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ABSTRACT

The topic of fabric formwork has emerged as a response to the rising need for material efficient

designs that also incorporate attractive aesthetic and construction related features. The thesis

approaches the topic of the optimization of the design of fabric formed concrete beams. The

thesis proposes two methods: an analytical optimization method and a feasible region method.

The optimum design of fabric formed reinforced concrete beams is discussed first and a sample

output of the optimum design based on minimizing the cost of a cross-section is produced. A

relatively direct design process based on simple polynomials is established that can conveniently

guide designers to produce optimal designs. Based on sample results, savings of up to 55% in

material cost could be accomplished using fabric formed beams.

The subject of pre-stressed fabric formed beams is then approached using the two methods.

Certain additional complexities are explained and some simplifications are done in order to

arrive at an optimum design using the feasible region method.

Thesis Supervisor: John A. Ochsendorf.

Title: Professor of Architecture and Civil and Environmental Engineering
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Symbols and Notations

A = Area of Cross - Section

As = Area of non - prestressed reinforcement

AP = Area of prestressed reinforcement

EC = Modulus of Elasticity of Concrete

Ep = Modulus of elasticity of Steel

E p
n = - = modulus of elasticity ratio

Ec

xO = Half of the top breadth of the cross - section

C = Compression Force

Ec= Concrete Strain

f= Concrete compressive strength

fr = Concrete tensile strength (rupture)

I = Second moment of Inertia

Z = Section modulus

MDL = Moment due to dead load

MLL = Moment due to live load

M{totaii = Total service moment = MDL + MLL

Mu = Ultimate moment = 1.2 * MDL + 1.6 * MLL

fy= Tensile Strength of mild reinforcement Steel

f= Tensile Strength of prestressed reinforcement

A

9



Pb = Prestressed rein focement ratio = A
A

To = Tension in the fabric

p = Density of concrete

g = Gravitational acceleration

1 = Length of fabric

K = Complete elliptic integral of the first kind

F = Incomplete elliptic integral of the first kind

E = Incomplete elliptic integral of the second kind

xS = The x - coordinate of the profile of the cross - section.

ys = The y - coordinate of the profile of the cross - section
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1. Introduction

The thesis tackles the specific topic of the optimal design of fabric formed concrete beams. Two

main methods are introduced and then sample results are produced. The optimum design of

fabric formed reinforced concrete beams is discussed first and finally the design of pre-stressed

fabric formed beams is examined.

1.1 Flexible Formwork

The essence of the revolution in structural freedom for Nervi (1956) "consists in the possibility

of realizing structures that are in perfect conformity to statical needs and visually expressive of

the play of forces within them." The transformation from pure prismatic shapes to shapes that

yield themselves to the stresses has been facilitated by the introduction of new forms of

formwork. Fabric formwork expands the limits of architectural expression by allowing the

concrete to be closer to its fluid nature (West & Araya, 2009). Fabric formwork has the potential

to allow the designer to consider new forms that couldn't be achieved using wooden forms.

The topic of fabric formwork has emerged as an attempt to produce aesthetically pleasing forms,

which also enhance material efficiency. Orr (2012) explains the significance of decreasing

material use from an embodied energy perspective. Embodied energy is defined as the total

energy utilized in the construction process and does not include the added energy consumed in

the operation of a structure (Orr, 2012). The plateau of efficiency in building technology

performance has increased the relative importance of embodied energy as shown by (Orr, 2012).

The material efficiency of fabric formwork was evaluated by Garbett, Darby, & Ibell (2010) and

(Lee, 2010) who compared the material use in fabric formwork to that in prismatic rectangular

beams and has estimated a saving of up to 40 percent in terms of material.

Shown in Figure 1.1 is a sample fabric formed concrete beam that is designed to follow the shape

of a bending moment diagram of a simply supported beam subjected to uniform loading.

Producing a feasible design option has been well studied (Lee, 2010), and (Orr, 2012). However

to maximize the role of the fabric formed beam, this thesis seeks an optimum design for both

reinforced and pre-stressed fabric formed beams.
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Figure 1.1 Picture taken from (Bailiss, 2006) showing a three point test of a fabricformed beam

1.2 Existing Work in Optimized Concrete Design

The use of constrained minimization for the design of prismatic reinforced concrete sections has

already been explored using various methods. For reinforced concrete beam design, Guerra &

Kiousis (2006) explored the design optimization of reinforced concrete structures using a

nonlinear programming algorithm, which searches for a minimum cost solution that satisfies ACI

2005 code requirements for axial and flexural loads. Others have relied on various algorithms in

order to minimize an objective function related to the volume or cost of a design. For instance

(Marano, Fiore, & Quaranta, 2014) used a differential evolution algorithm to find the optimum

minimum cost design of pre-stressed concrete beams and (AI-Gahtani, Al-Saadoun , & Abul-

Feilat, 1995) performed a single objective optimization of partially pre-stressed beams. However

the topic of fabric formed beams has not yet been approached using minimization algorithms that

aim at minimizing a cost objective function.

The most relative work concerning the topic of optimizing reinforced fabric formed beams has

been approached by Garbett, Darby, & Ibell (2010). The optimum design of the fabric formed

beams is suggested as a stepwise method that is deduced from empirical relations derived by

Bailiss (2006). The paper suggests the methodology to select the depth, and top breadth of a

fabric cross-section according to strength based design. It also concluded that up to 55 % of the

material can be saved using fabric formed beams when compared to rectangular prismatic beams

(Garbett, Darby, & Ibell , 2010).

The optimization models do not so far deal with a mathematical model for a constrained problem

of fabric formed beams. The optimization that was carried out by Garbett, Darby, & Ibell (2010)

does not rely on analytical relationships and however is based on empirically derived formulae.

This makes the method followed by the paper inapplicable in the following scenarios:
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" If the top breadth is less than 10% of the total perimeter

* If the cross-section area is less than 10% of the top breadth multiplied by the section

depth.

The inapplicability of the optimization method in these scenarios is not extremely significant as

certain limits to the ratio of breadth to perimeter need to be specified for constructability purpose

(Garbett, Darby, & Ibell , 2010).

1.3 Problem Statement

In contrast with the described existing work, this thesis focuses on producing an optimal design

of fabric formed concrete beams using analytically derived relationships. More importantly the

thesis attempts to explore how the design is affected by introducing material cost to the model.

The concept of pre-stressed fabric formed beams has been mentioned by Orr (2012) however the

feasibility of the design and the methodology to optimize the design of pre-stressed fabric

formed beams has still not been tackled. This might be due to certain complexities that arise in

the constructability of pre-stressed fabric formed beams and also in establishing analytical

relationships that describe various cross-section parameters. The development of the

optimization model for reinforced concrete design according to analytically derived relationships

is an attempt to establish similar relations for pre-stressed concrete design.

The thesis develops a methodology, which could be used by engineers to design optimal fabric

formed beams. However the methods explained below have certain limitations since the relations

below tackle the problem of a simply supported beam subjected to uniform loading conditions.

Moreover the model below assumes a basic cross-sectional shape of a fabric draped between two

boundaries and therefore doesn't look closely at other cross-sections that might be pinched or

constrained using wooden formwork. However a methodology for various cross-sections is

stated in the concluding part of the thesis as a guide for designing fabric formed beams with a

greater sense of freedom.

1.4 Organization of thesis

A literature review of the topic of fabric formed reinforced beams is introduced in Chapter 2

which looks mostly at different form finding processes and certain approximations which need to

be made for strength based design. Chapter 3 illustrates the approach to the problem of optimal

13



fabric formed reinforced concrete design. The non-linear constrained optimization is approached

by two models: a non-linear programming model and a feasible region model. Chapter 4 details

an application of the methodology to a specific example. Chapter 5 introduces the pre-stressed

design optimization and the new considerations to be taken into account. It also discusses some

results of the optimization method. Chapter 6 concludes with certain recommendations as well as

possible future recommendations.
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2. Background

In order to explain the optimization model used for the design of fabric formed beams, three

main principles need to be illustrated: the process of form-finding that is to be used in the

following thesis, and an approximate model for strength based design of the cross-section after it

has dried, finally an evaluation of the cost of a fabric formed cross-section.

2.1 The form-finding process

In order to get a close approximation of the area of the cross-section of a fabric-formed beam a

form-finding process developed by Losilevskii has been adopted (Iosilevskii, 2009). This method

basically deals with the problem of form finding from a static equilibrium perspective. After the

concrete has settled in the fabric, the main forces that exist in a free body diagram shown in

Figure 2.1 are the hydrostatic pressure and the tension. The final shape of the fabric could be

determined using two parameters only: the top width of the beam as well as the length of the

fabric that is draped between the width. (Iosilevskii, 2009) looks at an infinitesimal element and

uses the equilibrium relations as well as symmetry considerations to solve a set of two

differential equations. Figure 2.1 below illustrates Iosilveskii's model:

X11 X

\p,(t) 
(t +dt),:

T(t+dt)

Figure 2.1. Image adopted from (losilevskii, 2009). Thefigure shows a fabric membrane draped between a total width of 2*xO. A

close up on an infinitesimal element shows the tension and the pressure force, i.e. the forces in the equilibrium formulation.
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The final deduced equations by (Iosilevskii, 2009) which describe the tension needed, the profile

of the fabric, and the area of the cross-section are respectively shown on the following page:

PgI2  (eq.1)

TO = 4K 2 (k)

Where:

T0 : Tension in the fabric (lb)

p: Density of concrete (psf)

g: gravitational acceleration (ft/s 2)

1 : length of fabric used (in)

K: a complete elliptic integral of the first kind

where a complete elliptic integral is a special case of the incomplete elliptic integral with 0 =

xS E (0s, k) _1 F (0s, k) (eg.2)
T K(k) 2 K(k)

Ys. k cosO (eq.3)
1 K(k) s

Where:

E(k) _1 xO
k: the solution of the following equation: K(k) - + 1

K(k) 2 1

xO: half of the top width of the concrete cross-section

xS: the x-coordinate of the profile of the cross-section (in)

ys: the y-coordinate of the profile of the cross-section (in)

F: an incomplete elliptic integral of the first kind

E: an incomplete elliptic integral of the second kind

Where the incomplete elliptic integral of the first kind is given by the equation below:
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F(Ok) = 1-k 2 (sinr)2 dr
(eq.4)

And the incomplete elliptic integral of the second kind is given by the following equation:

E(8, k) = 1- k 2 (sin) 2 dT (eq.5)

The area of the concrete section could be estimated by the following derived solution:

k1 _-k2 (eq.6)

K2 (k)

Where:

A: area of the cross-section of the fabric formed beam (in 2).

In the above derivation the tension in the fabric is assumed to be constant throughout the

membrane. The above model has been validated by (Foster, 2010) through comparison to

empirical relations developed by (Bailiss, 2006). Figure 2.2 shows the accuracy of Iosilevskii's

mathematical model compared to a physical model from Orr (2012).

U, iae prediction
at one sect in

Figure 2.2 Shape prediction precision of the form-finding method. Picture taken from (Orr, 2012),
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(Veenendaal, 2008) has developed an accurate form-finding method using dynamic relaxation,

however this method tends to computationally be more complex as it relies on feedback from a

finite element software and therefore the methodology could not be simplified easily to be

directly used in the optimization model. Therefore the Veenendaal model will not be used in the

optimization approach. However this entails that the designer will have to make various cross-

section cuts as the method of form finding by Iosilevskii (2009) is based solely on two

dimensional slices of the beam cross-section.

For the purposes of the optimization model, a new approach proposed by this thesis is to carry

out a polynomial approximation of the Ioseliveskii parameters. This approximation will prove

crucial as the optimization problem can then be later simplified to be a function of only the

decision variables (xo/l). In order to ensure universality of the approximation, dimensionless

parameters were used. Shown below is an approximation of k as a function of where:

-6922x0 2x0 (2x0)4  (2x0)3  (eq.7)

k =-16.982 ( )6 +45.557( )x - 46.567 + 22.267

(2x0\ 2  /2x0\
5.2611 -) + 0.138 - + 0.8985

k versus 2x0/I
1

0.9 y -16.982x 6 + 45.557xs - 46.567x4 +
22.267x3 - 5.2611x 2 + 0.138x + 0.8985

0.8 R' = 0.999
0.7

0.6 -

0.5 - - k versus 2x0/
A A

Poly. (k versus 2x01/)
0.3
0.2
0.1

0
0 0.5 1 1.5

Figure 2.3 Plot illustrating the polynomialfit between k and 2*xo/
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K, the complete integral of the first kind could be estimated using a power series, however a

polynomial approximation to a lower degree was used where:

K = 16.079 (k) 6 - 37.911 (k)5 + 35.039 (k) 4 - 15.13 (k) 3 + 3.4482 (k) 2

- 0.2272(k) + 1.5717

Kvsk

y = 16.079x - 37.911x5 + 35.039x4 - 15.13x3 
+

3.4482x2 - 0.2272x + 1.5717
R2 -1

0 0.2 0.4 0.6 0.8 1

in K vs k

- Poly. (K vs k)

Figure 2.4. Plot illustrating the polynomial fit between K and k

Moreover yo (the maximum depth) was estimated as:

- -10.928
1

2x0 6

1 )
+ 29.298 (2X) -29.953 (X)4

( 1

2 3
+ 14.345 ( 2S!)

1

-3.5258 ( 2)2

(eq.8)

2.5

2

1.5

1

0.5

0

/2x0\
(eq.9)
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yO/I vs 2x0/I

y = -10.928x 6 + 29.
2

298x5 - 29.953x 4 + 14.345x3 -

+ 0.4109x + 0.3849
R' = 0.9977

- yO/l vs 2x0/

Poly. ( yO/l vs 2x0/I)

0 0.2 0.4 0.6 0.8 1 1.2

Figure 2.5 Plot showing polynomialfit between yo/l and 2x0/I

The optimization problem therefore is reduced to the constrained minimization of a sixth order

polynomial, which simplifies the problem in terms of computational complexity. Having

established relations for the form-finding process, an approximation of the beam's strength-based

design is explained. The strength-based design will look at the behavior of the cross-section after

the concrete has dried and has cracked under ultimate conditions.

2.2 Strength Based Design

The main assumptions introduced in strength-based design are that plane sections remain plane

after bending, and the strain distribution could be approximated by a linear strain distribution.

The member's moment capacity in this case is provided by the moment couple caused by the

moment arm between the compression and tensile force. The centroid of the neutral axis could be

calculated using factors recommended by the ACI (2005) code which also illustrated more

clearly by (BS EN 1992-1-1: 2004 a) as shown in Figure 2.6. The stress distribution is

approximated using an equivalent rectangular stress:

20
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0.25
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&U3 7 fcd

A AT

d

A" F

Figure 2.6 Picture Adopted from (BS EN 1992-1-1: 2004 a). Image shows the equivalent rectangular stress block based on a

linear strain distribution

The depth of the member's neutral axis can be approximated by assuming that the member will

be tension controlled i.e. that the steel would yield before the concrete to avoid brittle failure.

The neutral axis depth is then taken to be less than the neutral axis depth at balanced strain

conditions and is given by the following equation:

87000
c = 0. 7 5 * Cb where c' - 8 7 0 0 0 + fy d (eq.10)

Having found the depth (c) of the neutral axis. The depth of the equivalent rectangular stress

block is given by

/fc'_-4000
a = Bjc where B1 = 0.85 - 1000 (0.05) > 0.65 (eq.11)

(1000

The moment capacity is then given by A.C.I (2005):

Moment Capacity = Acompression * fc' (d - = Astee * fy(d - (eq.12)

The minimum reinforcement ratio is given by A.C.I (2005):

P{min) = 3 * (eq.13)
fy

The maximum reinforcement ratio is then given by A.C.I (2005):

P{max} = 0.75 * Pb (eq.14)
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The shear capacity in the model assumed below simplifies the problem by assuming that only

50% of the shear is carried on average by the concrete cross-section:

g 5 (x) = 50%* 2 * f'c * Aconc -Vu (maximum shear constraint) (eq.15)

This simplification is somewhat conservative and a more accurate measure is given by

GarbettDarby, & Ibell (2010) which however will not be used in the optimization method.

The strength based-design along with the form-finding method are adequate enough to design a

beam for a certain moment and shear capacity. However in order to carry out a minimization of

the cost of the cross-section, a cost model is looked at more closely.

2.3 Cost Structure

Several authors have dealt with the topic of optimizing the cost of a cross-section and therefore

the cost model can be adopted from one of the papers listed in Table 2.1. A more realistic cost

model could easily be derived from the local market material costs that do vary according to

location and time. For the purpose of the optimization of reinforced concrete beams a cost ratio

of 9:1 was taken for the ratio of cost of steel to the cost of concrete. A cost ratio is used instead

of the actual cost of the cross-section since the ratio tends to be more constant as the parameters

are varied. In addition to that, the designer using the model can input a cost ration that is more

representative of the local market in which they are working.

Table 2.1 A list showing some of the cost parameters taken by several authors that tackled the problem of optimization of
concrete beams

Cost Parameter Value and Units Author(s)
Cost Post Tensioning 45

Cost Concrete

Cost Pre Tensioning 9 (Colin & MacRae, 1984)

Cost Concrete

Cost of Concrete per unit volume 75 $/m 3  (Marano, Fiore, & Quaranta,

Cost of prestressing steel per volume $ ton
1000 -* 7.85-= 7850 $/rn 3  2014)

ton m 3

Cost of concrete per yard3  80 $/yd 3

Cost of prestressing steel per pound 1.35 $/lb (AI-Gahtani, Al-Saadoun, &

22



Cost of mild steel per pound 0.385 $/lb Abul-Feilat, 1995)

The last main material component other than the reinforcement and the concrete to be included in the cost

is the cost of the fabric. The common fabric textiles used in the University of Manitoba in CAST under

the supervision of Professor Mark West are listed in Table 2.2 according to Orr (2012).

Table 2.2 The industrial name of different geotextiles used as fabric formwork

Fabric Type Material

LOTRAK 300GT Polypropelene

Propex 2006 Polypropelene

NOVA Shield High density Polypropelene

According to (West & Araya, 2009) these fabrics cost less than $1 (U.S.) per meter, and

therefore for simplification reasons the cost of the formwork was not taken into account in the

objective function of the optimization model. Moreover the fact that the same fabric formwork

could be re-used multiple times (Orr, 2012), makes it even less significant to take the cost of

fabric into account.

2.4 Summary

This chapter introduced the main methodology for finding the form of a fabric subjected to

hydrostatic pressure from a fluid. An original approach is proposed to use polynomial

approximations of the dimensionless relationships for the optimization approach. Lastly a cost

model was considered, and a cost ratio for the cost of mild reinforcement to the cost of concrete

was approximated to be 9:1. The next chapter will introduce the optimization methods for the

design of reinforced fabric formed concrete.
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3. Methodology

This chapter will explain the two methods developed in this thesis for optimizing a reinforced

fabric formed beam. Initially the analytical optimization method is introduced which relies on

solving a constrained non-linear optimization problem using Matlab. Then the feasible region

method is introduced which is a more direct and approximate method that could be more

convenient for designers to use.

3.1 The Analytical Optimization Model

The analytical optimization model uses a non-linear constrained optimization algorithm called

"sequential quadratic programming" as a move maker to search for a feasible solution. A

MATLAB gradient-based optimization toolbox has been used to solve the optimization problem.

This makes use of the 'fmincon' routine (Mathworks, 2014), which is given in more detail in the

Appendix. The model aims at minimizing the cost of an area of a cross-section taking into

account a fixed cost ratio of 9:1 for mild steel versus concrete. The model formulation as

discussed before aims at minimizing the cost of a cross-section. Therefore the objective function

is the following:

Minimze f (x) = Aconc + C * Asteel (eq.16)

Subject to the following constraints:

g1 (x) = ymax - depthmax (a maximum depth constraint) (eq.17)

9 2 (x) = Mu - Fcomp * couplearm(moment capacity constraint (eq.18)

9 3 (x) = Astee - Pmax (maximum reinforcement ratio) (eq. 19)

xA
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g 5 (x) = 50% * 2 * AJf7 * Acon - Vu (maximum shear constraint) (eq.21)

9 6(x) = (Asteeify - f'c * Acomp) - (Tolerance)(equilibrium constraint) (eq.22)

Where:

C = The cost ratio of steel to concrete related to the steel area.

Ymax = The maximum depth of the fabric formed beam. (in)

comp =Resultant Compression Force of an equivalent rectangular stress distribution (lb)

Returning to the optimization method, the decision variables have been chosen to be x0 (half the

top width of the beam) and / (the length of the fabric used) in addition to the reinforcement area

As. The model outputs a value for x0 and 1, which the designer can then use along with the form-

finding methods explained above to get a profile of the fabric formed cross-section. Once

multiple cross sections are obtained for different points along the beam's length, the designer can

interpolate a three-dimensional shape for the beam and calculate the cost based on the volume.

3.2 Model Limitations

The above model has certain limitations, as it is only applicable to simply-supported fabric

formed beams that are under a uniformly distributed loading. In addition to that, the dead load of

the beam has not been calculated as a multiple of the self-weight of the beam however has been

over-estimated using an approximate equivalent prismatic rectangular beam. Also since the shear

behavior of fabric formed beams is complex as illustrated by (Orr, 2012), an estimated portion of

50% of the shear capacity has been considered to be resisted by the concrete while the rest is

assumed to be resisted by the shear reinforcement which was also chosen to be neglected in the

overall material calculations.

For strength-based design purposes the moment capacity is approximated as follows:

The area of concrete in compression is estimated using the area of the trapezoid defined by the

four points shown in Figure 3.1 below:
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Pt1 - Pt3
A

Pt2 - -
SPR4

d

A-

Figure 3.1 Plot shows the four points, Ptl, Pt2, Pt3, and Pt4 which define the four vertices of the trapezoid

3.3 Feasible Solution Method
The problem in tackling the optimization using the above mathematical formulation is that the

area of steel could vary between cross-sections, which means that in reality the reinforcement is

assumed to be spliced between the cross-sections, which might not be an attractive solution from

a fabrication point of view. In addition to that, the optimization only runs for specific upper and

lower bounds on the width and depth of the beam that might differ from on case to another based

on certain spatial considerations. Therefore a more general approach should also be considered

which is why the feasible region methodology is referred to in the following chapter.

A 2x0
Examining the relation between the and , it could be approximated by the following

polynomial which is given by equation 10 and also demonstrated by Figure 3.2 on the following

page:

Equation 1. Polynomial relating the dimensionless area parameter to the dimensionless width parameter

A (2x0' 6
2 2  2x0' 5 1 9  2x0\4

- = -7.1921 * )+19.221 5-19.595 ) +9.2215

2x0\2  /2x0 (eq.23)
- 2.0749 ( ) +0.3744 (- , +0.066
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A/A2 vs. 2x0/

y -7.1921x 6 
+ 19.221x5 - 19.595x 4 + 9.2215x3 - 2.0749x2 + 0.3744x 0.066

R2
= 0.9917

0.2 0.4 0.6 0.8 1 1.2

Figure 3.2 Plot showing the polynomialfit between A/1A2 and 2*xO/l

It is also known that:

Asteel _ pA
Asteel=p*A1=> 1

Where p is the reinforcement ratio.

The objective function is given by

p Af = C1 A + C2Atsteeii = C1 A + C2 1A

The dimensionless objective function is given by:

f A
= -(C 1 + C2 p)

where:

7.1921 * ) +

- 2.0749 2 2

2x0 s
19.221 - 19.595 2X0) 4

0.3744 (2I0)+ 0.066)

+ 9.2215 2X0) 3

1 )

(C1 + C2 P)

The moment constraint is then expressed as:

a
Mu Asfy (yo - -)

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
0

(eq.24)

= A(C1 + C2 p ) (eq.25)

(eq.26)

(eq.27)

(eq.28)
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a
Mu < PpA fy(yo - )

where:

87000
a = 0.85 * 0.75 87000 (yo - 2)

87000 + fy

Therefore dividing both sides by 13 the equation simplifies to:

MU <4pA yo
13 - 1-2 fy ( I

- 0.31875 *
87000 (yo - 2)

87000+ fy 1

Where yO -2 could initially be estimated to be 0.9*yO

MU <pA Yo 87000
13 - j2 fy ( .3 8 7 5 * 8 7 0 0 0 + fy

(0.9 * Yo)
I)

(eq.32)

The expressions for and -' could then be substituted in the above expression to express the

moment capacity problem in terms of two variables only (x0 and 1). The final expression can

therefore be easily computationally processed for plotting using the following polynomial

inequality (eq.33):

7.1921 *

pp * 

* fy *

2x0 6 2x0)
+ 19.221

1 2x0 4

19.595

2x0
+0.3744 + 0.066

+ 9.2215 (2x0)3
2x0 2

- 2.0749 
I))

-1 2 2x0 6  (2x0 5  2x0 4  2x0 3  M2x 2

-1O.928 +29.298 -29.953 + 14.345 - 3.5258

2X0
+0.4109 + 0.3849

* (1 - 0.31875
87000

* 87000 + fy)

Similarly the shear constraint can be simplified into:

0.5 * V, : phi * 2f'A

(eq.29)

(eq.30)

(eq.31)

(eq.34)
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Dividing both sides with 12 the expression then can be transformed into an inequality involving

only xO and 1:
0.5V

12

< 1.7 * '

-7.1921 *
2x0 6

- + 19.221
2x0 5

I
2x0 4

- 19.595
2x 3

+ 9.2215 Mi)- 2.0749

S2xO
+0.3744 ( + 0.066

2x0 2 (eq.35)
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Plotting the constraints at midspan in a set of subplots that share the same x-axis for the length of

fabric used, a feasible region could be established. Figure 3.3 shows a sample plot of the

constraints polynomials at midspan of a cross-section with a top-breadth of 10 inches. The

uppermost plot shows the moment capacity constraint, the one underneath shows the maximum

depth constraint and finally the objective function is shown.

4.0 1e6 x0=5.0 in

3.5

3.0
S2.5
S2.0

E 1.5
01 1.0

01 0.2 0.3 04 0.5 0.6 07 0.8 09 1.0
1e2

30

2 20

a 15

10

0.1 0.2 0.3 0.4 0.5 0.6 07 0.8 0.9 1.0
1e2

1200

1000

B 500

600

0 400-- --

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1e2

Figure 3.3 A specific case of xc =5.0, the feasible region is highlighted in blue which satisfies both the maximum depth constraint

and the moment capacity

The plot here includes two extremes of reinforcement ratios with the blue curve resembling the

moment capacity of a section with maximum reinforcement and the green represents a section

with minimum reinforcement. The feasible range for a section with maximum reinforcement is

highlighted in the blue zone, whereas the feasible zone for a cross-section with minimum

reinforcement is highlighted in green. The feasible range is found by looking first at where the

moment capacity is greater than the limit moment, and then second by looking at the graph

below in order to make sure that the depth of the cross-section is not greater than the maximum

depth specified. The optimal solution can then be found by comparing the value of the objective

function for various fabric lengths. It is evident from the above graph that the feasible range for a
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section with minimal reinforcement is thinner than that of the maximum reinforcement and even

though the cost ratio of steel to concrete is 9:1, in the above case having a maximum

reinforcement will produce a cheaper cross-section.

After having found the feasible region at midspan, other cross-sections are considered. Figure 3.4

below shows a cut for the same beam at quarter span. An additional constraint is included here

which is the shear constraint and that is represented by the third plot. The feasible regions are

then found and are highlighted in the curve below.

The following method adds flexibility to the designer as the plots could easily be reproduced by

plotting the derived polynomial inequalities. The designer also has the flexibility to keep the

same reinforcement ratio or could choose to splice different reinforcements across the span of the

beam. Moreover a different of curves could be produced for other choices of top breadths. These

decisions are affected by spatial considerations such as span, maximum allowable depth, and

width.

In deriving the bending moment constraint, an approximation of 0.9y0 was chosen as the depth

of reinforcement. This approximation can then be reassessed after finding the depth of the fabric

and the required layers of reinforcement. Therefore this approximation could be made more

exact using an iterative process.
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Figure 3.4. A specific case of xc =5.0, the feasible region is highlighted in blue which satisfies both the maximum depth

constraint and the moment capacity

3.4 Summary of Contributions

This chapter has introduced two main methods for the optimization of the cross-section of a

fabric formed reinforced concrete beam. The first method is the analytical optimization method

that is an original way to deal with the problem from a constrained optimization point of view.

The second method is the feasible region method, which might prove to be a more user-friendly

method that the designer could conveniently use without having to undergo the same level of

computation required by the analytical optimization method. The next chapter will look at a

sample result of both of the methods just introduced.
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4. Results

This chapter will consider a specific sample problem which is then solved using both the

analytical optimization model and the feasible region model. The results are also benchmarked

against the output from the model introduced by Garbett, Darby, & Ibell (2010).

4.1 Analytical Optimization Model Results
Following the mathematical formulation introduced in the previous chapter a sample run is
carried out on MATLAB and the output cross section is visualized. A sample problem is chosen
that resembles a conventional educational problem posed by "Design of reinforced concrete"

(McCormac, 1998). The problem is best described by the following input parameters:

WDL = 100 psf (Dead Load)

WLL = 50 psf (Live Load)

Tributary Width = 12 ft

Span = 25 ft

fc' = 4000.0 psi (Compressive strength of concrete)

fy = 60000 psi (Yield strength of steel)

The ultimate load can then be calculated as:

W, = 1. 2 WDL * TributartyWidth + 1.6 * WLL * TributaryWidth
(eq.36)

= 2400 lb/ft

The ultimate moment at mid-span is then:

span2

MU = WU * = 187.5 kip - f t (eq.37)
8

The problem solution is found using the 'fmincon 'routine in MATLAB (Mathworks, 2014),

which follows a sequential quadratic programming algorithm to find the constrained minimum.

The output at mid-span is the following:

x0 = 5.0 in (a top breadth of 10 in)

1 = 41.65 in

As = 3.0 in 2

depth = 16.6 in
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The output of the program is visualized in Figure 4.1. The visualization shows the profile of the

fabric formwork along with an equivalent rectangular beam of the same moment capacity which

is shown by the dashed lines.

At midspan with span of 25

-10 -8 -6 -4 -2 0
in

2 4 6 8 10

Figure 4.1. A sample output of the optimization software, which shows the profile of thefabric in blue and the equivalent

rectangular beam in the dashed line rectangle

The optimum design proposed by (Garbett, Darby, & Ibell , 2010) could be found using the

following equation:

( 0.45F
(0. 6 7 f * 0.9 * b +(Fs)+()+C

(Equation adapted from (Garbett, Darby, & Ibell , 2010))

(eq.38)

Taking F = Asfy, an area of steel reinforcement could be chosen to be As = 5.44 in 2 . This

specific input will yield the following solution according to (Garbett, Darby, & Ibell , 2010):

xO = 4.0 in

I = 41.6 in
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y = 15.2 in

However when comparing the Garbett, Darby & Ibell solution to the analytical optimization

output it is noticed that the optimum result attempts to find a larger concrete area with a smaller

reinforcement ratio in order to decrease the cost of the cross-section, especially since the cost

ratio of steel to concrete is taken to be 9:1.

The optimization was then carried out at several cross-sections and at the supports. A workflow

shown in Figure 4.2 was established in order to extrapolate the results from a 2D cross-section to

a 3D visualization in Rhinoceros 3DO. Profile coordinates from the MATLAB were streamed to

an excel file which was then read using Grasshopper® that plotted the coordinates and then

interpolated between the cross-sections using the built-in "Loft" command. Finally the difference

in volume between the fabric formed beam and the prismatic rectangular beam could be easily

calculated using built-in Grasshopper® commands

Figure 4.2. output of the loft of the multiple cross-sections shown above into the final green fabric formed profile shown above.

Furthermore an attempt at estimating deflections could be done as a final design check.
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4.2 Feasible Region Method Results
Approaching the same problem introduced above using the feasible region method yields the following sample output at mid-span
shown in Figure 3.3 below.
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Figure 1.3 Two specific cases of xC =5.0, and xO=10.0, thefeasible region is highlighted in blue which satisfies both the maximum depth constraint and the moment capacity
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The above graphs show two shaded feasible regions for a top breadth of 10 in and 20 in. The

solution proposed by Garbett, Darby, & Ibell (2010) which is computed above lies within the

feasible range. The optimal solution can be found by comparing the value of the objective

function for various top breadths by plotting out the polynomial inequalities in the same order

proposed above.

Table 4.1 below shows the various solutions given by the different models for the fabric formed

beam.

Table 4.1. A summary of the results given by the two methods benchmarked against a solution given by Garbett, Darby & lbell

Model Top Breadth (in) Length Maximum Steel Relative Cost

of fabric depth (in) Reinforcement in terms of

(in) Area (in 2 ) the unit cost

of Concrete

Analytical 10 in 41.65 in 16.6 in 3.00 in 2  285*C

Optimization

Method

Garbett, Darby, 8 in 41.6 in 15.2 in 5.44 in 2  287*C

& Ibell Method

Feasible Region 8 in 41 in 15 in 5.40 in 2  281*C

Method

Table 4.1 shows that the analytical optimization method is slightly better than the solution

chosen using the method of Garbett, Darby & Ibell (2010). It is also noted from Table 4.1 above

that the feasible region method is slightly less conservative and this might be due to the reason

that in approximating the bending moment constraint, an estimate of 0.9 yo was chosen as the

depth of reinforcement, which only provides a cover of 0.9 * 16 in = 1.6 in that is slightly

smaller than the recommended cover of about 2 in.

A rough estimate of material savings between a fabric formed beam and an equivalent

rectangular beam is done using the feasible region method at three cross-section locations and by

fixing the width at 10 in. The volume of the fabric formed beam is compared to an equivalent
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beam of the same moment capacity at mid-span of width 10 in and depth 13.75. The plots used to

estimate the length of the fabric required are shown in Figures A.3, A.4, and A.5 in the

Appendix. Lofting between the three cross-sections and making use of symmetry the total 3D

profile is found and is shown in Figure A.6 in the Appendix.

Location Top Breadth( in) Length of Maximum depth

fabric (in) (in)

Mid-span 10.0 32 12.75

Quarter span 10.0 27 10.6

Supports 10.0 25 9.75

Where the Total Volume of Fabric Formed Beam = 18697 in 3

Total Volume of Rectangular Beam = 40278 in 3

The relative volume of the two beams is 427 =0.46 which indicates a saving of up to 54 % in

volume.

The relative cost of the fabric formed to rectangular beam--186967in3*1+3.00 in3*288in*9 = 0.41
40278in 3 +3.00 in 3 *288in*9

which is equivalent to a savings of about 59% in terms of cost. The estimate is probably a

slightly optimistic result since the length of rebar is slightly larger because of the curved distance

additionally as stated before the approximation of 0.9yo needs to be reassessed. Moreover

additional costs such as bending the rebar are neglected in this study. However on average a

savings of about 55% could be expected. This estimate is becoming more realistic with the

advancements in the research of pre-fabrication of the pre-cast beams achieved by C.A.S.T in the

University of Manitoba under the supervision of Professor Mark West.

4.3 Summary

The results chapter has benchmarked the two methods proposed for the optimum design of fabric

formed beams with the method of Garbett, Darby, & Ibell (2010). The chapter also proposes a

rough estimation of about 55 % in cost savings. This approximation is not exact since only a total

of three cross-sections were chosen and due to other assumptions which have been previously
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explained. The next chapter will consider the topic of pre-stress design from a similar

perspective to which the problem of reinforced concrete design was approached.
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5. Pre-stressed Design

5.1 Introduction

The design of pre-stressed fabric formed beams has still not been detailed and therefore a basic

study that deals with a basic cross-section of a fabric draped between a void in a forming table is

discussed. At first the optimization problem is formulated and several additional complexities are

discussed. The computational complexities make the analytical optimization method unattractive

and therefore it will not be used. Then a method similar to the feasible region method discussed

above is explained and will be relied on to produce the results.

5.2 Analytical Optimization method

The optimization problem had been set up in the following manner:

Minimize

f(x) = C1A + C2 * AP (eq.39)

Subject to:

g1 (x) = yo - depthMax (maximum depth constraint) (eq.40)

Pi MDL 2 P1 *e
A Ztop Ztop (eq.41)

- fr (initial conditions tension check at top of beam)

93(X)

Pi MDL*l 2  P1*e (eq.42)
A Zbottom Zbottom

- fc (initial conditions compression check at bottom of beam)

4,i *A Motal * 12  Pi * e * p
A Zbottom Zbottom (eq.43)

- f, (f inal conditions tension check at bottom of beam)
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Pi * I Mrotal * 12 Pi * e * i

A ZOp ZOp (eq.44)

- fc (final conditions compression check at top of beam)

d
96(x) = M. - 0.9 * Pi *y * - (moment capacity under ultimate stress conditions) (eq.45)

12

g7 (x) = f* CompressionArea - Pi * y (equilibrium costraint) (eq.46)

Where:

Pi = initial pre - stressing force

Zbottom = Section modulus with respect to the bottom most fiber

Zt, = Section modulus with respect to the top fiber

I = pre - stress loss ratio

The decision variables in the above model are the following:

xO: half the top breadth of the fabric

1 : the length of the fabric used

AP: the area of pre - stressing force

Pi: the prestressing force

The main complexity in the above optimization lies in the fact that the problem is

computationally tedious as an update of the transformed section properties of the fabric is

required for each specific area of reinforcement used. A sample run of the optimization program

does hundreds of function evaluations, which takes a considerable time to compute around 15

minutes on a commercial laptop. Moreover that fact that there exists five decision variables

makes the solution subjective since for every solution a lower and upper bound on the variables

such as the maximum and minimum depth, width, pre-stressing area, and pre-stressing force

magnitude needs to be specified which will differ from one case to another. In order to reach a

more holistic approach solution a method is developed that follows a similar logic as the feasible

region method introduced above.
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5.3 Feasible Region Method

In order to reduce the complexity of the problem at hand, a relationship is sought that combines

the various parameters and allows the designer to visualize a feasible region that is defined using

two variables only xO (half the top breadth) and 1 (length of the fabric).

In the case of reinforced concrete design, the strength-based approach assumed a cracked section

analysis. Whereas in the case of pre-stressed concrete, the section is analyzed prior to cracking

and therefore a transformed section analysis is carried out. The section modulus (Z) could be

thought of as being related to the area of the cross-section, the area of pre-stress reinforcement

used, as well as the location of the pre-stress reinforcement.

A simple program that estimates the moment of inertia, the area of the concrete section and the

transformed concrete section has been established with the code attached in the Appendix.

Basically the code divides the cross-section into small trapezoids and finds the section properties

by aggregating the properties of the small trapezoids.

The transformed section properties are found by widening the cross-section at the location where

the pre-stress reinforcement is added by a value of (n-1)*Ap/2 on each side, where n= Ep/Ec. A

sample transformed cross-section is shown in Figure 5.1 below.

x0

FTransformed Section

In -1)'Ap/2 (-)A /

Figure 5.1 A Transformed cross-section of a pre-stress fabric formed beam with the location of reinforcement at a depth of yp
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The code was then validated by comparing the results to those produced by Grasshopper®, and

an average error of 0.02% was achieved in terms of the accuracy of the moment of inertia

evaluation. The small error therefore indicates that the step size chosen is reasonable and that the

method is accurate.

In order to deduce a dimensionless relationship that links between section modulus to the area of

fabric and the depth of pre-stressed reinforcement, a range of possible ratios of 2x0/l were given

to the program along with varying the position of reinforcement. The relationships shown below

are based on fixing the area of pre-stressed reinforcement at a ratio of 0.5% and a ratio of 0.15%.

Another dimensionless relationship was also established using the same method of polynomial

extrapolation to link the eccentricity to the area of fabric and ratio of depth of reinforcement to

the maximum depth of the cross-section. The output of the code was filtered and all the cases

containing negative eccentricity were removed as it would not be a desired case in pre-stressed

design.

The graphs shown below reveal that the point cloud of results is carefully described by a proper

pattern with minimal noise. For simplification reasons a high order polynomial approximation

was taken in order to get reasonable results with minimal complexity.

As shown in Figure 5.2 a relation linking the dimensionless parameterZt 0p/1 3 to A /1 2 and yP/I is
the following:

ZtOP (A) ~ (Y\ (YA\2
= -0.0004 + 0.1882 ( + 0.1810 - 0.3212 + 0.6212 -

5.4088 ) with R2 = 0.945

A relation linking the dimensionless parameter Zbottom/1 3 to A/ 2 and yp/l is the following

Zbottom __
13

0.0015 - 0.0766 (4) + 0.4500 2 + 0.6576 (() + -3.3384 -

(e8.48)
6698 --1_ 0.1488 _3with R 2 = 0.906
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A relation developed between the dimensionless parameter 7" to rand which is the following:
Yo

ecc -0.0425 + 3.6055 2 Y 23.7150

431.6834 (A

(A 2 + 130.4407

(L) with R2 = 0.908
YO

Z vs. A and y, (max reinforcement) R2 =0.945
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0.00

.0.00

'000e-0.00

0.045
0.030

0.085
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Figure 5.2 A polynomial surface that approximates a relation between the various points which each represent a dimensionless
top section moduli for a unique cross-section

Similarly a relation linking the dimensionless parameterZtop/ 3 to A/Izand yp/l for a minimum

reinforcement of 0.15 % is expressed as:

Ztop - -0.0004 - 0.3223 A) 2

+ 3.99650 (A)3 +0.7354(A) ( P -

4.4289 (A - 0.0739 ( 2 +2.8848( with R2 = 0.931

A regression is derived that links the dimensionless parameterZbottom/1 3 to A/1 2 and y,/l.

However in this case the R2 is slightly lower that 0.9 and could be better approximated for future

purposes. The final expression then is:
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Zbottom = 0.0006 - 0.02 (L) - 36.5481 ()5 + 4.9971 (+ 2 +

1.0607 (A) (L)- 0.8934 (A) 2 + 7.6885 (A) 3 -5.6349 (A) 2  
.51)

0.1310 (A) 3 with R 2 = 0.864

A similar relation developed between the dimensionless parametercc to and which is the

following:

= -0.0067 - 17.1298 ( - 2.6493(T)() + 1.6140 (A)2 +

6.6989 (A) (P) - 0.0623 (L) with R2 = 0.911 (eq.52)

5.4 Results

A sample run of the problem introduced above is done for a top width of 20 in and the following

results are produced. Comparing for the same moment and using a width of 20 in, the feasible

region is found by first looking at the uppermost graph that shows the stresses at initial

conditions, in order to be feasible, the tensile stress needs to be less than the fracture strength of

concrete and the compressive stresses need to be lower than the compressive strength of

concrete. In the case of a 0.5 % of reinforcement a total depth of approximately 24 in is needed

for a 0.5 % pre-stressed design compared to a 17 in depth that is required for a reinforced

concrete beam of 3% reinforcement ratio. In the case of a 0.15% reinforcement ratio, no feasible

region could be found, as the depth required is more than the maximum depth constraint. The

above results indicate therefore that perhaps the current cross-section is not ideal when it comes

to dealing with pre-stressed design since the eccentricity increase due to an increase in depth of

the cross-section is offset by a lowering of the cross-section centroid location as the fabric is

allowed to sag even further. This leads into a search of certain cross-sections that guarantee a

larger eccentricity i.e. that have a larger area of concrete allocated in the compression zone.
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Figure 5.3 A sample output of the feasible region method for a pre-stress ratio of 0.5 and 0.15 %
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5.5 Summary

A methodology of a feasible region method is proposed which uses dimensionless polynomial

relationships amongst the variables in order to express the problem in terms of the decision

variables of xO and 1. The output of the method on the sample problem however indicates

counter-intuitive results that hint at the need for a better cross-section for pre-stressed concrete

beams, which will be discussed in the next chapter.
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6. Conclusions

This chapter summarizes the contributions of this thesis and discusses the potential implications

for future work. In order to fully deal with the optimization problem, a background overview the

topic of fabric formed reinforced beams is introduced in Chapter 2. Chapter 3 then explains the

approach to the problem of optimal fabric formed reinforced concrete design using two main

methods. Chapter 4 illustrates a sample output of the two methods. Chapter 5 introduces the pre-

stressed design optimization proposes a feasible region solution method. It also discusses some

results of the optimization method.

6.1 Summary of Contributions

Both the analytical optimization method and the feasible region method produce similar results

as shown in Chapter 4. The results show that a material savings of up to 55% is possible using

the feasible region method. The methodology of the feasible region method is simpler than the

analytical optimization method and could also be used by designers who might want to explore

the optimization of more complex cross-sections. A similar methodology to the feasible region

introduced above could be followed, which is summarized in Figures 6.1 and 6.2 that show a

flow chart of the main steps to design reinforced and pre-stressed fabric formed beams assuming

that the form-finding method doesn't radically change.
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|Reinforced Concrete
| Design

Specify Input Parameters: Moment, Shear,
Maximum Depth

Develop dimensionless relations between A/A^2, yo/l and 2x0/I using the
form-finding polynomial approximations

Transform moment constraint into a dimensionless inequality. Ie. A relation
between Mu/A3 and A/A2,yO/l and

_ Transform shear constraint into a dimensionless inequuality. i.e a relation between
Vu/A2 and A/A2

_ Plot the Moment, Shear and maximum depth constraints above the objective
function and establish the feasible region for various widths

Figure 6.1 A flow chart showing the main steps needed to design an optimum cross-section offabric in reinforced concrete
design
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Pre-stressed Concrete
Design

Specify Input Parameters: Moment, Shear,
Maximum Depth

Fix a -particular reinforcement ratio

Loop over all the possible ratios of 2x0/I from 0 to I and find dimensionless
relations between Z/IA^3, A/IA^2, ecc/l and yp/I by calculating the different section

modulii and eccentricities

_ Transfonr stress constraint into a dimensionless inequality. i.e. A
relation between Z/IA^3 and A/A^2 and yo/I

Transform moment constraint into a dimensionless inequuality. i.e a
relation between Mu/A3 , A/l^2, and yo/l

_Transform shear constraint into a dimensionless inequuality. i.e
a relation between Vu/l^ 2 and A/l^ 2

Plot the Stress, Moment, Shear and maximum depth constraints above
-- the objective function and establish the feasible region for various

widths

Figure 6.2. A flow chart showing the main steps needed to design an optimum cross-section offabric in prestressed concrete

design

6.2 Directions for future work

There are two key areas for future work which are proposed. First, based on the results from

Chapter 5, it is necessary to look at alternative cross-sections for pre-stressed fabric formed

beams. Second, it is important to consider constructability and feasibility of fabrication of the

pre-stressed fabric formed beams.

The desired cross-section for pre-stressed fabric formed beams might resemble the one

introduced by (Garbett, Darby, & Ibell , 2010) and discussed in (Orr, 2012). The cross-section

below guarantees a considerable eccentricity and at the same time the same form-finding

methods explained above could be implemented to predict the shape. Therefore the same
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methodology followed for the feasible region method could be implemented on the cross-section

shown below. A general methodology summarizing the feasible region method is presented by

Figure 6.3.

Desired beam section

Figure 6.3. Picture taken from (Orr, 2012)

Since the cross-section is fixed above the bulb shape achieved by the fabric, the above

polynomials could be simply modified in order to re-assess the feasibility of using pre-stress in

fabric formed beams that hint at a better potential to make use of a large eccentricity.

In terms of constructability and feasibility of fabrication, regardless of the shape of the beam

decided on, and in order to ensure a zero eccentricity at the supports of the beam, the pre-

stressing jack will have to be located at the centroid of the cross-section. This might introduce

certain conflicts as to the feasibility of joining two beams together, however a solution such as

providing a countersink in the beam at the supports might be proposed. The below solution is

inspired from the idea of stitching two precast beams on-site as proposed by (Orr, 2012) and

shown in Figure 6.4. A speculation on how the construction might be implemented is shown in

Figure 6.5.
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Insitu Stitch
I

miii

Bars cast -

into column

Precast T
Beams

Figure 6.4. Picture taken from (Orr, 2012) which shows an insitu stitch of two precast concrete beams that meet on a column

Jack Location

Pre-stressed Reinforcement-

Pre-stressed Concrete Beam

I

Insitu Stitch

Jack Location

Pre-stressed Reinforcement

Pre-stressed Concrete Beam

"- Column

Figure 6.5. Picture inspired from (Orr, 2012) which shows an insitu stitch of two pre-stressed concrete beams with a countersink
to allow spacefor the pre-stressed jacks at the supports.
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6.3 Concluding Remarks

The thesis advances the design of fabric formed beams in order to reach well-defined methods to

optimize the design of reinforced and fabric formed beams. The topic of fabric formwork is

increasingly proving to be a feasible solution to ensure material efficiency. The importance of

flexible formwork is in the fact that it encompasses various features that are becoming more

attractive in the near future:

* Relatively lighter pre-cast beams to be transported onto site,

" Increasing the aesthetic beauty of the structure

* Ensuring that minimal material is used.
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Appendix

Validation of Form-Finding Modeling
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Figure A.1 Matlab output of the model used in this thesis
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Figure A.2 Picture taken from losilevskii (2009)
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Properties of Fabric Cross-section
function [area_transformed,Ztop,Zbottom,eccentricity,Yt,xs,ys]=fabpropertiesf(rx,l,yp,Ap,n)

% The following function calculates the section properties of the concrete section as well as of the transformed

section.

% rx is the ratio of the top width (2x0) and the fabric length I

% yp is the position of the prestress reinforcement taken relative to the top most compression fiber

% Ap is the area of pre-stressed reinforcement used

% n is the ratio of the modulus of elasticity of pre-stressed steel to concrete

%estimating k and K from the polynomial approximations

k=-16.982*(rx)A6+45.557*(rx)A5-46.567*(r x)A4+22.267*(rx)A3-5.2611*(rx)A2+ 0.138*(rx)+0.8985;

K=16.079*kA6 - 37.911*kA5 + 35.039*kA4 - 15.13*kA3 + 3.4482*kA2 - 0.2272*k + 1.5717;

% choosing the number of iterations

niter=100;

% Initializing the parameters

thetas=linspace(-pi/2,0,niter);

m=kA2;

xs=zeros(niter,1);

ys=zeros(niter,1);

area trapezoid=zeros(niter,1);

centroidtrapezoid=zeros(niter,1);

moment_trapezoid=zeros(niter,1);

% populating the profile of the fabric (xs, and ys)

for i=1:niter

F=ellipticF(thetas(i),m);

Es=ellipticE(thetas(i),m);

xs(i)=-I*((Es/K)-0.5*(F/K));
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ys(i)=l*((k/K)*cos(thetas(i)));

end

% calculating the area, centroid and moment of inertia using parallel axis theorem, and by splitting the section
into small trapezoids

for j=2:niter

a=2*xs(j-1);

b=2*xs(j);

h=ys(j)-ys(j-1);

areatrapezoid(j)=(a+b)*h/2;

centroid-trapezoid(j)= h*(2*a+b)/(3*(a+b))+ys(j-1);

moment trapezoid(j)= hA3*(aA2+4*a*b+bA2)/(36*(a+b));

end

%------ Finding the aggregate properties of the Concrete Section

area= sum(areatrapezoid);

centroid= (centroidtrapezoid'*area_trapezoid)/area;

moment=momenttrapezoid+area trapezoid.*(centroidtrapezoid-centroid.*ones(niter,1)).A2 ;%Parallel Axis
theorem

moment=sum(moment);

Yt=centroid;

Yb=ys(length(ys))-centroid;

Zt=moment/Yt;

Zb=moment/Yb;

% Expanding the profile on each side with an area of (n-1)*Ap/2 in order to get a transformed section

%---- Transformed Section Properties

delta=abs(ys-yp.*ones(niter,1));
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markp=find(delta==min(delta));

if markp ~= length(ys)

htrans=ys(markp+1)-ys(markp);

atrans=0.5*((n-1)*Ap/htrans-(xs(markp)-xs(markp+1)));

btrans=atrans+xs(markp)-xs(markp+1);

else

htrans=ys(markp)-ys(markp-1);

atrans=0.5*((n-1)*Ap/htrans-(xs(markp)-xs(markp-1)));

btrans=atrans+xs(markp-1)-xs(markp);

end

% Finding the aggregate properties of the transformed section.

areatrans= htrans*(atrans+btrans)/2;

centroidtrans=htrans*(2*atrans+btrans)/(3*(atrans+btrans))+ys(markp);

momenttrans= htransA3*(atransA2+4*atrans*btrans+btransA2)/(36*(atrans+btrans));

areatransformed=2*areatrans+area;

centroidtransformed=(centroid*area+2*areatrans*centroidtrans)/(area+2*areatrans);

momentfabric=sum(moment_trapezoid+areatrapezoid.*(centroid_trapezoid-

centroidtransformed.*ones(niter,1)).A2) ;%Parallel Axis theorem

momenttransformed=2*(momenttrans+areatrans*(centroidtrans-centroidtransformed)A2)+momentfabric;

Yt=centroidtransformed;

Yb=ys(length(ys))-centroidtransformed;

Ztop=momenttransformed/Yt;

Zbottom=momenttransformed/Yb;
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eccentricity=yp-centroid_transformed;
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Generation of Relationships and Results
The following python code generates the dimensionless relationships between the section

moduli, eccentricity, area, and top width of the fabric cross -section. It also generates the plots

based on the feasible region method.

# coding: utf-8

# Author: Marwan Sarieddine

# Reinfoced Concrete Design

# In[1]:

#Minimizing graphically:

import numpy as np

import matplotlib.pyplot as plt

#%pylab inline

ratiowidth= np.arange(0,1,0.0001)

x=ratiowidth

ratioArea=-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066

# $$ \frac{As}{l^2}= \rho *ratioArea $$

# Dimensionless Objective Function

# $$ \frac{f}{l^2}= C_1 ratioArea+ C_2*As/lA2 $$

# $$ \frac{f}{l^ 2}= ratioArea(C_1+ C_2 \rho) $$

# In[2]:

C1=1

C2=9

pmin=0.018 # minimum reinforcement

pmax=0.030 # maximum reinforcement

# In[17]:

from matplotlib.fontmanager import FontProperties

# Now taking real values for Vu, Mu, "^2, xO;

Mu=187500.0 # lb-ft

Vu=0;

xO=4.0;
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# for midspan only 1 real constraint:

# now trying xO, and I combination

I=np.arange(2.0*xO,20.0*xO,1);

xO=xO*np.ones([np.shape()[0]])

depth Max=20.0*np.ones([np.shape()[0]])

x=2.0*xO/l

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

phi=0.9

fy=60000.0

RHS1=phi*pmin*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0) # yO-2 estimated as 90% of yO

RHS2=phi*pmax*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0)

fmin=Area*(C1+C2*pmin)

fmax=Area*(C1+C2*pmax)

fig=plt.figure)

axl=plt.subplot2grid((3,10),oc=(0,0),cospan=4)

ax2=plt.subplot2grid((3,10),Ioc=(1,0),colspan=4,sharex=axl)

ax3=plt.subplot2grid((3,10),Ioc=(2,0),colspan=4,sharex=axl)

axl.plot(I,RHS1,color='g',label='moment capacity min-reinforcement')

axl.plot(,RHS2,color='b')

axl.plot(I,(Mu)*np.ones([np.shape(I)[0]]),color='r',label='Iimitmoment',s='dashed')

axl.plot(41.6*np.ones([np.shape()[0]]),np.linspace(,max(RHS2),np.shape()[0]),label='Garbett (2010)',color='y')

axl.setylabel('Moment (lb-in)')

# Put a legend to the right of the current axis

axl.set-title('xO=4.0 in')

axi.ticklabelformat(scilimits=(-1, 1))

ax2.plot(l,depth,color='b',label='depth')

ax2.plot(l,depthMax,color='r',label='depthMax',s='dashed')

ax2.plot(41.6*np.ones([np.shape()[0]]),np.linspace(,max(depth),np.shape(l)[0]),abel='Garbett (2010)',color='y')

ax2.setylim(5,30)

ax2.setylabel('Depth (in)')

ax3.plot(l,fmin,color='g',label='objective-min_reinf')

ax3.plot(l,fmax,color='b',label='objective-maxreinf')
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ax3.plot(41.6*np.ones([np.shape()[0]),np.Iinspace(0,max(fmax),np.shape(I)[0]),label='Garbett (2010)',color='y')

ax3.setylabel('Objective ')

ax3.setxlabel('fabric length (in)')

x0=5.0;

# for midspan only 1 real constraint:

# now trying x0, and I combination

I=np.arange(2.0*xO,12.0*xO,1);

xO=x0*np.ones([np.shape(l)[0]])

depthMax=20.0*np.ones([np.shape()[0]])

x=2.0*xO/l

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

RHS4=phi*pmin*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0) # y0-2 estimated as 90% of y0

RHS5=phi*pmax*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0)

fmin=Area*(C1+C2*pmin)

fmax=Area*(C1+C2*pmax)

ax4=plt.subplot2grid((3,10),loc=(0,5),colspan=4)

ax5=plt.subplot2grid((3,10),loc=(1,5),colspan=4,sharex=ax4)

ax6=plt.subplot2grid((3,10),loc=(2,5),colspan=4,sharex=ax5)

ax4.plot(l,RHS4,color='g',label='Moment capacity')

ax4.plot(l,RHS5,color='b')

ax4.plot(l,(Mu)*np.ones([np.shape(l)[0]]),color='r',label='Limitmoment',s='dashed')

ax4.plot(35.0*np.ones([np.shape(l)[0]]),np.linspace(0,max(RHS5),np.shape(l)[0]),label='Garbett, Darby, & lbell (2010)',color='y')

ax4.setylabel('Moment (lb-in)')

ax4.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax4.settitle('x0=5.0 in')

ax4.ticklabel-format(scilimits=(-1, 1))

ax5.plot(l,depth,color='b',label='Depth')

ax5.plot(l,depthMax,color='r',label='Depth Max',Is='dashed')

ax5.plot(35.0*np.ones([np.shape(l)[0]]),np.linspace(0,max(depth),np.shape(l)[0]),label='Garbett, Darby, & lbell (2010)',color='y')

ax5.legend(loc='center left', bbox_to_anchor=(1, 0.5))
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ax5.setylabel('Depth (in)')

ax5.setylim(5,30)

ax6.plot(l,fmin,color='g',label='Objective-min_reinf')

ax6.plot(l,fmax,color=b', label='Objective-maxreinf')

ax6.plot(35.0*np.ones([np.shape(l)[0]]),np.linspace(,max(fmax),np.shape(l)[0]),label='Garbett, Darby, & lbell (2010)',color='y')

ax6.setylabel('Objective')

ax6.legend(loc='center left', bboxto anchor=(1, 0.5))

ax6.setxlabel('fabric length (in)')

plt.showo

# ln[4]:

from matplotlib.fontmanager import FontProperties

# Now taking real values for Vu, Mu, A2, xO;

#span =36 ft

# tributary width = 18 ft

Mu=437400.0 # lb-ft

Vu=32400;

xO=5.0;

fc=4000;

# for midspan only 1 real constraint:

# now trying xO, and I combination

I=np.arange(2.0*xO,20.0*xO,1);

x0=5.0*np.ones([np.shape()[0])

depthMax=25.0*np.ones([np.shape(l)[0]])

x=2.0*x0/l

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

phi=0.9

fy=60000.0

RHS1=phi*pmin*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0) # yO-2 estimated as 90% of yO

RHS2=phi*pmax*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0)
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RHSshear=Area* 1.7*np.sqrt(fc)

LH Sshear=0.5*Vu*np.ones([n p.shape(l)[01])

fmin=Area*(C1+C2*pmin)

fmax=Area*(C1+C2* pmax)

fig=plt.figure()

ax1=plt.subplot2grid((4,10),loc=(O,0),colspan=4)

ax2=plt.subplot2grid((4,10),loc=(1,0),colspan=4,sharex=axl)

ax3=plt.subplot2grid((4, 10), loc=(2,O),colspan=4,sharex=ax1)

ax4=plt.subplot2grid((4,10),loc=(3,0),colspan=4,sharex=axl)

axl.ticklabelformat(scilimits=(-1, 1))

ax3.ticklabel-format(scilimits=(-1, 1))

axl.plot(I,RHS1,color='g',Iabel='moment capacity min-reinforcement')

axl.plot(I,RHS2,color='b',Iabel='moment capacity max-reinforcement')

axl.plot(I,(Mu)*np.ones([np.shape(l)[0]]),color='r',label='limitmoment',Is='dashed')

axl.setylabel('Moment (lb-in)')

# Put a legend to the right of the current axis

axi.settitle('xO=5.0 in')

axl.legend(loc='center left', bboxto_anchor=(1, 0.5))

ax2.plot(l,depth,color='b',label='depth')

ax2.plot(l,depthMax,color='r',label='depthMax',Is='dashed')

ax2.setylim(5,30)

ax2.setylabel('Depth (in)')

ax2.legend(loc='center left', bbox to_anchor=(1, 0.5))

ax3.plot(l,RHSshear,color='b',label='Shear Strength')

ax3.plot(l,LHSshear,color='r',label='Ultimate Shear',ls='dashed')

ax3.set-ylabel('Shear (lb)')

ax3.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax4.plot(l,fmin,color='g',label='objective-minreinf')

ax4.plot(l,fmax,color='b',label='objective-maxjreinf')

ax4.setylabel('Objective')

ax4.legend(loc='center left', bbox_to_anchor=(1, 0.5))

x0=10.0;
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# for midspan only 1 real constraint:

# now trying x0, and I combination

l=np.arange(2.0*xO,10.0*xO,1);

xO=10.0*np.ones([np.shape(l)[0])

depthMax=25.0*np.ones([np.shape(l)[0])

x=2.0*x0/l

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

RHS4=phi*pmin*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0) # yO-2 estimated as 90% of y0

RHS5=phi*pmax*fy*Area*(depth-0.31875*(87000.0)/(87000.0+fy)*(0.9*depth))/(12.0)

RHSshear=Area*1.7*np.sqrt(fc)

LHSshear=0.5*Vu*np.ones([np.shape()[0]])

fmin=Area*(C1+C2*pmin)

fmax=Area*(C1+C2*pmax)

ax5=plt.subplot2grid((4,10),loc=(0,5),colspan=4)

ax6=plt.subplot2grid((4,10),loc=(1,5),colspan=4,sharex=ax5)

ax7=plt.subplot2grid((4,10),loc=(2,5),colspan=4,sharex=ax5)

ax8=plt.subplot2grid((4,10),loc=(3,5),colspan=4,sharex=ax5)

ax5.ticklabelformat(scilimits=(-1, 1))

ax7.ticklabelformat(scilimits=(-1, 1))

ax5.plot(l,RHS4,color='g',label='Moment capacity')

ax5.plot(,RHS5,color='b')

ax5.plot(l,(Mu)*np.ones([np.shape(l)[0]]),color='r',label='Limitmoment',ls='dashed')

ax5.setylabel('Moment (lb-in)')

ax5.legend(loc='center left', bboxto anchor=(1, 0.5))

ax5.settitle('x0=10.0 in')

ax6.plot(l,depthcolor='b',label='Depth')

ax6.plot(l,depthMax,color='r',label='Depth Max',ls='dashed')

ax6.legend(loc='center left', bboxto anchor=(1, 0.5))

ax6.setylabel('Depth (in)')

ax6.setylim(5,30)

ax7.plot(l,RHSshear,color='b',label='Shear Strength (lb)')
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ax7.plot(I,LHSshear,color='r',label='Ultimate Shear (Ib)',Is='dashed')

ax7.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax7.setylabel('Shear (Ib)')

ax8.plot(l,fmin,color='g',label='Objective-minreinf')

ax8.plot(,fmax,color='b', label='Objective-max-reinf')

ax8.setylabel('Objective ')

ax8.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show(

# In[19]:

#-----------------Results Validation ------------------------

1=41.6

xO=4.0

x=2.0*x0/l

fc=4000.0 #in2

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

As= 0.03*Area #in2

print As

d= (0.45*As*fy)/(0.67*fc*0.9*2.0*x0)+(187500.0*12/(As*fy))+(1.0/2)+(0.2)

print "depth= " +str(depth) #in

print "Garbett depth= " +str(d)

#-------------------------------------------------------------

x=2*5.0/35.0

1=35.0

fc=4000 #in2

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

As= 0.020*Area #in2

print As

d= (0.45*As*fy)/(0.67*fc*0.9*2*10.0)+(187500.0*12/(As*fy))+(1.0/2)+(0.2)

print "depth= " +str(depth) #in
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print "Garbett depth= "+str(d)

x=2*5.0/32.0

1=35.0

fc=4000.0 #in2

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

As= 0.020*Area #in2

print As

# ## Prestressed Concrete Design

# In[5]:

import statsmodels.api as sm

import scipy.stats as stats

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import csv

from mpl toolkits.mplot3d import Axes3D

from matplotlib import cm

from matplotlib.ticker import LinearLocator, FormatStrFormatter

# In[6]:

with open('/Users/marwan/Downloads/ZtRatiol.csv','r') as f:

data=[row for row in csv.reader(f.read().splitlines()]

Ztop=np.asarray(data)

Ztop=Ztop.flatten()

Ztop=Ztop.astype(np.float)

with open('/Users/marwan/Downloads/Zbratio1.csv','r') as f:

data=[row for row in csv.reader(f.reado.splitlineso)]

Zbottom=np.asarray(data)

Zbottom=Zbottom.flatteno

Zbottom=Zbottom.astype(np.float)
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with open('/Users/marwan/Downloads/Area_ratiol.csv','r') as f:

data=[row for row in csv.reader(f.read).splitlines))]

RatioArea=np.asarray(data)

RatioArea=RatioArea.flattenO

RatioArea = RatioArea.astype(np.float)

with open('/Users/marwan/Downloads/Ypratiol.csv','r') as f:

data=[row for row in csv.reader(f.read).splitlines()]

RatioYp=np.asarray(data)

RatioYp=RatioYp.flatten()

Ratio_Yp = RatioYp.astype(np.float)

with open('/Users/marwan/Downloads/ecc_ratiol.csv','r') as f:

data=[row for row in csv.reader(f.read().splitlines))]

ecc=np.asarray(data)

ecc=ecc.flatten()

ecc = ecc.astype(np.float)

with open('/Users/marwan/Downloads/yp_yo.csv','r') as f:

data=[row for row in csv.reader(f.read().splitlineso)]

ypyo=np.asarray(data)

ypyo=ypyo.flatten()

ypyo=ypyo.astype(np.float)

with open('/Users/marwan/Downloads/Zt_ratio2.csv','r') as f:

data=[row for row in csv.reader(f.reado.splitlineso)]

Ztop2=np.asarray(data)

Ztop2=Ztop2.flatten()

Ztop2=Ztop2.astype(np.float)

with open('/Users/marwan/Downloads/Zb_ratio2.csv','r') as f:

data=[row for row in csv.reader(f.reado.splitlineso)]

Zbottom2=np.asarray(data)

Zbottom2=Zbottom2.flatten()

Zbottom2=Zbottom2.astype(np.float)

with open('/Users/marwan/Downloads/ecc2.csv','r') as f:
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data=[row for row in csv.reader(f.readO.splitlineso)]

ecc2=np.asarray(data)

ecc2=ecc2.flatten()

ecc2=ecc2.astype(np.float)

x=RatioArea

y=Ztop

z=RatioYp

e=ecc

e2=ecc2

# ln[7]:

X = sm.addconstant(zip(x*z,x**2,z**4,z**5,x**3*z**2), prepend=True) #Add a column of ones to allow the calculation of the intercept

k=1380

print y[k]

print -0.0004+ 0.1882*x[k]*z[k]+0.1810*x[k]**2-0.3212*z[k]**4+ 0.6212*z[k]**5+-5.4088*x[k]**3*z[k]**2

#fit the model

results = sm.OLS(y, X).fit()

print results.summary()

# ln[8]:

fig = plt.figureo

ax = fig.gca(projection='3d')

xs=np.linspace(min(x),max(x),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y=-0.0004+ 0.1882*X*Z+0.1810*X**2-0.3212*Z**4+ 0.6212*Z**5+-5.4088*X**3*Z**2

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,

linewidth=0, antialiased=False,alpha=0.2)

ax.scatter(x,z,y,c='k')

ax.setxlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.setylabel('yp/l')

ax.settitle(r"$Z_{top}$ vs. $\frac{A}{A2}$ and $yp$ (max reinforcement) $RA2=0.945$", fontsize=28, color='k')
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ax.zaxis.set major Iocator(LinearLocator(10))

ax.setylim3d(min(Ratio_Yp),max(RatioYp))

ax.zaxis.set_major_formatter(FormatStrFormatter('%.02f'))

#fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

# ln[10]:

x=RatioArea

y=Zbottom

z=RatioYp

X = sm.addconstant(zip(x,x*z,x**2,x**2*z,x*z**2,z**3), prepend=True) #Add a column of ones to allow the calculation of the intercept

k=1230

print y[k]

print 0.0015-0.0766*x[k]+0.4500*x[k]*z[k]+0.6576*x[k]**2-3.3384*x[k]**2*z[k]+0.6698*x[k]*z[k]**2-0.1488*z[k]**3

#fit the model

results = sm.OLS(y, X).fit()

print results.summary()

# In[11]:

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.set-title(r" $Z_{bottom}$ vs. $ \frac{A}{A2}$ and $yp$ (max reinforcement) $RA2$=0.906", fontsize=28, color='k')

xs=np.linspace(min(x),max(x),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y=0.0015-0.0766*X+0.4500*X*Z+0.6576*X**2-3.3384*X**2*Z+0.6698*X*Z**2-0.1488*Z**3

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,linewidth=0, antialiased=False,alpha=0.2)

ax.scatter(x,z,y,c='k')

ax.setxlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.setylabel('yp/l')

ax.zaxis.set_majorlocator(LinearLocator(10))

ax.setylim3d(min(RatioYp),max(RatioYp))

ax.zaxis.set_major formatter(FormatStrFormatter('%.02f'))

#fig.colorbar(surf, shrink=0.5, aspect=5)
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plt.show()

# In[12]:

# correlating eccentricity to ypyo

z=ypyo

X = sm.addconstant(zip(x*z,x**2,x**3,x**4*z), prepend=True) #Add a column of ones to allow the calculation of the intercept

k=150

print e[k]

print -0.0425+3.6055*x[k]*z[kI-23.7150*x[k]**2+130.4407*x[k]**3-431.6834*x[k]**4*z[k]

#fit the model

results = sm.OLS(e, X).fit()

print results.summary()

# ln[13]:

fig = plt.figure()

ax = fig.gca(projection='3d')

xs=np.linspace(min(e),max(e),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y=-0.0425+3.6055*X*Z-23.7150*X**2+130.4407*X**3-431.6834*X**4*Z

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,linewidth=0, antialiased=False,alpha=0.3)

ax.scatter(x,z,e,c='k')

ax.setxlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.setylabel('yp/yo')

ax.zaxis.setmajorlocator(LinearLocator(10))

ax.setylim3d(min(ypyo),max(ypyo))

ax.zaxis.setmajor formatter(FormatStrFormatter('%.02f'))

ax.set-title(r" Eccentricity vs $\frac{yp}{y_0}$ and $\frac{A}{A2}$ $RA2=0.908$ maximum reinforcement", fontsize=28, color='k')

#fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

# ln[14]:

# correlating Ztop2 to Area and Yp

x=RatioArea

y=Ztop2
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z=RatioYp

X = sm.addconstant(zip(x**2,x**3,x*z,x**2*z,z**2,z**2*x**2), prepend=True) #Add a column of ones to allow the calculation of the intercept

k=1354

print y[k]

print -0.0004-0.3223*x[k]**2+3.99650*x[k]**3+0.7534*x[k]*z[k]-4.4289*x[k]**2*z[k]-0.0739*z[k]**2+ 2.8848*z[k]**2*x[k]**2

#fit the model

results = sm.OLS(y, X).fit()

print results.summaryo

# ln[15]:

#Plotting Correlation:

fig = plt.figureo

ax = fig.gca(projection='3d')

ax.set-title(r" $Z_{top}$ vs. $ \frac{A}{A2}$ and $yp$ (minimum reinforcement) $RA2$=0.931", fontsize=28, color='k')

xs=np.linspace(min(x),max(x),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y=-0.0004-0.3223*X**2+3.99650*X**3+0.7534*X*Z-4.4289*X**2*Z-0.0739*Z**2+ 2.8848*Z**2*X**2

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,linewidth=0, antialiased=False,alpha=0.2)

ax.scatter(x,z,y,c='k')

ax.setxlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.set_ylabel('yp/yo')

ax.zaxis.setmajor locator(LinearLocator(10))

ax.setylim3d(min(RatioYp),max(Ratio_Yp))

ax.zaxis.setmajor formatter(FormatStrFormatter('%.02f'))

#fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show(

# ln[17]:

# correlating Zbottom2 to Area and Yp

x=RatioArea

y=Zbottom2

z=RatioYp
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X = sm.addconstant(zip(z,x**5,x**2*z**3,x*z,x**2,x**3,x**2*z,z**3), prepend=True) #Add a column of ones to allow the calculation of the
intercept

k=160

print y[k]

print 0.0006-0.0200*z[k]-36.5481*x[k]**5+4.9971*x[k]**2*z[k]**3+1.0607*x[k]*z[k] -0.8934*x[k]**2 +7.6885 *x[k]**3 -5.6349*x[k]**2*z[k]-
0.1310*z[k]**3

#fit the model

results = sm.OLS(y, X).fit()

print results.summary()

# ln[18]:

#Plotting Correlation Zbottom2 to Area and Yp:

fig = plt.figure()

ax = fig.gca(projection='3d')

ax.settitle(r" $Z_{bottom}$ vs. $ \frac{A}{l^2}$ and $yp$ (minimum reinforcement) $RA2$=0.864", fontsize=28, color='k')

xs=np.linspace(min(x),max(x),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y= 0.0006-0.0200*Z-36.5481*X**5+4.9971*X**2*Z**3+1.0607*X*Z -0.8934*X**2 +7.6885 *X**3 -5.6349*X**2*Z-0.1310*Z**3

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,linewidth=O, antialiased=False,alpha=0.2)

ax.scatter(x,z,y,c='k')

ax.set-xlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.setylabel('yp/yo')

ax.zaxis.set_majorlocator(LinearLocator(10))

ax.setylim3d(min(RatioYp),max(RatioYp))

ax.zaxis.setmajor formatter(FormatStrFormatter('%.02f'))

#fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show()

# ln[20]:

# correlating ecc2 to Area and Yp

x=RatioArea

y=ecc2

z=ypyo

X = sm.addconstant(zip(x**2*z**3,x*z,x**2,x*z**2,z**3), prepend=True) #Add a column of ones to allow the calculation of the intercept
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k=150

print e[k]

print -0.0067-17.1298*x[k]**2*z[k]**3-2.6493*x[k]*z[k]+1.6140*x[k]**2+6.6989*x[k]*z[k]**2-0.0623*z[k]**3

#fit the model

results = sm.OLS(y, X).fit()

print results.summaryo

# ln[22]:

#Plotting Correlation Zbottom2 to Area and Yp:

fig = pit.figure(

ax = fig.gca(projection='3d')

ax.set-title(r" $Eccentricity $ vs. $ \frac{A}{A2}$ and $\frac{yp}{y_0}$ (minimum reinforcement) $RA2$=0.911", fontsize=28, color='k')

xs=np.linspace(min(x),max(x),50)

zs=np.linspace(min(z),max(z),50)

X, Z = np.meshgrid(xs, zs)

Y= -0.0067-17.1298*X**2*Z**3-2.6493*X*Z+1.6140*X**2+6.6989*X*Z**2-0.0623*Z**3

surf = ax.plotsurface(X, Z, Y, rstride=1, cstride=1, cmap=cm.coolwarm,linewidth=0, antialiased=False,alpha=0.2)

ax.scatter(x,z,y,c='k')

ax.setxlabel('A/A2')

ax.setxlim3d(min(RatioArea),max(RatioArea))

ax.setylabel('yp/yo')

ax.zaxis.set_majorlocator(LinearLocator(10))

ax.setylim3d(min(ypyo),max(ypyo))

ax.zaxis.set_major formatter(FormatStrFormatter('%.02f'))

#fig.colorbar(surf, shrink=0.5, aspect=5)

plt.show(

# constraints:

# $$gl(x): yo \le depthMax $$ below horizontal line if plot depth versus length.

# $$g_2(x): -\frac{Pi}{A} - \frac{M_{DL}*12}{Z_{bottom}} + \frac{Pi*e}{Z_{bottom}} \le fr $$

# Rest of constraints same form.

# $$g_5(x): 0.9*P_i* \mu * d/12 \ge Mu $$

# ####Conducted Cases for 2x0/l from 0 to I and from yp/yO from 0 to 1

# ####for max-reinforcement by ACI

# ####for over max-reinforcement
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# ####for no reinforcement 3 cases taken into account

# Pi=factor*A and therefore first term cancels out.

# MDL is a constant

# Zbottom is a function of yo and A which can be written as a function of xO and therfore can draw a graph.

# eccentricity = yp-ycentroid / and therfore should also be a function of xO and I.

# simplified $g_2(x)$ is then

# C1*Z + C2 + constant*A*ecc <= Z units inA3 * lb/inA2 lb-in lb/inA2*inA2*in <= in^3 *lb.inA2

# C1*f(A,yo)+C2*A*f(yo) <= f(A,yo)

# simplif y into

# C1*f(x0)+C2*f(xo) <= f(xo) and plot it through xo vs I

# ln[631:

#setting up code:

fig=plt.figure()

axl=plt.subplot2grid((5,10),loc=(0,O),colspan=4,sharex=ax1)

ax2=plt.subplot2grid((5,10),loc=(1,0),colspan=4,sharex=axl)

ax3=plt.subplot2grid((5,10),loc=(2,O),colspan=4,sharex=axl)

ax4=plt.subplot2grid((5,10),loc=(3,0),colspan=4,sharex=axl)

ax5=plt.subplot2grid((5,10),loc=(4,0),colspan=4,sharex=axl)

ax6=plt.subplot2grid((5,10),oc=(0,5),colspan=4)

ax7=plt.subplot2grid((5,10),loc=(1,5),colspan=4,sharex=ax6)

ax8=plt.subplot2grid((5,10),loc=(2,5),colspan=4,sharex=ax6)

ax9=plt.subplot2grid((5,10),loc=(3,5),colspan=4,sharex=ax6)

axlO=plt.subplot2grid((5,10),loc=(4,5),colspan=4,sharex=ax6)

MDL=300000.0 # lb-ft

Vu=0 # shear at midspan

mu=0.85 # loss-ratio

phi=1.0 # prestressed

fp=230000.0 #ksi yield strength prestress

fr=450.0 #psi strength of rupture

fc=4000.0 #lb/inA2

C1=1.0
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C2=9.0

# need to specify

Apl= 0 # 2lines opposite boundaries

#yp= 0.5->1 *yo #what if it were a matrix ?

#Ap2= 0.1*A # for now

x0=10.0;

# for midspan only 1 real constraint:

# now trying xO, and I combination

I=np.linspace(4.0*xO,18.0*xO,100);

xO=10.0*np.ones([np.shape()[0]])

depthMax=25.0*np.ones([np.shape()[0]])

c=np.linspace(0.5,0.9,100)

c=0.9 # for now

x=2.0*xO/l

Area=l**2*(-7.1921*x**6 + 19.221*x**5 - 19.595*x**4 + 9.2215*x**3 - 2.0749*x**2 + 0.3744*x + 0.066)

depth=l*(-10.928*x**6 + 29.298*x**5 - 29.953*x**4 + 14.345*x**3 - 3.5258*x**2 + 0.4109*x + 0.3849)

yp=c*depth

Ztop=(l**3.0)*(-0.0004+ 0.1882*(Area/l**2)*(yp/l)+0.1810*(Area/l**2)**2-0.3212*(yp/)**4+ 0.6212*(yp/)**5+-
5.4088*(Area/l**2)**3*(yp/l)**2)

Zbottom=(l**3.0)*(0.0015-0.0766*(Area/l**2)+0.4500*(Area/l**2)*(yp/)+0.6576*(Area/l**2)**2
3.3384*(Area/l**2)**2*(yp/)+0.6698*(Area/l**2)*(yp/)**2-0.1488*(yp/)**3)

# diff is that here z=yp/yO = c

ecc=l*(-0.0425+3.6055*(Area/l**2)*c-23.7150*(Area/l**2)**2+130.4407*(Area/l**2)**3-431.6834*(Area/l**2)**4*c)

# {Pi}/{A} - {M_{DL}*12}/{Z_{bottom}} - (P_i*e}/{Z_{bottom }} < fr

#initial conditions:

#constraint 1 - tension above

# Max reinforcement need to change later

Cnstl=0.75*fp*0.005 #Ap=0.005*A

Cnst2=12*MDL

Cnst3=0.75*fp*0.005

RHS1=(-Cnst1-Cnst2/Ztop+Cnst3*Area*ecc/Ztop)# -Compression prestress uniform - DL compression moment + Eccentricity Tension

LHS1=fr*np.ones([np.shape(l)[0])

# constraint 2- compression below
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RHS2=(Cnstl-Cnst2/Zbottom+Cnst3 *Area*ecc/Zbottom)# Compression prestress uniform - DL tension moment + Eccentricity Compression

LHS2=fc*np.ones([np.shape(l)[0]])

# final conditions:

#constraint 3- compression above

# Max reinforcement need to change later

Mtotal=400000.0

Cnst4=0.75*fp*0.005*mu #Ap=0.005*A

Cnst5=12*Mtotal

Cnst6=0.75*fp*0.005*mu

RHS3=(Cnst4+Cnst5/Ztop-Cnst6*Area*ecc/Ztop)# Compression prestress uniform + total Compression moment - Eccentricity tension

LHS3=fc*np.ones([np.shape(l)[])

# constraint 4- tension below

RHS4=(-Cnst4+Cnst5/Zbottom-Cnst6*Area *ecc/Zbottom)# -Compression prestress uniform+ DL Tension moment - Eccentricity compression

LHS4=fr*np.ones([np.shape()[0]])

# Maximum Depth Constraint

RHS5=depth

LHS5=depthMax

# Moment Capacity Constraint

Mu=520000.0

RHS6=phi*0.75*fp*0.005 *Area*(depth-0.3 1875 *(87000.0)/(87000.0+fp)*(yp))/(12.0)

LHS6=(Mu)*np.ones([np.shape(l)[0]])

f=Area*(C1+C2*0.005)

axl.settitle('0.5% reinforcement')

axl.plot(,RHS1,color='g',label='tension stress')

axl.plot(,LHS1,color='r',label='fracture',s='dashed')

axl.plot(,RHS2,color='b',label='compression stress')

axl.plot(,LHS2,color='r',label='yield',ls='dashed')

axl.setylabel('Stress(psi)')

axl.setxlim(40,180)

axl.ticklabelformat(scilimits=(-1, 1))

ax2.plot(l,RHS3,color='b',label='compression stress')

ax2.plot(l,LHS3,color='r',label='yield',ls='dashed')

ax2.plot(l,RHS4,color='g',label='tension stress')
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ax2.plot(I,LHS4,color='r,label='fracture',ls='dashed')

#ax2.setylim(-5000, 10000)

ax2.setylabe('Stress(psi)')

ax3.plot(I,RHS,color='b',label='depth')

ax3.plot(I,LHS5,color='r',label='depthMax',Is='dashed')

ax3.set_ylabel('Depth(in)')

ax4.plot(I,RHS6,color='b',Iabel='Moment Capacity')

ax4.plot(I,LHS6,color='r',Iabel='Limit Moment')

ax4.setylim(0.5* Mu,4*Mu)

ax4.setylabel('Moment(lb-ft)')

ax5.plot(I,f,color='b',label='Objective function')

ax5.set_ylabel('Objective')

Ztop2=(l**3.0)*(-0.0004-0.3223*(Area/l**2)**2+3.99650*(Area/l**2)**3+0.7534*(Area/l**2)*(yp/l)-4.4289*(Area/l**2)**2*(yp/l)-
0.0739*(yp/l)**2+2.8848*(yp/)**2*(Area/l**2)**2)

Zbottom2=(I**3.0)*(0.0006-0.0200*(yp/l)-36.5481*(Area/l**2)**5+4.9971*(Area/l**2)**2*(yp/l)**3+1.0607*(Area/l**2)*(yp/1) -
0.8934*(Area/l**2)**2 +7.6885 *(Area/l**2)**3 -5.6349*(Area/l**2)**2*(yp/l)-0.1310*(yp/)**3)

ecc2=l*( -0.0067-17.1298*(Area/l**2)**2*(c)**3-2.6493*(Area/l**2)*(c)+1.6140*(Area/l**2)**2+ 6.6989*(Area/l**2)*(c)**2-
0.0623*(c)**3)

# {Pi}/{A} - {M_{DL}*12}/{Z_{bottom}} - {Pi*e}/{Z_{bottom}} < fr

#finitial conditions:

#constraint 1 - tension above

# Max reinforcement need to change later

CnstlO=0.75*fp*0.0015 #Ap=0.005*A

Cnstll=12*MDL

Cnstl2=0.75*fp*0.0015

RHS10=(-Cnstl-Cnst2/Ztop2+Cnst3 *Area*ecc2/Ztop2)# -Compression prestress uniform - DL compression moment + Eccentricity Tension

LHS10=fr*np.ones([np.shape(l)[0]])

# constraint 2- compression below

RHS11=(Cnst1-Cnst2/Zbottom 2+Cnst3*Area*ecc2/Zbottom2)# Compression prestress uniform - DL tension moment + Eccentricity Compression

LHS11=fc*np.ones([np.shape(l)[0])

# final conditions:

#constraint 3- compression above

# Max reinforcement need to change later

Mtotal=1.5*MDL
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Cnst4=0.75*fp*0.0015*mu #Ap=0.005*A

Cnst5=12*Mtotal #lb-in

Cnst6=0.75*fp*0.0015*mu

RHS12=(Cnst4+Cnst5/Ztop2-Cnst6*Area*ecc2/Ztop2)# Compression prestress uniform + DL Compression moment - Eccentricity tension

LHS12=fc*np.ones([np.shape(l)[O]I)

# constraint 4- tension below

RHS13=(-Cnst4+Cnst5/Zbottom2-Cnst6*Area*ecc2/Zbottom2)# -Compression prestress uniform+ DL Tension moment - Eccentricity
compression

LHS13=fr*np.ones([np.shape(l)[0]])

# Maximum Depth Constraint

RHS14=depth

LHS14=depthMax

# Moment Capacity Constraint

Mu=1.2*Mtotal

RHS15=phi*0.75*fp*0.005*Area*(depth-(0.31875*(87000.0)/(87000.0+fp))*yp)/(12.0)

LHS15=(Mu)*np.ones([np.shape(l)[0]])

f=Area*(C1+C2*0.0015)

ax6.set-title('0.15% reinforcement')

ax6.plot(I,RHS1,color='g',label='tension stress')

ax6.plot(I,LHS10,color='r',Iabel='fracture',Is='dashed')

ax6.plot(I,RHS11,color='b',Iabel='compression stress')

ax6.plot(l,LHS11,color='r',Iabel='yield',Is='dashed')

ax6.setylabel('Stress(psi)')

ax6.setylim(-10000,5000)

# Put a legend to the right of the current axis

ax6.legend(loc='center left', bboxto anchor=(1, 0.5))

ax6.ticklabelformat(scilimits=(-1, 1))

ax7.plot(l,RHS12,color='b',label='compression stress')

ax7.plot(l,LHS12,color='r',label='yield',Is='dashed')

ax7.plot(l,RHS13,color='g',label='tension stress')

ax7.plot(I,LHS13,color='r',label='fracture',ls='dashed')

ax7.setylabel(' Stress (psi)')
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ax7.setylim(-5000,10000)

# Put a legend to the right of the current axis

ax7.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax8.plot(I,RHS14,color='b',Iabel='depth')

ax8.plot(I,LHS14,color='r',label='depthMax',s='dashed')

ax8.setylabel('Depth(in)')

# Put a legend to the right of the current axis

ax8.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax9.plot(I,RHS15,color='b',label='Moment Capacity')

ax9.plot(I,LHS15,color='r',Iabel='Limit Moment',ls='dashed')

ax9.setylabel('Moment (lb-ft)')

# Put a legend to the right of the current axis

ax9.legend(loc='center left', bbox_to_anchor=(1, 0.5))

ax9.setylim(0.5*Mu,3*Mu)

axlO.plot(l,f,color='b',label='Objective function')

axlO.setylabel('Objective')

axlO.legend()

# Put a legend to the right of the current axis

ax10.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.show()
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Sample Results of the Feasible Region Method
Sample Output at Support
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Figure A.3. The feasible region results for xO= 5.0 in and 6.0 with the shear and moment constraints at the supports
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Sample Output at Quarter Span
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Figure A.4. The feasible region resultsfor xO= 5.0 in and 6.0 with the shear and moment constraints at quarter span
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Sample Output at Mid-span
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Figure A.5. The feasible region results for xO= 5.0 in and 6.0 with the shear and moment constraints at mid-span.
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Figure A.6. 3D visualization using Rhinoceros 3D@ of the fabricformed beam shown in green with the equivalent rectangular beam shown by the red box.
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