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Abstract

In the first part of this thesis, we obtain some new results about infinitesimal Chered-
nik algebras. They have been introduced by Etingof-Gan-Ginzburg in [EGG] as
appropriate analogues of the classical Cherednik algebras, corresponding to the re-
ductive groups, rather than the finite ones. Our main result is the realization of those
algebras as particular finite W-algebras of associated semisimple Lie algebras with
nilpotent 1-block elements. To achieve this, we prove its Poisson counterpart first,
which identifies the Poisson infinitesimal Cherednik algebras introduced in [DT] with
the Poisson algebras of regular functions on the corresponding Slodowy slices. As a
consequence, we obtain some new results about those algebras. We also generalize
the classification results of [EGG] from the cases GL, and SP2n to SOl.

In the second part of the thesis, we discuss the loop realization of the affine Yangian
of g~l. Similar objects were recently considered in the work of Maulik-Okounkov on
the quantum cohomology theory, see [MO]. We present a purely algebraic realization
of these algebras by generators and relations. We discuss some families of their
representations. A similarity with the representation theory of the quantum toroidal
algebra of gli is explained by adapting a recent result of Gautam-Toledano Laredo,
see [GTL], to the local setting. We also discuss some aspects of those two algebras such
as the degeneration isomorphism, a shuffle presentation, and a geometric construction
of the Whittaker vectors.
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Title: Professor of Mathematics
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Chapter 1

Introduction

1.1 Continuous Hecke algebras

1.1.1 Algebraic distributions

For an affine scheme X of finite type, let O(X) be the algebra of regular functions

on X and ((X)* be the dual space, called the space of algebraic distributions. Note

that 0(X)* is a module over 0(X): for f C 0(X), p E ((X)* we can define f - p

by (f - p, g) = (p, fg) for all g E 0(X). For a closed subscheme Z C X, we say that

an algebraic distribution p on X is supported on the scheme Z if p annihilates the

defining ideal I(Z) of Z. If Z is reduced, we say that p c 0(X)* is set-theoretically

supported on the set Z if p annihilates some power of 1(Z).

Let G be a reductive algebraic group and p: G -+ GL(V) be a finite dimensional

algebraic representation of G. First note that 0(G)* is an algebra with respect to

the convolution. Moreover, 6I1G is the unit of this algebra. Next, we consider the

semi-direct product 0(G)* < TV, that is, the algebra generated by p E 0(G)* and

x E V with the relations

x. p = (v*, gx)p -vi for all x E V, p E O(G)*,

where {vi} is a basis of V and {v! } the dual basis of V*, while (v*, gx)p denotes the

11



product of the regular function (v*, gx) and the distribution p.

We will denote the vector space of length N columns by VN, so that there are

natural actions of GLN, SPN, SON on VN. Let us also denote the action of g E G on

x E V by xg.

1.1.2 Continuous Hecke algebras

We recall the definition of the continuous Hecke algebras of (G, V) following [EGG].

Given a reductive algebraic group G, its finite dimensional algebraic representation

V and a skew-symmetric G-equivariant C-linear map r,: V x V --+ ((G)*, we set

H-C(G, V) := ((G)* D TV/([x, y] - r,(x, y)I x, y E V).

Consider an algebra filtration on X3C(G, V) by setting deg(V) = 1, deg(((G)*) = 0.

Definition 1.1.1. [EGG] We say that H,(G, V) satisfies the PBW property if the

natural surjective map ((G)* x SV -* gr WJ,(G, V) is an isomorphism, where SV

denotes the symmetric algebra of V. We call these X(G, V) the continuous Hecke

algebras of (G, V).

According to [EGG, Theorem 2.4], HJ-C(G, V) satisfies the PBW property if and

only if , satisfies the Jacobi identity:

(z - z)r(x, y) + (y - yg),(z, x) + (x - xg)r(y, z) = 0 for all x, y, z E V. (t)

Define the closed subscheme 4< C G by the equation A3 (1 - g Iv) = 0. The set of

closed points of <D is the set S = {g E G : rk(1 - g Iv) < 2}. We have:

Proposition 1.1.1. [EGG, Proposition 2.8] If the PBW property holds for H, (G, V),

then ,(x, y) is supported on the scheme (D for all x, y E V.

The classification of all , satisfying (t) was obtained in [EGG] for the following

two cases:

12



* for the pairs (G, E *) with f being an irreducible faithful G-representation of real

or complex type (see [EGG, Theorem 3.5]),

9 for the pair (Sp 2 n, V2 ) (see [EGG, Theorem 3.14]).

In general, such a classification is not known at the moment. However, a particular

family of those was established in [EGG, Theorem 2.13]:

Proposition 1.1.2. For any T C (((Kerp)* 0 A2V*)G and v E (0(D)* 0 A2V*)G,

the pairing r,(x, y) := T(x, y) + v((1 - g)x, (1 - g)y) satisfies the Jacobi identity.

1.2 Infinitesimal Cherednik algebras

1.2.1 Infinitesimal Cherednik algebras

For any triple (g, V, () of a Lie algebra g, its representation V and a g-equivariant

C-bilinear pairing C: A2 V - U(g), we define

HC(g, V) := U(g) v TV/([x, y] - ((x, y)l x, y E V).

Endow this algebra with a filtration by setting deg(V) = 1, deg(g) = 0.

Definition 1.2.1. [EGG, Section 4] We call this algebra the infinitesimal Hecke/Cherednik

algebra of (g, V) if it satisfies the PBW property, that is, the natural surjective map

U(g) D< SV -* gr HC(g, V) is an isomorphism.

Any such algebra gives rise to a continuous Hecke algebra

'C (G, V) : = 0 (G) * ou(g) HC (g, V),

where U(g) is identified with the subalgebra ((G)*G C ((G)*, consisting of all alge-

braic distributions set-theoretically supported at 1 G E G.

In particular, having a full classification of the continuous Hecke algebras of

type (G, V) yields a corresponding classification for the infinitesimal Hecke algebras

of (Lie(G), V). The latter classification was determined explicitly for the cases of

(g, V) = ( 1, e Vn*), (02n, V2n) in [EGG, Theorem 4.2].

13



1.2.2 Classifications for gt, and 02n

For a pair (g[1, Vn D V*), we have the following result (see [EGG, Theorem 4.2]):

Proposition 1.2.1. The PBW property holds for H((grn) if and only if

C(y,y') = 0, ((x, X') = 0, ((y, x) = (jrj (y, x), V y, y' E Vn, x, x' C V*,
j=0

for some nonnegative integer k and (j E C, where rj(y, x) E U(gIn) is the symmetriza-

tion of aj(y, x) E S(gn) - C[g I] and aj(y, x) is defined via the expansion

(x, (1- rA)-ly)det(1 - rA)-' = Za(y,x)(A)ri, A E grn.
j>0

Definition 1.2.2. Define the length of such ( by 1(() := min{m E Z-I| (rn+i = 0}-

Example 1.2.1. [EGG, Example 4.7] If l(C) = 1 then HC(g(n) 2i U(sln+i). Thus, for

an arbitrary (, we can regard HC(gl) as a deformation of U(sln+1 ).

Let us also recall a similar classification for the pair (sp2n, V2n). Here we assume

that ZP2n is defined with respect to a symplectic form w on V2 n.

Proposition 1.2.2. The PBW property holds for Hg(SP2n) if and only if

C(x, y) = (jr2(x, y)
j=0

for some nonnegative integer k and (j E C, where r 2j(x, y) E U(SP2n) is the sym-

metrization of / 2j(x, y) E S(sp2n) ~ C[sP2n] and /2(x, y) is defined via the expansion

w(x, (1 - r 2A2)- 1y)det(1 - rA)~1 = L2j(x,y)(A)r 2), A E SP2n-
j>O

Definition 1.2.3. Define the length of such ( by I(() := min{m E Z>- 1 I ( m +1 = 01.

Example 1.2.2. [EGG, Example 4.11] For (o # 0 we have Hro(5P2n) ~ U(SP2n) V Wn,

where W is the n-th Weyl algebra. Thus, HC(s2n) can be regarded as a deformation

of U(SP2n) K W..

14



1.3 The quantum toroidal and the affine Yangian

of gi1

The quantum toroidal algebra of g[I appeared independently in [SV, FT1] as a certain

algebra, which naturally acts on the equivariant K-theory of the Hilbert scheme of

points on a plane. It also has a connection to the Hall algebra of an elliptic curve and

to the spherical DAHA as established in [SV, S]. Moreover, it admits an interesting

realization via the shuffle algebra, which was recently completed in [N1].

On the other hand, there has been a purely algebraic activity around those alge-

bras for the last five years, initiated by Feigin et al. In papers [FFJMM1, FFJMM2],

the authors constructed several families of representations by using the formal comul-

tiplication and the aforementioned geometric representations.

Independently, the notion of an affine Yangian of glI was introduced in [MO].

However, the authors were more interested in the particular family of representations

of this algebra (which arise geometrically), rather then in the algebra itself.

1.4 Organization of the thesis

* Chapter 2. The main results of this chapter are as follows:

o Computation of the Shapovalov determinant for H( (g [). This provides a simple

criteria for the irreducibility of Verma modules.

o Computation of the simplest central element, called the Casimir element. We

also obtain the formula for its action on the Verma modules.

o Classification of finite dimensional representations of Hg(9r.). Computation of

their characters.

o Computation of the Poisson center of the Poisson infinitesimal Cherednik alge-

bras.

* Chapter 3. The main results of this chapter are as follows:

15



o Identification of the universal infinitesimal Cherednik algebras Hm(grn), Hm(sP2n)

with the finite W-algebras of s[n+m, SP2n+2m corresponding to 1-block nilpotent ele-

ments. We also establish a Poisson analogue of this result.

o Some new properties of the infinitesimal Cherednik algebras.

o Obtaining some results on the completions of the infinitesimal Cherednik alge-

bras. In particular, we immediately get a proof of the result stated in [Tik3].

e Chapter 4. The main results of this chapter are as follows:

o Classification results on the continuous Hecke algebras and infinitesimal Chered-

nik algebras of types SOn and SOn.

o Generalization of the results from Chapter 3 to the case of H((son).

*Chapter 5. The main results' of this chapter are as follows:

o An explicit presentation of the affine Yangian of gr1 .

o Geometric construction of representations for the quantum toroidal and the

affine Yangian of grl via the Gieseker moduli spaces.

o Construction of some series of Yhi,h 2 ,h3 (9[,)-representations. We also relate them

to the representations, which arise geometrically.

o Description of the limits of both algebras in interest as one of the parameters

trivializes.

o Construction of a homomorphism T : Uq1,q2 ,q3(0[i) -+ Yhl,h2 ,h3 (gr1 ). This is

analogous to the relation between a quantum loop algebra Uq(Lg) and a Yangian

Yh(g) of a semisimple Lie algebra g, discovered in [GTL].

o Discussion on the shuffle presentation of those algebras, emphasizing two alter-

native descriptions of their commutative subalgebras.

o Establishing an explicit connection between representations from [FFJMM1]

and [FHHSY] by introducing a "horizontal realization" of Uqq 2,q3 (0[ 1).

*Appendix. We outline some further generalizations.

16



Chapter 2

Infinitesimal Cherednik algebras

This chapter is based on [DT].

2.1 Representations of H(g[,)

2.1.1 Basic notations

Similarly to the representation theory of s[ 1,, we define the Verma module of HC(gl)

as

M(A) = H((g[.)/{H((g[.) - n+ + HC(gl)(h - A(h))}hE,

where the set of positive root elements n+ is spanned by the positive root elements

of gl, (i.e., matrix units eij with i < j) and elements of V; the set of negative root

elements n- is spanned by the negative root elements of gt, (i.e., matrix units eij

with i > j) and elements of V*; and the Cartan subalgebra is spanned by diagonal

matrices. The highest weight, A, is an element of r*, and Vx is the corresponding

highest-weight vector.

Let us denote the set of positive roots by A+, so that A+ = {e! - e 3 } U {egk}

for 1 < i < j 5 n, 1 < k < n. To denote the positive roots of g[l, we use A+ (g[n),

and to denote the weights of yi, we use A+(V). We define p = ZAEA+(gr A =

( , "-1 , . .. , - ), a quasiroot to be an integral multiple of an element in A+, and

Q+ to be the set of linear combinations of positive roots with nonnegative integer
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coefficients. Finally, U(n~), denotes the -v weight-space of U(n-), where v E Q+.

2.1.2 The Shapovalov Form

As in the classical representation theory of Lie algebras, the Shapovalov form can be

used to investigate the basic structure of Verma modules. Similarly to the classical

case, M(A) possesses a maximal proper submodule M(A) and has a unique irreducible

quotient L(A) = M(A)/M(A). Define the Harish-Chandra projection HC : H(gl) -+

S( ) with respect to the decomposition HC(g[) = (H((g[.)n+ + n-H(gln)) D U( ),

and let o- : H(g([) -+ HC(gln) be the anti-involution that takes yi to xi and eij to eji.

Definition 2.1.1. The Shapovalov fonn S : HC(gln) x H((g(n) -+ U(4) ' S(4) e

C[4*] is a bilinear form given by S(a, b) = HC(u(a)b). The bilinear form S(A) on the

Verma module M(A) is defined by S(A)(uvx, U2VA) = S(ui, u2)(A), for ul, u2 C U(n-).

This definition is motivated by the following two properties (compare with [KK]):

Proposition 2.1.1. 1. S(U(n-),,, U(n-),) = 0 for [ = v,

2. M(A) = ker S(A).

Statement 1 of Proposition 2.1.1 reduces S to its restriction to U(n-), x U(n-),,

which we will denote as S,,. Statement 2 of Proposition 2.1.1 gives a necessary and

sufficient condition for the Verma module M(A) to be irreducible, namely that for any

v E Q+, the bilinear form S,(A) is nondegenerate, or equivalently, that det S,(A) 4 0,

where the determinant is computed in any basis; note that this condition is inde-

pendent of basis. For convenience, we choose the basis {f"}, where m runs over all

partitions of v into a sum of positive roots and f m = H f" with fc, E n of weight

-a. We will use the notation a F- b to mean that (ai,..., an) is a partition of b into a

sum of n nonnegative integers when b E N, and m F- v to mean that m is a partition

of v into a sum of elements of A+ when v E Q+. Then, the basis we will work with

is {f m }.e,.
Now, we present a formula for the determinant of the Shapovalov form for HC(g[I)

generalizing the classical result presented in [KK]. This formula uses the following
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result proven in Section 2.1.5: for a deformation ( = (oro + (iri + - - - + (mrm, the

central element t' (introduced in Section 2.1.3) acts on the Verma module M(A)

by a constant P(A) = E17o wjH(A + p), where Hj(A) = E H1  Af are the

complete symmetric functions (we take Ho(A) = 1) and w(,... ,(j) are linearly

independent linear functions on (k.

Define the Kostant partition function -r as r(v) = dim U(n-),. Then:

Theorem 2.1.1. Up to a nonzero constant factor, the Shapovalov determinant com-

puted in the basis {fm}m_, is given by

det S,(A) = J JJ(P(A) - P(A - k a))r(vka) x J J1 ((A + p, a) - k)'(V-k a)

aEA+(V) k=1 aEA+(g[) k=1

Remark 2.1.1. For (O= oro + (iri, (1 5 0, we get the classical formula from [KK].

Proof.

The proof of this theorem is quite similar to the classical case with a few technical

details and differences that will be explained below. We begin with the following

lemma, which shows that irreducible factors of det S,(A) must divide P(A) - P(A - I)

for some p E Q+.

Lemma 2.1.1. Suppose det S,(A) = 0. Then, there exists E 6 Q+\{0} such that

P(A) - P(A-p) = 0.

Proof.

Note that det S,(A) = 0 implies that the Verma module M(A) has a critical vector

(a vector on which all elements of n+ act by 0) of weight A - p for some p E Q+
satisfying 0 < p < v. Thus, M(A - M) is embedded in M(A). Since t' acts by

constants on both M(A) and M(A - p), which can be considered as a submodule of

M(A), we get P(A) = P(A - p). L

The top term of the Shapovalov determinant det S,(A) in the basis {f m }mh,

comes from the product of diagonal elements, that is, HmF,, H[c,(fa), fa"]m (A). The
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top term of [eij, eji](A) for i < j is Ai - Aj = (A, a) where a is the weight of eij. The

following lemma gives the top term of [yj, xj] (A):

Lemma 2.1.2. The highest term of [yj, xj](A) for = r + Cmrm equals

(. E(p + 1) H AP', where the sum is over all partitions p of m into n summands.

Proof.

From [EGG, Theorem 4.2], we know that the top term of [yj, xj] for ( = Coro +

(1r,+ -- - - + rm is given by the coefficient of -rm in det(1 - rA)-'(xj, (1 - TA)~lyj).

Because the set of diagonalizable matrices is dense in g(, we can assume A is a

diagonal matrix A = diag(Ai, A2, ..., An) so that

det(1 - iA)- = H i- = E Epl-k T APirk and xj(l - -rA)-lyj = 1 + Ekyo A,"rk.

Multiplying these series gives the statement in the lemma. E

Thus, we see that the top term of the determinant computed in the basis {f m} m -,

up to a scalar multiple, is of the form

fj (A, a)EFm"' Me (pj +1) 11Ap'.
(aA+(In) ) m a=Wt()EA+(V) (P )mma)

Since r(p) is the number of partitions of a weight [, the sum Em m, over all par-

titions m of v with a fixed must equal E r(v - ka), so the expression above

simplifies to

00 00r(v-ka)

]7Jr(A, Qar(v-ka) ( ~ +V ( pj + 1) 1j Api TL' k)

(aE A+(gin) k=1 Ci=Wt(yj)E A+(V) k=1 (p m

This highest term comes from the product of the highest terms of factors of P(A) -

P(A - p) for various p E Q+.

Lemma 2.1.3. 1. For all p / ka, a E A+(gl), P(A) - P(A - p) is irreducible as a

polynomial in A.

2. For p = ka, a E A+(gIn), P('+ ka) is irreducible.
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If Lemma 2.1.3 is true, then all A contributing to the above product must be

quasiroots: if p / ka for some a E A+(gl), the highest term of the irreducible

polynomial P(A) -P(A- p), Zpm Z3 E jy(pj+1) ~A !", does not match any factor in

the highest term of the Shapovalov determinant unless A is a V-quasiroot. Moreover, if

= ka for a E A+(g,), since P(A)-P(A-k) is irreducible for a E A+(gr.), comparison(A+p,oi)-k

with the highest term of the determinant shows that only the linear factor (A+p, a) -k

of P(A) - P(A - ka) appears in the Shapovalov determinant.

Proof.

We will prove that P(A)-P(A -A) is irreducible for p / ka (a E A+(g[,)); similar

arguments will show that + ) is irreducible for any a E A+(g[,), k E N.

Consider the parameters wi as formal variables. Then, we have P(A) - P(A - A) =

EZ>o wi(Hi(A + p) - Hi(A + p - p)). We can absorb the p vector into the A vector.

For this polynomial to be reducible in wi and A3, the coefficient of w, should be

zero: H 1 (A) - H1 (A - p) = H1 (p) = 0. Also, since the coefficient of w2 is linear

in A3, it must divide the coefficients of every other wi. In particular, the highest

term of H 2 (A) - H 2(A - A) must divide that of H3 (A) - H 3 (A - A). The highest

term of H 2 (A) - H 2 (A - A) is Ei Ai(pi + EZ i) = (A, A) and the highest term of

H 3 (A) - H 3 (A - A) is given by H3(A)(p), the evaluation of the gradient H3(A) at

p. Since this term is quadratic and is divisible by (A, A), we can write H3(A)(p) =

(A, M)(A, ) for some E *. Now, let us match coefficients of AiAj for i 4 j and of

A? on both sides of the equation. By doing so (and using the fact that p = 0),

we obtain pitj + pj& = pi + pj and pit = 2pi. Since p1 + -- + = 0 and p = 0,

at least two of pi are nonzero, say pil and i2 . From the two equations, we obtain

pil +pi 2 = 0. If pi,A 0, then by similar arguments, ptil+pi3 = Pi2+ pi3 = Ail +pi2 = 0,

which is impossible since pi, Ii 2 , ,ai 3 7 0. Thus, P(A) - P(A - A) is reducible only

if exactly two of the pi are nonzero and opposite to each other; that is, Ap = ka for

a E A+(91n). LI

To prove that the power of each factor in the determinant formula of Theorem 2.1.1

is correct, we use an argument involving the Jantzen filtration, which we define as in

21



[KK, page 101] (for our purposes, we switch U(g) to H((gl)). The Jantzen filtration

is a technique to track the order of zero of a bilinear form's determinant. Instead

of working over the complex numbers, we consider the ring of localized polynomials

C(t) = {) I p(t), q(t) E C[t], q(0) / 0}. A word-to-word generalization of [KK,

Lemma 3.3], proves that the power of P(A) - P(A - ka) for a c A+(V) and of

(A + p, a) - k for a E A+(g I) is given by r(v - ka), completing the proof of Theorem

2.1.1. 0

2.1.3 The Casimir Element of H((gr)

Let Q1 , Q2 , Q3 , ... , Q,, E S(gl*) (which can be identified as elements of S(g(t) under

the trace-map) be defined by the power series det(tId - X) = Z% (-1)it"-Q 3 (X),

and let /i be the image of Qj under the symmetrization map from S(g(1) to U(g91).

The center of U(g[,) is a polynomial algebra generated by these #j. Define tj =

E, xj [i, yj]. According to [T1, Theorems 1.1, 2.1], the center of Ho(g(I) is a poly-

nomial algebra in {ti} 1 <isn, and there exist unique (up to a constant) Ci E 3(U(gl.))

such that the center of H((gl.) is a polynomial algebra in t' = t + ci, 1 < i < n.

Definition 2.1.2. The Casimir element of H((g(l) is defined (up to a constant) as

t'1.

We will construct the Casimir element of Hc(gl) and prove that its action on

the Verma module M(A) is given by P(A) = E'L' w3 H (A + p), where wj are linear

functions in (j.

2.1.4 The center

Let us switch to the approach elaborated in [EGG, Section 4], where all deformations

satisfying the PBW property were determined. Define "(m) = (i&)m 6 with 6 being

a standard delta function at 0, i.e., f 6(O)#(9)dO = #(0). Let f(z) be a polynomial

satisfying f(z) - f(z - 1) = an(z"((z)), where ((z) is the generating series of the

deformation parameters: ((z) = (o + (iz + (2z 2 + _ . . . Since f (z) is defined up
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to a constant, we can specify f(0) = 0.

f(0) = Em>O fm6(M)(0),

[y, x] = 21i , v 0 f))y)
2 n VECn:IVIl

Recall from [EGG, Section 4.2], that for

J r (1 - e-'0 ) f(0)eo(v®&) dO dv.

Theorem 2.1.2. Let g(z) = ('gzm" = Z Z . The Casimir

element of Hg(g[) is given by t' = ' xjyj + Resz=og(z- 1 ) det (1 - zA)- 1 dz/z.

Proof.

Define C' = Resz=og(z-1) det (1 - zA)~1 dz/z.

EZ[y, xjy]y + [y, C']. The first summand is:

Ey, x3]y
j

Let us compute [y, ti + C'] =

= 2  1 ZJ (1 - e&iB)(O)eO(vOi) (x, (v 0 i)y)yj dOdv
vCC11:fv|=1 J-r

- 2r" I ( eG)f (O)eO(v®) 0 (v 0 )y dO dv.

Following [EGG, Section 4.21, we define

(Av, v)m+1 dv (v 09 V)m+l dv.

There, it was proven that

S fmFm-i(A) = 27r"nRes2=og(z1) det(1 - zA)-lz-ldz = 27r"C'.

Thus, we can write

C' = 1 fC2 57
m J (v 9 )m dv = I n f()eiO"*) dO dv,

which implies that [y, C'] = L _jl1 f_ j(0) [y, eO(v®)] dO dv. Since

e-i9(VO*)[y, eiO(VO)] = e-iO(v*i)yeiO(v®T) - y = e -ead(v®&)y - y = (e-io - 1)(V 0 V)y,

we get [y, C'] = - I_1 f_, f (O)e'O(vv)(e- 0 - 1)(v 0)y dO dv, and so Zi[y, xi]y +

[y, C'] = 0 as desired. By using the anti-involution o- defined in the beginning of
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Section 2.1.2, this implies [x, ti + C'] = 0 for any x E V*, while [eij, ti + C'] = 0 by

[TI], and hence, t' = t1 + C'. L

Remark 2.1.2. This proof resembles calculations in [EGG, Section 4]. In particu-

lar, [EGG, Proposition 5.3 ] provides a formula for the Casimir element of continuous

Cherednik algebras. However, adopting this formula for the specific case of infinites-

imal Cherednik algebras is nontrivial and requires the above computations.

2.1.5 Action of the Casimir Element on the Verma Module

In this section, we justify our claim that the action of the Casimir element t' is given

by P(A) = Z_+ 1 w- H (A + p). Obviously, t' acts by a scalar on M(A - p), which

we will denote by t'(A). Since t' = Z xiyi + C', C' E 3(U(g)) _ S(g)G, we see that

t/(A) = C'(A) where C'(A) denotes the constant by which C' acts on M(A - p).

Theorem 2.1.3. Let w(z) be the unique degree m + 1 polynomial satisfying f(z) =

(2 sinh(a/2))"-1 zn- 1w(z). Then t'(A) = EZ, 0 wpH,(A).

Proof.

Because C'(A) is a polynomial in A, we can consider a finite-dimensional represen-

tation of U(g,) instead of the Verma module M(A - p) of Hc(gln). For a dominant

weight A - p (so that the highest weight gln-module VA-, is finite dimensional) we

define the normalized trace T(A, 0) = trv,_, (eiO(v®V))/ dim V, for any v satisfying

lvi = 1 (note that T(A, 0) does not depend on v). To compute T(A, 0), we will use

the Weyl Character formula (see [FH]): X,-p = W(1)e where W denotes the
ZwEW(-1)wewP~ hr eoe h

Weyl group (which is Sn for g(n). However, direct substitution of eiG(v®f) into this

formula gives zero in the denominator, so instead we compute limEo Xxp(eO(v&V)+fY)

for a general diagonal matrix 1,.

24



Without loss of generality, we may suppose v = yi, so that

1 0 ... 0

v(&~q- (0 0 -- 0

0 ...= .

Then

lim X (iO(V)+E) = lim E ()we(wAi )
lim p(e E-*O EWESn (-1)e(p'iOq+Ei)

=EWESn(~l)we 
'iq+cy)

E-+O ]~1QA+(,( )(e(k/2,iOq+Ei) - e-(a/2,isq+e/)

Partition A+(gI) into A1 Li A 2 = A+(gL1 ), where A1 = {e*1 - e 1 < j < n}. For

' E A 1,

lim (e(a/2,iq+q) _ -(a/2,iOq+p) e-/2 = 2i sin
Ce+O 2'

so lim+o ]/2,iq+p) - e-(a/2,iOq+4p)) -1 (2i sin

Next, we compute the numerator. We can divide S, = U_1  Bj, where Bj=

{w E Sn|w(j) = 1}. Note that B, = oj3 Sn-, where o- = (12 ... j) and Sn-1 denotes

the subgroup of S. corresponding to permutations of {1, 2, ... , j - 1, j + 1, .. , n}.

We can then write

E (-1)we(wA,iOq+) _ > (_ 1 )O) (_1)ceiOe )

wE B, ESn.1

= (-1)ileNeeiAi1 )'j3

aESn-i

where ij = (A,,..., Aj_1, Aj+,,---, An) and P =(P2, - --, An)
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Combining the results of the last two paragraphs, we get

( 1 )we(wioq+M)

6-+OIHQEA+ (g. (e(a/2,iq+EII) _ e-(a/2,ioq+ej))

= i (1 (2i sin 2)n-
EES -

r laEA2 (cx/2,ioq+qu) _ e-(a/2,iOq+e/A))

Using the Weyl character formula again, we see that

___ESn-1 (- jye___0______ = try (e)
JlaEZ2(e(a/ 2 ,cjI) - e-(a/ 2 ,c)) e

where p is half the sum of all positive roots of gl_1. Thus,

lm EoE -1) trvi),

f-+0 [aEA 2 (e(a/2,iq+4E) - e-(a/2,ioq+4E)) = try (1) = dim V,

We substitute to obtain

trvy_(eio(voD)) ( )-
1<j~n

eo,\ dim V- -

(2i sin )n-1

Our original goal was to calculate T(A, 0) = try,, (eiO(vOU))/ dim V_,,. We obtain

T(A, 6) = (- eoA dim
1<j~n (2i sin 2)n-1 dim V\-

Using the dimension formula (see [FH, Equation 15.17]):

dimV-,= i --

1 i<j<n2

we get T(A, 0) = (2i sin(0/2))1-n(n - 1)! Zn_1

Since =H-n+1(x, .. , Xn), we have

T(A, 9) = (2i sin(/2)) 1-(n - )! H (A) ()+Pnf-
1

P >0(p+n-i)!
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Thus, we get

t1 (A) C'(A) = (4 j i(O)eO(v®)d6dv (A) = -1)! j (6)T(A, 9)dO

- f(O)(2i sin(/2)) Z- H(A)(i)P d+nd = E'H(A),

where '=' ff(0)(2i sin(0/2))1n _r> dO. Let w'(z) = w'zP. We verify that

(e a 2 _ - 8 /2 n -1 -i " W (Z ) = (0 ) 2I si n( o2) 1 n (e 4 /2 a /2 ) fn - 1 ( iz o )P + d

-'w z =nP>O1(+ - 1)!

r( ) (2i sin(/2))1-n(ea/ 2 -ea/2)"nez dO

- j (0)(2i sin(O/2))1-"(eiO/ 2 - e-iO/2)n1eizo dO

(O)eiz0 dO = f (z),

and it is easy to see that the polynomial solution to f(z) = (2 sinh(8/2))n- 1zn-1 w(z)

is unique.

2.1.6 Finite Dimensional Representations

In this section, we investigate when the irreducible HC(g[r) representation L(A) is

finite dimensional. As in the case of classical Lie algebras, any finite dimensional

irreducible representation is isomorphic to L(A) for a unique weight A. Theorem 2.1.4

provides a necessary and sufficient condition for L(A) to be finite dimensional. In

particular, all such representations have a rectangular form.

In Section 2.1.8, we prove that for any allowed rectangular form there exists a

deformation C such that the representation L(A) of HC(grn) has exactly that shape.

2.1.7 Rectangular Nature of Irreducible Representations

Theorem 2.1.4. (a) The representation L(A) is finite dimensional if and only if A is

a dominant grI weight and P(A) = P(A - (0, . . . , 0, vn + 1)) for some vn c No.
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For every 1 < i < n - 1 let ki E No be the smallest nonnegative integer such that

P(A) = P(A - (0, ... , 0, ki + 1, 0, ... , 0)) (we set ki = 00 if no such nonnegative integer

exists). We define parameters vi = min(k , A2 - Aje).

(b) If L(A) is finite dimensional, then as a g(, module it decomposes into

L(A) =E V,,
0<\-,\'<ii

where v = (v1 ,... , vn) are the parameters defined above (depending on C and A).

Proof.

In order for L(A) to be finite dimensional, it is clearly necessary for A to be a

dominant g0, weight. Recalling the PBW property and the definition of the Verma

module M(A), we see that as a g[f module, M(A) decomposes as

M(A)= VA (VAS) e (V\ 0 S2) e -, where Sk = Sym(X 1 , x 2 , ---, Xf).

We can further decompose each VA Si into irreducible modules of g[n; once we do so,

we find that M(A) has a simple g(n spectrum. Note that V, 0 Si can be decomposed

as V>_e e I>eg .- -- ( V_e (taking V,_e = {O} if p - e* is not dominant). We

can thus associate each V, for y = A - aie* - - * - in the decomposition of

M(A) with a lattice point P, = (-ai, -a 2 ,..., -an) E Z". We draw a directed edge

from P, to P,, if V,, is in the decomposition of V, 9S1 , and we say P,, is smaller than

P,. A key property of this graph is that any HC(g1)-submodule of M(A) intersecting

the module V,, must necessarily contain V and all V,, such that P,, is reachable from

P, by a walk along directed edges. Recall that L(A) = M(A)/M(A), where M(A)

is the maximal proper H((g[,)-submodule of M(A). The aforementioned property

guarantees that as a g[n module, M(A) = &, V for some set S of vertices closed

under walks, so that L(A) is finite dimensional if and only if S (the complement of

S) is a finite set.

We now prove part (a). First, suppose that L(A) is finite dimensional. The

finiteness of S implies the existence of some 1 such that (0, ... , 0, -l - 1) E S (note
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that (0, . .. , 0) V S). Let vn be the minimal such 1. We define S' as the set of vertices

that can be reached by walking from (0,..., 0, -v, - 1). Because S' C S, the Verma

module M(A) must possess a submodule M(A - (0, . . . , 0, vu + 1)). By considering

the action of the Casimir element on M(A) and M(A - (0,.. ., 0, v, + 1)), we get

P(A) = P(A - (0, ... , 0, V. + 1)).

Next, suppose that there exists vn c No such that P(A) = P(A - (0, ... , 0, v, + 1)).

The determinant formula of Theorem 2.1.1 implies that the Verma module M(A)

contains the submodule M(A - (0,...,0,p)) for some /tt < v. Define S' to be

the set of vertices that can be reached by walking from (0,... , 0, -1p). Its com-

plement 5' is finite, since for any vertex (-ai, ... , -an) of our graph, we have

A1 - a, > A2 - a 2  ... - An - an. Because S C 5', S is finite, finishing

the proof of (a). We note that explicitly, 5' = {(-a 1 , ... , -an)0 < ai < A-

Ai+ 1 , 0 < an Vn} and the corresponding finite dimensional quotient is L'(A) =

M(A)/(EZ<i<n1 HC(g)e +1VA ± H((g[n)Xvn"+1VA).

Part (b) requires an additional argument. Namely, if L(A) is finite dimensional,

then it can also be considered as a lowest weight representation. Let b = (bi, . . . , bn) E

S be the vertex corresponding to the lowest weight of L(A). If the statement of

(b) was wrong, there would be a vertex E = (ei,.. . , en) E S with two nonzero

coordinates, such that (ei,. . ., ei- 1 , ej + 1, ei+i, .. , en) E S for any i. Without loss

of generality, suppose el, e2 $ 0. As we can walk along reverse edges from b to both

points (el + 1, e2 , - -, en) and (el, e2 + 1, e3 ,... , en), we can also walk along reverse

edges to E, which is a contradiction. This proves part (b) and explains our terminology

"rectangular form". E

The decomposition of L(A) as a g(n module provides the character formula for

L(A) as the sum of the characters of g[ modules:

E EwS(1) ewp M
O<A-A'<v ZweSn&1)wewP.

As in the classical theory, this character allows us to calculate the decomposition of

finite dimensional representations into irreducible ones.
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Example 2.1.1. Let us illustrate the decomposition of L(A) from the proof of Theorem

2.1.4; for clarity, we will work with S2 representations instead of g 2 representations.

Using the notation of the proof, Sk = Sk(Xi, x 2 ) e V, the irreducible S12 representa-

tion of dimension k + 1. By the Clebsch-Gordon formula,

Vm ( Vk = Vm+k ( Vm+k-2 (1) --- Vm+k-2 min(k,m).

We can use the above formula to draw the graph, representing the decomposition

of L((2, 0)), with v = (0,3), into .2 modules. This representation is the quotient

of M((2, 0))/H((g)ei1 vA by the submodules represented by the shaded areas of the

diagram, and L((2,0)) V2 @ V3 DV 4 DV 5 as S12 modules.

Example 2.1.2. For HC(gr1 ), the irreducible finite dimensional representation L(A),

for A c C, has character Xx, = EV',= eAv', where v is some nonnegative integer.

The infinitesimal Cherednik algebras of g(1 are generated by elements e, f, and h,

satisfying the relations [h, e] = e, [h, f] = -f, and [e, f] = O(h) for some polynomial

#. In literature, these algebras are known as generalized Weyl algebras ([Sm]). In this

case, the Casimir element equals fe+g(h), where g satisfies the equation g(x) -g(x -

1) = O(x). Then, v is the smallest nonnegative integer such that g(A)-g(A-v-1) = 0.

Example 2.1.3. For H((g[), the irreducible finite dimensional representations are

necessarily of the form L(A) with A = (A2 + m, A2 ), where A2 E C, m E No. The

character of L(A) equals

(A2+m-VI,A2-V2) _ e(A2-v2-1,A2+m-V'+1)
e1 eXA; = E e(-1,1)

(0,0)_< (V'I~V2)_<(Vi,V2)

Let fi(A, p) = (2 + M + , 2 - ) - P(2 + M + ,2 and f2(A, 7) =

P(1 + M + ,\ ) P(2 + M + 1, A- -1). Again, v2 is defined as the

minimal nonnegative integer satisfying f2 (A, v 2 + 1) = 0, while v, is either m or the

minimal nonnegative integer satisfying fi(A, vi + 1) = 0. For instance, if ( = Coro

with (o # 0, then f 2 (A, p) is a multiple of p, and so the only solution to the equation

f2(A, v 2 + 1) = 0 is v 2 = -1, which is negative. Thus, H(0r0 (g[) has no finite
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dimensional irreducible representations. If ( = oro+(ir, with (1 4 0, P(A) = (o(A+

A2)+ (1((A, +})2+ (A + )(2-! )+ (A2 - _1)2), so f2(A, p) = LOi +A, + 2A2 -p.
Thus, L(A) is finite dimensional if and only if + A, + 2A2 is a positive integer. This

agrees with the description of finite dimensional representations of s 3 -

2.1.8 Existence of L(A) with a given shape

Theorem 2.1.5. For any g(n dominant weight A and v G Nn such that vi K A2 -

Aj+1 for all 1 K i < n - 1, there exists a deformation C, such that the irreducible

representation L(A) of Hg(W) is finite dimensional and its character is given by (*).

Proof.

Let A' = A + p. We can write A' = A' + k for k, > ... > kn_1 > kn = 0 (we

have strict inequalities because of the shift by p). Recall that P(A) = E wmHm(A')

for wi defined as in Theorem 2.1.3. Let pi = (0, .. ., vi + 1, 0, . .. , 0). We will find wi

such that P(A') - P(A' - pi) = 0, while for all 0 < p's < pi, P(A') - P(A' - j') # 0.

This implies that there are embeddings of M(A' - pi) into M(A') with an irreducible

quotient L(A') = M(A')/ >rn M(A' - pi), due to Theorem 2.1.4.

Define Pmj = P(A') - P(A'- p) for p = (0,..., m+1, 0,..., 0) with the m+1 at

the j-th location. We must prove that there exist w such that P,11 = ... = P,,, = 0

and P,,.. ., Pn = 0 for all 0 < vi < vi. We can write Pmj = Ej>O wjR , where

il+...+in=N

Note that the condition Pkj = 0 determines a hyperplane HIkj in the space (wo, wi, . ..)

(ilkj might in fact be the entire space, but the following argument would be unaf-

fected). Hence, the intersection fl Hi,, belongs to the union Uj,o<,;<,, H,,j if and

only if it belongs to some H,;,,. Thus, it suffices to show that {P', ... , Pv , Pvl}

are linearly independent as functions of wi for all 1 <1 < n and 0 < vi < vi. This
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condition of linear independence is satisfied if

R1 R 2  ... n+1

R1 2 R 2 -- R"'A 1

det -. #0.

R1 R 2 n -. R"n+1i

\R' R 2 R - n1

Now we shall prove that using column transformations, we can reduce the above

matrix to its evaluation at A' = 0. We proceed by induction on the column number.

The elements of the first column, RiI are of degree zero with respect to A' , so R =

R1 (0). Suppose that using column transformations, all columns before column p are

reduced to their constant terms. Now, we note that

a~pj An(A'/ + kj)*1 ... ((A'/ + kj)'j - (A', + kj - m - 1)'j) ... A'n
OR a ()(i)+..+in=P

= (p + n - 1)R 1 (A').

Thus, we see that R - R~ (0) is a linear combination of R,--'(0), the entries of the

other columns:

a, BRp - + n- -
Rpmj(A') =R R,- (0) A.j Zn n OA'i M3 -ni' R 2()

By selecting pivots of (P+ -1 ) A'", we can eliminate every term except Rpm (0). By

repeating this step, we reduce the matrix to its evaluation at A' = 0:

Ri2 (n'1 2~ (1s ~ A')Rg()Rg(0) - n-- 1g(0)

R1 2 (A') R 2 1(A') ... R+ (A') Ri 2 (0) R 2 (0) - RV1 (0)

det : . = det : .

Rt,(A') RV,1(A') ... R",1 (A') Ri1, 1(0) R..(0) -
RI(A') n) - -(0)2
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Let us now rewrite RN(0):

R N. (0 0 ... k3?_-1 (' j - (kj m - 1' 3+, . n

i1+...+in=N

N-1

= S H i_1 (k+' - (kj - m - 1)i+1)
i=O
N-1

= HN-i- 1 (k+ 1 - (kj - m - 1)'+' - - (k- m 1
i=O

N-1

= HN-i-1 ((i + 1)(kj - m - 1)i)
i=O

where HN-i i+...+in=Ni k'j - -k and H_ = Zi+...+i+...+in=Ni

The third equality is because H'v_ = HN-i - kjHN-i-1. It is easy to see that the

above determinant can be reduced further to

(V1 + 1)(ki - Vi - 1)

(v 2 + 1)(k 2 - V2 -1)

(v, + 1)(k - V -1)

(v+1)(ki- v-1)

T- det

1

1

1

1

... (v2

(V2n

... (Vn

--- (VII

-V 2 -1

-v2-1

-v -1-V"-

± 1)(ki - Vi - 1)"

+ 1)(k 2 - V2 -1)

+ 1)(k - V-1)"

+ 1)(ki - vi-1)

.-. (ki-vi-1)"

.-. (k2 -v 2 -1)"n

.-- (kn -vn -1)"n

--- (ki-v1-1)n

where T = (vi + 1)(v 2 + 1) ... (vn + 1)(v, + 1) and the determinant is H,"_1(k, - ki +

Vi - Vz)1 1 <i 71(ki - ki + vi - vj) by the Vandermonde determinant formula. Now,

recalling the conditions 0 < vi < Ai - Ai+j1 = ki - ki+1 - 1 we get k3 - ki + v, - v. < 0

for any i < j and so H1 <<j 7 (kj - ki + vi - vi) is nonzero. Similarly, we get H"1 (k, -

ki + vi - vi) # 0. Hence, the determinant is nonzero, and so {P,1,1,.. , P,,, P,;,i}

are linearly independent as desired.
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2.2 Poisson Infinitesimal Cherednik Algebras

2.2.1 Poisson Infinitesimal Cherednik Algebras of gr,

Now we will study infinitesimal Cherednik algebras by using their Poisson analogues.

The Poisson infinitesimal Cherednik algebras are as natural as HC(g), and their

theory goes along the same lines with some simplifications. Although these algebras

have not been defined before in the literature, the authors of [EGG] were aware of

them, and technical calculations with these algebras are similar to those made in [T1].

This approach provides another proof of Theorem 2.1.2.

Let C be a deformation parameter, ( : V x V* -* S(gl(). The Poisson infinitesimal

Cherednik algebra H,(gl.) is defined to be the algebra Sgl(OS(VEV*) with a bracket

defined on the generators by:

{a, b} = [a, b] for a, b E g[ ,

{g, v} = g(v) for g E gn, v E V DV*,

{y, y'} = {x, x'} = 0 for y, y' E V, x, x' E V*,

{y,x} = ((y,x) for y E Vx C V*.

This bracket extends to a Poisson bracket on HC(g() if and only if the Jacobi identity

{{x, y}, z} + {{y, z}, x} + {{z, x}, y} = 0 holds for any x, y, z E OL' X (V D V*). As

can be verified by computations analogous to [EGG, Theorem 4.2], the Jacobi identiy

holds iff C = Z= (jrj where (j E C and rt is the coefficient of ri in the expansion of

(x, (1 - -rA)-'y) det(1 - rA)-'. Actually, we can consider the infinitesimal Cherednik

algebras of g(, as quantizations of H( (g().

Remark 2.2.1. Note that

xtr(S+1'A)

this follows from

9 (det(1 - rA)-1 ) - tr(rB(1 - rA)-')
B det(1 -TrA)
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when B = yi 0 x,. In fact, if {yi, x3 } = Fjj(A), the Jacobi identity implies that

Fi (A) = '9 for some GL(n) invariant function F, and that A 2 DA(F) = 0, where DA

is the matrix with (DA) = g. One can then show that the only GL(n) invariant

functions F satisfying this partial differential equation are linear combinations of

tr(SIA).

Our main goal is to compute explicitly the Poisson center of the algebra H( (g[.).

As before, we set Qk to be the coefficient of (-t)k in the expansion of det(1 - tA),

rk Xi xi{Qk, yi}, and ((z) = (o +(iz +C2z2 +-

Theorem 2.2.1. The Poisson center 3p=is(HC() C[71 + C1 ,7 2 + C2 ,... ,T, ± c],

where (-1)'ci is the coefficient of t' in the series

c(t) = Res=o ((z-1) det(1 - tA) 1 dz
det(1 - zA) 1 - t-1 z z

Proof.

First, we claim that 3po0 F(Ho(gr[)) = C[T1 , .... , rn]. The inclusion C[ri, .... , r] C

3pois(H(g1)) is straightforward, while the reverse inclusion follows from the structure

of the coadjoint action of the Lie group corresponding to g[1 < (V e V*) (as in the

proof of [T1, Theorem 2]).

We prove that the Poisson center of Hs(g[() can be lifted to the Poisson center of

H (g([) by verifying that ri + ci are indeed Poisson central. Since Tk e 3pois(Ho(gI))

and Ck E 3pois(S(gIn)), -rk + Ck Poisson-commutes with elements of S(g0[). We can

define an anti-involution on H (g(1) that acts on basis elements by taking eiy to eji

and y. to xi. By using the arguments explained in the proof of [T1, Theorem 2], we

can show that -rk is fixed by this anti-involution, while Ck is also fixed since it lies

in 3pris(S(g[n)). Applying this anti-involution, we see that it suffices to show that ck

satisfies {rk + ck, yi} = 0 for basis elements yj c V.

First, notice that if g E S(gI), then {g,yl} = En_1 9 f{eij, y }, and together

with the equation {{Qk, yi}, y1} = 0 (see the proof of [T1, Lemma 2.1]), we get

{I yk,} = niG, yi}, Y1 =Res,=0 ((zLL)tr(xt(1 -z y) dz {k, yi
=z edet=(1-zA) j

35



Thus, we have

{Tk + Ck, Yi} = k{Ie, yj}
zj=1 i~i

S ( -)tr(x(1 - zA)~ 1 y)'-Z Res2o 4(z-1) z det(1 - zA) dz {Qkyi}.z=1

Hence, {Tk + Ck, Yi} = 0 is equivalent to the system of partial differential equations:

> n1 Oe {ei, yi}
ij=1

Resz=o ((z-1)tr(x (1 - zA) 1 y) dz {, y}
=z det(I - zA)d

Multiplying both sides by (-t)k and summing over k = 1,..., n, we obtain an equiv-

alent single equation

/ tr(x(1 - zA)y 1) f
= Res2=o ((z 1 ) zdt1- zA) dz {det(1 - tA), y;}.

i=1 zdt1-z)

Since all terms above are GL(n) invariant and diagonalizable matrices are dense

in glI, we can set A = diag(ai, . . . , a):

0c(t)
a

= Resz=o (Z 1) dz {det(1 - tA), y}
z(1 - zai) det(1 - zA)

((z-1) dz\ det(1 - tA)=eso z(1 - za) det(1 - zA) ) Oa

=-(Reszo ((z- 1 ) dz t det(1 - tA)
z(1 - zal) det(1 - zA) J - ta '

and it is easy to see that c(t) satisfies the above equation.

Example 2.2.1. In particular, ci = _jO (% tr Si+1A.

Remark 2.2.2. Another way of writing the formula for Ck is

dz
Ck = Resz=o C(z-')G(z) ,

where Gk(z) = E Zmym,k(A) and Ym,k(A) = X (m,1,...,1), the character of an irre-

ducible grn module corresponding to a hook Young diagram.1

' This formula follows from the fact that in the Grothendieck ring of finite dimensional g1
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2.2.2 Passing from Commutative to Noncommutative Alge-

bras

Note that {g, y} E S(g[,) 0 V for g E S(gr.) and y C V; we can thus identify

{g, y} = E 1 hi 0 y, c Hj(gl) with the element E', Sym(hi)yi E H((g[).

Lemma 2.2.1. We have

[tr Sk+lA, y] = {k k . n + tr Sk+-A, y}.Ek+n+1( j+1

Proof.

It is enough to consider the case y = y1. Recall that tr Sk+1 (A) can be written as

a sum of degree k + 1 monomials of form ei,il ... e,, e2 ,j -.. e2 ,i.,. . e,1e...

where s1 + - + sn = k + 1 and the sequence {k} is a permutation of the sequence

of si ones, S2 twos, and so forth; for conciseness, we will denote the above monomial

by ei, 1 * - * ef,ik+l. The only terms of tr Sk+1A that contribute to [tr Sk+lA, yi] and

to {tr Sk+lA, yi} have si > 1. Since to compute [tr Sk+1A, yi] we first symmetrize

tr Sk+1A, we will compute [Sym(ei,i1 ... ef,ik+l ), y1] - {Sym(ei,j 1 - -* e,i Y1 y}. For

both the Lie bracket and the Poisson bracket, we use Leibniz's rule to compute the

bracket, but whereas in the Poisson case we can transfer the resulting elements of V

to the right since the Poisson algebra is commutative, in the Lie case when we do so

extra terms appear.

Consider a typical term that may appear after we use Leibniz's rule to compute

[tr Sk+iA, yi]:

... yj- e - jNjN-1

When we move y3, to the right, we get, besides - -eiO * - * e2' ejNjN-1 *Yj 0 addi-

tional residual terms like - - - -e323i -- - ejNjN- 1 yj and * - ej3j2 - - * ejNjN-1 .. Y32, UP

to (-1)N ... YiN. Without loss of generality, we can consider only the last expression,

representations, [Ak VO SmV] - k+1 V V Sm-v]- + + (-1)m[A k+m V] = [V(m+i,,.1)] due to
Pieri's formula.
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since the others will appear in the smaller chains

y3 0  e 1 3 0 . 2.. 3 ..2 ... NN-1

and

yj0 310 e3231 . 332 . NjN-1I

and so forth, with the same coefficients. For notational convenience, we let z, denote

the coefficient of YJN in the residual term, i.e., the term represented by the ellipsis:

(-1)N YN. Then, ziyjN is a term in the expression (-1)N lN, Y1}, which

Z1

appears in (-1)N{tr Sk+1-NA, yi}. Thus, we can write

[tr Sk+lA, yi] = E(-)NCN tr Sk+1-NA, Y}
IN=0

for some coefficients CN-

Next, we compute CN- We first count how many times z1yjN appears in {tr Sk+1-NA, Yi

Notice that since z, is the product of k - N ejs, we can insert ejN1 in k - N + 1

places to obtain z 2 such that {z 2 , Y1} contains Z1YijN -

Now we compute the coefficient of z 2 in tr Sk+1-NA. As noted before, tr Sk+1-N (A)

can be written as a sum of degree k + 1 - N monomials of form

el,ij - - - ei,j, e2,, 1 1 -.- e2,i 2 * * - en,ik+l-N -

Any term that is a permutation of those k + 1 - N unit matrices will appear in

the symmetrization of tr Sk+1-NA. We count the number of sequences i, ... , ik+1-N

such that z 2 is the product of the elements e1 , 1,.... I en,ik+1-N (in some order); this

tells us the multiplicity of z2 in the symmetrization of tr Sk+1-NA. Suppose z 2 =

e,i-- en,ik+1-N for a certain sequence i, , ik+1-N. Then, z 2 = el, ... enik
' 'k+1-N

if and only if i'+ i is a permutation of i 1+---+ss- 1 +1,-s.

for all j. Thus, z 2 appears 8s!2! ... sn! times in tr Sk+1-NA. Since each term has
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coefficient +1)! in the symmetrization, z2 appears with coefficient

((k-N± 1)
s1!s2! -. -- Sn!

(k - N + 1)!

in the symmetrization of tr Sk+1-NA. In conjunction with the previous paragraph,

we see that ZYiJN appears

,sl!s2! -. -- Sn!
x

(k - N+ 1)!
(k-N+ 1)" (k!=

(k - N)!

It remains to calculate how many times Z1YjN appears in [tr Sk+lA, yi. Recall

that zi is obtained from a term like:

eO1- e O -- e -- JN N--1

where the ordered union of the ellipsis equals z1. Thus, z, comes from terms of the fol-

lowing form: we choose arbitrary numbers jo,. ., jN-1, and insert ejo , e31 0 ... , eiNiN-1

into z1.There are
(k + 1)(k) ... (k + 1 - N)

(N +1)!

ways for this choice for any fixed jo, ... , J-1. Any such term z3 appears in tr Sk+1A

with coefficient

(k + 1)!

where s' is the total number of eli's (for some i) in z3, i.e., sj+number of jj's with ji =

1, 0 ; i < N.

Combining the results of the last two paragraphs, we see that {tr Sk+1-NA, Y}

must appear with coefficient

(k + 1)(k) ... (k + I - N) s'! -.. s'!
(N + 1)! (k + 1)!

s1!s2! .. Sn!

(k - N)!
_ 1 s' 1! -. s't
(N±+ 1)! >3s1!s2!"---s

where the summation is over all length-N sequences {ji} of integers from 1 to n. We
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claim that

E s't - -- '
s1!*(k + n) (k + n +

To see this, notice that E is the coefficient of tN in the expression

N! I+ (si +1)t + (sj +1)(si +2)t2+ - )
The above generating function equals N! J"= (1 - t)-(si+) = N!(1 - t)-(k+1-N+n)

and the coefficient of tN in this expression is (k + n) ... (k + n - N + 1).

Finally, we arrive at the simplified coefficient of {tr Sk+1-NA, Y }:

1 s'i .. -s' (k + n) ... (k-
CN = (N + 1)! s 1!s2 !- s ! (N+

as desired.

Now we will give an alternative proof of Theorem 2.1.2.

Proof.

+ n - N + 1)
1)!

0

Let f(z) be the polynomial satisfying f(z) - f(z - 1) = O"(z ((z)) and g(z) =

z -,f(z) (in the expression for g(z), we discard any negative powers of z). Note

that if g(z) = gk+ 1 zk+1 + - - - + g1z, then

k+1 j-1 1 (j+ n

((z)= Sj+n i+1 (-1)g z--,
j=1 i=O

k-j+1 1

= j+i+n i+1 (

Lemma 2.2.1 allows us to write

[E1gjtr SA Y]

{k+1 k-j+1 1 (

j=1 i=O

j+n+( 1)ig tr Si-'A,y =

i+1
n) (- 1)ig+i trSiA,Y} = { j-1
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Hence,

n

[ti,y] = [xi, y]yi = z{xi, y}yi
k+1

= - (j-1 tr SiA, y

where the third equality follows from the fact that r1 + Z_+ (j-1 tr SiA is Poisson-

central in H((grn) (see Example 2.2.1). Thus, we get t' = t1 + C', where

k+1

C' = gj tr SiA = Res=o g(z- 1) det(1 - zA)-lz-ldz.
j=1

2.2.3 Poisson infinitesimal Cherednik algebras of SP2n

Choose a basis vj of V, so that the symplectic form w has a form

W(x, y) = xTJy,

with
I
I 0

-1

0

0

0

1 0

0 0

0 0

0 -1

0 0

0 0

0 .-. 0

0 ... 0

1.-- 0

0*--.

0 ... 0

0 -1

0

0

0

1

0

As before, we study the noncommutative infinitesimal Cherednik algebra H(sP2n) by

considering its Poisson analogue HC(sp 2n). We define El0 QIIZ2 = det(1 - zA) and

2n

S{ Q, vi}vi,
j=1
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where {vj} is dual to {vj} (that is, w(vi, vj) = 6wj). When viewed as an element of

C["P2n K V1,
i-1

T = - Qw(A2 -s1 2jv, v),
j=0

SO Ti is SP2n invariant and independent of the choice of basis {vi}.

Proposition 2.2.1. The Poisson center of Ho(' 2 n) is C['1,. .. , T].

Proof.

We will follow a similar approach as in the proof of [TI, Theorem 2.1]. Let L

be the Lie algebra SP2n D< V and S be the Lie group of L. We need to verify that

C[1,, Tn] = 3Pas(HO(SP2n)), the latter being identified with C[L*]s. Let M C L

be the 2n-dimensional subspace consisting of elements of the form

0 Y12 0 -- ' 0 0 0

Y21 0 0
0 - 0 Y2n-3,2n-2 0 0

0 0 Y2n-2,2n-3 0 0 0 0

0 --- 0 0 0 Y2n-1,2n 0

0 --- 0 0 0 0 \Y2n

where all the y's belong to C. In what follows, we identify L* and L via the non-

degenerate pairing, so that the coadjoint action of S is on L. We use the following

two facts proved in [Ka]: first, that the orbit of M under the coadjoint action of S

on L* is dense in L*; and second, that C[L*]s = C[fi, . .. , fn], where

filM (Y) = O'i-1(Y 2 ,Y1,2, Y3,2Y2,3,-- , y2n-2,2n-3Y2n-3,2n-2)Y2n-1,2ny2n

and o-j is the j-th elementary symmetric polynomial. It is straightforward to see that

-ilm = fi, and so C[L*]s = C[r 1 , ... ,rn] as desired. 0

As before, let ((z) = (0 + ( 2 z 2 + ( 4z 4 +...
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Theorem 2.2.2. The Poisson center 3pois(H'(SP2n)) = C[T1+Ci,T 2 +C 2 , .. ., Cn],

where (-1)ilci is the coefficient of t 2 i in the series

det(1 - tA) z-'c(t) = 2 Res,=o ((z- 1) dz.
det(1 - zA) 1 - z 2 t-2

Proof.

Since C E 3pojs(S(sp 2n)), {'T + cj, g} = 0 for any g C S(s0 2 ), and so it suffices to

show that {Ti + ci, v} = 0 for all v C V. By the Jacobi rule,

{Ti, v} = (-1)i- Z{fQ, v,}{v, v} + (ir-1 -Z{{1, Vj}, v}v;.
j j

Thus,

{Ti + ci, v} = (-I)i E{fQ, vj}{v, v} + (-l)1 Z{{sQ, o}, v}v + {c., v}. (2.1)

In the case of H,(g[n), EZ{{Qi, y3 }, Y}Xj = 0 by straightforward application of prop-

erties of the determinant. However, for H (s02 ), Ej{{Qi, v3 }, v}vj = 0. To calculate

this sum, let B be a basis of SP2n (for the purposes of this section the specific choice

of B is irrelevant). Write

Z{{1,i v}, v}v = { "9e(vj),v v =
i eEB ae

{Ze(v),Ivv* + { v e(vj)v).

Lemma 2.2.2. We have

v e(vj)v = 0.
j eEB a

We will prove this lemma in the end of this section.

Using the fact that Ef{{Qi, vi}, v}v7 = Ej EeEB %i{e(vj), v}v , we can restrict
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(2.1) to diagonal matrices, which are spanned by elements ej = diag(0, . .., 1, -1, 0,... , 0)

with 1 at the 2i - 1-th coordinate. Thus, the condition {ti + ci, v} = 0 is equivalent

to the following sum being zero:

(-1)-1 z {ek, vo{ foj, V} + (-1)i1
k k

E 9{ek, v} = 2(--1
k e

{V2k-1, V}V2k + -. 2 .{V2k, V}V2k-1 +
dek 09 ek+

(V2k-1{v2k, V} + V2k{V2k-1, V}) +

Multiplying the above equation by (-1) lt 2 and summing over i for i = 1,...,n,

the required condition transforms into:

0det( - tA) (V2k-{V2k, v} + V2k{V2k-1, V) + {ek, v}.02 Oek e
k k&e

It suffices to check this condition for basis vectors v = V2-1 and v = V2s. Substituting,

we get

& det(1 - tA) &c(t)
0 = 2 E e (V2k-1{V2k, V2-1} + V2k{V2k-1, v 2 - 1}) + V2s-1

k

and

0= ~ det(1 - tA) &c(t)0 = 2 (V2k-1{V2k, V2s} + V2k{2k-1, V2ss - V2.-

k ie 
e

These last two formulas both reduce to

= det(1 - tA) I V 2 s-1}= -2 {2,v31
aes

= -2 adet(1 - tA) (ResZ=o((z-1 )w(v2, (1 - 22-iV29-1)
- e2

= 2 Res2=o C(z-1) a e 1 - z2 _ det(1 - zA)-'z-ldz,

and it is straightforward to verify that c(t) satisfies the above equation.

det(1 - zA)>z-ldz)

0
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2.2.4 Proof of Lemma 2.2.2

In this section, we will outline the proof of Lemma 2.2.2, which states:

2,nj v e(vi)v; = 0. (2.2)
j=1 eEBI

We use the basis for V defined in Section 2.2.3, in which w is represented by the

matrix J.

Let us multiply (2.2) by t 2 ' and sum over i to get the equivalent assertion that

zz det(1 - tA) 1 e(vj)v =0.
j eEB

Since the whole sum is Sp 2n-invariant (even though each term considered separately

is not), we can look at the restriction of the sum to 4. Thus, this sum equals zero if

and only if

zz { det(1 - tA) V e(v,)v 0.
j eEB Oe

We choose the following basis B for 02n: e2j-1,2j, e2,2j-1, e2j-1,2j-1 - e2j,2j, for all

1 < j < n, and for all 1 < k < 1 < n, the elements e21-1,2k + e2k-1,21, e21,2k - e2k-1,2U-1,

e2l-1,2k-1 - e2k,21, and e2,2k-1 + e2k,21-1. We observe that for any 1 < j, j' < 2n, there

exists a unique basis vector in B that takes vj to ±v; we shall denote this element

by vjl,j E B. These vy,j are not pairwise distinct since there are basis vectors with

two nonzero entries.

Since SP2n acts transitively on V, we can assume v = vi. Using the above basis,

we get

E det(1 - tA) ,viIj2 det(1 - tA) *
j e(veE) = &V,1&3 , - Vi9, -V(-1)",

j eEB jJ',k ' ,
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where

1 ifj j'mod2 andj <j', or if j'=j andj iseven,
Lii, =

0 otherwise.

We now restrict to [. We have a2 det(-t) 4 0 only when the matrices for Vk,1 and

Viij have nonzero entries on the diagonal, or if Vk,1 and vj,, have nonzero entries at the

i-th row j-th column and j-th row i-th column, respectively. This can only happen

when Vj'VkV7 = vivav* for some a. We can list all the ways this can happen for a = 2b

or a = 2b - 1 with b # 1 (keeping in mind that V2b_1 = V2b and V2b =-V2--1)

a2 det(1-tA)
'9V,19V2b-1,2b-1 V1V2b1V2b,

2. a2 
det(1-tA) V2bV12b-1,

Dy 1 , 1 aV2b,2b

3 82 det(1-tA) V1V2b1V2b,
. V2b-1,VV1,2b21

92 det(1-MA)
5. o2 (-V2b-1V2bV1),

6. 8
2 det(l-tA) V2b1lV2bV1.

- v2b-1,1&v2b,2v2-va1

To calculate the derivatives, let A 1 be the 4 by 4 matrix formed by the intersections of

the first, second, 2b - 1-th, and 2b-th rows and columns of A, and let A 2 be the 2n -4

by 2n -4 matrix formed by the intersections of the remaining rows and columns. The

space of all such A 2 is isomorphic to ZP2n-4, and we denote the Cartan subalgebra of

diagonal matrices of this space by [(A 2). All six of the above derivatives evaluate to

the same polynomial in [(A 2 ) times the corresponding derivative in sP4; for instance,

.2 det(1-tA) h 2 det(1-A) with v'1,1 , v3, 3 E 0p4 and h c S([ (A2 ))[t]. Thus, we can
DV1,1V2b-1,2b-1 - y'1 ,1O3,3

reduce our problem to sP4, and straightforward computations verify (2.2) for SP4.

Similarly, when b = 1 (that is, when the term is of the form viviv 2), all computations

will reduce to analogous ones in SP2-
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Chapter 3

Infinitesimal Cherednik algebras as

W-algebras

This chapter is based on [LT].

3.1 Basics

3.1.1 Length of the deformation

We start this section by investigating for which deformation parameters ( and C', the

infinitesimal Cherednik algebras H((g ), HC,(g([) are isomorphic. Even for n = 1

(when H((g[1 ) are simply the generalized Weyl algebras), the answer to this question

(given in [BJ]) is quite nontrivial. Instead, we will look only for the filtration preserv-

ing isomorphisms, where both algebras are endowed with the N-th standard filtration

{J.N)}. Those are induced from the grading on T(g[n D V, E V*) with deg(gn) = 2

and deg(V e V*) = N, where N > l(C). For N > max{l(() + 1, l((') +1, 3} we have

the following result:

Lemma 3.1.1. (a) N-standardly filtered algebras HC(g[n) and H(,(gt.) are isomor-

phic if and only if there exist A E C, 0 E C*, s E {+} such that (' = OoA((s), where

* SA : U(g[.) -~+ U(g(U) is an isomorphism defined by .pA(A) = A + A trA for

any A E g[n,
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Sfor ( = (OrO + 1r1 + r2 +...- we define - := (Oro - r1 + (2r2 - -. , =+ -

(b) For any length m deformation (, there is a length m deformation C' with ' =

1, C,'-i =0, such that algebras HC(g() and H(,(grn) are isomorphic as filtered alge-

bras.

Same discussion can be applied to the sp2n-case. For any N > 2l((), we introduce

the N-th standard filtration {y.N)} on H(sSP2n) by setting deg(SP2 ) = 2, deg(V2 n) =

N. The following result is analogous to Lemma 3.1.1:

Lemma 3.1.2. For N > max{2l(() + 1, 2l(c') + 1, 3}, the N-standardly filtered al-

gebras Hc(SP2n) and HV,(* 2 n) are isomorphic if and only if there exists 6 E C* such

that (' = 0(.

3.1.2 Proof of Lemmas 3.1.1, 3.1.2

* Proof of Lemma 3.1.1(a)

Let # : H((gl) -~-+ H,(gl() be a filtration preserving isomorphism. We have

0(1) = 1, so that # is the identity on the 0-th level of the filtration.

Since Y N)(H((gIn)) = (2N)(H',(0) = U(gr1)< 1, we have O(A) = O(A) +

-y(A), VA E g1, with *(A) E grn, y(A) C C. Then Q([A, B]) = [O(A), #(B)] for

all A, B E g( if and only if 7([A, B]) = 0 and b is an automorphism of the Lie

algebra g(I. Since [gn, g,] = s[I, we have 7y(A) = A -tr A for some A E C. For n > 3,

Aut(g[n) = Aut(sln) x Aut(C) = (A2 x SL(n)) x C*, where -1 E A2 acts on s5n via

o- : A -+ -A'. This determines # up to the filtration level N - 1.

Finally, (H(g.)) = yN)(Hg,(g[)) = D * U(0)<l . As explained,

/jIU(g() is parameterized by (e, T, v, A) E (p2 x SL(n)) x C* x C (no p2-factor for

n = 1, 2). Let I, E g(l be the identity matrix. Note that [In, y] = y, [In, x] =

-x, [In, A] = 0 for any y E Vn, x c V*, A E gl. Since 0(y) = [v - In + nA, #(y)] =

v[In, # (y)], Vy E Vn, we get v = ±1.

Case 1: v = 1. Then 0(y) E Vn, O(x) E V* (Vy E Vn, x E V*). Since K 9 V

as sle-modules for n > 3 and EndI(V) = C*, we get E = 1 E A2 (so that O(A) =

TAT- 1 , VA E sln) and there exist 01, 02 C* such that 0(y) = 01 - T(y), (x) =
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02 .T(x) (Vy E V, x E Vn*). Hence, we get W(T, A)(((y, x)) = #([y, x]) = [#(y), #(x)] =

0('(T(y), T(x)), where 0 = 0102 and isomorphism W(T, A) : U(grn) -~+ U(g1n) is

defined by A F4 TAT- + A tr A, VA E g(.

Thus, (' = 0-'ox((+) in that case.

Case 2: v = -1. Then 0(y) E V*, O(x) E V (Vy E V, x E V*). Similarly to

the above reasoning we get c = -1 E Ap2 ,0$(A) = -TAIT-' + A tr A (VA E gIn), So

that there exist 91, 02 E C* such that #(yi) = 91 - T(xi), 0 (xi) = 02 T(yj). Then

$(C(yi, X3)) = -- 1i2('(T(yj), T(xi)).

Hence, C' = -91-'92i-oA((-) in that case.

Finally, the above arguments also provide isomorphisms #eA,: HC(g() ~-

Hep(C.)(grfn) for any deformation C, constants A E C, 9 E C* and a sign s E {±}.

* Proof of Lemma 3.1.1(b)

Let ( be a length m deformation. Since (0()m = 0(m, we can assume Cm = 1.

We claim that (()m-1 = 0 for A = -(m-i/(n + m), which is equivalent to m=
aIn

(n + m)am-,. This equality follows from comparing coefficients of sr m in the identity

E ai(y, x)(A + sIn)Ti = (1 - s n)-1 - ai(y, x)(A)(r(1 - s)-l)i.

* Proof of Lemma 3.1.2

Let # : Hg(2n) ~+ H(,(4'2n) be a filtration preserving isomorphism. Being an

isomorphism, we have 0(1) = 1, so that # is the identity on the 0-th level of the

filtration.

Since i<2N)(H((sIP2 n)) = N)(H0,(sp 2 n)) = U(0 2 )<1, we have #(A) = *(A) +

y(A) for all A E 012n, with V/(A) E 0 2 , 7y(A) E C. Then 0([A, B]) = [O(A), #(B)]

for all A, B E SP2n if and only if y([A, B]) = 0 and 0 is an automorphism of the Lie

algebra SP2n. Since [02n, 012n] = sp2n, we have -y = 0. Meanwhile, any automorphism

of P2n is inner, since SP2n is a simple Lie algebra whose Dynkin diagram has no

automorphisms. This proves #IU(sP2 ) = Ad(T), T E SP2n. Composing with an

automorphism 0' of HC,(p 2 ), defined by 0'(A) = Ad(T-1)(A), 0'(x) = T-1(x) (A E

02n, X E V2n) we can assume 01U(0p0 = Id.
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Recall the element I, = diag(1,..., 1, -1, ... -1) C 02n. Since ad(I') has only

even eigenvalues on U(0 2n) and eigenvalues ±1 on V24, we actually have 0(V 2 n) c V2 n-

Together with End, 2 n(V2 ) = C* this implies the result.

The converse, that is HC(p2) = HOC(0 2n) for any ( and 0 C C*, is obvious.

3.1.3 Universal algebras Hm(grn) and Hm(P 2 n)

It is natural to consider a version of the infinitesimal Cherednik algebras with (j being

independent central variables. This motivates the following notion of the universal

length m infinitesimal Cherednik algebras.

Definition 3.1.1. The universal length m infinitesimal Cherednik algebra Hm(grn)

is the quotient of U(gn) D T(Vn ( V*)[(o, (.. , m-2] by the relations

m-2

[x, X'] = 0, [y, y'] = 0, [A, x] = A(x), [A, y] = A(y), [y, x] = S (j r (y, x) + rm(y, x),
j=0

where x, x' C V*, y, y' E V, A E g[n and {(_}"-2 are central. The filtration is

induced from the grading on T(g[, E Vn e V*) [(o, ... , Cm-21 with

deg(gln) = 2, deg(Vn D V*) = m + 1, deg((i) = 2(m - i)

(the latter is chosen in such a way that deg((jrj) = 2m for all j).

Algebra Hm(0[I) is free over C[(o, . . ., Cm-2] and Hm(gIn)/(Co -co, ... , (m-2-Cm-2)

is the usual infinitesimal Cherednik algebra H, (g[1) with Cc = coro +. .. +cm- 2 rm-2 +

rm. In fact, for odd m, Hm(gn) can be viewed as a universal family of length m

infinitesimal Cherednik algebras of g(, while for even m, there is an action of Z/2Z

we should quotient by (this follows from our proof of Lemma 3.1.1).

Remark 3.1.1. One can consider all possible quotients

U(grI) xT(VneV*)[(o, .. ., (m- 2 ]/([X, x'],[y, y'], [A, x]-A(x), [A, y]-A(y), [y, x]-r(y, x)),
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with a g(n-invariant pairing 77: V xIV/* -+ U(gn)[ 0 , .. . , (m-2], such that deg(r/(y, x))

2m. Such a quotient satisfies a PBW property if and only if

?(y, X) = E i(o,. .. , m-2)ri(y, x) with deg(ri((o,... , (m-2)) 5 2(m - i)
i=0

(this is completely analogous to [EGG, Theorem 4.2]).

We define the universal version of HC(SP2n) in a similar way:

Definition 3.1.2. The universal length m infinitesimal Cherednik algebra Hm(5* 2n)

is defined as

rn-1

Hm(0P2n) := U(SP2n) <T(Vn)[O,. -. ., (m_1]/([A, x]-A(x), [x, y]-E (jr2j(x, y)-r2m(X, Y)),
j=0

where A E 0l2n, X, y E V2n and { }l_ are central. The filtration is induced from

the grading on T(Sp2n ( V2n)(O,... , Cm-1] with deg(sP2n) = 2, deg(V2 n) = 2m + 1

and deg(() = 4(m - i).

The algebra Hm(SP2n) is free over C[(, ... , Cm-i] and Hm(0p2n)/(Cco,.. ., (M-1-

Cmi-) is the usual infinitesimal Cherednik algebra Hc,(012n) for c = coro + ... +

cm-ir2(m-1) + r2m. In fact, the algebra Hm(5P2n) can be viewed as a universal family

of length m infinitesimal Cherednik algebras of 012n, due to Lemma 3.1.2.

Remark 3.1.2. Analogously to Remark 3.1.1, the result of [EGG, Theorem 4.2], gen-

eralizes straightforwardly to the case of SP2n-invariant pairings ri V2q x V2n

U(0p2n)[K0, -- -, (M-11].

3.1.4 Poisson counterparts of Hm(g)

Following Section 2.2, we introduce the Poisson algebras Hm (g) for g = In or 5S2n. As

algebras these are S(g[neVn(Vn[o, ... , Cm-2] (respectively S(SP2nV 2 n) [(o, -1 , (m-1])

with a Poisson bracket {-, .} modeled after the commutator [-, -] from the defini-

tion of Hm(g), so that {y, x} = am(y, x) + E m 2 (ja (y,x) (respectively {x, y} =

#2m(x,y) + E'i_1 (j#2(x,y)). Their quotients Hm(gr)/(Co - CO, .. ., Cm-2 - Cm-2)
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and Hc(sP2 ,)/((o - CO, ... , (M-1 - cm-1), are the Poisson infinitesimal Cherednik al-

gebras Hc (gI.) (Cc = coao + ... + Cm- 2 am- 2 + am) and Hc'(sP2.) ((C = coo + ... +

Cm-i1 2m- 2 + 02m) from Section 2.2.

Let us describe the Poisson centers of the algebras Hm (g[.) and H (-S2)-

For g = g I and 1 < k < n we define an element 1r)E Hm(g) by rk := En 1 Xi{Qk, Yi},

where 1 + Ej Qjz3 = det(1 + zA). We set ((w) := Z ( Ciw + wm and define

ci c S(g[1 ) via

t 1det(1 - tA) z-dz
c(t) = 1+ (-1)citi := Res,=o((z-')

i=i det(1 - zA) 1 - t-1z

For g = SP2n and 1 < k < n we define an element rk E H'(g) by r := {1k, y=}y ",

where 1+ Z=1 z2 ' = det(1+ zA), while {y;}%1 and {yi}1 are the dual bases of

V2 n, that is W(yi, yj)=i. We set ((w) := EmI"'_ Ciw + wm and define ci E S(SP2n) via

c(t) = 1 + nc t 2
i := 2Res 2=o((z-2) det( - tA) zldz

det(1 - zA) 1 - t- 2z 2

The following result is a consequence of our computations from Section 2.2:

Theorem 3.1.3. We have:

(a) The Poisson center 3ps(Hm (g ()) is a polynomial algebra in free generators

{ I,..(m-2,T1 +C1,...,n + Cn}

(b) The Poisson center 3p 0is(H2(P2J2 )) is a polynomial algebra in free generators

{(0,...,(m-1,71 +C1,...,.rn+ cn}.

3.1.5 W-algebras

Here we recall finite W-algebras following [GG].

Let g be a finite dimensional simple Lie algebra over C and e E g be a nonzero

nilpotent element. We identify g with g* via the Killing form ( ). Let x be the

element of g* corresponding to e and 3x be the stabilizer of x in g (which is the same

as the centralizer of e in g). Fix an s[2-triple (e, h, f) in g. Then 3x is ad(h)-stable
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and the eigenvalues of ad(h) on 3x are nonnegative integers.

Consider the ad(h)-weight grading on g, that is,

g = @g(i), where g(i) := {C E g|[h, ] = i }.
iEZ

Equip g(-1) with the symplectic form x( , ?7) (x, [(, i]). Fix a Lagrangian sub-

space 1 C g(-1) and set m := 2 g(i) ( 1 C g, m' := {{ - (X,), E m} c U(g).

Definition 3.1.3. [P1, GG] By the W-algebra associated with e (and 1), we mean

the algebra U(g, e) := (U(0)/U(g)m')adm with multiplication induced from U(g).

Let {F'} denote the PBW filtration on U(g), while U(g)(i) := {x c U(g)I[h, x] =

ix}. Define FkU(g) = Ej+2j<k(Fj-U(g)n U(g)(i)) and equip U(g, e) with the induced

filtration, denoted {F.} and referred to as the Kazhdan filtration.

One of the key results of [P1, GG] is a description of the associated graded algebra

grF. U(g, e). Recall that the affine subspace S := x + (g/[g, f])* C g* is called the

Slodowy slice. As an affine subspace of g, the Slodowy slice S coincides with e + c,

where c = Kerg ad(f). So we can identify C[S] a C[c] with the symmetric algebra

S(3x). According to [GG, Section 3], algebra C[S] inherits a Poisson structure from

C[g*] and is also graded with deg(3x n g(i)) = i + 2.

Theorem 3.1.4. [GG, Theorem 4. 1] The filtered algebra U(g, e) does not depend on

the choice of 1 (up to a distinguished isomorphism) and grF. U(g, e) = C[S] as graded

Poisson algebras.

3.1.6 Additional properties of W-algebras

We want to describe some other properties of U(g, e).

(a) Let G be the adjoint group of g. There is a natural action of the group

Q := ZG(e,h,f) on U(g,e), due to [GG]. Let q stand for the Lie algebra of Q.

In [P2] Premet constructed a Lie algebra embedding q -4 U(g, e). The adjoint action

of q on U(g, e) coincides with the differential of the aforementioned Q-action.
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(b) Restricting the natural map U(g)adm -+ U(g, e) to Z(U(g)), we get an algebra

homomorphism Z(U(g)) -2+ Z(U(g, e)), where Z(A) stands for the center of an

algebra A. According to the following theorem, p is an isomorphism:

Theorem 3.1.5. (a) [P1, Section 6.2] The homomorphism p is injective.

(b) [P2, footnote to Question 5.1] The homomorphism p is surjective.

3.2 Main Theorem

Let us consider g = SoNor g = SP2N, and let em E g be a 1-block nilpotent element of

Jordan type (1,. ... , 1, m) or (1,.. ,1, 2m), respectively. We make a particular choice

of such em:

* em = EN-m+1,N-m+2 + .. + EN-1,N in the case of SN, 2 K m K N,

* em = EN-m+,N-m+2 + - - + EN+m-1,N+m in the case of SP2N, 1 K m K N.1

Recall the Lie algebra inclusion t : q - U(g, e) from Section 3.1.6. In our cases:

" For (g, e) = (sln+m, em), we have q ~ gn. Define T E U(sLn+m, em) to be the

t-image of the identity matrix In C g(l, the latter being identified with

m m -n -n
Tam = diag( ,---. , , ,-- , ).

' d n+m n+m'n+m' n+m

under the inclusion q " stn+m. Let Gr be the induced ad(T)-weight grading on

U(sdn+m, em), with the j-th grading component denoted by U(sn+m, em)j-

e For (g, e) = (S2n+2m, em), we have q ~ SP2n. Define T' := t(I') E U(SP2n+2m, em),

where I' = diag(1,. . ., 1, -1, ... , -1) E SP2n ~ q. Let Gr be the induced ad(T')-

weight grading on U(SP2n+2m, em) = (j U(SP2n+2m, em)j.

Lemma 3.2.1. There is a natural Lie algebra inclusion E : ln <K, -+ U(sdn+m, em)

such that E 9(= t 1g and E(V) = Fm+iU(Sln+m, em)i-

1 We view SP2N as corresponding to the pair (V2N, W2N), where W2N is represented by the skew

symmetric antidiagonal matrix J = (Ji := (-l)i3jN+l)1<i,j<2N. In this presentation, A = (aij) E

SP2N if and only if a2N+1-j,2N+1-i = (~1)i+j+laij for any 1 < ij < 2N.
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Proof.

First, choose a Jacobson-Morozov s[2-triple (em, hm, fm) C Sn+m in a standard

way.2 As a vector space, 3. g[, D V, ®D V* D Cm-1 with

B[n = 3x(O) = q, K E VG * C 3,(m - 1), j E 3,(2m - 2j - 2).

Here Cm-1 has a basis {m-2-j = En+1 ,n+j+2 + .. . + En+m-j-l,n+m}jo2, Vn @ V* is

embedded via yi H- Ei,n+m, Xi En+,i, while gLn ~ C- I is embedded in the

following way: S£n + ,Sn+m as a left-up block, while In H+ T,m.

Under the identification grF. U(sn+m, em) - C[S] - S(3.), the induced grading

Gr' on S(3x) is the ad(Tn,m)-weight grading. Together with the above description of

ad(hm)-grading on 3x, this implies that FmU(z[n+m, em)1 = 0 and that Fm+iU(s~n m, em)1

coincides with the image of the composition Vn -4 3x - S(3x). Let E(y) E

Fm+iU(s~n+m, em)i be the element whose image is identified with y. We also set

E(A) := t(A) for A E gn. Finally, we define () grn ( I7 - U(Sln+m, em) by

linearity. We claim that E is a Lie algebra inclusion, that is

[e(A), e(B)] = e([A, B]), [e(y), e(y')] = 0, [e(A), e(y)] = e(A(y))

for all A, B E grn, y, y' E Vn. The first equality follows from [e(A), E(B)] = [t(A), t(B)] =

t([A, B]) = E([A, B]). The second one follows from the observation that [E(y), E(y')] E

F2mU(g, em) 2 and the only such element is 0. Similarly, [e(A), e(y)] E Fm+iU(g, em)1 ,

so that [e(A), e(y)] = E(y') for some y' c Vn. Since y' = gr(E(y')) = gr([e(A), e(y)]) =

[A, y] = A(y), we get [E(A), e(y)] = E(A(y)).

Our main result is:

Theorem 3.2.2. (a) There is a unique isomorphism e : Hm(gn)-+U([n+m, em) of

filtered algebras, whose restriction to sn < Vn -+ Hm(grn) is equal to E (we assume

m > 2).

2 That is we set hm :='" (m +1 - 2j)En+j,n+j and fm := '"l j(m -j)En++,n+j-
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(b) There are exactly two isomorphisms G(1), G(2) : Hm( 2n) -U(SP 2n+2m, em) of

filtered algebras such that Ge() 102n= t |,, (we assume m > 1). Moreover, we have

()(2) o E)- : y - -Y, A - A,C (k -+(.

Let us point out that there is no explicit presentation of W-algebras in terms

of generators and relations in general. Among few known cases are: (a) g = O[ ,

due to [BK1], (b) g E e-the minimal nilpotent, due to [P2, Section 6]. The latter

corresponds to (e2,sIN) and (e1,SP2N) in our notation.

Proof of Theorem 3.2.2.

(a) Analogously to Lemma 3.2.1, we have an identification Fm+iU(Sin+m, em)i ~ V-n*

For any x C V*, let e(x) E Fm+iU(S(n+m, em)-1 be the element identified with x E V*.

The same argument as in the proof of Lemma 3.2.1 implies [e(A), e(x)] = E(A(x)).

Let {#j} +m be the standard degree j generators of C[5 (n+m]SLn+m ~ S(Srn+m)SLn+m

(that is 1 + Z"_+2Fj(A)zj = det(1 + zA) for A E s ,+m) and F := Sym(Fj) E

U(sIn+m) be the free generators of Z(U(sLn+m)). For all 0 < i < m - 2 we set E9:

p(Fm-i) E Z(U(dsn+m, em)). Then gr(Ek) = Fm-kIs - mod S(g[n e Ik C 1),

where k was defined in the proof of Lemma 3.2.1.

Let U' be a subalgebra of U(s[n+m, em), generated by 0(g[) and {E} m- 2 . For

all y E Vn, x E V* we define W(y, x) := [E(y), E(x)] C F2mU(s[n+m, em)o C U'.

Let us point out that equalities [E(A), E(x)] = E([A, x]), [E(A), E(y)] = E([A, y])

(for all A C g[I, y E V, x E V*) imply the g(n-invariance of W : Vn x V-* + U' ~

U(g[n)[Eo,.... m-21-

By Theorem 3.1.4, U(sLn+m, em) has a basis formed by the ordered monomials in

{E)(Eij), E)(yk), E)(XI), EO,..., Em-2}-

In particular, U(Sn+m, em) ~ U(g[1) x T(Vn e V)[ 0, ... , m- 2]/(y 0 x - x 0 y -

W(y, x)) satisfies the PBW property. According to Remark 3.1.1, there exist poly-

nomials 71i E C[9, . - - , (m- 2 ], for 0 < i < m - 2, such that W(y, x) = Z rjr (y, x)
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and deg(rqi(Eo,. .. , Em- 2)) 2(m - i). As a consequence of the latter condition:

r7m, ,7m-1 E C. The following claim follows from the main result of the next section:

Claim 3.2.3. (i) The constant rim is nonzero,

(ii) The polynomial 7mi(Eo, ... ,m- 2 ) contains a nonzero multiple of , Vi < m - 2.

This claim implies the existence and uniqueness of e : Hm(mn) -4U(S n+m, em)

with O(yk) = e(Yk) and G(A) = O(A) for A E S ,. Moreover, G(Xk) = r7-1 e(Xk) and

)(In) = E(In) - " 3, while E((k) E C[ek,.., m-2-

(b) Choose a Jacobson-Morozov S( 2-triple (em, hm, fm) C SP2n+2m in a standard way.'

As a vector space, S r sP2n @ V2n e Cm with sP2n = 3X(0), V2n = 3x(2m - 1) and j E

3x (4m - 4j - 2). Here Cm has a basis {{m-k = En+1,n+2k +. .. + En+2m-2k+1,n+2mlm=l,

V2 n is embedded via (i < n)

yi F Ei,n+2m + (-1)n+i+lEn+1,2n+2m+i-i, Yn+i '-+ En+2m+i,n+2m + (-1)i+1En+1,n+1-i,

while q = 3x(0) ~ SP2n is embedded in a natural way (via four n xn corner blocks). Re-

call the grading Gr on U(SP2n+2m, em). The induced grading Gr' on gr U(SP2n+2m, em),

is the ad(I')-weight grading on S(3). The operator ad(I') acts trivially on Cm, with

even eigenvalues on SP2n and with eigenvalues +1 on V2, where V2 is spanned by

{Yi}isn, while V; is spanned by {Yn+ili<n-

Analogously to Lemma 3.2.1, we get identifications of F2m+1U(SP 2n+2m, em)± and

V2 . For y E V2 , let 6(y) be the corresponding element of F2m+iU(P 2 n+2m, em)±,

while for A E SP2n we set E(A) := t(A). We define E : SP2nEV 2n " U(SP 2n+ 2 m, em) by

linearity. The same reasoning as in the g[n-case proves that [E(A), e(y)] = E(A(y))

for any A E sp2n, y E V2n-

Finally, the argument involving the center goes along the same lines, so we can

pick central generators {ek}O<k<m-1 such that gr(Ek) - mod S(SP2n e Ck+1 e

... e C~m-).

3 The appearance of the constant n' ", is explained by the proof of Lemma 3.1.1(b).

4 That is hm := "(2m + 1 - 2j)En+j,n+j and fm =_1 j(2m - j)En+j+1,n+i-
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Let U' be the subalgebra of U(SP 2 n+ 2m, em), generated by e(P2n) and {e}-O, .

For x, y E V2,, we set W(x, y) := [E(x), E(y)] E F4mU(sP2 n+2 m, em)even C U'. The

map

W: V2n x V2n -+ U' ~ U(SP2n )[E 0 , ... Iem-1]

is SP2n-invariant.

Since U(SP2n+2m, em) ~ U(SP2n) v T(v2n) [eo, .-.. , Em-]/(x 0 y - y 0x - W(x, y))

satisfies the PBW property, there exist polynomials Tb E C[E 0 , ... , eM- 1], for 0 <

i < m - 1, such that W(x, y) = E 77r 2 (x, y) and deg(7;(eo, . .. , em-1)) 4(m - i)

(Remark 3.1.2). The following result is analogous to Claim 3.2.3:

Claim 3.2.4. (i) The constant Tm is nonzero,

(ii) The polynomial 7i(Eo, .. .,-1) contains a nonzero multiple of &i, Vi < m -1.

This claim implies Theorem 3.2.2(b), where G(j)(y) = A -E(y) for all y E V2n and

3.3 Poisson analogue of Theorem 3.2.2

To state the main result of this section, let us introduce more notation:

* In the contexts of (srn+m, em) and (SP2n+2m, em), we use Sn,m and 3n,m instead of S

and 3x.

e Let T : grf ( Vn ( Vn* ( C'- 1 ~+* 3 n,m be the identification from the proof of

Lemma 3.2.1.

* Let T : SP2n ( V2n G Cm.~+3 nm be the identification from the proof of Theo-

rem 3.2.2(b).

* Define ek = gr(ek) E S(3n,m) 0 < k < m - s, where s = 1 for 5 P2N and s = 2 for

-SN-

e We consider the Poisson structure on S(3n,m) arising from the identification

S(3n,m) ~ C[Sn,m].
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The following theorem can be viewed as a Poisson analogue of Theorem 3.2.2:

Theorem 3.3.1. (a) The formulas

ecl(A) = T(A), ecl(y) =( c(x) = T(x), c1((k) = (_1)m-gk

define an isomorphism ci: Hc(gl)- 2 +S(3nm) ~ C[Sn,m] of Poisson algebras.

(b) The formulas

Oc(A) = T(A), c(y) = T(y)/V" GeCl((k) = Ok

define an isomorphism eci : Hm(P 2 n) ~4S(3 n,m) ~ C[Sn,m] of Poisson algebras.

Claims 3.2.3 and 3.2.4 follow from this theorem.

Remark 3.3.1. An alternative proof of Claims 3.2.3 and 3.2.4 is based on the recent

result of [LNS] about the universal Poisson deformation of S fN (here N denotes the

nilpotent cone of the Lie algebra g). We find this argument a bit overkilling (besides,

it does not provide precise formulas in the Poisson case).

Proof of Theorem 3.3.1.

(a) The Poisson algebra S(3n,m) is equipped both with the Kazhdan grading and

the internal grading Gr'. In particular, the same reasoning as in the proof of Theo-

rem 3.2.2(a) implies:

{IT(A), i(B)} = i([A, B]), {T(A), T(y)} = T(A(y)), {(A), T(x)} = T(A(x))

We set W(y, x) := {i(y), T(x)} for all y E V, X E V*. Arguments analogous to

those used in the proof of Theorem 3.2.2(a) imply an existence of polynomials i E

C[ 0o,... ,m-21 such that W(y, x) = EZ jaj(y, x) and deg(%(G o ,. . .,Gm- 2 )) =

2(m - j).

Combining this with Theorem 3.1.3(a) one gets that

r'= xjyj + Z? tr Sij+A
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is a Poisson-central element of S(3n,m) a C[Sn,ml-

Let i : 3pois(C[s[n+m) - 3Pois(C[Sn,m]) be the restriction homomorphism. The

Poisson analogue of Theorem 3.1.5 (which is, actually, much simpler) states that P is

an isomorphism. In particular, rT = cp(Fm+i) +p(f(.2), -, p(Fm)) for some c C C

and a polynomial p.

Note that fi(F) = em-i for all 2 K i K m. Let us now express P(Fm+i) via the

generators of S(3n,m). First, we describe explicitly the slice Sn,m. It consists of the

following elements:

jem ± S + uEi,n+1 + viEn+m,i + Wkfmk - m ~ 5 Ejj
i,j<n i<n i<n k<m-1 n<j<n+m J

which can be explicitly depicted as follows:

Sn,m = X =

/ X1,1

x 2,1

xn,1

0

0

0

V1

X1 ,2

X2,2

Xn,2

0

0

0

V2

... X1,n

... X2,n

... Xn,n

0

0

0

... - Vn

U1

U 2

Un

A

*

*

*

0

0

0

1

A

*

*

For X E stn+m of the above form let us define X, E g[1, X 2 E grm by

I
X1 := E ,3 jEjj, X 2 := em + E Wkfrn

i,j<n k<m-1

x 11 + - - + Xnn

n<j3n+m

that is, X1 and X 2 are the left-up n x n and right-down m x m blocks of X, respectively.

The following result is straightforward:

Lemma 3.3.2. Let X, X 1 , X 2 be as above. Then:

(i) For 2 K k <m : Fk(X) = tr Ak(X1) + tr Ak-(Xi) tr A'(X 2) + ... + tr Ak(X 2).
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(ii) We have Fm+i(X) = (-1)m E uivi + tr A+(Xi) + tr Am(Xi) tr Al(X 2 ) +... +

tr At+ (X2).

Combining both statements of this lemma with the standard equality

E (-1) tr S'-(X 1) tr Ai(X) = 0,
Ogjil

Vl > 1, (3.1)

we obtain the following result:

Lemma 3.3.3. For any X E Sn,m we have:

Fm+1(X) = (-1)"' EUivi+ (-1)M -Fj(x)

Proof of Lemma 3.3.3.

Lemma 3.3.2(i) and equality (1) imply by an

tr Sm+1-i (X1 ) + (-1)m tr Sm+ 1(X 1 ).

(3.2)

induction on k:

tr Ak(X 2 ) = Fk(X)-trS (X)Fk_1(X)+trS2 (X)F-2 (X)-. .(-l* tr Sk(X 1 )F(X),

for all k < m, where F1 (X) := 0, Fo(X) := 1.

Those equalities together with Lemma 3.3.2(ii) imply:

Fm+1(X) = 1)"'5 uivi + (-1)k tr Am+ 1 k(X1) tr Sk(X 1 )j(X).
Oij:m Oik<m+1-j

According to (1), we have EZ-o(-1)k tr Am+ 1 i--k(X 1 ) tr Sk(X 1) = (-1)m- tr Sm+1 3 (X 1).
Recalling our convention F 1 (X) = 0, Fo(X) = 1, we get (2). I

Identifying C[Sn,m] with S(3n,m) we get

g(Fm+ 1 ) = (-1)m ( xiyi + tr Sm+'1 A + E (-l)iom-j tr Sm+-iA)
\ 2<jim

(3.3)

Substituting this into T, = CP(Fm+i) +p(Go, e- 2 ) with Gm-1 := 0, Gm := 1,
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we get

p(Go,...,em- 2 ) = (1-(-)"C) y (EE ( ,...,m-2 ) - (-i)jcj)trSj+1 A.
i Oij<m

Hence c =(1), p(Go,.. . ,m- 2 ) = Eojm (%( 0, -,em- 2 ) -(1)m-ij) tr Sj+1A.

According to Remark 3.1.1, the last equality is equivalent to

m = 1, -i = 0, % (Go. ., em- 2) = (-1)m 3ej, V 0 < j m - 2, p = 0.

This implies the statement.

(b) Analogously to the previous case and the proof of Theorem 3.2.2(b) we have:

{(A), T(B)} I= ([A, B]), {I (A), T(y)} = i(A(y)), {T(x), T(y)} = (x, y)

for some % E C[Go, ... , em-1] such that deg(%3(Eo, . .. , Omi-)) = 4(m - j).

Due to Theorem 3.1.3(b), we get r' := 2n{41, yijy; - 2E qtr S 2j+2A E

3 Pois(S(3n,m)). In particular, TFj = cp(Fm+1)+p(1 (F1), ... , i(Fm)) for some c c C and

a polynomial p.

Note that P(Fk) = em-k for 1 < k < m. Let us now express p(Fm+1) via the

generators of S(3n,m). First, we describe explicitly the slice Sn,m. It consists of the

following elements:

{em+(X1)+Z viUi,n+1+z Vn+iUn+2m+i,n+1+Z Wf2k-1 Xi E SP2n, Vi, Vn+i, W Wk C}
i<n i<n k<m

where Uij := Ejj + (-1)i+j+E2n+2m+-j,2n+2m+i-i E SP2n+2m. For X E SP2n+2m as

above, we define X2 := em + Ek<m Wkf2k-f E 02m, viewed as the centered 2m x 2m

block of X.

Analogously to (3.3), we get

P(Fm+i) = 41 1, yiy* - tr S2 n2 2 A - G tr S2 2 A. (3.4)

i=1 Osj<m-1
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Comparing the above two formulas for Tr, we get the following equality:

2n

{Ui, yi}y; - 2 iy tr S 2
j+2A = c - p(Fm+i) + P(GO..., m-1).

i=13

Arguments analogous to those used in part (a) establish

c = 4, p = 0), & = 2, j = 2j, V j < m.

Part (b) follows.

Remark 3.3.2. Recalling the standard convention U(g, 0) = U(g) and Example 1.2.1,

we see that Theorem 3.2.2(a) (as well as Theorem 3.3.1(a)) obviously holds for m = 1

with el := 0 E sL,+ 1 -

3.4 Consequences

In this section we use Theorem 3.2.2 to get some new (and recover some old) re-

sults about the algebras of interest. On the W-algebra side, we get presentations of

U(sI, em) and U(SP2n, em) via generators and relations (in the latter case there was

no presentation known for m > 1). We get much more results about the structure and

the representation theory of infinitesimal Cherednik algebras using the corresponding

results on W-algebras.

Also we determine the isomorphism from Theorem 3.2.2(a) basically explicitly.

3.4.1 Centers of Hm(gr1) and Hm(SP2n)

We set s = 2 for g = SIN and s = 1 for g = SP2N. Recall the elements {Fi}$L8 , where

deg(Fi) = (3-s)i. These are the free generators of the Poisson center 3pois(S(g)). The

Lie algebra q = 39(e, h, f) from Section 3.1.6 equals gIn for (g, e) = (s[n+m, em) and

SP2n for (g, e) = (-SP2n+2m, em). Thus {Q3 } from Section 3.1.4 are the free generators

of 3p 0 is(S(q)) and Qj := Sym(Uj) are the free generators of Z(U(q)).

The following result is a straightforward generalization of formulas (3.3) and (3.4):
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Proposition 3.4.1. There exist {bj} 1 C S(g)ad [ (F 8),.-. . , NFm)1 such that:

i(Fm+i) = sn,m7- + bi mod C[p(,),.. ., P(Fm+i-1)], V 1 < i < n,

where s.,m = (-1)m for g = g(n and sn,m = 1/4 for g = SP2n

Define tk E Hm(g[I) by tk :=lXi[Qk,y] and tk E Hm(P 2n) by tk

i1[Qk, yi]y . Combining Proposition 3.4.1, Theorems 3.1.5, 3.2.2 with the iden-

tification gr(Z(U(g, e))) = 3pojj(C[S]) we get

Corollary 3.4.2. Forg either g1n orsP2n, there exist C1,..., Cn E Z(U(g))[(o,...,Cr-s],

such that the center Z(Hm(g)) is a polynomial algebra in free generators {Ci} U {tj +

cj}n'

Considering the quotient of Hm(g) by the ideal ((o - ao,.. . , (m_, - am-s) for any

a E C, we see that the center of the standard infinitesimal Cherednik algebra Ha(g)

contains a polynomial subalgebra C[t1 + c,.... , tn + cn] for some cj E Z(U(g)).

As a consequence we also get:

Corollary 3.4.3. We actually have Z(Ha(g)) = C[ti + c1 ,. . . , tn + ca].

For g = grn this is [Tikl, Theorem 1.1].

3.4.2 Symplectic leaves of Poisson infinitesimal Cherednik

algebras

By Theorem 3.3.1, we get an identification of the full Poisson-central reductions of

the algebras C[Sn,m] and H2(grn) or Hn(S22). As an immediate consequence we

obtain the following result:

Proposition 3.4.4. Poisson varieties corresponding to arbitrary full central reduc-

tions of Poisson infinitesimal Cherednik algebras Hc l(g) have finitely many symplectic

leaves.
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3.4.3 The analogue of Kostant's theorem

As another immediate consequence of Theorem 3.2.2 and discussions from Section 3.4.1,

we get a generalization of the following classical result:

Proposition 3.4.5. (a) The infinitesimal Cherednik algebras HC(g) are free over

their centers.

(b) The full central reductions of gr H((g) are normal, complete intersection integral

domains.

This is [Tik2, Theorem 2.1] for g = g[n, and [DT, Theorem 8.1] for g = SP2n-

3.4.4 The category 0 and finite dimensional representations

The categories 0 for the finite W-algebras were first introduced in [BGK] and were

further studied by the first author in [L3]. Namely, recall that we have an embedding

q C U(g, e). Let t be a Cartan subalgebra of q and set go := 3,(t). Pick an integral

element 0 E t such that 3,(9) = go. By definition, the category 0 (for 0) consists of

all finitely generated U(g, e)-modules M, where the action of t is diagonalizable with

finite dimensional eigenspaces and, moreover, the set of weights is bounded from above

in the sense that there are complex numbers al,..., ak such that for any weight A of

M there is i with ai - (0, A) C Z<o. The category 0 has analogues of Verma modules,

A(No). Here No is an irreducible module over the W-algebra U(go, e), where go is the

centralizer of t. In the cases of interest ((g, e) = (sIn+m, em), (0P2n+2m, em)), we have

go = gm X Cn-, go = 0P2m x C" and e is principal in go. In this case, the W-algebra

U(go, e) coincides with the center of U(go). Therefore No is a one-dimensional space,

and the set of all possible No is identified, via the Harish-Chandra isomorphism,

with the quotient [*/Wo, where 4, Wo are a Cartan subalgebra and the Weyl group

of go (we take the quotient with respect to the dot-action of Wo on 4*). As in the

usual BGG category 0, each Verma module has a unique irreducible quotient, L(N).

Moreover, the map No '-* L(N0 ) is a bijection between the set of finite dimensional

irreducible U(go, e)-modules, 4*/Wo, in our case, and the set of irreducible objects in

0. We remark that all finite dimensional irreducible modules lie in 0.
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One can define a formal character for a module M C 0. The characters of Verma

modules are easy to compute basically thanks to [BGK, Theorem 4.5(1)]. So to

compute the characters of the simples, one needs to determine the multiplicities of

the simples in the Vermas. This was done in [L3, Section 4] in the case when e is

principal in go. The multiplicities are given by values of certain Kazhdan-Lusztig

polynomials at 1 and so are hard to compute, in general. In particular, one cannot

classify finite dimensional irreducible modules just using those results.

When g = Sin+m, a classification of the finite dimensional irreducible U(g, e)-

modules was obtained in [BK2]; this result is discussed in the next section. When

g = SP2n+2m, one can describe the finite dimensional irreducible representations using

[L2, Theorem 1.2.2]. Namely, the centralizer of e in Ad(g) is connected. So, according

to [L2], the finite dimensional irreducible U(g, e)-modules are in one-to-one correspon-

dence with the primitive ideals J c U(g) such that the associated variety of U(g)/J

is U, where we write 0 for the adjoint orbit of e. The set of such primitive ideals

is computable (for a fixed central character, those are in one-to-one correspondence

with certain left cells in the corresponding integral Weyl group), but we will not need

details on that.

One can also describe all N0 E [*/Wo such that dim L(N 0 ) < oo when e is

principal in go. This is done in [L4, 5.1]. Namely, choose a representative A E [* of

NO that is antidominant for go meaning that (av, A) ZO for any positive root a

of go. Then we can consider the irreducible highest weight module L(A) for g with

highest weight A - p. Let 0(A) be its annihilator in U(g), this is a primitive ideal that

depends only on N 0 and not on the choice of A. Then dim L(N 0 ) < cc if and only if

the associated variety of U(g)/a(A) is U. The associated variety is computable thanks

to results of [BV]; however this computation requires quite a lot of combinatorics. It

seems that one can still give a closed combinatorial answer for (SP2n+2m, em) similar

to that for (srn+m, em) but we are not going to elaborate on that.

Now let us discuss the infinitesimal Cherednik algebras. In the gl, -case the cat-

egory 0 was defined in [Tiki, Definition 4.1] (see also [EGG, Section 5.2]). Under

the isomorphism of Theorem 3.2.2(a), that category 0 basically coincides with its
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W-algebra counterpart. The classification of finite dimensional irreducible modules

and the character computation in that case was presented in Chapter 2, but the char-

acter formulas for more general simple modules were not known. For the algebras

Hm(SP2n), no category 0 was introduced, in general; the case n = 1 was discussed

in [Kh]. The classification of finite dimensional irreducible modules was not known

either.

3.4.5 Finite dimensional representations of Hm(grl)

Let us compare classifications of the finite dimensional irreducible representations of

U(s[n+m, em) from [BK2] and Ha(g[n) from Section 2.1.6.

In the notation of [BK2]5 , a nilpotent element em E gtn+m corresponds to the

partition (1, ... , 1, m) of n + m. Let Sm act on Cn+m by permuting the last m

coordinates. According to [BK2, Theorem 7.9], there is a bijection between the

irreducible finite dimensional representations of U(g[(,m, em) and the orbits of the

Sm-action on Cn+m containing a strictly dominant representative. An element 0 =

(Vi, .. . , Vn+m) E Cn+m is called strictly dominant if vi - v+1 is a positive integer for all

1 i < n. The corresponding irreducible U(g[n+m, em)-representation is denoted Lp.

Viewed as a gln-module (since g[n = q C U(g(n+m, em)), LF = L' E I L', where

L' is the highest weight q irreducible grn-module, F := (Vi, .... , vn) and I denotes

some set of weights q < F.

According to Section 2.1.6, the irreducible finite dimensional representations of the

infinitesimal Cherednik algebra Ha(O[n) are parameterized by strictly dominant g[n-

weights A = (A1 , .. ., An) (that is Ai - Aj+ 1 is a positive integer for every 1 < i < n), for

which there exists a positive integer k satisfying P(A) = P(A1, . .. , An- 1 , An - k). Here

P is a degree m + 1 polynomial function on the Cartan subalgebra [jn of all diagonal

matrices of g[n, introduced in Section 2.1.2. These two descriptions are intertwined

by a natural bijection, sending 0 = (vI,... , Vn+m) to : (vi,... , vn), while A =

(A1,. . ., An) is sent to the class of (A,.... , An, Vn+l, .. , l4~m) with {vn+1,.. ., vn+m}U

{An} being the set of roots of the polynomial P(A1 , ... , An_ 1 , t) - P(A).

5 In the loc.cit. 9 = 97n+m' rather then s1n+m. This is not crucial since gn+m = Sfn+m D C.
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3.4.6 Explicit isomorphism in the case g = g[

We compute the images of particular central elements of Hm(gIn) and U(Sdn+m, em)

under the corresponding Harish-Chandra isomorphisms. Comparison of these images

enables us to determine the isomorphism e of Theorem 3.2.2(a) explicitly, in the

same way as Theorem 3.3.1(a) was deduced.

Let us start from the following commutative diagram:

U(SIn+m, em)o i''m Z(U(s[n+m, em))

U(Sln+m, em)0  r W

jn 0 Id
U(gn) 0 U(S5m, em) Z(U(g)) 0 U(S[m, em)

(Diagram 1)

In the above diagram:

* U(srn+m, em)o is the 0-weight component of U(s(n+m, em) with respect to Gr.

" U(S n+m, em) 0 := U(sin+m, em)o/(U(sn+m, em)o n U(SIn+m, em)U(s n+m, em)>o).

* 7r is the quotient map, while o is an isomorphism, constructed in [L3, Theorem 4.1].6

" The homomorphism w is defined as w := o o 7r, making the triangle commutative.

" The homomorphisms jn+m, in are the natural inclusions.

" The homomorphism pw is the restriction of w to the center, making the square

commutative.

o U(sIm, em) ! Z(U(s[,, em)) a Z(U(s[m)) since em is a principal nilpotent of SIm.

We have an analogous diagram for the universal infinitesimal Cherednik algebra

of grI:

Hm(9In)o nm Z(Hm(gln))

Hm(gIn)0  H

in 0 Id
U(g[n) 0 C[O, . (m-2' Z(U(g)) 0 C[Ko, ... , (m-2]

(Diagram 2)

In the above diagram:

6 Here we actually use the fact that U(gB)OU(51m, em) is the finite W-algebra U(g91en@i, OEDem).
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e Hm(g[n)o is the degree 0 component of Hm(g[L) with respect to the grading Gr,

defined by deg(glr) = deg((o) = ... = deg((m- 2 ) = 0, deg(V) = 1, deg(V*) = -1.

e Hm(g[,) is the quotient of Hm(glr)o by Hm(grn)o n Hm(grn)Hm (g I)>o.7

0 r' denotes the quotient map, o' is the natural isomorphism, z' := o' o 7r'.

9 The inclusion j',m is a natural inclusion of the center.

9 The homomorphism <pH is the one induced by restricting w' to the center.

The isomorphism e of Theorem 3.2.2(a) intertwines the gradings Gr, inducing an

isomorphism &0 : Hm([r) 0 -- +U(Sn+m, em) 0 . This provides the following commuta-

tive diagram:

Z(Hm(g[n)) Z(U(S1n+m, em))

VP H IVWI

Z(U(g)) 0 (o,. . .., m-2] Z(U(g)) 0 Z(U(Sm))
(Diagram 3)

In the above diagram:

" The isomorphism V is the restriction of the isomorphism 9 to the center.

" The isomorphism 9 is the restriction of the isomorphism Go to the center.

Let HCN denote the Harish-Chandra isomorphism HCN : Z(U IN + N

where [N C 91N is the Cartan subalgebra consisting of the diagonal matrices and

(SN, e)-action arises from the pN-shifted SN-action with pN = (N, 2 , - - 1 ) E

[j*. This isomorphism has the following property: any central element z E Z(U(O[N

acts on the Verma module MAPN Of U(g[N) via HCN(Z)(A).

According to Corollary 3.4.2, the center Z(Hm(g(,)) is the polynomial algebra in

free generators {(o, ... ,(m-2 , t'}, where t' = tk+ Ck. In particular, any central

element of Kazhdan degree 2(m+ 1) has the form ct'+p(Co,.. ,Cm-2) for some c E C

and p E C[(O, . C m-21-

Recall that t' = t1 + C1 is the Casimir element, introduced in Chapter 2. We will

need to restate the results of Sections 2.1.4-2.1.5 in slightly different terms. We start

by recalling the following notation:

I It is easy to see that Hm(g[n)o n Hm(91n)Hm(g[,)>o is actually a two-sided ideal of Hm(g[)o-
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* the generating series ((z) = E, (iZi + z" (already introduced in Section 3.1.4),

" a unique degree m + 1 polynomial f(z) satisfying

f(z) - f(z - 1) = &"(z"((z)) and f(0) = 0,

" a unique degree m + 1 polynomial g(z) = EZ7 1 giz' satisfying

a n-1 (Z"n-1gz)) = f (Z),

" a unique degree m polynomial w(z) = Z1o wizi satisfying

f(z) = (2sinh(a/2))"-1(zw(z)),

" the symmetric polynomials u-(A,... , An) via

(UA + ) -.. (u + An) = EZ -i(A, ... An)unT

" the symmetric polynomials h (Al, ... , An) via

(1 - UA1)-1 -.-. (I - UAn)-1 = Ehj (A,, .I. An)Uj,

" the central element Hj C Z(U(g[,)) which is the symmetrization of tr Sj(.) E

C[01n] S(gl1).

The following theorem summarizes the results on t' from Chapter 2:

Theorem 3.4.6. (a) We have pH (t) _ m+1 Hj 9 gj (where gj are viewed as

elements of C[(0, . .. ,(m-2]),

(b) We have (HCn ®ld) o pH(t) = E=0 hj+1 0 w.

Let HC' denote the Harish-Chandra isomorphism Z(U(5[N))-'C[* vSN,0, where

6N is the Cartan subalgebra Of SIN, consisting of the diagonal matrices, which can

be identified with {(z 1 ,... , ZN) E CN I E z, = 0}. The natural inclusion )N -* N
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induces the map

l N* - -(A-,...,AN)H+(A,....AN -Ap), where p := N

The isomorphisms HC'+m, HC', HCn fit into the following commutative diagram:

Z(U(Sln+m)) HCn+m C[Cn+mi-]Sn+m,

U(s In+m, em)) <W IOC

wtHC HCr'
Z(U(gn)) 0 Z(U(s,)) .,"C C[Cn]Sn> 0

(Diagram 4)
C[C'mi~]Sm,.

In the above diagram:

" p is the isomorphism of Theorem 3.1.5.

" The homomorphism ow is defined as the composition pw ._ w op.

" The homomorphism OC arises from an identification C" x C'-1 Cn+m-1 defined

by

(A, ... ,7AnV "li...V 1m)H IA,,..., AnV ,1 A .. nI...IVm AI..+A
mm /

In particular, <pc is injective, so that pw is injective and, hence, sH is injective.

Define &k E C[ * ] as the restriction of Uk to CN-1 _+ CN. According to

Lemma 3.3.3,

M

SOc(&m+i) = (-1) m hm+i 0 1+ E(-1)mhm+-j 1 SOc(&j).
j=2

(3.5)

Define Sk C Z(U(s[n+m)) by Sk := (HCn+m) 1 (dk) for all 0 < k < n + m, so that

So = 1, S1 = 0. Similarly, define T c Z(U(g(n)) as Tk := HC-(hk) for all k > 0, so

that To = 1.

Equality (3.5) together with the commutativity of Diagram 4 imply

SOW(Sm+1) = (-1)m Tm+1 0 1+ Z(-1)m-JTm+1-j 9 1 w
j=2
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According to our proof of Theorem 3.2.2(a), we have 0(A) = 0(A) + s tr A for

all A E grn, where s = - m-1 In particular, 2-'(X 0 1) = <p-,(X) 9 1 for all

X C Z(U(gr.)), where W-, was defined in Lemma 3.1.1.

As a consequence, we get:

2l(S-W(SmAi) = (-1)'M WS(TM+i) 01+ E(-1)" <P_,(Tm+1-j) 01* 9 ' (gM
j=2

The following identity is straightforward:

Lemma 3.4.7. For any positive integer i and any constant 5 E C we have

j=0

+i

As a result, we get

+ - 1) (-s)Ti-i. (3.7)

Combining equations (3.6) and (3.7), we get:

m-2

(-w(Sm+1)) = (-1)m Tm+l 0 1+ (-1)m+ls(n + m)Tm 0 1+ E (-1)T l+ i - ,

(3.8)

where IV = Z- 1(w(V)) and for 0 <1 < m - 2 we have

S = j "-1 - Si.
0<j<m-1

On the other hand, the commutativity of Diagram 3 implies

,d-( (Sm+ 1)) = (H(p(1 (P(Sm+1))).

Recall that there exist c E C, p E C[(O,-- (m-2] such that 9-1(p(Sm+1)) = ct'+p.
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As <pH((i) = 1 0 (i and <pH(t') = ELO Tj+1 0 wj (by Theorem 3.4.6(b)), we get

cpH (19- 1 (p(Sm+))) = 1 p(, , Cm -2) + E Tj+ 0 Cwj. (3.9)
Osjsm

Since wm = 1, wm1 = "-4 the comparison of (3.8) and (3.9) yields:

" The coefficients of Tm+1 must coincide, so that (- 1 )m = cwm => c = (-1)".

" The coefficients of Tm must coincide, so cwm-1 = (-1)"n'(n + m)s => s = -1/2.

" The coefficients of Tj+1 must coincide for all j > 0, so that

Wi= (-1)M'jvj =1 
9(w3) = (-I) M- P(M).

Recall that Gm = 1, and so r/m = m = 1. As a result s = -n, so that
nn~m

77m-1 2

The above discussion can be summarized as follows:

Theorem 3.4.8. Let e : Hm(gn)-~+U([n+m, em) be the isomorphism from The-

orem 3.2.2(a). Then G(A) = E(A) - -ItrA, 0(y) = e(y), G(x) = e(x), while

E IC[O,c . -21 is uniquely determined by E(wj) = (-1)"-ip(j) for all 0 < j m -2.

3.4.7 Higher central elements

It was conjectured in [DT, Remark 6.1], that the action of central elements t' =

ti + ci E Z(Hm(grn)) on the Verma modules of Ha(g[n) should be obtained from

the corresponding formulas at the the Poisson level (see Theorem 3.1.3) via a basis

change ((z) - w(z) and a pa-shift. Actually, that is not true. However, we can

choose another set of generators ui C Z(Hm(O[n)), whose action is given by formulas

similar to those of Theorem 3.1.3.

Let us define:

" central elements Ui C Z(Hm(g[n)) by ui := V- 1 (p(Sm+i)) for all 0 < i < n,

" the generating polynomial ii(t) := _(-1)iiti,

* the generating polynomial S(z) := En -1)i -w(S-i))zi E Co,... , Cm-2; z].
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The following result is proved using the arguments of the Section 3.4.6:

Theorem 3.4.9. We have:

(HC,, 0Id) o pH(il(t)) = (P1/2 0 Id) Reszo S(z- 1 ) z 1-z

3.5 Completions

3.5.1 Completions of graded deformations of Poisson alge-

bras

We first recall the machinery of completions, elaborated in [L7]. Let Y be an affine

Poisson scheme equipped with a C*-action, such that the Poisson bracket has degree

-2. Let Ah be an associative flat graded C[h]-algebra (where deg(h) = 1) such that

[Ah, Ah] c h 2 Ah and C[Y] = Ah/(h) as a graded Poisson algebra. Pick a point x E Y

and let I, C C[Y] be the maximal ideal of x, while Yx will denote its inverse image in

Ah.

Definition 3.5.1. The completion of Ah at x E Y is by definition AAm := lim Ah/I".

This is a complete topological C[[h]]-algebra, flat over C[[h]], such that A A/(h) =

C[Y]A. Our main motivation for considering this construction is the decomposition

theorem, generalizing the corresponding classical result at the Poisson level:

Proposition 3.5.1. [K, Theorem 2.3] The formal completion Y of Y at x E Y

admits a product decomposition Y = Zx x Y], where YS is the symplectic leaf of Y

containing x and Zx is a local formal Poisson scheme.

Fix a maximal symplectic subspace V C T*Y. One can choose an embedding

V 4 I^ such that [i(u), i(v)] = h2 w(u, v) and composition V 4 I^ -+> T*Y is the

identity map. Finally, we define Wh(V) := T(V)[h]/(u 9 v - v 0 u - h2w(u, v)), which

is graded by setting deg(V) = 1, deg(h) = 1 (the homogenized Weyl algebra). Then

we have:
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Theorem 3.5.2. [L7, Sect. 2. 1][Decomposition theorem] There is a splitting

Aa^m Wh(V )^ O-c[[h]]A,

where Aa is the centralizer of V in A .

Remark 3.5.1. Recall that a filtered algebra {F(B)} o is called a filtered deformation

of Y if grF. B 2 C[Y] as Poisson graded algebras. Given such B, we set Ah :=

Reesh(B) (the Rees algebra of the filtered algebra B), which naturally satisfies all the

above conditions.

This remark provides the following interesting examples of Ah:

* The homogenized Weyl algebra.

Algebra Wh(V) from above is obtained via the Rees construction from the usual

Weyl algebra. In the case V = Vn e V* with a natural symplectic form, we denote

Wh(V) just by Wh,n.

* The homogenized universal enveloping algebra.

For any graded Lie algebra g = e g2 with a Lie bracket of degree -2, we define

Uh(g) := T(g)[h]/(x 0 y - y 9 x - h2[x, y]Ix, y E g),

graded by setting deg(gi) = i, deg(h) = 1.

e The homogenized universal infinitesimal Cherednik algebra of gr .

Define Hh,m(g[n) as a quotient H,m(g[n):= U(g(n) x T(V e V1 *)[(o, . . ,m-2]/J,

where

J = [x, x'], [y, y', [A, x] - h2A(x), [A, y] - h2A(y), [y, x] - h2(E (jrj (y, x) + rm(y, x))
j=O

This algebra is graded by setting deg(V e Vn*) = m + 1, deg(Ci) = 2(m - i).

* The homogenized universal infinitesimal Cherednik algebra of SP2n-

Define Hh,m(SP2n) as a quotient Hh,m(SP2n) := Uh(SP2n) x T(V2n)[Co, - .,(m-1]/J,
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where

J = ([A, y] - h2A(y), [x, y] - h2(E (r2(x, y) + r2m(x,y))IA E SP2n, x, y E V2,j.
j=O

This algebra is graded by setting deg(V2 ,) = 2m + 1, deg((i) = 4(m - i).

* The homogenized W-algebra.

The homogenized W-algebra, associated to (g, e) is defined by

Uh(g, e) := (Ur,(g)/Uh(&)"a.

There are many interesting contexts in which Theorem 3.5.2 proved to be a useful

tool. Among such let us mention Rational Cherednik algebras ([BE]), Symplectic

Reflection algebras ([L5]) and W-algebras ([L1, L7]).

Actually, combining results of [L7] with Theorem 3.2.2, we get isomorphisms

"FM : Hh,m(gl)^ -~+-H- m+1 (g 1 )o"[[h]]W ^v (3.10)

Tm : Hh,m ('02n)A-~-+H ,m+1 (-SP2n-2)^*hc[[ n), (3.11)

where v c V, (respectively v E V2 ) is a nonzero element and m > 1.

These decompositions can be viewed as quantizations of their Poisson versions:

Mi Hm (n)^ n+N19n1^$~' (3.12)

Trd :A 1)O C n H'(sn^ ~+Hm+ (,SP2n-2)^"0 2^" (3.13)

where WC ~ C[xi, ... , X, y,. .. , y.] with {xi, x1 } = {yi, y3} = 0, {xi, yj} = Jf.

Isomorphisms (3.10) and (3.11) are not unique and, what is worse, are inexplicit.

Let us point out that localizing at other points of g(, x V x V* (respectively

SP2n X V 2n) yields other decomposition isomorphisms. In particular, one gets [Tik3,
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Theorem 3.1]8 as follows:

Remark 3.5.2. For n = 1, m > 0, consider e' := em + E1,2 n+2 E Si,m C SP2m+2, which

is a subregular nilpotent element of SP2m+2. Above arguments yield a decomposition

isomorphism

Hh,m(SP2)AE12 -~Uh (01 2m+ 2 , e')^ ®C[[h]]WI. (4)

The full central reduction of (4) provides an isomorphism of [Tik3, Theorem 3.1].9

In the next section, we establish explicitly suitably modified versions of (3.10)

and (3.11) for the cases m = -1, 0, which do not follow from the above arguments.

In particular, the reader will get a flavor of what the formulas look like.

3.5.2 Decompositions (3.10) and (3.11) for m = -1, 0

* Decomposition isomorphism H,_ 1(gr)^v - H' 0 (g h1 )^o®[[p1]W".

Here HO(grn_1 ) is defined similarly to Hh,o(gl[_1 ) with an additional central pa-

rameter (o and the main relation being [y, x] = h2 (oro(y, x), while H,_1(g([)

Uh( InD< (V e Vf*).

Notation: We use Yk, xi, ek,I when referring to the elements of Hh,_1(gr1) and

capital Y, X 3 , Ejj when referring to the elements of H ,O(g[n_1 ). We also use indices

1 < k, 1 < n and 1 < i, j, i', j' < n to distinguish between < n and < n. Finally, set

Vn := (0, ... ,1 0, 1) E V.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.3. Formulas

'-1(yk) = Zk, T_1(en,k) = Znak, T1i(ei,) = Eij + Zi5, 'P- 1 (xi) =X,

_ = zYi - - Ei,j + zi, 'I' 1 (x,) = -Z,(0- [ z- 1 zPX,
j<n p<n

define the isomorphism T-1 : H,_ 1(g)^-1)^ W"

8 This result is stated in [Tik3]. However, its proof in the loc. cit. is computationally wrong.

9 To be precise, we use an isomorphism of the W-algebra U(SP2m+2, e') and the non-commutative

deformation of Crawley-Boevey and Holland of type Dm+2 Kleinian singularity.

77



Its proof is straightforward and is left to an interested reader (most of the verifi-

cations are the same as those carried out in the proof of Lemma 3.5.4 below).

9 Decomposition isomorphism H,o(gln)^v - H, 1 (gn 1 )AoC[h]] WA.

Here H',1(g[(_ 1 ) is an algebra defined similarly to Hh,1(g(n_ 1) with an additional

central parameter (o and the main relation being [y, x] = h2 (Coro(y, x) + ri(y, x)).

We follow analogous conventions as for variables yk, xj, ek,l, Y, X,, Ej, and indices

i, j, i', j, k, 7 .

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.4. Formulas

'Io(yk) = Zk, Io(en,k) = Znlk, 'o(ei,3) = Ej,+zji , 'o(ei,n) = zjY -Z Z-
j<n

To (xj) = -aj + X 3 , TO (xn) = -an - Z ZiXi - z-1((o + E E,)
i<n i<f

define the isomorphism To : HhO(0In)^"" -_W

Proof.

These formulas provide a homomorphism Hh,o(g^ )A -+ H' 1 (gIl_1)A C[[h]]WAn

if and only if To preserves all the defining relations of Hh,o(gol). This is quite straight-

forward and we present only the most complicated verifications, leaving the rest to

an interested reader.

o Verification of ['Io(ei,n), Po(ei,j)] = -h2J3,Qo(ej,,):

['o(ei,,), Wo(ej,,y)] = [z-Yz - z,izEi,p + Zian, E ,y + ze&3 ] =

p<n

2- z- zzE,' +6, -i + z - 6,zo) = -h 2 >,I To (ei,n)
p<n

o Verification of [To(ei,n), ITo(x)] = -h 26 To(Xn):

[To(ej,n), 'o(x 3 )] = [zi-Yn -3 zn zqEi,q + Zian, -j + Xj] =
q<n
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-h2z,-1Eij + 6jh 2on + 6i|h 2 S Z-lZqXq + Zn-l[Y, X] =
q<n

-h 2zn-E,,j + 6ih 2 (an+5 znzqXq) + h2z-1(EEi, + 6j E5,j + J) = -6h 2 ,Io (Xn)
q<n i<n

o Verification of ['Io(ei,n), 'IO'(xn)] = 0:

['Io(ej,n), ' 0(xn)] = [zi-Yi -Z z-iE, , -O4-- zijzyX -z;j(Co( Eg,5)] =
p<n j<n j<n

2- Z;72Y + Zzy-2( 0 + ZiZ- 2 5 E3 , + Zn2 Yi - -ZJZ- 2 [Yj, Xi]) = 0.
p<n j<n j<n

Once homomorphism To is established, it is easy to check that the map

Zk -* y, 19 k yn en,k, E, '- e2,3 - yiynen,+, yn

Y 5 yk(ei,k - yiyn e,k), e O H+ -5 ykxk ek,k

provides the inverse to To. This completes the proof of the lemma. l

* Decomposition isomorphism Hr,-1(SP2n)^ )v H0(2n-2) W^n.

Here H,(5p 2 n- 2 ) is defined similarly to Hh,o(sP2n- 2 ) with an additional central

parameter (o and the main relation being [x, y] = h2 Coro(x, y), while Hh,_1(Sp 2n)

Uh(-SP2n V V2n).

Notation: We use yk, Uk,l := ek,I + (_l k+l+1e2n+1-1,2n+1-kwhen referring to the

elements of Hh,-1 (SP2n) and Y, Ujj := Ej + (-1)i+j+1E2n-1-,2n-1-i when referring

to the elements of H ,O(SP2n- 2 ). Note that {uk,I 1}52n+1 is a basis of SP2n, while

{U,,j}i% 2"-1 is a basis of SP2n- 2 We use indices 1 < k, 1 < 2n and 1 i, j 2n - 2.

Finally, set v, := (1, 0, ... ,0) E V2 n-

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.5. Define 1(Uk,l) := Zk&1 + (-I)k+L+1z 2n+l-li2n+l-k for all k,l. We

also define /O(Ui,k) = 0, /o(ui+1,1) = Y, Oo(ui+l,j+) = Uij, Qb(u 2 ,1) = (o. Then

79



formulas T -1(yk) = Zk, T -1(uk,I) = 0o(uk,l) + 01(uk,l) give rise to the isomorphism

T-1 : Hh,_1(-SP2n)^- ~+Hh,0(42n-2)^(9c K,2n^-1

The proof of this lemma is straightforward and is left to an interested reader.

o Finally, we have the case of g = Tn2, M = 0.

There is also a decomposition isomorphism

To Hh,o(5p2n)^V -+H,1 (Sp2n-2)^ ®C[h] ^n.

This isomorphism can be made explicit, but we find the formulas quite heavy and

unrevealing, so we leave them to an interested reader.
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Chapter 4

Generalization to the SON case

This chapter is based on [Ti].

4.1 Classification results

Our first result is a full classification of all K from Section 1.1.2 satisfying (t) for the

case of (SON, VN), which is similar to [EGG, Theorem 3.14] for (SP2n, V2,). But it

turns out that the subscheme <D c SON from Section 1.1.2 is not reduced in this case

and so we need a more detailed argument.

Theorem 4.1.1. The PB W property holds for H, (SON, VN) if and only if there exists

an SON-invariant distribution c E 0(S)* such that ,(x, y) = ((g - g-1)x, y)c for all

x,y E VN.

The proof of this theorem is presented in Section 4.2.

To formulate our classification of infinitesimal Cherednik algebras HK(SON, VN) we

define:

S7Y2 + 1(x, y) E S(SON) C [SON] by

(x, A(1 + r 2A 2) -y) det(1 + r 2 A 2)-1/2 = y2j+1(x, y)(A)r2j, A E SON,
j>o

" r2j+l (X, y) E U(SON) to be the symmetrization of 72j+1 (x, y) E S(SON)-
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The following theorem is proved in Section 4.3:

Theorem 4.1.2. The PBW property holds for H (SON, VN) if and only if there exists

a non-negative integer k and parameters Co,... , E C such that K = E (jr2j+1.

We denote the corresponding algebra by HC(SON, VN) for r. of the above form.

Remark 4.1.1. (a) For (o # 0 we have Hcg,.(SON, VN) ~ U(soN+1). Thus, for an

arbitrary ( we can regard Hc(SoN, VN) as a deformation of U(SON+1).

(b) Theorem 4.1.2 does not hold for N = 2, since only half of the infinitesimal Hecke

algebras are of the form given in the theorem (algebras HK(so2, V2) are the same as

HK,(g 1, V1 ( V*)).

4.2 Proof of Theorem 4.1.1

o Sufficiency.

Given any c c (0(S)*)soN, the formula i(x, y) := ((g - g-1 )x, y)c defines a skew-

symmetric SON-equivariant pairing K : VN X VN -- ((SON)*. For x, y, z E VN and

g E SON we define

h (x, y, z; g) :=- (z - z9) (xg - xg- , y) + (y - y9) (zg - z9_ , X) + (X - xg)(yg - yg - , z).

Lemma 4.2.1. We have h(x, y, z; g) = 0 for all x, y, z E VN and g C S.

Proof.

For any g E S consider the decomposition V = V9E(V9)', where V9 := Ker(1-g)

is a codimension < 2 subspace of V. If either of the vectors x, y, z belongs to V9,

then all the three summands are zero and the result follows. Thus, we can assume

x, y, z E (Vs)'. Without loss of generality, we can assume that z = ax + fy with

a, 3 C C, since dim (V)' < 2. Then

h(x, y, z; g) = a ((x - xg) (xg - x9_1, y) + (X - xg) (y9 - yg" ,X) + (Yy ) y(X9 - x9_1, x))

+0 ((Y- y9) (X9 - xg- , Iy) + (y - y1) (y9 - yg" ,X) + (X - xg) (yg - y9_ ,y)) -
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Clearly, (xg - xg 1, x) = (xg, x) - (x, xg) = 0 and (xg - xg~', y) = -(yg - y9-1, x), so

that the first sum is zero. Likewise, the second sum is zero. The result follows. l

Since c is scheme-theoretically supported on S and h(x, y, z; g) = 0 for all x, y, z E

VN, g E S, we get h(x, y, z; g)c = 0 and so (t) holds.

* Necessity.

Let I C C[SON] be the defining ideal of <b, that is, I is generated by 3 x 3

determinants of 1 - g. Consider a closed subscheme (D C SON, defined by the ideal

I:= (A3A) c C[SoN-

Define E := Rad(I)/I and E := Rad(I)/I. Notice that ~ E, since ID is reduced

in the formal neighborhood of any point g 54 1, while the exponential map defines an

isomorphism of formal completions exp : 1 A 0 -~4+<D^.

On the other hand, we have a short exact sequence of SON-modules

0 -+ E -+ 0(4) -+ ((S) -+ 0,

inducing the following short exact sequence of vector spaces

0 -+ (A2  0 (0(S)*)SON (A()*)SON A (A2V 0 E*)soN

It is easy to deduce the necessity for K E Im(o) by utilizing the arguments from the

proof of [EGG, Theorem 3.14(ii)]. Combining this observation with Proposition 1.1.1

and an isomorphism E _ E, it suffices to prove the following result:

Lemma 4.2.2. (a) The space (A2V 0 E*)SON is either zero or one-dimensional.

(b) If (A 2 Vg 0 E*)SON | 0, there exists ' E (A not satisfying (t).1

Notice that the adjoint action of SON on SON extends to the action of GLN by

g.A = gAgt for A E SON, g E GLN. This endows C[sON] with a structure of a GLN-

module and both I, Rad(I) are GLN-invariant. The following fact was communicated

to us by Steven Sam:

So that any element of (A2V ; 0(()*)sON satisfying (t) should be in the image of q.
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Claim 4.2.3. As g1v-representations B ~ A 4VN.

Let us first deduce Lemma 4.2.2 from this Claim.

Proof of Lemma 4.2.2.

(a) The following facts are well-known (see [FH, Theorems 19.2, 19.14]):

o the so 2 n+ -representations {AZV2n+l }'_O are irreducible and pairwise non-isomorphic,

o the so2n-representation AnV2n decomposes as A ~V A"V27 , and Dn2n-

representations {A 0 V2n, ... , A"~ 1V2 ., A"V 2 , An V2n} are irreducible and pairwise non-

isomorphic.

Combining these facts with Claim 4.2.3 and an isomorphism AkVN AN-kVI*, we

get

2V* 2*1, n=3
(A2

2n+ 1 0 e*)SO2n4i = 0, while dim((A2 Vn 0 _*)SO2n) _ 3
0 , r S 3

(b) For N = 6, any nonzero element of (A2 V* 0 E*)sO corresponds to the com-

position

A2 V 6 - A4 V* ~ E*.

Let M 4 C C[soN2 be the subspace spanned by the Pfaffians of all 4 x 4 princi-

pal minors. This subspace is GL6-invariant and M 4 ~ A4 V6 as g[6-representations.

Claim 4.2.3 and simplicity of the spectrum of the gr6-module C[so] (see Theorem 4.2.5

below) imply M 4 c Rad(I) and M 4 n I = 0. It follows that M 4 corresponds to the

copy of A4V c Rad(I)/I from Claim 4.2.3.

Choose an orthonormal basis {y.} 6_ of V6, so that any element A E 506 is skew-

symmetric with respect to this basis. We denote the corresponding Pfaffian by Pf,-:

(with a correctly chosen sign).2 We define '(y 0 y3 ) E U(so6 ) to be the sym-

metrization of Pfg-:. Identifying U(so 6 ) with S(so 6 ) as so6 -modules, we easily see

that ' : A2 V6 -* U(so6 ) is so6-invariant.

2 To make a compatible choice of signs, define Pf-. as the derivative of the total Pfaffian Pf
along Ej - Ejj.
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However, K' does not satisfy the Jacobi identity. Indeed, let us define Fe' : V6 0

V6 -+ S(5o6 ) by K'(yi 0 y3 ) = Pf,-. Then for any three different indices i, j, k, the

corresponding expressions {R, Xk}, {PR-, Xi}, {Pg--, x} coincide up to a sign and are

nonzero. So their sum is also non-zero, implying that (t) fails for '. I

* Proof of Claim 4.2.3

o Step 1: Description of Rad(I).

Let Pfijkl E C[soN2 be the Pfaffians of the principal 4 x 4 minors corresponding

to the rows/columns #i, j, k, 1. It is clear that Pfijkl vanish at rank < 2 matrices and

so Pfijkl E Rad(I). A beautiful classical result states that those elements generate

Rad(I), in fact:

Theorem 4.2.4. [We, Theorem 6.4.1(b)] The ideal Rad(I) is generated by {Pfijkl}.

o Step 2: Decomposition of C[soN] as a g[N-module.

Let T be the set of all length < N Young diagrams A = (A1 > A2 > ... > 0).

There is a natural bijection between T and the set of all irreducible finite dimensional

polynomial grN-representations. For A E T, we denote the corresponding irreducible

grN-representation by LA. Let T' be the subset of T consisting of all Young diagrams

with even columns.

The following result describes the decomposition of C[SoN into irreducibles:

Theorem 4.2.5. [AF, Theorem 2.5] As g[N-representations

C[SON] S(A2 N) @ LA.
AETe

For any A E T', let JA C C[SoN] be the ideal generated by LA C C[sON], while

TA C T' be the subset of the diagrams containing A. The arguments of [AF] (see

also [D, Theorem 5.1]) imply that J ~ ®pETe L1, as grN-modules.

o Step 3: Rad(I) and I as 9 N-representations.

Since the subspace M 4 C C[soN], spanned by Pfijkl, is g[N-invariant and is iso-

morphic to A4 VN, the results of the previous steps imply that Rad(I) ~ _EET(14)LI

as g[N-modules.
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Let N3 C C[soN]3 be the subspace spanned by the determinants of all 3 x 3 minors.

This is a g(N-invariant subspace.

Lemma 4.2.6. We have N 3 ~ L(2 2,12) E L(16 as gIN-representations.

Proof.

According to Step 1, we have C[SoN3 L(16) D L22,12) D L32). Since the space of

3 x 3 minors identically vanishes when N = 2, and the Schur functor (3,3) does not,

it rules L( 3 2) out. Also, the space of 3 x 3 minors is nonzero for N = 4, while the

Schur functor (16) vanishes, so N 3 'i L(1 6). Since partition (16) corresponds to the

subspace M6 C C[soN] spanned by 6 x 6 Pfaffians, it suffices to prove that M6 c N3.

The latter is sufficient to verify for N = 6, that is, the Pfaffian Pf of a 6 x 6 matrix

is a linear combination of its 3 x 3 determinants. 3

Let det" be the determinant of the 3 x 3 minor, obtained by intersecting rows

#i, j, k and columns #p, q, s. The following identity is straightforward:

-4 Pf = -det 46+det 36-det346+det 35-det256+det 26-det245-det236+det235-det .

This completes the proof of the lemma. E

The results of Step 2 imply that I IAET(222) UT(16) p as g[N-modules.

Claim 4.2.3 follows from the aforementioned descriptions of g[N-modules I and

Rad(I). U

4.3 Proof of Theorem 4.1.2

Let us introduce some notation:

* K := SON(R) (the maximal compact subgroup of G = SON(C)),

3 The conceptual proof of this fact is as follows. Note that determinants of 3 x 3 minors of A E so
are just the matrix elements of A3A, and A3A acts on A3V6 = A3V 6 D A

3 V6 . It is easy to see that

the trace of A3 A on A3V 6 is nonzero. This provides a cubic invariant for S06, which is unique up to

scaling (multiple of Pf).
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cosO -sinG 0 --- 0

sin0 cosG 0 --- 0

@S0= 0 0 1 .. 0 EK, E [-17,-7r],

0 .-.- 0 .- . 1

" So {gsog- 1 g E K} c K,

* SR S n K = UoE[0o,] S04, so that SR/K gets identified with S1 /Z2.

According to Theorem 4.1.1, there exists a Z 2-invariant c E (o(S)*, which is a

linear combination of the delta-function 6o (at 0 E S') and its even derivatives 5(2k)

such that5

r(x, y) = jc(0) (j((g - g-')x, y) dg) dO for all x,y C VN-

For g C SR we define a 2-dimensional subspace V C VN by Vg := Im(1 - g). To

evaluate the above integral, choose length 1 orthogonal vectors p, q E V such that

cos0 -sin0
the restriction of g to V is given by the matrix j in the basis {p, q}.

sinG cos9
Let us define Jp,q := q 0pt - p C q soN(R). We have:

" ((g - g-')x, y) = 2sin 0 - (x, Jp,qy),

" g = exp(Jp,q), since = exp 0 0 .
sin0 cos0 1 0

As a result, we get:6

= S, y) =j(x, Jp,y) 2c(G) sin 0 -eojP,9 do dqdp, (4.1)
JESN-1 f gEgN-2p)(f7r

where SN-1 is the unit sphere in RN centered at the origin and SN-2(p) is the unit

sphere in RN-(p) C R', the hyperplane orthogonal to the line passing through p

' Note that So and S-0 coincide for N > 3. That explains why 0 E [0, 7r] instead of 0 E [-7r, 7r].
5 Here we integrate over the whole circle S' instead of S1 /Z 2 , but we require c(0) = c(-0).
6 Generally speaking, the integration should be taken over the Grassmannian G 2 (RN). However,

it is easier to integrate over the Stiefel manifold V2 (RN), which is a principal 0(2)-bundle over
G2 (RN)

87



and the origin.

Since c(6) is an arbitrary linear combination of the delta-function and its even

derivatives, the above integral is a linear combination of the following integrals:

/ J (X, Jp,qy) . J2k+1 dq dp, k > 0.
PESN- qEgN-2(p) p

This is a standard integral (see [EGG, Section 4.2] for the analogous calculations).

Identifying U(SON) with S(soN) via the symmetrization map, it suffices to compute

the integral

Im;x,y(A) = ESN-1 ESN-2(P)
(X, J,,y) -tr(AJp,q)mn dq dp, A ~ SON(R)-

To compute this expression we introduce

Fm(A) := JESNl JESN 2 (p) tr(AJp,,)m+l dq dp = J (2(Aq, p))r+1 dq dp,
JPESN- qgEgN-2(p

so that the former integral can be expressed in the following way:

dFm(A)(x 0 y' - y 0 x) = -2(m + 1)Im;x,y (A).

Now we compute Fm(A). Notice that

Gm(A, ():=

0 J0

JPERN JRN-1p)

|- r p |= r 1 |'q

(2(Aq, p))"+1e-'(p,p)-(qq) dq dp =

(2(Aqp))m+l dq dp dr2 dr=
I=r2

j e O-g~ryn+N mj+N1 dr 2dr1 - Fm( A) = Km+N (C)Km+N-1()Fm (A),
[0 dr= 2 Q0

KJ( {= (2k-rI/1

882k+ k+1/2 ,
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As a result, we get

Gm(A, (M+N - 1) Fm(A)
Gnteorad=e2m+N+(m+N+1/'F

On the other hand, we have:

00 1f

S(1 Gm(A,( ) =
M=-1(M + 1)! pERN JqERN-1(p)

PERN
-((p,p) IqERNi(P) 2(qAp)-((qq) dq dp

-C(q',q') C ( pp)C(p
N-1(p) 

dp fPERN

N-
1  

/ \-1/2
((-c-!A 2

)p'p) dp = N- t + A 2
S det

,p) + . ( Ap,Ap (r( -) c\~rdp1/ 2=

N- 1

S 2det(1+(- 2A 2 -1/2
(N- 1

Hence, Fm(A) is equal to a constant times the coefficient of rm+l in det(1 +

I 2 A 2 )-1/ 2 , expanded as a power series in r. Differentiating det(1 + r 2 A 2 )-1/ 2 along

B E SON, we get

-B (det(1 ± 2A2)-1/2
T 2 tr(BA(1 + T 2A 2)- 1)

det(1 + -r2 A 2)1/2

Setting B = x 0 yt - y 0 xt yields 2-r2 (x, A(1 +T 2 A 2 )- 1 y) det(1 +r 2 A 2)- 1/ 2 as desired.

U

4.4 The Poisson center of algebras H(soN)

Analogously to the cases of g(, and s2n, we introduce the Poisson algebras HC' (SON, VN),

where C = ((o,. . ., (k) is a deformation parameter. As algebras these are S(soN ( VN)

with a Poisson bracket {., -} modeled after the commutator [-, -] of H((SON, VN),

that is, {x, y} = Ej Cjy2j+1(x, y). We prefer the following short formula for {-, } :
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VN X VN -+ C[soNl ~ S(soN):

{x, y} = Res,_o ((z- 2)(x, A(1+z 2A 2)- 1y) det(1+z2A 2 "-1/2 z-'dz, V x, y E VN, A E SON,

(4.2)

where ((z) := E>> Cizi is the generating function of the deformation parameters.

In fact, we can view algebras H( (SON, VN) as quantizations of the algebras H' (soN, VN)

The latter algebras still carry some important information. The main result of this

section is a computation of the Poisson center 3Pois (Hc' (soN, VN)) -

Let us first recall the corresponding result in the non-deformed case (C = 0), when

the corresponding algebra is just S(SON VN) with a Lie-Poisson bracket. To state

the result we introduce some more notation:

* Define pi(A) E C via det(IN + tA) = EN0 tipj(A) for A E g(N-

* Define b (A) E g Nvia bo (A) = IN, bk(A) = Zko(-1)ipj(A)Aki for k > 0.

* Define aN := SON x VN; we identify a* with GN via the natural pairing.

*Define/k : a* -+Cby k(A,v) = (v,b2k(A)v) for A EsoN, vEVN, k 0.

" If N = 2n + 1, 0, is actually the square of a polynomial function 0,, which can be

A v
realized explicitly as the Pfaffian of the matrix (E± )0 On+

* Identifying C[a*] ~ S(aN), let -Fk E S(aN) (respectively -+, E S( a 2n+1)) be the

elements corresponding to /k_1 (respectively '/).

The following result is due to [R, Sections 3.7, 3.8]:

Proposition 4.4.1. We have:

(a) 3p 0j.(S(a 2n)) is a polynomial algebra in free generators {i, ... , rn};

(b) 3poji(S(a 2n+1)) is a polynomial algebra in free generators {T, ... , mn,n+1}-

Similarly to the cases of gr1,ZP2n, this result can be generalized for arbitrary

deformations (. In fact, for any deformation parameter C = ((0,.. . , (k) the Poisson

center 3pois(Hg'(soN, VN)) is still a polynomial algebra in fN+11 generators. This is

established in the following theorem:
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Theorem 4.4.2. Define c, E C[SON SON - 3Pois(S(SON)) via i(~1 )cit 2i = cW,

where

c(t) :=Res ((z- 2 ) det(1 + t 2 A 2) 1/ 2  z-'dz

det(1 + z 2A 2)1/ 2 1 _ t- 2z 2

(a) 3poi.(H('(so2., V2n)) is a polynomial algebra in free generators {r 1+c, ... ., Tr+c};

(b) 3p 0i.(H('(So2n+1, V2n+1)) is a polynomial algebra in free generators {T1 +cl, ... rn+

Cnir+1}-

Let us introduce some more notation before proceeding to the proof:

" Let { }Yi be a basis of VN such that (xi, xj) = J _

" Let J = (Jij)N- be the corresponding anti-diagonal symmetric matrix, i.e., Jij =

JN+l-i* Notice that A = (aij) E SON if and only if aij = -aN+1-j,N+l-i for all i j.
" Let )N be the Cartan subalgebra of SON consisting of the diagonal matrices.

" Define e(ij) := Ei, - EN+1-j,N+1-i E SON for i, j 5 N (so e(i,N+l-i) = 0 Vi)

" We set ei := e(i,i) for 1 < i n := [J, so that {ei}7_1 form a basis of N-

" Define oi E C[zi,... , zl]Sl via H . 1(1 + tzi) = SE1 tio-i(Zi, zI)

Proof of Theorem 4.4.2.

We shall show that the elements ri + c (and + for N = 2n +1) are Poisson cen-

tral. Combined with Proposition 4.4.1 this clearly implies the result by a deformation

argument. Since {i,SON} = 0 for ( = 0, we still have {ri,soN} = 0 for arbitrary (.

This implies {'ri + Ci, SON} = 0 as C E 3pOis(S(soN)). Therefore we just need to verify

{ci, q} = -{ri, Xq} for all 1 < q < N. (4.3)

Using V), (A, v) = (v, b2,(A)v) = E _ xkxb2s(A)N+1 -k, we get:

{Ts+1,Xq} =

({b2s(A)N+1-,l, IXq}Xkl + > b2s(A)N+l-k i{k, q}Xl + 3b2s(A)N+l-k,lXk{IXl,Xq-
k,l k,l k,1

The first summand is zero due to Proposition 4.4.1.

On the other hand, AJ + JA' = 0 implies (A 2 j)N+1-k,l = (A2j)N+1-l,k and
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P2j+ (A) = 0 for all j > 0. Hence,

b2s(A) = A 2s +p 2(A)A 2s- 2 +P 4 (A)A 2s-4 +.. - .+ p 2s(A), b2(A)n+1-k,1= b2s(A)n+1-,k-

Combining this with {Cs+i, Xq} = Zp$N+1- q x P, we see that (4.3) is equiva-

lent to:

2) (xi, A(1 + z2 A 2) 1Xq) dz
-2EblAN+1 Resz=o ( det(1 + z 2 A2 )1 / 2 z

for all p, q N.

(4.4)

Because both sides of (4.4) are SON-invariant, it suffices to verify (4.4) for A c

that is, for

" A = diag(A, ... , An, -An,..., -A) in the case N = 2n,

" A = diag(Al, ... An, 0, -An, .. , -A) in the case N = 2n + 1.

For p $ q, both sides of (4.4) are zero. For p = q n, the only nonzero summand

on the right hand side of (4.4) is the one corresponding to 1 = N +1 - q. In this case:

b2s(A)N+1-q,N+1-q 2 qs 2 
_s n

(- 1 )SUoS+1(A2-- , A2)
(_45 aA2q

while (XN+1-q, A( 2 + z A >1 Xq) = -A2 and det(1 2A2 ) 1 / 2  Hln 1 ( 2 + Z2 A).
q

For p = q > [~N1, we get the same equalities with Ai ++ -Ai. As a result, (4.4) is

equivalent to:

49c,+(, --,- -An) )+laos+l(A, . .. ,A2) z-'dz

MReszoC(z2 ) (1 + z2 A2) H_ 1(1+ z
2 A) -

We thus need to verify the following identities for c(t):

ac(t)

q

_ OHn 1(1+ t 2  Res (2(z2)z-ldz

2= z22) 2 (1 + z2
+ A)

(4.5)

This is a straightforward verification and we leave it to an interested reader. This
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proves that ri + ci E 3poi(H('(soN, VN)) for all 1 < i n. For N = 2n + 1, we also

get a Poisson-central element rn+1 + cn+i. Since cn+1 = 0, we have

n+1 = Tn+1 E 3pojs(Hf (5O2n+1, V2n+1)) - 'n+1 E 3pois(H '(SO2n+1, V2n+l))-

This completes the proof of the theorem. M

Definition 4.4.1. The element r1' = T1 + ci is called the Poisson Casimir element of

Hg1 (SON, VN) -

As a straightforward consequence of Theorem 4.4.2, we get:

Corollary 4.4.3. We have 71 = Tr + Zk_(-1) 1 (2trS 2 +2A.

4.5 The key isomorphism

4.5.1 Algebras Hm(SONV N)

Analogously to Section 3.1.3, we introduce the universal infinitesimal Hecke algebras

of (SON, VN):

Definition 4.5.1. Define the universal length m infinitesimal Hecke algebra Hm(SON, VN)

as the quotient Hm(SON, VN) := U(soN) C T(VN)[(o,. . . , Cmn-]/J, where

rn-i

J = ([A, x] - A(x), [x, y] - E (jr2j+1(x, y) - r2 m+1(x, y))-
j=0

Here A E SON, x, y C VN and {(Cjm1 are central. The filtration is induced from

the grading on T(soN E VN)[(0, --- , (m-1 with deg(soN) = 2, deg(VN) = 2m + 2 and

deg((i) = 4(m - i).

The algebra Hm(SON, VN) is free over C(0, ... , (m-1] and Hm(SON, VN)/(i-ci) 1

is the infinitesimal Hecke algebra H(,(soN, VN) for (c = c0r1 + . .+cm--r2m-1 +r2m+1-
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Remark 4.5.1. For an soN-equivariant pairing q: A2VN -+ U(soN)[(0, - - , cm-1] such

that deg(q(x, y)) 4m + 2, the algebra

U(SoN) K( T(VN) [0,... , (.-,]/([A, x] - A(x), [x, y] --1(x, y))

satisfies the PBW property if and only if q(x, y) = rE qjr 2 i+1 (x, y) with 77 c

C[(O, ... , Cm-1] degree 4(m - i) polynomials (compare to Theorem 3.3.1).

4.5.2 Isomorphisms e and eci

The main goal of this section it to establish an abstract isomorphism between the

algebras Hm(SON, VN) and the W-algebras U(SON+2m+1, em), where em E SON+2m+1 is

a nilpotent element of the Jordan type (1N, 2m + 1). We make a particular choice of

such an element: 7

* em := 7j=1 EN+j,N+j+i - =jm1 EN+m+j,N+m+j+1-

Recall the Lie algebra inclusion t : q -+ U(g, e) from Section 3.1.6, where q

3,(e, h, f). For (o, e) = (SON+2m+1, em) we have q - SON- We will also denote the

corresponding centralizer of em E SON+2m+1 and the Slodowy slice by 3N,m and SN,m,

respectively.

Theorem 4.5.1. For m > 1, there is a unique isomorphism

E : Hm(SON, VNV-~+U(SON+2m+1, em)

of filtered algebras such that |SON ISON*

Sketch of the proof.

Notice that 3N,m - SoNDVNDCm as vector spaces, where SON - q = 3N,m(0), VN C

3N,m(2m) and C' has a basis {(o,...,(m_1} with j E 3N,m( 4 m - 4i - 2). Here

7 In this section, we view SON as corresponding to the pair (VN, (-,-)), where (-,-) is represented
by the symmetric matrix J' = (J-) with Jj = j ,,N' k + = N+k,N+ 2+l v <

N, kl ; 2m + 1.
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m_j = e/j' E SON for 1 < j m, VN is embedded via xi + Ei,N+2m+1 - EN+1,i,

while SON is embedded as a top-left N x N block of SON+2m+1-

Let us recall that one of the key ingredients in the proof of Theorem 3.2.2 was

an additional Z-grading Gr on the corresponding W-algebras.8 In both cases of

(Sln+m, em), (SP2n+2m, em) such a grading was induced from the weight-decomposition

with respect to ad(t(h)), h c q.

If N = 2n same argument works for g = SON+2m+1 as well. Namely, consider

h E q ~0 S2n to be the diagonal matrix I := diag(1, ... , 1, -1, ... , -1). The operator

ad(t(, )) acts on 3N,m with zero eigenvalues on Cm, with even eigenvalues on sON,

and with eigenvalues {1} on VN.

However, there is no appropriate h E q in the case of N = 2n + 1. Instead, such

a grading originates from the adjoint action of the element

go:(-1...-1,,..,1EO(N+2mn+ 1).
N 2m+1

This element defines a Z2-grading on U(SON+2m+l) and further a Z 2-grading Gr on

the W-algebra U(SON+2m+1, em). The induced Z2-grading Gr' on gr U(SON+2m+1, em) a

S(3N,m) satisfies the desired properties: deg(Cm) = 0, deg(soN) = 0, deg(VN) = 1.

Therefore the algebra U(SON+2m+1, em) is equipped both with a Kazhdan filtration

and a Z2-grading Gr. Moreover, the corresponding isomorphism at the Poisson level

is established in Theorem 4.5.2. Now the proof proceeds along the same lines as in

the SP2n case. U

Let us introduce some more notation:

e Let 1 : SON E VN ( Cm 3N,m denote the isomorphism from the proof of Theo-

rem 4.5.1.

* Let Hm(soN, VN) be the Poisson counterpart of Hm(SON, VN) (compare to algebras

H(S ON, VN))-

" Define Pj E C[SON+2m+1] by det(IN+2m+l + tA) = +2 1

* Define { } 1 E S(3N,m) - C[SN,m] by P 2 (m-i)ISN,m

8 Actually, as exhibited by the case of SP2 n+2m, it suffices to have a Z 2 -grading.
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The following result can be considered as a Poisson version of Theorem 4.5.1:

Theorem 4.5.2. The formulas

ecl(A) = -(A), (y) =-(y), ((k) = (-I) k

define an isomorphism Gci : Hml(soN, VN) +S(3N,m) - C[SN,m] of Poisson algebras.

The proof of this theorem proceeds along the same lines as for SP2n case.

Let us now deduce a few corollaries for the infinitesimal Hecke algebras of (SON, VN).

Corollary 4.5.3. Poisson varieties corresponding to arbitrary full central reductions

of Poisson infinitesimal Hecke algebras H'(SoN, VN) have finitely many symplectic

leaves.

Corollary 4.5.4. (a) The center Z(H&(SON, VN)) is a polynomial algebra in

generators.

(b) The infinitesimal Hecke algebra HC(SON, VN) is free over its center Z(H((SON, VN))

(c) Full central reductions of gr HC(SoN, VN) are normal, complete intersection integral

domains.

Finally, one can define the appropriate category 0 in the same fashion this was

done for SP2n-

4.6 The Casimir element

In this section we determine the first nontrivial central element of the algebras

H(SON, VN). In the non-deformed case (= 0 we have t1 := (v, v) E Z(Ho(SON, VN))-

Similarly to Corollary 4.4.3, this element can be deformed to a central element of

H(5ON, VN) by adding an element of Z(U(SON))-

In order to formulate the result, we introduce some more notation:

" Define w := ' ,+N and I := rN-S + 1)!W, V, - ~ -

* Define a sequence {aj}," 0 recursively via (j = 2 v2j+1 Z'il) (~)l+l (2+2)aj+-1.
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* Define a sequence {gj},'j via gj = 2P2j-1(-2aj-1 + EZ2j-(-1)+1 (2j+2 1)aj+l-).

* Define a polynomial g(z) := E,"' gjzj.

" Define A(z)(x, y) := (x, A(1+z 2A 2)- 1y) det(1+z 2 A 2)-1/ 2 , B(z) := det(1+z 2A 2 )- 1/ 2 .

" Let [zm]f(z) denote the coefficient of zm in the series f(z).

" Define C E Z(U(soN)) to be the symmetrization of Res2=0 g(z-2) det(1+z 2 A 2 )- 1/ 2 z-'dz.

Then we have:

Theorem 4.6.1. The element t' := t1 + C is a central element of H ON, VN)-

Definition 4.6.1. We call t' = ti + C the Casimir element of HC(SON, VN)-

Remark 4.6.1. The same formula provides a central element of the algebra Hm(SON, VN),

where C c Z(U(SON))[(0, - - -, (m-1i-

Theorem 4.6.1 can be used to establish explicitly the isomorphism e of Theo-

rem 4.5.1 in the same way as this has been achieved in Section 3.4.6 for the g[

case.

Proof of Theorem 4.6.1.

Commutativity of t' with SON follows from the following argument:

[t1, SON] = 0 E Ho(soN, VN) =' [tl, oN] = 0 c H((SON, VN) =* [t',soN] = 0 E HC(SON, VN)

Let us now verify [t 1 + C, x] = 0 for any x E VN- Identifying U(soN) with S(SON)

via the symmetrization map and recalling (4.2), we get:

[Zxx = 2 ~ j] j Xi, Jqx) (j2c(9) sin 9eOJP," dO) dqdp +[i xf ]= x ESN-1 1,EN-2(p P 17r

SJESN-1 JqESN 2 (p) (j-r 2c(9) sin 9eoJPdO) (xi, Jp,qx)xidqdp.

Since Ei x (xi, Jp,qx) = Jp,qx and ve Jpq = eojq (cos 0 - - Sin 6 - Jp,qv) for v E VN,

we have

[t1, x] = 2c(9) sin 9eojp'q (sin 0-x+(1+cos 0)-Jp,qx)d~dqdp. (4.6)
= fpsN-1 JESN-2(p _7

97



The right hand side of (4.6) can be written as [x, C'], where

ESN-2 (P) ( j-c(O)(-2 - 2 cos 6)eOJp'qdO) dqdp.

Thus, it suffices to prove C' = C.

The following has been established during the proof of Theorem 4.1.2:

ESN-1 ESN-2(p) J;',,dqdp = F._1 = A._1[]B(z),

IpESN-1

(4.7)

(4.8)/ESN2(p) (x, Jp,,y)J,,dqdp = I,;,, = v,[zs-1 ]A(z)(x, y).

Let c(O) = cOJO + c26go + c4644 + ... be the distribution from (4.1), where 6 k) is

the k-th derivative of the delta-function. Since

2c(9) sin 9eOJpq d = 2 E C3

j>1
L (-1)l+ 21 -

=1

formulas (4.1) and (4.8) imply

[x, y] = Resz=o &(z-2)A(z)(x, y)z- 1 dz,

where i(z2 ) = 2 and C1 = 2v 2j+1 El(-1)'+' (2
1+1 )C2j+2l-

Comparing with [x, y] = Resz=o ((z- 2 )A(z)(x, y)z'ldz, we get (z- 2 ) = ((Z-2)

and so c2,+ 2 = a,, where a>m := 0. On the other hand,

c()(-2 cos 0 - 2)eoJPb d9 = 2 c j
-r j!o (- 2Jj,q +

Lj/2j

-1)+1

Combining this equality with (4.7), we find:

C' = Resz=o g(z-2)B(z)z-ldz = C.

This completes the proof of the theorem. U
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Chapter 5

The affine Yangian of gli

This chapter is based on [T2].

5.1 Basic definitions

In this section we define the algebras q1,,,q3(glj) and Yh 1 ,h2 ,h3 (9 1)-

5.1.1 The toroidal algebra of gr1

Let {qi}ii be complex parameters satisfying qiq2 q3 = 1, qi $ 1.

The toroidal algebra of gr1 , denoted Uq1,q2,q3 ( I), is an associative unital C-algebra

generated by {ei, fii/4YiP Ii c Zj C Z+} (Z+ := {In E Zrn > 0}) with the

following defining relations:

[0(z), 0(w)] = 0, [+(z), 0-(w)] = 0,

e(z)e(w)(z - qlw)(z - q2 w)(z - q3w) = -e(w)e(z)(w - qiz)(w - q2 z)(w - q3z), (TI)

f(z)f(w)(w - qiz)(w - q2z)(w - q3z) = -f(w)f(z)(z - qiw)(z - q2 w)(z - qaw), (T2)

[e(z), f(w)] = - ( - ) (0+, - (z)),[e~zf~w] =(1 - qj) (1 - q2)(- q3 ) (i~w (T3)

*/(z)e(w)(z-qjw)(z-q2w)(z-qw) = -e(w)ob(z)(w-qiz)(w-q 2z)(w-q 3z), (T4)
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V+'(z)f(w)(w-qiz)(w-q 2z)(w-q 3z) = -f (w),O+(z)(z-qlw)(z-q 2w)(z-q 3w), (T5)

Syme, [ei1, [ei 2+1, e3-1]] = 0, SymG3 [f1 , [fi 2 +i, fi 3-1]i = 0, (T6)

where these generating series are defined as follows:

00

e(z) := Eeiz i,
i=-00

00

f (Z) := E fizi, -0(z) := z0i
i=-0 i;>0

00

6(z) := E zi.
i=-00

Remark 5.1.1. (a) The relations (TO)-(T5) should be viewed as collections of termwise

relations, which can be recovered by evaluating the coefficients of zkwl on both sides

of the equalities.

(b) The algebra Uq1,q2 ,q3 (gr1) differs from the Ding-lohara algebra, considered in [FT1],

by an additional relation (T6). However, it is a correct object to consider as will be

explained later.

5.1.2 Elements ti E Uq 1,q2 ,q3 (0I)

We introduce the generators {ti} instead of {?/4}, similarly to the case of a quantum

affine algebra. The main advantage is a simplification of (T4)-(T6).

Choose {tj}±>o C C[ ,*,I4,...] as the elements satisfying the following

identities:

()± = (Z) . exp - tMz" ,

where 3m := (1 - q"')(1 - q" )(1 - q3). We assume Om $ 0, i.e., q1, q2, q3 are not roots

of 1. This choice of ti is motivated by the following two results.

Proposition 5.1.1. The relations (T4,T5) are equivalent to [*, ej] = 0 = [V)±, fh]

together with

(T4t) [ti, ej = ei+j for i 5 0,j E Z.

(T5t) [ti, fj] = -fi+j for i = 0, j E Z.
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The proof of this proposition follows formally from the identity:

(z - qi-'w)(z - q 1 W)(z - q3 W) 0m wm
I (z - q1w)(z - q2 w)(z - q3w) m>0 m zm

Proposition 5.1.2. If relations (T4t, T5t) hold, then (T6) is equivalent to its par-

ticular case

[eo,[ei,e 1 ]] =0, [fo,[fif1]] =0. (T6t)

The algebra Uq q2,q3(g[l) also satisfies a natural triangular decomposition. Let
U, U0 , 0+ be the subalgebras of q1,q2,q3(g1 1 ) generated by {fi}, {0, ()1{e}.

j 1~ (00 )- 1, fel

Proposition 5.1.3. (a) (Triangular decomposition for q1,q 2, 3(g(1)) The multiplica-

tion map m : 0- 00 0 + - Uq1,q2 , 3 (9 1 ) is an isomorphism of vector spaces.

(b) The subalgebras 0-, 0+, 0 are generated by {fi}, {ei}, {4fO, (?)-1} with the

defining relations (T2, T6), (T1, T6), and (TO), respectively.

The proof is standard. Consider an associative algebra V(qgq2,q3(gl) generated by

ei, fi, 0j, (00*)- 1 subject to the relations (TO, T3, T4, T5). We define the subalge-

bras V-, 0 , V+ o f V ,q2,. (9 (1) in the same way. Let I* be the two-sided ideal of

q(,q2,q(i[1 ) generated by the quadratic and cubic relations in ei and fi arising from

(TI, T2, T6). Explicitly, I+ is generated by

Ai~j = ei+3ej-0-iei+2ej+1+0-2ei+lej+2-eiej+3-ejei+3+o-2ej+lei+2-0-iej+2ei+1+ej+3ei,

Beil, = Sym63 [eil, [ei2+1, e3- 1]]-

We also let J* stay for the corresponding two-sided ideals of V:. Proposition 5.1.3

follows from:

Lemma 5.1.4. (a) (Triangular decomposition for V 1,q2,q3(g 1)) The multiplication

map m : V- 9 0 0 9 + -+ Q1,7q2,q (91) is an isomorphism of vector spaces.

(b) The subalgebras V-, V+ are free associative algebra in {fi}, {ei}, respectively.

The subalgebra V0 is generated by0 1,(: )-1 with the defning relations (TO).

(c) We have I+ = m(Y- 0 V0 0 J+) and I- = m(VJ- 9 0 0 V+).
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Proof of Lemma 5.1.4.

Part (a) is standard. Part (b) follows immediately from (a).

Part (c) is equivalent to V-VoJ+ being a two-sided ideal of 1 q1,q2,q3(gI 1 ). Using

the equality V-V 0 + V - q11 ,q2 ,q3 (011), we reduce to showing

[Aij, tr], [Bil i2,h , tr],7 [Aij), f,],1 [Bil,i2,h) fr] E VO J+.

Relation (T4t) implies that the first two commutators are just the linear combinations

of Ait,y and Bi,,i3. Also [Ai,, f,] = 0 (it is a sum of two quadratic expressions from

(T4)).

To prove [Bi0,7 2 ,4 3 , frV E VoJ+ we work with the generating series. The relation

(T3) implies

01 - [e(zi)e(z2)e(z3), f(w)] = ( z) (zl)e(z2)e(z3)+

6 ( Z) ?4z2 )e(zi)e(z3 )p(z 2, z 1) + 6 (Z3 O(z 3 )e(zi)e(z2)p(z 3 , z 1)p(z 3 , z 2 )-

where p(x, y) (x-qiy)(x-q2Y)(x-q3Y) and O(z) = 0+(z) - 0-/(z). Hence, we have

[Syme3 Z + z2

Z3

z1 z3 II(1p
- z z) e(zl)e(z2)e(z3) , f(w) =
Z2 Z2

6131 (6(zi/w)I(zi)C1(z 2 , z3 ) + 6(z 2 /w)V5(z 2 )C2 (z3, zi) + 6(z3/w)O(z 3)C3(zi, Z2)),

where C1 (z 2 , z 3) = e(z 2)e(z 3 )C1 23 + e(z 3 )e(z 2 )C 32 and

C123= Z2 +Z2 _ Z Z3 +
(Z 1 Z3 Z2 Z2 )

Z1 Z2 3(Z 3+ Z )2 z + p(z1 , z 2)p(zi, z3 ) z1-
Z3  Z 1  Z1  

z

C132 = + Z3 - -Z1  Z2 +
(zJ Z2 Z3 Z3)

p(z1 , z 3 ) L + Z1 Z2 Z3 + p(z 1 , z 2)p(zi, z 3 )
Z2 Z3 Z1 z1

+ Z3  Z1 Z2

Z 2 Z3 Z3 /

Z2 + Z2
z 1 z 3

Zi Z3

Z2 Z2)
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The equality C132 = -p(z 3 , z 2 )C 12 3 implies actually that C1 (z 2 , z 3 ) is proportional

to the generating function of Aij. Same results apply to C2 (z 3 , zi), C3(zi, z 2 ). This

yields the inclusion [Bei,i fr] E VJ+ for any ii, i 2 , i 3 , r E Z. E

5.1.3 The affine Yangian of gfi

Let hl, h2 , h3 be complex parameters satisfying h, + h2 + h3 = 0.

The affine Yangian of g[1 , denoted Yhl,h 2 ,h3 (g[ 1), is an associative unital C-algebra

generated by {ej, fj,I'j}jEZ+ with the following defining relations (here i, j E Z+):

(YO) [zip, Oil = 0,

(Y1) ([ei+ 3, ej] - 3[ei+2 , e+1] + 3[ei+1, ej+2] - [ei, ej+3]) + U2 ([ei+i, ej] - [ei, ej+1]) =

03{ej, ej},

(Y2) ([fi+3, fj] - 3[fi+2, fj+1] + 3[fi+i, fj+2] - [fi, fj+3]) + u2 ([fi+1 , fi] - [fi, fj+1]) =

-s3{fi, fj},

(Y3) [ei, fj] = Vi+j,

(Y4) ([V'i+3, ej] - 3[4'i+2, ej+ 1] + 3[Vi+i, ej+2] - [V'i, ej+3]) + J 2 ([bi+l, ej] - [4'i, ej+ 1]) =

Or3{'i, e3},

(Y4') ['o, ej] = 0, [0i, e] = 0, [02, ej] = 2ej,

(Y5) ([V#i+3, fj] - 3[#i+2, fj+1] + 3[4'i+1, fj+2] - [4'i, fj+3]) + o2([V'i+l, fj] - [0i, fj+1]) =

-Or{?Vi, f3},

(Y5') [Vo, fj] = 0, [1, fj] = 0, [02, fj] = -2fj,

(Y6) For ii, i 2 , i3 E Z+ : SymC3 [ei, [ei2 , ei3 +1]] = 0, SymE3 [fA, [fi2 , fiA3 +1 = 0,

where o' := h, + h2 + h3 = 0, u 2 := hih2 + hih3 + h2 h3 , u 3 := hih2h3 and

{a, b} := ab+ ba.
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5.1.4 Generating series forfh,h2 ,h3(0 1)

Let us introduce the generating series:

f(z) := fjz-1, )(Z) :1+ -3 E ±3 Z-Z-
j>!O

Define >E h3 (g(1) and Ye, 2 ,h(I) as the subalgebras of Yh 1,h2 ,h 3 (gr1) generated

by ej,4j and fj, 4', respectively. Let us consider the homomorphisms

o.+ Yh >20 (91 4 Z h, (911), Y O h (40[31) Oh ^,39
1 1,h2 ,h3 ('gr) - i2A Ii 2 -3Ye,2h30

defined on the generators by Oj i-+ V's, ej '-* ej+l (respectively 4'j -+ O, fj F fj+1)-

Let

Y : h,h 2 ,h3(grl)02 -+ Yhjh 2 ,h3 ([ 1 )

be the multiplication. The following result is straightforward:

Proposition 5.1.5. Let us introduce Pa(z,w) := (z - w -hi)(z -w -h 2 )(z-w-h).

Then:

(a) The relation (YO) is equivalent to

[O(), ()] = 0.

(b) The relation (Y1) is equivalent to

&ap(Pa(z, ou+2))e(z) 0 ej + P(-(+), z)ej 0 e(z)) = 0

(c) The relation (Y2) is equivalent to

p(Pa(J(), z)f(z) f+ pa(z, o(f 0 ) g f(z)) = 0

Vj E Z+-

Vj C Z+-
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(d) The relation (Y3) is equivalent to

0-3 - (w - z)[e(z), f (w)] = (Z) - V)(w).

(e) The relations (Y4)+(Y4') are equivalent to

pa(z, U+)4(z)ej + pa(o.+, z)ejO(z) = 0

(f) The relations (Y5)+(Y5') are equivalent to

pa(a--, z)O(z)fj + pa(z, .- )fjo(Z) = 0

Vj E Z+-

Vi E Z+-
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5.2 Representation theory via the Hilbert scheme

5.2.1 Correspondences and fixed points for (A2 )[n]

We set X = A2 in this section.

Let XI1 be the Hilbert scheme of n points in X. Its C-points are the codimension

n ideals J C C[x, y]. Let P[i] C J X[n] X x Xn+ be the Nakajima-Grojnowski

correspondence. For i > 0, the correspondence P[i] C ]Jj[ X["I x X[n+il consists of

all pairs of ideals (J1 , J2) of C[x, y] of codimension n, n + i respectively, such that

J2 C J and the factor J1/J 2 is supported at a single point. It is known that P[1]

is a smooth variety. Let L be the tautological line bundle on P[1] whose fiber at a

point (Ji, J2) c P[1] equals J1/J 2. There are natural projections p, q from P[1] to

X[n] and X[n+1], correspondingly.

Consider a natural action of T = C* x C* on each Xl"] induced from the one

on X given by the formula (ti, t 2 )(x, y) = (ti - x, t 2 - y). The set (X[nI)T of T-fixed

points in X[n] is finite and is in bijection with size n Young diagrams. For a size n

Young diagram A = (A,..., Ak), the corresponding ideal JA E (X[])T is given by

JA = C[x, y] - (Cxliyo ®D ... e CxAkyk- e Cyk)

Notation: For a Young diagram A, let A* be the conjugate diagram and define

JAl := EAi. For a box L with the coordinates (i,j), we define aA(E) := A -

i, l.x(L) := A* - j. We denote the diagram obtained from A by adding a box to its

j-th row by A + OE or simply by A + j.

5.2.2 Geometric Uq1,q2,q3 (g[ 1)-action I

We recall the key theorem from [FT1] (see also [SV]).

Let 'M be the direct sum of equivariant (complexified) K-groups: 'M = E, KT(X[n).

It is a module over KT(pt) = C[T] = C[ti, t 2]. We define

M := 'M 0 K'r(pt) Frac(K T (pt)) = 'M ®C[t1 ,t2] C(t4, t 2 ).

It has a natural grading: M = ) Mn, M_ = KT(X[n]) O®K(pt) Frac(K T (pt)).
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According to the localization theorem, restriction to the T-fixed point set induces an

isomorphism

K T(XIn]) OKT(pt) Frac(K T(pt)) - K- KT((X["])T) OKT(pt) Frac(K T(pt)).

The structure sheaves {A} of the T-fixed points JA (defined in Section 5.2.1) form

a basis in @n KT((X[n])T) OKr(pt) Frac(K T (pt)). Since embedding of a point JA into

X[I] is a proper morphism, the direct image in the equivariant K-theory is well

defined, and we denote by [A] E M the direct image of the structure sheaf {A}. The

set {[A]} forms a basis of M.

Let 5 be the tautological vector bundle on X[n], whose fiber 'jj is naturally iden-

tified with the quotient C[x, y]/J. Consider the generating series a(z), c(z) E M(z)

defined as follows:

a(z) := A*/.(a) = [ (-I/z)i
i>O

c(z) := a(ztj)a(zt2 )a(zt3)a(zt 1 )- 1 a(zt- 1 ) 1 a(zt- 1)- 1, where t 3 := tl 1t2 .

Finally, we define the linear operators ej, fi, 0b (i E Z, j E Z+) on M:

ei = q (LO' 0 p*) : M a Mn+ 1, (5.1)

fi = p*(L(-01 0 q*) : Mn - Mn- 1, (5.2)
00 

-

z)|M = r := _ ( 3Z c(z) E Mn[[zT1]], (5.3)
r=O

where y(z)± denotes the expansion of a rational function -y(z) in z:l, respectively.

Theorem 5.2.1. The operators ej, fi, Oi, defined in (5.1)-(5.3), satisfy the rela-

tions (TO)-(T6) with the parameters qj = ti, 1 < i K 3. This endows M with the

structure of a Ug,q2,q3 (g 1 -representation.

This theorem is proved in [FT1] modulo a straightforward verification of (T6)

(see [FFJMM1]).
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5.2.3 Geometric h1,h2,h3 (g 1)-action I

We provide a cohomological analogue of Theorem 5.2.1.

Let 'V be the direct sum of equivariant (complexified) cohomology: 'V = 6 H (X[H).

It is a module over H(pt) = C[t] = C[si, 821, where t is the Lie algebra of T. We

define

V :='V OH(pt) Frac(H(pt)) = 'V OC[si,s2 ] C(si, S2).

It has a natural grading: V = 6 Vn, V, = H;(X[nI) ®H(pt) Frac(H;(pt)). Ac-

cording to the localization theorem, restriction to the T-fixed point set induces an

isomorphism

H;(XIn]) (&HT(pt) Frac(H;(pt)) -~+ H;((XIn])T) (gHT(pt) FRaC(H;(pt)).

The fundamental cycles [A] of the T-fixed points JA form a basis in

EDH;((XIn])T) (9HT-(pt) Frac (H; (pt)).
n

Since embedding of a point JA into X[I1I] is a proper morphism, the direct image in

the equivariant cohomology is well defined, and we will denote by [A] E VAI the direct

image of the fundamental cycle of the point JA. The set { [A] } forms a basis of V.

We introduce the generating series C(z) c V[[z~ 1]] as follows:

C(Z) ch(at- 1, -z-')ch(at2 1, -z-')ch(3t3 1, -z-1)+
Cch(ati, -z- 1)ch(at2, -z- 1)ch(at3, -z-1) )

where ch(F, o) denotes the Chern polynomial of F. We also set s3 := -s - 82.

Finally, we define the linear operators ej, fj, 4' (j E Z+) on V:

ej = q,(c1(L)i - p*) : V -+ Vn+i, (1')

fj = p*(c1 (L)i -q*) : V - Vn- 1 , (2')
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(z)i,= 1 + sis2S3 E ?Z-'-l := ((1 - s3/z)C(z))+ E V[[z- 1]]. (3')
r=O

Theorem 5.2.2. The operators ej, fj, ,, defined in (1')-('), satisfy the relations (YO)-

(Y6) with the parameters hi = si_ 1 < i < 3. This endows V with the structure of a

Yhi,h 2 ,h3 (gI 1) -representation.

Let us compute the matrix coefficients of ej, fj, *j in the fixed point basis.

Lemma 5.2.3. Consider the fixed point basis {[A]} of V.

(a) The only nonzero matrix coefficients of the operators ek, fk are as follows:

e-k[AiA]((Ai - 1)81 + (i - 1)S2 )k 1 (Aj - Ai + 1)sj + (i - i + 1)s2ek[_iAJ = (Si + S2 )((A 1 - Ai + 1)si + (1 - i)s 2) j>i(Aj+j - Ai + 1)si + (j - i + 1)s2 '

(AisI + (i - 1)s2)k((A - A, + 1)sI + is2) (Ai -- Aj+1 + 1)s 1 + (i - j)s2
-k[A+i,] Si + 52 j. (Ai - Aj + 1)s 1 + (i - j)s 2

(b) The eigenvalue of O(z) applied to [A] equals

s ( - (0)-1)(I _ x()-S2) - x()-s) +

OCA (1 - X(C)+81)(1 _ x(+8 2  _ x(-J-+3),)

where X(Qij) = (i - 1)s 1 + (j - 1)s2 for a box D , staying in the j-th row and i-th

column.

This lemma is a cohomological analogue of [FT1, Lemma 3.1, Proposition 3.1].

Using this result, proof of Theorem 5.2.2 reduces to a routine verification of the

relations (YO)-(Y6) in the fixed point basis. The only non-trivial relation is actually

(Y3). A similar issue in the K-theory case was resolved by [FT1, Lemma 4.1]. We

conclude this section by proving an analogous result.

Lemma 5.2.4. Let us consider the linear operator $1, := [ei, fj] acting on V.

(a) The operator Oij is diagonalizable in the fixed point basis {[A]} of V.
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(b) For any Young diagram A, we have i[j([]) =7i+jg - [A], where

k 7$ (yi - yj + s2)(YJ - yi + s1 + 2) yi + s, + (2 - k)s2

m =i i (y - yj)(yi - y ± SO) -yi + (k - 1)2

-2k i (yJ - y + s 2 )(y - yJ+ s1+ s2) yi +2s,+ (2 - k)s 2
-si (yi+si)r - (YYi)(Yi -Yj+S) -yi - si +(k -)s 2

(ii)

Here y1 := (Ai - 1)s1 + (i - 1)s 2 and k is a positive integer such that Ak-1 = 0.

(c) For any Young diagram A, we have:

70o = -1/152, y1l = 0, 7y2IA = 21A1.

Proof.

Parts (a) and (b) follow from Lemma 5.2.3(a) by straightforward calculations.

Let us now prove (c). First we observe that for m > 0, the expression for m in

(#) is a rational function with simple poles at yi = yj, yi = yj+si, yi = (k -1)s 2 , yi =

-si + (k - 1)s 2 . But an easy counting of residues shows that there are actually no

poles and the resulting expression is an element of C(si, S2) [yi, y2, . .. Let us now

consider each of the cases m = 0, 1, 2.

o Case 1: m = 0.

Since you is a polynomial in yi of degree < 0, it should be just an element of

C(si, S2) independent of A. Evaluating at the empty diagram, we find 7yl = =yolo

-1/sis2-

o Case 2: m = 1.

First note that 7yi1, is a polynomial in yi of degree < 1. Further for any io the

limit of the expression ( ) for r = 1 as ye0 - oo while yj are fixed for all j / io, is

finite. Thus 7yl1 , is actually a polynomial of degree 0, that is, an element of C(si, s2)

independent of A. Evaluating at the empty diagram, we find 'yl1), = Y110 = 0.

o Case 3: m = 2.
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Recall that 721, is a polynomial in y. of degree < 2. However, arguments similar

to those used in the previous case show that it is a degree 1 polynomial in y, over

C(si, s 2 ). Let us compute the principal linear part of this polynomial.

The coefficient of yi, equals the limit lim 1 72 as y- is fixed for j $ io and
-+00o )

yi= -+ oo. Formula ( ) implies that this limit is equal to 2 . Therefore, there exists
Si

a A-independent F(si, s2 ) E C(si, 82) such that 72 = (1 + 2+.. .) + F(si, 82) =

21A| + F(sj, s 2), where Wi = yi - ((i - 1)82 - s1 )'. Evaluating at the empty Young

diagram, we find F(si, S2) = 0. The equality 7y2IA = 21A| follows.

Arguments similar to those from [FTI] prove ymlx = O/m lc.

Remark 5.2.1. Comparing (3') with Lemma 2.3(b), we find the next 4-coefficient:

l631 1 =6X() + 2(s + s 2 )AI.
DEA

In particular, 6 (03 ± s3+ 2 ) corresponds to the cup product with c1 (i). This operator

was first studied by M. Lehn. It is also related to the Laplace-Beltrami operator

(see [Na2, Section 4]).

1 Note that for any Young diagram A, the sequence {yj} stabilizes to 0 as i -+ oo, unlike {yI}.
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5.3 Representation theory via the Gieseker space

The Hilbert scheme (A 2 )[n] can be viewed as the first member of the family of the

Gieseker moduli spaces M(r, n), corresponding to r = 1. The purpose of this section

is to generalize the results of Section 2 to the case of higher rank r.

5.3.1 Correspondences and fixed points for M(r, n)

We recall some basics on M(r, n).

Let M(r, n) be the Gieseker framed moduli space of torsion free sheaves on P2 of

rank r and c2 = n. Its C-points are the isomorphism classes of pairs {(E, <b)}, where

E is a torsion free sheaf on P2 of rank r and c2 (E) = n which is locally free in a

neighborhood of the line l = {(0 : z, : Z2 )} C P2 , while <D : E 11. -+0" (called a

framing at infinity).

This space has an alternative quiver description (see [Nal, Ch. 2] for details):

M(r,n) = M(r,n)/GLn(C), M(r,n) = {(B 1, B 2 ,i,j)I[B1, B 2] +ij = }",

where B 1, B 2 E End(C"), i E Hom(Cr, Cn), j E Hom(C", Cr), the GLn(C)-action is

given by g - (Bi, B 2 , i, j) = (gBig-1, gB 2 9- 1, gi, jg 1), while the superscript s sym-

bolizes the stability condition

"there is no proper subspace S C Cn which contains Im i and is B 1 , B 2 - invariant".

Consider a natural action of T, = (C*)2 x (C*)r on M(r, n), where (C*)2 acts

on P2 via (ti,t 2)([zo : Z1 : z 2]) = [zO : t1z1 : t 2z 2 ], while (C*)r acts by rescaling the

framing isomorphism. The set M(r, n)Tr of T,-fixed points in M(r, n) is finite and is in

bijection with r-partitions of n, collections of r Young diagrams (A, . . . , A') satisfying

II+. . .+IA'I = n (see [NY, Proposition 2.9]). For an r-partition \ = (Al, . .. , Ar) F- n,

the corresponding point & E M(r, n)Tr is given by E = JA e ... E J,, where <D is

given by a sum of natural inclusions JAj " 01,,.

Let us recall the Hecke correspondences, generalizing the correspondence P[1] from
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Section 2. Consider M(r; n, n+ 1) C M(r, n) x M(r, n+ 1) consisting of pairs of tuples

{(B k), B(k), (k),-(k))} for k = n, n+1, such that there exists Cn+1 -+ Cn satisfying

(Bn+1) =B ) , (n+1) =Bn)(, i(n+i) = -(n), -(n+l) = j(n) .

The stability condition implies is surjective. Therefore S := Ker C Cn+ 1 is a

1-dimensional subspace of Ker j(n+l) invariant with respect to B n+1), B n+1). This

provides an identification of M(r; n, n+1) with pairs of (B (n+, (+), (n+1)) E

M(r, n + 1) and a 1-dimensional subspace S C Cn+1 satisfying the above conditions.

Define the Hecke correspondence

M(r; n, n + 1) c M(r, n) x M(r, n + 1) = M(r, n) x M(r, n + 1)/GLn(C) x GLn+1 (C)

to be the image of M(r;n,n + 1). The set M(r;n,n + 1)Tr of T,-fixed points in

M(r; n, n + 1) is in bijection with r-partitions \ F n, p F n + 1 such that V' C p for

1 < j r; the corresponding fixed point will be denoted by . We refer the reader

to [Na3, Section 5.1] for more details.

Let L, be the tautological line bundle on M(r; n, n +1), 5, be the tautological rank

n vector bundle on M(r, n). There are natural projections Pr, q, from M(r; n, n +1)

to M(r, n) and M(r, n + 1), correspondingly. Our further computations are based on

the following well-known result:

Proposition 5.3.1. (a) The variety M(r; n, n + 1) is smooth of complex dimension

2rn + r + 1.

(b) The T -character of the tangent space to M(r, n) at the T,-fixed point equals

r

Sa\b (E)t1\a (0)+1lXb ± a\ (0+ i\b()X

a,b=1 \EAa Xa EAbXa

(c) The Tr-character of the fiber of the normal bundle of M(r; n,n+ 1) at , equals

N ,p= -t 1 t 2 + ( t1axbnt'P" + + ta( +1b2 -
a,b=1 (EAaa DEp b
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5.3.2 Geometric q1,q2 ,q3(g)-action II

We generalize Theorem 5.2.1 for a higher rank r.

Let 'Mr be the direct sum of equivariant K-groups: 'Mr = ®, KTr (M(r, n)). It

is a module over KTr (pt) = C[T,] = C[ti, t2 , X1... , Xr]. We define

Mr := 'M' OKTr(pt) Frac(Kir (pt)) = 'Mpr ®C[ti,t2,x,..,xr] C(ti, t 2 , X1, X)-

It has a natural grading: Mr = ED M", M = KTr (M(r, n))®OKrr (pt)Frac(KTr (pt)).

According to the localization theorem, restriction to the Tr-fixed point set induces

an isomorphism

KTr (M(r, n)) OKTr(pt) Frac(K Tr (pt)) 24 KTr (M(r, n)Tr) OKTr(pt) Frac(K Tr (pt)).

The structure sheaves {A} of the Tr-fixed points (defined in Section 5.3.1) form

a basis in ED KTr(M(r, n)Tr) OKrr(pt) Frac(KT r(pt)). Since embedding of a point

into M(r, Al) is a proper morphism, the direct image in the equivariant K-theory is

well defined, and we denote by [A] E Mir the direct image of the structure sheaf {A}.

The set {[A]} forms a basis of Mr.

Consider the generating series ar(z), Cr(z) E Mr(z) defined as follows:

ar(z) := A*1z(ar) = 3[A'(a)](-1/z)i,
i>O

Cr(z) := ar(ztl)ar(Zt2)ar(Zt3)ar(ztl )~1a,(zt21)-1ar(zt3 )-1.

Finally, we define the linear operators ej, fi, O, (i E Z, j c Z+) on Mr:

ei = q,,(L~i p*.) : Mi - + (5.4)

fir = P(L"(i-r) 0 q*) : M -M;_ 1 , (5.5)
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? (Z ) I ~ 00 r~z~ : = ( ( 1 )2 XaX . X
(-)'t 1 tt2Xaz - Cr (z) E Mr[[zT ]].

r=O a= 1
(5.6)

Theorem 5.3.2. The operators ei, fi, y4, defined in (5.4)-(5.6), satisfy the rela-

tions (TO)-(T6) with the parameters qi = ti, 1 < i < 3. This endows Mr with the

structure of a Uq1,q,q,(g(1)-representation.

Let us compute the matrix coefficients of those operators in the fixed point basis.

Lemma 5.3.3. Consider the fixed point basis {[A]} of M . Define X) := tj t- 1 X -

(a) The only nonzero matrix coefficients of the operators ep, f, are as follows:

[(X) 00 tlt2Xk /X

(t1XSL)Pr r 1 - tit2X/X"
t%,p = 1r--ti- H H 1- 1/X(a)

12 a=1 k=1ijX

where 0 + E denotes the r-partition obtained from A by adding/erasing a box in j-th

row of A'.

(b) The eigenvalue of 0± (z) applied to [A] equals

T r1 t3Xj/z H (1 - ti X(L)/z)(1 - t2 1 X(L)/z)(1 - t3
1X(O)/z)

a 1 -X/ (1 - t1X(L1)/z)(1 - t 2 X(Li)/z)(1 - t 3X(LI)/Z)

where T = (-1)rt+lt+lX1 .... Xr and X(OL) = tt 1X 1 for a box Oa staying in

the j-th row and i-th column of A.

This lemma allows to prove Theorem 5.3.2 just by a straightforward verification

of the relations (TO)-(T6) in the fixed point basis. The only nontrivial relation (T3)

can be verified analogously to the case of (A2 ) [n]. We will sketch the proof at the end

of this section.

5.3.3 Geometric Yhl,h 2,h3 (g( 1)-action II

We generalize Theorem 5.2.2 for a higher rank r.
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Let 'Vr be the direct sum of equivariant (complexified) cohomology: 'V' =

e Hr(M(r, n)). It is a module over Hi,(pt) = C[tr] = C[si, s2 , X1,. .,Xr], where

t, = Lie(T,). We define

V' := 'Vr ®H;,(pt) Frac(Hr(pt)) = 'V' DC[51,7 2 ,1,...,Xr C(si, S2, X1, ... ,Xr).

It has a natural grading: Vr = r V, VI = Hr,(M(r, n))0H r(pt) Frac(H.r(pt)).

According to the localization theorem, restriction to the Tr-fixed point set induces

an isomorphism

H;r(M(r, n)) ®H,(pt) Frac(H,(pt)) -~-> H.,(M(r, n)Tr) ®H9 (pt) Frac(H,(Pt)).

The fundamental cycles [A] of the T1-fixed points form a basis in the direct

sum ®, H,(M(r, n)Tr) 0 H,(pt) Frac(Hr(pt)). Since embedding of a point into

M(r, Al) is a proper morphism, the direct image in the equivariant cohomology is

well defined, and we will denote by [A] E V! the direct image of the fundamental

cycle of the point (. The set {{[]} forms a basis of VT .

We introduce the generating series Cr(z) E Vr[[z-']] as follows:

(ch(&,ti 1 , -z- 1)ch(,.t21 , -z- 1)ch(art3 , -z-1) +

ch(arti, -z- 1)ch(at 2 , -z- 1 )ch(13t 3 , -Z-1)

Finally, we define the linear operators ej, fj, Oj (j E Z+) on V,

ej = qr*(c1(Lr)j -p*) : Vn -+ V+l, (4')

fj = (-1)r- Pr*(c1(Lr)- q*) : V -+ V_ 1 , (5')

0 + 1± -sa +
O(Z)ir = 1 ± sis283 E ,z'-: 1 + - C,(z) E V [[z~]]. (6')

r=O (a=1 Z

Theorem 5.3.4. The operators ej, f3 , O$, defined in (4')-(6'), satisfy the relations (YO)-

(Y6) with the parameters hi = si, 1 < i < 3. This endows Vr with the structure of a

Yhl,h 2 ,h 3 (gI,) -representation.
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Let us compute the matrix coefficients of those operators in the fixed point basis.

Lemma 5.3.5. Consider the fixed point basis {[A]} of Vr. Define x := (Aa - 1)s1 +

(k - 1)s 2 - Xa-

(a) The only nonzero matrix coefficients of the operators ep, fp are as follows:

X1) r o0 (a) (I)
(X H s1 + s2+ Xk x

YJ= 1+ s2 H Si+ X(a) (1)

()p r 00 () (a)
-r-1 (s + x ) S1+ S2X+ X k

1 + s52 1 s + x -( ) _ (a)
a=1 k-i= 1  k3

(b) The eigenvalue of V)(z) applied to [A] equals

r + Xa-s3 r (1 - X(EJs)(1 _ x(LJ2)(l _ xl-s3)' +

1+ a (1 - x()+sl)( 1 - X(E)+S2 )( 1 - x(l)+'3)
(a=1 Z a=1 OEAa z1 / z / Z/

where X(i ) = (i - 1)si + (j - 1)s 2 - Xa.

This lemma allows to prove Theorem 5.3.4 just by a straightforward verification

of the relations (YO)-(Y6) in the fixed point basis. The only nontrivial relation is

actually (Y3). Its proof is based on the statement analogous to Lemma 5.2.4.

Corollary 5.3.6. We have

rs3 s3 E X= + (r)s2 2o-3AI -83 Ex2 _ (r - 1)s2 XZ - (3r)s -3
0(z)iX = 1--4 2 i 3 3 +O(Z3)-

z z z

5.3.4 Sketch of the proof of Theorem 5.3.2

The purpose of this section is to outline the main computation required to carry out

verifications of (TO)-(T6) in the proof of Theorem 5.3.2.

The verification of relations (TO, T1, T2, T6t) is straightforward just by using the

formulas for the matrix coefficients from Lemma 5.3.3(a). It is also easy to see that

the operators [ei, fj] are diagonalizable in the fixed point basis and depend on i + j

only: [ei, fj]([]) = yi+jI3. [ ]-
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Next, we introduce series of operators 0'(z) = _'o q5 ze, diagonalizable in the

fixed point basis and satisfying the equation

[ (z/w)
[e(z), f(w)] = ( - /1)(1 - t2)(1 - t 3)(4+(w) _ q-(z)).

Actually, this determines 010 and 0+ - 0- uniquely. Our next goal is to specify qOt

Lemma 5.3.7. We have

'Yol = (-1) X1 ... Xr

711= (l)rXl - Xrt +1 t+ 12

tt 2 - 1

(1 t)(1 - t2) (I - t3)'

a=1 DEAa /

Proof.

Fix positive integers La > A*. Applying Lemma 5.3.3(a), we find:

(1)) s-r (1 -L k<L 0,lStrLXtixl k - - t2X 3 )

( - t-)2 - tlX

k )Xk - t2XY)_
(a))(X(a - )

( l - tit2xX)( - t2Xk

(X -t1 ) - (1)

t1t2X )(X -) - t2Xk

-ti1 ) - Xa
(Q)

where X (a) = t kt-1-1. The result does not depend on the choice of {La}.

(i) For s = 0, the right hand side of (Q) is a degree 0 rational function in the

variables x . It is easy to see that it has no poles, in fact. Therefore, it is an element

of C(t1, t2, X1, ... , Xr) independent of . It suffices to compute its value at the empty

r-partition 0. For A = 0, we can choose L, = ... = Lr = 1, while X(a) = titk X-1
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73Ys =Z

1=1 j=1

Xf (1 - Xi t2 LatX) 1 Xj - t1t2X

al X - 2 Xa k (Xf -3t1X

2 t ))s X (1 - Xf ti k<L

(1- t)2 (tX (1) - ittiX- -

X ( 1 Lat
2X) La (a) -

Xqk - tLatX X (a

x1

E-1
a=1



for k > 1. Applying (2), we get

70tX .

(I - t1)2
, 1 - ti (t7lXj 1 - t2XI 1)(1 - t1XaX1 

1 )t -1 - t2t- 1Xi- ' (t-lXU- 1 - tX-1X;1)(t-lX;1 - X 1)

(-1)rtit X - t -t2Xa

(1 t)(1 - t2) X1 ... Xr EHXX1-a
(-1'tit! Xi

(1-ti)(1 - t2)X1-

1 - t 1t;
--Xr 1- tt 2 '

where we used the identity E= 1 H - 1 = s. The first result follows.

(ii) For s = 1, the right hand side of (Q) is a degree 1 rational function in the

variables X. It is easy to see that it has no poles, actually. Therefore, it is a linear

function. Its leading term equals (-1)rX, -.. Xi - 1_ ' E i 1E 1 X1). Hence, we

have:
r+2 tr+ r 00

=(1)X .. -- Xr 1 2 Z X + C
1=1 j=1

for a constant C C C(ti, t 2 , X -,. Xr) independent of A, where X l := X.1 -ti 1 1
r~~ ~ ~ Xr 12 Xa1tl...+~

Note thatEa_1 EO&a X(L) = =1  i 1 (1+t 1 +. . .+t1 a)X- = '_ S
On the other hand, C = 714. Applying (Q), we get

_- . i X (I - t)
t -1 -1 _ t -1 1 

tC t 2

(1 - l 1 ) 2 Z H
a541

(t- 1Xai - t2XZ 1)(1 - tiXaXjl)

(t-11 X1 -tl X a-1)(t-1 1 - X-)

(-1)rt t2e w X1- Xr
(1 - t1) (I - t2)

-1 Xi - tlt2Xa

1=1 Xi a01 Xi - Xa

r
--- XrZXi'

i__1

whee e se E ILA X-" " 1=1l X -1. The second result follows. 0

Due to the first equality of this lemma, we can set

Xr, # _ ++ =()tit 2 X1 ... Xr-

Next, we claim that #'(z) satisfy the following relations:

0*(z)e(w)(z-q 1w)(z-q 2w)(z-q 3w) = -e(w)#*(z)(w-qiz)(w-q 2z)(w-q3z) (5.7)
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#'(z)f(w)(w-qiz)(w-q2z)(w-q3z) = -f(w)#'(z)(z-qjw)(z-q 2w)(z-q3w) (5.8)

The proof is based on straightforward computations in the fixed point basis.

Finally, relation (5.7) implies the following identity:

q5~(z)1 ~01 - q$~(z)1 ~.
(1 - t11X(E1)/z)(1 - t21X(1)/z)(1 - tK'X(El)/z)

(1 - t1X(Ei)/z)(1 - t 2X(D 3)/z)(1 - t 3X(LiI)/Z)

Therefore,

+(z) = #+(z)|o -cr(z)jt

Applying formula (Q) once again, we get:

#+(z)|i = (#0 + E(1 - t 1 )(1 - t 2 )(1 - t3 )'Yz-) =
i>O

- -Xr+ t1t 2 (1 - tit2)Xi .. Xr 1
1 - X z

r -t1t2XIZ +
(-1)rt1t2X1 ... Xr 1 - XlZ

w=1

where we used the identity

r

1(-u) E I jj XI- UXa

1=11 -1/(IZ)a$1 Xi -Xa

r 1
U-

1=1 
x1Z

This proves 0+ (z) = /+ (z). The same arguments prove 0- (z) = 0- (z). The relation

(T3) follows. On the other hand, relations (5.7) and (5.8) imply that the relations

(T4,T5) also hold.

This completes the proof of Theorem 5.3.2.

5.3.5 Sketch of the proof of Theorem 5.3.4

The proof of the cohomological counterpart of the previous result is completely anal-

ogous and is parallel to the proof of Lemma 5.2.4.

The verification of the relations (YO, Y1, Y2, Y6) is straightforward. To verify
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the remaining relations, we follow the same pattern as above. It is easy to check

that [ei, f3] is diagonalizable in the fixed point basis and depends on i + j only:

[ei, f3]([A]) = [Yi A] - .

Lemma 5.3.8. We have 1= , 2 i = 8 (_2 - ()(si + 82)),

( r s + 2 2)

Proof.

Applying Lemma 5.3.5(a), we find:

r L I X() +(I- LI)s2+S1+xI k<L
2 (l)

s= j11 -x, + L1s2 - X1 kA

x - + (1 - La)s2 + Si + Xa) La (,(1)(x 
+) a

L ( + (1 - La)s 2 + 2s, +a) La ,a)

x - LaS2 + si + Xa (

klj Ic -i s 
8

- s2 -X ~ -x s2j(O ) ( 1() - (1) x

--k 
8
i--)k1kx --- 82)

k) k-(si - s281 - 2) J S 2 2

X 1) - sX - x 0) -

(a) x
k~j (:d~- xS - X ') -82)

(a - s ( - a s2 x 0) -s

-XS2 -si-) S2 X 
1
k 82)

( X( - i) - x ")() - W

U i - S1 X -82 _ (9)3 (4)

where x* = (A - 1)si + (k - 1)s2 - ra as before. The right hand side of (4) is a

degree s rational function in the variables x "). Actually, it is easy to see that it has

no poles for s > 0.

(i) For s = 0, we therefore get an element of C(s 1 , s2, X1,... XI) independent of

A. Using (4) once again, we get y1, = yol, = -r/s 1 s 2.

(ii) For s = 1, we therefore get a linear function. But its leading term is zero, in

fact. So -yi, = y1|,. Using (4) once again, we get 'yi, = 1 (Er_ xa - (r)(si + 82)).

(iii) For s = 2, we therefore get a quadratic function. But its leading quadratic

part is zero, in fact. So y2I, is a linear function. Similarly to the proof of Lemma 5.2.4,
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we find that the leading linear part is actually ' _ (a) = 2-(a, where X (a)

X(a - (-s 1 + (k - 1)82 - xa). Hence, 721, = 211(a+y2,. Applying (4) once again, we

get the last formula. L

Using this lemma together with computations in the fixed point basis, it is straight-

forward to check that { j, ej, fA}iEz+ satisfy the relations (Y4,Y4',Y5,Y5'). This in

turn implies

(z - x(LI ) + si)(Z - X(E] ) + S2)(Z - X(E ) + s3)
O(zIi = #(3 -

(z - x(O1) - si)(Z - X( 13) - s2)(Z - X(1-) - 83)

where #(z) := 1+3 EiO #iz- 1 . Therefore, #(z)i, = #(z)- C,(z)t. Applying (4),

we get:

O(z)=1- cJ3 X1(-xi)iz-- J - Xa - 81 -2 _

S182 i>O 1=1 a#l -X Xa

1-X1z 1 x -Jx a-1-S2
1-s3 E -1

1=1 a~l E

It remains to use the identity 1 + u E'_1 x ] X" - f,_ 1 z+x

This proves O(z) = ,(z). The relations (Y3-Y5') follow. Theorem 5.3.4 is proved.
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5.4 Some representations of Uqi,q 2,q3 (g I) and yh,,h2 ,h3 (1)

In this section, we recall several families of Uq,q 2 ,q3 (,L)-representations from [FFJMM1,

FFJMM2] and establish their analogues for the case of ?h1,h2,h3(g 11). This should be

viewed as an analogy between the representation theory of Uq(Lg) and Yh(g).

5.4.1 Vector representations

We start from the simplest representations V(u) and Va(u).

The main building block of all constructions is the family of vector representations

of Uql,q 2 ,q3(9 1 ), whose basis is parametrized by Z (see [FFJMM1, Proposition 3.1]).

Proposition 5.4.1 (Vector representation of Uqj,q 2 ,q3 (gL1 )). For u C C*, let V(u) be

a C-vector space with the basis {[U]j}jEZ. The following formulas define Uq1,q2,q3 (9[ 1 )

action on V(u):

e(z)[u)i = (1 - ql)-6(qu/z) - [u]i+,

f (z)[u] = (q-1 - 1)-6(qi'u/z) - [u] _1,

+(z - qq 2u)(z - qju)q \
' i= (Z - qiu)(z - qg-lu) [uB.

Analogously to that, we define a family of k 1 ,h2 ,h3 (gL1 ) vector representations:

Proposition 5.4.2 (Vector representation of Phl,h2,h(g 11)). For u E C, let aV(u) be

a C-vector space with the basis {[u]j }jez. The following formulas define Yh1,h2,h3(0[1)-

action on aV(U):

1 ( 1 +
e(z)[u]= 6+((ihi +u)/z)[u]+ = hi(z - -[Ui+,h1z jz-u-ij

1 /-1+
f = --[U~i 6+(((i - 1)hi + u)/z)[u];i- = .( - -+ - [u]j1,

h(z h(z - u - () -h1)hi)

(z - (ihi + h2 + U))(Z - (ihi + h3 + U)) +

OWUi (z -(ih + u))(z -((i -1)h + u)) lu'

where J+(w ) := I + w + w 2 + . W )+.
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5.4.2 Fock representations

Next, we introduce a family of Fock modules F(u) and aF(u).

A more interesting family of Uqi,q 2 ,q3 (,ri)-representations, whose basis is parametrized

by all Young diagrams {A}, was established in [FFJMM1, Theorem 4.3, Corollary 4.4].

Proposition 5.4.3 (Fock representation of Uq,q2,q 3(gri)). For u E C*, let F(u) be a

C-vector space with the basis {IA)}. The following formulas define Uq1,q2,q 3(gY1)-action

on F(u):

> (1 -A qi q-j +1q +) 1

f(z)IA) = _____ 2___ (1 -9 q9 ~l~ )(1 - qi+ q)

6(q7 -1 u/z) A A

-A-= ~j u (z - q q +u)(z - A A+1- 1

1 -q 1 u (z - q j+ q u)(z - q q'-dq7 l-u)

Remark 5.4.1. The Fock module F(u) was originally constructed from V(u) by us-

ing the semi-infinite wedge construction and the coproduct structure on Uq1 ,q2,q3 (g 1)

defined by:

A : e(z) - e(z)01+-(z)0e(z), f(z) Ni± f(z) +(z)+lf(z), j+(z) ' +() ()

Let us also recall the relation between F(u) and M from Theorem 5.2.1.

Remark 5.4.2. (a) According to [FFJMM1, Corollary 4.5], there exist constants {cA}

such that the map [A] '- cAIA) establishes an isomorphism M-2~+F(l) of Uqi,q2,q3(gr1)-

representations.

(b) Let #,u be the shift automorphism of Uq1,q2,q(gr1) defined on the generators by

er u-(er, fr-r -,',u+z -.', EZ E+
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Then the modules F(u) and V(u) are obtained from F(1) and V(1) via a q$-twist.

This construction also has an analogue in the khi,h 2 ,h3 (g(1 )-case.

Proposition 5.4.4 (Fock representation of Yh,h 2 ,h (g1j)). For u E C, let aF(u) be a

C-vector space with the basis {IA)}. The following formulas define Yh1,h2,h3 (g1)-action

on aF(u):

e(z)IA) = ((A - A)hi + (i - j -1)h2)((Ai - Aj + 1)hi + (i - j+1)h2)
hiz >1= ((Ai - Aj) hi + (i - j) h2) ((Ai - Aj + 1) hi + (i - j) h2)

6+Ajhi + (i - 1)h2 + U J )
z

f(1)A) = ((A3 - Aj + 1)hi + (j - i + 1)h 2 )((Aj+ 1 - Aj)hi + (j - i)h2)
hiz ((Aj+1 - Ai + 1)hi + (j - Z + 1)h 2 )((Aj - Aj)hi + (j - i)h2)

(A+1 - A)hi + (Ai - 1)hi + (i - 1)h 2 + U Ai),
(Ai+ 1 - Aj + 1)hi + h2  z

() = (z - (Ajhi + ih2 + u))(z - ((Ai+ 1 - 1)hi + (i - 1)h 2 + u)) +
OWN= f(z- (Ai+ 1hi +ih 2 +u))(z- ((Ai - 1)hi+(i - 1)h 2 +u))

z - ((A1 - 1)hi - h2 + U) +

z - (Aihi +u)

The proof of this proposition follows from the following lemma:

Lemma 5.4.5. (a) For u E C, there exists the shift automorphism u$ of Yh1 ,h2 ,h3 (9[1)

such that Oa : e(z) -+e (z - u), f(z) -+ f(z - u), 4'(z) '- (z - u).

(b) The Fock representation aF(u) is obtained from aF(O) via a twist by 0 .

(c) There exist constants {c\} such that the map [A] -+ cIA) establishes an isomor-

phism V-~-+aF(O) of Yh1,h2 ,h3 (g 1)-representations, where V is from Theorem 5.2.2.

Proof.

Parts (a) and (b) are straightforward.

We define ca by the following formula:

A 1-1 i-i Ai

a = fJ H(-phi + h 2) -f JJ (p -A )hl + (i ) )h 2

>1 p=O i>2 j=1 p=1

125



It is a routine verification to check that the map [A] '-* ca JA) intertwines the formulas

for the matrix coefficients of ej, fj, 4j from Lemma 5.2.3 and Proposition 5.4.4. El

Definition 5.4.1. We say that a representation U of Yh1,h 2 ,h3 (g1j) has central charge

(co, ci) (ci C C) if central elements Oi act on U as multiplications by Ci for i = 0, 1.

Thus aV(u) has central charge (0, _L), while 'F(u) has central charge (-h , -h ).

5.4.3 The tensor product of Fock modules F(u)

In this section, we express the representation M from Section 3 as the appropriate

tensor product of Fock modules F(u).

Let A be the formal comultiplication on Uq1 ,q2 ,q3 (g[1 ) from Remark 5.4.1. This

is not a comultiplication in the usual sense, since A(ej) and A(fi) contain infinite

sums. However, for all modules of our concern, these formulas make sense. Recall the

Uqiq 2 ,q(g[)-representation M', constructed in Theorem 5.3.2. Let K be the automor-

phism of Uqi,q2,q 3 (gi), defined on the generators by n (ei) = ej, K (fi) = T- 1 fi, K (V)P) =

T-1 0p, where T = (tit2 )r+iX, ... Xr. Let yfr be the Uq1,q2 ,q3 (9(,)-representation, ob-

tained from M' via a twist by K.

Theorem 5.4.6. There exists a unique collection of constants c C C(t1, t 2 , X1,... , Xr)

with co = 1 such that the map [\] = [(A, ... , A')] - c - Ai) 0 ... 0 Ar) establishes

an isomorphism rS-~+F(X1) 0 ... 0 F(Xr) of Uq,q2 ,q 3((1)-representations.

Let us first explain why the formal coproduct A endows the tensor product F(Xi)0

F(X2 ) (the case r > 2 is completely analogous) with a structure of a Uqjq 2 ,q3 (B I)-

module. In order to make sense of the formal coproduct in this setting, note that

e(z)IA) = Za, |A + I ), f(z)IA) = b ( ) IA- 0),

where a,n, bA,o E C (ti, t 2 , Xi, , Xr), the first sum is over L 0 A such that A + E is

a Young diagram, while the second sum is over L E A such that A - L is a Young

diagram.
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According to the coproduct formula, we have

A(e(z))(IA') 0 IA2)) = e(z)(IA')) 09 A2) + 4~(z)(IA')) 0 e(z)(IA 2 )).

The first summand is well defined. To make sense of the second summand we use the

formula

g(z)6(a/z) = g(a)J(a/z). (5.9)

Recall that 0+(z)(IA)) = yx(z)- JA), where -y(z) is a rational function in z depending

on A. Combining this with (5.9), we rewrite

V)- (z)(IA')) 0 e(z)(I A2)) = aA2',E]y-(X())()) JA') 0 IA2 + li).

Analogously we make sense of the formula for the action of fi on F(X1) 0 F(X2).

Finally, the formula A(':*(z)) = 4+(z) 0 *' (z) provides a well-defined action of 01

on F(X1 ) 0 F(X2 ).

Proof of Theorem 5.4.6.

Due to Remark 5.4.2, we identify F(xj) ~ M6xj, the twist of M by the shift

automorphism q#j . For any r-partition A = (A', ... , Ar), Lemma 5.3.3(b) implies that

the eigenvalue of 0'(z) on [A] E Mr equals the eigenvalue of V)(z) on IA')- -. -oIAr) E

F(Xi) 0 ... 0 F(Xr). Hence, for any constants c the map [A] -cI IA') 0 0 Ar)

intertwines actions of {}>0.

Consider constants cX defined by co = 1 and cj+[/c = dxjj., where

r() (a) -- oo () t 1 -1 (a)
df ,jj tX 3t X 3 t1 t2  k 5-0

dx~t-1 :=((a-)i2 a . (.
a=l+1 k=1 - t 2 Xk a=1 k=1 X - 1 k

Here X "m = t1 et2-X and A + 0E denotes the r-partition obtained from A by

adding a box to the j-th row of A . Note that X+1 = t 2 X "p for p > n and

so the infinite products of (5.10) are actually finite. It is straightforward to check

that c are well-defined, that is, dx':] satisfy d +E, d ,nk = d +oi,o d ,ag. Using
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Lemma 5.3.3(a), it is straightforward to check that the map A] -+ c- IA1) 0 0 - AT)

intertwines actions of ej and fi as well. The result follows. E

5.4.4 The tensor product of Fock modules aF(u)

In this section, we express the representation VT from Section 3 as the appropriate

tensor product of Fock modules aF(u). To formulate the result, we need to define the

tensor product W 1 0 W 2 of hik,h 2,,h (,r)-representations W.

The action of O(z) on W1 0 W 2 is defined via the comultiplication A(4(z)) =

(z) 0 9'(z), that is, 0(z)(w1 0 w2 ) = V(z)(wl) 0 V)(z)(w 2) V W1 E W 1 , w 2 E W 2 . To

define the action of e(z), f(z) on W 1 0 W2, we should restrict to a particular class of

representations. A Yhl,h 2 ,h3 (g(,)-representation W is called admissible if there exists

a basis {Wa}aEI of W such that

o e(z)(w-) = Za'EI Cc.I6+(Aa,,,/z)wc, f(Z)(Wa) = Ea"EI d 6
+(Aaua/z)Wa/

for some c,,,, da,a", Ac,a, E C. For each a, both sums have only finite number of

nonzero summands.

o 0 (z)(wa) = yw(a, z)+ . wc for a rational function 'yw(a, e) defined by

yw)(a, + 0-3E da/a' - 03 E z-cA,da
cz"EI aE

Example 5.4.1. The modules aV(u) and aF(u) are admissible.

Let W 1 , W 2 be admissible khl,h2 ,h3 (g(1)-representations with the corresponding

bases {Wi}aEI and {W1}3EJ. Consider the operator series e(z), f(z) on Wi 0 W2

defined by

e(z)(wl (W2) := I+ '0 2i +E c16,wia "8, ,)1+OW,

a/EI 0 EJ

f(z)(w1&w2) : d _ A d da,,'yw2(3, Aa,ia) +A,

'EJ a"/EI

Remark 5.4.3. Those formulas are well-defined only if for any 0' such that $ 0,

the function -yw, (a, z) is regular at z = A , for any a E I, and similarly for the
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summand with yw 2(#, z).

We can depict those by

A(e(z)) = e(z) 0 1 + V) (*) 0 e(z), A(f (z)) = f(z) g0 (*) + 1 0 f (z),

where 4(e) indicates that we plug in the argument of the corresponding 6+-function.

The following is straightforward:

Lemma 5.4.7. If W 1 and W2 are admissible Yhj,h 2,h 3(gj)-representations and the as-

sumptions of Remark 5.4.3 hold, then the above formulas define an action of Yh1,h2 ,h3 (0h)

on Wi OW 2 .

More importantly, it might be possible to define an action of fh,h 2 ,h3 (gr1 ) on a

submodule or a factor-module of W 1 0 W 2, even when the assumptions of Remark 5.4.3

fail.

Lemma 5.4.8. Let S be a subset of I x J such that e(z)(w2 w%), f(z)(w1 0 w2)

are well-defined (in the sense of Remark 5.4.3) for any (a, 3) E S and satisfy one of

the following conditions:

(a) For any (a,3) E S, (a',f0') S 5, wi, 0 w , does not appear in e(z)(wl 0

w'), f(z)(wi 0 wa).

(b) For any (a,3) E S, (a',/0') S 5, w1 0 w2 does not appear in e(z)(wi, 0

W 1,), f (Z) (wa, 0 OOp)

Then the above formulas define an action of k 1 ,h2 ,h3 (9(1) on the space with a basis

{Wa 0 W}(a,)ES-

Now we are ready to state the main result of this subsection:

Theorem 5.4.9. There exists a unique collection of constants c C C(s1, s 2, x1, - - - , Xr)

with co = 1 such that the map [A] = [(A 1 , ... , Ar)] '-+ c - IA') 0 0 .. -9 iA) establishes

an isomorphism Vr ~+ aF(x1) ® ... & aF(Xr) of Yh1,h,h (g(1)-representations.

Remark 5.4.4. As V _ V 1, we have V ~ V1(xi) 0 ... 0 Vl(xr). In other words,

the representation of Yh 1,h2 ,h3 (gr,) on the sum of equivariant cohomology groups of

M(r, n) is a tensor product of r copies of such representations for (A 2 )[ml.
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5.4.5 Other series of representations

We recall some other series of Uqlq 2 ,q3 (g 1)-representations from [FFJMM1, FFJMM2].

All of them admit a straightforward modification to the khj,h2 ,h3 (g(1 )-case. Those

have the same bases, while the matrix coefficients of e(z), f(z), V(z) in these bases

are modified as follows:

1
1 -qiqiq3u/z ~_ ih1+jh2 +khs+u-z, 3(gq-q qu/z) ~ t +((ihi+jh2+kh 3 +u)/z),

where the latter sign is "+" for e(z) and "-" for f(z).

9 Representation WN (U).

Consider the tensor product VN(u) := V(u)9V(uq- 1)0V(uq3 2 )... V(uq --N).

Define TN : JA = (A,..., IAN) E ZN > A AN};, N,+ := {A E pN AN > 0-

Let WN(u) C VN(u) be the subspace spanned by

[uA := [U]-i 0 [uq 1] 2 _1 0 ... N-N+1 for A E pN.

According to [FFJMM1, Lemma 3.7], WN(u) is a& q1 ,q2,q3 (gr 1 )-submodule of VN(U).

The subspace WN,+(u) c WN(u) corresponding to 'PN,+ is not a submodule. How-

ever, its limit as N -+ oo is well-defined (after an appropriate renormalization) and

coincides with the Fock module F(u).

e Representation Ga.

Let qi, q2 be in the (r, k)-resonance condition: qjqi = 1 if a = (1-r)c, b = (k1)c

for some c E Z (assume k > 1, r > 2). In this case the action of Uq,q 2 ,q3(gri) on WN(u)

is ill-defined. Consider the set of (k, r)-admissible partitions

Sk,r,N := {A E pNIA - Ai+k > r V i < N - k}.

Let Wk,r,N(u) be the subspace of WN(u), corresponding to the subset Sk,r,N C yN

According to [FFJMM1, Lemma 6.2], the comultiplication rule makes Wk,r,N(U) into

a q1 ,q2 ,q3(g[ 1)-module. We think of it as "a submodule of WN(u) or even VN(U)
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even though none of them has a Uq 1 ,q2 ,q3 (g )-module structure.

Moreover, one can define an action of Uqj,q 2 ,q3 (9 1 ) on the corresponding limit of

WkrN(u) as N -+ oo. Let us fix a sequence of non-negative integers a = (ai,. .. , ak)

satisfying E_ ai = r. Define

'P/: (12A2 ! -.- )|Aj - Aj+k r V j ! 1, Aj = AO V j > 0},

where we set A'Ik+i+l -pr - = a3 for 0 < i < k - 1. The above limit construc-

tion provides an action of Uq1 ,q2 ,q3 (9 1 ) on the space Gfr parametrized by A E ' k

see [FFJMM1, Theorem 6.5]

Representation Ma,b(U).

Let us consider the tensor product of Fock representations. If qi, q2 , u1 , - - - , un are

generic (qq bu -. --ucn = 1 iff a = b = cl = ... = c, = 0), then the tensor product

F(ui) 0- 0 F(un) is well-defined. Consider the resonance case ui = ui+1 q i+l qi+1

for some a, bi > 0, 1 < i K n - 1.

Let Ma,b(U) C F(u 1 ) 0 ... 0 F(un) be the subspace spanned by IA',... , A"):

[Ul]A1 0 ... 0 [u,.X-, where Young diagrams A',..., A" satisfy A' > A"+ - ai for

i < n - 1, s > 1. According to [FFJMM2, Proposition 3.3], the comultiplication

rule makes Ma,b(u) into a Uq1,q2,q3 (gl)-module for generic q,, q2 , u. Moreover, it is an

irreducible lowest weight module.

* Representation Ma' (u).

Assume further that qi, q2 are not generic: there exist p, p' > 1 such that q a = 1

iff a = p'c, b = pc for some c E Z. We require that an := p' - 1 - Z -i71(ai + 1), b:

p - 1 - Z_- (bi + 1) are non-negative. In this case, the action of Uq1,q2 ,q3(g[,) on

Ma,b(u) is ill-defined.

Consider a subspace M 'P(u) c F(ui) 0 - 0 F(un) spanned by IA, ... , A")

satisfying the same conditions A' A'+' - aj, but with i < n, where A+ - A'.

The comultiplication rule makes it into a Uqlq 2 ,jq (gr,)-module, due to [FFJMM2,

Proposition 3.7]. We think of M '(u) as "a subquotient of F(ui) 0 ... 0 F(un)".

Their characters coincide with the characters of the Wn-minimal series of s5n-type,
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according to the main result of [FFJMM2].

5.4.6 The categories 0

We conclude this section by introducing the appropriate categories 0 both for the

quantum toroidal and the affine Yangian of gr1 .

e Category 0 for Uqq 2,q3 (gr1).

As we will see in the next sections it is convenient to work with the quotient

algebra 'J (gr) := 2,()/( - (4+)-1), rather than Uqq 2,q3 (gr1 ) itself.

The algebra ' ,q2 3(g(1) is graded by deg(ei) = -1, deg(fi) = 1, deg(Vbt) = 0.

Definition 5.4.2. A Z-graded U',q 2,(gL)-module L is in the category 0 if

(i) for any v E L there exists N c Z such that U',q2 ,q(g(1)>N() 0,

(ii) all graded components Lk are finite dimensional (module L is of finite type).

We say that L is a highest weight module if there exists vo E L generating L and

such that fi(vo) = 0, Ot (vo) = p - vo, V i E Z, jc Z+, for some p E C, p p+ P

To such a collection {p}, we associate two series p±(z) := E pfrzTj E C[[z .

Given any two series p+ (z), p- (z) satisfying p+ .p- = 1, there is a universal highest

weight representation MP+,P-, which may be defined as the quotient of ' ,q2,( )

by the left-ideal generated by {fi} U { - pt}. By a standard argument Mp+,,- has

a unique irreducible quotient V1+, -.

The module V1+,,- obviously satisfies the condition (i) from the definition of the

category 0. Our next result provides a criteria for V+,p- to satisfy (ii) (i.e., to be in

the category 0).

Proposition 5.4.10. The module V+,,- is of finite type iff there exists a rational

function P(z) such that p*(z) = P(z)l and P(0)P(oo) = 1.

Proof.

The proof is standard and is based on the arguments from [CP]. Define constants

{Pi}iEZ as p- (for i > 0), -p-; (for i < 0), and p+ -p- (for i = 0). To prove the "only
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if" part we choose indices k E Z, l E Z+ such that {ek(vo), ... , ek+j(vo)} span the de-

gree -1 component (V+,p-). 1 , while this fails for the collection {ek(vo), .. , ek+1-1(vo).

As a result, there are complex numbers ao,... , a, E C, al # 0, such that aoek(vO) +

aek+1 (vO) +. . +aek+(vo) = 0. Applying the operator fr-k to this identity and using

the equality fiej (vo) = -01- 1 pi+j -vo (due to (T3)), we get aopr+alpr+l+.. .+alpr+l = 0

for all r C Z. Therefore, the collection {pi}iEZ satisfies a simple recurrence relation.

Solving this recurrence relation and using the conditions po = p p-, O (PO+-

we immediately see that p+(z) are extension in zTl of the same rational function.

To prove the "if" direction, the same arguments show dim(V,+,p-)_1 < oo. Com-

bining this with the relation (TI) a simple induction argument implies dim(V+,p-)-_ <

oo for any 1 > 0.

9 Category 0 for Yh 1, 2 , 3 (91)-

The algebra Yh 1,h2 ,h3 (g 1) is graded by deg(ej) = -1, deg(fj) = 1, deg(0j) = 0.

Definition 5.4.3. A Z-graded Yh1, 2 , 3 (g 1)-module L is in the category 0 if

(i) for any v E L there exists N E Z such that Zhi,h2,h3(9 1)>N(v) = 0,

(ii) all graded components Lk are finite dimensional (module L is of finite type).

We say that L is a highest weight module if there exists vo c L generating

L and such that f 3 (vo) = 0,O(vo) = pj - vo,V j E Z+, for some p E C. Set

p(z) := 1 + E Op z-- 1 E C[[z-1 ]]. For any {pj}, there is a universal highest weight

Yhj,h 2 ,h3 (g (,)-representation Mp, which may be defined as the quotient of h,h 2 ,h3 (gr1 )

by the left-ideal generated by {fj} U {0 - pj}. It has a unique irreducible quotient

V,. The following is analogous to Proposition 5.4.10:

Proposition 5.4.11. The module V is in the category ( iff there exists a rational

function P(z) such that p(z) = P(z)+ and P(oo) = 1.

133



5.5 Limit algebras

5.5.1 Algebras 0h and ?h

We recall the algebra of h-difference operators on C.

For a formal variable h, let Dh be an associative algebra over C[[h]] topologically

generated by Z 1 , D"1 subject to the following relations

Z-Z-1 = Z- 1 -Z = 1, D-D- 1 = D-1-D = 1, D-Z = qZ-D, where q = exp(h) E C[[h]].

We will view Dh as a Lie algebra with the natural commutator-Lie bracket [-, -]. It

is easy to check that the following formula defines a 2-cocycle 4 c E C(Dh, C[[h]]):

00(ZaDi, ZbD j') =

0

- Z_'jqai+b(j+i)
- (Qqb+a(-j+i)

j 4 j' or j=j'=0

j = i'> 0

j = j' < 0

This endows th = Dh e C[[h]] - ca with a structure of a Lie algebra.

5.5.2 Algebras Oh and Dh

We recall the algebra of q-difference operators on C*.

For a formal variable h, let Oh be an associative algebra over C[[h]] topologically

generated by x, 0" subject to the following defining relations

- = -- = 1, 0- x = (x + h) -.

We will view Dh as a Lie algebra with the natural commutator-Lie bracket [-, .

It is easy to check that the following formula defines a 2-cocycle 0 E 02 (Oh, C[[h]]):

0

Oz (f~ W ) a,, = { E-r f (lh)g((l + r)h)

- 1 g(lh)f ((1 - r)h)

r s or r = s = 0

r =s > 0

r =s < 0
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This endows !Dh = Dh e C[[h]] - cD with a structure of a Lie algebra.

5.5.3 The isomorphism To

We construct an isomorphism of the completions of Oh and 'Oh.

First we introduce the appropriate completions of the algebras bh, h:

o 'Oh is the completion of Dh with respect to the powers of the two-sided ideal J =

(Z - 1, q - 1);

o 'h is the completion of 'Dh with respect to the powers of the two-sided ideal

Jz = (x, h).

In other words, we have:

h ::= lim bh/h - (Z - 1, q - 1)j, 'Dh := lim 'Dh/fh - (x, h)j.

Remark 5.5.1. Taking completions of Dh and Dh with respect to the ideals J and Jj,

commutes with taking central extensions with respect to the 2-cocycles # and OZ.

The following result is straightforward:

Proposition 5.5.1. There exists an isomorphism To : DhaD, defined on the

generators by

D±1 -+01, Z+1 ,*z eX 7 c-01 .P

Remark 5.5.2. Specializing h to a complex parameter ho C C, that is taking factor

by (h - ho), we get the classical C-algebras of difference operators 'hD and Dth.

However, one can not define their completions as above and, moreover, completions

of their central extensions.

5.5.4 The renormalized algebra Uh(g[ 1)

We introduce the limit algebra Uh(gr1 ).

Throughout this section, we let hl, h2 be formal variables and set h3 := -hl - h2 -

We define qi := exp(hi) E C[[hi, h2]] for i = 1, 2, 3. First we introduce a formal

analogue of Uq1,q2,q3 (gr1 ). While the relations (TO, T1, T2, T4t, T5t, T6t) are well
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defined over C[[hi, h2]], we need to change (T3) in an appropriate way. This will also

lead to renormalizations of (T4t, T5t).

Remark 5.5.3. This is analogous to the classical relation between Uq(') and Uq(Lg).

We start by renormalizing (T3) to the following form:

[ei, ff] = (0,+ - 4 'z)/(1 - q3). (T3')

This procedure is called renormalization, since for the case of complex parameters

qi = 1, this algebra is obtained from Uqi,q2 ,q (9i) just by rescaling ei by 1 - qi and fi
by 1 - q2-

Next, we write 0:i(z) as 0+(z) = exp(-''±)-exp((1- q3) >Zm Hmz- m ). Then

K± are central elements and the relations (T4t, T5t) get modified to:

[Hm, =i] (1 - q"')(1 - q2)(1 - q3) [Hmfi] = (1 - q) (1 - q2)(1 - q3)f
[HmJ =~ m(1 - q3) m(1 - q3 )

These relations are well-defined in the formal setting since (1q 1 )(1q 2 )(1q 3 ) E C[[hi, h 2]]-1-q3

Note that the right hand side of the relation (T3') also makes sense. The correspond-

ing algebra over C[[hi, h2]] topologically generated by {e, i, K±, Hm} will be denoted

by U 2 ,h3 (1g(). We also introduce U(2 0([1) := Uh2 ,h3(g 1 )/(K+ + K_). Finally, we

define

U(11) := Uh,h 3(gi)/(K+ + _, h3).

It is an algebra over C[[h]] topologically generated by {ej, fj, K, Hm} subject to

(T1, T2, T6) and the following four relations:

[Hk, Hm] = 0, r. is central, (TOL)

[ei,f 3 ] = Hi+j i+j#0 , (T3L)
- + i+j=0

[Hm, ei] = -(1 - qm)(1 - q-')ei+m, (T4tL)

[Hm, fi] = (1 - q')(1 - q- m )fi+., (T5tL)
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where q:= exp(h) E C[[h]]. Now we are ready to relate UO(gr1 ) to Zh.

Proposition 5.5.2. There exists a homomorphism 0m : U(g 1 ) -+ U(Dh) such that

Om(ez) = ZZD, 9m (f ) = -D- 1 Z, 0m( H) = -(1 - q-)Zk - q-'c, Om(0.r) = cz.

Proof.

It suffices to check that

ZD, : D-Zik :-(1 -qk)Zk -qco, K = c

satisfy the defining relations of U(g I). The only nontrivial relations are (T1,T3L,T4tL,

T6t).

" For i, j C Z, we have [e,j] = [Z'D, ZiD] = (qi - qi) - Z'+ D2. (T1) follows:

[en+3,rn] - (1+ q + q- 1)[en+2,Fm+1] + (1 + q + q )[en+1,, m+2] - [en, Fm+3] = 0.

" The relation (T3L) follows from the following identity:

[ii, h-] = -[Z'D, D-Zi] = (-1 + q- )Z'+j _ q-i-qco.

" The relation (T4tL) follows from the following identity:

[Hm, F] = -(1-q-m)[Zm, ZiD] = -(1-q-m)(1-qm)Z+mD = -(1-q m )(1-q-m )EF+m-

* The relation (T6t) follows from [D, [ZD, Z 1 'D]] = [D, (q- 1 - q)D + q-1 c-] = 0.

The image of Om is easy to describe.

Lemma 5.5.3. Let bo C Dh be a free C[[h]] -submodule generated by

{c?, h - Z kDo, h- 1 Z'J , hi--lZ2D-3Ik # 0, j > 0}.

Then 50 is a Lie subalgebra of Dh and Im(Om) C U(M).

E
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Actually, we have the following result:

Theorem 5.5.4. The homomorphism On provides an isomorphism 0( 1 ) -+U( ).

Note that all the defining relations of Uh(gll) are of Lie-type. Hence, U,'(gll) is

an enveloping algebra of the Lie algebra generated by ei, fi, ,, Hm with the afore-

mentioned defining relations. Thus, Theorem 5.5.4 provides a presentation of the Lie

algebra bo by generators and relations.

Actually, we have a more general result:

Theorem 5.5.5. If ho E C\{Q - iri}, then Om induces an isomorphism of the C-

algebras: Uh.(g[ 1) ~+U(-'.), where b',, c - is a Lie subalgebra spanned by cb and

{ZDiJ}(ij)#(o,o).

5.5.5 The renormalized algebra Y'(gI1 )

We introduce the limit algebra Yh(g( 1)

Analogously to the previous section, we let hi, h2 be formal variables and set

h3 := -hi -h 2 . We view Yh1,h2 ,h3 (9(1) as a formal version of the corresponding algebra

introduced in Section 1.3. In other words, kh 1,h 2 ,h 3 ( g[ 1 ) is an associative algebra over

C[[hi, h 2]] topologically generated by {ejfj, "kj}iez, subject to the relations (YO)-

(Y6).

We will actually need a homogenized version of this algebra. Let }2,h3 (gr1) be an

associative algebra over C[[hi, h2]] defined similarly to y 1,h2 ,h3 (g11) with the following

few changes:

[4 2 , e] = -2hih 2ei, [02, fi] = 2hih 2 fi.

The specializations of algebras 2 ,h3 (gr1 ) and h21,h2 ,h3 (9 1) at hk E C* are isomorphic.

However, E2 ,h3 (gr1) is a Z+-graded algebra with deg(ei) = i, deg(fi) = i, deg(Oi) =

i, deg(hk) = 1.

We define ih(gl1) by

h'(g 1) := Y,()

It is an algebra over C[[h]]. The following result is straightforward:
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Proposition 5.5.6. There exists a homomorphism 6a : Yh(011) -+ U(Q3J,) such that

Oa(ej) = X o, 6 a(fj) = -0-Yz, Oa(/j) = (x - h)i - xi - (-h)cz,.

The image of Oa is easy to describe.

Lemma 5.5.7. Let h C Oh be a free C[[h]]-submodule generated by

{c, h - xia 0, hi- 1zxa, hi-1 z-iIi ;> 0, j > 0}.

Then~h is a Lie subalgebraof Na andIM(Oa) C U(Oh .

Actually, we have the following result:

Theorem 5.5.8. The homomorphism Ga provides an isomorphism 6a : i - .

Note that all the defining relations of Yh(g[ 1) are of Lie-type. Hence, kh(g[j) is an

enveloping algebra of the Lie algebra generated by ej, fj, O/ with the aforementioned

defining relations. Thus, Theorem 5.5.8 provides a presentation of the Lie algebra h

by generators and relations.

Actually, we have a more general result:

Theorem 5.5.9. For hi E C*, Oa induces an isomorphism Ga :kho (0 i) U(Mao)

5.5.6 Proof of Theorem 5.5.5

We prove that 0m is an isomorphism of C-algebras for ho Q ri.

As mentioned in Section 5.4, all the defining relations of the algebra U (gr1) are

of Lie-type. Therefore, it is the universal enveloping algebra of the Lie algebra i'o

generated by {ei, fi, Hm, n} with the same defining relations. Moreover, i' is a C -.-

central extension of the Lie-algebra iiho generated by {ej, fi, Hm} with the following

defining relations:

[HkH] = 0, (UO)

[ei+3 , ej] - (1 + q + q- 1)[ei+2 , ej+ 1] + (1 + q + q-1 )[ei+1, ej+2] - [ei, ej+3] = 0, (ul)
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[fi+3, fj] - (1+ q+ q~ )fi+2, fi+1] + (1 + q-- )[fi+, fj+2] - [fi, fj+3] = 0, (u2)

[ei, fj] = Hi+j for j # -i, {ei, f-i] = 0, (u3)

[Hm, ei] = -(1 - qm )(I - q- m )ei+m, (u4)

[Hm, fi] = (1 - qm )(1 - q m ) fi+m, (u5)

[eo, [ei, e_ 1 ] = 0, fo, h[fi, f-1] = 0, (u6)

where q := eho c C*. Note that ho V Q -ri iff q =A f (not a root of 1).

Hence, it suffices to check that the corresponding homomorphism Om : iio a O'o

defined by

Om : ei - ZZD, fi '-+ -D-lZ, Hk -+ (q-k - 1)Zk

is an isomorphism of the C-Lie algebras for q = vf. The surjectivity of Om is clear.

The Lie algebra Uho is Z2 -graded, where we set

deg(ei) = (i, 1), deg(fi) = (i, -1), deg(Hk) = (k, 0).

The Lie algebra D' is also Z2 -graded, where we set deg(Z2DJ) = (i, j). Moreover, Om

intertwines those Z2 -gradings. Since dim(D'o), = 1 for (i, j) 4 (0, 0), it suffices to

show that dim(iih.)i, < 1. This statement is clear for j = 0. In the remaining part

we prove it for j > 0.

Let fii be the Lie algebra, generated by {ei, Hm} with the defining relations

(uO,ul,u4,u6). It suffices to prove that dim(fii )i, 5 1 for j > 0. We prove this by

an induction on j.

" Case j = 1.

It is clear that (iOi)N,1 is spanned by eN-

* Case j = 2.

It is clear that (fii:)N,2 is spanned by {[ei2 , ei2 ]l}i+i2=N. However, (ul) implies

k+1 _ q-k qk+ 2  -k

[ei+2+k, ei+1-k] = q - [e+ 2, ei+ 1l, [ei+2+k, ei-k] = q2 -1 [e+ 2 , es]-
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These formulas can be unified in the following way:

qi2 _gi1 i+1 _ q1-i
[ei1 , ei2] = q+ _qi [eo, ei 1 +i2 ] if i1 + i2 / 0, [ei, e-i] = 2 - [i, e- 1]. (5.11)

Therefore, ('ii[)N,2 is either spanned by [eo, eN] (if N # 0) or [ei, e 1 ] (if N = 0).

* Case j = 3.

Let us introduce the following common notation:

[a,; a2; . . . ; an]n := [a,, [a 2 , [... [an_1, an]]]]

The space (fihi)N,3 is spanned by {[ei1 ; ei2; e ial}l+i 2 +i 3=N- Using the automorphism 7r

of the Lie algebra &iiO, defined by ei - ei+i, Hm 1- Hm, we can assume i 1 , i 2 , i 3 > 0.

Together with the case j = 2, it suffices to show that [ek; eo; el] is a multiple of

[eo; e0 ; ek+l] for any k, 1 > 0.

Define hm := - '" - for m $ 0. Then ad(hm)(ei) = ei+m. Therefore:

ad(hi)([ek; eo; el]) = [ek+1; eO; ei] + [ek; ei; el] + [ek; eo; el+i].

Assuming [ek; eo; el] is a multiple of [eo; eo; ek+l], we get [ek+1; eO; el] is a linear combi-

nation of [eo; eo; ek+1+1] and [ei; eo; ek+l] (we use (5.11) there). It remains to consider

k = 1 case.

(N-1- 2)( N-1-1)
We will prove by an induction on N > 1 that [ei; eo; eN-1 = N(q)2 )eo; eo; eN]-

This is equivalent to [ei; eo; eN-1] being a multiple of [eo; eo; eN], since we can recover

the constant AN,3 := (qN q
2

)(qN-1_) by comparing the images Om([ei; eo; eN-1]) and
(q1-1)1

0m([eo; eo; eN])

o Case N = 2.

Recall that the relation (u6) combined with (u4) imply

Sym[ei1 ; ei2+ 1 ; ei3- 1] = 0 V i1 , i 2 , i3 C Z. (u6')

Plugging i 1 = 1, i 2 = 1, i3 = 0, we get [ei; e2 ; e- 1] + [ei; ei; eo] + [eo; e2 ; eo] = 0.
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Combining this equality with (5.11), we get

(q + 1)2
[eo; eo; e2] -[ei; eo; eil ==> [ei; eo; el] = A2,3 [eo; eo; e 2]

q

o Case N = 3.

Plugging il = 1, i 2 = 2, i3 = 0 into (u6'), we get

[ei; e3 ; e- 1] + [e 2 ; e2 ; e-1] + [e 2 ; el; eo] + [eo; e3 ; eo] + [eo; e2 ; ei] = 0.

Applying (5.11), we get:

- (q + 2 + q-1) [e2; eo; el] - (q + q-')[lei; eo; e2] - (I + q _ ) (eo; eo; e3] = 0.

On the other hand, applying ad(hi) to (q + 1) 2 [e 1 ; eo; el] + q[eo; eo; e2] = 0 (case

N = 2), we get

(q + 1)2[e2; eo; ei] + (q2 + 3q + 1)[ei; eo; e2 ] + (q - 3 )[eo; eo; e3] = 0.

These two linear combinations of [e 2 ; eo; el], [ei; eo; e 2], [eo; eo; e3 ] are not proportional

for q # vT. Therefore, we can eliminate [e 2 ; e0 ; ei], which proves that [ei; eo; e2 ] is a

multiple of [eo; eo; e3].

o Case N = k + 2, k > 1.

By an induction assumption [ei; eo; ek] - Ak+1, 3 [eo; eo; ek+1] = 0. Applying ad(hi),

we get

([e2; eo; ek]+[el; el; ek]+[ei; eo; ek+1])-Ak+1,3([el; eo; ek+1]+[eo; el; ek+1]+[eo; eo; ek+2]) = 0.

Note also that

(ad(hi) 2 - ad(h 2 ))([eil; ei2; ej3]) = [eji+i; ei 2 +1; ei3]+ [eii+1; ei2 ; ei3 + 1 ]+ [eil; ei 2+ 1; ei3+ 1].

By an induction assumption [ei; eo; ek_1] = Ak,3[eo; eo; ek]. Applying ad(hi) 2 - ad(h2),
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we get

([e 2 ; ei; ek-1] + [2; eo; ek]-+ [e1; e1; ek])-Ak,3 ([el; ei; ekl+[ei; eo; ek+i]+[eo; ei; ek+11) = 0.

Applying (5.11), we get two linear combinations of [e 2 ; eo; ek], [ei; eo; ek+1], [eo; eo; ek+2]

being zero. It is a routine verification to check that they are not proportional for

q 4 v/i. Therefore, we can eliminate [e 2 ; eo; ek], which proves that [ei; eo; ek+1] is a

multiple of [eo; eo; ek+2].

* Case j = n > 3.

Analogously to the previous case, it suffices to show that [ei; eo;... ; eo; eN-1]n is

a multiple of [eo; . .. ; eo; eN]n. This is equivalent to

(qN 4
- 1)n 2 (qN- n-1i

[ei; . . . ; eo; eN-1]n = AN,n - [eo;. . ; eo; eN n, AN,n = (N - n-7

the constant being computed by comparing the images under 9 m-

We will need the following multiple counterpart of (u6) (follows from Proposi-

tion 5.7.5 below):

[eo; ei; eo; .. . ; eo; e_1 ]n = 0. (u7n)

This equality together with the relation (u4) implies

Sym[ei; ei2+1; ei 3; -. ; ein 1 ; ei-l]n = 0 V ii, ... ,in E Z. (u7'n)

Now we proceed to the proof of the aforementioned result by an induction on N.

o Case N = 2.

Applying ad(hi) 2 - ad(h 2) to (u7n), we get

[ei, ad(hi)[ei; eo; ... ; e_ 1]n_ 1] + [eo; (ad(hi) 2 - ad(h 2))[ei; eo; ... ; e- 1]n- 1] = 0.

By the induction assumption for n, LHS has a form an -[ei; eo; ... ; ei]n+bn-[eo; ... ; eo; e 2 ]n-

Computing the images under 0m, we find an = "( 1 5 0 for q $ v/i.

o Case N = 3.
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Applying ad(hi) to [ei; .. ; eo; ei1n - A2,n[eo; . . ; eo; e2]n = 0, we get

[e2; eO; . .. ; ei], + [ei, ad(hi)[eo; ... el]n_1]-

2,n[el; . .. ; eo; e2]n - A2,n[eo, ad(hi)[eo, .. . ; e2ln-1] = 0.

Applying the induction step for j = n - 1, this equation can be simplified to

[e2; eo; ... ; eo; elln + Cn - [ei; eo; ... .; eo; e2]n + dn - [eo; eo; ... ; eO; esln =0.

Computing the images under 0m, one gets c = (-n (q"n + 2qn- 1 - 2q - 1).

On the other hand, applying ad(hi) ad(h 2 ) - ad(h 3 ) to (u7n), we get

[e 2 ; ad(hi)[ei; . .. ; e_ 1 ]n_ 1]+ [ei, ad(h 2)[ei, .. . , e-1]n-1]+

[eo; (ad(hi) ad(h 2) - ad(h 3))[ei, . -- , e-1]n-1) = 0.

Applying the induction step for j = n - 1, this equation can be simplified to

a' - [e2; eo; com t ; o; en + C' - [ei; eo; eO; e2n + dn -[eo; eo; ... ; eo; e3n = 0.

By computing the images under 0,n, one gets the following formulas

, (q"n-1 - 1)2an =(q _ 1)2 , Cn =
(_)in(q _ )n-4(qn-1 1)2 (qn-1 + 1)

qn- 2 (q + 1)(q 2 _ 1)n-2

It remains to notice that c' 4 a'cn for q f /I. Therefore, eliminating [e 2 ; e0 ;--- ; eo; e1],

we see that [ei; eo; ... ; eo; e2]n is a multiple of [eo; eo; ... ; eo; e3]n-

o Case N = k + 2, k > 1.

By the induction: [ei; eo; ... ; ek~n - Ak+1,n[eo; ... ; eo; ek+1]n = 0. Applying ad(hi),

we get

[e2 ; eo; ... ; ek]n - [ei, ad(hi)[eo; ... ; ekn-1]-

Ak+1,n([el; eo; . . ; ek+1i] + [eo, ad(hi)[eo; ... ; ek+1in-1]) = 0.
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By an induction assumption on length j < n commutators, this equality can be

simplified to

[e2 ; eO; ... ; ek]n + vn - [ei; eo;... ; ek+1n] + Wf - [eo; eo; . . ; ek+2]n = 0.

By computing the images under 0m, we find n = (qk-1)-
2

(k.+12qn-lq-1nqk+1)

On the other hand, by an induction assumption:

[e 1 ; ... ; eo; ek_1] - Ak,n[eo; ... ; eo; ek]n = 0.

Applying ad(hi) 2 - ad(h 2 ), we get

[e 2 , ad(h)[eo; ... ; ek_1n_1] + [ei, (ad(hi) 2 - ad(h 2))[eo; ... ; ek-1n-1]-

Ak,n([e, ad(hi)[eo; . . ; ek]n_1) + [eo, (ad(hi)2 - ad(h 2))[eo; ... ; ekn-1]) = 0.

By an induction assumption on length j < n commutators, this equality can be

simplified to

B ' - [e2; co; -.un ; ekn + V - [ei; eo; ... ; ek+1 n + W - [eo; eo; ... ; ek+2]n = 0.

By computing the images under 0,,, we find

(qn-1 - 1)n 2 / (qk-1 _ n-2n-1 1 )
(q - 1)(qk - n)n-2 = (qk+1 _ J)n-2( - 1)

(n-1 _

q2 _ i
k-1 _ n-1

- k i -

It remains to notice that v' 5 u'vno for q # VT. Therefore, eliminating [e2 ; eo; . . . ; eo; ekn,

we see that [ei; eo; ... ; eo; ek+1]n is a multiple of [eo; eo; ... ; eo; ek+2] n

This completes the proof of dim(iih,)i, 5 1 for j > 0. The case j < 0 is analogous.

5.5.7 Proof of Theorem 5.5.9

We prove that 0a is an isomorphism of C-algebras for ho = 0.

As mentioned in Section 5.5, all the defining relations of the algebra kh'(g[1 )
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are of Lie-type. Therefore, it is the universal enveloping algebra of the Lie algebra

Yh. generated by {ej, fj, 4'j} with the same defining relations. Moreover, jj. is a 1-

dimensional central extension of the Lie-algebra 1h 0, generated by {ej, fj, VIj+1} with

the following defining relations:

[Ok, 01 = 0, (yO)

[ei+ 3 , ej] - 3[ei+ 2 , ej+] + 3[ei+i, ej+2 - [ei, ej+31 - h'([ei+1, ej] - [el, ej+i]) = 0, (yl)

[fi+3, fj1 - 3[fi+2, fj+1] + 3[fi+1, fj+2] - [fi, fj+3] - ho([fi+1, f3] - [ft, f3+1]) = 0, (y2)

[eo, fo] = 0, [ei, fj] = V#i+j if i + j > 0, (y3)

[4i+3, ej] -3['i+2, ej+ 13 +3['i+1, ej+2] -[Vi, ej+3] - h'([i+1 , ej] -[0, e3+i]) = 0, (y4)

1, ei] = 0, [02, ej] = 2hoes, (y4')

[4i+3, fj] -3[i+ 2 , fj+1]+3[ i+ 1, fj+2] -[(i, fj+31 -h(['+ 1, f3] - , fj+i]) = 0, (y5)

[01, fj = 0, [02, fj] = -2hofj, (y5')

Sym5 3 [ej1, [e 2 , ei3+ 1]] = 0, SymE 3 [ff, [ff 2, fi3 +1]] = 0. (y6)

Hence, it suffices to check that the corresponding homomorphism 0a : ho -+ Oh,

defined by

0, : ei--+ xa , f '-* -a- 1x, j+1 -+ ((x - ho)-+ _ xj+1)ao,

is an isomorphism of the C-Lie algebras for ho $ 0. The surjectivity of 0a is clear.

The Lie algebra Qh. is Z-graded, where we set

deg 2 (e3 ) = 1, deg2 (fh) = -1, deg 2 (Oj) = 0.

It is also Z+-filtered with deg 1 (ej) = j, deg1 (fj) = j, deg1 (j+ 1 ) = j. The Lie alge-

bra Oh, is also Z-graded with deg2 (Xi&J) = j and Z+-filtered with deg1 (xia&) = i.

Moreover, 0a intertwines those gradings and filtrations. Note that dim(Onh)ij =

dim(Oho) i_1,j + 1. Let 00 be the Lie algebra generated by {ej,k} with the
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defining relations (y0,yl,y4,y4',y6). The result follows from the following inequal-

ity: dim(ji2) i,j - dim( )0 )<i-, < 1.

Consider a subspace Vi,, C (jjO)i,, spanned by {[eij; ... ; eiii +... + i

i + n - 1}. The above inequality follows from the following result, which we prove by

an induction on j:

dim Vi,j - dim Vi 1.

Note that the relations (y4,y4') imply the following result:

[V'k,ej] - k(k - 1)h'ej+k-2 C V<j+k-2,1.

* Case j = 1, 2.

The subspace Vi,1 is spanned by {eo, el,..., ei}. The inequality (0',1) follows.

The subspace V N,2 is spanned by {[ei,, ei2]| ii + i 2  N + 1}. The relation (yl)

implies:

[ei+2+k, ei+1-k] - (2k + 1)[ei+ 2, ei+i] E V 2i+ 1,2 , [ei+2+k, ei-k] - (k + 1)[ei+ 2 , ei] E V_2i,2-

These formulas can be unified in the following way:

[ei, ej] - . [eo, ei+j] E Vi+j-2,2. (5.12)

Hence, V<i,2 /V i- 1,2 is spanned by the image of [eo, ei+ 1]. The inequality (0i,2 ) follows.

* Case j = 3.

Our goal is to show that [ei,; ei2; ei3 ] is a multiple of [eo; eo; ei1+i 2 +i3 ] modulo

VY<i+i 2 +i3- 3,3 , which will be denoted by [eil; ei2 ; ei ~- [e eo; e;ei1+i2+i3]. By (0.,2),

we can assume i 2 = 0-

To proceed, we introduce the elements hl, h2 E eio by hi := h2

According to (y4,y4'), we have [hi, ej] = ej+1, [h 2 , Oj] = ej+2. Same reasoning as

in Appendix B.1 shows that applying ad(hi) to [ek; eo; el] - [eo; eo; ek+l] implies

[ek+1; eo; ei] - [eo; eo; ek+1+1]. Therefore, it remains to prove [ei; eo; eN-1 - [ei; eo; eN -
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Computing the images of both commutators under 0,, we see that [ei; eo; eN-1

3N,3 [eO; eo; eN] for 3
N,3 = _N . We write a = b if a - b E Vsi- 1 ,j for a, b E Vsi,j.

o Case N = 1, 2.

We have [ei; eo; eo] = 0 = [eo; eo; ei]. Applying ad(hi) to this, we get [ei; eo; e1] =

- [eo; eo; e2]-

o Cases N = k + 1, k > 1.

By an induction assumption: [ei o;e0 ek_] I,3 [eo; eo; ek]. Applying ad(hi), we

get

[e 2 ; eo; ek-1] + [ei; ei; ek-1] + [ei; eo; ek] - 3 ,3([ei; eo; ek] + [eo; ei; ek] + [eo; eo; ek+1i)-

Applying (5.12), we get [e2; eo; ek-1] + j[ei; eo; ek] ~ [eo; eo; ek+1]. On the other

hand, we have [ei; eo; ek-2] = B-1,3[eo; eo; ek-1]. Applying ad(hi) 2 - ad(h 2), we get

[e2; ei; ek-2] + [e2 ; eo; ek-1]+ [ei; ei; ek-1] - k-1,3(Ie1; e 1 ; ek-1] + [ei; eo; ek]+ [eo; ei; ek]).

Applying (5.12), we get 2(k-2) [e2 ; eo; ek-1] + ---k[ei; eo; ek] - [eo; eo; ek+1]. Compar-

ing those two linear combinations of [e 2 ; eo; ek-l], [ei; eo; ek], we get [ei; eo; ek]

[eo; eo; ek+1], unless k = 3. We will consider this particular case in the greater gener-

ality below.

9 Case j > 3.

Analogously to the j = 3 case it suffices to show that [ei; eo ; ... ;eN-1n

[eo; ... ; eo; eN]n. This is equivalent to

N - 2n+ 2
[ei; ... ; eo; eN-1n /N,n - [eo; ... ; eo; eN]n, ON,n N

the constant being computed by comparing the images under Ga.

We will need the following multiple counterpart of (y6) (follows from Proposi-

tion 5.7.10 below):

[eo; ... ; eo; en- 2]n = 0. (y7n)
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Now we proceed to the proof of the aforementioned result by an induction on N.

o Case N <n - 1.

If N < n - 1, then [eo; ... ; eo; eN-1n-1 = 0 = [eo; ... ; eo; eN]n . Applying ad(hi)

to [eo; ... ; eo; en-2]n = 0, we get [ei; ... ; e0 ; en-2]n ~ [eo; . . . ; eo; en-1]n-

o Case N = k+1,k > n-2.

Applying ad(h1 ) to [ei; .. . ; eo; ek_]fn = k,n[eo; . . ; eo; ek1f, we get

[e2 ; ... ; eo; ek-1] + [ei, ad(hi)[eo; ... ; ek-1]n-1]

Okn([e1; -. - ; eo; ek]n + [eo, ad(hi)[eo; ... ; eo; ek]n-1]).

By an induction assumption for j = n - 1, this is equivalent to

[e2; - eo; ek-1]n + (n-2 k [cn- )n-)li;. .. -; eo; ek],-- [eo; ... ; eo; ek+11n-

Applying ad(hi) 2 - ad(h 2) to [ei; ... ; eo; ek-2]n =- k-1,[eo; - ; eo; ek-1]n together

with an induction assumption for j = n - 1, we get

P[e2; ... ; eo; ek-1]n + Q[ei; ... .; eo; ek~n =- [eO; ... ; eO; ek+11n,

with P - (n-1)(k-n+), Q = 2kk-1) (k 2 (n -4)-k(2n2 _ 13n+12)+(n -9n 2 +18n -8)).

Comparing those two linear combinations, we get [ei; ... ; eo; ekIn - [eo; ... ; ek+1]n for

k # n.

It remains to consider the case k = n. Choose h3  - such that [h3, e3] = e3 +3 -

Applying ad(hi) ad(h 2) - ad(h 3 ) to [eo; . .. ; eo; en- 2]n = 0, we get

2
[e2; ..-. ; eo; en-1]n + -[lei; ... ; eo; en~n ~ [eo; ... ; eo; en+1]n-n

This equivalence together with the previous one implies

[ei; . . . ; eo; en]n - [eo; ... ; eo; en+1]n-
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5.6 The homomorphism T

We construct a homomorphism T : Uh 2,h3((1) - h 2 ,h 3 ( 9( 1 ), which induces an in-

clusion (but not an isomorphism as it was in [GTLI) of appropriate completions. We

also construct compatible maps ch, : Mr _ Vr.

5.6.1 Construction of T

We follow notation of [GTL].

Let Yh2 ,h3 (g(1) denote the completion of Z 2 ,h, (0r1) with respect to the Z+-grading

on it. To state the main result, we introduce the following notation:

* Define $?(z) := 1 - h3 -j>0  z 1 E 2 ,h3 (gL1)[[z1]] (agrees with that from Sec-

tion 5.1.4).

" Define ki E C[bo, 01, 0 2 ... .] by Ej>o kizz-l =: k(z) = ln(*(z)).

* Define the (inverse) Borel transform

00 00

B : z~1C[[z-,]] -+ C[[w]] by E a E .
i=0 i=O

" Define B(w) E h3 Yh 2,h(9 1)[[z- 1]] to be the inverse Borel transform of k(z).

* Define a function G(v) := log (ev/ "e-v/) E vQ[[v]].
--

* Define -y(v) := -B(-O,)G'(v) E Yh 2,h,(911[[vjl.

9 Define g(v) := E'giv" C Yh, (g1)[[v]] by g(v) := 1/2 ep 2

The identity B(log(1 - -y/z)) = (1 - e')/w immediately implies the following

result:

Corollary 5.6.1. The conditions of Proposition 5.1.5(e,f) are equivalent to

E 3 je hiw _ e-hiw ) a+ E' 3 G-hiw _ ehiw
[B(w), ej] = Z=e ew+ ej, [B(w), fj] = Z=- )ew-fj.

Nr w

Now we are ready to state the main result:
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Theorem 5.6.2. There exists an algebra homomorphism

T : Uh2,h3 (0 1) Yh2,h3(B I,

defined on the generators by

B(m) ek I-> eka+g(c+)eo, fk '-+ ekug(Ur)fo, K '-4 -100.
1-

Proof.

We need to verify that T is compatible with the defining relations of Uh2,h3 (O[

* The relation (TO) is obviously preserved by T.

* According to Corollary 5.6.1, we have

qm e+m qm+3m - - ~ ~ , 3 a
[B(m), ej] = 2 1 e e -- e ej,

m m

[B(m), fj] = 2+m _ q - m - 93 " fj = e" fm m

This implies the compatibility of (T4t,T5t) with T.

* The verification of (T1,T2,T3) is completely analogous to the corresponding com-

putations from [GTL, Ch. 3,4].

* The verification of the cubic relation (T6t) is implicit. Set E := [T(eo), [T(ei), T(e_1 )]].

We will see (Proposition 5.6.8 below) that E acts trivially on Vr for all r. Note that

Vr are Z+-graded modules of 2 ,h,,(9 1). In particular, the degree k component Ek

of E acts trivially on Vr. But we will see (Section 6.4 below) that the action of

Yh'2 ,h3 (g[ 1 ) on D, Vr is faithful. This implies Ek = 0 for all k, and E = 0. The proof

of [T(fo), [T(fi), T(f_1 )]] = 0 is analogous. 0

5.6.2 The limit h3 = 0

We verify that the specialization of T at h3 = 0 is induced by To.
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Recall that we have isomorphisms

Uh,h3 ( /(h3)-~+U(bo) and Yhh 3 (o 1 )/(h 3)-+U(f).

Our next result evaluates the specialization of T at h3 = 0.

Proposition 5.6.3. The homomorphism TIh : U(b4) _+ U(n) is induced by To.

Proof.

We verify the statement by computing the images of the generators under TI h3 ..

We have:

" TI, 0(co) = CsD.

* T~ i ((-k -1)Zk -q-kc_) = >,o((x-h)'-x-(-h)ic)kJ = (qk -)ekx-q-kC

* TIh 0(ZkD) = Ei o i .Xi = ekx&.

* Tih(-D-Zk) - - Zj 0  -1 -i! = -- lekx.

The result follows.

5.6.3 The elliptic Hall algebra

We recall a notion of the elliptic Hall algebra studied in [BS, S, SV].

We will need the following notation:

" We set (Z2)* Z 2\{(0, 0)}.

" We set (Z 2 )+ := {(a, b)Ia > 0 or a = 0, b > 0}, (Z 2)- : (Z 2)+.

" For any x = (a, b) C (Z2)*, we define deg(x) := gcd(a, b).

" For any x E (Z 2 )*, we define c. := 1 if x E (22)+ and Ex := -1 if xE (Z2 )-

" For a pair of non-collinear x, y E (Z 2 )*, we set ex,y := sign(det(x, y)) E {+1}.

" For non-collinear x, y E (Z2)*, we denote the triangle with vertices {(0, 0), x, x+y}

by Ay.

" We define a., := -3 , /n = .

* We say that A.,y is empty if there are no lattice points inside this triangle.

Following [BS], we define (central extension of) the elliptic Hall algebra E to be

the associative algebra generated by {ux, ryIx E (Z2)*, y E Z2} with the following
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defining relations:

Exry= 'cx+y, KO,O = 1, (EO)

-1

[uy, ux] = -x,_ KX if x, y are collinear, (El)
adeg(x)

[Uy, ux] = cx,yKa(x,y) x+y if ALY is empty and deg(x) = 1, (E2)
a,

where the elements Ox are defined via

n>O = (E arxOX if deg(xo) = 1, (E3)

while a(x, y) is defined by

S{ ) eX(Ecx + Eyy - ex+y(x + y))/ 2 , Ex,y = (E)
a~x, ) == -14

Ey(cxx+ Eyy - x+y(x+ y))/2, iEx,y = -

This algebra is closely related to the toroidal algebras of g[f:

Theorem 5.6.4. [SI There is an isomorphism E : t/(Ko, -1) ~U' ,q 2,q3 (g (1) defined

on the generators by

ui,j -- ej, u-1,i --+fi, 00,j _ 0f /+, 00,_ -j + /3 - Ka,b a @+)",j>

Remark 5.6.1. This theorem has been proved in [S] only for F := B/(y - 1)yEz2, but

the above generalization is straightforward. The quotient algebra F is the spherical

Hall algebra of an elliptic curve over Fq.

This result provides distinguished elements {uxIx E (Z2 )*} of gh2 ,h3 (gL1). As

h3 -+ 0, their images Ex coincide with the natural generators of U(-').

Lemma 5.6.5. The Cn-images of ilk,j are given by the following formulas:

UOr a sign(r) q2 1 (- q2) Z - C , (5.13)
fLO1-q) 1- q2
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Uk, f 2(k,l) - _q2 ( 1  q 2 )k-lZD k , -2f(k,l) 1 - q)kl1D-kz-1,
1-q2i 1-2

(5.14)

where k > 0, r / 0, d :=gcd(k, l) and f(k, l) kl-k- -d+2 is the (signed) number of

lattice points inside the triangle with vertices {(0, 0), (0,1), (k, l)}.

Proof.

Let us first observe that in the limit h3 - 0, the relation (E2) becomes

[,y1x, x = Ex,yha(x,y) adeg(x+y) ix+y xy is empty and deg(x) = 1. (E2')
a,

This formula immediately implies (5.13), since we have iio, = sign(r)1[ii- 1,o, i,r].

Formula (5.14) will be proved by an induction on k; we will consider only the case

k > 0. Case k = 1 is trivial. Given (k, l) E Z>1 x Z, choose unique x = (ki, li), y =

(k2 ,12 ), 0 < ki, k2 < k, such that x + y = (k, l), ex,y = 1, deg(x) = deg(y) = 1 and

ALy is empty. The formula (E2') together the an induction assumption yield:

Om(iik,1) = (1 q2)(1 - q2 ) f(kl,ll)+f(k 2,2 ) (k 2li - kil2)( - q2 )kl+k2- 2 Z1+l2Dkl+k2.

_k 112 - q )k 2 11  d

By our assumptions on x, y and the Pick's formula, we get q221 - q2= 2 2(1 _

It remains to use the equality f(ki, l) + f(k2 , 12) + k211 = f(ki + k2 , l+1+2) = f(k, 1),

which obviously follows from the combinatorial meaning of f.

5.6.4 Flatness of the deformations

We prove the following result:

Theorem 5.6.6. (a) The algebra 04 2, 3(gr1 ) is a flat deformation of U 2,h3(g[ 1)/(h3) ~

U(boh).-

(b) The algebra '2,h3 (0r1) is a flat deformation of Y2 ,h 3 (g(1 )/(h 3) U hO'

As an immediate consequence of this theorem and Proposition 5.6.3, we get:

Corollary 5.6.7. The homomorphism T is injective.
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Remark 5.6.2. We do not get an isomorphism of the appropriate completions (as it was

in [GTL]), since the limit homomorphism TIhO does not extend to an isomorphism

of completions.

To prove Theorem 5.6.6 it suffices to provide a faithful U(-5D 2 )-representation (re-

spectively U(Zh2)-representation) which admits a flat deformation to a representation

of Uh2 ,h3 (W) (respectively 1 ' 2 ,h3 (9[ 1)). To make use of the representations constructed

in the previous sections, we should work over the localization ring R of C[[h 2 , h3]] by

the homogeneous polynomials in h2 , h3 . Therefore, we will switch to the extension

algebras

URWD[1 := Uh2,h3 (0[1) @&C[[h2,h3]] R, P(1l) := iY'2,h3 (0 (1) 0C[[h2,ha]] R.

Let gr1 be a Lie algebra of matrices A = Ei,jEZ aj,3Ejj such that aij = 0 for

Ii - ji >> 0. Let gle,, = gl. D C - n be the central extension of this Lie algebra by

the 2-cocycle

#gl (ZaiijEi,Z, bEi) = az,jbj, - E aijb,i.
i O<i aso<i

For any u E C*, consider the homomorphism mr : U(b%2 )R -+ U(g[,,,)R such that

Z"D - "Ei+,i, D-'Z" - Umqc"'Ei 1 ,

Zm - umqi"Ej - U - , co - K.
1 - q2

m

Let ru : UR(91) -+ U(g0[,,R) be the composition of &R(g 1 ) -* U(b%2 )R and Tr.

Then

(e(z)) =- Ei+1,i(qu/z), zu.(f(z)) = Ej,j+16(qiu/z).

Let V, be the basic representation of . It is realized on A / 2C, with the

highest weight vector vo A v- 1 A v-2 A .... Comparing the formulas for the Fock

module F(u) with those for the gl.,,-action on V, we see that F(u) degenerates to
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the module -r*(V,).

It remains to prove that the module (,...," Tu,*1(V) 0 ... 09 r*(V) is a

faithful representation of U(g[l,,j. To prove this, we consider a further degeneration

as h 2 -+ 0. The algebra -0 is a central extension of the commutative Lie algebra

with the basis {ZkDl}. Note that Tr degenerates as well to provide a homomorphism

Tr,o : U(bO)R - U(grn)R defined by ZkDI ' -uk ' Ei+>,i, c- '-+ - K. The image of

this homomorphism is just U([)R, where is the Heisenberg algebra. Clearly

(@ (@ *,,O(VOO) (9 ..- (2 -r*",0(VOO)
n Ul,...,Un

is a faithful representation of U()R. This completes the proof.

For the Y (gr1) case, we use the homomorphism q, : U(P h,)R -+ U ( ) defined

by

x" e - Z(u+ih2)"Ei+i,z, 1 xn + Z(u+ih2)"Ei,+1, x" n+ E (+ih 2)E+CnK, cG K,

where cn are determined recursively from (" )h 2 c_1 - (")h2c - 2 +..+(-1)n+lh co+

(-h2 )n- U" = 0.

5.6.5 The linear map ch,

Recall the representations M' and V' of Uqjq 2 q3({1j) and khl,h2 ,h3 (911 ) from Section

3, which are defined over the fields C(X,. - -, Xr, qj, q2, q3 ) and C(x, ... , Xr, hi, h2 , h3 )

respectively. Let us denote the corresponding representations of U(gli) and Y (glj)

by M and V (here we set Xi = exp(xzi) similarly to qj = exp(hi)). Both repre-

sentations have a basis parametrized by r-partitions {A}. The following result is

straightforward:

Proposition 5.6.8. There exists a unique collection of constants b E R such that

bo = 1 and the linear map ch, : M -+ Vk defined by [A] '-+ b - [A] satisfies

ch,(Xv) = T(X)chr(v), V X E U&(g[ 1), v E M.
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5.7 Small shuffle algebras S m and Sa

We introduce the small multiplicative and additive shuffle algebras. We explain their

relation to Uqlq 2,q3 (glj) and Y,1,h 2 ,h3 (gr1). We also discuss their interesting commuta-

tive subalgebras.

5.7.1 The shuffle algebra S"

We introduce the small multiplicative shuffle algebra S m .

Let us consider a Z+-graded C-vector space Sm = ®,, S"m, where S"' consists

of rational functions 'ni. 2 with f E C[xf ,. ., x, 1]6 " and A(Xi, . . . , xn)

F1<i n(Xi - xj).

Define the star-product m : S; x S," -+ Sm by

I>i

(F G(z, .. , i+j) := Sye F(x1, . . . , xi) G(xi+1, - - +j) ][ w" (I, Xk)

with

(m ( x - q1y)(x - q2 y)(x - q3y)

( (- Y) 3

This endows Sm with a structure of an associative unital C-algebra.

We say that an element A ,,X2 E Sm satisfies the wheel condition if f(x, ... , )=

0 for any {x1, .. ., Xn} C C such that x1/x 2 = qj, X 2 /X3 = qj, i / j. Let S c Sm be a

Z+-graded subspace, consisting of all such elements. The subspace Sm is closed with

respect to m.

Definition 5.7.1. The algebra (Sm, *) is called the small multiplicative shuffle alge-

bra.

Recall that qi, q2, q3 are generic if qqiqg = 1 <==- a = b = c. We have the

following result:

Theorem 5.7.1. [Ni, Proposition 3.5] The algebra Sm is generated by S"' for generic

qi, q2, q3.
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The connection of the shuffle algebra S' to the Hall algebra F was established

in [SV]:

Proposition 5.7.2. /SV] The map u1,j xi extends to an injective homomorphism

i+ _+ Sm, where + is the subalgebra of E generated by {uij}>O.

Combining this result with Theorems 5.7.1 and 5.6.4, we get:

Theorem 5.7.3. The algebras &+, Uq~,q2,q (gi), S" are isomorphic.

5.7.2 Commutative subalgebra A' c Sm

We recall an interesting subalgebra Am.

Following [FHHSY], we introduce an important Z+-graded subspace A m = ®>o A"'

of Sm. Its degree n component is defined by

A = {F E Sr"I|(Ok)F = O(oO')F V 0 k n},

where

0(0,k)F := limF(x1, . . . , -Xn-k+l, . -xn), a(oo,k)F := lim F(xj, . . . , .X-k+1,... --- Xn).
-+O -+00

This subspace satisfies the following properties:

Theorem 5.7.4. [FHHSY, Section 21 We have:

(a) Suppose F E Sn" and O(ook)F exist for all 1 < k

(b) The subspace A m c S' is *-commutative.

(c) A m is m*-closed and it is a polynomial algebra in

by:

0 (x 1 - qlx 2 )(x 2 - q1x1)Km(x1) = X1, K(X1, X2) = X1 X 2 ) 2

< n, then F E A".

{Kj"};>1 with Km" E Sj" defined

Kn"T(X1, x) = flK2"(xi, x).
i<j

Remark 5.7.1. The aforementioned elements Kjm played a crucial role in [FTI]. They

were used to construct an action of the Heisenberg algebra on the vector space M

from Section 2.2.
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Our next result provides an alternative choice for generators of the algebra A m ,

expressed explicitly via Si'. We use the following notation: [P, Q]m = P Q - Q P p

for P, Q E S m .

Proposition 5.7.5. The algebra A m is a polynomial algebra in the generators {L7}3 1

defined by

L"(xi) = x0 and Li= [1, [X0, [X0 . . .m .. ]m]m]m E Sj for j > 2.

j factors

Proposition 5.7.5 follows from Theorem 5.7.4(c) and the following two lemmas.

Lemma 5.7.6. The elements Lm belong to A .

Lemma 5.7.7. The elements {L7}j 1 are algebraically independent.

Proof of Lemma 5.7.6.

According to Theorem 5.7.4(a), it suffices to show that a(ok)L"m exist for all k.

Note that:

L' =Sym { E(-1)
1=0

n 2)
n-2

1=0

V)(n -2
H Wtm (X .)

(5.15)

Our goal is to show that the RHS of (5.15) has a finite limit as Xn-k+1 H -

Xn-k+1, - - -, n Xn with o - co. Note that fz-a has a finite limit as o :0,

unless o-(j) < n - k < o(i), in which case it has a linear growth. On the other hand,

wm(xi, xj) has a finite limit as -+ oo. Moreover: wm( -x, y) = 1+ 0( -1), wtm(y, -

x) = 1 + Q( -1) as ( -+ oo. This reduces to proving A1 - A 2 = 0, where A1 , A 2 are

given by

n U(1)=s (-1)1

A 1 = n a (S1)
s=n-k+1 uC~n :(n-)<n-k

n 2)

n o(n)=s

A 2 s= z EzE -1 n!s~nk~ aE~ Ia~-11) n ! K

j<n-k
XsjJ

~a~ i<3

n-k<i

WT(x2 , xj) J1
2<3

2)
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Here we set wm(xi, xj) = o'm(xi, xj) if a-(i) < a-1 (j) and w(xi, xj) = w" (xj, xi)

otherwise.

If k = 1, then s = n in both sums and the map (a, 1) -+ (o-', 1) with o-'(i) = -(i+1)

establishes a bijection between the equal summands in A1 and A 2 , so that A1 -A 2 = 0.

For k > 1, there is no such bijection. Instead, we show A1 = 0 (equality A 2 = 0

is analogous). Let us group the summands in A1 according to s, o(n - 1) and also

the ordering of {x 1 ,.. . , Xnfk} and Xn-k+ , xn}, which are given by elements

a-1 E ,n-k and 0-2 E Gk. Define

j<n-k n-k<i

M,'"(1 . .. ; Xn) :=j ,"(Xi, Xj) - M Q "(Xi, Xj).
i<j i<j

Then A1 can be written in the form

A,=1 E At,or1,Or r2 ()Wam,, (X1; . .. ; Xn), At,,,i a2 E Z.
t<n-k lE6-k a2Ek

We claim that all At,,,, are zero. As an example, we compute At,1._k,1k:

At, =:-t-1 n - 2) (l )n-l-2)

I=n-k-t

(-1)"-t-n - 2)'
1) nk-t(n 2) --(1 - 1) k-1 = 0 as k > 1.

(t - 1)!(k - 1)!(n - k - t)!

Analogously At,,,, = 0 for any t, O-1 , -2. Hence, A 1 = 0 and the result follows. El

Proof of Lemma 5.7.7.

The elements Lim correspond to nonzero multiples of Oj,0 via S m ~ . An al-

gebraic independence of {O5,o},>o follows from an analogue of Proposition 5.1.3(b)

applied to Uqi,q2 ,q3 . l

5.7.3 The shuffle algebra S'

We introduce an analogous additive shuffle algebra Sa.
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Let us consider a Z+-graded C-vector space Sa = e Sa, where Sa consists

of rational functions '(X1  Xr)2 with f E C~x1,..., x,-j'. Define the star-product

&':S x R a S + -by

I>i

(F * G)(xi, . .. , xj+j) := Sym+, F(xi,.. xi)G(xi+1,..., xi+j) ]W(xI , Xk)

k<i

with

Wa (X, Y) (x - y - hi)(x - y - h 2 )(x -y - h 3)

(x - Y)

This endows Sa with a structure of an associative unital C-algebra.

We say that an element 'i.) 2 sa satisfies the wheel condition if f(xi,... , x,) =

0 for any {x 1, . .., xn} C C such that x1 - x2 = hi, x2 - x3 = hj, i = j. Let Sa C Sa

be a Z+-graded subspace, consisting of all such elements. The subspace Sa is closed

with respect to *.

Definition 5.7.2. The algebra (Sa, *) is called the small additive shuffle algebra.

The following result is proved analogously to Theorem 5.7.1.

Theorem 5.7.8. For generic h1,h 2 , h3 (ah1+bh2 +ch3 = 0 <==- a = b = c), the map

ej F-* x' extends to an isomorphism ,h2 ,h 1  In particular, is generated

by Sa.

5.7.4 Commutative subalgebra Aa C Sa

We construct an additive version of A'.

Let us introduce a Z+-graded subspace A = >0 Aa of Sa. Its degree n com-

ponent Aa consists of those F E Sn such that the limit

,9(o,k)F := lim F(x1, ... Xn-k, Xn-k+l +, ... x+0

exists for every 1 < k < n. The following is an additive counterpart of Theorem 5.7.4:

Theorem 5.7.9. We have:
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(a) The subspace A c sa is *-commutative.

(b) Aa is *-closed and it is a polynomial algebra in {Kjaj1 with KL E S defined by:

Ka() 0 (x1 - X2 - hi)(x 2 - X1 - hi)
Kf~i) z K(X1, X2) = 2 a,(X1, . ,a)= K(xi, xj).X1) = X, K2 ~~(X1 - X2 )2 K . n [

i<j

Analogously to Proposition 5.7.5, the commutative subalgebra Aa admits an al-

ternative set of generators expressed via S1. Define [P, Qla P A Q - Q Z P for

P,Q E S.

Proposition 5.7.10. The algebra A' is a polynomial algebra in the generators {Ly},1

defined by

La(x1) = x0 and L = [X0,[X0,..., [X0,X1a...]a] E 05 for j 2.

j factors
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5.8 The horizontal realization of U' ,q2 q3(0)

The goal of this section is to introduce the "horizontal realization" of the alge-

bra U' q2,q3(g1j). This allows to define the tensor product structure on the whole

U' q2,q3 (gr1 )-category 0. It also provides a natural framework for the generalization

of [FT1, Section 7] to K-theory/cohomology of M(r, n). We prove that the natural

vectors v, V in the appropriate completions of the modules Mr, Vr are eigenvectors

with respect to a particular family of operators.

5.8.1 The horizontal realization via F

We introduce a new realization of U' ,,3

Recall the distinguished collection of elements {ux, ,x} c ' ,3 (gi) from The-

orem 5.6.4. Note that there is a natural SL 2 (Z)-action on U',q2,q(91)/( 1) 

E/(K. - 1)xEz2. In particular, we have a natural automorphism of F/(K. - 1)xEz2

induced by Uk,l '- U-1,k. Though there is no such automorphism for /(oj, 1 - 1), we

still have a nice presentation of this algebra in terms of the generators {ui,±i, uj,o, K1,o}

rather than {u±1,i, uo,j, K1,,o}-

To formulate the main result, we need to introduce a modification of the algebra

Uq1 q2,q3 (gr1 ), which we denote by Uq,q 2 ,q3 . The algebra Uq,q2,q, is an associative uni-

tal C-algebra generated by {, f, " 3, /2 i E Z, j > 01 with the following defining

relations:

40 (z) ) V W(z), g(y-Y1w/z)?O+(z)-(w) = g(yw/z)-(w)O+(z),

(TTO)

i(zX(W) = g(z/w)(w)F(z), (TT1)

f(z)f(w) = g(w/z)f (w)f(z), (TT2)

(1 - (1 - q2)- q3) - [e(z), f(w)] = 6(7--Z/W) +(_1/2W) - 6(_Z/W)1-(_-1/2W),

(TT3)

(iw)= g('y*1 /2 z/w)(w)zP(z), (T T4)
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*A(z)f(w) = g(Y* 1/ 2 w/z)f(w)4'!(z), (TT5)

Syme3 [ il, [e-2+1, E73-1]] = 0, Sym 3 [f 1, [f 2+1, f 3-1]] = 0, (TT6)

where g(y) := y-q1')(1-q2'y)(1-q3') Note that g(y) = g(y-1)-l.
(1-ql'y)(l-q 2 'y)(I - q3

The following result is analogous to Theorem 5.6.4:

Theorem 5.8.1. There is an isomorphism 7Sh : K0 2]/(s o,1--Uqj,q 2,qM defned

on the generators by

2 ~ ~ ~ ~ ~ ~ ~ ~ ~ _ ,+/,B~ ,ui1e74/ f-i, i E Zj > 0.

Analogously to Uqjq 2 ,q3 (g14), there is a similar coproduct Ah on the algebra Uq1 ,q2 ,q3 :

A(*/2) _ ±1/ 2  ± 1/2 ±1/2(z)) = 4/ ((+ 2 z) 0 /- /

A(F(Z))= (z)01+ 1(z)0 ()z), Ah(f(Z)) = 10f(z)+ky( 2)z)/)1(' 12)2

where ±1/2 = y±l/2 0 1, / 1 ±1/ 2 (see [DI]).

According to Theorems 5.6.4 and 5.8.1, the algebras ' ,q2,q 3(g[1)[(0/4+)±1/ 2 ] and

Uqjq 2 ,q3 are isomorphic. In particular, we view A, as a "horizontal coproduct" on the

algebra U',q 2,(g(i). It provides a tensor product structure on the category (9 from

Section 4.6. For two U,qq(gr1)-modules L 1 , L 2 we denote the corresponding tensor

product by L, 0 L 2 -
h

5.8.2 Modules V(u), F(u) in the horizontal realization

Let us describe the action of the currents F(z), f(z), '*(z) on the Fock module F(u).

Consider the Heisenberg Lie algebra [ over C with the generators {al}nEz and the

relations

[am, an] = m(1 - qmI)/(1 - q2)Jm,-nao.

Let [ O be the subalgebra generated by {an};>o and Y := Ind>OC be the Fock

-representation.
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Since the elements {O,o} C 8 form a Heisenberg Lie algebra and the highest weight

vector 10) E F(u) is annihilated by {Oi,o}j<o, we see that F(u) ~ T as modules over

the subalgebra generated by j. Together with the relations (TT4,TT5), we get the

following result:

Proposition 5.8.2. Identifying F(u) ~ T, the action of F(z), f(z), '*(z) is given by

Pc(" 2 ) = ±"4, Pc(I*(Z)) = exp F 1 (1 - q -)n/4 ZTn)

n>O

1 y1 - q2f -
Pc( (Z)) = c exp n a-nzn) exp - n anz-" ,

(n>O n>O

Pc(f(z)) = - x 1 -q 2  n/2 x1- 2  n/2 -n"
- C(Z) exp n q3 a-nZ ) exp n 3an Z

n>/ n>/

where c = (1 - q3)u.

These Uq,q2,q3-representations {pc} were first considered in [FHHSY]. As we just

explained, they correspond to the U' ,q2,q (gr)-modules {F(u)} under an identification

of those two algebras. Similarly one checks that action of currents Z(z), f(z), '*(z) on

the vector representation V(u) coincides with the formulas for the Uqiq2M,-representations

1rc considered in [FHHSY].

5.8.3 The matrix coefficient realization of A"

We provide a new interpretation of Am.

For a Uql,2,q32-module L and two vectors v1 , v2 E L, we define

M,2(,. . ., zn) := (vii(zi)... F(zn) v2) - ] W'J(Zi, z3) E C[[zl~l, - ,

i<j

The relation (TT1) implies that mV1 ,V 2 (zI,... , zn) is Gn-symmetric.
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Proposition 5.8.3. For L = p, and v1 = v2 = 1, we have

-a-n(n-l)/2Cr (zi - q3Zj)(Zj - q3 zi)
= 3)-q3)c(z, - Zj)

Proof.

For n > 0, we have

exp(u - an) exp(v - an) = exp(v - an) exp(u - an) exp(uv - n(1 - qg)/(1 -

Therefore

Pc(R(zi))pc( (Zj)) = : pcRZi))pc(z)
( n - (1 _ g>)

:- exp q n (Zj /Z,)"

It remains to use the equality Jn>O exp (-- (z-zj)(z-q2Zj)

In the case of Pci,...,.. pc1 0 ... 0 PCm we have the following result:
h h

Proposition 5.8.4. Set 1 := 1 0. 0 1 E pC1,...,c.. Then mi,(zi, ... ,zn) A.

Proof.

Combining the formulas of Proposition 5.8.2 with formulas for Ah, we get

Mi,(Zi, . Z,) = Cf ()
f

- -f(n) Wm(Zi, Zj) 7 W(Zi, Zj),
i<j i<j

where the sum is over all maps f :{..., n} {1,..., m} and W1 (zi, zj) is 1 (if

f(i) ( is (z-zj)(zi-qq2Zj) (if f (i) = f(j)) and isfW> f (), i (zi-qjzj)(zi-q2zj)

claim follows.

This realization of A m will be important in [FT2].

g(zi/zj) (if f(i) < f(j)). The

0

Remark 5.8.1. Same construction applied to irc, 0 --- 7rC realizes the correspond-
h h

ing matrix coefficients as the classical Macdonald difference operators, see [FHHSY,

Proposition A.10].
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5.8.4 The Whittaker vector in the K-theory case

Let M' be the completion of Mr with respect to a natural grading. Consider the

Whittaker vector o:= En>O [('M(r,n)] E M . To state our main result, we introduce

a family of the elements {Km;i)}->o E Sim by

K m;) (x1 , . . .,xi) := K(x 1,... , xi)x .. x = (x. - qlXb) (xb - qix.)
a<b (Xa - Xb) 2

Let {Km;i)}<o be analogous elements in the opposite algebra (Sm)OPP. The name

"Whittaker" is motivated by the following result:

Theorem 5.8.5. The vector v Kis an eigenvector with respect to {K" 0 j <

r, n > 0}. More precisely: KL"',(vf) = C -, where

tn(n-1)/2
COr, = (-1)n(n+l)/ 2 +n-n(tt2X1 ... T )n1 tl

(-tit2 )n(n+1)/2
= .. = Cr-i,-n = 0, Cr,-n - (1 - tl)n(1 - t 2 )(1 -t).. (1 - tn)

Remark 5.8.2. Proposition 5.7.5 implies that the subalgebra of (S")OPP generated by

{K"} j . corresponds to the subalgebra of Uq ,q2q(gr1 ) generated by

{fs,[fj 1, j-1] [f+1,[fj, fj-1]], ... - -r

5.8.5 The Whittaker vector in the cohomology case

Let yr be the completion of Vr with respect to a natural grading. Consider the

Whittaker vector vo := n>O[M(r, n)] E yr. To state our main result, we introduce

a family of the elements {K (ai }O E Si by

K (x1, . X .i) := Ki(X1, . .. , Xi)X_ - - -Xj = X( b hi)(Xb - Xa - hi)

a<b 5Xa - Xb)

Let {K a) }Io be analogous elements in the opposite algebra (Sa)oPP. The name

"Whittaker" is motivated by the following result:
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Theorem 5.8.6. The vector v is an eigenvector with respect to {K |0 j

r, n > 0}. More precisely: K" (vr) = Dj,_n - v, where Dr,-n is a degree n polyno-

mial in xa and

= .= Dr-2,-n = 0, Dr-i,-n =(-I)n(n+1)/2+nr-n (_l)r+1 r
Do ~ ~ ~ ~ ~ t _n=.. r-,n=0 r1_ , Dn_ =: Xa.

n!ss 12 a=1

Remark 5.8.3. Proposition 5.7.10 implies that the subalgebra of (Sa)OPP generated by

{K_}e? r corresponds to the subalgebra of ?7,h2 , 3 (g1) generated by

{ff, [fj, j+1], (fj, (fj, j+2]],.-} j=0-

5.8.6 Sketch of the proof of Theorem 5.8.5

According to the fixed point formula, we have

v = ,a*Aai HI (1 - w)1.
WETXM(r,AI)

Hence, we need to show that for any r-partition \ the following equality holds:

(5.16)Ci,_n a -K n', ,,

where the sum is over all r-partitions A' such that A c A' and IA'l = IA + n.

For such a pair of r-partitions (A, A'), define a collection of positive integers

r

j1,1 :5 1,2 . j1,1, j2,1 :5 j2,2 j2,12, ..-., j-,1 j-,2 --- jr,,., li = n

(5.17)

via the following equality:

W '=e±E11  + ... a[s ±oj + ..r d. ±he s]2 fL- + - +-L
3il 1,1 1 j2L 2, 1 j2 , 2  jrn 3,r

We also introduce the sequence of r-partitions A - A01 C i\[1] C ... C [- A', where
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Al] is obtained from A by adding the first q boxes from above. For 1 < q n, the

q-th box from above has a form L. . We denote its character by X(q).

For any F E (S")0 PP, we get the following formula for the matrix coefficient Fgl,,]:

j[,] - F(X(1), ..m. , X(n))

fabWM'(X (a), X (b))

n

q= 1

In particular, we have

K(m;j) KA',A, = I
1<a<b<,n

(X(a) - x(b))(X(b) - tiX(a))
(X(a) -t2X(b))(X(a) - t3X(b))

n n

J1 X(q)j * . fjXq] q1]

q=1 q=1

As an immediate consequence of this formula, we get K{I~j) [ = 0 if k'\ contains

two boxes in the same row of its i-th component, 1 K i < r. Therefore, the sum

in (5.16) should be taken only over those collections {ji,, ... ,Jrr} from (5.17) which

satisfy strict inequalities.

We also split 21- into the product over consequent pairs: a =, - . Ac-
a q= a5 j a[q 11

cording to the Bott-Lefschetz fixed point formula, we have

' a ,i * |[ [q]' [q--ljj] e-rj[ [q-1], [fl]-
a [q-l

For a pair of two r-partitions (p, p') such that ft' = fi + L , the matrix coefficient

e_,iAj'] was computed in Lemma 5.3.3(a):

t r kLa (1) - t2 a)
tii~g = 1 -t t tL a -1 _1 (a)

a-1 X 1 2 Xa (a,k)+ 4 X Xk

where La is chosen to satisfy La p4* + 1.

Combining these formulas together, we finally get

(-tit2 )q H _ 1
H 1 - a X(q) - t" (q)

X(q) - tit2X

X(q) - tjX
x(q)I

the second product is over pairs (a, k) {(1,ji,1 ),.. ., (r, j,,j,.)}, k < La with La
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M*+ n.

Let us denote the RHS of this equality by Cj, where j = {j, 1,., j,,,} is deter-

mined by (5.17). Note that Cj = 0 if the corresponding r-partition ' fails to be a

collection of r Young diagrams. Hence, (5.16) reduces to C,_ = C, the sum over

all j from (5.17) with strict inequalities.

It is easy to check that the sum E Cj has no poles for j > 0. Together with the

degree computation, we see that it is independent of A for 0 < j K r. Thus v is

indeed an eigenvector with respect to K2mi. To compute its eigenvalue, we evaluate

Z Cj at = 0. This sum is actually over all partitions (li, ... , 1r) of n with ja,b = b.

The total sum equals

(-tt2 )n(n+2 (t (lbl)/2  b)
tl~ H (X- 1 -t'aX-1) .. . (ibi -t. 4X- i) t b~i-

l+...+4,=n a,b=1 ( 2 a 2 X- - " b=1

n(n+1) r 1
(-tt 2 ) 2(X1 . . Xr) 1 - 2 - 2 br-)

l+...+lr=n a,b=1 (Xa - t2 Xb) - (Xa -tl2" J7+1 2

It is straightforward to check that for 0 < j < r - 1, the sum from the above

equality is a rational function in Xa with no poles. Together with the degree estimate,

we see that it is independent of {Xa}. To compute this constant we let Xi -+ 00. Then

the only nonzero contribution comes from the collection (1i, 12,.-- , ir) = (n, o,.. ., 0)

and the result equals Cj,_n.

For j = r, the whole expression above has no poles and is of total degree < 0;

therefore, it is independent of Xa. To compute this constant we let Xi -+ oo. The

only nonzero contributions come from those (l, .. ., 1r) with 1i = 0. For those we let

X2 -4 oo, etc. The result follows by straightforward computations.

5.8.7 Sketch of the proof of Theorem 5.8.6

According to the fixed point formula, we have

X WETXM(r,IXI)

170



Hence, we need to show that for any r-partition A the following equality holds:

Dj,_- = -K (ayj ,(5.18)

where the sum is over all r-partitions A' such that A C A' and I A' = IAl + n.

Analogously to the K-theoretical case, we have:

b' (a-j) (_)q+rX (q)_ r X(q) -__ _ -8s1 -S2
- [, - 1)a(1iX(q) - LaS2 + Xa x(q) - _) S

the second product is over pairs (a, k) V {(1,jIi),... , (r, jr,,)}, k < La with La

Aa*+ n.

Let us denote the RHS of this equality by Dj. Then E Dj is a rational function

in x a) with no poles for j > 0. The degree estimate implies that for j 5 r it is

independent of x ( . Thus vo is indeed an eigenvector with respect to {K f(}a"j r..

To compute its eigenvalue, we evaluate at A = 0. This sum equals

(-1)n(n+1)/2+rn r' lb r lb

n x- - (la - k +1)s2)1 T 11((k - 1)s2 - Xb .
S 1  ll+...+1r=n a,b=1 k=1 b=1 k=1

It is straightforward to check that this sum is a rational function in Xa with no

poles. Together with the degree estimate for j < r - 1, we see that it is independent

of Xa. To compute this constant we let x1 -+ oo. If j K r - 2, then all summands

tend to 0. For j = r - 1 the only nonzero contribution (equal to Dr_1,_n) comes from

the collection (i, 12, ... I lr) = (n, 0,..., 0).
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Appendix A

Future work

The goal of this appendix is to outline the generalization of the results from Chapter 5

to the case of the quantum toroidal algebra q,d(sn) and the affine Yangian Y,,(s)

We will restrict only to the case of Uq,d(s) and present only the first steps, while

the full version will appear in [FT2].

A.1 Quantum toroidal Ud(,S[) and the big shuffle

algebras

* The quantum toroidal of s ,

Here we recall the toroidal algebras following [GKV, VV].

Let q,d c C* be two parameters. We set [n] := {0,1,... ,n - 1}, [n]x

[n]\{O}, the former viewed as a set of mod n residues. Let gm(z) : Z-1. De-

fine {ai , Cmji, E [n]} by

ajj = 2, aj,j±i = -1, mj,j± 1 = -F1, and aij = mij = 0 otherwise.

The quantum toroidal algebra of oA, denoted U,,(sI), is the unital associative alge-

bra, generated by {ej,k, fi,k, ?i,k, 0-1, -Y 1/2 1i E [n], k E Z} with the following defining
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relations:

i, -o-01 = po7- 1 = 1, [oi (z)W, V (w)I = 0, 7+±1/ 2 - central, (TO)

ga ( -ld"Ri z/w)/ (z)b (w) = ga (-ydi"R z/w) k (w)>t (z), (TI)

ei (z)ej (w) = ga (dni3 z/w)ej (w)ei (z), (T2)

fA (z)f (w) = g-a (di " a z/w)fj (w)fi (z), (T3)

(q - q-1 )[ei(z), fj(w)] = 6i,j (6('yw/z)*f t(j/2 w) - (z/w)4'T(- 1/ 2 z)), (T4)

0 (z)e, (w) = ga (Y*1/ 2dmi z/w)ej (w)0/ (z), (T5)

V±(z)f3 (w) = _ (-1u/ 2 d"ii z/w)f3 (w)'V (z), (T6)

{e+(zi)ei(z2)e-+1(z*)-(q+q-*)ei(zi)ei+1(za)ei(z2)+ei+1(z3)ei(zi)ei(z2)}+{zi z 2 } = 0,

(T7.1)

{A (Zi)fi (Z2)fil (z3) -(q+q-')fi (zi)fi+ (z3)fi(z2)+fi1 (Z3)fi(zi)fi(Z2)}+{z++ z 2 } = 0,

(T7.2)

where the generating series are defined as follows:

00 00

e :(z) eikz, z) := fi,kzk, '/>f(z) := ?>%
1 + 5 'V|>,JzF.

k=-oo k=-oo kj>O

It will be convenient to work with another "Cartan" generators {hi, }, instead of

{li,k}. Define hi,±k E C [Vpl, ,±2, .i42 ... ] via

z)= 0p01exp ±(q - q-')X hi,±kzTk).
k>o

Then the relations (T5,T6) are equivalent to the following:

-oe, = q a ej,,,o, [hik, e,] = d-kmij;Ik/ 2 [ka ,j]
- ' '-,l''Z,, 1~k,3,& =k ej,l+k,

Vfiof= l q-aj fj,1, [hk, eg,i] = -dkmijIkl/2 [kai,j] fjz+k,
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where [m] = (qm - q-m)/(q - q-')

Let U-, U0 , &+ be the subalgebras of Uq,d(S[ L) generated by {ej,} {f,}, and

{ oz-, 1~, y*1/21

Proposition A.1.1. [H](Triangular decomposition) The multiplication map m

0- 0 U0 0 U+ ( ,,d(S) is an isomorphism of vector spaces.

Finally, Uq,d(S[2) is Zn-graded by deg(ei,k) = 1j, deg(fi,k) = -- 1, deg(U0 ) = 0.

* Horizontal and vertical UQ(gr,)
We recall two important subalgebras of Uq,d(s,).

Following [VV], we introduce the vertical and horizontal copies of the quantum

affine algebra of sln, denoted UQ(sL,), inside Uq,d(sn). Consider a subalgebra 00) of

Uq,d(S n) generated by {ei,k, fi,k, 4i,k, ?', j1 2 i E [n] }. This algebra is isomorphic

to Uq(sl[), realized via the "new Drinfeld presentation". Let &(2) be the subalgebra

of Uq,d(SIn) generated by {ei,o, fi,o, V)'Ii E [n]}. This algebra is also isomorphic to

Uq(sln), realized via the classical Drinfeld-Jimbo presentation.

We will need a slight upgrade of this construction, which provides two copies of the

quantum affine algebra of gr(, rather than sl(, inside Uq,d(SIn). For every r 4 0, choose

{ci,rli E [n]} to be a nontrivial solution of the following system of linear equationsi:

Zci,[rai,j]d-rmj = 0, j E [n]'.
i=O

Let j() be the subspace of Uq,d(SL,) spanned by hl Z:= - cE,, hi,, r $ 0. Note

that 6() is well-defined and commutes with &M, due to (T5', T6'). Moreover, [0()

is isomorphic to the Heisenberg Lie algebra2 . Let Uv be the subalgebra of Uq,d(S[,),

generated by &(1 ) and 0(i). The above discussions imply that UV e U-(g[), the

quantum affine algebra of grn.

Our next goal is to provide a horizontal copy of Uq(grn), containing U(2). We are

not aware of the explicit formulas. Instead, we will use the following beautiful result,

which was communicated to us by Boris Feigin:

1 It is easy to see that the space of solutions of this system is 1-dimensional for q # V/1.

2 With the central charge being a function in -*1/2.
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Theorem A.1.2. [M] There exists an automorphism 7r of Uq,d(sIn) such that

r(01)) = U(2), 7(&(2)) = lJ(1)

Let us define (2) := r( 1 )) and let Uh be the subalgebra of Uq,d(S[n), generated

by U(2) and [32) . Then Uh = r(&V) and it is isomorphic to UQ(grn).

o Big shuffle algebras

We introduce the big shuffle algebra S (of AtI, 1-type).

Let us consider a Z" -graded C-vector space

k1,...,kjn>.

where Ski,...,kn consists of H 6ki-symmetric rational functions in the variables {xi, }iE5n]

We also fix an n x n matrix of rational functions Q = (Wij)i,jE[n] E Matnxn(C(z)) by

setting wi,j(z) := p''j~1qia where the constants pij, qij are given as follows:

qjj_1 = qd 1 , qjj = q-2, qi,i+i = q,pi,j-, = I, pi,j = 1,Pi,i+1 = d-

and we set pi,j = qij = 1 otherwise.

We introduce a bilinear operation * on S.

Definition A.1.1. For f E Ski,...,k, 1 E Sll,...,In we define f * g E Sk1 +11,...,kn+l by

(U * 9) (X1,1, ... ,l,ki+li; -. - - n3,1,- , n,kn+l.) := SyMrj ke l

kit <j'

f (X1,1,. .. , 7 X,ki; . .,n,k.)g(Xl,ki+1, -.. - -, ,kl+lis -. - - nI,kn+ln) - 9 Wix i' -
ii'EI jki ( )

This endows S with a structure of an associative unital algebra with the unit

1 C So,...,o. Similarly to the small shuffle algebra Sm, we consider a particular subspace

of S given by the pole and wheel conditions. Let us introduce these.
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Definition A.1.2. Define the subspace ,...k,, C Sk .,...,, by

= {F, .. X1,, =., X,,n) : f C (C[xi. ]i!k )H Gk .
HZE..,k fll 'j5ki (Xi'j _ Xi+ 1,j,) Z3iE[n]

We say that f E S satisfies the pole conditions if f belongs to S' :='.. .,..

It is easy to see that f * g E S' V f, g E S'. Next, we introduce wheel conditions:

Definition A.1.3. We say that f satisfies wheel conditions if f(x1,1, .. ,kn) = 0

for any collection of X1,1, ... , Xf,kn E C such that

ij,/lxii,,; = qd±l, xii,I/xi,j 2 = qd:i, i E [n], j1 , j 2  ki, l < ki±1.

Let Sk,...,kn C Sl,...,k, be the space of all such elements, and set S := sk1 ,...,kn o Skl,...,kn

The following is straightforward:

Lemma A.1.3. The subspace S C S is *-closed.

Definition A.1.4. The algebra (S, *) is called the big shuffle algebra (of Ator -type).

e The relation between S and U+

We recall the interplay between the above algebras.

It is a standard fact that U+ is generated by { ei,3} c with the defining relations

(T2, T7.1). The following theorem is straightforward:

Proposition A.1.4. The map ej -+ xi,1 extends to a homomorphism T': U+ S.

Note that the image of T is a subalgebra of S generated by Si,, i C [n]. In

particular, it belongs to S. The following result is essentially due to Andrei Negut:

Theorem A.1.5. [N2] The homomorphism T provides an isomorphism of algebras

Remark A.1.1. In the loc.cit. this statement is proved for the case d = .

3 The algebra A+ from [N2] is isomorphic to our algebra S with d = 1 via the map

F(xi,i,. .. Xkn) ' q- 2 F(z,1,. .. , Z,k.) -J 11 q- zi - zi,j zi,j - zi+,'
' ,3 qz[n] < - qzi,j'
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A.2 Subalgebras A(si, ... , sn)

We construct a family of commutative subalgebras of S, analogous to A' from Chap-

ter 5. Let us first introduce the following notation: for integer numbers a < b, we

define l4 to be the number of integers from {a, a + 1, ... , b - 1, b} that are congruent

to i modulo n. We define

F(a,b) := F( -xj,1, .. . , -x1,j1, xj,j1+j,. .. , X1,kj; . .. ; -X.,1, . . . , -X ., Xn,l,+1, -.. - , n,kn)

with li defined as above. We also use mod n cyclic conventions everywhere.

Definition A.2.1. For s1, . .. , sn c C*, consider a Zn -graded subspace A(si,.... , sn)

of S, whose degree (k,... , kn) component is defined by

A(s,... , sn)k,...,kn = F C Skl,...,kn I a(oo;a,b)F = b (;a,b)F V I < a K b < k ,( ba

where (oo;a,b)F := lim F ,b &(O;a,b)F := limF ,"'.
-+oo C-+O

We will be only interested in the case when H sj = 1. The following result is

straightforward:

Lemma A.2.1. For any k E Z+, IL C, we define Fk,, E Sk,...,k by

HkM E[nfl j#)I<k(Xi,i qx 3 ) HjEE~nl(H-'= s8H 1 f= -i ,Hj 1 xilj
=En 171 j,3 / k(Xi,i - Xi+l,j')

If s 1 .. -S = 1, then Fk,, E A(si, . . . , sn).

A collection {si} C C* satisfying s1 ... sn = 1 is called generic if the equality

sa -.- s, = 1 implies a, = ... = a. It turns out that elements Fk,, generate

A(si, ... , sn) for generic {se}.

Theorem A.2.2. For generic {si} satisfying H si = 1, the algebra A(si,.. . , sn) is

generated by {F,,|Ik E Z+, / E C}. Moreover, A(s1,... ,s) is a polynomial algebra

in free generators {Fk,j, : k E Z+, 1 E [n]} for pair-wise distinct /o, ... , An-1 G C.
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As an immediate consequence of this theorem we get:

Corollary A.2.3. Let AO C S be a subalgebra generated by the elements K, c Sr.

defined by

K rHE[n] Hisj'. k(xriJ -q~HE[fl] Hj=1KHiE[n] 
Fjj/ k(Xii -

Then A0 is a polynomial algebra in Ki and A c A(s1,... , sn) for any s ... sn = 1.

Define A to be the subalgebra of S generated by {4x,}. We conclude this section

with the following result:

Proposition A.2.4. The subalgebra AO centralizes A.

Proof.

It suffices to show that the commutator [Kr, X0,11 E r+1,r...,, is actually 0. This

commutator has the form - where f is a degree nr 2 +2r polynomial

in {xij,}.

First, note that f is divisible by

r

S xiJ - I (xij - q-2xij')
iE[n]X j=1 iE[n]x jj'<r

We also claim that f is divisible by H,+I Xij, and ljoj,+lr(Xj - q 2 X1,j).

To prove the first claim, we note that substituting x1,,+1 = 0 we get

(Kr * Xi,1)1ixr+1=0 = d-rKr(X,,. .. , X1,r; ... ; Xn,1... , Xn,r),

( * Kr)i = d-rKr(x,,... , X1,r; ... ; Xn,1, . X. , Xn,r),

so that f is divisible by Xl,r+i. But f is symmetric in {xi} and the result follows.

To prove the second claim, we note that substituting Xi,r+i = qX X,r, we get that

both (Kr.* Xi,1)i _ and (x, 1 * Kr)i are equal to

r (x1,3 - q-4 x1,r)(x2,j - d-1 q-1 x1,r)(d 1 xoj - q-1X1
K(x,,... X1,; ... n,) - -2 X1,r)(X2,j- q 2Xr)(xoj - q 2 Xr)
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Therefore, f is divisible by Xl,r+l - q Xl,r. But f is symmetric in {Xi,,} and the

result follows.

Hence, f is a polynomial divisible by IiE[n] (xi[ 1-271, iEn Hi Xig. Since

the degree of the latter product is nrr2 + 2r + 1 and deg(f) = nr2 + 2r, we get f = 0.

This completes the proof. L

A.3 Degeneration

In this section we study the limit of the algebra Uq,d(s[,) as q -+ 1. We use this

to prove some results about the algebras Ao, A(si,..., sn) by considering their limit

cases as q -+ 1.

Note that all the defining relations (TO-T7.2) become of Lie-type in this limit.

Therefore, U1,d(- 1 ) ~ U(fin) for a Lie algebra iid,n generated by {ejj, fi, hjii E

[n], j E Z} with the defining relations read from (TO)-(T7.2).

Consider an associative algebra L£ := Mats 9 C(Z+1 , D*1)/(DZ - d-nZD). We

will view £r as a Lie algebra with a natural commutator-Lie bracket. Let £' C £Z,

be a Lie subalgebra spanned by >rn JEi Z Di with tr(Ao,o) = 0. Finally, let Z' be

the central extension of V' with respect to the 2-cocycle

#(A 0 Zr'1D1, B g Zr2Ds2) = 6ri,-r2 81,-S2 d-r2sl tr(AB)si.

The following result is straightforward:

Lemma A.3.1. There is a homomorphism of Lie algebras 0 : Uid,n - £' such that

9 : ei, -+ Ei,i+o1 Z'd-3 , fij -+ Ei+ 1,Zd-'j, hi F-* (Ei,i-Ei+1,i+1)0Zjdzj i 4 0,

9 : eo0, '-+ E, 1 0 DZi, fo, '4 E1,n 0 Z'D 1', ho, F4 (d-"iEn,n - E 1, 1) 0 Zi + coj,o.

It is clear that 0 is surjective. Actually we have:

Theorem A.3.2. The homomorphism 0 is actually an isomorphism.
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Let us consider the images of some subalgebras of Uqd(s[,) under the above de-

generation. The following result is straightforward:

Proposition A.3.3. As q --+ 1, we have the following degenerations:

(a) O 1 degenerates to U(@mEZ Sn 0 Z m );

(b) U(2) degenerates to U(]mezzsin 0 Dm D C - c);

(c) [j(') degenerates to .,40 C In 0 Zm ;

(d) 0)(2) degenerates toE@mOO C I, 0 Dmn;

(e) r - 1(A) degenerates to U(n+ ® GEmO sI 0 Dmn).

This proposition together with the results of the previous section yield:

Theorem A.3.4. For generic s1, .. ., sn satisfying H sj = 1, we have

A(s 1, .. ., sn) C i(

It turns out that the subalgebras A(sl, ... , sn) are related to the Bethe-ansatz

problem. In particular, let M(A) be a Verma module of U(gn) at the critical level.

We further identify Q(grn) with M(A). According to Theorem A.3.4, the subalgebra

A(s,... , sn) belongs to 'F(Uh) ~ Uq(grn). But according to Proposition A.3.3, we

actually have A(si, . .. , sn) C U+(g(I). The main result is

Theorem A.3.5. [FT2] If s = q2(,-1), then the subspace A(s1,... ,s) corresponds

to the subspace M(A)"t of critical vectors in M(A).
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