
Q uantitative approaches to understanding signaling regulation

of 3D cell migration

by

Aaron Samuel Meyer

B.S., University of California, Los Angeles (2009)

Submitted to the Department of Biological Engineering
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Biological Engineering

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2014

© Massachusetts Institute of Technology 2014. All rights reserved.

Signature redacted
Author..........................

C ertified by ..........................

Professor of Bic

Certified by ............... Signa

MASSACHUSETTS INSTMrTE
OF TECHNOLOGY

JUN 18 2014

LIBRARIES

ZI Department of Biological Engineering
April 8, 2014

3ignature redacted
V 4"- /)0oj4las A. Lauffenburger

logical Engineering, Chemical Engineering, and Biology
esis Supervisor

ture redacted
Frank B. Gertler

Professor of Biology
Thesis Supervisor

Signature redacted
A ccepted by ...........................................................................

Forest M. White
Chairman, Graduate Program Committee



Quantitative approaches to understanding signaling regulation

of 3D cell migration

by

Aaron Samuel Meyer

Submitted to the Department of Biological Engineering
on April 8, 2014, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy in Biological Engineering

Abstract

For many cancers, dissemination of tumor cells to form metastases is not only a hallmark of the disease but an
essential step to mortality. Migration and dissemination are complex, multistep processes, and study of their
regulation has been challenging. Metastases need only be driven by a rare subpopulation of tumor cells, and a
portion of dissemination is necessarily interaction with the cell's environment and thus cell extrinsic. Experi-
mentally, there is additional uncertainty as exactly how to best assess migration outside of the complex in vivo
environment.

To develop a systems perspective of invasive disease, we first examine some of the experimental models used
to study cell migration. We then apply this knowledge to examine regulation by proteases of endometrial cell
invasion, and the pro-migratory effects of receptor crosstalk in breast carcinoma cells. Finally, extending from
clear limitations in our knowledge of signaling regulation specifically within the invasive subpopulation of cells,
we develop a model of ligand-mediated signaling for a receptor often expressed specifically during the process of
dissemination. In total, this thesis extends systems biology techniques to the study of cell migration within the
extracellular environment, with focus on that subpopulation of cells most directly implicated in the formation
of metastatic disease.

Thesis Supervisor: Douglas A. Lauffenburger
Title: Professor of Biological Engineering, Chemical Engineering, and Biology

Thesis Supervisor: Frank B. Gertler
Title: Professor of Biology
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Chapter 1

Introduction: Resistance & metastasis are
intrinsically linked

Improved understanding of the molecular events driving carcinogenesis has led to drugs specifically targeting
these signals. In cancers with a more limited set of genetic abnormalities, such as chronic myelogenous leukemia,
these treatments have frequently shown complete disease response, vastly improving upon conventional cytotoxic
therapies [1]. In the most common malignancies however, success of these treatments has been more limited. Tar-
geted therapies have shown striking initial responses, and outlier cases of extensive survival gains, but resistance
and recurrence soon follow. Recurrent tumors and metastases are often quite distinct in phenotype and thera-
peutic response. While many new targets have been developed, second-line treatments have shown a similar or
worse pattern of response, and a sufficient understanding of resistance to design treatments that reliably result in
stable disease has not developed.

These more "challenging" cancers are often carcinomas. Tumor cell dissemination is usually a requisite pro-
cess for carcinoma-associated mortality, and thus an especially important hallmark of these cancers [2]. In order
to establish a distant tumor, cells must obtain some capacity to migrate, enter the blood or lymph, escape to the
surrounding tissue, survive, and then resume the growth process [3]. Large-scale changes must occur prior to
and during metastasis since epithelial cells do not retain the capacity to move [4]. However, despite considerable
effort to understand metastasis, drugs targeting the process have remained elusive.

Metastatic spread and resistance show striking similarities. Resistance often correlates with the metastatic po-
tential of a cancer, and tumor spread has been used as a predictor of eventual drug response [5]. Processes such
as epithelial to mesenchymal transition (EMT) that endow epithelial cells with the ability to move have similarly
been implicated in resistance. After conventional treatments the remaining cells frequently show features sug-
gesting enhanced metastatic potential [6]. These similarities between each problem are not coincidental. Tumor
resistance and metastasis each provide common challenges in their study, such as the importance of rare cells
poorly represented by the tumor average, and transient states of transformation. Sometimes, directly causal links
underlie these similarities, such as shared molecular mechanisms, or the unique microenvironment of a metas-
tasis providing bypass signaling. There is considerable value understanding some of the recent developments in
metastatic dissemination and resistance of carcinomas, framing them from the perspective of their commonali-
ties, and thus targeting of both.

Rare cells drive disease progression

Both tumor cell acquired resistance and dissemination highlight the importance of rare, outlier cells, the behavior
of which may not be captured by assay of the bulk tumor. Since the majority of a tumor does not migrate and
invade away from the primary tumor mass, and disseminating cells are phenotypically distinct, this feature clearly
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highlights the challenges as to exactly which population of cells to study.

In carcinomas, evidence has accumulated that tumor cells take advantage of developmental transformations

to acquire the ability to invade, such as EMT driven by overexpression of Twist 1 [4]. However, examination

of the role of this process has been confusing due to an expectation that this process proceed within all tumor

cells similarly. An outstanding question regarding the relevance of EMT has been why, despite seemingly strong

evidence implicating EMT-regulators as modulators of metastasis, are primary tumors and metastases markedly

epithelial in phenotype [7], and can gene expression in the primary tumor can predict dissemination [8]. In a

detailed study, Tsai and colleagues have documented that EMT is an essential step to metastatic dissemination,

but that transience of the state is equally essential such that the mesenchymal state is always present in only a mi-

nority population within tumors [9]. By examining each step of the metastatic cascade, the authors pinpointed

that EMT promotes local invasion, intravasation, and extravasation, but that cells locked in the mesenchymal

state cannot then proliferate within their new environment. Even in the experimental model of stable EMT in-

duction, the rare metastases observed were of epithelial state, suggesting these tumors absolutely require a means

around the effects of Twist 1 -upregulation and highlighting the importance of EMT transience. In breast can-

cer, a large set of cell lines display mesenchymal traits and have thus had their relevance questioned [10]. These

findings perhaps suggest these lines are in fact an effective model for this subpopulation.

Studies of circulating tumor cells have largely corroborated the significance of this transient mesenchymal

state. The abundance of CTCs, and mesenchymal markers within that subpopulation, can be a strong prognostic

marker of tumor progression and survival [11, 12]. A murine model of pancreatic cancer, through purification

of CTCs and single-molecule RNA sequencing, identified upregulated Wnt2 signaling with respect to matched

solid tumors, and targeting Wnt2 or inhibition of TAK1 kinase blocked metastasis [13]. In humans, studies of

CTCs have revealed a more complex picture, in which the mesenchymal state is abundant but shows dynamic

changes. CTCs from patients with advanced prostate and breast cancer display both epithelial and mesenchymal

markers, and each population changes dynamically in abundance in response to treatment [14, 15]. However, the

predominance of mesenchymal CTCs strongly corresponds to tumor progression. Thus, epithelial-state CTCs

may still not be significant to metastatic spread, though the circulatory environment may be able to dynamically

transform these cells [15, 16]. Further complicating matters, not only can the overall phenotypic state of CTCs

change, but genetic changes can be dynamically selected for within the population and within the primary tumor

[17, 18].
Given the relevance of this subpopulation, how might we target these cells? Though CTC-specific target-

ing has been attempted, better experimental models of in vivo CTC state are likely to be critical to successful

development of such drugs [19]. Fairly metastasis-specific results upon certain interventions certainly suggest

that specific targeting of this subpopulation may be effective. For example, the dependence receptor DCC or

inhibition of the AXL receptor shows little influence on the primary tumor but potently suppresses metastasis

[20, 21]. CTC-targeted therapies will likely show best effectiveness only in combination with epithelial-targeted

therapies to eradicate the primary tumor. Stem cells within a developmental context would suggest that simply

targeting this subpopulation would be sufficient to ablate tumors, but cancers do not seem to retain the same hier-

archical lineage forms of development [22]. Targeting localization of CTCs to the circulatory system is effective

in reducing continued tumorigenic spread, but does not address those cells disseminated into the tissue, which

may remain in an indolent state for considerable time [23, 24]. Given the ability of cancer cells to dynamically

transition between distinct states, modeling that takes into account these processes will likely be necessary for

maximal therapeutic benefit. This was recently attempted, taking into account differential sensitivities to radio-

therapy, in a murine model of glioblastoma [25]. However, such modeling efforts will need to take into account

a wider array of therapeutic options and patient-specific tumor composition for maximal efficacy.
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Many pathway routes to similar phenotypes

Common to recent developments in cancer resistance and metastatic spread is the concept of pathway redun-
dancy. In tumor cell dissemination this has become most prevalent with increasing use of in vitro migration
assays which better mimic the tumor environment [26]. Just examining tumor spread from the primary mass,
cells can utilize lamellipodial or blebbing migration modes, or means which do not rely on canonical polariza-
tion [27, 28]. Tumor cells may invade as a collective mass, allowing for diversification of migration roles, or
invade as single cells fully competent in traversing tissue on their own [29, 30], and can dynamically change their
mode of invasion in response to treatment [31, 32]. Cells may direct themselves through the matrix, or may
rely on either signals or matrix degradation from tumor-infiltrating immune cells [33-35]. Extracellular matrix
remodeling can be performed by tumor cells themselves, or promoted through cancer-associated fibroblasts [36,
37]. While EGF is perhaps the most studied chemotactic ligand for carcinoma cells, an overwhelming number
of other growth factors and cytokines, such as RANKL or CCL18 from infiltrating immune cells, have been
identified as promoting tumor cell dissemination [34, 38, 39].

Similarly, while initial study of resistance mechanisms focused on acquired changes in the molecular target,
focus has broadened to identify common and widespread redundancy in cell signaling as a most problematic
source of resistance to targeted agents [40, 41]. Because of this redundancy, overexpression or dysregulation of
many different cell signaling molecules can lead to therapeutic resistance [42]. These can take the form of sim-
pler redundancy, such as multitude of RTKs compensating for one another in terms of the requisite resistance
signaling [43], or more complex redundancy from entirely distinct sources of survival signaling such as GTPases
[44]. As one would expect given redundancy in the exact kinases which drive survival signaling, overall network
response can often predict therapeutic response better than overexpression of single proteins [45]. With an im-
proved understanding of overall network response, network-level sensitivities are more easily identifiable, as was
demonstrated for HER2/3 inhibition compared to combined Mek/Akt inhibition [46].

Much of the research into resistance to date has focused on elucidation of resistance mechanisms, likely with
the thought that very few would exist. However, with an ever-expanding literature of pathway redundancies,
lengthening the list of resistance mechanisms is unlikely to help therapeutic development. This is an area where
cancer cell resistance can likely learn a great deal from study of migration phenotypes. A great deal of work has
elucidated the basic principles of cell migration, which provides a framework for understanding novel findings
at higher levels, such as which matrix geometries give rise to particular types of migration [47]. With that under-
standing, it might then be easier to elucidate the many routes to resistance [48]. Optimism that even moderate
accounting for pathway redundancy may provide considerable improvements in patient survival is justified [49].

Relevance of in vitro models

In recent years, many observations have called into question the relevance of simple experimental models for
assessing metastatic potential [50]. Tumor cell dissemination necessarily depends on environmental interactions,
many of which are missed by assessing motility on simple planar or porous surfaces. In vitro models also lack
communication with other tumor-associated cell types and tissue structure, making it difficult to study metastasis-
promoting effects such as vascularization and endothelial interaction [51]. Certain forms of cell invasion, such
as with lobopodia or as tubular structures, lack any sort of 2D analog [27, 52].

Resistance similarly depends on environmental interactions, and thus can be difficult to assess outside the
in vivo microenvironment. For example, many oncogenes can contribute to breast tumor progression when in
an unstructured or fibrotic ECM environment, but do not result in outgrowth of single cells when formed in
proper acini [53]. Drug responses within proper tissue structures can be quite distinct as well [54]. Paracrine
cues rely on the presence and proper activation of a variety of other cell types that cannot be feasibly combined
within in vitro systems, and the extracellular matrix can further influence presentation of autocrine and paracrine
cues. Recently, periostin was identified as an essential matrix factor, secreted by normal fibroblasts, which recruits
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Wnt ligands and thus promotes metastatic colonization of disseminated cancer stem cells [55]. New engineered

scaffolds can improve the complexity of in vitro models, but it is difficult to know a priori which features of the

in vivo environment need translation [56, 57]
These observations are not to say resistance and metastatic potential are always best evaluated within the

in vivo environment. The immense complexity of in vivo models often confound mechanistic interpretation of

results. Thus, there is a need to build up from simplicity, while tackling the complex in vivo environment. Ex-

perimental models are necessary to provide proper controlled manipulation, and many measurement techniques

are simply not possible using in vivo systems. In vitro study of specific processes which contribute to invasion

and metastasis, rather than migration overall, has been effective in improving translation to in vivo models. For

example, many studies have looked at the pathways which regulate actin turnover at the leading edge of cells [581.
Actin polymerization-based translocation translates well to mesenchymal migration within 3D collagen matrices,

and is often the rate-limiting step [33, 59, 60]. Invadopodia have well-developed methods of assessment in vitro,

and their activity seems to translate well to in vivo models of cancer cell metastasis [61, 62]. This separation of

scales will likely be necessary for study of resistance as well.

Migration can causally provide resistance

One very clear source of similarities between resistance to targeted therapies and metastatic dissemination is by

causal relationships between the two. As a very simple example, metastasis to the brain confers resistance to many

therapies that cannot effectively cross the blood brain barrier [63]. These effects generally arise as a characteristic

of the local metastatic environment, differential selection of cells within a diverse population, or shared molecular

mechanism.
The invasion process necessarily relocates cells to diverse environments, some of which can provide resistance

to therapies. Leukemia cell infiltration to the bone marrow provides protection against antibody-based therapies,

where the cells are able to coax the resident cells to be protective [64]. Immune clearance of these cells requires

additional modulation of the environment with cytotoxic agents or cytokines. Disseminated breast carcinoma

cells often lie dormant adjacent to the vasculature, not only in a distinct environment from the primary tumor,

but receiving signals such as thrombospondin-1 which induce dormancy and thus resistance to therapies which

rely on selective killing of dividing cells [65].
Molecular mechanisms that promote metastasis simultaneously can provide survival signaling. A recently

identified example of this is signaling through P-RexI. Unsurprisingly as a Rac-GEF, P-Rexl promotes invasion

and metastatic dissemination particularly within melanoma, in a Rac-dependent manner [66]. As a link from

PIP3 dependent signaling to MAPK activation, the protein can simultaneously provide P13K-dependent Erk

activation and thus bypass resistance of canonical Erk activation, shifting the requirement of RTK activation

from dual activation of two pathways to just activation of PIP3 synthesis [67, 68]. Within the extracellular

milieu, matrix metalloproteinases such as MT1-MMP and MT2-MMP degrade extracellular matrix and thus

physically enable invasion of tumor cells, but simultaneously protect against collagen-mediated apoptosis [69,

70]. Cell invasion through the matrix environment can cause both rewiring and crosslinking of extracellular

matrix, often essential for cell invasion within extracellular matrix, but also driving differential integrin activation

and resistance [54, 71]. More globally, EMT leads to diverse regulatory changes within a cell. One part of this in

ErbB3-positive breast carcinoma cells is a switch to P13K activation mediated by alternative RTKs [72]. These

bypass signals result in qualitatively distinct survival dependencies for disseminated cells, and thus resistance from

the perspective of therapies designed by assessment of bulk tumor response.

More subtly, dissemination of tumor cells can enable sampling and selection within a heterogeneous popu-

lation of cells. This can allow tumor cells of distinct phenotypes that otherwise might not have survived find a

distinctly suitable environment compared to the average tumor cell. Thus, differences in adhesion between bulk

and disseminated tumor cells for example may not only reflect differences in invasive capacity but differences in
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most suitable environment, enhancing diversity in the tumor cell population [73]. For example, bone metastases
are skewed toward Src-driven survival cues due to the high prevalence of CXCL12 and IGF1 in the microenvi-
ronment, and thus require distinct therapeutic targeting [74]. In total, these effects, through reprogramming or
differential selection, all result in metastatic dissemination giving rise to therapeutic resistance.

TAM receptors as a framework for studying resistance & metastasis

TAM receptors are a family of RTKs, represented by AXL, Tyro3, and MerTK, distinguished by their ectodomain
comprised of two immunoglobulin domains and two fibronectin domains [75]. Gas6 and protein S are the only
known ligands for the TAM receptors [76], and while Gas6 has measurable binding to all three receptors, protein
S binds only Tyro3 and MerTK [77]. Protein S has a lower affinity even for the receptors with measurable bind-
ing, but is found in much higher concentrations, particularly in the blood, and has been validated as a relevant
ligand in vivo [78]. Both ligands contain two C-terminal sex-hormone binding domains (SHBD) responsible
for receptor binding. On the N-terminal end of the proteins, linked by four EGF-like domains, a Gla domain
is gamma-carboxylated in a vitamin K-dependent process to gain capacity to bind phosphatidylserine. Ligands
bind in a mirrored two ligand-two receptor complex in which there are no receptor-receptor or ligand-ligand
contacts [79, 80]. Many of the phenotypes observed upon genetic manipulation of the receptors or ligands re-
late to processes signaled by presentation of phosphatidylserine on the outer leaflet of cells. Indeed, the first
homologous receptors appear in the genomes of prevertebrate urochordates (family Cionidae), and have a Gla
domain (present only in the TAM ligands) directly linked to a transmembrane protein kinase domain, suggesting
a conserved role for kinase signaling associated with phosphatidylserine exposure [81].

TAM receptors, and especially AXL, have attracted considerable interest in the past decade as a potential
therapeutic target in a wide range of cancers. In solid tumors, mutations and overexpression in the bulk tumor
are uncommon. However, overexpression of the receptors has generally coincided with metastatic capacity, in-
vasiveness in vitro, and resistance to targeted therapies. Consistent with this observation, AXL expression was
identified as driven by EMT [21, 85] and, while therapeutic inhibitors of AXL have had less effectiveness in
preclinical models on the primary tumor, they have shown promising results in combination with other targeted
therapies or standard therapies and in blocking metastasis. Even in disseminated cancers, targeting the distinct
population of AXL-expressing cells while simultaneously targeting the bulk tumor with standard treatments
shows promise in considerably improving patient survival. MerTK and Tyro3 have also been observed as over-
expressed and therapeutic targets in acute myeloid leukemia, glioblastoma, melanoma, thyroid cancers, and lung
adenocarcinoma, though with a simpler pattern of uniform overexpression compared to AXL [86-88].

Therapeutic targeting of the TAM receptors was initially motivated in part by relatively mild effects upon
knocking out expression [75]. However, further study has uncovered important function of the receptors in
diverse processes, and cautions against overly broad therapeutic targeting but suggests further promise for TAM-
targeted cancer therapy. The most studied effects of TAM-ablation have been in the immune system, where sig-
naling from the receptors couples clearance of cell debris to regulation of the innate immune system [89]. One of
the striking phenotypes of the triple knockout mice is a broad accumulation of apoptotic cell debris throughout
various tissues. This has been tracked to defects in phagocytosis of this debris by macrophages in most tissues
(termed efferocytosis), with the strongest effects in the single receptor knockouts observed upon ablation of
MerTK [90, 91]. In addition to efferocytosis, signaling from TAM receptors acts as a negative feedback mech-
anism to the innate immune response [92]. Consistent with this, upon ablation of TAM receptor expression,
one effect upon additional insult is development of autoimmune disorders, though it is unclear whether this due
to accumulation of cross-presented auto-antigen, ablation of this negative regulation, or a combination of both
[93]. Protein S from T cells was recently identified as an important means to downregulate the innate immune
response after T cell activation, and TAM signaling in NK cells through c-Cbl blocks clearance of tumor cells [82,
83]. Many viruses are in fact coated by host phosphatidylserine-exposed membranes, which utilize this signaling
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Figure 1.1: Overview of TAM signaling in cancer. a) Ligand binds TAM receptors in a mirrored two ligand-two receptor

complex in which there are no receptor-receptor or ligand-ligand contacts [79, 80]. Two binding sites exist on each

receptor and ligand (1 and 2), of highly asymmetric affinity for AXL-Gas6 [79]. b) TAM signaling within the tumor

environment. In many tumors, the invasive subset of cells displays overexpression of AXL (red). TAM receptor activation

within dendritic cells also potently inhibits the innate immune response through AXL and MerTK (blue). T cell release of

protein S further dampens the immune response, and TAM signaling in NK cells blocks tumor cell clearance [82, 83]

Macrophages, T cells, and NK cells all express a complement of TAM receptors, which likely further influence the tumor

immune response [84].

to delay an immune response [94]. As a result of these effects, modulation of immune signaling could improve or

impair therapeutic benefits of TAM-targeted therapies. Indeed, ablation of AXL and MerTK increases suscepti-

bility to DSS-induced colitis on one hand, while having potent tumor-extrinsic anti-metastatic effects in murine

models of breast cancer, melanoma and colon cancer on the other [84, 95].

Effects of TAM receptors outside of the immune system are pleiotropic. Some effects, such as retinal degen-

eration and infertility in older animals, are linked to clearance of phosphatidylserine-exposing debris [78, 96].

Activation may additionally provide survival cues for a variety of cell types [97]. Results from cancer studies have

suggested MerTK signaling modulates vascularization, though the extent to which this occurs outside cancer is

unclear. The most widespread expression of TAM receptors in the adult is within the brain, though effects upon

inhibiting this signaling have only been identified very recently. MerTK has been identified as important for

synapse elimination by astrocytes, TAM receptors seem to be important for adult neurogenesis, and autoimmu-

nity causes inflammatory brain damage in triple knockout mice [98-100]. However, a clear picture of the exact

processes disrupted in the brain has not yet emerged.

For these reasons, TAM receptors represent a uniquely interesting context in which to investigate how we

might develop fundamentally new approaches to cancer therapy. These receptors highlight the importance of

rare cells etiologically important to tumor progression, since their preliminary effectiveness has been specific to

metastasis. At the same time, the importance of host signaling will limit design of therapies, but also presents new

possibilities for modulating immune response which may not suffer from the characteristic acquired resistance

limitations of previous targeted therapies.
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Conclusion

Targeting tumor metastasis mechanisms has come under justifiable scrutiny due to observations of occult dissem-
inated tumor cells in many carcinoma types. If tumors, at time of diagnosis, are already distributed throughout
the body, what good is there in preventing further dissemination? Better screening technologies may still move
the time of diagnosis to before tumor dissemination, particularly in pancreatic cancer in which a long latency
exists in carcinogenesis [101]. It should be clear from these discussed links between tumor resistance and dis-
semination that value exists in studying each process as a combined phenomenon, particularly as resistant and
disseminating cells may often be the same, and additional metastases subsequently give rise to increased tumor
heterogeneity [102]. Indeed, dissemination and original carcinogenesis may occur simultaneously due to signif-
icant overlap in the molecular drivers. In melanoma this has been observed, where the majority of pro-invasion
drivers are oncogenes [103]. In pancreatic cancer, certain genetic backgrounds may require pro-invasion genes
for survival outside stable disease within the original tumor [102]. Regardless, both processes stress the need to
move beyond study of the tumor average, as clonal selection of subpopulations implicate all outliers in disease
progression [104].
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Chapter 2

Growth Factor-Induced Breast Carcinoma Cell

Migration in 3D Collagen is Predicted by 2D

Protrusion but not Motility

Abstract

Growth factor-induced migration is a critical step in the dissemination and metastasis of solid tumors. Although

differences in properties characterizing cell migration on two-dimensional (2D) substrata versus within three-

dimensional (3D) matrices have been noted for particular growth factor stimuli, the 2D approach remains in

more common use as an efficient surrogate, especially for high-throughput experiments. We therefore were mo-

tivated to investigate which migration properties measured in various 2D assays might be reflective of 3D migra-

tory behavioral responses. We used human triple-negative breast cancer lines stimulated by a panel of receptor

tyrosine kinase ligands relevant to mammary carcinoma progression. Whereas 2D migration properties did not

correlate well with 3D behavior across multiple growth factors, we found that increased membrane protrusion

elicited by growth factor stimulation did relate robustly to enhanced 3D migration properties of the MDA-MB-

231 and MDA-MB-157 lines. Interestingly, we observed this to be a more reliable relationship than cognate

receptor expression or activation levels across these and two additional mammary tumor lines.

Introduction

In most all solid cancers, dissemination of cells and establishment of distant metastases is an essential step in

disease mortality [2]. Dissemination of carcinomas occurs by invasion across a basement membrane layer and

migration through interstitial matrix to blood or lymph vessels. Efficient migration in this context requires co-

ordinate regulation of cytoskeletal protrusion, adhesion, proteolysis and contraction [105, 106], each of which

is modulated by paracrine and autocrine growth factor cues.

Cell migration has principally been studied as translocation across rigid two-dimensional substrata. Despite

the relevance of migration within extracellular matrix (ECM) to tumor progression [107], and known qualitative

and quantitative differences in cell movement between 2D and 3D environments [50, 108, 109], analysis of cells

embedded within ECM remains relatively uncommon due to technical difficulty and incompatibility with most

biochemical analyses. Functional genomic screening techniques have been employed to identify regulators of

cell migration in planar contexts [110, 111] and analogous efforts used to identify small molecule drug targets

[112] or ascertain dependence on key signaling pathways [113]. The physiological relevance of results obtained

from such high-throughput efforts is related directly to the degree that cellular responses measured in 2D systems

correlate to those within ECM environments. Determining whether in fact any metrics easily obtained from 2D
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assays correlate robustly with 3D migration behavior across a broad range of treatment conditions is therefore
critical.

We herein address this challenge for the important case of breast carcinoma cell migration. Through quan-
titative analysis of motility across multiple triple negative (ER-/PR-/HER2 normal) breast carcinoma cell lines
moving in 3D within collagen I matrix, we evaluate the predictive value of measurements such as receptor ex-
pression, and motility surrogates such as cell translocation in 2D. We fail to observe correlation between growth
factor-induced motility responses on either stiff or compliant ECM in a 2D context and those within 3D ECM.
While cognate receptor expression can weakly predict the relative motility responses across cell lines, it fails to
quantitatively predict motility enhancement due to growth factor stimulation. By examination of individual
migration-related biophysical processes, we identify that acute lamellipodial protrusion dynamics of cells in re-
sponse to growth factor cues can predict motility within 3D ECM. These findings have broad consequence in
the assessment of motility responses in vitro, both for high-throughput studies and for deeper investigation of
how growth factor-elicited signaling network activities govern migration behavior.

Results and Discussion

Systematic quantification of migration

To address multicomponent responses to growth factor stimulation, we performed a battery of quantitative sin-

gle cell migration assays using multiple human breast tumor cell lines and assay geometries (Fig. 2.1A & 2.1B;
see Materials and Methods). Cells were fluorescently labeled to facilitate image analysis, and their displacement
was tracked via live-cell microscopy over the course of 16 hours in the presence or absence of seven growth factor
cues relevant to the tumor microenvironment [2, 119-129] (Fig. 2.1C, 2.2A & 2.2B). Semi-automatic centroid
tracking was used to extract multiple parameters that describe the migration phenotype of each cell. Each in-
dividual cell track provides five distinctly quantifiable properties (Fig. 2.1D): (1) a root mean squared (RMS)
speed of each time interval; (2) the variance of that speed; (3) a total speed calculated as the total path length
normalized by the time of the experiment; (4) a net speed or the net displacement normalized by the duration of
the experiment; and (5) a "random motility coefficient" calculated by fitting to a random walk model [105, 106,
130]. The migration parameters were independent of position within the gel, nor were cells biased in their di-
rection of migration, indicating homogenous physical characteristics [131, 1321 and that the growth factors had
distributed fairly uniformly throughout the gels before the observation period. Of ten breast carcinoma cell lines
investigated across clinical markers and subtypes, five were observed to migrate robustly (Table 2.1). Vimentin
expression and subtype classification distinguished cells that did or did not migrate in 3D.

Initial analysis of the full dataset by multidimensional reduction techniques illustrated that speed (RMS
speed, total speed) and persistence (net speed, random motility) broadly cluster into two groups (Fig. 2.2C). This
multidimensional scaling seeks to preserve distance as a description of relative difference between each motility
metric, and indicates cell speed and persistence are distinct parameters to describe migration captured by the assay.
Using unsupervised clustering techniques, cell lines (Fig. 2.3A), and dimensionalities or ECM in 2D (Fig. 2.3B)
were found to be separable. Weaker clustering among speed- or persistence-related motility metrics from iden-
tical cell lines or geometries was obtained, consistent with single cell-based clustering (Fig. 2.2C). In some cases
distinguishable responses were observed when analyzing different quantiles of the single-cell migration metrics
(Fig. 2.2D), resulting in different response profiles (Fig. 2.3). Analysis of "outlier" cell populations is particu-
larly important in invasive disease, as bulk population responses may not reflect disease etiology [12, 50, 108,
109, 133-135]. One important advantage of our large single-cell migration parameter dataset is the ability to
quantify differences in responses within distinct cell subpopulations across assay conditions.
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Figure 2.1: Schematic of the migration assays. Cells were seeded on or in matrix, or on plastic (B), for 18 hours before
growth factor stimulation. Four hours after growth factor stimulation cells were imaged for 16 hours. Tracks of each cell

were produced (C) and used to calculate five parameters summarizing the migration phenotype of each cell (D).

Cell Line

MDA-MB-231
SUM-159
BT-549

MDA-MB-157
SUM-1315

BT-483
T47D
MCF7

MDA-MB-453
SKBR3

Subtype

Basal B
Basal B
Basal B
Basal B
Basal B
Luminal
Luminal
Luminal
Luminal
Luminal

Markers

V
N,V
N,V

V
V

E, ER, PR, HER2
E, N, ER, PR

E, ER, PR

HER2

Migratory in 3D
+

+

+

+

+

Table 2.1: Table of cell lines tested for motility in collagen I gels. Cell lines examined in 3D. Markers column indicates
which of the following clinical markers are present: E-cadherin (E), N-cadherin (N), vimentin (V), estrogen receptor

(ER), progesterone receptor (PR), HER2 [10, 114-118].

Prediction of motility enhancement by receptor expression

We tested the ability of growth factor receptor expression to predict differential motility response upon stimula-

tion, as receptor expression is widely used to define clinical breast tumor subtype. Total protein expression was

measured for 3 different growth factor receptors, implicated in breast cancer invasion and metastasis [2, 136-

138], in 2D for each cell line (Fig. 2.4B) and every pairwise comparison of receptor expression and motility

enhancement in 3D was performed (Fig. 2.4A). With 24 comparisons (4x C(4,2)) at least 17 trials must corre-

spond between receptor expression and motility for this relationship to be considered significantly predictive (p
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Figure 2.2: Fluorescence contrast images of cells migrating within collagen I gels. Tracks were produced using Bitplane
Imaris and show the migration of MDA-MB-231 cells over 16 hrs with (bottom) or without (top) stimulation with

100 ng mL-' EGF 4 hrs before imaging. Stacks consist of 70 slices measured 0.665 by 0.665 mm taken 3 [tm apart. Shown
is the maximal 45d perspective projection, with darker colors indicating higher fluorescence intensity. Fig. 2.1 C is a

wind-rose plot of these conditions. C) Pairwise distances between each metric were calculated using the inverse Spearman
rank correlation across individual cells, and condensed by multidimensional scaling. This method seeks to preserve the
distances between each motility metric while representing all distances in two dimensions. Two dimensions (PC 1 and

PC2) captured >99% of the distance quantities. Speed- and persistence-related metrics are circled in red and blue,
respectively. Error bars are SEM. D) Plots for each motility metric across growth factor conditions are shown. Black and

red lines indicate the median and 9 0 th percentile responses, respectively. Each independent experiment was mean centered
across growth factor conditions. The mean and SEM of all experiments (N >. 3) is shown.
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Figure 2.3: Large-scale quantification of migration responses enables systems analysis of migration. Shown are

mean-centered motility responses across eight growth factor conditions and four cell lines within collagen I gels (A) or

MDA-MB-231 cells across different 2D and 3D motility assays (B, see 2.1B). Each profile and growth factor is clustered

by rank correlation and average linkage. Both the median (top) and 9 0th quantile (bottom) responses are shown, as well as

each migration metric (indicated by numbers).
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Figure 2.4: Cognate receptor measurement is weakly informative of relative growth factor motility enhancement. A)
Illustration of the pairwise comparison of receptor measurement and motility enhancement made between each cell line.

B) EGFR, IGF 1 R and c-Met expression was measured across four cell lines. Dividing lines indicate separate gels. C) Every
pairwise comparison of receptor expression and motility enhancement was made between cell lines for each metric of

motility. Additionally, the motility enhancement for each cell line across all growth factor conditions was used to
normalize for differences in the ability of each cell line to globally respond by migrating. The left and right y-axes indicate
the number and percent of correct comparisons, respectively. Significance was tested by use of the binomial distribution

(dotted line, p < 0.05). D) Plots of RMS speed enhancement upon receptor stimulation versus relative receptor
expression. Error bars indicate SEM. E) EGFR pan-pY measurement in cells stimulated with either EGF or TGFa for 5

minutes. Error bars indicate range of duplicate measurements. F) Similar pairwise comparison analysis using
measurement of p-EGFR to predict migration response. G) Plot of RMS speed enhancement upon EGFR stimulation
versus EGFR pan-pY measurement. Vertical error bars indicate SEM, horizontal error bars indicate measurement range.
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< 0.05). The analysis revealed a weak but significant association for 3 of 4 motility properties, with 15-18 correct

associations (Fig. 2.4C). Normalizing the measured properties for each cell line across the range of growth factor

treatment conditions by variance, which may potentially account for differences among cell lines in their intrinsic

motility capabilities, slightly improved the predictive capacity of receptor expression to 16-20 correct associa-

tions (Fig. 2.4C). As receptor activation might have improved predictive capacity over expression, we additionally

tested the ability of EGFR pan-pY measurements to predict EGF and TGF motility enhancement (Fig. 2.4E).

Both stimulations may be directly compared in this case, resulting in 28 (C(8,2)) comparisons. Receptor activa-

tion, although distinct from expression, was not a better predictor of motility enhancement (Fig. 2.4F).

Receptor expression levels thus predicted growth factor-elicited motility enhancement to a small degree that

barely reached statistical significance. While this provides support that receptor expression can account for some

of the variation observed among cell lines and presumably among tumors, it is manifest that receptor expression

or activation levels do not readily explain disparities in relative or absolute growth factor-enhanced migration

responses (Fig. 2.4D and 2.4G). Therefore, while expression measurements across many samples may indicate

etiologically important changes, measurement of receptor expression alone within tumor cells will likely not be

sufficient to identify the particular growth factor cues driving invasion and metastasis in the context of myriad

heterogeneities among various samples.

Growth factor motility responses are distinct in 2D and 3D

Migration across a planar substratum has been the principal means for quantitative studies of responses to com-

pound and genetic manipulations intended to inhibit metastasis [105, 106, 110, 111]. Dissimilarities in unstim-

ulated migration between 2D and 3D have been noted [50, 108, 1311. However, while migration in vivo is driven

by autocrine and paracrine growth factor cues, the effects of growth factor stimulation have not been compared

in different dimensional contexts. It is conceivable that growth factor motility responses may be similar in dis-

tinct dimensional contexts if various migration-related processes (e.g. protrusion, proteolysis, and retraction) are

similarly modulated by growth factor cues.

To study the contributions of dimensional and matrix context on cell migration in vitro systematically, we

performed all pairwise comparisons of growth factor enhanced cell motility metrics in MDA-MB-231 cells

(Fig. 2.5A). A stronger correlation exists between different motility metrics within a single dimensional or ma-

trix type, reflected by analysis for significant correlations (Fig. 2.5B; p < 0.05), which only exist within, and not

across, dimensionalities. This is consistent with observed differences in EGF-stimulated migration response in

2D versus 3D [33, 50, 108, 109].
Here, we systematically demonstrate for the first time that growth factor enhanced motility is distinct be-

tween dimensional contexts. This difference holds serious implications for studies investigating migration in

general, and in particular for analyzing intracellular signaling events that promote migration.

Early protrusion is a better surrogate for measurement of 3D migration response

Next, we sought to identify biophysical processes that may better reflect growth factor enhanced 3D motility.

Within seconds following growth factor stimulation, cells respond through actin polymerization and lamellipo-

dia protrusion, which can be measured in 2D as an area change [38, 110, 111]. We hypothesized that initial

2D protrusion may reflect eventual motility enhancement in 3D, particularly as 2D protrusion enhancement

correlates with metastatic capacity and migration metrics in vivo in one case [33, 112, 139].
Acute changes in the area of MDA-MB-231 cells after growth factor stimulation were quantified (Fig. 2.6A).

This "profile" of growth factor response (the 5 0th 9 0 th or 9 5th quantile area change across growth factors) was

then compared to that of each motility metric in differing dimensional contexts. We found that lamellipodial

protrusion correlates positively with 3D migration (Fig. 2.6B). Upon comparison to all 2D motility assays and

lamellipodial protrusion, 3D migration correlated better with the acute membrane protrusion response than

with any 2D migration measurements (Fig. 2.6C). The generality of the link between migration in 3D and early
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Figure 2.5: Motility enhancement in 2D and 3D in MDA-MB-231 is broadly distinct. A) All Spearman pairwise

correlation coefficients between each motility metric in each 2D and 3D migration assay across growth factor stimuli. The

upper and lower diagonals show coefficients corresponding to the median and 9 0 th percentile response profiles

respectively. B) Significant correlations (p < 0.05) are indicated in black. Correlations are observed along the diagonal

between motility metrics, but not between different migration assays and 3D migration.

protrusion was tested independently by measuring protrusion across all growth factor conditions in MDA-MB-

157 cells (Fig. 2.6A). Significant association between 3D migration and lamellipodial protrusion was once again

observed despite differences in the growth factor responses between the two cell lines (Fig. 2.6D, 2.3A). This test

is especially stringent, as it requires similarity across growth factors that promote different intracellular signaling

responses [113, 140].
In order to more stringently test our observed link between initial protrusion and eventual migration in 3D,

as well as to evaluate whether protrusion plays a specific causal role in 3D migration or is simply an auspicious

measure of signaling, we selected three drugs which disrupt cytoskeletal elements to test whether 2D migration

or protrusion would better predict eventual 3D migration. Notably, drugs which block migration in both 2D

and 3D would not address our prediction, since we wish to assess the ability of protrusion to specifically evaluate

3D migratory capacity. Nocodazole and blebbistatin were selected for their documented distinct effects in 2D

and 3D contexts [108], while cytochalasin D was chosen for its ability at low doses to block localization of Enah

to the barbed ends of actin filaments [130, 141]. MDA-MB-231 cells were treated with the three drugs with

or without EGF stimulation on stiff collagen in 2D (Fig. 2.6E and 2.7A) or in 3D collagen gels (Fig. 2.6F and

2.7B). In parallel, initial protrusion was evaluated as before (Fig. 2.6G). While, in general, 2D migration was not

affected by any of the drug treatments, 3D migration was significantly reduced. These reductions corresponded

well to a reduced protrusion response.
Our results ought not be taken to imply that modulation of membrane protrusion dynamics be considered

to necessarily be the sole, or even predominant, mechanism of motility enhancement in response to growth fac-

tor stimuli. Evidence exists for modulation of other processes, such as contraction and proteolysis, to occur

downstream of membrane protrusion. Focal proteolysis in 3D collagen gels has been suggested to be driven by

pericellular constriction resulting from pseudopodial protrusion, promoting integrin and membrane-associated

protease clustering [30, 132]. Whether by functional or phenomenological means, protrusion frequency and ma-

trix deformation correlate significantly in 3D collagen [12, 50, 133-135]. Importantly, the correlation between

acute actin polymerization responses and longer-term 3D migration response offers a window of opportunity for

studying the interacellular signaling pathways important for driving 3D migration. The tractability of biochem-
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Figure 2.6: Protrusion correlates specifically with 3D motility enhancement. A) MDA-MB-231 and MDA-MB-157 cells

were stimulated with each growth factor condition and the fold change in cell area calculated by manual tracing of DIC

images (MDA-MB-231, N=60-138; MDA-MB-157, N=15-25). B) Rank correlation coefficients were calculated for

MDA-MB-231 between the median, 9 0 th percentile, and 9 5 th percentile protrusion responses, and the migration

responses across different metrics of migration and assays. Each box is bounded by the highest and lowest correlation

calculated, with a line indicating the median correlation calculated. Bars above indicate the number of quantiles for which

the correlation is significant (Storey correction, q < 0.05, 0.75 false positive). C) Similar analysis shows correlations

between 3D motility, and protrusion or different 2D motility assays (q < 0.05, 0.2 false positive). D) Protrusion and 3D

motility also correlate in MDA-MB- 157 cells (p < 0.05). E) Net displacement of MDA-MB-231 cells treated with three

cytoskeleton-related inhibitors with or without EGF stimulation on stiff collagen matrix. Bars above indicate significant

differences with respect to the no inhibitor control (p < 0.05). F) Net displacement of cells treated similarly within 3D

collagen gels. G) Protrusion in response to EGF stimulation for cells treated with each cytoskeletal drug.
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Figure 2.7: MDA-MB-231 cells show differing sensitivity to cytoskeletal perturbation in 2D and 3D. A) RMS speed of
cells treated with three cytoskeleton-related inhibitors with or without EGF stimulation on stiff collagen matrix. Bars
above indicate significant differences with respect to the no inhibitor control (p < 0.05). B) RMS speed of cells treated

similarly within 3D collagen gels.

ical analysis from a plate of sparsely seeded cells with enough physical space for robust membrane protrusion is
significant versus collection of cells or real-time analysis of signaling events within cells in a 3D matrix.

As migration within 3D was only observed with cells of one clinical subtype (ER-, PR-, HER2 normal), our
observation of correspondence between short-term protrusion and migration in 3D remains to be tested for cells
of other clinical subtypes and lineages. However, while bulk tumors may not be represented by the cell lines of
mesenchymal phenotype, metastasis-relevant subpopulations may show a distinct expression signature [32]. Our
results urge consideration of protrusion measurement, at least over measurement of 2D motility, as an indicator
of 3D migration-relevant response.

A detailed mechanistic picture describing the modulation of multiple essential processes involved in inter-
stitial migration remains to be constructed, with careful consideration of intricate forms of crosstalk between
these processes an important key. Here, we have presented a systematic deconstruction of migration behaviors
across an especially invasive and lethal subtype of breast cancer. Our findings point towards the initial steps in
actin polymerization as an important regulator of invasive potential in these cells. Our contribution offers an
improved basis for rational experimental design and pinpoint the timescale that may be most relevant for quan-
tification. As migration in vivo may occur via directed paracrine cues from tumor-associated cell populations,
high-throughput analyses of migration responses to growth factor cues are likely to reveal effective targets of
metastatic suppression.

Methods

Antibody Reagents, Growth Factors and Inhibitors Antibodies against EGFR, IGF1R, Met, and GAPDH
were purchased from Cell Signaling Technologies. EGF, PDGF-BB, and TGFa were purchased from Invitrogen.
IGF1, HGF, HBEGF, and HRG31 were purchased from Peptrotech. EGF and IGF 1 were used at 100 ng mL-1,
HRG@1 at 80 ng mL1, and all others at 50 ng mL-' for all experiments. (S)-(-)-Blebbistatin, cytochalasin D
and nocodazole were purchased from Santa Cruz Biotechnology and used at 50 M, 25 nM and 10 tM, respec-
tively.

Cell Culture MDA-MB-231, BT-549 and MDA-MB-157 cells were cultured in high-glucose Dulbecco's
modified eagle medium supplemented with 10% fetal bovine serum and 1% penicillin-streptomycin. SUM- 159
cells were cultured in Ham's F 12 media supplemented with 5 tg mL-1 insulin (Lonza), 1 .g mL 1 hydrocorti-
sone (BD), 5% FBS and 1% penicillin-streptomycin.
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MDA-MB-231, A549, BT-549, A172 and U87 cells were obtained from ATCC. Anna Starzinski-Powitz

(University of Frankfurt) generously provided 12Z cells by way of Steve Palmer (EMD Serono).

Migration Analysis For 3D migration assessment, cells were labeled with CMPTX (Invitrogen) for 20 min

and mixed with 2.2 mg mL- 1 pH-neutralized, acid-extracted collagen I (BD) with Dulbecco's modified eagle

medium at 500,000 cells/mL. The matrix-cell solution was placed in a glass-bottom multiwell plate (MatTek;

Ashland, MA) and polymerized for 30 min at 37*C, then overlaid with full serum media overnight. Cells were

stimulated four hours before imaging on an environment-controlled Nikon TE2000 microscope (Nikon Instru-

ments; Melville, NY) with a Hamamatsu Photonics C4742-95-12ERG camera (Hamamatsu Photonics; Hama-

matsu City, Japan). Image stacks of 70-3 zm slices were obtained every 60 min for 16 hrs using a 10 x air objective

and Metamorph (Molecular Devices; Sunnyvale, CA). Where indicated, inhibitors were added simultaneous to

stimulation. To avoid artifacts due to potential gradients in stiffness near the edges of the gel, analysis fields were

selected greater than 200 vm from the glass surface.

For soft 2D migration assays, 100 FL of pH-neutralized, acid-extracted 2.2 mg mL-- collagen I or 100%

matrigel was spread across wells of a 48-well plate and allowed to polymerize. For stiff 2D migration assays, either

100 tg mL 1 collagen I in 20 mM acetic acid or 0.2% matrigel in serum free medium was used to coat uncoated

glass multiwall plates for 30 min (MatTek). Cells were then labeled with CMFDA (Invitrogen) for 20 min and

seeded sparsely on wells with matrix or directly on tissue culture plastic. The next day cells were stimulated 4 hrs

before imaging every 10 min for 16 hrs. Where indicated, inhibitors were added simultaneous to stimulation.

Cells were tracked using Bitplane Imaris. From each track, the root-mean-squared cell speed was calculated

from position intervals between time points, as well as the standard deviation of the mean. Total and net speeds

were calculated by dividing the total path length and net displacement by the duration of the experiment. Each

track was then fit to a random walk model using the method of nonoverlapping intervals as described before to

calculate the random motility coefficient [1321.

Protrusion Assays Glass-bottomed dishes (MatTek) were coated with 0.2% matrigel in serum-free media for

30 min. Cells were seeded sparsely overnight, then serum starved for 4 hrs in L15 media with 0.35% bovine

serum albumin. Inhibitors, when indicated, were added at the beginning of serum starvation. DIC images were

acquired every 10 secs for 1 min before stimulation and 9 mins after stimulation. Cell areas were traced immedi-

ately before stimulation and 9 min post-stimulation using ImageJ.

Receptor Expression and Activation Measurement Cells were plated sparsely on 15 cm plates overnight,

washed with PBS and lysed with 500 .L of RIPA buffer containing protease inhibitor (Roche) and phosphatase

inhibitor cocktail (Boston Bioproducts). Equalprotein was loaded for SDS-PAGE analysis using a bicinchoninic

acid assay and blotted using standard techniques with antibodies against GAPDH, EGFR, IGF1R, and Met.

Densitometry was performed on a LI-COR Odyssey (LI-COR Biosciences; Lincoln, NE) and normalized to

GAPDH as a loading control.
For activation measurement, cells were seeded sparsely overnight and starved for 4 hrs the next day, followed

by stimulation with either 100 ng/mL EGF or 50 ng/mL TGFa for 5 min. Cells were lysed using Biorad lysis

buffer (Biorad) containing protease inhibitor (Roche) and phosphatase inhibitor cocktail (Boston Bioproducts).

EGFR pan-pY was measured using a bead-based ELISA assay (Biorad) loaded with equal protein using a bicin-

choninic acid assay. Linearity of the assay with respect to protein concentration was verified.

Numerical Analysis All analysis was performed in MatLab (Mathworks; Natick, MA). Single cell data from

each experiment was imported, and each quantile of interest (5 0th, 9 0 th, or 9 5 th) was calculated for each motility

metric and condition. Each set of growth factor conditions within a given quantile was then normalized to the

condition absent of growth factor stimulation (or mean centered if indicated). The mean and standard error were
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then calculated from independent experiments. Comparisons of motility metrics between single growth factor
conditions were performed using the Student's t-test, or the Mann-Whitney test for single cell data.

For single cell-based migration parameter clustering, Spearman correlation of the parameters for individual
cells from all experiments for a single cell line in 3D (N 2 3) were calculated and used to calculate pairwise
distances, where perfect correlation corresponds to a distance of 0, and anti-correlation a distance of 2 (1-p).
Multidimensional scaling in two dimensions captured >99% of the distance quantities for all cell lines. The
first principle component captured 90-95% of the distance quantities, while the second principle component
captured 5-10%. Standard error was calculated by jackknife, during which each cell was removed separately, and
each time both the distances and scaling repeated [142]. For clustering of quantile-level migration metrics, each
growth factor profile was mean-centered and averaged across experimental replicates. Clustering of profiles and
growth factors was performed by rank correlation and average linkage.

Receptor expression and motility enhancement comparison was tested for significance using the binomial
distribution. Where indicated, motility enhancement was variance normalized between cell lines by log trans-
formation (so as to center fold-change values around zero) and division by the standard deviation across growth
factor conditions.

Growth factor profiles were compared by calculating the Spearman correlation, and significance by permuta-
tion. Where many comparisons were performed, multiple hypothesis testing was performed as indicated. When
comparing migration in 2D and 3D contexts, multiple hypothesis correction was not performed as Type I error
is not a concern. When comparing protrusion and 3D migration results, identical quantiles of single cell data
were always used.
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Chapter 3

ADAM- 10 and -17 regulate endometriotic cell

migration via concerted ligand and receptor shedding

feedback on kinase signaling

Abstract

A Disintegrin and Metalloproteinases (ADAMs) are the principal enzymes for shedding receptor tyrosine kinase

(RTK) ectodomains and ligands from the cell surface. Multiple layers of activity regulation, feedback, and cat-

alytic promiscuity impede our understanding of context-dependent ADAM "sheddase" function and our ability

to predictably target that function in disease. This study uses combined measurement and computational mod-

eling to examine how various growth factor environments influence sheddase activity and cell migration in the

invasive disease of endometriosis. We find that ADAM-10 and -17 dynamically integrate numerous signaling

pathways to direct cell motility. Data-driven modeling reveals that induced cell migration is a quantitative func-

tion of positive feedback through EGF-ligand release and negative feedback through RTK shedding. Although

sheddase inhibition prevents autocrine ligand shedding and resultant EGFR transactivation, it also leads to an

accumulation of phosphorylated receptors (HER2, HER4, & MET) on the cell surface, which subsequently

enhances Jnk/p38 signaling. Jnk/p38 inhibition reduces cell migration by blocking sheddase activity while ad-

ditionally preventing the compensatory signaling from accumulated RTKs. In contrast, Mek inhibition reduces

ADAM-10 and -17 activities but fails to inhibit compensatory signaling from accumulated RTKs, which actually

enhances cell motility in some contexts. Thus, here we present a sheddase-based mechanism of rapidly acquired

resistance to Mek inhibition through reduced RTK shedding that can be overcome with rationally directed com-

bination inhibitor treatment. We investigate the clinical relevance of these findings using targeted proteomics of

peritoneal fluid from endometriosis patients and find growth-factor driven ADAM- 10 activity and MET shed-

ding are jointly dysregulated with disease.

Introduction

A Disintegrin and Metalloproteinases (ADAMs), especially ADAM-10 and -17, are the principal mediators of

proteolytic ectodomain shedding on the cell surface [143]. ADAMs and the closely related matrix metallopro-

teinases (MMPs) work together as "sheddases" to cleave hundreds of diverse transmembrane substrates includ-

ing growth factor ligands, receptor tyrosine kinases (RTKs), adhesion molecules, and even proteases themselves

from the cell surface. Unfortunately, little is known regarding how such a broad palette of proteolytic activity in-

tegrates to modulate behaviors such as cellular motility. Furthermore, extensive cross-talk and complexity among

signaling networks, proteases, and their substrates make understanding sheddase regulation on a component-by-
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component basis challenging [144]. Therapeutics have targeted sheddases and their substrates for the treatment
of invasive diseases such as cancer, yet many of these inhibitors have failed in clinical trials [145]. Therefore, a
need exists for understanding how the balance of sheddase-mediated degradation integrates multiple layers of
signaling networks to coordinately influence cell behavior in various disease contexts.

Here we study how sheddase activity contributes to cell migration in the invasive disease of endometriosis,
defined by the presence of endometrial-like tissue residing outside the uterus. Up to 10% of adult females and
40% of infertile women have the disease, which also exhibits co-morbidity with several cancers [146, 147]. En-
dometriosis currently has no cure: hormonal therapies merely manage the disease with significant side-effects,
and surgery provides only temporary relief for many, with recurrence rates as great as 40% within 5 years post-
operation [148]. Like cancer, endometriosis is associated with aberrant cell invasion into ectopic organ sites,
and endometriotic tissues often exhibit dysregulated molecular pathways commonly perturbed in other invasive
diseases. Mitogenic and inflammatory phospho-signaling (for example, p-Erkl/2, p-Akt, & p-P38), receptor ty-
rosine kinases (RTKs, including epidermal growth factor receptor, EGFR), and metalloproteinases have all been
clinically associated with endometriosis [149, 150], and consequently represent attractive therapeutic strategies
[151-153].

Many challenges in developing targeted therapeutics stem from network-level complexities such as compen-
satory feedback, and recent work has demonstrated how critical such mechanisms are to achieving therapeu-
tic success, especially in cancer [154, 155]. Computational models of systems-level biochemical networks have
shown promise as tools to understand how multiple enzymatic reactions integrate to impact overall biological be-
havior, often with the goal of aiding the design of personalized or combination therapies [156, 157]. Considering
its complex role in disease, sheddase regulation represents an ideal application of such network-level approaches.
In this work, we apply the "cue-signal-response" (CSR) paradigm [156, 157] to examine how disease-implicated
growth-factor "cues" interact with experimentally monitored phospho-protein and protease networks (collec-
tively referred to as "signals"), ultimately to influence cellular migration "response." Computational modeling
elucidates quantitative and predictive relationships among multiple layers of experimental data and offers testable
hypotheses of context-dependent behavior and signaling feedback. We find ADAM- 10 and -17 to be critical
regulators of motility that are dynamically controlled through several signaling pathways, thereby affecting cell-
behavior through both positive feedback from EGF-ligand release and negative feedback from MET, HER2,
and HER4 RTK shedding. We find kinase inhibition generally reduces ADAM- 10 and -17 activities, reduces
subsequent RTK shedding, and consequently allows the accumulated RTKs to enhance downstream c-Jun N-
terminal kinase (Jnk) and P38 signaling. Thus, here we demonstrate an ADAM-10 and -17 based mechanism of
rapidly acquired resistance to kinase inhibition through reduced RTK shedding that can be overcome with com-
bination therapy. Targeted proteomic analysis of clinical samples from endometriosis patients indeed confirms
growth-factor driven ADAM-10 activity and consequent MET shedding are dysregulated with disease. Over-
all, our results have wide implications for designing combination therapies and identifying context-dependent
personalized therapeutic strategies for both kinase and protease inhibitors.

Results

Overview of cue-signal-response (CSR) study design. We use a CSR approach to understand the signaling-
regulated impacts of sheddase activity on cell migration from a multivariate, network-level perspective
(Fig. 3.1A). First, we stimulate the immortalized 12Z cell line, a commonly studied in vitro disease model estab-
lished from an endometriotic biopsy [158], with a panel of growth factor "cues" (see Table A.1 for references
of clinical associations): epidermal growth factor (EGF), transforming growth factor alpha (TGFa), neuregulin
beta-1 (NRG1@), hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF1), and platelet-derived
growth factor-bb (PDGFbb). Post-stimulation, we quantitatively monitor an array of downstream molecular
features, or "signals" (Fig. 3.1B-C). Nearly all "signals" in the CSR dataset are clinically associated with en-
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Figure 3.1: Cue-signal-response (CSR) study design. (A) CSR overview: we stimulate endometriotic cells with a panel of
growth factor "cues," record multiple downstream "signals" comprising measurements of phospho-signaling, sheddase
regulation, and sheddase substrate regulation, and use computational modeling to map these observations onto cell

migration "responses." (B) Overview of "signals" and "responses" included in the CSR dataset. All receptors shown were
directly measured and/or stimulated. (C) Experimental timeline of CSR study. Dark colored lines denote measurement
time-points. At bottom left, cell migration is depicted as single-cell tracks, where initial cell positions were centered for

visualization.

dometriosis (see Table A.1 for unabbreviated names and clinical evidence). To assess intracellular signaling,
5 min post-stimulation we measured levels of 11 key phospho-proteins using bead-based sandwich immunoas-
says (Fig. A.1).

We performed multiple measurements of key ADAM sheddases, themselves, following growth-factor stim-
ulation. To directly assess ADAM-17 activity, we immunoprecipitated the enzyme from whole-cell lysate, incu-
bated the bound protein with a FRET-substrate, and recorded cleavage rates by fluorimetry (Fig. A.2A). How-
ever, this approach disrupts protein complexes observed in the live-cell context. Therefore, we co-administered
seven soluble FRET-based polypeptide substrates with growth factor treatments to assess regulation of general
catalytic activity of proteases in live cells. Cleavage rates of these substrates were assessed by live-cell fluorime-
try for several hours (Fig. A.2B-C). However, the FRET-substrates are by nature non-specific. We therefore used
Proteolytic Activity Matrix Analysis (PrAMA) as an inference algorithm to estimate the effective concentrations
of catalytically active ADAM-10, -12, and -17, based on FRET-substrate cleavage rates and prior knowledge of
enzyme-substrate specificities [159] (Fig. A.2D-E). Additionally, we quantified ADAM-10 and -17 surface lev-
els to assess protease trafficking (Fig. A.3A-H), and monitored levels of ADAM-17-pT735, which is thought to
impact activity [160] (Fig. A.31).

We investigated regulation of membrane-bound substrates by quantifying their cell-surface trafficking and
proteolysis. To measure short-term shedding of heparin-binding-EGF (HBEGF, an EGF-ligand), we transgeni-
cally over-expressed it with a Myc-tagged ectodomain and a GFP-tagged c-terminus [161]. Immunostaining
enabled quantification of intact HBEGF on the cell surface relative to total levels. These measurements were
averaged over three time-points (30, 60, and 90 min.; Fig. A.4). For more highly expressed membrane-bound
substrates (compared to HBEGF), we measured endogenous levels of surface-bound MET (also known as hepa-
tocyte growth factor receptor), TNFR1 (tumor necrosis factor receptor 1), and amphiregulin (AREG, an EGF-
ligand), averaged over three time points post-stimulation (30, 60, and 90 min.; Fig. A.5A). We also monitored
supernatant levels of endogenous substrate at multiple times using enzyme-linked immunoassays (ELISAs), al-
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though not all analytes were detectable at early time-points (Fig. A.5B-G).
Finally, we used time-lapse confocal microscopy to assess features of cell migration as "responses" to the

growth-factor cues and previously-described molecular signals. Dye-labeled 12Z cultures suspended in collagen-
I gels were individually tracked for 16 hours, and various descriptions of cell movement including total path
length, net displacement, and the "random motility coefficient" derived from a thermodynamic-based model of
the persistent-random-walk were calculated as metrics of single-cell motility for each condition [59] (Fig. A.6).

CSR modeling suggests parallel ligand and receptor shedding influence cell migration. To glean information
from the full CSR dataset (shown in Fig. 3.2A), we began by calculating correlation between pairs of measure-
ments as they varied across the 7 growth-factor treatment conditions. Significant pair-wise correlations were
then graphically mapped in an unsupervised manner. This "correlation-network" encouragingly reflects several
features of known biology (Fig. A.7A). For example, the greatest correlation among all phospho-signaling mea-
surements lies between Jnk and its known substrate c-Jun (Fig. A.7B). ADAM-10 catalytic activity, as inferred
by PrAMA, correlated very closely with supernatant accumulation of a known substrate, MET. Among the most
negatively correlated measurements, cell-surface AREG was strongly anti-correlated with supernatant accumu-
lation of AREG. At a higher level, the correlation-network suggests modularity among the data, where highly
interconnected phospho-signaling events link to early (30 min - 3 hr) protease activity measurements primarily
through ADAM- 17 phosphorylation. These early markers of protease activity then correlate with supernatant
accumulation of ligands and receptors by 24 hrs, which in turn are highly correlative with features of cell migra-
tion (Fig. A.7). Of all measurements in the CSR dataset, 3D cell migration features correlated most closely with
ligand and receptor shedding. We tested if ligand/receptor shedding was affected by whether cells were cultured
on 2D tissue culture plastic or in 3D collagen-I matrices. For those species included in the CSR dataset, we found
significant agreement between results from these two cell culture models (Fig. A.8A), further suggesting that lig-
and/receptor shedding measurements made in 2D cultures sufficiently reflect shedding and migration behaviors
observed in 3D cultures.

We performed principal components analysis (PCA) to describe measurements from the CSR dataset in
terms of key axes of co-variance, or principal components (PCs), as they varied across the growth factor treat-
ments. The scores/loadings plot describes where each of the growth factor treatments and measurement variables
fall along the first two PCs, which capture 40% and 25% of the total data variance, respectively (Fig. 3.2B; shown
fully labeled in Fig. A.8B). Similar to results from the correlation-network, modularity can also be observed in
the PCA scores/loadings plot. The lower right quadrant is largely populated with phospho-protein levels and
short-term metrics of substrate shedding, and these are anti-correlated with surface levels of endogenous substrate
(AREG and Myc-HBEGF) in the top-left quadrant. The top right quadrant associates with persistent migratory
behavior, and is populated with ADAM-10 and -17 activities (inferred by PrAMA), along with levels of super-
natant ligands/receptors at 24 hr. Direct comparison of correlations between CSR dataset measurements and
the "random motility coefficient" echo the PCA results: supernatant ligand/receptor at 24 hr. represent by far
the most correlative indicators of cell migration, led by AREG and MET as the top two features (Fig. 3.2C).

Taken together, these results suggest that growth-factor stimulation directly regulates the effective concen-
tration of catalytically active sheddases, which then leads to similar (although not identical) patterns of shedding
across multiple endogenous and FRET-based substrates. Furthermore, these patterns of substrate proteolysis
correlate extremely well with cell migration, suggesting that sheddases significantly influence motility.

Joint AREG and MET shedding predict cell migration. Although individual shed analytes significantly cor-
relate with features of cellular motility, single-variable relationships between shedding and motility fail to accu-
rately predict motile responses under untested conditions in a sufficiently quantitative manner, with a prediction
accuracy of Q2< 50%. Consequently, we implemented partial least squares regression (PLSR) as a statistical
method to distill the effects of multiple shedding events into key axes of control (PCs, as with P CA), that quanti-
tatively combine to describe overall migration behavior. More specifically, we used an optimization algorithm to
build a reduced PLSR model that optimally selects the minimal set of descriptor variables from the CSR dataset
that predict migration with high accuracy. To improve model accuracy, we included additional measurements,
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prediction accuracy (Q2=77%) was determined with IGF 1 measurements blinded from the optimization routine (center
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made in the presence of a broad-spectrum metalloproteinase inhibitor (BB94) and an EGFR blocking antibody

(mab225), to determine the dependency of shed analyte accumulation on sheddase activity and EGFR endocyto-

sis of autocrine ligand (data shown in Fig. A.5). Among all measurements in the "expanded" CSR dataset, metrics
of AREG and MET shedding were the two most important variables chosen by the algorithm (Fig. 3.2D; fully
labeled scores/loadings in Fig. A.8C). Although patterns of MET and AREG shedding closely correlate with
each other, PLSR model accuracy significantly improves when both are included together, suggesting subtle un-
derlying mechanisms of substrate-specificity. Indeed, PLSR accuracy relies upon multiple principal components
for accurate prediction accuracy (Fig. A.8D), implying multiple axes of substrate shedding regulation.

In addition to supernatant ligand/receptor accumulation, we also measured accumulation of MMPs and
tissue inhibitor of metalloproteinases (TIMPs) across the panel of growth factor treatments (Fig. A.9A). The
aims here were to investigate enzymes more associated with extracellular matrix degradation, and to examine their
ability to predict cell migration compared to ligand/receptor levels. In comparison to ligand/receptor shedding,
however, MMP/TIMP levels generally did not significantly correlate with or help in prediction of cell migration
(Fig. A.9B-C). This indicates that, at least with respect to growth factor stimulation, cell motility is principally
regulated outside modulation of MMP/TIMP expression.
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Overall, the correlation-network modeling, PCA results, and PLSR models all suggest that concomitant lig-
and and receptor shedding, and especially AREG and MET shedding, are key determinants ofendometriotic cell
migration in response to various growth factor cues. Based on this model, we elected to further experimentally in-
vestigate regulation ofAREG/MET proteolysis along with its resultant functional and therapeutic consequences.

Positive signaling feedback via AREG shedding drives cell migration. CSR modeling results predicted a role
for AREG shedding in governing cell migration, and we next sought to investigate its potential role in mediating
positive signaling feedback through EGFR. Experiments with BB94 demonstrated that AREG supernatant ac-
cumulation is metalloproteinase-dependent, and treatment with mab225 provided evidence that soluble AREG
is actively being endocytosed via EGFR in an autocrine manner (Fig. 3.3A). Interestingly, we found that saturat-
ing levels of TGFa, which is known to exhibit higher binding affinity to EGFR compared to AREG [162] and
likely inhibits AREG-EGFR binding, stimulates even greater AREG supernatant accumulation. This result sug-
gested a positive feedback loop similar to those described previously [163], whereby EGFR signaling promotes
AREG shedding, in turn enhancing further EGFR signaling. Stimuli beside EGF-ligands also stimulated AREG
shedding, including the inflammatory cytokine TNFa (Fig. 3.3A), which transactivates EGFR in an EGF-ligand
dependent manner (Fig. 3.3B). Furthermore, TNFa stimulation enhanced the effect of mab225 treatment in re-
ducing cellular migration (Fig. 3.3C-D).

With evidence of AREG-mediated EGFR transactivation, we examined whether growth factor stimulation
sensitized cell motility to EGFR kinase inhibition. For this and all subsequent cell migration experiments, we
employed a migration endpoint assay (Fig. A. 11). Briefly, cells were seeded under collagen-I gels and exposed to
bath application of growth factors after 1 hr. treatment with inhibitors. We quantified cellular migration into
gels 24 hr. later (Fig. 3.3E). Although EGFR kinase inhibition using gefitinib (an EGFR inhibitor) and lapatinib
(a dual EGFR/HER2 inhibitor) was ineffective at reducing cellular motility under basal conditions, nearly every
tested growth factor sensitized cells to kinase inhibition (Fig. 3.3F-G & A.10). We compared AREG shedding
to gefitinib sensitivity across the growth-factor treatments and found significant correlation (Fig. 3.3G). AREG
shedding is particularly enhanced with IGF 1 treatment, and IGF 1 sensitized cells most to gefitinib compared to
other non-ErbB growth factors. Examination ofp-EGFR in IGF 1 treated cells confirmed EGFR-transactivation
(Fig. 3.3G). Treatment with an anti-AREG decoy antibody effectively reduced both basal and IGF1-induced
cellular motility, confirming a specific role for AREG among other potential EGF-ligands (Fig. 3.3H). In sum,
this data provides further evidence for the role of AREG-mediated positive signaling feedback in endometriosis
cell migration.

EGFR autocrine signaling regulates ADAM- 10 and -17 catalytic activities. We next examined how AREG
shedding itself is regulated by ADAM proteases, particularly in the context of EGFR signaling feedback. Direct
examination of ADAM-10 and -17 catalytic activity in live-cells using PrAMA revealed that the positive feed-
back via EGFR activity occurs at least in part through direct regulation of ADAM-10 and -17 catalytic activity
(Fig. 3.4A). EGF and TGFa treatment led to an increase in FRET-substrate proteolysis, while mab225 treatment
led to a decrease (Fig. A.11 A). These effects were also seen with endogenous sheddase substrates (besides AREG).
For example, mab225 treatment led to an increase in surface TNFR1 and a decrease in its supernatant accumu-
lation (Fig. A.1 1B-C). However, the exact mechanisms ofprotease regulation remain unknown. Although EGF
stimulation led to decreased ADAM- 17 dimerization (Fig. A.3J-K) and increased ADAM- 17 pT735 (Fig. 3.2A),
mab225 treatment did not elicit changes in ADAM-17 dimerization (Fig. A.11D-E), ADAM-17 activity as
measured after immunoprecipitation (Fig. A.1 IF), ADAM-17-pT735 (Fig. A.11 G), or ADAM-17 surface lev-
els (Fig. A. 11 H). Nonetheless, PrAMA results combined with decreased endogenous substrate shedding suggest
decreasing ADAM-10 and -17 catalytic activities in response to mab225 treatment. Given these complex results,
we decided to perform additional computational modeling to formulate testable hypotheses as to how proteases
may regulate substrate shedding in response to various signaling cues.

AREG shedding is controlled by ADAM-10 and -17 in a context-dependent manner. We constructed re-
duced PLSR models to describe endogenous substrate shedding as a function of phospho-proteins, protease
surface-levels, and protease activity (including PrAMA and the IP+activity assay). PLSR results decomposed
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Figure 3.3: EGFR transactivation through AREG shedding sensitizes 12Z to EGFR inhibition. (A) AREG levels reveal

induced shedding and autocrine uptake via EGFR (24 hr. post-treatment; ELISA; see Fig. A.5G for details). (B-D) TNFt

stimulates EGFR pY 1173 (B; bead immunoassay) and motility (C-D) in an EGFR-ligand dependent manner. In D,

cellular-motility was described using PCA of time-lapse microscopy measurements 22-38 hr. post-stimulation (shown as

single-cell tracks in C., where initial cell positions were centered for visualization). Scores (circles) and loadings (squares)

are plotted. (E) 12Z nuclei positions demonstrate EGF-stimulated migration into collagen-I gels as a function of distance

from the plate-bottom, shown quantified in (F). Treatment with gefitinib blocks the effect of EGF added 1 hr. later. (G)

Supernatant AREG (left axis; ELISA) and p-EGFR levels (right axis; bead immunoassay) correlate with the gefinitib

efficacy in reducing cell migration. (H) Anti-AREG decoy Ab treatment inhibits basal and IGF 1-stimulated cell

migration in the endpoint assay. (*p<0.05; single-tailed Student's t-test). All error bars denote SEM.

substrate proteolysis along two PCs, with PC-1 describing overall shedding and PC-2 distinguishing ligands vs.

receptors (Fig. A.12A-B). Interestingly, the PLSR results suggested a concerted role for both ADAM-10 and

-17, where each protease exhibits more-or-less influence depending on the growth-factor context (Fig. A.12C-

D). Indeed, knockdown of either ADAM-10 or -17 reduces shedding of all the substrates tested (Fig. A.12E).

One particular hypothesis from the PLSR modeling is that EGF and TGFa stimulation drive ADAM-10 ac-

tivity more than ADAM-17 activity. These results were primary determined by observations that (a) EGF and

TGFa lead to decreased activity measured in the ADAM-17 IP+activity assay, (b) EGF and TGFa stimulate

downregulation of ADAM-17 surface levels, and (c) PrAMA infers that EGF and TGFa stimulate significantly

more ADAM-10 activity than ADAM-17 activity (Fig. 3.2A). Consequently, although AREG is predominantly

thought of as an ADAM-17 substrate [164], PLSR results suggest that EGF-stimulated AREG shedding may ac-

tually be occurring via ADAM-10. Using recombinant ADAM-10 prodomain as a specific inhibitor, we found

ADAM- 10 inhibition to cause increased AREG surface levels under EGF-stimulated, but not basal, treatment

conditions (Fig. 3.4B). Furthermore, ADAM-10 inhibition only decreased supernatant AREG accumulation af-

ter EGF stimulation (Fig. 3.4C). siRNA knockdown of ADAM-10 showed a greater inhibitory effect on AREG

supernatant accumulation in EGF-stimulated cells (Fig. 3.4D). In contrast, ADAM-17 knockdown equally re-

duced AREG shedding under basal and EGF-stimulated conditions (Fig. 3.4D). Direct examination of specific

ADAM activities in the siRNA-treated cells using PrAMA suggests that ADAM-10 does not impact ADAM-

17 activity, further supporting a specific role for ADAM-10 in shedding AREG (Fig. 3.4E). Finally, western

blots show metalloproteinase-dependent, EGF-stimulated cleavage of pro-AREG in cell lysates (Fig. A.13A-C),

and digestion of immunoprecipitated pro-AREG with recombinant ADAM-10 and -17 demonstrated that both

enzymes are capable of acting upon AREG and generating cleavage products similar to those seen in the EGF-

stimulated lysate (Fig. A.13D-F). Overall, these results provide evidence for EGF-stimulated ADAM-10 activity

and a context-dependent dual role for ADAM-10 and -17 in regulating substrate shedding.

ADAM-10 inhibition reduces cellular migration. Consistent with the CSR modeling results showing

the importance of ADAM-10 activity (as inferred using PrAMA) for cell motility, we found that ADAM-

10 knockdown substantially decreased basal motility (Fig. 3.4F). Additionally, a specific ADAM-10 inhibitor
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Figure 3.4: Both ADAM-10 and -17 contribute to AREG shedding. (A) PrAMA indicates mab225 treatment reduces
ADAM activities. Following 30 min. of mab225 treatment, FRET-substrates and growth factors were simultaneously
added to serum-starved 12Z cultures, and protease activities were recorded by fluorimetry for 3 hr. post-stimulation.

(B) ADAM-10 inhibition only increases surface AREG under EGF-stimulation, quantified by immunostaining following
24 hr. treatment with proADAM10 and EGF. (C) proADAM10 treatment significantly reduces levels of supernatant

AREG in the presence of EGF (ELISA). (D) Both ADAM-10 and -17 siRNA treatment reduce supernatant AREG levels
(ELISA). (E) ADAM- 17 knockdown reduces basal ADAM-10 activity, but not vice-versa (PrAMA). (F) ADAM-10

knockdown blocks cell migration in the endpoint assay. (G) proADAM10 treatment inhibits basal and IGF 1-stimulated
cell migration in the endpoint assay. All error bars denote S.E., * p<0.05, Student's t-test.

(proADAM 10) significantly reduced basal and IGF 1-stimulated cell motility (Fig. 3.4G). In contrast, ADAM-
17 knockdown did not show an effect on basal cell motility (Fig. 3.4F), possibly due in part to previously re-
ported adhesion-related protein functions [111, 164, 165]. Notably, however, ADAM-17 activity (as inferred
using PrAMA) did not significantly correlate with cell motility in a positive manner in the CSR dataset, and
ADAM-17 IP+activity results significantly anti-correlated with features of cell migration. Taken together, these
data demonstrate that ADAM-10 influences cellular migration, owing at least in part to its role in mediating
AREG shedding and autocrine EGFR signaling.

Negative signaling feedback via RTK shedding reduces Jnk/p38 signaling. In addition to positive signaling
feedback from AREG, CSR modeling suggested the shedding of RTKs (principally MET) also plays a role in
governing cell migration. We hypothesized that RTK shedding functions as a mechanism of negative signaling
feedback by attenuating receptor phospho-signaling. Indeed, direct protease inhibition using BB94 led to in-
creased full-length p-HER2 & p-HER4 (Fig. 3.5A), total & p-MET (Fig. 3.5B), and p-p38 & p-cJun (Fig. 3.5C).
Supernatant MET, HER2, and HER4 correspondingly decreased (Fig. A.1 & A.14A). We also found that BB94-
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Figure 3.5: ADAMs mediate negative signaling feedback via RTK shedding. (A) Full length p-HER2 and p-HER4 levels

increase with 1.5 hrs BB94 treatment (bead immunoassay). Subsequent 30 min TGFa-treatment didn't alter BB94 effects.

(B) 1.5 hrs BB94 treatment followed by 30 min treatments with NRG1P and HGF lead to higher total, full-length MET

(x-axis) and MET pTyr1349 (y-axis) (western blot; see Fig. A. 14B for images). (C) BB94 increases p-cJun and p-p38

(bead immunoassay). Cells were stimulated with NRG1P and TNFa for 30 min. following 1.5 hrs BB94 treatment.

(D) BB94 increases p-Jnk levels in a MET-dependent manner. Following siRNA knockdown of MET, cells were treated

with BB94 for 1.5 hrs and stimulated with NRG1 P for 30 min. (bead immunoassay). (E) 24 hrs proAl0 treatment

increases surface MET levels, ± co-treatment with EGF, detected by immunostaining. (F) ADAM-10 knockdown

increases basal p-P38 levels in a MET-dependent manner, using 1.5 hrs treatment with the MET inhibitor foretinib (bead

immunoassay). All error bars denote SEM, *p<0.05, Student's t-test.

induced p-Jnk elevation could be blocked with MET knockdown, further suggesting that enhanced signaling was

due to accumulation of MET on the cell surface (Fig. 3.5D). Experiments confirmed that protease-inhibition

effects were related to ADAM-10, the principal MET sheddase. Specific inhibition of ADAM-10 led to an accu-

mulation of cell-surface MET (Fig. 3.5E), and we found ADAM-10 knockdown led to an increase in p-P38 that

could be blocked using the MET inhibitor foretinib (Fig. 3.5F). Overall, these results demonstrate that ADAM-

10 mediated RTK shedding functions as a negative signaling feedback mechanism, and that direct inhibition of

sheddase activity leads to the accumulation of HER2, HER4, and MET, along with enhanced signaling through

p38/Jnk/cJun signaling pathways.

Indirect sheddase downregulation via kinase inhibition mediates drug resistance. Given evidence that shed-

dase activity can be activated by multiple signaling pathways, we next interrogated the effects of various kinase

inhibitors on protease activity. In general, treatment with various Mek, Jnk, p38 , and P13K inhibitors broadly

reduced the accumulation of both receptor and ligand sheddase substrates in cellular supernatant (Fig. 3.6A).

The Mek inhibitor U0126 was also found to reduce supernatant TNFR1 levels within 30 min. of treatment

(Fig. A.15A), and multiple kinase inhibitors led to increased surface TNFR1 levels after 1 hr of treatment

(Fig. A.15B). We found U0126 treatment to elicit no change in ADAM-17 dimerization (SI-16C), phospho-

rylation (Fig. A.1 5D), surface levels (Fig. A.1 5E-F), or ADAM-10 surface levels (Fig. A.1 5G), and the ADAM-

17 IP + activity assay only showed a slight decrease with U0126 treatment (Fig. A.1 5H). In contrast, live-cell

measurements using PrAMA indicated a substantial reduction in ADAM-10 and -17 catalytic activities with ki-
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response to 4 hrs Mek andJnk inhibitor treatment. (C) NRG1 P-induced p-HER2 increases following a 1.5 hr
pre-treatment with Mek andJnk inhibitors (bead immunoassay). (D) Mek and P13K inhibitor efficacies depend on
growth factor context, while Jnk and p38 inhibitors do not (24 hr. endpoint migration assay). (E) Data from D were

combined with experiments using additional Jnk and Mek inhibitors, and results are plotted to highlight differences in
inhibitor efficacy under EGF- vs. HGF/NRG1- stimulated conditions. All error bars denote S.E., *p<0.05, Student's

t-test.

nase inhibition (Fig. 3.6B). Based on these results, we hypothesized that indirect sheddase inhibition secondary
to kinase inhibition could lead to compensatory signaling from reduced RTK shedding. Indeed, we found that
pre-treatment with Mek or Jnk inhibitors increased full-length p-HER2 levels following NRG 1 stimulation
(Fig. 3.6C).

We next tested whether kinase inhibitors, and their indirect effects on RTK shedding, would have an impact
on cellular migration in response to various growth factor stimuli (Fig. 3.6D). Results show two distinct patterns
of inhibitor efficacy: p38 and Jnk inhibitors strongly reduced 12Z motility under all growth factor treatment
conditions, while in contrast, Mek and P13K inhibitors demonstrated context-dependent efficacy (Fig. 3.6D).
While Mek and P13K inhibitors effectively reduced EGF and TGFa stimulated motility, they actually enhanced
motile responses to NRG1P and HGF. We further tested context-dependency using alternative Mek and Jnk
inhibitors, and found results to be consistent (Fig. 3.6E & A. 151). To explain these differences, we measured
NRG1 -stimulated p-p38 levels after 1 hr pre-treatment withjnk or Mek inhibitors. Results indicated that com-
pared to Jnk inhibition, Mek inhibition was unsuccessful in reducing p-p38 (Fig. A.1 5J). Overall, these data
suggest that compensatory signaling through unshed RTKs, primarily through p38 and Jnk signaling pathways,
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can lead to Mek inhibitor resistance. Moreover, this compensatory signaling can become amplified in the pres-

ence of ligands that stimulate ADAM-substrate RTKs (such as NRG1 and HGF).
Combined MET-Mek inhibition blocks motility across multiple growth factor contexts. Given our evidence

that protease inhibition can enhance MET signaling and that Mek inhibitor resistance in part arises from reduced

sheddase activity, we hypothesized that Mek insensitivity in the presence of HGF and NRG1 @ is mediated by
enhanced MET signaling. Using foretinib as an inhibitor of MET (and several other ADAM substrate RTKs,

including VEGFR-2), we found that combination Mek/MET inhibition was more effective than either inhibitor

alone, under multiple growth-factor contexts (Fig. 3.7A-B). Combination Mek/MET inhibition reduced basal

p-Jnk levels more than either inhibitor alone (Fig. 3.7C). U0126 treatment only blocked NRG1 -stimulated

migration when combined with MET siRNA treatment (Fig. 3.7D). Individual effects from MET siRNA and

U0126 were not significant in this experiment. Overall, these results confirm the importance of alternative MET

signaling in the context of Mek inhibition and reduced MET shedding.

Clinical samples suggest dysregulated ErbB-signaling and ADAM-10 activity with disease. Finally, to test for

relevance of our in vitro findings to in vivo pathophysiology in human patients, we analyzed surgically obtained

peritoneal fluid (PF) from patients with and without endometriosis. PF comprises a heterogeneous mixture of

leukocytes, cell debris, and soluble proteins that interact with endometriotic lesions. We analyzed clarified PF

samples using a targeted proteomics approach that utilized roughly the same reagents employed in 12Z super-

natant profiling experiments, assessing total protein levels using sandwich immunoassays and comparing these

to previously reported proteolytic ADAM and MMP activities from the same patient samples [166] (Fig. 3.8A).

Due to the large number of highly correlated measurements in each patient sample, we decomposed the data

into an interpretable set of PCs using PCA. The first and third PCs best capture differences between control and

disease PF samples (Fig. 3.8B; fully labeled in Fig. A.1 6A). Interestingly, disease samples fall into two distinct

clusters in PC-space, with one cluster defined by relatively high levels of ADAM-10 activity and high concen-

trations of ADAM-10 substrates including EGF, AREG, HER2, and HER4. In agreement with our in vitro

finding that AREG is a substrate of ADAM-10 (Fig. 3.4), we observed significant correlation between ADAM-

10 activity and concentrations of HER2 and AREG in the PF samples (Fig. A.16B). In contrast to the high

ADAM-10 cluster of disease samples, the second cluster of disease samples exhibits relatively low ADAM-10 ac-

tivity, higher levels of ADAM-10 inhibitors (TIMPs), and higher levels of ADAM-9 activity. Of note, ADAM-9

is not inhibited by TIMPs [167]. The control samples form a non-overlapping cluster between the two disease

clusters. Although the sample size is small (n = 7 disease samples), PCA results suggest multiple disease states in

endometriosis that are defined principally by dysregulation of ADAM-10 activity and corresponding changes in

ADAM- 10 substrate accumulation.
We then used supervised PLS-DA to classify patient samples as falling into one of the three patient clusters

based on a minimal number of protein measurements. PLS-DA shows that combined measurement of ADAM-9

activity and three ADAM- 10 substrates (HER2, AREG, and HBEGF) can sufficiently classify patients with high

(>95%) accuracy (Fig. A.16C-D). We also used PLS-DA to classify patient samples into just two groups, disease

and control, and observed that combined measurements of MMP-2 activity along with MET and TIMPI levels

sufficiently classify samples as either disease or control with high (>95%) accuracy (Fig. A.16E-F). We analyzed

the simple ratio of MET to TIMP 1 levels for a more interpretable result, and observed a significant increase with

disease (Fig. 3.8C). To identify the likely cellular source of increased MET shedding in the PF samples, we ana-

lyzed various cell populations from healthy and endometriotic patients, including eutopic endometrial fibroblasts

and peritoneal fluid mononuclear cells (PFMCs). Compared to 12Z, PFMCs shed only 10% the relative levels

of MET (Fig. A.17A). In contrast, endometrial fibroblasts, which generally express significant MET [168], shed

similar levels of MET as 12Z (Fig. A.17B). Experiments with primary endometrial fibroblasts demonstrate that

EGF stimulates dual EGF-ligand and MET shedding in other relevant endometrial cell populations (Fig. A.17B-

C). Therefore, both endometriotic lesions and endometrial fibroblasts represent significant sources of total MET

observed in the peritoneal fluid, particularly in those patients with elevated ErbB ligand present. Consequently,

the ratio of MET to TIMP1 may be a good surrogate marker of ADAM-10 activity on endometrial and en-
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dometriotic tissue. Overall, these results suggest that joint dysregulation of ADAM-10 activity, ErbB-signaling,

and corresponding RTK shedding play an important role in disease progression.

Discussion

Understanding systematic regulation of ectodomain shedding has been challenging to accomplish on a

component-by-component basis for multiple reasons. The web of protease-substrate interactions involves sig-

nificant overlap and cross-talk: proteases (a) degrade potentially hundreds of often shared substrates [169]; (b)

interact with and regulate each other through direct proteolysis [170]; and (c) respond to and modulate signal-

ing pathways [160]. These multiple layers of complexity compel quantitative and multivariate approaches, and

here we employ integrative experimental/computational methodologies to understand how ADAM-sheddases

interact with signaling networks to direct overall cellular behavior.

Network-level insights into sheddase regulation of cell migration. In this work we combine quantita-

tive experimental measurements with network-inference methods to build computational models of signaling-

mediated protease regulation and motility. The CSR approach successfully identifies canonical biochemical in-

teractions, for example between Jnk and c-Jun (Fig. A.7), while simultaneously providing unique insight into

mechanisms of sheddase regulation. Shedding is generally considered a function of both protease catalytic activ-

ity and substrate availability, yet the balance of protease and substrate regulation remains unclear [161]. Here we

directly assess proteolytic activity in a relatively "substrate-independent" manner using PrAMA, and find close

correlation between proteolysis of both soluble FRET-peptides and multiple endogenous membrane-bound lig-
ands and receptors. Moreover, these measurements best described cell migration among all other measurements

in the CSR dataset, including phospho-signaling responses proximal to the growth-factor receptors that were

being stimulated. Overall, these results (a) provide evidence for significant regulation of the sheddases them-

selves, (b) clearly underscore how joint ligand and RTK shedding are concomitantly controlled, and (c) suggest

a prominent role for ectodomain shedding in governing cell migration.

Although we found strong correlations among multiple substrate shedding reactions, we also identified am-

ple evidence that broad patterns of sheddase activity are governed by more than just a single regulatory pathway.

This could be seen, for example, by the marked differences in surface level changes among the various ligands

and receptors, as they varied across the growth factor treatments (Fig. 3.2B). Reflecting this observation, pre-

dictive modeling of substrate shedding and motility required multiple descriptors and PCs to achieve sufficient

accuracy. Furthermore, CSR modeling results emphasize that sheddase-regulation is a dynamic process. For ex-

ample, PCA and correlation-network results pointed to modularity within the CSR dataset, characterized by

early phospho-signaling events linked to ectodomain shedding primarily through ADAM- 17 phosphorylation

(Fig. A.7). Although complex, the network-inference results nevertheless converge upon AREG and MET as

key regulators of cell migration, where they are defined as central components in predictive models of motility

(Fig. 3.2D).
Based on computational modeling results, we investigated a mechanism of shedding defined by the coor-

dinated, context-specific action of both ADAM-10 and -17. Multiple computational and experimental results

suggested that EGF and TGFa primarily stimulate ADAM-10 activity (Fig. 3.4A) and lead to the downregula-

tion of ADAM-17 surface levels within 30 min. of treatment (Fig. A.3). Surprisingly, these results also suggested

that EGF-induced AREG shedding may be occurring through the activity of, ADAM-10, even though AREG

has traditionally been considered an ADAM-17 substrate. We confirmed that ADAM-10 had the potential to

cleave AREG using recombinant protease (Fig. A.13D-F), and also found that ADAM-10 inhibition affected

AREG shedding to a much greater degree under EGF-treatment conditions (Fig. 3.4B-E). Furthermore, siRNA

knockdown of ADAM-10 and -17 confirm the dual dependency of multiple other substrates on both ADAM-

10 and -17 activities, in agreement with previous work [171]. Overall, these results demonstrate how sheddases

dynamically interact with multiple signaling pathways to govern overlapping ectodomain shedding events, and
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emphasize the difficulty in selectively manipulating the proteolysis of specific substrates through kinase and pro-
tease inhibitors.

Implications of RTK ectodomain shedding in modulating drug response. Although sheddase involvement in
ErbB-ligand shedding makes them compelling drug targets in ErbB-driven disease, the biological consequences
of ADAM-10 and -17 mediated RTK shedding continue to be poorly understood. In HER2+ breast cancer,
ADAM- 10 inhibition reduces HER2 shedding, which generally has been described as beneficially limiting the
accumulation of the membrane-bound HER2 fragment (p95HER2) that remains after ectodomain proteolysis
[172]. However, it remains unclear how p95HER2 activity compares to full-length HER2, especially after lig-
and stimulation. Furthermore, soluble HER2 ectodomain has been shown to inhibit signaling [173]. For other
RTKs including HER4 and MET, shedding likely reduces RTK signaling at the cell surface [174, 175]. TIMP1
inhibition of MET shedding in breast cancer enhances MET signaling and increases liver metastasis [176]. In
this work we demonstrate that cellular motility is an integrative process that depends not just on AREG shed-
ding, but also on the combined and quantitative effect of multiple proteolytic reactions, including RTK shedding.
We find that ADAM-10 and -17 mediated receptor shedding downregulates HER2, HER4, and MET signaling
(Fig. 3.5). Reduced sheddase activity and RTK cleavage, either through metalloproteinase inhibition (Fig. 3.5)
or indirectly through signaling pathway inhibition (Fig. 3.6), leads to accumulation of intact RTKs on the cell
surface. RTK accumulation potentiates the signaling response to HGF and NRG 1 , and causes enhanced RTK
phosphorylation (Fig. 3.5B, 3.6C) and downstream activation ofJnk and p38 (Fig. 3.5C-F). Consequently, Mek
and P13K inhibitors actually enhance the motile response of endometriotic cells to NRG 1 and HGF treatment
by inhibiting RTK shedding while failing to block the compensatory p38 and Jnk activity that results from sig-
naling of accumulated RTKs (Fig. 3.6D-E). Previous studies implicateJnk and p38 in endometriosis [177, 178],
and our results show that Jnk and p38 inhibitors effectively reduce ADAM-activity while also blocking the com-
pensatory signaling and motility regardless of the growth factor environment (Fig. 3.6D-E; Fig. A.1 5J). Overall,
these results have significant implications for the design of combination therapies involving the numerous signal-
ing pathways that affect ADAM activity, and complement previous studies that stress the importance ofJnk/p38
pathways in cell migration [179].

The emergence of secondary resistance to targeted kinase inhibition represents a major obstacle in developing
successful therapeutics, and in this work we identify a novel sheddase-mediated mechanism of rapidly acquired
inhibitor resistance that has potential applications for a variety of kinase and protease inhibitor therapies. In
the context of breast cancer, secondary resistance to Mek inhibitors has been well documented and arises from
upregulation of RTKs that are known sheddase substrates, including PDGFRb, MET, and Axl [180]. Further-
more, the presence of growth factors that activate known ADAM-substrate RTKs, for example MET, facilitates
the emergence of resistant populations [154]. Consistent with these results, here we present that Mek inhibitor
resistance arises through multiple upregulated RTKs, many of which have been implicated in other reports in-
cluding MET and HER2. In this work we demonstrate that sheddases play a role in the acute upregulation of
receptor levels, and this is particularly relevant in the presence of growth factors that have been previously impli-
cated as pro-survival and pro-migration microenvironmental cues [43, 119, 154]. In endometriosis, kinase in-
hibitors are in the earlier stages of testing and acquired inhibitor resistance is not yet a clear problem. Nonetheless,
we demonstrate that the logic of combination therapies can be successful in our in vitro model for overcoming
compensatory signaling pathways that arise secondarily from inhibitor treatment.

Clinical evidence of dysregulated sheddase activity and therapeutic implications. Analysis of clinical samples
from endometriosis patients helped demonstrate the relevance and inherent overlap of sheddase-mediated pro-
teolysis and RTK signaling dysregulation in disease progression. Although many previous studies have examined
ErbB-signaling and metalloproteinase levels individually (Table A.1), here we present a multivariate analysis of
systemic interaction between ErbB-ligands, RTK shedding, and metalloproteinase dysregulation. Furthermore,
we use measurements from a recently developed microfluidic device to analyze protease activity directly and relate
these observations to corresponding protease substrate levels observed in the same patient sample [166]. Clin-
ical results confirm many of the observations made in vitro, for example demonstrating significant correlation
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between ADAM-10 activity and accumulation of known ADAM-10 substrates such as HER2, EGF, and AREG

(Fig. A.16). This clinical correlation supports in vitro evidence that AREG shedding is sustained through a pos-

itive feedback loop involving ADAM-10 activity, EGFR signaling, and multiple cell types including endometri-

otic epithelium (12Z), endometrial fibroblasts, and PFMCs (Fig. A.17). Furthermore, this positive feedback loop

drives persistent cellular migration and enhances cellular sensitivity to various kinase inhibitors in vitro. Interest-

ingly, we find that disease PF samples comprise two distinct clusters defined in large part by the balance between

ADAM-9 and ADAM-10 activities (Fig. 3.8B). ADAM-10 is a known ADAM-9 substrate, and ADAM-9 has

been observed to downregulate ADAM-10 activity on the cell surface [1701. Common among both clusters of

disease samples, however, was the observation that the ratio of MET shedding to TIMP1 concentration increased

with endometriosis, thereby confirming the relevance of MET signaling in designing therapeutic strategies that

may impact ADAM-10 activity (Fig. 3.8C). Previous work has shown TIMP1 to inhibit the establishment of en-

dometriosis in a mouse model, and these effects were primarily assumed to be MMP-related [181]. However, in

this work we demonstrate the critical role of ADAM-10 in mediating in vitro cellular migration, and our clinical

evidence associates TIMP1 with ADAM-10 activity via its relation with MET shedding.

Autocrine Signaling Compensatory Signaling Blocked Signaling

B4 NRG METi andMEKi

ADAMs ADAMS

Jnk/P38 Akt/Erk Jnk/P38 Ak

JNKi or P38i
EGFR Driven Motility MET/HER2/HER4 Driven Motility

Figure 3.9: Ectodomain shedding exerts pro- and anti- migratory effects depending on context. Left: EGFR drives

motility in an Erk/Akt dependent manner. High sheddase activity leads to HER2, HER4, and MET shedding along with

concomitant positive feedback via AREG release. Center: Suppression of sheddase activity directly or indirectly via Mek

inhibition confers reduced RTK shedding and enhanced response to NRG and HGF through Jnk and p3 8. Right: p38 ,

Jnk, or combination Mek/MET inhibition blocks motility.

Conclusions We have presented an integrative paradigm for analyzing how complex networks of protease ac-

tivities work in concert with signaling pathways to influence overall cell response to various disease-relevant envi-

ronments and therapeutic interventions. In the future, we anticipate that this approach may be useful to explore

other facets of sheddase regulation (such as osmotic stress), cell phenotypes (including proliferation and apop-

tosis), and sheddase-related diseases (such as breast cancer). In this work, we found that ADAM-10 and -17

tune cellular signaling by concomitantly shedding ligand and receptor ectodomains from the cell surface, and we

demonstrate here how this competing signaling feedback determines context-dependent cell migration and drug

response (Fig. 3.9).
Full appreciation of the many competing roles of sheddase activity be will essential for understanding their

function in development and disease, and has wide implications for designing therapeutic strategies in a broad

range of pathologies.
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Chapter 4

AXL Diversifies EGFR Signaling and Mitigates
Response to EGFR-Targeted Therapeutics in Triple
Negative Breast Carcinoma Cells

Abstract

The relationship between drug resistance, changes in signaling, and emergence of an invasive phenotype is well-
appreciated but the underlying mechanisms are not well understood. Using machine-learning analysis applied
to the Cancer Cell Line Encyclopedia database, we identified that expression of AXL, the gene that encodes the
epithelial-to-mesenchymal transition (EMT)-associated receptor tyrosine kinase (RTK) as exceptionally predic-
tive of lack of response to ErbB family receptor-targeted inhibitors. Activation of EGFR transactivated AXL, and
this ligand-independent AXL activity diversified EGFR-induced signaling into additional downstream pathways
beyond those triggered by EGFR alone. AXL-mediated signaling diversification was required for EGF-elicited
motility responses in AXL-positive TNBC cells. Using crosslinking coimmunoprecipitation assays, we deter-
mined that AXL associated with EGFR, other ErbB receptor family members, MET, and PDGFR, but not
IGF1 R or INSR. From these AXL interaction data, we predicted AXL-mediated signaling synergy for additional
RTKs and validated these predictions in cells. This alternative mechanism of receptor activation limits the utility
of ligand blocking therapies and indicates against therapy withdrawal after acquired resistance. Further, subad-
ditive interaction between EGFR- and AXL-targeted inhibitors across all AXL-positive TNBC cell lines may
indicate that increased abundance of EGFR is principally a means to transactivation-mediated signaling.

Introduction

Receptor tyrosine kinases (RTK) are widely abundant and dysregulated in cancers, and have been the focus of
targeted therapies for several decades [182]. While inhibitors targeting RTK signaling have shown clinical ben-
efit in certain malignancies, the utility of such drugs is unfortunately limited because of primary (innate) or sec-
ondary (acquired) resistance that renders therapeutics against seemingly appropriate targets surprisingly ineffec-
tive [183]. Often, striking initial benefits of such treatments are ultimately futile as a result of quickly developed
resistance and disease progression. Recently, activation of alternative RTKs as an important resistance process
has been identified [43, 184], although underlying mechanisms are not well understood. Amplification of the
targeted signal can also confer resistance, particularly in vivo where access to the tumor site by therapeutics may
be limited [41, 185].

Another process involved in RTK inhibitor resistance is epithelial-mesenchymal transition (EMT), a global
program that endows epithelial cells with the ability to migrate and invade surrounding tissue [186, 187]. In
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multiple cancers exhibiting initial response to targeted therapeutics, development of secondary resistance corre-

lates with metastatic potential, invasiveness, and mesenchymal-like traits [6, 11, 182, 188-192]. Certain tran-

scriptional, post-transcriptional, and post-translational changes that confer differences in growth factor signaling,

migratory capacity, and resistance have been reported [183, 187, 193-195]. However, the global nature of the

EMT program indicates that integrative studies combined with multivariate, systems approaches will be required

to elucidate how these diverse changes contribute to disease progression [43, 140, 184].

AXL, the gene which encodes the TAM (TYRO3, AXL, MERTK) receptor tyrosine kinase family member

AXL, is widely overexpressed in cancers and is predictive of poor patient outcome [21, 41, 185, 196-2031. Its

expression is induced by the EMT program [21, 42, 186, 187, 189, 204-206], and activation of AXL has been

linked to resistance to ErbB-targeted therapies [189, 204, 207]. Although AXL can be activated by binding its

ligand, Gas6, it often appears to be activated in an alternative ligand-independent manner [207-211]. Given the

prospect for AXL signaling as a potential explanation for EMT-related ineffectiveness of RTK-directed thera-

peutics, we examined its contribution to RTK-targeted drug resistance and investigated the potential underlying

mechanism.
Using machine learning techniques and multivariate signaling network analysis in concert with public

databases and our own targeted experiments, we identified AXL expression as an exceptionally strong predic-

tor of resistance to ErbB inhibitors. We discovered that triple negative breast cancer (TNBC) cell lines that had

similarly high abundance of both EGFR and AXL were more sensitive to AXL inhibition than to EGFR inhi-

bition. Resistance of these cell lines to EGFR inhibitors with respect to viability was accompanied by EGFR

activation-induced transactivation of AXL in a manner which amplified a subset of downstream signals that are

important to invasive motility but are not activated vigorously by EGFR itself. Exploring the mechanism for

this resistance-related signaling diversification, we found a correlation between the AXL-mediated lack of re-

sponse to RTK-targeted drugs and the physical association of AXL with those particular RTKs as characterized

by cross-linking co-immunoprecipitation. Indeed, we were able to successfully predict novel AXL transactivation

in RTK/ligand pairs by considering expression and association proclivity. Taken together, our findings offer new

insights concerning RTK signaling crosstalk involving AXL through a transactivation mechanism.

Results

Classification of tumor cell lines identifies AXL as an exceptionally strong predictive marker of

resistance to ErbB -targeted drugs

Because activation of alternative receptors is a widespread means of resistance to RTK-targeted inhibitors [43,

184], we used the Cancer Cell Line Encyclopedia (CCLE), a publicly available dataset of expression and drug re-

sponse [212] to examine whether combinatorial expression of multiple RTKs may be related to lack of response

to particular RTK-directed drugs. Although straightforward inspection of univariate correlation between ex-

pression and drug response is a common approach for hypothesis generation, such an analysis is confounded

by broad-ranging expression correlations between genes, particularly genes encoding proteins targeted by the

inhibitor. The expression of a single gene may therefore correlate with drug resistance simply through its correla-

tion with expression of the drug target. Pairwise comparison indicated that RTK expression is either significantly

correlated or anti-correlated as often as not (51% of RTK pairs at p < 0.05 significance; Fig. 4.1A & 4.2A). There-

fore, we instead used all possible drug target-RTK gene pairs as bivariate predictors in a support vector machine

(SVM)-based classification scheme [213] to identify genes whose expression in combination with that of the

gene encoding the target RTK synergistically improves prediction of drug response. Briefly, SVM methods aim

to find a discriminating threshold based on "inputs" (in this case receptor gene expression) that predict an "out-

put" (in this case sensitivity to drug). By examining whether a set of inputs can discriminate sensitive or resistant

cells accurately, we formed hypotheses as to whether a particular receptor may play a causal role in drug resis-

tance. As an initial control, the expression of genes encoding the targets of each drug were used on their own to
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Figure 4.1: Support vector classification to identify mechanisms of drug resistance. (A) Spearman correlations of
expression for a subset of receptor tyrosine kinases. Only statistically significant correlations are shown (p < 0.01).

(B) Classification of cell lines as resistant or sensitive to AEW541, erlotinib, and lapatinib on the basis of RTK expression.
Shown is the classification accuracy using randomized expression data (black), a model considering the expression of the
gene encoding the drug target receptor (blue), or a model considering the expression of both the gene encoding the drug

target receptor and that of AXL (dotted line). (C) The fraction of cell lines that are sensitive to erlotinib after separation
according to those which exhibit greater or less than median expression of EGFR or AXL. (D) AXL expression probe

values for resistant and sensitive cell lines to each drug (**p < 0.01, Kruskal-Wallis test, N = 91-396 cell lines per
grouping). (E) Dose response curves for R428 and erlotinib in three triple negative breast carcinoma cell lines that have

abundant EGFR and AXL. Bars on the side indicate the range of viability between the highest and lowest erlotinib dose,

to illustrate subadditivity (p < 10-6, BT549; p < 0.05, MB436; p < 0.01, MB231 by Loewe's synergy analysis; see

Methods) between erlotinib and R428. Data are means ± SEM from three independent biological measurements.

48

C



Correlation (p)

ER8 4-

- -- One added variab p 0B05

AXL- Ix.

EGFR M -0

ERBB3- M2RB4

.,,.6

14 * 011--pR

AXL xro .0.M

6 *BT549 M8123 pMBR428

AXL ExrssoGFR5pMR2

50- 50- 30-

20

o 1

10- 10-
10pm padlitaxel 10 r paitaxe1la

0 1 2 4 8 1632 0 1 2 4 8 1632 01 2 4 8 16 32
Erlotinib (pM) Erlotinib (pM) Erlotinib (pM)

Figure 4.2: Support vector classification to identify mechanisms of drug resistance. (A) Spearman correlations for all pairs
of GO-annotated receptor tyrosine kinases across all cell lines within the CCLE. Receptors were ordered by hierarchical

clustering using Spearman correlation as a distance metric and average linkage. Roughly three or four clusters emerge
consisting of RTKs with highly correlated expression. Only significant correlations (p < 0.01) are shown. (B) Model

performance for prediction of erlotinib using all receptors from and ligands of the TAM family. The vertical bar indicates
the AXL and EGFR model, and the horizontal line indicates the p < 0.05 threshold for AXL, EGFR, and one added

input. The Protein S, Gas6, AXL, and EGFR model does equally well to the threshold indicated, but adds two inputs and
thus requires higher performance to be significant. (C) Classifier for erlotinib sensitivity based on AXL and EGFR

expression. Blue dots indicate resistant cell lines, and red dots indicate sensitive cell lines. The blue region indicates the

region for which the classifier predicts cells to be resistant. Axes are RMA-normalized probe values. (D) Dose response
surfaces for R428 and erlotinib co-treated with 10 tM paclitaxel in three TNBC cell lines that have high expression of

EGFR and AXL. (E) Viability measurements for varying amounts of R428 with or without paclitaxel. Error bars indicate
standard error of biological triplicates.
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predict sensitivity. To calculate significance for later comparisons, this expression measurement was combined
with a random vector and the distribution of all such trials is shown (blue area, Fig. 4.1B). This random vector
additionally accounts for model performance simply due to changes in the number of input variables. A more
permissive control was created by using solely the random data vectors in repeated trials (black area, Fig. 4.1B).
Completely randomized data did not necessarily predict half of the cell lines correctly, as a result of asymmetry in
the number of cell lines in each class (resistant or sensitive). Not surprisingly, expression of the gene that encodes
the inhibitor-targeted RTK was always among the strongest independent predictors of drug response and was
significantly more predictive than only random inputs.

Given that drug sensitivity can be reduced by redundancy among RTKs, we tested whether a model that
considered the expression of the gene encoding the targeted RTK along with the expression of a gene encod-
ing another RTK was better at predicting drug response than the model considering the drug-target RTK alone.
The predicted response to the ErbB-targeted drugs lapatinib and erlotinib was significantly improved by con-
sidering AXL expression, whereas the prediction of response to the IGF1R-targeted drug AEW541 was not
substantially improved (Fig. 4.1B). The expression of genes that encode TAM ligands (such as Gas6 and Pro-
tein S) or other TAM receptors (TYRO3, MERTK) all failed to generate synergistic prediction improvement
when combined with that of the drug-target RTK alone, with that of AXL, or with that of the drug-target RTK
and AXL (Fig. 4.2B). With respect to directionality, the classifier for sensitivity to the EGFR inhibitor erlotinib
using AXL and EGFR expression (Fig. 4.2C) yields the prediction that EGFR expression indicates increased
sensitivity while AXL expression indicates increased resistance (Fig. 4.1 C). In contrast, univariate analysis pre-
dicted no relationship between AXL expression and erlotinib sensitivity (Fig. 4. 1D). Methods depending only
on AXL expression likely do not capture a relationship because AXL and EGFR are themselves correlated in
expression (p < 10-32; Spearman correlation), convoluting simpler analyses as we argued above. Interestingly,
this correlation additionally exists within clinical tumors (p < 10-17, Spearman correlation), however our aim
is not to ascribe significance to correlation between the two receptors but rather to point out this convoluting
factor in univariate analyses [214]. Our modeling therefore identified AXL expression as a common marker for
resistance to ErbB-targeted, but not IGFR-targeted, therapies. Inhibitors that target MET and PDGFR, for
which sensitivity data is available, target multiple receptor families, therefore a meaningful analysis could not be
readily performed. Although AXL expression showed the highest significance in this analysis, that of EPHA1
and FGFR1 also exhibited similarly high significance (Table 4.1); expression of these genes has been implicated
similarly in resistance to ErbB-targeted therapies in breast carcinoma [43, 215].

Although AXL has been shown previously to confer secondary resistance to lapatinib and erlotinib in other
cancer subtypes, including HER2-positive breast cancer and non-small cell lung cancers [204, 207], we focused
on a role for AXL in modulating the response of TNBC cells to EGFR-targeted drugs. Despite high abundance
and activation of EGFR in TNBC, EGFR inhibitors have not been efficacious on their own, so discerning expla-
nations for the lack of sensitivity could be important both for understanding basic aspects of EGFR signaling and
for potentially improving therapeutic strategies. Because TNBC typically express both EGFR and AXL endoge-
nously, our model would indeed predict AXL-related resistance to erlotinib in these cells. Extrapolating from
the observation that inclusion of AXL expression improved the predictive capacity of the model, we addition-
ally reasoned that simultaneous inhibition of AXL and EGFR would result in synergistic cytotoxicity in TNBC
and that these cells would be more sensitive to AXL inhibitors than to EGFR inhibitors. We treated three such
cell lines with erlotinib and R428, a specific inhibitor of AXL, and confirmed that they are resistant to EGFR
inhibition and sensitive to AXL inhibition (Fig. 4.1E). Additionally, treatment with R428, but not erlotinib,
showed synergistic cytotoxicity with paclitaxel in a subset of cells (Fig. 4.2, D & E), consistent with previously
reported findings that targeted RTK inhibition can operate synergistically with DNA-damaging agents [156,
216]. However, we were surprised to observe a subadditive interaction between the EGFR- and AXL-targeted
inhibitors in dual-treated cells (Fig. 4.1E). Although these results validate the prediction of erlotinib resistance
in these cells, validation of AXL as the mechanism of resistance would typically be expected to show synergy in
the combined effects of erlotinib and R428. Because subadditive interactions can indicate shared pathway com-
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Erlotinib Synergy Lapatinib Synergy

AXL p<0.001 p<0.001
EPHA1 p < 0.001 p < 0.001
FGFR1 p < 0.001 p < 0.001
MST1R p < 0.05 p < 0.05
EPHA2 p < 0.05 p < 0 .0 5

p < 0.05 p < 0.05

Table 4.1: RTK genes significantly associated with both erlotinib and lapatinib resistance. Significance was calculated by
randomized controls. EPHA2, EPH type-A receptor 2; MSTR1, macrophage stimulating kinase 1 receptor; ERBB3,

ErbB receptor 3.
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Figure 4.3: Single-cell EGFR and AXL expression with R428 treatment. (A) Live-cell immunostaining of cell lines under
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ponents, we wondered whether inhibition of one receptor might decrease the activity of the other. A second
possibility, in which two distinct cell populations exist-one in which both AXL and EGFR are expressed and
is sensitive to both drugs, and another in which neither is expressed and which is resistant to both drugs-would
similarly explain our observations but not constitute drug antagonism. However, single-cell analysis revealed
neither distinct populations of cells nor changes in receptor expression upon drug treatment (Fig. 4.3).

AXL knockdown impairs EGFR signaling

To test our model, we first probed whether AXL and other RTKs outside the ErbB family are activated upon
EGF stimulation. Using MDA-MB-231 cells, we measured pan-phosphotyrosine (pan-pY) abundance on im-
munoprecipitated receptors and found that MET and AXL were phosphorylated after cells were treated with
EGF (Fig. 4.4A). In contrast, we did not observe phosphorylation of EGFR upon activation of AXL with an
activating antibody, demonstrating that, although activation of EGFR can induce the transactivation of AXL,
the reverse does not transpire (Fig. 4.5A).

Because the expression of AXL, but not that of the gene encoding its ligand Gas6, predicted resistance to
ErbB inhibitors (Fig. 4.2B), and because previous studies have verified Gas6-independent resistance effects of
AXL signaling [207], we hypothesized that AXL may also modulate signaling responses elicited by activation of
other RTKs. To test this, we transfected MDA-MB-231 cells with an siRNA pool targeting AXL (Fig. 4.4B)
and then stimulated cells with EGF, TGFa, or HGF and measured the phosphorylation of 11 downstream phos-
phosites. The surface and total (Fig. 4.4C) abundance of other receptors were unchanged by AXL knockdown,
and the phosphorylated (Fig. 4.5B) abundance was unchanged by treatment with R428. However, nearly all
downstream phosphosites were affected by AXL knockdown, either in control or growth factor-stimulated cells
(Fig. 4.4D & Table 4.2), indicating that AXL-dependent signaling effects are global in nature, and emphasizing
the importance of multivariate analysis because of the limited utility of focusing on a single signaling pathway.
Similar effects on the phosphorylation of two proteins were observed in cells treated with the AXL-specific in-
hibitor R428 (Fig. 4.5C), indicating that these effects depend on the kinase activity of AXL. Western blotting
for a subset of phosphosites quantitatively matched our ELISA measurements (Fig. 4.5D). Attempting to di-
rectly stimulate AXL with Gas6 did not elicit a substantial signaling response, and these signaling consequences
were small compared with EGF-elicited, AXL-dependent signaling effects (Fig. 4.5E). This observation is similar
to results in other studies of Gas6-elicited signaling in MDA-MB-231 [217]. Why different cell lines display
markedly distinct receptor activation patterns to Gas6 remains a question for future studies [217-219].

To investigate the crosstalk between AXL and EGFR (as well as MET) signaling further, we next exam-
ined the ratio of fold-activation (phosphorylation) of various signaling proteins in the absence versus presence of
AXL (Fig. 4.6A). The unstimulated conditions represented signaling network activity presumably arising from
constitutive autocrine processes. This analysis revealed more widespread AXL-dependent effects in EGF- or
TGFa-stimulated cells compared with HGF-stimulated cells, with the largest difference in activation observed
for GSK3 and Akt. Further, the relative magnitude of effects across the phosphosites investigated were corre-
lated between EGF- or TGFa-stimulated cells and unstimulated cells, but were not correlated between HGF-
stimulated and unstimulated cells (Fig. 4.6A, inset). These results suggest that AXL may mediate similar au-
tocrine and EGFR-stimulated signaling pathways in TNBC cells, whereas HGF yields a distinct downstream
AXL-mediated signature.

We then performed principle component (PC) analysis to gain insight concerning the network-level vari-
ation in signaling across these treatment conditions (Fig. 4.6B). Principle component 1 (PC1) was found to
correspond to EGF-induced signaling, and PC2 to HGF-elicited signaling, with TGFa having an intermediate
effect. Knockdown of AXL moved cells negatively along PC1 and reduced the magnitude of the effect of EGF
stimulation. Examination of the loadings plot revealed separation between phosphosites only mildly affected by
knockdown [for example, phosphorylation of STAT3 and JNK] and those strongly affected (such as the phos-
phorylation of Akt and GSK3), with the rest scattered at intermediate locations (Fig. 4.6C). Thus, EGF/TGFa
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Table 4.2: Single phosphosite or condition analysis provides an incomplete perspective of the signaling effects upon AXL
knockdown. The difference in the phosphorylation of ERK, GSK3, (and so on, left) in unstimulated or stimulated

conditions (top) in the presence or absence of AXL was assessed for significance using a Student's test. Data is presented in
Fig. 4.4D. Paired comparisons were made by a signed rank test. (*p < 0.05).

induce ErbB-mediated downstream signaling that is qualitatively similar to basal signaling but is distinct from
MET-mediated signaling, and this baseline-like signaling is disrupted by AXL knockdown. The difference be-
tween HGF and EGF, TGFa, or baseline signaling is likely a result of the absence of signaling from EGFR, HER2,
or AXL in the former case, because MET is presumably transactivated also in the EGF- or TGFa-stimulated cases.
An appealing interpretation is that autocrine EGFR ligand activity is constitutive and transactivates AXL.
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treatment. Bottom, comparison of the measurements in MDA-MB-231 cells treated with 0.3 jxM R428 or AXL siRNA.

Pearson correlation values and significance is shown. Error bars indicate standard error of biological triplicate
measurements. (D) Western blot validation of a subset of phosphosite measurements. Results are qualitatively identical to

those performed by ELISA in Fig. 4.4D. (E) Downstream signaling measured after 5 min treatment with 100 ng mL'
Gas6.

AXL amplifies signaling in the EGFR-associated pathway but does not sensitize EGFR to its ligand

Because receptor activation can be quantitatively characterized in terms of ligand concentration-related sensitiv-
ity and maximal activation at saturation, we investigated how AXL influences the dose-response of EGFR to
EGF. We stimulated MDA-MB-231 cells with a range of concentrations of EGF and measured the pan-pY on

EGFR and the phosphorylation of Akt (Fig. 4.7, A & B). Phosphorylation of Akt was chosen for measurement
as a critical downstream signal that was strongly influenced by AXL knockdown, though not to imply that all
transactivation-mediated effects are regulated through Akt alone (Fig. 4.6C). Phosphorylation of EGFR was un-
affected by AXL knockdown except at very high (above saturating) EGF concentrations (Fig. 4.7A), likely as a
result of altered trafficking or cellular processes induced at such non-physiological amounts of stimulation. Other
receptor-proximal components, the adaptor protein SHC and the CDC2 kinase, exhibited similar phosphoryla-
tion after stimulation at the EGF dose used in the signaling studies here (Fig. 4.8). In contrast, AXL knockdown
affected the phosphorylation of Akt in response to all doses of EGF by a shift in magnitude ("vertically") rather
than in sensitivity ("horizontally") (Fig. 4.7B). To deconvolve these concomitant changes in the phosphoryla-
tion of EGFR and Akt, we plotted the abundance ofphosphorylated Akt as a function of phosphorylated EGFR
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Figure 4.6: AXL knockdown attenuates downstream signaling in MDA-MB-231. (A) Ratios of fold activation after

treatment with growth factor in AXL knockdown cells relative to wild-type cells: ([siAXL GF]/[siAXL Unstim]) +
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knockdown. Line colors indicate stimulation conditions denoted in (A). (C) Loadings plot of signaling data after AXL
knockdown.

Model
1
2
3
4

5
6
7
8

AIC
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266
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279
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AIC L
10-
0.58

10-17

10-5
0.10

0.0002
10-16

1.0

AICc

277
269
307
284
273
277
305
270

AICc L
0.0005

1.0
10-16

10-6
0.025
0.0004
10-15
0.25

Table 4.3: Relative model goodness of fits based on the Akaike information criterion (AIC). Models were compared using
the corrected and uncorrected Akaike information criterion denoted AICc and AIC, respectively [220]. AICc more

strongly penalizes model size when comparing models with different numbers of fit parameters. Likelihoods (L) in bold

are greater than 0.05 and so those models are not significantly eliminated. Model numbers correspond to the equation
numbers given in the Methods. Models 2 and 8 cannot be distinguished in their goodness of fit, but have similar

biological conclusions.

in cells treated with either control siRNA or AXL siRNA (Fig. 4.7C). This revealed a uniform downward shift

across all stimulation amounts in the absence of AXL, indicating a consistent fold-change in the magnitude of

signal transduction. Each curve could be well-described to first approximation by a Hill function, with com-
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Figure 4.7: AXL amplifies the EGFR signaling response. (A) ELISA of pan-pY EGFR in wild-type (siControl) or
AXL-silenced (siAXL) MDA-MB-231 after 5 min treatment with varying EGF amounts. Data are means ± SEM,

p < 0.05, Student's test, N = 3. (B) The phosphorylation of Akt in response to a range of EGF doses. Data are means ±
SEM, p < 0.05, Student's test, N = 3. (C) ELISA for the abundance of pan-phospho-tyrosine on EGFR versus the

phosphorylation of Akt in MDA-MB-231 cells. Lines show a Hill regression to each set of data with standard error of
biological triplicate measurements. (D) Hill regression of each plot shows similar Kd values, but significantly different

maximal activation (F-test). Error bars indicate standard error of the fit.

parable Kd (threshold of half-maximal activation) but dramatically different maximal activation (Fig. 4.7D). To
identify the level at which this regulation may occur, we fit these data to alternative models of signal transduction
from the receptor layer (see Methods). The data were best explained by a model in which basal and stimulated
AXL activity exists, the latter in proportion to EGFR activation and in which transduction of both signals occurs
through separately saturable processes (Table 4.3). This model is consistent with our biochemical observations
(Fig. 4.4A). The effect of baseline activation of AXL can be observed from the plot of phosphorylated Akt as a
function of pan-pY EGFR, where at low EGFR activation in the presence of AXL the phosphorylation of Akt
was higher than a simple Hill regression would suggest (Fig. 4.7C). Biologically, this indicates that the compo-
nents downstream of the receptor are saturated by maximal EGFR activation and that, at least with respect to
phosphorylated Akt, the transactivation of AXL increases the effective amount of RTK signaling and amplifies
the signaling consequence of stimulation.

Multi-pathway signaling correctly predicts AXL knockdown inhibition of EGF-stimulated protru-

sion

We next asked how the broad effects on signaling which resulted from AXL knockdown might influence the
migration behavior of cells. We elected to use acute membrane protrusion as a surrogate measurement of 3-
dimensional (3D) migratory capacity on the basis of our previous findings that this assay corresponds well to
growth factor-stimulated invasive motility within extracellular matrix [59]. Protrusion measurements from wild-
type MDA-MB-231 cells were used to train a family ofpartial least-squares regression models for how protrusion
activity depends on multiple phosphoproteomic signals. Minimal models that use only three signals were exam-
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ined in order to ascertain the most vital pathway predictors for growth factor-induced motility. We identified

models that fit the data by cross-validation (Q2> 0.6), and found that these were enriched in inclusion of GSK3,
STAT3, and Akt as the key predictor signals (Fig. 4.1OA). These models involved similar weights for the predic-
tor signals in both principle components, demonstrating consistency across the ensemble of top-fitting models

in their multi-pathway signaling-to-protrusion relationships (Fig. 4.9A).
This ensemble of models was then used to predict wild-type MDA-MB-231 protrusion by cross-validation

and to a priori predict protrusion modulation by AXL knockdown (Fig. 4.9B). EGF-stimulated protrusion was
predicted to be the most substantially attenuated response after AXL knockdown, whereas HGF-stimulated pro-
trusion was predicted to remain essentially unaffected. These predictions were indeed correct in MDA-MB-231
cells transfected with AXL siRNA: HGF-elicited protrusion was not significantly affected, whereas EGF-elicited
protrusion was significantly reduced (Fig. 4.9C). Treatment with R428 confirmed that EGF-stimulated protru-
sion depended on AXL-mediated signaling in another TNBC line, MDA-MB-157, but that it did not in two
other breast cancer cell lines, MCF7 and T47D, which lack AXL expression (Fig. 4.9D). The effect of R428
phenocopied that of AXL siRNA treatment in terms of the protrusion response to EGF in MDA-MB-231 cells
(Fig. 4.9, C & D). TGFa-stimulated protrusion was also reduced in MDA-MB-231 cells by R428 treatment,
although to a lesser degree, which was in accord with our model predictions (Fig. 4.1OB). These results indicate
that along with amplification of EGFR-induced downstream signaling, the transactivation of AXL additionally
activates a qualitatively distinct set of signals that are important for cell migration in response to stimuli. More-
over, our three-pathway partial least-squares regression model successfully captured the integrated effects of these

signals on this phenotypic response.

AXL is in proximity to ErbB and MET, but not IGF1R or IR.

We investigated whether the transactivation of AXL (and MET) by EGFR might involve physico-chemical prox-
imity of these RTKs. Because of technical limitations in capability for distinguishing receptor co-localization by
other methods (Fig. 4.12A-B), we employed a technique in which immunoprecipitation of cross-linked recep-
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Figure 4.9: AXL signaling is required for EGF-elicited protrusion. (A) Mean loadings of the reduced partial least squares
regression (PLSR) models. The red point corresponds to the projection of the phenotype. Error bars indicate the standard
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family of reduced models. (C) EGF-elicited protrusion response of MDA-MB-231 cells upon AXL knockdown
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responses with or without 0.3 FtM R428 (***p < 0.001, Mann-Whitney test, N = 17-35 from three independent
experiments). MDA-MB-231 and MDA-MB-157 cells express AXL, whereas MCF7 and T47D cells do not.

tors from lysate was performed in a multiplexed fashion on barcoded fluorescent beads. The degree of AXL
cross-linking with each of various other RTKs was quantified using an AXL antibody (Fig. 4.11 A). Across multi-
ple cells lines we observed a significant degree of AXL cross-linking with ErbB receptors, MET, and PDGFR, but
not with INSR or IGF1R (Fig. 4.11 B & 4.12C). The amount of AXL cross-linking was roughly proportional to
the abundance of that particular RTK-with the exception ofINSR and IGF 1 R, neither of which garnered cross-
linked AXL to a measureable extent (Fig. 4.11 C). We confirmed cross-linking results with reciprocal IP assays in
MDA-MB-231, in which we observed the association of AXL with EGFR but not with IGF1R (Fig. 4.12D).

On the basis of these data, we sought a quantitative framework to understand the respective amounts of com-
plexing observed between AXL and each RTK across different cell lines. According to fundamental stoichiomet-
ric considerations, the amount of AXL observed in complex with a particular RTK in a particular cell line should
be approximately the product of the RTK abundance in that cell line, with proportionality described by coeffi-
cients comprising (a) the cross-linking and protein loading efficiency, and (b) the antibody immunoprecipitation
efficiencies and extent of co-localization. With measurements of RTK abundance and the amount cross-linked
to AXL, we determined the remaining parameters (see Methods) to provide a way to account for differences
in receptor expression when interpreting cross-linking data (Fig. 4.12D). With this quantitative formulation,
we could then calculate whether the parameter characterizing AXL/RTK colocalization deviated significantly
from 0 for each RTK (Fig. 4.1 ID). Significant deviation from 0 indicates colocalization. Despite IGFlR and
INSR being substantively abundant in various cell lines, the calculated likelihood that they localized with AXL
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was not significant. Although this parameter includes the efficiency of immunoprecipitating GF 1 R or LNSR,
we verified that these two receptors were detected with similar efficiency both by direct ELISA of the same cell

lysates and by quantification of a recombinant standard. We additionally confirmed cross-linked imimunoprecipi-
tation between AXL and EGFR to the exclusion of IGF1I R by reciprocal immunoprecipitation in MDA-MB-231
(Fig. 4.12E). Our quantitative analysis framework ruled out the possibility that merely low abundance of IGF1IR
and INS R was a trivial explanation for the absence of significant colocalization. We therefore conclude that AXL

is colocalized with ErbB, MET, and PDGFR, but not with IGF 1R or INSR.
The amount of EGFR-AXL complex was much greater in MDA-MB-231 than in other cell lines, likely as

a result of the differences in abundance of EGFR (Fig. 4.11 C). MCF7 cells transfected with AXL and treated
with EGF showed no synergistic response characteristic of receptor transactivation, consistent with the relatively
little EGF-elicited signaling overall (Fig. 4.14A). We therefore considered whether we could predict the impor-
tance of AXL transactivation induced by activation of RTKs other than EGFR. MDA-MB-453 cells have large
amounts of HER2 and HER3 in complex with AXL, so our notion would predict that AXL signaling might
contribute to a heregulin (HRG)-stimulated response in these cells. We learned by direct test, using AXL trans-
fection and HRG treatment, that this is in fact observed (Fig. 4.13A & 4.14B). We analogously predicted that
the relative degree of synergistic HRG-induced signaling should be similar to the difference in signaling between
EGF, TGFe, HGF, HRG, HBEGF and IGF, if the effect of clustering can be resolved from single RTK-specific
effects. In other words, phosphorylation sites that show synergistic activation should be relatively less stimulated
by IGF stimulation because IGF1R does not display comparable AXL colocalization. Indeed, the magnitude
of synergy induced by HRG and AXL signaling correlated significantly with colocalized RTK-specific signaling
(Fig. 4.13B & 4.14C). This indicates that RTK/AXL colocalization can predict RTK-mediated AXL transacti-
vation, and that this transactivation leads to similar downstream signaling not obtained through activation of
IGF1Ror INSR.

Discussion

Differential expression between two sets of cells or tumors is often used as evidence for the functional signif-
icance of particular genes but ignores the intricate correlation present between genes that can lead to spurious
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Figure 4.11: AXL colocalizes with ErbB receptors and MET. (A) Illustration of the multivariate cross-linking-mediated
co-immunoprecipitation procedure adopted. After ethylene glycolbis(succinimidylsuccinate) cross-linking, cells are lysed
and incubated with identifiable beads targeting non-AXL RTKs, then with an antibody for AXL to quantify the amount
of receptor co-IP. (B) Quantification of AXL in complex with the indicated receptor in MDA-MB-231 and MCF7 cells.

To account for possible antibody crosstalk, samples were always compared to those with AXL modulated either by
siRNA-mediated knockdown (siAXL) or exogenous expression (AXL) in MDA-MB-231 or MCF7 cells, respectively.

Data are means ± SEM from 6 technical replicates, across biological duplicates; p < 0.05, Student's test. (C) Summary of
the relative amount of the indicated receptor found in AXL-linked complexes assessed by direct ELISA (TOTAL) or

cross-receptor measurement (XLINK) from each cell line in cross-linked lysates. (D) Relative likelihood of each
parameter being 0 (no complex occurring with AXL) for each receptor across all five cell lines.

associations in targeted studies. We interrogated a large publicly available dataset derived from cancer cell lines to

examine the role of receptor expression in resistance to RTK-targeted therapeutics, and find that AXL expression

synergizes with expression of the gene encoding the targeted receptor when predicting resistance to erlotinib and

lapatinib. However, as a result of coexpression of AXL and EGFR, this relationship could not be clearly identi-

fied by univariate analyses. Although activation of AXL has been implicated in resistance to ErbB inhibitors in

both lung cancer and HER2-positive breast cancer [204, 207], our analysis suggests that AXL expression may be

a common marker of EGFR inhibitor resistance in TNBC, and possibly in other subtypes of breast carcinoma

(Fig. 4.1B). Using dedicated experimental tumor cell cultures, we discovered a synergistic interaction between

ErbB and AXL signaling in which AXL transactivation mediated by associated EGFR amplified the response of

a subset of downstream elements, quantitatively shifting emphasis of the downstream network across multiple

pathways. This diversification contributed in a critical manner to the migration and efficient proliferation of

TNBC cells in response to EGF (Fig. 4.1E & 4.9D). Moreover, we found that this transactivation appeared to

result from physical clustering interactions, which are quantitatively restricted to certain RTKs depending on

a combination of intrinsic "affinity" and expression (Fig. 4.11C-D). We also predicted additional RTK/ligand

contexts in which AXL synergistically amplified downstream signaling (Fig. 4.13).

Context-dependent physical interaction between EGFR and AXL has recently been appreciated [221]. Our

data indicate that ErbB, MET, and AXL receptors exist in local clusters on the plasma membrane, though do
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(bottom) along with quantification of duplicate experiments (top, *p < 0.02, Student's test).

not distinguish between distinctly bound complexes and diffusional proximity. As IGF1R and INSR are the
only receptors examined here not found in complex with AXL, and IGF 1 R seems to be qualitatively distinct
in its inability to provide compensatory resistance, we expect this clustering may be important to the signaling
that confers resistance [43]. Clustering may arise as a consequence of mutual interactions with the extracellular
matrix, weak lipid interactions, or shared scaffold interactions. Our observations along with previous reports
are consistent with the phenomenon that clustering leads to subsequent activation-dependent enhancement of
interactions after stimulation [221], with striking correlation between the receptors that are activated in trans
and their localization on the cell surface [211]. Future work is needed to perturb this clustering specifically
and examine the extent to which such clustering is required for resistance, transactivation, and diversification of
receptor signaling. If clustering is required for these effects, drugs targeting the interaction mechanism may be
efficacious in counteracting this signal diversification, thereby bolstering RTK-targeted therapy effectiveness.

These results carry clinical significance in the design of therapies targeting AXL and MET signaling, par-
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ticularly within TNBC. Subadditive cytotoxicity after dual treatment with AXL and EGFR inhibitors suggests

that the TNBC cells investigated here may be more reliant on AXL or MET for downstream signaling than

EGFR itself, and that the effects of increased EGFR abundance may be in large part manifest by activation of

AXL or MET. If dispensable for survival, EGFR is still important for directing metastatic dissemination, and

our results suggest that transactivation may be important for promoting such an invasive response [139]. Ac-

tivation by alternative receptors indicates that treatments blocking ligand binding to AXL and MET, an area

of active investigation [222-225], may not be effective in blocking signaling from these receptors, and that in-

hibitors of their kinase activity or treatments that reduce receptor abundance may be more effective [223, 226].

Transactivation-mediated signaling may additionally be a means of secondary resistance to MET or AXL ligand-

blocking treatments. In other carcinomas, EMT and the expression of AXL and c-MET have been identified as

a mechanism of secondary resistance to ErbB targeted therapies [204, 207]. Crosstalk in these cells, particularly

after ErbB-targeted treatment is halted due to RTK-mediated secondary resistance, may provide qualitatively dis-

tinct signaling through new receptors, though in response to the original activating ligand. Consequently, upon

withdrawal of treatment, cells could respond to the original ligand with a more invasive or aggressive phenotype

as a result of the dynamic network rewiring that created resistance [227-229]. Finally, given the striking similar-

ities in signaling and resistance profiles of AXL and MET, as well as the observation that MET can drive AXL

expression [230], inhibition of both receptors simultaneously in drug design may be desirable.

Our work more broadly raises the implication that modulation of RTK expression may not simply dictate

response to stimulation by a receptor's cognate ligand, but that particular receptor pairs can communicate in a

directional manner. Thus, cancer therapies targeting ligand interaction may be circumvented by activation in

trans, and quantitative changes in inhibitor resistance may take place by amplification of signaling through other

receptors. Future work is needed to gauge the extent and exact molecular mechanism of interfamily transactiva-

tion, the mechanisms of pre-clustering, as well as the exact signals that are sufficient for therapeutic resistance

through activation of alternative receptors.

Methods

Antibody reagents, growth factors, and inhibitors EGF, PDGF-BB and TGFa were purchased from Invit-

rogen. HGF, IGF1, HBEGF and HRG were purchased from Peprotech. Unless otherwise indicated, EGF

and Gas6 (R&D Systems) were used at 100 ngmL 1 . TGFe, PDGF-BB, HBEGF and HGF were used at

50 ng mL-1. HRG was used at 80 ng mL-1. AF 154 (R&D Systems) was used at 900 ng/mL. Biotinylated

AXL detection, capture and activating antibodies were purchased from R&D Systems. EGFR, GAPDH, EGFR

pTyrl 173, EGFRpTyr1 068, EGFR pTyr1045, SHC pTyr317, Cdc2 pTyrl 5, ERK pThr202/pTyr2O4, Akt pS473,

and a-Actinin were used for Western blotting and purchased from Cell Signaling. AXL (Santa Cruz) and Cavi

pTyr14 (Sigma) were also used for Western blotting.

R428 was purchased from Synkinase. AXL SMARTpool ON-TARGETplus siRNA, nontargeting SMART-

pool ON-TARGETplus siRNA and Dharmafect 4 was purchased from Thermo Scientific. Lipofectamine 2000

was purchased from Invitrogen.
ELISA-based signaling measurements were performed according to the manufacturer's instructions (Bio-

rad). In all cases, pERK is ERK1/2 (pThr185/pTyrl 87, pThr202/pTyr2O4), pGSK3 is GSK3a/P pSer21/pSer9,

pJNK is JNK pThr183/pTyr185, pP3 8 is P38 pThr180/pTyr182, pcJun is c-Jun pSer6 3, pHSP27 is HSP27

pSer78, pIRS1 is IRS1 pSer636/pSer 6 39, pSrc is Src pY416, pSTAT3 is STAT3 pTyr705, pTyk2 is Tyk2

pTyr1054/pTyr1055, and pAkt is Akt pSer 4 73.
Lysis was performed using 50 mM Tris-HCI pH 7.5, 10% glycerol, 150 mM NaCl, and 1% NP40, with

cOmplete protease (Roche) and phosphatase (Boston Bioproducts) inhibitors added before use.
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Cell culture MDA-MB-231, MDA-MB-157, T47D, MDA-MB-453, SKBR3 and MCF7 cells were cultured
in high-glucose DME supplemented with 10% FBS and 1% penicillin-streptomycin. For knockdown, 5 x 105

MDA-MB-231 cells in a 10 cm plate were transfected with 125 pmol of nontargeting siRNA or siRNA target-
ing AXL using Dharmafect 4 according to the manufacturer's instructions. All further analysis was performed
48 hours after siRNA transfection. For AXL overexpression, untagged AXL in pIRESpuro2 was transfected
using Lipofectamine according to the manufacturer's instructions, and further experiments were performed
12 hours later.

Signaling analysis Cells were seeded sparsely in 6-well plates overnight and serum starved for 4 hrs in DME
media with 0.35% bovine serum albumin and 1% penicillin-streptomycin. Following starvation, cells were stim-
ulated with EGF, TGFz, or HGF for 5 min and lysed. Protein concentration was measured using BCA. When
used, inhibitors were added upon serum starvation.

Protrusion measurement Glass-bottomed dishes (MatTek) were coated with 0.2% Matrigel in serum-free me-
dia for 30 min. Cells were seeded sparsely overnight and serum starved for 4 hours in L15 media with 0.35%
bovine serum albumin. Inhibitors, when indicated, were added at the beginning of serum starvation and present
in the stimulatory bolus. DIC images were acquired every 10 s for 1 min before stimulation and 9 min after stimu-
lation. Cell areas were traced immediately before stimulation and 9 min after stimulation using ImageJ (National
Institutes of Health). Single-cell information was aggregated from at least three independent experiments.

Receptor cross-linking For MDA-MB-231, 5 x 10 5 cells in 10 cm dishes were transfected with either siRNA
targeting AXL or a nontargeting control, and the next day the cells were plated at identical densities. Two days
post-transfection, cells were starved 4 hours and cross-linked using 1 mM EGS for 30 min at 4*C. For MCF7,
SKBR3, T47D, and MDA-MB-453, 50% confluent 15 cm plates were transfected with 20 xg of AXL in the
IRESpuro2 vector. The next day, cells were starved 4 hours and cross-linked using 1 mM EGS for 30 min at 4*C.
Cells were lysed and normalized by total protein. Measurement of cross-linking was performed by modification
ofa kit for total RTK measurement (Novagen). Briefly, lysates were diluted two-fold in assay buffer and incubated
with capture beads for RTKs other than AXL overnight. The lysates were then cleared, and the beads were washed
with wash buffer and then incubated with a biotinylated antibody for AXL for 1 hour. After washing again, the
beads were incubated with streptavidin-conjugated phycoerythrin for 30 min, and then quantified using a Bio-
Plex 200 (Bio-Rad Laboratories).

Support Vector Classification Cell lines were classified according to their published drug response and expres-
sion, measured as cell viability using CellTiter Glo after 72 hrs [212]. Microarray expression measurements were
processed by the robust multi-array average (RMA) method as described in the original publication. A cell line
was considered resistant to the selected drug if its IC50 was reported to be above 8 .M. This cutoff was selected
somewhat arbitrarily as it was the maximum dose tested; however other cutoffs produced identical results. This
method of classification largely agreed with classification based on activity areas and EC50 values. Cell lines
without corresponding drug and expression measurements were thrown out.

As an initial control (blue region, Fig. 4.1B), the targets of each drug were used on their own to predict sen-
sitivity. The drug target was always among the strongest independent predictors of drug response. To calculate
significance for later comparisons, this expression measurement was combined with a pseudorandom vector gen-
erated using the randn function, and the process was repeated 104-108 times, depending upon the significance
stringency being tested.

Another control (black region, Fig. 4.1B) was created by only use of the random data vector in repeated
trials. Prediction with the drug target was always significantly higher than with only random data. Thus, with
these controls, expression of another RTK was considered to be predictive of drug sensitivity if a model of the
RTK with the drug target was above the 95th quantile of the blue and black lines.
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Classification was performed using the svmtr a i n function in MatLab, using a linear kernel and quadratic pro-

gramming optimization method. A quadratic kernel or other optimization methods led to qualitatively identical

results. The probes corresponding to AXL and EGFR expression were 5 58_a t and 1956_a t, respectively.

Synergy significance The Loewe interaction model was used to evaluate synergy or antagonism [231]:

D1 D2 aD 1D2
1= + T-+1

IC50,1 E IC50,2 (Ec E) 1050,11050,2 Ec-E 2rni +22

where D1 and D 2 are the concentrations of the first and second drugs respectively, IC50,11 and IC50,2 are re-

spectively the IC5o values of each drug, and m, and m 2 are a shape parameter for each drug respectively. Econ

is the viability of untreated cells, and E the viability of cells for the respective drug concentrations. Viability data

was normalized such that the maximum measurement was scaled to 1, and Econ was set to be 1. Lastly, a is the

Loewe synergy parameter, which is negative for antagonism, positive for synergy, and zero for additive effects.

Because of the lack of analytical expression for E, the value of E was calculated using lsqnonlin by solving for

the value that minimizes:

argmin i + 2 + + 1 ~

EE[0,1] 1050,1 Eco E) + 1050,2 Ec-E 1050,11050,2 Ec 0 E 2n1 2rn2

Fitting was performed using the nlinfit function within Matlab with initial parameters identified by inspection

of the single drug data. Optimization was unconstrained, but IC50 values were in all cases significantly positive

and all m values significantly negative as verification of effective fitting. Confidence intervals presented were

calculated from the empirically derived Jacobian using the n ip a r c i function. Significance was separately verified

by jackknife [142].

Partial least squares regression & principle components analysis Replicate measurements were averaged, and

each signaling variable was mean centered and variance normalized before further analysis. Principle components

analysis was performed using singular value decomposition within the pca function. The first two components

explained 83% of the variance.

For reduced partial least squares modeling, the output variable was assembled from mean protrusion mea-

surements for each growth factor, and the unstimulated condition set to 0. Model reduction was performed by

training models using all possible combinations of three input variable sets. Three variables were chosen, as it was

the smallest model size with sufficient well-trained models to ensure robust variable enrichment. Model reduc-

tion with larger reduced models produced qualitatively similar results. Each individual reduced model was then

used concomitantly, and the results shown by displaying the average and standard error of loadings values and

predictions. As a result of variation in baseline signaling, predictions for knockdown cells were taken to be the

prediction for the knockdown and stimulated condition minus the prediction of the knockdown and unstimu-

lated condition.

Amplification modeling Each model was fit using the nIin f i t function within MatLab (Mathworks). To

ensure robustness with respect to initial parameter selection, fitting was performed 100 times with randomly

selected initial parameters within the range of feasible values. is 0 with AXL knocked down and 1 with AXL

present. [pEGFR] and [pAkt] are from measurements of pan-pY EGFR and pAkt across a dose range of EGF.

Models were compared using the corrected and uncorrected Akaike information criterion denoted AICc and

AIC, respectively [220].
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To fit data to a model in which activation of AXL is in proportion to EGFR activation, and signaling inte-
gration is receptor-proximal, equation 1 was used:

[pAkt] = Bmax([pEGFR] + a [pEGFR] + B
KD + ([pEGFR] + a [pEGFR] ()

For a model in which amplification of Akt activation with respect to a set amount of EGFR activity, and AXL
only affects this proportional relationship, equation 2 was used:

[pAkt] =Bmax(1 + a ) [pEGFR] + Bo
KD + [pEGFR]

For a model in which no signaling effect from AXL exists, equation 3 was used:

[PAkt, -Bmax [pEGFR ±B
KD + [pEGFR]

For a model in which some baseline activation of AXL is possible in addition to proportional activation, and
signaling integration is receptor-proximal, equation 4 was used:

[pAkt= Bmax([pEGFR] + a [pEGFR] + ) + B
KD + ([pEGFR] + a [pEGFR] + &3)

For a model in which Akt activated by AXL and activated by EGFR is simply summed, with proportional activa-
tion of AXL, equation 5 was used:

[pAkt] Bmax,1 [pEGFR] Bmax,2 [pEGFR]
KD,1 + [pEGFR KD,2 + [pEGFR] + B0

For a model in which no signaling effect from AXL through EGFR pathway exists, but there is simply a baseline
effect of AXL presence, equation 6 was used:

[pAkt] =Bmax [pEGFR]
KD + [pEGFR]

For a model with only baseline activation of AXL, and signaling integration is receptor-proximal, equation 7 was
used:

Bmax([pEGFR] + aj)
[pAktj = ~ + B0KD + ([pEGFR] + a() +B

For a model with Akt activated by AXL and activated by EGFR is simply summed, with proportional and baseline
activation of AXL, equation 8 was used:

[pAkt] -Bmax,1 [pEGFR] + Bmax,2 ([pEGFR] + i3)
KD,1 + [pEGFR] KD,2 + ([pEGFR] + 13)

Total receptor quantification Total receptor amounts were measured using a bead based ELISA (Novagen).
For quantification of AXL and MER, established ELISA antibodies and standards (R&D Systems) were used.
The capture antibody was conjugated to unconjugated beads (Bio-Rad) and used in a multiplexed fashion with
the other targets. Linearity of the assay was validated during measurement by dilution series of both the lysates
and standards.

Each cell line was seeded sparsely, and the next day starved 4 hours and lysed. Receptor measurements were
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normalized to total protein content to provide a receptor mass fraction (i.e. fg receptor per mg cell lysate). This

mass fraction was used in all subsequent modeling. For receptor density calculations, a sub-confluent plate of

cells was trypsinized, the number of cells counted and lysed, and total protein quantified. This provided the

conversion, for each cell line, from mg of lysate to number of cells. Combined with the known mass of each

receptor, a value could then be converted to number of receptors per cell. Finally, a receptor density was calculated

by using the surface area of a HeLa cell (1600 zm2, BNID 103718, [232]).

Assay selection To determine which methods might be suitable for studying such complexes on the cell surface,

we developed a simple statistical model to describe the background one might expect given particular receptor

expression, a characteristic distance for a particular assay, and random distribution of receptors on the surface

of a cell. The background of an assay that gives signal when two receptors are within a particular distance has a

background of one minus the probability of co-localization occurring by chance, given by a Poisson distribution:

B = 1 -p(0 A) e-A. The average number of receptors at a density of n found within a characteristic distance

of R is given as A = n7rR2 . Integrating these, the background B of an assay with a characteristic distance of R

and with a mean receptor density of n is B = 1 - e, R 2 and for a given amount of acceptable background,

the maximal characteristic radius is:

R= In (1 - B)
Vn7rnil

Cross-linking distance modeling Tij is the amount of receptor i in cell line j. /j encompasses variation in

the efficiency of cross-linking and protein loading from experiment to experiment. ai encompasses variation

in the efficiency of antibodies for each receptor, and the amount of cross-linking between AXL and receptor i.

Therefore, the amount of cross linking Xij from AXL to receptor i within experiment and cell line j is modeled as

Xij = ai#33 Ti where i E [1, 7], j E [1, 4]. The likelihood ofeach observation was calculated using the distance

between the amount of cross-linking predicted by a particular model and that observed, as well as the standard

error for each measurement (all cross-linking measurements were performed with 4-6 technical replicates).

Constrained optimization was performed with ai E [0, 1] and 3j E [0, 1] using fmincon within MatLab.

To assess confidence in robust cross-linking, individual ac parameters were constrained as 0 and optimization was

again performed. The difference in likelihood was used for assessment of cross-linking. For the globally optimal

solution, initial parameters were randomly assigned repeatedly to avoid local minima. For constrained solutions,

the global optimum without constraint was used as the initial parameter state.

Receptor cross-linking immunoprecipitation Three confluent 15 cm plates of MDA-MB-231 cells were cross-

linked with 1 mM EGS for 30 min at 40C and then lysed. The lysate was clarified by centrifugation at 16,100 xg

for 15 min, and then pre-cleared for 30 min with agarose resin. Lysate was then incubated with protein A/G

agarose and either an IgG control, AXL, or IGF1 R antibody overnight at 4*C. The next day, the resin was washed

6 times with lysis buffer and then incubated with 2M hydroxylamine-HCl in PBS pH 8.5 for 6 hours at 370 C.

The resin was then removed and the supernatant run on a reducing gel.

FACS analysis Cells were treated with 2 xM R428 in full-serum media. 24 hours later, cells were trypsinized,

stained and immediately analyzed by flow cytometry. Dual staining was performed using mab225 and AF154

(R&D Systems) for 1 hour on ice. Staining for each receptor was performed separately when in conjunction

with live/dead analysis. YO-PRO-1 and propidium iodide were used according to manufacturer's guidelines

(Invitrogen).
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Chapter 5

The AXL Receptor is a Ligand Spatial Heterogeneity
Sensor

Abstract

The AXL receptor is a TAM (Tyro3, AXL, MerTK) receptor tyrosine kinase (RTK) important in blood clotting,
viral infection, innate immune response and cell clearance, deregulated in many human carcinomas [92, 207,
233-235]. While the immediate cognate ligand-receptor complex (Gas6-AXL) structure is known, studies ex-
amining ligand-mediated signaling often provide paradoxical results [79, 94]. Therefore, a detailed, mechanistic
picture of AXL activation, and thus quantitative understanding of the nature and contexts of ligand-mediated
signaling, has not been previously undertaken. Employing quantitative biochemistry and deterministic model-
ing we show that AXL operates to sense local spatial heterogeneity in ligand concentration, due to an unusual
dichotomy between ligand-dependent and ligand-independent signaling. We experimentally validate diverse
model predictions concerning this behavior. The results demonstrate that AXL functions distinctly from other
RTK families, and this surprising insight will be vital for the design of AXL-targeted therapeutic intervention.

Introduction

Genetic studies perturbing expression of with TAM receptors or their ligands have identified roles for the pro-
teins in diverse physiological processes. Since identification of Gas6 as a ligand for AXL, it has been observed
to activate AXL signaling in a variety of cell types [97, 236-240]. At the same time, conflicting results have
prevented assembly of a unified understanding for the stimulation contexts which activate the receptor. Ihis pre-
vents effective manipulation of receptor activity and thus study of its effects. Upon overexpression, AXL has been
observed to be constitutively active and poorly responsive to ligand stimulation [79, 94, 208]. Blocking ligand
expression is not always sufficient to block AXL-mediated resistance in cancer cell lines, even when blocking re-
ceptor activation is sufficient [207]. Recombinant ligand has been insufficient to mimick paracrine signaling but
the mechanisms of how ligand might be presented differently are unknown [241]. Viral envolopes can synergis-
tically activate TAM receptors when stimulated with a constant amount of ligand [94]. Many of these effects are
thought to arise through simultaneous interaction of TAM ligands with phosphatidylserine-containing objects,
though conflicting interpretations exist as to how this interaction effects receptor activation [242-244].

Results & Discussion

To better understand ligand-induced AXL signaling, we assembled a kinetic differential equation model of
receptor-ligand binding, dimerization, and activation, incorporating current structural understanding of TAM
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Figure 5.1: a) ELISA-based pan-phosphotyrosine measurement of AXL upon treatment with indicated concentrations of
Gas6. Shaded areas indicate standard error of triplicate measurements. b) Diagram of the AXL signaling model.
Trafficking is not shown. Binding reactions occur identically with internalized and surface species. c) Predicted

steady-state (T =240 mi) AXL phosphorylation at varying abundances of AXL and Gas6.

ligand binding (Fig. 5.lb & Methods). TAM receptors are similar to growth hormone receptor in that ligand
bridges two receptors with asymmetric affinity for each, though with the added complexity of two ligands, in-
stead of one, bridging two receptors in a mirrored arrangement [79, 245]. Receptor trafficking was extrapolated
from knowledge of other receptor tyrosine kinase families [246, 247]. For initial parameter estimation, we stimu-
lated four carcinoma cell lines harboringvaryinglevels of AXL expression with increasing concentrations of Gas6

and measured receptor phosphorylation time-courses (< 10 min) (Fig. 5.la). We separately measured receptor
phosphorylation and total abundance at 4 hours (Fig. 5.2a). Measurement of total TAM receptor expression con-
firmed that the vast majority of TAM receptor present in the cell lines used is AXL (Fig. 5.2b). These represent
the first quantitative, dynamic measurements of TAM signaling, and the most comprehensive analysis of TAM

ligand-elicited signaling, to our knowledge.
Depending on the AXL expression level and Gas6 concentration, Gas6-elicited AXL phosphorylation dis-

played either a transient peak (< 5 min) that rapidly returned to near-baseline levels or a monotonic increase in

phosphorylation at high doses with relatively little response to lower doses of ligand (Fig. 5.la). These dynamics
of response are strikingly distinct from ErbB and other RTK signaling examined to date, which occurs relatively
rapidly and with a simple relationship with respect to ligand concentration [140, 248, 249]. We confirmed us-

ing an activating antibody for AXL that these interesting responses are a feature of ectodomain regulation, as
stimulation with the antibody produced a rapid and strong phosphorylation response (Fig. 5.2c).

We next interrogated our best-fit model to probe the dynamic capacity of ligand-mediated AXL signaling.
AXL shows a surprisingly limited range of ligand-mediated response both in our experimental measurements and

in predictions from our model (Fig. 5.la & 5.2a); for instance, steady-state receptor phosphorylation displays
only five-fold activation above unstimulated conditions (Fig. 5.lc). By evaluating the model across a broad range
of Gas6 concentrations and AXL expression levels, we ascertained that within 5 and 10 minutes AXL exhibits
at most a 2.5- and 4.5-fold increase in phosphorylation (Fig. 5.2d). This model prediction raises a fundamental

question concerning the nature of information transduced by TAM receptors. Many other RTK families such as
ErbB receptors conceptually perform as sensors of ligand concentration as they display characteristics of a sensor
such as fast switching and a monotonic input-output relationship on short timescales. AXL activation, though, is
strongly limited by the kinetics of binding (Fig. 5.la & 5.2c), displays a relatively small range in activation across
order of magnitude changes in ligand concentration, and under certain regimes displays exclusively transient
signaling (Fig. 5..a).
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Figure 5.2: a) Measurement of AXL phosphorylation and abundance across varying doses of Gas6 in six cell lines. b)
Absolute receptor quantification of TAM family members in starved cells by ELISA. c) Measurement of AXL

phosphorylation in MDA-MB-231 in response to an activating antibody or Gas6. Phosphorylation measurement was
normalized to total AXL abundance. d) Model range over time of AXL pan-pY for all reasonable autocrine ligand,
simulated ligand, and receptor expression levels. Error bars indicate standard error of measurements in triplicate.

The phenotypes observed in TAM knockout mice suggest that physiological signalingprincipally involves lig-
and engagement once immobilized on phosphatidylserine-presenting surfaces [89]. Therefore, we extended our

model to account for spatial heterogeneity and diffusion of ligand and receptor, via a finite difference framework

(Fig. 5.3a). In contrast to the homogeneous model, local stimulation was now predicted to cause stronger and
sustained receptor phosphorylation (Fig. 5.3b) and in fact greater total receptor phosphorylation (Fig. 5.3c). We
determined by investigating the components of the model that this increase corresponded to a decrease in abun-
dance of A1 (receptor with Gas6 bound only at the high affinity site) and increase in D2 (the full two-Gas6/two-

AXL dimer) (Fig. 5.3d). This indicates greater occupancy of the low affinity site while reducing formation of

A1,2 (receptor with Gas6 bound at both sites) which can only dimerize with AO (completely unbound recep-

tor). Impaired endocytosis of immobilized Gas6-bound AXL could not similarly increase receptor phosphory-
lation response (Fig. 5.4c). To test this prediction experimentally, we employed phosphatidylserine-mediated
ligand-immobilization similar to that occurring within the in vivo environment to compare local and bulk stim-

ulation quantitatively [250]. We incubated cells with identical concentrations of Gas6 in presence or absence
of phosphatidylserine-containing vesicles to restrict ligand engagement. Despite bulk stimulation with a Gas6
concentration that produced no measurable change in bulk receptor phosphorylation (Fig. 5.1a), the presence
of vesicles induced a small amount of receptor phosphorylation that strongly synergized when both factors were
present (Fig. 5.3e & 5.3f). To test our hypothesis in an orthogonal manner, we coated polystyrene beads with
Gas6 and incubated them with MDA-MB-231 cells, which displayed little response to bulk Gas6 stimulation
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Figure 5.3: Spatially inhomogenous stimulation leads to robust AXL activation. a) Schematic of the finite differencing
model. Diffusion was allowed within a radially symmetric region of interest. Total Gas6 amount was held constant while
varying spatial profiles of concentration. b) Modeling output for AXL pan-pY density at the peak point of Gas6 at 30 min

with respect to varied Gas6 concentration profiles. Autocrine Gas6 levels and AXL expression were set to A549 levels.
c) Modeling output for bulk AXL pan-pY under identical conditions. d) Modeling output of species abundance at 30 min
under identical conditions. Internalized and surface species were considered together. e) Measurements of AXL pan-pY in
MDA-MB-231 (top) and A549 (bottom) upon stimulation with phosphatidylserine containing vesicles in the presence of
0.25 nM Gas6. 1 x and 1/10 x lipid concentrations correspond to 100 Ig mL-1 and 10 g mL-1 of lipid, respectively. f)

Measurement of total AXL abundance in A549 cells upon stimulation with 0.25 nM Gas6, with or without vesicles.
g) Pan-pY immunofluorescence (top) of MDA-MB-231 cells starved and stimulated with polystyrene beads coated with
BSA or Gas6, and quantification of the immunofluorescence (bottom, N > 10). Cells were stimulated for 30 min prior to

fixation. Error bars indicate the standard error of triplicate measurements, unless indicated otherwise.

(Fig. 5.2c). We observed substantive spots of phosphotyrosine staining in a Gas6-dependent manner, consistent
with localized activation by bead-immobilized Gas6 (Fig. 5.3g). This mechanism of robust AXL activation is vi-
tal to the normal physiological role of AXL as a marker for phagocytic uptake of cellular debris and promotion of
clotting [251]. A yet unexplained phenomenon is how ubiquitous Gas6, in the blood particularly, can produce
transient signaling upon clotting [251-2531. While aggregation of receptor has been proposed our model shows
that, while a greater local concentration of receptor may be important, this synergy is specific to ligand engage-
ment and actively regulated [94, 254]. Whereas other RTK ligands can provide chemotactic cues, this system
importantly allows for autocrine production of ligand-without signal generation by itself-to sense phagocytic
targets.

A striking feature of our model is the requirement that AXL should have weak signaling capacity when not
engaged in the ligand-bound signaling dimer D2 (Table 5.1 and Fig. 5.4a). To test this, we deleted each extra-
cellular domain from AXL individually in turn, expressed each form of the receptor in MDA-MB-453 cells that
lack AXL expression (Fig. 5.2b), and blotted for either total or phosphorylated receptor (Fig. 5.6a). Since ligand
engagement requires binding to the Ig1 domain of one receptor and Ig2 domain of another, Ig1 or Ig2 domain
deletion should entirely block ligand-dependent phosphorylation [79]. These deletions in fact maintained some
receptor phosphorylation (Fig. 5.5a, 5.6a & 5.6b), indicating ligand-engagement is not strictly required for phos-
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Figure 5.4: The kinetic model is partly identifiable and inhibited endocytosis cannot account for phosphatidylserine

effect. A) Sensitivity analysis for individual parameters. The red, green and blue lines indicate the goodness-of-fit upon

parameter scanning, local optimization and global optimization respectively. B) Sensitivity analysis for combination

parameters. Unlike in original model fitting, the affinity for Ig2 is not constrained within 10-1000 nM. C) Relative

receptor phosphorylation output for a model corresponding to A549 cells stimulated with 0.25 nM with varying extents

of endocytosis impairment for the Gas6-bound surface species.

phorylation of AXL. Interestingly, deletion of the Fnl domain of the receptor largely decreased activation of

AXL, suggesting this domain may have an important unknown role in activation of the receptor. Others have
noted similar constitutive activation of AXL, particularly upon overexpression [79]. Our model indicates this is
not an artifact of overexpression, but instead is relevant to endogenous receptor function. While we treat ligand-
independent signaling as a constant factor, its potential regulation, such as in trans from other RTK families, is
an outstanding question [233].

Finally, we sought to test some further predictions of prospective importance for therapeutic manipulation
of AXL signaling. Two interventions that have been proposed for targeting AXL activity are blocking the accu-
mulation of Gas6 within the tumor microenvironment or disrupting gamma-carboxylation of Gas6 [222, 223].
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Figure 5.5: Experimental validation is consistent with ligand-independent signaling capacity and immobilization-based

signal promotion. a) Activation of AXL deletion constructs in MDA-MB-453 cells, as measured by Tyr779

phosphorylation, normalized to total receptor abundance. b) AXL phosphorylation response of cell lines to Gas6

knockdown or warfarin treatment. Total and pan-pY AXL are indicated on separate axes. Shaded areas indicate standard

error of triplicate measurements on each axis. c) Coimmunoprecipitation of AXL and Gas6 in MDA-MB-231 cells in the

presence or absence of warfarin.

To mimic the former, we either knocked down Gas6 in AXL-overexpressing cell lines using an siRNA or treated

with a blocking antibody that binds to Gas6 and blocks receptor interaction. Our model suggests that in some

cells Gas6 knockdown may have little to no effect on AXL activity. While the BT549 cell line displayed a dra-

matic decrease in overall AXL abundance and thus phosphorylated receptor, three other tumor cell lines showed

similar or greater receptor activation (Fig. 5.5b & 5.6c). With respect to gamma-carboxylation, conflicting lit-

erature exists as to whether maturation of Gas6 is required for interaction or activation of AXL [219, 241, 243,

244, 255-258]. Our model specifically predicts that modification of Gas6 need only confer differences in the

localization of ligand to produce the differences in activity observed. Therefore, immature ligand may differen-

tially activate the receptor, but should still have measurable signaling effects and should still interact with the

receptor identically. The cells dependent upon gamma-carboxylation and those dependent on concentration of

Gas6 need not be the same. To test this, we treated cells with warfarin, which inhibits synthesis of vitamin K,

an essential component in gamma-carboxylation [219]. Three cell lines displayed significant changes in receptor

phosphorylation, and consistent with our spatial modeling warfarin treatment always reduced receptor phospho-

rylation (Fig. 5.5b & 5.6d). Importantly, Gas6 displayed identical binding to AXL even when warfarin treatment

significantly disrupted AXL activation (Fig. 5.5c).

Our combined experiment/modeling study here provides the first quantitative, mechanistic understanding

of TAM signaling, and in doing so provides essential information for specific targeting of signaling dysregula-

tion and normal function (Fig. 5.7). In a malignant context, our results suggest modulating the concentration of

Gas6 within the tumor environment may be a less efficient means to blocking signaling as compared to directly

targeting the receptor, and observations of Gas6 overexpression may require more nuanced interpretation. Tu-

mor cells may take advantage of spatial ligand heterogeneity to upregulate AXL signaling, and the signaling may

be directly upregulated by this mechanism through phosphatidylserine exposure after cytotoxic treatments. Fnl

domain targeting may be effective after additional functional investigation, and while true cancer cell specific

73



ab rpYTotal

Cl) Cl

C CU 
o -C : Full

2 2 LL LL<|< < < < < < <

-150
AFn1-

W w 0 lk -125

-150 Algi

-125
Kinase dead Control

M 100 ng/mL Gas6

C d
2.0- Null

siGas 5 M No treat
1.5- A M 500 ng/mLwarfarn

CL 1.1-

0.55

0.5-11X I M
0.0-.e 0.0

MB231 A549 U87 BT549 A549 Al 72 MB231 U87
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Error bars indicate the standard error of triplicate measurements.

targeting of AXL signaling is likely impossible, carefully engineered Gas6 binding manipulation may show some
specificity for dysregulated signaling, important given recent reports of negative consequences for broad TAM
inhibition [95]. Finally, as Gas6 is used once immobilized as a marker by the innate immune system for apop-
totic clearance, manipulation of this system may hold promise in treatment of tumors that do not express TAM
receptors through immune targeting for clearance [89].

Our work largely unifies current understanding of TAM signaling, and describes an unusual RTK system
whereby cells sense discontinuities in ligand concentration rather than concentration itself. Kinetic modeling
provides a framework for elucidation of many complex aspects of RTK signaling and integration of extant knowl-
edge. While ligand presentation is intricately controlled within the in vivo environment, reaction-diffusion in-
teractions have not been extensively identified [259]. Indeed, these complex effects will only be understood
through detailed mechanistic modeling. Ligand concentration is only one property of the extracellular envi-
ronment useful for measurement, and we anticipate future investigations will reveal similarly elegant sensing
solutions designed by natural selection.
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receptor as a marker for phagocytosis.
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Materials & Methods

Reagent preparation & cell culture MDA-MB-453, MDA-MB-231, A549, BT-549, A172 and U87 cells
were obtained from ATCC. Anna Starzinski-Powitz (University of Frankfurt) generously provided 12Z cells by
way of Steve Palmer (EMD Serono).

All ELISA measurements were performed in multiplexed fashion, using individually identifiable polystyrene
beads (Luminex Corp). Briefly, beads were sedimented for 3 min at 10 4 x g then resuspended in 80 VL 100 mM
NaH 2 PO 4 pH 6.3. 10 .L of 50 mgmL' N-NHS and 10 tL of 50 mgmL' EDC was added, and the mixture
was incubated with agitation for 20 min at room temperature. Beads were then pelleted and resuspended in 300
.L 50 mM HEPES pH 7.4 with 0.1 mgmL-' of either AXL, MERTK and TYRO3 capture antibody (R&D

Systems). The mixture was incubated overnight at 4'C with agitation. The next day, the beads were washed
repeatedly and stored in 1% BSA in PBS. Coupling efficiency was measured using biotinylated protein G.

Receptor abundance & phosphorylation quantitation Cells were starved for 4 hr then treated and lysed in
50 mM Tris, 10% glycerol, 150 mM NaCl, 1% NP40 at pH 7.5. Protein concentration was measured by bicin-
choninic acid assay. Lysates were incubated with capture beads overnight with agitation, then washed with 0.1%
Tween-20 in PBS and incubated with either detection antibodies for each TAM receptor (R&D Systems) or bi-
otinylated 4G10 for 30 min. After washing again, beads were incubated with streptavidin-phycoerythrin for 10
min then quantified using a FlexMap 3D (Luminex Corp).

Localized Gas6 stimulation Gas6 was coupled to polystyrene beads following identical methods to the cap-
ture antibodies. Coupled beads were washed six times to remove uncoupled protein. Cells were starved for 4
hr, then beads were added and allowed to settle for the indicated amount of time. 4% PFA in PHEM buffer
with phosphatase inhibitor (Boston Bioproducts) was used to fix the cells for 10 min. Immunofluorescence was
performed by standard methods. Imaging was performed using a CARVII spinning disk confocal microscope
with a 40 x objective. Stacks were imaged every 1 tm, and then processed by maximum projection.

For lipid stimulation, 5:3:2 w/w phosphatidylethanolamine:phosphatidylserine:phosphatidylcholine
(Avanti Polar Lipids) was resuspended in Li 5 media with 0.35% BSA at 1 mg mL-', vortexed vigorously, then
diluted to the indicated concentration. 20 ngmL 1 Gas6 was added where indicated, and the mixture was
incubated with gentle shaking for 1 hr. Cells were then stimulated with the indicated mixture and lysed.

siRNA and warfarin treatment 50,000 cells were seeded in 10 cm plates. The next day, plates were transfected
with 5 xL Dharmafect 4 and 125 fmol of pooled siRNA in OptiMEM. Four hours later cells were placed back
in full serum media. Two days after transfection cells were starved for 4 hrs then lysed. For warfarin treated cells,
warfarin was added 24 hrs prior to lysis, along with exchange of the media. Oligonucleotides against human tran-
scripts were (5'-3'): siControl ON-TARGETplus Non-targeting Pool D-001810-10-05; siGas6 (pooled four
siRNAs) ON-TARGETplus SMARTpool siRNA J-009069-09, target sequence GUGACGAGGGCUUUGCGUA; ON-
TARGETplus SMARTpool siRNA J-009069-10, target sequence GGAGAAGGCUUGCCGAGAU; ON-TARGETplus
SMARTpool siRNA J-009069-1 1, target sequence GCGUACAAGCACAGCGACA; ON-TARGETplus SMARTpool
siRNAJ-009069-12, target sequence CGCGGGAGGUGUUCGAGAA.

AXL mutant transfection 500,000 cells were seeded in 10 cm plates. The next day, cells were transfected
with 10 zg DNA of each AXL mutant using 10 .L Lipofectamine in OptiMEM according to the manufacturer's
instructions. Four hrs post-transfection growth media was added back to the cells. The next day, cells were starved
4 hrs and then lysed.

AXL mutants were blunt-end cloned into pIRESpuro2 (Clontech) from wild-type human cDNA. Mutants
were verified to be the following: kinase dead, K562R; AIgi, P27_S128del; AIG2, P139_T222del; AFN1,
Q287_G331del; AFN2, P336_P428del.
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Homogenous Modeling The kinetics of AXL signaling were modeled using ordinary differential equations.

Model layout was inferred from structural understanding of ligand binding [79], and parameter estimation was

performed using PottersWheel [260]. Phosphorylation was assumed to occur fast, such that species abundance

directly translated to phosphorylated receptor abundance [246,248]. Dimerization of receptors to form the D2

species was modeled as a one step reaction, implicitly assuming the second binding after dimerization through the

first interface was fast. As the local concentration of incompletely dimerized Gas6 would be in excess of 1 M in

the intermediate state, we believe this is a suitable assumption. As model fitting could not be performed without

some amount ofligand-independent signaling, all species besides D2 were assumed to have some partial signaling

capacity. Autocrine ligand was assumed to be present at a constant concentration, with stimulated ligand adding

to that concentration.
Trafficking was modeled and kinetically constrained based on understanding from other receptor tyrosine

kinases [246, 247]. We first assumed that endocytosis of each species occurred at a rate proportional to the

phosphorylation extent of each species. A faster phosphorylation-dependent rate and slower phosphorylation-

independent rate were included, as observed with other RTK families [246]. All species with the exception

of D2 were assumed to have the same sorting fraction, and D2 its own fraction. Fluid-phase uptake of ligand

was assumed to not occur as its contribution has only been observed at very high extracellular concentrations.

Endosomal maturation and degradation were modeled as done previously, with no sorting of ligand. The ligand

compartment was assumed to comprise 2% of cellular volume, or 10 fL per cell. Receptor and ligand interactions

were assumed to be identical within the endosomal compartment.

Parameter fitting was performed in Potters Wheel [260]. Chi squared goodness of fit was calculated from

the standard error of each measurement using experimental replicates. At least 500 independent times, global

optimization was performed from a random starting point using a cycle of simulated annealing, and trust-region

optimization with random perturbation, using the default parameters of the program. Model code for the op-

timization is included as supplementary files. Multiple independent optimization trials were confirmed to con-

verge on the same optimal fit. A549 and A172 measurements were used in model training, as these cell lines did

not display an effect upon warfarin treatment.

Models BIC x2

Full 389.2 91.3
No ligand-dependent signaling 443.3 145.4

Table 5.1: Refinement statistics for competing, topologically distinct models. BIC: Bayesian information criterion,
Chi-squared: chi-squared goodness of fit.

The model was separately implemented as an external library to MatLab 2013b in C++ using CVode [261].

This native code was confirmed to produce identical results as integration within Potters Wheel. Local sensitivity

analysis was performed by varying single parameters and examining the goodness-of-fit after local optimization

using the default parameters of f mi ncon. In an attempt to address parameter sensitivity more globally, single

parameters were also fixed, then global optimization was performed by direct search using the default parameters

of pa t te r n sea rc h.

A, A 1 , A 2 , and A 12 indicate AXL in an unbound state, bound at the high affinity site, bound at the low affin-

ity site, and bound at both sites, respectively. Di indicates the dimer species with one Gas6 molecule bridging

receptors. D 2 indicates the full receptor-ligand complex with two Gas6 molecules dimerizing two receptors.

= krb1Al + krb2A2 + (kri + kr 2 )D1 + kr3D 2 + L

-(kf1A, + kf 2 A2 + kf 3 A12+ kfbiG + kfb2 G)A

6GA
6t= k fb1G A - krb1 A1 - kfb2G A1 + krb2 A12- k f 1 AA1 + kr1D1 - 2k f4A1 A1 + 2kr4D2
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6 A2
6t = kfb2GA + krb1A12 + kr 2 D1 + 2kr5 D2 -(krb2 + kfb1G + kf 2 A + 2kf5 A2 )A2

6A12
6t =(kfb2, + kfblA 2)G - (krbl+ krb2 + kf 3A)Al 2 + kr 3D2

D = kr6 D2 + kf 2AA 2 + kf1AA1 - (kf 6G + kr2 + kr1)D1

6D22 2

t kf6D1G+ kf 5 A + kf 4A, + kf 3AA1 2 - (kr + kr6 + kr5 + kr4 )D 2

A subset of parameters are constrained due to detailed balance (x represents either f or r):

kx2= kxlkxblk-1 kx4= kxakxb2 ks-A kx5  kXakXblk- kx6  kxskxb 2 k-j

Trafficking is defined by:

6X
6t = X(kint, + Sakint,2 ) + krec(1 - f)-yXi

X2  knt, + Sakint,2) - krec(1 - f)Xi - kdegfXi

where f is feise for all species except D2 and fD2 for D2. For D2, Sa = 1.

Spatial Modeling Spatial modeling was performed by finite differencing on a 2D, radially symmetric geometry
of set radius, integrated using CVode [261]. The receptor diffusion coefficient was assumed to be 0.1 L2/min,
where L is the radius of the region of interest. As diffusion is the only parameter which defines the length scale
of the system, other lengths are defined in terms of L. r = L was set as a closed boundary, and at r = 0 the
solution was assumed to be finite. Diffusion occurred only for the receptor with no Gas6 bound on the surface,
as internalization and Gas6 binding were assumed to reduce mobility. Reactions occurred normally throughout
the region of interest unless noted otherwise. The extracellular Gas6 concentration profile was fixed as:

[Gas] =ycos 73L

where - is a "spatial inhomogeneity" parameter, and -y is varied such that the average Gas6 concentration over
the entire region is constant.

Spatial modeling was performed within the external MatLab library using CVode, as a MatLab implementa-
tion was prohibitively resource intensive. Integration was performed using the backward differentiation formula
and Newton iteration, with the dense linear solver utilizing the LAPACK backend.
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Table 5.2: Fixed and fit parameters for the spatially homogenous model.

Value Description Optimal Value I Allowed Range

kfbl Forward binding constant for Igl. 0.0006 nM-lmin- 6 x 10 - 6.0

krbi Reverse binding constant for Igl. 4.0 x 10- 5 min-' 10-5 - 105
kfb2 Forward binding constant for Ig 2 . 0.0006 nM 1 min- 1  6 x 10-4 - 0.6

kb2 Reverse binding constant for Ig2 . 0.032 min- 1  10- 5 - 105

kfi Forward rate for reaction 1. 94 cell / min 10- - 105

k,1 Reverse rate for reaction 1. 18 min- 1  10-5 -105

kf3 Forward rate for reaction 3. 27000 cell / min 10-5 - 105

k,3 Reverse rate for reaction 3. 0.0038 min- 1  10- 5 - 105

kint,1 Endocytosis rate of non-pY receptor. 1.00 x 10-6 min 1  10-6 - 1

kint,2 Endocytosis rate of pY receptor. 1.5 min 1  10-3 - 100

felse Sorting fraction of non-D2 species. 0.0038 10-5 - 1
fD2 Sorting fraction of D2. 0.66 0.1 - 1
krec Rate of endosomal recycling. 0.0022 min- 1  10-3 - 0.1

kdeg Rate of degradation. 0.10 min- 1  10-4 - 0.1

Sa Fraction non-D2 species phosphorylated. 0.0076 10-6 - 1

EA172 AXL synthesis rate in A172 cells. 66 min- 1 - 10

GA172 Autocrine Gas6 concentration in A172 cells. 0.017 nM 10-6 - 100

EA549 AXL synthesis rate in A549 cells. 550 min- 1  1 -05

GA549 Autocrine Gas6 concentration in A549 cells. 0.20 nM 10-6 - 100

7 Endosome - plasma membrane area 0.5 Fixed
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Chapter 6

Future Directions

AXL- and RTK-targeted therapeutics

While the tools to begin understanding AXL signaling are assembled, some very basic questions remain to be
addressed. On the molecular level, there is very little information about observed ligand-independent signaling
[79]. This form of activated receptor may completely resemble the ligand-mediated activation state, or observed
phosphorylation may come from a completely distinct set of phosphosites. Ligand-independent activation may
be regulated in trans from other RTK families through binding of unknown other proteins, may be regulated in
a higher order manner such as through receptor trafficking, or may be constitutive and not directly regulated. In
cell lines that display a dependence on vitamin K for robust activation by autocrine ligand, it is unclear to what
phosphatidylserine-presenting surfaces ligand binds on the cells, and whether its presentation is perhaps manip-
ulated in many cancer cells to promote AXL signaling. Lastly, more careful examination of receptor trafficking is
sure to uncover differences between ligand binding at the surface and within endosomes. An intriguing possibil-
ity, since local stimulation requires areas of both high and low ligand concentration, is that endocytosis triggers
a strong reduction in phosphorylated receptor.

With a better understanding of the basic mechanics of AXL and TAM receptor function, we then need an
improved understanding of the higher-level function of these receptors on the cellular scale. Through refined
experiment and modeling, the spatial aspects of receptor activation could be probed more specifically. Some
remaining questions are: How does the synergistic signaling that arises by local stimulation vary with the length-
scale of accumulated ligand patches? What patterns of receptor activation arise with more complex geometries
of ligand stimulation? What features of ligand-binding (such as asymmetric affinity within each binding site)
are required for these spatial effects? Protein S/MerTK, like Gas6/AXL, shows most robust response upon lo-
cal stimulation [94], but other receptor-ligand or receptor-receptor combinations may show other patterns of
response to spatial/non-spatial stimulation. Even if only the magnitude of response is important to inhibition of
cancer cells, these higher-order effects are very likely utilized in other TAM signaling contexts.

TAM receptors represent an intriguing therapeutic target with promising preclinical results [21, 262]. Clin-
ical trials are ultimately necessary to evaluate TAM-targeted therapies, and have begun for broad-spectrum in-
hibitors. However, the role of these receptors in physiological processes suggests caution in broad inhibition of
all family members [90, 93, 96, 263, 264]. Carefully engineered therapies with better specificity for cancer cells,
for example, by careful engineering of the Gas6-receptor affinities, will follow a better understanding of receptor
function. Manipulation of TAM signaling to influence immune targeting of cancer cells is a similarly very promis-
ing area. More generally, across many malignancies, we need a better understanding of resistance mechanisms to
RTK-targeted drugs.

For our basic understanding of cell-cell communication, we need an improved understanding of the yet less-
studied RTKs. Multiple receptor families exist, such as DDR, Tie, and Ephrins, for which structural information
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is available, and which have been shown to mediate drug resistance, but for which little understanding of ligand-

mediated activation exists on a quantitative and usable level [265-267]. This lack of understanding limits design

and interpretation of experiments, potential therapies manipulating activation of these receptors, and our un-

derstanding of how the receptors perform in vivo. The surprising results of Chapter 5 with TAM receptors will

perhaps catalyze assembly of quantitative models for other receptor families.

Finally, we need a more complete understanding of receptor activation state. While RTKs are generally

thought of as "on" or "off", diversity exists in the extent and dynamics of activation for each phosphosite on

the receptors, and thus in interaction with other proteins. RTKs are physical proteins, interacting with a mul-

titude of binding partners [268]. Fundamental questions remain in this area: Are individual phosphosites pre-

programmed in their response upon receptor activation, or can differences in the manner of receptor activation

selectively influence the abundance ofparticular phosphorylation sites? If so, are receptors only "on" or "off", and

communication to influence receptor activation is encoded only in the timing of ligand-mediated activation, or

do distinct receptor "on" states exists? Does biology take advantage of this potential additional layer of infor-

mation? This improved understanding of RTK regulation will not only help basic understanding but likely aid

selective targeting of tumor-associated signaling.

Systems biology: limitations and promise

This thesis has taken advantage of a variety of modeling methods ranging from largely statistical to more mecha-

nistic in design. Clearly, computational methods will remain essential to understanding many complex, dynamic

processes within a cell. On the other hand, as we assemble models of more complex cellular processes, uncertainty

often hinders confidence in any model predictions, and validation of any predictions is required. If any model pre-

diction need be directly experimentally testable, why assemble such models in the first place? Modeling methods

often serve as a consolidated representation of one's current understanding and, insofar as the model is a means

to organize knowledge, a more iterative outlook for model assembly and analysis is appropriate. Iterative model

assembly is likely to be more valuable to experimentalists who are familiar with the approaches possible for bio-

logical interrogation.
As an example, this was applied in Chapter 4, using PLS modeling to predict a migration response measured

as protrusion. As signaling and protrusion responses were already available for growth factor conditions, this

easily allowed testing inferred responses in a statistical manner. One could similarly have performed the validation

knockdown manipulations, but the initial modeling gave some reasonable expectation as to the responses one

might expect to observe. While the tools to do such inference are understandably designed for maximal flexibility,

new tools to simplify construction of small statistical models, keeping in mind the difficulty of communicating

uncertainty, would greatly aid adoption of data-driven methods by experimentalists.

For data-driven modeling methods such as PLS, while prediction is often easy, interpretation and application

remains challenging. Notably, in contradistinction to most biological studies using the method, Chapter 4 used

PLS to predict a new condition while avoiding assignment of causal significance for any of the inputs. Better

methods of ascribing causal significance, such as evaluating model performance upon removal of key variables

perhaps, should be applied more widely and be more accessible. At the same time, predictive multivariate meth-

ods may simply be the wrong methods to apply when approaching the very common problem in biology of fea-

ture selection-taking a data-driven model and identifying the most key variable for manipulation-due to poor

sampling of intracellular signaling and no accounting for more complex relationships such as feedback. In these

cases, network approaches with wider-sampling methods such as siRNA screens may be more appropriate but

have hardly been developed [48].
More mechanistic, kinetic models offer perhaps the greatest opportunity for understanding cell signaling.

Even failure of such a model can itself provide detailed information and such models can often succeed in extrap-

olation. However, larger biomolecular systems remain difficult to model in this manner [249]. While software
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packages exist for fitting models to diverse experimental data [260], they show prohibitive performance when
scaling to larger systems. This might be partially overcome by effort to develop fitting tools which compile models
into performance-optimized code, or better handle parallelization [269]. Optimization must often occur glob-
ally rather than with individual modules because intermediate species cannot be measured and because there is in-
terdependence in parameter uncertainties. Such global optimization problems present an unsolved challenge for
numerical analysis, and even upon successful optimization, presentation and interpretation of often-inevitable
parameter uncertainty is difficult.

Chapter 5 also presented a new challenge for the tools used in reaction-diffusion modeling. While spatial
reaction-diffusion models have been widely employed in chemical engineering applications, spatial modeling of
biomolecular systems often presents the added complexity of differing timescales and large parameter uncertain-
ties. Further, biological systems can often not be reduced to well-mixed systems for study before incorporating
spatial aspects and the properties of intermediate species may not be observable. For these reasons, methods to
more directly train models on corresponding spatially defined manipulations and measurements would vastly
accelerate the study of systems that rely on spatial organization.

Given the difficulties in extending focused modeling methods to more complex systems, and in making con-
fident inferences with more statistical approaches, hybrid modeling methods will be an important area of ex-
pansion. While these sort of approaches have been used widely in biomedical research, particularly in organ or
organ-system level pharmacokinetic modeling, model components have often been segregated by spatial or tem-
poral scale to account for model failures, rather than designed apriori to take into account the distinct strengths
of particular methods. As an example extending from this thesis, one might combine the kinetic model in Chap-
ter 5 and another for the ErbB family, with measurements of a phenotypic response such as actin polymerization
upon receptor activation using multilinear regression, to understand responses by cells with simultaneous expres-
sion of both receptors. As an example of combining data-driven methods, one might utilize a model of stochastic
state transition between basal and luminal state for a cell line [22], combined with prediction of cell death using
a homogeneous population in each state, to develop a model of drug response in the context of dynamic changes
in cell state. Importantly, these efforts will depend on reliable measurement of the intermediate species that link
each model for reliable parameterization.

Cancer resistance and metastasis

A critical question to consider is whether targeting metastasis can provide meaningful therapeutic benefit if tu-
mor cells disseminate early during oncogenesis [270-272]. In cancers where this is the case, and blocking tumor
cell translocation is unlikely to prevent metastasis formation, the clearest value in studying metastasis may be in its
varied links to resistance. In carcinomas, where the normal cells of origin, tumor, and metastases all generally lack
migratory capacity, the metastatic cascade highlights the need to understand more than the average tumor cell.
Similarly, understanding resistance may rely on improved understanding of the entire gamut of cells within a tu-
mor. Results with AXL-targeted therapies are perhaps a crude first example of this approach, as AXL is generally
more highly expressed in mesenchymal-like derived cell lines from pleural effusions than in bulk tumor [10, 273].
Indeed, as an EMT-induced RTK, it shows some specificity for currently disseminating cells. Stronger effects of
AXL-targeted therapies on metastasis than inhibition of the primary tumor perhaps suggest targeting different
cell populations can be complementary [21]. Thus, even if cells are disseminated, targeting distinct populations
of cells may drastically reduce the remaining tumor load by preventing transition to resistant cell states [49].

As study of cancer cell invasion and migration has transitioned to three-dimensional, representative matrix,
cells have been observed to use a more varied set of mechanisms to move [26]. While a mesenchymal-mode of
migration has been most extensively studied due to its prevalence in two-dimensional assays, new modes such
as ones without canonical polarity have been identified [27, 28, 108, 274]. To better understand 3D migration
overall, we need to understand the physical conditions under which each of these migratory modes are observed,
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and when they arise in vivo, as the matrix environments present may limit the forms of migration observed. With

this improved view of which migratory modes are relevant, experimental means of assessing migration response

in controlled in vitro assays are necessary, similar to the analysis done in Chapter 2. Experimentally accessible

means of quantifying migration will allow for discovery approaches such as screening. Migration is important

for many essential processes within the body, and these approaches will need to identify targets with some tumor-

specificity, which is unlikely to exist at the level of the basic migratory machinery.

More generally, we need an improved understanding of resistance on a fundamental level. The last few years

of research have provided many examples of when resistance occurs, but an integrative understanding of resis-

tance has not emerged. Do tumors typically become resistant to treatment by fundamentally changing the core

signals they rely on for survival, or by using simpler forms of redundancy to reactivate the same signals? If the

latter, modeling will be essential to identify core survival signaling. With such a model it should be possible

to enumerate all possible forms of resistance and find key points of therapeutic intervention. If, on the other

hand, tumor cells are fundamentally plastic and transformation adjusts essential survival signals, an improved

understanding of these different states is necessary. Relatively preliminary modeling efforts have shown cancer

cells show dynamic plasticity distinct from the rigid hierarchal differentiation cascades in normal development,

and treatment regimes are often optimized to treat the average [22, 275]. Direct targeting of each state would

very likely lead to immense improvements in efficacy. Directly targeting dedifferentiated or cancer "stem cells"

is an idea that has been applied in drug development, though without much thought as to the ideal experimental

model for the "stem cell" state [19].
Finally, while the first focus on dysregulated signaling in cancer centered around the MAP kinase cascade,

study of some of these important subpopulations of cancer cells have revealed important roles in less understood

pathways such as Wnrt and Hippo [13, 276, 277]. There is little reason to expect a systems understanding of

this dysregulation would contribute less to understanding the pathways than it did for the MAP kinase cascade.

Perhaps most limiting are the tools for measuring activation of these other cascades, since they often do not rely

on easily measured modifications. However, this should motivate efforts to more easily assess activity at key

nodes within these pathways. The success of systems biology approaches should be evidence enough that simple

loss of function studies will be insufficient to completely understand and target these signals. Progress in our

understanding of cancer therapy will continue to require more than finding the ideal single target.
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Chapter A

Appendix to Chapter 3

4[ p[-Akt p-Jnk Ep38R

1 T n d44. pGSK3 p-Hsp27 p-S .rc PS'tat3 .... p-Tyk2

0.

Figure A. 1: CSR data: phospho-protein response to growth factor stimulation. Data shown here were incorporated
directly in CSR dataset (Fig. 3.lB-C). phospho-proteins were quantified from cells lysed 5 mim post-stimulation, also

shown in Fig. 3.2A (N =2 biological reps). Error bars denote SEM.
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Figure A.2: CSR data: sheddase activity using FRET-substrate, PrAMA inference, and IP+activity assays. A subset of the
data shown here was incorporated directly in the CSR dataset (Fig. 3.1B-C, 3.2A). (A) ADAM17 activity was quantified

using the Innozyme TACE activity assay from whole-cell lysate collected 45 min. post-stimulation (also shown in
Fig. 3.2A; N = 2 biological reps.). (B) Seven soluble, FRET-based synthetic polypeptide protease substrates were added
concomitantly with growth factors to serum-starved 12Z cultures. Fluorescence was recorded at five time points, and
cleavage kinetics were calculated from the rate of fluorescence increase for each substrate and growth factor condition

(N = 4 biological reps.). The heat-map shows the cleavage rates for each time interval, as well as average kinetics across the
first three hours ("SA") and across the first nine hours ("LA"). (C) Only the "SA" data were used in the integrative

cue-signal-response modeling (Fig. 3.2A), and comprise the average of N = 4 biological reps. across 5 time-point readings.
(D) Hierarchical biclustering of catalytic efficiencies for the panel of FRET-substrates used in B-C. Enzymatic efficiencies

were previously reported [159], measured using purified recombinant enzymes. The top-left heat-map shows absolute
catalytic efficiencies. The bottom-right heat-map shows efficiencies after each row has been mean-centered and

variance-normalized, and consequently shows relative substrate efficiencies for each enzyme. Of note, PEP-05 exhibits
peptide sequence similar to pro-TNFa, and known ADAM substrate, and PEP-10 is closely related. PEP-13 shares

sequence similarity with the known ADAM 10 substrate, CD23. E) PrAMA was used to infer specific ADAM activities
from the FRET-substrate cleavage measurements shown in (C) (N = 4 reps.; data also shown in Fig. 3.2A). PrAMA

algorithm parameters have been previously described [166]. All error bars indicate SEM.
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Protein Disease Trend Evidence Notes

Environmental Stimuli
TNFa
EGF
TGFa
NRG1P
PDGFbb
HGF
IGF1

Intracellular Signaling Proteins

p-p38
p-Erkl/2
p-Jnk
HSP27
c-Jun
p-Akt
p-STAT3
Src
IRS-2
Tyk2

Receptors & Autocrine Ligands
EGFR
TNFR1
MET
HER-2
AREG
HBEGF

MMPs and TIMPs
MMP-2

MMP-3
MMP-7
MMP-9
TIMP-1
TIMP-2

ADAMs
ADAM-17
ADAM-10

Up/Unchanged
Up/Unchanged

Up
Up*

Unchanged

Up
Up/Unchanged

Up
Up*
Up*
Up
Up*
Up
Up

N/A*
N/A
N/A

Unchanged*/Up**

Up
Up*

Up*/Unchanged

Up
Up

Up
Up
Up
Up

Up/Down
Down

Up
Up

S/PF/A [278-282]
PF/A [283-285]

A [285]
[286]

S/PF [280, 287]
PF [288]

S [289-291]

T/A [153, 177,292]
T [293, 294]

T/A [295,296]
T [297, 298]
T [299, 300]

T [294, 301, 302]
T [303]

T [304, 305]
GP [306]
GP [307]

T/S [149,289, 308]
S/PF [290, 309]

T [310]
T/S [149,311,312]

T [313]
T [313]

T/S/PF [314,315]
A/T [316-318]
A/GP [317, 319]
T/PF [320-322]

T/S/PF [316, 322-324]
T [314,324]

T [324]
T [325]

*Ovarian cancer

*Total protein unchanged
*Endometriotic endothelium
Total protein increased
*RNA expression increased
Both p-Akt and tot. Akt increased

*Assoc. in vitro w/ MMP & PGE
Pos. assoc. with disease
Assoc. with decreased risk

*Up w/ danazol; **Eutopic

*Cell surface expression
*Up in endometriosis-assoc. cancer

Table A.1: Table of key proteins and their clinical association with endometriosis. Nearly all growth factors, kinases,
cytokines, RTKs, ligands, and proteases directly measured in this work have been implicated in endometriosis by

previously reported clinical data. TNFa = tumor necrosis factor alpha; Erkl/2 = extracellular related kinase 1/2; Jnk
c-Jun N-terminal kinase; HSP27 = heat-shock protein 27; STAT3 = signal transducer and activator of transcription 3;

IRS-1 = insulin receptor substrate 1; Tyk2 = tyrosine kinase 2; PGE prostaglandin E; S = serum; PF = peritoneal fluid;
T = tissue, GP = genetic polymorphism; A = animal model
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Figure A.3: CSR data: ADAM-10 and -17 surface levels, ADAM-17-pT735, and ADAM-17 dimers. Data shown here
were either incorporated directly in the CSR dataset (Fig. 3.1B-C, 3.2A), or validate those incorporated measurements.

(A-B) siRNA experiments confirm Ab specificity for ADAM-10 and -17. Live-cell immunostaining and cytometric
analysis show single-cell population distributions of staining intensities (A) and their corresponding averages (B),

confirming Ab specificity (*p<0.05). Staining in the absence of a primary Ab treatment but after secondary Ab treatment
("No 10 Ab") was used to determine background signals. (C) Staining was performed as in A-B, but following

growth-factor stimulation. Cells were stained 30 min post-stimulation (also shown in Fig. 3.2A; n=3 reps.). (D) Western
blot confirms IGF 1 upregulates surface ADAM10. 30 mins post-IGF 1 stimulation, cells were treated with

sulfo-NHS-biotin, lysed, and incubated with streptavidin beads. Bound and unbound proteins ("IP:Biotin" and "IP
Supe", respectively) were then blotted for ADAM 10. The bar-plot shows surface ADAM 10 quantified by densitometry.

(E) Using the same Ab as in D, western blots of lysates from siRNA-treated cells confirm the 84 kDa band corresponds to
ADAM10, exhibiting significantly decreased band intensity upon knockdown (n=2 reps., p<0.05). (F) Population
distribution of single-cell staining intensity for ADAM 17 (measured by cytometry), following treatment with TGFt.
Results correspond to the bar-plot in C (*p<0.05, N = 3). (G) Western blot confirms EGF and TGFot downregulate

surface ADAM 17. 30 mins post-stimulation, cells were treated with sulfo-NHS-biotin, lysed, and incubated with
streptavidin beads. Bound and unbound proteins ("IP:Biotin" and "IP Supe", respectively) were then blotted for

ADAM 17. (H) Using the same Ab as in G, western-blots oflysates from siRNA-treated cells confirm the 93 kDa band
corresponds to ADAM 17, exhibiting signficantly reduced band intensity upon knockdown (n=2 reps., p<0.05).

(I) Representative blots showing ADAM 17-pT735, and ACTN 1-normalized quantitation by densitometry (also shown
in Fig. 3.2A; n=3 biological reps.). Measurements were taken from whole-cell lysates 30 min. post-stimulation.

(J) ADAM 17 dimerization decreases following EGF and TGF treatment. 30 min. post-stimulation, cells were treated
with sulfo-EGS and lysed. Immunoprecipitated ADAM 17 from lysates was blotted for ADAM 17. (K) The ratio of dimer

to monomer band intensity was calculated using quantification by densitometry. All error bars denote SEM, *p<0.05,
Student's t-test.
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Figure A.4: CSR data: Myc-HBEGF shedding assay, validation, and results. Data shown here were either incorporated

directly in the CSR dataset (Fig. 3.1B-C, 3.2A), or validate those incorporated measurements. Because HBEGF is

expressed at a low level in 12Z, we transgenically over-expressed the protein in 12Z to directly measure its shedding at

short time-points following growth factor stimulation. We used a retroviral construct with a GFP-tagged intracellular

c-terminus and a Myc-tagged ectodomain, as described previously [326]. A) Representative western blots demonstrate

modest yet statistically significant HBEGF shedding in response to 1 VM phorbol ester (PMA) and EGF stimulation, in a

BB94-dependent manner. As expected based on original description of the construct [326], full-length HBEGF protein

products can be detected at 39, 37 & 35 kDa by the anti-GFP Ab. The primary ADAM-mediated cleavage product is

visible at 28 kDa. At the relatively lower expression levels here the 35 kDa fragment was undetectable by anti-Myc staining

[326]. (B) Band intensities fromA and another replicate were quantified by densitometry and normalized to GAPDH

measurements. C) Top: The ratio of primary HBEGF cleavage product (28 kDa) and primary full-length protein

(37 kDa) was calculated from B. Results indicate PMA and EGF significantly increase the ratio in a BB94-dependent

manner. Bottom: To generate numerical values that would be reflective of cell-surface immunostaining and

flow-cytometry experiments, the ratio of total Myc to total GFP staining intensity was calculated. Total Myc staining was

calculated by summing band intensities at 37 kDa and 39 kDa. Total GFP staining was calculated by summing band

intensities at 28, 35, 37, and 39 kDa. Results indicate PMA decreases the ratio in a BB94-dependent manner. (D)

Single-cell flow-cytometry scatterplots showing GFP intesity vs. surface Myc staining intensity, 30 min following EGF

stimulation. Each point represents a single-cell measurement, with warmer colors indicating higher point-density.

Contour lines indicate population distribution, and dotted lines denote median intensity values. (E) Single-cell

population distribution of the ratio in Myc and GFP intensities, corresponding to data in D. Dotted lines indicate

population medians. (F) Results from D-E, along with measurements from the other growth-factor treatment conditions,

averaged over n=9 total replicates (also shown in Fig. 3.2A). Data represent the control-normalized averages of

measurements taken at 30,60, and 90 min post-stimulation (n=3 reps. x 3 time-points per growth-factor condition). All

error bars denote SEM.
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Figure A.5: CSR data: endogenous ligand/receptor ectodomain surface and supernatant levels. Data shown here were

either incorporated directly in the CSR dataset (Fig. 3.1B-C, 3.2A), or validate those incorporated measurements.

(A) Results from live-cell surface immunostaining and cytometry analysis. Data represent the control-normalized averages

of measurements taken at 30, 60 & 90 min post-stimulation, and the left three plots are also shown in Fig. 3.2A (n=3

biological reps. per growth-factor condition). AREG surface measurements were additionally made following 30 mins

pre-treatment with 10 [tM BB94. Subsequent growth factor stimulation was also in the presence of BB94 ("AREG+BB").

BB94 treatment increased AREG surface levels by an average of 12%. The ratio of surface levels [ - BB94 ] / [ + BB94]

(right-most plot) was calculated for each growth factor condition and normalized to the ratio determined under

unstimulated conditions. (B) i: Cellular supernatant was removed from 12Z cell cultures 30 mins post-stimulation,

concentrated using Amicon-ultra 3 kDa size-exclusion columns (Millipore), and analyzed by ELISA (also shown in

Fig. 3.2A; n=3 biological reps.). AREG was not detectable above the sensitivity limit at this time-point. i-i ii: Cellular

supernatant was removed from 12Z cell cultures 3 hrs post-stimulation and analyzed by ELISA (N = 3; plots from ii are

included in Fig. 3.2A). iii: Cells were pre-treated 30 mins prior to growth factor stimulation with 1OuM BB94, and results

were normalized to the untreated control levels detected in the absence of BB94. (C-D) siRNA experiments confirm Ab

specificity for MET surface levels. Live-cell immunostaining and cytometric analysis show single-cell population

distributions of staining intensities (C) and their corresponding averages (D), confirming Ab specificity (*p<0.0 5 ).

Staining in the absence of a primary Ab treatment but after secondary Ab treatment ("No 1' Ab") was used to determine

background signals. (E) Western blotting supports flow-cytometry measurements of surface MET. 30 mins

post-stimulation, cells were treated with sulfo-NHS-biotin, lysed, and incubated with streptavidin beads. Bound and

unbound proteins ("IP:Biotin" and "IP Supe" respectively) were then blotted for MET. The bar-plot shows relative

surface MET of the top MW band, quantified by densitometry. (F) Mean-centered and variance-normalized (that is,

z-score) data from the western blot E (x-axis) and flow cytometry- (y-axis) indicate perfect rank-order correlation

between the two sets of measurements. Poor linearity may be attributed to low signal in the western blot. (G) Supernatant

analyte concentrations were measured 24 hrs post-stimulation from 12Z grown in the presence of either BB94 or

mAb225 (n=2 reps.). All error bars denote SEM.
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Figure A.6: CSR data: single-cell motile response of 12Z to growth factor treatment. A subset of the data shown here was
incorporated directly in the CSR dataset (Fig. 3. 1B-C, 3.2A). (A) Population distributions of single-cell motile response

in 12Z. Various descriptive features of cellular motility were computed for individual cells based on single-cell tracking
experiments using time-lapse confocal microscopy. Histograms and corresponding box-and-whisker plots show

population distributions from single-cell measurements, pooled from n>2 separate experiments, with 100 individual
cells for each condition. (B) Median population statistics were calculated from the single-cell data shown at top,

normalized to the control (± SEM of experimental reps., n>2 separate populations, with 100 cells for each condition).
A subset of these data are shown in Fig. 3.2A.
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Figure A.7: Pairwise correlation within the CSR dataset. To explore regulatory relationships in the CSR dataset
(Fig. 3.2A), we calculated correlation and corresponding statistical significance among all pairs of variables as they varied

across the panel of growth-factor treatments. (A) The graphically representated correlation network shows significant
correlation (q<0.025; q = multiple hypothesis corrected p-value) among pairs of measurements in the CSR dataset. Node
labels and colors correspond by color to Fig. 3.2. Edge weights and color denote strength and direction of correlation. The

correlation graph and spatial organization were generated in an unsupervised, automated manner using the Matlab

biographo function (Mathworks, Natick, MA). Shaded areas were manually added to emphasize modularity among the

data. Highly interconnected phosho-signaling measurements (top left) link to early protease activity measurements (blue

shaded area) primary through ADAM 17-pT735. Early protease activity measurements then relate closely to later

shedding measurements (purple shaded area), which in turn are highly correlative with features of cell migration (brown).

(B) All pairwise correlation coefficients depicted in A were rank-ordered and shown in the waterfall plot at left. Highly
significant correlative pairs are enumerated at right. Somewhat redundant pairs have been omitted from the enumerated

list for clarity (for example, the second most correlative pair is very similar to the first: random motility vs. net

displacement). For A-B, both Spearman and Pearson correlation were calculated for each pair of measurements, and the

more statistically significant of the two was recorded. P-values based on correlation were calculated using either a

Student's t distribution or an approximation of the exact permutation distributions, for Pearson's or Spearman's

correlation, respectively. All p-values shown here have been corrected for multiple hypothesis testing using the Storey false

discovery rate, and consequently are reported as q-values [327].
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Figure A.8: Multivariate modeling relates sheddase activity to cellular motility. (A) Ligands/receptors included in the

CSR dataset (Fig. 3.2A) exhibit qualitatively similar patterns of accumulation in the supernatant across growth-factor

conditions, regardless of 2D or 3D culture environment. Ectodomain shedding was measured in 12Z grown on either

tissue culture plastic or in 2.2 mg mL-' collagen-I gels. Supernatants from both cell culture environments were collected

24 hr. post-stimulation with the panel of growth factors used in Fig. 3.2A, in the presence or absence of mab225 and

BB94 (n=2 reps., ± SEM). Spearman's and Pearson's correlation coefficients were calculated for each analyte, and the

greater of the two are reported as p. P-values based on correlation were calculated using either a Student's t distribution or

an approximation of the exact permutation distributions, depending respectively on whether p denotes Pearson's or

Spearman's correlation. In 3D culture, HBEGF was only detectable above assay sensitivity thresholds under conditions of

EGF/TGFa stimulation, and therefore was not included in this analysis. (B) This fully labeled depiction of Fig. 3.2B

shows the PCA scores and loadings plot of the entire CSR dataset (Fig. 3.2A-B). (C) This fully labeled depiction of

Fig. 3.2D shows the PLSR scores and loadings plot of the expanded CSR dataset (predictor variables) describing motility

features (response variables). The expanded CSR dataset includes measurements made in the presence of BB94 and

mab225 across the panel of growth factors (see Fig. A.5). Descriptor variables were iteratively added to the PLSR model

to maximize Q2 prediction accuracy, and two of the five descriptors are not depicted in Fig. 3.2A: "Surface AREG ±

BB94" denotes the BB94-dependent change in AREG surface levels, and is fully described in Fig. A.5A (right-most

graph); "HBEGF+mab225" denotes the levels of supernatant HBEGF detected 24 hrs post-stimulation with growth

factors, in the presence of mab225, and is fully described in Fig. A.5G. (D) Accurate prediction of motility requires

multiple principal components and descriptor variables. PLSR models were constructed as in C, but with limits on the

number of principal components (black) or descriptor variables (grey, superimposed over black bars) that were allowed to

be incorporated into the model structure. Results show that the addition of a second principal component enhances

PLSR accuracy by nearly 50%, indicating multiple axes of motility regulation.
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Figure A.9: (Continued on next page.)
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Figure A.9: MMP/TIMP levels poorly correlate with cell migration compared to ligand and receptor shedding.
(A) MMP/TIMP supernatant concentrations were measured 24 hrs post-stimulation from 12Z grown on tissue culture
plastic in the presence of either BB94 or mAb225 (n=2 reps., ± S.E.). TIMPs have N = 1 replicate. (B) Compared to
ligand/receptor accumulation, MMP/TIMP levels exhibit less consistent patterns of accumulation in the supernatant
across growth-factor conditions, depending on 2D or 3D culture environment. Accumulation was measured in 12Z

grown on either tissue culture plastic or in 2.2 mg mL-1 collagen-I gels. Supernatants from both cell culture environments
were collected 24 hrs post-stimulation with the panel of growth factors used in Fig. 3.2A, in the presence or absence of
mab225 and BB94 (N = 2, ± SEM). Spearman's and Pearson's correlation coefficients were calculated for each analyte,

and the greater of the two are reported as p. P-values based on correlation were calculated using either a Student's t
distribution or an approximation of the exact permutation distributions, depending respectively on whether p denotes

Pearson's or Spearman's correlation. (C) PLSR models using supernatant measurements emphasize the role for autocrine
ligand/RTK shedding over MMP/TIMP secretion in mediating cell migration. PLSR models were constructed to

describe cell motility features using various subsets of the supernatant protein concentration data from A and Fig. A.5G as
descriptor variables. In particular, we decomposed the data into (1) MMP/TIMP vs. RTK/ligand measurements, (2)

measurements that significantly vs. insignificantly correlate across 2D and 3D tissue culture environments (using p<0.05
as a significance threshold; see B and Fig. A.8A), and (3) data including vs. excluding the additional mab225/BB94

treatment for each growth factor condition. Not surprisingly, results show that strong 3D correlate measurements are
more accurate predictors of cell migration than poor 3D correlate measurements. Furthermore, results indicate that

including measurements of shedding +/- mab225 and BB94 significantly enhances model prediction accuracy, suggesting
that these inhibitor treatments reveal additional information regarding metalloproteinase activity and EGFR-autocrine

feedback that is relevant to cell migration. Finally, results show that RTK and ligand shedding are more predictive of cell
migration than MMP/TIMP secretion patterns, suggeting MMP secretion levels are a relatively poor indicator of their
role in cell migration. (D) Ectodomain shedding measurements from both 2D and 3D cell cultures equally predict 3D

motility. PLSR models were generated to predict cell motility using supernatant measurements collected from cells
cultured on either tissue culture plastic (2D) or from cells suspended in collagen I gels (3D) (including ligand/receptor
shedding; see A & Fig. A.8A). According to Q2 fitting accuracy, PLSR is capable of using both 2D and 3D supernatant

measurements to accurately predict 3D cellular motility. These results are concordant with observed correlation between
supernatant measurements in 2D and 3D tissue culture environments (Fig. A.8A).
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Figure A.10: An endpoint collagen-I migration assay captures inhibitor sensitivity. (A) Computationally inferred cell
nuclei positions from the endpoint assay, in the presence or absence of EGF, measured 24 hrs post-stimulation (same as

Fig. 3.3E). The x-y plane represents the inferred bottom of the 96-well plate. Nuclei with higher z-coordinates show
warmer color. (B) Distribution of nuclei z-coordinates, corresponding to A. (C) Clustergram of correlations between the

endpoint assay metrics and median live-cell motility data (live-cell motility data described in Fig. A.6 and Fig. 3.2A),
compared across the panel of growth factors. (D) 12Z were stimulated with growth factors following a 1.5 hrs

pre-treatment with the EGFR kinase inhibitor, gefitinib, or the dual EGFR/HER-2 kinase inhibitor, lapatinib. Gefitinib
results correspond to Fig. 3.3F-G. The two inhibitors demonstrate similar inhibitory effects, with the exception of

TGFa-stimulated motility. One possible explanation for the discrepancy may lie in differences between HER2 shedding
under EGF- and TGFa- stimulated conditions (shown in Fig. A.6G): compared to EGF, TGFa stimulates significandy

more HER2 shedding (p<0.05), and lapatinib (which inhibits HER2) is less effective under TGFa stimulation compared
to EGF stimulation. Error bars denote SEM.
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Figure A. 11: mAb225 reduces ADAM substrate shedding. (A) The soluble FRET-substrate PEP-05 was applied

concomitantly with TGFa to serum-starved 12Z cultures that had been pre-treated with 10 Vg mL 1 mab225 for 30 mins,

and measured cleavage rates were averaged over the first 3 hrs post-stimulation (N = 4). Cleavage rates of PEP-05, which

shares polypeptide sequence similarity to pro-TNFa, were significantly reduced in the presence of mab225. Results

correspond to PrAMA inference results shown in Fig. 3.4A. (B) After 30 mins treatment with mab225, cellular

supernatant was collected, ultra-concentrated using Amicon-ultra size-exclusion columns (Millipore), and analyzed by

ELISA for TNFR1 concentration. Results show significant decrease in TNFR1 shedding with mab225 treatment

(N = 3). (C) After 1 hr treatment with mab225, 12Z were surface-immunostained for TNFR1 and anlyzed by flow

cytometry. Results indicate a significant increase in surface receptor with mab225 treatment (N = 2). (D) Following a 30

min. treatment with mab225, 12Z were treated with sulfo-EGS and lysed. ADAM 17 was immunoprecipitated from

lysate and then blotted for ADAM 17. (E) The ratio of dimer-to-monomer band intensities was calculated, and showed no

significant difference (N = 2). (F) ADAM 17 activity was quantified using the Innozyme TACE activity assay from

whole-cell lysate collected 45 min. post-treatment with mab225 (N = 2 biological reps) (G) ADAM 17-pT735 was

measured by western blot, quantified by densitometry, and normalized to ACTN1 loading (N = 2). Measurements were

taken from whole-cell lysates 30 min. post-stimulation. (H) Surface levels of ADAM17 were unchanged by mab225

treatment. Identical numbers of cells were starved in the presence or absence of mab225 for 4 hrs, treated with

sulfo-NHS-biotin, lysed, and incubated with streptavidin beads. Bound proteins were then blotted for ADAM 17. All

error bars denote SEM, *p<0.05, Student's t-test.
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Figure A.12: Joint RTK and ligand shedding by both ADAM-10 and -17. PLSR modeling suggests joint RTK and ligand

shedding by both ADAM-10 and -17. PLSR was used to build models that describe AREG, TNFR1, and MET

accumulation in the supernatant as a function of phospho-signaling and measured ADAM regulation, across a panel of

growth factor treatments (Fig. 3.2A). To improve model accuracy, we also included FRET-substrate cleavage and PrAMA

inference results measured across each of the observed time-points (Fig. A.2B). The reduced PLSR model only includes

descriptor variables that contribute to model prediction accuracy (Q2 ), and the final model shown here includes 8 total

descriptor variables. (A) The scores and loadings plot presents the model in terms of two principal components that

chiefly capture general sheddase activity (x-axis) and ligand vs. receptor shedding preference (y-axis). (B-C) Q2

prediction accuracy (B) and the VIP scores (C)for the reduced PLSR model shown in A. The PLSR model considered

multiple data-transformations of the protease activity data, and included log-transformed data, fold-change normalized

data, baseline-subtracted data, as well as activity measurements across multiple time-points. Multiple of these

measurements (three for ADAM 10, two for ADAM 17) were ultimately included in the PLSR model. (D) The reduced

PLSR model accuracy inA improves with the inclusion of multiple descriptor variables (grey bars) and/or PC's (black

bars), with two PC's being sufficient to capture 90% of the covariance in the data. This result suggests two axes of

regulation govern ligand/receptor shedding, which are described chiefly by ADAM-10 and -17 activities. (E) siRNA

knockdown of both ADAM-10 and -17 reduces shedding of multiple endogenous substrates. siRNA knockdown results
for AREG are also shown in Fig. 3.4D.

99



A gell %WWW#WVOW 100kDa IACN1

gel 2 W 100kDa loading control

gel 1 M 4,, i*55kDa fullenh

gel 2 55kDa

gel 1 21 kDa cleaved
gel 2 # 21kDa AREG

- C O U- U- U.

COCO +0

C
R pro-AREG 55 kDa

Ratio ACTN1 I

2.5 -

2

-0.5

D 55k~afull-len th
55kDa pro-R

- 21kDa cleaved
AREG

B

band
intensities

(au.)

gel 1

gel 2

gel 1

gel 2

gel 1

gel 2

AREG 21 kD
Ratio ACTN1

2

-1
- LU~

E band 55kDa

intensities 2.5

(fold change) 21kDa

100kDaL1mL L L . ACTN1

1OOkDa L In loading control

55kDa full-len h

55kDa 
pro-AREG

21 kDa 
cleaved
AREG

21 kDa
- M U_ U LL L U..

a normalized 21 kDa -
Difference: normalized 55 kDa

1.5

-3U_ F URa t U

E1 Ratio r 21 kDa 1f6 I4 I
1 55 kDa 0 0FtJLJ

0- 0 U

0 0+ +

Figure A.13: Both ADAM-10 and -17 can cleave proAREG. (A-C) Detection of metalloproteinase-dependent AREG
degradation in 12Z lysates. 12Z were cultured for 24 hrs following EGF and BB94 treatments, lysed, and blotted for

ACTN1 and AREG. Using ectodomain antibodies from the ELISA kit, we focused on two AREG bands that had been
previously reported in the literature: full length pro-AREG at roughly 55 kDa, and AREG cleavage products at roughly
21 & 19 kDa [328]. Blot images (A), densitometric quantification (B), and ACTN1-normalized averaging across N = 4

replicates (C) demonstrate that EGF treatment causes an increase in the accumulation of the 21 and 19 kDa cleavage
products in a metalloproteinase-dependent manner. Furthermore, BB94 treatment leads to an accumulation of the

55 kDa fragment. No 21 kDa cleavage product was visible in blots of the cellular supernatant, which we found
unsurprising considering the degree of difficulty detecting AREG even with the more sensitive ELISA format. (D-F)

pro-AREG digestion with recombinant protease suggests a role for both ADAM-10 and -17. AREG was
immunoprecipitated from whole-cell lysate and incubated 4 hrs on-bead with recombinant ADAM-10 and -17. The

reaction was boiled in denaturing sample buffer and blotted for AREG, shown by the representative blot in D. Full length
55 kDa pro-AREG and the 21/19 kDa band intensities were quantified by densitometry (E), and the ratio of cleavage
product to full-length protein significantly increased with both ADAM-10 and -17 digestion (N = 2). All error bars

denote SEM, *p<0.05, Student's t-test.

100



A 10 * r

U+NRG1b
pg/ml D+HGF

per

cells

0 Ctrl +BB94

U I- I- ~ Z Z ZB Protein loading: M f f f f 1 m

MET (pY1234/1235) 3- 145kDa

GAPDH i- - - 37kDa

MET (pYl 349)

GAPDH

- 145kDa

- - 37kDa

Total MET

GAPDH - --

GAPDH normalized total MET

I '-i
T

GAPDH normalized MET pY1 349
10

5

0 Ctr TGF TGF+BB

Figure A.14: Proteolytic shedding of HER4 and MET. (A) Metalloproteinase inhibition leads to a significant decrease in
supernatant HER4 concentration. 12Z were stimulated with growth-factor in the presence or absence of BB94.

Supernatant was collected 24 hr. later and analyzed by bead-based ELISA for HER4 concentration (N = 2 per condition;
p<0.05, paired Student's t-test). (B-C) Metalloproteinase inhibition leads to an increase in total and pY1 349 MET. (B)
Representative blot images for quantification of total and phosphorylated MET. After 1.5 hr. pre-treatment with BB94

and 30 min after stimulation, cells were lysed and blotted for MET, p-MET, and GAPDH. (C) GAPDH-normalized blot
quantification (N = 2, ± SEM), including data from B. Total MET was calculated from the sum of all molecular weight

bands shown between 145-200 kDa, while pY1349 was quantified from 145 kDa band intensities. BB94 did not
significantly change pY1234/34 levels, in contrast to pY1349 levels, which increased with BB94 treatment in the presence

ofNRG1 and HGE
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Figure A.15: Effects of kinase inhibition on protease activity and migratory respose to growth factor treatment.

(A) U0126 treatment significantly reduces short-term (30 min) TNFR1 accumulation in cellular supernatant. After

30 min treatment with UO 126, cellular supernatant was collected, ultra-concentrated using Amicon-ultra size-exclusion

columns (Millipore), and analyzed by ELISA for TNFR1 concentration. Results show significant decrease in TNFR1

shedding with U0126 treatment (N = 3). (B) Inhibitor treatment increases surface TNFR1 levels. After 1 hr treatment

with signaling and protease inhibitors, 12Z were surface-immunostained for TNFR1 and anlyzed by flow cytometry.

Results indicate a significant increase in surface receptor with inhibitor treatment (n = 2 experimental reps.).

(C) ADAM 17 dimerization does not significantly change with UO 126 treatment. Following a 4 hr treatment with U0126,

12Z were treated with sulfo-EGS and lysed. ADAM 17 was immunoprecipitated from lysate and then blotted for

ADAM 17. The ratio of dimer-to-monomer band intensities was calculated, and showed no significant difference (N = 2).

D) ADAM 17-pT735 was measured by western blot, quantified by densitometry, and normalized to ACTN 1 loading

(N = 2). Measurements were taken from whole-cell lysates 30 min post-stimulation. E) Surface levels of ADAM 17 were

unchanged by Mek or Jnk inhibitor treatment. After 1 hr treatment with signaling inhibitors, 12Z were

surface-immunostained for ADAM 17 and anlyzed by flow cytometry (N = 3). F) Western blot confirms that U0126

treatment does not influence ADAM 17 surface levels. Identical numbers of cells were starved in the presence or absence

of UO 126 for 4 hrs, treated with sulfo-NHS-biotin, lysed, and incubated with streptavidin beads. Bound proteins were

then blotted for ADAM17. Control-treated band also shown in Fig. A.11H. G) Surface levels of ADAM10 were

unchanged by Mek or Jnk inhibitor treatment. After 1 hr treatment with signaling inhibitors, 12Z were

surface-immunostained for ADAM 10 and anlyzed by flow cytometry (N = 3). H) ADAM 17 activity was quantified

using the Innozyme TACE activity assay from whole-cell lysate collected 45 min post-treatment with UO 126 (n=2

biological reps.) I) Mek and P13K inhibition exhibits context-dependent efficacy and most effectively reduce

EGF-stimulated cell migration, whereas Jnk and p3 8 inhibitors effectively block EGF, HGF, and NRG1 P stimulated

migration. Using the endpoint cell migration assay (SI- 11), cells were pre-treated with inhibitor for 1 hr., followed by

growth factor stimulation, and migration was measured 24 hr. later (n>2 reps.). Data corresponds to the scatter plot

shown in Fig. 3.6E. "n/a" indicates experimental conditions were not tested. J) Jnk inhibitors are more effective than Mek

inhibitors at reducing p-p38 levels. Cells were pre-treated with inhibitor for 1.5 hr, stimulated with NRG 1P for 5 min,

lysed, and analyzed by bead immunoassay. All error bars denote SEM., *p<0.05, Student's t-test.
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Figure A.16: Multivariate analysis of peritoneal fluid proteomics. (A) PCA decomposes the protein quantification
meaurements (using ELISA) and protease activity measurements (using PrAMA) from the PF samples into key principal

components (PCs) of variation. Scores and loadings for PC1 and PC3 are shown here, identical to Fig. 3.8B, but with
complete labeling. AproA10 and AproA9 denote the difference in observed cleavage rate with and without

co-incubation with the specific prodomain inhibitors proADAM9 and proADAM10 (see [166] for greater detail).
(B) The clustergram, generated by hierarchical biclustering, presents significant correlations between protein levels and

protease activities across the PF samples. Spearman's and Pearson's correlation coefficients were calculated between
protease activities (columns) and observed analyte concentrations (rows) across the set of thirteen PF samples, and the

more statistically significant result is shown. Significance was determined using an approximation of the exact
permutation distributions of correlation for the Spearman's correlation, and using a Student's t distribution for the

Pearson correlation. P-values were corrected for multiple hypothesis testing using the Storey false discovery rate, and
consequently are reported as q-values [327]. (C-F) Partial least squares - discriminant analysis (PLS-DA) was used to
optimally select a minimal number of descriptor variables that would accurately predict disease state. (C-D) Reduced

PLS-DA models were generated to classify samples as falling into one of three states demarcated by the three color groups
shown in (A), using four descriptor measurements (C) and with >95% cross-validation classification accuracy (D). An

additional PLS-DA model (E-F) classifies PF samples as either control or disease, using three descriptor measurements (E)
and also exhibiting >95% cross-validation classification accuracy (F).
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Figure A.17: AREG, HBEGF, and MET shedding in other disease-relevant cell types. (A) Primary PFMCs shed AREG

and HBEGF, but not MET, in response to stimulation. Total PFMCs were separated into adherent, mature monocyte

populations (M) and non-adherent lymphocyte populations (L). Cells were stimulated with 10 ng mL-1 PMA and

1 g mL-- ionomycin (Iono), supernatant was collected 24 hr later, and was analyzed by ELISA. "Average L/M" describes

the average measurements from PFMC across nine separate patient samples, ± standard deviation. Results were

normalized to cell count and supernatant volume, and correspond to picogram per million cells per day of analyte release.

(B-C) EGF stimulates significant AREG, MET, and HBEGF in endometrial stromal cells. Telomerase-immortalized

endometrial stromal cells (tHESC) and primary endometrial stromal cultures from four patients were assayed for ligand

and receptor shedding 24 hrs after treatment with either EGF, TNFa, or mab225. Results were normalized to cell count

and supernatant volume, and correspond to picogram per million cells per day of analyte release. (C) Shedding induction

was calculated relative to basal levels and averaged across all five samples (*p<0.0 5 , paired Student's t-test).
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Materials and Methods

Growth factors and inhibitors Recombinant growth factors and cytokines were purchased from Peprotech
(Rocky Hill, NJ). For all experiments, EGF was used at a final concentration of 100 ng mL-1, NRG 1 P was used
at 80 ng mL 1 , and all others were used at 50 ng mL' 1. Inhibitors used in this paper, their final concentrations,
and vendor source are as follows: BB94 (metalloproteinase inh.; 10 rM; Tocris Bioscience), mAb225 (EGFR
blocking mAb; 10 g mL-'; purified from the ATCC hybridoma), gefitinib (EGFR inh.; 1 tM; LC Labs), lap-
atinib (EGFR/HER2 inh.; 1 M; LC Labs), SP600125 (Jnk inh.; 20 .M; LC Labs), TCS-6o (Jnk inh.; 10 .M;
Tocris), Jnk-IN-8 (Jnk inh.; 3 tM; generously provided by the Gray Lab, Harvard Medical School), SB203580
(P38 inh.; 20 .M; LC Labs), LY294002 (P13K inh.; 10 [M; LC Labs), U0126 (Mek inh.; 10 rM; LC Labs),
AZD6244 (Mek inh.; 5 .M; Selleck Chem.), PD0325901 (Mek inh.; 10 tM; Tocris), Foretinib (MET inh.;
100 nM; Selleck), o-AREG mAb (AREG inh.; 10 g mL-1; R&D Systems), pro-ADAM-9 (ADAM-9 inh.;
10 tM; Biozyme, Inc.; Apex, NC), pro-ADAM-10 (ADAM-10 inh.; 4 rM; Biozyme, Inc.).

Tissue culture The 12Z cell line was generously provided by Anna Starzinski-Powitz (University of Frank-
furt) by way of Steve Palmer (EMD Serono). Telomerase-immortalized human endometrial fibroblasts (tHESC
CRL-4003; ATCC) were cultured according to supplier recommendations. 12Z were routinely cultured in me-
dia that consisted of DMEM/F 12 supplemented with 100 U/ml penicillin, 100 g mL- streptomycin (Invitro-
gen), along with 10% fetal bovine serum (Atlanta Biologicals; Atlanta, GA) at 37 0C, 5% CO 2 . Excluding cell
migration assays, 12Z were serum starved for at least 4 hr. before all experiments.

Immunoassays Phospho-protein levels were measured using the following bead-based sandwich immunoas-
says (Bio-Rad; Hercules, CA): Akt pSer473, cJun pSer63, ERK1/2 pThr202/Tyr2O4 & pThr185/Tyr187,
HSP27 pSer78, Jnk pThr183/Tyr185, P38 pThr180/Tyr182, Src pTyr416, STAT3 pTyr705, GSK3a/b
pSer2l/Ser9, Tyk2 pTyrlO54/TyrlO55, and IRS-1 pSer636/Ser639. Site-specific EGFRpTyr1173 Ab was used
in Fig. 3.3B. Other EGFR, HER2, and HER4 phosphorylation levels were measured using a bead-conjugated
ectodomain capture Ab and a pan-phosphotyrosine detection Ab (EMD4Biosciences). Supernatant ligand,
receptor, MMP, and TIMP measurements were performed using R&D Duo-set ELISA kits (R&D Systems,
Minneapolis, MN), Widescreen bead-based ELISAs from EMD4Biosciences (Merck KGaA, Darmstadt, Ger-
many), and Fluorokine MAP Multiplex kits (R&D Systems). p-MET western blots used clone D26 for MET
pTyrl234/1235 and clone 130H2 for MET pTyr1349, both from Cell Signaling Technologies (Danvers, MA).
ADAM 17 western blots used a rabbit polyclonal Ab (Ab205 1; Abcam). ADAM 10 western blots used a rabbit
polyclonal Ab targeting amino acids 732-748 (Sigma). Western blots were imaged using an Odyssey (Li-cor)
infrared scanner and dye-conjugated secondary antibodies (Invitrogen). AREG western blots used ectodomain
AREG antibodies from the R&D Systems Duo-set. All blot images were processed using standard ImageJ
functions for contrast adjustment, background subtraction, and densitometry, in accordance with publication
guidelines.

Immunostaining and flow cytometry Immunostaining and flow cytometry were used to assess surface levels of
ADAM10, ADAM17, and sheddase substrates. For these measurements, cells were treated with trypsin/EDTA
(Gibco) for 15 min, rinsed in 4"C PBS + 3% FBS, and incubated with primary antibodies at 1:100 dilution for
2 hrs in 4 "C PBS + 3% FBS. Cells were rinsed in 4 "C PBS + 3% FBS, fixed in 2% PFA + PBS overnight, and
stained with secondary antibody the following day. Flow cytometry was performed using the BD Biosciences
LSR-II. ADAM 10 ectodomain mAb (clone 163003) and antibodies from R&D Duo-set kits were used for im-
munostaining.

ADAM 17 Dimerization Confluent 15 cm plates of 12Z cells were starved for 4 hrs and then stimulated for
30 min with the indicated growth factor. After washing with 4 C PBS, cells were incubated with 0.5 mgmL- 1
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sulfo-EGS (Pierce) for 30 min, then lysed in 1% NP40 lysis buffer. Lysates were clarified, precleared with agarose

resin, and then incubated with protein A/G resin (Pierce) and anti-ADAM17 antibody (R&D Systems Duo-

set) overnight. The next day, the resin was washed repeatedly, and then boiled in denaturing lysis buffer to elute

protein. Dimerized ADAM 17 was identified by western according to size shift, and normalized to the monomer

ADAM 17 in each sample. Methods roughly follow previously work describing ADAM-17 dimerization [329].

IP/western surface protein measurements Identical numbers of cells were starved in the presence or absence

of inhibitor for 4 hrs, and then surface biotinylated with 0.5 mgmL-1 S-NHS-biotin (Pierce) for 30 min at

4 *C. Lysate was clarified, precleared with unconjugated sepharose resin for 1 hr (Invitrogen), and incubated with

straptavidin-conjugated sepharose resin (Invitrogen) overnight. After washing, the bound fraction was eluted by

boiling in denaturing sample buffer.

AREG immunoprecipitation and digestion Four 15 cm plates of 12Z were lysed in 1% NP40 lysis buffer,

clarified, and then incubated with protein A/G resin (Pierce) and 10 g anti-AREG antibody (R&D Systems

Duo-set) overnight. After repeated washing, the resin was split into separate samples for digest. Roughly 5 nM

active recombinant ADAM-10 and -17 (R&D Systems) were incubated with resin for 4 hr. TIhe reaction was

then boiled in denaturing sample buffer, and cleavage products were blotted using ectodomain AREG antibodies

from the R&D Systems Duo-set kit. The 55kDa band was detected with the polyclonal goat IgG Ab, while the

immunopurification and 19/21 kDa bands were performed using the mouse IgG mAb.

Peritoneal fluid sample and analysis Peritoneal fluid, primary HESC, and PFMC samples were all from pa-

tients who provided informed consent in accordance with a protocol approved by the Partners Human Research

Committee and the Massachusetts Institute of Technology Committee on the Use of Humans as Experimen-

tal Subjects. We limited enrollment to pre-menopausal women with regular cycles (26-32 days), and excluded

subjects having received hormone treatment within three months of surgery. Moderate/Severe (Stage III/IV)

endometriosis was laparscopically diagnosed based on the revised criteria of the American Society for Reproduc-

tive Medicine [330]. Control samples were free of visible endometriosis and typically received laparoscopy for

reasons relating to abdominal pain and/or symptomatic uterine fibroids. Peritoneal fluid was aspirated during

laparoscopy from the rectouterine pouch, following trocar insertion and before lavage or surgical manipulation.

Specimens were immediately clarified within 15 min by centrifugation, aliquoted, and stored at -80 0C until fur-

ther analysis.

Primary and immortalized HESC Endometrial tissue was obtained from pipelle uterine biopsies of normally

cycling pre-menopausal women. Isolation and purification of endometrial stromal fibroblasts was performed

as previously described [331]. Briefly, tissue was dissected into approximately 1 mm3 fragments using a sterile

scalpel blade, transferred into a tube containing fresh complete media and centrifuged (400 x g) to eliminate

excess blood and debris. Fragments were resuspended in an enzyme mix containing 0.5% collagenase type IV and

0.02% deoxyribonuclease I, and 2% chicken serum in phenol red-free DMEM-F 12. Suspensions were incubated

at 37 0C for 1 hrs, intermittently aspirated through decreasing sizes of glass pipettes for cell dispersion, and finally

filtered through a 100 tm and subsequently 70 .m nylon cell strainer.

PFMC isolation and media conditioning Peritoneal fluid mononuclear cells were isolated from fresh peri-

toneal aspirates by centrifugation (10 min at 1000 x g) and cryopreserved in complete media supplemented with

10% DMSO. Upon thawing, cells were washed and seeded at 105 cells/cm 2 in 24-well plates for selective adher-

ence of mature monocytes. Non-adherent populations were removed by gentle washing after three hours of

culture, and conditioned media collected following an additional 24 hrs of monocyte-enriched culture. Flow

cytometry routinely indicated >99% CD45 expression in fresh PFMC suspensions and >90% lymphocyte de-

pletion in monocyte-enriched preparations.
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ADAM17 IP & activity assay ADAM17 was precipitated on an anti-ADAM 17 coated 96-well plate and incu-
bated with a FRET-based protease substrate. Increase in fluorescence was tracked over time for 4 hrs The slope of
increase was calculated and compared to a standard dilution series according to the manufacturer's instructions
(Innozyme TACE activity assay, EMD Millipore, Billerica MA). In all cases, cleavage rates were detected within
the dynamic range of the assay according to the standard curve.

Supernatant analysis For quantification of supernatant analytes, cells were plated on polystyrene plates (Corn-
ing) at 80% confluency, and stimulated the following day with serum-free media supplemented with growth
factors after a 30 min pre-treatment with inhibitor. 12Z were serum starved overnight before treatment. Super-
natant was collected 24 hrs after stimulation, clarified by centrifugation (5 min, 300 x g), and frozen at -20 0C
for storage. At the time of supernatant collection, cells were trypsinized and analyzed for cell count and viability
using ViCell instrumentation (Beckman Coulter; Brea, CA). Final analyte concentration measurements were
normalized to cell count.

siRNA knockdown protocol siRNA treatments used ON-TARGETplus SMARTpool siRNAs (Thermo Sci-
entific), with siGENOME non-targeting siRNA pool-2 as the negative control. 5 x 10 5 cells were seeded in
10 cm dishes. The following day the cells were transfected using 5 tL Dharmafect 4 and 125 pmol siRNA accord-
ing to the manufacturer's protocol. One day after transfection, cells were reseeded for knockdown experiments,
and 48 hrs after transfection cells were treated and lysed. Experiments for measuring ectodomain shedding and
cell migration began with growth-factor stimulation 48 hrs post-transfection, and ended 24 hrs later (48 hrs later,
for Fig. 3.7D).

Migration assay computation To interpret live-cell migration experiments, the root-mean-squared cell speed
was calculated from position intervals between time points for each cell track, as well as the standard deviation
of the mean [59, 132]. In this work, persistence denotes net displacement divided by the total path length. End-
point migration assays were interpreted using a modified spot finding algorithm [332] in Matlab (Mathworks;
Natick, MA). Briefly, confocal z-stacks were first pre-processed using background subtraction to eliminate un-
even microscope illumination, followed by top-hat filtering and contrast enhancement. Pre-processed images
were segmented using previously described software [332]. Identified nuclei positions were assessed by nearest-
neighbor analysis and PCA to infer the well-bottom where the majority of cells reside, and z-positions of the
nuclei were determined as a distance from the xy-plane of the well-bottom. Unless otherwise stated, migration
metrics were calculated as a fraction of cells that had invaded further than 20 vm from the well-bottom, although
this threshold slightly changed depending on day-to-day variability to maximize signal-to-noise and minimize
background.

Partial least squares analysis Partial least squares regression (PLSR), partial least squares discriminant analysis
(PLS-DA), principal component analysis (PCA), hierarchical biclustering, and all other statistical analyses were
performed using Matlab (Mathworks; Natick, MA). Unless otherwise stated, all input and output variables were
mean-centered and variance-normalized across the set of environmental stimuli, prior to PLSR, PLS-DA, or
PCA. For PLSR and PLS-DA, we implemented a forward-variable selection procedure to heuristically select the
minimal combination of input variables that optimally described output variable response. We iteratively added
input variables to the PLSR model if they improved model fit as determined by leave-one-out cross validation ac-
curacy. To avoid local optima, we conducted heuristic searches with several cost functions of the cross-validation
accuracy, including Q2 (the R2 coefficient of determination for prediction accuracy), Spearman rank correlation,
Pearson correlation coefficients, and for PLS-DA, area under the R.O.C. curve (AUROC). To avoid over-fitting,
we required the added input variables to demonstrate PLSR loadings of greater magnitude than their observed
loading standard error. Variable importance in the projection (VIP) statistics were calculated in the usual manner.
Standard error for scores, loadings, and VIP were calculated by the jack-knife [142]. Variance of the prediction
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values were computed [3331. All results presented in this work with non-zero Q2 or AUROC accuracy demon-

strated a statistical significance (p<0.05) as determined by the permutation test. Briefly, we randomly shuffled

output variables relative to the model inputs, and ran the variable-selection procedure for each of 1000 random

permutations. Shuffled data yielded a lower Q2 value than that achieved by the actual data-set more than 95%

of the time.
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