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Abstract

In the first part of this thesis, we obtain some new results about infinitesimal Chered-
nik algebras. They have been introduced by Etingof-Gan-Ginzburg in [EGG] as
appropriate analogues of the classical Cherednik algebras, corresponding to the re-
ductive groups, rather than the finite ones. Our main result is the realization of those
algebras as particular finite W-algebras of associated semisimple Lie algebras with
nilpotent 1-block elements. To achieve this, we prove its Poisson counterpart first,
which identifies the Poisson infinitesimal Cherednik algebras introduced in [DT] with
the Poisson algebras of regular functions on the corresponding Slodowy slices. As a
consequence, we obtain some new results about those algebras. We also generalize
the classification results of [EGG] from the cases GL,, and Sp,,, to SO,.

In the second part of the thesis, we discuss the loop realization of the affine Yangian
of gl,. Similar objects were recently considered in the work of Maulik-Okounkov on
the quantum cohomology theory, see [MO]. We present a purely algebraic realization
of these algebras by generators and relations. We discuss some families of their
representations. A similarity with the representation theory of the quantum toroidal
algebra of gl, is explained by adapting a recent result of Gautam-Toledano Laredo,
see [GTLY, to the local setting. We also discuss some aspects of those two algebras such
as the degeneration isomorphism, a shuffle presentation, and a geometric construction
of the Whittaker vectors.
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Chapter 1

Introduction

1.1 Continuous Hecke algebras

1.1.1 Algebraic distributions

For an affine scheme X of finite type, let O(X) be the algebra of regular functions
on X and O(X)* be the dual space, called the space of algebraic distributions. Note
that O(X)* is a module over O(X): for f € O(X), p € O(X)* we can define f -
by (f - u,9) = (i, fg) for all g € O(X). For a closed subscheme Z C X, we say that
an algebraic distribution 1 on X is supported on the scheme Z if u annihilates the
defining ideal I(Z) of Z. If Z is reduced, we say that u € O(X)* is set-theoretically
supported on the set Z if 4 annihilates some power of 1(Z).

Let G be a reductive algebraic group and p: G — GL(V) be a finite dimensional
algebraic representation of G. First note that O(G)* is an algebra with respect to
the convolution. Moreover, 0, is the unit of this algebra. Next, we consider the
semi-direct product O(G)* x TV, that is, the algebra generated by u € O(G)* and

x € V with the relations
Topu= Z(vf,gr)u -v; forallz eV, peO(G),

where {v;} is a basis of V and {v/} the dual basis of V*, while (v}, gz)u denotes the

11



product of the regular function (v}, gr) and the distribution p.
We will denote the vector space of length N columns by Vi, so that there are
natural actions of GLy, Spy,SOn on Vy. Let us also denote the action of g € G on

x €V by z9.

1.1.2 Continuous Hecke algebras

We recall the definition of the continuous Hecke algebras of (G, V) following [EGG].
Given a reductive algebraic group G, its finite dimensional algebraic representation

V and a skew-symmetric G-equivariant C-linear map £ : V x V' — O(G)*, we set
H(G,V) = 0(GY x TV/([z,y] — k(z,y)| x,y € V).

Consider an algebra filtration on H,(G, V) by setting deg(V') = 1, deg(O(G)*) = 0.

Definition 1.1.1. [EGG] We say that H.(G,V) satisfies the PBW property if the
natural surjective map O(G)* x SV — gr H,.(G,V) is an isomorphism, where SV
denotes the symmetric algebra of V. We call these H(G, V') the continuous Hecke
algebras of (G, V).

According to [EGG, Theorem 2.4}, H,(G, V') satisfies the PBW property if and
only if k satisfies the Jacobi identity:

(z—2%)k(z,y) + (y — y¥)k(z,2) + (z — 2%)k(y,2) =0 forall z,y,z€ V. (})

Define the closed subscheme ® C G by the equation A3(1 — g {y) = 0. The set of
closed points of @ is the set S = {g € G:1k(1 — g |v) < 2}. We have:

Proposition 1.1.1. [EGG, Proposition 2.8] If the PBW property holds for H.(G,V),
then k(z,y) is supported on the scheme ® for all z,y € V.

The classification of all k satisfying (f) was obtained in [EGG] for the following

two cases:
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o for the pairs (G, h @ §*) with b being an irreducible faithful G-representation of real
or complex type (see [EGG, Theorem 3.5]),
o for the pair (Sp,,, V2.) (see [EGG, Theorem 3.14]).

In general, such a classification is not known at the moment. However, a particular
family of those was established in [EGG, Theorem 2.13]:
Proposition 1.1.2. For any 7 € (O(Ker p)* ® A2V*)¢ and v € (O(®)* @ AZV*)C,
the pairing k,,(x,y) == 7(z,y) + v((1 — g)z, (1 — g)y) satisfies the Jacobi identity.

1.2 Infinitesimal Cherednik algebras

1.2.1 Infinitesimal Cherednik algebras

For any triple (g,V,() of a Lie algebra g, its representation V' and a g-equivariant

C-bilinear pairing ¢ : A2V — U(g), we define

He(g, V) :=U(g) x TV/([z,9] — {(z,9)| z,y € V).

Endow this algebra with a filtration by setting deg(V') = 1, deg(g) = 0.

Definition 1.2.1. [EGG, Section 4] We call this algebra the infinitesimal Hecke/Cherednik
algebra of (g, V) if it satisfies the PBW property, that is, the natural surjective map
U(g) x SV —» gr H:(g, V) is an isomorphism.

Any such algebra gives rise to a continuous Hecke algebra
He(G,V) == 0(G)" ®uqy) Helg, V),

where U(g) is identified with the subalgebra O(G);, C O(G)*, consisting of all alge-
braic distributions set-theoretically supported at 15 € G.

In particular, having a full classification of the continuous Hecke algebras of
type (G, V) yields a corresponding classification for the infinitesimal Hecke algebras
of (Lie(G),V). The latter classification was determined explicitly for the cases of
(8,V) = (gL, Va ® V), (892, Van) in [EGG, Theorem 4.2].
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1.2.2 Classifications for gl, and sp,,

For a pair (gl,,V, ® V;}), we have the following result (see [EGG, Theorem 4.2]):

Proposition 1.2.1. The PBW property holds for H¢(gl,,) if and only if

k
C(yvy/) = 07 C(fl),.’l)’) = 07 ((ya .’B) = Zerj(yvx)’V y)y, € Vn» x7xl € V1:7

3=0

for some nonnegative integer k and {; € C, where r;(y, z) € U(gl,) is the symmetriza-

tion of a;(y,x) € S(gl,) =~ Clgl,] and ;(y, ) is defined via the expansion
(z,(1 —7A) y)det(l —TA) ™ = Zaj(y, T)(A)r?, Acgl,.
jz0
Definition 1.2.2. Define the length of such ¢ by I(¢) := min{m € Z5>_1| (5m4+1 = 0}.

Ezample 1.2.1. [EGG, Example 4.7] If I({) = 1 then H¢(gl,) = U(sl,+1). Thus, for
an arbitrary ¢, we can regard H,(gl,) as a deformation of U(sl,1)-
Let us also recall a similar classification for the pair (sp,,, V2,). Here we assume

that sp,,, is defined with respect to a symplectic form w on V5,.

Proposition 1.2.2. The PBW property holds for H¢(sp,,) if and only if
k
((,y) =D Gray(a.y)
=0

for some nonnegative integer k and {; € C, where r9;(z,y) € U(spy,) is the sym-

metrization of B2;(x,y) € S(spy,) =~ Clsp,y,| and B2j(z,y) is defined via the expansion
w(z, (1= 7°A) 7 y) det(1 = 74A) " = )~ Bry(, y)(A)7™, A € spy.
j=0
Definition 1.2.3. Define the length of such ¢ by I(¢) := min{m € Z>_1| {sm+1 = 0}.

Ezample 1.2.2. [EGG, Example 4.11] For { # 0 we have Heyro (8P2,) = U(spa,) X Wi,
where W, is the n-th Weyl algebra. Thus, H¢(sp,,) can be regarded as a deformation
of U(sp,,,) x W,.
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1.3 The quantum toroidal and the affine Yangian
of gl;

The quantum toroidal algebra of gl; appeared independently in [SV, FT1] as a certain
algebra, which naturally acts on the equivariant K-theory of the Hilbert scheme of
points on a plane. It also has a connection to the Hall algebra of an elliptic curve and
to the spherical DAHA as established in [SV, S]. Moreover, it admits an interesting
realization via the shuffle algebra, which was recently completed in [N1].

On the other hand, there has been a purely algebraic activity around those alge-
bras for the last five years, initiated by Feigin et al. In papers [FFIJMM1, FFIMM2],
the authors constructed several families of representations by using the formal comul-
tiplication and the aforementioned geometric representations.

Independently, the notion of an affine Yangian of gl; was introduced in [MO].
However, the authors were more interested in the particular family of representations

of this algebra (which arise geometrically), rather then in the algebra itself.

1.4 Organization of the thesis

e Chapter 2. The main results of this chapter are as follows:

o Computation of the Shapovalov determinant for H,(gl,,). This provides a simple

criteria for the irreducibility of Verma modules.

o Computation of the simplest central element, called the Casimir element. We

also obtain the formula for its action on the Verma modules.

o Classification of finite dimensional representations of H(gl,). Computation of

their characters.

o Computation of the Poisson center of the Poisson infinitesimal Cherednik alge-

bras.
o Chapter 3. The main results of this chapter are as follows:
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o Identification of the universal infinitesimal Cherednik algebras Hy.(gt,), Hm(sps,)
with the finite W-algebras of sl m, 5P, 5, corresponding to 1-block nilpotent ele-

ments. We also establish a Poisson analogue of this result.
o Some new properties of the infinitesimal Cherednik algebras.

o Obtaining some results on the completions of the infinitesimal Cherednik alge-

bras. In particular, we immediately get a proof of the result stated in [Tik3].
o Chapter 4. The main results of this chapter are as follows:

o Classification results on the continuous Hecke algebras and infinitesimal Chered-

nik algebras of types SO,, and so,,.

o Generalization of the results from Chapter 3 to the case of H(s0,).
e Chapter 5. The main results of this chapter are as follows:

o An explicit presentation of the affine Yangian of gl,.

o Geometric construction of representations for the quantum toroidal and the

affine Yangian of gl, via the Gieseker moduli spaces.

o Construction of some series of ¥4, x, »,(gl; )-representations. We also relate them

to the representations, which arise geometrically.

o Description of the limits of both algebras in interest as one of the parameters

trivializes.

o Construction of a homomorphism T : Uy, 004s(8%) = Yy hghs(8hy). This is
analogous to the relation between a quantum loop algebra U,(Lg) and a Yangian

Y;(g) of a semisimple Lie algebra g, discovered in [GTL).

o Discussion on the shuffle presentation of those algebras, emphasizing two alter-

native descriptions of their commutative subalgebras.

o Establishing an explicit connection between representations from [FFJMM1]

and [FHHSY] by introducing a “horizontal realization” of Uy, 4, 45 (81;)-

e Appendiz. We outline some further generalizations.
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Chapter 2

Infinitesimal Cherednik algebras

This chapter is based on [DT].

2.1 Representations of H.(gl,)

2.1.1 Basic notations

Similarly to the representation theory of sl,,, we define the Verma module of H(gl,,)

as

M(A) = He(gl,)/{H(gl,) - 07 + He(gl,)(h — A(R)) }res,

where the set of positive root elements n't is spanned by the positive root elements
of gl,, (i.e., matrix units e;; with ¢ < j) and elements of V; the set of negative root
elements n~ is spanned by the negative root elements of gl, (i.e., matrix units e
with ¢ > j) and elements of V*; and the Cartan subalgebra, b is spanned by diagonal
matrices. The highest weight, A, is an element of h*, and v, is the corresponding
highest-weight vector.

Let us denote the set of positive roots by A%, so that A* = {e}; —e};} U {e},}
for 1 <i<j<n,1<k < n To denote the positive roots of gl,, we use A+ (gl.),
and to denote the weights of y;, we use A*(V). We define p = 23, AtE) A =
(251,253, ..., —51), a quasiroot to be an integral multiple of an element in A+, and
Q™ to be the set of linear combinations of positive roots with nonnegative integer

17



coeflicients. Finally, U(n™), denotes the —v weight-space of U(n™), where v € Q+.

2.1.2 The Shapovalov Form

As in the classical representation theory of Lie algebras, the Shapovalov form can be
used to investigate the basic structure of Verma modules. Similarly to the classical
case, M () possesses a maximal proper submodule M()) and has a unique irreducible
quotient L(\) = M(X\)/M()). Define the Harish-Chandra projection HC : H,(gl,,) —
S(h) with respect to the decomposition He(gl,) = (Hc(gl,)n* + n~He(gl,)) @ U(h),
and let o : He(gl,) — H(gl,) be the anti-involution that takes y; to z; and e;; to ej;.

Definition 2.1.1. The Shapovalov form S : Hc(gl,) x Hc(gl,) — U(h) = S(h) =
C[h*] is a bilinear form given by S(a,b) = HC(o(a)b). The bilinear form S()) on the
Verma module M () is defined by S(A)(u1va, uava) = S(ug, uz)(A), for uy,us € U(n™).

This definition is motivated by the following two properties (compare with [KK]):

Proposition 2.1.1. 1. S(U(n™),,U(n7),) =0 for p #v,
2. M()\) = ker S()).

Statement 1 of Proposition 2.1.1 reduces S to its restriction to U(n™), x U(n™),,
which we will denote as S,. Statement 2 of Proposition 2.1.1 gives a necessary and
sufficient condition for the Verma module M (A) to be irreducible, namely that for any
v € @%, the bilinear form S, (\) is nondegenerate, or equivalently, that det S,(\) # 0,
where the determinant is computed in any basis; note that this condition is inde-
pendent of basis. For convenience, we choose the basis {f™}, where m runs over all
partitions of v into a sum of positive roots and f™ = [[ f™= with f, € n~ of weight
—a. We will use the notation at b to mean that (ay,...,q,) is a partition of b into a
sum of n nonnegative integers when b € N, and mF v to mean that m is a partition
of v into a sum of elements of A™ when v € Q. Then, the basis we will work with
is {f™}mro-

Now, we present a formula for the determinant of the Shapovalov form for H.(gl,,)

generalizing the classical result presented in [KK]. This formula uses the following
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result proven in Section 2.1.5: for a deformation ¢ = (oro + {7y + -+ - + CmTm, the
central element ?] (introduced in Section 2.1.3) acts on the Verma module M())
by a constant P(\) = ij(',l wiH;(A + p), where H;(A) = 37, i T]);cp AT are the
complete symmetric functions (we take Ho(}) = 1) and w;((y,...,(;) are linearly
independent linear functions on (.

Define the Kostant partition function 7 as 7(v) = dim U(n™),. Then:

Theorem 2.1.1. Up to a nonzero constant factor, the Shapovalov determinant com-

puted in the basis {f™}mr, is given by

det S, (\) = H ﬁ(P( — P\ —ka))" @ ke H H A+ p,a) — k)T F)

QEAH(V) k=1 acA+(gl,) k=1

Remark 2.1.1. For ¢ = (oro + (171,¢1 # 0, we get the classical formula from [KK].

Proof.

The proof of this theorem is quite similar to the classical case with a few technical
details and differences that will be explained below. We begin with the following
lemma, which shows that irreducible factors of det S, () must divide P(A) — P(A—p)
for some p € Q.

Lemma 2.1.1. Suppose det S,(A\) = 0. Then, there ezists p € Q+\{0} such that
P(A)—P(A—p) =0.

Proof.

Note that det S,(A) = 0 implies that the Verma module M ()) has a critical vector
(a vector on which all elements of n* act by 0) of weight A\ — u for some y € QF
satisfying 0 < p < v. Thus, M(X — u) is embedded in M()). Since #; acts by
constants on both M(\) and M (A — ), which can be considered as a submodule of
M(X), we get P(A) = P(\ — p). O

The top term of the Shapovalov determinant detS,(\) in the basis {f™}mr,
comes from the product of diagonal elements, that is, [] .., [1[o(fa), fa]™=(A). The
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top term of [e;;, e;5](A) for ¢ < 7 is Ay — A; = (A, @) where « is the weight of e;;. The

following lemma gives the top term of [y;, z;](A):

Lemma 2.1.2. The highest term of [y;,x;](A) for ¢ = {oro + -+ + (uTm equals

Cn 2op(Ps + 1) TTAYY, where the sum is over all partitions p of m into n summands.

Proof.

From [EGG, Theorem 4.2], we know that the top term of [y;, z;] for { = (oro +
Gir1 + - - + riy is given by the coefficient of 7™ in det(1 — 74) Yz, (1 — 7A) " Ly;).
Because the set of diagonalizable matrices is dense in gl,,, we can assume A is a
diagonal matrix A = diag(\, Az, ..., A,) so that
det(1—-7A)7 =]] 1—lf>\,~ =D k2 prkll A% and z;(1—7A) 'y = 14+ 30, NETE,

Multiplying these series gives the statement in the lemma. O

Thus, we see that the top term of the determinant computed in the basis { ™}k,

up to a scalar multiple, is of the form

Zm my

[T OayF=m 11 (Z(pj +1]1 Af"‘)
acA+t(gl,) a=wt(y;)EAT(V) \ p

Since 7(p) is the number of partitions of a weight p, the sum ) m, over all par-

titions m of v with a fixed must equal y ;o 7(v — ka), so the expression above

simplifies to

oo 0 7(r—ka)
H H()\’ a)r(l/—ka) H H (Z (pj + 1) H )\f)a)
acAT(gl,) k=1 a=wt(y;)€AT(V) k=1 \pFm

This highest term comes from the product of the highest terms of factors of P(A)—
P()\ — p) for various p € Q%.

Lemma 2.1.3. 1. For all 4 # ka, a € A*(gl,), P(A) — P(A — p) is irreducible as a
polynomial in A.

2. For p = ka, o € At (gl,), ﬂ%\% is irreducible.

20



If Lemma 2.1.3 is true, then all u contributing to the above product must be
quasiroots: if p # ka for some a € At(gl,), the highest term of the irreducible
polynomial P(A\) —P(A—p), >, 2 1(P;+1) [T AP, does not match any factor in

the highest term of the Shapovalov determinant unless u is a V-quasiroot. Moreover, if

P!)\ !—Pf A—ka!
(A+p,a)—k

with the highest term of the determinant shows that only the linear factor (A+p, a)—k

u = ko for a € At(gl,,), since is irreducible for a € A*(gl,,), comparison

of P(A) — P(\ — ko) appears in the Shapovalov determinant.

Proof.

We will prove that P(A)—P(A—p) is irreducible for 4 # ka (o € A*(gl,)); similar

PA)-P(A—ka)

Oorpo)—F is irreducible for any o € A*(gl,,), k € N.

arguments will show that

Consider the parameters w; as formal variables. Then, we have P(\) — P(A—p) =
2o Wil Hi(A + p) — Hi(A + p — p)). We can absorb the p vector into the A vector.
For this polynomial to be reducible in w; and \;, the coefficient of w; should be
zero: Hy(A) — Hy(A — u) = Hy(u) = 0. Also, since the coefficient of w, is linear
in Aj, it must divide the coefficients of every other w;. In particular, the highest
term of Hy(A) — Hz(A — i) must divide that of Hz(\) — Hs(\ — p). The highest
term of Hz(A) — Ha(A — ) is 35, M + 22, 15) = (A, ) and the highest term of
H3(A) — H3(A — p) is given by Hi(A\)(p), the evaluation of the gradient Hj()\) at
. Since this term is quadratic and is divisible by (A, 1), we can write Hi(A)(u) =
(A, #)(A, &) for some & € h*. Now, let us match coefficients of A\, for i # j and of
A? on both sides of the equation. By doing so (and using the fact that 3 p; = 0),
we obtain p;€; + p;& = pi + p; and ;& = 2p;. Since py + -+ + p, = 0 and p # 0,
at least two of y; are nonzero, say u;, and p;,. From the two equations, we obtain
iy +pi, = 0. If g, # 0, then by similar arguments, p;, +pi, = i, +pi; = i+, = 0,
which is impossible since p;,, pi,, pi; # 0. Thus, P(A) — P(A — p) is reducible only
if exactly two of the y; are nonzero and opposite to each other; that is, 4 = ka for

a € At(gl,). O

To prove that the power of each factor in the determinant formula of Theorem 2.1.1

is correct, we use an argument involving the Jantzen filtration, which we define as in
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[KK, page 101] (for our purposes, we switch U(g) to H.(gl,)). The Jantzen filtration
is a technique to track the order of zero of a bilinear form’s determinant. Instead
of working over the complex numbers, we consider the ring of localized polynomials
C(t) = {Z—% | p(t),q(t) € C[t],q(0) # 0}. A word-to-word generalization of [KK,
Lemma 3.3], proves that the power of P(A) — P(A — ka) for a € A*(V) and of
(A+p,a)—k for a € AT(gl,) is given by 7(v — ka), completing the proof of Theorem

2.1.1. a

2.1.3 The Casimir Element of H.(gl,)

Let 91,9,,9;,...,9, € S(gl},) (which can be identified as elements of S(gl,) under
the trace-map) be defined by the power series det(tld — X) = -7, (—1)7t"7Q;(X),
and let 5; be the image of Q; under the symmetrization map from S(gl,) to U(gl,).
The center of U(gl,) is a polynomial algebra generated by these ;. Define t; =
>.; ZilBi, y;]. According to [T1, Theorems 1.1, 2.1], the center of Ho(gl,) is a poly-
nomial algebra in {t;}1<i<n, and there exist unique (up to a constant) ¢; € 3(U(gl,,))

such that the center of H¢(gl,) is a polynomial algebrain ¢, =¢;+¢;, 1 < ¢ < n.

Definition 2.1.2. The Casimir element of H¢(gl,) is defined (up to a constant) as
t).

We will construct the Casimir element of H(gl,) and prove that its action on
the Verma module M (1) is given by P(\) = E?:[)l w;H;(A+ p), where w; are linear

functions in ;.

2.1.4 The center

Let us switch to the approach elaborated in {EGG, Section 4], where all deformations
satisfying the PBW property were determined. Define 6(™ = (i8)™§ with § being
a standard delta function at 0, i.e., [ 6(8)$(6)d0 = ¢(0). Let f(z) be a polynomial
satisfying f(z) — f(z — 1) = 9™(2"({(2)), where ((z) is the generating series of the
deformation parameters: ((z) = (o + (12 + (222 + ---. Since f(z) is defined up
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to a constant, we can specify f(0) = 0. Recall from [EGG, Section 4.2], that for
f(@) = Emzo fmé(m)(g)a

s

_i = —i0\ F 10(v®7)
ly, z] = 2 ccnp l(o:, (v®v)y)/ (1—e"%) f(0)e df dv.

-7

Theorem 2.1.2. Let g(z) = ) gnz™ = . (m+1)(m+);3n~-(m+n—1) z™. The Casimir
element of He(gl,) is given by t; = 3" z;y; + Res,—og(z7!) det (1 — z4) " dz/z.

Proof.
Define C' = Res,—og(z7")det (1 — z4) ' dz/z. Let us compute [y,¢; + C'] =
>;[y, z5ly; + [y, C']. The first summand is:

1 4 A o
Sl = 53 /[ ] A= @ s, @ )g)y g do

J

_ / / _zg) f zo(v®i) ® (v® v)ydf dv.
fvl=1J—-=

Following [EGG, Section 4.2], we define

F(A) = /| vt = / (v ® B)™* do.

[v|=1

There, it was proven that
Z fmFm-1(A) = 2n"Res,—og(z ') det(1 — zA) 127 1dz = 22"C".

Thus, we can write

T 2 Z fm/

[ol=1

(v®D)"dv = / f(H)e”’(‘”@”) df dv,
27rn Jv|=1J -7

which implies that [y, "] = 7= lol=1 I=_f(O)ly, e®®®] df dv. Since

e~ i0(v®7) [y, eiB(v@z‘J)] - e—iﬂ(v®ﬁ)yei9(v®ﬁ) —y= e—ioad(v@m)y —y= (e—w _ 1)(v ® ﬁ)y,

we get [y, C"] = 35= fol= T f(8)e@®) (e~ _ 1)(v ® B)y df dv, and so Doulymiy +
[y,C’"] = 0 as desired. By using the anti-involution o defined in the beginning of
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Section 2.1.2, this implies [z,t; + C’] = 0 for any z € V*, while [e;;,t; + C'] = 0 by
[T1], and hence, t] =t + C". O

Remark 2.1.2. This proof resembles calculations in [EGG, Section 4]. In particu-
lar, [EGG, Proposition 5.3 | provides a formula for the Casimir element of continuous
Cherednik algebras. However, adopting this formula for the specific case of infinites-

imal Cherednik algebras is nontrivial and requires the above computations.

2.1.5 Action of the Casimir Element on the Verma Module

In this section, we justify our claim that the action of the Casimir element t] is given
by P(A\) = Z;':(‘)l w;H;(A + p). Obviously, t| acts by a scalar on M (X — p), which
we will denote by t;(\). Since t; = 3 zy; + C', C' € 3(U(g)) = S(g)¢, we see that
t1(A) = C"(X) where C’()) denotes the constant by which C” acts on M (A — p).

Theorem 2.1.3. Let w(z) be the unique degree m + 1 polynomial satisfying f(z) =
(2sinh(9/2))" 2" w(2). Then ti(A\) = 3 oo wpHp(N).

Proof.

Because C’()) is a polynomial in ), we can consider a finite-dimensional represen-
tation of U(gl,) instead of the Verma module M(A — p) of H(gl,). For a dominant
weight A — p (so that the highest weight gl,-module V)_, is finite dimensional) we
define the normalized trace T'(\,6) = try,_,(e¥®®9)/dim V;_, for any v satisfying
[v] = 1 (note that T'(),8) does not depend on v). To compute T'(},8), we will use
the Weyl Character formula (see [FH]): x»—, = —%%, where W denotes the
Weyl group (which is S, for gl,). However, direct substitution of €“®?) into this

formula gives zero in the denominator, so instead we compute lim,_,o xx—,(€% (v@0)+en)

for a general diagonal matrix pu.
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Without loss of generality, we may suppose v = y;, so that

10 0

) 00 --- 0
VTRUI=¢q=

00 - 0

Then

w (WA, 6
eie(v®ﬁ)+e/.z) = lim Zwesn (—1) el q+ep)
e—0 Ewes,. (— l)we(wP,i9q+eu)

_y ZweSn (___ l)we(w/\,i9q+ep)
=1 N e T e

X0l

Partition A*(gl,) into A, U Ay = A*(gl,), where A; = {e}; — e}, : 1 < j < n}. For

a € Al;
lim (e(a/2,i9q+eu) _ e—(a/2,i9q+eu)) — e1'0/2 . e—i0/2 = 2 sin g
e—0 2 ’

SO lime—m HaEAl (e(a/2,i0q+ey) _ e—(a/2,i0q+eu))—1 — (22 sin (%))I—n.

Next, we compute the numerator. We can divide S, = [—lls j<n Bj, where B; =
{w € Snlw(j) = 1}. Note that B; = ;- S,_1, where g; = (12-- - j) and S,_; denotes
the subgroup of S, corresponding to permutations of {1,2,...,7 — 1,7 +1,...,n}.

We can then write

Z (_l)we(w)\,ieﬁ-ep) _ Z (_1)aj(_1)oei9/\j ee(ajoa(A),u)

wEB; o€S1

— (_l)j—leie)\jeeAjul Z (_1)0’e€(0’(5\j),ﬁ)

cE€ESn-1

where )T] = (A, A1, A, -, A) and fE = (o, - -y ).
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Combining the results of the last two paragraphs, we get

S es, (1) elrera)

11—{% H A+l )(e(a/2 A0gten) _ o—(a/2, 1Gq+eu))
=lim 3 (-1 et Soes, s (-1 ,u,) )
e—0 155en (21, sin 9)"—1 Ha€A2 (6(0‘/2 W0q-tep) _ o— (‘1/2:19¢1+€I‘>)

Using the Wey! character formula again, we see that

ZO’ESﬂ—l( 1)0 elo(As).i) e (eeﬁ)
HaeA2 (e(a/2’6“> —e” <a/2,eu)) =MV,

where 5 is half the sum of all positive roots of gl,_,. Thus,

Zae s 1(_1)085(0(5\,-),;2)
lgré H EA O‘/2v”:99+€“) — e_(a/2)i0‘I+€l‘>) -

trVA]_ﬁ(l) = dim V;‘j_f,

We substitute to obtain

eio)\j dim VXJ —p

(2ising)=-1

try,_, (e7C®0) = > (-1)

1<j<n
Our original goal was to calculate T(),6) = try,_,(e?®?)/dim V_,. We obtain

10/\]
T(A,0) = > (-1y Vs s
(2isin2)»-1dim Vi,

1<5<n

Using the dimension formula (see [FH, Equation 15.17)):

dmVi,= [ AN

1
1<i<jsn J

1.A0

we get T'(A,0) = (24 sin(6/2))*"(n — 1)! Erl Hk¢J(AJ =)

m
. n z] _
Since Y =1 ——L————Hk#j(xj_zk) = Hp_ni1(z1, o, Zn), We have

T(),6) = (2isin(6/2))' "(n — 1)1 > i:(i)_(@_’i"_

Y
s ptn 1)!
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Thus, we get

’ _ — 19(1’@”) v
60 =00 = (7 /. [ reemevasin) ) = o2 [ oron e
_ / f(B)(Qisin(@/Q))l“”Z—-—(A)(ze)pm "9 = Zw H,(V),
- & (p+n e

where w), = ["_ f(8)(2isin(0/2))" "%dﬂ Let w'(2) = 3 w),2P. We verify that

(66/2 — 6_6/2)71_12”' (z) = / f( G)Z (2isin(6/2) )1‘"( 8/2 _ -6/2)"_ 1 (i) dé

P20 (p+n—1)
= / F(6)(2isin(8/2))' ™ (e"’/2 — 6_3/2)n_16iz0 a0
- [ F(6)(2isin(8/2))t™ (ei9/2 _ e—iG/Z)"“lez'ze do

— [ e ao = s,

and it is easy to see that the polynomial solution to f(z) = (2sinh(8/2))* 12" 1w(z)

is unique. O

2.1.6 Finite Dimensional Representations

In this section, we investigate when the irreducible H¢(gl,) representation L()) is
finite dimensional. As in the case of classical Lie algebras, any finite dimensional
irreducible representation is isomorphic to L{\) for a unique weight A. Theorem 2.1.4
provides a necessary and sufficient condition for L(\) to be finite dimensional. In
particular, all such representations have a rectangular form.

In Section 2.1.8, we prove that for any allowed rectangular form there exists a

deformation ¢ such that the representation L()) of H¢(gl,) has exactly that shape.

2.1.7 Rectangular Nature of Irreducible Representations

Theorem 2.1.4. (a) The representation L()) is finite dimensional if and only if X is
a dominant g, weight and P(A) = P(A — (0,...,0,v, + 1)) for some v,, € Ny.
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For every 1 < i < n—1let k; € Ny be the smallest nonnegative integer such that
P(A)=P(A—(0,...,0,k;+1,0,...,0)) (we set k; = oo if no such nonnegative integer
exists). We define parameters v; = min(k;, \; — A\jq).

(b) If L(\) is finite dimensional, then as a gl,, module it decomposes into

L(A) = @ ‘/)\’)
0SA-N<v
where v = (14, ..., V,) are the parameters defined above (depending on ¢ and \).

Proof.

In order for L(A) to be finite dimensional, it is clearly necessary for A to be a
dominant gl,, weight. Recalling the PBW property and the definition of the Verma
module M (), we see that as a gl, module, M()\) decomposes as

MAN=Ve(WKhes)e(Va®S:)®---, where Sy = Sym*(z,, zs, ..., 7).

We can further decompose each V, ® S; into irreducible modules of gl,; once we do so,

we find that M () has a simple gl,, spectrum. Note that V, ® S; can be decomposed

as Ve, ® Vg, @+ ® Vo, (taking V,,_.» = {0} if 1 — €}; is not dominant). We
can thus associate each V, for p = A —ase}; — -+ — a,€}, in the decomposition of
M(X) with a lattice point P, = (—a;y, —@2,...,—a,) € Z". We draw a directed edge

from P, to P, if V,, is in the decomposition of V, ® S;, and we say P, is smaller than
P,. A key property of this graph is that any H(gl,)-submodule of M()) intersecting
the module V,, must necessarily contain V,, and all Vs such that B, is reachable from
P, by a walk along directed edges. Recall that L()\) = M()\)/M()), where M()\)
is the maximal proper H(gl,)-submodule of M()\). The aforementioned property
guarantees that as a gl, module, M(\) = @, ¢ V; for some set S of vertices closed
under walks, so that L()\) is finite dimensional if and only if S (the complement of
S) is a finite set.

We now prove part (a). First, suppose that L()\) is finite dimensional. The

finiteness of S implies the existence of some [ such that (0,...,0,—] — 1) € S (note
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that (0,...,0) ¢ S). Let v, be the minimal such I. We define S’ as the set of vertices
that can be reached by walking from (0,...,0,—v, — 1). Because S’ C S, the Verma
module M (A) must possess a submodule M(X — (0,...,0,2, + 1)). By considering
the action of the Casimir element on M(A) and M(XA — (0,...,0,v, + 1)), we get
P(A) =PA=(0,...,0,u, +1)).

Next, suppose that there exists v, € Ny such that P(A) = P(A—(0,...,0,v,+1)).
The determinant formula of Theorem 2.1.1 implies that the Verma module M())
contains the submodule M (X — (0,...,0,u)) for some g < v,. Define S’ to be

the set of vertices that can be reached by walking from (0,...,0,—p). Its com-

plement S’ is finite, since for any vertex (—ay,...,—a,) of our graph, we have
M —a1 > d—ay > -+ > A\, —a,. Because S C §’, S is finite, finishing
the proof of (a). We note that cxplicitly, S’ = {(~a1,...,~a,)|[0 € a; < X\ —

Xit1,0 < a, < v} and the corresponding finite dimensional quotient is L'(\) =
M)/ (X i<cicn Hc(gln)ez{\;,?mﬂvx + He(gl,)zh o).

Part (b) requires an additional argument. Namely, if L(}) is finite dimensional,
then it can also be considered as a lowest weight representation. Let b = (by,...,b,) €
S be the vertex corresponding to the lowest weight of L()\). If the statement of
(b) was wrong, there would be a vertex & = (ey,...,e,) € S with two nonzero
coordinates, such that (e;,...,e;_1,€ + 1,€41,...,€,) € S for any 7. Without loss
of generality, suppose e, e; # 0. As we can walk along reverse edges from b to both
points (e; + 1,ez,...,e,) and (e;,e2 + 1,¢€3,...,€,), we can also walk along reverse
edges to &, which is a contradiction. This proves part (b) and explains our terminology

“rectangular form”. O

The decomposition of L(\) as a g, module provides the character formula for

L(\) as the sum of the characters of gl,, modules:

Z (_l)wew(A’+p)
o=y, T : (*)

vchmey  2ewes,(T1)ve

As in the classical theory, this character allows us to calculate the decomposition of

finite dimensional representations into irreducible ones.
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Example 2.1.1. Let us illustrate the decomposition of L(A) from the proof of Theorem
2.1.4; for clarity, we will work with sl; representations instead of gl, representations.
Using the notation of the proof, Sy = S¥(x,, x3) & V4, the irreducible sl; representa-

tion of dimension k£ + 1. By the Clebsch-Gordon formula,
Vin @ Vi B Vinik ® Vinak 2 D+ @ Vinsk—2 min(h,m)-

We can use the above formula to draw the graph, representing the decomposition
of L((2,0)), with » = (0,3), into sl; modules. This representation is the quotient
of M((2,0))/H.(gl)e3,ux by the submodules represented by the shaded areas of the
diagram, and L((2,0)) = Vo, ® V3 ® V4 @ V; as sl, modules.

Ezample 2.1.2. For H¢(g!,), the irreducible finite dimensional representation L(}),

ot . R .
A~V where v is some nonnegative integer.

for A € C, has character xa¢c = > g€
The infinitesimal Cherednik algebras of gl, are generated by elements e, f, and h,
satisfying the relations [h,e] = e, [h, f] = —f, and [e, f] = ¢(h) for some polynomial
¢. In literature, these algebras are known as generalized Weyl algebras ([Sm]). In this
case, the Casimir element equals fe+g(h), where g satisfies the equation g(z) —g(z —

1) = ¢(z). Then, v is the smallest nonnegative integer such that g(A\)—g(A—v—1) = 0.

FEzample 2.1.3. For H.(gl,), the irreducible finite dimensional representations are
necessarily of the form L(A) with A = (A2 + m, Az}, where A; € C, m € Ny. The
character of L(\) equals

e(>\2+m—vi ,Az-—ué) _ e(/\g—-llé— Laz4+m—py+1)

Xxg = Z 1— e-LD

(010)5(’/{ ,Ué)s(l/l )V2)

Let fi(\ p) = PQa+m+5,X2 —3) = PO +m+ 3 —p, X — 3) and fo(A, p) =
Po+m+1 2 —3)—Pa+m+3,X —p—3). Again, v, is defined as the
minimal nonnegative integer satisfying fo(A, v, + 1) = 0, while v, is either m or the
minimal nonnegative integer satisfying fi(A,v1 + 1) = 0. For instance, if { = (7o
with (o # 0, then fo(), ) is a multiple of u, and so the only solution to the equation
folA\,v2 + 1) = 0is v, = —1, which is negative. Thus, He,,(gl;) has no finite
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dimensional irreducible representations. If ¢ = (oro+¢iry with {3 # 0, P(\) = (o(A; +
X2)+G (a3 + a4 5)e =D +0a =30, 50 o) = G (£ + M + 20 — ).
Thus, L(]) is finite dimensional if and only if % + A1 + 2, is a positive integer. This

agrees with the description of finite dimensional representations of sls.

2.1.8 Existence of L()\) with a given shape

Theorem 2.1.5. For any gl, dominant weight A and v € N} such that v; < \; —
Aiy1 for all 1 <4 < n — 1, there exists a deformation , such that the irreducible

representation L(\) of Hc(gl,) is finite dimensional and its character is given by (*).

Proof.

Let X' = A+ p. We can write X; = X, + k; for ky > -+ > ko1 > k, = 0 (we
have strict inequalities because of the shift by p). Recall that P(A) = 3w, H,(X)
for w; defined as in Theorem 2.1.3. Let p; = (0,...,» + 1,0,...,0). We will find w;
such that P(X') — P(X' — ;) = 0, while for all 0 < g} < p;, P(N) — P(X — uf) # 0.
This implies that there are embeddings of M (X — p;) into M()\') with an irreducible
quotient L(\) = M(XN)/ Y, M(XN — u;), due to Theorem 2.1.4.

Define Pp; = P(N) — P(XN —p) for p = (0,...,m+1,0,...,0) with them + 1 at
the j-th location. We must prove that there exist w such that P,;; =--- =P, , =0

and Py, ..., Py # 0 for all 0 < v < ;. We can write Py = ), o wiR},;, where

Riy= 30 A k)m (k) = (N hy —m— 1)) (N, + k)
+..Fin=N
Note that the condition P;; = 0 determines a hyperplane IIi; in the space (wy, wy, . . .)
(IIx; might in fact be the entire space, but the following argument would be unaf-
fected). Hence, the intersection (1IL,,; belongs to the union (J;, << 5 if and

only if it belongs to some IL,s ;. Thus, it suffices to show that {P.,1,..., P.n, By}

are linearly independent as functions of w; for all 1 <1 < n and 0 < »| < ;. This
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condition of linear independence is satisfied if

(RLy Ry - R
Ry, R, Ry
det : : : # 0.
Rlll,.n Rzzlnn e RZ:nl
\R}/{z R.zf;z T R:;er '

Now we shall prove that using column transformations, we can reduce the above
matrix to its evaluation at A}, = 0. We proceed by induction on the column number.

The elements of the first column, R,lnj,

are of degree zero with respect to A/, so R,lnj =
R,lm- (0). Suppose that using column transformations, all columns before column p are

reduced to their constant terms. Now, we note that

ORL.(N) 8 _ . . |
m, LiL A ’ k L2 S A/ k'zj— / L _ Y ... Vin
ox_ o +¥ =p(A,, bR (V4 k) — (X, Ky — o — 1)) - NS

= (p+n— 1R (A,).

Thus, we see that RE ; — RF .(0) is a linear combination of an}i(O), the entries of the

other columns:

1., R
Py ) — Lk mj
Rmv‘(A")_Zi A BN

p+n_1 —1 n
-y ( i )Rf’nj (O)N%.

AL=0
n

By selecting pivots of (” '”1.‘_1) A, we can eliminate every term except anj (0). By

repeating this step, we reduce the matrix to its evaluation at A}, = 0O:

(RLi() B0 - RREX) (RL,(0) R,(0) - RIF(0)
RLa(X) RL,(N) - RIE(N) RLa(0) Ria(0) - RIENO)
det : : : = det : : :
RLA(X) RN - RN RLa(0) Ri,(0) - R0)
\BL(Y) RL(n) - RPOW) \BL(0) R(0) - R0
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Let us now rewrite R} (0):

Ryi@) = D> Kk — (b —m— D9)RZ -k
i1+ tin=N

N-1
= Z Hy_ iy (kj'ﬂ —(kj—m— 1)i+1)
i=0

N-1
=" Hy_iog (K = (kj — m— 1) — ky(kE — (k; — m — 1)Y))

= Z_ Hy i1 (m+1)(k; —m —1)%),

KK s,

= i fin - ~
where Hy_; = Zi1+...+in=N—i ky ki and Hy_; = Ei1+...+i,-+...+in=N—-1 3

The third equality is because Hy_; = Hy_; — k;Hn_;—1. It is easy to see that the

above determinant can be reduced further to

(41 i+ Dk—rn=1) - (41 —vg—1)" )
v+l (+)ke—1,—1) -+ (a4 1k —vp—1)"
det : : =
Up+1 W+ Dkn—vn—1) -+ (Up+Dkn—vp—1"
\4+1 (+Dh—y-1) - G+ Dk—rf—1)" )

(1 bi——=1 - (k== 1))
1 ka—va—1 - (ha—vp—1)"
T - det : ) ,
1 kn—vp—1 -+ (kn—vy,—1)"
\1 kk—v —1 - (k,—u,'—1)"/

where T' = (11 + 1)(v2a+1) - - - (vn +1)(v] + 1) and the determinant is []_, (ki — k: +
Vi — V) [li<icj<n(ks — ki + v; — v;) by the Vandermonde determinant formula. Now,
recalling the conditions 0 < v; <A — Ay = ki —kipn—1weget kj —ki+v;—v; <0
for any i < j and so [[;<; ;< (k; — ki + 15 —v;) is nonzero. Similarly, we get [[;_, (ki —
ki +v; — v]) # 0. Hence, the determinant is nonzero, and so {P,, 1,..., Py, P,,{,l}

are linearly independent as desired. |
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2.2 Poisson Infinitesimal Cherednik Algebras

2.2.1 Poisson Infinitesimal Cherednik Algebras of gl,

Now we will study infinitesimal Cherednik algebras by using their Poisson analogues.
The Poisson infinitesimal Cherednik algebras are as natural as H(gl,), and their
theory goes along the same lines with some simplifications. Although these algebras
have not been defined before in the literature, the authors of [EGG| were aware of
them, and technical calculations with these algebras are similar to those made in [T1].
This approach provides another proof of Theorem 2.1.2.

Let ¢ be a deformation parameter, { : V x V* — S(gl,). The Poisson infinitesimal
Cherednik algebra H;(gl,,) is defined to be the algebra Sgl,®S(V@&V™*) with a bracket
defined on the generators by:

{a, b} = [a, b] for a,b € gl,,,

{g,v} =g(v) forgegl,,veVaV*
{9,9'} ={z,2'} =0fory,y € Viz,2" € V",
{y,2} =((y,z) forye Viz e V™"

This bracket extends to a Poisson bracket on H((gl,,) if and only if the Jacobi identity
{{z,v}, 2} + {{y, 2}, 2} + {{z,z},y} = 0 holds for any z,y,z € gl, x (V& V*). As
can be verified by computations analogous to [EGG, Theorem 4.2}, the Jacobi identiy
holds iff { = 2;?:0 ¢;t; where ¢; € C and t; is the coefficient of 77 in the expansion of
(z,(1—7A) ly)det(1 —7A)~!. Actually, we can consider the infinitesimal Cherednik
algebras of gl, as quantizations of H/(gl,).

Remark 2.2.1. Note that

otr(SHA)
{yu "I;J} Z Cltl Y, l‘]) - Z C 8611 3

this follows from
tr(tB(1 —T7A)™1)
det(l — 7A)

%(det(l —TA) =
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when B = y; ® z;. In fact, if {y;,z;} = Fj;(4), the Jacobi identity implies that
F;(A) = % for some G L(n) invariant function F, and that A2D4(F) = 0, where D,

is the matrix with (Dy),, = ai,»' One can then show that the only GL(n) invariant
functions F' satisfying this partial differential equation are linear combinations of
tr(S'A).

Our main goal is to compute explicitly the Poisson center of the algebra H/(gl,).
As before, we set Qi to be the coefficient of (—t)* in the expansion of det(1 — tA),
Te = 2im1 Z{ Dk, ui}, and ((2) = Go + Q2+ (2% + - -
Theorem 2.2.1. The Poisson center jpois(H((gl,)) = C[r 4+ c1, 72 + ¢z, ..., Tn + Cn),
where (—1)ic; is the coefficient of t* in the series

det(1—t4) 1 dz
det(l —zA)1 —t-1z z

c(t) = Res,—p (2 1)

Proof.

First, we claim that 3pois(Hj(gl,)) = C[r,...,7]. The inclusion C[r,...,7,] C
3pois(H§(gl,)) is straightforward, while the reverse inclusion follows from the structure
of the coadjoint action of the Lie group corresponding to gl, x (V @& V*) (as in the
proof of [T1, Theorem 2}).

We prove that the Poisson center of H{(gl,) can be lifted to the Poisson center of
H{(gl,,) by verifying that 7; + ¢; are indeed Poisson central. Since 7x € 3pois(Ho(gl,,))
and ¢ € 3pois(S(gls)), 7% + cx Poisson-commutes with elements of S(gl,). We can
define an anti-involution on H((gl,) that acts on basis elements by taking e;; to e;
and y; to z;. By using the arguments explained in the proof of [T1, Theorem 2|, we
can show that 7, is fixed by this anti-involution, while ¢; is also fixed since it lies
in 3peis(S(gl)). Applying this anti-involution, we see that it suffices to show that ¢
satisfies {7x + ¢, yi} = 0 for basis elements y; € V.

First, notice that if g € S(gl,), then {g,u} = 377, a%%{eij,y,}, and together
with the equation {{Qx,%:},w} = 0 (see the proof of [T1, Lemma 2.1]), we get

n

{Tk, yl} = {Zl ilJi{Qk, yi}, y;} = — Z (RGSZ=0 C(z—l)tr(:::l(elt(_l Z_Az)x;l)yl)dz> {Q,“ yi}-

i=1
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Thus, we have

o (1 —zA)™!
{me+cx,u} = Z BC: {ei, u} — Z (Resz—oC —1)tr(:cfet(1i Z)A)yl)dz> {9, ¥}

i,j=1

Hence, {7x + ¢, i} = 0 is equivalent to the system of partial differential equations:

Z g:lk {es,u} = Z (Resz—oC —l)tr(::i(et(_ ZA);l)yl)dZ> {9k, v}

i,j=1

Multiplying both sides by (—t)* and summing over k = 1,...,n, we obtain an equiv-

alent single equation

Z 50@ e Lo} = Z (ReSroC( _l)tr(zd(et 1iA3;1)yl)dz) et =)

,Jl

Since all terms above are GL(n) invariant and diagonalizable matrices are dense

in gl,,, we can set A = diag(a,, ..., a,):
c(t) ((z™h)
= ( Res,_ t(1 — tA),
Oa u (Res 0 2(1 — za;) det(1 — zA) dz | {del( )ik
¢(z™h) ddet(l —tA)
= | Res,- d
( £92=0 z(1 — za;) det(1 — zA) ? Ouy v
_ ¢(z™h) tdet(l —tA)
B (Resz=0 z(1 — za;) det(1 — zA)d 1—ta w
and it is easy to see that ¢(t) satisfies the above equation. O
Ezample 2.2.1. In particular, ¢; = 3.5 ¢ tr SH1A.
Remark 2.2.2. Another way of writing the formula for ¢ is
dz
cx = Res,—o C(Z_I)Gk(z)?,
where Gg(z) = Y 2™ymx(A) and ymx(A4) = x (m, 1,...,1), the character of an irre-
N e’

k
ducible gl, module corresponding to a hook Young diagram.!

! This formula follows from the fact that in the Grothendieck ring of finite dimensional gl,,
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2.2.2 Passing from Commutative to Noncommutative Alge-

bras

Note that {g,y} € S(gl,) ® V for g € S(gl,) and y € V; we can thus identify
{9,9} = 221, hi ® y; € H(gl,) with the element > 7, Sym(h;)y; € H¢(gl,).

Lemma 2.2.1. We have

k

—1) )
[tl‘ Sk+1A, y] — { & (k +n+ 1) tr SHI—JA,y} .

j=0k+n+1 j+1

Proof.

It is enough to consider the case y = y;. Recall that tr S¥+1(A4) can be written as
a sum of degree k + 1 monomials of form e; ;, - - "€y, €20 b1 T €2 ey " Eniia) 4o ton
where s; + -+ + s, = k + 1 and the sequence {i} is a permutation of the sequence
of s, ones, sy twos, and so forth; for conciseness, we will denote the above monomial
by €1, - €ny,,- The only terms of tr S**1A that contribute to [tr S¥*1A4, ;] and
to {tr S**14,y,} have s; > 1. Since to compute [tr S¥+1A, y;] we first symmetrize
tr S¥*1 A, we will compute [Sym(ey;, - - €nyipyr ) 1] — {Sym(ers, - €niryy)> Y1} For
both the Lie bracket and the Poisson bracket, we use Leibniz’s rule to compute the
bracket, but whereas in the Poisson case we can transfer the resulting elements of V'
to the right since the Poisson algebra is commutative, in the Lie case when we do so
extra terms appear.

Consider a typical term that may appear after we use Leibniz’s rule to compute

[tr S¥F1A, y,]:
Yo C€hdo T Chat T Cingnay T
When we move y;, to the right, we get, besides - - - €;,jo - - * €555, = - €jnjn_1 = = Yjo, addi-

tional residual terms like — - - - €j,j, - = € jn_y =" Yjy A0 - €55y * - €jnin_y = " Yjzr UP

to (—1) - - - y;,. Without loss of generality, we can consider only the last expression,

representations, [A*V ® $™V] - [A*' V@S- 1V]+ -+ (-1)"A* V] = [Vim+1,1,...,1)] due to
Pieri’s formula.
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since the others will appear in the smaller chains

— ———

—
“*Yio "t Chrjot " Chagr " €hsga " Ciniin-a

and

——— e

“Yjo o Chrje " " €hagr * " Chsga T " Cinin-1

and so forth, with the same coefficients. For notational convenience, we let 2, denote
the coefficient of y;, in the residual term, i.e., the term represented by the ellipsis:

—1)N ... y... Then, zy;, is a term in the expression (—1)"{z1€;y1,%1}, which
Z1

appears in (—1)V{tr S**1"NV A4,y }. Thus, we can write

k
[tr S¥T1A4, 3] = {Z(—l)NCN tr SFHIN A yl}

N=0

for some coefficients Cly.

Next, we compute Cy. We first count how many times 2;y;,, appears in {tr S**1"N A, y; }.
Notice that since z; is the product of k — N e;,’s, we can insert e;,; in k — N +1

places to obtain 2, such that {z,3:} contains zy;,.

Now we compute the coefficient of z; in tr S¥*1-N A. As noted before, tr S¥+1=V(A)

can be written as a sum of degree k + 1 — N monomials of form

€141 "7 sy €20 11 T €2isy sy 1T OnsingroNt

Any term that is a permutation of those k¥ + 1 — N unit matrices will appear in
the symmetrization of tr S¥*1-N A. We count the number of sequences 1, ..., %+1-~
such that z, is the product of the elements ey, ,...,€n,, n (in some order); this
tells us the multiplicity of z; in the symmetrization of tr Sk+1-N A Suppose z; =
€14, ** " Cnjixy1_y [OT @ certain sequence iy, ..., %k+1-N- Then, z2 = ey €ngf,,

. ey p . . . .
if and only if 9§ 4 .45, 415+ %, 4.qs; 15 @ permutation Of gy ogsy; 1415 -+ o s Loy bonts;

for all j. Thus, z, appears silsq!- .- sp! times in tr Sk+1-N A Since each term has
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coefficient —i-—: in the symmetrization, 2, appears with coefficient
(k—N+1)!

s1lsg!- - 8,!
(k—N+1)!

in the symmetrization of tr S¥*'~¥ A, In conjunction with the previous paragraph,

we see that 21y;, appears

81189+ 5,1

(k= V)

silsy!l- - s,l

G-—NT1I x(k-N+1)=

times in {tr S¥H1-N 4 4 1.
It remains to calculate how many times z,y;, appears in [tr S¥*14,y;]. Recall

that z; is obtained from a term like:

...ejol'-.ejljo...ej2j1...eijN—lcs-

where the ordered union of the ellipsis equals z;. Thus, z; comes from terms of the fol-
lowing form: we choose arbitrary numbers jo, . . ., jn-1, and insert €j,1, €550 - - - » €inin 1

into z;. There are

(k+1)(k)---(k+1—N)

(N+1)
ways for this choice for any fixed jo, ..., jn—1. Any such term z3 appears in tr S¥+14
with coeflicient

syl--- st

(k+1)!

where s} is the total number of ;s (for some 4) in z3, i.e., s;+number of j;’s with j; =

,0<i<N.

Combining the results of the last two paragraphs, we see that {tr S**1=V 4 y,}

must appear with coeflicient
(k+1)(k)"'(k+1“N)23'1!"'3:.! sulspl---spl 1 Z CARRRYA
(N+1)! (k +1)! =N~ (N+ 1! L= slsl s,

where the summation is over all length-N sequences {j;} of integers from 1 to n. We
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claim that

absd gy k- N+1).
st 8.l

To see this, notice that Z;s,,‘% is the coefficient of ¢V in the expression

N!ﬁ(1+(si+1)t+(—si—+—l)wt2+---).

!
P 2!

The above generating function equals N!'T];_ (1 — ¢)=(+) = NI(1 — ¢)~k+1=N+m),
and the coefficient of ¢tV in this expression is (k +n)---(k+n— N +1).

Finally, we arrive at the simplified coefficient of {tr S¥*1~V A, 4, }:

Zs'l' sl (k+n)---(k+n—-N+1)
N+1' -8

O = sylsgle-es,! (N +1)! ’

as desired. gd

Now we will give an alternative proof of Theorem 2.1.2.

Proof.
Let f(z) be the polynomial satisfying f(z) — f(z — 1) = 9"(2"((z)) and g(z) =

s01f(2) (in the expression for g(z), we discard any negative powers of z). Note

that if g(2) = g1 2** + -+ + 912, then

k+1 j—1 . k—j+1 ; .
J+n P i1 1 j+n+d ,
¢(z _s_ E . -1)'g;77 G = E — , —1)gj+i-
)= 311_0]4_“(,&_'_1)( )9 Gi—1 2 ]+z+n< i+ 1 )( )95+

Lemma 2.2.1 allows us to write

k+1 k+1 j—1 1 ]+n
trSTA Y| = —1)ig;tr 7~¢ =
I:ZQJ rS ,y} { ‘ j+n<i+1)( 1)'g;trS A,y}

=1

k+1 k—j+1 ititn _ | -~ |
{Z 2 J+z+n< i+1 )(_1)19"““5]‘4’1’} = {Zci—ltrs%y}-

j=1 i=0 j=1
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Hence,

n n k-+1 k+1
[t,y] = Z[xi»y]yi = Z{Q?i,y}% = - {Z G-1tr SJAAJ} =- |:Z g;tr SjA,y] ;
i=1 i=1

j=1 j=1

where the third equality follows from the fact that =, + Z;C:% j—1tr S7A is Poisson-
central in H/(gl,) (see Example 2.2.1). Thus, we get t; = t; + C’, where

k+1
C'=3 g;tr A= Res,og(z ") det(1 — z4) "'z~ dz.

=1

2.2.3 Poisson infinitesimal Cherednik algebras of sp,,

Choose a basis v; of V, so that the symplectic form w has a form

w(z,y) = 2T Jy,
with
(01 0 o0 0 0
10 0 0 --- 0 0
0 0 0 1 0 0
J=10 0 -1 0
000 0 --- 0 1
\0 0 0 0 --- =10

As before, we study the noncommutative infinitesimal Cherednik algebra H;(sp,,) by
considering its Poisson analogue H((sp,,). We define 3 7 ; Q2% = det(1 — zA) and

2n

T = (—1)"1 Z{Qh'vj}v;,

=1
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where {v}} is dual to {v;} (that is, w(v;,v]) = 6;;). When viewed as an element of
C[5p2n K V})
i1
T, = — Z ij(A2i—1—2j,U, ’U),

§=0

S0 T; is §P,,, invariant and independent of the choice of basis {v;}.
Proposition 2.2.1. The Poisson center of Hy(spy,) is Clty, ..., Tn].

Proof.

We will follow a similar approach as in the proof of [T1, Theorem 2.1]. Let L
be the Lie algebra sp,, x V and S be the Lie group of L. We need to verify that
Clty, ..., Ta] = 3pois(Hp(SP2y)). the latter being identified with C[L*]%. Let M C L

be the 2n-dimensional subspace consisting of elements of the form

([0 w2 O 0 o ) (o)]

Y21 0
0 e 0 Yon-3,2n—2 0 0

y= j , ? s
0 0 wm-220-3 0 0 0 0

o .- 0 0 0 Yon—12n

0
o 0000 ) )

where all the y’s belong to C. In what follows, we identify L* and L via the non-

degenerate pairing, so that the coadjoint action of S is on L. We use the following
two facts proved in [Ka]: first, that the orbit of M under the coadjoint action of S
on L* is dense in L*; and second, that C[L*]° = C[fi,..., fa], where

fil M (y) = Ui—l(y2,1y1,2a Y3,2Y2,3,- - - ’y2n—2,2n——3y2n—3,2n—2)y‘zn—1,2nygn

and o; is the j-th elementary symmetric polynomial. It is straightforward to see that

|y = fi, and so C[L*) = Clty, ..., T,] as desired. O

As before, let ((2) = {o + (2% + (a2t + - - -
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Theorem 2.2.2. The Poisson center jpois(H{(sp,,)) = C[T1+c1, T2 402, ..., Ta 0o,

where (—1)"1¢; is the coefficient of t2 in the series

det(1—tA) z7! s
det(l — zA) 1 — 222"

ct) = 2Res,—o ((z71)

Proof.

Since ¢; € 3pois(S(5P,)), {T: + ¢, g} = 0 for any g € S(sp,,), and so it suffices to
show that {T; + ¢;,v} = 0 for all v € V. By the Jacobi rule,

fra0h = (<17 T 000} (5,0} + (1) 3 (12,0}
Thus,
{ti +c,v} = (=D Z{Qi, v Hvj, v} + (—1)71 Z{{Qi, v;}, v} + {ci, v} (2.1)

In the case of H¢(gl,), > ].{ {9Q:,3;}, y}z; = 0 by straightforward application of prop-
erties of the determinant. However, for H((spa,), 2 ;{{2:,v;},v}v} # 0. To calculate
this sum, let B be a basis of sp,, (for the purposes of this section the specific choice

of B is irrelevant). Write

Z{{Qi,v,-},v}v; = z {

09, .
5o e(vj),v} vj =

ecB

> (Z %{e(vj),v}v; + {%%i,v} e(vj)v;f) :

ki e€B

Lemma 2.2.2. We have
89; \
Z Z {36—’ 'U} E(Uj)'l)j =0.
j e€B

We will prove this lemma in the end of this section.

Using the fact that >°,{{Qi,v;},v}v; = 3. 3.5 Fi{e(vs), v}v], we can restrict
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(2.1) to diagonal matrices, which are spanned by elements e; = diag(0,...,1,-1,0,...,0)
with 1 at the 2i — 1-th coordinate. Thus, the condition {t; + ¢;, v} = 0 is equivalent

to the following sum being zero:

(- Z Z g‘%{eka v v}, v} + (1) Z (Q%{U%—hv}v% + %gz{% ’U}Uzk—l) +

Z Per {ek,v} = 2( 1)"1}: Ber : (vak—1{vak, v} + vae{v2-1,v}) +z £ —{ex, v}

Multiplying the above equation by (—1)"'t* and summing over ¢ for ¢t = 1,...,m,

the required condition transforms into:

dc(t)

ad t —tA
0= QZ et( ) (var—1{vak, v} + vor{v2k— 1,U})+Z {ek, }.

It suffices to check this condition for basis vectors v = vg,_; and v = vg,. Substituting,

we get
ddet(l —tA Oc(t
= QZ ( ) (var—1{V2k, V2s—1} + vox{vak-1,V2s-1}) + ai )U23—1
and
ddet(l —tA dc(t
0=2 Z ——STek‘—_l('UZk—l{'UQka Vas} + Vor{vok—1,V2s}) — 'Ei‘slvzs-

k

These last two formulas both reduce to

delt) _ _,0det(1—tA)

Je. = T{U237U23—1}
_ 29‘?‘25_%_14_) (Resuco ((z™ ) (vae, (1 — 22A%) Mg, 1) det(1 — zA) ™2 7dz)

1—
Ddet(l—td) 1 5 det(1 — zA) 127z,

=2Res,—o((z7") 5 T

and it is straightforward to verify that c(t) satisfies the above equation. O
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2.2.4 Proof of Lemmma 2.2.2

In this section, we will outline the proof of Lemma 2.2.2, which states:

ZZ {aQ } e(v;)vj = 0. (2.2)

j=1 eeB

We use the basis for V defined in Section 2.2.3, in which w is represented by the

matrix J.

Let us multiply (2.2) by t* and sum over i to get the equivalent assertion that

0 det( 1 —tA
Sy {EEG et =0,
j e€B
Since the whole sum is sp,,-invariant (even though each term considered separately
is not), we can look at the restriction of the sum to . Thus, this sum equals zero if

and only if
=0.

ZZ {6det ) }e(vj)v;.‘

j e€B

b

We choose the following basis B for sp,,: e2;_12;, €221, €2j—1,2j—1 — €252, for all
1<j<n,andforalll1 <k << n, the elements ez 2t + €121, €202k — E2k—1,21—1,
€21—1,2k—1 — €2k,21, and g1 2x_1 + €k 21-1. We observe that for any 1 < 7, 7' < 2n, there
exists a unique basis vector in B that takes v; to +v,; we shall denote this element
by vy ; € B. These vy ; are not pairwise distinct since there are basis vectors with

two nonzero entries.

Since Sp,,, acts transitively on V, we can assume v = v;. Using the above basis,

we get

ddet( 1 —tA) &2 det(1 -—tA) .
ZZ{ } elw;)vj = Z Ov 100 4 B (=,

j eeB 5.3’k
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where

1 ifj=j mod 2and j < j, orif /=7 and j is even,

0 otherwise.

We now restrict to h. We have %jﬁ . # 0 only when the matrices for vy,; and
’ 2743

v; ; have nonzero entries on the diagonal, or if v ; and vy ; have nonzero entries at the
i-th row j-th column and j-th row ¢-th column, respectively. This can only happen
when v v} = v19,v;, for some a. We can list all the ways this can happen for a = 2b

or a=2b—1 with b # 1 (keeping in mind that v},_, = vy and v}, = ~vap_1):

2 —
1. 8% det(1-tA)

0v1,10v2p—1,26—1 V1V26-1V25,

9 82 det(1—-tA)

5v1.10025.26 VapV1V2b—1,

2 _
3. Ij det!l tA!

Bvap_1,10v1,26—1

92 det(1—tA)
4. (—v1v2pV2p-1),

Bvgp,10v1 2

V1V2p—1V2b,

Bzdet! 1-tA)
9. (—’Uzb—l'Uszl),

Buzp,1Ov2-1,2

6 52 det(l—tA)

* Ovop—1,10v2p,2 V2b—-1V201-

To calculate the derivatives, let A; be the 4 by 4 matrix formed by the intersections of
the first, second, 2b — 1-th, and 2b-th rows and columns of A, and let A; be the 2n—4
by 2n —4 matrix formed by the intersections of the remaining rows and columns. The
space of all such A, is isomorphic to sp,, ,, and we denote the Cartan subalgebra of
diagonal matrices of this space by h(Az). All six of the above derivatives evaluate to
the same polynomial in §(A;) times the corresponding derivative in sp,; for instance,

Pdet-td) _ p O detltAs) with o) | 04, € 5p, and b € S(h(A2))[t]. Thus, we can

’
Bv1,10v25_1,26-1 vy 1005 5

reduce our problem to sp,, and straightforward computations verify (2.2) for sp,.
Similarly, when b = 1 (that is, when the term is of the form v;v;v2), all computations

will reduce to analogous ones in sp,.
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Chapter 3

Infinitesimal Cherednik algebras as

W-algebras

This chapter is based on [LT].

3.1 Basics

3.1.1 Length of the deformation

We start this section by investigating for which deformation parameters ¢ and {’, the
infinitesimal Cherednik algebras H¢(gl,), Hy(gl,) are isomorphic. Even for n = 1
(when H(gl,) are simply the generalized Weyl algebras), the answer to this question
(given in [BJ]) is quite nontrivial. Instead, we will look only for the filtration preserv-
ing isomorphisms, where both algebras are endowed with the N-th standard filtration
{FM}. Those are induced from the grading on T(gl, ®V, ® V?r) with deg(gl,) =2
and deg(V, ® V) = N, where N > I({). For N > max{l(¢) + 1,1({’) + 1,3} we have

the following result:

Lemma 3.1.1. (a) N-standardly filtered algebras H.(gl,) and H(gl,) are isomor-
phic if and only if there exist A € C,0 € C*, s € {£} such that ' = 0p,((*), where

e ) : U(gl,) — Ulgl,) is an isomorphism defined by pr(A) = A+ X-tr A for
any A € gl,,
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o for ( = Coro+ (i1 + Cara +. .. we define (7 == (oro — G+ Gora— ..., (T :=(.
(b) For any length m deformation (, there is a length m deformation ¢’ with ¢, =
1, ¢, =0, such that algebras H(gl,) and H/(gl,) are isomorphic as filtered alge-

bras.

Same discussion can be applied to the sp,,-case. For any N > 2[((), we introduce
the N-th standard filtration {H’SN)} on H,(sp,,) by setting deg(sp,,) = 2, deg(Van) =

N. The following result is analogous to Lemma 3.1.1:

Lemma 3.1.2. For N > max{2l(¢) + 1,2{(¢') + 1,3}, the N-standardly filtered al-
gebras He(sp,,) and He/(spy,) are isomorphic if and only if there exists 6 € C* such
that ' = 6¢.

3.1.2 Proof of Lemmas 3.1.1, 3.1.2

o Proof of Lemma 3.1.1(a)

Let ¢ : He(gl,) — He(gl,) be a filtration preserving isomorphism. We have
#(1) = 1, so that ¢ is the identity on the 0-th level of the filtration.

Since FV (Hc(gh,) = F5V (He(gh)) = Ulal)<, we have $(A) = 9(4) +
~(A), VA € gl,, with ¥(4) € gl,,7(4) € C. Then ¢([4, B]) = [¢(A),(B)] for
all A, B € gl if and only if y([4,B]) = 0 and ¢ is an automorphism of the Lie
algebra gl,,. Since [gl,,, g1,,] = sl,, we have y(A) = X-tr A for some A € C. For n 2 3,
Aut(gl,) = Aut(sl,) x Aut(C) = (u2 x SL(n)) x C*, where —1 € p acts on sl, via
o : A~y —At. This determines ¢ up to the filtration level N — 1.

Finally, & (H,(gl,)) = 4 (He(gl,) = Vau ® V; @ U(gl,)<n. As explained,
P (e, is parameterized by (e,7,v,A) € (p2 X SL(n)) x C* x C (no puy-factor for
n = 1,2). Let I, € g, be the identity matrix. Note that (I, y] = v, [In, 2] =
—x,[I,,A] =0 for any y € V,,,x € V], A € gl,. Since d(y) = [v- L +n\ o)) =
VI, d(y)], Yy € V,,, we get v = x1.

Case 1: v = 1. Then ¢(y) € V,, ¢(z) € V; (Vy € Vo,z € V)}). Since V,, 2 V7
as sl,-modules for n > 3 and Endy, (V,) = C*, we get € = 1 € p2 (so that ¢(A4) =
TAT-!, VA € sl,,) and there exist 61,0, € C* such that ¢(y) = 6, - T(y), o(x) =
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0, T(z) (y € Vi, o € V). Hence, we get o(T, \)(C(y, 7)) = #([32]) = [6(v), $()] =
6¢'(T'(y), T(x)), where § = 6,6, and isomorphism (T, \) : U(gl,) — U(gl,) is
defined by A+— TAT ! + Atr A, VA € gl,.

Thus, ¢’ = 6~1p,(¢*) in that case.

Case 2: v = —1. Then ¢(y) € V!, ¢(z) € V, Yy € V,,, z € V). Similarly to
the above reasoning we get € = —1 € po, p(A) = —T AT~ + Xtr A (VA € gl), so
that there exist 61,0, € C* such that ¢(y;) = 6, - T(x:), ¢(z;) = 62 - T(y;). Then
B(C(yi, 75)) = —0162C"(T'(y5), T(x:))-

Hence, ¢! = —67'6; ' ¢_,(¢™) in that case.

Finally, the above arguments also provide isomorphisms ¢, : He(gl,) —

Hy,, (c+)(g!,) for any deformation ¢, constants A € C,6 € C* and a sign s € {%}.

o Proof of Lemma 8.1.1(b)
Let ¢ be a length m deformation. Since (6(),, = 8(,,, we can assume (,, = 1.
We claim that ¢)(¢)m-1 = 0 for A = —(,,—1/(n + m), which is equivalent to %;ﬂ =

(n+m)ay,_1. This equality follows from comparing coefficients of s7™ in the identity
D ai(y, D) A+ sL)r = (1—s7)™ Y iy, 2)(A)(r(1 — s7) 7).

e Proof of Lemma 3.1.2

Let ¢ : He(spy,) — He(sp,,) be a filtration preserving isomorphism. Being an
isomorphism, we have ¢(1) = 1, so that ¢ is the identity on the O-th level of the
filtration.

Since 4 (He(sp3n)) = F§(He (892,)) = Ul(spa,)<t, we have ¢(A) = y(A) +
v(A) for all A € sp,,,, with ¢(A4) € sp,,,v(A) € C. Then ¢([4, B]) = [¢(A), ¢(B)]
for all A, B € sp,, if and only if v([4, B]) = 0 and ¢ is an automorphism of the Lie
algebra sp,,,. Since [sp,,,5pPe,] = 5Ps,, We have v = 0. Meanwhile, any automorphism
of sp,,, is inner, since sp,, is a simple Lie algebra whose Dynkin diagram has no
automorphisms. This proves ¢,y = Ad(T), T € Sp,,. Composing with an
automorphism ¢’ of He (sp,,), defined by ¢'(A) = Ad(T1)(A), ¢ (z) =T (z) (A€

$Pgn, & € Va,) We can assume @y, ) = Id.
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Recall the element I/, = diag(1,...,1,—1,...,—1) € sp,,. Since ad([},) has only
even eigenvalues on U (sp,,,) and eigenvalues %1 on Va,, we actually have ¢(Van) C Van.
Together with End,,, (V2,) = C* this implies the result.

The converse, that is He(sp,,) = Hpc(sp,,) for any ¢ and 6 € C*, is obvious.

3.1.3 Universal algebras H,,(gl,) and H,,(sps,)

It is natural to consider a version of the infinitesimal Cherednik algebras with ¢; being
independent central variables. This motivates the following notion of the universal

length m infinitesimal Cherednik algebras.

Definition 3.1.1. The universal length m infinitesimal Cherednik algebra H,(gl,)
is the quotient of U(gl,) x T(V, & V.)[o, - - - , {m—2] by the relations

m—2
[:L‘,:L"] =0, [y’yl] =0, [Av :13] = A(l‘), [Av y] = A(y), [y7 :I?] = Z erj(yvl‘) +Tm(y7$)7
§=0
where z,2' € V!, y,¥ € V,, A € gl, and {Cj};?‘:‘oz are central. The filtration is
induced from the grading on T'(gl, ® V,, & V*)[(o, - - - , {m—2] With
deg(gl,) = 2, deg(Vo ®V;}) =m+1, deg((;) = 2(m — i)

(the latter is chosen in such a way that deg((;r;) = 2m for all j).

Algebra H,,(gl,,) is free over C[(o, - - -, (m—2] and H(gl,)/(Co—co,- - -» Cm—2—Cm—2)
is the usual infinitesimal Cherednik algebra He, (gl,) with (. = coro+. . .+ Cm—2Tm—2+
r.m. In fact, for odd m, H,,(gl,) can be viewed as a universal family of length m
infinitesimal Cherednik algebras of gl,,, while for even m, there is an action of Z/2Z

we should quotient by (this follows from our proof of Lemma 3.1.1).

Remark 3.1.1. One can consider all possible quotients

U(gly)XT(Va®V,))[Cos - - -, Gn2l/ ([, 2], [y, 41, [A, 2] - A(2), [A, 3] - Ay), [y, 2] =y, 2)),
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with a gl -invariant pairing 7 : V,x V¥ = U(gl,)[Co, - - - , {m—2], such that deg(n(y, z)) <
2m. Such a quotient satisfies a PBW property if and only if

1%2) = 1(Gos -+, Gm-2)Ts(y, 7) with deg(ni(Co, - - -, (mz)) < 2(m — )

=0
(this is completely analogous to [EGG, Theorem 4.2)]).

We define the universal version of H¢(sp,,) in a similar way:

Definition 3.1.2. The universal length m infinitesimal Cherednik algebra H,,(sp,,)

is defined as
Hm(spzn) = U(5p2n)D<T(V2n)[COa v :Cm—l}/([Af CE]-—A(I), [:L‘, y]_z— er2j(x= y)_TZm(x? y))’

where A € SPan, T,y € Va, and {(;}7,! are central. The filtration is induced from

the grading on T'(sp,, ® Van)[Co, - - -, Gm1] With deg(sp,,) = 2, deg(Va,) = 2m +1
and deg(¢;) = 4(m — ).

The algebra H,,(sp,, ) is free over C[(p, - . ., {m—1] and H,,(sp5,)/(Co—Cos - - -, Gn1—
Cm-1) is the usual infinitesimal Cherednik algebra H, (sp,,) for ¢, = coro + ... +
Cm—1T2(m-1) + T2m. In fact, the algebra H,,(sp,,) can be viewed as a universal family

of length m infinitesimal Cherednik algebras of sp,,, due to Lemma 3.1.2.

Remark 3.1.2. Analogously to Remark 3.1.1, the result of [EGG, Theorem 4.2], gen-

eralizes straightforwardly to the case of sp,,-invariant pairings 5 : V5, x Vo, —

U(szn)[CO’ sy Cm—l]-

3.1.4 Poisson counterparts of H,,(g)

Following Section 2.2, we introduce the Poisson algebras H¢ (g) for g = gl or sp,,,. As
algebras these are S(gl,®Vo®V,})[Co, - - - , Gm—2] (respectively S(sp,,®Vz,)[Cos - - - » Gn1])

with a Poisson bracket {:,-} modeled after the commutator [-,] from the defini-
tion of H,(g), so that {y,z} = an(y,z) + Z;':(f ¢joj(y, z) (respectively {z,y} =
62m(x’ y) + Z;r;—ol jﬂ2j(x, y)) Their qUOtientS H:ri(g[n)/(co — €0y 7Cm—2 - Cm—2>
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and HE(sp,,)/(Co — Co, - - -y $m—1 — Cm—1), are the Poisson infinitesimal Cherednik al-
gebras HE (gl,) (¢ = coco + . .. + Cm—20tm—2 + @) and HE (sps,) (Cc = cofo + .- +
Cm—1P2m—2 + Bom) from Section 2.2.

Let us describe the Poisson centers of the algebras Hl(gl,) and HZ(sp,,).
For g = gl, and 1 < k < n we define an element 7, € HS (g) by 7 := > iy z:{Qx, v},
where 1+ 37, Q;7 = det(1 + zA). We set ((w) := Y752 ¢w' + w™ and define
¢ € S(gl,) via

det(1 —tA) 27ldz
det(l1—zA)1 —t1z’

o(t) =1+ (—1)et' == Res,—o((z7")

i=1
For g = sp,, and 1 < k < n we define an element 7, € H%(g) by 73 := Z?:l{@ky i}y,
where 1+ 37, Q;2% = det(1+ zA), while {y;}2*, and {y}}2", are the dual bases of
Van, that is w(y;, y;)=1. We set ((w) := St Gwt + w™ and define ¢; € S(sp,,) via

det(1 —tA) z7ldz

_ 4% . o (22 :
C(t) 1+ Z c;t ReSz_OC(Z )det(l _ ZA) 1 —t222

i=1

The following result is a consequence of our computations from Section 2.2:

Theorem 3.1.3. We have:

(a) The Poisson center 3pqs(HS(gl,)) is a polynomial algebra in free generators
{Cor--osCmez, i1,y Tt Cr )y

(b) The Poisson center 3pqis(HS(sp,y,)) is a polynomial algebra in free gemerators

{CO"'ow—laTl +Clv---77-n+cn}-

3.1.5 W-algebras

Here we recall finite W-algebras following [GG].

Let g be a finite dimensional simple Lie algebra over C and e € g be a nonzero
nilpotent element. We identify g with g* via the Killing form ( , ). Let x be the
element of g* corresponding to e and 3, be the stabilizer of x in g (which is the same

as the centralizer of e in g). Fix an sly-triple (e, h, f) in g. Then 3, is ad(h)-stable

52



and the eigenvalues of ad(h) on j, are nonnegative integers.

Consider the ad(h)-weight grading on g, that is,

g =EPa(i), where g(s) := {¢ € g|[h, ] = i}
i€z
Equip g(—1) with the symplectic form w, (¢£,7) := (x,[£,n]). Fix a Lagrangian sub-
space ! C g(—1) and set m:= P, ,9() &I Cg, m" :={£ - (x,),£ e m} C U(g).

Definition 3.1.3. [P1, GG] By the W-algebra associated with e (and ), we mean
the algebra U(g,e) := (U(g)/U(g)m’)**™ with multiplication induced from U(g).

Let {F}'} denote the PBW filtration on U(g), while U(g)(¢) := {z € U(g)|[h, ] =
iz}. Define FyU(g) = 3,5, (FF*U(8)NU(g)(2)) and equip U(g, €) with the induced
filtration, denoted {F,} and referred to as the Kazhdan filtration.

One of the key results of [P1, GG] is a description of the associated graded algebra
grr, U(g,e). Recall that the affine subspace S := x + (g/[g, f])* C g* is called the
Slodowy slice. As an affine subspace of g, the Slodowy slice S coincides with e + «,
where ¢ = Kergad(f). So we can identify C[S] & C[c] with the symmetric algebra
S(3x). According to [GG, Section 3], algebra C[S] inherits a Poisson structure from
C[g*] and is also graded with deg(3, Ng(z)) =1 + 2.

Theorem 3.1.4. [GG, Theorem 4.1] The filtered algebra U(g, ) does not depend on
the choice of I (up to a distinguished isomorphism) and grp, U(g, e) = C[S] as graded

Poisson algebras.

3.1.6 Additional properties of W-algebras
We want to describe some other properties of U(g, €).

(a) Let G be the adjoint group of g. There is a natural action of the group
Q := Zg(e,h, f) on U(g,e), due to [GG]. Let q stand for the Lie algebra of Q.
In [P2] Premet constructed a Lie algebra embedding q <+ U(g, €). The adjoint action

of q on U(g, e) coincides with the differential of the aforementioned Q-action.

53



(b) Restricting the natural map U(g)*™ — U(g, e) to Z(U(g)), we get an algebra
homomorphism Z(U(g)) -2 Z(U(g,€)), where Z(A) stands for the center of an

algebra A. According to the following theorem, p is an isomorphism:

Theorem 3.1.5. (a) [P1, Section 6.2] The homomorphism p is injective.
(b) [P2, footnote to Question 5.1] The homomorphism p is surjective.

3.2 Main Theorem

Let us consider g = sly or g = sp,y, and let e, € g be a 1-block nilpotent element of
Jordan type (1,...,1,m) or (1,...,1,2m), respectively. We make a particular choice

of such e,,:

e e, =En_mi1,N-my2+ --- + En_1n in the case of sly, 2<m <N,

e en=FEn_mi1N-mi2+ --- + ENym-1,N+m in the case of spyy, 1 <m < N1
Recall the Lie algebra inclusion ¢ : q — U(g, €) from Section 3.1.6. In our cases:

o For (g,€) = (sbatm,em), we have q ~ gl,. Define T € U(sluim,em) to be the
t-image of the identity matrix I, € gl,, the latter being identified with
m m -n —n

yo

n+m ‘n+m’'n+m’  ‘n+m

Tnm = diag( )

under the inclusion q < 8l,4m. Let Gr be the induced ad(T)-weight grading on
U(lyym, €m), with the j-th grading component denoted by U(sla+m, €m)j-

e For (g,€) = (5Pani2m,€m), We have q = sp,,. Define T = (1) € U(sPspi2m:€m),
where I’ = diag(l,...,1,—1,...,—1) € spy, = q. Let Gr be the induced ad(T")-
weight grading on U(sPan2m, €m) = ;U (P2n42m> €m);-

Lemma 3.2.1. There is a natural Lie algebra inclusion © : gl, x V,, <> U(slytm, €m)
such that © |g =t |g, and O(V,) = FoU(sbim, €m)1-

1 We view sp,y as corresponding to the pair (Van,wan), where wan is represented by the skew
symmetric antidiagonal matrix J = (J;; := (=1) 531:’1“"1)13,;%21\:. In this presentation, A = (ay;) €

spyy if and only if asn+1—j2N 41— = (—1)"H9*a;; for any 1 < 4,5 <2N.
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Proof.
First, choose a Jacobson-Morozov sly-triple (em, Am, frm) C Slotm in a standard

way.? As a vector space, 3, 2 gl, ® V, & V* ® C™! with

Here C™ ! has a basis {{n-2-j = Entintjrz + - + Enym_j- Lntm e n i V.o Vris
embedded via y; = E; 51m, @; — E,y1;, while gl, = sl,, ® C- I, is embedded in the
following way: sl,, < sl,.,, as a left-up block, while I,, — Thm.

Under the identification grp, U(sl,1m,emn) =~ C[S] ~ S(3y), the induced grading
Gr’ on S(3,) is the ad(7}, . )-weight grading. Together with the above description of
ad(h)-grading on 3, this implies that F,U(8k, 1m, €m)1 = 0 and that Fr, iU (s, m, €m)
coincides with the image of the composition V, — 3, < S(3,). Let ©(y) €
Frt1U(8lhim, em)1 be the element whose image is identified with y. We also set
O(A) := «(A) for A € gl,. Finally, we define © : gl, ® V,, = U(sl,ym,em) by

linearity. We claim that © is a Lie algebra inclusion, that is

[6(4),6(B)] = 6([4, B]), [B(»),0(y)] =0, [6(4),0(y)] = O(A(y))

forall A, B € gl,,y,y € V,. Thefirst equality follows from [O(A), ©(B)] = [(A), «(B)] =
t([A, B]) = ©([A, B]). The second one follows from the observation that [©(y), O(y')] €
F,,.U(g, em)2 and the only such element is 0. Similarly, [©(A), O(y)] € Fn1U (g, em)1,
so that [©(A), ©(y)] = ©(y') for some ¢ € V. Sincey’ = gr(O(y')) = gr([0(4), O(y)]) =
[A,y] = A(y), we get [© (A), O(y)] = ©(A(y))- O

Our main result is:

Theorem 3.2.2. (a) There is a unique isomorphism © : H,,(gl,)——U(5ly1m,em) of
filtered algebras, whose restriction to sb, x V,, < Hp,(gl,) is equal to © (we assume

m>2).

2 That is we set h,, := E;';l (m+1-2§)Epijnt; and fm = E;."z_llj(m — DBt nts
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(b) There are ezactly two isomorphisms © ), O : H,(592,) —U(8Poniom, €m) of

filtered algebras such that ©) lsp,, = ¢ |sp,, (we assume m > 1). Moreover, we have
(:)(2) Oéa])' Y > —y,A — A,Ck — Ck-

Let us point out that there is no explicit presentation of W-algebras in terms
of generators and relations in general. Among few known cases are: (a) g = gl,,
due to [BK1], (b) g > e-the minimal nilpotent, due to [P2, Section 6]. The latter

corresponds to (ez,sly) and (e, sp,y) in our notation.

Proof of Theorem 3.2.2.

(a) Analogously to Lemma 3.2.1, we have an identification FriU(sbiym, em)—1 = V7.
For any z € V7, let ©(z) € Finy1U(8lntm, €m)-1 be the element identified with x € V7.
The same argument as in the proof of Lemma 3.2.1 implies [©(A), ©(z)] = ©(A(z))-

Let {F;}"*7" be the standard degree j generators of Clslpgm]Pmt™ =2 S(skyp )it
(that is 1 + Z;’;L;" Fij(A)z' = det(l + zA) for A € sly,,) and Fj = Sym(F;) €
U(sl,1m) be the free generators of Z(U(slntm)). For all 0 <7 < m —2 we set O, =
o(Frni) € Z(U(Slasm, €m)). Then gr(64) = Frn_ijy = & mod S(gl, ® D55 CE),
where &, was defined in the proof of Lemma 3.2.1.

Let U’ be a subalgebra of U(sl,1m,em), generated by ©(gl,) and {Ox}=2. For
ally € Vi, z € V' we define W(y,z) = [0(y),0(z)] € FamU(slpsm,em)o C U’
Let us point out that equalities [©(A),0(z)] = O([4,1]), [©(4),0(y)] = ©([4,y])
(for all A € gl,,,y € Vy,z € V) imply the gl -invariance of W : V,, x VI — U ~
U(gh,)[Oos - - - -Om—2)-

By Theorem 3.1.4, U(Sln1m,€n) has a basis formed by the ordered monomials in

{@(Eij), @(yk), @(Iz), @0, e ,@m_g}.

In particular, U(sl,ym, &m) = U(gh,) X T(V, ®V;))[Oo, - - -, Opm-2)/(y@r—2Q@Y—
W (y,z)) satisfies the PBW property. According to Remark 3.1.1, there exist poly-
nomials 7; € C[O, ..., Om 2], for 0 < i < m — 2, such that W(y,z) = Sy, )
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and deg(n:(©o,...,0Om—2)) < 2(m —i). As a consequence of the latter condition:

Tm, Mm—1 € C. The following claim follows from the main result of the next section:

Claim 3.2.3. (i) The constant 1, is nonzero,

(it) The polynomial n;(©o, ..., On_2) contains a nonzero multiple of ©;, Vi < m — 2.

This claim implies the existence and uniqueness of © : H,,(gl,)—=U(slitm, €m)
with ©(yx) = O(yx) and ©(A) = O(A) for A € sl,. Moreover, O(z) = 7;!0(zx) and
8(L,) = O(I,) — 2==13 while ©(Ck) € C[Ok, - . ., Om_al-

T (ntm)nm

(b) Choose a Jacobson-Morozov sly-triple (€m, Am, fm) C 5Ppiom in a standard way.*
As a vector space, 3y = sp,, ® Vo, ®C™ with spy, = 3,(0), Von = 3,(2m—1) and §; €
3x(4m —45—2). Here C™ has a basis {{n—x = Entint2k+- - -+ Enyom—2ktLntom Fiets

Var, is embedded via (i < n)
Yi s Ei,n+2m + ('"1)n+z+1En+l,2n+2m+1—-i7 Yn+i — E’n+2m+i,n+2m + (—l)i+1En+1,n+1—i7

while q = 3,,(0) ~ sp,, is embedded in a natural way (via four nxn corner blocks). Re-
call the grading Gr on U(sp,,,, 9/, €m). The induced grading Gr’ on gr U(sp,,, 1om, €m),
is the ad(I},)-weight grading on S(3,). The operator ad([’,) acts trivially on C™, with
even eigenvalues on sp,, and with eigenvalues +1 on Vi, where V,} is spanned by
{y: }i<n, while V is spanned by {yni:}i<n-

Analogously to Lemma 3.2.1, we get identifications of Fom+1U (5P2,42m, €m)+1 and
ViE. For y € Vi, let ©(y) be the corresponding element of Fomy1U(82,12m) €m) 1,
while for A € sp,, weset ©(A) := 1(A). Wedefine © : sp,,®Van, < U(8P3,2m, €m) by
linearity. The same reasoning as in the gl,-case proves that [©(A), ©(y)] = ©(A(y))
for any A € sp,,,y € Va,.

Finally, the argument involving the center goes along the same lines, so we can
pick central generators {O}o<k<m—1 such that gr(©;) = & mod S(sp,, B Céxr1 @

B CEno1).

nhm—1

3 The appearance of the constant Tazmya= is explained by the proof of Lemma 3.1.1(b).
4 That is hm 1= 3 iry (2m + 1 = 2))Enyjnys and fn o= 3o omy  5(2m — §)Entjranis-
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Let U’ be the subalgebra of U(sps,,om, €m), generated by ©(sp,,) and {6}
For z,y € Va,, we set W(z,y) = [0(2),0)] € FimU(8P2n12m>€m)even C U’. The
map

W ‘/211. X V'2n — UI = U(Epzn)[eo, L) @m—l]

is sp,,-invariant.

Since U (5Pgntomr €m) = U(sP20) X T(V2n) [, - -, Ot/ (@Y —y @2 — W(z,y))
satisfies the PBW property, there exist polynomials 7; € C[©y, ..., Om-1], for 0 <
i <m — 1, such that W(z,y) = 3. ny72;(z,y) and deg(n:(Go, - - ., Om-1)) < 4(m — )
(Remark 3.1.2). The following result is analogous to Claim 3.2.3:

Claim 3.2.4. (i) The constant n,, is nonzero,

(i3) The polynomial 0;(Oo, . ..,Om_1) contains a nonzero multiple of ©;, Vi <m-—1.

This claim implies Theorem 3.2.2(b), where ;)(y) = A - ©(y) for all y € V2, and
A} =1 m

3.3 DPoisson analogue of Theorem 3.2.2

To state the main result of this section, let us introduce more notation:

e In the contexts of (5l ym,€m) and (8Psnyzm,€m), We use Spm and 3, m instead of S

and 3,.

e Let 7 : gl, ®V, ®V®C"1-93,,, be the identification from the proof of
Lemma 3.2.1.

o Let T : sp,, ® Vo ® C™—53,.m be the identification from the proof of Theo-
rem 3.2.2(b).

e Define 8;, = gr(6x) € S(3nm) 0 <k <m —s, where s = 1 for sp,y and s = 2 for

5[N-

e We consider the Poisson structure on S(3,.,) arising from the identification

S(3n,m) = C[Sn,m]
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The following theorem can be viewed as a Poisson analogue of Theorem 3.2.2:

Theorem 3.3.1. (a) The formulas
O°(4) = i(4), 8(y) = Uy), 6°(x) =1(x), 6(¢) = (~1)" &,

define an isomorphism 6 : HE(gl,)—"5S(3n.m) = C[Sp.m] of Poisson algebras.

(b) The formulas
6°(4) = 1(4), 6%(y) = i(y)/v2, 6%(&) = &,

define an isomorphism ©% : HZ(s5py,)—S(3n.m) = C[Snm] of Poisson algebras.
Claims 3.2.3 and 3.2.4 follow from this theorem.

Remark 3.3.1. An alternative proof of Claims 3.2.3 and 3.2.4 is based on the recent

result of [LNS] about the universal Poisson deformation of SNN (here N denotes the

nilpotent cone of the Lie algebra g). We find this argument a bit overkilling (besides,

it does not provide precise formulas in the Poisson case).

Proof of Theorem 3.5.1.
(a) The Poisson algebra S(3,,) is equipped both with the Kazhdan grading and
the internal grading Gr'. In particular, the same reasoning as in the proof of Theo-

rem 3.2.2(a) implies:

{#(4), uB)} = U[A, B]), {t(A),7(v)} = H(A®)), {(A),%(x)} = t(A(=)).

We set W (y,z) = {t(y),2(z)} for all y € V,,,x € V,*. Arguments analogous to
those used in the proof of Theorem 3.2.2(a) imply an existence of polynomials #; €
C[o, - .- ,Om-2] such that W(y,z) = Y. f04(y,z) and deg(75(Oo,...,Om_2)) =
2(m — j).

Combining this with Theorem 3.1.3(a) one gets that

T = inyi + Zﬁj tr StiA
i )
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is a Poisson-central element of S(3n,m) = C[S, n]-

Let 5 : 3pois(Clslitm]) — 3pois(C[Sn,m]) be the restriction homomorphism. The
Poisson analogue of Theorem 3.1.5 (which is, actually, much simpler) states that j is
an isomorphism. In particular, 77 = cﬁ(FmH) +p(B(F), ..., p(F,)) for some ¢ € C
and a polynomial p.

Note that ﬁ(ﬁ’,) = 0,,_; for all 2 < i < m. Let us now express ﬁ(ﬁmH) via the
generators of S(3,m). First, we describe explicitly the slice S, ;. It consists of the

following elements:

{em + Z zi B + ZuiEi,n+1 + Z'UiEn-i-m,i + Z wkf:i - ;%& Z Ejj} J

i,7<n i<n i<n k<m—1 n<j<n+m

which can be explicitly depicted as follows:

\
( / i1 T2 o Ziw w 0 0 --- O \
Ta1 T22 0 Tzp uz 0 0 .- O
xn,l 2:'n,,2 T xn,n Un 0 0 st 0
Sem={X= 0 o0 - 0 X 10 .- 0]y
0 0 -« 0 x A1 --- 0
0 0 -+ 0 * * %
\ \ V4 Vg o Uy ok Kk K e-- )\)J

For X € sl, i, of the above form let us define X; € gl,, X; € gl,, by
. . k Zi1+ -+ Thn
Xy = Z ijBij, X2 = em+ Z Wi frm — —  m Z Ejj,
i,j<n k<m—1 n<j<n+m

that is, X; and X5 are the left-up nxn and right-down mxm blocks of X, respectively.
The following result is straightforward:

Lemma 3.3.2. Let X, X, X> be as above. Then:

(2) For 2 S k S m: ﬁk(X) =tr Ak(Xl) + tr Ak_l(Xl) tr AI(XQ) + ...+ tI‘Ak(XQ).
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(it) We have Fpy1(X) = (=1)™ S ugv; + tr A™H(Xy) + tr A™M(X )t AN X)) + ... +
tr Am+1(X2).

Combining both statements of this lemma with the standard equality

S (-1 STIX) A (X)) =0,  WI>1, (3.1)

0<j<l
we obtain the following result:

Lemma 3.3.3. For any X € S, , we have:

P (X0 = (C1" Y wavit Y (<D™ IF(X) trS™ 00 +(-1)7 e 5™,

(3.2)

Proof of Lemma 3.5.3.
Lemma 3.3.2(i) and equality (1) imply by an induction on k:

tr A¥(X,) = Fi(X)—tr S (X1) By (X)+tr S2(X1) Fy_a(X)—. . .+(=1)* tr S*(X;1) Fyp(X),

for all k < m, where F1(X) :=0, Fo(X) :=1.
Those equalities together with Lemma 3.3.2(ii) imply:

Frp1(X) = (=)™ wwi+ > > (DR AR (0 b 85(X0) Fy(X).

0<j<m 0<k<m+1—j

According to (1), we have 317 (= 1)* tr A™H1==F(X) tr S¥(X;) = (—1)™F tr S™H-3(X).
Recalling our convention Fy(X) = 0, Fp(X) = 1, we get (2). O

Identifying C[S, ] with S(3,..) we get

PPyt = (-1)™ (Zx,—y,-+trsm+1A+ > (—1)jém_jtrsm+1—fA). (3.3)

2<jsm

—~

Substituting this into 7] = ¢p(Fny1) +p(Go, ..., Bm_2) with 6,,_; :=0, 6,, :=1,
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we get

P((:)o,... m—2) = (1—(=1)™ Zx,y,+ Z (75 @07 e Omg) — (—1)jc(:)j) tr SItLA.

0<ji<m

Hencec = (—1)™, p(®o,--.,Om-2) = Yoc;cm (i (Oo0; - -- yOm—z) — (—1)™779;) tr SH1A.
According to Remark 3.1.1, the last equality is equivalent to

T = 1, -1 =0, ﬁj(éo,...,ém_z) = (——l)m_jéj, VOo<jij<m— 2, p=0.

This implies the statement.

(b) Analogously to the previous case and the proof of Theorem 3.2.2(b) we have:

{1(A),4(B)} = (A, B), {1(4), i)} = AAW)), {#(2),i@)} = D 1iBes(z:v),

for some 7; € C[By, - - ., Op1] such that deg(7;(©o, - - ., Om—1)) = 4(m — j).

Due to Theorem 3.1.3(b), we get 7} = S om {Qu,u:}yf — 23,7 tr S¥H2A €
3Pois(S(3n,m)). In particular, 7] = cﬁ(F‘mH) +p(ﬁ(f’1), ey p(ﬁm)) for some ¢ € C and
a polynomial p.

Note that p(F) = O,y for 1 < k < m. Let us now express p( Eni1) via the
generators of S(3nm). First, we describe explicitly the slice S, . It consists of the

following elements:

{6m+17(X1)+Z UiUi,n+1+Z Un+iUn+2m+i,n+1+Z wefr X1 € $Pans Vi Vnsi, wk € C},

i<n i<n k<m

where Ui,j = Ei,j -+ (—'1)i+j+1E2n+2m+1_j,2n+2m+1_i € SPontom- For X € 5Pontom 8S
above, we define X3 1= ep + 3y Wk for ! € 5Py, Viewed as the centered 2m x 2m

block of X.
Analogously to (3.3), we get

P(Frupr) = Z{Ql, gy —trSTmHA— > ;e SUTA (3.4)

0<j<m—1
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Comparing the above two formulas for 7{, we get the following equality:

2n
Z{thi}y: - 22773‘ tr S¥*2A = ¢ p(Frny1) + (8o, ..., Omo1).
i=1 j

J

Arguments analogous to those used in part (a) establish
C=4, p=0, nm:27 77]':2@3'7 V]<m

Part (b) follows. O

Remark 3.3.2. Recalling the standard convention U(g,0) = U(g) and Example 1.2.1,
we see that Theorem 3.2.2(a) (as well as Theorem 3.3.1(a)) obviously holds for m =1
with e; :=0 € sl,4,.

3.4 Consequences

In this section we use Theorem 3.2.2 to get some new (and recover some old) re-
sults about the algebras of interest. On the W-algebra side, we get presentations of
U(sl,, em) and U(sp,,, en) via generators and relations (in the latter case there was
no presentation known for m > 1). We get much more results about the structure and
the representation theory of infinitesimal Cherednik algebras using the corresponding
results on W-algebras.

Also we determine the isomorphism from Theorem 3.2.2(a) basically explicitly.

3.4.1 Centers of H,(gl,) and H,(sp,,)

N

We set s =2 for g = sly and s =1 for g = sp, . Recall the elements {f;}izs, where
deg(F;) = (3—s)i. These are the free generators of the Poisson center 3pois(S(g)). The
Lie algebra q = 34(e, h, f) from Section 3.1.6 equals gl,, for (g,e) = (slp1m,em) and
$Ps,, for (g,€) = (8P4, 10m, €m). Thus {QJ} from Section 3.1.4 are the free generators
of 3peis(S(q)) and Q; = Sym(@j) are the free generators of Z(U(q)).

The following result is a straightforward generalization of formulas (3.3) and (3.4):
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Proposition 3.4.1. There exist {b;}}_; € S(g)*¢[a(F),..., 5(Fy)] such that:

P(Fnsi) = spm7i + b mod C[a(F,), ..., p(Fpyiy)], V1<i<n,

where spm = (—1)™ for g = gl,, and spm = 1/4 for g = sp,,,.

Define t;, € Hp(gl,) by te = > ., :i[Qx v and tx € Hp(sp,y,) by & :=
Z?Zl[Qk,yi]y;‘. Combining Proposition 3.4.1, Theorems 3.1.5, 3.2.2 with the iden-
tification gr(Z(U(g, e))) = 3pois(C[S]) we get

Corollary 3.4.2. For g either g, orsp,,, there exist Cy,...,C, € Z(U(g)[os - - -, Sm—s)s
such that the center Z(Hp,(g)) is a polynomial algebra in free generators {;}U {t; +

Cj }?’=1 -

Considering the quotient of H,,(g) by the ideal ({, — aqg, - - . , {n_s — Gm—s) for any
a; € C, we see that the center of the standard infinitesimal Cherednik algebra H,(g)
contains a polynomial subalgebra C[t; + ¢, ..., t, + ¢,] for some ¢; € Z(U(g)).

As a consequence we also get:
Corollary 3.4.3. We actually have Z(H,(g)) = Clty +c1,. -, tn + Cn)-

For g = gl, this is [Tikl, Theorem 1.1].

3.4.2 Symplectic leaves of Poisson infinitesimal Cherednik
algebras
By Theorem 3.3.1, we get an identification of the full Poisson-central reductions of

the algebras C[S,,,.] and HS(gl,) or HS(sp,,). As an immediate consequence we

obtain the following result:

Proposition 3.4.4. Poisson varieties corresponding to arbitrary full central reduc-
tions of Poisson infinitesimal Cherednik algebras Hgl(g) have finitely many symplectic

leaves.
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3.4.3 The analogue of Kostant’s theorem

As another immediate consequence of Theorem 3.2.2 and discussions from Section 3.4.1,

we get a generalization of the following classical result:

Proposition 3.4.5. (a) The infinitesimal Cherednik algebras H¢(g) are free over
their centers.
(b) The full central reductions of gr He(g) are normal, complete intersection integral

domains.

This is [Tik2, Theorem 2.1] for g = gl,,, and [DT, Theorem 8.1] for g = sp,,.

3.4.4 The category O and finite dimensional representations

The categories O for the finite W-algebras were first introduced in [BGK] and were
further studied by the first author in [L3]. Namely, recall that we have an embedding
g C U(g,e). Let t be a Cartan subalgebra of q and set go := 34(t). Pick an integral
element @ € t such that 3;(8) = go. By definition, the category O (for ) consists of
all finitely generated U(g, e)-modules M, where the action of t is diagonalizable with
finite dimensional eigenspaces and, moreover, the set of weights is bounded from above
in the sense that there are complex numbers ¢y, ..., ok such that for any weight A of
M there is i with o; — (0, A) € Z¢p. The category O has analogues of Verma modules,
A(N?). Here N is an irreducible module over the W-algebra U(gy, €), where g is the
centralizer of t. In the cases of interest ((g,€) = (Slptm,€m), (P21 2m> €m)), We have
go = gl,, Xx C*1, go = sp,,. x C" and e is principal in go. In this case, the W-algebra
U(go, €) coincides with the center of U(go). Therefore N° is a one-dimensional space,
and the set of all possible N° is identified, via the Harish-Chandra isomorphism,
with the quotient h*/Wy, where b, Wy are a Cartan subalgebra and the Weyl group
of go (we take the quotient with respect to the dot-action of W, on h*). As in the
usual BGG category O, each Verma module has a unique irreducible quotient, L(N?).
Moreover, the map N° — L(N°) is a bijection between the set of finite dimensional
irreducible U(go, €)-modules, h* /Wy, in our case, and the set of irreducible objects in

. We remark that all finite dimensional irreducible modules lie in O.
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One can define a formal character for a module M € O. The characters of Verma
modules are easy to compute basically thanks to [BGK, Theorem 4.5(1)]. So to
compute the characters of the simples, one needs to determine the multiplicities of
the simples in the Vermas. This was done in [L3, Section 4] in the case when e is
principal in go. The multiplicities are given by values of certain Kazhdan-Lusztig
polynomials at 1 and so are hard to compute, in general. In particular, one cannot

classify finite dimensional irreducible modules just using those results.

When g = sl,.m, a classification of the finite dimensional irreducible U(g, e)-
modules was obtained in [BK2]; this result is discussed in the next section. When
9 = 5Py 1om, One can describe the finite dimensional irreducible representations using
[L2, Theorem 1.2.2]. Namely, the centralizer of e in Ad(g) is connected. So, according
to [L2], the finite dimensional irreducible U(g, e)-modules are in one-to-one correspon-
dence with the primitive ideals J C U(g) such that the associated variety of U(g)/d
is O, where we write O for the adjoint orbit of e. The set of such primitive ideals
is computable (for a fixed central character, those are in one-to-one correspondence
with certain left cells in the corresponding integral Weyl group), but we will not need

details on that.

One can also describe all N° € b*/W, such that dim L(N®) < oo when e is
principal in go. This is done in [L4, 5.1]. Namely, choose a representative A € h* of
NO that is antidominant for go meaning that (¥, ) & Z~o for any positive root o
of go. Then we can consider the irreducible highest weight module L(A) for g with
highest weight A —p. Let J()\) be its annihilator in U(g), this is a primitive ideal that
depends only on N° and not on the choice of A. Then dim L(N®) < oo if and only if
the associated variety of U(g)/d(}) is ©. The associated variety is computable thanks
to results of [BV]; however this computation requires quite a lot of combinatorics. It
seems that one can still give a closed combinatorial answer for (spy, 4 om,€m) similar

to that for (sl,m,€emn) but we are not going to elaborate on that.

Now let us discuss the infinitesimal Cherednik algebras. In the gl -case the cat-
egory O was defined in [Tik1, Definition 4.1] (see also [EGG, Section 5.2]). Under

the isomorphism of Theorem 3.2.2(a), that category O basically coincides with its
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W-algebra counterpart. The classification of finite dimensional irreducible modules
and the character computation in that case was presented in Chapter 2, but the char-
acter formulas for more general simple modules were not known. For the algebras
H(sps,), no category O was introduced, in general; the case n = 1 was discussed
in [Kh]. The classification of finite dimensional irreducible modules was not known

either.

3.4.5 Finite dimensional representations of H,,(gl,)

Let us compare classifications of the finite dimensional irreducible representations of
U(slaym, €m) from [BK2] and H,(gl,,) from Section 2.1.6.

In the notation of [BK2]°, a nilpotent element e,, € gl,,,, corresponds to the
partition (1,...,1,m) of n + m. Let S, act on C™*™ by permuting the last m
coordinates. According to [BK2, Theorem 7.9], there is a bijection between the

irreducible finite dimensional representations of U(gl,, .,

en) and the orbits of the
Sm-action on C**™ containing a strictly dominant representative. An element 7 =
(v1,- -+, Ungm) € C*T™ is called strictly dominant if v;— v, is a positive integer for all
1 < ¢ < n. The corresponding irreducible U(gl,, , ., em )-representation is denoted L;.
Viewed as a gl,,-module (since gl, = g C U(gl,m;€m)), Ly = L, ® @, L, where
L;, is the highest weight 7 irreducible gl,-module, 7 := (v1,...,1,,) and I denotes
some set of weights n < D.

According to Section 2.1.6, the irreducible finite dimensional representations of the
infinitesimal Cherednik algebra H,(gl,) are parameterized by strictly dominant gl,,-
weights A = (A1, ..., ,) (that is \; — ;4 is a positive integer for every 1 < i < n), for
which there exists a positive integer & satisfying P(A) = P(\1, ..., A1, A\n—k). Here
P is a degree m + 1 polynomial function on the Cartan subalgebra b,, of all diagonal
matrices of gl,, introduced in Section 2.1.2. These two descriptions are intertwined
by a natural bijection, sending 7 = (v1,...,VUpem) to A 1= (vy,...,1,), while X\ =
(A1,. .., An) is sent to the class of (A1, ..., A, Ung1, - - - Unem) With {¥ni1, ..., Vnam JU

{An} being the set of roots of the polynomial P(\;, ..., Ap_1,t) — P(X).

% In the loc.cit. g = gl,,,,, rather then sl ,,. This is not crucial since Orm = sl ® C.
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3.4.6 Explicit isomorphism in the case g = gl,

We compute the images of particular central elements of Hn(gl,) and U(sluim, €m)
under the corresponding Harish-Chandra isomorphisms. Comparison of these images
enables us to determine the isomorphism © of Theorem 3.2.2(a) explicitly, in the
same way as Theorem 3.3.1(a) was deduced.

Let us start from the following commutative diagram:

Ulshyim, em)o 222 Z(U(5kysmy €m))
™
U (slnrm, €m)° / w i
4] .
T U(gl,) ® U(sly, em) Lde(U(gr,,) ® U (s, €m)
(Diagram 1)

In the above diagram:
® U(sl,4m,€m)o is the O-weight component of U (sbytm, €m) With respect to Gr.
o U(shyym,em)® == U(slaym, €m)o/ (U(shaym, €m)o N U(slyrms €m)U (8l im, €m)>0)-
e 7 is the quotient map, while o is an isomorphism, constructed in [L.3, Theorem 4.1).8
e The homomorphism w is defined as w := o0 o 7, making the triangle commutative.
e The homomorphisms j,+m, J» are the natural inclusions.
e The homomorphism ¢" is the restriction of w to the center, making the square
commutative.

o U(sln, em) = Z(U(sly, em)) = Z(U(sly)) since ey, is a principal nilpotent of sln.

We have an analogous diagram for the universal infinitesimal Cherednik algebra

of gl
L Hall T Z(Ha(o)
Hn(gl,)° / = ot
U(gl) ® o, - > Cma) Z(U(g1,)) ® Cléos - --» Cmr]

(Diagram 2)

In the above diagram:

6 Here we actually use the fact that U(gl,, )®U (shn, em) is the finite W-algebra U(gl,, ®sln, 0®em ).
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e H,.(gl,)o is the degree O component of H,,(gl,) with respect to the grading Gr,
defined by deg(gl,) = deg({o) = ... = deg({n_2) =0, deg(Va) =1, deg(V?) = —1.
e H,,(g1,)° is the quotient of H,,(gl,)o by Hm(gh,)o N Hun(gl,) Him(sl,)>0.

e 7’ denotes the quotient map, ¢ is the natural isomorphism, @’ := o’ o 7.

e The inclusion j,, ,, is a natural inclusion of the center.

e The homomorphism ¢ is the one induced by restricting @’ to the center.

The isomorphism © of Theorem 3.2.2(a) intertwines the gradings Gr, inducing an
isomorphism ©° : H,,(gl,,)°—>U(ss4m, €x)°. This provides the following commuta-

tive diagram:

Z(H(o1,)) 0 Z(U (5l m))
o oW
ZUe,)) ® Cllo, -, Gnr] 2 2(U(a1,)) ® Z(U(skn)

(Diagram 3)

In the above diagram:
e The isomorphism 9 is the restriction of the isomorphism © to the center.

e The isomorphism ¥ is the restriction of the isomorphism 6° to the center.

Let HCy denote the Harish-Chandra isomorphism HCy : Z(U(gly))—C[h3]5¥,
where hy C gly is the Cartan subalgebra consisting of the diagonal matrices and
(S, ®)-action arises from the py-shifted Sy-action with py = (—1\—’5——1, %, cee %) €
by. This isomorphism has the following property: any central element 2z € Z(U(gly))
acts on the Verma module M,_,, of U(gly) via HCy(2)(\).

According to Corollary 3.4.2, the center Z(H,,(gl,)) is the polynomial algebra in
free generators {(o, ..., (m—2,81,...,t,}, where t}, = t;+Cj. In particular, any central
element of Kazhdan degree 2(m+ 1) has the form ¢t} +p(Co, - - - , {m—2) for some c € C
and p € C[(o, ..., {m—2]-

Recall that t{ = t; + C is the Casimir element, introduced in Chapter 2. We will
need to restate the results of Sections 2.1.4-2.1.5 in slightly different terms. We start

by recalling the following notation:

7 1t is easy to see that Hn(gl,)o N Hm(gl, ) Hm(gl,)>o0 is actually a two-sided ideal of Hp.{gl,)o-
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e the generating series ((z) = Y.y’ ¢i2* + 2™ (already introduced in Section 3.1.4),

e a unique degree m + 1 polynomial f(z) satisfying

f(2) = f(z = 1) = &(2"¢(2)) and £(0) =

e a unique degree m + 1 polynomial g(z) = Z:T;l 92" satisfying

(2" g(2)) = £(2),

e a unique degree m polynomial w(z) = ¥ 1, w;2* satisfying
f(2) = (2sinh(9/2))" " (z"w(2)),
e the symmetric polynomials ;(Ay,. .., A,) via
(M) (wt ) =D 0i(Ar,.o o, A ,
e the symmetric polynomials h;(Aq, ..., A,) via
L—uh) (L= wda) =D R, A,

e the central element H; € Z(U(gl,)) which is the symmetrization of tr $7(-) €
Clgta] = S(gl.)-

The following theorem summarizes the results on t] from Chapter 2:

Theorem 3.4.6. (a) We have o (t]) = Z"’“ H; ® g; (where g; are viewed as

elements of C[Co, - - Cm—2) ),
(b) We have (HC, ®Id) o ¥ (t}) = 372 hj1 ® w;.

Let HC'y denote the Harish-Chandra isomorphism Z (U (s15))—>C[h3/]5¥*, where
by is the Cartan subalgebra of sly, consisting of the diagonal matrices, which can

be identified with {(z1,...,2n) € CV| 3.z = 0}. The natural inclusion by — by
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induces the map

. p M+ A
by = by (A, AN) = (A — i, - AN — p), where p::—i-——N——-——Il.

7
n+m?

HC;,, HC, fit into the following commutative diagram:

H I
Z(U(sheim)) Crim ClCrm1)Snme

p
z<U<stn+m,em))/ g o

HC, @ HC!
® CmC[C"]S"’. ® C[cm—l]sm,o

The isomorphisms HC

w
P Z(U(g1,) ® Z(U(skn))
(Diagram 4)
In the above diagram:
e p is the isomorphism of Theorem 3.1.5.
e The homomorphism @" is defined as the composition @V := " o p.

e The homomorphism (¢ arises from an identification C* x C™~1 & C"**™~1 defined

by

(Al,...,)\n,lll,...,llm)"-) (Al,...,An,l/l—M,...,Vm*m>.
m m

C

In particular, ¢ is injective, so that ©" is injective and, hence, ¢ is injective.

Define 5, € C[h}] as the restriction of o to CV~! « CV¥. According to

Lemma 3.3.3,

¢ (Fmr1) = (=1)"hmp1 ® 1+ Em:(—l)’"‘fhmﬂ—j ®1-¢%(5;). (35)

=2

Define Sy € Z(U(slam)) by Sk == (HC,,,,,) " (G%) for all 0 < k < n + m, so that
So =1, S; = 0. Similarly, define T}, € Z(U(gl,,)) as Ty := HC_ (k) for all k > 0, so
that Tg =1.

Equality (3.5) together with the commutativity of Diagram 4 imply

" (Smi1) = ()" T2 ® 1+ D (1) Tmp1-; @ 1 @V (S;).
j=2
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According to our proof of Theorem 3.2.2(a), we have ©(A) = ©(A) + str A for

all A € gl,, where s = —725—. In particular, PHX ®1) = p_s(X) ®1 for all

X € Z(U(gl,,)), where ¢_; was defined in Lemma 3.1.1.

As a consequence, we get:

Q_l(¢w(sm+1)) = (_l)m(lo—S(TrrHl) ®Ll+ Z(_l)m—jw—S(Tm+l—j) ®1- ﬁ_l(@w(‘s’j))'

j=2
(3.6)
The following identity is straightforward:
Lemma 3.4.7. For any positive integer i and any constant § € C we have
i 1 ‘
R +6,. a0 = (”“, )h,-_j()\l, e )
=0 J
As a result, we get
L fn+i-1 :
IR 3 (A (S (37)
7=0

Combining equations (3.6) and (3.7), we get:
m—2
9P (Ss1)) = (1) Tonps ® 1+ (=)™ s(n + )T @1+ 3 (-1 Tia ®1- T,

l=-1

(3.8)
where V; = 971(g" (V) and for 0 < I < m — 2 we have

— m—l—j n+m-—j
V;— Z § J(m—l—j)sj'

0<j<m—1

On the other hand, the commutativity of Diagram 3 implies

3HP™ (Sma1)) = @™ (97 (p(Sms1)))-

Recall that there exist ¢ € C, p € C[(, - . . Gn—2] such that 97 (p(Sm+1)) = cty +p.
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As p™(G) = 1® G and ¢ (#)) = 37, Tj+1 ® w; (by Theorem 3.4.6(b)), we get

O (p(Smi1))) =18 P(lo,- -1 Gmz) + D Tir ® cw;. (3.9)
0<jsm
Since wm = 1, wm_—1 = X5™, the comparison of (3.8) and (3.9) yields:
e The coefficients of T}, 1 must coincide, so that (—1)™ = cw,, = ¢ = (—-1)™.
e The coefficients of T, must coincide, so cw,,_; = (1) (n+m)s = s = —1/2.

e The coefficients of 7};;; must coincide for all j > 0, so that

w; = (=1)"7V; = 9(w;) = (=)™ p(V)).

Recall that 7, = 1, and so 9 = %m = 1. As a result s = —72=%, so that

n+m

-1 = 2

The above discussion can be summarized as follows:

Theorem 3.4.8. Let © : H,,(gl,) U (slyim,em) be the isomorphism from The-
orem 3.2.2(a). Then ©(A) = 6(A) — 1tr A, ©(y) = O(y), B(z) = O(z), while

.....

3.4.7 Higher central elements

It was conjectured in [DT, Remark 6.1], that the action of central elements ¢, =
ti+c € Z(Hn(gl,)) on the Verma modules of H,(gl,) should be obtained from
the corresponding formulas at the the Poisson level (see Theorem 3.1.3) via a basis
change ((z) ~ w(z) and a p,-shift. Actually, that is not true. However, we can
choose another set of generators u; € Z(H,,(gl,)), whose action is given by formulas
similar to those of Theorem 3.1.3.

Let us define:
e central elements u; € Z(H,,(gl,)) by u; := 97 (p(Smys)) for all 0 < i < n,
e the generating polynomial u(t) := > & (—1)'u;t’,
e the generating polynomial S(z) := 3% (= 1)1 (@Y (Sm-:))7* € C[Co, - - - , Gm—2; 2]-
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The following result is proved using the arguments of the Section 3.4.6:

Theorem 3.4.9. We have:

1—t\ 27z
H i~ \\ -1 i
(HC, ®1d) o o™ (u(t)) = (p1/2 ® 1d) (Reszzo S(z7h) 1<Ii<|n P t"lz) )

3.5 Completions

3.5.1 Completions of graded deformations of Poisson alge-

bras

We first recall the machinery of completions, elaborated in [L7]. Let Y be an affine
Poisson scheme equipped with a C*-action, such that the Poisson bracket has degree
—92. Let Ay, be an associative flat graded C[h]-algebra (where deg(fi) = 1) such that
[An, Ap] C h2A and C[Y] = Ay/(h) as a graded Poisson algebra. Pick a point z € ¥
and let I, C C[Y] be the maximal ideal of z, while I, will denote its inverse image in

As-
Definition 3.5.1. The completion of Aj at z € Y is by definition Ay~ := l(il_n Ar/ T;‘

This is a complete topological C[[A]]-algebra, flat over C[[A]], such that A= /(k) =
C[Y]"=. Our main motivation for considering this construction is the decomposition

theorem, generalizing the corresponding classical result at the Poisson level:

Proposition 3.5.1. [K, Theorem 2.3] The formal completion Y, of Yatz €Y
admits a product decomposition }72 = Z; X )7;, where Y* is the symplectic leaf of Y

containing r and Z, is a local formal Poisson scheme.

Fix a maximal symplectic subspace V C T}Y. One can choose an embedding
vy I+ such that [i(u),i(v)] = A%w(u,v) and composition V < I’ — T?Y is the
identity map. Finally, we define Wx(V) := T(V)[h]/(u®v —v ®u— F?w(u, v)), which
is graded by setting deg(V) = 1, deg(h) = 1 (the homogenized Weyl algebra). Then

we have:
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Theorem 3.5.2. [L7, Sect. 2.1][Decomposition theorem] There is a splitting
Ap = Wi(V)"* Scmhs,

where Ay, is the centralizer of V in Ap=.

Remark 3.5.1. Recall that a filtered algebra { F;(B) };>o is called a filtered deformation
of Y if grp, B & C[Y] as Poisson graded algebras. Given such B, we set A; :=
Rees;(B) (the Rees algebra of the filtered algebra B), which naturally satisfies all the

above conditions.
This remark provides the following interesting examples of Aj:

o The homogenized Weyl algebra.

Algebra W;(V) from above is obtained via the Rees construction from the usual
Weyl algebra. In the case V =V, @ V,; with a natural symplectic form, we denote
Wi(V) just by Wy ..

e The homogenized universal enveloping algebra.

For any graded Lie algebra g = €P g; with a Lie bracket of degree —2, we define

Un(g) :=T(g)[h]/(z®y — y®z — K*[z,4])|z,y € 9),

graded by setting deg(g;) = 7, deg(h) = 1.

e The homogenized universal infinitesimal Cherednik algebra of gl,,.
Define Hj, . (gl,,) as a quotient Hy ,(gl,) := Un(gl,) x T(Va®V.)[Co, - - -, Gm2]/J,

where

J = ([:E, ml]a [y7 y’]7 [A’ ‘T] - ﬁZA(.’L‘), [A7 y] - th(y)1 [yv 23] - hz(z_: Cj'rj(ya .’L') + rm(y, x))) .

=0
This algebra is graded by setting deg(V, ® V,*) = m + 1, deg(() = 2(m —1).

e The homogenized universal infinitesimal Cherednik algebra of sp,,.

Define Hj m(sp,,) as a quotient Hy ., (59,,,) := Un(sps,) X T(Van)[Coy - - - s Cm-1]/J,
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where

J = ([A,y] —- K2A(y), [z, 9] — 712(2 G242, y) + Tom (2, Y))|A € 8poy, T,y € Vzn) -

=0
This algebra is graded by setting deg(V2,) = 2m + 1, deg((;) = 4(m — 7).

o The homogenized W -algebra.

The homogenized W-algebra, associated to (g, e) is defined by

Un(g, ) := (Us(g)/Un(g)m’)>*™.

There are many interesting contexts in which Theorem 3.5.2 proved to be a useful
tool. Among such let us mention Rational Cherednik algebras ([BE]), Symplectic
Reflection algebras ([L5]) and W-algebras ([L1, L7]).

Actually, combining results of [L7] with Theorem 3.2.2, we get isomorphisms
U : Hign(80,)"™ 2 Hp a1 (8h-1) " e Wins» (3.10)

Yot Ham(5P20)" == Hin1 (8P20-2) " @i Wi'gn: (3.11)

where v € V,, (respectively v € V,) is a nonzero element and m > 1.

These decompositions can be viewed as quantizations of their Poisson versions:
U, Ho(90,)™ 5 Hyy g (800-1) * ®c W, (3.12)

Tfrll : Hﬁi(s’JZn)Av L)Hfrlr,+1(5p2n—2)/\o®cw§;/\va (313)

where W& = Cl21, .. ., Tn, Y1, - - -, Yn] With {z;, 2} = {ws, 95} = 0, {zs, y;} = &7
Isomorphisms (3.10) and (3.11) are not unique and, what is worse, are inexplicit.
Let us point out that localizing at other points of gf, x V,, x V* (respectively

$P,, X Var,) yields other decomposition isomorphisms. In particular, one gets [Tik3,
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Theorem 3.1]® as follows:

Remark 3.5.2. For n = 1,m > 0, consider € := e,, + Ey2n42 € S1m C 5Py, 40, Which
is a subregular nilpotent element of sp,,,,,. Above arguments yield a decomposition
isomorphism

Hpm(592)" 212 ——Up(592mm12, €)™ ®C[[hHW7:?' C)
The full central reduction of (&) provides an isomorphism of [Tik3, Theorem 3.1].°

In the next section, we establish explicitly suitably modified versions of (3.10)
and (3.11) for the cases m = —1, 0, which do not follow from the above arguments.

In particular, the reader will get a flavor of what the formulas look like.

3.5.2 Decompositions (3.10) and (3.11) for m = —1, 0

e Decomposition isomorphism Hj, —1(gl, )" = H; o(gl,_1)" ScumWi-

Here Hy o(gl,_,) is defined similarly to Hyo(gl,_,) with an additional central pa-
rameter {, and the main relation being [y,z] = h2(oro(y,z), while Hj_1(gl,) =
Un(gl, % (V; & V2)).

Notation: We use yx, z;, ex; when referring to the elements of H; _,(gl,) and
capital Y;, X;, E;; when referring to the elements of H,, o(gl, ;). We also use indices
1<k/l<nandl<1j17, 7 <n to distinguish between < n and < n. Finally, set
Up = (0,...,0,1) € V.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.3. Formulas
Uy (yx) = 2k, Voi(enr) = 2,0k, Voi(eis) = Eij + 2:0;, Y_1(z;) = Xj,
U_y(ein) = 2,'Y; — ZZ;IZjEi’j + 20y, V_y(x,) = —2; ¢ — Zz;lszp

ji<n p<n

define the isomorphism W_y : Hy_1(gl,)"*» —Hj o (gl,-1)" Bemy W,:\ e

8 This result is stated in [Tik3]. However, its proof in the loc. cit. is computationally wrong.
9 To be precise, we use an isomorphism of the W-algebra U(sp,,,, 2, €’) and the non-commutative
deformation of Crawley-Boevey and Holland of type D,,+2 Kleinian singularity.

77



Its proof is straightforward and is left to an interested reader (most of the verifi-

cations are the same as those carried out in the proof of Lemma 3.5.4 below).
e Decomposition isomorphism Hro(g!,)" = Hy, 1 (gl,_) " ®cpy Wi

Here Hy,(gl,_,) is an algebra defined similarly to Hj,1(gl,_;) with an additional
central parameter (o and the main relation being [y,z] = A*({oro(y, x) + 11(y, 7))
We follow analogous conventions as for variables yx, =1, ek, Yi, Xj, E;; and indices
i, 5,7, 7, k1.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.4. Formulas

Wo(yr) = 2, Yolenk) = 20k, Yoleis) = Eij+20;, Yolein) = 2, Y —Z 2, 2 E; j+2i0n,

i<n
Uo(z;) = =85 + Xj, Wolan) = —0n— D 2 zXi— 2" (G0 + Y _ Eij)
i<n i<n

define the isomorphism ¥q : Hyo(gl,) " —~—>H,;,1(g[n_1)"°®c[[h]]W£ o
Proof.

These formulas provide a homomorphism Hjo(gl, )™ — Hy (g, ;)™ @C[m]Wh’? o
if and only if ¥, preserves all the defining relations of Hy(gl,). This is quite straight-
forward and we present only the most complicated verifications, leaving the rest to

an interested reader.

o Verification of [¥o(e;n), Yolew y)] = =204 Toler n):

(Wolein), ‘I’o(ei',j')] = [zlei - Z Zilszi,p + 20,0, Euy + Zi’aj’] =

<n

hz(—5;12;1Yi1 — z;lzi/Ei’j/ + (5;' E 2;IZpEi¢,p + z;lzi:Eid, — 6;-,z,-'6n) = _h25;1 \Ilo(e,-/,n).

p<n

o Verification of [¥o(ein), Yo(z;)] = —R261 W (z,):

[Wolein), Yo(z)] = (27 Ys = Y 2, 2 Big + 2:0n, —0; + X;] =

g<n
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~22 By + 80, + SR 2 2, Xy + 2, [V, K] =

g<n

—W 2 B+ SR 00+ Y 27 2,X,) + W2 (Bij + 0] > " Eii+61¢) = —6IRWo(xn).

q<n i<n

o Verification of [¥o(e; ), Yo(z,)] = 0:

[Tolein), Co(@a)] = [27Yi =) 7 2pEipt 200, —0n— D _ 23 2 X2, (Go+ Y Bjy)] =

p<n i<n i<n

h2(z Z;2szi,p - Z,:ZK -+ ZiZ;2C0 + ZiZ;2 Z Ej,]' + 2;2}’; - Z ZjZ;Z[Y;, X]]) =0.

p<n j<n ji<n

Once homomorphism ¥, is established, it is easy to check that the map
Zk 7 Yky Ok = Un enk, Ei > €05 — Vit teni, Xj v Tj + Y tens

Yi— Zyk(ei,k — Yy tenr), Corr — Zykxk - Eek,k

provides the inverse to ¥,. This completes the proof of the lemma. a

¢ Decomposition isomorphism Hjy _1(sp,, )" = H, ,'.1,0(5;32”_2)/\0@(;[[;1”W,{?;n.

Here H, (spy,_) is defined similarly to Hpo(sp,,_,) With an additional central
parameter (o and the main relation being [z,y] = h2{oro(z,y), while Hy _1(sp,,) =
Un(sp,,, X Vo).

Notation: We use yx, ur; := ex; + (—1)*"*eg, 11y any1-1 When referring to the
elements of Hy _1(sp,,) and Y;, U;; := E; ; + (—=1)"" 71 E,,_1_;on—1-; when referring
to the elements of Hjo(spy,_,). Note that {uk,l}:"l*?f"“ is a basis of sp,,, while
{Ui;}i55% " is a basis of sp,,,_,. We use indices 1 < &,/ < 2nand 1 <4,j < 2n—2.
Finally, set vy := (1,0,...,0) € Va,.

The following lemma establishes explicitly the aforementioned isomorphism:

Lemma 3.5.5. Define ¥1(ux;) == 20 + (—1)*"* 2,01 100ny1-k for all k,1. We
also define Yo(uir) = 0, Yo(tir1,1) = Yi, Yo(wis1,541) = Uiy, Yo(Uzn1) = Co. Then
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formulas T_y(yx) = 2k, To1(urs) = Po(uep) + 1(ux,) give rise to the isomorphism
T_1 : Hy—1(s92,)"™ ;H;z,o(5pzn—2)/\°®c[[ﬁ]]Wi;\,;;-

The proof of this lemma is straightforward and is left to an interested reader.
e Finally, we have the case of g = sp,y,, m = 0.

There is also a decomposition isomorphism
Yo : Hro(sP2n) > Hp 1 (8920 _2) " Scm Wign-

This isomorphism can be made explicit, but we find the formulas quite heavy and

unrevealing, so we leave them to an interested reader.
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Chapter 4

Generalization to the SO, case

This chapter is based on [T1].

4.1 Classification results

Our first result is a full classification of all k from Section 1.1.2 satisfying (}) for the
case of (SOx, Vy), which is similar to [EGG, Theorem 3.14] for (Sp,,, V2.). But it
turns out that the subscheme & C SOp from Section 1.1.2 is not reduced in this case

and so we need a more detailed argument.

Theorem 4.1.1. The PBW property holds for H,.(SOn, Vy) if and only if there exists
an SOy-invariant distribution c € O(S)* such that k(z,y) = ((9 — g7 1)z, y)c for all
T,y € Vy.

The proof of this theorem is presented in Section 4.2.

To formulate our classification of infinitesimal Cherednik algebras Hy(sox, Vi) we

define:

® Y25+1(x, y) € S(son) = Clson] by

(z, A(1 + 7°A%)1y) det(L + 72A4%) /2 = Z’)’g]'+1($, (AT, A€ soy,

Jjz20
e r9;01(z,y) € U(son) to be the symmetrization of yy;41(x,y) € S(son).
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The following theorem is proved in Section 4.3:

Theorem 4.1.2. The PBW property holds for H.(son, V) if and only if there exists

a non-negative integer k and parameters (p, . ..,Cx € C such that k = E?:o (2541

We denote the corresponding algebra by H¢(son, Vi) for & of the above form.

Remark 4.1.1. (a) For ¢, # 0 we have He,, (son, V) = U(soyy1). Thus, for an
arbitrary ¢ we can regard H¢(soy, Vi) as a deformation of U(sony1)-

(b) Theorem 4.1.2 does not hold for N = 2, since only half of the infinitesimal Hecke
algebras are of the form given in the theorem (algebras H,(s02,V2) are the same as

Hy(gh, i@ V7).

4.2 Proof of Theorem 4.1.1

e Sufficiency.

Given any ¢ € (0(8)*)SOV, the formula x(z,y) := ((¢ — g7 ')x,y)c defines a skew-
symmetric SOy-equivariant pairing £ : Vy X Vy = O(SOy)*. For z,y,2 € Vv and
g € SOpn we define

h(z,y,2,9) = (2 — 22)(@° — 2%, y) + (y — 99)(=* — 27 ,2) + (z — 2@ =17 ,2).

Lemma 4.2.1. We have h(z,y,2;9) =0 for allz,y,2 € Vy and g € S.

Proof.

For any g € S consider the decomposition V = VI@(V?)*, where V¥ := Ker(1—g)
is a codimension < 2 subspace of V. If either of the vectors z,y,z belongs to V¥,
then all the three summands are zero and the result follows. Thus, we can assume
z,y,z € (V9)*. Without loss of generality, we can assume that z = az + By with
a, 8 € C, since dim (V9)+ < 2. Then

hiz,v,z19) = a (¢ — 29)(a? = 29" p) + (6 — )@ —y*2) + (v~ ¥)(@* — 2", 3))

18 (-9 20 + (=) -y 2 + =)~y )
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Clearly, (z¢9 — 29", z) = (2% z) — (z,29) = 0 and (29 — 297", y) = —(y9 — Y9, z), so

that the first sum is zero. Likewise, the second sum is zero. The result follows. O

Since c is scheme-theoretically supported on S and h(z,y,2;9) = 0for all z,y,z €
Vn,g € S, we get h(z,y,2;g)c =0 and so (t) holds.

e Necessity.

Let I € C[SOp| be the defining ideal of ®, that is, I is generated by 3 x 3
determinants of 1 — g. Consider a closed subscheme ® C soy, defined by the ideal
I:=(A3A) C C[soy].

Define E := Rad(I)/I and E := Rad(I)/I. Notice that E ~ E, since ® is reduced
in the formal neighborhood of any point g # 1, while the exponential map defines an
isomorphism of formal completions exp : ®"0-—"5dM

On the other hand, we have a short exact sequence of SOy-modules
0—=E — 0(®) - 0(S) =0,
inducing the following short exact sequence of vector spaces
0 — (A2Vy ® 0(S)")°°% & (A2V3 ® 0(8)")5°% 5 (AW @ E*)SO% 0. (h)

It is easy to deduce the necessity for x € Im(¢) by utilizing the arguments from the
proof of [EGG, Theorem 3.14(ii)]. Combining this observation with Proposition 1.1.1

and an isomorphism E ~ E, it suffices to prove the following result:

Lemma 4.2.2. (a) The space (A2V} @ E*)SON is either zero or one-dimensional.

b) If (N*V3 @ E*)SO0N £ 0, there exists k' € (N2V3 @ O(D)*)SOV not satisfying (1)1
N N

Notice that the adjoint action of SOy on soy extends to the action of GLy by
9.A = gAg* for A € son,g9 € GLy. This endows C[soy] with a structure of a GLy-
module and both I, Rad(]) are GL y-invariant. The following fact was communicated

to us by Steven Sam:

1 So that any element of (A2Vy ® O(®)*)5O~ satisfying (1) should be in the image of ¢.
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Claim 4.2.3. As gly-representations E ~ A*Vy.

Let us first deduce Lemma 4.2.2 from this Claim.

Proof of Lemma 4.2.2.

(a) The following facts are well-known (see [FH, Theorems 19.2, 19.14]):
o the 09,4 1-representations {A*Va, 41 11, are irreducible and pairwise non-isomorphic,
o the 50,,-representation A"Va, decomposes as A"Va, = A} Vo, @ AT Vo, and 502,-
representations {A%Va,, . .., A" Wan, AT Vo, A7 Vo, } are irreducible and pairwise non-
isomorphic.

Combining these facts with Claim 4.2.3 and an isomorphism A*Viy = AN *V, we

get
(A2Vip ® E*)SO11 =0, while dim((A?V5, ® E*)50) =

(b) For N = 6, any nonzero element of (A?Vy ® E*)3%¢ corresponds to the com-
position

/\2‘/6;)/\4 ‘/6* ﬁE*.
7]

Let M, C Clson]2 be the subspace spanned by the Pfaffians of all 4 x 4 princi-
pal minors. This subspace is GLg-invariant and M, =~ A%V as glg-representations.
Claim 4.2.3 and simplicity of the spectrum of the glg-module C[sog] (see Theorem 4.2.5
below) imply My C Rad(T) and My NI = 0. It follows that M, corresponds to the
copy of A*Vs C Rad(I)/I from Claim 4.2.3.

Choose an orthonormal basis {y;}5_; of Vs, so that any element A € sog is skew-
symmetric with respect to this basis. We denote the corresponding Pfaffian by Pf;;
(with a correctly chosen sign).? We define '(y; ® y;) € U(s0s) to be the sym-
metrization of Pf;. Identifying U (sog) with S(so0g) as sog-modules, we easily see

that k' : A2V — U(s06) is soe-invariant.

2 To make a compatible choice of signs, define Pf;j as the derivative of the total Pfaffian Pf
along E,'j - Eji.
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However, k' does not satisfy the Jacobi identity. Indeed, let us define &' : V5 ®
Vs — S(sog) by (v ® y;) = Piz>. Then for any three different indices i, j, k, the

corresponding expressions { Py, 7« }, { P53, 2:}, {Pg3, 75} coincide up to a sign and are

nonzero. So their sum is also non-zero, implying that (t) fails for «’. a

e Proof of Claim 4.2.83
o Step 1: Description of Rad(I).

Let Pf;;x; € Clson]2 be the Pfaffians of the principal 4 x 4 minors corresponding
to the rows/columns #4, j, k,l. It is clear that Pf;;; vanish at rank < 2 matrices and
so Pf;;u € Rad(I). A beautiful classical result states that those elements generate
Rad(I), in fact:

Theorem 4.2.4. [We, Theorem 6.4.1(b)] The ideal Rad(I) is generated by {Pf;;u}.

o Step 2: Decomposition of C[son] as a gly-module.

Let T be the set of all length < N Young diagrams A = (A\; > Ay > --+ > 0).
There is a natural bijection between T and the set of all irreducible finite dimensional
polynomial gly-representations. For A € T', we denote the corresponding irreducible
gly-representation by L. Let 7 be the subset of T" consisting of all Young diagrams
with even columns.

The following result describes the decomposition of Clsoy] into irreducibles:

Theorem 4.2.5. [AF, Theorem 2.5] As gly-representations

C[SON] ~ S(/\ZVN) ~ @ L.
AETe
For any A € T*, let Jx C Clson] be the ideal generated by Ly C C[soy], while
Ty C T* be the subset of the diagrams containing A\. The arguments of [AF] (see
also [D, Theorem 5.1]) imply that J) ~ EBueTf L, as gly-modules.

o Step 8: Rad(I) and I as gly-representations.
Since the subspace My C Clsoy], spanned by Pf;, is gly-invariant and is iso-
morphic to A*Vy, the results of the previous steps imply that Rad(]) ~ @“€T=4 L,
a%

as gly-modules.
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Let N3 C C[soy]s be the subspace spanned by the determinants of all 3 x 3 minors.

This is a gly-invariant subspace.
Lemma 4.2.6. We have N3 =~ L2 12) @ L1s) as gly-representations.

Proof.

According to Step 1, we have Clson]s = Lie) @ Ly22,12) ® L(32). Since the space of
3 x 3 minors identically vanishes when N = 2, and the Schur functor (3,3) does not,
it rules L(s2) out. Also, the space of 3 x 3 minors is nonzero for N = 4, while the
Schur functor (1°) vanishes, so N3 # L. Since partition (1°) corresponds to the
subspace Mg C C[soy] spanned by 6 x 6 Pfaffians, it suffices to prove that Mg C Nj.
The latter is sufficient to verify for N = 6, that is, the Pfaffian Pf of a 6 x 6 matrix
is a linear combination of its 3 x 3 determinants.?

Let det};y be the determinant of the 3 x 3 minor, obtained by intersecting rows

#4, 4§, k and columns #p, ¢, s. The following identity is straightforward:
—4Pf = —det3+det33 —det3iS +det3: — det?8-+det?s —det23s —detiso+det] g —detils.
This completes the proof of the lemma. 0

The results of Step 2 imply that [ ~ @D, L, as gly-modules.

T(622,12)UT(816)

Claim 4.2.3 follows from the aforementioned descriptions of gly-modules I and

Rad(7). ®

4.3 Proof of Theorem 4.1.2

Let us introduce some notation:

e K := SOn(R) (the maximal compact subgroup of G = SOx(C)),

3 The conceptual proof of this fact is as follows. Note that determinants of 3 x 3 minors of A € sog
are just the matrix elements of A®A, and A3A acts on A3V = A3V ® A2 V5. It is easy to see that
the trace of A3A on /\?,_ Vs is nonzero. This provides a cubic invariant for sog, which is unique up to
scaling (multiple of Pf).
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(cosH —sind 0 .- 0\
sin@ cosf 0O --- O
® 5p = 0 0 1 --- 0 | €K, 6e[-mm]

K 0 0 --- 1/
® Sy :={gseg g€ K} C K,

® Sr =S8N K =Uppn Se*, so that Sg/K gets identified with S!/Z,.

According to Theorem 4.1.1, there exists a Z,-invariant ¢ € Oy(S*)*, which is a
linear combination of the delta-function & (at 0 € S?) and its even derivatives 65,

such that®

k(z,y) = /: c(6) (/Sa((g — g Yz, y) dg) df for all z,y € Vy.

For g € Sg we define a 2-dimensional subspace V, C Vy by V, := Im(1 — g). To

evaluate the above integral, choose length 1 orthogonal vectors p,q € V, such that

o o ) cosf —sind \
the restriction of g to V; is given by the matrix in the basis {p, q}.

sinf cos6
Let us define J,, := ¢®p* —p® ¢* € son(R). We have:
* ((9—97")=,y) =2sinf - (z, Jpey),
cosf —siné 0 -1
e g =exp(8J,,), since =exp | 8-
sinf cosf 1 0

As a result, we get:®

k(z,y) = / / (z, Jpqy) ( / 2¢(6) sin 6 - €/r d0) dqdp, (4.1)
peSN-1 JqeSN-2(p) -

where SV~ is the unit sphere in RY centered at the origin and SV=2(p) is the unit

sphere in RY~1(p) C RY, the hyperplane orthogonal to the line passing through p

1 Note that Sg and S_g coincide for N > 3. That explains why 8 € [0, 7] instead of 8 € [, 7}.

5 Here we integrate over the whole circle S! instead of S*/Z2, but we require c¢(8) = c(—9).

5 Generally speaking, the integration should be taken over the Grassmannian Go(RY). However,
it is easier to integrate over the Stiefel manifold V,(RY), which is a principal O(2)-bundle over
G2(RY).
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and the origin.

Since ¢(f) is an arbitrary linear combination of the delta-function and its even

derivatives, the above integral is a linear combination of the following integrals:

(@, Jpgy) - Jog™ da dp, k>0.
pesSN-1 JgeSN-2(p)

This is a standard integral (see [EGQG, Section 4.2] for the analogous calculations).
Identifying U(soy) with S(son) via the symmetrization map, it suffices to compute

the integral

Lay(A) = / / (2, J,q) - tr(AT,)" dq dp, A € s0x(R).
peSN-1 JqeSN-2(p)

To compute this expression we introduce

Fr(A) = / / tr(AJp )" dgdp = / / (2(Ag,p))™*" dq dp,
pESN—l qESN_2(P) pESN_l quN—z(p)

so that the former integral can be expressed in the following way:

dFm(A)(z ®y' —y ® 7°) = —2(m + Dmzy(A).

Now we compute F,(A). Notice that

Gm(4,() = / / (2(Ag, p))™+lem¢P=¢@9) dg dp =
pERY JqeRN~1(p)

/ / e éri-¢ri / / (2(Ag, p))™** dg dp dry dry =
0o Jo Ipl=r1 Jlq|=r2

/ / e~ Cri=¢rp Nt N=1 grodry - Fir(A) = Kunan (O Kmin-1(Q) Frn(A),
0 0

where
o T l=2k+1
Ki(¢) = el dr =4 X .
o (k-7 | = 9%
2k+1<k+1/2 3 -
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As a result, we get

Vr(m+ N —1)!
(€)= Lo Fal4),

On the other hand, we have:

Gm(A,¢) = / / e2(Aap) o —¢(p.p)—¢(9,9) dg dp =
Z_ (m+ 1 ) peRN JqeRN-1(p)

/ e—S@p) / e~ 2(a:Ap)—C(a.9) dg dp 7 = ¢
peRY gERN-1(p)

/ i e—Sp.p) / _— e—$(d ) ot (AP, Ap) dg dp = / iy o SP)+1(Ap,Ap) dp-(m /C)% _
= q'€ pE

N1 N—— —-1/2 N——
(m/¢)" T / el t4%wa) gp — T det (C+-1—A2) =Z T det(1+¢724%)" 12,
pERN C ¢ ¢N-

Hence, F,,(A) is equal to a constant times the coefficient of 7™*! in det(1 +

1/2

72A%)~Y/2 expanded as a power series in 7. Differentiating det(1 + 7242)~1/2 along

B € sop, we get

T2 tr(BA(1 + 72A4%)7h)
det(1 + 72A42)1/2

565 (det(1+72A4%)71/%) = —

Setting B = z®yt —y® 1t yields 27%(z, A(1+72A42)"1y) det(1 +72A2)"1/2 as desired.
||

4.4 The Poisson center of algebras Hgl(so N)

Analogously to the cases of gl,, and sp,,,, we introduce the Poisson algebras H, El (son, Viv),
where { = ({y, .- ., (k) is a deformation parameter. As algebras these are S(soy & Vy)
with a Poisson bracket {:,-} modeled after the commutator [-,-] of H¢(son, V),

that is, {z,y} = Z Civej+1(z,y). We prefer the following short formula for {-,-} :
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Vv x Vy = Clson] ~ S(son):

{z,y} = Res,—o ((z72)(z, A(1+22A4%) " y) det(1+2°A%) 22 1dz, Vz,y € Vi, A € 50,
(4.2)
where ((2) := 3,50 G2* is the generating function of the deformation parameters.

In fact, we can view algebras H,(son, Viv) as quantizations of the algebras H!(son, V).
The latter algebras still carry some important information. The main result of this
section is a computation of the Poisson center 3pois(H§1 (son, VN))-

Let us first recall the corresponding result in the non-deformed case (¢ = 0), when
the corresponding algebra is just S(soy x V) with a Lie-Poisson bracket. To state

the result we introduce some more notation:

e Define p;(A) € C via det(Iy +tA) = Z;'Y_—o tip;(A) for A € gly.

e Define b;(A) € gly via bo(A) = In, be(4) = 35_o(—1)/p;(A)A*~ for k > 0.
e Define ay := soy X Vy; we identify a}, with ay via the natural pairing.

e Define 9, : aly = C by ¢x(A4,v) = (v,ba(A)v) for A€ son, veE VN, k2 0.

o If N = 2n+1, ¢, is actually the square of a polynomial function ’I?J\n, which can be

A v
realized explicitly as the Pfaffian of the matrix . € 502,,42.
-t 0
o Identifying Clay] ~ S(an), let 7 € S(an) (respectively Tn41 € S(aznt1)) be the

elements corresponding to 1¥x_; (respectively Jn)

The following result is due to [R, Sections 3.7, 3.8]:

Proposition 4.4.1. We have:
(@) 3pois(S(a2n)) is a polynomial algebra in free generators {71,...,Ta};

(b) 3pois(S(a2n41)) is a polynomial algebra in free generators {7y, ... s Trs Trt1 }-

Similarly to the cases of gl,,sp,,, this result can be generalized for arbitrary
deformations . In fact, for any deformation parameter ¢ = ({o, - -,¢x) the Poisson
center 3pois(HE (50N, Viv)) is still a polynomial algebra in [2+1] generators. This is

established in the following theorem:
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Theorem 4.4.2. Define ¢; € Clson]59% =~ 3puis(S(son)) via I (—1)icit? = c(t),
where

det(1+t24%)Y2 2714z

det(1 + 22A42)1/21 — t-2z2°

c(t) == Res,— ¢(27%)

(a) 3pois(HE (802n, Van)) is a polynomial algebra in free generators {my+ci, ..., Tatcn};
(b) 3pois(H§1(502n+1, Van+1)) 18 a polynomial algebra in free generators {m+c1,..., T+

Q’L)?THJ}'

Let us introduce some more notation before proceeding to the proof:
o Let {z;}), be a basis of Viy such that (z;,z;) = 6%, ;.
o Let J = (J;;)N;; be the corresponding anti-diagonal symmetric matrix, ie., J; =
&% +1-;- Notice that A = (a;;) € soy if and only if a;; = —an41-jn+1-: for all 4, 5.
e Let hy be the Cartan subalgebra of soy consisting of the diagonal matrices.
e Define e(; j) := E;; — Enj1-jny1—i € soy for 4,57 < N (so e n41-iy) = 0 Vi).
o We set e; :== ez for 1 < i <n:= |Z], so that {e;}, form a basis of hy.

e Define 0; € Clzy, ..., 2% via [ (1 + tz) = S0, tioi(21, - - -, 21)-

Proof of Theorem 4.4.2.

We shall show that the elements 7; +¢; (and 7,41 for N = 2n+1) are Poisson cen-
tral. Combined with Proposition 4.4.1 this clearly implies the result by a deformation
argument. Since {7;,505} = 0 for { = 0, we still have {7;,s05} = 0 for arbitrary (.

This implies {7; +¢;, 505} = 0 as ¢; € 3pois(S(50x)). Therefore we just need to verify
{ei, 20} = —{mi,zy} foralll<g<N. (4.3)
Using 9,(A,v) = (v, bas(A)v) = Zﬁ{,:l xkxleS(A)NH_k’,, we get:
{Tor1, 24} =

Z{b% (A) vr1-kp TepTedi+ Z bas (A)N-f-l—k,l{xk’ Te}ar+ Z bos(A) yy1-kiTh{T1, To}-

k.l K, k.l
The first summand is zero due to Proposition 4.4.1.

On the other hand, AJ + JA* = 0 implies (A%)yy1-k; = (A¥)yi1-1x and
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p2j+1(A) =0 for all j > 0. Hence,

bas(A) = A% +pa(A)A®? +pa(A)AP ™+ +pas(A), bos(A) py1ps = bas(A)nsi-tk-

. . . . dcs 1 1
Combining this with {cet1, %} = 2 2n41-4 g(p%xp, we see that (4.3) is equiva-
lent to:
Ocst1 oy (@1, A(L + 2°A%)1zy) dz
=_2§:bsA = 2.~ for allp,g < N.
66(1,,,]) l 2 ( )N—l—l—p,l Res OC('Z ) det(l + 22A2)1/2 P or al D,q=

(4.4)
Because both sides of (4.4) are SOy-invariant, it suffices to verify (4.4) for A € by,
that is, for
o A =diag(\1,---, M, —An,...,—A1) in the case N = 2n,
o A=diag(A;,..., M, 0,—As, ..., —A1) in the case N =2n+ 1.
For p # q, both sides of (4.4) are zero. For p = ¢ < n, the only nonzero summand

on the right hand side of (4.4) is the one corresponding to / = N +1 —g. In this case:

bos(A) yp1qirimg = M —01(AL, L XN 4+ (—1)°a,(A%,..., %)

_ (_1)380'5+1()\%, .. .,)\%),
o2

while (Zy41-q, A(1 + 22A2)12,) = 1285 and det(1 + 22472 = [T, (1 + 2203).
For p = ¢ > [}], we get the same equalities with A; <> —X;. As a result, (4.4) is

equivalent to:

2z 1dz

BCS.H ()\1, ey )\n) _
VT LT 29

X

001N, - .., N2

— (_1)3+1 8}\3 T n) Resz=0 C(Z

We thus need to verify the following identities for c(?):

oe(t) _ OTT,(1+8X) o ()

X2 o2 O+ 2 [T, (1 + 2208)

(4.5)

This is a straightforward verification and we leave it to an interested reader. This
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proves that =, + ¢ € 3P0is(HEl(50N, Vn)) forall 1 <i<n. For N =2n+1, we also

get a Poisson-central element 7,41 + Cp41- Since ¢,41 = 0, we have

?34.1 = Tp+1 € 3Pois(H21(5o2n+1a Vont1)) = Tup € 3Pois(Hgl(502n+1a Vant1))-
This completes the proof of the theorem. W

Definition 4.4.1. The element 7{ = 73 + ¢ is called the Poisson Casimir element of

Hg\(son, V).
As a straightforward consequence of Theorem 4.4.2, we get:

Corollary 4.4.3. We have 1{ =1 + Z;?:O(-—l)j“gj tr S2+24.

4.5 The key isomorphism

4.5.1 Algebras H,,(soy,Vn)

Analogously to Section 3.1.3, we introduce the universal infinitesimal Hecke algebras

of (50N, VN)2

Definition 4.5.1. Define the universal length m infinitesimal Hecke algebra H,,(son, Vn)
as the quotient H,,(son, V) := U(son) x T(Vn)[Cos - - - Gn—1)/J, where

m—1

J= ([A,:lt] - A(.’L‘), [x,y] - Z er2j+1(x’y) - T2m+1($y y))

=0

Here A € soy, 7,y € Vy and {(;}7%5" are central. The filtration is induced from
the grading on T'(son & V)[Co, - - -, $m—1] With deg(son) = 2, deg(Vy) =2m +2 and
deg(¢;) = 4(m —1).

The algebra H,,,(son, Vi) is free over C[Co, . . . , Gm_1] and Hp,(son, Vi) /(G —c) 7'
is the infinitesimal Hecke algebra H, (soy, Vy) for {; = cori+. ..+ Cn1T2m—1+T2m+1-
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Remark 4.5.1. For an soy-equivariant pairing 17 : A2Vy — U(son)[Co, - - -, Gm—1] such

that deg(n(z,y)) < 4m + 2, the algebra

Uson) x T(Va)[o - - - Gm1l/([A, @] = A(2), [, 9] - n(z, )

satisfies the PBW property if and only if n(z,y) = > i o mr2u+i(z,y) with n; €
Cl¢o, - - - , Gm—1) degree < 4(m — i) polynomials (compare to Theorem 3.3.1).

4.5.2 Isomorphisms © and 69

The main goal of this section it to establish an abstract isomorphism between the
algebras H,,(soy, V) and the W-algebras U(s0n12m+1,€m), Where €., € 56N +2m+1 18
a nilpotent element of the Jordan type (1V¥,2m + 1). We make a particular choice of

such an element:’

L xm m
® e =D it EnyiNti+1 — D ey BENtmetj,Nemtjt1-

Recall the Lie algebra inclusion ¢ : ¢ < U(g, e) from Section 3.1.6, where q :=
35(e,h, f). For (g,€) = (50N12m+1,€m) We have q =~ soy. We will also denote the
corresponding centralizer of e,, € 50y 42m+1 and the Slodowy slice by 3, and Sym,

respectively.

Theorem 4.5.1. For m > 1, there is a unique isomorphism
© : Hp(son, Vv)—U(s0N12m+1, €m)
of filtered algebras such that © |soy= "t |soy -

Sketch of the proof.
Notice that 3nm =~ sox®VNSC™ as vector spaces, where soy =~ ¢ = 3 Nm(0), Vy C

3nm(2m) and C™ has a basis {&,...,&n-1} With & € jnm(dm — 4i — 2). Here

7 In this section, we view 50y as corresponding to the pair (Vi, (,-)), where (-,) is represented
by the symmetric matrix J' = (J};) with Jf; =67, J] y i = Ivin; = 0 g v = =82, Vi g <
N, k,1<2m+ 1.
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Em—j = €271 € soy for 1 < j < m, Vy is embedded via z; = E; nyoms1 — Eni1i
while soy is embedded as a top-left N x N block of sox12ms1.

Let us recall that one of the key ingredients in the proof of Theorem 3.2.2 was
an additional Z-grading Gr on the corresponding W-algebras.® In both cases of
(8Latm) €m)s (SPon2m, €m) such a grading was induced from the weight-decomposition
with respect to ad(.(h)), h € g.

If N = 2n same argument works for g = son,om+1 as well. Namely, consider
h € q = 504, to be the diagonal matrix I}, := diag(1,...,1,—1,...,—1). The operator
ad(¢(1},)) acts on 3nm with zero eigenvalues on C™, with even eigenvalues on soy,
and with eigenvalues {£1} on Vy.

However, there is no appropriate h € g in the case of N = 2n 4+ 1. Instead, such

a grading originates from the adjoint action of the element

=(-1,...,—-1,1,...,1) e O(N +2 1).
go = ( . ~ ) ( m+1)
m+

This element defines a Z,-grading on U ($0x42m+1) and further a Z,-grading Gr on
the W-algebra U($0N19m+1, €m). The induced Z,-grading Gr’ on gr U(s0n+2m+1, €m) =
S(3n5,m) satisfies the desired properties: deg(C™) =0, deg(soy) =0, deg(Vy) = 1.

Therefore the algebra U (50N 2m+1, €m ) is equipped both with a Kazhdan filtration
and a Z,-grading Gr. Moreover, the corresponding isomorphism at the Poisson level
is established in Theorem 4.5.2. Now the proof proceeds along the same lines as in

the sp,,, case. W

Let us introduce some more notation:
o Let 7 : soy @ Vy ® C™—3n,, denote the isomorphism from the proof of Theo-
rem 4.5.1.
e Let HS(son, V) be the Poisson counterpart of H,,(son, Viy) (compare to algebras
H(son, V).
o Define P; € Cls0n42m+1) by det(Iysams1 +t4) = 047" Py(A)H.
o Define {6} € SG3nm) = C[Snm] by 6; := Py

i) ISN,m )

8 Actually, as exhibited by the case of 5py, ,,,, it suffices to have a Z,-grading.
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The following result can be considered as a Poisson version of Theorem 4.5.1:

Theorem 4.5.2. The formulas

~f3

o) = (4, 6°(3) = =

L), 8% = (-)mie

define an isomorphism ©% : HS (son, VN)—+S(3n.m) = C[Snm) of Poisson algebras.

The proof of this theorem proceeds along the same lines as for sp,,, case.

Let us now deduce a few corollaries for the infinitesimal Hecke algebras of (sox, Viv)-

Corollary 4.5.3. Poisson varieties corresponding to arbitrary full central reductions
of Poisson infinitesimal Hecke algebras Hgl(soN,VN) have finitely many symplectic

leaves.

Corollary 4.5.4. (a) The center Z(H,(son,Vy)) is a polynomial algebra in | 23]
generators.

(b) The infinitesimal Hecke algebra He(son, Vi) is free over its center Z(H(son, V).
(c) Full central reductions of gr H¢(son, V) are normal, complete intersection integral

domains.

Finally, one can define the appropriate category O in the same fashion this was

done for sp,,,.

4.6 The Casimir element

In this section we determine the first nontrivial central element of the algebras
H¢(soy,Vx). In the non-deformed case { = 0 we have t, := (v,v) € Z(Ho(son, V).
Similarly to Corollary 4.4.3, this element can be deformed to a central element of
H¢(son,Vy) by adding an element of Z(U(son)).

In order to formulate the result, we introduce some more notation:

1/2(g4 N—1)! -1 - s
e Define w, := ”—2§i—’;,;1—l and p, == mV"3(s + D, ve = =5y

e Define a sequence {a;}7., recursively via (; = 2vp;41 R G ) Ll CAR T FITEPN
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e Define a sequence {g;}7-! via g; = 2u9;_1(~2a,1 + 3 ot 77 (1)1 (5 ajei-1).

e Define a polynomial g(2) := nyll g%
o Define A(z)(z,y) := (z, A(1+22A%)1y) det(1+22A%)7Y/2 B(2) := det(1+22A%)~1/2,
e Let [2™]f(z) denote the coefficient of 2™ in the series f(z).

e Define C € Z(U(soy)) to be the symmetrization of Res,—q g(z72) det(1+2242%)"1/2z71dz.

Then we have:
Theorem 4.6.1. The element t| :=t, + C is a central element of H¢(son, V).
Definition 4.6.1. We call ¢] = t; 4 C the Casimir element of H;(son, V).

Remark 4.6.1. The same formula provides a central element of the algebra H,,(son, Vi),
where C' € Z(U(son))[Co, - - - » Gm—1]-

Theorem 4.6.1 can be used to establish explicitly the isomorphism © of Theo-
rem 4.5.1 in the same way as this has been achieved in Section 3.4.6 for the gl

case.

Proof of Theorem 4.6.1.

Commutativity of ¢} with soy follows from the following argument:
[tl,SON] =0¢€ Ho(EUN, VN) = [t1,5ON] =0e Hc(SON, VN) = [t'l,soN] =0e Hc(ﬁﬂN, VN)

Let us now verify [t; + C,z] = 0 for any z € Vy. Identifying U(soy) with S(soy)

via the symmetrization map and recalling (4.2), we get:

T

[Zr?,x] =Zx,~ / o / ) (p)(wi,Jp,qm) ( / 2¢(6) sinee‘”mde) dgdp +
i peESN -1 JqesN-2 -

Z / / ( / 2¢(9) sin QeoJMdﬁ) (%1, Jp,qT)T:dgdp.
; JpesSN-1JqeSN-2(p) -

8Jpa — gfp

Since ), xi(x;, Jpqx) = Jpox and ve 2(cos@ - v —sind - J, ) for v € Vy,

we have
[t1,2] = / / / 2c(6) sin fe?’/72 (sin B-z+(1+cos ) -J, ,x)dfdgdp. (4.6)
peSN -1 JgesN-2(p) J—x
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The right hand side of (4.6) can be written as [z, C"], where

¢ = / / (/ c(6)(—2 — 2cos 9)69J”"’d9> dgdp.
peSN-1 Jqe8SN-2(p) -

Thus, it suffices to prove C' = C.
The following has been established during the proof of Theorem 4.1.2:

/ / J; dadp = Fy_y = ps1[2°] B(2), (4.7
peSN -1 JqeSN~2(p)

/ / (z, Jpqy) s dqdp = Iy = v [2° 1 A(2)(z, y). (4.8)
pESN=1 JqeSN~3(p)

Let c(8) = cobo + c2dy + 645(()4) + ... be the distribution from (4.1), where 6‘()k) is
the k-th derivative of the delta-function. Since

x [ 52 .
- =1 1= -

formulas (4.1) and (4.8) imply
[z,] = Res,—0 ((z7) A(z)(z,y)2  dz,

where {(27%) = 2 i%0 (274 and G = 241 Zzzl(—l)lﬂ(gﬁl)cﬂjﬂz-
Comparing with [z,9] = Res,—o ((272)A(2)(z, y)z dz, we get {(27%) = ((z7?)

and so czs42 = as, where as,, := 0. On the other hand,

/1r c(8)(—2cos 8 — 2)e?’redf = 22 ¢ (—QJg,q + [igj(-l)l+1 (2]l> Jg’;m) .
- >0 =1
Combining this equality with (4.7), we find:
C' = Res,—0 9(27%)B(2)z"'dz = C.
This completes the proof of the theorem. | |
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Chapter 5

The affine Yangian of gl4

This chapter is based on [T2].

5.1 Basic definitions

In this section we define the algebras Up, 4, .. (gl) and Vi, s, 1, (al,).

5.1.1 The toroidal algebra of gl,

Let {g;}3_, be complex parameters satisfying q1q2q5 = 1, ¢; # 1.
The toroidal algebra of gl;, denoted Uy, 4, 4 (8l;), is an associative unital C-algebra
generated by {e;, f;, ;-’:, Oi_1|i € Z,j € Ly} (Zy == {n € Zn > 0}) with the

following defining relations:
Uy Ur T =g U =1, ), pEw)] =0, [Yt(2), 9 (w)] =0, (T0)

e(2)e(w)(z — qw)(z — qw)(z — gsw) = —e(w)e(2)(w — q12)(w — g22)(w — g32), (T1)

F@) f(w)(w—qz)(w—g2)(w —g32) = — f(w)f(2)(z — qw)(z — gaw)(2 — gsw), (T2)

B d(z/w)
le(z), f(w)] = (I—q)(1 —qg2)(1 —gs3)

¥ (2)e(w)(z—qw) (2 gaw) (z—gsw) = —e(w)y* (2)(W—qu2)(W—2) (w—gs2), (T4)

(¥ (w) —¥7(2)), (T3)
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o= (2) f(w) (w—q12) (w—q2)(w—gs2) = —f(W)P* (2)(z—qw) (z—q2w) (z— gsw), (T5)
Symsg[eil, [6i2+173i3—1“ =0, Syme3[fi1, [fiz+1) fi3—1]] =0, (T6)

where these generating series are defined as follows:

e(z) = i ez, f Z fir™, WE(2) =D vF2T, 8(2): Z 2.

i=—00 i=—00 i=0 i=—00

Remark 5.1.1. (a) The relations (T0)-(T5) should be viewed as collections of termwise
relations, which can be recovered by evaluating the coefficients of 2Fw' on both sides

of the equalities.

(b) The algebra Uy, ¢;.4,(8Y;) differs from the Ding-Iohara algebra, considered in [FT1],
by an additional relation (T6). However, it is a correct object to consider as will be

explained later.

5.1.2 Elements t; € Uy, 4,4,(91)

We introduce the generators {;} instead of {7}, similarly to the case of a quantum

affine algebra. The main advantage is a simplification of (T4)-(T6).

Choose {t;}+j»0 C C| Oial,d)at,i//it, ...] as the elements satisfying the following

identities:

PE(z) = exp( Z —tmz m)

im>0
where B, := (1 —¢)(1—¢5")(1 —¢5*). We assume B, # 0, i.e., q1, g2, g3 are not roots

of 1. This choice of t; is motivated by the following two results.

Proposition 5.1.1. The relations (T4,T5) are equivalent to [v5,e] = 0= [¥5, fil
together with

(T4t) [ti,ej] = €itj fOT T 7é 07.7 € Z.

(T5t) [t,', fJ] = _fz'+j fOT’i 7é 07j € Z.
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The proof of this proposition follows formally from the identity:

In ((z—ql_lw)(z—QElw)(z —qs"litJ)) -y B w™

(z — qw)(z — gw)(z — gsw)

Proposition 5.1.2. If relations (T4t, T5t) hold, then (T6) is equivalent to its par-

ticular case

[607 [61, 8_1]] =0, [ny [fl, f—l]] =0. (Tﬁt)

The algebra Uy, ,, ., (gl;) also satisfies a natural triangular decomposition. Let

U—7 UO) U+ be the Suba’lgebras Of Uqulh;qs (9[1) genera'ted by {f‘i}1 {,‘p;t, (¢(:)t)_1}7 {ei}'

Proposition 5.1.3. (a) (Triangular decomposition for Uy, 4, .,(8l1)) The multiplica-
tion map m : U-Uelt — Uqlm,qs (gly) is an isomorphism of vector spaces.

(b) The subalgebras U~,U+,U° are generated by {fi}, {e:}, {¥F, (W5F)™} with the
defining relations (T2, T6), (T1, T6), and (T0), respectively.

The proof is standard. Consider an associative algebra V,, 4, 4, (gl;) generated by
éi, fi, ;-t, (¥F)~! subject to the relations (TO, T3, T4, T5). We define the subalge-
bras V=, VO, V* of V,, 4,.4,(8l;) in the same way. Let I be the two-sided ideal of

V42,05 (91;) generated by the quadratic and cubic relations in e; and f; arising from

(T1, T2, T6). Explicitly, I'* is generated by
A = €i43€;—01€i12€j11+02€i11€j 12— €€j13—€;€ 13+ 02€;11€i12—01€;12€i41+€5136;,

Biy insis = Sym63 [ein [€i2+1, €i3—1]]-

We also let J* stay for the corresponding two-sided ideals of V*. Proposition 5.1.3

follows from:

Lemma 5.1.4. (a) (Triangular decomposition for Vi, 4 .4(8%)) The multiplication
mapm:V-@V'@V*t — V;h,qms (gly) is an isomorphism of vector spaces.

(b) The subalgebras V=, V* are free associative algebra in {f;}, {e:}, respectively.
The subalgebra V° is generated by gb;-t, (E)~! with the defining relations (T0).

(c) We have It =m(V- @ V@ J*) and - =m(J- @ VO @ V).
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Proof of Lemma 5.1.4.
Part (a) is standard. Part (b) follows immediately from (a).

Part (c) is equivalent to V~V°J* being a two-sided ideal of V¢, ¢ (gl;). Using
the equality V-VOV* = V,, 4, 4 (01;), we reduce to showing

[Ai’j7 t,-], [Bil’iz’i:” t"]’ [Ai».’i’ fT]7 [Bi1,iz,i37 fr] € V0J+.

Relation (T4t) implies that the first two commutators are just the linear combinations
of Ail,jl and B,"

iy Also [Agj, f;] = 0 (it is a sum of two quadratic expressions from
(T4)).

To prove [Bi, inis» fr] € VOJ* we work with the generating series. The relation

(T3) implies

21

Br - [e(zr)e(zelza), Fw)] = 8 () wlar)e(z)e(za)+

3 (5) weeletenten ) +8 (3) Yea)e(aelenlotas ot )

where p(z,y) = —(ema)@=9)(E=9s9) 4nq 4)(z) = T (z) — ¥~ (2). Hence, we have

(y—q1z)(y—q22)(y—q3z)

[svme, {(2+2 -2 -2) etaeteetn | S| =

B (6(z1 /w)p(21)C1 (22, 23) + 6(z2/w)p(22) Ca(23, 21) + 8(23/w)h(23)Ca(21, 22))

+

where C)(2g, z3) = e(22)e(23)Cias + e(z3)e(22)Ch32 and
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The equality Ch3p = —p(23, 22)Ci23 implies actually that Cj (22, z3) is proportional
to the generating function of A;;. Same results apply to Cy(zs, z1), C3(21, 22). This
yields the inclusion [Bi, ;,,, fr] € VOJ* for any iy,4a,3,7 € Z. O

5.1.3 The affine Yangian of gl,

Let hy, ho, ha be complex parameters satisfying hy; + hy + h3 = 0.
The affine Yangian of gl,, denoted Yhhhz,ha (gly), is an associative unital C-algebra

generated by {e;, f;,%;}jez, with the following defining relations (here i,j € Z,):
(YO) [wh w]] =0,

(Y1) ([eirs, €5] — 3leira, €j11] + 3[eivr, €j42] — €5, €543)) + oa([eir1, €] — lei, €541]) =

03{e,~,ej},

(Y2) ([firas £5] = 3lfixa, Fira] + 3[fixrs Fiza] — [fis fiwal) + o2([firns f5] = [fis fina]) =
_03{fi7fj}7

(Y3) [eia f]] = ¢i+j)

(Y4) ([Wi13, €3] — 3[Wira, €j41] + 3[is1, €42] — (Wi, €j43]) + 02([ir1, €] — [¥i, €41]) =
03{¢i) ej})

(Y4/) [’wo’ej] =0, ["1[)173]'] =0, [’l,bz,ej] = 26]’,

(Y5) ([iss, f5] — 3[bisa, fira] + 3[¢ita, Fiva] = Wi, fi4s]) + o2([Wirs fi] — Wi, fina]) =
_0-3{1/)1'7 fj}7

(Y5) [tho, f5] =0, [1,f5] =0, [e, f;] = —2f;,
(Y6) For 41,145,435 € Zy :  Symeg,les,, [eiy, €i41]] =0, Symg,[fiy, [fir, fis+a]] =0,

where g] = h1 + h2 + h3 = 0, Og = h1h2 + h]_hg + h2h3, g3 = h1h2h3 and
{a,b} := ab + ba.
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5.1.4 Generating series forYy, n, 1,(g%)

Let us introduce the generating series:

e(z) := Zejz'j‘l, f(z) = ijz—j_l, P(z) =14 03 Z'd)jz_j‘l.

720 720 >0

Define S}hzhohz,ha (gl;) and ?,f?hz’h (g1,) as the subalgebras of Y, h,r,(gl;) generated

by e;,; and f;,1;, respectively. Let us consider the homomorphisms

ot }.}hzl?hg,hg(g[l) — }.}hzl?hg,hs (ghy), 07 : ?;zsl,ohg,ha(gll) - }-}hsl?hg,hg(gll)

defined on the generators by v; —> ¥;, e; — €41 (respectively ¢; — ¢;, f;— fiv1)-
Let
228 }.;;ll,hmh:; (gtl)®2 - }.}hl,hz,hs (gll)

be the multiplication. The following result is straightforward:

Proposition 5.1.5. Let us introduce P*(z,w) := (z—w—hy)(z—w —ha)(z—w—hy).
Then:

(a) The relation (Y0) is equivalent to

[¥(2), ¥ (w)] = 0.

(b) The relation (Y1) is equivalent to

(P (z,00))e(z) @ &5 + Pofy2)e; ®e(2)) =0 Vj€Zy.

(c) The relation (Y2) is equivalent to

Bfu(P“(o(_z),z)f(z) ® fj + Pz, U(_l))fj ® f(z))=0 VjEZ,;.
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(d) The relation (Y3) is equivalent to
05 - (w — 2)[e(2), f(w)] = $(z) — p(w).
(e) The relations (Y4)+(Y{') are equivalent to
P*(z,0*)(2)e; + P*(o+, 2)ejb(2) =0 Vj € Z,.
(f) The relations (Y5)+(Y5) are equivalent to

P(c™,2)Y(2)f; + P*(2,07)fi9(2) =0 Vj€Z,.
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5.2 Representation theory via the Hilbert scheme

5.2.1 Correspondences and fixed points for (A?)

We set X = A? in this section.

Let X be the Hilbert scheme of n points in X. Its C-points are the codimension
n ideals J © C[z,y]. Let P[i] C [],X™ x X"+ be the Nakajima-Grojnowski
correspondence. For i > 0, the correspondence P[i] C [, X x X+ consists of
all pairs of ideals (Jy, J2) of C[z,y] of codimension n, n + i respectively, such that
J, C Jy and the factor J;/J, is supported at a single point. It is known that P[1]
is a smooth variety. Let L be the tautological line bundle on P[1] whose fiber at a
point (Ji, o) € P[1] equals J;/J;. There are natural projections p,q from P[1] to
XM and XU correspondingly.

Consider a natural action of T = C* x C* on each X" induced from the one
on X given by the formula (ty,t5)(z,y) = (t1 - 7,22 - y). The set (X™)T of T-fixed
points in X[ is finite and is in bijection with size n Young diagrams. For a size n
Young diagram A = ()g,...,As), the corresponding ideal Jy € (X )T is given by
Jr = Clz,y] - (CzMy® @ - - - @ Cary* @ CyF).

Notation: For a Young diagram )\, let A\* be the conjugate diagram and define
|A| == 3> A;i. For a box O with the coordinates (i,7), we define ax((J) := A; —
i, [,(O) := X! — j. We denote the diagram obtained from A by adding a box to its
j-th row by A + 0J; or simply by A+ 7.

5.2.2 Geometric U, 4,4 (gl;)-action I

We recall the key theorem from [FT1] (see also [SV]).
Let ' M be the direct sum of equivariant (complexified) K-groups: ‘M = p, KT(XM).
It is a module over KT(pt) = C[T] = Cl[t1,t2]. We define

M := "M ®xrp) Frac(K" (pt)) ="M @ity 1) C(t1, t2)-

It has a natural grading: M = @, M., M, = KT(X™) ®gr(p) Frac(KT(pt)).
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According to the localization theorem, restriction to the T-fixed point set induces an

isomorphism
KT(X) @xcree) Frac(K™(pt)) > KT(X™)T) @xrpe) Frac(K T (pt)).

The structure sheaves {A} of the T-fixed points J (defined in Section 5.2.1) form
a basis in @, KT((X™)T) @ () Frac(KT(pt)). Since embedding of a point J into
XU is a proper morphism, the direct image in the equivariant K-theory is well
defined, and we denote by [A\] € M the direct image of the structure sheaf {\}. The
set {[A]} forms a basis of M.

Let § be the tautological vector bundle on X™, whose fiber S}s is naturally iden-
tified with the quotient C[z,y]/J. Consider the generating series a(z), c(z) € M(2)

defined as follows:

a(2) =A%, (8) = >_ A @)](-1/2),

>0

c(z) := a(zt)a(ztr)a(zts)a(zt7 ) ta(zt; ) ta(zty )7, where ts := 7151

Finally, we define the linear operators e;, f;, 1,&;‘ (t€Z,jEZy)on M:

e; = q*(L®i & p*) . Mn — Mn+17 (5-1)
fi = p*(L®(i_1) ® Cl*) : Mn — M, -1, (52)
+ = + _Fr 1-— t3z_1 * F1
PE(2), = D PELT = @) ) € M[[F], (5.3)
r=0

where y(z)* denotes the expansion of a rational function v(z) in z¥!, respectively.

Theorem 5.2.1. The operators e;, f,-,z/z;t, defined in (5.1)-(5.8), satisfy the rela-
tions (T0)-(T6) with the parameters g¢; = t;,1 < i < 3. This endows M with the

structure of a Uy, 4, 4 (8l,)-representation.

This theorem is proved in [FT1] modulo a straightforward verification of (T6)
(see [FFIMM1]).
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5.2.3 Geometric Yi, s, 1, (gl;)-action I

We provide a cohomological analogue of Theorem 5.2.1.

Let 'V be the direct sum of equivariant (complexified) cohomology: 'V = @, Hp(X ™).
It is & module over Hy(pt) = C[t] = C[s1, s2], where t is the Lie algebra of T. We
define
V = 'V ®pspr) Frac(Hy(pt)) = 'V ®csy,52] C(51, 52)-

It has a natural grading: V = @, Va, Vi = H3(X™) ®pz(pr) Frac(Hy(pt)). Ac-
cording to the localization theorem, restriction to the T-fixed point set induces an

isomorphism

H(X™) @pug oy Frac(Hi(pt)) — H((X™)T) @y or) Frac(Hz(pt)).

The fundamental cycles [\] of the T-fixed points Jy form a basis in
D (X)) ®ny o) Frac(Hr(pt))-

Since embedding of a point Jy into XM is a proper morphism, the direct image in
the equivariant cohomology is well defined, and we will denote by [A] € V|5 the direct
image of the fundamental cycle of the point Jy. The set {[A]} forms a basis of V.

We introduce the generating series C(z) € V[[z7]] as follows:

C(z) == (Ch(gtl_l’ —2Nch(Fty", —2)ech(Fts", —z‘l))+
2= ch(Fty, —z~1)ch(Fta, —z~1)ch(Fts, —271) ’

where ch(F, ) denotes the Chern polynomial of F. We also set s3 := —s1 — 2.

Finally, we define the linear operators e;, f;,%; (j € Z4) on V:
6_7' - q*(CI(L)j : p*) : Vn - V';H-ly (1’)

fi=polar(L)Y -q") : Vo= Voo, (2)
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D(2))y,, =1+ 818085 bz 7" = ((1 - 53/2)C(2))" € V,[[z71]). 3)

r=0

Theorem 5.2.2. The operators e;, f;,;, defined in (1')-(8), satisfy the relations (Y0)-
(Y6) with the parameters h; = s;,1 < i < 3. This endows V with the structure of a

?hl ha ks (8l1)-Tepresentation.
Let us compute the matrix coefficients of e;, f;,%; in the fixed point basis.

Lemma 5.2.3. Consider the fized point basis {[A\]} of V.

(a) The only nonzero matriz coefficients of the operators ey, fi are as follows:

e o (()\,, - 1)81 + (’L -— l)Sz)k . ()\J - /\i -+ 1)81 + (_] —i+ 1)82
AT G+ 52) (= N+ st + (1 — 9)s2) 1t Qg = M+ Dsi+ (G — i+ Dsz’

izl (

()\isl -+ (2 - 1)52)k(()\i - )\1 + ]. 81 + 282) +1 + 1)31 + ('L - )82
fk[)\—i—i,A] = H )\ —

81+ s2 o1 A+ 1)s+ (2 —F)se

(b) The eigenvalue of ¥(z) applied to [A] equals

Z

53 (
1—-=
(( z) o (1= L@;u)(l _ x(Di+sz)(1 _ x(D)+s3)

z

1 - XOayq _ x@eny(g X<”"”)>+

where x(0;;) = (i — 1)y + (j — 1)s2 for a bozx U;; staying in the j-th row and i-th

column.

This lemma is a cohomological analogue of [FT1, Lemma 3.1, Proposition 3.1].
Using this result, proof of Theorem 5.2.2 reduces to a routine verification of the
relations (Y0)-(Y6) in the fixed point basis. The only non-trivial relation is actually
(Y3). A similar issue in the K-theory case was resolved by [FT1, Lemma 4.1]. We

conclude this section by proving an analogous result.

Lemma 5.2.4. Let us consider the linear operator ¢; ; := [e;, f;] acting on V.

(a) The operator ¢ ; is diagonalizable in the fized point basis {[\]} of V.
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(b) For any Young diagram X, we have ¢i;([A]) = Yissy, - [A], where

k it
=523y [ Wt cutate) ytnt @Ky
’ =1 1<j<k—1 (Y — y5) (Y5 — ¥i + 1) —1; + (B — 1)s2
k j i
__51—2 Z (yi + 31)m ]I'I (y -y + 32)(?;/1 —Y; + 81+ 82) Y; + 28, + (2 k)Sz
i=1 1<j<k—1 (Y5 — ¥i) (Wi —y; + 51) —y; —s1+ (k= 1)s2

)

Here y; == (\; — 1)s1 + (i — 1)s2 and k is a positive integer such that Ay = 0.

(c) For any Young diagram X, we have:
Yo\ = _1/51527 Ny = 0, Y21y = 2')\|

Proof.
Parts (a) and (b) follow from Lemma 5.2.3(a) by straightforward calculations.
Let us now prove (c). First we observe that for m > 0, the expression for 7, in
(1) is a rational function with simple poles at y; = y;, ¥; = y;+51, ¥ = (k—1)s2, yi =
—s1 + (k — 1)s;. But an easy counting of residues shows that there are actually no
poles and the resulting expression is an element of C(s1, s2)[y1,%2,...]. Let us now

consider each of the cases m =0, 1, 2.

o Case 1: m = 0.

Since |, is a polynomial in y; of degree < 0, it should be just an element of
C(s1, s2) independent of A. Evaluating at the empty diagram, we find yo, = Y0, =
—1/s183.

o Case 2: m = 1.

First note that v, is a polynomial in y; of degree < 1. Further for any i the
limit of the expression (f) for 7 = 1 as y;, — oo while y; are fixed for all j # 4o, is
finite. Thus vy, is actually a polynomial of degree 0, that is, an element of C(s1, 52)

independent of X. Evaluating at the empty diagram, we find vy, = 11, = 0.
o Case 3: m = 2.
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Recall that 77, is a polynomial in y; of degree < 2. However, arguments similar
to those used in the previous case show that it is a degree < 1 polynomial in y; over
C(s1, 82)- Let us compute the principal linear part of this polynomial.

The coefficient of y;, equals the limit 513?0 %’ygb as y; is fixed for j # ip and
Yi, = & — 0o. Formula () implies that this limit is equal to 3—21- Therefore, there exists
a A-independent F(sy, s3) € C(sy, 52) such that vy, = f;(’yvl +P+...)+ F(s1,8) =
2|\ + F(s1, s2), where §; = y; — (( — 1)s2 — 81)'. Evaluating at the empty Young
diagram, we find F(sy, s2) = 0. The equality 2|, = 2|A| follows. O

Arguments similar to those from [FT1] prove ym|, = ¥m,,-
Remark 5.2.1. Comparing (3') with Lemma 2.3(b), we find the next ¢-coefficient:

Wy, =6 x(0) + 2(s1 + s2)|Al.
Oex

In particular, (s + s3i2) corresponds to the cup product with ¢;(F). This operator
was first studied by M. Lehn. It is also related to the Laplace-Beltrami operator
(see [Na2, Section 4]).

! Note that for any Young diagram ), the sequence {#;} stabilizes to 0 as i — oo, unlike {y;}.
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5.3 Representation theory via the Gieseker space

The Hilbert scheme (A%) can be viewed as the first member of the family of the
Gieseker moduli spaces M(r,n), corresponding to r = 1. The purpose of this section

is to generalize the results of Section 2 to the case of higher rank r.

5.3.1 Correspondences and fixed points for M (r,n)

We recall some basics on M (r,n).

Let M(r,n) be the Gieseker framed moduli space of torsion free sheaves on P? of
rank 7 and ¢, = n. Its C-points are the isomorphism classes of pairs {(E, ®)}, where
E is a torsion free sheaf on P? of rank r and c;(E) = n which is locally free in a
neighborhood of the line lo, = {(0: 2 : z2)} C P2, while @ : E |, —O" (called a
framing at infinity).

This space has an alternative quiver description (see [Nal, Ch. 2] for details):
M(r7 n) = M(T1 n)/GLn(C)? M(Tv n) = {(Bl,BZv i:j)l[Bh B2] +ij = 0}8’

where B;, B, € End(C*),i € Hom(C",C"),j € Hom(C",C"), the GL,(C)-action is
given by g - (B1, Ba,i,j) = (¢B1g7 Y, 9B2g7%, gi,jg™ "), while the superscript s sym-

bolizes the stability condition
“there is no proper subspace S C C" which contains Im ¢ and is By, B; — invariant”.

Consider a natural action of T, = (C*)? x (C*)" on M(r,n), where (C*)* acts
on P? via (t1,t2)([z0 : 21 = 22]) = [20 : t121 ® ta20), while (C*)" acts by rescaling the
framing isomorphism. The set M (r, n)Tr of T,-fixed points in M (r, n) is finite and is in
bijection with r-partitions of n, collections of r Young diagrams (X!, ..., \") satisfying
IAL|+...+|A"| = n (see [NY, Proposition 2.9]). For an r-partition A = (A%,...,\") k- n,
the corresponding point & € M(r,n)T is given by E5 = Ju @ - - @ Jir, where ® is
given by a sum of natural inclusions Jy,_ < O

Let us recall the Hecke correspondences, generalizing the correspondence P[1} from
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Section 2. Consider M(r;n,n+1) C M(r,n) x M(r,n+1) consisting of pairs of tuples
{(B®,BP i® j®N} for k = n,n+1, such that there exists £ : C**! — C” satisfying

¢B{™ = B¢, ¢B{™Y = BiY¢, gl =4, j0r) = g,

The stability condition implies ¢ is surjective. Therefore S := Ker £ C C"*! is a
1-dimensional subspace of Ker j™*V) invariant with respect to B§"+1),B£n+1). This
provides an identification of M(r; n, n+1) with pairs of (BI"*Y, B+ j(n+1) j(nt1)) ¢
M(r,n + 1) and a 1-dimensional subspace S C C"*! satisfying the above conditions.

Define the Hecke correspondence
M(r;n,n+1) C M(r,n) x M(r,n+1) = M(r,n) x M(r,n+1)/GL(C) X GLp41(C)

to be the image of M(r;n,n + 1). The set M(r;n,n + 1)™ of T,-fixed points in
M(r;n,n + 1) is in bijection with r-partitions A F n, i - n + 1 such that M C 7 for
1 < j < r; the corresponding fixed point will be denoted by &3 ;. We refer the reader
to [Na3, Section 5.1] for more details.

Let L, be the tautological line bundle on M (r;n,n+1), §, be the tautological rank
n vector bundle on M(r,n). There are natural projections p,, q, from M(r;n,n+1)
to M(r,n) and M(r,n+ 1), correspondingly. Our further computations are based on

the following well-known result:

Proposition 5.3.1. (a) The variety M(r;n,n + 1) is smooth of complex dimension
2rn+r+ 1.
(b) The T,-character of the tangent space to M(r,n) at the T,-fized point & equals

T)-\ = Z (Z t].—a)‘b(D)tlz,\a(D)‘l-lﬁ + Z tzlua(EI)+1t;l)‘b(D)&) .
ab=1 \OeA® Xa 5w Xa
c) The T,-character of the fiber of the normal bundle of M(r;n,n+1) at & ; equals
i
Nip=—titz+ Z Z tl_“*"(m)tlz““(g)ﬂﬁ n Z t(;,,a(u)ﬂt;sz(m)ﬁ
a,b=1 \Oeie a Dept Xa
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5.3.2 Geometric U,, 4,4 (gl;)-action IT

We generalize Theorem 5.2.1 for a higher rank 7.
Let 'M" be the direct sum of equivariant K-groups: 'M" = @, K*(M(r,n)). It

is a module over K™ (pt) = C[T,] = C[t1,t2, x1,-- -, x-|]. We define

M= "M" ®KTr(pt) FraC(KTr (pt)) ='M" ®C[t1,t2,X1,---er] C(th b2, X1, - ’XT)'

It has a natural grading: M™ = @, M7, M = K™ (M(r,n))® - oy Frac(K ™ (pt)).
According to the localization theorem, restriction to the T,-fixed point set induces

an isomorphism

K™ (M(r,n)) ® k(o) Frac(K™ (pt)) —> K™ (M(r,n)"") @ (pr) Frac(K™ (pt)).

The structure sheaves {\} of the T,-fixed points £; (defined in Section 5.3.1) form
a basis in @,, KT (M (r,n)™) ® - (o) Frac(K ™ (pt)). Since embedding of a point &5

into M (r,|)]) is a proper morphism, the direct image in the equivariant K-theory is

well defined, and we denote by [A] € M

5 the direct image of the structure sheaf {*}.
The set {[\]} forms a basis of M".

Consider the generating series a,(z), ¢,.(z) € M"(z) defined as follows:

a,(2) = ALy, (8) = Y [N EII(-1/2),

i>0
cr(2) = a(zt1)a,(2tz)a, (2ta)a, (2t h) o (2t ) A (2t ) T
Finally, we define the linear operators e;, f;, 1/1;': (i€2,j€Zy)yon M™:
& = (LY ®p;) 1 My — My, (5.4)

fi=pn(LP0q)) : My = My, (5-5)
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V(@) g, = Zd’iﬁr = ( 1)titoxa - XTH—l—E%- Cr(z)> e M:[[=¥].
- (5.6)

Theorem 5.3.2. The operators e;, f,,t/) defined in (5.4)-(5.6), satisfy the rela-
tions (T0)-(T6) with the parameters ¢; = t;,1 < i < 3. This endows M"™ with the

structure of a Uy, 4, 4(al;)-representation.
Let us compute the matrix coefficients of those operators in the fixed point basis.

Lemma 5.3.3. Consider the fized point basis {{\|} of M". Define X(a) = tl tk ot

(a) The only nonzero matriz coefficients of the operators e,, f, are as follows:

1 a 1

S (Py ﬁ 21— titox ™ /x
p(A-C, 1,- ]
i 1-— tl t2 pabeiaie 1—¢ X(a)/x( )

. (tlx(l))p— 1— tltZXJl)/X(a)
PO = W 'a=1 kIzl 1—¢t xf) /@
where \ & Dg- denotes the r-partition obtained from X\ by adding/erasing a boz in j-th
row of Al.

(b) The eigenvalue of 1*(z) applied to [\ equals

+
- ta /e 17 17 (L tX(@/2( - 'X(0)/2)(1 = 5 (D)/2)
(TH 7z L S nema—ma/me—mor) ) |

where T = (—1)"t17'¢5  x1 ... xr and x(0F;) =t x;? for a boz 00¢; staying in
the j-th row and i-th column of \°®.

This lemma allows to prove Theorem 5.3.2 just by a straightforward verification
of the relations (T0)-(T6) in the fixed point basis. The only nontrivial relation (T3)
can be verified analogously to the case of (A2)[". We will sketch the proof at the end

of this section.

5.3.3 Geometric th,hz,ha (gl;)-action II
We generalize Theorem 5.2.2 for a higher rank r.
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Let 'V™ be the direct sum of equivariant (complexified) cohomology: V™ =
P, Hy, (M(r,n)). It is a module over Hy (pt) = C[t;] = C[s1, 52,21, ..., .|, Where
t, = Lie(T,). We define

V7= V" ®nuy (o) Frac(Hy, (pt)) ="V" &cloy,s0,31,2.) C(51, 82,71, - -, 7).

It has a natural grading: V" = @, V;, Vi = Hy (M(r,n))®uns () Frac(Hy_(pt)).
According to the localization theorem, restriction to the T,-fixed point set induces

an isomorphism
Hz (M(r, 1)) ®mz (o) Frac(Hz, (pt)) — Hy, (M(r,n)™) ®my_(or) Frac(Hg, (pt)).

The fundamental cycles [\] of the T,-fixed points & form a basis in the direct
sum P, Hy (M(r,n)™") @uy (o) Frac(Hy, (pt)). Since embedding of a point &5 into
M(r,|X|) is a proper morphism, the direct image in the equivariant cohomology is
well defined, and we will denote by [\] € V5 the direct image of the fundamental
cycle of the point &. The set {[A]} forms a basis of V".

We introduce the generating series C,(z) € V7[[z7!]] as follows:

C,(z) = <Ch(%rtfla _Z—l)Ch(Srt51> "Z_I)Ch(grtglv —27') "
o(2) = ch(F t1, —z71)ch(F,ta, —z~1)ch(Frts, —271) ) )

Finally, we define the linear operators e;, f;,¥; (j € Z;) on V™:

e; = ar(ci(L) - p}) 0 Vi = Vi, (4)
fi= (0Pl - qp) s Vi = Vo, (5)
+
o0 T 1 -+ Tg—33
_ —r—1 ,__ z T —1
Q:b(z)lv,{ =1+ 518283 ;1/]7'2 = (g W . Cr(z)) c V;l [[Z ]] (6’)

Theorem 5.3.4. The operators e;, f;, ¢;, defined in (4 )-(6'), satisfy the relations (Y0)-
(Y6) with the parameters h; = s;,1 < i < 3. This endows V™ with the structure of a

Vi, haohs (84)-representation.
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Let us compute the matrix coefficients of those operators in the fixed point basis.

Lemma 5.3.5. Consider the fized point basis {[\]} of V. Define x,(ca) = (Af—1)s1+
(k - 1)52 — Tq-

(a) The only nonzero matriz coefficients of the operators e,, f, are as follows:

Wy ot o

a=1k=1 31+x(a) w§~” 7

et N =
PA-ON = 5 s,

T oo

0] (a)
31+x s1+ s+ —x),

fopao = (1) —I |||| . -
P+ A s1+82 ot s+ :cgl) —z®

(b) The eigenvalue of ¥(z) applied to [\] equals

(H 1+ Zazn H H (1— XQs1y(p _ x@csnyg X(D)~83)) +
x(O )
Pl = act e (1= XEE) (1 — XEE)(1 - xEte)

where x(OF;) = (i — 1)s1 + (j — 1)s2 — .

This lemma allows to prove Theorem 5.3.4 just by a straightforward verification
of the relations (Y0)-(Y6) in the fixed point basis. The only nontrivial relation is
actually (Y3). Its proof is based on the statement analogous to Lemma 5.2.4.

Corollary 5.3.6. We have

+o(z7%).

T83 832.’17]' + (;)8§+203|5\| - 53273? - ("' - 1)3§ij - (;)sg
2

22 23

5.3.4 Sketch of the proof of Theorem 5.3.2

The purpose of this section is to outline the main computation required to carry out
verifications of (T0)-(T6) in the proof of Theorem 5.3.2.

The verification of relations (T0, T1, T2, T6t) is straightforward just by using the
formulas for the matrix coefficients from Lemma 5.3.3(a). It is also easy to see that

the operators [e;, f;] are diagonalizable in the fixed point basis and depend on i + j
only: [es, f51((A) = Yiwsis - V-
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Next, we introduce series of operators ¢%(z) = 3 oo, ¢F 27", diagonalizable in the

fixed point basis and satisfying the equation

. 3(zfw) + _
[8(2)7 f(’LU)] - (1 __ tl)(l — tg)(l — t3) (¢ (w) - ¢ (Z))

Actually, this determines ¢§0 and ¢¢ — ¢, uniquely. Our next goal is to specify qb(f.

Lemma 5.3.7. We have

tity — 7L
(1 —t)(1 —t2)(1 — t3)’

s = (D716t R (Z DI X(D)) :

a=] a=1OeAe

Yoi; = (1) 'x1 - x

Proof.

Fix positive integers L, > A\{*. Applying Lemma 5.3.3(a), we find:

I=1 j=1 —t) X; X k#j (X )( )
N (x§”<1 xﬁ”t;-“tlxa -t xﬁ))
s\ -t (08—t - X))

i N () X=X L'tzx).kﬁ’ () — tatax) 0 — taxic)

=1 j=1 (l_ §-”— lt1 IXI_1 k) (Xx Y —t X]l))( (l) (l))

(1 — 5 OthLog2 (@) N0 (@)
X; (1= x5 ta *tiXa) (xx’ —titax; )(x5 —taXi )
H( 0} H { @y ) ©)

La S (1 i
a#l X; —t*h Xal w1l (X W -t XJ))(X()

where X\ = £}¥'#5~1x71. The result does not depend on the choice of {L,}.

(i) For s = 0, the right hand side of (V) is a degree 0 rational function in the
variables xk @ Tt is easy to see that it has no poles, in fact. Therefore, it is an element
of C(t1,t2, X1, - - - » Xr) independent of X. It suffices to compute its value at the empty
r-partition §. For A\ = @, we can choose L; = ... = L, = 1, while X\ = 71kt
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for £ > 1. Applying (©), we get

Yol = Yoy = — B 1-t H G tzxfl)(l —tixax()
=y, = 1 — = =
* ’ (1 —t1)? =1 1Xt - t2t1 Xz (tl 1Xz t— tl Xz )t X2t —x 1)
(-Dr1ts .X Z x—tite  (CUB 1=t
(1 — tl)(]. —t ) I=1 agl Xt — Xa (1 — tl)(l - tg) 1 - t1t2

where we used the identity >/, [, =% = 1 The first result follows.

(if) For s = 1, the right hand side of (V) is a degree 1 rational function in the

variables x @ It is easy to see that it has no poles, actually. Therefore, it is a linear
t1~+2tr+1

function. Its leading term equals (—1)"x1... X272~ - 201, EL‘ 1 Xgl). Hence, we

have:
tr+2tr+1 T

Y +c

- =1 ]:1

1 =X

for a constant C € C(¢y,t2, x1, - - ,xr) 1ndependent of A, where ¥ A{l) = (l) —t7 1t3 t Xt

Note that 37 _, Zmexx Q)= =1 Z t] (1+t1+ +t1 )Xa =2 EJ 1;_%~§l)_
On the other hand, C = ;. Applymg (9), we get

r

tit3 Y Y(1-t) H (t7 lxgl—tzxfl)(l—tlxaxfl)
A-t)2 & t;lx —taty g g

C=’71[~=—
¢ (t7 X —t Xal)(tl Xa _Xl )

-1 rt2t2 X1 — t1t2Xa -1 rt‘l‘+1t1‘+1 r B
(=1)¢t3 i Z H _ (=) xS
=1

1 —t)(1 - ta) < T U—t)1 -t

where we used 3 1_; +- [Tou X272 = w1 30, x; - The second result follows. O

Due to the first equality of this lemma, we can set

¢t = ()M Y L xe 65 = (D) htaxa - X

Next, we claim that ¢*(z) satisfy the following relations:

¢*(2)e(w)(z—qw)(z— w)(z—gsw) = —e(w)d™(2)(w—q12)(w—g2)(w—gs2) (5.7)

119



¢ (2) f(w)(w—qu2)(w—@2)(w—a2) = —f(W)d* (2)(z—qw)(z—qw)(z—gsw) (5.8)

The proof is based on straightforward computations in the fixed point basis.

Finally, relation (5.7) implies the following identity:

(1 — 17 % (04)/2) (1 — 5% (3)/2) (1 — t5'x(T5)/2)
(1 — t1x(T4)/2)(1 — tax(T5)/2) (1 — tax(0F)/2)

¢ (Digue = 9" (@i

Therefore,
() = 672D - el

Applying formula (Q) once again, we get:

¢t (2, = (85 + D _(1—t)(A —t2)(1 — ta) 1z ™)j; =

>0
— titaXa
(=1)"tatax1 - - - Xr + tat2(1 — trta)X Z - Xt~ titaXa _
=1 a#l Xa — X1
1—titaxiz
—1Yt1t .
( ) 1t2Xa 1:[( g
where we used the identity
X1 — ux T ou— L
u) @ _ Xz
Zl"l/XlZ) 1111_;%

This proves ¢*(z) = %*(z). The same arguments prove ¢~ (z) = ¥~ (z). The relation
(T3) follows. On the other hand, relations (5.7) and (5.8) imply that the relations
(T4,T5) also hold.

This completes the proof of Theorem 5.3.2.

5.3.5 Sketch of the proof of Theorem 5.3.4

The proof of the cohomological counterpart of the previous result is completely anal-
ogous and is parallel to the proof of Lemma 5.2.4.

The verification of the relations (Y0, Y1, Y2, Y6) is straightforward. To verify
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the remaining relations, we follow the same pattern as above. It is easy to check

that [e;, f;] is diagonalizable in the fixed point basis and depends on i + j only:
[es, f5](A]) = Yitilx [A].

Lemma 5.3.8. We have Yoi; = 7=, N3 = 5.5 (2oa=1 Za — (3) (514 52))

8152

72|-~2|)\l——(zw —(r—1) 81+82)Z$a (g) 51+32)2).

Proof.
Applying Lemma 5.3.5(a), we find:

78Ix =

r k<L, ; (1 ! ! 1
ZZ S@ PO Dot b ) - )~ s s — o)~ o)

] I 0) ] ]

=1 j=1 ”"’5')'*"’:‘!52_“’! ki (zﬁ')—l’ — s1)(z), v g'))

H xg_z) + (1= Ly)sy + 81+ 7a) ) ﬁ (x§-‘) - xfc“) — 51 — 89)(wy, (@) :c(l) S2) B

a#l x(l) —L aS2 + Tg k=1 (xgl) - .’L',(ca) — 81)( (a) IL'(I))

" @ ) + (1 -L)s; + 25 + @ k<L (Ig) — :E(-l) — 8 — )(:cg-l) - xg) — 52)
> Z z (z; "+ M 11 Q) <t) O _ 0 x
I=1 j=1 —z; + Lisg — 81— T (z s1)(z;’ — zy)

—
H (a:y) + (1= Ly)so + 251 +x,) ' La (xSf) (l) — 81— s2)( g :cfc“) - 32))
( ]
z; )

pby O Losy + 81+ Z4 ke (wff) o — s1)(a)) — 2

(®)

where x,(c“) = (A — 1)s1 + (k — 1)sp — z, as before. The right hand side of (#) is a
degree s rational function in the variables xfca). Actually, it is easy to see that it has
no poles for s > 0.

(1) For s = 0, we therefore get an element of C(sy, s2,21,...,;) independent of
A. Using (#) once again, we get Yo, = Yol = —T/ 5152

(ii) For s = 1, we therefore get a linear function. But its leading term is zero, in
fact. So yy; = 71;- Using (W) once again, we get 71, = ﬁ (> za — (5) (51 + 52))-

(iii) For s = 2, we therefore get a quadratic function. But its leading quadratic

part is zero, in fact. So 7y is a linear function. Similarly to the proof of Lemma 5.2.4,
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%) ~(a)

we find that the leading linear part is actually 2 = am1 o1 T = 2|\|, where x( “ .

2 — (—s1 + (k — 1)s3 — z,). Hence, Yoi;, = 2|A| +2);- Applying (#) once again, we
get the last formula. |

Using this lemma together with computations in the fixed point basis, it is straight-
forward to check that {¢;,e;, fi}icz, satisfy the relations (Y4,Y4',Y5,Y5’). This in
turn implies

(z — x(03) + s1)(z — x(O5) + s2) (2 — x(O3;) + s3)
(2 = x(T) = s1)(z = x(O) — s2)(z — x(T) ~ s3)’

ZONIE IO

where ¢(2) 1= 1403 ;5o #:27". Therefore, ¢(2)); = #(2)y -Cr(z)r;. Applying (&),

we get:

by =1 LS [[ A

z>0 =1 az#l

r
1 Ty — Ty — 81 — 82
1-— 83 E T H .
z T -
=1 Lo, Tt = Za

It remains to use the identity 1+ u ;_, ;11—17 [l 52 =11 zzx‘:".

This proves ¢(z) = ¢(z). The relations (Y3-Y5’) follow. Theorem 5.3.4 is proved.
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5.4 Some representations of Uy, 4 4 (gl;) and Yi, s, 1. (gl;)

In this section, we recall several families of Uy, 4, 4 (g, )-representations from [FFJMM1,
FFIJMM?2] and establish their analogues for the case of Y'hl,hz,ha (gf;). This should be

viewed as an analogy between the representation theory of U,(Lg) and Yx(g).

5.4.1 Vector representations

We start from the simplest representations V(u) and V(u).

The main building block of all constructions is the family of vector representations

of U

q1.92,93

(gl;), whose basis is parametrized by Z (see [FFJMM1, Proposition 3.1]).

Proposition 5.4.1 (Vector representation of Uy, 4, 4 (g%)). For u € C*, let V(u) be
a C-vector space with the basis {[u];};ez. The following formulas define Uy, 4,.0,(ak)-
action on V (u):

e(2)[uls = (1 — @1)*6(giw/2) - [wina,
F@)uli = (g7 — 1)7'6(¢i u/z) - [ui-s,

W (2)uls = ((z — digou)(z — qziq3u))i s

(z — giu)(z — ¢ 'w)

Analogously to that, we define a family of Y4, s, 4, (8l;) vector representations:

Proposition 5.4.2 (Vector representation of Y, s, ,(g%))- For u € C, let *V (u) be
a C-vector space with the basis {[u];};cz- The following formulas define Y, n, n, (g;)-
action on *V (u):
Ol = 58 Gt + 0/l = (e )
€\2)Uf; = thy TUu)/2)Uliy1 = B —u—ihl) Ui+,

hIZ 1(2

FOlul = == = Db+ /Dlidcs = () e

12 —u—(

_ (= @Ryt by w)(z — (b + hs+w)\ T
¢(z)[U]z—( (z — (ih1 + w)(z — (G — 1)y +u)) ) s

where 6% (w) ;== 14+w+w? +...= ()",

1—w
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5.4.2 Fock representations

Next, we introduce a family of Fock modules F'(u) and *F(u).
A more interesting family of Uy, 4, ¢, (8l;)-representations, whose basis is parametrized

by all Young diagrams {\}, was established in [FFJMM1, Theorem 4.3, Corollary 4.4].

Proposition 5.4.3 (Fock representation of Uy, g, (g%)). For u € C*, let F(u) be a
C-vector space with the basis {|\)}. The following formulas define Uy 40,05 (811) -action
on F(u):

(1—g Mgy 1)(1 @ A’HQ’ M S(qigs tu/z
R S L
izl j=1 1“11 )(1 q 3% ) o
Aip1— 00 Aj—Ai j—i j+1—Xi _j—i
fopy = S LB T ] Gl e
- Ait1—Ai+1 Ajr1—Ai i—1 Aj—Ai _j—i
= l-a o 92 j=i+1 1—g™ HQ% +1)(1 -q’ * %)
S i—1 z 1
—1

A1—1

o0 i i Aip1—1 1—
’(/):t(z)l)\) — ( —qQ :12 7 u H (Z - Qi‘{ng)(z —qQ 1 z_ u)) . IA>

A
- Q1 u 4 (z —q 2“)(z - ql 9 )

Remark 5.4.1. The Fock module F(u) was originally constructed from V(u) by us-
ing the semi-infinite wedge construction and the coproduct structure on Ups 2.5 (81)

defined by:
A :e(2) = e(2)®1+9Y7 (2)®e(2), f(2) = FR)@UT (2)+10f(2), v*(z) — PE(2) 9= (2).

Let us also recall the relation between F'(u) and M from Theorem 5.2.1.

Remark 5.4.2. (a) According to [FFJMM1, Corollary 4.5], there exist constants {c)}
such that the map [A] — cx|)\) establishes an isomorphism M——F(1) of Uy anras (81)-
representations.

(b) Let ¢, be the shift automorphism of Uy 42,05 (8Y) defined on the generators by

+

+ +j :
er}—'}ur'era fr’——)ur'frv ij'_)u]' j)TEZ)]€Z+'
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Then the modules F'(u) and V(u) are obtained from F(1) and V(1) via a ¢,-twist.
This construction also has an analogue in the Yhhhz,ha (gly)-case.
Proposition 5.4.4 (Fock representation of Yi, s, 4s(8l1))- Foru € C, let *F(u) be a

C-vector space with the basis {|\)}. The following formulas define Yy, h, 1, (gl,)-action
on *F(u):

i-1

(M =2A)h+(E =7 —Dh) (M = Aj+1Dh1+ (E— 7+ 1)h2)
ZH (M = M)y + (0 = 5)h2) (i — A + Dk + (8 — j)ha)

1”’““) A,

— X+ Dhi 4+ (G =i+ Dh) (M1 — X)ha + —z)hQ)
W =523 H M F D Gt D)y At G = )ha)

e(2)|A) =

121 j=1

z

ot ()\,-hl—i-(i—

i>1 j= 1+1 ]+1

Ao =Mhy oy (Qim Dt G = Dhatul )
()‘i+1 -+ l)hl + hg 4 ,

17 (2= Nk 4 ihg + u)) (2 — (M1 — DRy + (i — 1)ha + u))
Y= = (H (z = (Miprhy + iz + )z — ((; 1)k + (i — g +u)))

i=1

(™)

The proof of this proposition follows from the following lemma:

Lemma 5.4.5. (a) Foru € C, there exists the shift automorphism ¢2 of Y, h, 1, (1)
such that ¢% : e(z) — e(z —u), f(2) = f(z—u), ¥(z) = ¥(z — u).

(b) The Fock representation “F(u) is obtained from *F(0) via a twist by ¢2.

(c) There ezist constants {c}} such that the map [A] — c§|)) establishes an isomor-

phism V-—"5°F(0) of Yh, n, s (al)-representations, where V is from Theorem 5.2.2.

Proof.
Parts (a) and (b) are straightforward.
We define ¢ by the following formula:

i—1 A

)\ h1+ i —3)ho

i>1 p—O ‘ i>2 j=1p=1
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It is a routine verification to check that the map [\ — c}|)) intertwines the formulas

for the matrix coefficients of e;, f;,¢; from Lemma 5.2.3 and Proposition 5.4.4. I

Definition 5.4.1. We say that a representation U of Yy, s, ,(gl;) has central charge

(co,c1) (c; € C) if central elements 9; act on U as multiplications by ¢; for ¢ = 0, 1.

Thus *V (u) has central charge (0, -hl—l> , while  F'(u) has central charge (—71—117;2-, — hl"h2) .

5.4.3 The tensor product of Fock modules F(u)

In this section, we express the representation M" from Section 3 as the appropriate
tensor product of Fock modules F(u).

Let A be the formal comultiplication on Uy, g, . (gl;) from Remark 5.4.1. This
is not a comultiplication in the usual sense, since A(e;) and A(f;) contain infinite
sums. However, for all modules of our concern, these formulas make sense. Recall the
Uqlm,qa (gl )-representation M", constructed in Theorem 5.3.2. Let « be the automor-
phism of U, 4, 4 (g!,), defined on the generators by (e;) = e;, k(fi) = T~ fi, k(¥F) =
T~y where T = (t1t2)" 'x1 - - - X»- Let M" be the U, 4, 4, (gl;)-representation, ob-

tained from M" via a twist by .

Theorem 5.4.6. There exists a unique collection of constants c5 € C(t1,t2, X1, - -, Xr)
with c; = 1 such that the map [A] = [(A,..., A)] = 5 - |A) ® --- ® |\") establishes
an isomorphism M™"5F(x1) ® - -+ ® F(x») of Uy 0.4 (8l))-representations.

Let us first explain why the formal coproduct A endows the tensor product F(x1)®
F(x2) (the case r > 2 is completely analogous) with a structure of a Uy, 4 ¢ (g1)-

module. In order to make sense of the formal coproduct in this setting, note that
a 0
@) = arc? (22) n+0 100 =T tros (*2)n-o.

where axn, bag € C(t1,t2, X1, - - - Xr), the first sum is over OO ¢ X such that A + O is
a Young diagram, while the second sum is over O € A such that A — 0 is a Young

diagram.
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According to the coproduct formula, we have

Ale(2)(IN) @ [3?)) = e(2)(IM)) @ [X%) + 97 (2) (1) @ e(2)(|A%)).

The first summand is well defined. To make sense of the second summand we use the

formula
9(2)6(a/z) = g(a)é(a/z). (5.9)

Recall that 9% (2)(|A)) = 1a(2)%-|)\), where v, (2) is a rational function in z depending

on A. Combining this with (5.9), we rewrite

- a
N ©e)(8) = Y arnenax@ (X2) -y o 32+ D).
&
Analogously we make sense of the formula for the action of f; on F(x1) ® F(x2)-
Finally, the formula A(y%(z)) = ¥*(2) ® ¥*(2) provides a well-defined action of ¥

on F(x1) ® F(x2)-

Proof of Theorem 5.4.6.

Due to Remark 5.4.2, we identify F(x;) ~ M %% the twist of M by the shift
automorphism ¢, ,. For any r-partition A = (\!,..., "), Lemma 5.3.3(b) implies that
the eigenvalue of /() on [A] € M" equals the eigenvalue of %/*(z) on [A1)®- - -®@|\") €
F(x1) ® --- ® F(x,). Hence, for any constants c; the map [A\] = cx- A1) @ --- ®@ |A")
intertwines actions of {15 };o.

Consider constants c5 defined by ¢z = 1 and ¢;5, /c5 = d5 o, where
3 e}

(l) (a) -1 o (l) tl 1t2 1X§:')

dm, = (1)l H H < ‘Xk(a) HH B tflxﬁf) . (5.10)

a=lt1k=1 X; — 02Xk = aZik=1 Xj

Here x{™ = ti‘;’n—ltg_lx;ll and A 4+ O0% denotes the r-partition obtained from X by
adding a box to the j-th row of A*. Note that X;T)l taxT™ for p > |n| and
so the infinite products of (5.10) are actually finite. It is straightforward to check

that cy are well-defined, that is, d5 -« satisfy d;\+D;c o ds or = ds o D;d; ot - Using
s *~a i 'a Y—a
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Lemma 5.3.3(a), it is straightforward to check that the map [A] — cx-[A\1) ®---®@|X\")

intertwines actions of ¢; and f; as well. The result follows. O

5.4.4 The tensor product of Fock modules *F(u)

In this section, we express the representation V" from Section 3 as the appropriate
tensor product of Fock modules ®F'(u). To formulate the result, we need to define the
tensor product Wi @ W> of yhl,hz,hs (g, )-representations W;.

The action of ¢(z) on W, ® W, is defined via the comultiplication A(3(z)) =
¥(z) ® (2), that is, ¥(2)(w' ® w?) = P(2)(w') @ ¥(2)(w?) V w' € Wi, w? € Ws. To
define the action of e(z), f(z) on W1 ® Wa, we should restrict to a particular class of
representations. A Yi, h,.h, (gl )-representation W is called admissible if there exists
a basis {wq }aer of W such that

0 e(2)(Wa) = Sover B Naer/2Wet, F(2)(Wa) = Tves =26+ Aavna/ 20
for some Cq o) daa, Ao € C. For each a, both sums have only finite number of
nonzero summands.

o P(2)(ws) = Yw (e, 2)* - w, for a rational function yw (o, ®) defined by

a o Ca’ Ca o da'
'yw(ao-—l—i—agz — 32
- Aoz” a a'

a"EI

Ezample 5.4.1. The modules 2V (u) and *F(u) are admissible.

Let Wi, W, be admissible Y}, , »,(gl;)-representations with the corresponding
bases {w}}aes and {w}}ges. Consider the operator series e(z), f(z) on W1 @ W,
defined by

Cl ’ )\1 ’ Cz ’ Oz,)\2 ’ A2 ’
e(2)(wa®w3) := Z O‘Z"" ot (%) w},@w?,—l—z 5 (@ N )5+ ( ﬂz‘ﬁ ) WiRWS,.

z
o’el pgled

d2 7 /\ 1t aan')’W (6, Aa” @ A}I o
FR)(wiew]) =>_ Jiz’f’_5+( EE Ywh@wh+ Y > )5+( ) Lewd.
ﬁle‘]‘ a”EI

Remark 5.4.3. Those formulas are well-defined only if for any 3’ such that c3 55 7 0,

the function yw, (e, z) is regular at z = A} 5 for any o € I, and similarly for the
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summand with yw, (8, z).

We can depict those by

Ale(2)) = e(z) @ L + (o) @ e(2), A(f(2)) = F(2) @ ¢(e) +1® f(2),

where 1)(e) indicates that we plug in the argument of the corresponding §*-function.

The following is straightforward:

Lemma 5.4.7. If Wy and W, are admissible Yy, p, n, (g1, )-representations and the as-

sumptions of Remark 5.4.8 hold, then the above formulas define an action of Ya, py hs (84)

on W, @ Ws.

More importantly, it might be possible to define an action of Y3, 4, ,(gl;) on a
submodule or a factor-module of W; ® W5, even when the assumptions of Remark 5.4.3

fail.

Lemma 5.4.8. Let S be a subset of I x J such that e(2)(w} ® w3), f(2)(w} ® w})
are well-defined (in the sense of Remark 5.4.8) for any (o, 8) € S and satisfy one of
the following conditions:

(a) For any (a,f) € S,(,8) ¢ S, wh ® wj does not appear in e(2)(wy ®
wp), f(2)(wg ® w3).

(b) For any (a,B8) € S,(,8) ¢ S, wl, ® wh does not appear in e(z)(wh @
w), f(2)(wy ® wp).
Then the above formulas define an action of Ya, p,n,(gly) on the space with a basis
{ws ® Wi}apes-

Now we are ready to state the main result of this subsection:

Theorem 5.4.9. There exists a unique collection of constants c§ € C(s1, 82, %1, - -, Ty)
with ¢§ = 1 such that the map A =[O .., A= - (A @--- @A) establishes
an isomorphism V' *F(z;) @ - - - @ *F(x,) 0f Yy hy.hs (1) -representations.

Remark 5.4.4. AsV ~ V! we have V" ~ V(z;) ® --- ® V!(z,). In other words,
the representation of S}hl,hz,ha (gl;) on the sum of equivariant cohomology groups of

M(r,n) is a tensor product of r copies of such representations for (A2)I.
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5.4.5 Other series of representations

We recall some other series of Uy, 4, 4, (g, )-representations from [FFJMM1, FFJMM2].
All of them admit a straightforward modification to the Yh, p, rs(gl;)-case. Those
have the same bases, while the matrix coefficients of e(z), f(2),¥(z) in these bases

are modified as follows:
o . 1
1~—q}q§q§u/z ~ thy+jha+khs+u—2z, 6(q§q§q§u/z) ~ :l:;6+((ih1+jh2+kh3+u)/z),

where the latter sign is “+” for e(z) and “~” for f(z2).

e Representation W (u).

Consider the tensor product V¥ (u) := V(w)®V (ugs )@V (ugz )@ - -@V (ugs ™).
Define P¥ := {A = (A1,...,\w) € Z¥\y = --- 2 A}, PV i= {A € P¥]Ay > O}
Let W/ (u) C V¥ (u) be the subspace spanned by

[uls = [u]s, ® [ugs -1 ® - ® [ugs V]ay—n1 for A € PV

According to [FFIMM1, Lemma 3.7], W (u) is a Uy, 4, 4, (g1, )-submodule of V¥ (u).
The subspace W™+ (1) € W (u) corresponding to PV is not a submodule. How-
ever, its limit as N — oo is well-defined (after an appropriate renormalization) and

coincides with the Fock module F(u).

e Representation G%T.
Let g1, g2 be in the (r, k)-resonance condition: g3 =1iffa = (1-7)c,b = (k+1)c
for some ¢ € Z (assume k > 1,7 > 2). In this case the action of Ut annas (84) on W ()

is ill-defined. Consider the set of (k,r)-admissible partitions
SEr =N e PN\ — A 2T Vi< N -k}

Let W™ (1) be the subspace of W (u), corresponding to the subset S*™ C PV.
According to [FFJMM1, Lemma 6.2}, the comultiplication rule makes W*"" (v) into

a Uy 4,0 (8l;)-module. We think of it as “a submodule of W (u) or even V¥(u)”
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even though none of them has a U,, ,, .. (gl;)-module structure.
Moreover, one can define an action of U, 4, 4 (gl;) on the corresponding limit of
WknN () as N — co. Let us fix a sequence of non-negative integers a = (ay, . . ., ax)

satisfying Zf___l a; = r. Define

PET = (M 2 A > )\ = Ae 27V 5> 1 =22V 5 >0},

where we set X0, .., 1= —pr — E;zl a; for 0 < ¢ < k — 1. The above limit construc-
tion provides an action of Uql,qzyq:, (gl,) on the space G®" parametrized by A € P&,

see [FFJMM1, Theorem 6.5

e Representation M, p(u).

Let us consider the tensor product of Fock representations. If ¢y, g2, u4, ..., u,, are
generic (¢?gdu* ---utr = liffa=b=¢; = ... = ¢, = 0), then the tensor product
F(u1) ® - - - ® F(uy) is well-defined. Consider the resonance case u; = usy1q3 " gb !
for some a;,b; > 0,1 <t <n—1

Let Map(u) C F(u1) ® - - ® F(u,) be the subspace spanned by |A!,...,\") :=
[u1]ar @ - -+ ® [un]rn, where Young diagrams A!,... A" satisfy A} > )\iﬁi — a; for
i <n-—1,s5 > 1. According to [FFIMM2, Proposition 3.3], the comultiplication

rule makes M, (1) into a Uy, 4,4 (8l;)-module for generic gy, g2, u. Moreover, it is an

irreducible lowest weight module.

e Representation M’:”,’,’(u).

Assume further that ¢, g, are not generic: there exist p,p’ > 1 such that ¢?¢} = 1
iff a = p'c, b = pe for some ¢ € Z. We require that a, :==p' — 1 — 37 (a; + 1), b, :=
p—1— 377 }(b; + 1) are non-negative. In this case, the action of Uy, g, 4(gly) on
Map(u) is ill-defined.

Consider a subspace M”'f(u) C F(u;) ® --- ® F(u,) spanned by |A,..., ")

satisfying the same conditions X} > )\ii})i — a;, but with i < n, where A"*! := X\l
The comultiplication rule makes it into a U, 4, 4(gl;)-module, due to [FFIMM2,
Proposition 3.7]. We think of Mﬁ:’f (u) as “a subquotient of F(u;) ® --- @ F(uy,)”.

Their characters coincide with the characters of the W,,-minimal series of sl,-type,
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according to the main result of [FFIMM2].

5.4.6 The categories O

We conclude this section by introducing the appropriate categories O both for the
quantum toroidal and the affine Yangian of gl;.
e Category O for l"];m?’qa(g[l). |

As we will see in the next sections it is convenient to work with the quotient

algebra U’ (8) = Up goas(81)/ (5 — (¢)™1), rather than Uy, g4 (gl;) itself.

q1,92,93

The algebra U’ (gl,) is graded by deg(e;) = —1,deg(fi) = l,deg(i/);-t) =0.

q1,92,93

Definition 5.4.2. A Z-graded U’ (g!;)-module L is in the category O if

q1,92,93

(i) for any v € L there exists N € Z such that U’ (gl)>n(v) =0,

q1,92,93

(ii) all graded components Ly, are finite dimensional (module L is of finite type).

We say that L is a highest weight module if there exists vy € L generating L and
such that f;(ve) =0, Q/J;t(vo) =p;b ‘v, Vi€ Z,j € Zy,, for some p;b eC,pt-py =1
To such a collection {p}}, we associate two series p*(2) 1= 3,505 2™ € C[[z¥]].
Given any two series p*(z),p(2) satisfying pJ - p; = 1, there is a universal highest
weight representation M+ ,-, which may be defined as the quotient of Uéhqzm (gty)
by the left-ideal generated by {f;} U {z/)j‘ - ;h} By a standard argument M+ - has
a unique irreducible quotient Vp+ .

The module V,+ ,- obviously satisfies the condition (i) from the definition of the
category O. Our next result provides a criteria for Vj+ - to satisfy (ii) (i.e., to be in

the category O).

Proposition 5.4.10. The module V,+ ,- is of finite type iff there exists a rational
function P(z) such that p*(z) = P(2)* and P(0)P(cc) = 1.

Proof.
The proof is standard and is based on the arguments from [CP]. Define constants

{p;}iez as pf (for i > 0), —pZ; (for ¢ < 0), and p{ —pq (for i = 0). To prove the “only

132



if” part we choose indices k € Z,1 € Z,. such that {ex(vo), ..., ex+:1(v0)} span the de-
gree —1 component (V,+ ,-)_1, while this fails for the collection {ex(vo), . . ., €xt1-1(vo)}-
As a result, there are complex numbers ag,...,a € C,a; # 0, such that agex(vg) +
arer+1(vo)+. . .+ aiepri{tp) = 0. Applying the operator f,_, to this identity and using
the equality fie;(vo) = —B; 'piyjvo (due to (T3)), we get app,+a1pry1+. . .+apryy =0
for all r € Z. Therefore, the collection {p; };cz satisfies a simple recurrence relation.
Solving this recurrence relation and using the conditions py = p — py,py = (p¢) 7},
we immediately see that p*(z) are extension in 2F! of the same rational function.

To prove the “if” direction, the same arguments show dim(Vp+ ,-)-1 < co. Com-
bining this with the relation (T'1) a simple induction argument implies dim(Vp+ ,- )1 <

oo for any I > 0. O

. Category O for }.}hl,hmhs (9[1)
The algebra, }"’hl,hz,hs(gll) is graded by deg(e;) = —1,deg(f;) = 1,deg(y;) = 0.

Definition 5.4.3. A Z-graded Yj, s, 1, (gl;)-module L is in the category O if
(i) for any v € L there exists N € Z such that Y, s, s, (g;)>5(v) = 0,

(i1) all graded components L are finite dimensional (module L is of finite type).

We say that L is a highest weight module if there exists vy € L generating
L and such that f;(vo) = 0,%;{ve) = pj - v,V j € Zy, for some p; € C. Set
p(z) =143 500277 € C[[z7"]]. For any {p;}, there is a universal highest weight
Yiy ho ha (811 )-representation M, which may be defined as the quotient of Y3, , 4, (gl;)
by the left-ideal generated by {f;} U {¥; — p;}. It has a unique irreducible quotient
Vp. The following is analogous to Proposition 5.4.10:

Proposition 5.4.11. The module V,, is in the category O iff there ezists a rational
function P(z) such that p(z) = P(z)* and P(co) = 1.
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5.5 Limit algebras

5.5.1 Algebras 0, and 0y

We recall the algebra of h-difference operators on C.
For a formal variable h, let 05 be an associative algebra over C[[h]] topologically

generated by Z*!, D*! subject to the following relations
Z.Z'=2"12=1, D-D'=D"1'D=1, D-Z = qZ-D, where q = exp(h) € C[[h]].

We will view 9, as a Lie algebra with the natural commutator-Lie bracket [-,-]. It

is easy to check that the following formula defines a 2-cocycle ¢ € C*(0n, C[[R]]):

0 j#jor j=45=0
d)o(ZaDj, ZbD—j’) = —=1—_7 qaz+b(j+i) j=7>0
_ Ei:j grire=it) = <0

This endows 0, = 0x @ C[[h]] - ¢, with a structure of a Lie algebra.

5.5.2 Algebras ®; and Dy

We recall the algebra of g-difference operators on C*.
For a formal variable h, let D), be an associative algebra over C[[h]] topologically

generated by z, 8%! subject to the following defining relations
0.0 =8"-9=1,0-z=(c+h)-0.

We will view D}, as a Lie algebra with the natural commutator-Lie bracket [-,-].

It is easy to check that the following formula defines a 2-cocycle ¢p € C?(Dy, C[[R])):

0 r£sorr=s=0
¢o(f(2)8",9(2)07°) = ¢ T, fIh)g((I+1)h) r=5>0
— Y gUh)f(I=T)h) r=5<0
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This endows D), = Dy, & C[[h]] - cp With a structure of a Lie algebra.

5.5.3 The isomorphism T

We construct an isomorphism of the completions of 9, and D).

First we introduce the appropriate completions of the algebras 9, Dj:
o 57, is the completion of D, with respect to the powers of the two-sided ideal J, =
(Z-1,q-1)
o %\h is the completion of D, with respect to the powers of the two-sided ideal
Jp = (z, h).

In other words, we have:
= 12 - N _ _ 7 = =T - = . 7
Op = l(En Dh/Dh (Z l,q 1) , Op 1}31 gh/gh (3:, h) .

Remark 5.5.1. Taking completions of 0, and ®, with respect to the ideals J, and Jy

commutes with taking central extensions with respect to the 2-cocycles ¢, and ¢5.

The following result is straightforward:

Proposition 5.5.1. There exists an isomorphism Yg : 5’;%5;,, defined on the
generators by

D s 91 ZH s et 3 cp.

Remark 5.5.2. Specializing h to a complex parameter hy € C, that is taking factor
by (h — ho), we get the classical C-algebras of difference operators Dy, and 0p,.
However, one can not define their completions as above and, moreover, completions

of their central extensions.

5.5.4 The renormalized algebra U} (gl,)

We introduce the limit algebra UL(gl, ).

Throughout this section, we let hy, hy be formal variables and set h3 := —h; — hy.
We define ¢; := exp(h;) € C[[h1, hs)] for i = 1,2,3. First we introduce a formal
analogue of Uy, 4,.0,(8%). While the relations (T0, T1, T2, T4t, T5t, T6t) are well
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defined over C[[hi, h2]], we need to change (T3) in an appropriate way. This will also
lead to renormalizations of (T4t, T5t).

Remark 5.5.3. This is analogous to the classical relation between U,(g) and U,(Lg).

We start by renormalizing (T3) to the following form:

lei, £ = (¥3h; — 97 5)/ (1 — gs)- (T3)

This procedure is called renormalization, since for the case of complex parameters
¢ # 1, this algebra is obtained from Uy, 4, 4 (gl;) just by rescaling e; by 1 — ¢ and f;
by 1 — qq.

Next, we write ¢*(2) as % (2) = exp(Zry)-exp(£(1—¢3) X L mso Hmz™™). Then

k. are central elements and the relations (T4t, T5t) get modified to:

(1-g™)(1 —g")(1 —g)
m(1l — q3)

(1—g"(1—g)(1~q7)
m(l — Q3)

fi+m-

[Hm’ ei] = - Citm, [Hm)fi] -

These relations are well-defined in the formal setting since (1—q;")(11—_<;;:)(1—qg‘) € Cl[h1, ho]].

Note that the right hand side of the relation (T3') also makes sense. The correspond-

ing algebra over C[[hy, ho]] topologically generated by {e;, fi, .+, Hm} will be denoted
by Uny ns(gl;). We also introduce U,’m,ha(gll) := Un,py(81)/ (k4 + ). Finally, we
define

Un(ahy) = Unng(8h)/ (ks + £, h3).

It is an algebra over C[[h]] topologically generated by {e;, f;, 5, Hn} subject to
(T1, T2, T6) and the following four relations:

[Hy, Hy] =0, & is central, (TOL)

lei, f5] = Hiw Z +]i 70 , (T3L)
-k 1+3=0

(Hm, &) = —(1 = ¢™)(1 = ¢ ")€itm, (T4tL)

[Hm7 fz] = (1 - qm)(l - q—m)f‘i+ma (TStL)
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where g := exp(h) € C[[h]]. Now we are ready to relate U;(gl;) to dp.

Proposition 5.5.2. There exists a homomorphism 0, : UL(gly) — U(Dy,) such that
(&) = Z'D, 0,(f;) = —D7Z%, 0,,(Hy) = —(1 — ¢ F)ZF — q7%¢cy, Om(K) = G

Proof.
It suffices to check that

€& :=2'D,fi=-D'Z' H, = —(1-¢"Z* - g%, F=0

satisfy the defining relations of U}(gl,). The only nontrivial relations are (T1,T3L,T4tL,
T6t).
e For i,j € Z, we have [¢;,€;] = [Z'D,ZID] = (¢ — ¢*) - Z*9D?. (T1) follows:

[Ents,8m] — (L + g+ g7 ) [Enr2, 8ma] + (L + g+ ¢ ) [Ert, Emera] = [€n, Emss] = 0.
e The relation (T3L) follows from the following identity:
&, fi} = —12'D,D7' 2] = (1 + ¢7) 2" — g7 e,

e The relation (T4tL) follows from the following identity:

[Hm, &) = =(1-q™)[2™, 2'D]) = —=(1—¢"™)(1~q™)Z*"D = —(1~¢™)(1~¢ ™)Eism.
e The relation (T6t) follows from [D,[ZD,Z'D]| = [D,(¢7* —¢)D+q'c) =0. O

The image of 8,, is easy to describe.
Lemma 5.5.3. Let 39 C 05, be a free C[[h]]-submodule generated by

{co,h- ZFD°, W1Z' DI, W11 Z' DIk # 0,5 > 0}.

Then 09 is a Lie subalgebra of 05 and Im(6,,) C U(d)).
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Actually, we have the following result:
Theorem 5.5.4. The homomorphism 0y, provides an isomorphism U} (gl,)——=U (32).

Note that all the defining relations of Uj(gl,) are of Lie-type. Hence, Uj(gl,) is
an enveloping algebra of the Lie algebra generated by e, f;, &, H, with the afore-
mentioned defining relations. Thus, Theorem 5.5.4 provides a presentation of the Lie
algebra 09 by generators and relations.

Actually, we have a more general result:

Theorem 5.5.5. If hy € C\{Q - i}, then 0, induces an isomorphism of the C-
algebras: U}, (gh)—U(d},), where 3, C s, is a Lie subalgebra spanned by c, and
{Z'D’}jyr00)-

5.5.5 The renormalized algebra Y;(gl,)

We introduce the limit algebra Y;(gl,)

Analogously to the previous section, we let ki, hy be formal variables and set
hs := —hi—hy. We view Yi, p, »,(gl,) as a formal version of the corresponding algebra
introduced in Section 1.3. In other words, Y, 4, 4,(gl;) is an associative algebra over
C[[h1, ho]] topologically generated by {e;, f;,%;};ez, subject to the relations (Y0)-
(Y6).

We will actually need a homogenized version of this algebra. Let ?,iz,hs (gl;) be an
associative algebra over C[[hy, hs]] defined similarly to Y4, s, a;(gl;) with the following
few changes:

(2, €] = —2hihae;, Yo, fi] = 2hihafi.

The specializations of algebras Yf;,m (gY,) and Yi, 4, 55 (gly) at hx € C* are isomorphic.
However, Y}, (gl;) is a Z,-graded algebra with deg(e;) = i,deg(fi) = 1,deg(shi) =
i,deg(hx) = 1.
We define Y/(gl,) by
Yi(gh) == )“/I:,hg (g%,)/ (ha).

It is an algebra over C[[h]]. The following result is straightforward:
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Proposition 5.5.6. There exists a homomorphism 0, : Y;(gl,) — U(Dy) such that
ba(e;) = 270, 0,(f;) = ~07'29, 0,(¢;) = (z — h)! — 2 — (—h)cp.

The image of 8, is easy to describe.

Lemma 5.5.7. Let 5(,), C D}, be a free C[[h]]-submodule generated by
{ep,h - 2*°, W 2'0 12077 |i > 0,5 > 0}

Then —5_3_2 is a Lie subalgebra of Dy, and Im(d,) C U(ﬁz)
Actually, we have the following result:
Theorem 5.5.8. The homomorphism 8, provides an isomorphism 8, : Y;(gl,)——U (@5).

Note that all the defining relations of ¥}(gl,) are of Lie-type. Hence, Y}(gl,) is an
enveloping algebra of the Lie algebra generated by e;, f;,1; with the aforementioned
defining relations. Thus, Theorem 5.5.8 provides a presentation of the Lie algebra 5?,
by generators and relations.

Actually, we have a more general result:

Theorem 5.5.9. For h; € C*, 6, induces an isomorphism 8, : Yy (g1;) U (Dh,).

5.5.6 Proof of Theorem 5.5.5

We prove that 6, is an isomorphism of C-algebras for hy ¢ Q - mi.

As mentioned in Section 5.4, all the defining relations of the algebra U, ho(01) are
of Lie-type. Therefore, it is the universal enveloping algebra of the Lie algebra i},
generated by {e;, fi, Hm, £} with the same defining relations. Moreover, i}, is a C-k—
central extension of the Lie-algebra iy, generated by {e;, f;, Hy} with the following
defining relations:

[(Hy, Hi) =0, (u0)

leira, €] — (L + g+ g Dleire, ej41] + (1 + g+ g7 [eir1, €j42] — i, €543] =0, (ul)
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[firs, fi] = U+ g + @ D fiv2, fira] + A+ g+ ¢ D fisr, fiva] — [fis fira] =0, (u2)

les, f3] = Hiyj for j # —i, [es, f=i] =0, (u3)
[Hm, e = —(1 = ¢™)(1 ~ ¢™)eirm, (ud)
[Hm, f] = 1= ¢™ (1 = ¢ ™) firm, (u5)
leo, €2, e-1]] = 0, [fo, [f1, 1] = O, (u6)

where ¢ := e € C*. Note that ho ¢ Q - 71 iff g # V1 (not a root of 1).

Hence, it suffices to check that the corresponding homomorphism 8y, : @n, — 0},
defined by
0, :e;— Z'D, f;— —D7'Z! Hy— (¢F - 1)Z*

is an isomorphism of the C-Lie algebras for ¢ # V1. The surjectivity of 8,, is clear.

The Lie algebra. dis, is Z>-graded, where we set
deg(ei) = (7’1 1)1 deg(fz) = (7" _1)7 deg(Hk) = (k,O)

The Lie algebra 0}, is also Z*-graded, where we set deg(Z'D?) = (i, 7). Moreover, 6,,
intertwines those Z*-gradings. Since dim(d}, );; = 1 for (i,5) # (0,0), it suffices to
show that dim(iis,);; < 1. This statement is clear for j = 0. In the remaining part
we prove it for j > 0.

Let uf‘? be the Lie algebra, generated by {e;, H,,} with the defining relations
(u0,ul,ud,ud). It suffices to prove that dim(ﬂi?)i,j < 1 for j > 0. We prove this by

an induction on j.
e Case j = 1.

It is clear that (uf{?) ~,1 is spanned by ex.
e Case j = 2.

It is clear that (u,%f) 2 is spanned by {[e;,, :,] }i;+i,=n. However, (ul) implies

qk+1 _ q—k qk+2 — q—k
leivar €ir1-k] = —-—q_—l—[ewz, eir1], [eivark, €i-k] = —7_—1—[%% ).
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These formulas can be unified in the following way:

g+l — g

7‘_‘:’1—[61,6_1]. (511)

gz — ¢

qﬁT—_l[eo’ Cirtig) If 11+ # 0, [e, 6] =

leir €] =

Therefore, (i7" )n,2 is either spanned by [eg, en] (if N # 0) or [e1,e_1] (if N =0).
e Case j = 3.

Let us introduce the following common notation:

[a13 as; ... ;an]n = [ah [a2a [ .- [an—lv an]m

The space (ui? w3 is spanned by {[e;,; €i,; €i5]}iy +ig+is=n- Using the automorphism
of the Lie algebra ii,%oo, defined by e; — e;;1, H — H,,, we can assume i, 2,3 > 0.
Together with the case j = 2, it suffices to show that [ex;ep;e] is a multiple of
[eo; €0; €x+1) for any k,1 > 0.

Define h,, := —(IT,,’,’;grﬁq_—m) for m # 0. Then ad(h,,)(e;) = €i4m. Therefore:

ad(hi)([ex; eo; &1]) = [ex+1; €0; €] + [ex; €1; €] + [ex; €o; €41

Assuming [ex; €o; €] is a multiple of [ey; €o; €x41], We get [ex+1; €o; €] is a linear combi-
nation of [eo; €o; €x+1+1] and [e1; eo; ex41] (we use (5.11) there). It remains to consider

k =1 case.

We will prove by an induction on N > 1 that [e1; ep; en-1] = (qN_l(_q?:)_(f;_lvl) [eo; €0; en]-

This is equivalent to [e;; eo; en—1] being a multiple of [ey; eo; en], since we can recover

the constant Ay 3 := (qN_l(‘q‘fj)_(‘l"’;_l_l) by comparing the images 0,,([e;; €o; en—1]) and

6, ([eo; €0; en])-
o Case N = 2.

Recall that the relation (u6) combined with (u4) imply

Sym[eil; 6,‘2.,..1;6,'3_1] =0V il,ig,ig € Z. (u6’)

Plugging 4; = 1,i, = 1,i3 = 0, we get [e1;ex;e_1] + [er;e1;e0] + [eq; e2;€0] = 0.
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Combining this equality with (5.11), we get

(g +1)?

[eo; €0;€2) = — le1; €0 €1] == [e1; e0; €1] = Az 3leo; €o; €2)-

o Case N = 3.

Plugging i; = 1,1, = 2,43 = 0 into (uf’), we get

[e1; e3; e—1] + [e2; €2; €—1] + [e2; €x; €] + [eo; €3; €0] + [€0; €25 1] = 0.

Applying (5.11), we get:

)leo; eo; €3] = 0.

2 pa—
—(g+ 2+ Vlezs o ex] — (g + ¢ Hlenseo; 2] = (1 + H—

¢ -1
On the other hand, applying ad(h;) to (g + 1)%[e1; e0; €1] + gleo; €0;€2) = O (case
N =2), we get

2 _ 3
a —4q
(g + 1)?[e2; e0; 1] + (g% + 3 + 1)[e1; €05 €2] + (g — F1 )leo; eo; €3] = 0.

These two linear combinations of [e; €o; €1], [e1; €o; €2], [€o; €o; €3] are not proportional
for g # v/1. Therefore, we can eliminate [e;; eo; €1], which proves that [e;; eo; €o] is a
multiple of [eg; eo; €3].
o Case N=k+2,k>1.

By an induction assumption [e;; ep; €x] — Ax+1,3[€0; €0; €x+1] = 0. Applying ad(h,),

we get

([e2; €0; ex]+ler; e1; ex]+[e1; €o; exr1])—Ar41,3([€1; €o; exv1]+[eo; €1; ext1]+[eo; €0; ex+2]) = 0.
Note also that

(ad(h1)® —ad(ha))([€i) €ig €i5)) = [€ir415 €inr15 €3] F €31 115 €1z €ig1] +[€4r; €ip1; €i511)-

By an induction assumption [e;; €o; €x~1] = Ak 3[eo; €o; €x]. Applying ad(hy)? —ad(h,),
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we get
([e2; €1; ex—1]+[e2; €o; ex]+[e1; €1; ex] ) — Ak 3([e1; €15 ex] +[ex; €o; ex1]+[eo; €15 €xs1]) = 0.

Applying (5.11), we get two linear combinations of [es; eq; k], [e1; €0; €x-+1], [€0; €0; €k+2]
being zero. It is a routine verification to check that they are not proportional for
q # V1. Therefore, we can eliminate [ez; eo; ex], which proves that [e;; eo; ext1] 15
multiple of [eg; €g; €x+2]-
e Case j =n > 3.

Analogously to the previous case, it suffices to show that [eg;eq;. . .;e0;en—1]n 1S
a multiple of [ep;...;eo; en]n. This is equivalent to

N—-1 _ 1 n—2( N—-1 _ n—1
le1; .- s €05€N-1]n = ANy - [€0; - - - €05 €N]ny AN = (@ (q)N _(f)n_l d ),

the constant being computed by comparing the images under 6,,,.

We will need the following multiple counterpart of (u6) (follows from Proposi-
tion 5.7.5 below):

[eo; €15 €0; - - - ;€0;€—1]n = 0. (u7n)

This equality together with the relation (u4) implies
Symle;,; €415 €ig5 - - - 1€y €inailn =0 Vig, ... i, € Z. (u7'n)

Now we proceed to the proof of the aforementioned result by an induction on N.
o Case N = 2.
Applying ad(h;)? — ad(h2) to (u7n), we get

[e1,ad(hy)[er; €o; - - - ; €~1]n—1] + [€0; (ad(h;)* - ad(hs))[es;e0; ... ;e—1)n-1] = 0.

By the induction assumption for n, LHS has a form a,,-[e;; €o; . . . ; €1]n+bn-[€0; - - - ; €0; €2])n-
Computing the images under 8,,, we find a, = _(.%i_l_)lﬁ # 0 for g # V1.
o Case N = 3.
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Applying ad(h;) to [e1;...;€o0; e1]n — A2nleo; ... s €0; €2]n = 0, We get
le2; €0; - - - se1)n + [e1, ad(hy)feg; . . . s €1)nm1]—

Aanler;. .. ;o €ln — Aonleo, ad(hy)leo, - - . ; €2]n-1]) = 0.

Applying the induction step for j = n — 1, this equation can be simplified to
le2; €0; - - - ;€05 €1ln + Cn - [e1; €05 - - - €05 €2]n + du - [€0; €03 - - - ; €0 €3]0 = 0.

Computing the images under 8,,, one gets ¢, = é%;-_llz;;?—l(q" +2¢"t —2¢—1).

On the other hand, applying ad(h;) ad(h;) — ad(h3) to (u7n), we get
le2; ad(hy)les;. . . ;e_1]no1] + [e1, ad(h2)[e, - - -, € 1]n-1]+

[eo; (ad(h;) ad(h2) — ad(hs))les, - .., e—1]n-1] = 0.
Applying the induction step for 5 = n — 1, this equation can be simplified to
al, - [ez;€0;- .- ;€05 €1]n + € - [e1; €05 .- s €05 €2ln + di, - [€0; €05 . . . €05 €3], = 0.
By computing the images under ,,, one gets the following formulas
,_ (et =12, (EDMe =) -1t 1)

a, = 1 Cp = - _
@17 T @ 1

It remains to notice that ¢, # a,c, for ¢ # v/1. Therefore, eliminating [e; eo; . . . ; €0; €1]n,

we see that [e; eo;. .. ; €o; €2)n is a multiple of [eg; €o; . . . ; €0; €3]n-
o Case N=k+2,k>1.
By the induction: [e;ep;- - . ; €k]n — Met1,n[€0; - - - ; €0; €k+1]n = 0. Applying ad(h,),
we get
[e2; €05 - - - ; €xn + [€1, ad(h1)eq; - - - 5 €k)n1]—
Mk+1a(ler; €0; - - -5 €kr1]n + [€0, ad(ha)[eo; - - - s €xs1]n1]) = 0.
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By an induction assumption on length j < n commutators, this equality can be

simplified to

[€2;€0;- - - €kln + Un - [€1; €05 - -+ 5 €kt1)n + Wn - [€0; €05 - - -} Ekta)n = 0.

k__l)n—-z(qn-Hc_2qk+1_2qn—1+qn+qk+l)
(g**+1-1)n1(g-1) )

By computing the images under 8,,,, we find v, = &

On the other hand, by an induction assumption:
le1; -5 €0; €k—1]n — Aknlen; - - - ;€05 €x]n = 0.
Applying ad(h;)? — ad(hy), we get
[e2, ad(hy)[eg; - - - ; €k—1]n—1] + [€1, (ad(l1)® — ad(h2))[eo; - - - 5 €x—1]n—1]—

)\kyn([el, ad(hl)[eo; cees ek]n_l] + [60, (ad(h1)2 - ad(hg))[EO; ‘e ;ek]n_l]) = (.

By an induction assumption on length j < n commutators, this equality can be

simplified to
' e ' e . ' A _
ul - [ea; €05 s €kln + UL - [E15€0; - - -5 €kpiln + Wi, - [€05 €05 - ERy2)n = 0.

By computing the images under 8,,, we find

" gD -2 T @ o) (-1

;L (qn—l _ 1)(qk—1 _ 1)n—2 , (qk—l _ 1)n—2(qn——1 _ 1) qn—l —q qk—l _ qn—l
g —1 -1 /)

It remains to notice that v/, # /v, for ¢ # v/1. Therefore, eliminating [es; €; . . . ; €0; €k},

we see that [eq; €o;. . - €o; €x+1]n i a multiple of [eo; €o; . . . ; €0; €xt2]n-

This completes the proof of dim(ip, ); ; < 1 for j > 0. The case j < 0 is analogous.

5.5.7 Proof of Theorem 5.5.9

We prove that 6, is an isomorphism of C-algebras for kg # 0.
As mentioned in Section 5.5, all the defining relations of the algebra l'/';:o(gll)
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are of Lie-type. Therefore, it is the universal enveloping algebra of the Lie algebra
#ih, generated by {ej, f;, ¥;} with the same defining relations. Moreover, ¢, is a 1-
dimensional central extension of the Lie-algebra g, generated by {e;, f;, ¥;+1} with

the following defining relations:

[Ye, 9] =0, (¥0)
leira, 5] — 3leira, €ja1] + Blesra, €j42] — [es, €j4a] — hg([esrs, €5] — [es, ea]) = 0, (v1)
[firss f5] = 3lfivas fina] + i, fiva) = [fis Fiual = Bo([firns £5] = [fis fna]) = 0, (¥2)

[eo, fo] =0, [es, fi] = tirs if i+ 5 >0, (¥3)

[Yi+3, €5] — 3[Wira, €j1] + 3[Wis1, esu2] — [, €3] — hG (Wi, €5] — [, €541]) = 0, (y4)
[¥1,€5] = 0, [tho, e5] = 2hie;;, (y4)

(W43, fi] = 3lbiva, fia] +3[Wira, fival =i, fiva]l = ho([Wiva, £5] =¥, fin]) = 0, (¥5)
[, il = 0, s, fi] = —2h3 £, (¥5')

Symeg[e:,, [€ir, €i541]] = 0, Symg;[fir, [fias fiz1a]] = 0. (¥6)

Hence, it suffices to check that the corresponding homomorphism 6, : §p, = D,

defined by
Oo 65> 270, f; > =070, P41 > (& — ho)iH — 271)E°,

is an isomorphism of the C-Lie algebras for hg # 0. The surjectivity of 8, is clear.

The Lie algebra g, is Z-graded, where we set

deg,(e;) = 1, degy(f;) = —1, degy(v;) = 0.

It is also Z,-filtered with deg;(e;) = 7,deg,(f;) = j,deg,(¥j+1) = j. The Lie alge-
bra D, is also Z-graded with deg,(z‘®") = j and Z,filtered with deg; (z'9?) = 1.
Moreover, 6, intertwines those gradings and filtrations. Note that dim(Dp,)<;; =

dim(Dp,)<i-1,; + 1. Let y,%o" be the Lie algebra generated by {e;,¥x} with the

146



defining relations (y0,yl,y4,y4’,y6). The result follows from the following inequal-
ity: dim(§z, )<i; — dim(§i)<i15 < 1.

Consider a subspace V;, C (j}fﬂo)si,n spanned by {[e;;;.. ;€ ]li1 + ... +ip <
i+n —1}. The above inequality follows from the following result, which we prove by
an induction on j:

dim VSi,j — dim VSi—lyJ' < 1. (<>i,j)

Note that the relations (y4,y4’) imply the following result:
[k, €] — k(k — Dhjejrh—2 € Vejrn—2,1-

e Case j=1,2.
The subspace Vc;; is spanned by {eg,e1,...,€;}. The inequality ({q,) follows.

The subspace V<y 2 is spanned by {[e;,, €;,]|i1 +i2 < N + 1}. The relation (y1)

implies:
[eir2+k; €i+1-k] —(2k+ 1)[€z’+2, €i+1] € Veain 2, [ei+2+k; ei—k] —(k+1)[eita, 6i] € Veaia-

These formulas can be unified in the following way:

i —
g+—j[60, 6i+j] S VS;’.}_J‘_Q’Z. (5.12)

lei, e5] —
Hence, V<; 2/V<i—1 2 is spanned by the image of [e, €;41]. The inequality (< 2) follows.
e Case j =3.

Our goal is to show that [e;;e€;,;e;,] is a multiple of [eg; €o; €iy4iy+i5] modulo
Veiytis+ia—3,3, which will be denoted by [ei ; €i,; €i,] ~ [€0; €05 €5 4intis)- BY (Ce2),
we can assume i; = 0.

To proceed, we introduce the elements hy, hy € jj,%oo by h; := g%g,hz = %@)ﬁ
According to (y4,y4'), we have [hy,e;] = ejy1,[ha,%;] = ej2. Same reasoning as
in Appendix B.1 shows that applying ad(h;) to [ex;€0; €] ~ [eo;€o;€exys] implies

[ex+1; €0; €] ~ [eo; €o; €x+141). Therefore, it remains to prove [eq; eg; ex—1] ~ [e1; €o; €N]-
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Computing the images of both commutators under ,, we see that [ei;eo;en—1] =
B sleo; eo; en] for Bnz =22 We writea =bif a — b € Vo1 for a,b € Vi ;.
o Case N =1,2.

We have [e;; e; €0] = 0 = [eo; €o; €1]. Applying ad(h;) to this, we get [eq; ep; €1] =
—[eo; 60;62]-
o Cases N=k+1,k>1.

By an induction assumption: [e1;eq;ex—1] = Bk 3leo; €o;ex]. Applying ad(h;), we

get

[e2; €0; €x—1] + [e1; €15 ex—1] + [e1; €05 €x] = Br3([e1; eo; ex] + [eo; e1; ex] + [€o; €o; €x+1])-

Applying (5.12), we get [es; eo; ex—1] + %t2[er; e0;ex] ~ [eo; €0; €x41]). On the other

hand, we have [e1; €o; x—2] = Br—1,3[€0; €0; €x—1]- Applying ad(h;)? — ad(hs), we get
[e2; €1; ex—a] +[e2; €0; €x—1] +[e1; €1 ex-1] = Br—1,3([e1; e1; ex—1] +[e1; eo; ex] +[eo; €1; €x]).

Applying (5.12), we get ?i,f_;fz[ez;eo;ek_l] + %[el;eg;ek] ~ leo; €0; €k+1]- Compar-
ing those two linear combinations of [es;eo; ex—1], [€1;€0; €], We get [er;eo;ex] ~
[€0; €0; €x+1), unless k = 3. We will consider this particular case in the greater gener-
ality below.

e Case j > 3.

Analogously to the j = 3 case it suffices to show that [e1;eq;...;en—1]n ~

[€o; - - - ; €0; en]n. This is equivalent to

N-—-2n+2
[81; ..o5€05eN—1]n = Brn - (€0 - - - ; €05 €N, BNn = - N
the constant being computed by comparing the im&ges under 6,.

We will need the following multiple counterpart of (y6) (follows from Proposi-
tion 5.7.10 below):
[eo; - --; €05 €n—2]n = 0. (y7n)
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Now we proceed to the proof of the aforementioned result by an induction on N.
o Case N <n-—1.

If N <n—1, then [eg;...;e0;en_1]n-1 = 0 = [€0;-..;€0;en]n- Applying ad(hy)
to [eo; ... ;€05 €n2ln =0, we get [e1;...;€0;€n—2]n ~ [€0;---; €05 €n—1]n-

oCase N=k+1,k>n—-2.

Applying ad(hy) to [e1;-. . eq; ex—1]n = Brnl€o; - - -; €0; €kln, We get
le2; ... s €0; ex—1] + [e1, ad(hy)[eo; - - - s €x—1]n1] =

Brn(ler; . - -; €o; €kln + [€0, ad(hy)[eo; - - - ; €0; €x]n-1])-
By an induction assumption for j = n — 1, this is equivalent to

(n—2)k—(n—1)(n—4)
k

le2;- - -5 €0;€x—1]n + le1; .. -5 €05 €kln = [€0; - - - ; €0; ERt1n-

Applying ad(h;)? — ad(hz) to [e1;...;€0;€x—2]n = Bk—1nl€0;---;€0;€x—_1]n together

with an induction assumption for 7 =n — 1, we get
Ples; .. .;e05ex-1]n + Qles; - . - €os €xln = [e0; - - - ; €0 €xt1]n,

with P = DG @ — aclo(k2(n—4) - k(2n% — 13n+12) + (n® —9n*+18n—8)).

Comparing those two linear combinations, we get [e;;. . .; €o; €x]n ~ [€0;- . . ; €kr1]n fOr
k # n.
It remains to consider the case k = n. Choose hy = 5% such that [hs, ¢;] = e;3.
0

Applying ad(h;) ad(hz) — ad(h3) to [eg; - . -; €0; €n_2]n = 0, we get
2
[e2; 5 €0 €n1ln + —lex; - €0 €nln ~ [e0; - -5 €05 €ntaln:

This equivalence together with the previous one implies

[e1; - s €05 €nln ~ [€0; - - -5 €0 €ntaln-
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5.6 The homomorphism T

. fnld
We construct a homomorphism T : Uy ; (gh) = Y}, ,.(gl;), which induces an in-
clusion (but not an isomorphism as it was in [GTL]) of appropriate completions. We

also construct compatible maps ch, : M” — %2

5.6.1 Construction of T

We follow notation of [GTL].

Let ?;2,,13 (g1,) denote the completion of Y;, x4 (gl,) with respect to the Z,-grading
on it. To state the main result, we introduce the following notation:
e Define 1(2) := 1 — hg 2,5tz ' € Vi . (@)[[z7Y]] (agrees with that from Sec-
tion 5.1.4).
o Define k; € Cltho, Y1, %2, ...] by 250 kiz™ 7! =2 k(2) = In(y(2)).

e Define the (inverse) Borel transform

B: z7'C[[z7Y] — C[[w]] by Z prs s Z T
i=0 i=0

e Define B(w) € h3Y/:2,h3 (g1)[[z71]] to be the inverse Borel transform of k(z).
 Define a function G(v) = log (2= ) € vQ[lv]]
e Define y(v) := —B(-0,)G'(v) € f/;z,hs(gll)[[vl]-
o Define g(v) i= 5120 00" € ¥ 1y (0[] by 9(0) 1= (227) " exp (22).
The identity B(log(l — «v/z)) = (1 — ™)/w immediately implies the following

result:

Corollary 5.6.1. The conditions of Proposition 5.1.5(e,f) are equivalent to

3 . —h:
(eh,w —e h,w) e’w

[B(w), ;] = 2=t

3 —hiw __ phiw _
” a+ej’ [B(w),fj]= Zi:l(e — € ) eve fj‘

Now we are ready to state the main result:
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Theorem 5.6.2. There exists an algebra homomorphism

T: U},m,ha (g4) — Yhz,hg(g[l)

defined on the generators by
—)_ kot + ko™ — _
g ex > e glo)eo, frrr e glo™)fo, K> —tho.

Proof.
We need to verify that T is compatible with the defining relations of U,’L2,h3(g[1).
e The relation (T0) is obviously preserved by Y.

e According to Corollary 5.6.1, we have

m m m __ M __ . —m __ —m

(B(m), ) = TEELE 8o gnete, = L o,
m m m _ —m _ mm o —m _ - _

[B(m), f]] — _QI + da + d3 131‘1 > a3 ™o fj — 'fn e™e f]

This implies the compatibility of (T4t,T5t) with Y.

e The verification of (T1,T2,T3) is completely analogous to the corresponding com-
putations from [GTL, Ch. 3,4].

e The verification of the cubic relation (T6t) is implicit. Set E := [Y(eg), [Y(e1), L(e_1)]]-
We will see (Proposition 5.6.8 below) thaf E acts trivially on V" for all r. Note that

V7" are Z,-graded modules of ?I:z,hs (gl,). In particular, the degree k£ component Ej
of E acts trivially on V". But we will see (Section 6.4 below) that the action of

Yy, 1y (g1;) on @, V7 is faithful. This implies Ex = 0 for all k, and E = 0. The proof
of [Y(fo), [T(f1), Y(f-1)]] = 0 is analogous. O

5.6.2 The limit h3 =0

We verify that the specialization of T at hz = 0 is induced by Y.
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Recall that we have isomorphisms
3 ~ o~ Y ~ =0
Uh,h3 (9[1)/(h3)——>U(32) and Y;z,hg (g4)/(h3)—U (D).

Our next result evaluates the specialization of T at hz = 0.

—

Proposition 5.6.3. The homomorphism T, _, : U ) -U (52) is induced by To.

Proof.

We verify the statement by computing the images of the generators under T[h3=0'
We have:
® T|h3=o(c°) = Cp.
e Tpo o (@ 1) ZF =g 6) = Timol(@—h)—ai — (~hY'ep)& = (7~ 1)k —g*eo.
® T o(ZFD) = 3150 & - 70 = €70,
o T o(~D1Z%) = =3 507 2t =~ et

The result follows. O

5.6.3 The elliptic Hall algebra

We recall a notion of the elliptic Hall algebra studied in [BS, S, SV].
We will need the following notation:
o We set (Z2)* := Z*\{(0,0)}.
o We set (Z2)* := {(a,b)|a > 0 or a = 0,b > 0}, (Z?)" := —(Z*)™.
e For any x = (a,b) € (Z?)*, we define deg(x) := gcd(a, b).
e For any x € (Z?)*, we define ¢, := 1 if x € (Z?)* and ¢ := —1 if x € (Z*)".
e For a pair of non-collinear x,y € (Z2?)*, we set €y := sign(det(x,y)) € {£1}.
e For non-collinear x,y € (Z2)*, we denote the triangle with vertices {(0,0),x,x+y}
by Dy y-

o We define o, := —f,/n = L0006 0e )

n

e We say that A, is empty if there are no lattice points inside this triangle.
Following [BS], we define (central extension of) the elliptic Hall algebra € to be
the associative algebra generated by {ux,ky|x € (Z*)*,y € Z?} with the following
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defining relations:

Kxky = Kxty, K0,0 =1, (E0)
Kx — k!
[Uy, Ux] = 0x,_y - ——= if x,y are collinear, (E1)
Qdeg(x)
Bx .
[y, Ux] = €xyKa(xy) a:y if Ay, is empty and deg(x) =1, (E2)

where the elements 8, are defined via

Z Bpx X" = €xp (Z arurxox”) if deg(xo) =1, (E3)

n>0 r>0

while a(x,y) is defined by

Oz(X, }’) = (E4)

ey(exx + 6yy - 6x-*-y(:x + Y))/2’ ex,y =-1

This algebra is closely related to the toroidal algebras of gl;:

Theorem 5.6.4. [S] There is an isomorphism = : E/(no,l —1)=5U (gl,) defined

41,492,493

on the generators by
Ui > €5, U_ri > iy Oog = 0T U0E, o5 = T [U5, Kap = (05)*, 3 >0,

Remark 5.6.1. This theorem has been proved in [S] only for & := €/(ky — 1)yezz, but
the above generalization is straightforward. The quotient algebra € is the spherical

Hall algebra of an elliptic curve over F,.

This result provides distinguished elements {ux|x € (Z?)*} of Uj_ . (gh). As

hs — 0, their images @i, coincide with the natural generators of U(d},).

Lemma 5.6.5. The 0,,,-images of Uy, are given by the following formulas:

1—g;! 1-
g » + sign(r) - q;r (1—qp) (zr -1 Z’f ct,) , (5.13)
B - Y2
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1-g" _ _ N _1\k=1 7k o=
Tpoy f(k 1) —d(l — @) 12Dk G —q; Fkd) QZ(l — gD Rz,
1—gq, 1 —g;
(5.14)
where k> 0, 7 # 0, d := ged(k, 1) and f(k,1) == ¥=E=I=02 45 the (signed) number of
lattice points inside the triangle with vertices {(0,0), (0,1), (k,1)}.

Proof.

Let us first observe that in the limit hg — 0, the relation (E2) becomes

[Gy, 0x) = ex,yna(x,y)—%%’fy)ﬁxw if Axy is empty and deg(x) = 1. (E2')
This formula immediately implies (5.13), since we have @, = sign(r)t[a_1,0, 1,]-
Formula (5.14) will be proved by an induction on k; we will consider only the case
k > 0. Case k = 1 is trivial. Given (k,l) € Zs1 X Z, choose unique x = (k1,l1),y =
(k2,12),0 < k1, ky < k, such that x +y = (k,1), exy = 1, deg(x) = deg(y) = 1 and
Ay y is empty. The formula (E2’) together the an induction assumption yield:

0o () = (1= @)1 =) fle i)+ Fhaia)

kaly kilz k1+ka—2 2li+l2 Myk1+k2
% —g3"")(1 - q2) VALNACY PR
R T

(%

By our assumptions on X,y and the Pick’s formula, we get g2 — ght'2 = gk211(1—¢f).
It remains to use the equality f(ky,l1) + f(k2, l2) + koly = f(k1 + ko, Iy +12) = f(k,1),

which obviously follows from the combinatorial meaning of f. a

5.6.4 Flatness of the deformations

We prove the following result:

Theorem 5.6.6. (a) The algebra (7,22’,% (gl,) is a flat deformation ofl-]',’n’h3 (g1y)/(h3) =~
U(03,)-
(b) The algebra Y,{z’ha(g[l) is a flat deformation ofluf,:z’hs(gll)/(h;,w) = U(Dy,).

As an immediate consequence of this theorem and Proposition 5.6.3, we get:

Corollary 5.6.7. The homomorphism T is injective.

154



Remark 5.6.2. We do not get an isomorphism of the appropriate completions (as it was
in [GTL]), since the limit homomorphism Y|,._, does not extend to an isomorphism

of completions.

To prove Theorem 5.6.6 it suffices to provide a faithful U(0}, )-representation (re-
spectively U (ﬁz)-representation) which admits a flat deformation to a representation
of U ha,hs (811) (respectively Y},’mh ,(8l;)). To make use of the representations constructed
in the previous sections, we should work over the localization ring R of C[[ha, hs]] by
the homogeneous polynomials in hg, h3. Therefore, we will switch to the extension

algebras

Ur(gh) := U, 5y (81) Ocipana By Y(81) = Vi, 1. (81) ®cfipa g R-

Let gl,, be a Lie algebra of matrices A = 3, .., a;;E;; such that a;; = 0 for
li — 7| > 0. Let gl . = gl, @ C- k be the central extension of this Lie algebra by
the 2-cocycle

¢g{ (Z a‘i,jEi,j7 Zbi,jEi,j) = Z a,-,jbj,i — Z a:i,jbj,i.

1<0<j J<0<i

For any u € C*, consider the homomorphism 7, : U(d},)r — U(gl,, ) r such that
Z™D v — Z U By i, DTYZ7 s — Z U@ E; 11,

m_im u™ — q‘l"_m
™ — E u"qy By — ———=—K, Cp > —K.
P 1-g¢;
Let @, : Up(gly) = U(gle)r be the composition of Ug(gl) — U(d), )z and .

Then
wu(e(z)) = — Z Ein6(du/z), wu(f(2)) = Z E;i+16(g5u/z).

Let V. be the basic representation of gl .. It is realized on A®/2C* with the
highest weight vector vg A v_3y A v_3 A .... Comparing the formulas for the Fock

module F'(u) with those for the gl , .-action on Vi, we see that F'(u) degenerates to
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the module 7} (V).
Th (Vo) @ - ® 7y (Voo) Is &

..... Un UL

It remains to prove that the module (B, @,
faithful representation of U(gl, ). To prove this, we consider a further degeneration
as hy — 0. The algebra 0¢ is a central extension of the commutative Lie algebra
with the basis {Z*D'}. Note that 7, degenerates as well to provide a homomorphism
Tuo : U0)r = U(gly )k defined by Z*D' — —u* 3", Eiy;, ¢ > —k. The image of
this homomorphism is just U(h)g, where b is the Heisenberg algebra. Clearly

B P molVe) @ @75, 5(Vio)

n Uly..,Un

is a faithful representation of U(h)g. This completes the proof.
For the Y}(gl;) case, we use the homomorphism , : U (522) r = U(8l ) r defined
by

"0 — — Z(U‘i‘ihg)nEi_Hyi, B—Ix" — Z(U-Fihg)nEi’i_H, A=t Z(U'f"thQ)lEﬂ-l-CnK,, Cp H— K,

where ¢, are determined recursively from (7)haca—1 — (3)h3cn—2+. ..+ (—1)" " h3co+

5.6.5 The linear map ch,

Recall the representations M” and V" of Uy, 4, 4. (gl) and Yi, a, 1, (gl;) from Section
3, which are defined over the fields C(xu, .- -, Xr, 1, 2, g3) and C(zy, ..., Z,, by, ho, h3)
respectively. Let us denote the corresponding representations of Uj(gl;) and Y5(g!,)
by My and Vi (here we set x; = exp(z;) similarly to ¢; = exp(h;)). Both repre-
sentations have a basis parametrized by r-partitions {\}. The following result is

straightforward:
Proposition 5.6.8. There erists a unique collection of constants b5 € R such that
b = 1 and the linear map ch, : Mp — V5 defined by [N — bs - [\] satisfies

ch, (Xv) = T(X)ch,(v), ¥V X € Up(gl,),v € Mp.
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5.7 Small shuffle algebras 5™ and 5

We introduce the small multiplicative and additive shuffle algebras. We explain their
relation to Uy, g, ¢, (01,) and Vi, n,15(8Y). We also discuss their interesting commuta-

tive subalgebras.

5.7.1 The shuffle algebra S™

We introduce the small multiplicative shuffle algebra S™.
Let us consider a Z.-graded C-vector space S™ = @nzo S, where ST consists

of rational functions Ai((%——ff)% with f € ClzF',..., 2% and A(zy,...,Tn) =

H1§i<j$n(xi - xj)-

Define the star-product * : S]* X ST — S, by

1>
(F 7‘)1: G)(Zl?l, ‘e ,xi+j) = Syme,nm (F(CL‘l, e ,xi)G(:r,;H, ey xi+j) me(x,, ZL'k))

k<i

with

YR el o)l Gl )l G Y)
@) CErE

This endows S™ with a structure of an associative unital C-algebra.

We say that an element H € S™ satisfies the wheel condition if f(z1,...,z,) =
0 for any {z1,...,z,} C C such that z,/z; = g;, x2/23 = ¢;,7 # j. Let S CS™ be a
Z.,-graded subspace, consisting of all such elements. The subspace S™ is closed with

m
respect to x.

Definition 5.7.1. The algebra (Sm,';‘) is called the small multiplicative shuffle alge-

bra.

Recall that qi,qs,qs are generic if ¢8¢5¢S = 1 <= a = b = c¢. We have the

following result:

Theorem 5.7.1. [N1, Proposition 3.5] The algebra S™ is generated by ST* for generic

9,492, 93-
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The connection of the shuffle algebra S™ to the Hall algebra € was established
in [SV]:
Proposition 5.7.2. [SV] The map u,; > @} extends to an injective homomorphism
& S™, where E+ is the subalgebra of F generated by {u; ; }i>o-

Combining this result with Theorems 5.7.1 and 5.6.4, we get:

Theorem 5.7.3. The algebras £+, Ug,%qs (gly), S™ are isomorphic.

5.7.2 Commutative subalgebra A™ C 5™

We recall an interesting subalgebra A™.
Following [FHHSY], we introduce an important Z,-graded subspace A™ = €D, A’

of S™. Its degree n component is defined by
A™ = {F € S0P F = g>PF V0 <k < n},
where
ORI F .= %%F(xl, e E Ty ET,), OOPF = .gli—{goF(wl’ co s & ka1, € Ty)-

This subspace satisfies the following properties:

Theorem 5.7.4. [FHHSY, Section 2] We have:

(a) Suppose F € ST and 3P F ezist for all 1 < k <n, then F € A™.

(b) The subspace A™ C S™ is %-commutative.

(c) A™ is %-closed and it is a polynomial algebra in {K7*} i1 with K* € ST defined
by:

(1 — quz2)(z2 — 121)

(1;1 _$2)2 ’ K;T(xly s >$n) = HK;H(Z',,,Z'J)

i<j

Kin(ml) = x(l)’ K;"(:vl,aa) =

Remark 5.7.1. The aforementioned elements K7" played a crucial role in [FT1]. They
were used to construct an action of the Heisenberg algebra on the vector space M

from Section 2.2.
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Our next result provides an alternative choice for generators of the algebra A™,
expressed explicitly via ST*. We use the following notation: [P, Q] = P% Q-Q%P
for P,@ € S™.

Proposition 5.7.5. The algebra A™ is a polynomial algebra in the generators {L7"};>1
defined by

LT(z;) = 2% and LT = [a, [z [2°, ..., [2% 27 Y m .. ']m]m]m, € S for j>2.
7 fa‘crtors

Proposition 5.7.5 follows from Theorem 5.7.4(c) and the following two lemmas.
Lemma 5.7.6. The elements L' belong to A™.
Lemma 5.7.7. The elements {L]'};>1 are algebraically independent.

Proof of Lemma 5.7.6.
According to Theorem 5.7.4(a), it suffices to show that 8% L™ exist for all k.
Note that:

n—2 n—2
n—2\ =
_Symen{(? ( )xn‘ 2 0 ( )xn_l z) I:Iw Ti, X }
i<y

(5.15)
Our goal is to show that the RHS of (5.15) has a finite limit as z,—x41 — &€ -

Tp—kily+ -+, Tn +> &+ T, with £ — 0co. Note that —"f% has a finite limit as £ — oo,
Ta(i

unless o(j) < n — k < o(2), in which case it has a linear growth. On the other hand,

w™(x;, 7;) has a finite limit as £ — co. Moreover: w™(£-z,y) =1+0(£™"), w™(y,§

z) =1+ O0(£7!) as £ — oo. This reduces to proving A; — Ay = 0, where A;, A, are

given by
n o(l)=s 1 i<n—k n—k<i
(=1) (n—2
> Yy )2 T e T] e,
s=n—k+1 0€6n Lo(n-l)<n—k o(n=l) 5 i<j

a(n)=s j<n-k n—k<i

DD S (e P | EC | !

s=n—k+1 ¢€6, Lo(n—I-1)<n—k i< <]




Here we set w™(z;,z;) = w™(z,%;) if 071(i) < 07'(j) and wP(zs, ¢;) = W™ (x5, T:)
otherwise.
If k = 1, then s = n in both sums and the map (o, ) — (¢/,1) with o/(%) == o(i+1)
establishes a bijection between the equal summands in A; and A,, so that A;—A; = 0.
For k > 1, there is no such bijection. Instead, we show A; = 0 (equality A2 =0
is analogous). Let us group the summands in Ay according to s, ¢(n —[) and also
the ordering of {z1,...,Zn—k} and {Z,—g+1,...,2Zs}, which are given by elements

01 € S, and oy € G. Define

j<n—k n—k<i
m m
wol,az(wlv H Way (.’II,,.’L'] H wag(thj)'
<j i<

Then A; can be written in the form

x
Z Z Z At 101,02 62(1) g; o2 (xl; veey In)) At,O’lﬂ'? € Z

t<n ko1€6,_ 0266,

We claim that all A;,, », are zero. As an example, we compute Agq, , 1,:

n—t—1
n—2 l n—1-2
A= ) (_1)l< ! )(n—k—t>( t—1 )=
l=n—k—t

—1\k—t(n — 2\ _1
(t—(l)!(l)c—l)!((tz—lz—t)!(l_l)k =0ask>1

Analogously At g, s, =0 for any t,01,02. Hence, A; = 0 and the result follows. 0O

Proof of Lemma 5.7.7.
The elements L;-" correspond to nonzero multiples of 8;¢ via S™ =~ &+, An al-
gebraic independence of {6;0};>0 follows from an analogue of Proposition 5.1.3(b)

applied to Uy, g, 45- O

5.7.3 The shuflle algebra 5
We introduce an analogous additive shuffle algebra S°.

160



Let us consider a Z,-graded C-vector space S* = €D,, S5, where S consists
of rational functions zfg#m—") with f € Clzy,...,z,|%". Define the star-product

1yeeesTn)?
a
*:8F x 8§ — Sy by

1>
(F % G)(x1,. .., Tipz) = Symg, . (F(xl, s T)G(Zig1,s - - - Tig) Hw“(azz, xk))

k<i

with
(z-—y—h)(@—y—h)(z—y—hs)
(z —y)? .

This endows S* with a structure of an associative unital C-algebra.

We say that an element H € S° satisfies the wheel condition if f(z1,...,2,) =

0 for any {zy,...,z,} C C such that ; — z2 = h;, 22 —x3 = h;,7 # j. Let ¢ C §°

wa(x’ y) =

be a Z,-graded subspace, consisting of all such elements. The subspace S° is closed

with respect to .
Definition 5.7.2. The algebra (5%, %) is called the small additive shuffle algebra.
The following result is proved analogously to Theorem 5.7.1.

Theorem 5.7.8. For generic hy, hay, hy (ahy+bhy+chy =0 <= a =b=c), the map
e; — T extends to an isomorphism Yh_*l_,hg,ha (gl,)—>S°. In particular, S® is generated

by S§.

5.7.4 Commutative subalgebra A* C 5¢

We construct an additive version of A™.
Let us introduce a Z,-graded subspace A* = (D, A7, of 5*. Its degree n com-
ponent A2 consists of those F' € S such that the limit

OORF .= Wm F(21, ..., Tk Tnki1 + & ooy Tn + &)
£—00

exists for every 1 < k < n. The following is an additive counterpart of Theorem 5.7.4:
Theorem 5.7.9. We have:
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(a) The subspace A* C S* is x-commutative.

(b) A® is %-closed and it is a polynomial algebra in {K$ }i21 with K € S7 defined by:

(.’L‘l — X9 — hl)(xg — X — h])

N | L)

i<j

Kj‘ll(xl) = z(l)v Kg(zhx?) =

Analogously to Proposition 5.7.5, the commutative subalgebra A® admits an al-
ternative set of generators expressed via Sf. Define [P,Q], := P *Q— Q%P for
P,Q e S

Proposition 5.7.10. The algebra A® is a polynomial algebra in the generators {L$};>1
defined by

L$(x1) =2 and L= La:o, [x°,...,[2% 277, .. Jalo € S5 for j > 2.

j factors
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5.8 The horizontal realization of U, ,, ..(gl;)

The goal of this section is to introduce the “horizontal realization” of the alge-
bra U;hqz’qa(gll). This allows to define the tensor product structure on the whole
(7;1’%% (gly)-category O. It also provides a natural framework for the generalization
of [FT1, Section 7] to K-theory/cohomology of M(r,n). We prove that the natural
Fovl

r

vectors v in the appropriate completions of the modules M”, V" are eigenvectors

with respect to a particular family of operators.

5.8.1 The horizontal realization via g

We introduce a new realization of U, .. (gl;).

Recall the distinguished collection of elements {uy, xx} C Uélm,qs(gll) from The-
orem 5.6.4. Note that there is a natural SLy(Z)-action on Uglm,qa (g1) /(b — 1) =
5/ (kx — 1)xeze. In particular, we have a natural automorphism of g/ (kx — 1)xezz
induced by wug; + u_1x. Though there is no such automorphism for €/ (ko1 — 1), we
still have a nice presentation of this algebra in terms of the generators {u; +1, 0, K1,0}
rather than {uiy;,uoj, K10}

To formulate the main result, we need to introduce a modification of the algebra
Uy 42,05 (811), which we denote by Uy, 4, 45. The algebra Uy, 4, 4, is an associative uni-
tal C-algebra generated by {&;, fi, ¥, v*/?|i € Z,j > 0} with the following defining

relations:

PE@)PE () = $H (), 90y w/2)b (29 (w) = g(yw/2)P (Wb (2),

(T'TO)

&(2)e(w) = g(z/w)e(w)e(z), (TT1L)

F(@)f(w) = g(w/2) f(w)F(2), (TT2)

(1 — @)1 — @)1 - gs) - [E(2), F(w)] = (v~ 2/w)d* (v"*w) — 6(yz/w)dp~ (v~ *w),
(TT3)

P (2)E(w) = g(v¥2z/w)E(w)d* (2), (TT4)
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$*(2) f(w) = 9(F¥ w/2) F(w)y™ (), (TT5)
Symeg, (€, [€ip11, €i3-1]] = 0, SymGa[ﬁn [ﬁ2+1,ﬁ3—1]] =0, (TT6)

R ¢ qu)(l qzy)(l qay) — o(y—1)-1.
where g(y) := ooty (g Ty (g T . Note that g(y) = gy™)~

The following result is analogous to Theorem 5.6.4:

Theorem 5.8.1. There is an isomorphism Z, : E[nfé/ (ko1 —1)"Uy, 0qs defined

on the generators by

il/z s 7i1/27 92F_70 — ¢J 3 u’—zl — 7|z|/2 €i, u—i,—l — fy—Ii[/2};7 1€ Z)] > 0.

Analogously to Uy, ,, . (gl,), there is a similar coproduct Ay, on the algebra Uy g5
M) = P @ AW () = (05 %2) @ 0 ),

An(E(2) = A=) ®1+4~ (7] 2)®E(1w2), Mu(F(2) = 18 F(2)+ Flve2) @ ¥ (1) 2),

where 'y(ji;/z =y/2 @1, fyéiﬂ = 1® y*/2 (see [DI]).

According to Theorems 5.6.4 and 5.8.1, the algebras UZ . . (gl,)[(¥3)*Y/?] and
Uy, 4245 2r€ isomorphic. In particular, we view Ay, as a “horizontal coproduct” on the
algebra Uél s (gl,). It provides a tensor product structure on the category O from

Section 4.6. For two U’

21424580 )-modules Ly, L, we denote the corresponding tensor

product by L; ® Ls.
1

5.8.2 Modules V(u), F(u) in the horizontal realization

Let us describe the action of the currents &(z), f(z), %*(2) on the Fock module F({u).
Consider the Heisenberg Lie algebra b over C with the generators {an}ncz and the

relations

[Gm, @] = m(1 = @™)/(1 ~ ;™6 ~na0.

Let h2° be the subalgebra generated by {an}n>o and F := Indgzo(C be the Fock

h-representation.
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Since the elements {6;0} C Eforma Heisenberg Lie algebra and the highest weight
vector |0) € F(u) is annihilated by {6;0};<0, we see that F(u) ~ F as modules over
the subalgebra generated by Jf Together with the relations (TT4,TT5), we get the

following result:

Proposition 5.8.2. Identifying F(u) ~ F, the action of €(2), f(z), ¥*(z) is given by

pe(Y?) = 514, pe(#*(2)) = exp (?Z

n>0

1 - ainzx") ,

~ 1—-g3 1—g"
pc(€(2)) = cexp (Z nq2 a_nz”> exp (— Z %anz_") ,

n>0 n>0
7 1 n 1—g™ .
pc(f(z)) = C_l €xXp (— Z nq2 QB/za—nz ) €xp (Z —__TZJLQ:Sﬂan n) 3
n>0 n>0

where ¢ = (1 — g3)u.

These Uy, 4,.4,-Tepresentations {p.} were first considered in [FHHSY]. As we just
explained, they correspond to the Uq1 205 (81 )-modules { F'(v)} under an identification
of those two algebras. Similarly one checks that action of currents &(z), f(z), ¥*(z) on

the vector representation V (u) coincides with the formulas for the Uy, 4, 4,-representations

. considered in [FHHSY].

5.8.3 The matrix coefficient realization of A™

We provide a new interpretation of A™.

For a Uy, 4, ,-module L and two vectors vy, vy € L, we define

Mgy (215 - - -5 2n) = (V1]€(21) . . . €(2n)|v2) - Hw (zi,25) € C[[2EY, -, 2.
i<j
The relation (TT1) implies that my, (21, . ., 2,) is G,—symmetric.
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Proposition 5.8.3. For L = p. and v1 = vy = 1, we have

—(_ n(n 1/2n Q3Zy - QBZi)
ml,l(zlv--azn)—'( q H zz—z)z .
i<J J

Proof.

For n > 0, we have
exp(u - a,) exp(v - a_,) = exp(v - a_,) exp(u - a,) exp(uv - n(1 — a)/(1—q3™)).

Therefore

pel&(z))0u(E()) = : poEz)Pe(E(ey) : Hexp( q”““q%j/zi)").

n
n>0

It remains to use the equality [, exp (—quflrl(l——"}‘—)(zj / z,-)") = m—%%.

In the case of pe,,..c, = P, % . (%) pc.. we have the following result:
Proposition 5.8.4. Set1:=1®---®1 € p,,..c,- Then mii(z1,.-.,2) €A™

Proof.

Combining the formulas of Proposition 5.8.2 with formulas for Ay, we get
mii(z1,...,2n) = Z Cr(1) * " Cf(n) Hw"‘(z,-, z;) H Wi (2, 25),
f i<j i<j
where the sum is over all maps f : {1,...,n} = {1,...,m} and Wy(z;,2;) is 1 (if

FG) > (), is E=mleawn) (i ¢(G) = £(5)) and is g(2:/2) (if f(i) < £(§)). The

(z: 433 ZJ)(Zr—tnzg)

claim follows. |

This realization of A™ will be important in [FT2].

Remark 5.8.1. Same construction applied to 7., ® - - - @ 7., realizes the correspond-
h h
ing matrix coefficients as the classical Macdonald difference operators, see [FHHSY,

Proposition A.10].
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5.8.4 The Whittaker vector in the K-theory case

Let M" be the completion of M"™ with respect to a natural grading. Consider the
Whittaker vector v := 2 n>0 [0 M(rm)] € M. To state our main result, we introduce

a family of the elements {K™},.o € S™ by

Ki(m;j)(:z:l, oy my) = KM (2, .32 xl = H 012)( ¢1%a) H:I:’
a<b

za - xb)z

Let {Ki(m;j)}Ko be analogous elements in the opposite algebra (S™)°P?. The name

“Whittaker” is motivated by the following result:

Theorem 5.8.5. The vector vK is an eigenvector with respect to {K(_Tl;j)|0 <j<
r,n > 0}. More precisely: K\ (vK) = C;_, - vE

T 7

where

n(n—l)/2

t)™(1 - tz)(l —t5)--(1—15)

CO,——n — (_l)n(n+l)/2+nr—n(tlt2xl . Xr)n (1

(_t1t2)n(n+1)/2
(I-t)r(1-t)(1-1)...(1-t3)
Remark 5.8.2. Proposition 5.7.5 implies that the subalgebra of (§™)°PP generated by

Cl,—n =...=Lr—1,-n = 0, Cr,—n =

{K i )}6‘;@@ corresponds to the subalgebra of U, (g!;) generated by

QI q2,93

{fi> [firns fimals [fian, [y fimalls -+ Yo

5.8.5 The Whittaker vector in the cohomology case

Let V" be the completion of V" with respect to a natural grading. Consider the

H .

Whittaker vector v ==} o[M(r,n)] € V7. To state our main result, we introduce

a family of the elements {K*?}/20 € g2 by

i ) . o —ZTp—h —2,—h .
Kz-(a’J)(ilIh---,xi) = Kzy, ..., 5;)7] ozl = H (z Ty 1)@ — 1) H:v;

a<b (Ia o xb)2

Let {Ki(a‘j )}ico be analogous elements in the opposite algebra (S*)°°P. The name

“Whittaker” is motivated by the following result:

167



Theorem 5.8.6. The vector v¥ is an eigenvector with respect to {K=P|0 < j <
r,n > 0}. More precisely: K (wH) =D, _, -vH where D,_, is a degree n polyno-

mial in T, and

_1\yn(n+1)/24+nr—n _1y+1 "
Do pn=...= Dr—2,—n =0, Dr—l,—n = ( 1) ( 1)

y

r—1= ZLa-
nlstsy ’ 8182 .
a=

Remark 5.8.3. Proposition 5.7.10 implies that the subalgebra of (S*)°PP generated by
(K9 }525, corresponds to the subalgebra of Y, oma(8h) generated by

{fj’ [fj’ fj+1]7 [fjv [fj’ fj+2]]7 . -}§=0'

5.8.6 Sketch of the proof of Theorem 5.8.5

According to the fixed point formula, we have

K=Y a-Ba= [ -w™

weT3 M (r,| )

Hence, we need to show that for any r-partition A the following equality holds:

- ay (ms5)
ij-n - Z as : K——n I[XI,XP (516)
A’

where the sum is over all r-partitions X such that A C X and |X'| = |A| + n.

For such a pair of r-partitions (), X'), define a collection of positive integers

.

i S f2 <o S i Joa K2 <o Sdak o Grd S <o Sng ) _li=n
i=1

(5.17)

via the following equality:

N=X+0 +...+00, +0, +...+08, +...+0  +...+0;

71,1 T,y 2,1 J2,1y Iride”

We also introduce the sequence of r-partitions A= M c AH c -.. C X = N where
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Al is obtained from A by adding the first ¢ boxes from above. For 1 < q < n, the
g-th box from above has a form El ¢ 'We denote its character by x(g).

‘I‘Z

For any F' € (S]')°PP, we get the following formula for the matrix coefficient Fjjx 5:

F(x(1),...
Foy = -
w3 oo Uf"“““[ &

In particular, we have

m) (x(a) = x(8) (x(b) — t1x(a))
K(_n )l[,\l,,'\] - lsggn (X( )_t2X( ))( (a) — tax b)) HX(Q) Hfo{[,\[q} Xle—1]]-

As an immediate consequence of this formula, we get K E';fj )”,-\,’5‘] = 0 if M\ X contains
two boxes in the same row of its i-th component, 1 < ¢ < r. Therefore, the sum
in (5.16) should be taken only over those collections {ji 1, ..., jri } from (5.17) which

satisfy strict inequalities.

We also split 2 into the product over consequent pairs: —2;— M a—af\% Ac-
Alg

cording to the Bott—Lefschetz fixed point formula, we have

a3lql
Axle-1]

- fojx@ Xa-11] = €_p|[Rla—1 Xial]-

For a pair of two r-partitions (f, z’) such that @’ = & + El the matrix coefficient

e_[a,7) Was computed in Lemma 5.3.3(a):

k<Le (l) (a)

"t 1 1 taXi
enpr = —1— | | I1 o—’
1=t 2 XJ) — e (@k)#E() Xi X

where L, is chosen to satisfy L, > u{* + 1.

Combining these formulas together, we finally get

r (a)
Y pe(mi) H (—t1t2)? 11 1 x(q) — tritaxy, i
K_n ’ = . . . q N
a el { -ty x(9) — X! IR

x(9)
the second product is over pairs (a,k) € {(1,711),---, (", jri,)}, k < Lo with Ly >
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A +n.

Let us denote the RHS of this equality by Cj, where j = {j11,.-.,Jr. } is deter-
mined by (5.17). Note that C; = 0 if the corresponding r-partition X fails to be a
collection of r Young diagrams. Hence, (5.16) reduces to C;_, = Y Cj, the sum over
all j from (5.17) with strict inequalities.

It is easy to check that the sum ) Cj has no poles for j > 0. Together with the
degree computation, we see that it is independent of A for 0 < j < r. Thus v¥X is
indeed an eigenvector with respect to K E’::;j ). To compute its eigenvalue, we evaluate
S Cj at A = @. This sum is actually over all partitions (,...,l.) of n with j,5 = b.

The total sum equals

> 1 e [l =

_ T To— o
(L=-t) A l=nap=1 (X Tetpxet) (8Tt - e b=1

(_tltz)n(n+1)/2

n{n+1 n r . .
(0t ) 5 1 D
(1-¢ i H —tla . _ fla—ltl H( 2 Xb ).

1 L+ +Hlr=nab=1 (Xﬂ 2 Xb) (Xa 2 Xb) b1

It is straightforward to check that for 0 < j < r — 1, the sum from the above
equality is a rational function in y, with no poles. Together with the degree estimate,
we see that it is independent of {x,}. To compute this constant we let x; — co. Then
the only nonzero contribution comes from the collection (I,1,...,1.) = (n,0,...,0)
and the result equals Cj .

For 7 = r, the whole expression above has no poles and is of total degree < 0;
therefore, it is independent of x,. To compute this constant we let x; — oo. The
only nonzero contributions come from those (Iy,...,[;) with I; = 0. For those we let

X2 — 00, etc. The result follows by straightforward computations.

5.8.7 Sketch of the proof of Theorem 5.8.6

According to the fixed point formula, we have

=t b= [ w
by

wETM(r,|X))
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Hence, we need to show that for any r-partition A the following equality holds:
b/\' a;
Z KOS s (5.18)

where the sum is over all 7-partitions X’ such that A C X and |[X| = |A| + n.

Analogously to the K-theoretical case, we have:

bsr 7 (aif) (=17 x(q)’ . 1 x(q) — 7 — 81— 52
KD = k
b -n | X )\] H { S1 H (q) L w82 -+ Tg H (q (a,) ’

1<g<n ) — — 5

the second product is over pairs (a,k) ¢ {(1,511),---, (" Jr1.)}, & < L, with L, >
AP +n.
Let us denote the RHS of this equality by Dj. Then Ej D; is a rational function

in xi) with no poles for 7 > 0. The degree estimate implies that for j < r it is

(a:7) }n>0

independent of xfca). Thus v is indeed an eigenvector with respect to { K= }527 ..

To compute its eigenvalue, we evaluate at A = @. This sum equals

(_ 1)n(n+1)/2+rn

8711, Z {fIH(xa_xb_ l —k+1)32) IHH( —1)52—.’1,‘1,)‘7}.

li+..+Hlr=n \a,b=1k=1 b=1 k=1

It is straightforward to check that this sum is a rational function in z, with no
poles. Together with the degree estimate for j < 7 — 1, we see that it is independent
of z,. To compute this constant we let z; — co. If j < r — 2, then all summands
tend to 0. For j = r — 1 the only nonzero contribution (equal to D,_; _,) comes from

the collection (l3,1s,...,1,) = (n,0,...,0).
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Appendix A

Future work

The goal of this appendix is to outline the generalization of the results from Chapter 5
to the case of the quantum toroidal algebra U, 4(sl,,) and the affine Yangian Vi, u(sly).
We will restrict only to the case of Uq,d(sln) and present only the first steps, while
the full version will appear in [FT2].

A.1 Quantum toroidal U, 4(sl,) and the big shuffle

algebras

¢ The quantum toroidal of sl,
Here we recall the toroidal algebras following [GKV, VV].
Let g,d € C* be two parameters. We set [n] := {0,1,...,n — 1}, [n]* :=

[n]\{0}, the former viewed as a set of mod n residues. Let gm(z) = 221 De

z—q™m

fine {ai,j,mi,jli,j S [TL]} by
ai; =2, ajzx1 = —1, miz = F1, and a;; = m;; = 0 otherwise.

The quantum toroidal algebra of sl,,, denoted Uq’d(s[n), is the unital associative alge-

bra, generated by {e;, fix, ik, ¥y, 0, YEY2li € [n], k € Z} with the following defining
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relations:

Yio Tﬁi_,()l = ¢z_ol “thip =1, [wf(z)ﬂ/fj‘(w)] =0, ’)’ﬂ/2 — central, (TO)

Gay (Y ™ 2 W) ()15 (W) = ga, , (vd™ 2/ w5 ()Y (2), (T1)
ei(2)e;(w) = o, (™7 2/ w)ej(w)ei(2), (T2)
fi(z)fj(w) = g—ai,j (dmi’jz/w)fj (w)fz (Z), (T3)

(g — g D), fi(w)] = bi5 (S(yw/2)gF (v *w) — S(vz/wigy (¥22)),  (T4)
Vi (2)e;(w) = gay, (VF2d™ 2/ w)es (w)di (2), (T5)
VE(2) (W) = 9o, (FF 2™ 2/ w) f (w9 (2), (T6)

{ei(21)€i(z2)6ii1(23)—((1+q—1)€i(21)61':::1(23)61'(22)'}-6&1(Z3)61(21)€i(22)}+{zl A 22} =0,
(T7.1)

{fz’(zl)fi(z2)fi:t1(23)_(Q+q—1)fi(zl)fi:!:1(23)fi(22)+fi:h1(Zs)fi(zl)fi(z2)}+{zl “ 22} =0,
(T7.2)

where the generating series are defined as follows:

ei(z) == Z € k2 -k fi(z) = Z fzkz ) dfi (2) == + Z%JZ;J

k=—o0 +5>0

It will be convenient to work with another “Cartan” generators {h; ;}, instead of

{wix}. Define h;zx € C[¥7, Yit1, Yix2,- -] via

¢i( ) 10 exp ( (q - q_l) Z hi,ﬂcz;k) .

k>0

Then the relations (T5,T6) are equivalent to the following:

. ks i — ka,-,-
Wineis = q*Ie;ip, [hig,ejq] = dFmuiy= I/ 2[_k]—]ej,l+k, (T5)

.y ke ka; ;
Wiofit = G % fitios [hin, €] = —d Fmoiylfl/ 2[—k‘]—]fj,z+ky (Te")
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where [m] == (¢" —¢™) /(g —q7").

Let U~,U° U+ be the subalgebras of U, 4(sl,) generated by {e;;}, {fi;}, and
{"/}i,ja ’(/]1:17 fy:tl/2}‘
Proposition A.1.1. [H](Triangular decomposition) The multiplication map m :

U- QU@ U™t — U, 4(sl,) is an isomorphism of vector spaces.

Finally, Uq,d(sln) is Z"-graded by deg(e;x) = 1;,deg(fix) = —1;,deg(U%) = 0.

o Horizontal and vertical U,(gl,,)

We recall two important subalgebras of ﬁq,d(sln).

Following [VV], we introduce the vertical and horizontal copies of the quantum
affine algebra of sl,, denoted Uq(sln), inside U, d(sl,). Consider a subalgebra UD of
U,a(sl.) generated by {e;x, fix, ¥ix ¥ig,vEY/?|i € [n]*}. This algebra is isomorphic
to Uq(sl,,), realized via the “new Drinfeld presentation”. Let U® be the subalgebra
of Uq,d(sln) generated by {e;p, f,-,o,wfolﬁ € [n]}. This algebra is also isomorphic to
U,(sl,.), realized via the classical Drinfeld-Jimbo presentation.

We will need a slight upgrade of this construction, which provides two copies of the
quantum affine algebra of gl,,, rather than sl,,, inside U, 4(sl,,). For every r # 0, choose

{ci-|i € [n]} to be a nontrivial solution of the following system of linear equations':

nzlci,[mi,j]d_r"“"' =0, j € [n]*.

i=0
Let ") be the subspace of Uq,d(s(n) spanned by Y = Ei";(]l Ciyhir, T # 0. Note
that h® is well-defined and commutes with U®, due to (T5', T6'). Moreover, hM
is isomorphic to the Heisenberg Lie algebra?. Let U be the subalgebra of U, 4(sl,),
generated by U® and h™. The above discussions imply that U° ~ Uq(g[n), the
quantum affine algebra of gl,.

Our next goal is to provide a horizontal copy of Uq(g[n), containing U®. We are

not aware of the explicit formulas. Instead, we will use the following beautiful result,

which was communicated to us by Boris Feigin:

1 It is easy to see that the space of solutions of this system is 1-dimensional for ¢ # /1.
2 With the central charge being a function in 4*1/2,
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Theorem A.1.2. [M] There exists an automorphism m of Uy a(sl,) such that
r({TW) = TO, r({T®) = PO,

Let us define h® := 7(h®) and let U" be the subalgebra of Uy a(sl,), generated
by U® and §@. Then U* = n(U”) and it is isomorphic to U,(gl,,)-

¢ Big shuffle algebras
We introduce the big shuffle algebra S (of Al -type).

Let us consider a Z;-graded C-vector space
S= @ Sk1,.vkns
k1,00 >0

1<5<k:

where Sy, .. &, consists of [| &x,-symmetric rational functions in the variables {zi;}; cin

We also fix an n X n matrix of rational functions = (w; ;)i jem) € Matnxn(C(2)) by

setting w; :(z) := BiZ2d  where the constants p; ;,¢; ; are given as follows:
\J =1 Pi; G

Gic1=qd 6 = q 3 Qi1 = @ Pii1 = L,pii = L, piger = d!

and we set p;; = ¢;; = 1 otherwise.

We introduce a bilinear operation % on S.
Definition A.1.1. For f € Sk, ., 9 € Sy,,...1, We define f x g € Sy, 11y, kn+1. DY

(F*xg) (@11, Tlkitss -3 Tl - - - s Tnkntln) = Syml’IGk,-H.-

ky<j’
) . Tig
f(xl,la sy xl,kn sy I’n,kn)g(ml,k1+l7 “en >x1,k1+l1) B ’xn,kn-(-ln) * w’i,i’ z
57 4t
igtel j<k; L

)

This endows S with a structure of an associative unital algebra with the unit
1 €Sy, o- Similarly to the small shuffle algebra S™, we consider a particular subspace

of S given by the pole and wheel conditions. Let us introduce these.
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Definition A.1.2. Define the subspace Sy, C S, &, by

’ fx,"")xn,n
Slu ..... kn S {F = H (j'1<1k1'+1 : ) f € (C[mz,J]]<k )HG’C;} .

i€[n] ng'k,. (Tij — Tivrs)

We say that f € S satisfies the pole conditions if f belongs to S := @y, 1 50 Sk, k.-

It is easy to see that fxg € S’V f,g € §’. Next, we introduce wheel conditions:

Definition A.1.3. We say that f satisfies wheel conditions if f(z11,...,Znk,) =0

for any collection of 211, ..., Znk, € C such that
zi,jl/xi:bl,l = qdilyfri:tl,l/xi,jz = qd*l, i€ [”]7j1,j2 < kil < kg

,,,,,

k. C Sk, ., Dethespace of all such elements, and set S := By, _ 4.50 k1, kn
The following is straightforward:

Lemma A.1.3. The subspace S C S is x-closed.

Definition A.1.4. The algebra (S, *) is called the big shuffle algebra (of A¥",-type).

e The relation between S and U+

We recall the interplay between the above algebras.

It is a standard fact that U™ is generated by {e; ; }fg[ﬁ] with the defining relations

(T2, T7.1). The following theorem is straightforward:
Proposition A.1.4. The map e; ; — zfl extends to a homomorphism ¥ : Ut —Ss.

Note that the image of ¥ is a subalgebra of S generated by S,,,i € [n].
particular, it belongs to S. The following result is essentially due to Andrei Negut:

Theorem A.1.5. [N2] The homomorphism ¥ provides an isomorphism of algebras
U Ut-58.

Remark A.1.1. In the loc.cit. this statement is proved for the case d = 1.3

3 The algebra At from [N2] is isomorphic to our algebra S with d = 1 via the map

_3 e Zij — % Zij — Zigl.g
F(zl,l,...,znk )l'—) b)) F(Z1 15+--32nk, ) H H _11; quz . —z — gz g .
i€ln] 5<3’ HI Y ieln) g0 +Lg
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A.2 Subalgebras A(sy,...,s,)

We construct a family of commutative subalgebras of S, analogous to A™ from Chap-
ter 5. Let us first introduce the following notation: for integer numbers a < b, we
define /; to be the number of integers from {a,a +1,...,b— 1,b} that are congruent

to ¢ modulo n. We define

7b . . .
Fg(a ) = F(g'xl,la LR ,5'351,!1,171,!14-17 ce s Tlkyy e 7§'xn,17 v ,S'xﬂ,ln7 Tnlntly - - 71‘.n,kn)

with [; defined as above. We also use mod n cyclic conventions everywhere.

Definition A.2.1. For sy,...,s, € C*, consider a Z"-graded subspace A(sy,...,s,)
of S, whose degree (ki,...,k,) component is defined by

b
A(S1 - Sn )b = {F € Siy,.pn | 0O F =] 5:-00NF V1<a<b< ) k]-} ,

i=a

where 3 F := lim Fe b gOed = limFg’b.
£§—0

£—00
We will be only interested in the case when [[s; = 1. The following result is

straightforward:

Lemma A.2.1. For any k € Z,p € C, we define Fy,, € Sk, x by

- i k k
Hie[n] Iiycn(®is —q 3i4) - Hie[n](nt=1 si]Tier zig — #1120 Tivas)

Fip=
’ Hieln] Hj,j'sk(””ia‘ — Tiy1,j)

Ifs1---s, =1, then Fy, € A(s1,-..,5n).

A collection {s;} C C* satisfying s;---s, = 1 is called generic if the equality
§31...s2» = 1 implies @y = ... = op. It turns out that elements Fj, generate

A(s1,-- ., 8n) for generic {s;}.

Theorem A.2.2. For generic {s;} satisfying [[s; = 1, the algebra A(s1,...,5,) is
generated by {Fx .|k € Z,,p € C}. Moreover, A(sy,-..,5n) 15 a polynomial algebra
in free generators {Fy,, : k € Zy,l € [n]} for pair-wise distinct po, ..., n—1 € C.
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As an immediate consequence of this theorem we get:

Corollary A.2.3. Let Ag C S be a subalgebra generated by the elements K, € S, .,

defined by
Hz’e[n] Hj;éj’sk(xi»j —q *miy) - Hze[n] Hg =1 xw

K, =
[icp 1< (Tis — Zitr,57)

Then Ag is a polynomial algebra in K; and A C A(s1,...,8,) for any sy...8, = 1.

Define A to be the subalgebra of S generated by {z7,}. We conclude this section
with the following result:

Proposition A.2.4. The subalgebra Ag centralizes A.

Proof.
It suffices to show that the commutator [K,, :1:‘1”1] € Sr41,...r is actually 0. This

where f is a degree nr?+2r polynomial

minutator has the form
co u H.‘e[n] Hj,j’(ziyj_mi+1,j')

in {xi,j}-

First, note that f is divisible by

I Iow T IT G- om0

i€[n]* j=1 i€[n]x jAj'<r

We also claim that f is divisible by J[; "2, and [Ligjrcria (@i — q 2z 5).

To prove the first claim, we note that substituting z; ,+; = 0 we get

(K, * 5'3(1),1) =d K (Z11,- -1 153 Tnds- - Tnr)s

le,r-f-l:o

(.’L'?’l * Kr) = d_rKr(iL'l,], N A R SRR % P xn,r),

Izl,r+1=0

so that f is divisible by z1,+1. But f is symmetric in {z; ;} and the result follows.
To prove the second claim, we note that substituting z, ;41 = ¢~ 2z, we get that

both (K, xz9,) and (29, x K.)) .., are equal to

2z 104197

T1r41=9 F1r

r

K.(z PRI | | (€15 — g 01,) (225 — d g ' 21,r) (A 70,5 — g7 70,r)
o b ~ (z1; — ¢ 221,) (25 — 0221, ) (X0 — ¢ 201,)

=1
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Therefore, f is divisible by z1,4+1 — q_"’xl,r. But f is symmetric in {z;;} and the
result follows.

Hence, f is a polynomial divisible by [[;c(y [T, 5 (%i,i—972:.7) [Ticpy [1; - Since
the degree of the latter product is nr? +2r + 1 and deg(f) = nr? + 2r, we get f = 0.
This completes the proof. O

A.3 Degeneration

In this section we study the limit of the algebra Uq,d(s(n) as ¢ — 1. We use this
to prove some results about the algebras Ay, A(sy,..., $,) by considering their limit
cases as ¢ — 1.

Note that all the defining relations (T0-T7.2) become of Lie-type in this limit.
Therefore, U 4(sl,) =~ U(iign) for a Lie algebra iy, generated by {e;;, fi;, hi;li €
[n],7 € Z} with the defining relations read from (T0)-(T7.2).

Consider an associative algebra £, := Mat,, ® C(Z*!, D*')/(DZ — d™ZD). We
will view £,, as a Lie algebra with a natural commutator-Lie bracket. Let £ C £,

be a Lie subalgebra spanned by 3, ., A; ;Z*D? with tr(Ag) = 0. Finally, let £, be

i,J€Z

the central extension of £/, with respect to the 2-cocycle
HA®ZMD*™, BQ Z™ D) = §yy _ry 05, 5,4 "2 tr(AB)s;.

The following result is straightforward:

Lemma A.3.1. There is a homomorphism of Lie algebras 0 : iig, — £, such that
0: eijrr Eija®Z7d™Y, fii B i®Z°d™7, hij— (Eii—Eip1341)®2°d™7 i #0,

6: €0,j — En,l @ DZj, f()’j g E]_,n @ Zngl, hO,j land (d——njEn,n - El,l) & Zj + C(sj’o.
It is clear that 6 is surjective. Actually we have:

Theorem A.3.2. The homomorphism 8 is actually an isomorphism.
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Let us consider the images of some subalgebras of U, 4(sl,) under the above de-

generation. The following result is straightforward:

Proposition A.3.3. As ¢ — 1, we have the following degenerations:
(a) UD degenerates to U(ED,,c5 50 ® Z™);

(b) U® degenerates to U(ED,,z5= ® D" & C - c);

(c) b degenerates to DnsoC- L ®Z™;

(d) b® degenerates to @B C - In® D™;

(e) U1 (A) degenerates to U(n, & @, 5= @ D™).

This proposition together with the results of the previous section yield:

Theorem A.3.4. For generic s1,. .., S, satisfying [[s; =1, we have
.A,(Sl, ey Sn) C ‘I’(Uh)

It turns out that the subalgebras A(sy,...,s,) are related to the Bethe-ansatz
problem. In particular, let M(A) be a Verma module of U,(gl,) at the critical level.
We further identify U,(gl,,) with M()). According to Theorem A.3.4, the subalgebra
A(s1,...,ss) belongs to ¥(U*) ~ U,(gl,). But according to Proposition A.3.3, we
actually have A(sq,...,8,) C U*(gl,). The main result is

Theorem A.3.5. [FT2] If s; = ¢**~ V| then the subspace A(sn,...,$,) corresponds
to the subspace M()\)™ of critical vectors in M(A).
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