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Abstract

Yves Couder and coworkers have demonstrated that millimetric droplets walking on
a vibrating fluid bath exhibit several features previously thought to be peculiar to the
microscopic quantum realm, including single-particle diffraction, tunneling, quantized
orbits, and wave-like statistics in a corral. We here develop an integro-differential
trajectory equation for these walking droplets with a view to gaining insight into their
subtle dynamics. The orbital quantization is rationalized by assessing the stability
of the orbital solutions. The stability analysis also predicts the existence of wobbling
orbital states reported in recent experiments, and the absence of stable orbits in
the limit of large vibrational forcing. In this limit, the complex walker dynamics
give rise to a coherent statistical behavior with wave-like features. We characterize
the progression from quantized orbits to chaotic dynamics as the vibrational forcing
is increased progressively. We then describe the dynamics of a weakly-accelerating
walker in terms of its wave-induced added mass, which provides rationale for the
anomalously large orbital radii observed in experiments.
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3-5 Orbital solutions in the high orbital memory regime MO
e � 1. The

curves are determined by solving (3.9) numerically for γ/γF = 0.985,
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counterparts (ω < 0), the difference ∆r0 being defined in (3.24). . . . 74
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as a function of the nondimensional forcing acceleration γ/γF . The
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walking threshold in the absence of rotation is γW/γF = 0.806. . . . . 78

3-7 Orbital stability diagram for a walker of radius RD = 0.4 mm, phase

sin Φ = 0.16, viscosity ν = 20.9 cSt, and forcing frequency f = 80 Hz,

determined by finding the eigenvalues of the linear stability problem

(3.32). The stability of the circular orbit is governed by the eigenvalue

with the largest real part, denoted by s∗. Stable orbits (<(s∗) < 0) are

indicated in blue. Unstable orbits for which s∗ is complex (<(s∗) > 0,

=(s∗) 6= 0) are colored in green, while those for which s∗ is on the posi-

tive real axis (<(s∗) > 0, =(s∗) = 0) are colored in red. The horizontal

traverses A–C correspond to, respectively, the curves in figures 3-1(c),

3-2(a), and 3-2(c), the color coding being the same. We note that the
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A–C but are assumed to be fixed in the orbital stability diagram. . . 84
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4-1 Summary of the linear stability analysis for circular orbits presented

in Chapter 3 [50], for a walker of radius 0.4 mm and phase sin Φ = 0.2

bouncing on a 20 cS silicone oil bath forced at 80 Hz. The dimension-

less orbital radius r0/λF and vibrational acceleration γ/γF uniquely

specify the circular orbit. Blue indicates stable orbits, for which each

eigenvalue has a negative real part. Green corresponds to unstable or-

bits with an oscillatory instability, for which the eigenvalues with the

largest (positive) real part are complex conjugates. Red corresponds

to unstable orbits for which the eigenvalue with the largest (positive)

real part is purely real. We note that the experimental parameters

used here are slightly different to those used to generate Figure 3-7. 89

4-2 Regime diagram delineating the dependence of the walker’s trajectory

on the initial orbital radius r0 and vibrational forcing γ. The trajec-

tory equation (4.2) is numerically simulated using circular orbit initial

conditions, initial perturbation δ = (0.02, 0), time step ∆t = 2−6 and

tmax = 1000. The walker’s trajectory is color-coded according to the

legend. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4-3 Panels (a) and (b): examples of 2ω- and 3ω-wobbling orbits at n = 1,

respectively. The 2ω-wobbling orbit was obtained using initial orbital

radius r0/λF = 0.85 and vibrational forcing γ/γF = 0.955, and the

3ω-wobbling orbit using r0/λF = 0.94 and γ/γF = 0.9745. The cor-

responding (unstable) circular orbit is indicated by the dashed line.

Panels (c) and (d): plots of the corresponding orbital radius r̄(t) as a

function of t/T , where T is the orbital period. In the upper plots, note

that the radius grows and then saturates, which is characteristic of a

Hopf-type instability. The lower plots resolve the oscillations, showing

that the wobbling frequency is ≈ 2ω in (c) and ≈ 3ω in (d). . . . . . 95
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4-4 Numerical characterization of wobbling orbits (panels (a) and (c)),

compared with experimental data from Harris and Bush [38] (panels

(b) and (d)). Panels (a) and (b) show the dependence of the wobbling

amplitude A on the rotation rate Ω for various values of memory γ/γF .

Panels (c) and (d) show the dependence of the wobbling frequency ωwob

on the rotation rate Ω. The wobbling frequency is normalized by the

orbital frequency ω. The symbols correspond to different values of the

memory γ/γF , as defined in the legend. . . . . . . . . . . . . . . . . . 96

4-5 (a) Numerical simulation of a drifting trajectory at n = 1, obtained

using the initial orbital radius r0/λF = 0.8005 and vibrational forcing

γ/γF = 0.959. The trajectory (gray line) consists of a loop (dashed

line) drifting along a larger circle (black solid line). (b) Plot of the

orbital radius r̄(t) as a function of t/T , where T = 4.3 is the orbital

period. (c) Plot of the orbital center (x̄c, ȳc) as a function of t/T . Note

that the center moves on a much slower timescale than the radius r̄.

(d) Numerical simulation of another drifting trajectory using r0/λF =

0.893 and γ/γF = 0.966, for which the center does not move along

a precise circle. (e) Experimentally observed [38] drifting trajectory

similar to that in panel (d), obtained using γ/γF = 0.978± 0.003 and

rotation rate Ω = 1.72 s−1. The trajectory is indicated by the dashed

line, the motion of the center by the solid line. . . . . . . . . . . . . . 98
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4-6 Numerical characterization of drifting orbits at n = 1. Top panels (a)

and (d): the curve shows the theoretical orbital radius r0 as a function

of the nondimensional rotation rate 2ΩλF/u0, calculated using (4.3).

The blue segments indicate stable circular orbits, and the green unsta-

ble solutions due to an oscillatory instability. The trajectory equation

(4.2) was numerically simulated within the green regions, and both

wobbling and drifting orbits were found. The markers correspond to

the mean orbital radius r̄ of a wobbling orbit, and the error bars indi-

cate the wobbling amplitude. The unmarked green regions correspond

to drifting orbits, in which the orbital center (x̄c, ȳc) drifts in a circle.

The middle panels, (b) and (e), show the radius Rdrift of the orbital

center, and the lower panels (c) and (f) the period of the orbital center

Tdrift normalized by the orbital period T . Panels (a–c) correspond to

a vibrational forcing γ/γF = 0.957 and (d–f) to γ/γF = 0.958. . . . . 100

4-7 Numerical simulations of drifting orbits, for various values of the vi-

brational forcing γ/γF and initial orbital radius r0. In panel (a),

the gray curve corresponds to a trajectory with r0/λF = 0.7262 and

γ/γF = 0.971, which consists of a loop (dashed black curve) that drifts

along a square epicycle (black curve). The plots along the top row of

panel (b) show the orbital centers of some drifting orbits at n = 0.

From left to right, the parameter values are: (r0/λF , γ/γF ) = (0.7221,

0.973), (0.3635, 0.968), (0.7514, 0.971), (0.7870, 0.971) and (0.775,

0.971). The bottom row shows those corresponding to n = 1, with

parameter values (r0/λF , γ/γF ) = (0.8541, 0.9612), (0.8537, 0.9609),

(0.8541, 0.96125), (0.8542, 0.9613) and (0.8537, 0.96085), which corre-

spond to the same dimensionless rotation rate Ω̂ = 0.5734. . . . . . . 101

18



4-8 Numerical simulation of a wobble-and-leap trajectory at n = 1, ob-

tained using initial orbital radius r0/λF = 0.8029 and vibrational forc-

ing γ/γF = 0.960. Panel (a) shows the mean orbital radius r̄(t). Panel

(b) shows the trajectory (dashed gray curve), resulting from the or-
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4-11 Numerical simulation of a trajectory exhibiting a periodic oscillation

between two orbital radii, obtained using initial radius r0/λF = 1.2691
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Chapter 1

Introduction

The complex interaction between fluids and macroscopic objects is the source of a

number of fascinating physical phenomena. For instance, a flag flapping in the wind

exhibits many interesting behaviors and constitutes a highly nonlinear dynamical

system, as the flag both perturbs and responds to the external flow [57]. Some

insects are able to propel themselves across a fluid surface by virtue of the vortices

they generate [40]. The motivation for this thesis is a remarkable set of experiments

conducted by Yves Couder and his group, who showed that the interaction between

bouncing droplets and their self-generated waves can give rise to a complex dynamics

reminiscent of phenomena at the quantum scale.

In their experiments, Couder and his coworkers placed a droplet of silicone oil

on the surface of a vertically vibrating bath of the same fluid [17, 54, 18]. Provided

the forcing acceleration of the bath is sufficiently large, the droplet may propel itself

across the fluid surface while bouncing vertically [54, 46]. The walking droplet, or

walker, is propelled because it lands on the sloping surface of its own wave field.

While the waves eventually decay due to the influence of fluid viscosity, they may

persist for hundreds of bounces. The walker’s trajectory is thus determined by the

waves generated in its past. Experiments conducted over the past eight years have

revealed that the resulting “path memory” is responsible for the complex walker

dynamics and their quantum-like behavior [29]. Multiple walkers may interact with

each other through their wave fields and thus exhibit interesting coherent behavior
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[26, 28, 55, 30].

In a landmark experiment, Couder and Fort [15, 16] showed that a single walker

may be deflected by a gap between two submerged barriers, the statistics of the

deflection angle resembling the single-slit diffraction pattern of photons [60] and elec-

trons [20]. They also demonstrated a walker may tunnel across regions of relatively

low fluid depth in which walking is forbidden, thus exhibiting an analogue of quan-

tum tunneling [27]. More recently, experiments conducted at MIT revealed that the

chaotic dynamics of a walker placed in a confined geometry exhibits a coherent statis-

tical behavior reflecting the cavity’s dominant eigenmode [39], the system thus being

reminiscent of electrons in a quantum corral [19].

Fort et al. [32] and Harris and Bush [38] demonstrated that the circular orbits of

walkers in a rotating frame may be quantized in radius, thus exhibiting a hydrody-

namic analogue of an electron’s Landau levels from quantum mechanics. Similarly,

Perrard et al. [52] demonstrated that the orbits of walkers in a harmonic potential

are doubly quantized in both mean radius and angular momentum. In both systems,

in the limit of large vibrational forcing, the walker dynamics becomes chaotic but

exhibits a coherent wave-like statistics. An experimental study of the walker dynam-

ics in a rotating frame showed that, when the walker dynamics becomes chaotic, its

statistical behavior reflects the persistent influence of the quantized circular orbits

[38].

These experiments represent the first macroscopic realization of a pilot-wave sys-

tem of the form proposed by Louis de Broglie as a realist model of quantum mechanics

[1, 21, 22]. He posited that a quantum particle is propelled by a guiding pilot wave

generated by the particle’s internal vibration. While such a physical picture provides

a rational explanation for a number of quantum oddities, including single-particle

diffraction [2, p. 112], the physical origin of the pilot wave was left unspecified, and

self-consistent equations of motion for both particle and pilot wave were not devel-

oped. In 1952, David Bohm proposed an alternate pilot-wave theory [4, 5], in which

particles are guided by a pilot-wave but do not generate it. Since the guiding wave is

postulated to be a solution to Schrödinger’s equation, Bohmian mechanics is mathe-
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matically equivalent to standard quantum theory. However, it was criticized as being

overly complicated, as the underlying pilot-wave and particle trajectories could not

be observed directly.

The pilot-wave description was eventually superseded by the Copenhagen Inter-

pretation as the standard view, which denied the existence of well-defined trajectories

for quantum particles and instead propounded the idea of an intrinsically probabilistic

universe. There has since been a proliferation of competing quantum interpretations,

from the Many Worlds Interpretation to the Transactional Interpretation, few of

which attempt to restore realism and determinism to quantum theory [10]. The sci-

entific community has recently given considerable attention to the bouncing droplet

system, as it could provide inspiration for a deterministic quantum theory [35, 9, 10].

Investigations of the bouncing droplet system have been largely experimental.

While theoretical models for the walker dynamics have developed, they have contained

a number of free parameters and so have been unable to quantitatively reproduce

experimental data [54, 32, 58]. The first comprehensive model of the system was

developed by Moláček and Bush [45, 46], who performed a detailed analysis of the

bouncing dynamics and underlying wave field. In this thesis, we build upon their

work in order to develop and analyze an integro-differential trajectory equation for

the drop’s horizontal motion. We show that the model can be treated analytically in

some cases and efficiently simulated in others. Our work has allowed us to rationalize

certain observed features of the walker system, and has led to a number of predictions

that have since been confirmed in laboratory experiments. The trajectory equation

requires two constants: the drag coefficient on the drop, and the amplitude of the

standing wave generated by a single drop impact, both of which were derived by

Moláček and Bush [46].

This thesis is motivated by the following three questions:

• How can we develop an analytically tractable description of the walking droplets?

• How does orbital quantization arise in a rotating frame?

• How does wave-like statistical behavior emerge in the limit of large vibrational
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forcing?

In Chapter 2, we present the results of a theoretical investigation of droplets

bouncing on a vertically vibrating fluid bath. An integro-differential equation de-

scribing the horizontal motion of the drop is developed by approximating the drop

as a continuous moving source of standing waves. Our model indicates that, as the

forcing acceleration is increased, the bouncing state destabilizes into steady horizontal

motion along a straight line, a walking state, via a supercritical pitchfork bifurcation.

Predictions for the dependence of the walking threshold and drop speed on the system

parameters compare favorably with experimental data. By considering the stability

of the walking state, we show that the drop is stable to perturbations in the direc-

tion of motion and neutrally stable to lateral perturbations. Chapter 2 appears as

published in: A trajectory equation for walking droplets: hydrodynamic pilot-wave

theory, Oza, A. U., Rosales, R. R. and Bush, J. W. M., Journal of Fluid Mechanics,

737, 552–570 (2013) [48].

In Chapter 3, we present the results of a theoretical investigation of droplets walk-

ing on a rotating vibrating fluid bath. The droplet’s trajectory is described in terms

of a similar integro-differential equation that incorporates the influence of its propul-

sive wave force. Predictions for the dependence of the orbital radius on the bath’s

rotation rate compare favorably with experimental data and capture the progression

from continuous to quantized orbits as the vibrational acceleration is increased. The

orbital quantization is rationalized by assessing the stability of the orbital solutions,

and may be understood as resulting directly from the dynamic constraint imposed

on the drop by its monochromatic guiding wave. The stability analysis also predicts

the existence of wobbling orbital states reported in recent experiments, and the ab-

sence of stable orbits in the limit of large vibrational forcing. Chapter 3 appears as

published in: Pilot-wave dynamics in a rotating frame: on the emergence of orbital

quantization, Oza, A. U., Harris, D. M., Rosales, R. R. and Bush, J. W. M., Journal

of Fluid Mechanics, 744, 404–429 (2014) [50].

In Chapter 4, we present the results of a numerical investigation of droplets walk-

ing on a rotating vibrating fluid bath. The integro-differential trajectory equation is
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simulated numerically in various parameter regimes. As the forcing acceleration is

progressively increased, stable circular orbits give way to wobbling orbits, which are

succeeded in turn by instabilities of the orbital center characterized by steady drifting

then discrete leaping. In the limit of large vibrational forcing, the walker’s trajec-

tory becomes chaotic, but its statistical behavior reflects the influence of the unstable

orbital solutions. The study results in a complete regime diagram that summarizes

the dependence of the walker’s behavior on the system parameters. Our predictions

compare favorably to the experimental observations of Harris and Bush [38]. Chapter

4 is currently under view at Physics of Fluids: Pilot-wave dynamics in a rotating

frame: exotic orbits, Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R.R.

and Bush, J. W. M. [51].

In Chapter 5, we present a mathematical treatment of the walker dynamics in a

rotating frame. We show that, above a critical value of the forcing acceleration and

below a critical value of the rotation rate, the bouncing state may destabilize into

a circular orbital solution. We explore the mathematical properties of orbital solu-

tions to the trajectory equation, and assess their stability by recasting the trajectory

equation as an initial value problem. We demonstrate that circular orbits are stable

in the asymptotic limits of low forcing acceleration, and both small and large orbital

radius. We then construct a numerical method for assessing orbital stability outside

of these asymptotic regimes, which involves finding the roots of an analytic function.

We conclude by presenting a stability diagram for orbital solutions and comparing

our results with the experimental data reported by Harris and Bush [38]. The results

of the mathematical framework presented in this chapter were used in Chapter 3 to

gain physical insight into the walker’s orbital dynamics. Chapter 5 is to be submitted

as: Orbital stability in hydrodynamic pilot-wave theory, Oza, A. U., Bush, J. W. M.

and Rosales, R. R., SIAM Journal on Applied Mathematics [49].

In Chapter 6, we examine the dependence of the walker mass and momentum

on its velocity. Doing so indicates that, if the walker accelerates slowly relative to

the wave decay rate, its dynamics may be described in terms of the mechanics of

a particle with a speed-dependent mass and a nonlinear drag force that drives it
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towards a fixed speed. Drawing an analogy with relativistic mechanics, we define

a hydrodynamic boost factor for these walking droplets. This perspective provides

new rationale for the anomalous orbital radii reported in recent studies. Chapter 6

appears as submitted: The wave-induced added mass of walking droplets, Bush, J.

W. M., Oza, A. U. and Moláček, J., Journal of Fluid Mechanics [11].

In Chapter 7, we conclude the study of our integro-differential equation of mo-

tion. We discuss the advantages and shortcomings of our model, and propose future

research directions.
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Chapter 2

Integro-differential trajectory

equation for walking droplets

2.1 Introduction

In this chapter, we develop an integro-differential trajectory equation for the walking

droplets with a view to gaining insight into their subtle dynamics. We consider a

fluid bath vibrating vertically with acceleration γ cosωt, where ω = 2πf . When γ is

increased beyond γF , the fluid surface goes unstable to a standing field of Faraday

waves. The critical acceleration γF , the Faraday threshold, depends on the fluid

viscosity, depth, and surface tension. At the onset of instability, subharmonic waves

with frequency ω/2 emerge; at higher γ, higher harmonics of frequency nω/2 (for

integer n) can arise. This system was first examined by Faraday [31], and has since

been explored by many others [24, 43, 47]. A theoretical description of Faraday waves

was developed for inviscid fluids by Benjamin and Ursell [3] and extended to the case

of viscous fluids by Kumar [41]. In this thesis, we will only consider the regime

γ < γF , for which the flat interface would be stable if not for the presence of a drop.

This chapter appears as published in: A trajectory equation for walking droplets: hydrodynamic
pilot-wave theory, Oza, A. U., Rosales, R. R. and Bush, J. W. M, Journal of Fluid Mechanics, 737,
552–570 (2013) [48].
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Walker [62] demonstrated that droplets can be made to bounce indefinitely at

frequency ω on the surface of a vertically vibrating bath of the same fluid. When

γ < γB, γB being the bouncing threshold, the drop simply coalesces with the fluid

bath; however, for γ > γB, coalescence is precluded by the sustenance of an air

layer between the drop and bath for the duration of the drop impact [17]. The first

theoretical examinations of the bouncing process are presented by Couder et al. [17],

Gilet et al. [33, 34] and Terwagne et al. [61], and built upon by Moláček and Bush

[45]. In summary, the drop bounces provided its contact time is less than the time

required for the air layer between the drop and bath to drain to a critical thickness

of approximately 50 nm, at which coalescence is initiated. Moláček and Bush [45]

developed a complete theoretical description of the bouncing drop dynamics that

provides rationale for all reported periodic and chaotic bouncing states [65].

Protière et al. [54] demonstrate that, as γ is increased beyond γB, the drop un-

dergoes a sequence of bifurcations. First, the drop undergoes a period-doubling tran-

sition, after which it bounces at frequency ω/2. Its bouncing frequency is then com-

mensurate with the frequency of the least stable Faraday mode, which is thus locally

excited through the resonant interaction between drop and bath. For γ > γW > γB,

γW being the walking threshold, the waves generated by the drop destabilize the

bouncing state. If the drop is perturbed in some direction, it lands on a sloping

interface and so receives a horizontal force on impact that propels it forward. In

certain parameter regimes delineated by Protière et al. [54] and Eddi et al. [25] and

rationalized by Moláček and Bush [46], the resulting walking state is quite robust:

the drop can walk steadily and stably at a uniform horizontal velocity while bouncing

vertically at frequency ω/2. Images of a walking drop and its associated wave field

are shown in figure 2-1.

The coupled vertical and horizontal dynamics of a walking drop were considered

by Moláček and Bush [46], who elucidated the walker’s rich and complex behavior.

For example, the walker may switch between various vertical bouncing modes that

coexist for identical system parameters, or walk in an irregular fashion while bouncing

chaotically [65]. The authors also highlight the importance of the walker’s phase
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(a) (b) 

Figure 2-1: A walker, a millimetric droplet, self-propagates on a vibrating fluid bath
through an interaction with its own wave field. (a) Oblique view. (b) Top view.

with respect to the bath. The amplitude of the waves generated by the drop has a

complicated dependence on system parameters through the walker’s phase, owing to

the coupling between the horizontal and vertical motion. For the sake of simplicity,

we here consider the special case of “resonant walkers,” for which the drop is in a

period-doubled bouncing mode, so its vertical motion is precisely synchronized with

the underlying wave. We thus neglect the coupling between the horizontal and vertical

motion and average over the vertical motion, which allows us to construct and study

a trajectory equation for the walker’s horizontal motion.

As the propulsive wave force on the walking drop depends on the location of

its prior impacts, and so on the walker’s past, Fort et al. [32] and Eddi et al. [29]

introduced the concept of path-memory. The quantum mechanical features arise

only in the high path-memory regime, close to the Faraday threshold, where the

waves generated by the walker decay slowly in time and so strongly affect the drop’s

dynamics [15, 32, 39]. In this regime, the drop’s trajectory is most strongly influenced

by its history, which is effectively stored in the wave field. The goal of the current

study is to provide insight into these experiments by developing a trajectory equation

for the walkers that illustrates the influence of path-memory on their dynamics.

Protière et al. [54] postulate the following trajectory equation for the horizontal
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position xp of the drop, in the absence of barriers and external forces:

mẍp +Dẋp = F b sin

(
2πẋp
VF

)
, (2.1)

wherem is the drop mass, F b the effective force due to bouncing on an inclined surface,

D the viscous damping coefficient, and VF the phase velocity of the Faraday waves.

Equation (2.1) is derived by time-averaging the horizontal force on the drop over a

single bouncing period, and it correctly predicts a supercritical pitchfork bifurcation

to a walking state; however, we will see that it only includes the effect of a single

previous bounce on the drop’s trajectory. A similar approach was taken by Shirokoff

[58] in his theoretical description of walkers in confined geometries. Both papers

attempt to model the path-memory through the coefficient F b. We here develop an

improved trajectory equation that explicitly models the system’s path-memory by

incorporating the drop’s entire history.

In §2.2, we derive an integro-differential equation of motion for the drop by adopt-

ing the results presented by Moláček and Bush [46]. The equation indicates that the

bouncing state destabilizes at a critical acceleration γ into straight-line walking, as

shown in §2.3. We present an exact formula for the walking speed and compare it to

experimental data in §2.4, where we also explore the dependence of the guiding wave

field on the walking speed. The stability of the walking solution is analyzed in §2.5.

Future directions and applications of the model are discussed in §2.6.

2.2 Integro-differential equation of motion

Consider a drop of mass m and radius R in the presence of a gravitational acceleration

g walking on the surface of a vertically vibrating fluid bath of surface tension σ,

density ρ, dynamic viscosity µ, kinematic viscosity ν, and mean depth H. Let xp(t) =

(xp(t), yp(t)) denote the horizontal position of the drop at time t. We assume that

the drop is a resonant walker in the period-doubled regime, so the vertical motion is

periodic with period TF = 4π/ω. The force balance in the horizontal direction yields
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the equation of motion

mẍp +Dẋp = −F (t)∇H(xp, t), (2.2)

where all terms represent time-averages over the bouncing period TF , and F (t) is

the vertical force on the drop [46]. The drop moves in response to both propulsive

and drag forces. The propulsive force is the wave force imparted by the sloping bath

surface during impact. We express the total fluid depth as H + H(x, t), where we

assume the perturbation height H(x, t)� H to be small. The horizontal component

of the propulsive force may then be approximated by −F (t)∇H(xp, t). The drop

motion is opposed by a drag force −Dẋp, where the time-averaged drag coefficient D

can be written in terms of the system parameters as [46]

D = Cmg

√
ρR

σ
+ 6πµaR

(
1 +

πρagR

6µaω

)
, (2.3)

where µa = 1.84 × 10−5 kg m−1 s−1 and ρa = 1.2 kg m−3 are the dynamic viscosity

and density of air, and C is the nondimensional drag coefficient. In (2.3), the first

term arises from the transfer of momentum from the drop to the bath during impact,

and the second from the aerodynamic drag exerted on the droplet during flight. We

note that C actually depends weakly on the system parameters, and 0.17 ≤ C ≤ 0.33

over the parameter range of interest for walkers [46]. For our purposes, it suffices

to treat C = 0.17 as a constant, a value consistent with the experimental data for

ν = 20 cS, f = 80 Hz and ν = 50 cS, f = 50 Hz [46].

To determine an expression for the interface deflection H(x, t), we first consider

the interface deflection hn(x, t) generated by the single bounce of a drop at time tn

and position xp(tn). We assume the fluid container to be sufficiently large that we

may neglect the influence of boundaries. When the drop hits the surface, it emits a

traveling transient wave that is typically an order of magnitude faster than the walker

[29]. We neglect this wave in our model because it does not interact with the drop

on subsequent bounces. In the wake of the transient wave, a field of standing waves
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persists on the interface. Eddi et al. [29] numerically model this standing wave field

as

hn(x, t) =
∞∑

m=1

am(t− tn)J0 (km |x− xp(tn)|) , (2.4)

where J0 is a Bessel function of the first kind, the wavenumbers km satisfy the rela-

tion J0(kmr0) = 0, and r0 is a numerical cutoff parameter. The time-dependence is

prescribed by the functions am(t), which satisfy the equation

äm + 2νphenk
2
mȧm + am

(
g − γ cosωt+

σk2
m

ρ

)
km tanh kmH = 0, (2.5)

where νphen & ν is the phenomenological kinematic viscosity of the fluid, chosen to

match the observed Faraday threshold.

Rather than summing over infinitely many modes, we here make some simplifying

assumptions that make the model more tractable. Since γ < γF , the fluid surface is

stable, so all disturbances decay in time. The slowest decaying mode is the subhar-

monic Faraday wave with temporal decay time TFMe, where Me is the nondimensional

memory parameter

Me = Me(γ) ≡ Td
TF (1− γ/γF )

(2.6)

[29], and Td is the temporal decay time in the absence of forcing [46]. In the short-

path-memory limit, just above the walking threshold Me & Me(γW ), the standing

waves generated by the drop decay relatively quickly, so the droplet motion depends

only on its recent past. In the long-path-memory limit, close to the Faraday threshold

Me � Me(γW ), the standing waves are long-lived, so the walker is more strongly

influenced by its history. Both Td and γF can be calculated numerically for different

fluids and forcing frequencies [41, 46].

The Faraday wave oscillates in time with frequency ω/2, and its dominant wavenum-

ber kF can be calculated numerically [41, 46] or approximated as the solution to the
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standard water-wave dispersion relation:

(ω
2

)2

=

(
gk +

σk3

ρ

)
tanh kH. (2.7)

In the experiments, the Faraday wavenumber is typically kF ≈ 1.25mm−1, which

corresponds to a Faraday wavelength of λF ≈ 5mm. Fort et al. [32] approximate the

Faraday wave generated by a single bounce as

hn(x, t) =
A

|x− xp(tn)| cos (kF |x− xp(tn)|+ φ) e−|x−xp(tn)|/δe−(t−tn)/(TFMe), (2.8)

where the parameters A and δ are determined experimentally, and φ is a free param-

eter. While this model allows them to reproduce many of the experimental results

and provides an adequate description in the far field kF |x−xp(tn)| � 1, it contains a

troubling singularity at x = xp(tn), and the phase-shifted cosine does not accurately

describe the spatial dependence of the Faraday wave near the drop.

Following Moláček and Bush [46], we approximate the wave as a radial Bessel

function of the first kind J0 with a single dominant wavenumber kF . This gives the

interface height after a single bounce at time t = tn:

hn(x, t) = ÃJ0(kF |x− xp(tn)|)e−(t−tn)/(TFMe) cos
ω(t− tn)

2
H(t− tn) (2.9)

where H(t) is the Heaviside step function. The amplitude Ã can be expressed in

terms of the system parameters as

Ã =

√
2

π

kFR

3k2
FR

2 + Bo
Rk2

Fν
1/2
eff

σ
√
TF

mgTF sin
Φ

2
, Bo =

ρgR2

σ
, νeff = νDµ (2.10)

where Bo is the Bond number, νeff is the effective kinematic viscosity, and Φ is the

mean phase of the wave during the contact time [46]. The coefficient Dµ is defined

as [53, 46]

Dµ = −r1 + r2

2ar1r2

, where a =
Oh(RkF )3/2

[Bo+ (RkF )2]1/2
, Oh =

µ√
ρσR

, (2.11)
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and r1 and r2 are the roots with largest real part of the polynomial

p(x; a) = x4 + 8ax3 + (2 + 24a2)x2 + a(8 + 16a2)x+ 1 + 8a2. (2.12)

We note that the formula for the interface height (2.9) with amplitude Ã is an

approximation to that given by Moláček and Bush [46]. Here we neglect the t−1/2

temporal decay of the waves, as the decay rate is dominated by the exponential

e−(t−tn)/(TFMe). The algebraic factor t−1/2 is only valid for t > TF and makes the

governing equation analytically intractable; thus, for the sake of simplicity we replace

it by the constant T
−1/2
F . In addition, we neglect the possibility of multiple vertical

bouncing modes for a single forcing acceleration γ [46, 65]. For a particular bouncing

mode, the impact phase Φ depends in general on µ, R, and γ; however, it depends

only weakly on γ in the high-memory limit of interest, so we treat it as a constant

for a given drop.

We assume the surface waves to be linear, so that we can apply the superposition

principle. Thus, the interface height H(x, t) may be expressed as the sum of the

individual waves hn(x, t) generated by previous bounces at prior times tn = nTF :

H(x, t) =
∑

n

hn(x, t) =

bt/TF c∑

n=−∞

ÃJ0(kF |x− xp(nTF )|)e−(t−nTF )/(TFMe) cos
ωt

2
. (2.13)

As shown in Moláček and Bush [46], since the drop’s bouncing period TF is equal

to the period of the surface waves, we may replace F (t)∇H(xp, t) by mg∇h(xp, t),

where

h(x, t) =

bt/TF c∑

n=−∞

AJ0(kF |x− xp(nTF )|)e−(t−nTF )/(TFMe), A = Ã cos
Φ

2
. (2.14)

We call this the stroboscopic approximation since, by averaging over the vertical dy-

namics, we eliminate consideration of the drop’s vertical motion. The drop motion is

thus effectively “strobed” at the bouncing frequency.

Substituting (2.14) into (2.2) yields a delay-differential equation of motion for the
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drop, which is quite difficult to study analytically. We thus approximate the sum in

(2.14) by the integral:

h(x, t) =
ACf
TF

∫ t

−∞
J0(kF |x− xp(s)|)e−(t−s)/(TFMe) ds, (2.15)

where Cf = 1

Me(e1/Me−1)
. This approximation is valid provided the timescale of hori-

zontal motion TH = λF
|ẋp| is much greater than the timescale TF of vertical motion, that

is, TF � TH , as is the case for walkers. The resonant walker is thus approximated

as a continuous moving source of standing waves, and is viewed as sweeping across

the fluid interface. We make the additional approximation that Cf = 1, since walkers

typically arise when Me � 1.

Substituting (2.15) into (2.2), we obtain an integro-differential equation of motion:

mẍp +Dẋp =
F

TF

∫ t

−∞

J1(kF |xp(t)− xp(s)|)
|xp(t)− xp(s)|

(xp(t)− xp(s))e−(t−s)/(TFMe) ds, (2.16)

where F = mgAkF . Note that the equation of motion at time t depends on the drop’s

entire trajectory prior to that time, on its path memory as stored in the wave field.

Nevertheless, the dominant contribution of the integral comes from its recent past,

specifically t − s ∼ O(TFMe). The drop is thus influenced by more of its history

as stored in its wavefield h(x, t) as its path-memory Me increases. The term on the

right-hand side of (2.16) is thus referred to alternatively as the wave force or memory

force.

The trajectory equation (2.16) is markedly different from that developed by Protière

et al. [54], equation (2.1), which assumes that h(x, t) = A cos(kF (x−xp(t))). By using

VF = ω/2
kF

and ẋp(t)TF ≈ xp(t)−xp(t−TF ) for TF � 1, one can obtain from (2.1) the

delay-differential equation

mẍp +Dẋp = F b sin (kF (xp(t)− xp(t− TF ))) . (2.17)

Unlike (2.16), which incorporates the drop’s entire history, the model (2.17) only

includes the influence of a single prior impact. It can thus be valid only in the short-
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Dimensional variables Definition
xp drop position
m drop mass
D drag coefficient
g gravitational acceleration

H(x, t) interface deflection
TF Faraday period

Ã amplitude of single surface wave
kF Faraday wavenumber
Td decay time of waves without forcing
γ forcing acceleration
γF Faraday instability threshold

F = mgAkF memory force coefficient

Nondimensional variables
Me = Td

TF (1−γ/γF )
memory

κ = m
DTFMe

nondimensional mass

β = FkFTFM
2
e

D
nondimensional memory force coefficient

Table 2.1: The variables appearing in the trajectory equations (2.16) and (2.18).

path-memory limit for walkers just beyond the walking threshold Me &Me(γW ), and

is incapable of capturing the drop dynamics at large Me.

The variables appearing in (2.16) are listed in table 2.1. Note that the model has

no free parameters: formulae for D and F are derived by Moláček and Bush [46], and

Td and γF can be determined numerically [41, 46]. We proceed by demonstrating that

the trajectory equation (2.16) captures certain key aspects of the walker dynamics.

2.3 Bouncing to walking

Note that xp ≡ constant is a solution to equation (2.16) that represents a stationary

bouncing state. In this section, we will study the stability of this bouncing state, and

demonstrate that increasing Me causes it to destabilize into a walking state, in which

the drop moves along a straight line at constant horizontal velocity.

We first nondimensionalize (2.16). We choose λF and TFMe as our natural

length- and timescales, respectively, and so nondimensionalize via x′ = kFx and
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t′ = t/(TFMe). Substituting into (2.16) and dropping primes, we deduce the nondi-

mensional equation of motion:

κẍp + ẋp = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

(xp(t)− xp(s))e−(t−s) ds, (2.18)

where κ = m/DTFMe and β = FkFTFM
2
e /D represent, respectively, the nondimen-

sional mass and memory force coefficient.

We now examine the stability of the bouncing solution xp ≡ constant. By lin-

earizing (2.18) around this solution, xp = constant + δx, we deduce

κδẍ+ δẋ =
β

2

∫ t

−∞
[δx(t)− δx(s)]e−(t−s) ds, (2.19)

where we have used the fact that J ′1(0) = 1/2. This equation can be expressed as a

system of ordinary differential equations by introducing the variable

δX(t) =

∫ t

−∞
δx(s)e−(t−s) ds. (2.20)

Solutions to (2.19) thus form a subset of solutions to the system of equations

κẍ+ ẋ =
β

2
(x−X), Ẋ = x−X. (2.21)

Since the x- and y-directions are uncoupled in this equation, we can simply consider

the x-direction, the calculation for the y-direction being identical. Letting ẋ = u, we

obtain the system

d

dt




x

u

X


 =




0 1 0

β
2κ
− 1
κ
− β

2κ

1 0 −1







x

u

X


 . (2.22)

The characteristic polynomial p(s) of this matrix is

p(s) = −s
[
s2 +

(
1 +

1

κ

)
s+

1

κ

(
1− β

2

)]
. (2.23)
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The s = 0 solution simply indicates that the bouncing state is invariant under trans-

lation, so we neglect it. Since κ > 0, the stability of the bouncing state is controlled

by the constant term in p(s). Specifically, the bouncing state is stable for β < 2 and

unstable for β > 2. In terms of the dimensional variables, the bouncing state is stable

for forcing accelerations γ < γW , where

γW = γF


1−

√
FkFT 2

d

2DTF


 (2.24)

defines the walking threshold. Note that γW increases with the drop drag coefficient

D but decreases with the memory force coefficient F . Note also that the memory force

increases with γ, as indicated by the definition of the memory parameter Me (2.6).

The bouncing state is thus stabilized by the drag force −Dẋp (which opposes the

drop’s motion) and destabilized by the memory force. Once the latter is sufficiently

large to overcome the former, the bouncing solution is destabilized, and the drop

begins to walk. As we will see in the next section, for γ & γW the drop begins to

walk at a constant velocity.

2.3.1 Stuart-Landau equation for the walking velocity

The experiments of Protière et al. [54] demonstrate that, in a parameter regime

delineated by Moláček and Bush [46], there is a supercritical pitchfork bifurcation

at γ = γW (corresponding to β = 2), where the bouncing state destabilizes into

straight-line walking. We proceed by demonstrating that this behavior is captured

by our integro-differential equation of motion, by analyzing the drop motion near the

bifurcation. Assume that γ is slightly above the walking threshold, so β = 2+αε2 for

0 < ε � 1 and α > 0. Near the bifurcation, we can write an asymptotic expansion

for xp(t):

xp(t) =
1

ε
a(T ) + ε3x1(t, T ) +O(ε5), (2.25)
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where T = ε2t is the slow time scale. In what follows, we use the notation ḟ = ∂f
∂t
, f ′ =

∂f
∂T

. We substitute this expansion into the nondimensional equation of motion (2.18)

and extract the leading order terms. Due to the exponential term, the dominant

contribution in the integral comes from the region t− s = O(1). Note that

xp(t)− xp(s) = εa′(T )(t− s) + ε3
(
−1

2
a′′(T )(t− s)2 + x1(t, T )− x1(s, S)

)
+O(ε5),(2.26)

where S = ε2s, which gives

|xp(t)− xp(s)|2 = ε2|a′(T )|2(t− s)2 + ε4
[
−(a′(T ) · a′′(T ))(t− s)3

+ 2(t− s)a′(T ) · (x1(t, T )− x1(s, S))] +O(ε6). (2.27)

Therefore

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

=
1

2
− ε2

16
|a′(T )|2(t− s)2 +O(ε4), (2.28)

where we use the fact that J
(3)
1 (0) = −3/8. The leading order terms in the integral

are thus

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

(xp(t)− xp(s)) e−(t−s) ds =
ε

2

∫ t

−∞
a′(T )(t− s)e−(t−s) ds (2.29)

+
ε3

2

∫ t

−∞

[
−1

2
a′′(t− s)2 − 1

8
a′(T )|a′(T )|2(t− s)3 + (x1(t, T )− x1(s, S))

]
e−(t−s) ds+O(ε5).

By changing variables t− s = z, we can evaluate some of these integrals. Then using

β = 2 + αε2, the equation of motion (2.18) reduces, at leading order, to

κẍ1 + ẋ1 − x1 +

∫ t

−∞
x1(s, S)e−(t−s) ds =

α

2
a′ − (1 + κ)a′′ − 3

4
a′|a′|2. (2.30)

Introducing the variable X1 =
∫ t
−∞ x1(s, S)e−(t−s) ds, (2.30) can be written in the

form

∂

∂t
(κẋ1 + x1 −X1) =

α

2
a′ − (1 + κ)a′′ − 3

4
a′|a′|2. (2.31)
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In order for the expansion (2.25) to be consistent, x1 should be a bounded function

of t, which implies that the right side of (2.31) must vanish. This yields an evolution

equation for the leading-order velocity a′:

a′′ =
1

2 (1 + κ)
a′
(
α− 3

2
|a′|2

)
. (2.32)

This is a Stuart-Landau equation [59] for the velocity a′. We write a′ = u(T )(cos θ(T ), sin θ(T )),

where u(T ) is the speed of the drop and θ(T ) determines its direction, so that (2.32)

becomes

u′ =
1

2 (1 + κ)
u

(
α− 3

2
u2

)
, θ′ = 0. (2.33)

We thus confirm that the speed u undergoes a supercritical pitchfork bifurcation when

β = 2. For β < 2, only the bouncing state u = 0 is stable; for β & 2, the walking

solution is stable and has speed u ≈
√

2α/3. The equation θ′ = 0 implies that,

as expected, the drop walks in a straight line in an arbitrary direction: since the

wave field produced at each bounce is rotationally symmetric, there is no preferred

direction of motion at the onset of instability. Therefore, in the experiment, the initial

direction of motion is presumably governed by random or imposed perturbations.

2.4 Straight-line walking

The drop’s bouncing state becomes unstable for γ > γW , beyond which it walks in

a straight line at constant speed. We proceed by deriving a formula for the walking

speed of the resonant walker, and showing that the resonant walking state is stable

for all γW < γ < γF .
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2.4.1 Walking speed

To find a formula for the walking speed u, we substitute the solution xp = (ut, 0) into

(2.18):

u = β

∫ ∞

0

J1(uz)e−z dz.

The integral can be evaluated exactly, yielding

u =
β

u

(
1− 1√

1 + u2

)
⇒ u =

1√
2

(
−1 + 2β −

√
1 + 4β

)1/2

. (2.34)

Note that this solution is real-valued only for β > 2, in accord with the stability

analysis of the bouncing state presented in §2.3. In terms of dimensional variables,

the walking speed u has the form

u =
1

kFTd

(
1− γ

γF

)


1

4


−1 +

√
1 + 8

(
γF − γW
γF − γ

)2



2

− 1





1/2

. (2.35)

Figure 2-2 shows a comparison between the experimental dependence of the walking

speed u on the forcing acceleration γ, as reported by Moláček and Bush [46], and

that predicted by (2.35). The equation for the resonant walking speed adequately

describes the experimental data, provided that the impact phase Φ is judiciously

chosen. Note that the impact phases chosen in figure 2-2 are roughly consistent with

those reported in Moláček and Bush [46]; however, they are also known to depend

weakly on γ [46].

It follows from (2.35) that u is a monotonically increasing function of γ. As γ

increases, so does the propulsive memory force and the drop speed. Moreover, one

can show that in the infinite memory limit Me →∞ (or γ → γF ), the walking speed

remains bounded, and assumes the value

lim
γ→γF

u =

√
2

kFTd

(
1− γW

γF

)
=

√
F

DkFTF
=

√
mgA

DTF
. (2.36)
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Figure 2-2: Plot of the walking speed u (in mm/s) as a function of the nondimensional
forcing acceleration γ/g. The dots represent experimental data from Moláček and
Bush [46], and the curves are obtained from our model prediction (2.35) for a resonant
walker using (a) ν = 20 cS, f = 80 Hz, ρ = 949 kg m−3, σ = 20.6 × 10−3 N m−1,
γF = 4.3g, Td = 1/54.9 s, R = 0.40 mm, and (b) ν = 50 cS, f = 50 Hz, ρ = 960 kg
m−3, σ = 20.8 × 10−3 N m−1, γF = 4.23g, Td = 1/57.9 s, R = 0.39 mm. The single
free parameter in our stroboscopic model is the phase of impact, chosen here to be
(a) sin Φ = 0.3 and (b) sin Φ = 0.35. Characteristic error bars are shown.

In reality, the amplitude A depends on γ through the phase Φ, so u does not necessar-

ily increase with γ. Moreoever, Moláček and Bush [46] demonstrate that the walking

speed curves such as those in figure 2-2 may have discontinuities resulting from the

drop switching between different walking modes as γ increases, an effect that could

not be captured with our resonant walker model.

2.4.2 Wave field

Plots of the strobed wave field (2.15) generated by a walker moving according to

xp = (ut, 0) are shown in figure 2-3 for low, medium, and high memory. The plots

are shown in the drop’s reference frame, with the drop at the origin and moving to

the right. Note that, as the memory increases, the interference effects of the standing

waves become more pronounced. The computed wave fields are qualitatively similar

to those reported by Eddi et al. [29]. Profiles of the wave fields along the drop’s

direction of motion are also shown. Note that the drop is effectively surfing on the
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crest of its guiding wave. If γ < γW , the drop bounces in place (u = 0) on the

crest of the wave. As the memory increases, the drop slides further down the wave

in the direction of increasing gradient, and so moves faster. The horizontal force

−mg∇h(xp, t) imparted by the inclined surface precisely balances the drag −Dẋp,
allowing the drop to move at a constant speed.

2.5 Stability analysis

Steady rectilinear walking is observed in the laboratory for a substantial range of

parameter space [54, 46], indicating that the walking state is relatively robust. We

proceed by showing that the walking solution xp = (ut, 0) is stable to perturbations

in the direction of motion, and neutrally stable to transverse perturbations. To this

end, we consider the dimensionless equation

κẍp + ẋp = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

(xp(t)− xp(s))e−(t−s) ds+ εδ(t), (2.37)

where δ(t) = (δx(t), δy(t)) is the Dirac delta function and 0 < ε � 1. The delta

function represents a small perturbation to the drop at time t = 0, the response to

which we examine in what follows.

We write the drop trajectory as xp(t) = x0(t) + εx1(t)H(t) where x0(t) = (ut, 0)

is the walking solution defined by (2.34) and x1(t) = (x1(t), y1(t)) is the perturbation.

We impose the conditions x1(0) = (0, 0) and ẋ1(0) = (1/κ, 1/κ) to ensure that xp is

a solution of (2.37). We substitute this solution into (2.37) and retain only the O(ε)

terms:

κẍ1 + ẋ1 = β

∫ t

−∞
J ′1(u(t− s))(x1(t)− x1(s)H(s))e−(t−s) ds

κÿ1 + ẏ1 = β

∫ t

−∞

J1(u(t− s))
u(t− s) (y1(t)− y1(s)H(s))e−(t−s) ds. (2.38)
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Figure 2-3: Simulated wave fields generated by (a) a stationary bouncer and (b-d)
walkers for, respectively, (a) very low (γ = 3.0g), (b) low (γ = 3.4g), (c) medium
(γ = 3.8g), and (d) high (γ = 4.2g) path-memory. The plots are generated using
ν = 20 cS, f = 80 Hz, ρ = 949 kg m−3, σ = 20.6 × 10−3 N m−1, Td = 1/54.9 s,
R = 0.40 mm, and sin Φ = 0.3. The walking and Faraday thresholds are γW = 3.12g
and γF = 4.3g, respectively. The wave amplitude is given in microns. Upper figures:
Plot of the strobed wave field h(x, t) (2.15) accompanying the drop. The drop is
located at the origin and moves to the right according to xp = (ut, 0), where u is
determined by (2.35). Lower figures: Wave profiles h(x, t) along the direction of
motion of the walker. As the memory increases, the walker moves away from the
crest towards a region with higher slope, thus moving faster.
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Note that these equations can be written in the form

κẍ1 + ẋ1 = β

[
x1

∫ ∞

0

J ′1(uz)e−z dz − x1 ∗
(
J ′1(ut)e−t

)]

κÿ1 + ẏ1 = β

[
y1

∫ ∞

0

J1(uz)

uz
e−z dz − y1 ∗

(
J1(ut)

ut
e−t
)]

. (2.39)

where f ∗ g denotes the convolution of the functions f and g. This form of the

linearized equations of motion makes them particularly amenable to stability analysis,

since we can now take the Laplace transform of both sides of the equations. Doing

so yields algebraic equations for X(s) = L[x1(t)] and Y (s) = L[y1(t)], which can be

readily solved. The poles of X(s) and Y (s) are the eigenvalues of their respective

linear problems (2.39). If the poles lie in the left- or right-half of the complex plane,

the walking solution x(t) = (ut, 0) is respectively stable or unstable to perturbations

in the corresponding direction.

2.5.1 Stability to perturbations in the direction of motion

We first consider the equation for x1, the perturbation along the walking direction.

We take the Laplace transform of the equation and use the facts that x1(0) = 0 and

ẋ1(0) = 1/κ, in order to deduce an equation for X(s):

(κs2 + s)X(s)− 1 = βX(s)

∫ ∞

0

J ′1(uz)e−z dz − βL
[
J ′1(ut)e−t

]
X(s).

We now use the facts that

∫ ∞

0

J ′1(uz)e−z dz =
1

2
√
u2 + 1

(
1− u2

(
1 +
√
u2 + 1

)2

)
=

1

β
, and

L
[
J ′1(ut)e−t

]
=

1

2
√
u2 + (s+ 1)2


1− u2

(
s+ 1 +

√
u2 + (s+ 1)2

)2



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in order to obtain

X(s) =
1

κs2 + s− 1 + β

2
√
u2+(s+1)2

(
1− u2(

s+1+
√
u2+(s+1)2

)2

) . (2.40)

Note that the appropriate branch for the square root is defined by
√
u2 + (s+ 1)2 > 0

for s = 0, with branch cuts s = −1 ± iξ for ξ ≥ u. For simplicity, we write X(s) in

terms of the variable s̃ = s+ 1. After some algebra, we can rewrite (2.40) as

X(s) =

√
u2 + s̃2

(
s̃+
√
u2 + s̃2

)

κ(s̃− 1)2(u2 + s̃2) + βs̃+ (s̃− 2)(u2 + s̃2) + [s̃(s̃− 2) + κs̃(s̃− 1)2]
√
u2 + s̃2

.

The poles of X(s) are the zeros of its denominator, which solve the equation

[s̃(s̃− 2) + κs̃(s̃− 1)2]
√
u2 + s̃2 = (2− s̃)(s̃2 + u2)− βs̃− κ(s̃− 1)2(s̃2 + u2).(2.41)

Squaring both sides of this equation and some further algebra yields

[u2(s̃− 2 + κ(s̃− 1)2)2 + 2βs̃(s̃− 2 + κ(s̃− 1)2)](s̃2 + u2) = −β2s̃2. (2.42)

Note that the poles of X(s) are a subset of the solutions to this equation, since

squaring both sides may introduce spurious solutions; that is, some solutions of (2.42)

may not solve (2.41). Therefore, the poles of X(s) are a subset of the roots of the

sixth-degree polynomial px(s̃) =
∑6

k=0 cks̃
k, with coefficients

c0 = 4u4

(
1− κ+

κ2

4

)
, c1 = −u2

[
4β + 4u2 + κ(−2β − 10u2 + 4κu2)

]

c2 = β2 + 4u2 + 2βu2 + u4 + κ
(
−4u2 − 4βu2 − 8u4 + κu2 + 6κu4

)

c3 = −
[
4β + 4u2 + κ

(
−2β − 10u2 − 2βu2 − 2u4 + 4κu2 + 4κu4

)]
(2.43)

c4 = u2 + 2β + κ
(
−4β − 8u2 + 6κu2 + κu4

)

c5 = κ(2β + 2u2 − 4κu2), c6 = κ2u2.
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(a) (b) (c) 

Figure 2-4: Plot of the real part of the (nonzero) poles of L[x1(t)] = X(s) as a
function of β, for (a) κ = 1, (b) κ = 1.5, and (c) κ = 5, respectively. X(s) is
the Laplace transform of the perturbation x1, β the nondimensional memory force
coefficient, and κ the nondimensional mass of the drop (see table 2.1). The three plots
are representative of the ranges 0 ≤ κ . 1.3, 1.3 . κ < 2, and κ > 2, respectively.
Note that merging of the curves indicates the existence of two complex conjugate
poles with the same real part.

It can be verified that px(1) = 0, so X(s) has a pole at the origin s = 0. This

reflects the fact that the equation of motion (2.18) is invariant under translation in

the x-direction; that is, if xp(t) is a solution to (2.18), so is xp(t) + (x̃, 0), where x̃

is a constant. Since L[x̃] = x̃/s, the translational invariance of the solution implies

that X(s) has a pole at s = 0 (or s̃ = 1). Therefore, the nontrivial poles of X(s)

are a subset of the roots of the fifth-degree polynomial qx(s̃) =
∑5

k=0 dks̃
k, where

px(s̃) = (s̃ − 1)qx(s̃). The coefficients of qx(s̃) are related to the coefficients of px(s̃)

by the formula di = −∑i
k=0 ck.

We find the roots of qx(s̃) numerically with Matlab for a range of parameters β

and κ, and only select the roots that are actually poles of X(s), that is, solutions of

(2.41). The real parts of the roots are plotted in figure 2-4 for a range of parameters

κ and β > 2. Note that the poles of X(s) always have negative real part, indicating

that the walking solution xp(t) = (ut, 0) is stable to perturbations along the direction

of motion. That is, if the drop is infinitesimally perturbed along its walking direction,

it will converge exponentially quickly to a solution of the form xp(t) = (ut + εx̃, 0).

It will thus continue to walk along the same line at the same constant speed.
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2.5.2 Stability to lateral perturbations

We now show that the walking drop with trajectory xp(t) = (ut, 0) is neutrally stable

to perturbations in the y-direction, that is, perpendicular to its direction of motion.

Taking the Laplace transform of the y1-equation in (2.39) and using the fact that

y1(0) = 0 and ẏ1(0) = 1/κ yields an algebraic equation for Y (s) = L[y1(t)]:

(κs2 + s)Y (s)− 1 = βY (s)

∫ ∞

0

J1(uz)

uz
e−z dz − βL

[
J1(ut)

ut
e−t
]
Y (s). (2.44)

We now use the facts that

∫ ∞

0

J1(uz)

uz
e−z dz =

1

u2

(
−1 +

√
1 + u2

)
=

1

β

√
1 + u2, and

L
[
J1(ut)

ut
e−t
]

=
1

u


−s+ 1

u
+

√
1 +

(
s+ 1

u

)2

 ,

to deduce the solution

Y (s) =
1

κs2 + s−
√

1 + u2 + β
u2

(
−(s+ 1) +

√
u2 + (s+ 1)2

) , (2.45)

where the square root has the same meaning as before. Using (2.34) for the walking

speed u allows us to rewrite Y (s) as

Y (s) =
−1 + 2β − β∗

κs2 (−1 + 2β − β∗)− s (1 + β∗) + β (1− β∗) + β
√

(−1 + β∗)2 + 4s(s+ 2)
,

where β∗ =
√

1 + 4β. As previously, the poles of Y (s) are the zeros of its denominator,

which are solutions to

β

√
(−1 + β∗)2 + 4s(s+ 2) = β (β∗ − 1) + s (1 + β∗)− κs2 (−1 + 2β − β∗) . (2.46)
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Squaring both sides of this equation and subsequent algebra yields

s2(1 + 2β + β∗) = κ2s4 (−1 + 2β − β∗)− 2κs3 (1 + β∗)− 2κs2β (−1 + β∗) . (2.47)

Therefore, the poles of Y (s) are a subset of the roots of the polynomial pY (s) =

s2(c0 + c1s+ c2s
2), with coefficients

c0 = − [2κβ (−1 + β∗) + 1 + 2β + β∗]

c1 = −2κ (1 + β∗) , c2 = κ2 (−1 + 2β − β∗) . (2.48)

Note that pY (s) has a double zero at the origin s = 0, as well as the two roots of

c0+c1s+c2s
2. However, one can show numerically that these roots do not solve (2.46),

and hence they are not poles of Y (s). As a result, Y (s) has only a double pole at the

origin, so the drop is neutrally stable with respect to perturbations perpendicular to

the direction of motion.

Since the equation of motion (2.18) is invariant under translation in the y-direction,

we expect a pole at the origin. The double pole, which arises from the rotational in-

variance of the problem, indicates that the perturbation y1 grows linearly in time,

rather than exponentially. Physically, this indicates that the drop can change di-

rection when perturbed perpendicular to its walking direction. Note that the waves

emitted by the drop have radial symmetry, and that the drop is effectively surfing

on the central crest of its pilot wave field (figure 2-3). Hence, there is no force to

stabilize the drop to lateral perturbations, so its direction of motion can be readily

altered. However, once so perturbed, it will simply walk at a constant speed in the

new direction.

2.6 Discussion

We have developed and analyzed an integro-differential trajectory equation to describe

the horizontal motion of a droplet walking in resonance on a vibrating fluid bath.

The equation was developed by approximating the resonant walker as a continuous
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moving source of standing waves. The resulting theoretical model makes predictions

that are consistent with many of the experimental results reported by Protière et al.

[54] and Moláček and Bush [46]. Specifically, it predicts that the bouncing state

becomes unstable at a critical value of the memory parameter Me consistent with

that observed experimentally. By deriving a Stuart-Landau equation for the motion

of the drop near this critical value, we have shown that the bouncing state destabilizes

into straight-line walking xp = (ut, 0) via a supercritical pitchfork bifurcation. The

trajectory equation also yields an analytical expression (2.35) for the dependence of

the walking speed u on the forcing acceleration γ that compares favorably with the

experimental results reported by Moláček and Bush [46].

We have also analyzed the stability of the resonant walking state. By demon-

strating that the walker is stable to perturbations in the direction of motion, we

have provided new rationale for the robustness of the resonant walking state. By

demonstrating that the walker is neutrally stable to perturbations perpendicular to

the direction of motion, we provide evidence that the dynamics may be chaotic in

more complicated geometries. In the presence of boundaries, the walkers are easily

diverted; indeed, steady rectilinear walking is rarely observed in confined geometries

[39], as the wave field is complicated by reflections from the boundaries. The drop tra-

jectory is then extremely sensitive to its initial conditions, which may result in chaotic

dynamics. Rationalizing how the coherent statistical behavior [15, 39] emerges from

the underlying complex nonlinear dynamics is a subject of ongoing research.

It is worth stressing that the stroboscopic approximation assumes a priori that

the droplet and accompanying wave are in a state of perfect resonance. While this

resonance assumption greatly simplifies the mathematical analysis, the model does

not consider the detailed coupling between the horizontal and vertical drop motion, an

important aspect of the dynamics that one expects to have significant bearing on the

stability characteristics of the walkers. In particular, the model fails to capture the

experimental observations that the walking state is sometimes unstable for sufficiently

small or large drops [46, 65], that large drops can undergo a subcritical transition to

walking [54], and that the walking speed of some drops is a non-monotonic or even
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discontinuous function of the forcing acceleration, owing to the switching between

two resonant bouncing modes [46].

Another limitation of the trajectory equation (2.18) is that it only applies in

free space; that is, the fluid bath must be large compared to the damping length

of the Faraday and transient wavefields, so that the boundaries and reflected waves

can be safely neglected. Specifically, the Bessel-function approximation (2.9) for the

standing wave field generated by a single bounce will no longer be valid if the drop

is near a submerged barrier or the container boundary. As many of the interesting

quantum analogues such as tunneling [27], diffraction and interference [15] occur in

the presence of submerged barriers, the incorporation of boundary effects into the

pilot-wave model developed herein will be the subject of future work.

While analyzing the stability of resonant straight-line walking is informative, the

real value of the trajectory equation will be in elucidating certain aspects of the walk-

ers’ quantum-like behavior. In Chapter 3, we will show that our trajectory equation

can be simply extended to include a Coriolis force, allowing us to elucidate the orbital

quantization reported by Fort et al. [32] and to predict qualitatively new phenomena

[38, 50]. Our model can incorporate central force fields in a similar fashion, thus al-

lowing us to analyze the hydrodynamic analogue of the quantum harmonic oscillator,

which is currently being explored in the laboratory of Yves Couder [52].
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Chapter 3

Pilot-wave dynamics in a rotating

frame

3.1 Introduction

In this chapter, we consider the behavior of walkers on a circular bath of radius Rb

rotating with angular frequency Ω = Ωẑ about its centerline, the physical system

first considered by Fort et al. [32]. The centrifugal force on the bath will induce a

parabolic deformation of the fluid interface of the form

h0(r) = H − Ω2R2
b

4g
+

Ω2

2g
r2, (3.1)

where H is the depth of the fluid at rest and r the radial distance from the rotation

axis. Classically, a ball rolling with speed u0 on a rotating frictionless parabolic

table of height h0(r) will execute an inertial orbit of radius rc, in which the radially

outwards centripetal force mu2
0/rc is balanced by the inward Coriolis force 2mΩu0,

so rc = u0/2Ω. Fort et al. [32] found that walkers on a rotating bath likewise execute

This chapter appears as published in: Pilot-wave dynamics in a rotating frame: on the emergence
of orbital quantization, Oza, A. U., Harris, D. M., Rosales, R. R. and Bush, J. W. M., Journal of
Fluid Mechanics, 744, 404–429 (2014) [50].
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circular orbits, and characterized the dependence of the orbital radii on the rotation

rate Ω. In the low-memory limit, the walker’s orbital radii decrease monotonically

and continuously with Ω according to the formula r0 = au0/2Ω, where 1.2 ≤ a ≤ 1.5

is a fitting parameter. One contribution of this study will be to deduce a formula for

the factor a and rationalize the difference between r0 and rc on physical grounds.

At high memory, Fort et al. [32] demonstrated that the behavior is markedly

different: the orbital radius r0 no longer varies continuously with Ω, and the orbital

radii become quantized. The authors also report orbital degeneracy and hysteresis,

in that two different orbital radii may be observed for the same rotation rate Ω,

depending on whether Ω is approached from above or below. They suggest that

the wave force on the drop in the high-memory regime reduces to that of a single

diametrically opposed image source, proposing the governing equation

mu2
0

r0

=
2mΩu0

a
+K cos (2kF r0) , (3.2)

where K is a constant. The range of validity of this approximation will be made clear

in §3.3.3.

As the Coriolis force −2mΩ× ẋp on the walker in a rotating container is similar

in form to the Lorentz force −qB × ẋp on an electron in a uniform magnetic field

B = Bẑ [64], Fort et al. [32] propose a correspondence between the quantized orbits

of walkers and Landau levels. They observe that in the high-memory regime, the

quantized orbital radii approximately satisfy the relation

r0

λF
=
b2

a

(
n+

1

2

)
, for integer n ≥ 0, (3.3)

where the pre-factors a ≈ 1.5 and b ≈ 0.89 were deduced empirically. This is similar

in form to the quantized Larmor radii rL of an electron in a uniform magnetic field

rL

λdB

=
1

π

(
n+

1

2

)
, (3.4)

where λdB is the de Broglie wavelength. In §3.3.3, we shall demonstrate that the
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quantized orbital radii in the high-memory regime are better approximated in terms

of the zeros of the Bessel function J0(kF r0).

Eddi et al. [30] examined two identical walkers orbiting each other in a rotating

frame. The authors observe that the orbital radii of co-rotating orbits (orbits that

rotate in the same sense as the fluid bath) increase with the rotation rate, while

those of counter-rotating orbits decrease. The difference ∆r depends linearly on the

rotation rate Ω, which suggests an analogy with the Zeeman effect from quantum

mechanics [14]. An analogous level-splitting phenomenon will be explored here for

the case of single walkers moving on circular orbits.

Harris and Bush [38] present the results of a comprehensive experimental study of

walkers in a rotating frame, in which they observed a number of effects not reported

by Fort et al. [32]. In particular, they find that orbital quantization only exists for

a finite range of memory Me. As Me is progressively increased, the circular orbits

destabilize into wobbling states, and subsequently into more complex trajectories. In

the high-memory limit, the drop’s trajectory becomes irregular, its radius of curvature

oscillating erratically between those of accessible but unstable circular orbits. The

histogram describing the trajectory’s local radius of curvature thus takes a wavelike

form, with peaks on the radii of the unstable orbital solutions. While the drop’s

trajectory is chaotic, the influence of the unstable orbital solutions is thus reflected

in a wavelike statistical behavior.

The goal of the current study is to use the approach developed in Chapter 2 [48]

to examine the influence of rotation on the orbital motion of drops in a rotating

frame. We here introduce the orbital memory parameter MO
e = TFMe/TO, where

TO ≈ 2πr0/u0 is the walker’s orbital period. In the high orbital memory regime

MO
e � 1, the drop completes an orbit before the local Faraday waves have decayed,

thus interacting with its own wake. Its trajectory is thus strongly influenced by its

history, as is stored in the wave field. We here rationalize the emergence of quantized

orbits by assessing the linear stability of circular orbits. Moreover, we rationalize

the observations of Harris and Bush [38] that the circular orbits generally become

unstable in the high-memory limit.
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In §3.2, we derive an integro-differential equation of motion for a drop in a rotating

frame by adapting the model in Chapter 2 [48]. In §3.3, we study the dependence

of the orbital radius on the rotation rate in various memory regimes, showing that

the theoretical predictions compare favorably to recent experimental data [38]. The

stability of the orbital solutions is analyzed in §3.4, which allows us to rationalize

the emergence of quantized orbits in the intermediate memory regime, and their

disappearance at high memory. Future directions are discussed in §3.5.

3.2 Trajectory equation

Consider a drop of mass m and radius RD walking on the surface of a fluid bath

vibrating with vertical acceleration γ cos (2πft). Let xp(t) = (xp(t), yp(t)) denote the

horizontal position of the drop at time t. We assume the drop to be in a resonant

state, so that its vertical motion is periodic with period TF = 2/f . The horizontal

force balance, time-averaged over the bouncing period, yields the equation of motion

(Chapter 2 [48])

mẍp +Dẋp = −mg∇h(xp, t), (3.5)

where the wave field generated by the walker is given by

h(x, t) =
A

TF

∫ t

−∞
J0 (kF |x− xp(s)|) e−(t−s)/(TFMe) ds. (3.6)

The drop experiences a propulsive wave force−mg∇h(xp, t) and a time-averaged drag

force −Dẋp, where formulae for the amplitude A and time-averaged drag coefficient

D are given in Table 3.1 [46]. The Faraday wavenumber kF is well approximated by

(2.7), as the effect of the rotation on the dispersion relation is negligible in the regime

of interest, Ω� f .

If the container is forced below the walking threshold, the drop simply bounces

in place, as the bouncing solution xp ≡ constant is stable for γ < γW (Chapter

2 [48]). When forced above the walking threshold (γ > γW ), the bouncing solution
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destabilizes into a stable walking solution xp(t) = u0t(cos θ, sin θ), where the arbitrary

angle θ determines the walking direction. The balance between the wave and drag

forces determines the speed u0. Formulae for γW and u0 in terms of experimental

parameters are provided in table 3.1 (Chapter 2 [48]).

In a container rotating about its vertical centerline with angular frequency Ω =

Ωẑ, there are three additional physical effects. The drop experiences a Coriolis force

−2mΩ × ẋp and centrifugal force −mΩ × (Ω× xp), fictitious forces arising when

Newton’s laws are written in the rotating frame. It also experiences an additional

time-averaged propulsive force −F (t)∇h0(xp) resulting from the parabolic deforma-

tion of the fluid interface, where h0(x) is given by (3.1) and F (t) is the instantaneous

vertical force acting on the drop. Since the drop’s vertical motion is periodic, the av-

erage vertical force must equal the drop’s weight, so F (t) = mg [46]. As the timescale

of the drop’s horizontal motion is much larger than the bouncing period, we may

approximate F (t)∇h0(xp) as mΩ2xp, which precisely cancels the centrifugal force.

We thus obtain the integro-differential equation of motion

mẍp +Dẋp =
F

TF

∫ t

−∞

J1 (kF |xp(t)− xp(s)|)
|xp(t)− xp(s)|

(xp(t)− xp(s))e−(t−s)/(TFMe) ds

−2mΩ× ẋp (3.7)

where F = mgAkF . We note that this equation simply corresponds to the pilot-wave

trajectory equation (3.6) augmented by the Coriolis force.

We now nondimensionalize (3.7) by introducing the dimensionless variables x̂ =

kFx and t̂ = t/(TFMe). Using primes to denote differentiation with respect to t̂, the

nondimensional equation of motion becomes

κx̂′′p + x̂′p = β

∫ t̂

−∞

J1(|x̂p(t̂)− x̂p(ŝ)|)
|x̂p(t̂)− x̂p(ŝ)|

(x̂p(t̂)− x̂p(ŝ))e−(t̂−ŝ) dŝ− Ω̂× x̂′p, (3.8)

where κ = m/DTFMe, β = FkFTFM
2
e /D and Ω̂ = 2mΩ/D represent, respectively,

the nondimensional mass, wave force coefficient, and rotation rate. The variables

appearing in (3.7) and (3.8) are listed in Table 3.1. Note that the model has no free
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parameters: formulae for D and A are derived by Moláček and Bush [46], and Td and

γF can be determined numerically [41, 46]. We proceed by examining the extent to

which (3.7) describes the trajectory of a drop walking in a rotating frame.

3.3 Orbital solutions

We seek orbital solutions with constant radius r̂0 and orbital frequency ω̂, and so

substitute x̂p = (r̂0 cos ω̂t̂, r̂0 sin ω̂t̂) into (3.8). The integro-differential equation thus

reduces to a system of algebraic equations that define r̂0 and ω̂ in terms of Me and

Ω̂:

−κr̂0ω̂
2 = β

∫ ∞

0

J1

(
2r̂0 sin

ω̂z

2

)
sin

ω̂z

2
e−z dz + Ω̂r̂0ω̂

r̂0ω̂ = β

∫ ∞

0

J1

(
2r̂0 sin

ω̂z

2

)
cos

ω̂z

2
e−z dz. (3.9)

The predictions of (3.9) for the dependence of r0 and ω on γ/γF and Ω are compared

with the experimental data of Harris and Bush [38] in figures 3-1 and 3-2. The

theoretical predictions are generated as follows. The drop radius RD determines the

drag coefficient D (Table 3.1). The dimensionless forcing acceleration γ/γF and the

decay time Td ≈ 0.0174 s for 20.9 cSt oil [46] determine the memory parameter

Me through (2.6). Using the formulae in Table 3.1, the experimentally observed

free walking speed u0 is used to determine the wave amplitude A, which in turn

determines the phase Φ. The values of sin Φ so obtained are within 30% of those

reported in Moláček and Bush [46]. Given the values of D, A, and Me, the non-

dimensional parameters κ, β, and Ω are determined through the definitions in Table

3.1. The algebraic equations (3.9) are then solved numerically, yielding the orbital

radius r0 and frequency ω as functions of Ω̂. In figures 3-1 and 3-2, stable orbital

solutions are indicated in blue, while unstable ones are indicated in red and green.

The rationale for the stability of the orbital solutions, and so the distinction between

the blue, red and green regions, will be described in §3.4.

The wave fields h(x, t) accompanying the orbiting drop, as computed on the basis
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Dimensional variables Definition
xp drop position
m drop mass
RD drop radius
ν fluid kinematic viscosity
νeff effective kinematic viscosity [46]
σ fluid surface tension
ρ fluid density
µa air dynamic viscosity
ρa air density
f forcing frequency
γ forcing acceleration
γF Faraday instability threshold
g gravitational acceleration

TF = 2/f Faraday period
Td decay time of waves without forcing
λF Faraday wavelength

kF = 2π/λF Faraday wavenumber
Φ mean phase during contact

D = 0.17mg
√

ρRD
σ

+ 6πµaRD

(
1 + ρagRD

12µaf

)
drag coefficient

A = 1√
2π

kFRD
3k2FR

2
D+Bo

RDk
2
F ν

1/2

eff
σ
√
TF

mgTF sin Φ amplitude of single surface wave

F = mgAkF wave force coefficient

γW = γF

(
1−

√
FkFT

2
d

2DTF

)
walking threshold

u0 = 1
kFTd

(
1− γ

γF

)




1
4

[
−1 +

√
1 + 8

(
γF−γW
γF−γ

)2
]2

− 1





1/2

walking speed

Ω = Ωẑ angular frequency of fluid bath
r0 orbital radius
ω orbital frequency

Nondimensional variables

Bo =
ρgR2

D

σ
Bond number

Me = Td
TF (1−γ/γF )

memory

κ = m
DTFMe

mass

β = FkFTFM
2
e

D
wave force coefficient

Ω̂ = 2mΩ
D

bath angular frequency
r̂0 = kF r0 orbital radius
ω̂ = ωTFMe orbital frequency
MO

e = ω̂
2π

orbital memory

Table 3.1: The variables appearing in the trajectory equations (3.7) and (3.8).
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Figure 3-1: The predicted dependence of the orbital radius r0 ((a) and (c)) and orbital
frequency ω ((b) and (d)) on the bath’s rotation rate Ω in the low memory regime.
The dotted lines represent the standard prediction for inertial orbits, (a) r0 = u0/2Ω,
(b) ω = −2Ω. The solid curves are the theoretical predictions determined by solving
(3.9) with experimental parameters corresponding to the data reported in Harris and
Bush [38], who used a silicone oil of viscosity ν = 20.9 cSt, density ρ = 950 kg/m3,
surface tension σ = 0.0206 N/m, and forcing frequency f = 80 Hz. There are no
fitting parameters. For (a) and (b), γ/γF = 0.822, free walking speed u0 = 9.0 mm/s
and drop radius RD = 0.4 mm. For (c) and (d), γ/γF = 0.922, u0 = 9.5 mm/s and
RD = 0.4 mm. Note that both r0 and ω vary continuously with the rotation rate Ω.
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Figure 3-2: The predicted dependence of the orbital radius r0 ((a) and (c)) and
orbital frequency ω ((b) and (d)) on the bath’s rotation rate Ω in the high memory
regime. The curves are the theoretical predictions determined by solving (3.9) with
the experimental parameters corresponding to the data reported in Harris and Bush
[38], who used a silicone oil of viscosity ν = 20.9 cSt, density ρ = 950 kg/m3, surface
tension σ = 0.0206 N/m, and forcing frequency f = 80 Hz. There are no fitting
parameters. The blue portions of the curves are stable, while the red and green
portions are unstable (see §3.4). For (a) and (b), γ/γF = 0.954, RD = 0.43 mm and
u0 = 12.0 mm/s. For (c) and (d), γ/γF = 0.971, RD = 0.4 mm and u0 = 10.9 mm/s
(�) and 11.7 mm/s (�). The theoretical curves in (c) and (d) are constructed using
the average of the observed u0 values. Note that both r0 and ω are quantized.
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of (3.6), are shown in figure 3-3. Note that interference effects in the wave field

become more pronounced as the memory increases. We proceed by investigating the

properties of these orbital solutions.

3.3.1 Low orbital memory MO
e � 1

We first consider the low orbital memory regime MO
e � 1, in which the drop’s orbital

period is much less than the decay time of the Faraday waves; consequently, the drop

does not interact with its own wake. Since the dimensionless orbital frequency is

ω̂ = ωTFMe = 2πMO
e , we note that MO

e � 1 is equivalent to |ω̂| � 1. In this

limit, the defining equations (3.9) for the orbital radius and orbital frequency yield,

to leading order in ω̂,

−κr̂0ω̂
2 − Ω̂r̂0ω̂ = β

[
ω̂

2

∫ ∞

0

zJ1(r̂0ω̂z)e−z dz +O(ω̂3)

]
,

r̂0ω̂ = β

[∫ ∞

0

J1(r̂0ω̂z)e−z dz +O(ω̂2)

]
. (3.10)

As discussed in Appendix C, this approximation is valid even for arbitrarily large r̂0.

Both integrals in (3.10) can be evaluated exactly, yielding

−κr̂0ω̂
2 − Ω̂r̂0ω̂ =

βr̂0ω̂
2

2
(
1 + (r̂0ω̂)2)3/2

, r̂0ω̂ =
β

r̂0ω̂


1− 1√

1 + (r̂0ω̂)2


 . (3.11)

The second equation allows us to solve for the orbital walking speed û ≡ |r̂0ω̂|:

û ≡ |r̂0ω̂| =
1√
2

(
−1 + 2β −

√
1 + 4β

)1/2

. (3.12)

This is the same as the formula for the free speed û0 of a walker on a non-rotating

bath (Chapter 2 [48]), the non-dimensional equivalent of that given in Table 3.1.

Substituting (3.12) into the first equation of (3.11) yields a formula for the orbital
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x/λF x/λF 

x/λF x/λF 

γ/γF = 0.954 γ/γF = 0.971 

γ/γF = 0.822 γ/γF = 0.922 

y/λF 
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Figure 3-3: Plots of the wave field (3.6) accompanying a drop of viscosity ν = 20.9
cSt, density ρ = 950 kg/m3, surface tension σ = 0.0206 N/m, period TF = 0.025
s, radius RD = 0.4 mm, and phase sin Φ = 0.16. The amplitude of the wave field
is in units of microns. The drop (black dot) orbits clockwise according to xp(t) =
(r0 cosωt, r0 sinωt), with orbital radius r0 = 0.95λF and orbital frequency ω defined
by (3.9). The forcing accelerations are (a) γ/γF = 0.822, (b) γ/γF = 0.922, (c)
γ/γF = 0.954, and (d) γ/γF = 0.971. The walking threshold in the absence of
rotation is γW/γF = 0.806. Note that interference effects in the wave field become
more pronounced with increased forcing and path memory.
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frequency ω̂:

ω̂ = −Ω̂

(
κ+

β

2 (1 + û2
0)

3/2

)−1

= −Ω̂

(
κ+

4β
(
−1 +

√
1 + 4β

)3

)−1

(3.13)

since
√

1 + û2
0 = 1

2

(
−1 +

√
1 + 4β

)
. The solutions (3.12) and (3.13) are compatible

with the initial assumption |ω̂| � 1 provided that |Ω̂| � κ+ 4β/
(
−1 +

√
1 + 4β

)3
.

In dimensional units, the orbital frequency ω and radius r0 are given by

ω = −2Ω

a
, r0 =

au0

2Ω
, (3.14)

where

a = 1 +
4β

κ
(
−1 +

√
1 + 4β

)3 = 1 +
4FM3

eT
2
FkF

m

(
−1 +

√
1 + 4FM2

e TF kF
D

)3 . (3.15)

Over the parameter regime explored in the experiments of Harris and Bush [38], a

was measured to be 1.51, and calculated using (3.15) to be 1.41. Both results are

consistent with the empirical deduction of a = 1.2− 1.5 reported by Fort et al. [32].

Plots of the drop’s orbital radius and orbital frequency as a function of Ω in the

low-memory regime are shown in figure 3-1(a) and (b), and adequately collapse the

data presented in Harris and Bush [38]. In figure 3-1(c) and (d), we begin to see some

deviation from the low-memory result (3.14) for the orbits of smallest radius, as these

orbits have the longest orbital memory.

The a-factor, and the associated increase of the orbital radius relative to inertial

orbits, may be understood in terms of the geometry of the wave force. Figure 3-4

shows that the force F on the drop due to the wave generated during its prior impact

has a component |F | sin θ = |F |u0TF/2r0 that points radially outwards. In the low

orbital memory regime, the drop’s trajectory is primarily influenced by the waves

generated by a few prior impacts, all of which make contributions pointing radially

outwards. The pre-factor a can thus be understood as originating from the dynamic

influence of the walker’s guiding wavefield. Alternatively, the anomalously large radius
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xp(t-TF) 

xp(t-2TF) 

≈ u0TF r0 

F 

θ r0 

u0 

Figure 3-4: Schematic (top view) of the wave force acting on the walker in the low-
memory regime. The walker orbits in a circle of radius r0 with angular speed u0 =
|r0ω| while bouncing with period TF on a fluid bath rotating with angular frequency
Ω. The force F acting on the drop at x = xp(t) is primarily due to the wave created
by the prior bounce at x = xp(t− TF ), whose form is suggested by the circular wave
crest. The radial component of the force is |F | sin θ. The wave force thus causes
the observed orbital radius r0 = au0/2Ω to be larger than the inertial orbital radius
rc = u0/2Ω.

of the walker’s orbit may be understood as resulting from an increased effective mass

m̃ associated with its wave field, as (3.11) may be expressed in dimensional form as

m̃u2
0

r0

= 2mΩu0, where
m̃

m
= a. (3.16)

3.3.2 Mid-memory MO
e = O(1): orbital quantization

In the low-orbital-memory regime MO
e � 1, the drop’s orbital radius r0 is a mono-

tonically decreasing function of the rotation rate Ω, as shown in figure 3-1. Solving

the algebraic equations (3.9) numerically indicates that such is no longer the case in

the mid-orbital-memory regime MO
e = O(1), which arises at higher forcing accelera-

tion γ/γF . The solution curve first develops an inflection point and then two turning

points. More turning points appear with increasing memory Me, as shown in figures
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3-2(a) and 3-2(c). In §3.4, we will show that the regions of the solution curves with

positive slope represent unstable orbital solutions. The unstable regions of the solu-

tion curve represent forbidden orbital radii. This demonstrates the origins of orbital

quantization: the set of observable orbital radii is discrete and discontinuous. This

system represents a classical analogue of the quantized Landau levels of an electron

in a uniform magnetic field [32]. Here, however, the walker’s orbital quantization can

be rationalized in terms of its pilot-wave dynamics.

We follow the convention of [32] for numbering the orbits, the smallest being

denoted by n = 0. At certain rotation rates, orbital degeneracy arises: multiple

orbits of different radii may exist for a fixed rotation rate. The orbital degeneracy

becomes even more pronounced at high memory, as we observe the coexistence of up

to three possible radii for a single rotation rate. Even at the highest path memory

considered, as the orbits become larger in radius, they cease to be quantized, and

the data essentially follows the low-memory curve. This might be anticipated on the

grounds that, for sufficiently large radii, the drop is in the low orbital memory regime

MO
e � 1: its orbital period TO ≈ 2πr0/u0 is much longer than the decay time TFMe

of its wave field.

The equations in (3.9) adequately capture the observed dependence of the orbital

radius r0 and frequency ω on Ω and Me. Note that, in figures 3-2(b) and 3-2(d),

the largest discrepancy between theory and experiment occurs in frequencies ω of

the innermost orbital n = 0, for which r0/λF < 0.5. Such a discrepancy might be

accounted for through a variation of the bouncing phase sin Φ for the smallest orbits.

3.3.3 High orbital memory MO
e � 1: an analog Zeeman effect

The set of orbital solutions has qualitatively different behavior in the high orbital-

memory limit MO
e � 1, or equivalently |ω̂| � 1. Let Ω be the rotation rate of

the container, in which the drop orbits with radius r0 and orbital frequency ω. If the

container rotates in the opposite direction (with angular frequency −Ω), the drop will

clearly orbit with the same radius r0 but opposite orbital frequency −ω. Thus, the

solution curves for the orbital radii in figures 3-1 and 3-2 should be symmetric about
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the vertical axis, with an additional curve corresponding to solutions with identical

radii for Ω < 0. As the memory Me increases, the solution curves approach the r0-

axis and, in the high memory limit, eventually cross, as shown in figure 3-5(a). Our

pilot-wave model thus predicts the possibility of a self-orbiting solution with some

radius r∗0 that exists even in the absence of rotation, at Ω = 0. For such solutions,

which might be interpreted as “hydrodynamic spin states”, the waves generated by

the walker are sufficient to compensate for the absent Coriolis force, balancing the

radial inertial force and so sustaining the walker’s circular motion.

Note that the self-orbiting solutions (arising at Ω = 0) come in pairs, correspond-

ing to positive and negative angular frequencies ±ω∗ (figure 3-5c). As shown in

figure 3-5(b), the introduction of a finite rotation Ω > 0 causes these two degener-

ate solutions to split, one with radius r0 & r∗0 and the other with r0 . r∗0. To see

this explicitly, we seek solutions to (3.9) with high orbital-memory |ω̂| � 1, which

only arise in the high-path-memory regime Me � 1. Specifically, we take β � 1,

κ = O
(
β−1/2

)
, ω̂ = O

(
β1/2

)
, Ω̂ = O(1), and r̂0 = O(1). We first use integration by

parts to rewrite the second equation in (3.9) in the form:

r̂0ω̂ =
β

r̂0ω̂

[
1−

∫ ∞

0

J0

(
2r̂0 sin

ω̂z

2

)
e−z dz

]
. (3.17)

From the argument in Appendix D, it follows that

∫ ∞

0

J1

(
2r̂0 sin

ω̂z

2

)
sin

ω̂z

2
e−z dz =

1

2π

∫ 2π

0

J1 (2r̂0 sinx) sinx dx+O
(
ω̂−2

)
,

∫ ∞

0

J0

(
2r̂0 sin

ω̂z

2

)
e−z dz =

1

2π

∫ 2π

0

J0 (2r̂0 sinx) dx+O
(
ω̂−2

)
. (3.18)

We simplify these integrals by using the identity [63, p. 151]

∫ π/2

0

Jp−q (a cosx) cos(p+ q)x dx =
π

2
(−1)qJp(a/2)Jq(a/2), p, q integers (3.19)
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Figure 3-5: Orbital solutions in the high orbital memory regime MO
e � 1. The curves

are determined by solving (3.9) numerically for γ/γF = 0.985, assuming a drop of
radius RD = 0.4 mm, phase sin Φ = 0.16, and free walking speed u0 = 11.6 mm/s.
Both the red and green portions of the curves represent unstable solutions (see §3.4).
(a) Orbital radii as a function of Ω. (b) Orbital radii for which Ω > 0. (c) Orbital
frequencies ω as a function of Ω. The analog Zeeman effect is apparent in panel (b),
as the self-orbiting solutions of radius r∗0 at Ω = 0 split into two solutions as Ω is
increased. The adjoining co-rotating orbital solutions (ω > 0) have slightly larger
orbital radii than their counter-rotating counterparts (ω < 0), the difference ∆r0

being defined in (3.24).
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which implies that

∫ π/2

0

J1(a cosx) cosx dx =
π

2
J0(a/2)J1(a/2), (p = 1, q = 0)

∫ π/2

0

J0(a cosx) cosx dx =
π

2
J2

0 (a/2) (p = 0, q = 0). (3.20)

Letting x→ x+ π/2, we find that

1

2π

∫ 2π

0

J1(a sinx) sinx dx = J0(a/2)J1(a/2),
1

2π

∫ 2π

0

J0(a sinx) dx = J2
0 (a/2), (3.21)

and thus obtain the high-orbital-memory limit of (3.9):

−κr̂0ω̂
2 = β

[
J0(r̂0)J1(r̂0) +O

(
ω̂−2

)]
+ Ω̂r̂0ω̂

r̂0ω̂ =
β

r̂0ω̂

[
1− J0(r̂0)2 +O

(
ω̂−2

)]
. (3.22)

Let r̂∗0 be a zero of either J0(r) or J1(r). To leading order in β, the orbital radius r̂0

and frequency ω̂ are

r̂0 = r̂∗0 +
κr̂∗0ω̂

∗2

β

(
1 +

Ω̂

κω̂∗

)
·





J1(r̂∗0)−2, if J0(r̂∗0) = 0

− [J0(r̂∗0)J ′1(r̂∗0)]−1 , if J1(r̂∗0) = 0.
+O

(
β−1
)
,

ω̂∗ =

(
β (1− J0(r̂∗0)2)

r̂∗20

)1/2

+O (1) . (3.23)

The radii r̂0 satisfying J1(r̂0) ≈ 0 correspond to solutions in the red portions of the

curve and are never observed experimentally, as is evident in figure 3-2(c), so we

instead consider the solutions with J0(r̂0) ≈ 0. We note that these solutions, though

also unstable, do leave an imprint on the walker’s statistics in the high-memory limit

([38], Chapter 4 [51]). Taking Ω̂ > 0, we see from (3.23) that co-rotating solutions

(ω̂ > 0) have slightly larger radii than the counter-rotating solutions (ω̂ < 0). In

terms of dimensional variables, the difference in radius ∆r0 is prescribed by

∆r0

λF
=

2mr∗0 |ω∗|
FMeπJ1(kF r∗0)2

Ω, where r∗0 is defined by J0(kF r
∗
0) = 0. (3.24)
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Thus, the magnitude of the splitting is proportional to the rotation rate Ω. Building

upon the correspondence proposed by Fort et al. [32] between inertial orbits and

Landau levels, we see that this orbital splitting represents a hydrodynamic analogue of

the Zeeman effect, in which an electron’s degenerate energy level splits in the presence

of a uniform magnetic field. For weak fields, the size of the split is proportional to

the strength of the magnetic field. We note that this splitting is similar in form to

that reported by Eddi et al. [30] for orbiting pairs of walkers in a rotating frame, but

would apply to single orbiting walkers were such hydrodynamic spin states stable.

We observe from (3.23) that, in the high-orbital-memory regime, the physically sig-

nificant orbital radii may be approximated by the zeros of the Bessel function J0(kF r).

We note that the approximation (3.3) proposed in Fort et al. [32] is consistent with this

result for large r0. Indeed, using the approximation Jα(x) ≈
√

2/πx cos (x− απ/2− π/4)

for x� |α2−1/4|, the radial equation in (3.22) for counter-rotating solutions (ω < 0)

can be expressed as

mu2

r0

≈ 2mΩu+
FMe

πkF r0

cos (2kF r0) , where u = r0|ω|. (3.25)

This is similar in form to the high-memory governing equation (3.2) proposed in [32],

which was derived using purely geometrical arguments. Both equations indicate that

most of the sources on the circle cancel out, and that the droplet essentially orbits in

the wave field created by a virtual droplet of mass m̃ = mMe/πkF r0 on the opposite

side of the circle. However, we expect (3.25) to be valid only for sufficiently large

orbital radii r0, for which the large-argument approximation for Jα(x) may be safely

applied.

3.3.4 Trapped states

We now consider orbits of small radius, specifically r0 � λF/2. In the limit of r0 → 0,

the non-dimensional equations (3.9) reduce to

−κω̂2
0 − Ω̂0ω̂0 = β

∫ ∞

0

sin2 ω̂0z

2
e−z dz, ω̂0 =

β

2

∫ ∞

0

sin ω̂0z e−z dz (3.26)
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where ω̂0, Ω̂0 are the values corresponding to the r̂0 = 0 solution. The integrals can

be evaluated explicitly, which yields the system of equations

κω̂2
0 + Ω̂0ω̂0 = − βω̂2

0

2 (1 + ω̂2
0)
, ω̂0 =

βω̂0

2 (1 + ω̂2
0)

(3.27)

with solutions

ω̂0 = ±
√
β

2
− 1, Ω̂0 = −ω̂0 (1 + κ) . (3.28)

We call these solutions trapped states, as they have infinitesimal radius but finite

orbital frequency. In terms of dimensional variables, the angular frequencies ω0 and

Ω0 corresponding to these trapped states are

ω0 =
1

TFMe

√
FkFTFM2

e

2D
− 1, Ω0 =

D

2m

√
FkFTFM2

e

2D
− 1

(
1 +

m

DMeTF

)
. (3.29)

It is shown in Chapter 5 [49] that the bouncing state xp ≡ constant is stable for

|Ω| > Ω0. That is, even above the walking threshold (γ > γW ), the drop will simply

bounce in place if the rotation rate is sufficiently high (|Ω| > Ω0). The stability of

the bouncing state is determined by the balance between the destabilizing wave force

and the stabilizing effects of the drag force (which opposes the drop’s motion) and

the Coriolis force (which radially confines the drop).

Figure 3-6 shows that the critical rotation rate required for trapping, Ω0, is an

increasing function of the forcing acceleration γ, and diverges as γ → γF . Experi-

mental validation of the curve presented in figure 3-6 was impractical owing to the

significant deflection of the free surface at high Ω, which caused the Faraday threshold

to be spatially nonuniform. Thus, the prediction (3.29) for the critical rotation rate

Ω0 could not be tested reliably with our experimental arrangement.
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Figure 3-6: The critical rotation rate for trapping Ω0 as defined by (3.29) is plotted
as a function of the nondimensional forcing acceleration γ/γF . The drop bounces in
place for |Ω| > Ω0 (Chapter 5, [49]). We assume a drop of radius RD = 0.4 mm
and phase sin Φ = 0.16, for which the walking threshold in the absence of rotation is
γW/γF = 0.806.

3.4 Orbital stability

In order to rationalize the observed orbital quantization, we proceed by analyzing the

stability of the orbital solutions found in §3.3. A more precise approach for doing

so will be given in §5.5. We write xp(t) = (r(t) cos θ(t), r(t) sin θ(t)) and express the

nondimensional equation of motion (3.8) in polar coordinates, all of the variables here

being nondimensional. We thus obtain

κ
(
r̈ − rθ̇2

)
+ ṙ = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

[r(t)− r(s) cos (θ(t)− θ(s))] e−(t−s) ds

+Ωrθ̇ + εcrδ(t)

κ
(

2ṙθ̇ + rθ̈
)

+ rθ̇ = β

∫ t

−∞

J1(|xp(t)− xp(s)|)
|xp(t)− xp(s)|

r(s) sin (θ(t)− θ(s)) e−(t−s) ds

−Ωṙ + εr0cθδ(t), (3.30)
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where

|xp(t)− xp(s)|2 = r(t)2 + r(s)2 − 2r(t)r(s) cos (θ(t)− θ(s)) , (3.31)

and δr(t), δθ(t) are Dirac delta functions, cr, cθ are O(1) constants, and 0 < ε � 1.

The delta functions represent a small perturbation to the drop at time t = 0, the

response to which we examine in what follows.

We linearize (3.30) about an orbital solution of radius r0 and frequency ω, where

r0 and ω are defined by (3.9). The drop’s trajectory is thus written as r(t) = r0 +

εr1(t)H(t) and θ(t) = ωt+εθ1(t)H(t), where r1(t) and θ1(t) are the radial and angular

perturbations to the orbital solution, respectively, and H(t) is the Heaviside step

function. We impose the conditions r1(0) = θ1(0) = 0 and ṙ1(0) = cr
κ

, θ̇1(0) = cθ
κ

in

order to ensure that xp(t) is a solution of (3.30). We substitute these expressions into

(3.30) and retain only the O(ε) terms to find

κ
(
r̈1 − ω2r1 − 2r0ωθ̇1

)
+ ṙ1 = ωΩr1 + Ωr0θ̇1 +

β

2
{I [(f(t) + g(t)) sinωt] r0θ1(t)

−r0 [(f(t) + g(t)) sinωt] ∗ θ1(t)}+ β

{
I
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
r1(t)

+

(
g(t) sin2 ωt

2
− f(t) cos2 ωt

2

)
∗ r1(t)

}

κ
(

2ωṙ1 + r0θ̈1

)
+ ωr1 + r0θ̇1 = −Ωṙ1 +

β

2
{I [(g(t)− f(t)) sinωt] r1(t)

+ [(f(t) + g(t)) sinωt] ∗ r1(t)}+ β

{
I
[
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

]
r0θ1(t)

+r0

(
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

)
∗ θ1(t)

}
(3.32)

where

f(z) =
J1

(
2r0 sin ωz

2

)

2r0 sin ωz
2

e−z, g(z) = J ′1

(
2r0 sin

ωz

2

)
e−z,

I[f ] =

∫ ∞

0

f(z) dz, and f ∗ g(t) =

∫ t

0

f(z)g(t− z) dz. (3.33)

Written in this form, the linearized equations are particularly amenable to analysis, as
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we can now take their Laplace transform and deduce algebraic equations for R(s) =

L[r1] and Θ(s) = L[θ1]. Using the initial conditions r1(0) = θ1(0) = 0 and ṙ1(0) = cr
κ

,

θ̇1(0) = cθ
κ

, we obtain

[
κs2 + s− κω2 − Ωω − βF1(s)

]
R− [2κωs+ Ωωs+ βF2(s)] r0Θ = cr

[2ωκs+ ω + Ωs− βG1(s)]R +
[
κs2 + s− βG2(s)

]
r0Θ = r0cθ, (3.34)

where

F1(s) = I
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
+ L

[
g(t) sin2 ωt

2
− f(t) cos2 ωt

2

]

F2(s) =
1

2
{I [(f(t) + g(t)) sinωt]− L [(f(t) + g(t)) sinωt]}

G1(s) =
1

2
{I [(g(t)− f(t)) sinωt] + L [(f(t) + g(t)) sinωt]}

G2(s) = I
[
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

]
+ L

[
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

]
. (3.35)

As shown in Appendix A, some of the integrals above can be done in closed form, so

(3.34) can be expressed as


 A(s) −B(s)

C(s) D(s)




 R(s)

r0Θ(s)


 =


 cr

r0cθ


 (3.36)

where

A(s) = κs2 + s− κω2 − Ωω − β
(
I
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]

+L
[
g(t) sin2 ωt

2
− f(t) cos2 ωt

2

])

B(s) = (2ωκ+ Ω) s− (κω + Ω)− β

2
L [(f(t) + g(t)) sinωt]

C(s) = (2ωκ+ Ω) s+ 2ω + κω + Ω− β

2
L [(f(t) + g(t)) sinωt]

D(s) = κs2 + s− 1− βL
[
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

]
. (3.37)
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The solution to (3.36) is

R(s) =
crD(s) + r0cθB(s)

A(s)D(s) +B(s)C(s)

Θ(s) =
−crC(s) + r0cθA(s)

r0 (A(s)D(s) +B(s)C(s))
. (3.38)

The poles ofR(s) and Θ(s) are the eigenvalues of the linear problem (3.32). If all of the

poles lie in the left-half complex plane, the orbital solution xp(t) = (r0 cosωt, r0 sinωt)

is linearly stable. An instability occurs if any pole is in the right-half complex plane.

It is shown in Chapter 5 [49] that a necessary and sufficient condition for either

R(s) or Θ(s) to have a pole at s = s∗ is F̃ (s∗; r0) = 0, where

F̃ (s; r0) =
(
1− e2π(s+1)/|ω|)F (s; r0), F (s; r0) = A(s)D(s) +B(s)C(s). (3.39)

Thus, assessing the stability of an orbital solution with radius r0 amounts to finding

the real parts of the zeros of the function F̃ (s; r0). Note that we parametrize the

orbital solutions in terms of the radius r0 instead of the nondimensional rotation rate

Ω, since ω and Ω are single-valued functions of r0. That is, the radius r0 uniquely

determines the drop’s orbital frequency ω and the bath rotation rate Ω, but multiple

radii r0 could exist for a given value of Ω, as predicted by (3.9) and seen in experiments

(figure 3-2; Harris and Bush [38]; Fort et al. [32]).

It is shown in Chapter 5 [49] that F̃ (s; r0) has trivial zeros at s = 0 and s =

±iω, which reflect, respectively, the rotational and translational invariance of the

orbital solution. Note that F̃ (s; r0) is a complicated function of s, so it is difficult to

determine its nontrivial zeros in closed form. In Chapter 5 [49], we instead expand

F̃ (s; r0) in various limits for which we can approximate its zeros and thus assess the

stability of the orbital solutions in the appropriate parameter regimes. We show that

orbits of small radius r0 � 1 are stable, which confirms that the bouncing state

destabilizes into an orbital state with radius r0 ∼ |Ω0 − Ω|1/2 for Ω . Ω0. We also

show that the stability problem for orbits of large radius r0 �
√
β reduces to that for

steady rectilinear walking; this is apparent on physical grounds, as such orbits have
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small curvature and so can be approximated locally by a straight line. Since steady

rectilinear walking is stable (Chapter 2 [48]), we expect that such large orbits will

be likewise, which is consistent with our inference that such orbits are not quantized

(figures 3-1 and 3-2).

3.4.1 Origin of orbital quantization

We here demonstrate that the orbital solutions for which dΩ
dr0

> 0 are unstable. This

explains why the upward sloping branches of the solution curves in figure 3-2(a) and

(c) are never seen experimentally, a feature that is ultimately responsible for the

orbital quantization.

We proceed by proving the following:

Theorem 1 Orbital solutions for which dΩ
dr0

> 0 are linearly unstable, with an insta-

bility corresponding to a real and positive eigenvalue.

Proof: Let F (s; r0) = F0(r0)s + F1(r0)s2 + O(s3). We show in Appendix B

that F0(r0) = r0ωd1
dΩ
dr0

, where d1 = 1 + βI
[(
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

)
t
]
. Since

F (s; r0) ∼ κ2s4 as s → ∞, it follows that F (s; r0) has at least one positive real root

if F0(r0) < 0. Since d1 > 0 (see Proposition 2 in Chapter 5) and ω < 0, F0(r0) has

the opposite sign as dΩ
dr0

. It follows that F (s; r0) has at least one real positive root if

dΩ
dr0

> 0.

Figure 3-7 summarizes the stability characteristics of the circular orbits. For a

given value of the dimensionless forcing acceleration γ/γF , the stability of an orbital

solution of radius r0 is assessed by finding the zeros of F̃ (s; r0), using the method

detailed in Chapter 5 [49]. The perturbations r1(t) and θ1(t) to the orbital solution

will behave like es∗t, where s∗ is the zero of F̃ (s; r0) with the largest real part. The

points colored in blue signify stable orbits, for which all of the zeros lie in the left-

half of the complex plane (<(s∗) < 0). The points colored in red and green signify

unstable orbits (<(s∗) > 0). Unstable orbits for which s∗ has a nonzero imaginary

component (<(s∗) > 0, =(s∗) 6= 0) are colored green, while those for which s∗ is on

the positive real axis (<(s∗) > 0, =(s∗) = 0) are colored red.
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We find that orbits for which dΩ
dr0

> 0, proven to be unstable in Theorem 1, are

contained within the red regions of figure 3-7. We note that the converse of Theorem

1 is not necessarily true: orbital solutions for which dΩ
dr0

< 0 are not necessarily stable,

as indicated by the green regions in figure 3-2(a) and (c). While orbital solutions are

observed within these green regions, their relatively large error bars reflect a periodic

fluctuation in the measured radius of curvature, corresponding to a wobbling orbit

[38]. We may thus surmise that the oscillatory instability is stabilized by a nonlinear

mechanism beyond the scope of our linear stability analysis.

Figure 3-7 indicates that all circular orbits are stable for γ/γF < 0.930. Above this

critical value, an unstable (red) solution branch arises for r0 ≈ 0.6λF , corresponding

roughly to the first positive zero of J1(kF r). Along horizontal traverse B, there are two

unstable branches, which correspond to the red portions of the curve in figure 3-2(a).

As γ/γF is progressively increased, more unstable red tongues arise, for increasing

orbital radius. The orbital solutions have blue, red, and green branches along traverse

C (γ/γF = 0.971), corresponding to the curve presented in figure 3-2(c). We note

that wobbling orbits have been observed inside the green regions [38]. Moreover, there

is experimental and numerical evidence of more complex periodic and quasiperiodic

orbits within the green regions as the memory is further increased ([38], Chapter 4

[51]). The lateral extent of the unstable regions increases with increasing memory;

consequently, virtually all of the orbital solutions become unstable in the high-memory

limit γ → γF . It is in this limit that a wave-like statistical behavior emerges from a

chaotic pilot-wave dynamics ([38], Chapter 4 [51]).

3.5 Discussion

We have developed and analyzed an integro-differential trajectory equation that de-

scribes the pilot-wave dynamics of a walker in a rotating frame. The theoretical

predictions for the walker’s orbital radius r0 and frequency ω agree well with the

experimental results of Harris and Bush [38]. Specifically, our model allows us to

rationalize the emergence of quantized orbits and wobbling states as the memory is
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Figure 3-7: Orbital stability diagram for a walker of radius RD = 0.4 mm, phase
sin Φ = 0.16, viscosity ν = 20.9 cSt, and forcing frequency f = 80 Hz, determined
by finding the eigenvalues of the linear stability problem (3.32). The stability of the
circular orbit is governed by the eigenvalue with the largest real part, denoted by
s∗. Stable orbits (<(s∗) < 0) are indicated in blue. Unstable orbits for which s∗ is
complex (<(s∗) > 0, =(s∗) 6= 0) are colored in green, while those for which s∗ is on the
positive real axis (<(s∗) > 0, =(s∗) = 0) are colored in red. The horizontal traverses
A–C correspond to, respectively, the curves in figures 3-1(c), 3-2(a), and 3-2(c), the
color coding being the same. We note that the phase sin Φ and drop radius RD vary
slightly between the traverses A–C but are assumed to be fixed in the orbital stability
diagram.
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increased progressively, as well as the relative absence of stable orbits in the high-

memory limit. The theory also predicts the existence of trapped states, which are

orbital solutions of small radius r0 ∼ |Ω0 − Ω|1/2 that arise for Ω . Ω0.

In the low orbital memory regime, the walker is found to execute circular orbits of

radius r0 = au0/2Ω, where a is defined in terms of experimental parameters in (3.15).

The factor a originates from the small radial component of the wave force, and can be

interpreted in terms of an added mass associated with the walker’s pilot-wave field.

In the mid-memory regime, the orbital radii are found to be quantized. The orbital

quantization has been rationalized by analyzing the stability of the orbital solutions.

Orbits on the portions of the solution curves in figure 3-2(a) and (c) with positive

slope are found to be unstable.

As the memory is increased further, the theory predicts the existence of self-

orbiting solutions, even at Ω = 0, wherein the wave force balances the centripetal

force. Such self-orbiting states might represent a hydrodynamic analogue of a quan-

tum spin state. Indeed, the self-orbiting solution is reminiscent of the Kerr-Newman

model of the electron, in which the electron is modeled as a charged particle orbiting

in its own wave field [8]. These hydrodynamic ‘spin states’ have not yet been observed

in experiments, and are unstable according to linear stability theory; nevertheless, it

is conceivable that they could be stabilized by nonlinear effects, a possibility to be

explored elsewhere. When subjected to rotation, the solutions that co-rotate with the

bath would have slightly larger orbital radii than their counter-rotating counterparts,

an effect reminiscent of Zeeman splitting in quantum mechanics.

In the future, we will analyze the transition from simple orbital to chaotic dy-

namics in greater detail. There is evidence that Hopf-like bifurcations of the orbital

solutions lead to wobbling orbits, as reported in §3.4, which will be examined in

Chapter 4 [51]. Higher-order instabilities may give rise to precessing orbits, inter-

mittent wobbling, and complex quasiperiodic orbits, all of which have been observed

either in our experiments [38] or numerical simulations (Chapter 4 [51]). We will also

analyze the statistical behavior of the walker’s motion, characterizing the emergence

of wave-like statistics in the high-memory limit ([38], Chapter 4 [51]).
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A similar approach will be applied to analyzing walkers moving in a central force

field, a configuration currently being examined experimentally by Couder and cowork-

ers [52]. The integro-differential equation of motion has adequately captured the ob-

served behavior of a walker in a rotating frame; moreover, it has allowed us to make

predictions that have been confirmed experimentally. Having benchmarked our pilot-

wave model against experimental data in this configuration, our hope is that we may

now apply it to systems that are not necessarily accessible in the laboratory.

86



Chapter 4

Pilot-wave dynamics in a rotating

frame: exotic orbits

4.1 Introduction

In this chapter, we continue our study of the walker dynamics in a rotating frame.

In Chapter 3, the observed orbital quantization [32, 38] was rationalized theoretically

through a linear stability analysis of circular orbits [50, 49], the results of which are

summarized in Fig. 4-1. Each point on the diagram corresponds to a particular orbital

radius r0 and vibrational forcing γ. Orbits indicated in red are unstable so were not

observed experimentally. Stable orbits, indicated in blue, thus become quantized at

high memory. These quantized orbits are labeled by n, n = 0 being the smallest, and

larger n corresponding to larger orbits. Other orbits, indicated in green, destabilize

via an oscillatory mechanism, which can give rise to wobbling orbits in the laboratory

[38]. The analysis also predicts the relative absence of stable circular orbits in the

high-memory limit, γ → γF . Note, however, that the linear stability analysis can only

assess the stability of the circular orbits and cannot provide insight into the dynamics

This chapter is currently under view at Physics of Fluids: Pilot-wave dynamics in a rotating
frame: exotic orbits, Oza, A. U., Wind-Willassen, Ø., Harris, D. M., Rosales, R.R. and Bush, J. W.
M. [51].
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arising within the unstable regions. Such nonlinear dynamics is the subject of this

chapter.

Harris and Bush [38] conducted a comprehensive experimental study of this sys-

tem, which revealed a number of new phenomena. At high memory, in addition to

quantized orbits, the authors report the existence of wobbling orbits, marked by a

periodic fluctuation in the orbital radius. They also observe drifting orbits, in which

the orbital center of a wobbling orbit traverses a nearly circular path. At higher

values of memory, they report wobble-and-leap dynamics, in which the trajectory of

the orbital center is characterized by a slow drift punctuated by short bursts of rapid

motion. At the highest memory considered, they report that the walker’s trajectory

becomes erratic, presumably chaotic. Nevertheless, the histogram of its radius of

curvature has a coherent multimodal structure, with peaks arising at the radii of the

unstable quantized circular orbits.

Through numerical simulation of a single walker in a rotating frame, we charac-

terize its behavior as a function of the forcing acceleration γ and rotation rate Ω. In

addition to reproducing many of the experimental results of Harris and Bush [38],

we report a number of new states marked by complex periodic and quasiperiodic

trajectories. Our study culminates in a complete regime diagram indicating the de-

pendence of the walker’s behavior on the system parameters. We note that many

of the phenomena described herein were predicted by the numerical simulations and

subsequently observed in the laboratory experiments of Harris and Bush [38].

In §4.2 we review the hydrodynamic trajectory equation for walking drops in a

rotating frame and explain the numerical method used to simulate the walker dynam-

ics. We describe wobbling orbits in §4.3, drifting orbits in §4.4 and wobble-and-leap

dynamics in §4.5. Other complex periodic and quasiperiodic trajectories are described

in §4.6, and the statistical behavior of chaotic trajectories is discussed in §4.7. Future

directions are discussed in §4.8.
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Figure 4-1: Summary of the linear stability analysis for circular orbits presented in
Chapter 3 [50], for a walker of radius 0.4 mm and phase sin Φ = 0.2 bouncing on
a 20 cS silicone oil bath forced at 80 Hz. The dimensionless orbital radius r0/λF
and vibrational acceleration γ/γF uniquely specify the circular orbit. Blue indicates
stable orbits, for which each eigenvalue has a negative real part. Green corresponds
to unstable orbits with an oscillatory instability, for which the eigenvalues with the
largest (positive) real part are complex conjugates. Red corresponds to unstable
orbits for which the eigenvalue with the largest (positive) real part is purely real. We
note that the experimental parameters used here are slightly different to those used
to generate Figure 3-7.
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4.2 Trajectory equation and numerical method

We first review the trajectory equation for a resonant walker in a rotating frame, the

complete derivation of which is presented in Chapter 3 [50]. Let x(t) = (x(t), y(t))

denote the horizontal position of the walker at time t. The horizontal force balance

on the walker, time-averaged over the bouncing period, yields the following integro-

differential equation of motion (Chapter 3 [50]):

mẍ+Dẋ =
F

TF

∫ t

−∞

J1 (kF |x(t)− x(s)|)
|x(t)− x(s)| (x(t)− x(s)) e−(t−s)/(TFMe) ds− 2mΩ× ẋ. (4.1)

The simulations in this study were performed using the fluid parameters approxi-

mately corresponding to the silicone oil used in the experiments of Harris and Bush

[38], with ρ = 949 kg/m3, ν = 20 cS, σ = 0.206 N/m, H = 4 mm, f = 80 Hz,

RD = 0.4 mm and sin Φ = 0.2, for which m = 2.5441× 10−4 g, D = 1.997× 10−3 g/s,

kF = 1.3224 mm−1, A = 3.4864×10−3 mm and Td = 1.8215×10−2 s ([46]; Table 3.1).

We non-dimensionalize (4.1) by introducing dimensionless variables x̂ = kFx,

t̂ = t/TFMe and Ω̂ = 2mΩ/D. Using primes to denote differentiation with respect

to t̂, the trajectory equation becomes

κx̂′′ + x̂′ = β

∫ t̂

−∞

J1

(∣∣x̂(t̂)− x̂(ŝ)
∣∣)

∣∣x̂(t̂)− x̂(ŝ)
∣∣

(
x̂(t̂)− x̂(ŝ)

)
e−(t̂−ŝ) dŝ− Ω̂× x̂′ (4.2)

where κ = m/DTFMe and β = FkFTFM
2
e /D. For the experimental parameters

listed above, κ and β are related to the forcing acceleration γ through the formulae

κ = 6.994(1− γ/γF ) and β = 0.10112/(1− γ/γF )2.

We proceed by outlining the procedure used to numerically simulate the walker’s

trajectory. We assume the walker to be in a circular orbit prior to the initial time

t = 0, that is, x̂(t) = x̂O(t) = (r̂0 cos ω̂t̂, r̂0 sin ω̂t̂) for t < 0, where r̂0 and ω̂ are
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defined in terms of Me and Ω̂ through the following equations (Chapter 3 [50]):

−κr̂0ω̂
2 = β

∫ ∞

0

J1

(
2r̂0 sin

ω̂z

2

)
sin

ω̂z

2
e−z dz + Ω̂r̂0ω̂

r̂0ω̂ = β

∫ ∞

0

J1

(
2r̂0 sin

ω̂z

2

)
cos

ω̂z

2
e−z dz. (4.3)

The walker’s trajectory is evolved in time using the fourth-order Adams-Bashforth

linear multistep method [12]. Dropping the hats, the numerical scheme may be writ-

ten as

xn+1 = xn + ∆t
3∑

m=0

cmun−m

un+1 = un +
∆t

κ

3∑

m=0

cm
[
−un−m −Ω× un−m + βf0(xn−m)e−tn−m

+ β

∫ tn−m

0

J1 (|xn−m − x(s)|)
|xn−m − x(s)| (xn−m − x(s)) e−(tn−m−s) ds

]

f0(x) =

∫ 0

−∞

J1 (|x− xO(s)|)
|x− xO(s)| (x− xO(s)) es ds, (4.4)

where ∆t is the time step, tn = n∆t, xn = x(tn) and un = u(tn). The coefficients

are [12] c0 = 55/24, c1 = −59/24, c2 = 37/24 and c3 = −3/8. The integral in

(4.4) is computed using Simpson’s rule, and f0(x) using an adaptive Gauss-Kronrod

quadrature routine built into MATLAB. The first four time steps (n = 0, 1, 2, 3)

employ the assumption that x = xO for t < 0, so xj = xO(tj) and uj = ẋO(tj) for

j < 0. Unless otherwise stated, the simulations in this study were performed with a

fixed time step ∆t = 2−6 and initial perturbation δ = (0.02, 0), so that x0 = xO(0)+δ.

The trajectory was evolved beyond tmax = 1000, typically a sufficiently large value to

capture its asymptotic behavior.

We proceed by characterizing the dependence of the walker’s trajectory on its

initial orbital radius r0 and forcing acceleration γ/γF , with a resolution ∆ (γ/γF ) =

0.001. The resulting dynamics is classified in Fig. 4-2, where each color corresponds

to a different type of trajectory. Once again, blue denotes regions in which the cir-

cular orbit is stable. Red denotes jumping orbits, for which the initial circular orbit
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Figure 4-2: Regime diagram delineating the dependence of the walker’s trajectory on
the initial orbital radius r0 and vibrational forcing γ. The trajectory equation (4.2)
is numerically simulated using circular orbit initial conditions, initial perturbation
δ = (0.02, 0), time step ∆t = 2−6 and tmax = 1000. The walker’s trajectory is
color-coded according to the legend.

destabilizes into a different circular orbit, or into a quasiperiodic orbit with a signif-

icantly different mean radius. Green and white denote 2ω- and 3ω-wobbling orbits,

which are respectively characterized by a radial oscillation with approximately twice

and thrice the orbital frequency. Black denotes drifting orbits, and purple denotes

wobble-and-leap orbits. The orbits in light blue correspond to other complex periodic

or quasiperiodic orbits. The yellow regions denote erratic or chaotic trajectories for

which there is no discernible periodic pattern.

For the initial orbital radii explored, 0 < r0/λF < 1.73, all circular orbits are stable

for γ/γF ≤ 0.921, and only jumping or erratic orbits are present for γ/γF > 0.98 and

r0/λF > 0.32. In the following sections, we detail the various trajectories observed.
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4.3 Wobbling orbits

We here report two different types of wobbling orbits found in our numerical ex-

plorations. The existence of 2ω-wobbling orbits, indicated by the green regions in

Fig. 4-2, was suggested theoretically by the linear stability analysis of circular orbits

in Chapter 3 [50] and have been reported in laboratory experiments [38]. Fig. 4-3(a)

shows a typical wobbling orbit at n = 1, which has a slightly oblong shape. Let x̄c

be the stationary orbital center, defined as the mean value of x(t) over the entire

trajectory. The orbital radius r̄(t) = |x(t)− x̄c| is plotted in Fig. 4-3(b). The top

panel shows that the circular orbit solution with constant radius r0/λF = 0.85 be-

comes unstable in an oscillatory fashion, and that the radial oscillations saturate after

a finite time, which is characteristic of a Hopf-type instability. A small portion of the

time trace of r̄(t), displayed in the lower panel, confirms that the wobbling frequency

is roughly twice the orbital frequency, as r̄(t) completes approximately two cycles per

orbital period. The orbital period T is obtained by taking the Fourier transform of

the trajectory x(t) and identifying the dominant frequency.

An example of a roughly triangular 3ω-wobbling orbit, indicated by the white

regions in Fig. 4-2, is shown in Fig. 4-3(c). The lower panel of Fig. 4-3(d) shows

that the wobbling frequency of r̄(t) is roughly thrice the orbital frequency. These

3ω-wobbling orbits have not yet been found in laboratory experiments, presumably

because they arise only in a minuscule region of parameter space.

We further characterize the 2ω-wobbling orbits by comparing their wobbling am-

plitudes and frequencies to those observed in the laboratory experiments of Harris

and Bush [38]. The wobbling frequency ωwob is obtained by taking the Fourier trans-

form of the signal r̄(t) and identifying the largest peak. The wobbling amplitude A

is then defined as

A =
√

2

[
1

Twob

∫

Twob

(r̄(t)− r̄a)2 dt

]1/2

, where r̄a =
1

Twob

∫

Twob

r̄(t) dt (4.5)

is the mean orbital radius and Twob = 2π/ωwob the wobbling period. Fig. 4-4(a)
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shows the dependence of the wobbling amplitude A on the rotation rate Ω for various

values of the forcing acceleration γ/γF . The lateral extent of the wobbling region

increases with memory, which is consistent with the fact that increasing memory

destabilizes the circular orbits. The breaks in the curves correspond to regions in

which wobbling orbits are absent, a feature that will be discussed in §4.4.

We note a number of features that are consistent with the corresponding exper-

imental observations of Harris and Bush [38], as are reproduced in Fig. 4-4(b). The

qualitative shape of the experimental curve at γ/γF = 0.961 is similar to the nu-

merically generated curves at the lowest memory, γ/γF = 0.952 to 0.956. At higher

values of memory, the experimental curves (γ/γF ≥ 0.969) and numerical curves

(γ/γF ≥ 0.965) end abruptly, indicating that the wobbling amplitude does not de-

crease smoothly to zero with increasing rotation rate. The onset of wobbling occurs

for lower values of Ω as memory is increased, and the wobbling amplitude increases

with memory for a fixed value of Ω. Note that the wobbling amplitudes obtained

in the numerical simulations are roughly consistent with experiment. However, the

data points do not coincide precisely, presumably because the system is highly sensi-

tive to small deviations in drop size and fluid viscosity. Nevertheless, it is clear that

our model results capture the essential dynamical features of the observed wobbling

orbits.

The dependence of the wobbling frequency ωwob on the rotation rate Ω is shown

in Fig. 4-4(c), which is qualitatively consistent with the experimental data [38] repro-

duced in Fig. 4-4(d). Note that the wobbling frequencies for a wide range of memory

values lie near a single curve, an effect that can be rationalized through the linear

stability analysis of circular orbits (Chapter 5 [49]). The wobbling frequency typically

decreases slowly with rotation rate while remaining close to the value 2ω.

4.4 Drifting orbits

At higher values of memory, wobbling orbits destabilize, their orbital centers drifting

in a regular fashion on a timescale long relative to the orbital period. Drifting orbits
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Figure 4-3: Panels (a) and (b): examples of 2ω- and 3ω-wobbling orbits at n = 1,
respectively. The 2ω-wobbling orbit was obtained using initial orbital radius r0/λF =
0.85 and vibrational forcing γ/γF = 0.955, and the 3ω-wobbling orbit using r0/λF =
0.94 and γ/γF = 0.9745. The corresponding (unstable) circular orbit is indicated by
the dashed line. Panels (c) and (d): plots of the corresponding orbital radius r̄(t) as
a function of t/T , where T is the orbital period. In the upper plots, note that the
radius grows and then saturates, which is characteristic of a Hopf-type instability.
The lower plots resolve the oscillations, showing that the wobbling frequency is ≈ 2ω
in (c) and ≈ 3ω in (d).
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Figure 4-4: Numerical characterization of wobbling orbits (panels (a) and (c)), com-
pared with experimental data from Harris and Bush [38] (panels (b) and (d)). Panels
(a) and (b) show the dependence of the wobbling amplitude A on the rotation rate
Ω for various values of memory γ/γF . Panels (c) and (d) show the dependence of the
wobbling frequency ωwob on the rotation rate Ω. The wobbling frequency is normal-
ized by the orbital frequency ω. The symbols correspond to different values of the
memory γ/γF , as defined in the legend.
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are denoted by the black regions in Fig. 4-2. We define the orbital center x̄c(t) of a

drifting orbit as the average value of x(t) over an orbital period T ,

x̄c(t) =
1

T

∫ t+T

t

x(s) ds. (4.6)

An example of a drifting orbit is shown in Fig. 4-5. The time trace of the orbital radius

r̄(t) = |x(t)− x̄c(t)| suggests that the drifting orbit arises from the period-doubling

bifurcation of a wobbling orbit, a phenomenon to be detailed elsewhere. Note that

the period of the orbital center is much larger than the orbital period T , this slow

oscillation being characteristic of drifting orbits. Fig. 4-5(d) shows another example

of a drifting orbit, alongside its experimental counterpart as reported by Harris and

Bush [38] (Fig. 4-5(e)).

In Fig. 4-6(a) and (d), we illustrate the relationship between circular, wobbling,

and drifting orbits at the second orbital, n = 1, for two particular values of memory,

γ/γF = 0.957 and 0.958. Stable circular orbits are indicated by the blue curve, and

unstable ones by the green curve. The mean radii r̄a of the wobbling orbits, which

lie on the green curve, are marked by the data points, the error bars reflecting the

wobbling amplitude A. The wobbling orbits destabilize into drifting orbits in the open

green regions of the two curves, which is reflected by the breaks in the corresponding

wobbling amplitude curves in Fig. 4-4(a). For these values of memory, the orbital

center x̄c(t) of a drifting orbit is found to traverse a circular path of radius Rdrift

over a period Tdrift. Fig. 4-6(b) and 4-6(e) show that the drift radius Rdrift depends

continuously on the rotation rate Ω for these two values of memory. Unlike the

wobbling frequency (Fig. 4-4(c)), the drift period Tdrift exhibits a strong dependence

on the rotation rate, as shown in Fig. 4-6(c) and 4-6(f). The large values of Tdrift/T

indicate that drifting orbits evolve over a very slow timescale relative to the orbital

period, making experimental exploration of the curves in Fig. 4-6 impractical. For

higher values of memory, γ/γF ≥ 0.959, the orbital centers x̄c(t) of some drifting

orbits follow irregular noncircular paths, indicating that simple drifting orbits may

destabilize into more complex trajectories. We expect qualitatively similar behavior
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Figure 4-5: (a) Numerical simulation of a drifting trajectory at n = 1, obtained
using the initial orbital radius r0/λF = 0.8005 and vibrational forcing γ/γF = 0.959.
The trajectory (gray line) consists of a loop (dashed line) drifting along a larger circle
(black solid line). (b) Plot of the orbital radius r̄(t) as a function of t/T , where T = 4.3
is the orbital period. (c) Plot of the orbital center (x̄c, ȳc) as a function of t/T . Note
that the center moves on a much slower timescale than the radius r̄. (d) Numerical
simulation of another drifting trajectory using r0/λF = 0.893 and γ/γF = 0.966, for
which the center does not move along a precise circle. (e) Experimentally observed [38]
drifting trajectory similar to that in panel (d), obtained using γ/γF = 0.978± 0.003
and rotation rate Ω = 1.72 s−1. The trajectory is indicated by the dashed line, the
motion of the center by the solid line.
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to arise at the higher orbital levels, n > 1.

An example of a drifting orbit at the innermost orbital level, n = 0, is shown

in Fig. 4-7(a). Such orbits were found in the black portions of the n = 0 region in

Fig. 4-2. The walker’s trajectory (gray curve) consists of a loop (dashed black curve)

periodically drifting along a square epicycle (black curve). As the rotation rate Ω and

memory are slightly varied, the orbital center x̄c(t) is found to drift along a variety

of epicycloidal paths, as shown in the top row of Fig. 4-7(b). The orbital center

associated with an n = 1 orbit may traverse a star-shaped path, as shown in the

bottom row of Fig. 4-7(b). However, such regular drifting orbits arise in a relatively

narrow range of parameter space, outside of which the orbital centers drift with a

relatively incoherent pattern.

4.5 Wobble-and-leap dynamics

The purple regions in Fig. 4-2 denote wobble-and-leap trajectories, which are char-

acterized by a sequence of alternating wobbling and leaping phases [38]. During the

wobbling phase, the orbital radius grows in an oscillatory fashion, while the orbital

center remains stationary. The orbital center then rapidly jumps to a new location,

after which the process begins anew.

Wobble-and-leap trajectories at n = 1 appear to arise from the instability of the

drifting orbits in response to increased memory. A numerical example of such a

trajectory is given in Fig. 4-8. The orbital center x̄c(t) (panels (c) and (d)) remains

relatively stationary while the oscillations in the orbital radius r̄(t) grow (panel (a)).

This wobbling phase persists for roughly five orbital periods, before it is interrupted by

the rapid shift of the orbital center x̄c(t) to a new location. The extended trajectory

x(t) is indicated by the dashed gray curve in panel (b), and the orbital center x̄c(t)

by the solid black curve. The walker essentially jumps between various wobbling

orbits, which are marked by circles (dashed black curves) centered at the transiently

stable orbital centers (black dots). We note that the average leap distance is (0.342±
0.038)λF , quite close to the first zero of J0(kF r) at 0.383λF , which roughly corresponds
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Figure 4-6: Numerical characterization of drifting orbits at n = 1. Top panels (a)
and (d): the curve shows the theoretical orbital radius r0 as a function of the nondi-
mensional rotation rate 2ΩλF/u0, calculated using (4.3). The blue segments indicate
stable circular orbits, and the green unstable solutions due to an oscillatory instabil-
ity. The trajectory equation (4.2) was numerically simulated within the green regions,
and both wobbling and drifting orbits were found. The markers correspond to the
mean orbital radius r̄ of a wobbling orbit, and the error bars indicate the wobbling
amplitude. The unmarked green regions correspond to drifting orbits, in which the
orbital center (x̄c, ȳc) drifts in a circle. The middle panels, (b) and (e), show the
radius Rdrift of the orbital center, and the lower panels (c) and (f) the period of the
orbital center Tdrift normalized by the orbital period T . Panels (a–c) correspond to
a vibrational forcing γ/γF = 0.957 and (d–f) to γ/γF = 0.958.
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Figure 4-7: Numerical simulations of drifting orbits, for various values of the vi-
brational forcing γ/γF and initial orbital radius r0. In panel (a), the gray curve
corresponds to a trajectory with r0/λF = 0.7262 and γ/γF = 0.971, which consists
of a loop (dashed black curve) that drifts along a square epicycle (black curve). The
plots along the top row of panel (b) show the orbital centers of some drifting orbits at
n = 0. From left to right, the parameter values are: (r0/λF , γ/γF ) = (0.7221, 0.973),
(0.3635, 0.968), (0.7514, 0.971), (0.7870, 0.971) and (0.775, 0.971). The bottom row
shows those corresponding to n = 1, with parameter values (r0/λF , γ/γF ) = (0.8541,
0.9612), (0.8537, 0.9609), (0.8541, 0.96125), (0.8542, 0.9613) and (0.8537, 0.96085),
which correspond to the same dimensionless rotation rate Ω̂ = 0.5734.

to the radius of a circular orbit at n = 0. A similar phenomenon was observed in the

experiments of Harris and Bush [38], who reported a qualitatively similar trajectory

(panel (e)).

While we did not find any wobble-and-leap trajectories at n = 1 for which the

orbital center x̄c(t) followed a nearly periodic path, many were found at n = 0.

Several such trajectories are shown in Fig. 4-9, which were found by varying the

initial orbital radius r0 and forcing acceleration γ/γF over the narrow parameter

range denoted by the purple portion of the n = 0 region in Fig. 4-2. The figure shows

the orbital centers x̄c(t), the darker portions denoting the transiently stable orbital

centers. Such trajectories are characterized by an extended wobbling phase which

typically lasts more than twenty orbital periods. As is evident from Fig. 4-2, circular

orbits generally destabilize into wobble-and-leap trajectories for n = 0, rather than

into wobbling orbits as they do for n = 1 and n = 2.
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Figure 4-8: Numerical simulation of a wobble-and-leap trajectory at n = 1, obtained
using initial orbital radius r0/λF = 0.8029 and vibrational forcing γ/γF = 0.960.
Panel (a) shows the mean orbital radius r̄(t). Panel (b) shows the trajectory (dashed
gray curve), resulting from the orbital center (solid black curve) jumping between the
transiently stable points (black dots). The dashed black curves are circles of radius
r0/λF centered on the stable points. Panels (c) and (d) show the coordinates x̄c(t) and
ȳc(t) of the orbital center. Panel (e) shows a qualitatively similar trajectory observed
in the experiments of Harris and Bush [38], obtained using γ/γF = 0.978± 0.003 and
rotation rate Ω = 1.76 s−1. The trajectory is indicated by the dashed line, the center
by the solid line.
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Figure 4-9: Numerical simulations of wobble-and-leap trajectories at n = 0, for
various values of the initial radius r0/λF and vibrational forcing γ/γF . The plots
show the paths of the orbital centers, nondimensionalized by the Faraday wave-
length, (x̄c(t), ȳc(t))/λF . From top left to bottom right, the parameter values are:
(r0/λF , γ/γF ) = (0.376, 0.9665), (0.370, 0.966), (0.3769, 0.9665), (0.365, 0.966),
(0.3654, 0.966), (0.3657, 0.966), (0.3659, 0.966), (0.3656, 0.966), (0.368, 0.966), (0.373,
0.9665), (0.372, 0.9665), (0.3763, 0.9665), (0.3775, 0.9665), (0.3647, 0.966), (0.370,
0.9665) and (0.370, 0.967).
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4.6 Other periodic and quasiperiodic orbits

As the memory is increased progressively, the walker’s trajectory becomes more com-

plex. An assortment of other periodic or quasiperiodic trajectories is shown in Fig. 4-

10. These trajectories, colored light blue in Fig. 4-2, have not yet been observed in

laboratory experiments, presumably because they arise in such a limited region of

parameter space. Many of them represent periodic windows in an otherwise chaotic

regime.

A closer look at the trajectory shown in Fig. 4-11(a) reveals that it may be decom-

posed into the repeated loop shown in Fig. 4-11(b), which traverses a larger circle.

The loop itself can be viewed as a combination of a larger loop (solid curve) and

smaller loop (dashed curve). To quantify this, the loop radius R(t) of the trajectory

was computed using a modified osculating circle method with angle α = π/2, which

is described in the appendix of Harris and Bush [38]. The time trace of R(t) is shown

in Fig. 4-11(c), the gray portion corresponding to the loop in panel (b). It is evident

that the loop radius executes persistent periodic oscillations between levels.

To elucidate the origin of this dynamics, we note that a number of unstable circular

orbit solutions exist at this value of Ω and γ/γF , two of which have the radii indicated

by the horizontal lines in Fig. 4-11(c). The complex trajectory in panel (a) appears to

result from the walker jumping periodically between these unstable solutions. Based

on the analogy between the Coriolis force on a walker and Lorentz force on an electron

[32], we note that this trajectory is reminiscent of a Rabi oscillation, a quantum

mechanical phenomenon in which an electron periodically jumps between two energy

states in the presence of a oscillating magnetic field [14]. The possibility of forcing

such an oscillation in this pilot-wave system by varying the rotation rate Ω will be

pursued elsewhere.
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Figure 4-10: Numerical simulations of quasiperiodic trajectories observed for various
values of the initial orbital radius r0/λF and vibrational forcing γ/γF . The plots
show the trajectories nondimensionalized by the Faraday wavelength, (x(t), y(t))/λF .
From top left to bottom right, the parameter values are: (r0/λF , γ/γF ) = (1.4007,
0.97), (0.8924, 0.969), (0.8898, 0.966), (0.8778, 0.966), (0.8398, 0.961), (0.8249, 0.960),
(0.3897, 0.976), (1.2348, 0.979) and (0.8417, 0.969).
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Figure 4-11: Numerical simulation of a trajectory exhibiting a periodic oscillation
between two orbital radii, obtained using initial radius r0/λF = 1.2691 and vibrational
forcing γ/γF = 0.971. Panel (a) shows the trajectory, which consists of the loop
in panel (b) drifting along a circle. Panel (c) shows the loop radius R(t) of the
trajectory. The shaded portion corresponds to the trajectory in panel (b). The walker
evidently oscillates periodically between the two unstable orbital solutions with radii
r0/λF = 0.409 and r0/λF = 0.869, indicated by the horizontal lines.
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4.7 Chaotic pilot-wave dynamics

As the forcing acceleration γ approaches the Faraday instability threshold γF , the

trajectories become increasingly complex and chaotic, as indicated by the yellow

regions in Fig. 4-2. An example of such a trajectory is shown in Fig. 4-12(a). To

analyze such a complex trajectory, we compute its local loop radius R(t) using a

modified osculating circle method [38] with angle α = π/2. The time trace of the loop

radius is shown in panel (b), and the corresponding histogram in panel (c). The zeros

of the Bessel function J0(kF r), indicated by the dashed vertical lines, approximate well

the maxima of the histogram, indicating that the chaotically evolving walker prefers

to make loops roughly quantized on half the Faraday wavelength. It was previously

shown (Chapter 3 [50]) that, in the high-memory regime, γ/γF → 1, the orbital radii

defined by (4.3) may be approximated by the zeros of J0(kF r) and J1(kF r). While

all such orbital solutions are unstable, the former are less unstable than the latter

(Chapter 5 [49]), as indicated by the eigenvalues of the linear stability problem. The

footprint of these unstable circular orbits is thus present in the multimodal statistics

of the walker’s loop radius R(t), an effect demonstrated in the laboratory experiments

of Harris and Bush [38].

The walker’s precise statistical behavior depends on the memory and rotation rate,

as shown in Fig. 4-13 and Fig. 4-14. The top panels in Fig. 4-13 show the dependence

of the statistics of R(t) on the rotation rate Ω for three different values of forcing

acceleration γ/γF . The vertical slices of the plots at 2ΩλF/u0 = 0.6 correspond to

the histograms in the lower panels, the color indicating the frequency count of a

particular loop radius. Note that, for fixed forcing acceleration γ/γF , increasing the

rotation rate shifts the histogram towards smaller loop radii, as expected.

Fig. 4-14 shows the dependence of the walker statistics on the memory, for a fixed

value of the rotation rate. For a given value of γ/γF , the simulations were initiated

with the circular orbit at n = 4. As in Fig. 4-13, each vertical column of Fig. 4-

14(a) represents a histogram of R(t). At low values of memory, a single circular

orbit solution is accessible, as is indicated by the horizontal line. As the memory is
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Figure 4-12: Numerical simulation of a chaotic trajectory in the high-memory regime,
using time step ∆t = 2−8 and tmax = 1000. Panel (a) shows a portion of the trajectory,
obtained using initial orbital radius r0/λF = 2.3775 and vibrational forcing γ/γF =
0.985. Panel (b) shows the corresponding loop radius R(t) over the same time interval,
and panel (c) the histogram of the loop radius over the entire trajectory. The bin size
is fixed at 0.02λF . The vertical lines are located at the zeros of the Bessel function
J0 (kF r).
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Figure 4-13: Numerical simulations showing the dependence of the orbital statistics
on the dimensionless rotation rate 2ΩλF/u0, for three different values of the vibra-
tional forcing γ/γF . Each simulation was performed from stationary initial conditions,
using time step ∆t = 2−8 and tmax = 1000. In the top panels, each column is colored
according to the prevalence of the corresponding loop radius R(t), with red segments
being the most prevalent radii. The bottom panels show three histograms correspond-
ing to Ω̂ = 0.17 (or 2ΩλF/u0 ≈ 0.5), indicated by the vertical lines in the top panels.
The peaks of the histograms are centered at the zeros of the Bessel function J0(kF r),
indicated by the vertical lines. The bin size is fixed at 0.02λF .

progressively increased (γ/γF ≥ 0.97), more orbital solutions become accessible. The

orbital solutions then destabilize into wobbling orbits, then chaotic trajectories, as

indicated by the broadening of the histograms. While all of the orbital solutions are

unstable at high memory (Chapter 5 [49]), the sharp red bands in Fig. 4-14(a) reflect

their persistent influence on the walker statistics.

4.8 Discussion

We have numerically simulated an integro-differential trajectory equation for the hor-

izontal motion of a walker in a rotating frame. The results may be summarized in

a regime diagram (Fig. 4-2), which delineates the dependence of the walker’s trajec-

tory on system parameters. Our numerical results rationalize the destabilization of

circular orbits into wobbling orbits, drifting orbits, and wobble-and-leap orbits, all

of which were found in the laboratory experiments of Harris and Bush [38]. Indeed,
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Figure 4-14: Numerical simulations showing the dependence of the orbital statistics
on the vibrational forcing γ/γF . The simulations were initiated with the circular
orbit at n = 4 corresponding to the fixed dimensionless rotation rate Ω̂ = 0.1784 (or
Ω = 0.70 s−1), with time step ∆t = 2−8 and tmax = 1000. In panel (a), each column
is colored according to the prevalence of the corresponding loop radius R(t), with
red segments being the most prevalent radii. Note that the brightest segments lie
near the zeros of J0(kF r). Panel (b) shows the corresponding experimental data from
Harris and Bush [38], obtained for Ω = 0.79 s−1.

many of these exotic trajectories were predicted by the numerical simulations and

subsequently observed experimentally.

For 2ω-wobbling orbits, the wobbling amplitudes and frequencies obtained in the

numerical simulations are consistent those reported in experiments [38]. Our sim-

ulations predict the existence of 3ω-wobbling orbits, which are expected to arise in

a small region of parameter space. We have demonstrated that drifting orbits arise

from the instability of 2ω-wobbling orbits. The orbital centers of drifting and wobble-

and-leap orbits traverse a variety of periodic and quasiperiodic paths, revealing a rich

nonlinear dynamics whose form depends strongly on both the bath rotation rate Ω

and vibrational forcing γ/γF .

While the walker’s trajectory becomes chaotic in the high-memory limit, γ/γF →
1, its loop radius has a multimodal statistical behavior with peaks at the zeros of the

Bessel function J0(kF r), an effect observed in the experiments of Harris and Bush

[38]. In this regime, the radii of circular orbits may be approximated by the zeros

of J0(kF r) and J1(kF r) (Chapter 3 [50]). Linear stability analysis shows that these

solutions are unstable, the former being less unstable than the latter (Chapter 5 [49]).

The walker thus jumps intermittently between the least unstable orbital solutions,
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whose influence is apparent in the coherent multimodal statistics.

The relatively small discrepancies between the laboratory experiments of Harris

and Bush [38] and the numerical results reported herein most likely arise from our

neglect of the walker’s vertical dynamics, as the trajectory equation (4.1) is obtained

by time-averaging the forces on the walker over the bouncing period. We also assume

the phase sin Φ to be constant, while it is known to depend weakly on the vibrational

forcing γ/γF and fluid viscosity [46]. Nevertheless, the satisfactory agreement between

the experiments and model predictions suggests that the essential features of the

walker’s pilot-wave dynamics are captured by the trajectory equation (4.1).

In their experimental study of walker dynamics in a harmonic potential, Perrard

et al. [52] also report complex orbits, including lemniscates and trefoils centered at

the origin. They interpret these complex orbits in terms of a double quantization

in mean radius and angular momentum of the observed trajectories. In our system,

while quantization of the angular momentum in the circular orbits was clearly evident,

no such double-quantization was apparent. Specifically, we find that the mean radius

and angular momentum of drifting orbits depends continuously rather than discretely

on the rotation rate Ω, as suggested by Fig. 4-6. We note, however, that the walker

dynamics in these two systems is qualitatively different, as the orbital center is not

imposed in the rotating system. While we observe erratic trajectories at high memory,

one can imagine that quantized drifting orbits might arise for a different choice of fluid

parameters, or in a more general pilot-wave setting.

Having benchmarked our model against the experimental results of Harris and

Bush [38], we may now turn our attention to pilot-wave systems with different exter-

nal forces and geometries. In future work, we plan to numerically characterize the

dynamics of a walker in a harmonic potential, a system currently being studied in the

laboratory of Yves Couder [52]. A similar approach will also enable us to study pilot-

wave systems that are not accessible in the laboratory. It is our hope that such an

investigation into the rich nonlinear pilot-wave dynamics of walkers will yield further

insight into their quantum-like behavior.
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Chapter 5

Orbital stability in hydrodynamic

pilot-wave theory

5.1 Introduction

In this chapter, we present a complete framework for assessing the stability of circular

orbit solutions to the integro-differential trajectory equation

mẍ+Dẋ =
F

TF

∫ t

−∞
J1 (k |x(t)− x(s)|) x(t)− x(s)

|x(t)− x(s)|e
−(t−s)/TM ds− 2mΩ× ẋ. (5.1)

This equation was proposed in Chapter 3 as a model for droplets walking on the

surface of a vertically vibrating fluid bath rotating about its centerline with angular

frequency Ω = Ωẑ. The methodology presented herein was used in Chapter 3 [50]

to rationalize the experimental observations reported by Fort et al. [32] and Harris

and Bush [38]. This study culminates in a stability diagram that delineates the

stability characteristics of circular orbits as a function of their radii and the forcing

acceleration. This chapter provides the mathematical foundation for the stability

analysis in Chapter 3, and provides some insight into the numerical results presented

This chapter is to be submitted as: Orbital stability in hydrodynamic pilot-wave theory, Oza,
A. U., Bush, J. W. M. and Rosales, R. R., SIAM Journal on Applied Mathematics [49].
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in Chapter 4.

The chapter is organized as follows. In §5.2, we give a simplified derivation of

the integro-differential equation of motion based on a few generic assumptions about

the physical system. In §5.3, we demonstrate that the bouncing solution x = con-

stant becomes unstable via a Hopf bifurcation above a critical value of the forcing

acceleration γ, and below a critical value of the rotation rate Ω. The properties of

orbital solutions to (5.1) are discussed in §5.4. In §5.5, we demonstrate using Laplace

transforms that the eigenvalues of the linear stability problem for orbital solutions

are the roots of a function F (s). We show in §5.5.1 that F has three trivial roots

that correspond to the invariance of (5.1) under translation and rotation. In §5.6, we

perform asymptotic expansions of F (s) in various limiting cases, showing that orbits

of small radius (§5.6.1), large radius (§5.6.2), and weak forcing acceleration (§5.6.3)

are stable.

Outside of these asymptotic regimes, we must find the roots of F numerically, and

we present a systematic method for doing so in §5.7. While F (s) has infinitely many

roots, we show in §5.7.1 that, for a fixed value of γ, only finitely many of them can

generate an instability, thus ensuring the tractability of our numerical method. We

present the results of the linear stability analysis in §5.8, culminating in a diagram

that delineates the dependence of the stability characteristics on the orbital radius

and forcing acceleration γ (§5.8.1). In §5.8.2, we discuss the properties of wobbling

orbits, which were predicted by the linear stability theory and subsequently observed

in laboratory experiments [38]. In §5.8.3, we discuss the extent to which the walker’s

chaotic dynamics, as observed in laboratory experiments [38] and numerical simula-

tions (Chapter 4 [51]), can be understood through the linear stability analysis. We

summarize our results and discuss future directions in §5.9.

5.2 Integro-differential trajectory equation

We here summarize the derivation of the trajectory equation for the horizontal mo-

tion of a walker in the absence of boundaries, the complete derivation having been
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presented elsewhere ([46], Chapter 2 [48]). We restrict our attention to the regime

γPDB < γ < γF , in which the walker is in a period-doubled bouncing state, and the

fluid surface would remain flat if not for the presence of the walker.

Let xp(t) = (xp(t), yp(t)) denote the horizontal position of a walker of mass m

bouncing with period TF = 2/f in the presence of an external force F ext. The force

balance in the horizontal direction yields the trajectory equation

mẍp +Dẋp = −F∇h(xp, t) + F ext, (5.2)

where all terms denote time-averages over the bouncing period. The walker moves in

response to three forces: the external force, a drag force −Dẋp, and a propulsive force

−F∇h(xp, t) proportional to the local gradient of the fluid surface. The interface

height is given by the expression (Chapter 2 [48])

h(x, t) =
1

kFTF

∫ t

−∞
J0 (kF |x− xp(s)|) e−(t−s)/TM ds, (5.3)

where kF is the Faraday wavenumber. The temporal decay time TM is related to the

forcing acceleration γ by the formula [29, 46]

TM(γ) =
Td

1− γ/γF
, (5.4)

where Td is the decay time of the waves in the absence of forcing, γ = 0. We thus

obtain the integro-differential trajectory equation (Chapter 2 [48])

mẍp +Dẋp =
F

TF

∫ t

−∞
J1 (kF |xp(t)− xp(s)|)

xp(t)− xp(s)
|xp(t)− xp(s)|

e−(t−s)/TM ds+ F ext.

(5.5)

Formulae for the constants D, F , kF and Td in terms of the fluid parameters are given

by Moláček and Bush [46] and in Chapter 2 [48]. We note that they are independent

of the forcing acceleration, which appears in (5.5) through the decay time TM .

A derivation of (5.3) was presented in Chapter 2 [48], based on the detailed analysis
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of the wave field by Moláček and Bush [46]. However, we may give a simplified

derivation based on the following generic assumptions:

1. The system is linear and invariant under rotation and translation in two dimen-

sions.

2. The system is forced periodically with frequency ω by a rotationally symmetric

source.

3. All disturbances generated by the source decay in time. However, there is a

single dominant mode with a minimal decay rate, and it has the same frequency

ω as the forcing.

We first determine the height of the interface hn(x, t) in response to a single impact at

time tn = nTF and position xn = xp(tn). Linearity and translation invariance imply

that the disturbances have the form exp (ik · (x− xn)− λ(t− tn)), where λ = F (k)

for k = |k| due to rotational invariance. We only retain the contribution from the

dominant mode with the minimal decay rate ν∗, where F (k∗) = ν∗+iω. The dominant

mode thus has the form

exp (ik∗ |x− xn| cos θ) exp (− (ν∗ + iω) (t− tn)) , (5.6)

θ being the angle between k and (x− xn). Since the system is invariant under

rotation, we may integrate over θ and obtain the mode profile

J0 (k∗ |x− xn|) exp (− (ν∗ + iω) (t− tn)) . (5.7)

The source is assumed to be in resonance with this mode and thus is not affected

by the temporal oscillation, so the effective interface height from a single impact is

hn(x, t) ∝ J0 (k∗ |x− xn|) e−ν
∗(t−tn). Assuming that the disturbances are small, the

full interface height h(x, t) is simply the linear superposition of the contributions from

prior impacts hn(x, t). Since the walker’s horizontal dynamics occurs over a timescale

long relative to the bouncing period, TF � (k∗|ẋp|)−1, we may replace the sum over
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discrete impacts by the integral (5.3) (Chapter 2 [48]).

In the context of the experiment under consideration, the fluid bath is forced pe-

riodically with acceleration γ cos (2πft), so Assumption #3 is satisfied through the

mechanism of parametric resonance [3, 41]. Below the Faraday instability threshold,

γ < γF , the dominant mode has wavelength k∗ = kF , where the Faraday wavenum-

ber kF may be approximated by the solution to the standard water-wave dispersion

relation [41]. The temporal evolution of the mode is governed by a Mathieu equation

with a viscous correction term [41, 29, 46]. It can be shown using Floquet theory

that the mode has frequency ω = f/2 and decay rate ν∗ = 1/TM , where TM is given

by (5.4) [41, 46].

Motivated by the laboratory experiments in [32, 38], we here consider the dynam-

ics of a droplet walking on a fluid bath rotating about its centerline with angular

frequency Ω = Ωẑ. As shown in Chapter 3 [50], the appropriate trajectory equation

is obtained by augmenting (5.5) with a Coriolis force term:

mẍp +Dẋp =
F

TF

∫ t

−∞
J1 (kF |xp(t)− xp(s)|)

xp(t)− xp(s)
|xp(t)− xp(s)|

e−(t−s)/TM ds

−2mΩ× ẋp. (5.8)

We proceed by studying the stability properties of bouncing and orbiting solutions

to this trajectory equation.

5.3 Bouncing to orbiting

We non-dimensionalize the trajectory equation (5.8) via x → kFx and t → t/TM ,

and thus obtain the dimensionless equation

κẍp + ẋp = β

∫ t

−∞
J1 (|xp(t)− xp(s)|)

xp(t)− xp(s)
|xp(t)− xp(s)|

e−(t−s) ds−Ω× ẋp, (5.9)

where κ = m/DTM , β = FkFT
2
M/DTF and Ω = 2mΩ/D. We note that both κ and

β depend on the forcing acceleration γ through (5.4), while κ2β is a constant that

depends only on the fluid properties (viscosity, drop size, etc.).
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We first demonstrate that the bouncing solution xp ≡ constant is stable provided

the rotation rate exceeds a critical value, |Ω| > Ω0. We proceed by linearizing (5.9)

around this solution, xp = constant + εx1(t), and deduce

κẍ1 + ẋ1 =
β

2

∫ t

−∞
[x1(t)− x1(s)]e−(t−s) ds−Ω× ẋ1, (5.10)

where we have used the fact that J ′1(0) = 1/2. This equation can be expressed as a

system of ordinary differential equations by introducing the variable

X1(t) =

∫ t

−∞
x1(s)e−(t−s) ds. (5.11)

Solutions to (5.10) are thus a subset of solutions to the system of equations

κẍ+ ẋ =
β

2
(x−X)−Ω× ẋ, Ẋ = x−X. (5.12)

Letting ẋ = u and ẏ = v, we obtain the system

d

dt




x

u

X

y

v

Y




=




0 1 0 0 0 0

β
2κ
− 1
κ
− β

2κ
0 Ω

κ
0

1 0 −1 0 0 0

0 0 0 0 1 0

0 −Ω
κ

0 β
2κ
− 1
κ
− β

2κ

0 0 0 1 0 −1







x

u

X

y

v

Y




, (5.13)

which has the characteristic polynomial

p(s) = s2

{[
β

2κ
− (1 + s)

(
1

κ
+ s

)]2

+
Ω2

κ2
(1 + s)2

}
. (5.14)

The s = 0 solutions simply indicate that the bouncing state is invariant under trans-

lation and rotation, so we neglect them. The four remaining roots can be written as

118



s±2
±1

= a±1 + ib±2 , with real part

<
[
s±2
±1

]
= a±1 =

1

2
(−f ± g) , where f = 1 +

1

κ
, g2 = h1 + h2,

h1 =
1

2

[(
1 +

1

κ

)2

− 4

(
Ω2

4κ2
+

1

κ
− β

2κ

)]
, and

h2
2 =

1

4


4Ω2

κ2

(
1− 1

κ

)2

+

[
−Ω2

κ2
+

2β

κ
+

(
1− 1

κ

)2
]2

 . (5.15)

Note that a−1 < 0 since f, g > 0, so the stability of the bouncing state is controlled

by the sign of a+1, which may be written as

sgn (a+1) = −sgn
(
f 2 − h1 − h2

)
=




−sgn

[
(f 2 − h1)

2 − h2
2

]
, f 2 − h1 > 0

+1, f 2 − h1 < 0.

(5.16)

For a fixed value of κ, let P1 = {(β,Ω) : (f 2 − h1)
2 − h2

2 < 0 , f 2 − h1 > 0} and

P2 = {(β,Ω) : f 2−h1 < 0}, so that the bouncing state is unstable for (β,Ω) ∈ P1∪P2.

Note that

(
f 2 − h1

)2 − h2
2 =

4

κ3

[
Ω2 −

(
β

2
− 1

)
(1 + κ)2

]
,

f 2 − h1 =
1

2κ2

[
(1 + κ)2 + Ω2 − 4κ

(
β

2
− 1

)]
. (5.17)

The boundaries of P1 and P2 are thus defined by the curves Ω2 = p1(β) and Ω2 =

p2(β), where p1(β) = (β/2− 1) (1 + κ)2 and p2(β) = 4κ (β/2− 1) − (1 + κ)2. The

curves do not intersect since p1(β)−p2(β) = 1
2

[
β (−1 + κ)2 + 8κ

]
> 0, so the stability

boundary is determined by the curve Ω2 = p1(β). We thus deduce that the bouncing

state is unstable for β > 2 and |Ω| < Ω0 ≡ (1 + κ)
√
β/2− 1, and stable otherwise.

For β > 2 and Ω = Ω0, the nontrivial roots of p(s) are

s = ±i

√
β

2
− 1, s =

1

κ

(
−(1 + κ)± i

√
β

2
− 1

)
. (5.18)
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The presence of imaginary eigenvalues at |Ω| = Ω0 suggests that the bouncing solution

destabilizes into a periodic solution via a Hopf bifurcation. We will prove in §5.6.1

that this solution is stable.

This analysis bears some resemblance to the theoretical treatment of walker dy-

namics in the absence of an external force (F ext = 0), which was presented in Chapter

2 [48]. The bouncing state xp = constant was shown to be stable for β < 2 and un-

stable otherwise, indicating that β = 2 corresponds to the walking threshold γ = γW .

The bouncing state was also shown to destabilize into a steady rectilinear walking

solution for β & 2 via a supercritical pitchfork bifurcation. For β > 2, the trajec-

tory equation admits the steady rectilinear walking solution xp(t) = u0t(cos θ, sin θ),

where

u0 =
1√
2

(
−1 + 2β −

√
1 + 4β

)1/2

(5.19)

is the walking speed and θ the walking direction. The predicted dependence of the

walking speed u0 on the forcing acceleration γ agrees well with experimental ob-

servations (Chapter 2 [48]). It was also shown that the walking state is stable to

perturbations in the direction of motion and neutrally stable to lateral perturbations,

indicating that the walker may change its direction if so perturbed.

5.4 Orbital solutions

The analysis in §5.3 suggests that the bouncing state destabilizes into a limit cycle via

a Hopf bifurcation at |Ω| = Ω0 so we seek periodic solutions to (5.20). Substituting

xp(t) = r0(cosωt, sinωt) into (5.20), we obtain a system of algebraic equations that

determines the orbital radius r0 and frequency ω in terms of the parameters Ω, κ and

β:

−κr0ω
2 = β

∫ ∞

0

J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz + Ωr0ω

r0ω = β

∫ ∞

0

J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z dz. (5.20)
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Figures 3-1 and 3-2 show the predicted dependence of the orbital radius r0 on the

rotation rate Ω for different values of the forcing acceleration γ, compared with ex-

perimental data [38]. Stable orbital solutions are indicated in blue, while unstable

ones are indicated in red and green. We note that these equations are symmetric

under the change (ω,Ω)→ (−ω,−Ω), the plots in Figures 3-1 and 3-2 corresponding

to the regime Ω ≥ 0 and ω < 0.

For the remainder of this chapter, we take ω > 0 without loss of generality, unless

otherwise stated. We now present a numerical justification for the following two

statements, which will be used throughout the chapter.

Proposition 1 The second equation in (5.20) defines ω as a single-valued and in-

finitely differentiable function of both r0 and β for r0 ≥ 0 and β > 2. The function ω

decreases monotonically with r0 and increases with β.

Proposition 2 The equations in (5.20) define Ω as a single-valued and infinitely

differentiable function of both r0 and β for r0 ≥ 0 and β > 2, with Ω ≥ −ω(1 + κ).

Beginning with Proposition 1, we write (5.20) in the form

Ω + ω(1 + κ)

β
=

ω

β
− U(r0, ω),

ω

β
= V (r0, ω), (5.21)

where

U(r0, ω) =
1

r0ω

∫ ∞

0

J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z dz

V (r0, ω) =
1

r0

∫ ∞

0

J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z dz. (5.22)

Figure 5-1(a) shows numerical plots of the cross sections vr0(ω) ≡ V (r0, ω) for various

values of r0, starting with V (0, ω) = ω/2(1 + ω2). The plots suggest that each cross

section vr0(ω) has a unique maximum ωm(r0), and that vr0(ω) is concave for ω < ωm.

The orbital frequency ω(r0, β) is defined by the intersection of the curves vr0(ω) with

ω/β, indicated by the dashed lines. Note that the absence of an intersection for

β < 2, due to the fact that V (r0, ω) ∼ ω/2 as ω → 0, indicates that orbital solutions
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Figure 5-1: Diagrams used in the numerical justification of Proposition 1. (a) The
black curves show the cross sections vr0(ω) ≡ V (r0, ω), as defined by (5.22), for
r0 = 0.5, 1, 2, 3, 5 and 10. The black curve with the largest amplitude corresponds
to r0 = 0.5, and the amplitude monotonically decreases with r0. The blue curve
corresponds to v0(ω) = ω/2(1 +ω2). The dashed red lines correspond to ω/β for β =
2, 3 and 10. This picture suggests that ω = ω(r0), as defined by the intersection of
the black and red curves, is a single-valued monotonically decreasing function of r0.
(b) Plot confirming convergence of the functions vr0(ω) to the function V∞(r0ω)/r0,
as defined in (5.24), in the limit r0 � 1. The difference between the two clearly
decreases like r−3

0 , as expected from the calculation in (5.24).

only exist above the walking threshold, β ≥ 2. The figure suggests that each of the

cross sections vr0(ω) has a unique intersection ω∗(r0, β) with the line ω/β, and that

∂ωV (r0, ω
∗(r0, β)) < 1/β.

We now consider the differentiability of ω with respect to r0 and β. Differentiating

(5.21) with respect to both, we obtain

dω

dr0

=
β∂r0V

1− β∂ωV
and

dω

dβ
=

βV

1− β∂ωV
, (5.23)

which implies that both derivatives exist for all r0 and β ≥ 2. Since V is infinitely

differentiable in both r0 and ω, we conclude that ω is an infinitely differentiable

function of r0 and β. Figure 5-1 suggests that ∂r0V ≤ 0 and V ≥ 0, implying that

dω/dr0 ≤ 0 and dω/dβ ≥ 0, as desired.

Such a numerical argument can be made for finite values of r0 and ω, so we proceed

by examining the behavior of V (r0, ω) in the limits r0 → ∞ and ω → ∞. Starting
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with the former, we note that |V | ≤ c/r0, c ≈ 0.6 being the maximum value of

J1(x), which implies that solutions to (5.21) satisfy ω < βc/r0. Using the argument

presented in Appendix C, we deduce that

V (r0, ω < βc/r0) =
1

r0

∫ ∞

0

J1 (r0ωz) e−z dz +O(r−2
0 )

=
V∞(r0ω)

r0

+O(r−3
0 ), V∞(x) =

1

x

(
1− 1√

1 + x2

)
. (5.24)

Since V∞ has a unique maximum x∗ and is concave in the region 0 ≤ x ≤ x∗, we

surmise that ω is a single-valued function of r0 for arbitrarily large values of r0.

Figure 5-1 confirms that the numerically computed curves vr0(ω) indeed approach

the asymptotic solution V∞(r0ω)/r0 as r0 → ∞. For the limit ω → ∞, we use the

argument in Appendix D to obtain the asymptotic expression

V (r0, ω) =
1

r2
0ω

[
1−

∫ ∞

0

J0

(
2r0 sin

ωz

2

)
e−z dz

]

=
1

r2
0ω

[
1− 1

2π

∫ 2π

0

J0

(
2r0 sin

z

2

)
dz +O(ω−2)

]

=
1

ω

[
V ∞(r0) +O(ω−2)

]
, where V ∞(r0) =

1− J0(r0)2

r2
0

. (5.25)

The integral above follows from an identity in Watson [63, p. 151]. This confirms

that V (r0, ω) ∼ 1/ω as ω →∞, so we need only plot the curves vr0(ω) for finite ω.

Proposition 2 may be justified through a similar argument. The differentiability

of Ω(r0, β) follows from that of ω(r0, β), and the fact that U(r0, ω) is infinitely differ-

entiable in both r0 and ω. For finite values of r0 and ω, numerical plots of the cross

sections ur0(ω) ≡ U(r0, ω) show that vr0(ω) ≥ ur0(ω), with equality at r0 = 0 and

ω = 0, which suggests that Ω ≥ −ω(1 + κ). To ensure that this remains valid for

large values of r0, we observe that

U(r0, ω < βc/r0) =
1

r0ω2

∫ ∞

0

J1(r0z)
z

2
e−z/ω dz +O(r−4

0 )

=
1

r0

U∞(r0ω) +O(r−4
0 ), U∞(x) =

x

2 (1 + x2)3/2
, (5.26)
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which follows from Appendix C. For large values of ω, we may use Appendix D to

show that

U(r0, ω) =
1

r0ω2 (1− e−2π/ω)

∫ 2π

0

J1

(
2r0 sin

z

2

)
sin

z

2
e−z/w dz

=
1

ω

[
U∞(r0) +O(ω−2)

]
, where U∞(r0) =

J0(r0)J1(r0)

r0

. (5.27)

The integral above follows from an identity in Watson [63, p. 151]. Note that V∞ ≥ U∞

and V ∞ ≥ U∞, with equality at ω = 0 and r0 = 0, respectively. We confirm that the

numerical plots of ur0(ω) indeed converge to the asymptotic solutions above for large

r0 and ω, which justifies Proposition 2.

We thus parametrize the orbital solutions by the radius r0 instead of the rotation

rate Ω, since ω and Ω are single-valued functions of r0. That is, the radius r0 uniquely

determines the drop’s angular frequency ω and the bath rotation rate Ω, but multiple

radii r0 could exist for a given value of Ω, as is evident from Figures 3-2(a) and (c).

5.5 Linear stability problem for orbital solutions

We now analyze the stability of the orbital solutions found in §5.4, making precise the

approach used in §3.4. To this end, we first write the integro-differential trajectory

equation (5.9) as the following initial value problem:

κẍp + ẋp = −β ∇ϕ(x, t)|x=xp
−Ω× ẋp (5.28a)

ϕt + ϕ = J0 (|x− xp(t)|) (5.28b)

where

ϕ(x, 0) =

∫ 0

−∞
J0 (|x− xp(s)|) es ds, (5.29)

and xp(t) is prescribed for t < 0.

The orbital solution xp(t) = xc(t) ≡ r0(cosωt, sinωt), as defined by (5.20), takes a
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particularly simple form in polar coordinates. Writing x = r(cos θ, sin θ) and xp(t) =

rp(t)(cos θp(t), sin θp(t)), (5.28) assumes the form

κ
(
r̈p − rpθ̇2

p

)
+ ṙp − Ωrpθ̇p = −β ∂ϕ

∂r

∣∣∣∣
x=xp

(5.30a)

κ
(

2ṙpθ̇p + rpθ̈p

)
+ rpθ̇p + Ωṙp = − β

rp

∂ϕ

∂θ

∣∣∣∣
x=xp

(5.30b)

ϕt + ϕ = J0 (|x− xp(t)|) , (5.30c)

where |x− xp(t)| =
[
r2 + r2

p − 2rrp cos(θ − θp)
]1/2

. The solution to (5.30) corre-

sponding to a circular orbit may be written as

rp(t) = r0, θp(t) = ωt, and ϕ(x, t) = ϕc(x, t) ≡
∫ t

−∞
J0 (|x− xc(s)|) e−(t−s) ds.

To assess the linear stability of this solution, we substitute rp(t) = r0 + εr1(t),

θp(t) = ωt + εθ1(t) and ϕ(x, t) = ϕc(x, t) + εϕ1(x, t) into (5.30), where 0 < ε � 1.

We thus obtain the linearized equations

κ
(
r̈1 − ω2r1 − 2r0ωθ̇1

)
+ ṙ1 − ωΩr1 − Ωr0θ̇1 = −β ∂ϕ1

∂r

∣∣∣∣
r=r0
θ=ωt

(5.31a)

−β
[
∂2ϕc

∂r2 r1 +
∂2ϕc
∂r∂θ

θ1

]∣∣∣∣
r=r0
θ=ωt

κ
(

2ωṙ1 + r0θ̈1

)
+ ωr1 + r0θ̇1 + Ωṙ1 = − β

r0

∂ϕ1

∂θ

∣∣∣∣
r=r0
θ=ωt

(5.31b)

− β
r0

[(
∂2ϕc
∂r∂θ

− 1

r0

∂ϕc
∂θ

)
r1 +

∂2ϕc

∂θ2 θ1

]∣∣∣∣
r=r0
θ=ωt

ϕ̇1 + ϕ1 =
J ′0 (|x− xc(t)|)
|x− xc(t)|

[−rr1 cos(θ − ωt) + r0 (r1 − rθ1 sin(θ − ωt))] .(5.31c)

We proceed by computing the derivatives of ϕc and evaluating them at r = r0 and

θ = ωt. We find that they are all time-independent, so (5.31a) and (5.31b) may be
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written as

κ
(
r̈1 − ω2r1 − 2r0ωθ̇1

)
+ ṙ1 − ωΩr1 − Ωr0θ̇1 = −β ∂ϕ1

∂r

∣∣∣∣
r=r0
θ=ωt

(5.32a)

+β

(
I
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
r1 +

1

2
I [(f(t) + g(t)) sinωt]

)
r0θ1

κ
(

2ωṙ1 + r0θ̈1

)
+ ωr1 + r0θ̇1 + Ωṙ1 = − β

r0

∂ϕ1

∂θ

∣∣∣∣
r=r0
θ=ωt

(5.32b)

+β

(
1

2
I [(g(t)− f(t)) sinωt] r1 + I

[
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

]
r0θ1

)
,

where

f(t) =
J1

(
2r0 sin ωt

2

)

2r0 sin ωt
2

e−t, g(t) = J ′1

(
2r0 sin

ωt

2

)
e−t, I[f ] =

∫ ∞

0

f(t) dt.

We may simplify the integrals above by using the identities listed in Appendix A.

The initial condition (5.29) implies that ϕ1(x, 0) = 0, so (5.31c) may be integrated

to obtain

ϕ1(x, t) =

∫ t

0

J ′0 (|x− xc(s)|)
|x− xc(s)|

[−rr1(s) cos(θ − ωs) + r0 (r1(s)− rθ1(s) sin(θ − ωs))] e−(t−s) ds.

Differentiating ϕ1 with respect to r and θ and evaluating the derivatives at r = r0

and θ = ωt, we obtain

∂ϕ1

∂r

∣∣∣∣
r=r0
θ=ωt

=

[
f(t) cos2 ωt

2
− g(t) sin2 ωt

2

]
∗ r1(t) +

r0

2
(f(t) + g(t)) sinωt ∗ θ1(t),

1

r0

∂ϕ1

∂θ

∣∣∣∣
r=r0
θ=ωt

= −1

2
[f(t) + g(t)] sinωt ∗ r1(t) + r0

[
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

]
∗ θ1(t),

where f ∗ g(t) =
∫ t

0
f(s)g(t− s) ds denotes the convolution of the functions f and g.

Using these identities, we deduce that the linear stability problem (5.32) is equivalent

to that obtained in §3.4.

Written in this form, the linear equations (5.31) are amenable to analysis by

Laplace transform. Defining R(s) = L[r1(t)] and Θ(s) = L[θ1(t)]) and taking the
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Laplace transform of both sides of (5.32a) and (5.32b), we obtain


 A(s) −B(s)

C(s) D(s)




 R(s)

r0Θ(s)


 =


 a(s)

b(s)


 , (5.33)

where

A(s) = κs2 + s− κω2 − Ωω − βI
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]

−βL
[
g(t) sin2 ωt

2
− f(t) cos2 ωt

2

]

B(s) = (2ωκ+ Ω) s− (κω + Ω)− β

2
L [(f(t) + g(t)) sinωt]

C(s) = (2ωκ+ Ω) s+ 2ω + κω + Ω− β

2
L [(f(t) + g(t)) sinωt]

D(s) = κs2 + s− 1− βL
[
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

]
(5.34)

and

a(s) = (κs+ 1) r1(0) + κṙ1(0)− (2κω + Ω)r0θ1(0)

b(s) = (2ωκ+ Ω) r1(0) + (κs+ 1)r0θ1(0) + κr0θ̇1(0). (5.35)

The solution to (5.33) is

R(s) =
a(s)D(s) + b(s)B(s)

A(s)D(s) +B(s)C(s)
(5.36)

Θ(s) =
−a(s)C(s) + b(s)A(s)

r0 (A(s)D(s) +B(s)C(s))
.

The poles of R(s) and Θ(s) correspond to the eigenvalues of the linear problem

(5.31a)–(5.31c). If the poles lie in the left- or right-half complex plane, the orbital

solution xc(t) = r0(cosωt, sinωt) is respectively stable or unstable to perturbations.

Note that the region of convergence for the Laplace transforms in (5.34) is <(s) > −1,

so the functions defined by (5.34) are analytic in this region. Therefore, the orbital

solution xc(t) is unstable if and only if the function F (s; r0) = A(s)D(s) +B(s)C(s)
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has a root in the region <(s) > 0.

5.5.1 Rotational and translational invariance

We proceed by showing that F (s; r0) has roots at s = ±iω and s = 0, which arise

due to the invariance of (5.9) under translation and rotation. We first evaluate the

functions defined by (5.34) at s = iω, the calculation for s = −iω being identical.

Splitting the functions into their real and imaginary parts by writing them in the

form G(iω) = Gr + iGi, we obtain

Ar = −2κω2 − Ωω − β

2

(
I[f(t) sin2 ωt] + I[g(t) sin2 ωt]

)

Ai = ω − β
(
I
[
f(t) sinωt cos2 ωt

2

]
− I

[
g(t) sinωt sin2 ωt

2

])

Br = β

(
I
[
f(t) sinωt sin2 ωt

2

]
+ I

[
g(t) sinωt sin2 ωt

2

])

Cr = ω − β
(
−I
[
f(t) sinωt sin2 ωt

2

]
+ I

[
g(t) sinωt cos2 ωt

2

])

Ci = (2ωκ+ Ω)ω +
β

2

(
I[f(t) sin2 ωt] + I[g(t) sin2 ωt]

)

Dr = −κω2 − β
(
−2I

[
f(t) sin4 ωt

2

]
+

1

2
I[g(t) sin2 ωt]

)
, (5.37)

where Bi = −Ar and Di = Cr. Using Appendix A, we find that Ai = Br and

Ci = −Dr, so A(iω) = iB(iω) and C(iω) = −iD(iω). It follows that F (iω; r0) =

A(iω)D(iω) + B(iω)C(iω) = 0, as desired. The identities in Appendix A also imply

that B(0) = D(0) = 0, so F (s; r0) has a root at s = 0 for all values of r0.

We now show that these roots are linked to the rotational and translational in-

variance of (5.9). Indeed, note that an orbital solution with radius r0 and angular

frequency ω can be written as xp(t) = (x0 + cos (ωt+ T0) , y0 + sin (ωt+ T0)), where

(x0, y0) is an arbitrary translation and T0 an arbitrary phase shift. By linearizing

x = r(t)(cos θ(t), sin θ(t)) around the orbital solution r(t) = r0, θ(t) = ωt, we ob-

serve that perturbations (δx, δy) in Cartesian coordinates are related to perturbations
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(δr, δθ) in polar coordinates by the formulae

δx = δr cosωt− r0δθ sinωt, δy = δr sinωt+ r0δθ cosωt. (5.38)

Hence

∂xp
∂x0

= (1, 0)⇒ (δr, δθ) =

(
cosωt,− 1

r0

sinωt

)

∂xp
∂y0

= (0, 1)⇒ (δr, δθ) =

(
sinωt,

1

r0

cosωt

)

∂xp
∂T0

= (−r0 sinωt, r0 cosωt)⇒ (δr, δθ) = (0, 1) , (5.39)

where all derivatives are evaluated at x0 = y0 = T0 = 0. It follows that the zeros

at s = ±iω and s = 0 reflect the invariance of (5.9) under translation and rotation,

respectively. The nontrivial eigenvalues of the linear stability problem (5.31) thus

correspond to the roots of the function

F ∗(s; r0) ≡ F (s; r0)

s(s2 + ω2)
, (5.40)

which is analytic in the region <(s) > −1.

5.6 Stability properties of orbital solutions in var-

ious limiting cases

We proceed by assessing the stability of the orbital solutions in the various limiting

cases of small radius, r0 → 0; large radius, r0 →∞; and low memory, γ → γW
+.

5.6.1 Orbital stability in the small radius limit

In this section, we prove the following theorem:

Theorem 2 For a fixed value of γ, there exists a value r∗0 such that F ∗(s; r0) has no

roots in the region <(s) > 0 for 0 < r0 < r∗0.
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This result suggests that the bouncing solution indeed destabilizes into a stable

orbital solution at a critical rotation rate Ω = Ω0 ≡
√

β
2
− 1 (1 + κ), as suggested in

§5.3.

Consider the regions 0 < r0 < 1 and <(s) > −σ > −1 for some fixed value of

σ (i.e. σ = 1/2). Note that β and κ are fixed through γ. The Laplace transforms

in (5.34) decay as |s| → ∞ for <(s) > −σ, which implies that F (s; r0) ∼ κ2s4 as

|s| → ∞. It follows that the roots of F ∗ in the right half-plane must satisfy |s| < S,

where S is independent of r0.

We proceed by expanding (5.20) in the regime r0 � 1 by writing ω = ω0 + r2
0ω2

and Ω = Ω0 + r2
0Ω2, where ω0 = −

√
β/2− 1 and Ω0 = −ω0(1 + κ). At O(r2

0), we

obtain

−rΩ2ω0 − r (Ω0 + 2κω0)ω2 = − 3βr3ω4
0

4 (1 + ω2
0)

+
βrω0ω2

(1 + ω2
0)

2

rω2 = −βr (ω4
0 − 1)ω2

2 (1 + ω2
0)

3 − 3βr3ω3
0

8 (1 + ω2
0) (1 + 4ω2

0)
, (5.41)

which implies that

ω2 =
3ω3

0

4
(

4
β
− 2
)

(1 + 4ω2
0)
, Ω2 =

3ω0 (−4 + β(κ+ 3))

16(2β − 3)
. (5.42)

We substitute these expansions into the definition of F (s; r0). After considerable

algebra, we obtain

F ∗(s; r0) = G0(s) + r2
0G1(s) +O(r4

0), (5.43)

where

G0(s) =
s
[
(κ(s+ 1) + 1)2 + ω2

0(κ− 1)2
]

(s+ 1)2 + ω2
0

,

G1(s) =
ω2

0p(s)

8(1 + 4ω2
0)(s+ 1) [(s+ 1)2 + 4ω2

0] [(s+ 1)2 + ω2
0]

2 , (5.44)
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and p(s) =
∑6

k=1 pks
k is a sixth-degree polynomial with coefficients

p0 = 3β(−3 + 2β) (−4 + β(3 + κ))

p1 = 2
(
72 + β2(52 + 3κ) + 2β3(−1 + 6κ)− 3β(41 + 12κ)

)

p2 = 2
(
−48 + β(13− 162κ) + β3(−3 + 5κ) + β2(14 + 93κ)

)

p3 = β(177− 72κ)− 12(13 + 24κ) + 4β2(−15 + 41κ)

p4 = 36− 384κ+ β2(−21 + 37κ) + β(−9 + 196κ)

p5 = 60− 168κ+ β(−47 + 112κ)

p6 = 12− 24κ+ β(−9 + 16κ). (5.45)

Note that the error term in (5.43) is independent of s, since all instabilities are

confined to the region |s| < S in the right half-plane.

In the r0 → 0 limit, the only root of F ∗ in the region <(s) ≥ 0 is at s = 0, so

we need to assess its behavior for small r0. To this end, let s = s(r0) with s(0) = 0.

Differentiating the equation F ∗(s(r0); r0) = 0 twice with respect to r0, we obtain

s′F ∗s + F ∗r0 = 0

s′′F ∗s + 2s′F ∗sr0 + (s′)
2
F ∗ss + F ∗r0r0 = 0. (5.46)

Clearly F ∗r0 = 0 at r0 = 0, which implies that s′(0) = 0. We thus obtain

s′′(0) = −F
∗
r0r0

(0; 0)

F ∗s (0; 0)
= −2G1(0)

G′0(0)
, (5.47)

where

G1(0) =
ω2

0p0

8 (1 + 4ω2
0)

2
(1 + ω2

0)
2 and G′0(0) =

(1 + κ)2 + (κ− 1)2 ω2
0

1 + ω2
0

. (5.48)

Since p0 > 0 for β > 2 and κ > 0, we find that s′′(0) < 0, so the root is in the left

half-plane for sufficiently small values of r0. This proves that orbits of sufficiently

small radius are stable, as desired.
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5.6.2 Orbital stability in the large radius limit

In this section, we prove the following theorem:

Theorem 3 For a fixed value of γ, there exists a value R0 such that F ∗(s; r0) has no

roots in the region <(s) > 0 for r0 > R0.

This result provides rationale for the experimental observation that orbits of suf-

ficiently large radius are stable, as is evident from Figures 3-1 and 3-2 [32, 38]. We

consider the region r0 > 1 and <(s) > −σ > −1 for some fixed value of σ. We showed

in §5.4 that ω ≤ βc/r0, where c ≈ 0.6 is the maximum value of the Bessel function

J1(x). Using the argument in Appendix C, we may write (5.20) as

−κu2 =
βu

2

∫ ∞

0

J1(uz)ze−z dz + Ωr0u+O(r−2
0 )

u = β

∫ ∞

0

J1(uz)e−z dz +O(r−2
0 ), (5.49)

where r0ω = u. The second equation may be solved to obtain

u = u0 +O(r−2
0 ), where u0 =

1√
2

(
−1 + 2β −

√
1 + 4β

)−1/2

. (5.50)

Note that u0 corresponds to the formula (5.19) for the walking speed in a non-rotating

system, suggesting that the Coriolis force is relatively weak in the regime r0 � 1.

Indeed, since u0 is independent of r0, the first equation in (5.49) implies that Ω =

O(r−1
0 ).

We now expand the function F ∗(s; r0) in the limit r0 � 1. Using the argument in

Appendix C, the Laplace transforms in (5.34) may be written as

L
[
g(t) sin2 ωt

2
− f(t) cos2 ωt

2

]
= L

[
J1(u0t)

u0t
e−t
]

+O(r−2
0 )

L [(f(t) + g(t)) sinωt] = O(r−1
0 )

L
[
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

]
= L

[
−J ′1(u0t)e

−t]+O(r−2
0 ), (5.51)
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where the error terms are independent of s. The integral term in A(s) may be written

as

I
[
f(t) cos2 ωt

2
+ g(t) sin2 ωt

2

]
= I

[
J1(u0t)

u0t
e−t
]

+O(r−2
0 )

=
−1 +

√
1 + u2

0

u2
0

+O(r−2
0 )

=

√
1 + u2

0

β
+O(r−2

0 ), (5.52)

using the definition of u0 in (5.50). We thus deduce that

A(s) = κs2 + s−
√

1 + u2
0 + βL

[
J1 (u0t)

u0t
e−t
]

+ EA,

B(s) = sEB, C(s) = sEC ,

D(s) = κs2 + s− 1 + βL
[
J ′1(u0t)e

−t]+ ED, (5.53)

where the error terms are O
(
r−2

0

)
and independent of s. We may thus express the

function F (s; r0) as

F (s; r0) = P (s)Q(s) +
R(s; r0)

r2
0

, (5.54)

where

P (s) = κs2 + s− 1 + βL
[
J ′1(u0t)e

−t] , Q(s) = κs2 + s−
√

1 + u2
0 + βL

[
J1(u0t)

u0t
e−t
]
,

R(s; r0) is bounded in r0 for r0 > 1 and R = O(|s|2) as |s| → ∞ for <(s) > −σ. The

functions P , Q, and F are analytic functions of s in the region <(s) > −σ, so the

same must be true for R. Since

1

s2 + ω2
=

1

s2

(
1− ω2

s2 + ω2

)
, (5.55)
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we obtain

F ∗(s; r0) =
P (s)Q(s)

s3
+
R̃(s; r0)

r2
0

, (5.56)

where R̃ is also a bounded function of r0 for r0 > 1. As shown Chapter 2 [48],

the functions P (s) and Q(s) appear when considering the stability of the solution

xp(t) = (u0t, 0) in a non-rotating container. It was shown that P (s)Q(s) has a triple

root at s = 0, and that all other roots are in the left half-plane. It follows that R̃(s; r0)

is analytic for <(s) > −σ and that R̃ = O(|s|−1) as |s| → ∞ in this region. Since

P (s)Q(s) = O(|s|4) as |s| → ∞, it follows that we can choose r0 to be sufficiently

large that F ∗ has no roots in the right half-plane, which proves the desired result.

We thus deduce that the stability problem for orbits of large radius r0 � 1 in a

rotating container is approximately equivalent to the stability problem for rectilinear

walking in a non-rotating container. This is also apparent on physical grounds, as

such orbits have small curvature and can be approximated locally by a straight line.

Since the steady rectilinear walking solution is stable to perturbations, so are circular

orbits of sufficiently large radius.

5.6.3 Orbital stability in the low-memory limit

In this section, we prove the following theorem:

Theorem 4 For every r0, there exists a value β∗ such that F ∗(s; r0) has no roots in

the region <(s) > 0 for 2 < β < β∗.

This result provides rationale for the experimental observation that the observed

orbital quantization only occurs at high memory, significantly above the walking

threshold (β = 2), as is evident from Figures 3-1 and 3-2. We fix r0 and let β = 2+α2,

where 0 < α < 1. Note that ω = O(α), since ω =
√
β/2− 1 at r0 = 0 and decreases

with r0, as shown in §5.4. We thus expand the integrals in (5.20) in the small ω limit.
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We begin with

J1

(
2r0 sin

z

2

)
sin

z

2
=

r0z
2

4
+O(z4)

J1

(
2r0 sin

z

2

)
cos

z

2
=

r0z

2
− r0 (4 + 3r2

0)

48
z3 +O(z5). (5.57)

Using the argument in Appendix C, we thus obtain the approximations

1

ω

∫ ∞

0

J1

(
2r0 sin

z

2

)
sin

z

2
e−z/ω dz =

r0ω
2

2
+O(ω4)

1

ω

∫ ∞

0

J1

(
2r0 sin

z

2

)
cos

z

2
e−z/ω dz =

r0ω

2
− r0ω

3 (4 + 3r2
0)

4
+O(ω5). (5.58)

This yields the following expansion of (5.20) to O(α2):

−κr0ω
2 − Ωr0ω = r0ω

2 +O(α4)

r0ω = r0ω −
r0ω

4

[
−2α2 +

(
4 + 3r2

0

)
ω2
]

+O(α4), (5.59)

from which we obtain

ω = α

√
2

4 + 3r2
0

+O(α2), Ω = −ω(1 + κ) +O(α2). (5.60)

As in the previous sections, we use (5.60) to expand F (s; r0) in the limit α� 1. The

integrands of the functions in (5.34) may be written as

f(t) cos2 t

2
+ g(t) sin2 t

2
=

1

2
− r2

0t
2

16
+O(t4)

g(t) sin2 t

2
− f(t) cos2 t

2
= −1

2
+
r2

0 + 4

16
t2 +O(t4)

(f(t) + g(t)) sin t = t−
(
r2

0

4
+

1

6

)
t3 +O(t5)

f(t) sin2 t

2
− g(t) cos2 t

2
= −1

2
+

1

4

(
1 +

3r2
0

4

)
t2 +O(t4). (5.61)
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It follows that

I
[
f(t) cos2 t

2
+ g(t) sin2 t

2

]
=

1

2
− r2

0ω
2

8
+O(ω4)

L
[
g(t) sin2 t

2
− f(t) cos2 t

2

]
= − 1

2(s+ 1)
+

(r2
0 + 4)ω2

8(s+ 1)3
+O(ω4)

L [(f(t) + g(t)) sin t] =
ω

(s+ 1)2
−
(

3r2
0

2
+ 1

)
ω3

(s+ 1)4
+O(ω5)

L
[
f(t) sin2 t

2
− g(t) cos2 t

2

]
= − 1

2(s+ 1)
+

1

2

(
1 +

3r2
0

4

)
ω2

(s+ 1)3
+O(ω4), (5.62)

where the error terms are independent of s in the region <(s) > −σ > −1. We thus

obtain the expansion

F ∗(s; r0) =
s(1 + κ(s+ 1))2

(s+ 1)2
+

p(s; r0)α2

(s+ 1)4(4 + 3r2
0)

+O(α4), (5.63)

where p(s; r0) =
∑3

k=0 pks
k is a third-degree polynomial with coefficients

p0 = 3(1 + κ)r2
0, p1 = κ(−8 + 3r2

0),

p2 = 4− r2
0 − κ(12 + r2

0), p3 = 2− κ(4 + r2
0). (5.64)

We write the expansion in the form F ∗(s; r0) = G0(s) + α2G1(s; r0) + O(α4), where

the error term is bounded from above by a constant independent of s in the region

<(s) > −σ > −1. For α = 0, F ∗ has a single root in the right half-plane at s = 0.

As in §5.6.1, we need to assess the behavior of this root for small values of α, so we

let s = s(α) with s(0) = 0. Adapting the argument in §5.6.1, we find that s′(0) = 0

and that

s′′(0) = −2G1(0)

G′0(0)
. (5.65)

Since G1(0) = p0/(4 + 3r2
0) > 0 and G′0(0) = (1 + κ)2, it follows that s′′(0) < 0. This

implies that F ∗(s; r0) has no roots in the right half-plane for sufficiently small values

of α, which proves the desired result.
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5.7 Numerical method for assessing orbital stabil-

ity

In §5.6, we established the stability of orbital solutions in various limiting cases, in

which the function F ∗(s; r0) could be approximated by simpler functions without roots

in the region <(s) ≥ 0. However, the stability of an arbitrary orbital solution must

be assessed by finding the roots of F ∗(s; r0) numerically. We proceed by developing

and presenting the results of a numerical method for tracking these roots.

We first observe that F (s; r0) is not an entire function, as the region of convergence

for the Laplace transforms in (5.34) is <(s) > −1. Recall that if h(t) is periodic with

period T , then

L[h(t)e−t] =
1

1− e−(s+1)T

∫ T

0

h(t)e−(s+1)t dt. (5.66)

While the integral exists for all s, the Laplace transform may have poles at s =

−1+2πin/T for integer n. This could pose problems for our numerical method, since

the poles and zeros of F (s; r0) may collide. For this reason, we instead track the zeros

of F̃ (s; r0) ≡
(
1− e−(s+1)T

)
F (s; r0), where T = 2π/|ω|. It is shown in Appendix E

that F̃ is an entire function of s.

We proceed by rewriting the function F̃ (s; r0) as follows. We first define the

functions

f̃(t) =
J1

(
2r0 sin t

2

)

2r0 sin t
2

, g̃(t) = J ′1

(
2r0 sin

t

2

)
. (5.67)

The polynomial parts of the functions in (5.34) are

pA(s) = κs2 + s− κω2 − Ωω − βcA, pB(s) = (2ωκ+ Ω) s− (κω + Ω)

pC(s) = (2ωκ+ Ω) s+ 2ω + κω + Ω, pD(s) = κs2 + s− 1, (5.68)
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where

cA(r0) =
1

|ω| (1− e−2π/|ω|)
Ĩ
[
f̃(t) cos2 t

2
+ g̃(t) sin2 t

2

]
(5.69)

and

Ĩ[h] =

∫ 2π

0

h(t)e−t/|ω|. (5.70)

The Laplace transforms in (5.34) may be written as

A2(s) = L̃
[
g̃(t) sin2 t

2
− f̃(t) cos2 t

2

]
, B2(s) = L̃

[(
f̃(t) + g̃(t)

)
sin t

]

D2(s) = L̃
[
f̃(t) sin2 t

2
− g̃(t) cos2 t

2

]
, (5.71)

where

L̃[h] =

∫ 2π

0

h(t)e−(s+1)t/|ω| dt. (5.72)

The function F̃ (s; r0) may thus be expressed in the form

F̃ (s) =
(
1− e−(s+1)T

)
(pApD + pBpC)− β

(
pAD2 + pDA2

|ω| +
(pB + pC)B2

2ω

)

+
β2

ω2 (1− e−(s+1)T )

(
A2D2 +

B2
2

4

)
. (5.73)

As shown in §5.6.1, the function F̃ (s; r0) assumes a particularly simple form in

the r0 → 0 limit:

lim
r0→0

F̃ (s; r0)

s(s2 + ω2)
=

(
1− e−(s+1)T0

)
s
[
(κ(s+ 1) + 1)2 + ω2

0(κ− 1)2
]

(s+ 1)2 + ω2
0

, (5.74)

which has infinitely many roots at

sz = 0, s±b = −
(

1 +
1

κ

)
± iω0

∣∣∣∣1−
1

κ

∣∣∣∣ , sn = −1 + in|ω0|, n ∈ Z\{±1}. (5.75)
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Our numerical method tracks these roots as a function of r0, starting at r0 = 0.

Theorem 3 guarantees that circular orbits are stable for sufficiently large values of r0,

r0 > R0(γ). We thus track the roots of F̃ (s; r0) for 0 ≤ r0 < R0(γ), which allows us

to identify all unstable orbital solutions. The method used to determine R0(γ) will

be detailed in the following section.

5.7.1 Proof that only finitely many zeros of F̃ (s; r0) need con-

sideration

We now prove that, for a fixed value of γ, finitely many of the zeros of F̃ (s; r0) could

be in the right half-plane, <(s) ≥ 0. This result ensures that our numerical method is

tractable, and places an upper bound on the number of roots sn that could produce

an instability.

Let s̃ = (s + 1)/|ω|, and consider the regime r0 < R0(γ). The orbital solution

of radius r0 is stable provided that <(s̃) < 1/|ω|. We show in Appendix F that, for

<(s̃) > −ρ (with ρ > 0 to be determined), we may express the functions (5.71) as

A2(s̃) = −1− e−2πs̃

2s̃
+ ε(A),

∣∣ε(A)
∣∣ ≤ 1

|s̃|3

(
ε

(A)
0 +

ε
(A)
1

|s̃|

)

B2(s̃) =
1− e−2πs̃

s̃2
+ ε(B),

∣∣ε(B)
∣∣ ≤ ε

(B)
0

|s̃|3

D2(s̃) = −1− e−2πs̃

2s̃
+ ε(D),

∣∣ε(D)
∣∣ ≤ 1

|s̃|3

(
ε

(D)
0 +

ε
(D)
1

|s̃|

)
, (5.76)

where the error terms ε0 and ε1 are bounded functions of r0 in the region r0 < R0.

We may thus write F̃ in the form

F̃ (s̃) =
(
1− e−2πs̃

) [
pApD + pBpC +

β

|ω|
(
κω2s̃+ |ω|(1− 2κ)

)]
+ E(s̃), (5.77)

139



−3 −2 −1 0 1 2 3
0

1

2

3

4

5

6

7

M

<(s̃)

=(s̃)

1/|!|�⇢ 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99
0

50

100

150

200

250
(a)$ (b)$

�/�F

S
Figure 5-2: (a) Partition of the s̃-plane used in §5.7.1, where s̃ = (s + 1)/|ω|. The
black dots indicate the positions of the roots s̃ = in at r0 = 0, where n ∈ Z. The
white regions surrounding these roots represent Cn, outside of which

∣∣1− e−2πs̃
∣∣ >

1−e−2π/|ω|. (b) Plot of S(γ) as a function of the forcing acceleration γ/γF , computed
on the basis of (5.86). We show in §5.7.1 that the roots sn for n > dSe are confined
within Cn for all r0 < R0(γ), which ensures that they do not generate an instability.

where

E(s̃) =
(
1− e−2πs̃

) [ β

2|ω|

(
a0 + d0

s̃
− (pB + pC) sgn(ω)

s̃2

)
+

β2

4ω2

(
1

s̃2
+

1

s̃4

)]

− β

|ω|

(
ε(A)pD + ε(D)pA +

(pB + pC) ε(B)sgn(ω)

2

)
+
β2

ω2

(
−ε

(A) + ε(D)

2s̃
+
ε(B)

2s̃2

)

+
β2

ω2 (1− e−2πs̃)

(
ε(A)ε(D) +

ε(B)2

4

)
. (5.78)

Let C(r0) = {s̃ :
∣∣1− e−2πs̃

∣∣ < cE}, where 0 < cE < 1 is to be determined. One can

see that C consists of a sequence of disjoint regions Cn(r0) containing s̃ = in, n ∈ Z, as

depicted in Figure 5-2(a). Indeed, if s̃ = λ+ iσ, the boundary of Cn is defined by the

equation 1+e−4πλ−2e−2πλ cos 2πσ = c2
E, which has a solution provided that n−1/4 <

σ < n+1/4. Solving this equation, we obtain e−2πλ = cos 2πσ±
√

cos2 2πσ + (1− c2
E).

For σ = n, we have λ∓ = − log(1± cE)/2π, so it follows that λ− ≤ λ ≤ λ+ in Cn. We

thus take ρ > −λ− = log(1 + cE)/2π and cE < 1 − e−2π/|ω|, so that Cn is contained

within the stability region, <(s̃) < 1/|ω|.
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Let C ′ be the complement of C. In the region {<(s̃) > −ρ} ∩ C ′, we have the

following upper bound on |E|:

|E(s̃)| ≤
(
1 + e2πρ

) [ β

2|ω|

( |a0 + d0 − (b1 + c1) sgn(ω)|
|s̃| +

|b0 + c0|
|s̃|2

)
+

β2

4ω2

(
1

|s̃|2 +
1

|s̃|4
)]

+
β

|ω|

[
1

|s̃|

(
ε

(A)
0 +

ε
(A)
1

|s̃|

)(
|d2|+

|d1|
|s̃| +

|d0|
|s̃|2
)

+
1

|s̃|

(
ε

(D)
0 +

ε
(D)
1

|s̃|

)(
|a2|+

|a1|
|s̃| +

|a0|
|s̃|2
)

+
ε

(B)
0

2|s̃|2
(
|b1 + c1|+

|b0 + c0|
|s̃|

)]

+
β2

2ω2|s̃|4

[
ε

(A)
0 +

ε
(A)
1

|s̃| + ε
(D)
0 +

ε
(D)
1

|s̃| +
ε

(B)
0

|s̃|

]

+
β2

ω2cE|s̃|6

[
ε

(A)
0 ε

(D)
0 +

ε
(A)
0 ε

(D)
1 + ε

(A)
1 ε

(D)
0

|s̃| +
ε

(A)
1 ε

(D)
1

|s̃|2 +
ε

(B)2
0

4

]
. (5.79)

We may rewrite this in the form |E(s̃)| ≤∑8
k=1 ek/|s̃|k, where

e1 =
β

2|ω|
(

2|d2|ε(A)
0 + 2|a2|ε(D)

0 +
(
1 + e2πρ

)
|a0 + d0 − (b1 + c1) sgn(ω)|

)

e2 =
β

|ω|

[
|d1|ε(A)

0 +
|b1 + c1| ε(B)

0

2
+ |a1|ε(D)

0 + |d2|ε(A)
1 + |a2|ε(D)

1

+
1 + e2πρ

4

(
β

|ω| + 2β |b0 + c0|
)]

e3 =
β

|ω|

[
|d0|ε(A)

0 +
|b0 + c0|ε(B)

0

2
+ |a0|ε(D)

0 + |d1|ε(A)
1 + |a1|ε(D)

1

]

e4 =
β2

2ω2

(
1 + e2πρ

2
+ ε

(A)
0 + ε

(D)
0

)
+

β

|ω|
(
|d0|ε(A)

1 + |a0|ε(D)
1

)

e5 =
β2

2ω2

(
ε

(B)
0 + ε

(A)
1 + ε

(D)
1

)
, e6 =

β2

4cEω2

(
ε

(B)2
0 + 4ε

(A)
0 ε

(D)
0

)

e7 =
β2

cEω2

(
ε

(D)
0 ε

(A)
1 + ε

(A)
0 ε

(D)
1

)
, e8 =

β2ε
(A)
1 ε

(D)
1

cEω2
. (5.80)

We now establish a lower bound on the first term in (5.77). We consider the

polynomial P (s̃) = pApD + pBpC , and define M to be the smallest number such that
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all of the roots zi of P satisfy

|s̃− zi| >
|s̃|
2

in the region {=(s̃) > M} ∩
{
−ρ < <(s̃) <

1

|ω|

}
. (5.81)

This implies that

M − 1

2

√
1

max(ρ, 1/|ω|)2
+M2 ≥ I, I = max |=(zi)|. (5.82)

Solving for M , we obtain

M =
1

3

(
4I +

√
1

max(ρ, 1/|ω|)2
+ 4I2

)
, (5.83)

from which it follows that

|P (s̃)| ≥ (κω2)
2

16
|s̃|4, {=(s̃) > M} ∩

{
−ρ < <(s̃) <

1

|ω|

}
. (5.84)

We have established the following three bounds:

•
∣∣1− e−2πs̃

∣∣ ≥ cE for s̃ ∈ C ′

• |P (s̃)| ≥ (κω2)
2

16
|s̃|4 in the region {=(s̃) > M} ∩

{
−ρ < <(s̃) < 1

|ω|

}

• |E(s̃)| ≤∑8
k=1 ek/|s̃|k in the region C ′ ∩ {<(s̃) > −ρ} .

Let R be the region in which these three bounds are simultaneously valid, indicated

by the shaded region in Figure 5-2(a). We define S = S(r0; γ) as the solution to the

equation

cE (κω2)
2

16
S4 =

8∑

k=1

ek
Sk
. (5.85)

We thus deduce that F̃ (s̃; r0) has no roots in the region R∩ {|s̃| > S}. Letting

S(γ) = sup
r0≤R0

max(S,M), (5.86)
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it follows that the roots originating at s̃ = in for r0 = 0 must stay inside Cn(r0)

for all r0 ≤ R0, provided that n ≥ dSe. Since Cn(r0) is in the region <(s) < 0 by

construction, only the (finitely many) roots sn satisfying n < dSe need to be tracked.

To compute S(γ), we make use of the following conjecture:

Conjecture 1 For a fixed value of γ, let R∗(γ) be the largest value of r0 for which

dΩ/dr0 = 0. Then the orbital solutions are stable for r0 > R∗(γ).

We have verified this conjecture numerically for many values of γ, but were unable

to prove it analytically. Based on this conjecture, we compute S using R0(γ) = R∗(γ).

Figure 5-2(b) shows that S increases with γ, indicating that more roots need to be

tracked as the forcing acceleration is increased progressively. In practice, we find

that the computed values of S(γ) provide a significant overestimate for the number

of unstable eigenvalues.

5.8 Results of stability analysis

Having constructed a methodology for assessing the stability of arbitrary orbital so-

lutions, we now present the results of the stability analysis and compare them to both

experimental data [38] and numerical simulations (Chapter 4 [51]). Following the ex-

periments reported by Harris and Bush [38], we consider a walker of radius 0.4 mm and

a silicone oil bath of viscosity 20 cS and forcing frequency f = 80 Hz, for which the di-

mensional parameters in (5.8) are F = 1.1506×10−2 g mm/s2, D = 1.997×10−3 g/s,

m = 2.5441× 10−4 g, kF = 1.3224 mm−1 and Td = 1.8215× 10−2 s. The correspond-

ing parameters κ and β are related to the forcing acceleration γ through the formulae

κ = 6.994 (1− γ/γF ) and β = 0.10112/ (1− γ/γF )2. We perform the stability analy-

sis for the parameter range 0 ≤ r0/λF ≤ 5.5 and 0.920 ≤ γ/γF ≤ 0.995, in increments

∆r/λF = 0.016 and ∆(γ/γF ) = 0.001.

Figure 5-3 shows selected roots of F̃ (s; r0), plotted as a function of r0 for various

fixed values of γ/γF . As shown in Figure 5-3, the roots s0 and sz, as defined by

(5.75), undergo cycles of merging and splitting on the real axis. We found the same
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Figure 5-3: Plots of selected roots of F̃ (s; r0) as a function of the orbital radius r0,
for fixed values of the forcing acceleration γ/γF . The left panels correspond to the
real part of the roots, the right panel to the imaginary part. The first row shows the
eigenvalue pair s0 (solid) and sz (dashed) for γ/γF = 0.956. The second row shows
s2(r0) for γ/γF = 0.970, and the third s3(r0) for γ/γF = 0.975.

to be true for the roots s+
b and s−b . For the parameter values used here, we find that

all orbits are stable for γ/γF ≤ 0.920. For 0.921 ≤ γ/γF ≤ 0.960, the pair of roots

(s0, sz) generate instabilities in orbits for which dΩ/dr0 > 0, which were proven to be

unstable in Theorem 1. For 0.961 ≤ γ/γF ≤ 0.995, the pair (s+
b , s

−
b ) generates these

instabilities. We thus deduce that orbital quantization is generated by an instability

corresponding to one of the eigenvalue pairs (s0, sz) or (s+
b , s

−
b ).

For the values of γ/γF used, we found that the other eigenvalues sn for n 6= 0 did

not merge with any of the other eigenvalues and thus always had a nonzero imaginary

part, =(sn) 6= 0. It follows that sn(r0) and s−n(r0) are complex conjugates for n 6= 0.

The eigenvalues sn seem to generate instabilities sequentially as γ/γF is increased

progressively. Specifically, for a fixed value of γ/γF , we found that the stability of sn

for all r0 < R0 ensured the stability of sm for |m| > n. Plots of s2(r0) and s3(r0) for

specific values of γ/γF are shown in Figure 5-3.
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5.8.1 Stability diagram

Figure 5-4 shows the complete stability diagram for circular orbits. For a given value

of γ/γF , the roots s0, sz, s
±
b , and sn for n < dSe were tracked as a function of r0,

where S(γ) was defined in §5.7.1. Due to Propositions 1 and 2, a single point on

the diagram uniquely specifies the circular orbit. Points colored in blue denote stable

orbits. We color the unstable orbits using the following color scheme. For a given

orbit, let s∗ be the eigenvalue with the largest real part from the set {s0, sz, s
+
b , s

−
b }.

We then order the eigenvalues s∗ and sn for 2 ≤ n ≤ dSe by their imaginary parts,

from which we obtain a list of eigenvalues, q1, q2, . . . . From this list, we select the

eigenvalue with the largest real part, and color the appropriate point on the stability

diagram according to its index. The colors red, green, and yellow are used for the

first three indices, the rest being listed in the caption of Figure 5-4.

It would appear easier to color the unstable orbits simply by the eigenvalue with

the largest real part, without first ranking the eigenvalues by their imaginary parts.

The reason for the complicated color scheme is evident from Figure 5-5, which shows

the eigenvalues s2 (solid) and s3 (dashed) for γ/γF = 0.981. Note that the imaginary

part of s2 changes rapidly from =(s2) ≈ 2|ω| to =(s2) ≈ 3|ω|, and vice versa for

s3. This suggests that the two instabilities generated by s2 and s3 in Figure 5-5 are

actually similar Hopf bifurcations, as the imaginary parts of both eigenvalues are near

2|ω| at the points of instability. The procedure described in the preceding paragraph

allows us to distinguish between qualitatively different Hopf bifurcations.

5.8.2 Wobbling orbits

For r0/λF > 0.6, we find that the boundaries of the green and yellow regions in

Figure 5-4 correspond to supercritical Hopf bifurcations of the circular orbit, based

on the numerical simulations presented in Chapter 4 [51]. Indeed, when the tra-

jectory equation (5.9) is simulated near the instability boundary, the circular orbit

solution destabilizes into a wobbling orbit. Near the boundaries of the green (yel-

low) regions, where the imaginary part of the unstable eigenvalue is approximately
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Figure 5-4: Orbital stability of circular orbit solutions to (5.9), plotted as a function
of the dimensionless orbital radius r0/λF and forcing acceleration γ/γF . The results
of §5.4 show that a point on this diagram uniquely specifies the circular orbit. For
a given value of r0 and γ, the roots of F̃ (s; r0) are computed and ordered by their
imaginary part, according to the scheme described in §5.8.1. We thus obtain a list
of roots q1, q2, . . . . We then select the root qi with the largest real part, and color
the point on the stability diagram according to the index i. We use the color scheme
q1 = red, q2 = light green, q3 = yellow, q4 = magenta, q5 = cyan, q6 = brown and
q7 = gray.
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Figure 5-5: Plots of the eigenvalues s2(r0) (solid) and s3(r0) (dashed) for γ/γF =
0.981. Panel (a) shows the trajectory of the two eigenvalues in the complex plane as
r0 is varied. Panels (b) and (c) show, respectively, the real and imaginary parts of
the two roots, plotted for the same values of r0. The imaginary parts are normalized
by the orbital frequency |ω|. Note that the imaginary part of s2, which starts at
=(s2(0)) = 2|ω|, rapidly changes to =(s2) ≈ 3|ω|, and vice versa for s3.
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2|ω| (3|ω|), the wobbling orbits assume an elliptical (triangular) shape, their radii

oscillating at roughly twice (thrice) the orbital frequency (Chapter 4 [51]). Wobbling

orbits of higher frequencies were not found in the parameter range explored, as the

corresponding instability regions in Figure 5-4 are contained entirely within the green

or yellow tongues. The possibility of their presence for a different fluid or drop size

is currently being explored. We note that the eigenvalue pairs (s0, sz) and (s+
b , s

−
b )

seem to only generate subcritical Hopf bifurcations when they cross the imaginary

axis, as the corresponding wobbling orbits were not observed in numerical simulations

(Chapter 4 [51]).

The 2ω-wobbling orbits in the green tongues for r0/λF > 0.6 were predicted by

the stability analysis presented herein, and subsequently observed in laboratory ex-

periments [38]. Figure 5-6 shows the observed wobbling frequency as a function of

the rotation rate Ω. The theoretical curve plots the imaginary part of the unstable

eigenvalues at the boundary of the second green region, between 0.7 ≤ r0/λF ≤ 0.9.

The curve lies within the experimental error bars, indicating that the wobbling orbits

predicted by the linear stability analysis correspond closely to those observed. Note

that the theoretical curve only provides an approximation for the expected wobbling

frequency, the complete analysis of which requires consideration of nonlinear correc-

tions to (5.31). We note that 3ω-wobbling orbits have not been observed in laboratory

experiments, presumably because the yellow tongues only arise in a relatively small

parameter regime.

5.8.3 Chaotic dynamics at high memory

It was shown in Chapter 3 [50] that the orbital radii, as defined by (5.20), may be

approximated by the zeros of J0(r) and J1(r) as γ/γF → 1. Figure 5-4 suggests that

virtually all of these circular orbits become unstable in this limit. This is confirmed by

both numerical simulations (Chapter 4 [51]) and laboratory experiments [38], which

demonstrate that the walker’s trajectory is chaotic in this regime. In order to ascertain

the underlying structure of the chaotic dynamics, we may compute the trajectory’s

loop radius R(t) using the method detailed by Harris and Bush [38, Appendix B].

148



0.5 1 1.5 2 2.5 3
1.7

1.8

1.9

2

2.1

2.2

2.3

2.4

2.5

2⌦�F /u0

!
w

o
b
/
!

Figure 5-6: Plot of the wobbling frequency ωwob normalized by the orbital frequency
ω as a function of the dimensionless rotation rate 2ΩλF/u0. The points indicate
experimental data from Harris and Bush [38], corresponding to the four different
values of the vibrational forcing γ/γF and walking speed u0: γ/γF = 0.961 ± 0.002
and u0 = 12.0 mm s−1 (•); γ/γF = 0.969 ± 0.005 and u0 = 12.3 mm s−1 (◦);
γ/γF = 0.974 ± 0.002 and u0 = 12.3 mm s−1 (�); and γ/γF = 0.978 ± 0.003 and
u0 = 12.4 mm s−1 (�). The theoretical curve (dashed) plots the imaginary part of
the unstable eigenvalue at the boundary of the green region in Figure 5-4, between
0.7 ≤ r0/λF ≤ 0.9.

149



The statistics of R(t) exhibits a multimodal structure with peaks near the zeros of

J0(r) ([38], Chapter 4 [51]). Figure 5-7(a) shows two such histograms, computed on

the basis of numerical simulations of (5.9) for Ω = 0.70 s−1.

The red vertical lines in Figure 5-7(a) are located at the radii of the possible orbital

solutions, as determined by (5.20). Their height is determined by τ ≡ 1/<(smax),

smax being the eigenvalue of the appropriate orbital solution with the largest real

part. The bars alternate in height, the taller ones being located near the zeros of

J0(r) and the shorter near the zeros of J1(r). Note that τ provides an approximation

for the time it takes for the circular orbit to destabilize. The strongly unstable orbital

solutions, located near the roots of J1(r), are avoided by the walker, as the instability

timescale τ of those orbits is relatively small. The chaotic dynamics of the walker

may thus be understood as arising from its chaotic exploration of those circular orbits

satisfying J0(r0) ≈ 0, which take relatively long to destabilize. A similar conclusion

may be drawn from Figure 5-7(b), in which the circular orbits are colored according to

<(smax). The red portions of the diagram, corresponding to large values of <(smax),

are concentrated around the zeros of J1(r), indicated by the dashed vertical lines.

We note that the relative amplitudes of the histogram’s peaks in Figure 5-7(a) do

not perfectly match those predicted by the eigenvalues. This is presumably because

the peaks are determined by both the circular orbit’s instability timescale τ and the

basin of attraction, the characterization of the latter being beyond the scope of our

linear stability analysis. Nevertheless, we note that a conceptually similar approach

was taken by Gutzwiller [36], who considered the connection between the stability of

classical periodic orbits and quantum mechanical statistics.

5.9 Discussion

We have analyzed the properties of solutions to the integro-differential trajectory

equation (5.9), which models the pilot-wave dynamics of walking droplets in a rotating

frame. We showed that, above a critical value of the forcing acceleration and below

a critical value of the rotation rate, γ > γW and |Ω| < Ω0, the bouncing solution
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Figure 5-7: (a) Histogram of the walker’s loop radius R(t), computed on the basis of
numerical simulations of (5.9) for Ω = 0.70 s−1 and γ/γF = 0.983 (top panel) and
γ/γF = 0.985 (bottom panel) (Chapter 4 [51]). The red vertical bars are located at
the radii of the possible orbital solutions, as determined by (5.20). Their height is
determined by τ ≡ 1/<(smax), smax being the eigenvalue of the appropriate orbital
solution with the largest real part. The vertical bars and histograms have been nor-
malized so that their maximum height is 1. (b) Orbital stability diagram color coded
according to the size of <(smax). Blue denotes stable orbits, for which <(smax) < 0.
The solid lines are located at the roots of J0(2πr), and the dashed lines at the roots of
J1(2πr). Note that the orbital radii satisfying J1(r0/λF ) ≈ 0 are more unstable than
those satisfying J0(r0/λF ) ≈ 0, which explains why the latter are more prominent in
panel (a).
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x = constant may destabilize into a circular orbital solution with constant angular

frequency, x = r0(cosωt, sinωt). We derived formulae describing the dependence of

r0 and ω on Ω and γ, and showed that the governing equations define ω and Ω as

single-valued functions of r0.

We then analyzed the stability of these orbital solutions, and showed that the

eigenvalues s of the linear stability problem are the roots of a function F (s). By

expanding F in various asymptotic limits, we showed that circular orbits are stable

at low memory, γ & γW , and at both small and large orbital radius, r0 � 1 and

r0 � 1, which agrees with laboratory experiments [32, 38].

Outside of these asymptotic limits, the roots of F must be found numerically. We

showed that the roots can be computed explicitly in the limit r0 → 0. Our numerical

method thus tracks the roots as a function of r0, starting at r0 = 0. While F has

infinitely many roots, we showed that, for a fixed value of γ, only finitely many of

them can move into the right half-plane, <(s) ≥ 0, and thus generate an instability.

This result ensures that our numerical method is tractable. Our analysis culminated

in a regime diagram delineating the dependence of the stability characteristics on

the orbital radius r0 and forcing acceleration γ. The mathematical methodology

presented herein was used in Chapter 3 [50] to gain physical insight into the walker’s

orbital dynamics.

We then used the results of our stability analysis to rationalize some observations

from laboratory experiments [38] and numerical simulations (Chapter 4 [51]). We

showed that the frequencies of wobbling orbits, as predicted by the imaginary part

=(smax) of the dominant unstable eigenvalue, agree well with those observed in exper-

iments [38]. We also deduced that orbits whose radii satisfy J1(r0/λF ) ≈ 0 are more

unstable than those for which J0(r0/λF ) ≈ 0, by showing that <(smax) is substan-

tially larger for the former. This rationalized the laboratory experiments reported by

Harris and Bush [38] and numerical simulations in Chapter 4 [51], which showed that

the statistics of the walker’s loop radius at high memory exhibits peaks near the zeros

of J0(r). The walker’s chaotic dynamics at high memory may thus be understood as

arising from its chaotic exploration of preferred unstable orbital solutions.
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We note that the mathematical framework presented herein can be easily extended

to account for different external forces. In future work, we plan to assess the stability

properties of orbital solutions in the presence of a central force, such as F = −kx,

which has recently been explored in the laboratory [52].
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Chapter 6

The wave-induced added mass of

walking droplets

6.1 Introduction

Einstein [6] and de Broglie [21, 22] both sought to reconcile quantum mechanics and

relativity through consideration of the wave nature of matter [13]. De Broglie’s con-

ception in his double-solution theory was of microscopic particles moving in resonance

with and being guided by their own wave field. While neither the physical origins

nor the detailed geometric form of the pilot-wave field was specified, it was posited

that the resulting particle motion could give rise to a statistical behavior consistent

with the predictions of standard quantum theory. Workers in stochastic electrody-

namics [23] have suggested that an electromagnetic pilot-wave might arise through

the resonant interaction between a microscopic particle’s internal vibration and the

electromagnetic vacuum field [7]. Some have further proposed that the interaction of

moving particles with this vacuum field could give rise to a speed-dependent inertial

mass, a feature of relativistic mechanics [37, 56]. We here explore the relevance of this

Chapter 5 appears as submitted: The wave-induced added mass of walking droplets, Bush, J.
W. M., Oza, A. U. and Moláček, J., Journal of Fluid Mechanics [11].
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perspective to the dynamics of walking droplets through inferring their wave-induced

added mass.

The integro-differential trajectory equation (2.16) derived in Chapter 2 represents

the starting point of the current study. Note that the hydrodynamic pilot-wave

system is forced and dissipative. Nevertheless, it is interesting to imagine how the

system might be described if one were unaware that it was either. Specifically, if one

observes the system from above, and ignores the fact that it is a forced, dissipative

pilot-wave system, how should one describe the dynamics? What is the effective

mass of a walker? We demonstrate here that, in certain parameter regimes, the

walker dynamics may be described in terms of the motion of a particle with a speed-

dependent mass and a nonlinear drag force that drives it towards a fixed speed.

6.2 Pilot-wave hydrodynamics

In Chapter 2, we derived an integro-differential trajectory equation for the motion of

a walker. In the presence of an external force F , the equation takes the form

mẍ+Dẋ =
W

TF

∫ t

−∞
J1 (kF |x(t)− x(s)|) x(t)− x(s)

|x(t)− x(s)| e
−(t−s)/TM ds + F (6.1)

where W = mgAkF . Introducing the dimensionless variables x̂ = kFx and t̂ = t/TM ,

we obtain

κx̂′′ + x̂′ = β

∫ ∞

0

J1

(∣∣x̂(t)− x̂(t̂− z)
∣∣) x̂(t̂)− x̂(t̂− z)∣∣x̂(t̂)− x̂(t̂− z)

∣∣e
−z dz + F̂ , (6.2)

where κ = m/DTM and β = WkFT
2
M/DTF are the nondimensional mass and the

memory force coefficient, F̂ = F kFTM/D is the dimensionless applied force, and

primes denote differentiation with respect to t̂.
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6.2.1 The weak-acceleration limit

We now consider the simplified dynamics that arise when the walker accelerates in

response to a force that varies slowly relative to the memory time TM , F̂ = F̂ (εt/TM),

where 0 < ε � 1. In this weak-acceleration limit, the walker velocity varies slowly

relative to the timescale TM , so we may write x̂′ = v(εt/TM).

We proceed by expanding the integral (6.2) in powers of ε. Since

x̂(t̂)− x̂(t̂− z) = v(εt̂)z − ε

2
v′(εt̂)z2 +O(ε2), (6.3)

we obtain

J1

(∣∣x̂(t̂)− x̂(t̂− z)
∣∣) x̂(t̂)− x̂(t̂− z)∣∣x̂(t̂)− x̂(t̂− z)

∣∣ =
v

|v|J1 (|v| z)

+
ε

2 |v|

{[
v (v · v′)
|v|2

− v′
]
J1 (|v| z) z − v (v · v′)

|v| J ′1 (|v| z) z2

}
+O(ε2), (6.4)

which yields

∫ ∞

0

J1

(∣∣x̂(t̂)− x̂(t̂− z)
∣∣) x̂(t̂)− x̂(t̂− z)∣∣x̂(t̂)− x̂(t̂− z)

∣∣e
−z dz =

v

|v|2


1− 1√

1 + |v|2




+
ε

2 |v|

{[
v (v · v′)
|v|2

− v′
]

v
(
1 + |v|2

)3/2
− v (v · v′)

|v|
1− 2 |v|2
(
1 + |v|2

)5/2

}
+O(ε2). (6.5)

The trajectory equation (6.2) thus takes the form

κx̂′′ + x̂′ =
βx̂′∣∣x̂′
∣∣2


1− 1√

1 +
∣∣x̂′
∣∣2


+

β

2




3
(
x̂′ · x̂′′

)
x̂′

(
1 +

∣∣x̂′
∣∣2
)5/2

− x̂′′

(
1 +

∣∣x̂′
∣∣2
)3/2




+F̂ +O(ε2), (6.6)

which may be expressed as

d

dt̂

(
κγBx̂

′)+ x̂′


1− β∣∣x̂′

∣∣2


1− 1√

1 +
∣∣x̂′
∣∣2




 = F̂ +O(ε2), (6.7)
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where the hydrodynamic boost factor is defined as

γB = γB (|x′|) = 1 +
β

2κ
(

1 +
∣∣x̂′
∣∣2
)3/2

. (6.8)

We note that, in the absence of an applied force (F̂ = 0), (6.7) has a solution:

∣∣x̂′
∣∣ = û0 ≡

1√
2

(
−1 + 2β −

√
1 + 4β

)1/2

. (6.9)

This corresponds precisely to the formula for the free rectilinear walking speed of a

droplet, which was found to adequately rationalize the observed dependence of u0 on

the forcing acceleration γ (Chapter 2 [48]).

In terms of dimensional variables, we may write the trajectory equation (6.7) as

d

dt
(mγBẋ) +Dwẋ = F , (6.10)

where Dw = Dw(|ẋ|) = D


1− mgA

DTF |ẋ|2


1− 1√

1 + (kFTM |ẋ|)2






and γB = 1 +
gAk2

FT
3
M

2TF
(
1 + (kFTM |ẋ|)2)3/2

. (6.11)

We may rewrite the trajectory equation (6.10) in the form

dpw
dt

+Dwẋ = F , (6.12)

so both the mass mw and momentum pw of the walker may now be expressed in terms

of the hydrodynamic boost factor; specifically

pw = mwẋ, where mw = mγB. (6.13)

In the weak-acceleration limit under consideration, the effect of the wave force on

the walker dynamics is twofold. First, it augments the walker’s effective mass by

a factor γB, which depends on its speed |ẋ|. The dependence of γB on the walker
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Figure 6-1: Dependence of the hydrodynamic boost factor γB on the walker speed u0

and forcing acceleration γ/γF .

speed u0 and the forcing acceleration γ/γF is illustrated in Figure 6-1. We note

that γB decreases monotonically with speed through the entire walking regime, for

γw < γ < γF . Second, it generates a nonlinear drag coefficient Dw, where Dw > 0 if

|ẋ| > u0 and Dw < 0 otherwise. The wave-induced drag thus acts as a restoring force

that drives the walker towards its free walking speed u0.

6.3 Response to a weak unidirectional force

We first consider the special case in which the slowly-varying applied force is also weak

and unidirectional. Specifically, we assume that the applied force is small relative to

the drag, so that |F |kFTM/D = O(ε). We thus write F̂ = εf̂(εt/TM)s, where s is a

constant unit vector.

For the remainder of this section, we assume all variables to be dimensionless

and drop all hats. In the Cartesian coordinate system in which s = [1, 0], we write

ẋ = v(T ) [cos θ(T ), sin θ(T )], where T = εt. The equations of motion (6.7) take the
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form

mw(v)vθ′ = −f(T ) sin θ +O(ε)

ε
d

dT
(mw(v)v) +Dw(v)v = εf(T ) cos θ +O(ε2), (6.14)

where mw(v) = κγB(v) and Dw(v) = 1− β

v2

(
1− 1√

1 + v2

)
(6.15)

are the dimensionless wave-induced mass and drag, as introduced in §6.2.1, and primes

denote differentiation with respect to the slow timescale T .

To leading order in ε, the walker will move at its free walking speed u0. To examine

the perturbation from the steady walking solution, we substitute v = u0 +εu1(εt) into

(6.14) and deduce

mw(u0)u0θ
′ = −f sin θ +O(ε)

D̃w(u0)u1 = f cos θ +O(ε), (6.16)

where D̃w(u0) =
d

dv
(Dw(v)v)

∣∣∣∣
v=u0

. (6.17)

Equations (6.16) may readily be solved to obtain

∣∣∣∣cot
θ(T )

2

∣∣∣∣ =

∣∣∣∣cot
θ(0)

2

∣∣∣∣ exp

(
F (T )

mw(u0)u0

)
, v(T ) = u0 +

εf(T ) cos θ(T )

D̃w(u0)
+O(ε2), (6.18)

where F ′(T ) = f(T ) and F (0) = 0. These expressions uniquely determine the evolu-

tion of the walking speed v(T ) and direction θ(T ).

To gain insight into (6.18), we consider the special case in which the applied force

f is constant. The solution (6.18) implies that the walker’s direction θ approaches

that of the force over the timescale Tθ, where

Tθ =
mw(u0)u0

|f | . (6.19)

Thus, the turning timescale Tθ is prescribed by the ratio of the walker’s modified

momentum pw(u0) to the applied force, and is independent of the drag. A plot of the
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Figure 6-2: Walker’s trajectory under the influence of a weak unidirectional force,
computed on the basis of (6.18). The left panel shows the evolution of the walking
direction θ(T ). The right panel shows the walker’s trajectory (x(T ), y(T )). Calcu-
lations were based on values of γ/γF = 0.9, ε = 0.1 and f(T ) = 1, for which the
timescale of turning Tθ ≈ 2.4. The walker starts with θ(0) = π/2 and rapidly turns
toward the direction of the applied force, θ = 0, over the timescale Tθ.

walker’s trajectory for f(T ) = 1, computed using (6.18), is shown in Figure 6-2.

6.4 Orbital motion

We now consider the case of circular motion of the form x(t) = (r0 cosωt, r0 sinωt).

Defining t = (− sinωt, cosωt) and n = (cosωt, sinωt) as the unit tangent and out-

ward normal allows us to write the normal and tangential components of (6.10) in

the form:

−mγBr0ω
2 = F · n (6.20)

r0ω

[
D − mgA

TF (r0ω)2

(
1− 1√

1 + (kFTMr0ω)2

)]
= F · t (6.21)

where γB is defined in (6.11) with |ẋ| = r0ω. The weak-acceleration approximation

of §6.2.1 holds provided the velocity ẋ varies slowly relative to the memory time,

or equivalently, the orbital period is much larger than the decay time of the wave

field, TM � Torb ≡ 2πr0/u0. In this case the walker does not interact with its own
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wake, specifically, the wave field generated by its previous orbit. This limit thus

corresponds to the weak-orbital-memory limit defined in Chapter 3 [50], in which

orbital quantization does not arise. We consider in turn inertial orbits arising in a

rotating frame, and circular orbits arising in the presence of a central force arising

from a harmonic potential.

6.4.1 Walking in a rotating frame

When an object of mass m translates in a horizontal plane at a constant speed u in a

frame rotating about a vertical axis with constant angular speed Ω, it will in general

move along a circular orbit. The radius Rc and frequency ωc = −u/Rc of such

an inertial orbit are prescribed by the balance between the outwards inertial force

mu2/Rc and the inwards Coriolis force, 2muΩ; thus, Rc = u/2Ω and ωc = −2Ω. In

their examination of droplets walking in a rotating frame, Fort et al. [32] demonstrated

that at high memory, the influence of the wave force leads to orbital quantization on

the Faraday wavelength, and that such quantized orbits are analogous to the Landau

levels that arise for electric charges moving in the presence of a uniform magnetic

field. In the low-memory limit, they report that the inertial orbits vary continuously

with rotation rate, but that the orbits are typically 20-50% larger than would be

expected from the classical balance. This orbital offset, as further detailed in Harris

and Bush [38] and Chapter 3 [50], may be readily understood on the basis of the

foregoing developments.

For circular motion in the presence of a Coriolis force F = −2mΩ×ẋ, the tangen-

tial component of the force vanishes, F · t = 0, so the tangential force balance (6.21)

requires that the orbital speed correspond to the free walking speed u0 ≡ r0|ω|. The

radial force balance (6.20) then indicates the dependence of the orbital frequency and

radius on the boost factor:

ω = −2Ω

γB
, r0 = γB

u0

2Ω
. (6.22)

The net effect of the wave field is thus to decrease the orbital frequency and increase
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Figure 6-3: The observed dependence of the orbital radius r0 and frequency ω on
the rotation rate Ω for a droplet walking at speed u0 in a rotating frame in the low-
memory regime (u0 = 9.0 mm s−1, γ/γF = 0.82). The experimental data are those
reported by Harris and Bush [38]. The dashed lines indicate the standard solutions
for inertial orbits, r0 = Rc ≡ u0/2Ω and ω = ωc ≡ −2Ω. The solid lines correspond
to the predictions of (6.22), which incorporate the walker’s wave-induced added mass.

the orbital radius relative to the familiar results, ωc and Rc. Figure 6-3 indicates

the observed dependence of the orbital radius and orbital frequency on the rotation

rate at low memory reported by Harris and Bush [38]. The dashed line indicates the

standard results, Rc = u0/2Ω and ωc = −2Ω, while the solid lines correspond to our

predictions (6.22) that incorporate the boost factor.

6.4.2 Walking in a central force

Perrard et al. [52] report the results of a study of walker motion in the presence of

a central force. By encapsulating ferrofluid within a walker, and applying a vertical

magnetic field with a radial gradient, they were able to produce a force field that

increased linearly with radius, F = −kx. In certain regimes, orbital motions were

observed; in others, more complex periodic and aperiodic motions arose. We focus

here on the circular orbits reported. From the classical balance of the applied force

kR and inertial force mu2
0/R, one expects circular orbits with radius Rh = u0

√
m/k

and frequency ωh =
√
k/m. Like their counterparts arising in the rotating frame,
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the observed orbits exhibited a radial offset, being typically 10% larger than Rc, an

observation we can now readily rationalize.

For circular motion in the presence of a central force F = −kx, once again

F · t = 0, so the tangential force balance equation (6.21) requires that the orbital

speed correspond to the free walking speed u0 ≡ r0|ω|. The radial force balance (6.20)

then indicates the dependence of the orbital frequency and radius on the boost factor:

ω =

√
k

mγB
, r0 =

√
γB

u0√
k/m

(6.23)

Once again, the net effect of the wave field is thus to decrease the orbital frequency,

and to increase the orbital radius relative to the familiar results, ωh and Rh. Figure 6-

4 indicates the observed dependence of the orbital radius and orbital frequency on

the rotation rate at low memory reported by Perrard et al. [52]. The dashed line

indicates the standard results, Rh = u0

√
m/k and ωh =

√
k/m, while the solid lines

correspond to our predictions (6.23) that incorporate the boost factor.

For the case of orbital dynamics, we can thus rationalize the increase of the orbital

radius relative to that expected in the absence of the wave force. In the low memory

limit, the drop is influenced primarily by the wave generated by its most recent

impact. As the drop is turning in a circular orbit, the wave force generated during

impact necessarily has a radial component, the result being an increase in the orbital

radius and rationalized above.

We note that Labousse and Perrard [42] proposed the following equation to de-

scribe the dynamics of a walker under a central force in the low-memory regime:

mẍ+Dwẋ = −kx, Dw = D

( |ẋ|2
u2

0

− 1

)
. (6.24)

This trajectory equation captures certain features of (6.10); in particular, the non-

linear drag coefficient Dw acts as a restoring force that drives the walker towards

its free walking speed u0. However, in neglecting the contribution of the walker’s

wave-induced added mass, it cannot account for the anomalously large orbital radii
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Figure 6-4: The observed dependence of the orbital radius r0 and frequency ω on the
spring constant k for a droplet walking at speed u0 under a spring force F = −kx
in the low-memory regime (u0 = 12.2 mm s−1, γ/γF = 0.9). The experimental
data are from Perrard et al. [52]. The dashed lines indicate the standard solutions
r0 = Rh ≡ u0/

√
k/m and ω = ωh ≡

√
k/m. The solid lines correspond to the

predictions of (6.23), which incorporate the walker’s wave-induced added mass.

reported in laboratory experiments.

6.5 Discussion

A droplet walking in resonance with its own monochromatic wave field represents

a rich dynamical system, the first realization of a double-wave pilot-wave system

of the form envisaged by de Broglie [21, 22]. While Couder and coworkers have

highlighted their quantum mechanical aspects as emerge in the high-path-memory

limit [15, 32, 39], we have here explored their first tenuous connections to relativistic

mechanics. The leading order force balance on the walker is between a propulsive wave

force and a viscous drag term. The steady walking state is sustained by vibrational

forcing: the mechanical work done by the vibration balances the viscous dissipation.

In the weak-acceleration limit, the walker’s motion may be described in terms of the

mechanics of a particle with a speed-dependent mass subject to a nonlinear restoring

force that drives it towards a fixed speed. The relative magnitude of inertial mass
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of the walker and the droplet mass is prescribed by the hydrodynamic boost factor,

whose dependence on the system parameters has been deduced. This boost factor is

always greater than 1, and decreases with increasing speed in the weak-acceleration

limit examined.

For the case of orbital dynamics, if the system were observed from above with no

knowledge of either the vibrational forcing or the wave field, the walker’s motion may

be described in terms of the inviscid dynamics of a particle whose mass depends on its

speed. Doing so has allowed us to rationalize the offset in the radius of the walkers’

inertial orbits in terms of their wave-induced added mass; moreover, it has provided

a more general framework for understanding and describing the walker dynamics.
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Chapter 7

Concluding remarks

In this thesis, we have developed and studied the integro-differential trajectory equa-

tion

mẍ+Dẋ =
F

TF

∫ t

−∞
J1 (kF |xp(t)− xp(s)|)

xp(t)− xp(s)
|xp(t)− xp(s)|

e−(t−s)/TM ds+ F , (7.1)

with a view to describing the subtle pilot-wave dynamics of droplets walking on the

surface of a vibrating fluid bath. Our model differs from its predecessors in that it

can be treated analytically and contains no free parameters, thus allowing quantita-

tive and testable predictions to be made. Indeed, many of the phenomena reported

in this thesis were predicted through analyzing (7.1) and subsequently observed in

laboratory experiments. Our model has given valuable insight into the emergence of

both quantization and multimodal statistics, the two primary quantum-like features

of the walker system.

In Chapter 2, we studied the dynamics of walkers in the absence of an external

force, F = 0. We showed that the bouncing state x = constant may destabilize into a

steady rectilinear walking solution x = (u0t, 0), provided that the vibrational forcing

exceeds a critical value. The walking speed u0 deduced on the basis of (7.1) agrees

well with experimental data [46]. We then analyzed the stability of this walking

solution, and showed that it is stable to perturbations in the direction of motion and

neutrally stable to lateral perturbations. This result lends insight into the emergence
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of chaotic dynamics when droplets walk in confined geometries [39].

In Chapter 3, we studied the walker dynamics in a rotating frame, in which

F = −2mΩẑ × ẋ. We showed that (7.1) admits orbital solutions of the form

x = r0(cosωt, sinωt), in which the walker traverses a circle of radius r0 with con-

stant angular frequency ω. The predicted dependence of r0 and ω on the rotation

rate Ω and the vibrational forcing agrees well with experimental data [38]. We showed

that, in the high-memory limit, γ → γF , the orbital radii may be approximated by

the zeros of the Bessel functions J0(r) and J1(r). We then demonstrated that the

observed orbital quantization may be understood in terms of a linear stability analy-

sis of the orbital solutions. In particular, we showed that orbital solutions for which

dΩ/dr0 > 0 are unstable and thus cannot be observed in laboratory experiments.

In Chapter 4, we presented a numerical investigation of the walker dynamics

in a rotating frame, which culminated in a regime diagram delineating the depen-

dence of the dynamics on the initial orbital radius r0 and vibrational forcing γ. We

showed that, as the vibrational forcing is progressively increased, circular orbits may

destabilize into wobbling orbits, which exhibit periodic fluctuations in their radius.

For higher values of memory, the wobbling orbits destabilize into drifting orbits and

wobble-and-leap trajectories, both of which arise due to instabilities of the orbital

center. In the high-memory limit, γ → γF , the walker’s trajectory is chaotic, but the

statistics of its loop radius exhibits a multimodal structure with peaks near the roots

of J0(r). The simulations agree well with the experimental results of Harris and Bush

[38].

In Chapter 5, we presented a detailed mathematical treatment of the stability

of circular orbits in a rotating frame. We recast (7.1) as an initial value problem,

and showed that the eigenvalues of the linear stability problem are the zeros of a

function F (s). We analyzed these roots in various asymptotic limits, and established

the stability of circular orbits with sufficiently small radius, large radius, and at low

memory. Outside of these asymptotic regimes, the roots of F (s) must be found

numerically, and we presented a tractable numerical procedure for finding them. We

showed that the frequencies of wobbling orbits, as predicted by the stability analysis,

168



agree well with experimental data from Harris and Bush [38]. We also showed that the

circular orbits for which J1(r) ≈ 0 are more unstable than those for which J0(r) ≈ 0,

thus rationalizing the absence of the former when the walker dynamics is chaotic.

In Chapter 6, we performed an asymptotic expansion of (7.1) in the limit of

weak acceleration, in which the walker accelerates over a timescale long relative to

the memory time TM . In this limit, the contribution of the wave force to the walker

dynamics is twofold. First, the walker responds to a nonlinear drag force, which drives

it at the free walking speed u0. Second, the walker’s effective mass changes with its

speed, so we may draw an analogy with relativistic mechanics and define the walker’s

hydrodynamic boost factor. This result allows us to rationalize the anomalously large

orbital radii reported in recent experiments [38, 52].

While our model has provided rationale for a number of experimental phenomena,

it is worth discussing its shortcomings. Note that (7.1) only describes the walker’s

horizontal motion and neglects consideration of its vertical dynamics, assuming it to

be perfectly periodic. Recent experiments have shown this assumption to be false

in certain parameter regimes, as the walker’s vertical motion can be aperiodic or

even chaotic [65]. Indeed, recent experiments suggest that the original single-slit

diffraction experiments [15] were performed with chaotically bouncing walkers. We

have also assumed the bouncing phase to be independent of the forcing acceleration

γ, whereas it is known to exhibit weak dependence on both γ and the fluid viscosity

[46]. Incorporating this effect would make the coefficient F in (7.1) depend on γ,

which would significantly complicate the analysis presented herein.
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7.1 Future directions

We have recently begun to explore the following dimensionless formulation of the

trajectory equation (7.1):

κ0(1− Γ)ẍ+ ẋ =
2

(1− Γ)2

∫ t

−∞
J1 (|xp(t)− xp(s)|)

xp(t)− xp(s)
|xp(t)− xp(s)|

e−(t−s) ds+ F ,

where Γ =
γ − γW
γF − γW

and κ0 =
m

D

√
FkF

2DTF
. (7.2)

In this equation, Γ increases with the forcing acceleration γ, Γ = 0 corresponding

to the walking threshold γ = γW and Γ = 1 to the Faraday threshold γ = γF . The

advantage of this reformulation is that all of the fluid parameters appear in the coef-

ficient κ0, the value κ0 ≈ 1 corresponding to the fluid typically used in experiments.

We have recently demonstrated that, for κ0 ≤ 0.18, the trajectory equation (7.2)

admits stable self-orbiting solutions, in which the walker executes a circular orbit in

the absence of an external force, F = 0. Such solutions bear resemblance to the Kerr-

Newman model of the electron, in which the electron is modeled as a charged particle

orbiting in its own wave field [8]. When subjected to rotation, these hydrodynamic

“spin states” exhibit an analogue of Zeeman splitting, as solutions that co-rotate

with the bath have slightly larger radii than counter-rotating counterparts. We note

that such solutions are also present for larger values of κ0, but are unstable and thus

cannot be observed.

Having benchmarked the trajectory equation (7.1) against the laboratory experi-

ments of Harris and Bush [38], we may now use it to analyze the walker’s dynamics

under different external forces F . A pilot-wave analogue of the quantum harmonic

oscillator, in which F = −kx, has been explored in the laboratory of Yves Couder

[52], and is currently being studied theoretically using (7.1). It is our hope that we

may now apply our model to pilot-wave systems that are not necessarily accessible in

the laboratory.

In future work, we would like to extend our model to account for the influence of

boundaries or other nearby walkers, as the walker dynamics is significantly influenced
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by both in the single-slit diffraction [15], tunneling [27], corral [39] and Zeeman split-

ting [30] experiments. Our trajectory equation (7.1) only models the standing waves

generated by the walker, neglecting the traveling wave that propagates away from

the walker after each impact. While we do not expect this transient to significantly

affect a single walker’s dynamics in free space, it could interact with boundaries or

other walkers. This research direction is currently being explored by Milewski et al.

[44].

Our pilot-wave trajectory equation (7.1) provides the basis for rationalizing the

observed dynamics of walking droplets and predicting new phenomena. We expect

that future research will reveal the extent to which this pilot-wave system can be

viewed as a macroscopic analog of a quantum system. It is our hope that the the-

oretical developments presented in this thesis might ultimately provide insight into

the plausibility of a rational pilot-wave theory of quantum mechanics.
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Appendix A

Evaluation of integral terms in

F1(s), F2(s), G1(s), G2(s)

We evaluate some of the integrals appearing in the definition (3.35) of the functions

F1(s), F2(s), G1(s), and G2(s), by repeatedly employing the fact that r0 and ω are

defined as the solution to (3.9):

I[f(t) sinωt] =

∫ ∞

0

J1

(
2r0 sin ωz

2

)

2r0 sin ωz
2

sinωze−z dz

=

∫ ∞

0

J1

(
2r0 sin ωz

2

)

r0

cos
ωz

2
e−z dz =

ω

β
. (A.1)

I[g(t) sinωt] =

∫ ∞

0

J ′1

(
2r0 sin

ωz

2

)
sinωze−z dz

= 2

∫ ∞

0

J ′1

(
2r0 sin

ωz

2

)
cos

ωz

2
sin

ωz

2
e−z dz

=
2

r0ω

∫ ∞

0

[
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
− ω

2
J1

(
2r0 sin

ωz

2

)
cos

ωz

2

]
e−z dz

= − 2

β

[
κω + Ω +

ω

2

]
, (A.2)
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where we integrate by parts in the third line. Combining (A.1) and (A.2), we obtain

1

2
(I[f(t) sinωt] + I[g(t) sinωt]) = −κω + Ω

β
,

1

2
(I[g(t) sinωt]− I[f(t) sinωt]) = −κω + ω + Ω

β
, (A.3)

which appear in F2(s) and G1(s), respectively. Similarly:

I
[
f(t) sin2 ωt

2

]
=

∫ ∞

0

J1

(
2r0 sin ωz

2

)

2r0

sin
ωz

2
e−z dz = −κω

2 + Ωω

2β
(A.4)

I
[
g(t) cos2 ωt

2

]
=

∫ ∞

0

J ′1

(
2r0 sin

ωz

2

)
cos

ωz

2
cos

ωz

2
e−z dz

=
1

r0ω

∫ ∞

0

[ω
2
J1

(
2r0 sin

ωz

2

)
sin

ωz

2
e−z + J1

(
2r0 sin

ωz

2

)
cos

ωz

2
e−z
]

dz

=
1

β

[
−1

2
(κω2 + Ωω) + 1

]
, (A.5)

where we integrate by parts in the second line. Combining (A.4) and (A.5), we obtain

I
[
g(t) cos2 ωt

2

]
− I

[
f(t) sin2 ωt

2

]
=

1

β
, (A.6)

which appears in G2(s).

There do not appear to be simple expressions for the terms I
[
f(t) cos2 ωt

2

]
and

I
[
g(t) sin2 ωt

2

]
that appear in F1(s).
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Appendix B

Proof that F0(r0) = r0ωd1
dΩ
dr0

We first expand the functions (3.37) around s = 0 and obtain A(s) = a0 + O(s),

B(s) = b1s+O(s2), C(s) = c0 +O(s), and D(s) = d1s+O(s2), where

a0 = −
(
κω2 + Ωω + 2βI

[
g(t) sin2 ωt

2

])
, b1 = 2ωκ+ Ω +

β

2
I [(f(t) + g(t)) t sinωt]

c0 = 2 [ω (1 + κ) + Ω] , d1 = 1 + βI
[(
f(t) sin2 ωt

2
− g(t) cos2 ωt

2

)
t

]
. (B.1)

Thus F0(r0) = a0d1 + b1c0.

We now deduce an equation for dΩ
dr0

by first differentiating the governing equations

(3.9) with respect to r0:

2ωκ
dω

dr0

+ ω
dΩ

dr0

+ Ω
dω

dr0

= −2βI
[(

∂f

∂r0

+
∂f

∂ω

dω

dr0

)
sin2 ωt

2
+

dω

dr0

t

2
f(t) sinωt

]

dω

dr0

= βI
[

dω

dr0

tf(t) cosωt+

(
∂f

∂r0

+
∂f

∂ω

dω

dr0

)
sinωt

]
. (B.2)

Since

∂f

∂r0

=
1

r0

(g(t)− f(t)) ,
∂f

∂ω
=
t

2
cot

ωt

2
(g(t)− f(t)) , (B.3)
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we deduce that

dω

dr0

(2ωκ+ Ω) + ω
dΩ

dr0

=
2β

r0

I
[
(f(t)− g(t)) sin2 ωt

2

]
− β

2
I [(f(t) + g(t)) t sinωt]

dω

dr0

β

r0

I [(g(t)− f(t)) sinωt] =
dω

dr0

(
1− βI

[(
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

)
t

])
. (B.4)

Some of the integrals can be simplified using the results in Appendix A, yielding

−ω dΩ

dr0

=
dω

dr0

(
2ωκ+ Ω +

β

2
I [(f(t) + g(t)) t sinωt]

)

+
2β

r0

I
[
g(t) sin2 ωt

2

]
+

1

r0

(
κω2 + Ωω

)

− 2

r0

(ω (1 + κ) + Ω) =
dω

dr0

(
1− βI

[(
g(t) cos2 ωt

2
− f(t) sin2 ωt

2

)
t

])
. (B.5)

Using (B.1), these equations can be written as

a0 − r0b1
dω

dr0

= r0ω
dΩ

dr0

, c0 + r0d1
dω

dr0

= 0. (B.6)

We eliminate dω
dr0

, yielding an equation for dΩ
dr0

:

a0 +
b1c0

d1

= r0ω
dΩ

dr0

, (B.7)

which is valid since d1 > 0 (see Proposition 2 in Chapter 5). We thus obtain the

desired result

F0(r0) = r0ωd1
dΩ

dr0

. (B.8)
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Appendix C

Asymptotic limit ω � 1

The integrals in (5.20) and (5.34) have the form

I(r0) ≡ 1

ω

∫ ∞

0

Φ
(

2r0 sin
z

2

)
P (z)e−ηz/ω dz, <(η) > σ > 0, (C.1)

where all derivatives of Φ and P are bounded. As shown in §5.4, orbital solutions

exist in the regime ω ≤ βc/r0, c ≈ 0.6 being the maximum value of J1(x). We thus

write (C.1) as

I(r0) =
r0

ω̃

∫ ∞

0

Φ
(

2r0 sin
z

2

)
P (z)e−r0ηz/ω̃ dz, (C.2)

where ω̃ = O(1). We proceed by analyzing the behavior of I(r0) for r0 � 1.

We first consider the case where P is an even function with P (0) 6= 0. Note that

∣∣∣2r0 sin
z

2
− r0z

∣∣∣ ≤ r0z
3

24
, (C.3)

so

∣∣∣Φ
(

2r0 sin
z

2

)
P (z)− Φ(r0z)P (0)

∣∣∣ =
∣∣∣
(

Φ
(

2r0 sin
z

2

)
− Φ(r0z)

)
P (0)

+Φ
(

2r0 sin
z

2

)
(P (z)− P (0))

∣∣∣

≤ P (0)‖Φ′‖∞r0z
3

24
+
‖Φ‖∞‖P ′′‖z2

2
, (C.4)
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where both inequalities follow from Taylor’s remainder theorem. We thus obtain the

upper bound

∣∣∣∣
∫ ∞

0

[
Φ
(

2r0 sin
z

2

)
P (z)− Φ(r0z)P (0)

]
e−r0ηz/ω̃ dz

∣∣∣∣ ≤
ω̃3

r3
0<(η)3

(‖Φ′‖∞ω̃
4<(η)

+ ‖Φ‖∞‖P ′′‖∞
)
.

Since <(η) > σ > 0, we may write

I(r0) =
P (0)

ω

∫ ∞

0

Φ(r0z)e−ηz/ω dz + E, where |E| ≤ k

r2
0

(C.5)

and k is independent of both r0 and η.

We obtain a similar result if P is an odd function with P ′(0) 6= 0. Using the same

argument as that above, we obtain

I(r0) =
P ′(0)

ω

∫ ∞

0

Φ(r0z)ze−ηz/ω dz + E, where |E| ≤ k

r3
0

(C.6)

and the constant k is also independent of both r0 and η.
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Appendix D

Asymptotic limit ω � 1

We expand the integrals in (5.20) in the limit ω � 1. Note that the second equation

in (5.20) may be written as

r0ω =
β

r0ω

[
1−

∫ ∞

0

J0

(
2r0 sin

ωz

2

)
e−z dz

]
. (D.1)

Both integrals in (5.20) thus have the form

I(ε) = ε

∫ ∞

0

f(z)e−εz dz, (D.2)

where 0 < ε � 1 and f is a 2π-periodic even function. We approximate I for small

ε, obtaining

I(ε) =
ε

1− e−2πε

∫ 2π

0

f(z)e−εzdz

=
1

2π

(
1 + επ +O(ε2)

) ∫ 2π

0

f(z)
(
1− εz + ε2R(z)

)
dz, (D.3)

where |R| ≤ z2/2 by Taylor’s remainder theorem. Since f is bounded, we may write

I(ε) =
1

2π

∫ 2π

0

f(z) dz +
ε

2π

∫ 2π

0

f(z)(π − z) dz +O(ε2). (D.4)
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We note that f(π− z) must be an even function of z, since f is even and 2π-periodic,

which implies that

∫ 2π

0

f(z)(π − z) dz =

∫ π

−π
f(π − u)u du = 0. (D.5)

It follows that

I(ε) =
1

2π

∫ 2π

0

f(z) dz +O(ε2). (D.6)
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Appendix E

Proof that F̃ (s; r0) is an entire

function of s

We show that F̃ (s; r0) is an entire function of s, where F̃ (s; r0) is defined in (5.73).

This is equivalent to showing that

(
A2D2 +

B2
2

4

)∣∣∣∣
s=−1+in|ω|

= 0, (E.1)

where

A2(−1 + in|ω|) =

∫ 2π

0

[
−J1

(
2r0 sin t

2

)

2r0 sin t
2

cos2 t

2
+ J ′1

(
2r0 sin

t

2

)
sin2 t

2

]
cosnt dt,

B2 (−1 + in|ω|) = i

∫ 2π

0

[
J1

(
2r0 sin t

2

)

2r0 sin t
2

+ J ′1

(
2r0 sin

t

2

)]
sin t sinnt dt,

D2 (−1 + in|ω|) =

∫ 2π

0

[
J1

(
2r0 sin t

2

)

2r0 sin t
2

sin2 t

2
− J ′1

(
2r0 sin

t

2

)
cos2 t

2

]
cosnt dt.
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This is equivalent to proving that

(∫ π

0

[
J1 (2r0 sin t)

2r0 sin t
+ J ′1(2r0 sin t)

]
cos 2(n+ 1)t dt

)

×
(∫ π

0

[
J1 (2r0 sin t)

2r0 sin t
+ J ′1(2r0 sin t)

]
cos 2(n− 1)t dt

)

=

(∫ π

0

[
J1 (2r0 sin t)

2r0 sin t
− J ′1(2r0 sin t)

]
cos 2nt dt

)2

.

Since J1(x)
x

= 1
2

(J0(x) + J2(x)) and J ′1(x) = 1
2

(J0(x)− J2(x)), this is equivalent to

(∫ π

0

J0(2r0 sin t) cos 2(n+ 1)t dt

)(∫ π

0

J0(2r0 sin t) cos 2(n− 1)t dt

)

=

(∫ π

0

J2(2r0 sin t) cos 2nt dt

)2

. (E.2)

Using the identities in Watson [63, p. 151], we obtain

∫ π/2

0

J0 (2r0 cos t) cos 2nt dt =
π

2
(−1)nJ2

n(r0),

∫ π/2

0

J2 (2r0 cos t) cos 2nt dt =
π

2
(−1)n−1Jn−1(r0)Jn+1(r0). (E.3)

Since J0(x) and J2(x) are even functions, it follows that

∫ π

0

J0 (2r0 sin t) cos 2nt dt = πJ2
n(r0),

∫ π

0

J2 (2r0 sin t) cos 2nt dt = −πJn−1(r0)Jn+1(r0), (E.4)

which proves (E.2).
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Appendix F

Computation of the error terms in

(5.76)

We here prove the formulae given in (5.76). The Laplace transforms in (5.71) have

the form A2 = L̂[FA(t)], B2 = L̂[FB(t)] and D2 = L̂[FD(t)], where

FA(t) = g̃(t) sin2 t

2
− f̃(t) cos2 t

2
,

FB(t) =
(
f̃(t) + g̃(t)

)
sin t,

FD(t) = f̃(t) sin2 t

2
− g̃(t) cos2 t

2
, (F.1)

the functions f̃(t) and g̃(t) are defined in (5.67), and the modified Laplace transform

operator L̂ is defined as in (5.72):

L̂ [h(t)] =

∫ 2π

0

h(t)e−s̃t dt, s̃ =
s+ 1

|ω| . (F.2)

We use integration by parts to deduce that, if F (t) is a 2π-periodic function with

(N + 1) derivatives, then

L̂[F (t)] =
N∑

n=0

(1− e−2πs̃)F (n)(0)

s̃n+1
+

1

(N + 1)!

∫ 2π

0

F (N+1)(t)e−s̃t

sN+1
dt

=
N∑

n=0

(1− e−2πs̃)F (n)(0)

s̃n+1
+ εN+1, |εN+1| ≤

‖F (N+1)‖∞
(
1− e−2π<(s̃)

)

<(s̃)|s̃|N+1(N + 1)!
, (F.3)
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where ‖F‖∞ denotes the maximum value of F (t). In the region of interest, <(s̃) > −ρ,

we have the upper bounds

∣∣1− e−2πs
∣∣ < 1 + e2πρ,

1− e−2π<(s̃)

<(s̃)
<

e2πρ − 1

ρ
. (F.4)

We will also require the following derivatives of the functions in (F.1):

FA(0) = −1

2
, F ′′A(0) =

4 + r2
0

8
, F

(4)
A (0) =

r4
0 + 26r2

0 + 8

16
,

F ′B(0) = 1, F
(3)
B (0) = −2 + 3r2

0

2
,

FD(0) = −1

2
, F ′′D(0) =

4 + 3r2
0

8
, F

(4)
D (0) =

5r4
0 + 30r2

0 + 8

16
, (F.5)

where the odd derivatives of FA and FD and the even derivatives of FB are zero.

A number of numerical experiments convinced us that

‖F (4)
A ‖∞ ≤ F

(4)
A (0), ‖F (3)

B ‖∞ ≤ 2F
(3)
B (0), ‖F (4)

D ‖∞ ≤ F
(4)
D (0). (F.6)

Using (F.3), combined with (F.4) and (F.5), we thus obtain

A2(s̃) = −1− e−2πs̃

2s̃
+ ε(A), |ε(A)| ≤ (1 + e2πρ)(4 + r2

0)

8|s̃|3 +
e2πρ − 1

16 · 4! · ρ ·
r4

0 + 26r2
0 + 8

|s̃|4 ,

B2(s̃) =
1− e−2πs̃

s̃2
+ ε(B), |ε(B)| ≤ e2πρ − 1

ρ
· 2 + 3r2

0

6|s̃|3 ,

D2(s̃) = −1− e−2πs̃

2s̃
+ ε(D), |ε(D)| ≤ (1 + e2πρ)(4 + 3r2

0)

8|s̃|3 +
e2πρ − 1

16 · 4! · ρ ·
5r4

0 + 30r2
0 + 8

|s̃|4 ,

which proves the formulae in (5.76).
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