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ABSTRACT
This paper considers the problem of scheduling streaming
applications on uniprocessors in order to minimize the num-
ber of cache-misses. Streaming applications are represented
as a directed graph (or multigraph), where nodes are com-
putation modules and edges are channels. When a mod-
ule fires, it consumes some data-items from its input chan-
nels and produces some items on its output channels. In
addition, each module may have some state (either code or
data) which represents the memory locations that must be
loaded into cache in order to execute the module. We con-
sider synchronous dataflow graphs where the input and
output rates of modules are known in advance and do not
change during execution. We also assume that the state size
of modules is known in advance.

Our main contribution is to show that for a large and
important class of streaming computations, cache-efficient
scheduling is essentially equivalent to solving a constrained
graph partitioning problem. A streaming computation from
this class has a cache-efficient schedule if and only if its
graph has a low-bandwidth partition of the modules into
components (subgraphs) whose total state fits within the
cache, where the bandwidth of the partition is the number
of data items that cross intercomponent channels per data
item that enters the graph.

Given a good partition, we describe a runtime strategy
for scheduling two classes of streaming graphs: pipelines,
where the graph consists of a single directed chain, and a
fairly general class of directed acyclic graphs (dags) with
some additional restrictions. The runtime scheduling strat-
egy consists of adding large external buffers at the input and
output edges of each component, allowing each component
to be executed many times. Partitioning enables a reduc-
tion in cache misses in two ways. First, any items that are
generated on edges internal to subgraphs are never written
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out to memory, but remain in cache. Second, each subgraph
is executed many times, allowing the state to be reused.

We prove the optimality of this runtime scheduling for all
pipelines and for dags that meet certain conditions on buffer-
size requirements. Specifically, we show that with constant-
factor memory augmentation, partitioning on these graphs
guarantees the optimal number of cache misses to within a
constant factor. For the pipeline case, we also prove that
such a partition can be found in polynomial time. For the
dags we prove optimality if a good partition is provided; the
partitioning problem itself is NP-complete.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-

ity]: General

General Terms
Algorithms, Performance, Theory

Keywords
Caching, dag, graph, partitioning, pipelining, scheduling,
streaming, synchronous dataflow.

1. INTRODUCTION
Streaming programming models have received enormous

attention in recent years, mostly because they are perceived
as enablers of high-performance computing and because of
the continuing shift from signal processing by analog hard-
ware to digital signal processing. Examples include aca-
demic projects like StreamIt [27] and StreamC/KernelC [12],
community-based open-source projects like GNU Radio [9],
and commercial products including SimulinkR© [20] and Lab-
VIEW [16].

Naturally, there has been extensive research on how to
map these programming models to hardware and on how to
schedule them so as to maximize various objective functions,
often subject to constraints. Much of the research has fo-
cused on maximizing throughput , defined as the number of
data items processed per unit time, and on minimizing delay
or latency (the period between the time an input data item
enters the computation and the time it affects an output



data item) [6, 13]. More recently, additional metrics have
been considered, such as power consumption [29], memory
usage [4,23], and cache efficiency [15,21,25].

Because streaming computational models are restricted, it
is possible to map and schedule them efficiently. A streaming
application can be represented as a graph (or multigraph)
where nodes are computation modules and the edges are
channels connecting the modules. Channels have buffers
associated with them. The modules send data in the form
of tokens (also called messages or items),1 to each other
via these channels. When a module fires, it consumes some
tokens from its incoming channels, performs some computa-
tion, and produces some tokens on its outgoing channels. A
module is ready to fire each time each of its input channels
contains sufficient tokens to enable it to compute. Each
module accesses some associated state, almost always of
static size (but not identical across modules), when it fires.
Designated channels stream (a possibly infinite number of)
tokens into and out of the application.

This paper focuses on cache-efficient scheduling of stream-
ing computations on a single processor. Because cache ef-
ficiency is such an important determinant of performance,
there is a rich history of algorithms and data structures de-
signed to minimize the number of cache misses incurred by a
program (see [1,3,5,7,11,24] for a sample). Cache efficiency
is often overlooked in streaming models, since data items
in channels are written exactly once and read exactly once,
and they are not reused. Streaming applications exhibit two
kinds of cache misses, however, that can be controlled using
intelligent scheduling. First, since modules access their state
when they fire, it may be advantageous to execute the same
module many times once its state has been brought into the
cache. Second, consider a module A which outputs some
data item on a channel between itself and a module B. If
modules A and B are scheduled in a quick succession, then
this data item remains in cache. If they are not, then this
data item may be spilled out to main memory, leading to a
cache miss when module B eventually reads it. Therefore, it
is advantageous to execute consecutive modules one after the
other whenever possible. Minimizing one of these two kinds
of cache misses may compete with the objective of minimiz-
ing the other, however, and we must balance the concerns
intelligently while scheduling streaming applications.

The algorithms in this paper for minimizing the number
of cache misses are based on the idea of partitioning. The
streaming graph is divided into subgraphs, each of which fits
in cache. That is, given a cache of size M , the sum of the
state size in any single subgraph does not exceed M . Within
subgraphs, we use small buffers (the minimum required on
that edge), whereas on channels between subgraphs, we use
large buffers. This approach reduces cache misses in two
ways. After a particular subgraph is cached, it can be exe-
cuted any number of times — as long as sufficient input data
is available — without causing any cache misses to load or
spill state. Additionally, each module of the subgraph is
executed so that the data moving through the subgraph re-
mains cached, with the exception of the initial input and
final output. The key to minimizing cache misses using this
method is to partition the modules to minimize the amount
of data transferred though the channels that cross between
subgraphs.

1These terms are used interchangeably.

We assume that each time a module fires, the number of
items it produces and consumes from each of its input and
output channels is known in advance and that this value does
not change during execution. Such computations are called
synchronous dataflow graphs. Without loss of generality,
we also assume that all data items are unit sized. Finally,
we assume that the state size of each module is known in
advance. These assumptions are satisfied by a wide range of
streaming computations.2

This paper makes the following contributions:

• A theoretical argument that provides a lower bound for
the cost of scheduling a directed acyclic graph (dag).
Specifically, consider an optimal “well-ordered” partition
P into subgraphs each with O(M) total state, where
“well-ordered” means that the graph induced by con-
tracting each component is acyclic. An optimal parti-
tion is one with minimum“bandwidth,”which is the total
number of messages that must cross partition boundaries
for each input item consumed. Then every schedule in-
curs an amortized cost of at least Ω((1/B) bandwidth(P))
cache misses per input item, where M is the cache size,
B is the block size.

• An upper bound for certain dags. Specifically, suppose
that we are given a well-ordered partition P subject to
certain additional restrictions. We show how to schedule
the dag on a machine with cache size O(M) and block size
B with O((1/B) bandwidth(P)) amortized cache misses
per input item. If P is optimal, the upper and lower
bound match to within constant factors. Therefore, the
partitioned scheduler incurs at most a constant factor
more cache misses than the optimal scheduler if given a
constant-factor larger cache.

• We also show how to find a good partition for the case
of pipelines, where the streaming graph consists of a
single directed chain of modules. For more general dag
topologies, finding the minimum bandwidth well-ordered
partition is NP-complete [8, ND15: Acyclic Partition].

The additional restrictions for the upper bound require the
partition to have O(M/B) edges leaving each subgraph, and
each component to be schedulable with internal buffers hav-
ing a total of O(M) size. The latter condition holds when
all modules have uniform input and output rates, and both
conditions always hold for the pipeline even without uni-
form rates. Both conditions also hold for a wide class of
dags without uniform rates.

2. MODEL AND DEFINITIONS
This section describes the analysis and streaming models.

We discuss assumptions about the streaming graphs used
throughout the paper and define needed terminology.

Analysis model

To analyze the cost of a schedule for a streaming application,
we use the external-memory model or I/O model [1],
sometimes also called the disk-access model (DAM). The

2Some streaming applications satisfy our assumptions ex-
cept for very few modules, such as modules that extract
symbols or packets from a waveform, modules that produce
television frames from a compressed stream, and so on. Our
techniques can still be used to schedule these computations,
perhaps suboptimally, by forcing these models to the bound-
aries of subgraphs.



I/O model is a two-level memory hierarchy consisting of a
fast internal memory (cache) of size M and a slow, arbitrar-
ily large external memory (disk), organized into contiguous
blocks of size B. An algorithm may only operate on data
that resides in the cache — requesting data that is not in
cache causes a cache miss, wherein the block containing the
data must first be moved from disk to cache (likely causing
other data to be evicted from the bounded cache). The cost
in this model is the number of cache misses.

Streaming model

We model a streaming computation as a directed acyclic
graph (dag) G = (V,E). Each vertex v ∈ V corresponds to a
module, which has a predefined state size denoted by s(v).
Each edge corresponds to a directed channel between mod-
ules, with buffers (implementing FIFO queues) along each
edge to store messages that have not yet been consumed by
the receiving module. A module has (integral) parameters
in(u, v) and out(v, w) specifying, respectively, the number
of messages that must be consumed from the incoming edge
(u, v)’s buffer each time v executes and the number of mes-
sages produced into outgoing edge (v, w) when v executes.
When each module has at most 1 input and output (as in the
pipeline case), we use in(v) and out(v) as a shorthand for
the inputs/outputs consumed by that module. A streaming
dag is homogeneous if in(u, v) = out(u, v) = 1 for every
edge (u, v), that is, each module consumes exactly one mes-
sage from each of its input channels and produces exactly
one message to each of its output channels.

In order to execute, or fire a module v, the entire state
of that module must be loaded into the cache. Moreover,
the module may only fire if all of its input buffers contain
at least the requisite minimum number of messages.

Assumptions

Throughout the paper, we make the following assumptions
about the streaming graph. Except for the last one, these
assumptions are all either without loss of generality (and
made only to simplify the exposition) or necessary to admit
any reasonable solution.

We assume that all messages are unit size and that the
state of size each module is at most M . The former as-
sumption is without loss of generality given the arbitrary
input and output rates. The latter is necessary to allow a
module to be fully loaded into cache when fired.

We assume that the streaming graph contains a single
source node s with no incoming edges that produces an in-
finite stream of input data. Similarly, the graph contains a
single sink node t with no outgoing edges that consumes all
terminal outputs. This assumption is without loss of gener-
ality, as a multisource or multisink dag can be transformed
into one with a single source and sink.

We assume that the streaming dag is rate matched , by
which we mean that the value

∏

(u,v)∈p
(out(u, v)/ in(u, v))

is identical for all directed paths p between a fixed pair of
vertices. This property is necessary and sufficient to allow
the dag to be scheduled without deadlocks with bounded
buffers on all channels.

Finally, let minBuf (e) denote the minimum buffer size
required by channel e, which can be computed for rate-
matched dags using the procedure described in [17]. We
assume that for any subgraph Gi = (Vi, Ei) induced by a
subset of vertices Vi ⊆ V , we have

∑

e∈Ei
minBuf (e) =

O(
∑

v∈Vi
s(v)). In other words, for any subset of modules,

the state size of the modules exceeds the minimum buffer
size of channels connecting those modules. This assumption
allows us to amortize the cost of reading/writing the buffers
for modules against loading the module. For a large class
of applications, such as pipelines and homogeneous dags,
minBuf (e) = in(e) + out(e), making this condition hold
without loss of generality, since a module must regardless
load this much of its input and output each time it fires.

Additional definitions

Finally, we define some terms and notation used through-
out the paper. When there exists a directed path from u
to v in the dag, we say that u precedes v, denoted by
u ≺ v. When referring to a particular execution of a module
v, the progeny of this execution are those messages that
may (eventually) appear later in the dag as a result of this
execution. In other words, the progeny of a particular execu-
tion of v are those messages that may be produced only after
v is fired, but before the next time v is fired. We similarly
define the progeny of a particular message m along channel
(u, v) as the progeny of the execution of v that consumes
message m.

We use the term “gain,” defined as follows, to describe the
rate of amplification of messages along paths through the
dag. Gain is only well defined for rate-matched dags.

Definition 1. For a vertex v, the gain of the module is
the number of times v fires for each time the source s fires.
That is, for any path p : s = x0 → x1 → x2 → · · · → x|p| =
v, we define

gain(v) =

|p|
∏

i=1

(out(xi−1, xi)/ in(xi−1, xi)) .

For an edge (u, v), the gain of the edge is defined as the
number of messages produced along the edge for each time
the source s fires, denoted by gain(u, v) = gain(u) out(u, v).

3. SCHEDULING AND EXECUTION
In this paper, we concentrate on schedules induced by a

“partition” of the dag. Sections 4 and 5 shows that par-
titioning is a good strategy for scheduling streaming dags
of various topologies if the goal is to minimize the number
of cache misses. This section describes partition scheduling
and the execution model that ensues when streaming appli-
cations are scheduled using partition scheduling.

A partition of a streaming dag V is a collection of dis-
joint subsets of vertices {Vi} such that

⋃

i Vi = V . We call
each of the sets Vi in the partition a component of the
partition. The edges that are internal to a particular com-
ponent are called internal edges and the edges that cross
from one component to another are called cross edges. We
are interested in “well-ordered” partitions:

Definition 2. Consider a partition P = {V1, V2, . . . , Vk}
of a streaming dag V . The partition P is well ordered if
the multigraph induced by contracting each component Vi to
a single vertex is a dag.

In addition, we want the partition to have the property
that each component Vi “fits” in cache. That is, the state
of all the modules in the subset, as well as the buffers on
internal edges, all fit in cache at the same time. We call



a partition of modules {V1, V2, . . . , Vk} a c-bounded parti-
tion if the total state size

∑

u∈Vi
s(u) of all modules within

each subset is at most cM . The quality of a partition de-
pends on its “bandwidth”:

Definition 3. Consider a partition P = {V1, V2, . . . , Vk}
of a streaming dag V , and let C be the set of cross edges.
The bandwidth of P is the sum of the gains of the cross
edges:

bandwidth(P) =
∑

(x,y)∈C

gain(x, y) .

Thus, for homogeneous applications, the bandwidth is sim-
ply the total number of crossing edges.

We say that a well-ordered c-bounded partition is an op-
timal c-bounded partition if there is no other well-ordered
c-bounded partition of smaller bandwidth. We denote the
bandwidth of an optimal c-bounded partition of the graph
G by minBW c(G).

Partition scheduling begins by finding a c-bounded parti-
tion with small bandwidth. The scheduling of a partitioned
dag is now considered at two levels: the higher level cor-
responds coarsely to scheduling components, and the lower
level corresponds to scheduling modules within each compo-
nent.

At the lower level, once a component is brought into cache,
the modules within it must be scheduled. Each internal edge
e is allocated a buffer with size minBuf (e), which is the
minimum buffer size required by e to avoid deadlocks. Since
we have

∑

e incident on v

minBuf (e) = O(s(v))

for all v, the sum of internal buffers sizes of a component Vi

is O(s(Vi)) = O(M). Therefore, these internal buffers fit in
cache. Since a component is a rate-matched dag, one can
always schedule at the lower level without overflowing these
buffers [17].

For the higher level, the main idea is that once a com-
ponent is loaded into the cache, it may be executed many
times without incurring any additional cache misses, except
when reading from or writing to those cross edges leaving
the component. Two properties of the scheduler and parti-
tion enable this approach: the addition of large buffers along
cross edges, and the fact that the partition is well ordered.3

Since the component is executed many times, we can amor-
tize the cost of loading the component’s state against the
number of reads/writes to cross edges (the bandwidth of
the partition). We say that a component is schedulable
whenever (1) “enough” inputs exist, and (2) “enough” space
remains in the output buffers. In particular, the compo-
nent is schedulable if it can be executed continuously until
it consumes a total of at least Ω(M) inputs (or produces
at least Ω(M) outputs) along cross edges to pay for load-
ing the O(M) state. The buffers on the cross edges must be
large enough to ensure that, at all times, some component is
schedulable. By enforcing this condition, we not only guar-
antee that the scheduling algorithm is deadlock free, but we
allow dynamic schedules to be computed easily. The sizes of

3If the partition were not well ordered, then a single com-
ponent could not necessarily be scheduled repeatedly in iso-
lation: some other module might need to be scheduled in
between modules of the component.

buffers on cross edges to satisfy this schedulability constraint
is different for different stream topologies.

Scheduling inhomogeneous graphs

Inhomogeneous graphs may require large buffers on cross
edges. How to improve the buffer sizes for inhomogeneous
graphs is an interesting problem, but since the size of the
cross-edge buffers does not affect our cache bounds, we leave
this problem open. To design a schedule for this case, first
compute any value T such that for every edge (u, v), the
value T gain(u, v) is integral, is divisible by out(u, v) and
by in(u, v), and is at least M . Under these conditions, all
progeny of the T executions of the source node s can pass
through the entire dag and be consumed by the sink t with-
out requiring any future inputs at any node in the dag. We
thus schedule at a granularity of T inputs. For each cross
edge (u, v), allocate a buffer with size T gain(u, v). For each
internal edge, as already stated, allocate a buffer of size
minBuf (u, v). At the higher level, execute the components
in a topological-sort order, loading each component Vi ex-
actly once per T inputs. For the lower level, execute the
modules within the component Vi until all relevant progeny
of the T source-node executions have been consumed and no
items are buffered by this component except in the outgoing
cross edges. The low-level scheduling can be accomplished
by repeatedly choosing any module that can be fired without
exceeding output buffer size.

Note that at the high level, once a component Vi is loaded,
it is executed fully before proceeding to a different compo-
nent. Moreover, it is never executed again until the next
batch of T inputs. In contrast, at the lower level, many
different modules may be interleaved with a successive ex-
ecutions of a particular module due to the tighter size re-
strictions on internal buffers.

Scheduling homogeneous graphs

For stream graphs where every module reads and writes
exactly one item from its input and output channels, the
scheduling is simpler. In this case, setting T = M and pro-
ceeding as above suffices, but the lower level also becomes
even more straightforward as minBuf (e) = 1 along all edges.
In particular, at the higher level, each time the component is
loaded, it is fired repeatedly until consumingM inputs along
all incoming cross edges and producing M outputs along all
outgoing cross edges. At the lower level, the modules are
topologically sorted and are each fired just once in order;
this lower-level schedule repeats M times.

In this case, one can extend this approach to an asyn-
chronous or parallel dynamic schedule. (Throughout the re-
mainder of this paper, however, our analyses are performed
assuming the uniprocessor case.) To schedule components,
choose any component(s) with M data items on all incoming
cross edges and empty outgoing cross edges. Then schedule
each internal module M times as above until the incoming
buffers are empty and the outgoing buffers are full. The ho-
mogeneity of the graph ensures that it is always possible to
find a schedulable component.

Scheduling pipelines

In the case of pipelines, where modules form of a chain (sin-
gle directed path) but can have nonunit input and output
rates, it is again possible to reduce the buffer sizes on cross
edges. Each cross edge is assigned a buffer size of Θ(M). The



schedule works a little differently, however. A component is
schedulable whenever its input buffer is at least half full and
its output buffer is at most half full. It is then executed until
either the input buffer becomes empty or the output buffer
becomes full. Thus, either Ω(M) inputs are read, or Ω(M)
outputs are written. A continuity argument now suffices to
show that some component can always be scheduled. Scan
the cross edges in topological-sort order until the first cross
edge that is at most half full is encountered. The preceding
component has a more-than-half-full input buffer by con-
struction, and so it is schedulable. (The sink of the graph is
treated as though its output buffer is always empty.) This
schedule also readily generalizes to the asynchronous or par-
allel case as with the homogeneous graphs.

4. STREAMING PIPELINES
This section proves that a good partitioning schedule is

nearly optimal for the problem of scheduling a pipeline with
arbitrary input and output rates. More precisely, a good
partitioning schedule has O(Q) cache misses when run on a
cache of size O(M), where Q is the minimum possible num-
ber of cache misses of any schedule on a size-M cache. In
other words, this schedule is O(1)-competitive when given
O(1) cache augmentation. Moreover, this schedule can be
found in polynomial time. Proving the optimality of the
schedule hinges on a strong lower bound, which is a sub-
stantial part of the technical content of this section.

The crux of the lower bound is to show that any sched-
ule must “pay” for messages to pass certain edges in the
pipeline, essentially showing that the bandwidth of the best
partition provides a lower bound on the cost of any sched-
ule. We later present a more general lower bound (Theo-
rem 10 of Section 5), which extends this partitioning lower
bound to the more general case of dags. Theorem 10 thus
subsumes the lower bound of this section, albeit with dif-
ferent constant factors. Nevertheless, we include both, as
the lower bound here is less complicated and provides differ-
ent intuition. Moreover, although finding the optimal parti-
tion for general dags is NP-complete, and we are not aware
of any approximation algorithms, the pipeline lower bound
immediately suggests a polynomial algorithm for finding an
asymptotically optimal schedule for minimizing cache misses
on pipelines.

For a pipeline, the well-ordered partitions can be repre-
sented compactly as a collection of segments. A u-v seg-
ment , denoted by 〈u, v〉, corresponds to the set of all mod-
ules x with u � x � v. We define the gain-minimizing
edge gainMin(u, v) to be an edge with minimum gain in
the segment 〈u, v〉.

The following lemma states that if the first node u in a
segment 〈u, v〉 is fired enough times, then at least one of
two things happens: (1) many messages are buffered within
the segment, or (2) some output is produced from v. In
either case, a certain number of cache misses occur, either
due to the buffered messages in the case of (1) or due to the
loading of state of the entire segment in the case of (2). One
subtle point about the proof is that although the lemma is
stated with respect to the number of times the module u
is fired, we shall in fact charge against the gain-minimizing
edge. Specifically, the eventual lower-bound theorem does
not charge for reading the inputs to u — cache misses are
assessed only for loading the state of 〈u, v〉 or buffering inside
〈u, v〉.

Lemma 1. Consider a segment 〈u, v〉 of a pipeline graph
with gain-minimizing edge (x, y). Then module u may be
fired at most 2M(gain(u)/ gain(x, y)) times before either

• some progeny of one of these executions of u is output
from module v, or

• at least 2M progeny of these executions of u are stored
in buffers between modules u and v.

Proof. If any progeny is output from the segment, the
claim holds trivially. Consider the case where no progeny
are output from module v. Then the progeny of u must be
buffered somewhere between u and v. The term gain(z1, z2)/
gain(u) is by definition the number of messages that (eventu-
ally) pass through edge (z1, z2) each time u is fired. These
messages may be buffered or they may be passed to the
next module. The number of messages buffered is thus min-
imized when gain(z1, z2) is minimized, implying that at least
gain(x, y)/ gain(u) messages must be buffered each time u
fires. Hence if u fires at least 2M(gain(u)/ gain(x, y)) times,
then at least 2M messages must be buffered.

If we apply Lemma 1 to a large enough segment, we see
that if u is fired enough times, then either Ω(M) messages
must be buffered, or Ω(M) state must be loaded, thereby
incurring Ω(M/B) cache misses implying a lower bound on
the number of cache misses. The following corollary formal-
izes this observation.

Corollary 2. Consider any segment 〈u, v〉 of a pipeline
graph satisfying the constraint

∑

z∈〈u,v〉 s(z) ≥ 2M , and

suppose that (x, y) is the gain-minimizing edge for this seg-
ment. Then any (sub)schedule that fires module u at least
2M(gain(u)/ gain(x, y)) times must incur at least Ω(M/B)
cache misses. In other words, Ω((1/B) gain(x, y)/ gain(u))
is a lower bound on the amortized cost of firing u. This
bound holds even if u’s inputs and v’s outputs are not counted
towards cache misses.

Proof. Between the time a new message enters the seg-
ment and some progeny of that message leaves the segment,
each of the modules in the segment must be in cache. Since
the total state of these modules is at least 2M and can only
initially hold at most M of this state, there must be at least
M/B cache misses.

Similarly, if 2M new messages are buffered, they must be
buffered in different memory locations, at most M of which
already reside in cache. Thus, there must be at least M/B
cache misses.

Applying Lemma 1, we see that the maximum number
of times u can be fired before either of these events occurs
is 2M(gain(u)/ gain(x, y)), and each event causes Ω(M/B)
cache misses. To calculate the amortized cost, divide the
Ω(M/B) cache misses by the number of executions of u.

We conclude by showing that the total bandwidth of the
gain-minimizing edges provide a lower bound on the schedule
cost. In this theorem, we consider any schedule that fires the
sink t of the graph, which is the latest node in the pipeline,
at least T · gain(t) times, for T a large-enough integer. In
other words, we consider schedules that produce a large-
enough number of outputs from the pipeline. Note that in
order for the sink node to fire at least T · gain(t) times, the
source node s must also fire at least T times. The reason to
consider outputs here is to avoid any accounting ambiguity
due to buffered items throughout the rest of the pipeline.



Theorem 3. Consider a pipeline graph in which S =
{〈ui, vi〉} is any collection of disjoint segments such that
each segment has total size at least 2M . Then any schedule
of the graph that fires the sink node t at least T · gain(t)
times must incur at least Ω((T/B)

∑

s∈S
gain(gainMin(s)))

cache misses, as long as T is sufficiently large.

Proof. If each segment can be considered separately, this
theorem follows directly from Corollary 2, since firing t at
least T · gain(t) times implies that module ui must be fired
at least T · gain(ui) times.

To see that each 〈ui, vi〉 can be considered separately,
notice that the only shared state across different segments
is on the cross edges shared between two segments. Since
Corollary 2 does not count those edges towards the number
of cache misses, there is no double-counting of state/buffer
cache misses.

To provide an upper bound, we show constructively that
there indeed exists a partitioning schedule that has cost
asymptotically matching the lower bound. The following
lemma shows that the number of cache misses of a parti-
tioned schedule is related to the bandwidth of a partition.
This lemma uses unbounded buffers on cross edges, but this
issue is resolved at the end of the section.

Lemma 4. Consider any partition P = {Vi} of a pipeline
graph into segments such that each segment contains at most
M total state. Then on a machine with cache size O(M),
it is possible to schedule the pipeline such that the sink t
fires ⌈T · gain(t)⌉ times with O((T/B) ·bandwidth(P)) cache
misses in total, as long as T is sufficiently large.

Proof. Let C be the set of cross edges induced by par-
tition P . Consider the segments V1, V2, . . . in topologically
sorted order, where Vi = 〈ui, vi〉 and the edge (vi, ui+1) ∈ C.
In sorted order, fire ui a total of O(T · gain(ui)) times using
a local schedule for Vi that has small bounded buffers on
internal edges as described in Section 3. Since each Vi fits in
O(M) space including the internal buffers, we can repeatedly
execute the loaded modules while only paying for reading
and writing to external buffers. The total cost is therefore
O(M/B) to load Vi’s state plus O((1/B)T (gain(vi−1, ui) +
gain(vi, ui+1))) to read inputs for ui and to write outputs
from vi. For sufficiently large T = Ω(M/ gain(vi−1, ui)), the
number of items read by Vi is Ω(M), costing Ω(M/B) cache
misses, which dominates the cost. (The value T must also
be large enough that t can be fired ⌈T · gain(t)⌉ times after
firing s at most O(T ) times, which occurs when T is at least
as large as the gain of every edge in the graph.) Summing
across all Vi completes the proof.

The following theorem concludes that our lower bound is
tight, modulo constant factors in both the number of cache
misses and cache augmentation. Specifically, if Q is the op-
timal cache cost provided by any schedule (partitioned or
not) on a machine with M cache, then there exists a par-
titioned schedule with cost O(Q) cache cost on a machine
with O(M) cache. The upper-bound schedule is exhibited
constructively.

Theorem 5. There exists a partition P = {Vi} of any
pipeline graph into segments such that for sufficiently large
integer T ,

• every schedule (not necessarily a partitioned schedule)
that fires t at least T · gain(t) times must cost Ω((T/B) ·
bandwidth(P)) cache misses in total for a machine with
a size-M cache, and

• there exists a partitioned schedule (based on P) that
fires t a total of ⌈T · gain(t)⌉ times and costs O((T/B) ·
bandwidth(P)) cache misses in total for a machine with
a size-O(M) cache.

Moreover, such a partition can be found in polynomial time.

Proof. Construct segments Wi as follows. These seg-
ments will be used to build Vi later. Start at the beginning
of the pipeline, with the current segment initially being W1,
and consider all modules in topologically sorted order. Add
modules to the current segment Wi until the total state size
of Wi exceeds 2M . If there is more than 2M state remain-
ing, finish with Wi and proceed with initially empty Wi+1

as the current segment. If, on the other hand, less than 2M
state remains, add all remaining modules to the current seg-
ment. By construction, each Wi has total state at least 2M .
Moreover, since all modules have state size at most M , each
Wi contains at most 5M state. (In fact, only the last seg-
ment can be this large, as all preceding segments have state
between 2M and 3M .)

For each Wi produced through this process, let (xi, yi) =
gainMin(Wi) be the gain-minimizing edge for the segment.
Then let C =

⋃

i
{(xi, yi)} be the set of cross edges. These

cross edges induce a partition P = {Vi}, that is, with V0 =
〈s, xi〉, Vi = 〈yi, xi+1〉 for 1 ≤ i < |C|, and V|C| =

〈

y|C|, t
〉

,
where s and t are the source and sink of the pipeline, respec-
tively. Since each Wi contains at most 5M state, and each
Vi spans at most 2 segments Wi and Wi+1, it follows that
each Vi contains at most 10M state. In fact, this bound may
be tightened to 8M , since only the last segment can be so
large. Therefore, for c = 8, this partition has the property
that each segment is of size at most cM .

To achieve the lower bound, apply Theorem 3 with S =
{Wi}. To achieve the upper bound, apply Lemma 4 with
partition {Vi}.

Corollary 6. For a given pipeline graph and a suffi-
ciently large number of outputs to produce, one can con-
struct a schedule that incurs at most O(1) times as many
cache misses as the optimal schedule, as long as the sched-
ule is allowed to use a constant factor more cache than the
optimal schedule.

Although the partition described in Theorem 5 provides
an asymptotically optimal upper bound on the number of
cache misses (modulo memory augmentation), this parti-
tion is not the minimum bandwidth c-bounded partition.
As it turns out, one can find the minimum bandwidth c-
bounded partition for pipelines using a simple dynamic pro-
gram. This (minimum bandwidth) partition provides no
more cache misses than the partition described in Theo-
rem 5, but not asymptotically fewer. Moreover, this optimal
partition does not guarantee optimal cache performance. It
still only guarantees asymptotically optimal cache perfor-
mance.

Producing an optimal dynamic schedule

Lemma 4 (and Theorem 5) give schedules for the pipeline
that rely on the number of outputs to produce. In particu-
lar, as specified, each segment Vi in the partition is consid-
ered in order and fired repeatedly until enough outputs are



produced. For the pipeline case, these schedules can be eas-
ily transformed into dynamic schedules, where the number
T · gain(T ) of times the sink must be fired is not specified a
priori. Specifically, Lemma 4 requires only that each Vi con-
sume Ω(M) inputs or produce Ω(M) outputs each time it is
loaded. Thus, the segments can be scheduled as described
in Section 3 in order to get the same bounds.

5. STREAMING DAGS
This section considers the case when the stream graph

is a general directed acyclic graph (dag). A natural gen-
eralization of the pipeline schedule is the following: parti-
tion the dag into regions that fit in cache while minimizing
the total gain of edges crossing the partitions. The key to
showing that this type of strategy yields an asymptotically
optimal cache bound is to provide a lower bound on the
cache complexity of any schedule, showing that any sched-
ule must incur at least as many misses (asymptotically) as
some partition-based schedule. We first prove this claim for
the homogeneous dataflow case (all gains are 1), and then
we generalize to nonunit gains later in the section.

Proving a lower bound for the cache complexity of schedul-
ing a streaming dag is significantly more complicated than
for a pipeline. The following theorem shows that the band-
width of an optimal c-bounded partition does indeed provide
such a lower bound for the case of homogeneous dataflow.
Recall that the term minBW 3(G) used in the statement of
the next theorem denotes the minimum possible bandwidth
of a well-ordered partition into components such that each
component has total state size at most 3M . Without loss
of generality, we assume a single input node (source) and a
single output node (sink) to simplify exposition of the proof.

Theorem 7. Any schedule for a homogeneous dataflow
dag that fires the sink node at least T ≥ B times must incur
at least Ω((T/B) · minBW 3(G)) cache misses, where B is
the block size.

Proof. The main idea of this proof is to look at (the
progeny of) a single message passing through the entire dag
from the source to the sink. We will argue that any sched-
ule of this dag must pay at least Ω(1/B) block transfers for
each edge crossing some 3-bounded partition (in particular,
an optimal 3-bounded partition). Since modules may be ex-
ecuted more than once each time they are loaded, we must
be careful about the way we count the block transfers in-
curred by loading the state of a module. It is not obvious
that we can analyze a single message in isolation, although
the proof will essentially do just this.

Consider any schedule π of modules that fires the sink
T times. A schedule π is a list of module executions π =
u1, u2, . . . , um for some m. The same module can occur
many times in the list (i.e., ui = uj for some j 6= i). In
particular, with all gains equal to 1, every module occurs at
least T times in any schedule that produces T outputs. This
interpretation of a schedule ignores whether messages are
stored in intermodule buffers or not, but the proof charges
for buffering where necessary.

Starting at the beginning of the schedule π, partition the
schedule into contiguous subschedules π = π1, . . . , πr, each
containing between 2M and 3M distinct state (except for
the last subschedule which may be smaller). Such a partition
is possible because each module has size at most M .

We first claim that beginning each subschedule πi with an
empty cache does not increase the overall cost of the schedule
π by more than a constant factor. This fact follows because
each πi contains at least 2M state, and thus it must incur
Ω(M/B) cache misses regardless of what is in the cache at
the beginning of that subschedule. We can therefore afford
to pay O(M/B) to load any arbitrary initial cache state at
the beginning of each subschedule without asymptotically
increasing the cost.

Now look at any subschedule πi. Let Ki be the total
number of outputs produced by modules in πi that are not
consumed as input by another module within πi. Each of
these outputs must be written to cache or memory, taking
a total of Ki space. Since we can assume that the cache is
flushed at the end of each subschedule, the cost of executing
πi becomes Ω(Ki/B).

Showing that
∑

i
Ki ≥ T ·minBW 3(G) will complete the

proof. We do so by arguing that the progeny of a sin-
gle source-node firing must contribute at least minBW 3(G)
edges to

∑

i Ki (and hence the total for T firings is at least
T times more). Proving this fact has two components. We
first show that π can be reduced to a schedule π′, tracking
only the progeny of one firing, such that every edge crossing
a subschedule boundary in π′ also crosses the same bound-
ary in π. Then we argue that π′ is a well-ordered, 3-bounded
partition. If both of these claims hold, then the number of
edges that a single firing contributes to

∑

i
Ki is at least

the number of edges crossing some well-ordered 3-bounded
partition, and hence at least minBW 3(G).

To reduce π to π′, consider a single source-node execution
and all of its progeny throughout the dag, and consider the
schedule π′ = π′

1, . . . , π
′
r induced by removing all but the

corresponding modules from π. This schedule corresponds
to every module firing exactly once within π′. All edges in
π′ also occur in π. Thus, each edge crossing subschedule
boundaries in π′ also crosses subschedule boundaries in π
and contribute to some Ki.

To show that π′ is a well-ordered 3-bounded partition, ob-
serve that since each πi (and hence π′

i) contains at most 3M
state, π′ corresponds to a 3-bounded partition. Moreover,
since every module is included just once in the schedule and
the schedule obeys precedence constraints, it follows that
modules π′

1, . . . , π
′
k have no edges pointing to earlier mod-

ules. Hence each contracted π′
i has no edges pointing to

the earlier components, and the contracted graph is a dag,
meaning that it is well-ordered.

We now prove the upper bound, that is, if a good par-
tition exists, then it is possible to schedule the pipeline
with asymptotically optimal cache performance on a ma-
chine with O(1) cache-size augmentation. In order to sched-
ule a dag using partitioning, we need the partition to be
degree-limited , meaning each component of the partition
has degree O(M/B), for the following reason. When a com-
ponent is loaded into cache and executed, the cache should
also be large enough to accommodate at least one block from
the buffers on cross edges that are incident on this compo-
nent. For a wide class of graphs, all O(1)-bounded partitions
are degree limited. For example, if every module u contains
at least Ω(Bdu) state, where du is its degree, then all O(1)-
bounded partitions are degree limited. The following lemma
shows that the bandwidth of the partition determines the
number of cache misses by a partitioned schedule.



Lemma 8. Consider any degree-limited O(1)-bounded par-
tition P = {Vi} of a homogeneous dataflow dag. Then on a
machine with O(M) cache size and for sufficiently large T ,
there exists a schedule of the dag that fires the sink node T
times with O((T/B) · bandwidth(P)) cache misses in total.

Proof. As mentioned in Section 3, we add (large) buffers
of size Θ(M) to each cross edge and then load each compo-
nent into cache one at a time, executing each O(M) times
once loaded. Since each Vi fits in O(M) space including the
internal buffers, we can repeatedly execute the loaded mod-
ules while only paying for reading all the inputs from and
writing all the outputs to external buffers. The total cost
is then O(M/B) to load Vi’s state plus the cost of reading
the inputs from the incoming edges and writing outputs to
outgoing edges. For large enough T , i.e., T > M , the num-
ber of inputs read is Θ(M) from each input edge (similarly
for outputs) each time a component is scheduled. Since the
degree of each partition is O(M/B), we can afford to keep
at least 1 block for each external buffer in cache at the same
time, and thus reading/writing these external messages has
cost Θ(1/B) times the number of message read or written.
Therefore, reading the inputs and writing the outputs costs
Θ(M/B) per cross edge, which dominates the cost of read-
ing the state. Summing across all Vi and repeating T/M
times completes the proof.

The following corollary (which follows directly from The-
orem 7 and Lemma 8) says that a partitioned schedule is
asymptotically optimal given O(1)-memory augmentation.
More generally, since finding the optimal well-ordered par-
tition is NP-complete [8], we show that if we have an α-
approximation for the partitioning problem, then we have
an O(α)-competitive schedule.

Corollary 9. Let POPT be an optimal 3-bounded parti-
tion of a homogeneous streaming dag G, and let P be any
3-bounded degree-limited partition of G. Suppose that we
have bandwidth(P) ≤ α · bandwidth(POPT) for some α ≥ 1.
Then for any sufficiently large number of outputs produced,
the partition schedule using P incurs at most O(α) times
as many cache misses as the optimal schedule, as long as
the partitioning schedule is allowed to use a constant times
larger cache than the optimal schedule uses.

Notes on the upper bound

Corollary 9 is most useful for those dags with the follow-
ing property: there exists a degree-limited 3-bounded parti-
tion with similar bandwidth to the optimal (not necessarily
degree-limited) 3-bounded partition. When this property
does not hold, the cost of the upper-bound partition may
be worse by a factor of B (every read and write to cross-
edge buffers may cause a cache miss), implying only that
our schedule is O(αB)-competitive. The cost of a naive
schedule, however, may be much worse, since only the mes-
sages moving along cross edges are charged. Moreover, we
have not discussed how to find such a partition. Like most
partitioning problems, finding an optimal well-formed 3-
bounded partition is NP-hard. Since the partitioning occurs
at compile time, however, and the streaming application is
intended to be longer running, it may be reasonable to use
an exponential-time algorithm for constructing a good parti-
tion. In any event, we have reduced the problem of schedul-
ing to that of partitioning.

Generalizing to inhomogeneous streaming dags

Theorem 7 generalizes to the inhomogeneous case, but the
reduction is not immediately obvious. Our approach is based
on tracking fractional progeny through the dag and charg-
ing corresponding fractional costs to each edge crossing a
subschedule boundary. The most natural fractional trans-
formation is to treat a module v as though each time it
fires, it consumes in(ui, v) gain(v) inputs on each input edge
(ui, v) and produces out(v, wj) gain(v) outputs on each out-
put edge (v, wj). The problem with this transformation is
that modification may restrict the optimal schedule, since
for gain(v) > 1, the“fractional”module is forced to consume
more inputs than the original module. Therefore, these obvi-
ous fractional amounts do not work. This approach of using
fractional items is sound only if working with fractional mes-
sages makes the lower bound looser, that is, we give more
power to the optimal schedule.

Instead, we track a tiny fractional message, with size 1/γ,
where γ is the product of all output rates in the entire dag.
(This value γ is much larger than it needs be, but since this
value is only employed for a proof and not in an algorithm,
there is no need to reduce it.) A fractional module v then
fires gain(v)/γ times for each fractional firing of the source
node of the dag.

Theorem 10. Any schedule for a dataflow dag that fires
the sink node at least T · gain(t) ≥ B times must incur at
least Ω((T/B) · minBW 3(G)) cache misses, where B is the
block size.

Proof Sketch. The proof is nearly identical to that of
Theorem 7, except that we track the 1/γ fractional progeny
through the network, where γ is the product of all output
rates in the dag. When nonunit outputs are produced, they
contribute to some Ki in the same way, but they only con-
tribute according to the size of the message written, which is
1/γ times the gain along the edge. When reducing π to π′,
we consider each module firing once as described above, con-
suming inputs and producing outputs proportional to gains
times 1/γ. Thus, π′ still contains each module once.

The one additional point in this proof is to argue that a
fractional schedule is more powerful than every feasible non-
fractional schedule, which follows from the fact that each
module can be fired an integral number of times to sim-
ulate the nonfractional schedule. In particular, firing the
fractional module v a total of γ/ gain(v) times is equivalent
to firing the original module once. Since 1/ gain(v) is the
product of input rates divided by output rates, and γ is the
product of all output rates, the resulting number is the prod-
uct of the remaining integral output rates and some integral
input rates. Thus, γ/ gain(v) is integral.

6. RELATED WORK
Most of the work on scheduling streaming applications

aims to maximize throughput and/or maximize latency [2,
6, 18], minimize buffer sizes [4, 23, 28], or to optimize both
while avoiding deadlocks [13,19]. A few papers address other
issues, such as power consumption [29]. None of these relates
directly to our results.

Heuristic cache-aware scheduling of streaming programs
on both single processors and multiprocessors has been stud-
ied by several research groups [15, 21, 25], but the proposed
heuristics are all evaluated empirically. To the best of our



knowledge, no previous work provides any theoretical guar-
antees comparable to ours. Kohli [15] proposes a greedy
scheduling heuristic for streaming dags that have a unique
topological ordering (this class is a minor generalization of
pipelines). The heuristic makes local decisions as to whether
to continue to execute one module or to move on to its suc-
cessor in the topological ordering based on an estimate of
the number of cache misses that either decision will gen-
erate. Since this heuristic makes only local decisions, it
does not provide an asymptotically optimal number of cache
misses. Another difference from our work is that Kohli con-
siders data-cache and instruction-cache misses separately,
while we assume either that instruction cache is not an im-
portant bottleneck or that instructions are part of the state
of the module. Sermulins et al. [25] also try to heuris-
tically optimize for both the data cache and the instruc-
tion cache. Their schedule-optimization method starts from
some given steady-state schedule that maintains bounded
buffer sizes. Their optimizer takes this schedule and pro-
duces a new schedule which replaces each module invocation
in the steady-state schedule by s back-to-back invocations.
This scaling leads to state reuse, but it may cause spilling
of buffers into main memory. Their method computes the
largest s that avoids catastrophic spills. Since this method
generates a small range of schedules, all of which are de-
rived from the given steady-state schedule, it is suboptimal
in many cases. Sermulins et al. also propose a module-fusion
heuristic that can also reduce cache misses. This heuristic
can be viewed as a special case of our partitioning method.
Moonen et al. [21] also scale a given schedule in the same
way, but in a more general setup that includes multiple
processors and computational graphs that allow module to
change their gains in a cyclic fashion. They do not provide
any theoretical guarantees (it is unlikely that any can be
proved for the method), but they do show convincing em-
pirical results, demonstrating a cache-miss reduction of over
a factor of 4 on a real-world application. Taken together,
the empirical results strongly support our fundamental claim
that effective scheduling can dramatically improve the per-
formance of streaming applications.

Graph partitioning has also been used to improve cache
efficiency under computational models other than stream-
ing models. Examples include mesh processing for visual-
ization [26], which provides theoretical guarantees, and re-
peated sparse matrix-vector multiplication [30], which em-
ploys an empirical heuristic methodology.

7. CONCLUSIONS
We have shown that in many cases the problem of cache-

efficient scheduling of streaming applications can be reduced
to the problem of partitioning the computational graph into
components that have a small boundary and have a small-
enough state to fit within the cache. On some classes of
graphs, such as pipelines, solving the resulting partitioning
problem is computationally easy. For more complex appli-
cations where the streaming graph is a synchronous dag,
we can still show that the scheduling problem reduces to a
partitioning problem. The problem of finding the optimal
well-ordered partition for general dags is NP-complete [8],
however. This situation is common to many mapping and
scheduling problems in high-performance computing.

There are a few ways way to address this difficulty. One
practical approach is to use an exact integer-programming

graph partitioner when the dag is relatively small. This
strategy has proved effective in scheduling streaming com-
putations on distributed memory-limited systems [22], for
example. Another approach is to use a heuristic graph par-
titioner (see, for example, [10, 14]). Heuristic strategies are
widely used to map and schedule large-scale parallel appli-
cations. Alternatively, since our results are approximation
preserving, one can try to find a provably good approxi-
mation algorithm for the partitioning problem. We plan to
address this issue in future work.

Another direction for future research is to study the cache-
efficient scheduling of streaming computations on multipro-
cessors. If the number of cache misses is the only criterion,
then the optimal uniprocessor schedule is trivially the op-
timal multiprocessor schedule. When considering multipro-
cessors, however, we must consider both load balancing and
the number cache misses simultaneously.

Our work has also delineated the tougher theoretical prob-
lems in scheduling streaming applications. These include,
not surprisingly, feedback (cycles in the graph) and modules
whose output rates are not simple functions of their input
rates (such as modules that sift through data and produce
an output when they find something interesting, modules
that make routing decisions, etc.). These computational
structures also raise theoretical and practical difficulties un-
related to caching, such as the possibility of deadlocks due
to insufficient buffer space. These issues, some of which are
clearly online-scheduling problems, represent good opportu-
nities for future research.
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