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Abstract

The contributions of this thesis are twofold. First, we present a new unsupervised algorithm
for morphological segmentation that utilizes pseudo-semantic information, in addition to
orthographic cues. We make use of the semantic signals from continuous word vectors,
trained on huge corpora of raw text data. We formulate a log-linear model that is simple
and can be used to perform fast, efficient inference on new words. We evaluate our model
on a standard morphological segmentation dataset, and obtain large performance gains of
up to 18.4% over an existing state-of-the-art system, Morfessor.

Second, we explore the impact of morphological segmentation on the speech recog-
nition task of Keyword Spotting (KWS). Despite potential benefits, state-of-the-art KWS
systems do not use morphological information. In this thesis, we augment a KWS sys-
tem with sub-word units derived by multiple segmentation algorithms including supervised
and unsupervised morphological segmentations, along with phonetic and syllabic segmen-
tations. Our experiments demonstrate that morphemes improve overall performance of
KWS systems. Syllabic units, however, rival the performance of morphological units when
used in KWS. By combining morphological and syllabic segmentations, we demonstrate
substantial performance gains.

Thesis Supervisor: Regina Barzilay
Title: Professor
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Chapter 1

Introduction

Morphological analysis, in linguistics, refers to the study and description of the internal

orthographic structure of words. The words in a language are often the smallest units of

syntax. However, there do exist regularities that are shared between many of them, through

common rules that are part of the language's grammar. These are especially evident in the

form of common affixes (prefixes, suffixes or infixes), that are used to identify plurality,

tense, noun forms, and many other nuances of the grammar. For example, in English, the

suffix -s, when added to a word, almost always creates a plural form, while the prefix re-

usually represents repetition of an action verb.

Most languages have three kinds of morphological rules. The first kind, known as in-

flectional rules, generate variant forms of the same word. An example of an inflection is the

morphing of the verb create to its past tense created. The other set of rules, called deriva-

tional rules, form new words from the existing words. These rules change a word's meaning

considerably, such as the verb create to the noun creator. The final set of paradigms is that

of compounding, where multiple words are fused together to create a compound word. For

example, the words dog and catcher form the compound word dogcatcher.

As speakers of a language, we intuitively sense the morphological patterns in the words

we use. We learn the function and purpose of various affixes and word forms, and can even

predict the meaning of a previously unseen word using this knowledge. Computational

morphological analysis aims at enabling computers to perform the same kind of assessment

on words. There are various levels of morphological tasks, ranging from segmentation to
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paradigm learning. In this thesis, we tackle the problem of morphological segmentation,

which deals with breaking down words into minimal meaningful units called morphemes.

In terms of computational models, we usually have three kinds of approaches. Rule-

based systems can be constructed, which require a great amount of morphological rules to

be input to the system. This approach is both time-consuming and expensive, and requires

linguistic experts on the language. Supervised approaches utilize gold segmentations to

learn models using machine learning techniques. Though this approach is better than rule-

based systems in terms of time and cost requirements, gold annotations are hard to come

by for more than a handful of the world's languages. However, many languages nowadays

do boast the availability of a significant amount of raw text data on the World Wide Web.

Unsupervised approaches, that use "raw natural language text data to output a descrip-

tion of the morphological structure of the language of the input text with as little super-

vision (parameters, thresholds, human intervention, model selection during development)

as possible"[10], are therefore a very attractive choice, since they are easily extensible to

many languages.

1.1 Unsupervised Morphology

The task of unsupervised morphological analysis has received considerable attention in the

NLP community. This is especially due to the fact that we have so many languages in the

world, and morphological analysis plays an increasingly important role in many language

processing applications. Using word morphology allows us to alleviate the problem of out-

of-vocabulary (OOV) words in language models. In addition to solving the OOV problem,

it provides a structured representation for words that can be utilized in several NLP tasks.

Further, morphological analysis gives us a natural categorization of words into clusters,

which can be leveraged in other NLP tasks like part-of-speech tagging, syntactic parsing,

and machine translation.

We present a new method for unsupervised morphological segmentation that utilizes

pseudo-semantic information in addition to orthographic cues. We make use of the seman-

tic signals from continuous word vectors, trained on huge corpora of raw text data. We
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formulate a log-linear model that is simple and can be used to perform fast, efficient in-

ference on new words. We evaluate our model on a standard morphological segmentation

dataset, and obtain large performance gains of up to 18.4% over an existing state-of-the-art

system, Morfessor.

1.2 Morphological Segmentation in Keyword Spotting

Recent research has demonstrated that adding information about word structure increases

the quality of translation systems and alleviates sparsity in language modeling [5, 9, 12, 26].

In this thesis, we study the impact of morphological analysis on the keyword spotting

(KWS) task. The aim of KWS is to find instances of a given keyword in a corpus of

speech data. The task is particularly challenging for morphologically rich languages as

many target keywords are unseen in the training data. For instance, in the Turkish dataset

[1] we use, from the March 2013 IARPA Babel evaluations, 36.06% of the test words are

unseen in the training data. However, 81.44% of these unseen words have a morphological

variant in the training data. Similar patterns are observed in other languages used in the

Babel evaluations. This observation strongly supports the use of morphological analysis to

handle out-of-vocabulary (OOV) words in KWS systems.

Despite this potential promise, state-of-the-art KWS systems do not commonly use

morphological information. This surprising development can be due to multiple reasons,

ranging from the accuracy of existing morphological analyzers to the challenge of integrat-

ing morphological information into existing KWS architectures. While using morphemes

is likely to increase coverage, it makes recognition harder due to the inherent ambiguity in

the recognition of smaller units. Moreover, it is not clear a priori that morphemes, which

are based on the semantics of written language, are the appropriate segmentation units for

a speech-based application.

We investigate the above hypotheses in the context of a standard KWS architecture [2].

We augment word lattices with smaller units obtained via segmentation of words, and

use these modified lattices for keyword spotting. We consider multiple segmentation al-

gorithms, ranging from near-perfect supervised segmentations to random segmentations,
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along with unsupervised segmentations and purely phonetic and syllabic segmentations.

Our experiments reveal the following findings:

" Using sub-word units improves overall performance of KWS systems.

" Syllabic units rival the performance of morphological units when used in KWS sys-

tems.

" Improving the accuracy of morphological segmentation beyond a certain level does

not necessarily translate into improved KWS performance.

* Adding phonetic information improves the quality of morphological segmentation.

* Combining morphological, phonemic and syllabic segmentations gives better KWS

results than either in isolation.

1.3 Background

1.3.1 Unsupervised Morphological Analysis

A survey by Hammarstrom and Borin [10] provides a good overview of various unsu-

pervised approaches to morphological analysis, ranging from border and frequency-based

methods, to grouping of morphologically related words, and using features and classes.

Most prior work has focussed on orthographic properties of words to determine the mor-

phological rules of the language. In the case of unsupervised segmentation, one particularly

successful algorithm has been Morfessor [7]. Morfessor uses the Minimum Description

Length (MDL) principle to discover morphemes in the language in an iterative fashion.

However, they do not employ any semantic cues in their algorithm.

Work by Schone et al. [24] uses some notion of semantics to filter out incorrect mor-

phological pairings. Their usage of semantics is limited to performing LSA on the words

and utilizing a similarity metric between the learnt vectors. They then collect pairs of po-

tential morphological variants (PPMVs), and then determine which of these are legitimate.

This work uses the vectors learnt using LSA as a filtering step part of a pipeline. In contrast,

14



we utilize pseudo-semantic information jointly with orthographic information in a single

model.

Log-linear models have been considered in unsupervised morphological segmentation

previously by Poon et al. [21]. They jointly model a word and its segmentation using mor-

phemes and their contexts as features, taking cues from the MDL principle. However, their

learning and inference is quite involved, using contrastive estimation [25] and sampling

techniques. Our method is much simpler in both the learning and inference steps.

1.3.2 Word Vectors

Word vectors are simply representations of words as vectors over R. The interesting prop-

erty of these vectors is that their values are continuous instead of discrete. This provides

several opportunities to utilize these vectors to directly compare and contrast words. It

has been shown that these vectors capture linguistic regularities, in the form of semantic

similarities, and analogies[19]. Recent advances have made it possible to train these vec-

tors on large datasets[18], which has resulted in better quality vectors, that exhibit these

regularities quite strongly.

These word vectors have already found applications in several NLP tasks, including

syntactic parsing, part-of-speech tagging and machine translation. However, to our knowl-

edge, they haven't been utilized directly to induce morphological segmentations. The clos-

est work related to ours is that of Luong et al.[16], which utilizes morphological analysis

to obtain better word representations, by tying together words that are morphologically

related to each other.

1.3.3 Applications of Morphological Analyzers

Prior research on applications of morphological analyzers has focused on machine transla-

tion, language modeling and speech recognition [9, 4, 12]. Morphological analysis enables

us to link together multiple inflections of the same root, thereby alleviating word sparsity

common in morphologically rich languages. This results in improved language model per-

plexity, better word alignments and higher BLEU scores. Recent work has demonstrated
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that even morphological analyzers that use little or no supervision can help improve per-

formance in language modeling and machine translation [5, 26].

Similar to existing work, we leverage morphological segmentation to reduce OOV rates

in KWS. However, prior work has not explored the impact of the type and quality of seg-

mentations on the performance of the target application, instead assuming that perfect mor-

phemes are the optimal sub-word units. In contrast, we investigate segmentations produced

by a range of models, including acoustic sub-word units. We demonstrate the value of using

alternative segmentations instead of or in combination with morphemes. In addition to im-

proving the performance of KWS systems, this finding may also benefit other applications

that currently use morphological segmentation for OOV reduction.
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Chapter 2

Unsupervised Morphological

Segmentation

This chapter describes a new method to perform morphological segmentation using very

weak to no supervision. We first start out with some definitions and follow it with a descrip-

tion of the model. We then provide details on experiments on the task of morphological

segmentation.

The motivation for this work stems from the fact that morphologically similar words

also share semantic similarity. This is a property shared by most languages in the world.

For example, the word player in English, which is a morphological variant of play is also

very similar in meaning to play. Figure 2.1 illustrates how the cosine similarity is a strong

signal for predicting the correct parent for a word. We utilize this semantic signal in order

to obtain better morphological segmentations.

Segment Cosine Distance
p 0.095

p1 -0.037
pla -0.041

play 0.580
playe 0.000
player 1.000

Table 2.1: Cosine distances between word vectors of various segments of the word player
and the vector of player.
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2.1 Model

The formation of a word can be thought of in the form of a morphological chain. We define

a morphological chain as a sequence of words that start from a base word, and lead up to

the morphological variant, via intermediate variants. At each step of the chain, an affix or

a word is added to the previously created word in the chain to obtain a new word. This

process continues until we generate the final word. For example, a morphological chain for

the word internationally could be nation -+ national -+ international -+ internationally.

Our goal is to predict the morphological chain for a word, which can then be used to

produce a morphological segmentation. We focus on modeling one step of the morpholog-

ical chain, in which a word undergoes morphological morphing into a variant. We shall

refer to the word, which undergoes a morphological change to create a new word, as the

parent of the newly formed word. After learning the parameters, this model can be used to

infer the correct parent given a child.

In order to obtain the entire chain for a word, we recursively predict parent words and

stop when we predict a stop case. Note that at every stage, the parent word may have been

morphed and hence, there are more candidates than just the ones obtained by splitting at

every point in the child word. We can handle this case by using features in our log-linear

model that represent such morph processes which alter the word. Examples in a language

like English include repetition, deletion or modification of the last few characters in the

parent word.

We use a log-linear framework for our model. A log-linear model consists of a set

of features that form a feature vector 0 : W x T -+ Rd and a corresponding weight

vector 0 E Rd. Here, VV is the set of all words in the vocabulary and T is the set of

all parent words/candidates. We define the probability of a particular word-parent pair

(w E W, t E T) as P(w, t) oc e9 *. Therefore, we have the conditional probability of a

parent t given a word w:

P(tjw) =
t'eTw

A log-linear model is especially suited to our direction of attacking the problem since

it allows an easy, efficient way of incorporating several views of the data. For training,
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we use heuristics to select the subspace of parents for each word towards which we move

probability mass through optimization techniques. The heuristics include combinations

of orthographic and pseudo-semantic cues that help in choosing good parent candidates.

These are described in more detail in Section 2.1.2.

2.1.1 Learning

We now describe the log-linear framework used for learning and inference. We formulate

the learning problem as an optimization one. Given our heuristically selected set of word-

parent pairs, we aim to find the model weights that maximize the log-likelihood of the pairs.

This reduces to maximizing the following objective X (with a regularization term):

Max log ze"0 - log ee'5 - AiHA 2 (2.1)
W EW tETH tIETW .

where TH refers to heuristically selected parents for word w, Tw refers to the set of all

possible parents for w, and W is the set of words. The corresponding gradient can be

derived as:

ax _ tCTHI j -ee0 _ tETw1 i~ . - 2 1 , 22

(0 ZtETH eo- Zt e8'k_1 A(22

We learn the model parameters by optimizing the expected log probability of the en-

tire lexicon using LBFGS-B[3], a gradient-based optimization technique. LBFGS-B itera-

tively climbs the gradient in an intelligent manner, and converges to the function optimum

relatively quickly. We compute the above function and gradient at every iteration of the

algorithm.

2.1.2 Heuristics

The heuristics we use are combinations of orthographic and pseudo-semantic cues to prune

out highly impossible parents given a word. In all cases, we restrict the parent candidates to

the cases where the parent word is strictly smaller than the word itself. For words where no

parent passes the heuristic, we consider that as a stop case. We use the following component

heuristics to approve a parent candidate:
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e Does the parent appear frequently in the unannotated wordlist?

" Is the cosine of the angle between the word vectors of the word and its parent above

a certain threshold?

" Is the length of the parent at least half the length of the word?

We use several combinations of these component heuristics in our experiments and

show the effect each one has on the results. Note that just considering all substrings of

a word is not enough to get a good set of parent candidates. This is due to repetition,

modification and deletion effects that can occur during a morphological transformation. For

example, we drop the 'e' at the end in deriving creating from create. We take these effects

into account while generating the parent candidates by including a separate generation

process for each such transformation type. So, considering our previous case, for the word

creating, we would generate all strings by adding one character to the fragment creat and

then add to the parent candidate list if the generated string exists in our wordlist.

At a higher level, we are using human inductive bias as a form of weak supervision.

The intuition behind the approach can be viewed as learning the model parameters using a

set of 'silver' (noisy) annotations obtained from the heuristic as opposed to a single gold

annotation per training example in a supervised case. The analogy of the supervised case

can be easily observed by considering the following objective it uses:

max ( log = max ( log e9- - log 13 e9-1 (2.3)
W EW TW EW E'T

where tw refers to the gold parent for the word w. Thus, in the supervised case, the param-

eters are adjusted to maximize the probability of the observed word-parent pairs, while in

our case, we maximize the probability of a set of parent candidates for each word, obtained

heuristically. The model we formulate is capable of learning good feature weights from

this 'noisy' data.

20



y tH ) t

Figure 2-1: The model aims at concentrating the probability mass in the heuristic set tH of
parents for a word. t is the entire space of plausible parent words.

2.2 Features

The features we use in our model are derived from orthographic cues such as prefixes and

suffixes, and pseudo-semantic indicators like the cosine similarity between word vectors.

We now provide a description of each type of feature used. For the purposes of notation,

these features (except for the stop case) are for a given word-parent pair (w, t). We refer to

their corresponding word vectors as W' and t.

2.2.1 Affixes

First, we use indicator features for the affix involved in the generation of the word w from

the parent t. We compute the affix as the characters in w that are extraneous to t. We have

separate features for prefixes and suffixes, depending on whether t overlaps with the end or

the beginning of w, in the respective cases. The intuition behind these features is to learn

the suffixes and prefixes regularly used in the language, through their multiple occurrences

in the data. This can help us identify potential suffixes given a new word.

In addition to indicator affix features, we also employ features that are the cartesian

product (cross) of the affix with the context unigrams and bigrams (i.e. the characters

appearing in the word to the left of a suffix, or to the right of a prefix in the word). We

preprocess the unannotated wordlist and determine the most frequently occurring prefixes

and suffixes using a threshold. Note that we have no knowledge of the prefixes or suffixes

in the words. Instead, we consider any sequence that can be derived from a (w, t) pair such

that w and t are in the wordlist, as a valid prefix candidate. If an affix does not occur in this

list, we replace it with an unknown (UNK) tag during the feature computation.
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2.2.2 Word Vector Similarity

Secondly, we consider the cosine similarity between the word vectors of the word and

the parent,z' and E We utilize the cosine directly as the feature value, banking on the

observation that pairs of semantically similar words have higher cosine values between

their vectors. Thus, this measure is often a very good signal for selecting a good parent. It

is worth noting that this is the only non-binary feature in our model.

2.2.3 Presence in Wordlist

Another set of binary features we use serve to check if the parent t exists in the unannotated

wordlist. We take the cartesian product of this information with a binned cosine similarity

value between W' and t This feature serves to capture the trade-off between choosing a

parent that occurs in our training wordlist versus choosing one whose vector has a high

cosine similarity with t'.

In addition, we also include features that represent the binned values of the frequency

of the parent in the training wordlist. If the parent does not appear in the wordlist, we use

an OOV feature for that case. This helps capture the relative importance of a parent using

its frequency in the language. A word occurring more frequently is more likely to be a

parent.

2.2.4 Modification processes

To capture steps in the chain that modify the parent word while adding affixes, we use a

set of dedicated features. Modifications we handle are repetition of the last character in the

parent (planning), deletion of the last character in the parent (deciding), and modification

of the last character of the parent (carried). We model the repetition process using an

indicator feature that catches the repeating character. For the modification case, we use

another indicator feature that tracks the original and the new character in the parent. And,

in the deletion case, the indicator feature tracks the character that was deleted. In all cases,

we also cross the indicator features with unigram and bigram character contexts.
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Feature type Word Pair Feature Value
Affix (painter, paint) suffix=er 1

Cosine (painter, paint) Wi- 0.58
Wordlist (painter, paint) InVocab=1 x G -i> 0.5 1

(painter, paint) freq(t) /100 > 62 1
(painter, paint) freq(t) /10 > 620 1

Repetition (planning, plan) Repeat=n 1
Deletion (deciding, decide) Delete=e 1

Modification (carried, carry) Modify=(y,i) 1
Compound (watchtower, tower) Compound=] 1

(watchtower, tower) Compound=1 x bigram=er 1

Table 2.2: Example of various types of features used in the model. All features except the
cosine similarity are binary.

2.2.5 Compound Word

The next set of features capture the structure of compound words like watchtower. For a

given pair (w, t), if t and the corresponding affix exist in the training wordlist, we activate

the basic compound word feature, which is an indicator. We also cross this feature with

the ending character unigram and bigram of the word to obtain new features. We include

this set of features specifically to capture compound words, since they do not have affixes.

Hence, in the absence of this feature, they are likely to Note that while calculating the

features in the case of a compound word, we remove the affix features defined above, as

the affixes in this case are likely to be UNK.

2.2.6 Stop Conditions

We also have the stop case where we do not want to proceed with the chain. To accom-

modate this, we include features such as the length of the word, as well as the starting and

ending character unigrams and bigrams. We aim to avoid stopping at words which have

potential suffixes or prefixes at their edges. On the other hand, if the unigrams and bigrams

at the word boundaries are unlikely to be prefixes or suffixes in the language, we would

like to stop the chain from proceeding further.
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2.3 Inference

During inference, we first predict a good morphological chain for a given word. We then

use this chain to output a morphological segmentation for the word. In the learning phase

described above, we estimate parameters for single edges of the chain i.e for a word-parent

pair. Hence, in order to predict a chain, we require several applications of the learnt pre-

dictors. We infer the morphological chain recursively as described below.

Given a word, we consider all possible parents, along with the stop case. This is done

by first considering all possible splits of the word, and choosing either the left or right part

as the parent. In addition to this, we also generate parent candidates for the 3 types of

modification processes that introduce changes to the parent (viz. repetition, deletion and

modification). We also add the stop case as an alternative choice. We use the model weights

to estimate the probability multinomial over these choices and then select the parent with

the maximum probability if it exists, or the stop case otherwise. We then predict the next

parent in the chain, or stop if the stop case is chosen.

parent pred -- arg max e (2.4)
tE1:P

Generating the segmentation from the morphological chain is relatively straightforward

and can be done by computing longest common substrings over the word pairs and placing

segmentation points appropriately. We provide pseudocode for the prediction processes

below in algorithms 1 and 2.

2.4 Experiments

This section details experiments we perform to evaluate our system on the task of morpho-

logical segmentation. We first start with a description of the data, and provide statistics.

We then describe our experiments and provide quantitative results. We end the section with

an analysis of the results.
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Algorithm 1 Procedure to predict a parent for a word

1: procedure PREDICT(word)
2: candidates +- GETCANDIDATES (word)
3: bestScore +- 0
4: bestType <- NORMAL
5: parent +- word
6: for (candidate, type) E candidates do
7: features <- GETFEATURES(word, candidate)
8: score <- MODELSCORE(features)
9: if score > bestScore then

10: bestScore <- score
11: bestType +- type
12: parent +- candidate

13: return parent, bestType

Algorithm 2 Procedure to predict a morphological chain

1: procedure GETMORPHOLOGICALCHAIN(word)
2: parent, type +- PREDICT(word)
3: if parent = word then return [(word, STOP)]

4: return GETMORPHOLOGICALCHAIN(parent) + [(word, type)

2.4.1 Data

We perform experiments on data from MorphoChallenges 2005-20101. The data from

MorphoChallenge is a standard dataset used for the task of morphological segmentation in

the unsupervised case. The data consists of unannotated word lists which are to be used for

training and gold annotated segmentations, which we use for testing. We run experiments

on two of these languages - English and Turkish. The statistics of the data are in table 2.3.

For obtaining the word vectors, we train the word2vec tool [20] on an entire dump of

Wikipedia (for English) and the Boun corpus [23] (for Turkish). We use 200-dimensional

word vectors in all our experiments.

Lang Train words Test words
English 878k 2218
Turkish 617k 2534

Table 2.3: Statistics of the data from MorphoChallenges 2005-10

lhttp://research.ics.aalto.fi/events/morphochallenge20l0/
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Lang Method Prec Recall F-1
English Morfessor 0.814 0.552 0.658

Our model 0.742 0.693 0.717
Turkish Morfessor 0.827 0.362 0.504

Our model 0.603 0.592 0.597

Table 2.4: Results on morphological segmentation using data from MorphoChallenge. The
scores are calculated across all segmentation points in the test data

Heuristic Prec Recall F-1
No heuristic 0.232 0.238 0.235

ParentFreq > 5 + 2|parentf> \word| 0.722 0.682 0.702
ParentFreq > 5 + Cosine > 0.0 + 2|parent|> \word 0.730 0.677 0.702
ParentFreq > 5 + Cosine > 0.1 + 21parent|> |word| 0.732 0.642 0.684
ParentFreq > 5 + Cosine > 0.2 + 2 parent|> |word| 0.812 0.590 0.684
ParentFreq > 5 + Cosine > 0.3 + 2|parentj> |word| 0.890 0.539 0.671
ParentFreq > 50 + Cosine > 0.0 + 2|parent\> |word| 0.742 0.693 0.717

Table 2.5: Effect of various heuristics on model performance (English). The runs used
words in the wordlist with frequency > 1000 for training. Bold represents the best scores

2.4.2 Analysis

We evaluate the performance of our model on individual segmentation points, which is

standard in this task. We report Precision, Recall and F-I scores for Morfessor and our

model in table 2.4. We conducted several runs of Morfessor 2.02 with varying parameters,

and chose the run with the best performance on the dataset.

From the table, we can see that our method significantly outperforms Morfessor, with

a relative gain of 8.9% and 18.4% in F-score on English and Turkish, respectively. Our

model has a much higher recall than Morfessor with a small drop in precision.

We also perform several experiments on the English dataset with varying heuristics to

examine its effect. Table 2.5 shows that the heuristics are important for learning the model.

However, between different heuristics, the F-I score performance does not vary by much.

The heuristics do impact the precision and recall scores, with a stricter heuristic resulting

in higher precision scores.

In addition, we also performed multiple runs of the algorithm with varying sizes of the

2http://www.cis.hut.fi/projects/morpho/morfessor2.shtml
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Chapter 3

Morphological Segmentation in

Keyword Spotting

In this chapter, we study the impact of morphological analysis on the keyword spotting

(KWS) task. The aim of KWS is to find instances of a given keyword in a corpus of

speech data. The task is particularly challenging for morphologically rich languages as

many target keywords are unseen in the training data. For instance, in the Turkish dataset

[1] we use, from the March 2013 IARPA Babel evaluations, 36.06% of the test words are

unseen in the training data. However, 81.44% of these unseen words have a morphological

variant in the training data. Similar patterns are observed in other languages used in the

Babel evaluations. This observation strongly supports the use of morphological analysis to

handle out-of-vocabulary (OOV) words in KWS systems.

Despite this potential promise, state-of-the-art KWS systems do not commonly use

morphological information. This surprising development can be due to multiple reasons,

ranging from the accuracy of existing morphological analyzers to the challenge of integrat-

ing morphological information into existing KWS architectures. While using morphemes

is likely to increase coverage, it makes recognition harder due to the inherent ambiguity in

the recognition of smaller units. Moreover, it is not clear a priori that morphemes, which

are based on the semantics of written language, are the appropriate segmentation units for

a speech-based application.

We investigate the above hypotheses in the context of a standard KWS architecture [2].
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We augment word lattices with smaller units obtained via segmentation of words, and

use these modified lattices for keyword spotting. We consider multiple segmentation al-

gorithms, ranging from near-perfect supervised segmentations to random segmentations,

along with unsupervised segmentations and purely phonetic and syllabic segmentations.

Our experiments reveal the following findings:

" Using sub-word units improves overall performance of KWS systems.

* Syllabic units rival the performance of morphological units when used in KWS sys-

tems.

* Improving the accuracy of morphological segmentation beyond a certain level does

not necessarily translate into improved KWS performance.

" Adding phonetic information improves the quality of morphological segmentation.

* Combining morphological, phonemic and syllabic segmentations gives better KWS

results than either in isolation.

3.1 Segmentation Methods

We now describe the different types of segmentations we consider in our experiments.

Table 3.1 shows examples of these segmentations for the Turkish word takacak.

3.1.1 Supervised Morphological Segmentation

An ideal scenario would be where we could use gold morphological segmentations in our

analysis. However, since such annotations are not available for our corpus [1], we use a

resource-rich supervised system as a proxy. As training data for this system, we use the

MorphoChallenge 2010 corpus which consists of 1760 gold segmentations for Turkish.

We consider two supervised frameworks for filtering. Each supervised system construct

segmentations in two stages. In the first stage, which is common in both systems, we use

1http://research.ics.aalto.fi/events/morphochallenge20 10/
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Sub-word units Example
Morphemes tak - acak

Random t - aka - c - a - k
Phones t-a-k- lv-dZ-a-k

Syllables ta - klv - dZak

Table 3.1: Segmentations of the word takacak into different types of sub-word units.

Feature Example
morpheme unigrams tak, acak
morpheme bigram (tak, acak)

phonemic seq. unigrams t.a.k., lv.dZ.a.k.
phonemic seq. bigram (t.a.k., lv.dZ.a.k.)
number of morphemes 2

morpheme lengths 3, 4

Table 3.2: Example of features for the segmentation tak-acak used in the supervised filters.
Each phoneme is followed by a dot for clarity.

a Finite-State-Transducer-based morphological parser [6] that generates a set of candidate

segmentations, leveraging a large database of Turkish roots and affixes. This stage tends

to over generate, segmenting each word in eight different ways on average. In the next

stage, we filter the resulting segmentations using one of two supervised systems (described

below) trained on the MorphoChallenge corpus.

In the first approach, we use a binary log-linear classifier to predict the correctness of

each segmentation hypothesis. For each word, this classifier may select multiple segmen-

tations as correct, or rule out all the alternatives. In the second approach, to control the

number of valid segmentations, we train a log-linear ranker that orders the alternative seg-

mentations for a word in decreasing order of likelihood. In our training corpus, each word

has on average 2.5 gold segmentations. Hence, we choose the top two segmentations per

word from the output of the ranker to use in our KWS system. Table 3.2 contains a list of

the features used by the supervised systems.

Since the supervised systems look at the entire segmentation at once, we can encode

features that go beyond individual boundaries, such as the total number of morphemes in

the segmentation. This global view distinguishes our classifier/ranker from traditional ap-

proaches that model segmentation as a sequence tagging task [22, 14, 13]. Another depar-

30



ture of our approach is the use of phonetic information, in the form of phonemic sequences

corresponding to the morpheme unigrams and bigrams. The phonemic sequences for words

are obtained using a publicly available Text-to-Phone (T2P) system [15].

3.1.2 Unsupervised Morphological Segmentation

We employ a language-agnostic unsupervised system Morfessor [7] which achieves state-

of-the-art unsupervised performance in the MorphoChallenge evaluation. Morfessor uses

probabilistic generative models with sparse priors which are motivated by the Minimum

Description Length (MDL) principle. The system derives segmentations from raw data,

without reliance on extra linguistic sources. It outputs a single segmentation per word.

3.1.3 Random Segmentation

As a baseline, we include random segmentations in our analysis, where we mark a seg-

mentation boundary at each character position in a word with a fixed probability p. For

comparison purposes, we consider two types of random segmentations that match the su-

pervised morphological segmentations in terms of the number of uniques morphemes and

the average morpheme length, respectively. These segmentations are obtained by adjusting

the segmentation probability p appropriately.

3.1.4 Acoustic-Based Segmentation

In addition to letter-based segmentation, we also consider other sub-word units that stem

from word acoustics. In particular, we consider segmentation using phones and syllables,

which are available for the Babel data we work with.

3.2 Keyword Spotting

In this section, we first briefly describe the basic KWS architecture, and then focus on

modifications we introduce to account for sub-word units.
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The keyword spotting system used in this work follows, to a large extent, the pipeline

of [2]. Using standard speech recognition machinery, the system produces a detailed lattice

of word hypotheses. The resulting lattice is used to extract keyword hits with nominal

posterior probability scores. By design, the system employs several scoring methods. For

example, we can use whole-word extraction methods for words in vocabulary, but rely on

phonetic models for OOV words.

We modify this basic architecture to incorporate sub-word units. There are two main

changes in our system. First, we use morphemes instead of whole-words in the decod-

ing lexicon. Second, we represent keywords as sequences of morphemes in all possible

combinations. The major modifications to the pipeline are as follows:

1. The segmented lexicon is used in order to represent the acoustic transcripts in terms

of morphemes. Subsequently, a trigram language model is trained based on se-

quences of such morphemes. The dictionary used in the language model is repre-

sented as strings of compounded morphemes (for the whole words) and is augmented

with the morphemes themselves.

2. A text-to-phone mapping is learned using the provided pronunciations. This mapping

is subsequently applied to all morphemes which are not part of the original dictionary.

This allows individual morphemes to be recognized by the ASR system; when they

appear next to other morphemes in the lattices, they have the potential to make up

new (out-of-vocabulary) words.

3. The ASR system generates lattices which contain morphemes, as well as compounded

versions of these morphemes. The compounded tokens are split into their constituent

morphemes, by adding new arcs in the lattice. Finally, the lattice is converted to a

confusion network [17], consisting of morphemes only.

4. The given keywords are represented as sequences of morphemes in all possible com-

binations. For each sequence of matching arcs, the posteriors of these arcs are mul-

tiplied together to form the score of the detection record (hit). A post-processing

step adds up (or takes the max of) the scores of all hits of each keyword which have

significant overlap in time.
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Finally, the hit lists are processed by the score normalization and combination method

described in Karakos et al. [11].

3.3 Experimental Setup

3.3.1 Data

The segmentation algorithms described in Section 3.1 are tested using the setup of the KWS

system described in Section 3.2. Our experiments are conducted using the IARPA Babel

Program Turkish language collection release IARPA-babell05b-v0.4 [1]. The dataset con-

tains audio corpora and a set of keywords. The training corpus for KWS consists of 10

hours of speech, while the development and test sets have durations of 10 and 5 hours,

respectively. We evaluate KWS performance over the OOV keywords in the data, which

are unseen in the training set, but appear in the development/test set. The development set

comprises of 403 OOV keywords, while the test consists of 226 OOV keywords.

In our experiments, we consider the pre-indexed condition of keyword search, which

means that the keywords are known only after the decoding of the speech has taken place.

3.3.2 Evaluation Measures

We consider two different evaluation metrics. To evaluate the accuracy of the different seg-

mentations, we compare them against gold segmentations from the MorphoChallenge data.

This set consists of 1760 words, which are manually segmented. We use a measure of word

accuracy (WordAcc), which captures the accuracy of all segmentation decisions within the

word. If one of the segmentation boundaries is wrong in a proposed segmentation, then

that segmentation does not contribute towards the WordAcc score. We use 10-fold cross-

validation for computing accuracies for the supervised methods, while we use the entire set

for comparing unsupervised and acoustic-based methods.

We evaluate the performance of the KWS system using the Actual Term Weighted

Value (ATWV) measure as described in [8]. This measure uses a combination of penalties

for misses and false positives to score the system. The maximum score achievable is 1.0,
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if there are no misses and false positives, while the score can be lower than 0.0 if there are

a lot of misses or false positives. If we consider only the keywords present in the training

vocabulary, the ATWV scores on the development and testing datasets are 0.385 and 0.400,

respectively. These numbers give us an idea of the upper bound on the performance of the

KWS system.

3.4 Results

Table 3.3 summarizes the performance of all considered segmentation systems in the KWS

task. The quality of the segmentations compared to the gold standard is also shown. We

summarize below our conclusions based on these results.

3.4.1 Effect of sub-units

We find that using sub-word units improves overall KWS performance. If we use a word-

based KWS system, the ATWV score will be 0.0 since the OOV keywords are not present in

the lexicon. Enriching our KWS system with sub-word segments yields performance gains

for all the segmentation methods, including random segmentations. However, the observed

gain exhibits significant variance across the segmentation methods. For instance, the gap

between the performance of the KWS system using the best supervised classifier-based

segmenter (CP) and that using the unsupervised segmenter (U) is 0.059, which corresponds

to a 43.7% in relative gain. Table 3.3 also shows that while methods with shorter sub-units

(U, P) yield lower OOV rate, they do not necessarily fare better in the KWS evaluation.

3.4.2 Syllabic units vs Morphological units

A surprising discovery of our experiments is the high performance of the syllabic segmentation-

based KWS system (S). It outperforms all the alternative segmentations on the test set, and

ranks second on the development set behind the supervised classifier-based system (CP).

These units are particularly attractive as they can easily be computed from acoustic input

and do not require any prior linguistic knowledge. We hypothesize that the granularity
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of this segmentation is crucial to its success. For instance, a finer-grained phone-based

segmentation (P) performs substantially worse than other segmentation algorithms as the

derived sub-units are shorter and harder to recognize.

3.4.3 Extent of improvement

We also conclude that improving morphological accuracy beyond a certain level does not

necessarily translate into improved KWS performance. By analyzing Table 3.3, we observe

that the relation between segmentation accuracy and KWS performance is not straightfor-

ward. Clearly, bad segmentations translate into poor ATWV scores, as in the case of ran-

dom and unsupervised segmentations. However, gains on segmentation accuracy do not

always result in better KWS performance. For instance, the ranker systems (RP, RNP) have

better accuracies on MC2010, while the classifier systems (CP, CNP) perform better on the

KWS task. Figure 3-1 provides a visualization of the lack of correlation between the dif-

ferent scores. This discrepancy in performance suggests that further gains can be obtained

by optimizing morphological segmentation directly with respect to KWS metrics.

3.4.4 Phonetic information

Another conclusion we can draw is that adding phonetic information improves the quality

of morphological segmentation. For all the morphological systems, adding phonetic in-

formation results in consistent performance gains. For instance, it increases segmentation

accuracy by 4% when added to the classifier (see CNP and CP in table 3.3). The pho-

netic information used in our experiments is computed automatically using a T2P system

[15], and can be easily obtained for a range of languages. This finding sheds new light

on the relation between phonemic and morphological systems, and can be beneficial for

morphological analyzers developed for other applications.

3.4.5 Combination Systems

Combining morphological, phonemic and syllabic segmentations gives better results than

either in isolation. As table 3.3 shows, the best KWS results are achieved when syllabic and
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Figure 3-1: Plot of ATWV score vs MC2010 accuracy for various segmentations

morphemic systems are combined. The best combination system (CP+P+S) outperforms

the best individual system (S) by 5.5%. This result suggests that morphemic, phonemic and

syllabic segmentations encode complementary information which benefits KWS systems

in handling OOV keywords.
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Chapter 4

Discussion

4.1 Contributions

We present two contributions in this thesis. First, we describe a new unsupervised algorithm

for morphological segmentation that utilizes pseudo-semantic information, in addition to

orthographic cues. We formulate a log-linear model with features to incorporate semantic

cues from word vectors trained on large corpora. Using the notion of a morphological

chain, we train the model to identify good word-parent pairs using heuristics to guide the

learning of model weights. We demonstrate the effectiveness of our approach on data

from MorphoChallenge, a standard morphological dataset, on two languages - English and

Turkish. The model achieves significant gains in Segmentation Point F-Score, beating the

baseline Morfessor system by 8.9% and 18.4% on English and Turkish, respectively. We

also show that varying the heuristics gives us control over the precision and recall of the

model.

Second, we explore the impact of morphological segmentation on the speech recog-

nition task of Keyword Spotting (KWS). To investigate this issue, we augmented a KWS

system with sub-word units derived by multiple segmentation algorithms. Our experiments

demonstrate that morphemes improve the overall performance of KWS systems. Syllabic

units, however, rival the performance of morphemes in the KWS task. Furthermore, we

demonstrate that substantial performance gains in KWS performance are obtained by com-

bining morphological, phonemic and syllabic segmentations. Finally, we also show that
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adding phonetic information improves the quality of morphological segmentation.

4.2 Future Work

We recognize several areas for future investigation in this work. The inference scheme

presented in the log-linear model is equivalent to performing a greedy search for a mor-

phological chain, with access to an edge-scoring function. An interesting extension could

be to experiment with other search approaches, such as Beam Search, to boost the chances

of finding the correct chain. Another direction for research is modeling the entire mor-

phological chain instead of single edges. This is computationally harder, but provides the

opportunity to incorporate global chain-level features.

In the Keyword Spotting task, we have shown that producing morphemes according

to the semantic and lexical criteria does not necessarily help the performance. A future

direction could be to utilize feedback from the KWS system to produce sub-units that

are optimized for the task. Another possible extension is to perform segmentation of the

phonetic sequences directly, instead of words, to avoid the errors introduce by the text-to-

phone (T2P) system.
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