MIT
Libraries | D>pace@MIT

MIT Open Access Articles

IFDB: Decentralized Information Flow Control for Databases

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: David Schultz and Barbara Liskov. 2013. IFDB: decentralized information flow control
for databases. In Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys '13). ACM, New York, NY, USA, 43-56.

As Published: http://dx.doi.org/10.1145/2465351.2465357
Publisher: Association for Computing Machinery (ACM)
Persistent URL: http://hdl.handle.net/1721.1/90268

Version: Author’s final manuscript: final author’'s manuscript post peer review, without
publisher’s formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

I I I .
I I Massachusetts Institute of Technology

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90268
http://creativecommons.org/licenses/by-nc-sa/4.0/

IFDB: Decentralized Information Flow Control for Databases

David Schultz’

Barbara Liskov

MIT CSAIL
{das,liskov}@csail.mit.edu

Abstract

Numerous sensitive databases are breached every year due to
bugs in applications. These applications typically handle data
for many users, and consequently, they have access to large
amounts of confidential information.

This paper describes IFDB, a DBMS that secures databases
by using decentralized information flow control (DIFC). We
present the Query by Label model, which introduces new
abstractions for managing information flows in a relational
database. IFDB also addresses several challenges inherent
in bringing DIFC to databases, including how to handle
transactions and integrity constraints without introducing
covert channels.

We implemented IFDB by modifying PostgreSQL, and
extended two application environments, PHP and Python, to
provide a DIFC platform. IFDB caught several security bugs
and prevented information leaks in two web applications we
ported to the platform. Our evaluation shows that IFDB’s
throughput is as good as PostgreSQL for a real web applica-
tion, and about 1% lower for a database benchmark based on
TPC-C.

Categories and Subject Descriptors H.2.4 [Database Man-

agement]: Systems

General Terms Design, Security

Keywords information flow control, DIFC

1. Introduction

Breaches of online systems resulting in the exposure of
sensitive databases continue to occur, despite advances in
application security. Large-scale breaches have been enabled
by SQL injection attacks, omitted authentication checks, and
scripts that inadvertently reveal more information than they
should.

Copyright © ACM, 2013. This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The definitive
version was published in EuroSys’13, April 15-17, 2013, Prague, Czech Republic,
http://doi.acm.org/10.1145/2465351.2465357.

Eurosys’13 April 15-17, 2013, Prague, Czech Republic

Copyright © 2013 ACM 978-1-4503-1994-2/13/04. .. $15.00

There has been much recent interest in using decentralized
information flow control (DIFC) [25] to improve application
security [6, 11, 18, 36]. Unlike access control, where checks
for authorization are made when data are read or written,
information flow control systems track data as they flow
through the system and restrict what can be released. DIFC
extends earlier work on information flow control [2, 9] to
protect data for many users, each with a distinct policy. There
is a gap in prior research, however: despite the fact that many
applications store sensitive data in relational databases, none
of the prior work has developed a comprehensive model for
DIFC in databases.

This paper introduces IFDB, a new approach to securing
sensitive databases based on DIFC. IFDB is intended to
work alongside DIFC programming languages and operating
systems: it supports a comprehensive approach to information
flow control that tracks flows and enforces a security policy
both in the DBMS and the application platform.

CarTel [14], one of the applications we studied, illustrates
the power of IFDB. CarTel collects information from GPS-
equipped cars and provides users with maps and statistics
about their past drives and the drives of their friends. By
converting CarTel to use IFDB, we substantially reduced
the amount of application code that had to be trusted for
confidentiality, and also fixed several bugs.

Our version of CarTel annotates data as they arrive, e.g.,
as being location data for Alice. These annotations, together
with the tracking provided by information flow control, pre-
vent unintended disclosure. For example, IFDB can enforce
Alice’s policy that only she can see her current location, and
only she and her friends can see her past drives.

CarTel produces drive data from location measurements
using a combination of complex stored procedures and ap-
plication procedures. The procedures require access to the
location measurements, so an access control policy could not
prevent bugs in the code from compromising users’ privacy.
Information flow control prevents the code from releasing
location measurements inappropriately, and it does so for
both the stored procedures and application procedures.

Integrating DIFC into a relational database presents sev-
eral new challenges. First, the standard relational query model

T Current affiliation: Google, Inc.

doesn’t provide a good basis for reasoning about flows of
sensitive information; for example, a query for records about
hospital patients who don’t have cancer can reveal indirectly
which patients do have cancer. Second, the DBMS must
provide ways to manage the information flows that arise
through mechanisms such as complex queries, stored proce-
dures, and views. Third, important database features such as
transactions and constraints can lead to information leaks
without appropriate precautions.
IFDB addresses these challenges as follows.

— IFDB uses the Query by Label model, which provides a
practical way to do relational queries while respecting in-
formation flow rules. Query by Label extends earlier work
on multi-level-secure databases, such as SeaView [21], to
support DIFC.

— To manage information flows in the database, IFDB pro-
vides declassifying views and stored authority closures.

— To make transactions and constraints safe, IFDB intro-
duces several new concepts such as transaction commit
labels and DECLASSIFYING clauses.

Additionally, IFDB is easy to use. It works with existing
languages such as SQL, PHP, and Python, with straightfor-
ward extensions to support DIFC. Confidentiality policies are
specified in terms of delegation and exercise of authority—a
model programmers are familiar with. Furthermore, IFDB
is the first system to integrate a uniform set of abstractions
for managing information flows into both the programming
language and the DBMS.

To show that IFDB is practical, we converted two existing
web applications to use it: the CarTel system introduced
earlier, and HotCRP [17], the conference management system
used for this conference. IFDB prevented several information
leaks in both applications, and we found that it was much
easier to verify security properties in the IFDB-enabled
applications than in the original programs. Furthermore,
using DIFC did not noticeably affect the scalability of the
DBMS running CarTel, while a TPC-C-like benchmark of
the database alone showed a 1% reduction in throughput. In
addition, our experience with IFDB provided insight into how
to use IFDB in other appications; we describe a methodology
for application development in Section 6.4.

2. Architecture and Trusted Base

IFDB tracks information as it flows through the database
and through the applications that interact with the database.
On the database side, IFDB only accepts connections from
applications running within a trusted runtime environment
that tracks and enforces information flow control. We have
created two such environments by implementing modest
extensions to PHP and Python.

Figure 1 shows a deployment of IFDB and PHP-IF running
the CarTel application. Since IFDB and the application
platform work together to enforce the information flow policy,

)

drives.php drives_top.php cars.php friends.php

| authentication | | information flow policy |
PHP-IF runtime

Figure 1. An IFDB deployment with the CarTel application.
The blue shaded regions are trusted components. CarTel
receives data from GPS transponders in vehicles, and vehicle
owners interact with CarTel via a web interface.

they are both part of the trusted computing base for the system.
As illustrated in the figure, the components of the application
that authenticate external users and define the information
flow policy itself are also essential for security. However,
the remainder of the application code, including SQL stored
procedures, is not trusted.

IFDB tracks information flows on a per-process granu-
larity within the application platform (where fine-grained
tracking would be expensive) and fine-grained, per-tuple
tracking only within the database. The database is the primary
shared medium, through which leaks could occur, so fine-
grained tracking within the database is essential.

3. Information Flow Model

This section describes the information flow model used in
IFDB; Sections 4 and 5 explain how we extend the database
to support this model. We have chosen to base our work on
the model provided by the Aeolus DIFC platform [6]; we
discuss alternatives in Section 9.

3.1 Tags and Labels

IFDB uses tags, which are identifiers attached to data to de-
note their sensitivity. For example, the alice-location tag might
represent the secrecy concerns of Alice’s GPS coordinates,
while the bob-contact tag is for Bob’s contact information.

Labels are sets of tags. Each data object has a label that
summarizes the sensitivity of all the data it contains. Labels of
data objects are immutable; they are specified when the object
is created and cannot be changed later. Each process also has
a label, which expands over time to reflect the sensitivity
of all the data that has affected the process. Conceptually, a
process becomes “contaminated” by the labels of all the data
it reads.

Some computations, such as one that computes statistics
about all users’ driving histories, run over data with many dif-

ferent tags. IFDB provides convenience and representational
efficiency for such computations through compound tags,
which can be used to group tags so that they can be used as
a unit. For example, the alice-location tag is a member of the
all-locations compound tag. A tag is declared as a member of
one or more compounds when it is created. At present, IFDB
does not allow the links between a tag and its compounds
to change, since changing them would effectively relabel all
data protected by that tag.

In addition to the secrecy labels described above, IFDB
supports integrity labels, which make it possible to track
whether data came from trusted sources. We do not discuss
integrity labels in this paper; see [29] for the details.

3.2 Controlling Information Flow

IFDB ensures that the label of each object reflects the tags
of all the data that produced it, and the label of each process
reflects the tags of all the data the process read. It does this
by enforcing the following standard rule [2]:

Information Flow Rule. Information is permitted to flow
from a source with label Lg to a destination with label
Lp provided that Lg C Lp.

The rule also controls what information can be released.
The outside world is treated as having an empty label. This
implies that in order to send anything to the outside world,
e.g., to a web client, a process must have an empty label.

Since contaminated processes can’t release information,
these rules by themselves would make it impossible to get any
sensitive data out of the system. Hence, it’s necessary to have
a way to remove tags from labels. Removing a tag is called
declassification, and it has two main uses. First, a process
might declassify after transforming or summarizing data to
remove confidential information, e.g., computing the average
speed of all CarTel users on a road. Second, a process might
declassify to send sensitive information to an authorized user,
e.g., to allow Alice to view her own CarTel driving history.

Declassification isn’t safe in general because it removes
constraints on information flow, so it requires authority.
Specifically, the declassify(T) operation, which removes
tag T from the invoking process’ label, requires that the
process have authority for 7. Information flow policy in
IFDB is specified by controlling the circumstances under
which particular tags can be declassified.

Authority in IFDB is bound to principals, which are
entities in the system with security interests, such as users
and roles. Each process runs with the authority of a particular
principal. For example, a web servlet might run with the
authority of the user making the request.

Each tag in IFDB has an owning principal that has com-
plete authority over that tag. Any principal can create a tag,
and in doing so becomes the owner of that tag. Owners define
the information flow policy for data covered by their tags
through delegation and exercise of this authority. Authority
can be delegated and given to users, application procedures

(Section 3.3), and stored procedures and views (Section 4.3).
For example, in a medical system, Bob can delegate authority
for the tag on his medical record to his doctor. This allows the
application, when acting on behalf of the doctor, to declassify
Bob’s medical record and send it to the doctor’s web browser.
Additionally, principals can revoke authority that they granted
previously.

The authority state is itself an object with an empty label,
so a process must have an empty label to make delegations or
revocations. This restriction ensures that modifications to the
authority state cannot be used as a covert channel.

3.3 The Principle of Least Privilege

Delegation of authority makes it possible to define who can
declassify, but it doesn’t constrain how that authority may
be used. To that end, IFDB supports reduced authority calls
and authority closures. Reduced authority calls allow the
caller to run code with less authority. An authority closure
is a procedure that is bound to a principal; it receives its
authority when it is created, and the code that creates it must
have the authority being granted. When the closure is called,
it runs with this authority. For example, a procedure that
computes traffic conditions can be bound to a principal that
is authoritative for the location tags of every CarTel driver.

Both mechanisms support the Principle of Least Privi-
lege [27] by making it easy to limit where authority can be
used, which in turn makes it easier to reason about security,
since only code with that authority must be considered.

Database systems traditionally have an administrator role
who is responsible for setting up and managing the database.
IFDB also limits the privilege of the administrator. An
administrator must still define the database schema, but lacks
the authority to declassify any tags.

4. Query By Label

This section introduces Query by Label, which allows us to
extend the model introduced in Section 3 to a database.

4.1 Labels in the Database

IFDB uses labels to track information flow within the
database. There are three plausible granularities at which data
could be labeled: tables, tuples, and fields. IFDB attaches
labels to tuples. Labeling tuples captures a common case—a
table that contains information about many different users,
each with separate privacy concerns. For example, the Drives
table in CarTel contains information about all users’ drives,
but each tuple has a label specific to the respective driver.
Labeling fields allows different parts of a tuple to have
different confidentiality, whereas labels in IFDB must reflect
the contamination of all fields. However, in Section 4.4 we
introduce declassifying views, which can be used to achieve
the power of field-level labels. Tuple labels avoid the extra
overhead of per-field labels provided in systems such as
SeaView [21], and the consequent semantic problems [31].

4.2 Queries

In the standard relational model, a query over a table concep-
tually reads every tuple in the table. For example, consider
the following query in a database with medical records:

SELECT * FROM PatientRecords
WHERE condition <> 'cancer’

The query returns a list of patients in a clinic who do not have
cancer; however, it implicitly reveals that all the patients who
are not listed do have cancer. Therefore, the contamination
associated with the query would necessarily include the labels
of every tuple in the table.

Processes need a way to limit their contamination, how-
ever, because they will be unable to communicate if they are
too contaminated. We provide the needed semantics using
Query by Label. In our system each query has an associated
label, which is the label of the process issuing the query. This
label is used as a filter:

Label Confinement Rule. A query submitted by a process
with label Lp is performed on the subset of the database
consisting of all tuples 7; with labels Lz, such that
L1, C Lp.

For reads, this constraint is simply an instantiation of
the standard information flow rule (Section 3.1): A process
should not see tuples whose contamination isn’t covered by
its own label. For example, consider the table illustrated in
Figure 2 that stores medical records for patients with HIV. If
a process with label {bob_medical} executes the query

SELECT * FROM HIVPatients
WHERE patient_name = 'Bob’
AND patient_dob = '6/26/78’

it will receive the tuple for Bob. However, if the process had
an empty label, or a label {john_medical}, it would receive
no tuples. Therefore, a process can read Bob’s record only if
its label is contaminated for Bob.

For writes, however, we need more: the confinement rule
covers the information observed by the query, but in addition
we need to define what tuples can be modified by the query.
Our rule is:

Write Rule. A process with label Lp can write a tuple with
label L7 only if Ly D Lp.

This rule is needed because otherwise a process contaminated
with some secret would be able to write tuples whose labels
didn’t reflect that secret. Taken together, the two rules imply
that all tuples written by the query have exactly label Lp. Of
course, processes can change their labels over time, so in later
queries, different tuples could be modified.

Thus, IFDB enforces the following restrictions for basic
queries executed by a process with label Lp:

— SELECTs return only tuples 7; such that L7, C Lp.
— INSERTSs add tuples with exactly label Lp.

Table HIVPatients

_label patient_name | patient_dob
{alice_medical} | Alice 2/1/60
{bob_medical} | Bob 6/26/78
{cathy_medical} | Cathy 4/22/71

Primary key (patient_name, patient_dob)

Figure 2. An example from a medical records system with a
table containing specialized records for patients with HIV

— UPDATEs and DELETEs affect only tuples with label Lp.
An attempt to update or delete lower-labeled tuples will
fail, while tuples with other labels are invisible to the
update and are unaffected by it.

Since inserts are confined to a subset of the database that
contains only the tuples whose labels are contained in the
label of the process, it is possible that an insert might add a
tuple with the same primary key as one already in the table,
but with a different label. We discuss our solution to this
problem in Section 5.2.1.

Query by Label limits queries to tuples whose labels are
subsets of the process label. However, processes can explicitly
specify additional conditions on the label by referring to an
immutable system column of type INT[] called _label, which
exists in every table. Section 5.2.4 provides an example of
how this can be useful.

Query by Label requires that all label changes are explicit:
a process must set its label to control what tuples its reads,
and the label of any tuple it writes. Explicit label changes
prevent certain covert channels [36], and they ensure that
code running with authority does not use that authority to
release information accidentally.

4.3 Declassifying Views and Stored Procedures

IFDB introduces declassifying views, which are an adaptation
of authority closures to the relational model; instead of
binding authority to code, authority is bound to the definition
of a view. This powerful idea permits a restricted view of a
data set to have a different label than the original source data.
Any user can create a declassifying view; however, the user
must have whatever authority is being given to the view.

For example, tuples in the Contactinfo table in HotCRP are
sensitive, but the list of program committee members, which
is derived from a projection and selection on Contactinfo,
ought to be public. Using declassifying views, we can define
a PCMembers view that contains this information:

CREATE VIEW PCMembers AS
SELECT firstName, lastName
FROM Contactinfo
WHERE IsPCMember(contactld)
WITH DECLASSIFYING(all_contacts)

The view is defined to have authority for the all_contacts
compound tag, and it uses its authority to declassify the tags
in the base relation.

In [29], we describe extensions to support more sophisti-
cated declassifying views: for instance, a view that extracts
billing data from medical records must replace the p_medical
tag with p_billing for each patient p. Additionally, we explain
how to make declassifying views updatable using rewrite
rules, a mechanism IFDB inherits from PostgreSQL.

IFDB also supports binding authority to code. Applica-
tions can use SQL stored procedures to run complex compu-
tations within the database system, and stored procedures in
IFDB normally run with the authority of the caller. Stored
authority closures, however, have authority bound in; again
the creator of the closure must have the authority being bound
to the closure. When an authority closure runs, it runs with
the authority bound to it. Stored authority closures extend the
authority closures described in Section 3.3 to the DBMS.

4.4 Data Independence

Within the IFDB database, data are labeled at the granularity
of tuples. However, we would like to avoid constraining
programmers to normalize their schemas according to the
confidentiality concerns of the data. For example, suppose
that users’ payment information and contact information have
separate tags and security policies. The programmer should
be able to refer to the payment and contact information as
separate relations or as a single relation.

IFDB achieves data independence through a combination
of standard views and declassifying views (see Section 4.3).
Standard views can be used to join two relations and treat
them as one. For example, if a PaymentContact view is
constructed using the standard outer join operator on the
Payment and Contact tables, a process whose label contains
only payment tags will see NULLSs in place of the contact-
related fields it isn’t allowed to see. Such views can be used
to simulate field-level labels, with semantics similar to the
SeaView model [21].

Declassifying views are needed when we wish to store data
with different labels together in a single tuple, for instance, in
a physical PaymentContact table. To ensure that the data are
not leaked, PaymentContact tuples must be tagged with both
payment and contact tags. Logically, however, the payment
tags cover some columns, whereas the contact tags cover
other columns. Thus, we construct a declassifying view
called Payment that projects the payment-related columns
and declassifies the contact tags, and a declassifying view
called Contact that projects the contact-related columns and
declassifies the payment tags.

S. Transactions and Constraints

This section explains how IFDB addresses the challenges that
transactions and integrity constraints pose for a DIFC system.
5.1 Transactions

Processes need to change their labels in mid-transaction so
they can write tuples with different labels as part of a single

transaction. For example, a user’s contact information may
have a different label than the user’s password, but both
should be added to the database in the same transaction when
a new user is added to the system.

However, such a label change could allow a low-authority
process to leak confidential information, as illustrated in the
following example.

BEGIN
INSERT INTO Foo VALUES (’Alice has HIV’);
PERFORM addsecrecy(alice_medical);
SELECT * FROM HIVPatients WHERE pname="Alice’;
IF NOT FOUND THEN ABORT; END IF;

COMMIT;

The transaction first writes the string “Alice has HIV” with
an empty label. Then it raises its label, checks whether Alice
has HIV, commits if Alice has HIV and aborts otherwise. The
result is that the string “Alice has HIV” is written with an
empty (public) label only if Alice actually has HIV, which
leaks Alice’s medical information.

To prevent the problem, IFDB introduces transaction
commit labels. A process is allowed to commit a transaction
only if its label at the commit point is no more contaminated
than any tuple in its write set. In the preceding example, the
rule ensures that the transaction cannot commit and write
Foo with an empty label unless the process were to exercise
proper authority to declassify alice_medical. The underlying
intuition is that all writes happen at the commit point, so that
is where the information flow rules should apply.

Additionally, concurrency conflicts between transactions
can lead to covert channels, so another rule is needed for
serializable transactions. The transaction clearance rule says
that a process running a transaction is allowed to add a tag to
its label only if it is authoritative for that tag. (Our prototype
is based on a DBMS that uses snapshot isolation, which is
slightly weaker than serializability and doesn’t require this
restriction. Details can be found in [29].)

5.2 Integrity Constraints

Integrity constraints are desirable since they can suppress
many application errors. However, problems arise when
constraints involve tuples with different labels. The next
two subsections explain how IFDB handles two important
types of constraints in databases: uniqueness constraints and
referential constraints. Section 5.2.3 discusses more general
constraints, and Section 5.2.4 introduces label constraints.

5.2.1 Uniqueness Constraints

Uniqueness constraints require that all tuples in a table have
unique values for a particular column or combination of
columns. The primary key for a table is always subject to
a uniqueness constraint.

It is easy to check that a write obeys a constraint when all
tuples needed to verify the constraint are visible to the process
performing the write. However, a problem arises when the

question of whether the data conforms with the constraint
depends on tuples the process should not be allowed to see.

We use the HIVPatients table in Figure 2 to construct an
example of the problem. Consider the following inserts into
that table:

1. Insert (Dan, 8/12/69) into HIVPatients with any label

2. Insert (Alice, 2/1/60) into HIVPatients with label
{alice_medical}

3. Insert (Alice, 2/1/60) into HIVPatients with label { }

The first insert doesn’t violate the constraint because there
is no entry for Dan in the table; hence, it should succeed
regardless of the label used. It is clear that the second insert
violates the constraint because Alice already has an entry in
the table, but enforcing the constraint and causing the second
insert to fail reveals nothing, because the conflicting tuple
is already visible to the process performing the insert. The
third insert is the problematic one. Like the second insert, it
violates the constraint; however, the process has an empty
label, so it isn’t supposed to see the conflicting tuple with a
higher label.

Disallowing the insert when the constraint is violated leaks
information about the existence of the tuple that can’t be
viewed, e.g., the process could learn that Alice is a patient in
the clinic. Instead, IFDB uses polyinstantiation [21], which
permits inserts of tuples that conflict with higher-labeled
tuples. Clients running with lower labels, unaware of the
higher-labeled tuples, see a consistent view of the database
and are unaffected by the higher-labeled data. Clients running
with higher labels, however, will see both tuples, distinguished

only by their labels—a violation of the uniqueness constraint.

Polyinstantiation can lead to confusion: What does it
mean to have two patients with identical primary keys but
different labels? Much prior work is concerned with the use
of polyinstantiation as an important feature in its own right,
and proposes cover stories and different subjective opinions
of the truth as possible answers to this question [28]. We
advocate a simpler interpretation: polyinstantiated tuples are
seen as mistakes. Since it would leak information to expose
the mistakes to clients with lower labels (i.e., by notifying
them of the conflict), IFDB instead exposes the mistakes to
the clients with higher labels.

Applications that are not prepared to cope with multiple
records when only one is expected can request an exact label
(see Section 4.2) to hide erroneous tuples (e.g., tuples for
Bob that don’t have bob-tag in their label). This is effective

because polyinstantiated tuples must have different labels.

IFDB also supports label constraints (Section 5.2.4), which
provide a way to prevent polyinstantiation.

5.2.2 Foreign Key Constraints

Foreign key constraints enforce a many-to-one mapping,
or referential integrity, between a referencing table and a
referenced table. For example, in CarTel, the carid field of

the Drives table should refer to a valid car in the Cars table.
Similarly, user ids in the Friends table should refer to valid
users in the Users table.

Inserts in the referencing table can leak information be-
cause they allow the inserter to learn about the presence of
the related tuple in the referenced table. Also deletes of tuples
in the referenced table can allow the deleter to learn about
the presence of tuples in the referencing table. The informa-
tion exposed by these inserts and deletes isn’t necessarily a
problem; for example this is the case in the CarTel examples
given above. However, consider the following:

— Inserts. Suppose every tuple in the HIVRecords table is
constrained to refer to a patient listed in the HIVPatients
table in Figure 2. Then a process running with an
empty label could learn whether a particular patient is in
HIVPatients by inserting a tuple in HIVRecords, since this
cannot succeed for non-HIV patients.

— Deletes. The HIVPatients table itself might refer to another
table, PatientContact. If the DBMS disallowed deletion of
a patient’s contact information only if he has a referring
tuple in HIVPatients, that provides an effective (albeit
destructive) means to determine which patients have HIV.

IFDB solves both problems by constraining inserts, using
the following rule:

Foreign Key Rule. To insert a tuple A that refers to a tuple B
under a foreign key constraint, the requesting process must
have authority to declassify for each tag in the symmetric
difference of the two tuples’ labels, L4 © Lp, and must
specify these tags explicitly. (The symmetric difference is
all the tags that appear in one label but not the other.)

This rule prevents both problems described above. In the case
of inserts, it acknowledges that the inserter is in fact reading
from the referenced table and thus becomes contaminated
by doing the insert. Therefore, it allows the read only if
the inserter has authority over the additional tags in this
contamination. Allowing the insert under these conditions
is safe, because the inserter could have read this additional
information and then declassified explicitly.

The foreign key rule addresses the deletion problem by
requiring that the insert that created the problematic situation
be properly vouched for. The rule recognizes that deletions
expose information in the referencing table; it ensures that
this is acceptable by requiring the inserter to have authority
for all the tags that must be removed in order for the deleter
to learn about these insertions.

The affected tags must be identified explicitly in the query.
For example, to insert a Drives tuple that refers to a Cars tuple
with label {alice_cars}, the process must include the clause

DECLASSIFYING (alice_drives, alice_cars)

in the insert statement and have authority for both tags. A
subsequent transaction running without alice_drives in its
label could discover the existence of the new Drives tuple

by attempting to delete the Cars tuple, which would fail due
to the constraint. The DECLASSIFYING clause is an explicit
statement that this channel is not problematic. Therefore, it
supports IFDB’s goal that sensitive information can only be
revealed through explicit declassification.

5.2.3 Generalized Constraints

Constraints that don’t fall into the above categories are
handled with triggers, which are stored procedures that run
in response to some action, such as inserting a tuple into a
particular table. Two types of triggers are available.

An ordinary trigger runs with the authority of the process
that caused it to fire. Such a trigger can’t leak information
that the process couldn’t leak, but it can only enforce the
constraint with respect to the tuples the process can see.
For example, when a new prescription is entered for Alice
with the label {alice_medical}, a trigger checks it against
her existing prescriptions for drug interactions. Since all of
Alice’s prescriptions have the same secrecy, this raises no
information flow concerns.

Alternatively, a trigger can be defined as a stored authority
closure. Such a trigger can perform stricter enforcement by
using its authority. For instance, a trigger can ensure that a
doctor cannot be assigned responsibility for too many patients.
This trigger might “leak” which doctors are not accepting new
patients; the definer of the trigger needs to decide whether
this is acceptable.

When a query causes a trigger to fire at the end of a trans-
action, IFDB performs some extra bookkeeping to ensure that
the trigger runs with the label of the query, not the commit
label of the transaction. This ensures that triggers have con-
sistent semantics regardless of whether they run immediately
or are deferred until the end of the transaction. Foreign key
constraints, which can be thought of as a particular kind of
trigger, are handled in the same manner.

5.2.4 Label Constraints

IFDB makes it possible to define constraints on labels. For
example, such a constraint can specify that HIVPatients tuples
should have the appropriate label, i.e., a record for Alice
must have the label {alice_medical}. Label constraints can
help prevent labeling errors. In addition, they can prevent
polyinstantiation by augmenting a uniqueness constraint for
a key to include the required label for a tuple with that key.

IFDB supports simple label constraints as a type of foreign
key constraint. Other label constraints (for instance, ones that
require labels of tuples table to be supersets of a given label)
are handled via triggers that check the _label field.

6. Case Studies

This section describes our experiences porting two applica-
tions, CarTel and HotCRP, to use IFDB and PHP-IF. These
applications were chosen because they have rich policies for
sharing information among users. The conversion required

a modest effort. We had to change 4.5% of the CarTel code
base and 7% of the HotCRP code base—but in the latter
case, most changes were related to converting from MySQL
to PostgreSQL. IFDB prevented real privacy leaks in both
systems and each had a much smaller trusted base, which was
easier to reason about.

6.1 CarTel

CarTel [14] is a mobile sensor network that collects location
data and other information from GPS-equipped cars. Users
can see maps and statistics about their past drives through
the CarTel website, get real-time traffic information derived
from other users’ drives, and compare drives with friends.
CarTel is intended to protect users’ privacy: The records for a
car should only be accessible to its owner, but the owner can
allow friends to see past drives.! CarTel also has sensitive
data about users and cars, but for simplicity, we focus here
on protecting location data.

The current CarTel implementation is a prototype pro-
duced by another research project. It uses ad hoc privacy
controls enforced by scripts running on the web server. Each
PHP script has complete access to all users’ location data, and
is trusted to ensure that data aren’t released inappropriately.
Many security bugs resulted.

We introduced two types of tags to denote the privacy
concerns of location data: Alice has an alice-drives tag that
covers her past drives, and an alice-location tag for her current
location. The GPS coordinates and timestamps from Alice’s
cars are thus assigned the label {alice-drives, alice-location},
reflecting the fact that the raw location data reveals both the
drive and her current location. Information about historical
drives, however, is labeled with {alice-drives} so Alice can
allow her friend Bob to see her drives by delegating authority
for alice-drives to him.

A substantial amount of code in CarTel is involved in
transforming raw location data into drives. A SQL stored
procedure, driveupdate(), runs as a trigger and updates the
distance traveled. Separately, a PHP function, load_drives(),
interpolates the path of a drive on demand. Even though the
code processes secret data, [IFDB prevents it from compromis-
ing Alice’s privacy. Both procedures read location data with
label {alice-drives, alice-location} and write drives with label
{alice-drives}. They run as authority closures with authority
for the alice-location tag; however, they cannot declassify the
alice-drives tag. Therefore, once the procedures read Alice’s
location data, anything they write to the database will remain
contaminated, preventing it from being leaked.

The most pervasive vulnerabilities we discovered were in
authentication. Twelve scripts, many of which were rarely
used or intended only for testing, neglected to authenticate
the user making the request. The authentication routine

!'The full CarTel system uses a separate streaming database for real-time
queries, which is not addressed in this paper. We focus on historical queries,
such as comparing drives with friends.

itself also had a bug: When authentication failed, the script
continued as if the user authenticated successfully, but it
generated an HTTP redirect to send the user to the login
page. This behavior masked the bug because a normal web
browser would follow the redirect before displaying any of the
sensitive information that CarTel was sending it. Another bug
was related to the “friend” feature. Cartel gave each user a list
of people who had designated them as friends. However, by
manipulating the URL, a malicious user could see anyone’s
driving history.

Converting CarTel to use IFDB fixed the authentication
and the authorization bugs. Scripts that didn’t authenticate
ran with no authority under IFDB. Furthermore, if a user
attempted to coerce the site into showing the drives for a non-
friend, the script would become contaminated with a tag it
had no authority to declassify, and therefore it would produce
no output regardless of what it read.

It’s tempting to think that the kinds of bugs we found in
CarTel are confined to research prototypes, but this is not
the case. For example a bank and a health insurer, both For-
tune 500 companies, recently exposed millions of customers’
financial and medical records due to omitted authentication
checks [23, 30], and the missing authorization check mirrors
observed privacy holes in Facebook [4].

6.2 HotCRP

HotCRP [17] is a widely used conference management sys-
tem. Authors submit papers, reviewers read them and en-
ter evaluations, and the program committee (PC) produces
decisions for the papers. Both papers and reviews may be
anonymous. The system is intended to handle conflicts of
interest so that PC members cannot see reviews for their
own papers. Web users are protected from each other by
logic in the application, which has access to all users’ data.
The privacy settings are configurable, and restrictions are
implemented through hundreds of conditionals that determine
what selections to add to queries and what projections to apply
to the results.

We converted HotCRP to use IFDB, employing DIFC to
protect data involving contact information and paper reviews
and rankings. A user (say Cathy) has a tag cathy-contact
protecting her tuple in the Contactinfo table. This tag is a
member of the all-contacts compound tag. The PCMembers
declassifying view, which has authority for all-contacts, dis-
tills the names of PC members from Contactinfo. Additionally,
the program chair can record acceptance decisions, but these
shouldn’t be available to authors or conflicted PC members
until the results are officially released; therefore, each accep-
tance decision is protected by a tag specific to that paper.
Finally, each PaperReview tuple has a tag that only the review
author and the chair are authoritative for. An authority closure
running with the chair’s authority later delegates the tag to
eligible PC members, i.e., those with no conflicts of interest.

The resulting system blocked a previously unknown leak:
the script that displayed the list of program committee mem-

bers stopped working. This turned out to result from a bug
that allowed any user to view the full contact information
(name, address, phone number, email address, and affiliation)
of all registered users.

We also reintroduced some bugs that were present in past
versions of HotCRP and found they were prevented in our
version. One bug allowed PC members to see decisions for
their own papers prematurely by sorting papers in order
of status and seeing where theirs appeared. A similar bug
allowed non-PC-members to see acceptance decisions for
their papers by abusing the search feature. Under our Query
by Label model, the underlying database query result simply
didn’t return the tuples the user wasn’t allowed to see.

6.3 Discussion

In addition to preventing bugs in CarTel and HotCRP from
violating confidentiality requirements, the IFDB versions had
smaller trusted bases. For example, in the original version of
CarTel, a bug in any part of the application could potentially
expose Alice’s driving history. IFDB, however, guarantees
end-to-end confidentiality for Alice’s drives: Alice must trust
that her location measurements are labeled properly when
they enter the system, and she must trust any code that runs
on behalf of her or her designated friends, but she does not
need to trust any of the processing that goes on in the middle.
Declassifying views and authority closures made up 380 out
of 10,000 lines of code in CarTel, and 760 out of 29,000 lines
in HotCRP. Additionally, each system had about 50 lines of
code that were trusted to set up tags for new users and label
incoming data properly.

We also found that DIFC provides a useful way to reason
about security in the database. We had to categorize sensitive
data (e.g., drives, locations, contact information) with tags,
and determine where those tags should appear in the database.
For each query, we had to consider the label the results ought
to have. Furthermore, since IFDB makes declassification
explicit, this drew attention to parts of the program that could
potentially create vulnerabilities.

Hiding sensitive information rather than restricting access
proved to be particularly useful in HotCRP, which frequently
did many-way joins that included sensitive tuples, then de-
cided later what the user ought to be able to see. We didn’t
want to trust the complicated application code to make the
right decisions, but we also didn’t want to modify the system
to have one kind of query for the program chair, another for
PC members, a third for authors, and a fourth for external
reviewers. By using outer joins in these queries, we simply
got NULLs in place of the fields that were more sensitive than
the process label. Thus, we kept changes to a minimum.

6.4 Methodology

IFDB provides a mechanism for ensuring application security;
our contribution is this mechanism. However, IFDB does
not define what security means for a particular application.
Instead, it is up to the developer of an application to decide

what this means. Our experience with using IFDB provides
insight into how a developer should go about this.

The first step is to identify what information will be stored
in the system, who is allowed to access it, and what kinds
of computations are expected over the data. This allows the
developer to identify the kinds of tags, compound tags, and
principals that will be used in the application, and also the
expected authority relationships: which principals should be
authoritative for which tags. Typically, each kind of sensitive
information will be associated with a compound tag, and the
subtags will be associated with information for particular
individuals. Most of these principals and tags will not be
created at this point; instead they will be created when the
application runs. Rather, the developer is defining a kind of
authority schema that will be instantiated later.

Our experience indicates that it is straightforward to come
up with this schema. This was true for both CarTel and
HotCRP. A third example is a medical information system,
where there are patient medical records, billing records,
contact information, and so forth. In this system, there might
be an all_patient_medical compound tag for medical records,
with subtags such as alice_medical and bob_medical to iden-
tify data belonging to different patients. Each of these tags
has a clear owning principal: Alice owns alice_medical, and
therefore has authority to decide when to declassify for it.

The next step is to define the schema for the database
tables, which is done in the usual way, and come up with a
labeling strategy. In a well-designed schema, all the fields
within a tuple are related, so there is an obvious tag to use:
for instance, a tuple with information about Alice’s latest
doctor visit should have the label {alice_medical}. Larger
labels are needed only if different kinds of data (for instance,
both billing and medical information) are stored in the same
tuple. The schema may also include label constraints: for
instance, tuples for patient Alice should always have the
alice_medical tag. When the application receives sensitive
data, it will add the appropriate tags to its label before writing
to the database.

The third step is to identify unsafe flows — computations
where the result is less sensitive than the inputs. These flows
require appropriate authority to declassify, and it is desirable
to associate that authority with a minimal amount of code.
Declassifying views and stored authority closures in the
database, as well as authority closures in application code,
provide ways to do this.

The security of the application depends on the code that
runs with authority. Programmers who implement this trusted
code need to understand the ramifications of doing declassifi-
cations. For example, Alice’s medical bill necessarily conveys
some information about Alice’s medical history, and the
trusted code that produces the bill is making an important
policy decision. However, programmers who write the rest of
the code for the application do not require the same degree
of sophistication.

Our experience is that most code (including both applica-
tion code and stored procedures) doesn’t need to declassify or
run with any special authority. This illustrates a key advantage
of information flow control over access control: even code
that computes on sensitive information does not have the
ability to leak it.

7. Implementation

Our implementation has two components: the database, and
the platform used by clients to interact with the database. The
database stores the application data and also the authority
state, which records the principals, tags, and delegations.

7.1 The Database Implementation

Our IFDB implementation is based on PostgreSQL 8.4.10,
and includes about 6,300 new or modified lines of C code
and 250 lines of PL/pgSQL stored procedures. Tuple labels
are stored along with each tuple in a new, immutable system
column called _label.

The database determines which tuples it should operate
on and return for a given statement based on the label of the
requesting client process. The Label Confinement Rule and
the Write Rule from Section 4.2 are implemented at the layer
that reads and writes tuples in tables; thus, any bugs in the
higher layers that parse, optimize, and execute queries should
not compromise the information flow restrictions.

The fact that PostgreSQL uses multi-version concurrency
control (MVCC) made many of the changes easy to imple-
ment. In MVCC, a new version of a tuple is written every time
the tuple is updated. Queries read just the relevant versions,
ignoring ones that have been deleted, superceded, or not yet
committed. IFDB extends the code that ignores irrelevant
versions to also hide tuples according to the label of the client
process. The garbage collector task that discards old versions
is exempt from the information flow rules. Polyinstantiation
required no special support, since the indexes that enforce
uniqueness constraints already had to be prepared to deal
with multiple versions.

The database provides two additional interfaces to support
information flow control. The first includes the IFDB API de-
scribed in Section 3, which provides SQL-callable functions
for declassification, authority management, compound tags,
and so forth. Syntactic extensions support pl/pgSQL authority
closures and the INSERT ... DECLASSIFYING construct for
foreign keys (see Section 5.2.2). The second interface is at
a lower level; it allows the application platform and IFDB
to communicate changes in the client process’s label and
authority. Changes are coalesced and transmitted lazily with
the next statement or result, using a modified version of
PostgreSQL’s low-level client/server protocol.

Our prototype does not support indexes that would opti-
mize queries for tuples that have specific tags in their labels.
Labels are sets, typically with a small number of elements
(rarely more than two), so an inverted index would be an

appropriate data structure, should the feature prove useful
in the future. However, the applications we studied would
not benefit from such indices. For example, CarTel looks up
drives based on the car’s owner rather than the label attached
to the drive. Instead, labels serve as a safety net against
privacy bugs: they ensure that the application’s contamination
reflects the drives it reads.

7.2 Clients

We implemented PHP-IF and Python-IF by extending PHP
and Python to support DIFC. PHP-IF and Python-IF interpose
on output, so programs that are too contaminated can’t release
information. Additionally, they have APIs similar to [IFDB’s
to support authority closures, delegation of authority, and
label changes. To provide Query by Label, they share their
process label with IFDB.

The low-level details of the client/server protocol are
handled by a modified version of the PostgreSQL client
library, libpg. The library provides C APIs to query and
change the label and principal of the process. Therefore,
minimal low-level changes are required to add database
support to new information flow platforms. Our PHP-IF and
Python-IF application platforms, for instance, required only
about 150 new lines of C code each. The remaining changes
to support IFC are implemented in PHP and Python; each
respective implementation is about 1100 lines of code.

The PHP implementation includes a shared memory cache
of recently used principal and tag values and authority state.
The cache is important because the platform frequently
checks whether the current principal is allowed to release
information (e.g., to the web client) given the contamination
reflected in the process’s label.

Command-line database clients such as psql, pg_dump,
and pg_restore were also modified, mainly to provide debug-
ging capabilities and backups that include labels.

7.3 Covert Channels

IFDB provides a model that handles queries, constraints,
and transactions without covert channels. However, database
systems are complex and their implementations can leak
information, even without DIFC [12]. In line with earlier
DIFC work [18, 36], the goal of our work is to develop a
DIFC model for databases that is free of covert channels, not
to thoroughly address countermeasures to channels in the
implementation. This section briefly discusses some of the
challenges.

A database implementation can introduce timing channels
that allow a process running a query to deduce secret infor-
mation from the time it takes the query to complete. Various
techniques have been developed to mitigate the impact of
timing channels [1, 16, 20], e.g., by quantizing response times.
The IFDB prototype does not incorporate these defenses.

In addition, a database implementation can introduce
allocation channels. If principals and tags were allocated
in a predictable sequence, this might provide unintended

Freq. Request
0.50 get_cars.php
0.30 cars.php
0.08 drives.php
0.08 drives_top.php common driving patterns
0.03 friends.php view and set friends
0.01 edit_account.php edit personal info

Description

location updates (AJAX)
show car locations

show drive log

Figure 3. Distribution of HTTP requests (excluding login)
generated by our CarTel web benchmark

information, e.g., the order in which papers were submitted
in HotCRP. Therefore, IFDB uses a cryptographic pseudoran-
dom number generator to generate new principal and tag ids.

A more subtle channel involves tuple allocation. Post-
greSQL allocates storage for tuples from per-relation heap
files, so the relative order of tuples within a relation is affected
by the sequence of modifications to the relation. This might
allow an uncontaminated process to deduce the presence of a
high-labeled tuple. The channel can be avoided by ordering
tuples returned to the application by any deterministic func-
tion of their values, but this is expensive. Since we expect
these channels are difficult to exploit, our prototype does not
reorder query results.

8. Performance

We evaluated the performance of IFDB by comparing the end-
to-end performance of our version of CarTel using IFDB and
PHP-IF to that of the original version running on PostgreSQL
and PHP. Our results in Section 8.2 show that the overhead is
minimal, and in many cases too small to easily measure.

To gain better insight into how information flow control
affects database scalability, we use a benchmark based on
TPC-C to study IFDB’s performance with information flow
labels of various sizes. Section 8.3 presents these results.

8.1 Experimental Setup

We ran our benchmarks on a database server with four
Xeon E7310 CPUs (16 cores), 8 GB of RAM, a RAID
controller with a 256 MB battery-backed cache, and three
15,000 rpm SAS drives in a RAID 5 configuration. The
server ran Linux kernel version 2.6.38. The database in each
test was either IFDB or PostgreSQL 8.4.10 (from which
IFDB is derived). We tuned several database parameters:
checkpoint_segments=64, max_connections=1500, and the
remaining settings optimized for the hardware by pg_tune
0.9.3.

Several web servers were connected to the database via a
Gigabit Ethernet switch. The web servers were substantially
less powerful than the database server: each had a hyper-
threaded 3.06 GHz Pentium 4 CPU and 2 GB of RAM. They
ran Apache 2.2.15 and either PHP-IF or PHP 5.3.10. We also
used APC 3.1.3p1 to cache compiled PHP scripts.

Web Interactions Per Second
PostgreSQL + PHP IFDB + PHP-IF
database-bound 229.3 230.4
web-server-bound 132.0 103.5

Figure 4. Throughput of the CarTel website, with and with-
out information flow security. The database-bound workload
uses three web servers, and the web-server-bound workload
uses just one.

8.2 Macrobenchmarks

We assessed IFDB’s real-world performance by running
a series of benchmarks involving CarTel. The first set of
benchmarks, covered in Section 8.2.1, are read-intensive.
They involve the CarTel web portal, which allows users to
view location data for their cars and their friends’ cars. Sec-
tion 8.2.2 covers a write-intensive benchmark that measures
how fast the database can process sensor measurements.

8.2.1 CarTel Web Portal Performance

We compared the performance of our version of the CarTel
website (running on IFDB and PHP-IF) to the original ver-
sion (running on PostgreSQL and PHP). The database was
populated with 18 GB of real data, consisting of 177 million
location measurements collected over a 27-month period.

We used a methodology based on TPC-W [34] to measure
the maximum sustained throughput of the system. Simulated
clients log in as a random user, make a random sequence of
HTTP requests, then end their sessions. The “think time,” or
duration between two HTTP requests from the same client,
ranges from 0 to 70 seconds, following a truncated negative
exponential distribution. The length of each client session
also follows a truncated negative exponential distribution,
and can be up to about 60 minutes. Thus, the vast majority of
think times and session durations are closer to the low ends
of these ranges.

Following the initial login, simulated web clients request
pages according to the distribution in Figure 3. The distribu-
tion is intended to mimic a real workload. To obtain more
consistent performance, we did not generate requests for users
who had more than 5 cars (one of which was a cab company).
The load generator adjusted the number of clients to achieve
peak throughput while keeping the 90th percentile response
time under 3 seconds, which is the criterion used by TPC-W.

Figure 4 shows the maximum number of web interactions
per second the web servers and database could sustain subject
to the constraint on response time. With three web servers,
performance was limited by the database, which was disk-
bound, and we could demonstrate no statistically significant
difference between IFDB and PostgreSQL over five 2-hour
trials. With one web server, however, the web server’s CPU
was the bottleneck and throughput was 22% lower with IFDB
and PHP-IF.

70 T T T T T
60 - g s
50 F------ --{Il PostgreSQL + PHP

40 - - - -{I@ IFDB + PHP-IF

HTTP response time (ms)

Figure 5. CarTel web request latency on an idle system

Figure 5 reports the HTTP request latency on an idle
system, with a single client issuing requests serially. The
weighted mean increase in response time with IFDB and
PHP-IF was 24%. The highest absolute increase was in
drives.php, which had to handle each of the user’s friends.
The latency difference for each script mainly reflects the
additional time required to look up principal and tag ids,
perform label manipulations to read sensitive data, and check
that the process is allowed to release what it read. PHP-IF
caches some authority information, so these checks rarely
require communication with the database.

The increase in latency, and also the reduced throughput
when the system is web-server bound, is due to inadequacies
in our PHP-IF prototype. Much of PHP-IF is implemented
in PHP itself, and performance would be greatly improved
by moving this code to C. The main goal in this paper,
however, is to demonstrate that DIFC on the DBMS side
is practical, and our results show that DBMS performance is
very good. Results from Aeolus [6] show that it is possible to
achieve good performance in a DIFC application platform as
well with the right optimizations, such as more sophisticated
caching of authority state, and PHP-IF could take advantage
of such optimizations.

8.2.2 Sensor Data Processing Throughput

CarTel also has a component that processes and stores GPS
location measurements. For each measurement, a new tuple
is inserted into the Locations table, and two triggers fire,
which read from the Cars table and update the Drives and
LocationsLatest tables. CarTel issues 200 inserts per transac-
tion, partly to compensate for the lack of group commit in
PostgreSQL. The web server is not involved.

In IFDB, each Locations tuple must be labeled with the
appropriate user’s location tag so that the platform will
subsequently protect it from improper release. Additionally,
the triggers run as authority closures so that they can read
Cars and update Drives without contaminating the process
performing the insert.

We replayed real location measurements to the database
as fast as possible and measured the average throughput.
PostgreSQL was able to process 2479 location measurements
per second, while IFDB processed 2439. The 1.6% difference

reflects the additional bookkeeping associated with labeling
the data, as well as the overhead of storing the labels them-
selves. The following section explores the impact of the latter
source of overhead.

8.3 The Cost of Labels

IFDB must store a label for every tuple, and compare the
labels to the process label on every read and update. This
section explores those costs, independent of the other differ-
ences associated with modifying the application to support
information flow control.

Labels are small in CarTel and HotCRP: there were O
to 2 tags per tuple. Furthermore, we expect small labels in
general, for two reasons. First, in a well-designed database
schema, the fields in a tuple are related, so a tuple should not
have many different kinds of sensitive information. Second,
computations that combine many related tuples should use
compound tags. For instance, the result of a statistical analysis
over many CarTel users’ drives can have a label containing
just the all_drives tag.

Nevertheless, to gain a better understanding of the cost of
labels, we evaluated IFDB’s performance with tuple labels
ranging from zero tags up to ten—more than we expect to
see in practice. In each experiment, all of the tuples in the
database had the same labels. We measured performance
using DBT-2, a benchmark derived from the TPC-C [35] spec-
ification. Unlike TPC-C, we set the think time of simulated
clients to zero and held the number of warehouses constant.
To better capture the distinction between I/O and compu-
tational overhead, we ran the benchmark on an in-memory
database with 10 warehouses and an on-disk database with
150 warehouses.

Figure 6 reports the results. The transaction rates are
scaled so that performance relative to PostgreSQL is directly
comparable. Within the range studied, each tag reduces
throughput by about 0.6% for the in-memory workload and
1% for the on-disk workload. Since labels with one tag are the
most common, we believe that 1% is a conservative estimate
of the impact for real applications.

Much of the overhead comes from I/O and cache pressure.
Labels in IFDB increase the size of each tuple by 4 bytes
per tag, with corresponding implications for disk bandwidth
and the buffer cache. (The label length is stored in a byte in
the tuple header, which was previously unused for alignment
reasons.) For example, Order_Line tuples, responsible for
much of the I/O in TPC-C, are 89 bytes, so each tag adds
4.5% to the space consumed by the tuple, and decrease the
number of tuples that can be stored per page.

9. Related Work

Prior work on mechanisms on information flow control
has come from the database, programming language, and
OS communities. IFDB incorporates ideas from all three
approaches.

3000 T T T T
2000 — 39000 a
[as] 38000 A
2 2800 37000
3 2700 20000 2
& 35000 QE’
2 2600 34000 &
- 33000 —
E 2500 = PostgreSQL (both axes) = = = = - 32000 E
O 2400 - IFDB (disk-bound, left axis) —s— -, 31000 &
“ IFDB (in-memory, right axis) ====s=-= %
| | | |
0 2 4 6 8 10

Tags per Label

Figure 6. DBT-2 throughput (new-order transactions per
minute)

To our knowledge there has been no work on DIFC for
databases, but there has been work on information flow
control. Many proposals grew from a 1982 US Air Force
study; one of the most influential of these proposals came
from the SeaView project [21], which developed and formally
verified a query model and developed the polyinstantiation
concept. IFDB draws on this work and uses similar query and
data models, although IFDB’s approach is simpler because it
supports labeling only at tuple granularity.

SeaView was designed with military needs in mind: it
assumes a central [FC policy, a set of levels (e.g., confidential,
secret, top-secret), and human users who are cleared for
certain levels. In contrast, the focus of IFDB is on using
IFC to enable abstractions that support secure programming.
As such, it includes a number of concepts not present in the
SeaView model. IFDB uses decentralized IFC: it supports
fine-grained tags so that principals can define policies for their
own data. Additionally, IFDB provides abstractions such as
declassifying views, authority closures, and reduced authority
calls to limit the amount of code that must run with authority.
The more sophisticated authority model in IFDB enables
better solutions to problems such as covert channels due to
foreign key references; in contrast, SeaView imposes the
restriction that a foreign key reference must have the same
label as its target.

Many MLS database systems also use implementation
techniques that can’t support the millions of tags potentially
required by DIFC policies. SeaView partitions each table
into files, one for each possible label, and queries read all of
the files containing data they are allowed to see. However,
that technique doesn’t work if there are more than a few
distinct labels. Similarly, Oracle provides multi-level security
through Oracle Label Security (OLS) [15] and Virtual Private
Databases, but OLS limits the number of tags (which they
call categories) to 10,000. Sybase Secure SQL Server [33]
has a maximum of 64 tags.

PostgreSQL provides security labels for tuples [26]. The
database stores labels in a separate table and doesn’t define

any built-in semantics for labels; instead, a loadable module
must be provided to interpret labels. IFDB is based on Post-
greSQL, but doesn’t use the provided mechanism. Instead,
we implemented our own label mechanism to achieve the
required semantics and get better performance. DB2’s Label-
Based Access Control feature [3] is similar to PostgreSQL
security labels, but DB2 provides built-in access control
enforcement.

The DIFC model used in IFDB was introduced by Myers
and Liskov [25]. This work has since developed into two
lines of research. The first presents the model to program-
mers through a programming language. Languages such as
JIF [24], and SIF [8] extend the type system to include labels.
UrWeb [7] and a proposal by Li and Zdancewic [19] elevate
queries to first-class language constructs. These extensions
allow them to enforce information flow policies primarily via
static analysis. The static approaches promise good perfor-
mance, but they typically require programmers to learn a new
language where security properties are expressed through a
complex type system.

The second line of DIFC research presents the model via
an operating system; it enforces information flow control at
the level of operating system processes, avoiding the need
for type annotations. Examples of work in this area are
Asbestos [11], HiStar [36], and Flume [18]. Aeolus [6] builds
on this work; it tracks labels at the level of processes but
provides a higher-level interface than what an operating
system would provide. All of these systems focus on file
systems as the primary abstraction for persistence, although
there have been some steps toward also supporting databases.
For example, the HiStar paper [36] mentions a database with
a limited interface, but provides no details. IFDB could be
integrated with any of these systems to provide a DIFC-aware
relational store for applications.

IFDB provides mechanisms to prevent bugs in applications
from undermining the intended security policy but does not
dictate what that policy should be. For example, it’s clear
that Alice ought to be able to see her own CarTel driving
history, but does publishing an “anonymized” traffic report
that contains her data violate her privacy? Such questions
often don’t have easy answers, and this paper doesn’t attempt
to provide one. However, recent research has developed ways
to quantify privacy [10, 22, 32] and write queries that provide
reasonable privacy protections [5, 13], and these results can
be used to inform policy decisions in IFDB deployments.

10. Conclusion

This paper has described IFDB, the first system to provide
security for databases through decentralized information flow
control (DIFC). IFDB is intended to work with a DIFC
application platform, such as PHP-IF. The system tracks
sensitive information as it flows through the DBMS, and
also between the application and the DBMS. The information
flow label of a process becomes contaminated by what the

process reads, and a process can’t release information if it is
too contaminated. Thus, unlike in an access control system,
many computations that operate on sensitive information can
run without having the authority to release it.

IFDB’s Query by Label model provides a practical way
for processes to control their contamination. Furthermore, the
model is easy to use. It is based on familiar languages, such
as SQL and PHP, and it employs simple concepts: tags, labels,
and principals. IFDB also provides new database abstractions,
such as declassifying views and stored authority closures,
which bind the authority to remove contamination to a trusted
computation. In addition, IFDB supports important database
features, such as transactions and constraints, in a way that
avoids information leaks via covert channels. Transactions
add something new — a connection between the termination of
the transaction and what happened inside it. Our transaction
rules ensure that there are no leaks because of this.

We implemented IFDB by modifying PostgreSQL 8.4.10
and implemented two client-side platforms: one based on
PHP and the other on Python. Our performance experiments
show that our system adds minimal overhead. The case
studies show it is easy to express confidentiality policies
with our approach; Section 6.4 explains how to achieve
similar benefits in other applications. In addition, IFDB
prevented several leaks that affected the original applications,
and removed most of the application code from the trusted
computing base.

We are investigating three directions for future work. First,
we are looking at ways to extend IFDB to enhance its usability.
We are interested in adding new DIFC abstractions to the
model, such as a more direct syntax for expressing common
kinds of label constraints, or a special iterator where each
tuple selected by a query is handled in its own context
with that tuple’s label. We are also interested in how to
incorporate other SQL abstractions, such as sequences, into
the IFDB model without introducing covert channels. Second,
we would like to put the IFDB model on stronger theoretical
grounds by developing proofs of noninterference. Third, we
are studying improvements in the implementation, such as
ways of implementing the IFDB model without placing full
trust in the DBMS.

Acknowledgments

We would like to thank Dan Ports, Nickolai Zeldovich, the
referees, and our shepherd Brad Karp, for helpful comments
on this paper. Sam Madden kindly provided us with the
CarTel source code and data, and Eddie Kohler confirmed the
bug we found in HotCRP and pointed us to some past bugs.

References

[1] A. Askarov, D. Zhang, and A. Myers. Predictive black-box
mitigation of timing channels. In Proc. CCS, New York, NY,
2010. ACM.

[2] D. Bell and L. LaPadula. Secure computer system: Unified
exposition and Multics interpretation. Technical Report ESD-
TR-75-306, MITRE Corp. MTR-2997, Bedford, MA, 1975.

[3] R. Bond, K. See, C. Wong, and Y.-K. Chan. Understanding
DB?2 9 Security, chapter 6. IBM Press, Indianopolis, IN, Ist
edition.

[4] J. Bonneau. New Facebook photo hacks. In Light Blue
Touchpaper. University of Cambridge Computer Laboratory,
May 20, 2009. http://www.lightbluetouchpaper.org/2009/02/11/
new-facebook-photo-hacks/.

[5] R. Chen, N. Mohammed, B. Fung, B. Desai, and L. Xiong.
Publishing set-valued data via differential privacy. Proc. VLDB,
4(11), Aug. 2011.

[6] W. Cheng, D. Ports, D. Schultz, V. Popic, A. Blankstein,
J. Cowling, D. Curtis, L. Shrira, and B. Liskov. Abstractions for
usable information flow control in Aeolus. In Proc. USENIX
ATC, Boston, MA, June 2012.

[7] A. Chlipala. Static checking of dynamically-varying security
policies in database-backed applications. In Proc. OSDI, Oct.
2010.

[8] S. Chong, K. Vikram, and A. Myers. Sif: Enforcing confiden-
tiality and integrity in web applications. In Proc. USENIX
Security, Boston, MA, Aug. 2007.

[9] D. Denning. A lattice model of secure information flow.
Commun. ACM, 19, May 1976.

[10] C. Dwork. Differential privacy: A survey of results. In Proc
TAMC, Berlin, Heidelberg, 2008. Springer.

[11] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey,
D. Ziegler, E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris.
Labels and event processes in the Asbestos operating system.
In Proc. SOSP, Brighton, UK, 2005. ACM.

[12] A. Futoransky, D. Saura, and A. Waissbein. The ND2DB
attack: Database content extraction using timing attacks on
the indexing algorithms. In WOOT, Boston, MA, Aug. 2007.
USENIX Association.

[13] M. Hay, V. Rastogi, G. Miklau, and D. Suciu. Boosting the ac-
curacy of differentially private histograms through consistency.
Proc. VLDB, 3(1-2), Sept. 2010.

[14] B. Hull, V. Bychkovsky, Y. Zhang, K. Chen, M. Goraczko,
A. K. Miu, E. Shih, H. Balakrishnan, and S. Madden. CarTel:
A distributed mobile sensor computing system. In SenSys,
Boulder, CO, November 2006. ACM.

[15] S. Jeloka et al. Oracle Label Security Administrator’s Guide,
11g Release 2 (11.2). Oracle Corporation, 2009.

[16] P. Karger and J. Wray. Storage channels in disk arm optimiza-
tion. In Proc. Security and Privacy. IEEE, May 1991.

[17] E. Kohler. Hot crap! In Proc. WOWCS, Berkeley, CA, 2008.
USENIX.

[18] M. Krohn, A. Yip, M. Brodsky, N. Cliffer, F. Kaashoek,
E. Kohler, and R. Morris. Information flow control for standard
OS abstractions. In Proc. SOSP, New York, NY, 2007. ACM.

[19] P. Li and S. Zdancewic. Practical information-flow control in
web-based information systems. In Proc. CSFW. IEEE, 2005.

[20] Y. Liu, D. Ghosal, F. Armknecht, A.-R. Sadeghi, S. Schulz,
and S. Katzenbeisser. Hide and seek in time: Robust covert
timing channels. In Proc. ESORICS, Berlin, Heidelberg, 2009.
Springer.

[21] T. F. Lunt, D. E. Denning, R. R. Schell, M. Heckman, and W. R.
Shockley. The SeaView security model. IEEE Trans. Softw.
Eng., 16, June 1990.

[22] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubra-
maniam. [-diversity: Privacy beyond k-anonymity. ACM Trans.
Knowl. Discov. Data, 1, March 2007.

[23] T. Murphy. Security glitch exposes WellPoint cus-
tomers’ financial, medical data. = USA Today, June 29,
2010. URL http://www.usatoday.com/money/industries/health/
2010-06-29-wellpoint-data-breach_N.htm.

[24] A. Myers. JFlow: practical mostly-static information flow
control. In POPL 1999, San Antonio, TX, Jan. 1999. ACM.

[25] A.Myers and B. Liskov. A decentralized model for information
flow control. In Proc. SOSP, Saint-Malo, France, 1997. ACM.

[26] PostgreSQL Global Development Group. PostgreSQL 9.1
Documentation, Sept. 2011. http://www.postgresql.org/docs/9.
1/static/.

[27] J. Saltzer and M. Schroeder. The protection of information in
computer systems. In Proc SOSP, Yorktown Heights, NY, Oct.
1973.

[28] R. Sandhu and S. Jajodia. Polyinstantation for cover stories.
In Proc. ESORICS. Springer, 1992.

[29] D. Schultz. Decentralized Information Flow Control for
Databases. Ph.D., MIT, Cambridge, MA, Aug. 2012.

[30] N. Schwartz and E. Dash. Thieves found Citigroup site an
easy entry. The New York Times, June 13, 2011. URL https:
/lwww.nytimes.com/2011/06/14/technology/14security.html.

[31] K. Smith and M. Winslett. Entity modeling in the MLS
relational model. In Proc. VLDB, San Francisco, CA, 1992.
Morgan Kaufmann.

[32] L. Sweeney. k-anonymity: A model for protecting privacy. Int.
J. Uncertain. Fuzziness Knowl.-Based Syst., 10, Oct. 2002.

[33] Sybase, Inc. Final Evaluation Report: SQL Server Version
11.0.6 and Secure SQL Server Version 11.0.6, chapter 5:
Security Architecture. National Computer Security Center,
Ft. Meade, MD, Mar. 1997.

[34] TPC Benchmark W (Web Commerce) Specification. Trans-
action Processing Performance Council, San Jose, CA, 1.8
edition, February 2000.

[35] TPC Benchmark C Specification. Transaction Processing
Performance Council, San Jose, CA, 5.11 edition, February
2010.

[36] N. Zeldovich, S. Boyd-Wickizer, E. Kohler, and D. Maziéres.

Making information flow explicit in HiStar. In Proc. OSDI,
Berkeley, CA, 2006. USENIX.

	Introduction
	Architecture and Trusted Base
	Information Flow Model
	Tags and Labels
	Controlling Information Flow
	The Principle of Least Privilege

	Query By Label
	Labels in the Database
	Queries
	Declassifying Views and Stored Procedures
	Data Independence

	Transactions and Constraints
	Transactions
	Integrity Constraints
	Uniqueness Constraints
	Foreign Key Constraints
	Generalized Constraints
	Label Constraints

	Case Studies
	CarTel
	HotCRP
	Discussion
	Methodology

	Implementation
	The Database Implementation
	Clients
	Covert Channels

	Performance
	Experimental Setup
	Macrobenchmarks
	CarTel Web Portal Performance
	Sensor Data Processing Throughput

	The Cost of Labels

	Related Work
	Conclusion

