies

monotonicity with Wii ;> Wo, and that for some i the inequality is strong, so there is a first-stage, the LATE

theorem (Imbens and Angrist, 1994) tells us that

E[yilDi = 1] - E[yilDi = 0] =
EWI= E 1] - EWD - YW 1 > Wo
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In other words, a simple Wald-type IV estimator captures average causal effects on exam school applicants

who enroll when they receive an offer but not otherwise.

Abadie (2003) generalizes the LATE theorem by showing that the expectation of any measurable function

of treatment, covariates, and outcomes is identified for compliers. This result facilitates IV estimation using

a wide range of causal models, including nonlinear models such as those based on the propensity score. Here,

we adapt the Abadie (2003) result to a fuzzy RD setup that identifies causal effects away from the cutoff.

This requires a conditional first stage, described below:

CONDITIONAL FIRST STAGE

P[W1j = I1\xi ] > P(Woi = I |xi ] a.s

Given GCIA, common support, monotonicity, and a conditional first stage, the following identification result

can be established (see the appendix for details):

THEOREM 1 (FUZZY CIA EFFECTS)

E [Y1 - Y 0jW 11 > W 0 j,0 < ri < c]

_____________P[0 <r ~iE (Di, xi) y (2.22)
P[W1i > Wo < ri < c] P[O < T' < C]

D.- A(xi)
f or 0 (D , x) - Di - A(x) (2.23)

A(xi)[1 -- A(xi)|

Estimators based on (2.22) capture causal effects for compliers with running variable values falling into any

range over which there's common support.16

At first blush, it's not immediately clear how to estimate the conditional compliance probability, P[Wi >

Wo 10 < ri < c], appearing in the denominator of (2.22). Because everyone to the right of the cutoff is offered

treatment, there would seem to be no data available to estimate compliance rates conditional on 0 < ri < c

(in the original LATE framework, the IV first stage measures the probability of compliance). Paralleling an

argument in Abadie (2003), however, the appendix shows that

r P [0 <Tri < c xi]

P[Wii > WoJ0 < r< c] = E r, (Wi, Di xi) --< ] } (2.24)
P [0 < ri < c]

where

r, (U, Dixi) I -W (1 - D) (1 - W) Di
1 - A(xi) A(xi)

1 6 The weighting function in the numerator is much like that used to construct average treatment effects in Hirano, linbens,

and Ridder (2003) and Abadie (2005). Extensions of this theorem along the lines suggested by Theorem 3.1 in Abadie (2003)

identify the marginal distributions of Yoj and Y 11.
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2.5.1.2 Average Causal Response

The causal framework leading to Theorem 1 is limited to Bernoulli endogenous variables. For some applicants,

however, the exam school treatment is mediated by years of attendance rather than a simple go/no-go

decision. We develop a fuzzy CIA estimator for ordered treatments by adapting a result from Angrist and

Imbens (1995). The ordered treatment framework relies on potential outcomes indexed against an ordered

treatment, wi. In this context, potential outcomes are denoted by Yj when wi = j, for j = 0, 1, 2, ... , J.

We assume also that potential treatments, w 1i and w0j, satisfy monotonicity with wit > woi and generate a

conditional first stage:

E[w1j\xj] # E[wojjxi]

The Angrist and Imbens (1995) Average Causal Response (ACR) theorem describes the Wald IV estimand

as follows:

E [y Di = 1] - E [y Di= 0]
E [wi |Di = 1] - E (wi |Di =0]= EYg-Y |w j>w]

where

P [w1i j > w0o]
Et P (w1i > f > wo |
P [wi < j Di = 0] - P [wi < j \ Di = 1]

E [wi Di = 1] - E [wi | Di = 0]

Wald-type IV estimators therefore capture a weighted average of the average causal effect of increasing wi

from j - 1 to j, for compliers whose treatment intensity is moved by the instrument from below j to above

j. The weights are given by the impact of the instrument on the cumulative distribution function (CDF) of

the endogenous variable at each intensity.

The GCIA assumption allows us to establish a similar result in a fuzzy RD setup with an ordered

treatment. The following is shown in the appendix:

THEOREM 2 (FUZZY AVERAGE CAUSAL RESPONSE)

E {E [yj I Di = 1, xj] - E [yi | Di 0, x1 ] 10 < ri < c}
E {E [wi I Di = 1, X] - E [wi I Di 0, i] 10 < ri < c}

vjcE [Yj - Y _, | w1i > j > woi, 0 < ri < c] (2.25)

where

P [wi ->j > wai 10 < ri < c]
S P [w > e > woi 0 < ric (2.26)

This theorem says that a Wald-type estimator constructed by averaging covariate-specific first-stages and re-

102



duced forms can be interpreted as a weighted average causal response for compliers with running variable val-

ues in the desired range. The incremental average causal response, E [Yji - Yj _ 1,i I W ;> j > w0i, 0 < rIi < C ,

is weighted by the conditional probability the instrument moves the ordered treatment through the point at

which the incremental effect is evaluated.

In practice, we estimate the left hand side of (2.25) by fitting linear models with covariate interactions

to the reduced form and first stage. The resulting estimation procedure adapts Kline (2011) to an ordered

treatment and works as follows: estimate conditional linear reduced forms interacting Di and xi; use these

estimates to construct the desired average reduced form effect as in (2.20) and (2.21); divide by a similarly

constructed average first stage." The same procedure can be used to estimate (2.25) for a Bernoulli treatment

like Wi, in which case the average causal response identified by Theorem 2 becomes the average causal effect

identified by Theorem 1 (though the corresponding estimates won't be algebraically the same unless the

propensity score model used under Theorem 1 is linear).

2.5.2 Fuzzy Estimates

As with the sharp estimates discussed in Section (2.4), fuzzy enrollment effects are estimated for applicants

to the left of the O'Bryant cutoff and to the right of the BLS cutoff, in windows setting d equal to 10, 15

and 20. The enrollment first stage changes remarkably little as distance from the cutoff grows. This can be

seen in columns 1-4 of Table 2.6, which report estimates of the effect of exam school offers on exam school

enrollment, constructed separately for O'Bryant and BLS applicants using equation (2.24). The propensity

score model is the same as that used to construct the estimates in Table 2.5 (Table 2.6 shows separate first

stage estimates for the math and ELA samples, as these differ slightly). Given this stable first stage, its

unsurprising that estimates of E[Y - YOjIW 1 > Woj, 0 < ij < d], reported in columns 5-8 of the table.

change little as a function of d. The pattern here is consistent with that in Table 2.5, with small and

statistically insignificant effects at BLS, and evidence of large effects at O'Bryant. Estimates of O'Bryant

effects on ELA scores range from an impressive gain of .38a when d = 20, to a still-substantial .27u when

the window is half as wide. The estimated O'Bryant effects on math scores are also considerable, varying

from .17a to .23a.

The gains for inframarginal applicants who enroll at O'Bryant are perhaps too large to be credible and

may therefore signal failure of the underlying exclusion restriction, which channels all causal effects of an

exam through anm enrollment dummy. Many who start in an exam school drop out, so we'd like to adjust

these estimates for years of exam school exposure. We therefore treat years of exam school enrollment as the

endogenous variable and estimate the ACR parameter on the right-hand side of equation (2.25), using the

modified linear reweighting procedure described above. The covariate parameterization used to construct

both reduced form and first stage estimates is the same as that used to construct the sharp estimates in

17 Specifically, let 0 be the main effect of Di and let 01 be the vector of interactions with xi in a first stage regression of wi
on Di, xi, and Dixi. The denominator of (2.25) is #o + O'pc, where ptc = E[xi J0 < ri < c].
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Table 2.5.

First stage estimates for years of exam school enrollment, reported in columns 1-4 of Table 2.7, indicate

that successful BLS applicants spend about 1.8 years in BLS between application and test date, while

successful O'Bryant applicants spend about 1.4 years at O'Bryant between application and test date. The

associated ACR estimates, reported in columns 5-8 of the table, are in line with those in Table 2.6, but

considerably more precise. For example, the effect of a year of BLS exposure on ELA scores is estimated

to be no more than about .05o-, with a standard error of roughly the same magnitude. This compares with

estimates of about the same size in column 8 of Table 2.6, but standard errors for the latter are five or

more times larger. The precision gain here would seem to come from linearity of the estimator and not the

change in endogenous variable, paralleling precision gains seen in the switch from propensity score to linear

reweighting when constructing the sharp estimates in Table 2.5.

ELA estimates for O'Bryant show gains of about .14- per year of exam school exposure, a finding that

appears to be more stable across window width than the corresponding dummy enrollment estimates in

column 7 of Table 2.6. This comparison suggests that some of the variability seen in the Table 2.6 estimates

comes from a failure to adjust for small changes in the underlying first stage for years of enrollment across

windows (as can be seen in column 3 of Table 2.7. At the same time, the estimated O'Bryant math gains

in column 5 of Table 2.7 still fade in a narrower window, a pattern seen for the O'Bryant math estimates in

Tables 2.5 and 2.6.

2.6 Summary and Directions for Further Work

RD estimates of the effect of Boston exam school offers generate little evidence of an achievement gain for most

applicants on the margin of admission, but these results need not be relevant for applicants with running

variable values well away from admissions cutoffs. This observation motivates RD-inspired identification

strategies for causal effects away from the cutoff. Parametric extrapolation seems like a natural first step,

but a parametric approach generates unsatisfying estimates of the effects of exam school offers, sensitive to

functional form and too imprecise to be useful. We therefore turn to identification strategies based on a

conditional independence assumption that focuses on the running variable.

A key insight emerging from the RD framework is that the only source of omitted variables bias is the

running variable. Our conditional independence assumption therefore makes the running variable ignorable,

that is, independent of potential outcomes, by conditioning on other predictors of outcomes. When the

running variable is ignorable, treatment is ignorable. The conditional independence assumption underlying

ignorability has strong testable implications that are easily checked in this context. Specifically, the CIA

implies that in samples limited to either treated or control observations, regressions of outcomes on the

running variable and the covariates supporting CIA should show no running variable effects. A modified or

bounded version of the CIA asserts that this conditional independence relation holds only in a neighborhood
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of the cutoff.

Among 9th grade applicants to the O'Bryant school and the Boston Latin School, bounded conditional

independence appears to hold over a reasonably wide interval. Importantly, the conditioning variables

supporting this result include 7th or 8th grade and 4th grade MCAS scores, all lagged versions of the 10th

grade outcome variable. Lagged middle school scores in particular seems like a key control, probably because

these relatively recent baseline tests are a powerful predictor of future scores. Lagged outcomes are better

predictors, in fact, than the running variable itself, which is a composite constructed from applicants' GPAs

and a distinct exam school admissions test.

Results based on the CIA suggest that inframnarginal high-scoring BLS applicants gain little (in terms of

achievement) from BLS attendance, a result consistent with the RD estimates of BLS effects at the cutoff

reported in Abdulkadiroglu, Angrist, and Pathak (2014). At the same time, CIA-based estimates using

both linear and propensity score models generate robust evidence of strong gains in English for unqualified

inframarginal O'Bryant applicants. Evidence of 10th grade grade ELA gains also emerge from the RD

estimates of exam school effects reported by Abdulkadiroglu, Angrist, and Pathak (2014), especially for

nonwhites. The CIA-based estimates reported here suggest similar gains would likely be observed should

the O'Bryant cutoff be reduced to accommodate currently inframarginal high school applicants, perhaps as

a result of re-introducing affirmative action considerations in exam school admissions.

We also modify CIA-based identification strategies for fuzzy RD and use this modification to estimate

the effects of exam school enrollment and years of exam school attendance, in addition to the reduced form

effects of exam school admissions offers. A fuzzy analysis allows us to explore the possibility that changes in

reduced form offer effects as a function of the running variable are driven by changes in an underlying first

stage for exam school exposure. Interestingly, the fuzzy extension opens the door to identification of causal

effects for compliers in RD models for quantile treatment effects. As noted recently by Frandsen, Frolich,

and Melly (2012), the weighting approach used by Abadie, Angrist, and Imbens (2002) and Abadie (2003)

breaks down in a conventional RD framework because the distribution of treatment status is degenerate

conditional on the running variable. By taking the running variable out of the equation, our framework

circumvents this problem, a feature we plan to exploit in future work on distributional outcomes.

In a parallel and ongoing investigation, Rokkanen (2014) develops identification strategies for RD designs

in which the CIA conditioning variable is an unobserved latent factor. Multiple noisy indicators of the

underlying latent factor provide the key to away-from-the-cutoff identification in this new context. An

important unsolved econometric problem implicit in our empirical strategy is causal inference conditional on

a pretest. Estimators that condition on the results of a specification test may have sampling distributions for

which conventional asymptotic approximations are poor. Pretesting is a challenging and virtually ubiquitous

problem in applied econometrics. It remains to be seen whether recent theoretical progress on the pretesting

problem (e.g., Andrews and Guggenberger (2009); Belloni, Chernozhukov, and Hansen (2012)) can be applied

fruitfully in this context.
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Finally, the mixed results reported here raise the question of what might explain the variation in our

estimates across schools. In a pair of recent papers, Abdulkadiroghi, Angrist, Dynarski, Kane, and Pathak

(2011) and Angrist, Cohodes, Dynarski, Pathak, and Walters (2013) document large gains at Boston charter

high schools when using admissions lotteries to estimate the effects of charter attendance relative to regular

district schools. These gains appear to vary inversely with students' baseline achievement, suggesting that

the quality of the implicit counterfactual may be an important driver of the treatment effects arising from

school choice. The fallback school for most O'Bryant applicants (a regular district school) may have lower

value-added than the fallback school for BLS applicants (mostly the BLA exam school), even though the

gain in peer quality is larger at the admissions cutoff for the latter. In ongoing work, we're continuing to

explore the nexus linking school choice, school quality, and measures of students' baseline ability.
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2.7 Figures and Tables
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Figure 2-1: Offer and Enrollment at O'Bryant and Boston Latin School
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Figure 2-2: Peer Achievement at O'Bryant and Boston Latin School
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Figure 2-3: 10th Grade Math and ELA Scores at O'Bryant and Boston Latin Schools
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Figure 2-5: Parametric Extrapolation at O'Bryant and Boston Latin School for 10th Grade Math
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Table 2.1: Destinations of Applicants to O'Bryant and Boston Latin School

O'Bryant Latin School
D=0 D=1 D=0 D=1

(1) (2) (3) (4)
Panel A. 7th Grade Applicants

Traditional Boston public schools 1.00 0.28 0.08 0.05
O'Bryant 0.00 0.72 0.06 0.00
Latin Academy 0.00 0.00 0.86 0.01
Latin School ... ... 0.00 0.93

Panel B. 9th Grade Applicants
Traditional Boston public schools 1.00 0.34 0.15 0.04
O'Bryant 0.00 0.66 0.00 0.00
Latin Academy ... ... 0.86 0.02
Latin School ... ... 0.00 0.94

Notes: This table describes the destination schools of Boston exam school applicants. Enrollment rates are
measured in the fall admissions cycle following exam school application and estimated using local linear
smoothing. The sample of Boston 7th grade applicants includes students who applied for an exam school seat
between 1999-2008. The sample of Boston 9th grade applicants includes students who applied for an exam
school seat between 2001-2007.

Table 2.2: Reduced Form Estimates for 10th Grade MCAS Scores

Parametric Nonparametric

Latin Latin

O'Bryant School O'Bryant School
(1) (2) (3) (4)

Panel A. 7th Grade Applicants
Math -0.011 -0.034 0.034 -0.055

(0.100) (0.060) (0.056) (0.039)
1832 1854 1699 1467

ELA 0.059 0.021 0.125** 0.000
(0.103) (0.095) (0.059) (0.061)

1836 1857 1778 1459

Panel B. 9th Grade Applicants

Math 0.166 -0.128 0.128* -0.144*
(0.109) (0.117) (0.066) (0.076)
1559 606 1386 361

ELA 0.191* 0.097 0.180*** 0.048

(0.112) (0.187) (0.066) (0.106)

1564 607 1532 458

Notes: This table reports estimates of the effects of exam school offers on 10th grade
MCAS scores. The sample covers students within 20 standardized units of offer cutoffs.
Parametric models include a cubic function of the running variable, allowed to differ on
either side of offer cutoffs. Non-parametric estimates use the edge kernel, with

bandwidth computed following DesJardins and McCall (2008) and Imbens and
Kalyanaraman (2012). Optimal bandwidths were computed separately for each school.
Robust standard errors are shown in parentheses. The number of observations is
reported below standard errors.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.3: Parametric Extrapolation Estimates for 10th Grade Math

O'Bryant Latin School

c =-1 c =-5 c = -10 c = -15 c1 c = 5 c = 10 c = 15

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: 7th Grade App/kcants

Linear 0.041 0.061 0.085 0.110 -0.076** -0.051 -0.021 0.010

(0.052) (0.057) (0.072) (0.093) (0.035) (0.040) (0.049) (0.061)

1832 1832 1832 1832 1854 1854 1854 1854

Quadratic 0.063 0.204 0.391* 0.588 -0.056 -0.111 -0.152 -0.161

(0.075) (0.125) (0.237) (0.384) (0.051) (0.088) (0.162) (0.261)

1832 1832 1832 1832 1854 1854 1854 1854

Cubic 0.034 0.167 0.247 0.266 -0.050 -0.096 -0.106 -0.065

(0.110) (0.336) (0.921) (1.927) (0.073) (0.220) (0.589) (1.215)

1832 1832 1832 1832 1854 1854 1854 1854

Panel B: 9th Grade Applicants

Linear 0.088 0.083 0.077 0.071 -0.090 0.079 0.291*** 0.502***

(0.057) (0.059) (0.070) (0.088) (0.065) (0.063) (0.108) (0.168)

1559 1559 1559 1559 606 606 606 606

Quadratic 0.170** 0.264** 0.427* 0.639* -0.147* -0.106 0.078 0.409

(0.085) (0.133) (0.237) (0.372) (0.088) (0.142) (0.303) (0.713)

1559 1559 1559 1559 606 606 606 606

Cubic 0.143 0.069 -0.059 -0.355 -0.061 0.196 0.996 3.094

(0.119) (0.327) (0.851) (1.735) (0.118) (0.338) (0.910) (2.543)

1559 1559 1559 1559 606 606 606 606

Notes: This table reports estimates of effects on 10th grade Math scores away from the RD cutoff at points indicated in the column heading. Columns 1-4
report estimates of the effect of O'Bryant attendance on unqualified O'Bryant applicants. Columns 5-8 report the effects of BLS attendance on qualified
BLS applicants. The estimates are based on first, second, and third order polynomials, as indicated in rows of the table. Robust standard errors are shown
in parentheses.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.4: Conditional Independence Tests

Math ELA
O'Bryant Latin School O'Bryant Latin School

D=O 1=1 1)=0 D= I D=O D= I D=0 1)= I
Window (1) (2) (3) (4) (5) (6) (7) (8)

Panel A. 7th Grade Applicants

20 0.022*** 0.015*** 0.008*** 0.014*** 0.015*** 0.006 0.013*** 0.018***
(0.004) (0.004) (0.002) (0.002) (0.004) (0.005) (0.003) (0.003)

838 618 706 748 840 621 709 750

15 0.023*** 0.015*** 0.010*** 0.012*** 0.014** 0.006 0.007 0.015***
(0.006) (0.005) (0.003) (0.003) (0.005) (0.006) (0.005) (0.005)

638 587 511 517 638 590 514 519

10 0.030*** 0.016** 0.010* 0.007 0.024** 0.001 0.012 0.012
(0.009) (0.008) (0.006) (0.005) (0.010) (0.009) (0.010) (0.008)

419 445 335 347 421 447 338 348

Panel B. 9th Grade Applicants
20 0.002 0.005 0.008** 0.018 0.003 0.002 0.006 0.055

(0.004) (0.003) (0.003) (0.028) (0.004) (0.004) (0.005) (0.053)
513 486 320 49 516 489 320 50

15 0.010 0.000 0.006 0.018 0.009 -0.000 0.000 0.055
(0.006) (0.005) (0.006) (0.028) (0.006) (0.006) (0.007) (0.053)

375 373 228 49 376 374 229 50

10 0.003 -0.001 0.007 0.018 0.014 -0.004 0.014 0.055
(0.011) (0.009) (0.009) (0.028) (0.011) (0.010) (0.015) (0.053)

253 260 142 49 253 261 142 50
Notes: This table reports regression-based tests of the conditional independence assumption described in the text. Cell entries show the coefficient on the
running variable in models for 10th grade math and ELA scores that control for baseline scores, along with indicators for special education status, limited
English proficiency, eligibility for free or reduced price lunch, race (black/Asian/Hispanic) and sex, as well as indicators for test year, application year
and application preferences. Estimates use only observations to the left or right of the cutoff as indicated in column headings, and were computed in the
window width indicated at left. Robust standard errors are reported in parentheses.
* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.5: CIA Estimates of the Effect of Exam School Offers for 9th Grade Applicants

Linear Reweighting Propensity Score Weighting
Math FLA Math ELA

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School O'Bryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.156*** -0.031 0.l98*** 0.088 0.131*** -0.037 0.236*** 0.031

(0.040) (0.090) (0.041) (0.083) (0.051) (0.057) (0.077) (0.10()
N untreated 513 320 516 320 509 320 512 320
N treated 486 49 489 50 482 49 485 50

15 0.129*** -0.080 0.181*** (.051 0.103** -0.070 0.191 *** 0.003
(0.044) (0.055) (0.044) (0.093) (0.052) (0.054) (0.062) (0.111)

N untreated 375 228 376 229 373 228 374 229
N treated 373 49 374 50 370 49 371 50

10 0.091* -0.065 0.191*** -0.000 0.093* -0.084 0.166** -0.062
(0.054) (0.059) (0.053) (03397) (0.054) (0.062) (0.068) (0.133)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 258 49 259 50

Notes: This table reports estimates of the effect of exam school offers on MCAS scores for 9th grade applicants to O'Bryant and BLS. Columns 1-4 report
results from a linear reweighting estimator, while columns 5-8 report results (roa inverse propensity score weighting, as described in the text. Controls are the
same as used to construct the test statistics except that the propensity score models for Latin School omit test year and application preference dunnies. The
O'Bryant estimates are effects ott nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are are effects on treated applicants
in windowvs to the right of the cutoff. Standard errors (showno in parentheses) woere computed using a nonparametric bootstrap with 500 replications. The table
also reports tle number of treated and untreated (offered and not offered) observations in each windo\, in the relesant outcome sample.

* significant at 10%: ** significant at 5"%; *** significant at 1%

Table 2.6: Fuzzy CIA Estimates of LATE (Exam School Enrollment) for 9th Grade Applicants

First Stage LATE

Math ELA Math ELA

Latin Latin Latin Latin

O'Bryant School O'Bryant School O'Bryant School O'Bryant School
Window (1) (2) (3) (4) (5) (6) (7) (8)
20 0.659*** 0.898*** 0.660*** 0.900*** 0.225** -0.031 0.380** 0.060

(0.062) (0.054) (0.062) (0.052) (0.088) (0.217) (0.183) (0.231)

N untreated 509 320 512 320 509 320 512 320

N treated 482 49 485 50 482 49 485 50

15 0.666*** 0.898*** 0.667*** 0.900** 0.174** -0.085 0.302** 0.020

(0.047) (0.048) (0.050) . (0.047) (0.080) (0.177) (0.125) (0.225)

N untreated 373 228 374 229 373 228 374 229

N treated 370 49 371 50 370 49 371 50

10 0.670*** 0.898*** 0.678*** 0.9(1(1*** 0.184* -0.104 0.274** -0.058

(0.055) (0.048) (0.050) (0.047) (0.108) (0.274) (0.121) (0.402)

N untreated 253 142 253 142 253 142 253 142

N treated 258 49 259 50 258 49 259 50
Notes: This table reports fuzzy RD estimates of the effect of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS. The
O'Bryant estimates are effects otn nontreated applicants in windows to the left of the admissions Cutoff; the BLS estimates are for treated applicants in windows
to the right of the cutoff. The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a modified propensity-score style

weighting estimator described in the text. Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications. The

table also reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.

* significant at 10%; ** significant at 5%; *** significant at 1%
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Table 2.7: Fuzzy CIA
Grade Applicants

Estimates of Average Causal Response (Years of Exam School Enrollment) for 9th

First Stage ACR
Math ELA Math ELA

Latin Latin Latin Latin
O'Bryant School O'Bryant School O'Bryant School OBryant School

Window (1) (2) (3) (4) (5) (6) (7) (8)
20 1.394*** 1.816*** 1.398*** 1.820*** 0.11?*** -0.017 0.142*** 0.048

(0.064) (0.096) (0.065) (0.093) (0.029) (0.050) (0.030) (0.045)
N untreated 513 320 516 320 513 320 516 320
N treated 486 49 489 50 486 49 489 50

15 1.359*** 1.816*** 1.363*** 1.820*** 0.095*** -0.044 0.133*** 0.028
(0.064) (0.099) (0.064) (0.089) (0.032) (0.031) (0.034) (0.047)

N untreated 375 228 376 229 375 228 376 229
N treated 373 49 374 50 373 49 374 50

10 1.320*** 1.816*** 1.312*** 1.820*** 0.069 -0.036 0.145*** -0.000
(0.080) (0.095) (0.080) (0.089) (0.043) (0.031) (0.041) (0.054)

N untreated 253 142 253 142 253 142 253 142
N treated 260 49 261 50 260 49 261 50
Notes: This table reports fuzzy RD estimates of the effect of years of exam school enrollment on MCAS scores for 9th grade applicants to O'Bryant and BLS.
The O'Bryant estimates are effects on nontreated applicants in windows to the left of the admissions cutoff; the BLS estimates are for treated applicants in
windows to the right of the cutoff. The first stage estimates in columns 1-4 and the estimated causal effects in columns 5-8 are from a modified linear 2SLS
estimator described in the text. Standard errors (shown in parentheses) were computed using a nonparametric bootstrap with 500 replications. The table also
reports the number of treated and untreated (offered and not offered) observations in each window, in the relevant outcome sample.
* significant at 10%; ** significant at 5%; *** significant at 1%

118



2.8 Appendix

Defining Sharp Samples

Boston exam school applicants rank up to three schools in order of preference, while schools rank their

applicants according to an average of GPA and ISEE scores. Applicants are ranked only for schools to which

they've applied, so applicants with the same GPA and ISEE scores might be ranked differently at different

schools depending on where they fall in each school's applicant pool (each also school weights ISEE and GPA

a little differently). Applicants are ranked at every school to which they apply, regardless of how they've

ordered schools. Student-proposing deferred acceptance (DA) generates offers from student preference and

school-specific rankings as follows:

" In round 1: Each student applies to his first choice school. Each school rejects the lowest-ranked

applicants in excess of capacity, with the rest provisionally admitted (students not rejected at this step

may be rejected in later steps.)

" At round f > 1: Students rejected in Round f-1 apply to their next most preferred school (if any).

Each school considers these students and provisionally admitted students from the previous round,

rejecting the lowest-ranked applicants in excess of capacity from this combined pool and producing a

new provisional admit list (again, students not rejected at this step may be rejected in later steps.)

The DA algorithm terminates when either every student is matched to a school or every unmatched student

has been rejected by every school he has ranked.

Let Tk. denote the rank of the last applicant offered a seat at school k; let cik denote student i's composite

score at school k; and write the vector of composite scores as ci = (cii, ci 2 , ci3), where cik is missing if student

i did not rank school k. A dummy variable qi(k) = cik < Tk] indicates that student i qualified for school

k by clearing Tk (rank and qualification at k are missing for applicants who did not rank k). Finally, let Pik

denote student i's kth choice and represent i's preference list by pi = (Pit, Pi2, Pi3), where Pik = 0 if the list

is incomplete. Students who ranked and qualified for a school will not be offered a seat at that school if they

get an offer from a more preferred school. With three schools ranked, applicant i is offered a seat at school

k in one of three ways:

" The applicant ranks school k first and qualifies: ({pii = k} n {qi(k) 1}).

" The applicant doesn't qualify for his first choice, ranks school k second and qualifies there: ({qi(pii) =

0} n {Pi2 = k} n {qi(k) = 1}).

" The applicant doesn't qualify at his top two choices, ranks school k third, and qualifies there: ({qi(pi1) =

qi(pi2) =0} n {pi = k} n {qi(k) = 1}).
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We summarize the relationship between composite scores, cutoffs, and offers by letting O be student i's

offer, with the convention that O = 0 means no offer. DA determines Oi as follows:

Oj = E pijqi(pij ) (I1 - qj (pif )).
j=1 If=

The formulation shows that the sample for which offers at school k are deterministically linked with the

school-k composite score - the sharp sample for school k - is the union of three sets of applicants:

* Applicants who rank k first, so (pii = k)

" Applicants unqualified for their first choice, ranking k second, so (qi (pi) = 0 n P2 = k)

" Applicants unqualified for their top two choices, ranking k third, so ((qj(pji) = qi(pi2)= 0) npi3 = k).

All applicants are in at least one sharp sample (at the exam school they rank first), but can be in more than

one. For example, a student who ranked BLS first, but did not qualify there, is also in the sharp sample for

BLA if he ranked BLA second.

A possible concern with nonparametric identification strategies using sharp samples arises from the fact

that the sharp sample itself may change discontinuously at the cutoff. Suppose, for example, that two

schools have the same cutoff and a common running variable. Some students rank school 2 ahead of school

1 and some rank school 1 ahead of school 2. The sharp sample for school 1 includes both those who rank 1

first and those who rank 2 first but are disqualified there. This second group appears only to the left of the

common cutoff, changing the composition of the sharp sample for school 1 (with a similar argument applying

to the sharp sample for school 2). In view of this possibility, all estimating equations include dummies for

applicants' preference orderings over schools.

Proof of Theorem 1

We continue to assume that GCIA and other LATE assumptions hold. Given these assumptions, Theorem

3.1 in Abadie (2003) implies that for any measurable function, g (y , Wi, xi), we have

1
E [g (yi, Wi, xi) I xi, Wi > Woj] = E [, (Wi, Di, xi) g (yi, Wi, xi) | xj] (2.27)

where

r, WiDixi) I - Wi (I - Dj) (I -- Wi) Di
1 - P[D = 1 I xj] P [D = 1 Xi]

and

1
E[g (Ywu, xu) xi, Wij > Wog] =E [n WDz)g(yz)|x]P [ 1/ > WVI~ \ xi] ] K l/,D,£)(~ ~ ~
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where W E {0, 1} and

ho (Wi, Di, xi)

/-1 (Wi, Di, xi)

P [D= 1 I xi] - Di
( W) (1 - P[D = I 1 xi])P[Di = I I xi

Di - PD=IIxj]
Wi (1 - P [Di 1 Xi]) P [D = 1 I xj]

Using the GCIA, we can simplify as follows:

E [g (Ywi, xi) I W11 > WOj, 0 < 1-i < c]

=E { E [g (Ywj, xi) I xi, W1; > WOj] I Wii > WOj, 0 < rj < c}

P [W1i >IWOi xi) E [rw (WiDi,xi) g (yi,xi) I X] dP [xi I Wi > Woj 0 < ri < c]

_______ P[0 <r~ <cj x;]I0< E c E w ,Di,xi) g(y,xi) Ixi P0< r c ]dP[xi] (2.28)
P [W 1t > WO

1 P[0 < ri < cxi|
P[0 < r < c]P[Wii > WOi 0

(yi, xi)]1

This implies that LATE can be written:

E [Y1 - Yoj I W1 > Woi,0 < ri < c]

E [Y1I W1 > Woi,0 < Ti < c] -

P[W > WOi 0 < ri < c E I

hi (W, Di, xi) - Ko (Wi, Di, xi)

(1 -P[Di 1 xi)P[Di1

Finally, by setting g (yi, Wi, xi) = 1 in equation (2.27) we get:

P [Wi > Woi I xi] = E [, (Wi, Di, xi) I xi].

Using the same steps as in equation (2.28), the GCIA implies:

P[Wi > Wi 0 < ri < C] SEP[W1i>WOi|xdi]0[<r-i Tc}

E [,(Wi Dixi)P [0 < r' < c \ xil]~
= E (Wi Dizi) P [0 < xi < C]_

121

where
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(Dx)P[0 < ri < c I xil ]
Dx P [0 < ri < c] I

= f

< rj < c) E [Kw (Wi,Di,xi)

V(Di, xi)



Proof of Theorem 2

Theorem 1 in Angrist and Imbens (1995) implies:

E [y Di = 1, x] - E [y Di = 0, xj]

E[wi Di = 1,xj] -E[wi Di =0,xi]

= Z P[wii i > woi xiE[Yi -Yj-1,-i wi i j > woi,xJ]

= P[wi;>j>wO |xi1].

Given the GCIA, we have:

E {E [y I Di = 1, xi] - E [y, I Di = 0, xj] 0 < ri < c}

P [w1i > j > w0 | xj] E [Y>i -Y-1,i I w~ i > j > woi, x] dP

P [wI j > woi xi, 0 < ri < c] E [Yi - j-1,i | w1 i > >

P [wi j> w0 i 0 < rj < c]

x fE [Yi - Y-

P wIi > J >
j

[xi |0 < ri < c]

woi,x] dP [xi 0 < ri < c]

*1,i I w >i j > woi, xi] dP [xi I wii > j > woj, 0 < ri < c]

woi |0 < ri < c] E [Yi - Yj-,i I w1i > j > woj, 0 < ri < c].

The GCIA can similarly be shown to imply:

E[E [wi | Di = I,xi] E[wi I Di = 0,x1] \0 < ,ri c]

E P [wi > j > wO 10 < ri < c].

Combining these results, the ACR can be written:

EF {E[y Di = 1, xi] - F [DiD 0, xi] 10 < ri C}
EF {E [wi 1Di 1, xi] - E[wi Di 0, xi] 10 < ri < C}

= ucE [Yi - Y-,i I w1i > j > woj, 0 < ri < c]

where

vi P [WI > j > woOi |0 < rj < c]
P [w1i > > wo i |0 < rj <c]
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Chapter 3

Adaptive Bandwidth Choice for the

Regression Discontinuity Design

3.1 Introduction

The regression discontinuity (RD) design, originating from Thistlewhite and Campbell (1960), has become

a popular approach in economics to identifying causal effects of various treatments. In this design the

treatment of interest is either fully or partly determined by whether the value of an observed covariate, often

referred to as the running variable, lies below or above a known cutoff. Under relatively weak assumptions,

this allows one to identify the causal effect of the treatment for individuals at the cutoff. RD designs have

been used to study, for instance, the effect of class size on student achievement (Angrist and Lavy, 1999),

parental valuation of school quality (Black, 1999), the effect of financial aid on college enrollment (van der

Klaauw, 2002), and the effect of Head Start on child mortality (Ludwig and Miller, 2007). In addition, Hahn,

Todd, and van der Klaauw (2001) and Porter (2003), among others, have made important contributions to

the literature on identification and estimation of treatment effects in the RD design.'

The consistency of the RD estimator relies heavily on the researcher's ability to correctly specify the

functional form for the relationship between the running variable and the outcome and the relationship

between the running variable and the treatment. This has lead to a widespread interest in nonparametric

approaches to estimating these relationships. A common approach in the recent literature has been to use

local polynomial regression (LPR), especially local linear regression. As the performance of LPR-based

methods depends heavily on the choice of a smoothing parameter, often referred to as the bandwidth, a key

question in implementing these methods is how to choose this parameter.

Traditionally, the bandwidth choice in empirical work using LPR-based RD estimators has been based on

'For extensive surveys of the literature, see Cook (2008), Imbens and Lemieux (2008), van der Klaauw (2008), and Lee and
Lemieux (2010).
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either ad hoc procedures or on approaches that are not directly suited to the RD design (Ludwig and Miller,

2005; DesJardins and McCall, 2008). However, in a recent influential paper Imbens and Kalyanaraman (2012)

studied in depth the problem of optimal bandwidth choice for local linear regression-based RD estimator

and proposed an algorithm that can be used to obtain a consistent estimator of the asymptotically optimal

RD bandwidth.2

This paper contributes to the literature by proposing an adaptive bandwidth choice algorithm for the

LPR-based RD estimator by building on previous work by Schucany (1995) and Gerard and Schucany

(1997).3 The algorithm is adaptive in the sense that it allows for different choices for the order of polynomial

and kernel function. In addition, the algorithm automatically takes into account the inclusion of additional

covariates as well as alternative assumptions on the variance-covariance structure of the error terms. Thus,

the proposed algorithm provides a convenient approach to bandwidth choice that retains its validity in

various settings.

I show that the proposed algorithm produces a consistent estimator of the asymptotically optimal band-

width. Furthermore, the resulting RD estimator satisfies the asymptotic optimality criterion of Li (1987)

and converges to the true parameter value at the optimal nonparametric rate (Stone, 1982; Porter, 2003). I

also provide Monte Carlo evidence illustrating that that the propoced algorithm works well in finite sample

and compares favorably to the algorithm by Imbens and Kalyanaraman (2012).

The rest of the paper is structured as follows. Section 2 reviews the RD design and the LPR-based RD

estimator. Section 3 introduces the proposed bandwidth choice algorithm and discusses its asymptotic prop-

erties. Section 4 presents Monte Carlo evidence illustrating the finite-sample performance of the proposed

algorithm. Section 5 concludes.

3.2 Regression Discontinuity Design

3.2.1 Setting and Parameter of Interest

Suppose one is interestein the causal effect of a binary treatment on some outcome. Let D denote an indicator

that equals 1 if an individual receives the treatment and 0 otherwise. Furthermore, let Yi and Y denote the

potential outcomes when an individual receives and does not receive the treatment. The observed outcome

of an individual, denoted by Y, is

Y (1 - D) x Yo + D x Yi.

In a sharp regression discontinuity (SRD) design D is a deteministic function of a continuous running
2

See also Arai and Ichimura (2013) for an alternative approach to optimal bandwidth choice for the local liner regression-based

RD estimator. Furthermore, Calonico, Cattaneo, and Titiunik (2014) discuss nonparametric estimation of robust confidence
intervals for the local liner regression-based RD estimator.

3
Similar approaches to optimal bandwidth choice have also been proposed by Ruppert (1997), Doksum, Peterson, and

Samarov (2000), and Prewitt (2003).
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variable R:4

D = 1(R>c)

where 1 (-) is an indicator function equal to 1 if the statement in parentheses is true and 0 otherwise. In

words, all individuals with the value of R at or above a cutoff c are assigned to the treatment group while

all individuals with the value of R below the cutoff c are assigned to the control group. Furthermore, there

is perfect compliance with the treatment assignment: all of the individuals assigned to the treatment group

receive the treatment whereas none of the individuals assigned to the control group receive the treatment.

Given the treatment assignment mechanism, a natural parameter of interest in the SRD design is

r = E [Y1 -Yo I R = c] ,

that is, the average effect of the treatment for individuals at the cutoff. Suppose that E [Y1 I R = r] and

E [Yo I R = r] exist and are continuous at R = c. Then

7 =lim E [Y I R = r] - lim E [Y I R=r]
r4c rTc

where m(r) = E [Y I R = r], m+(c) m (r) and m (c) = m (r). Thus, under relatively mild assumptions

T is nonparametrically identified and given by the difference in the limits of two conditional expectation

functions at the cutoff c.

3.2.2 Estimation using Local Polynomial Regression

I focus in this paper on the estimation of T using separate LPRs on both sides of the cutoff. 5 An attractive

property of the LPR-based approach is that it allows one to obtain a consistent estimator of r without

reliance on strong functional form assumptions. Moreover, the LPR-based approach reduces (and under

some assumptions even eliminates) the bias that afflicts other nonparametric regression function estimates

at boundary points.

Suppose we observe a sample (Yi, Ri), i = 1, . . . , n. The LPR-based estimator of r using a polynomial of

order p , kernel K (u), and bandwidth h is given by

f, (h) = ' (h) - 6- (h)

4I focus solely on SRD design in this paper. Fuzzy RD design is a straightforward extension that I leave for future research.
5

For a comprehensive treatment of LPR methods, see Fan and Gijbels (1996).
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where

6+ (h)

k1 (h) R -
arg min I1 (Ri C) K i -- ( - c)k

L TP(h) j

and

&- (h)

3-(h) nR -- c 2

arg rnin I ( Ri < c) K 'h Y - a - y( Ri - cOk
0',{ 1 }3 I =1 k=1

O-- (h) j

I have written the estimator , (h) in a way that makes explicit its dependence on the choice of the order

of polynomial p and the bandwidth h. The estimator p (h) also depends on the choice of the kernel K (u),

but this does not play a key role in what follows. Covariates could easily be included in the model, but I

abstract away from this for notational simplicity.

Let

Y1 1 (RI - c) ... (R1 - c)p

Yn I (Rn - C) -.-. (Rn -- C)

and define

P'(h) = X W XP X WhY

Op-- (h) = XP WXP X W -Y

where

Wh+ = di ag 11 ( Ri > c) K Ri h c

W, = diag 1 (Ri < c) K R hc

We can now write f, (h) equivalently as

(h) =e( (h) - P- (h)
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where el is a (p + 1) x 1 vector with one as its first element and zeros as the other elements.

Using standard results for Weighted Least Squares (WLS) estimators one can write the heteroskedasticity-

robust variance estimators for /3+ (h) and - (h) as

+ (h) = (x d W i [ X X w XB+ W+X X W X

-1 IP -1

6,-- (h) = X W+- X (En, X, XWj X!

where

$P diag [ Y - Xi r+ (h) 2

diag Y - Xs3- ())2

and X' is the ith row of X,. Thus,

0 (h) = e(i)+ (h) + fi- (h))ei'bp (h) P

provides a heteroskedasticity-robust variance estimator for ', (h) .6

As was mentioned above, there are in general three decisions one has to make when implementing LPR-

based estimators: order of polynomial p, kernel K (u) and bandwidth h. I focus in this paper on the choice

of It conditional on the choices of p and K (u). This is motivated by the observation that bandwidth choice is

commonly viewed as the key decision when implementing LPR-based estimators. As the bandwidth choice

algorithm proposed in this paper applies to generic p and K (u), I will make only some remarks regarding

these choices.

A common approach in the empirical literature is to use local linear regression-based estimators. These

are convenient in practice as the number of parameters needed to be estimated is relativelely small. These

estimators have also been shown to have attractive bias properties at boundary points (Fan and Gijbels,

1992) and to obtain the optimal convergence rate (Stone, 1982; Porter, 2003).

Common choices for the kernel include the uniform kernel K (u) = 1 (Jul < 1), the Epanechnikov kernel

K (u) = (1 - 2) 1(<u 1) and the triangular kernel (some authors refer to this as the edge kernel)

K (u) = (1 - |ul) 1 (|ul < 1). The popularity of the uniform kernel is mainly due to its practical convenience

while the Epanechnikov kernel has been shown to be optimal for estimation problems at interior points

(Fan, Gasser, Gijbels, Brockmann, and Engel, 1997). The triangular kernel is instead the most appropriate

choice for the RD design as it has been shown to be optimal for estimation problems at boundary points

(Cheng, Fan, and Marron, 1997). Imbens and Kalyanaraman (2012), for instance, focus on this kernel in

6 Note that in practice one can compute f-i (h) and +b (h) using WLS with full set of interactions for the running variable
controls and the indicator variable for the value of the running variable being above the cutoff. However, for simplicity I use
the above notation throughout the paper.
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their bandwidth choice algorithm.

3.3 Optimal Bandwidth Choice

3.3.1 Infeasible Bandwidth Choice

The optimality criteria I use in this paper is the Mean Squared Error (MSE) which can be written as

MSE [ii. (h)] = E [( (h) - r)2]

= E [f,p (h) _ 7]2 + E [( p (h) -- E [- p (h)]) .]

In words, the MSE equals the sum of the squared bias and the variance of f-. (h). While the estimation of the

variance of §,, (h) is relatively straightforward, the estimation of the bias of f, (h) is problematic. Thus, it

is typically difficult to obtain a good estimator of the bandwidth that minimizes the MSE.7 I follow instead

the standard approach in the literature on LPR-based methods and focus on the first-order asymptotic

approximation of the MSE refered to as the Asymptotic Mean Squared Error (AMSE). Furthermore, I focus

on the case in which the bandwidth is restricted to be the same on both sides of the cutoff as opposed to

choosing a different bandwidth to the left and to the right of the cutoff.8

I will next state the assumptions used throughout this paper.

Assumption J.

1. The observations (Yi, Ri), i = 1,... , n, are independent and identically distributed.

2. The conditional expectation function m (r) = E [Yi I Ri = r] is at least p + 2 times continuously differen-

tiable at r ,' c. Let m(k) (r) denote the kth derivative of m (r). m(k) (r) , k = 0,... ,p + 2, are uniformly

bounded on (c, c + Al] and [c - M, c) for some Al > 0. m(k) (C) and m() (c) , k = o,...,p + 2, exist and

are finite, where m (k) (c) and m~k) (c) denote the left and right limit of m(k) (r) at the cutoff c.

3. The marginal distribution of the running variable Ri, denoted by f (r), is continuous, bounded and bounded

away from zero around c.

4. Let e, denote the residual Y - m (Ri). The conditional variance function ou2 (r) = Var [ei I Rj = r] is

uniformly bounded on (c, c + M] and [c - M, c) for some M > 0. The left and right limits of o2 (r) at the

cutoff denoted by o2 (c) and cT_ (c), exist and are finite.

5. E [I |2 4 1 R, r] is uniformly bounded on (c, c + M] and [c - M, c) for some M > 0. The limits

lim E [ e, 1 R = r] and lim E [I E6 \4 R, = r] exist and are finite.
r4c rTc
6. The kernel K (u) is non-negative, bounded, different from zero on the compact interval [0,1] and contin-

uous on the open interval (0,1).
7

See also the discussion in Imbens and Kalyanaraman (2012).
8

Arai and Ichimura (2013) propose a bandwidth choice algorithm for the local linear regression-based estimator that uses
separate bandwidths to the left and right of the cutoff.
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We can now formally define the AMSE of , (h) as

AMSE [{-1, (h)] B,2(p+ ) +
nh

where

m(P+l) (C) c ,n(p+,) (c)
BP + c176 -ri-0

(p + 1)! + (p+ 1)!

V = +( r-'A+Fl + '7 (r-A-]F-.
f(C) +F+ f(C) -

The vectors/matrices F+, F-, 6+, 6-, A+, and A_, defined in the Appendix, depend only on K (u). The

AMSE provides an approximation to the MSE for small h and large nh, as shown in Theorem 1. The first

term of the AMSE corresponds to the square of the leading term of an asymptotic approximation of the bias

of , (h). The second term of the AMSE corresponds to the leading term of an asymptotic approximation

of the variance of -fP (h). The expression illustrates the bias-variance tradeoff inherent in the problem of

choosing h: using a larger bandwidth reduces the variance of , (h), but this happens at the cost of larger

bias, and vice versa.

Theorem 1 provides an expression for the asymptotically optimal bandwidth h0 pt that minimizes the

AMSE of , (h). We can see that h0 pt is increasing in the variation of the outcome at the cutoff and

decreasing in the squared difference of the curvatures of the two conditional expectation functions at the

cutoff. Futhermore, h0 pt is decreasing in the sample size. The assumption m ) (c) # mnZv+) (c) when p is

odd is made to avoid a case in which B, = 0 and consequently hpt = oc. It is possible to derive the optimal

bandwidth also for this setting by considering a higher order expansion of the bias of #, (h). However, I leave

this extension for future work.'

Theorem 6. Suppose that mn($4 ' (c) # m(_PA1 (c) when p is odd. Then

MSE [Kp (h)] = AMSE (h)] +op I 2(p+1 t +
nit

hopt = arg min AMSE [T,(h)]

= Cptn- 2
1

3

where

CoptV vl 2+3

2(p +1)B
2

Thus, the optimal bandwidth takes the form hopt = C 0)ptn- -t-3 for some constant Copt > 0 that de-

9 Arai and Ichimura (2013) propose a bandwidth choice algorithm for local linear regression-based estimator that takes into

account the case m (c) = r( (c).
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pends on the unknown parameters m (c), m (c), o+ (c), o- (c), and f (c). The problem of optimal

bandwidth choice therefore boils down to the optimal choice of C in h = Cn- 2 . A common approach in

the statistics and econometrics literature on LPR-based estimators is to estimate the unknown parameters

that enter Cpt. In the RD design literature such plug-in estimator has been proposed for the local linear

regression case by Imbens and Kalyanaraman (2012).10

3.3.2 Bandwidth Choice Algorithm

The bandwidth choice algorithm I propose in this paper is based on direct estimation of B and V without

the need to separately estimate the unknown parameters incorporated in these constants. The algorithm is

general enough to be directly applicable to settings with arbitrary choices regarding the order of polynomial

p and the kernel K (u). The proposed approach also automatically adapts to various departures from the

standard setting as discussed below.

The algorithm builds on the work by Schucany (1995) and Gerard and Schucany (1997)." The approach

I take to estimate B 2 is motivated by the observation that
p

-, (h) - = BphPl + op (hP+1) + Op ((nh)-)

-p+1 (h) -- T = 0 (hP+2) + op (hP+)+O ((nh)- .)

That is, the leading term of the bias of p+1 (h) is of higher order than that of flp (h). Thus, letting b2 (h)

denote the squared difference between these two estimators we get that

b2 (h) B h p+1 + 0p (h2p+l) + Op ((nh)- .

The approach I take to estimate V is motivated by a similar observation as one can write the heteroskedastivity-

robust variance estimator for # p (h) as

fOp (h) = + op + Op ((nh)-3 .
nh nP

Taken together, these observations imply that one can estimate B2 and V. consistently by regressing

b2 (hk) on h p+1 and Vp (h) on (nhk)- using a collection of initial bandwidths hk, k = 1, ... , K. The

1OSee also the alternative approaches to optimal bandwidth choice by Ludwig and Miller (2005) and DesJardins and McCall

(2008) as well as the discussion regarding these approaches in Imbens and Kalyanaraman (2012).
11

Similar approaches have also been proposed by Ruppert (1997), Doksum, Peterson, and Samarov (2000) and Prewitt (2003).
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resulting Ordinary Least Squares (OLS) estimators of B and V, are

2 _ = 1 bp (h.) Il2(-)

K +
- k1 I, (hk) (nhk)

_=1 (nhk) 2

where the constant term in both regresions is restricted to zero.

By plugging in and V to the expression for Copt the estimator of the asymptotically optimal bandwidth

h0 pt becomes

Ihapt = n2 v3.
2 (p + 1) B2

The asymptotic properties of the bandwidth estimator h,1 t, and the resulting RD estimator 'fp (hfrpt) are

stated in Theorem 2. First, hopt is a consistent estimator of the asymptotically optimal bandwidth hopt.

Second, the RD estimator t< (hopt) satisfies the asymptotic optimality criterion of Li (1987). What this

means is that, in terms of the MSE, the performance of the RD estimator using the estimated bandwidth is

asymptotically as good as the performance of the RD estimator using the true optimal bandwidth. Third,

the RD estimator p (Iopt ) converges to T at the optimal nonparamnetric rate (Stone, 1982; Porter, 2003).

Theorem 7. Suppose hA = -, k 1,... K, for some positive, finite constants Ck and 2
+ 

5 < < +2p+5 - 2 p+ 3 .

Then

- 1 = op (1)

MS E 1, hipt
___ - = op (1)

AISE [, (hopt)]

) Op (n )P+1

Note that the consistency of the bandwidth estimator Iopt, and consequently the optimality properties of

the resulting RD estimator tp (hopt), require that the initial bandwidths used to estimate B and V, converge

to zero at a slower rate than the asynmptotically optimal bandwidth hopt. While this is not necessary for the

consistency of V'p, it is needed to ensure the consistency of Ep.
A remaining question is how one should choose the parameters Cek, -y, and K that define the collection

of intial bandwidths hA, k = 1, . . . , K, in Theorem 1. Unfortunately, the asymptotic theory presented above

has very little to say regarding these pararneters. I propose to use the rate = I and the quantiles2p± 5

0.50, 0.51, .... 0.99 of the distribution of JRj - c as the constants CA, k = 1,. . . , K. It should be emphasized,

however, that these choices are not motivated by any theoretical considerations. One could potentially

improve the performance of the algorithm by using more appropriate parameter values, but I leave this

131



question for future research. Ideally, the resulting RD estimator tp ihpt is reasonably insensitive to these

choices which is an important specification check when applying the algorithm.

3.4 Monte Carlo Experiments

In this section I compare the performance of the proposed bandwidth choice algorithm to the performance of

the algorithm by Imbens and Kalyanaraman (2012). I follow Imbens and Kalyanaraman (2012) and explore

finite sample behavior in Monte Carlo expriments that are based on the data from Lee (2008) who studies

the effect of incumbency on the probability of re-election. As is common in empirical practice, I focus on the

local linear regression-based estimator. Furthermore, I focus on the triangular kernel due to its optimality

property mentioned above.

I consider the following functional forms for m (r):12

[0.48 + 1.27r + 7.18r 2 + 20.21r 3 + 21.54r 4 + 7.33r 5 , r < 0

0.52 + 0.84r - 3.00r 2 + 7.99r 3 - 9.01r 4 + 3.56r 5, r > 0

3r2 r < 0
m2 (r)

4r 2 , r > 0

0.42 + 0.84r - 3.00r 2 + 7.99r 3 - 9.01r 4 + 3.56r 5 r < 0
m 3 (r) =

0.52 + 0.84r - 3.00r 2 + 7.99r3 - 9.01r 4 + 3.56r 5 , r > 0

0.42 + 0.84r + 7.99r3 - 9.01r 4 + 3.56r 5 , r < 0
M4 (r)-

10.52 + 0.84r + 7.99r3 - 9.01r 4 + 3.56r5, r > 0

In all of the designs the running variable Ri and the residual ci are generated as Ri ~ 2Beta (2, 4) - 1 and

ci ~ N (0, 0.12952). I compare the behavior of the bandwidth choice algorithms in samples of size 100, 500,

1,000, 5,000, 10,000, and 50,000 using 1,000 replications.

The results from the Monte Carlo experiments are reported in Tables 3.1-3.4. The relative behavior of

the two algorithms is similar across the different Monte Carlo designs and sample sizes. There are a few

observations one can make based on these results. First, the adaptive algorithm tends to produce smaller

bandwidths that vary somewhat more from one sample to another. Second, the bias of the RD estimator

produced by the adative algorithm tends to be smaller. For the variance the situation is less clear: the

adaptive algorithm tends to produce a less precise RD estimator in designs 1 and 3 while the opposite is true

for designs 3 and 4. Finally, in terms of the MSE the adaptive algorithm performs better than the algorithm

by Imbens and Kalyanaraman (2012) in designs 1, 2 and 4 once the sample size is at least 500 or 1,000

depending on the design. In design 2 the proposed algorithm performs instead worse than he algorithm by
12 See the discussion in Imbens and Kalyanaraman (2012) regarding the choice of these functional forms.

132



Iibens and Kalyanaraman (2012) across all of the sample sizes.

Taken together, the results from the Monte Carlo experiments suggest that the adaptive algorithm

has good finite-sample properties. This seems to be especially true for moderate sample sizes typically

encountered in empirical applications. The proposed algorithm also compares well to the algorithm by

Imbens and Kalyanaraman (2012).

3.5 Conclusions

This paper introduces an adaptive bandwidth choice algorithm for local polynomial regression-based esti-

mators in the RD design. The algorithm is adaptive in the sense that it allows for different choices for the

order of polynomial and kernel function. In addition, the algorithm automatically takes into account the

inclusion of additional covariates as well as alternative assumptions on the variance-covariance structure of

the error terms. I show that the algorithm produces a consistent estimator of the asymptotically optimal

bandwidth that minimizes the AMSE as well as that the resulting RD estimator satisfies the asymptotic

optimality criterion of Li (1987) and converges to the true parameter value at the optimal nonparametric

convergence rate (Stone, 1982; Porter, 2003). Furthermore, Monte Carlo experiments suggest that the pro-

posed algorithm has satisfactory finite-sample behavior and performs well in comparison to the algorithm

by Imbens and Kalyanaraman (2012) for a local linear regression-based estimator.

I focus in the paper on sharp RD designs in which treatment is fully determined by the running variable.

However, the proposed algorithm can be straightforwardly extended to fuzzy RD designs in which there is

imperfect compliance with the treatment assignment. Another setting the approach can be applied to is the

regression kink design (Card, Lee, Pei, and Weber, 2012) in which a continuous treatment variable has a

kink instead of a discontinuity at a known cutoff. I leave these extensions for future research.
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3.6 Tables

Table 3.1: Monte Carlo Simulations for Design 1

Mean SE Bias SE RMSE

N = 100 IK 0.5637 0.1318 0.0335 0.0816 0.0882

Adaptive 0.3302 0.0926 0.0294 0.1617 0.1643

N = 500 IK 0.4739 0.0585 0.0432 0.0359 0.0561

Adaptive 0.2814 0.0751 0.0274 0.0525 0.0592

N - 1,000 IK 0.4161 0.0468 0.0423 0.0245 0.0489

Adaptive 0.2477 0.0704 0.0217 0.0397 0.0453

N - 5,000 IK 0.3399 0.0337 0.0385 0.0110 0.0400

Adaptive 0.1671 0.0443 0.0136 0.0210 0.0250

N = 10,000 IK 0.3311 0.0266 0.0380 0.0086 0.0390

Adaptive 0.1379 0.0337 0.0107 0.0166 0.0197

N = 50,000 IK 0.1988 0.0184 0.0223 0.0070 0.0234

Adaptive 0.0883 0.0118 0.0054 0.0083 0.0099

Table 3.2: Monte Carlo Simulations for Design 2

Mean SE Bias SE RMSE

N = 100 IK 0.5581 0.1535 0.0287 0.0926 0.0969

Adaptive 0.3317 0.0970 0.0045 0.1635 0.1636

N = 500 IK 0.4189 0.0712 0.0087 0.0369 0.0379

Adaptive 0.3012 0.0802 0.0015 0.0506 0.0506

N - 1,000 IK 0.3643 0.0472 0.0025 0.0259 0.0261

Adaptive 0.2699 0.0701 0.0004 0.0371 0.0371

N = 5,000 IK 0.2624 0.0203 0.0016 0.0137 0.0138

Adaptive 0.2191 0.0566 0.0012 0.0176 0.0176

N = 10,000 IK 0.2285 0.0167 0.0017 0.0109 0.0111

Adaptive 0.1980 0.0507 0.0009 0.0135 0.0135

N = 50,000 IK 0.1661 0.0089 0.0014 0.0054 0.0055

Adaptive 0.1572 0.0410 0.0008 0.0063 0.0064
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Table 3.3: Monte Carlo Simulations for Design 3

Mean SE Bias SE RMSE

N = 100 IK 0.2289 0.0254 0.0234 0.1289 0.1310

Adaptive 0.2105 0.0396 0.0169 0.1770 0.1778

N 500 IK 0.1746 0.0160 0.0078 0.0582 0.0587

Adaptive 0.1802 0.0263 0.0067 0.0581 0.0585

N 1,000 IK 0.1563 0.0143 0.0057 0.0442 0.0445

Adaptive 0.1643 0.0229 0.0049 0.0439 0.0442

N 5,000 IK 0.1226 0.0107 0.0030 0.0210 0.0212

Adaptive 0.1327 0.0182 0.0031 0.0209 0.0211

N 10,000 IK 0.1106 0.0099 0.0021 0.0160 0.0162

Adaptive 0.1209 0.0163 0.0022 0.0158 0.0159

N 50,000 IK 0.0877 0.0077 0.0011 0.0076 0.0077

Adaptive 0.0970 0.0134 0.0012 0.0075 0.0076

Table 3.4: Monte Carlo Simulations for Design 4

Mean SE Bias SE RMSE

N = 100 IK 0.2238 0.0251 0.0192 0.1315 0.1329

Adaptive 0.2157 0.0399 0.0155 0.1774 0.1781

N - 500 IK 0.1735 0.0165 0.0063 0.0581 0.0584

Adaptive 0.1873 0.0283 0.0060 0.0573 0.0576

N 1,000 IK 0.1556 0.0144 0.0047 0.0441 0.0444

Adaptive 0.1710 0.0250 0.0044 0.0432 0.0435

N = 5,000 IK 0.1225 0.0108 0.0026 0.0210 0.0211

Adaptive 0.1386 0.0208 0.0029 0.0205 0.0207

N = 10,000 IK 0.1105 0.0100 0.0018 0.0160 0.0161

Adaptive 0.1262 0.0186 0.0021 0.0156 0.0157

N 50,000 IK 0.0877 0.0077 0.0010 0.0076 0.0077

Adaptive 0.1015 0.0154 0.0011 0.0074 0.0075
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3.7 Appendix

Preliminaries

The estimator of m+ (c) using a pth order polynomial and a bandwidth h,&+ (h), is obtained by solving

N

in K+ Rih-c Yi
af k --k I i=1

p
-a- 313 A(Ri

k=1

where K+ (u) = 1 (u > 0) K (u). Let a+ = m+ (c) and 0+ = m ((c), k = 1,...,p, and define U

Yi - a+ - Z l 03+ (Ri - c)k. Using this notation the minimization problem can be rewritten as

NR

I ( Ri > c) K+
R-c 

U
p

- (a- a+) -- hk
k=1

From the first order conditions we get

h $+p(h)-B3+

hP ( $p h)-Op+)

where XPi = [I (R 2 c)f

Finally, define

/ i 1  1 N

InhK+

and note that

sup |( (r)|
rE(c,c+Mh.]

Lemma 1

rvh>

= 0 (hP+2 ).

= f (c) F++ o (1)+ op (1)

136

2

-c)k)

nh,

NK

K+
Rih Ri -c

h JXpiUl

( h )P .

S(r)
p

k=1

- (p+1)
-C) ( + (C) (r -- cP+1

min
(Ce-C+),{hk (Ok -- 13+) 1

K+ R h ) XpiXp

(Ok ~ ~ 2 3



where

'71

'7P+1

and

'7k ukK(u) du.
0

Proof: Let us write

Ri - C I
h ) p p

A0,

where

Ak ,n
R -C R -c 

h )( h )

I N

= h K+

For the mean of Ak,,, we get

Rihc 
Ri c

-c (
k

C

h

J K(u) uf(c hu)du

0

f (C)JIuk K(u) du + o(1)

where the third equality follows from a change of variables u = and the fourth equality from the

dominated convergence theorem.
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For the variance of Ak,, we get

Var [Akn] < 1 E K+ Ri - c ( Ri C) 2k]a'~klJ-nh 2 ~h ) h )

r c)2

= h2
( - c 2k

f (r) dr

K (u)2 2kf (c + hu) du

0

- o(1)

where the second equality follows from a change of variables u = T and the third equality from the
dominated convergence theorem. 1

Lemma 2

E [+ K+
Ri- c

XpiUil
= p+ 1) f (c) 6+h+1 + 0 (hp+ 2 )

F60

6p

and

6k f Uk+p+1K (u) du

0

hRi-c X
h )Pi
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nh K+ FA0 ,n1

Apn



R, - c R - c k

h ) h )

) R - c k

h )
(1 (pl) (c)

(+l) (RI

We can now write

E K+ R - c) (Ri - c) k

hE LK h }kh ,

(p+l)!

+ IE K+

IK+

Ri -c)

n(p+1) (c ) p
+ hI K

S(p + 1)! I (

Ri - c

M(+,1 ( i

Rh ) _~+I

Ri -c k

r- c) r-c) k++l

h h
f (r)dr

+0 (hP+l+'r) I

n(p+1) )mP + (c)+
(p +l)!

K 
k(j C)

J K (u) uk++1lf (c + hu) du

+0 (hp+ 2 ) J K (u) ukf (c + hu) du

0

+ (f (c) hP+1
(p + 1)!

( k+J+'K (u) du + o (1))

where the fourth equality from a change of variables i ='c and the fifth equality from the dominated

convergence theorem. 0

Lemma 3

Var [h K+ Ri - c
xpiUj1

1 (,2 (c) f (c) A+ + o (1) + 0 (h2v+1)
-nh +J
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A0

A,

and

Ak

A1  ... p

A2  ... Ap±I

Ap+1 ' A2pj

Uk K (u) 2 du.

Proof: Note that

XpiUl = E [Var [i K+

+Var [ E K+
1h

Ri hc)

R h- c X PA

XpiUi | Xpi

| XpII.

Let us first look at

[ I K+

I will only consider the variance of

= K+ Rh-c
it I

as the covariance terms can be handled in a similar fashion. For this we get

E [V1ar [Akn I Xpi]]
1 E K+ R - c ) 2 (R c) 2 k 02 (Ri)I

2 K ( )
2 (r C 

2 k
02 (r) f (r) dr

7K (It)2 u2 k2 (c + hu) f (c + hu) du

0

4 (c)Tf (c)n/i+
u2kK (u) 2 du + o (1)
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where the fourth equality follows from a change of variables u= and the fifth equality from the dominated

convergence theorem.

Let us now turn to the second term and note that

E K+ \hn=1
xpiUl I X i] SK+

R - c)

I will only consider the variance of

nhn
nh

as the covariance terms can be handled in a similar fashion. For this we get

R, - c 2

h )< E K+

SRi - c 2k

I f

( + ) 2(K(p +1)J
R- c ) 2

h )

Th ) 2
r - c)

2(k++1)

h 2k

- (1) E K+fnh2

0 (1) h 2(+1)

,nh2 J

+ 0(1) + ( 2(p±2)) K(
2Ir hC (v-c)

7._C 2

f (r) cdh

f (-) dr

OC
- (1) h2(v+1 K (u) 2 

2(k+p+l)f (c + hu) du
nh J

0

+ O(1) (h 2(p+2)) K (u)2 2kf (c + hu) du
nh \ /

0

0 (h 2p+1)

where the fourth equality follows from a change of variables u = and the fifth equality from the dominated

convergence theorem. D
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( R, C)2p+l) + (Ri)2
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Xpi M+ A

( (p + 1)!

K+ Ri- c Ri - c k

2k (,rn(P+I)
Ri - C + (C) A

( h ) (p + 1)!

K (
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6,+ (h) -

h (1,, (h) -3+)

hP Op (h) -- Op

6+ (h) -- o+

h ($1,,p (h) - 1+

(p+F l) +hP+ + op (hP+1)(P + +
E

Var
nh)

Proof: The result follows from Lemma 1, Lemma 2 and Lemma 3 using the continuous mapping theorem.
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K+ (Rj - C U2 XP X



Ri c k U2

hT?/J)

+ZK+
( R - c 2

h )
R c ) k

T(p± )( n+ (C)A(p +l)!(R

2

CP + (RJ) + 7)

The expectation of Ak,n can be written as

IE K+ Ri c

R, c 2

hn)IE K+

K
2

Ri - c

hIi

k

k

( P+')(c
(p+) (R

2 R) + Rn

( r U- 2 (r) f (r) dr + R,,
It)

f K (U)2 ukU
2 (c + hu) f (c + hu) du+ R,

0

2 (c) f (c) ukK (2 du+ o (1) + R,
0

where the fourth equality from a change of variables u and the fifth equality from the dominated

convergence theorem. Furthermore, notice that

R1 - c 2

c)++1 +6(Ri)

< 0(1) hE K+

0(i),fI

= 0(1)
0

K

= 0(1) /(+1 f

R -c

S c
It

2

(I' c

R, -- c

k\i~

(

/(p-t) 2

(Ri -c)My+0
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rC) (Ri) 2 f (r) dr
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where the first inequality follows from the c, inequality and the third equality from a change of variables

For the variance of Ak,, we get

Var [Ak,,] 1 E K+ R -C) 4 (R -C) 2k (P+ (

(p- 1)
(Ri - c)p+1 + (Ri) + Ci 4]

K+ R - c 
4

= 0 (1) K ()4 2

Ri - c 2k ( ))((p~l) 4

m +1) (c)

(p- 1)+

(Ri -c)4(p+l

(r - c) 4 (p+)1 f (r) dr

+ 2O (1)() K 4 2k

C

K ( 4
Sh)2k

& r)4 f(r) dr

E[C | R = r] f (r) dr

- 0 (1) h4 (p~ 1 ) 'K (U) 4 
u~k4p± 'f (c-+ ha) dunh I

+ 1 0(1)0 (h 4(p+1)1h

DO

IfK (u)4 (u) 2k f (c+ hu) du

+ 1 0(1) K (u)4 u2k E [4 Ri = c + hu] f (c + hu) du
nh j 1

0

where the second inequality follows from the c, inequality and the second equality from a change of variables
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Proof: Let us start by writing

If = (U + O- U) 2

U+ -- U,) + 2U, - U)

= U + (i< (h) X

where /3 (h) = [d (h) Note that /3p (h) = op (1) by

Lemma 4. We can now write

nhZK+ Rh- C
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1 K+
nh >3
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where the inequality follows from the c, inequality. The result follows from observing that
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Lemma 7

E v+(h)] = +F + hnh f (c) + ± P\/ 7 )

Proof: The result follows from Lemma 1, Lemma 5 and Lemma 6 using the continuous mapping theorem.
D

Proof of Theorem 1

From Lemma 4 and similar result for the LPR estimator using observations to the left of the cutoff we get
that

Bias [in (h)]

Var [i, (h)]

= BPhP+1 + op (h+1)

V
nh + 0o(h

where

m (P+0) m (P+1)
Bp = ( -i 1 + - ( -)

(P + 1)! (P + 1)! -

V' = (c)F-'A+F- - 0o- (c)F-'AF-Sf (C) +f (C)

Thus, we have that

= Bias [ip (h)]2 + Var [ip (h)]

= AMSE[-p (h)] +op (h2(p+1 +

where

Finally, note that AMSE [f, (h)] is globally convex in h. Thus differentiating this with respect to h and

taking the first order condition gives us

h0 pt= arg minAMSE [ip (h)]

2+ 1

2 (p +1) B2

D-
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Proof of Theorem 2

From Lemma 4 and similar result for the LPR estimator using observations to the left of the cutoff as well

corresponding results for a LPR-based estimator using a (p + 1 )"t order polynomial we get that

Tp,, (h)

p+j (h)

= 7- + BPhP+1 + op (hP+') + Op ((nh)

= T + op (hP+') + o -((nh)

This implies that

= BPhP+1 + op (hP+') + Op ((nh) 2)

and consequently that

b (h) = (- p (h) - )+ (h))

= B 2h 2p+l) + OT, (IT 2p+l + Op ((nIh1)

In addition, from Lemma 6 and similar result for the variance estimator to the left of the cutoff we get that

iO (h) = + P + OP ((nh) .
T h nh

Thus, by plugging in hk we get

I> (hk) hk) p+h

p (hk) Tihk

B + Op (1) + Op (n (12p+3))

vp + op (1) + Op (- 

This implies that
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and that

- K 1 i P(hk)(nhkY 1

nhK -2

- 6 P (hk) nhk (nhk)

Ft1 (nhe e

=V, + Op (1) + Op (n- -2i .

Furthermore, plugging in the estimators $p and Vp to the expression for Copt, we get

COpt
2 (p + 1) B2

- P~1~ 2p+3

2 (p + 1) (1)
=Copt + Op (1)

+ op (1)

and consequently that

opn2
3

Coptn- 2
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3

Copt
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1-+0 o(1).

Finally, note that

= AMSE [f- (hopt)] + op

2(p+1) 
2

(pBC + +

ot (+1 p

VPC- I + Op (1)

and that

MSE [tp (hopt)] = AMSE [ (hopt)] + OP I+h 2O+

-4+ BC + + VpC-pI + op (1))

Thus, we get that

MSE [ p (h 0pt)

MISE [f,p (h,,pt)]
Si+op (1)
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which implies that
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