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Abstract

In this thesis, we use invariants inspired by quantum field theory to study the smooth
topology of links in space and surfaces in space-time.

In the first half, we use Khovanov homology to the study the relationship between links in
R3 and their components. We construct a new spectral sequence beginning at the Khovanov
homology of a link and converging to the Khovanov homology of the split union of its
components. The page at which the sequence collapses gives a lower bound on the splitting
number of the link, the minimum number of times its components must be passed through one
another in order to completely separate them. In addition, we build on work of Kronheimer-
Mrowka and Hedden-Ni to show that Khovanov homology detects the unlink.

In the second half, we consider knots as potential cross-sections of surfaces in R'4. We
use Heegaard Floer homology to show that certain knots never occur as cross-sections of
surfaces with small first Betti number. (It was previously thought possible that every knot
was a cross-section of a connect sum of three Klein bottles.) In particular, we show that any
smooth surface in R 4 with cross-section the (2k, 2k - 1) torus knot has first Betti number at
least 2k - 2.

Thesis Supervisor: Peter Ozsv~th
Title: Professor
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Chapter 1

Introduction

In the 1860s, fluid dynamics was cutting edge physics. Helmholtz had just shown that in
addition to propagating waves, fluids propagate vortices [16]. While friction eventually dis-
sipates waves in water and smoke rings in air, a frictionless fluid like ether-thought to carry
electromagnetic waves-would maintain a vortex forever. In 1867, Lord Kelvin made a bold
proposal: that atoms themselves are knotted vortices in the ether [46]. Chemical elements
would correspond to knot types: hydrogen to the unknot Q, carbon to the trefoil CQ, sodium
to the Hopf link C0. For about 20 years, Kelvin's theory of vortex atoms was taken quite
seriously, and mathematicians-notably Tait-began to attack the problem of enumerating,
classifying, and analyzing knots [43]. As his (aperiodic) table of knots grew, Tait encountered
a persistent problem: how to read the identity and interesting three-dimensional topology
of a knot from a diagram drawn on a page.

More than a century after its birth as a theory of matter, knot theory was revolutionized
by the new theory of quantum fields. In the late 1970s, the strong force was explained by a
Yang-Mills theory of SU(3)-connections on flat space-time (R'). In 1983, Donaldson studied
the behavior of this gauge theory on arbitrary simply-connected smooth four-manifolds.
Specifically, he used the moduli space of anti-self-dual SU(2)-connections on a manifold X4

to constrain its intersection form [7]. Signed counts of certain parts of the moduli space also
give numerical invariants, called Donaldson polynomials, which can be used to distinguish
exotic smooth structures on closed four-manifolds [8]. Kronheimer and Mrowka subsequently
used Donaldson polynomials to prove the Milnor conjecture on the unknotting numbers of
torus knots [21]. A movie of an unknotting sweeps out a singular orientable surface in space-
time, and the behavior of the anti-self-duality equations near the smoothing of that surface
can be used to bound its genus.

If a compact four-manifold X has boundary Y, its Donaldson invariants are no longer
integers. They properly take values in a vector space I(Y), called the instanton Floer
homology of Y [10]. If X has two boundary components, i.e., X is a cobordism from Y to
Y2 , then it induces a linear map Fx : I(Y) -- I(Y2) [3]. This was the first instance of a
"topological quantum field theory," or TQFT: one can think of I(Y) as the Hilbert space of
ground states for a quantum system on Y and the map Fx as time evolution [47].

In 1994, Seiberg and Witten introduced a different set of partial differential equations
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designed to see similar topology to the anti-self-duality equations and to be easier to manage
analytically [391. Within months, two teams independently used the SW equations to prove
the Thom conjecture: algebraic curves in CP2 minimize genus in their homology class 122,
25]. A corresponding Floer homology for 3-manifolds-monopole Floer homology-was soon
constructed [231. In 2001, Ozsvith and Szab6 defined a more computable analogue called
Heegaard Floer homology: a 3-manifold Y is assigned a suite of abelian groups HF (Y),
and a cobordism W : Y -+ Y2 is assigned a linear map F& : HF(Y) -+ HF(Y 2) [331. In
Chapter 3, we will use Heegaard Floer homology-especially its rational grading-to study
which knots can appear as cross-sections of which nonorientable surfaces in R4 .

At the same time that Donaldson applied gauge theory to the study of four-manifolds,
Jones applied two-dimensional statistical physics to the study of knots. He associated to
a braid an element of a von Neumann algebra; the Jones polynomial of a knot given as
the closure of a braid is the trace of that element [17]. The Jones polynomial of a knot
K C S3 is a Laurent polynomial J(K) Z[q, q- 1 ]. Urged by Atiyah, Witten realized the
Jones polynomial as a three-dimensional quantum phenomenon: a Wilson line observable in
Chern-Simons field theory [48]. What sort of topology that theory can see remains unclear.
For example, it is still unknown whether the Jones polynomial can detect the unknot.

1.1 Skein relations, surgery triangles, and spectral se-
quences

The Jones polynomial can also be defined in terms of an unoriented skein relation. If three
links admit planar diagrams differing from each other at only one crossing, their Jones
polynomials J(X), J('.), and J()() are linearly related. Since J(C) = q + q-1, the Jones
polynomial of any knot can be computed recursively by resolving crossings.

Khovanov categorified this construction. Given a diagram D of a link L C S3 , one
can write down an explicit bigraded chain complex (Ci'j (D), do) with homology Kh'J (K).
Cobordisms of links induce maps of complexes. The Jones polynomial can be recovered by
counting the generators with weight (-1)'qj, and the skein relation is promoted to an exact
triangle:

C(X) = Cone (Fsaddle : C(>) - CO()) ,

where the map Fsaddle is induced by a saddle cobordism between the two resolved diagrams.
In fact, Khovanov homology can be defined by giving the theory for unlinks, then iteratively
resolving all of the crossings in a link diagram D to build a cube of resolutions.

This skein relation is reminiscent of the surgery exact triangle in Floer theory. Let Y be
a three-manifold containing a knot K, and write Y,(K) for the manifold given by p-surgery
along K. Then

CF0 (Y) = Cone (Fw : CF (Yo(K)) -+ CF0 (Y1(K)),

where CF' is a chain complex computing HF0 and W is a cobordism given by attaching a
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single 2-handle to Y. If Y is a branched double cover of a link L c S', then the branched
covers of the two resolutions of L are related to Y by 0- and 1-surgery. Iterating this
process gives a cube whose vertices and edges, but one with longer diagonals as well as edges
(essentially because one must take an A,-cone). The Khovanov homology of an unlink is
isomorphic to the Heegaard-Floer homology of the branched double cover of an unlink, so the
vertices of the two cubes for a fully resolved link are identical. This gives a spectral sequence
from the Khovanov homology of L to the Heegaard-Floer homology of the branched double
cover of L. In Chapter 2 will use a refinement of this spectral sequence due to Hedden and
Ni to lift geometric information from Heegaard-Floer homology up to Khovanov homology.

Kronheimer and Mrowka constructed a similar spectral sequence, from the Khovanov
homology of a knot K to its singular instanton knot Floer homology, a Floer theory built
from SU(2)-connections with prescribed singularities along K [241. The latter group is
nontrivial for nontrivial knots, so:

Theorem 1.1 (Kronheimer-Mrowka). Let K be a knot, and U the unknot. If

rank Kh(K) = rank Kh(U),

then K is the unknot.

1.2 Splitting links

In Chapter 2, we construct a deformation of Khovanov homology for links. We use it to
show that Khovanov homology detects the unlink:

Theorem 1.2. Let L be an m-component link, and Um the m-component unlink. If

rank Khi'3 (L; F2 ) = rank Khi' (Um; F2 )

for all i, j, then L is the unlink.

In contrast, there are infinite families of links with the same Jones polynomial as the
unlink [9, 45].

We also address the question, "How far is a link from being split?" Since any link can
be converted to the split union of its component knots by a sequence of crossing changes
between different components, it is sensible to define the splitting number of a link as the
minimum number of crossing changes needed in such a sequence. (It is analogous to the
unknotting number of a knot.) For example, the two-component link in Figure 1.1 can be
split into an unknot and a trefoil by changing three crossings. We show that this is best
possible.
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Figure 1.1: The link 2Ll3n3752 has splitting number 3.

Our deformation of Khovanov homology (illustrated for 2-component links in Figure 1.2)
gives rise to a spectral sequence.

Theorem 1.3. Let L be a 2-component link, with components K1 and K2 . Let F be a field.
Then there is a spectral sequence with pages E,(L), satisfying

E 1(L) ' Kh(L; F) and E..(L) 2 Kh(K; F) 0 Kh(K2 ; F).

If the spectral sequence has yet to collapse by page k, then L has splitting number at least k.

This gave the first nontrivial lower bounds on the splitting number. Cha, Friedl, and
Powell have recently given an entirely different construction of lower bounds using Alexander
invariants and covering links [4].

For links with more than two components, one must choose for each component a weight
w E F. The corresponding spectral sequence will be described in detail at the beginning of
Chapter 2, as will the strategy of proof.

LI
I
-L
LA

]
I 4-

Figure 1.2: The Khovanov complex of
a 2-step complex. If the link has two
do to d = do + d, is given by adding in

a diagram D is given by replacing each crossing with
components, then our deformation of the differential
backward maps at crossings mixing the components.
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1.3 Slicing surfaces

Let F be a surface smoothly embedded in R'. Viewing the first coordinate of R' as time
makes F into a movie' in which almost every frame is a link in R3 . Figure 1.3 shows an
embedded Klein bottle with the torus knot T2,5 and the unknot as cross-sections.

Every knot K C R' can be realized as a cross-section of some surface in four-space. For
example, one may take two Seifert surfaces for K placed in {+1} x R3 together with the
cylinder [-1, 1] x K; smooth the corners to get an embedded F C R' with K = Ffn{O} x R.
(All maps and manifolds we discuss will be smooth.) However, most knots cannot be realized
as a cross-section of an embedded sphere-Milnor and Fox [11] showed that the Alexander
polynomial of such a "slice" knot must factor as AK(t) = ±p(t)p(t1 ) for some polynomial p
with integer coefficients.

Some knots never appear as cross-sections of orientable surfaces with low genus. This
was first shown by Murasugi, who proved that if K is a cross-sectional slice of an orientable
surface F, then bi(F) is at least twice the knot signature -(K) [28]. The signature of T2 ,,
is n - 1, for example, so any orientable surface with T2,n as a cross-section must have first
Betti number at least 2n - 2.

Techniques from gauge theory, Floer homology, and Khovanov homology have given many
additional obstructions to realizing certain knots as slices of low-genus orientable surfaces
[21] [32] [37]. Since these bounds are tight for T2,n, which is a slice of a Klein bottle, and
2n - 2 > 2 for n > 2, the bounds do not hold for nonorientable surfaces. The global property
of orientability, perhaps recast as the existence of a top homology class, a complex structure,
or an infinite cyclic branched covering space, is used in a crucial way. Some obstructions
have been found to particular knots appearing as slices of a Klein bottle Kl or Kl#Kl in
R4 ([49, 27], see [13] especially for a comprehensive survey). But the possibility remained
that every knot could be realized as a cross-section of, say, # 3K1. We show that this is not
the case.

Theorem 1.4. If the torus knot T2k,2k-1 is a cross-section of a smoothly embedded surface
F C R4 , then b1(F) > 2k - 2.

Suppose that a knot K is the intersection of a surface F C R4 with a hyperplane. That
hyperplane cuts F into two pieces F and F2 , each of which has boundary K. If we add the
point at infinity to R4 to form the four-sphere, then the knot K lives in an 'equatorial' S3

and each F lives in a 'hemisphere' B4. Doubling either half (B4 , F) across the boundary
would produce a new closed surface with cross-section K. Since bl(F) = bl(F 1 ) + bi(F 2)
2 min(bi (F)), a surface of minimal b1 with cross-section K can always be found by doubling.
(Both surfaces in Figure 1.3 are doubles, as the movies are symmetric.) So it is enough to
consider surfaces in B 4 with boundary the knot.

Definition 1.5. The (non)orientable slice genus of a knot K C S3 is the smallest first Betti
number of any smoothly embedded (non)orientable surface F C B4 with boundary K.

1Ayumu Inone has rendered an excellent movie of a sphere with cross-section the stevedore knot (http:
//www .youtube . com/watch?v=61IM9p6XOKo)
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0= 0

Figure 1.3: A Klein bottle and a genus four orientable surface in four-space, each with cross-
section T2 ,5 . The topology of each surface can be deduced from its Euler characteristic (count
births, deaths, saddles) and orientability (try to consistently orient the cross-sections).

To show that a knot is not the boundary of a surface with small first Betti number, we
must bound both its orientable and nonorientable slice genus. We give a new bound for the
latter.

Theorem 1.6. Suppose that K C S' bounds a smoothly embedded, nonorientable surface
F c B'. Then

bi(F) ;> - d (S3 1(K)),
- 2

where o denotes the Murasugi signature and d the Heegaard-Floer d-invariant of the integer
homology sphere given by -1 surgery on K.

The strategy of the proof is as follows. (For a pictorial outline, see Figure 1.4). First, we
replace our nonorientable surface in B 4 with an orientable surface in another manifold:

Proposition 1.7. Let F C B4 be a smoothly embedded nonorientable surface with odd b1

and boundary a knot K c S'. Then there exists a smoothly embedded orientable surface
F' C S2 x S 2\B 4 , also with boundary K, and with b1(F') = b1(F) - 1 and e(F') = e(F) + 2.

The expression e(F) denotes the (relative) normal Euler number of F, a measure of the
twisting of the normal bundle of F. (While orientable surfaces in B4 always have trivial
normal bundle, nonorientable ones may not.) This construction is similar to one in [49].

We then attach a -1-framed 2-handle along K to get a four-manifold W with boundary

_,1 (K). (We write Sp(K) for the product of p-surgery along K c S3 .) There is a closed,
orientable surface E in W formed by the union of F' and the core of the 2-handle. Excizing
a neighborhood of E from W produces a negative semi-definite cobordism W from a circle

14



F

B4

S3

Start with a nonorientable surface F C B 4

F1

K 14DW

s2 2 \BA

3

Find an orientable replacement

3 (K)

Build a closed surface in W

Figure 1.4: The topological steps in the proof of Theorem 1.8
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bundle over E to S' I(K). The definiteness of W gives us an inequality between the Heegaard-
Floer d-invariants of its two boundaries, ultimately yielding:

Theorem 1.8. Suppose that K c S3 bounds a smoothly embedded, nonorientable surface
F c B'. Then

bi (F) > e(F) - 2d (S3 1 (K)).
-2

To prove Theorem 1.6, we cancel the Euler number using:

Theorem 1.9 (Gordon-Litherland, [14]). Suppose that K C S3 bounds a smoothly embedded,
nonorientable surface F C B4 . Then

b1(F) ;> o(K) - .(F)
2

The d-invariants in Theorem 1.6 are determined by the Alexander polynomial of the
knot K if it admits a lens space surgery. For a general knot, they can be computed using an
algorithm beginning with the filtered Heegaard Floer knot complex CFK (K) [36]. Using
a recursive formula of Murasugi for the signatures of torus knots-which do admit lens space
surgeries-we can compute our lower bound for all torus knots.

There is a simple construction of nonorientable cobordisms between torus knots: pinch
parallel strands, then pull taut. Beginning with T,q and composing these cobordisms pro-
duces a surface Fp,q c B4 . (See Section 3.4.)

Conjecture 1.10. Suppose Tp,q bounds a smoothly embedded surface F C B4 . Then b1(F) ;
bi (F,q).

We show that this conjecture holds for infinitely many torus knots, including T2k,2k-1.
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Chapter 2

A link splitting spectral sequence

In this chapter, we construct the link splitting spectral sequence. It begins at the Kho-
vanov homology of a link and converges to the Khovanov homology of the split union of its
components.

Theorem 2.1. Let L be a link and R a ring. Choose a weight w, E R for each component
c of L. Then there is a spectral sequence with pages Ek(L, w), and

E1 (L, w) L-- Kh (L;- R).

If the difference we - wd is invertible in R for each pair of components c and d with distinct
weights, then the spectral sequence converges to

Kh ( L(r); R,
(rER

where L(r) denotes the sub-link of L consisting of those components with weight r.

Corollary 2.2. Let F be any field, and let L be a link with components K 1,..., Km. Then

rank Kh(L; F) ;> rank ®&_1Kh(Kc; F).

Each choice of weights for a link L gives a lower bound on the splitting number.

Theorem 2.3. Let L be a link and let w, G R be a set of component weights such that

W - Wd is invertible for each pair of components c and d. Let b(L, w) be largest k such that
Ek(L,w) # Eo( L,w). Then b(L,w) < sp(L).

The spectral sequence only depends on the differences of the weights, {we - Wd}. For
a two-component link, there is a just one difference w = W1 - w2 E R. It turns out that
different choices of nonzero w produce isomorphic spectral sequences.

Proposition 2.4. Let L be a link with 2 components, and w1 , w2, w1, w E R choices of
weights such w = w1 - w2 and w' = w' - w' are invertible. Then E,(L, w) E,(L, w').
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Theorem 1.3 follows by applying the above to a two-component link L, with coefficients
in a field F and weights w, = 0 and w2 = 1.

The proof of Theorem 1.2, that the Poincare polynomial of Khovanov homology detects
the unlink, depends on two earlier spectral sequences that relate Khovanov homology to more
manifestly geometric invariants coming from Floer homology. As discussed in Section 1.1,
Ozsvdth and Szab6 constructed a spectral sequence beginning at the Khovanov homology
of a link and converging to the Heegaard Floer homology of its branched double cover [341.
The second, constructed by Kronheimer and Mrowka, begins at the Khovanov homology of
a knot and converges to its instanton knot Floer homology [24]. The latter was used to prove
that the only knot K with rank Kh(K) = 2 is the unknot.

The Khovanov homology groups contain more information than their ranks alone-there
is a natural action of the algebra

Am = IF2[Xl, . .. , Xm/X 2, i

on the homology of an m-component link. Hedden and Ni [15] showed that the entire
spectral sequence of Ozsvdth and Szab6 admits a compatible Am action. They then used
Floer homology to detect S1 x S2 summands in the branched double cover of the link, and
showed:

Theorem 2.5 (Hedden-Ni). Let L be an rn-component link, and U the m-component un-
link. If there is an isomorphism of Am modules

Kh(L; 72) -- Kh(UM; IF2),

then L is the unlink.

To prove Theorem 1.2, we apply our spectral sequence with component weights in a
suitably large finite field F of characteristic 2. We lift the Am-module structure from the
abutment of our spectral sequence, which turns out to be isomorphic to Kh(Um; F), to the
first page, Kh(L; F), and then to Kh(L; F 2 ), where we apply Theorem 2.5.

In §2.1, we recall the construction of the Khovanov complex, define a filtered chain
complex C(D, w) which induces the spectral sequence Ek, and compute the E1 and E"
pages. In §2.2, we give an alternative construction of the deformation as a higher homotopy
coming from the chain-level ambiguity in the definition of the action by a marked point. In
§2.3, we verify that our spectral sequence is independent of the choice of link diagram by
checking invariance under the Reidemeister moves. In §2.4, we review how endomorphisms of
a filtered complex act on the associated spectral sequence and discuss the effect of changing
the filtration. In §2.5, we prove Theorem 2.3 on the splitting number. In §2.6, we give the
proof of unlink detection. In §2.7, we discuss computations illustrating the strength of this
spectral sequence and the splitting number bound.
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) ( 7->X
0 1

Figure 2.1: The 0 and 1 resolutions associated to a crossing.

2.1 Our construction

Khovanov's construction begins with a diagram D for a link L. He builds a cube of resolutions
for D and applies a (1 + 1)-dimensional TQFT A to produce a cube-graded complex. A
sprinkling of signs yields a chain complex (C(D), do) with homology Kh(L). We will give
another differential d on the same chain complex, but first we must set some notation.

A review of Khovanov homology

(Following [18] and [11.)
A crossing in a link diagram can be resolved in two ways, called the 0-resolution and

1-resolution in Figure 2.1. A (complete) resolution of D is a choice of resolution at each
crossing. Number the crossings of D from 1 to n so we can index complete resolutions by
vertices in the hypercube {0, 1}'. An edge in the cube connects a pair of resolutions (I, J),
where J is obtained from I by changing the ith digit from 0 to 1. A complete resolution I
yields a finite collection of circles in the plane, which we may also call I. An edge (I, J)
yields a cobordism from I to J, given by the natural saddle cobordism from the 0- to the
1-resolution in a neighborhood of the changing crossing and the product cobordism elsewhere.

A (1 + 1)-dimensional TQFT is determined by a commutative Frobenius algebra [20].
We fix a ring of coefficients R, and let A be the TQFT associated to the Frobenius algebra
V = H*(S 2 ; R) = R[x]/(x 2). The diagonal map i : S 2 - S2 x S 2 induces the multiplication
i* : H*(S2 x S 2 ) -+ H*(S 2). The comultiplication comes from Poincar6 duality, PDoi o PD:
H*(S 2 ) -+ H*(S 2 x S2). More explicitly, the multiplication m : V 0 V -+ V is given by

m(1 0 1) = 1 m(x & 1) = x
m(l 0 x) = x m(x 9 x) = 0,

and the comultiplication A: V -+ V 0 V is given by

A(1) =1 A() = 10x + x 1.

The TQFT A associates to a circle the R-module V and takes disjoint unions to tensor
products. The pair of pants cobordism that merges two circles into one induces the multi-
plication map m, and the pair of pants cobordism that splits one circle into two induces the
comultiplication map A.
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Let S = (x 1,. . . , x,) be a collection of circles. To simplify notation, we note that

p

A(S)= 0V
i=1

= R[x1,... , xt]/(xz,. , x ).

We will write elements of V(S) as (commutative) products of the circles xi rather elements
of the tensor product. Such a product of circles is called a monomial of S.

Applying the TQFT A to the cube of resolutions, we obtain a cube-graded complex of
R-modules. For each resolution I, we have an R-module A(I), and for each edge (I, J),
we have a homomorphism A(I, J) : A(I) -+ A(J). Khovanov's complex is obtained by
collapsing the cube-graded complex. We set

C(D) = V(I).
resolutions I

The differential do : C(D) - C(D) is given by

do = E(-1)n(I,J)A(I, J),
edges (I, J)

where, if (I, J) differ at i,

n(I, J) = #{I(k) = 11 <k <i}.

We define four related gradings on C(D) as follows. Let x E V(I). The homological or
h grading is given by

h(x) = Il - n_(D),

where Ill is the number of 1 digits in I and n_(D) is the number of negative crossings in D.
Monomials in V®P have a natural degree induced by

deg(1) = 0 and deg(xi) = 2.

The internal or f grading is given by

f(x) = deg(x) - p(I) - writhe(D),

where p(I) is the number of circles in the resolution I. The quantum or q grading is given
by

q(x) = h(x) - f (x)
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Finally, we define the g grading, a normalization of the q grading, by

q(x)- m
g(x) = ,2

where m is the number of components of L. (It turns out that g is always an integer [18,
§6.1].) The g grading will induce the filtration on C(D) in the definition of our spectral
sequence.

Khovanov's differential do increases both h and f by 1, so it preserves q and g. Khovanov
homology is

Kh(L) = H*(C(D), do),

and has a bigrading given by (h, q).

A choice of marked point on the diagram D induces an endomorphism of Khovanov
homology [19]: Let p be a marked point on D away from the double points. For a resolution
I, let xP = xp(I) denote the circle of I meeting p. Define a map Xp: C(D) -+ C(D) by

X,(x) = xPx

for x E V(I). The map X, is a chain map and shifts the (h, q) bigrading by (0, -2). The
map induced on homology, which we also call Xp, depends only on the marked component
and not on the choice of marked point.

The deformation

We begin by describing our construction in the case of a two-component link L with co-
efficients in F 2 . Khovanov's construction assigns a bigraded chain complex (C(D), do) to
a planar diagram D for L. We will give an endomorphism d, of C(D) with the following
properties:

(P1) d := do + di is a differential, which increases the E-grading by 1.

(P2) di lowers the g-grading by 1, making (C(D), d) a g-filtered complex.

(P3) If i is a crossing in D involving strands from different components of L (a mixed
crossing), and D' is the diagram for a link L' produced by changing over-strand to under-
strand at i, then (C(D), d) and (C(D'), d') are isomorphic chain complexes (with different
g-filtrations).

The new endomorphism is

di= A(J, I), (2.1.1)
mixed edges (I, J)

where an edge in the cube of resolutions is mixed if the I and J differ at a mixed crossing,
and (J, I) denotes the saddle cobordism (I, J) viewed backwards as a cobordism from J to
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I. The total differential

d = 1 A(I, J) + A(I, J) + A(J, I)
non-mixed edges (I, J) mixed edges (I, J)

is manifestly unchanged if we swap a mixed crossing. The square d2 can have a component
from V(I) to V(J) only when I and J differ at 2 crossings or when I = J. The former
vanish because they come in commuting squares (all maps are induced by cobordisms, and
those commute due to the TQFT). The latter will vanish too, essentially because each circle
in a complete resolution must have an even number of mixed crossings. We will establish
that d2 = 0 more carefully in Proposition 2.7, where we also handle multi-component links
and other rings of coefficients.

To define the endomorphism d, when there are more than two components, or over
bigger rings, we need some additional data. First, we must weight each component by an
element of the coefficient ring R: component c has weight w,. Then we must construct a
sign assignment so that d2 will be zero, not just even. As usual, different choices of sign
assignment will produce isomorphic complexes.

We now define a sign assignment. The shadow of the diagram D in the plane gives a CW
decomposition X of S2 : the 0-cells are the double points of the diagram, the 1-cells are the
2n edges between the crossings (oriented by the orientation of the link), and the 2-cells are
the remaining regions (with the natural orientation induced from S2 ). For each 1-cell e, let
e(0) denote the initial vertex and e(1) denote the final vertex.

Let

h(e.i) e is an upper strand at e(i)
-1 e is a lower strand at e(i),

where i c {0, 1}. There is a natural 1-cochain /3 X1 -+ Z/2, where Z/2 = {t1} is written
multiplicatively, given by

-1 h(e, 0) = h(e, 1)

1I otherwise.

A sign assignment is a 0-cochain s : X0 -+ {±1} such that

s(e(0))s(e(1)) = O(e), (2.1.2)

for all 1-cells e. This is equivalent to 6s = 0. Note that if D is an alternating diagram, then
s =1 is a legal sign assignment. In the definition of dl, we will use s to sign the weight of
the top strand at each crossing; the bottom strand will get the opposite sign. The condition
6s = / means that at adjacent crossings, connected by a strand in component c of the link,
the weight w, will appear with opposite signs in the contributions from each.

We now define the endomorphism d, of C(D) as

di= (1)n( 1 ,J)s(i)(Wover - Wunder)A(J7 1) (2.13)
edges (I, J)
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Figure 2.2:

where I and J differ at the ith crossing, and wovver and wunder are the weights of the over- and
under-strands at the ith crossing. Only the differences of weights appear, so shifting all the
weights by some r E R leaves the complex invariant.

In particular, the complex for a two-component link is determined by the choice of a
single value w1 - w2 E R. If that difference is 1 E F2 , then this definition of d, reduces to
(2.1.1).

The complex (C(D), d = do + di) now satisfies properties (P1) and (P2) from the begin-
ning of this section. Both do and di increase the (internal) i-grading by 1. The differential
do preserves the g grading and d, decreases the g grading by 1. So we have a g-filtration on
(C(D), d) given by

PC(D) := {x E C(D), g(x) < p}.

Moreover, the spectral sequence associated to this filtration has E, page given by H*(C(D), do)
Kh(L).

We now show it is always possible to choose a sign assignment.

Proposition 2.6. Let D be a connected diagram. There are precisely two sign assignments
s, and s2 for D, and si = -s2

Proof. By (2.1.2), a choice of sign at one crossing determines the sign assignment for a
connected diagram, if one exists. Existence is a simple cohomological argument. Since a
sign assigment is just a cochain s C C 0 (S 2 ) with 6s = 0, such an s exists if and only if

/ C C 1 (S 2) is exact, and is unique up to multiplication by an element of H0 (S 2) = {±1}.
Since H1 (S 2 ) = 0, / is exact if and only if it is closed.

We now show that / is closed. Let f be a 2-cell with the incident 0- and 1-cells numbered
counterclockwise v1, ... , vn and e.,...,en, respectively; see Figure 2.2. Each vertex vi is
incident to two edges, ei- 1 and ei (where we set eo = en). For one of those edges, vi is an
over-crossing, and for the other vi is an under-crossing. More formally, if vi = ei-1(ai) = ei(bi)
for some ai, bi E {0, 1}, then

h(ei_1,ai)h(ei,bi) = -1.

By definition, /(ei) = -h(ei, 0)h(ei, 1). We then have
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Figure 2.3: We choose marked points pi and qj on the understrands at each crossing i (left)
and a marked point pe on each edge e (right).

n

(6/)(f) = J(ei)
i=1

nfJ -h(e, O)h(ei, 1)
i=1

= .7 -h(es_1, ai)h(eg, bi)
i=1

= 1.

For a split diagram, sign assignments can be chosen on each connected component inde-
pendently.

Property (P3) does not hold on the nose. If D and D' are related by changing a crossing,
then the associated differentials d and d' are not identical-they differ by elements of R. We
will investigate this in Subsection 2.1 after verifying that our new differential squares to zero
and checking independence of sign assignment.

Proposition 2.7. We have that d2 = 0.

Proof. Fix a resolution I and let x E V(I). The terms of d2 (x) lie in V(K) where K differs
from I in exactly two positions or K = I itself. We study these two cases.

Case 1. Let K be a resolution that differs from I in exactly two positions i, j with
i < j. Let J differ from I at i, and J' differ from I at j. Then I, J, J' and K are the
four vertices of a face of the hypercube of resolutions. By functoriality of A, we have that
A(J, K)A(I, J) = A(J', K)A(I, J'). The endomorphism d, uses the usual Khovanov sign
assignments, so the two paths around the face have different signs. Namely, we have that
n(I, J) = n(J', K) and n(J, K) = -n(I, J'). The weights on the cobordism maps in do and
d, depend only on which crossing is changed, not the edge of the cube. Denote the weights
involved by c(k), where

c(k) = o k 1(k) = 0
)- 1(k) 1.
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The terms of d2 (x) in V(K) are

C(i)C(j )((-1)n(I,J)+n(J,K)A(J, K)A(I, J)(x)
+ (-1)n(I"J')+n(J',K)A(J K)A(I, J')(x)

= c(i)c(j)(-l)n(IJ)+n(JK)(A(J, K)A(I, J)(x) - A(J', K)A(I, J')(x))
=0.

Case 2. The terms of d2(x) in V(I) are

n

S()(Wover - Wunder)A(Ji, I)A(I, J ,

where Ji is the resolution which differs from I solely at the position i. We choose marked
points on the under-strands at each crossing and on each edge, see Figure 2.3. Straightfor-
ward computation shows that A(Ji, I)A(I, Ji) = Xpj + Xqj. We can rewrite the above sum

as

s()(Wver - Wunder) (Xp, + Xqj)

= s(e(0))h(e, 0)weXp, + s(e(1))h(e, 1)weXp,
eEX 1

= (s(e(0))h(e, 0) + s(e(1))h(e, 1))WeXpe
eEX 1

= 0,

where We denotes the weight of the component containing the edge e, the first equality follows
from indexing the sum by edges, and the second equality follows from the definition of a sign
assignment. D

Change of sign assignment

While finding a sign assignment s is crucial for defining the complex over rings where 2 , 0,
different choices produce isomorphic complexes. Indeed, consider a connected diagram D,
weight w, and sign assignment s producing the complex (C(D), d = do + di). Then taking

the other sign assignment, -s, yields the differential d' = do - di on the same group of chains

C(D). Since do fixes g-grading, and di lowers it by 1, the endomorphism

#: C(D) - C(D)

X (-1)g*)x
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Figure 2.4: The crossing change move C.

has the property that do = #d'. That is, # is an invertible chain map between (C(D), d)
and (C(D), d').

Next, consider the case when D is possibly split and s and s' are two sign assignments.
Then, since A is a monoidal functor, the complexes (C(D), d) and (C(D), d) each decomposes
into a tensor product of complexes indexed over the components of D. The above analysis
gives a chain equivalence # for each component, and their tensor product gives an invertible
chain map between (C(D), d) and (C(D), d').

Henceforth, we will often suppress the choice of a sign assignment, writing C(D, w) to
indicate one of the two possible complexes.

Total homology

We now show that changing a crossing doesn't affect the total homology of (C(D), d), so
long as the relevant weight Wover - Wunder is invertible. Of course, changing the crossing does
not preserve the g-filtration on C.

Proposition 2.8. Let D and D' be diagrams for links L and L' related by changing a
crossing i between components c and d. Let w be a weighting for L, and write w' for the
induced weighting on L'. Then if w, - Wd is invertible in R, the complexes C(D, w) and
C(D', w') are isomorphic as relatively f-graded chain complexes.

Proof. Let s be a sign assignment for D. A sign assigment s' for D' is given by s'(j) = s(j) for
j # i and s'(i) = -s(i). Let (C, d) be the complex C(D, w, s), and let (C', d') be the complex
C(D', w, s'). Let Co be the summand of C consisting of complete resolutions which include
the 0 resolution at crossing i, and let C1, Co and C' be defined analgously. Note that Co
and C' are identical as relatively -graded complexes; similarly for C, and C. (The writhes
of the diagrams differ by 2, which will contribute a global shift between their f-gradings.)

The crossing change exchanges over-strand for under-strand, so (w"e-Wg'ner) - (Wder-
Winder). This means that

s(i) (wver - Wunder) = s'(i)(W:ver - under).

Before giving the chain map f : C - C', we must first introduce some notation. Let
I be a resolution of D. We write I' to denote the same element of {0, } interpreted as a
resolution of D'. We write I, for the resolution of D that differs with I solely at crossing i.
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Note that I and I are canonically isomorphic resolutions. Let J denote a resolution of D
that differs from I at some crossing j = i. Finally, let

a(I, i) = #{I(k) = 1 I i < k < n}

be the number of one digits in I above i.
We define the map f : C -+ C' as follows.

{ (-1)a(Ii)X E Cl if x E V(I) C Co

( )o(ver - uinder)x E 06 if x E V(J) C C 1,

To verify f is a chain map, we use two easily verifiable facts about the signs:

(-1)a(I,0) (_ )r(li,i)

and
(-1)n(I,J)(_ j)a(JI,i) = _j)n(Ij',J)(_j)a(I,i).

Consider x E V(I) C Co. The image of x under fd or d'f has components in V(I') and
V(Jj), for the resolutions J differing from I at one crossing.

First, consider the V(I')-component of the image. We have

f d(x)| ,= f ((- 1) W I') A(I, I ) (x))

=(-1)a(Ii,i)(_j)n(Iit)s(i)(Wive -zidr9 ,l

( - Wunder) A(I, 1i)(x)

= d'(-1(,i)X) IV (I')

= d'f(x) V(I').

Next, consider the image in V(J/) for some J which differs from I at crossing j. Let

CU = 1 I - j) = 01(j)j)
s(i) (Wover ~under) Ij) =

denote the coefficient of A(I, J) in d. It is the same as the coeffient of A(If, Jj) in d'. We

have

f d(x) v(Ji) f(( I)n(I,J)c(j)A(I, J)(x))

= (- 1 )a(J')(-)n(I,J)"c(j)A(I, J)

= (-1)a(Ii)(_i)n('Ji c(j)A(I1, J/)

= d'((-1)a(I'i3x) V(J )

= d' f (x) I).
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A similar analysis shows that fd(x) = d'f(x) for x E C1.
Let f' : C' -+ C be the chain map produced by reversing the roles of D and D'. The

composition
ff' = f'f = s(i)(Wover - Wunder)

is an isomorphism if (wover Wjnder) is invertible for all i. Then f an isomorphism too. E

Dependence on weights

Let L be a link with two components, and w1 , w2, w ', iE R choices of weights such w1 -W2

and w' - w' are invertible. Let D be a diagram for L. Consider the map f : C(D, w) -+

C(D', w) defined by

for x c C(D, w) of homogeneous g-degree. Since do preserves g-degree, we have fdo = dof.
Since d, lowers g degree by 1, we have

fdix f1 ()(Wver - Wnder)A(J, I)x
mixed edges (I, J)

- Wuderg(x)-1
mixd dgs (, ( IJ) over ~ Wnder) (over - Wunder)g)-

oover WuWudde
mixed edges (I, J) (over - under)

,n(I,J) er der
1 Wover - Wunder g(X)

-oe Z Wunder)A(Jj 1)( Wtve - i
mixed edges (I, J) over under) )

= d1fx.

Since f is an invertible, grading-preserving chain map, it is an isomorphism of filtered
complexes and induces an isomorphism of spectral sequences. This establishes Proposition
2.4.

2.2 Sliding the marked point

In this section, we give an alternative origin myth for the endomorphism dj. Let L be a
link with diagram D. As described in Section 2.1, a choice of marked point p on D defines
an endomorphism Xp of the Khovanov chain complex C(D). Points on the same arc of the
diagram D will obviously give the same action, but if we slide p under or over a crossing to
another position q we get a manifestly different endomorphism Xq. Nevertheless, X, and Xq
induce the same action on homology.
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Figure 2.5: Moving a marked point across a crossing.

Proposition 2.9. Let p and q be marked points on either side of crossing i, as shown in

Figure 2.5. Then X, and Xq are chain homotopic.

Proof. We recall the chain homotopy H used by Hedden and Ni [15]:

Hi = E (- 1)"n'Ji 'A(,T, Ji),
resolutions I

I(i)=1

where J differs from I solely at i. The signs are chosen so that Hi will anticommute with

the components of do which change crossings other than i. The only nonzero component of

Hido + doHi on a resolution I is the cobordism merging together the circles adjacent to i

then splitting them apart, or vice versa. It is straightforward to check-using the TQFT

A-that this acts by Xp + Xq. E

If we pick a point pi on a component c of a link, and slide it all the way around (Figure

2.6), we get a sequence of chain homotopies:

dH 1 + H1d = X 1 + XP2

dH 2 + H2d = X 2 + XP3

dH+ H3 d = XP3 + X,4

d Hn + Hnd =Xp, + Xpl

The alternating sum of the homotopies He := Z_ 1(-1)'-1 Hi satisfies

dHc + Hcd = (XPI + XP2) - (XP2 + XP3) t . ..- - (X,, + XP1) =0.

In other words, He is an endomorphism of the Khovanov complex.

If we choose a weight we for each component c, then the sum

H := Y3 wHe
components c

is also an endomorphism of C(D). In fact, there is a choice of sign assignment for which H

precisely matches our endomorphism di.
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Figure 2.6: Sliding the marked point all the way around a component gives a ioop of homo-
topies and a new endomorphism of Khovanov homology.
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To summarize: the X-action of a component on Khovanov homology does not lift to
a canonical action on chains. Different choices of marked point give different actions, but
neighboring points are related by canonical homotopies Hi. By adding up a "loop" of these
homotopies, we get a "higher" endomorphism. (The fact that Hc happens to square to zero,
making do + He a differential, is not guaranteed by this approach.)

This sort of phenomenon exists elsewhere in topology.
Example: Steenrod Squares

In singular homology, cup product is not commutative on the chain level. However, there
is a canonical homotopy U1 such that if a and b are cochains [26], then

a U b - (-1)aIjbIb U a = d(a U1 b) + (da) U1 b + a U1 db.

If we take a = b and work over F2, then the left-hand side vanishes. This defines a Steenrod
square: Sqn-([a]) = [a U, a].
Example: Monopole Floer homology

In Monopole Floer homology [23], a circle 71 E Y3 gives an action A,, on the chain groups
C(Y). If q and r/' are homologous via some surface 6 with 06 = 1 - 1', then there is a
homotopy ho satisfying

A7 - An = dho+ hd.

If we view a torus E in Y as a homology between some circle q and itself, we get that hE
is a chain map. On the subcomplex C(Y,.s) defined by a Spinc-structure s, the map hr is
multiplication by ci(s)[E].

2.3 Reidemeister invariance

The proof that the filtered chain homotopy type of C(D, w, s) is invariant under the Reide-
meister moves parallels the standard proof that the Khovanov chain complex is invariant.
We divide the complex into the summands corresponding to the 2,4, or 8 ways of resolv-
ing the crossings involved in the move, and cancel isomorphic summands along components
of the differential. This is complicated slightly by the d, terms which prevent the natural
summands of C from being subcomplexes; the post-cancellation differential is not merely a
restriction of the original one. The new differential is provided by the following standard
cancellation lemma.

Lemma 2.10. Let (C, d) be a chain complex. Suppose that C, viewed as an R-module, splits
as a direct sum V DW D C'. Let dwv denote the component of d mapping from V to W, and
similarly for other components. If dwv is an isomorphism, then (C, d) is chain homotopy
equivalent to (C', d') with

d' = dc0 c0 - dc'vd- gdwc'.

Proof. Let f : C' -+ C, g : C -- C', and h : C -+ C be defined by

f =C' - d-1dwci, g = 7r' - dcfvd-1 , and h = d-'
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where t and ir denote inclusion and projection with respect to the direct sum decomposition
of C. The map f is an isomorphism onto its image, since the second term in f merely adds
a V-component. The image of f turns out to be a subcomplex, and the new differential d'
is merely the pullback of d along f.

We claim that f and g are mutually inverse chain homotopy equivalences between (C, d)
and (C', d'). Specifically, the following four equations hold:

fd' = df gd = d'g Ifc = gf fc = f g + hd + dh

Verifying these is a routine exercise in applying the identities contained in the equation
d2 = 0, such as

dwvdvv + dwc'dc'v + dwwdwv = 0. E

If the complex (C, d) has a filtration induced by a grading g and the cancelled map, dwv
above, preserves g-degree, then d' will respect the induced filtration on C' and the maps f
and g will be filtered chain homotopy equivalences. This will be our situation in each of the
Reidemeister moves below.

Proposition 2.11. Let D and D' be two diagrams for a link L related by a Reidemeister
move of type I, II, or III. Fix an R-weighting w for L and a sign assignment s for the
diagram D. Then there exists a sign assignment s' for the diagram D' which agrees with
the sign assignment for D at all crossings uninvolved in the Reidemeister move, and the
complexes C(D, w, s) and C(D', w, s') are chain homotopy equivalent as f -graded, q-filtered
complexes.

In Section 2.1, we saw that different sign assignments produce isomorphic complexes.
Since any two diagrams for a link are related by a sequence of Reidemeister moves, this
proposition implies that that the e-graded q-filtered chain homotopy type of the complex
C(D, w, s) is also independent of the choice of planar diagram, and hence an invariant of
the R-weighted link (L, w). This establishes that the associated spectral sequence, called
Ek(L, w) in Theorem 2.1, is an invariant of (L, w).

Proof. The proof for each of the three Reidemeister moves is similar. We first decompose
the complex into summands sitting over each of the 2k different resolutions of the crossings
implicated in the k-th move. One of these resolutions contains an isolated circle, and we split
the complex over that resolution further according to whether or not the monomial contains
that circle. We then identify two summands V and W for which dwv is a q-grading-preserving
isomorphism, and apply the cancellation lemma.

R1 Consider two diagrams D and D' for a link L in Figure 2.7. Let s be a sign assignment
for D. It can be verified easily that the restriction of s to the vertices of the diagram for D'
yields a valid sign assignment s'.

Let (C, d) be the complex C(D, w, s), and let (C', d') be the complex C(D', w, s'). Let Co
be the summand of C corresponding to complete resolutions which include the 0-resolution at
the pictured crossing, and let C1 be the summand of C corresponding to complete resolutions
which include the 1-resolution at the pictured crossing. Let C6- and C0 be the summands
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Figure 2.7: Left is the first Reidemeister move R1. Right is chain complex for the diagram
D, split into two summands corresponding to the two resolutions of the pictured crossing.
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Figure 2.8: Left is the second Reidemeister move R2. Right is chain complex for the diagram
D, split into four summands corresponding to the resolutions of the pictured crossings.

of Co spanned by monomials divisible and not divisible, respectively, by the variable x,
corresponding to the pictured circle.

Since the component of d mapping from CO to C1 is just merging in the 1 on the pictured
circle, it is an isomorphism. Hence we may apply the cancellation lemma with with V = co
and W = C 1. Since CO and C- have the same resolution at the pictured crossing, there is
no component of d mapping from one to the other. Hence the new complex is just C- with
the restriction of the original differential. (This cancellation preserves the filtration, since
the cancelled part of the differential is a component of the ordinary Khovanov do, which
preserves q- and g- degree.) Since the extra circle never interacts with the remainder of
the diagram for L, this complex (Q-, d) is isomorphic to the post-move complex (C', d).
That isomorphism also respects the gradings, as can be verified from n+(D) = n+(D') + 1,
n_(D) = n_(D'), and the definitions of f and h.

R2 Consider two diagrams D and D' for a link L in Figure 2.8. Let s be a sign assignment
for D. It can be verified easily that the restriction of s to the vertices of the diagram for D'
yields a valid sign assignment s'.

Let Dij with i, j E {0, 1} denote the diagrams obtained by resolving the crossings involved
in the Reidemeister move in D. Let Cij = C(Dij, w, s). Let C,-1 and COj be the summands
of CO, spanned by generators divisible and not divisible, respectively, by the variable x, cor-
responding to the pictured circle. The four summands Coo, C1, C0i and C- 1 are all naturally
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Figure 2.9: Left is the third Reidemeister move R3.
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Right is chain complex for the diagram
resolutions of the pictured crossings.

isomorphic, and the summand C10 is isomorphic to the post-move complex C' = C(D', w, s').

We will apply the cancellation lemma with V = Coo E Co and W = C6-1 E C1. The

component of d from V to W is just the original Khovanov differential do, and it is block di-

agonal: C0 maps to C11 isomorphically (merging in a 1) and Coo maps to C6- isomorphically

(splitting of an x).

The cancelled complex is just C10 , with differential

dc10clo - dc 1 0vd- gdwc1o.

But dwC 10 lands on C1, which is carried to Co', by d-1, and d has no component from

Co' to C10. Hence the new differential is just the restriction of the old, and we have

(C, d) c-' (C1 , d Icl0) 2_- (C', d').

Again, the cancelled pieces of the differential come from Khovanov's do, which preserves

g and q, so the first isomorphism preserves the filtration. The second isomorphism also

preserves the bigrading, as can be verified from n+(D) = n±(D') + 1.

R3 Reidemeister 3 is more complicated, and we must keep track of the signs in Khovanov's

cube, the sign assignment s, and the weights.

Consider the diagrams D and D' in Figure 2.9. Label the strands i, j, and k, from left to

right along the top of D. Denote by wi, wj, and wk the weights of their components. Order

the crossings up the page 1, 2, and 3. Using Khovanov's sign assignment, the edges in the

cube of resolutions for D labeled -1 in the figure have a negative sign in the differential:
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(-1~)" = -1. (100 4 110, 100 + 101, 010 * 011, 101 111.)

Choose a sign assigment s for D such that

s(1) = s(3) 1= and s(2) = -1.

A choice of sign at one crossing determines the sign assignment on that component of the

diagram by (2.1.2). Take the sign assignment s' for D' which agrees with s on the crossings

not involved in the Reidemeister move. Again, (2.1.2) implies

s'(1) = s'(3) = -1 and s'(2) = 1.

Let (C, d) C(D, w, s) and (C', d') C(D', w, s'). The weights c(j) S (j)(wover -
Wunder) of the reverse edge maps in di evaluate to

c(1) =W - Wk

c(2) Wk -Wi

c(3) =wi - wj,

at the three pictured crossings, and the weights c'(j) in d' are

c'(1) = Wj - Wi

c'(2) Wi - Wk

c'(3) = Wk - W3 .

First, we will simplify the complex (C, d). As in the previous parts, let CO and CO10 be

the summands of Coo spanned by monomials divisible and not divisible, respectively, by the

variable x, corresponding to the pictured circle.

We apply the cancellation lemma with

V = Cooo D C0 10  W = C(1 o ( Coi.

The component of d from V to W is just the Khovanov differential do, and it is block diagonal:

Cooo maps to C- 0 isomorphically (splitting off an x) and Cj0+ maps to Coll isomorphically

(merging in a 1, with a minus sign from the cube). The reduced complex will have underlying

abelian group

Cred = C100 ( Co1i l C11 e 0101 C 011.

After chasing the diagram to find the maps into V and the maps out of W, you will find

that the correction term dcrc vd-' dWCrc has four components.
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Figure 2.10: A reduced chain complex for the diagram D.

Cool-1 + Clio
0111 W-WJjI 0110

C01o W-wk C100

C01o W C-Wk

Each map is induced by the obvious cobordism relating the resolutions, weighted by some
element of R indicated by the label on the arrow. Subtracting these from the restriction of
the original differential d to Cred yields the complex pictured in Figure 2.10. Here, the edge
labels give the total coefficient of the forward or reverse edge maps in dred. The absence of
a label on a forward edge maps the coefficient is +1. The label i - j, for example, denotes
the coefficient wi - wj.

The complex (C', d') can be simplified using a similar cancellation. The relevant resolu-
tions are drawn in Figure 2.11. Apply the cancellation lemma with

V = 'oo e C01 0  W = Ceo @ Col.

The resulting complex, Cled is pictured in Figure 2.12. It contains all the same resolutions
as Cred; the only difference is that all of the maps between pictured summands have reversed
signs. The map # : Cred -+ Cred, defined by
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Figure 2.11: The chain complex for the post-R3 diagram D'.
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Figure 2.12: A reduced chain complex for the post-R3 diagram D'.
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0100 + C100

Clo 1 + C/o
00 101

0101 + C'1 0

C1 ACli

is an invertible chain map. The sequence C a Cred Ced C' yields the desired iso-

morphism for diagrams related by Reidemeister 3. The first and third isomorphism preserve
the filtration, since the cancelled components of the differential all preserved q. The second
isomorphism preserves the bigrading, since the diagrams satisfy n±(D) = ni±(D') and the

map q$ preserves the norm Il of each resolution I. E

We can now prove that the total homology of the complex for a link is just the Khovanov
homology of the disjoint union of its components. This completes the proof of Theorem 2.1.

Theorem 2.12. Let (L, w) be an R-weighted link, and suppose that for each pair of compo-

nents i and j with distinct weights, the difference wi - wj is invertible in R. Let D be any

diagram for L. Let L(r) denote the sublink of L consisting of those components with weight
r. Then the spectral sequence converges to

H*(C(D,w)) Kh* L(); R

Proof. Choose an arbitrary ordering >- on the set w, ... , w, C R of weights. By Proposition
2.8, changing a crossing between components with distinct weights will produce a chain

complex C(D', w) with the same 1-graded total homology. So we may change crossings
until each component i lies entirely over component j whenever wi >- wj. This produces a
diagram D' for some link L', whose sublinks are still the L(r), now completely unlinked from
one another. By repeated application of Reidemeister moves 1 and 2, we may slide these
components off of one another until we get a diagram D" for L' with no crossings between
L(r) and L(r') for r # r'. The differential for C(D", w) is the same as Khovanov's differential,
since dl = 0, and L' is just the disjoint union of the sublinks L(E).

We can now give a stronger version of the rank inequality Corollary 2.2.

Corollary 2.13. Let F be any field, and let L be a link with components K 1 ,. .. ,Km. Then

rank Kh*(L; F) ;> rank'+' ®"iKh*(K; F),

where each side is f-graded and the shift t is given by

t 21k(L, Ld).
c<d
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Proof. Assume for the moment that the field F has more elements than L has components,
so we can weight each component by a different element w, C F. Then all differences will
be invertible, so the above theorem characterizing the abutment of the spectral sequence
applies. That would give an inequality of total ranks. To see the e-gradings, we need to
compute the grading shift in the isomorphism relating C(D, w) and C(D', w) (we use the
same notation as in the above proof). Recall the formula for the f grading:

e(x) = deg(x) - p(I) - writhe(D).

For a fixed monomial x over a fixed resolution I, the terms deg(x) and p(I) are the same
before and after a crossing change; only the writhe differs. Each time we change a crossing
between components c and d, the writhe will shift by ±2 and the linking number lk(Lc, Ld)
will shift by ±1. (The linking numbers with other components remain unchanged.) Thus

£(x) + 2lk(Lc, Ld) = £(x') + 2lk(L', L'),
c<d c<d

where x' is the same monomial viewed as a generator of C(D', w), and L' is the component
of L' which Ld turns into. But the components of L' are unlinked, so we ultimately have

f(x') = f(x) + E 21k(LC, Ld).
c<d

Now we address the size of F. Since the differential in the chain complex computing
Kh(L) uses only ±1 coefficients, its rank is the same after a field extension. We may take
a suitably large extension F' of F, run the above argument for some choice of weights, and
then note that rankF Kh(L; F') = rankF Kh(L; F). l

2.4 Properties of spectral sequences

We offer a quick review of spectral sequences, following Serre [40]. Let (C, d) be a finitely
generated chain complex. A filtration F on C is an assignment to each element x E C a
filtration degree p(x) E Z U {-oo} such that p(x - y) 5 max(p(x), p(y)) and p(dx) < p(x).
(Only 0 is permitted to have filtration degree -oo.) We will occasionally write Ck for the kth
piece of the filtration FkC = {x E Clp(x) k}. Homological algebra usually concerns cycles
and boundaries. The filtration provides notions of approximate cycles and early boundaries:

Z = {x E Ck dx E Ck-r}

B = {dy E Ck|y E Ck+r}
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The spectral sequence corresponding to the filtration is a sequence of chain complexes
(Ek, dr), called pages, defined by

E = Z±/(Z- + B_.

If x is in Zrk, then dx is in Zh-: by definition dx Ck-r, and d(dx) = 0. The differential
on Er is then given by taking the equivalence class: d,[x] := [dx]. The remarkable property
of this sequence is that each page is the homology of the previous one: E+ = H(E, d,).

A spectral sequence is said to collapse on page 1 if dr = 0 for all r > 1.
Since C is finitely generated, there is some integer N such that, for all r > N, Zr just

consists of all cycles in degree < k and Bk consists of all boundaries in degree < k (that is,
Z = Zk and Bk = Bk). The quotient Zk/Bk is not the homology of the kth filtered piece
Ck, because Bk consists of elements of Ck which are boundaries in C, not just boundaries
of elements in C. In fact, the quotient is

Zk 1Bk -= i*H*(C)

where i : Ck " C denotes the inclusion of the kth filtered piece into the total complex. For
all r > N, we have

Er = Zk/(Zk-1+Bk)

= (ZkBk) / (Zk-1/Bk-1)

= iH,(Ck)/iH*(Ckl)

We denote this stable page by Em , and observe that it is the associated graded group of
the total homology H*(C) by the filtration

gkH*(C) = i*H,(Ck).

In particular, the total rank of the EcO page is independent of the choice of filtration:

rankEk = rank H*(C).
k

In contrast, the time of collapse does depend on the choice of filtration, though in a controlled
way. (We doubt that the following proposition is original, but were unable to find it in the
literature.)

Proposition 2.14. Let (C, d) be a finitely generated chain complex, with two different fil-
trations Y and F' which are close in the following sense: for any x G C, the difference in
filtration degree p'(x) - p(x) is either 0 or 1. Then the p-spectral sequence collapses at most
one page after the p'-spectral sequence does.

Proof. Say that the p'-spectral sequence has collapsed by the (r - 1)" page. We want to
show that any class [x] E Ek must have dr[x] = 0 E Er-r, for then the p-spectral sequence
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will have collapsed on page r.

Suppose for the sake of contradiction that there is some x E Z, such that [x] E Er
has nonzero differential. Without loss of generality, we may take the chain x with minimal
p'(x) + p'(dx). Let k be the degree p(x), so x E Z. If p(dx) < k - r, then dx E Z1r- and
[dx]r would represent 0 in Es-'. Since dr[X] = [dx] is nontrivial, we must have p(dx) = k - r.

We now consider the p'-degrees of all the elements. Let k' = p'(x) and r' = p'(x) -p'(dx).
Note that

r' = p'(x) - p'(dx)

= p'(x) - p(x) - (p'(dx) - p(dx)) + p(x) - p(dx)

E {0, 1} - {0,1} + r
> r - 1

Since the p'-spectral sequence has collapsed by page r -1, it has also collapsed by page r'. We
will denote the pages, boundaries, cycles, and differential for the p'-spectral sequence with
acute accents. By construction, x represents a class in Er,'. Post-collapse, the differential is
identically zero, so dr, [x] must represent zero in Ekr' In terms of chains, this means that

dx = w + dz

for some w E / ,-'-1 with p'(w) < k' - r' - 1 and some dz E ,'r1_ with p'(z) < k' - 1.
Since p-gradings are at most one less than p'-gradings, p(x) k' - 1 and p(dx) k' - r'- 1.
Consequently, p(z) < p(x) and p(w) < p(dx).

Since dw = ddx - ddz = 0, we have that w E Zr-r. Since dz = dx - w, we have
p(dz) < max(p(dx),p(w)), and z E Zrk.

We break into two cases.

Case 1: [w] = 0 c Er.

Set T= z. Then [T] is a class in Er with

dr [] = [dz] = [dz] + [w] = [dx] # 0.

But p'(H) = p'(z) < p'(x) and p'(d-) = p'(dx - w) = p'(dx), violating minimality.

Case 2: [w] 4 0 E E -r.

Set 7= x - z. Then [7] is a class in Er with

dr [1 = [dx - dz] = [w] $ 0.

But p'(7) = p'(x - z) = p'(x) and p'(dT) = p'(w) < p'(dx), violating minimality. l
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Endomorphisms of spectral sequences

Suppose that f is an endomorphism of the filtered chain complex C which shifts filtration
degree by 1,

p(fx)= p(x) -I Vx C C.

Then f acts on the spectral sequence the following sense

1. There is an endomorphism f, of the rth page given by

, ' E,"
[x] e- [fx]

This is well-defined: since f shifts p(dx) by the same amount that it shifts p(x), it
takes Z into Z-' and Bk into B-.

2. The action of fr+i on Er+i is the same as the one induced by fr on the homology of
(Er, dr).

3. The action of f, on E is the associated graded action of

f. : H.(C) -- H,(C)

with respect to the filtration ! above. That is, if [x] E !k = i, H,(Ck) is represented
by x E Zk, then fx E Zkl~ and the image f,[x] = [fx] lies in gk-l. Moreover, x
also serves as a representative of the equivalence class of [x]o E E = gk/gk-1 and
fo[x], = [fx]..

We will later encounter a spectral sequence where we know the action of an endomorphism
X on H, (C) and investigate the possible associated graded actions on the E' page.

2.5 The splitting number

The unknotting number of a knot is the minimum number of times the knot must be passed
through itself to untie it. It is an intuitive measure of the complexity of a knot, though
strikingly difficult to compute. We would like to suggest a similar number measuring the
complexity of the linking between the components of a link, unrelated to the knotting of the
individual components.

Definition 2.15. The splitting number of a link L, written sp(L), is the minimum number of
times the different components of the link must be passed through one another to completely
split the link. Equivalently, sp(L) is the minimum over all diagrams for L of the number of
between-component crossings changes required to produce a completely split link.
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Figure 2.13: The Whitehead link has splitting number 2.

A completely split link has splitting number 0. The Hopf link has splitting number 1, as
demonstrated by the standard diagram. In general, any diagram for a link L gives an upper
bound on sp(L), as one may change crossings until the components of the link are layered
one atop the next.

The Whitehead link Lw has splitting number 2-change two diagonally opposite crossings
in the standard diagram (Figure 2.13). While changing the crossing in the center would split
the link, that crossing is internal to one component so not allowed. To see that sp(Lw) # 1,
note that a crossing change between components K, and Kd of a link L changes the linking
number lk(Kc, Kd) by ±1. Since the Whitehead link has linking number 0, an even number
of crossing changes will be required.

If L is a two-component link with components K1 and K 2, then the quantity

I lk(KI, K2)1 if L is non-split and lk(K 1 , K 2 ) > 0

blk(L) : 2 if L is non-split and lk(K 1 , K 2 ) = 0

0 if L is split

provides a lower bound on sp(L). If L has many components, we define

blk (L) := Z bk(Led),
c<d

where Led denotes the sublink consisting of the cth and dth components. Since splitting a
link certainly requires that one change enough crossings to split each pair of components

(and each crossing implicates only one two-component sublink), we conclude that

sp(L) > blk(L).

Our spectral sequence provides less obvious lower bound for the splitting number: the
splitting number plus one is at least the index of the page on which the spectral sequence
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collapses.

Theorem 2.3. Let L be a link and let w, E R be a set of component weights such that

Wc - Wd is invertible for each pair of components c and d. Let b(L, w) be the largest integer
k such that Ek(L,w) # E,(L,w). Then b(L,w) sp(L).

sp(L) > b(L, w)

Proof. We proceed by induction on splitting number. If L is a split link, then there is a
diagram in which d, = 0 so the spectral sequence collapses immediately: El = E, and
b(L) = 0.

If L is non-split, then there is a diagram D in which changing exactly k = sp(L) crossings
produces a diagram for a split link. Consider the diagram D' resulting by changing just one
of those crossings, say i; the link L' depicted will have splitting number k - 1.

In the proof of Proposition 2.8, we constructed an isomorphism f : C(D, w) - C(D', w)
of f-graded chain complexes. To compare the filtrations and the spectral sequences, we pull
back the g-grading on C(D', w) to a grading on C(D, w), which we write g'. In an abuse
of notation, we will write g for the original g-grading on C(D, w). The two corresponding
filtrations on C(D, w) differ in a controlled way.

Recall that for a generator x of C(D, w), the relevant gradings are

q(x) = deg(x) + p(I) + I -+ n+(D) - 2n- (D) and g(x) q(x)-IL
2

The monomial degree deg(x) and circle count p(I) are the same in both D and D'. If x
sits over the 0-resolution of the crossing i in D, then it sits over the 1-resolution of i in D',
and vice versa. So the value of I differs by ±1 between the two complexes. Finally, the
difference n±(D) - 2n_(D) decreases (increases) by 3 if i is a positive (negative) crossing
in D. Thus the difference in filtration degree g'(x) - g(x) is in {-1, -2} if the crossing is
positive and {1, 2} if the crossing is negative.

Since a global shift in filtration degree does not affect the page at which the correspond-
ing spectral sequences collapses, Proposition 2.14 applies. We conclude that the spectral
sequence for L collapses at most one page after the spectral sequence for L', so

b(L, w) < b(L', w) + 1 < sp(L') + 1 = sp(L). E

An interesting example is the link L = 2 L13n3752 shown in Figure 1.1. The two com-
ponents are a trefoil and the unknot, and they have linking number 1. There is an obvious
way to split the L by changing three crossings, say, pulling the red component on top of the
green one. The spectral sequence with the nontrivial F 2 weighting w, shown in Table 2.1,
collapses on the E 3 page, so sp(L) > b(L, w) = 2. Since sp(L) must have the same parity as
the linking number, we have that sp(L) = 3.

The calculation of the spectral sequence for 2 L13n3752 and many other links is discussed
in Section 2.7.
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Table 2.1: Ek(2 LM3n3752, w) over F2 with non-trivial weight func-
tion w. E,(L, w) = Kh(L) omitted.

Link L Ek rank Ek Pk (q, t) = Lj (rank E'j)tiqj
2 Ll3n3752 E 2  20 t-2q- 2 + t- 2 + q2 + q4 + tq 2 + t1q4 + t2q4 + t2q6 + tq 6 + 3q8 + 2t 4 q8 + 2t 4 q10 +

t0q 10 + t0 q12 + t6q 12 + 6 q1 4 + tCq14 + t7 q16

E 3 12 t2 q4 + t 2q6 + 2t 4 q8 + 2t 4 q10 -+ t 5 q10 -± toq12 + t0q12 + t0q14 + t7 q1 4 + t7q1 6

2.6 Detecting unlinks

In this section, we work over a field F of characteristic 2. Since our construction relies on
choosing different weights for different components, F2 itself is not large enough to accommo-
date many-component links. The specific choice of a larger field is unimportant, so we will
write F for some finite field of characteristic 2 with more elements than there are components
of the link under consideration. Since Kh(L; F) 2 Kh(L; F2) 0 F, the rank of Khovanov
homology is independent of the choice of F. For this reason, we will often write Kh(L) for
Kh(L; F).

Kronheimer and Mrowka have shown that Khovanov homology detects the unknot. That
is, if a knot K has Kh(K) of rank 2, then K is the unknot.

Corollary 2.2 provides an immediate upgrade.

Proposition 2.16. Let L be an m-component link, and suppose that the rank of Kh(L) is

2 '. Then each component of L is an unknot.

Proof. Let K,. . . , Km be the components of L. By Corollary 2.2, we have a rank inequality

rank Kh(L) ;> rank Kh(Ki) x rank Kh(K2) x ... x rank Kh(Km).

The left-hand-side is 2m. Since every knot has Khovanov homology of rank at least two,
the right-hand side is at least 2 1. Hence every one of the components Ki must have
rank(Kh(K)) = 2. By Kronheimer and Mrowka's result, each of those components is
an unknot. 0

Equality is possible: the Hopf link has rank four, just like the two-component unlink.
This generates a family of such examples: iterated connect-sums and disjoint unions of Hopf
links and unknots. The resulting links can be described as forests of unknots: given a
(planar) forest F, form a link LF by placing an unknot at each vertex then clasping them
together along each edge (Figure 2.14). By [41], we have rank Kh(LF) = rank Kh(Um ).

Question 2.17. Are forests of unknots the only m-component links with Khovanov homology
of rank 2 ' over F2 ?

None of these nontrivial links have the same bigradings at the unlink. As we will show
later, this is no coincidence.
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Figure 2.14: A forest F gives rise a link LF whose Khovanov homology has the same rank
as that of the unlink.

The Khovanov module

Khovanov homology is not just an abelian group: Kh(L) a module over the component
algebra

Am = IF2[X1,..,X]/(1 X2),...,)X2)

see [15]. The module structure is defined by choosing marked points pc on each component
c of L. Then X, acts by Xp.

In fact, this module structure extends to all the pages Ek. The map Xp, shifts the g
gradings by -1, so it preserves the filtration Y. It remains to show that Xp for a marked
point p is a chain map with respect to the total differential d and that the module structure
induced on Ek is independent of the choice of marked points.

Proposition 2.18. Let p be a marked point on D away from the double points. Then we
have that dXp = Xpd.

Proof. Xp commutes the Khovanov edge maps; this is the standard proof that it commutes
with do. The deformation d, is also a sum of edge maps, so the proposition follows. E

Proposition 2.19. Let p and q be marked points on either side of crossing i as shown in
Figure 2.5. Then X, and Xq are chain homotopic endomorphisms of C(D, w).

Proof. We use the same chain homotopy H as in the proof that the Khovanov module is
well-defined [15]:

H= A(I, Ji),
resolutions I

I(i)=1

where Ji differs from I solely at i. Hedden and Ni show Xp + Xq = Hdo + doH. It remains
for us to show that Hd1 + d1H = 0. This is an immediate consequence of the facts that H
and d, both decrease homological grading and that the reverse edge maps commute. E

Since we use IF coefficients to define the complex C(D, w), we will first prove results
regarding the action of AF : = Am 3 F. The Khovanov module of the unknot is just a copy of
AT viewed as a module over itself: Kh(U) F[X]/(X 2). Disjoint union of links gives tensor
products of modules, over the tensor product algebra; in particular, Kh(Um) - AM.
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Proposition 2.20. Let L be a m-component link with rank Kh(L) = 21. If D is any
diagram for L and w any set of distinct weights for the components, then the total homology
H,(C(D, w)) is a free rank-one module over the algebra A .

Proof. By Proposition 2.16, the components of L are all unknots. Number the components
from 1 to m. Since we are only interested total homology and its module structure, we
can ignore the g-filtration on C(D, w). We can produce a diagram D' for Um by swapping
mixed crossings in D so that at each crossing, the under-strand has lower index than the
over-strand. As we saw in the proof of Proposition 2.8, C(D, w) and C(D', w) differ only by
rescaling generators by elements of F. The action of X, commutes with rescaling generators.
The total homology and A' action are also invariant under Reidemeister and marked point
moves. By such moves, D' can be transformed into D", the standard diagram for Um with
no crossings: a disjoint collection of circles with marks. The complex for D" has vanishing
differential, and H,(C(D", w)) is manifestly a free rank-one A'-module, as desired. l

Proof of Theorem 1.2

Hedden and Ni have shown that the module structure of Kh detects the unlink [15].

Theorem 2.21 (Hedden-Ni). Let L be an m-component link. If there is an isomorphism of
Am modules

Kh(L; F2 ) - Am,

then L is the unlink.

We can deduce the module structure from the bigradings.

Theorem 1.2. Let L be an m-component link, and Um the m-component unlink. If

rank Khi'! (L; F2 ) = rank Khi'! (U'; F2 )

for all i, j, then L is the unlink.

Proof. The Khovanov homology of the unlink is supported entirely in homological grading
0, where it has rank (') in quantum grading 2r - m. Since our spectral sequence is graded
by g = (q - m)/2, the group

El7k(L, w) c Khom- 2k (L)

has rank (M) for 0 K k K m.
As described in Section 2.4, there is a filtration 9 on the total homology H = H.(C(D, w))

with respect to which
E- k r g-k H /g-k-1H.

Since the spectral sequence collapses with El = Eo, this determines the rank of each filtered
piece,

rankF kH = +(k ) + - - (n)
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Let I be the (maximal) ideal in AF generated by the Xi. The top nonvanishing power
of the ideal is Im, which is spanned by the element XiX 2 ... Xm, and we have I'+1 = 0.
Consider the filtration

0 c Im c I i c .. -c I C A .

By Proposition 2.20, the total homology is a free rank-one module over Am, generated
by some e E 90H a H. Moreover, since each endomorphism Xi lowers the g-grading by 1,
it takes g-k into gk1 Hence

Ike C g-k H

for every 0 < k <m.
Since e is the generator of a free AF-module, we know that Ike actually has the same rank

as Ik itself, which is the same as the rank of g-kH computed above. Hence Ike -k H.

The associated graded module is

Ike/Ik+le AF[k]e,
k k

where Ai [k] denotes the linear span of the monomials of degree k in the Xi. This is isomor-
phic to AF itself, viewed as an AF-module. But E,(L, w) 2 Ei(L, w) e Kh(L). So Kh(L)
is a free, rank-one AF module.

More precisely, Kh(L; F) is a free, rank-one F[X,... , X,]/Xf-module. To apply Hedden-
Ni, and conclude that L is the unlink, we need to show that Kh(L; F2) is a free, rank-one
F 2 [X 1 , ... , Xn]/X2-module. In general, extending the ground field can make a free module
out of a non-free one [2]. This cannot happen for Am-modules, essentially because Am is a
local ring.

Indeed, suppose that M is a module over Am such that MF = M 0 F is a free rank-one
module over Am 0 F. Let a E MF be a generator, so the F-span of Ama is all of MF. Now
pick some element b of the original module M such that b I - MF. Then b = aO(1 + X)a
where a E F and X E I. Because I is nilpotent of order m + 1, the coefficient a(1 + X) is a
unit with inverse a-1(1 - X + X 2 + - - - ± Xm). Thus b is also a generator for MF as a free
Am 0 F-module. In particular, b is not annihilated by any element of Am. This means that

rankF2 Amb = 2 ' = rankF MF = rankF2 M.

Hence Amb is all of M, and M is a free Am-module.

Example. It is instructive to see where this argument breaks down for-the Hopf link. There,
Kh(L) = E, has total rank four, with rank-one summands in g-degrees -1, 0, 1, 2. Thus
the filtration of the rank-I free Ar-module H*(C(D, w)) has ranks

1 < 2 < 3 < 4.
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Let e be a generator, and write xi... xj for Xi ... Xje. The filtration is

4xix2) C (xix2, xi + x 2) C (xix2, x1, x 2 ) C (xIx 2 , x1i, x 2 ,1)

The associated graded has a nonstandard module structure:

(a, b|X 1a = X 2a, X1 b = X 2b).

In contrast, the two component unlink has a filtration of ranks 1 < 3 < 4, and the associated
graded is isomorphic A 2 itself.

2.7 Sample computations

The combinatorial definition of the spectral sequence makes it amenable to computer calcu-
lation. We use knotkit, a C++ software package for knot homology computations written
by Seed, to compute the spectral sequence for thousands of links' [38].

These computations show that the spectral sequence is not determined by the Khovanov
homology of the links involved. The links 2 L12n817 and 2L14n38362 have the same Khovanov
homology, and each has two unknot components (see Figure 2.15). Yet the spectral sequences
collapse on different pages (E2 vs E 3).

1'

)

Figure 2.15: Links 2 L12n817 (left) and 2 L14n38362 (right).

Table 2.2: The link splitting spectral sequence Ek (L) over R
Z2(X1, - - . , Xm) with weight function w, = x, for examples in this
section. E 1 (L) = Kh(L) omitted.

Link L Ek rank Ek Pk(q, t) = Eij (rank E'j)tiqi

'Links are named according to the convention used in LinkInfo [5] and SnapPy [6]: xLy[a/n]z denotes
the zth alternating/nonalternating link with y crossings; x is the number of components.
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2 L12n817 E2 4 q-2+ 2+ q2
2L14n38362 E2 68 t5 q- 10 +t- q- 8 + 2t- 4 q- 8+ 2t- 4 q- 6 +2t- 3q-6 + 2t- 3q-4 + t-2q- 6 + -2q-4+

3t-2q- 2 + 2t- 1 q- 4 + 5t q- 2 + 3t 1 + 3q- 2 + 6 + 3q2 + 3t + 5t'q 2 + 2t'q 4 ±
3t2 q 2 + V

2 q4 
_±2 q 6 F3 q_4 2t3 q6  2t4 q 6 + 2t 4 q 8  t 5 q 8 

+ t
5 q 1 0

E3 4 q--2+2+q2

We have computed splitting number bounds for all links with 12 or fewer crossings in the
Morwen hyperbolic link tables from SnapPy [6]. Some choices and approximations must be
made, which we describe before giving the results.

We use two coefficient rings, P = Z/2(x) and Q. For the former, we weight component c
by w, = x', and for the latter, we weight component c by the integer c itself.

Since knotkit is not currently able to detect split links, we need an approximation to
the bound coming from the linking number, blk. Since the link table contains only non-split
links, there is no problem for two-component links. But non-split links with more than two
components, such as the Borromean rings, may have split sublinks. We define b'k as follows:
If L has two components and is known to be non-split, we set b'k(L) = blk(L). If L - K1 UK 2

may be split, then we define

|lk(K1,K2)| lk(K1 ,K 2) # 0

b'1k(L) 2 Kh(L; Z/2) % Kh(K1 I K 2 ; Z/2).

0 otherwise

If L has more than two components and is non-split, we define

b'k(L) = max ( bk(Lij) 2),
i<j

where Lij is the sublink of L consisting of the ith and jth components.
Any diagram D for a link L gives an upper bound on the splitting number. Number

the components of L from 1 to m. Let a E Sm be a permutation of the components. We
can produce a diagram D' for a split link by swapping the u(D, o) crossings of D where
J(Cupper) < u(ciower). Let u(D) be the minimum of u(D, a) over all o-, so u(D) is a upper
bound for sp(L).

We computed

b'1k (L),I bQ(L , wQ) , bp (L , wP) , u (D),

for all 5698 links in the Morwen link table with 12 or fewer crossings, where D is the tabulated
minimal diagram. Of those links, 4770 (83.7%) have non-trivial lower bounds for sp(L) and
the lower bound is known to be tight for 3587 (63%) links. Our upper bound is very rough,
so the lower bound is likely to be tight in many more cases. The bound coming from the
spectral sequence is stronger than the linking number bound for 17 of those links and equal
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to it for 2421. The examples with b > bIk are shown Table 2.3. For those 17 examples, we
verified by hand that b' = bik.

Table 2.3: Knots with 12 of fewer crossings for which bIk(L) < b(L).
u(D) gives the upper bound on sp(L).

Link L blk(L) bp(L) bQ(L) sp(L)
2 L12n1342 1 0 2 3
2 L12n1350 1 1 2 3
2 L12nl357 1 1 2 3
2 L12n1363 1 1 2 3
2 L12n1367 1 1 2 3
2 L12nl374 1 1 2 3
2 L12nl404 1 1 2 3
2 L11a372 1 1 2 3-5
2 L12a1233 1 1 2 3-5
2 L12a1264 1 1 2 3-5
2 L12a1384 1 1 2 3-5
2 L12n1319 1 2 2 3-5
2 L12n1320 1 2 2 3-5
2 L12n1321 1 2 2 3-5
2 L12n1323 1 2 2 3-52 L12n1326 1 2 2 3-5
3 L12a1622 1 1 2 3-5
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Chapter 3

Nonorientable slice genus

In this chapter, we prove a new lower bound on the nonorientable slice genus. We begin with
a knot K C S3 bounding a nonorientable surface F C B4 . In §3.1, we recall the relationship
between the first Betti number of F, the Euler number of F, and the signature of K. In §3.2,
we give a delicate topological construction of an orientable replacement F' C S2 x S 2\B4 .
In §3.3, we describe the parts of the Heegaard Floer homology package necessary to give a
lower bound on the (orientable) genus of F' and prove our main inequality, Theorem 1.6.
In §3.4, we compute the requisite signature and d-invariant for torus knots, and precisely
compute the nonorientable slice genus of T2k,2k-1.

3.1 The signature inequality

One of the major differences between orientable surfaces and nonorientable surfaces in four-
space is that the latter can have nontrivial normal bundles. The normal bundle of a closed
surface F c B 4 is determined by its (twisted) Euler number. This can be computed as a
geometric self-intersection: take a transverse pushoff of F, and choose arbitrary orientations
in the neighborhood of each intersection point. Together with the orientation of R , this
allows us to assign signs to each intersection; the sum, e(F), turns out to be independent
of the choice of pushoff and local orientation. If F is orientable, then it represents an
integral homology class and self-intersection can be computed algebraically; since H2(B 4; Z)
vanishes e(F) must be zero. If F is nonorientable, then we may still compute self-intersection
algebraically over Z/2. Hence e(F) must be even, though it need not be zero. For example,
the RP2 in Figure 3.4 has normal Euler number 2.

If F has boundary a knot K C S3 , then it has a relative normal Euler number. One way
to compute e(F) is to take an orientable Seifert surface E for K and find the Euler number
of the closed surface E UK F. Alternatively, one may take a nonvanishing section s of the
normal bundle v(F) (one exists since F retracts to its 1-skeleton). The restriction of s to
the boundary provides a framing of K, and

e(F) = -lk(K, s(K)).

53



For example, the obvious M6bius band with boundary T2,n has normal Euler number -2n.
We now sketch a proof of the signature inequality Theorem 1.9. Let F C B4 be a surface

with boundary K C 3. Let W(F) denote the double cover of B4 branched over F. Gordon
and Litherland [14] use the G-signature theorem to show that the quantity

e(F)o-(K) := U(W(F)) + 2
2

is independent of the choice of surface F with boundary K. For any such F then,

o-(K) - e = Jo-(W(F)) < b2(W(F)) = bi(F).

This inequality is tight for the two natural surfaces with boundary T2,,, which has signa-
ture -(n - 1). The Seifert surface has e(F) = 0 and b,(F) = n - 1, while the M6bius band
has e(F) = -2n and bi(F) = 1. The surfaces in Figure 1.3 can be constructed by taking the
M6bius band or Seifert surface in S3, pushing it into the four-ball, then doubling across the
boundary.

In light of the important role played by e(F), it may be clarifying to sort surfaces based
on the framing they induce on the knot and try to minimize b1 separately in each class. The
signature inequality can be interpreted as stating that 2-(K) is a 'preferred framing' for the
knot K, deviation from which requires a more complex surface.

3.2 Constructing an orientable replacement

In this section, we prove

Proposition 1.7. Let F C B4 be a smoothly embedded nonorientable surface with odd b1

with boundery a knot K C S'. Then there exists an orientable surface F' C S2 x S2\B'
which still bounds K, and has bi(F') = bi(F) - 1 and e(F') = e(F) + 2.

Proof. We break the proof into four steps.

Step 1: There is an embedded disk D C B4 , with boundary contained in F, such that
F\&D is orientable.

Since F has odd bi, it is diffeomorphic to a punctured orientable surface boundary-
connect summed with a M6bius band (Figure 3.1). Let -y C F be the core of the M6bius
band, so that F - -y is orientable. (The class [^y] is Poincar6 dual to wi.)

After an ambient isotopy, we may arrange that -y lies in a small sphere S, C B4 . Think
of y a knot, with some projection. Changing a few crossings will convert -y to the unknot U,
and this can be realized as an isotopy in B4 pushing some strands a little outside of S,, over,
then back down. The unknot bounds an embedded disk in S3, which we push in towards
the center of B4 ; that disk together with the trace of the isotopy is our embedded D. After
a generic perturbation, D will intersect F transversely on its interior.
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Figure 3.1: The surface F

Figure 3.2: Our surface F intersects ON in a torus knot and an unlink

Let N be a small regular neighborhood of D.

Step 2: The intersection ON n F is the link L C S' shown in Figure 3.2.

N is diffeomorphic to D x D2 , and intersects our surface F in a Mbbius band (in the
neighborhood of OD = C) and a collection of disks pt x D2 (neighborhoods of the transverse
intersections of F with the interior of D). If we draw S3 = ON with its standard decompo-
sition into solid tori S3 -1 x D 2 UT2 D 2 x S', we see F n ON as the link L consisting of a
(2, 2k + 1)-cable of the core of the first factor, together with a collection of 1 longitudes for
the second. By construction, L bounds a Mdbius band disjoint union a collection of I disks
in N & B".

Step 3: L bounds I + 1 disjoint embedded disks in S2 x S2\B4

Suzuki has shown that every link is slice in S2 x S 2\B4 [421. Since we need control over
the Euler numbers, we construct the slice disks explicitly.

A handle decomposition for S2 x S2\B4 consists of two zero-framed 2-handles H, and H2
attached along a Hopf link in the boundary S3, together with a 4-handle. To construct the
slice disks for L, we begin with Ikl + 1 parallel copies of the core of H 2 and 2 parallel copies
of the core of Hl-their boundaries form a multi-Hopf link, with components U1, * -' , UlkJ+,
L1, L2, as in the first frame of Figure 3.3. For each 1 < i < Jkl, connect Ui to L, with
a twisted strip, and with one additional twisted strip, connect V to V2 . Call the surface
consisting of the parallel cores and the strips E, and note that the boundary of E is isotopic
to L. Since each strip connects a distinct disk to L1 , we see that E is a collection of 1 + 1
disjoint embedded disks with boundary L.

Step 4: Construct F', and compute b1(F') and e(F').

If we excise N from B4 , we are left with an orientable surface F" c S3 x [0, 1], with
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Figure 3.3: For k = -7, 1 = 3, we have drawn the multihopf link bounding a collection of
parallel disks, the strips which join them to form E, and the boundary of E, which is isotopic
to L.

boundary K in S 3 x {0} and L in S3 x {1}. Attach S2 x S 2\B4 along S3 x {1} to form a
larger manifold, still diffeomorphic to S2 x S2\B4 . The slice disks E for L combine with F"
to form an orientable surface F', whose only remaining boundary is the original knot K.

Since we have removed 1 disks and an M6bius band from F, and replaced them with
1 + 1 disks, bi(F') = bi(F) - 1. It remains to compare the normal Euler numbers. Since
F" is orientable and H2 (S 3 x [0, 1]) vanishes, F" has trivial relative normal bundle. Thus
e(F) = e(FnN) and e(F') = e(E). The disks in FnN with boundary the unknots U1,... , U,
have trivial self-intersection as well, since they can be added back into F while maintaining
orientability. The disks in E with boundary the unknots are attached with framing 0, so
they also contribute nothing to the Euler number. The nontrivial contributions come from
the M6bius band in F n N with boundary the torus knot component of L and the interesting
disk in E. We invite the reader to verify that the induced framings differ by 2, due to the
difference between the vertical twisted strip connecting V, to V2 in E and the horizontal one
in M6bius band. That is,

e(F') = e(E) = e(F n N) + 2 = e(F) + 2.

Since the framing induced by the M6bius band with boundary T2,2k+1 is -2(2k + 1), the
number of twists is not arbitrary: 2k + 1 = -(F) E

For future reference, we note that the homology class [F'] EH2(2 x S 2\B4) is (2, m), in
the basis given by H, and H2 . Since F' is orientable, its algebraic self-intersection number,
4m, must be equal to its geometric self-intersection number, e(F').
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3.3 d-invariants

Heegaard Floer homology associates to a 3-manifold Y equipped with a Spin' structure t a
suite of Z[U]-modules which fit into a long exact sequence:

- - - -* HF-(Y, t) 4 HF (Y, t) -7 HF+(Y, t) A HF~(Y, t) -

If c1 (t) is torsion (in which case we also say that t is torsion), then there is a Q-grading
gr on the each of these groups which is respected by i and 7r. The action of U decreases
grading by 2. If Y is a rational homology sphere, then every Spine structure t is torsion,
and HF (Y, t) Z Z[U, U-']. In that case, the d-invariant d(Y, t) is the minimal grading of a
non-Z-torsion element of HF+ (Y, t) in the image of 7r.

If bi(Y) > 0, then there is an additional action of H := H1(Y)/Tors on the HF groups,
which decreases grading by 1. If for every torsion t C Spinc(Y), we have HF (Y, t) -
Z[U, U- 1] ®z A*H, then we say that Y has standard HF'. In that case, there are many
correction terms, one for each generator of A*H. We will be concerned with the bottom-
most correction term, db(Y, t), defined to be the minimal grading of a nontorsion element of
HF+(Y, t) in the image of 7r and in the kernel of the H-action. The d-invariants terms will
be useful to us because of their relationship to definite cobordisms.

Proposition 3.1. [30] Let Y be a closed oriented 3-manifold (not necessarily connected)
with standard HF , endowed with a torsion Spinc structure t. If X is a negative semi-
definite four-manifold with boundary Y such that the restriction map H1 (X; Z) -* H'(Y; Z)
is trivial, and s is a Spin structure on X restricting to t on Y, then

c1(s) 2 + b2 (X) ; 4db(Y, t) + 2bi(Y).

We are now ready to prove our main inequality.

Theorem 1.6. Suppose that K C S3 bounds a smoothly embedded, nonorientable surface
F c B 4 . Then

b,(F) ;> '(2F) - 2d (S31 (K)) .

Proof. Both sides of the inequality change by the same amount under a positive real 'blow-
up.' More precisely, if we connect sum F C B 4 with the embedding of RP 2 C S4 with Euler
number +2 pictured in Figure 3.4, then both b, and e/2 increase by 1. After blowing up
sufficiently many times, we may assume that e(F) > 0 and bi(F) is odd.

Using Proposition 1.7, we construct an orientable surface F' C S2 x S 2\B4 with boundary
K C S3. Attach a -1-framed 2-handle along K to form a 4-manifold W with boundary
S3 1i(K) and intersection form

-1 0 0
Qw= 0 0 1

0 1 0

57



o 01 0

Figure 3.4: An embedded RIP2 with normal Euler number 2.

We may cap off F' with the core of the 2-handle to form a closed surface E with genus
g = (b,(F) - 1)/2, homology class (1, 2, m), and self-intersection

n := 4m - 1 = e(F) + 1 > 0.

If we decompose W = v(E) U W, then W will be a negative semi-definite cobordism from
Yg,n, the Euler number n circle bundle over E, to S 1 (K). Alternatively, we can view W as a
negative semi-definite four-manifold with disconnected boundary Yg,-n JJ SI(K). We need
to understand the homology, HF', and d-invariants of Yg,n and S3I(K), and the intersection
form on W.

The Gysin sequence for the disk bundle v(E) gives

0 -+ H 1 (v(E)) -+ Hl(Yg,n) -+ H2

-4 H2 (v()) - H2 (Ygn) - H1(E) -0

where e c H2(V(E)) ' Z is n times the generator. Thus H2 (yn) , 2g e Z/n. Note that
the restriction of H1 (v(E)) to Hl(Y,n) is an isomorphism. Since H1 (W) = 0 (no 1-handles
were used in its construction), the Mayer-Vietoris sequence

0 -+ H'(W) -+ H 1(v(E)) G H'(W) -4 Hl(Y,n)

-+ H 2 (W) -+ H 2 (v(Z)) D H 2 (W) -+ H2

shows that H1 (W) = 0, trivially satisfying the restriction hypothesis of Proposition 3.1.
Since H2 (W) , Z3 has no 2-torsion, a Spinc structure on W is determined by its first Chern
class. Any Spinc structure on W will give us some inequality between d-invariants, but we
will only need to consider a certain Spin' structure st with PD(c1 (st)) = (±1, 2, 2a), where

2(m - g) - 1 t 1
4

and the sign is chosen so as to make a an integer. The given vector is characteristic for Qw,
so does correspond to a Spinc structure. Crucially for our later use, cl (st) evaluates to n - 2g
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on E.
To compute the c2 term in the proposition, we decompose the intersection form of W in

terms of the Q-valued intersection forms on v(E) and W: if c E H 2(W), then

Qw(c) = QV(E) (cIv(E)) + Qw (clw).

A generator of H2 (v(E), Ygn) maps to n times the generator of H2 (V(E)) in the gysin se-
quence above, so Q = (). The value of clv(>) E H 2 (v(E)) is determined by integrating
it over E, giving

(c, [E]) 2

QW(c) = ' + Qw (c1w). (3.3.1)n
In our case,

Ci(_tlW)2 =QW(Ci(St))_ (C(t), [E]) 2  (n - 2g) 2 = 4g 2

c1(t~w = W~1(s)) -- 1+8a - =-2 2 2 --.
n n n

The relevant d-invariant of Yg,_, is computed in section 9 of [301, for use in their proof
of the Thom conjecture. If n > 2g, then

db (Y9,_n)t1Y,_) = .4

That calculation uses the integer surgeries exact sequence associated to the Borromean knot
in K c #2gSl x S 2 : the -n surgery on K gives Yg,-. Since # 2ggS x S 2 has standard HF ,
so does Yg,_ (cf. Proposition 9.4 of [30]). Finally, since S3i1(K) is an integer homology
sphere, it also has standard HF .

We may now apply Proposition 3.1, to get

C1(St) 2 + b-(W) 4db(Yg,-n, t) + 4d(S31(K)) + 2b(Yg,_n) + 2b1(S31 (K)).

After substituting all the values computed above, this reduces to

(2 ± 2 - + 2 < 4 +- - n 4d (S31(K)) + 2(2g).
n ) 4 n 4

If we take the unfavorable sign on ±2, and recall that bl(F) = 2g + 1 and e(F) + 1 = n, we
get the inequality

e(F) < 2d (S3 1 (K)) + bi(F). (3.3.2)
2 -

This argument relied on a value for db(Yg,_n) only valid if n > 2g. But the term d(S I(K))

is nonnegative, as can be seen by applying Proposition 3.1, applied to the surgery cobordism
S 3 -+ S3 1 (K). So if n < 2g, and consequently e(F) + 2 < bi(F), then Equation 3.3.2 still
holds.

Remark 3.2. Our final lower bound on the nonorientable four-ball genus is the gap 2 -
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d(S',(K)). For alternating knots, this quantity is nonpositive-in [31], Ozsvath and Szab6
show that

d (S3 1(K)) = max 0, 2

For nonalternating knots, '" and d(S31 (-)) can diverge widely, though both invariants
satisfy a crossing-change inequality [36]:

r(K+) r7(K_) < 77(K+) + 2.

If K becomes alternating after c crossing changes, then -(K) - d(S3 1(K)) can be as large as2
2c.

3.4 Torus knots

In the section, we apply Theorem 1.6 to torus knots, whose signatures and d-invariants are
easy to compute. In particular, we will compute the nonorientable slice genus of the family
T2k,2k-1. Since any surface with boundary T2k,2k-1 may be reflected to get a surface with
boundary T-2k,2k-1, we will focus on the latter (negative) knot.

Signatures of torus knots satisfy a recursion relation [29]. If u(p, q) := a(Tp,q), then

o-(q, p)

o-(p - 2q,q)+ q2 (1)

u(p, q) = -0(2q - p,p) + q2 -2 (+1)

p-i
0

if q > p

if 2q < p (q odd)

if 2q > p (q odd)

if q = 2

if q = 1

Let -k := o-(T-2k,2k-1) = o(2k, 2k - 1). Applying the first and third conditions twice, we
arrive at the recursion

Uk= 4k - 2 + Ok-1,

whence ok = 2k 2 - 2.
The d-invariants of torus knots are also simple to compute, since they admit lens space

surgeries.

Proposition 3.3. [301 Let K be a knot admitting a positive lens space surgery. Then

and d112(SO (K)) = - 2to

where if

AK(T) = a0 + aj (Tj + T-j)
d

j=1
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then
d

to= 1 jaj.
j=1

The d-invariants of zero-surgery are related to those of +1-surgery via Proposition 4.12
of [30]:

d (s(K)) = d1/ 2 (SOg(K)) + d (Si(K)) = d1 / 2 (S3(K)) -2

Since T,q admits a positive lens space surgery, we have

d (Sf 1 (Tp,q)) = -d (S3 (Tp,q)) = - (di/ 2 (S30 (Tp,q)) - 2to.

The Alexander polynomial of Tp,q is

ATpq(T) = T-(P-1)(q-)/ 2 (1 - T)(1 - Tpq)

For torus knots T2k,2k-1, the Alexander polynomial has a simple form:

k-1

AT2k,2k-1 - , J( 2 k-1) - Ti(2k-1)-(k-j) + T-j( 2k-1) - -j(2k-1)+(k-j)

j=i

so
k-i k-1 2 k

to= j(2k -1)- (j(2k -1)- (k-j) = k - 2
j=1 j=1

Hence
d (S3, (T-2k,2k-1)) = k2 - k.

The relevant difference between signature and d is

- d = k2 - 1 - (k2 - k) = k - 1.
2

By Theorem 1.6, we know that

Proposition 3.4. If F C B4 is a smoothly embedded nonorientable surface with boundary
T2k,2k-1 C S3 , then bi(F) > k - 1.

To prove Theorem 1.4, apply the proposition to both halves of a surface with cross-section

T2k,2k-I.

The lower bound in the proposition is tight, as demonstrated by the following general
construction. View Tq as lying in a standard torus, as in Figure 3.5. Take any two adjacent
strands and join them with a strip, or equivalently perform an index 1 Morse move merging
them. The resulting cobordism is nonorientable, since the strands were parallel; it is a
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Figure 3.5: A cobordism from T4,3 to T2 ,1
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punctured M6bius band. Since the resulting knot still lives on the torus, it must be T,,, for
some r and s. The values of r and s can be easily computed by orienting the resulting knot
and counting the signed intersection with the horizontal and vertical generators of H1 (T2 ).
A short calculation shows that

r = p - 2t s=q - 2h

where t = -q-1 mod p, with 0 < t < p, and h p- mod q, with 0 < h < q. After an
isotopy, T,,, will be in standard, taut form on the torus, and we can repeat the process.
Eventually, we arrive at T, 1 for some n, which is just an unknot. By concatenating all of
these cobordisms, then capping off the final unknot with a disk, we produce a surface Fp,q
in B 4 with boundary Tp,q.

For example, if p = 2k and q = 2k - 1, we have t = = 1 and h = 1 = 1,
giving r = 2k - 2 and s = 2k - 3. Thus T2k,2k-1 has a x = -1 cobordism to T2(k-1),2(k-1)-1
Concatenate k - 1 of these, then cap off T2,1 with a disk to get a closed surface F2k,2k-1 C B4

with boundary T2k,2k-1 and bi(F2k,2k-1) = k - 1.

Since the isotopies and Morse moves take place inside of the torus, we can actually embed
each of these cobordisms in a thickened torus T 2 x [-c, c] in S3, where we view the [-c, c]
direction as a sort of time. The obstruction to embedding all of Fp,q in S3 is that the final
disk with boundary T,,1 cuts through all of the previous layers unless n = 0. To get a surface
in S3 , we must continue with these within-torus cobordisms: Tn,1  -+ Tn- 2,1 F+ .. .. If n is
even, or equivalently if pq was even to start, then we do get a surface in S 3 . Teragaito has

computed 7y3(Tp,q), and it agrees with bi(F) [44]. For example, 7Y3(T2k,2k-1) = k. If n is odd,
then this construction fails to give a surface in S 3 , though a slight modification (cf. [44]
Remark 4.9) will do.

It is interesting to compare with the Milnor conjecture, which states that a minimal genus

orientable surface in B 4 with boundary Tp,q can be isotoped into S3. While there is a M6bius

band in B 4 with boundary T 4,3 , Teregaito has shown that a punctured Klein bottle is best

possible in S3 [44].

The first Betti numbers of the Fp,q do not have a simple closed form: they obey the recur-

sion bi(Fp,q) = bi(Fp-2t,q-2h) + 1 where t and h are the minimal nonnegative representatives

of -q- 1 modulo p and p 1 modulo q, respectively.

We conjecture that the surfaces Fp,q have minimal b1 among all smoothly embedded

surfaces in R 4 with boundary Tp,q. Many pairs (p, q) for which this conjecture holds can be

certified using the d-invariant bounds of this paper. Similar invariants, derived by considering

larger surgeries on the knot, give even more examples. The smallest knot for which the

conjecture remains open is T7 ,4 , which is known to be the boundary of a Klein bottle but

may yet be the boundary of a M6bius band.

Remark 3.5. The d-invariant argument works just as well for -r-surgery as for -1-surgery.

Let F C B 4 have boundary a knot K. Write si for the Spin'-structure on S3 r(K) indexed

as in Lemma 2.2 of [35]. Then
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i(K) _
2  r - I

bi(F) > - d(Sr(K)jsi). (3.4.1)
2 r 4

We have found experimentally that when K is a torus knot T,q, the lens space surgery
r = pq - 1 gives the best lower bound, though the optimal choice of si varies based on the
knot. This can give an improvement: if F C B 4 has boundary T9 ,5 , then the inequality
for -1-surgery shows that bi(F) > 0 while an inequality for the -4-surgery shows that
bl(F) > 2. Levine, Ruberman, and Strle have recently computed the d-invariants of circle
bundles over nonorientable surfaces, which allows one to skip the orientable replacement [12].
The bounds coming from their argument, however, appear to be identical to Equation 3.4.1.
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