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Unifying Perception, Estimation and Action for Mobile Manipulation
via Belief Space Planning

Leslie Pack Kaelbling and Tomás Lozano-Pérez

Abstract— In this paper, we describe an integrated strategy
for planning, perception, state-estimation and action in com-
plex mobile manipulation domains. The strategy is based on
planning in the belief space of probability distribution over
states. Our planning approach is based on hierarchical symbolic
regression (pre-image back-chaining). We develop a vocabulary
of fluents that describe sets of belief states, which are goals
and subgoals in the planning process. We show that a relatively
small set of symbolic operators lead to task-oriented perception
in support of the manipulation goals.

I. INTRODUCTION

A mobile robot in a complex environment can never be
completely certain about the state of the environment. This
is not a problem that can be corrected by improved sensing;
parts of the environment are simply not visible — spaces
behind walls, doors and other objects. Thus a robot will
have to take sensing actions, including pointing its cameras,
moving to new poses in order to get a better view, or moving
objects out of the way in support of doing high-level tasks,
such as putting objects away in a kitchen. In this paper,
we describe an integrated strategy for planning, perception,
state-estimation and action in complex mobile manipulation
domains.

We have developed an approach to combined task and
motion planning that integrates geometric and symbolic
representations in an aggressively hierarchical planning ar-
chitecture, called HPN [1]. The hierarchical decomposition
allows efficient solution of problems with very long hori-
zons and the symbolic representations support abstraction
in complex domains with large numbers of objects and are
integrated effectively with the detailed geometric models
that support motion planning. We extended this approach
to handle uncertainty by changing the space in which we
plan from the space of underlying configurations of the robot
and objects to the belief space of probability distributions
over configurations of the robot and objects [2]. In this
paper, we develop a fully probabilistic representation of
relative uncertainty between objects in the world and an
explicit representation of observed space. This much richer
representations of belief space supports both state estimation
using a very high-fidelity model and planning using an
abstract symbolic representation.
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What should the robot represent about its environment?
In order to manipulate objects, it needs to know their poses,
and the poses of other nearby objects fairly accurately. In
order to move through space (both with base and arms),
it needs to know whether that space is free. Early work
in mapping explicitly represented knowledge about free
space in occupancy grids, and scan-based SLAM methods
implicitly contain information about where the robot has
looked. In mapping methods based on object pose estimation,
however, the focus has been on explicit representation of
object poses, with an implicit assumption that all space not
explicitly marked as occupied is in fact free.

We propose a two-part state representation, with explicit
pose estimation of the robot and objects in the world,
together with a variable-resolution grid representation of the
parts of space that have been recently observed. Thus, if
a region of space has been recently observed and doesn’t
overlap any of the known objects, the robot believes with
high probability that the space is free and can be traversed.

Our planning approach is based on hierarchical symbolic
planning, using a technique that is called regression in the
AI planning literature and pre-image back-chaining in the
robotics literature. We develop a vocabulary of logical fluents
that describe sets of belief states; these sets serve as goals
and subgoals in the planning process. These fluents can
never jointly represent a belief state in complete detail,
but are grounded in procedures that test their truth in the
current detailed belief state. They are just sufficiently detailed
to support planning while maintaining a tractably small
representation of complex subgoals.

We briefly touch on related work, then describe the under-
lying representation for belief states. We go on to describe
the formalism used by the planner and give example plan-
ning operator descriptions that illustrate interactions between
sensing and acting. Finally, we demonstrate the proposed
methods on a task with partial information and noisy sensing
using a simulated Willow Garage PR2 robot.

II. RELATED WORK

Advances in 3D perception, navigation and motion plan-
ning have enabled sophisticated manipulation systems that
interleave perception, planning and acting in realistic do-
mains (e.g., [3], [4]). In most such systems, perception tends
to be loosely coupled to the task, usually by assigning the
perception subsystem the job of constructing some sort of
map of the environment, in which planning will be done.
There is also a body of work in which perception is actively
controlled to achieve some goal. For example, in active vision



(e.g., [5]), cameras are controlled to detect objects more
effectively. In robot exploration (e.g., [6], [7], [8]), the target
locations of the robots are chosen to so as to perceive the
most uncertain locations. However, in this existing work, the
planning for perception is not driven by or tightly integrated
into planning for some larger task, such as manipulation; in
most cases, perception itself is the task.

We use planning in belief space to achieve a tight in-
tegration of perception and action; perception is used to
achieve desired belief states that enable accomplishing a
manipulation goal. Belief space, either in the form of logical
representation of sets of states [9], [10] or in the form of
probability distributions over an underlying state space [11]
provides the key representation for integrated planning of
perception and action. Recent research [12], [13], [14] has
established the value of control in belief space using sim-
plified models and replanning. Our approach to belief space
planning builds directly on this work.

III. EXAMPLE DOMAIN

The methods described in this paper are designed to
apply broadly to robotics applications involving uncertainty
in complicated domains. To make the discussion concrete,
we will use a problem domain of picking and placing objects
using a Willow Garage PR2 robot. The robot can move its
left arm, head, and base. There is significant error in the base
odometry, much less error in the arm positioning relative to
the base, and negligible error in the head pose. For simplicity
in grasp selection and efficient trajectory planning, we limit
the robot to grasps that keep its hand parallel to the floor;
this is merely expedient and is not essential.

The robot can observe the environment with the stereo
sensors on its head, which can be panned and tilted, as well
as a scanning laser on its torso. The sensors yield three-
dimensional point clouds; a perception service attempts to
detect instances of the known shape models in any point
clouds that become available. There is error in the detected
poses of the objects. Such detection and recognition systems
are also susceptible to misclassification (seeing a can where
a box is), resulting in data-association problems. We are, for
the purposes of this paper, operating under the assumption
that any misclassification issues can be handled using robust-
statistics strategies and outlier rejection (e.g., [15]) and that
unimodal spatial distributions will suffice for all objects.

In this demonstration problem, the robot picks and places
objects, relying primarily on visual sensing, but using a
simple reactive grasping procedure that uses information
from touch sensors on the hand to adjust the fine details
of a grasping operation to pick up the object.

IV. BELIEF STATE REPRESENTATION

At the heart of any planner is a representation of its
knowledge of the state of the world (the belief state), which
must be updated after every action (physical or perceptual).
The belief state for mobile manipulation under uncertainty
needs to contain enough information to support queries both
about the nominal (mean or mode) state of the world and

about the system’s confidence in those estimates. The confi-
dence estimates must be accurate enough to support decision-
theoretic trade-offs between, for example, attempting to pick
up an object or taking another look to localize it more
accurately. It also needs to be a sufficient statistic for the
history of observations so that recursive updates may be
made effectively. We do not believe there is a good uniform
representational strategy for all aspects of information about
the domain, so we have separate representations for poses of
known objects and for observed space.

A. Object poses

When execution is initiated, the robot knows what objects
exist in the domain, and knows what their shapes are; but it
has a very highly uncertain estimate of their poses. Because
our domains currently involve relatively few objects, we
simply represent the distribution over their poses, together
with the base pose of the robot, using a full joint Gaussian
distribution. We assume that the shapes of objects are com-
pletely known and that they are always resting stably on a
known face and are placed on a known horizontal surface,
and thus have four degrees of pose freedom: x, y, z, and θ.

When the robot moves, an odometry error model is used
to do an unscented Kalman filter (UKF) update of the belief,
with a control input computed as the difference between the
uncorrected raw odometry of the robot at the current time
and at the time of the previous update. When an object is
detected, it is rejected as an outlier if it is highly unlikely in
the current model; otherwise, the detection, reported in robot-
relative coordinates, is also used in a UKF update, which
affects the robot and object poses, as well as other poses
through entries in the covariance matrix. Observation noise
is currently assumed to be Gaussian and there is no handling
of false positive or false negative observations. An additional
concern during estimation is the incorporation of physical
constraints: objects may not interpenetrate one another and
must be supported by other objects (not floating in the air).
In parallel work, we have developed an approach to solving
this problem [16].

The belief state is augmented with a point estimate of the
arm and head configuration of the robot, the object that is
currently being grasped by the robot, if any, and the grasp
used.

The first row of figure 1 shows four states of the UKF
during the course of a planning and execution run. The
robot is drawn in its mean pose. The other objects are drawn
using their distribution relative to the mean robot pose. The
mean pose of the object is drawn in its regular color, and
then a “shadow” consisting of the object drawn at poses in
which each individual dimension is extended to its positive
or negative 95% confidence limit is drawn in gray. In the
leftmost frame, there are three known objects: a table, a
cupboard, and a cup, and there is substantial uncertainty
about their poses. The next frame shows the situation after
the robot has made an observation and detected the table
and cupboard. They still have moderate uncertainty, but it
is dificult to see in this figure; the cup has not yet been
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Fig. 1. The first row shows the distribution of the objects relative to the mean robot pose. The second row shows the unobserved space (as gray boxes).
The third row shows generated robot poses (cyan), view cones (light blue) and target regions (green) for looking operations. The fourth row shows swept
volumes for generated robot motions.

observed. In the third frame, a new object is discovered and
added to the state of the filter; but it occluded the view of the
cup, so it remains significantly uncertain. In the last frame
the cup has been observed and its uncertainty reduced.

B. Observed space

Another important query the robot needs to make of the
belief state is whether a region of space is known to be clear
of obstacles and therefore safe to traverse. To answer such
queries, we represent the parts of the space that the robot
has recently observed with its depth sensors.

Keeping an accurate probabilistic model of known-clear
space is quite difficult: the typical approach in two-
dimensional problems is an occupancy grid [17] (recently
extended to three-dimensional problems [18]). It requires

a detailed decomposition of the space into grid cells and
although there are some attempts to handle odometry error
in the robot [19], this remains challenging. A more principled
strategy would be to maintain the history of robot poses in
the UKF, rather than just the current one, and combine the
depth maps sensed at each of those poses into a global map
of observed space.

We take a much simpler approach, operating under two
assumptions: first, that the observed-space maps we construct
will only be used in the short term; second, that the mech-
anisms for detecting objects and tracking their poses will
provide a high-accuracy estimate of the poses of material
objects. Looking is not too expensive, and objects may be
dynamic, so we expect, for instance, when the robot re-enters
a room, that it will need to reconstruct the observed-space



map. Thus, handling long-distance relative odometry errors is
not crucial. For this reason, we simply attach each depth scan
to the most likely pose estimate for the robot in the Kalman
filter (this is much more accurate than the raw odometry). We
integrate the observed-space information from the sequence
of scans into an oct-tree representation of the space that has
been observed by the robot. This representation of known
space need not be as high-resolution as an occupancy grid,
which must also represent the boundaries between free and
occupied regions of the environment; in our approach, those
boundaries are represented by the continuous object-pose
distributions in the Kalman filter.

In the following sections, we will denote space that has
been observed as Sobs . The second row of figure 1 shows
the observed-space oct-tree at four different points during
execution; space that is filled with dark-grey cells has not yet
been observed by the robot. At initialization time, the robot
knows the contents of the region of space right around it. As
it moves and scans (in this case, using both the scanning laser
on the torso as well as the narrow-field stereo cameras on the
head), it clears out more of the space, until in the final frame,
it has observed most of the observable space in the room.
One very important role that the observed-space map plays is
to constrain the robot motion planner when it is determining
a trajectory for final execution of a motion primitive; any
part of the space that has not yet been observed is marked
as an obstacle and cannot be traversed.

V. BELIEF SET ESTIMATION FOR PLANNING

When planning in belief space, goals must be described
in belief space. Example goals are “With probability greater
than 0.95, the cup is in the cupboard.” or “The probability
that more than 1% of the floor is dirty is less than 0.01.”
These goals describe sets of belief states. The process of
planning with pre-image backchaining computes pre-images
of goals, which are themselves sets of belief states [2]. Our
representational problem is to find a compact yet sufficiently
accurate way of describing goals and their pre-images.

In traditional symbolic planning, fluents are logical asser-
tions used to represent aspects of the state of the external
physical world; conjunctions of fluents are used to describe
sets of world states, to specify goals, and to represent pre-
images. States in a completely symbolic domain can be
represented in complete detail by an assignment of values
to all possible fluents in a domain. Real world states in
robotics problems, however, are highly complex geometric
arrangements of objects and robot configurations which
cannot be completely captured in terms of logical fluents.
However, logical fluents can be used to characterize the
domain at an abstract level for use in the upper levels of
hierarchical planning.

We will take a step further and use fluents to characterize
aspects of the robot’s belief state, for specifying goals and
pre-images. For example, the condition “With probability
greater than 0.95, the cup is in the cupboard,” can be written
using a fluent such as BIn(cup, cupboard , 0 .95 ), and might
serve as a goal for planning. For any fluent, we need to

be able to test whether or not it holds in the current belief
state, and we must be able to compute the pre-image of
a set of belief states described by a conjunction of fluents
under each of the robot’s actions. Thus, our description of
operators will not be in terms of their effect on the state of
the external world but in terms of their effect on the fluents
that characterize the robot’s belief. Our work is informed by
related work in partially observed or probabilistic regression
(back-chaining) planning [20], [21], [22]. In general, it will
be very difficult to characterize the exact pre-image of
an operation in belief space; we will strive to provide an
approximation that supports the construction of reasonable
plans and relies on execution monitoring and replanning to
handle errors due to approximation.

We will represent belief sets as conjunctions of fluents.
Each fluent is a test on an actual belief state: the belief state
is in the belief set if all of the fluents test to true.

A. Fluents for mobile manipulation

We demonstrate the use of logical fluents for describing
belief sets in the mobile manipulation domain. In previ-
ous work, we explored this strategy, but with an ad hoc
representation of pose uncertainty [2]. In this section, we
describe the most important fluents in our formulation, and
their definitions in terms of tests on belief states.

We specify conditions on continuous belief distributions,
by requiring, for instance, that the mean of the distribution
be within some value of the target and the variance be
below some threshold. Generally, we would like to derive
requirements on beliefs from requirements for action in the
physical world. So, in order for a robot to grasp an object, the
estimated position of the object needs to be within a tolerance
equal to the difference between the width of the open hand
and the width of the object (or possibly a different tolerance
depending on the robustness of the grasping routine). The
variance of the robot’s estimate of the object position is not
the best measure of how likely the robot is to succeed: instead
we will use the concept of the probability near mode (PNM)
of the distribution. It measures the amount of probability
mass within some δ of the mode of the distribution. So, the
robot’s prediction of its success in grasping the object would
be the PNM with δ equal to half of the hand width minus
the object width.

The first set of fluents characterize belief about the pose
of an object. We start by asserting that the mode of the
distribution on the pose of object i, which for a Gaussian
corresponds to its mean µi, is within δ of a desired pose φ:

PoseModeNear(i, φ, δ) ≡ ‖µi − φ‖ < δ .

Any appropriate norm can be used here; in our imple-
mentation of this domain, the test is actually computed
componentwise.

To characterize certainty about a pose, we must specify
a frame of reference. Although all poses are expressed in a
global coordinate frame, we are typically interested in the
variance in the estimate of the pose of one object i, φi,
relative to the pose of another object j, φj . For example,



it may frequently be the case that two objects have very
uncertain pose relative to the global coordinate frame, but if
they are observed in the same image, they have very certain
poses relative to one another. We use the fluent

BVRelPose(i, j, ε, δ) ≡ PNM(φi − φj , δ) > 1− ε .

This fluent is intended to indicate belief states in which we
know the “Value” of the relative pose, without specifying
what the value will be.

In order to specify conditions on the configuration of
the robot, including the base pose, as well as the hand (in
this work, we only use one arm of the robot), we use the
fluent ConfModeNear(c, δ, δg). It is true if the mode of the
distribution of the robot’s configuration is within δ of the
configuration c. In this case, it tests to see that both the 4D
Cartesian pose of the base and the 4D Cartesian pose of the
hand are within δ of those specified in c (in the same manner
as for PoseModeNear) and that the actual gripper opening is
withing δg of the gripper opening in c.

The next set of fluents characterize beliefs about the
contents of regions in space. The regions under consideration
are not pre-discretized, but are computed dynamically during
planning as part of the pre-image backchaining process.

The BContents(r) fluent simply asserts that the region r
has been completely observed.

BContents(r) ≡ r ⊆ Sobs .

The BClearX (r, x, ε) fluent asserts that the region r is
believed to be clear with high confidence except for objects
in the set x.

BClearX (r, x, p) ≡ BContents(r) &

¬∃i 6∈ x.Pr(overlaps(i, r)) > p .

where i is an object, r is a region, and p is a probability.
To test this in practice, we construct a union of the volumes
obtained by placing the object at the p-percentile pose in
each direction of each dimension, then test to see if that
p-shadow region overlaps r. A related fluent asserts that a
region r is believed to contain an object i.

BIn(i, r, p) ≡ Pr(contains(r, i)) > p .

It is tested by seeing whether the p-shadow of i relative to
r is contained in r.

B. Operator descriptions

Operator descriptions for planning characterize the belief
pre-image of an action: the conditions that must be true of
a belief state, so that the resulting belief state will satisfy
the result condition of the operator. Because our domain
dynamics are stochastic, even in the belief space, we cannot
guarantee a particular outcome; these operator descriptions
characterize the most likely outcome, and we will re-plan
whenever that outcome fails to occur.

The following operator descriptions constitute part of the
planning domain description that is used to generate the
examples in section VI. They illustrate two important ideas:

(1) That motion and perception actions need to be tightly
integrated in order to achieve goals in complex environments;
and (2) that that the general-purpose planning mechanism of
logical regression-based planning, applied in belief space,
can be used to achieve this integration.

Each operator description has a name, then several com-
ponents. The tag pre indicates a precondition fluent, let
indicates a quantity that is being computed and named,
exists indicates a call to a heuristic generator procedure
that may generate one or more bindings of variables that
have large or infinite domains, and result indicates a
result fluent. These operators are applied backward during
planning: the goal is a conjunction of fluents. A step in the
planning search is to match a fluent in the current goal with
the result fluent of an operator, to remove that result from
the goal, then to add the preconditions to the goal; if the
new goal is not a contradiction, then it becomes a node in
the search tree. Whenever a goal is satisfied in the current
belief state (this happens when all of the fluents in the goal
are true) then a legal plan has been found.

Following is a description of the Pick operator, which
results in the robot believing that it is holding the objct
O, with high probability. One thing to note is that the
preconditions are divided into two sets. The first precondition
is that the pose of the object O be known, with large
tolerances, with respect to the robot. Given that, the planner
considers places from which the object might be picked up:
typically, from the current mode of the distribution of the
pose of that object in the b0, which is the belief state that
holds at planning time, and given that pose, it generates one
or more paths P that the robot might need to move through
in order to pick up the object at that pose. Given these
generated values, we establish another set of preconditions:
that the swept volume of that path be known to be clear,
that the robot not be holding anything, that the robot be
known to be close to the pre-grasp configuration that we
expected it to be in when we computed the path P, and
that the robot’s configuration, relative to the object’s pose,
be known highly accurately. If all of these conditions hold,
then the primitive procedure that picks up the object will
succeed with high probability, resulting in the object being
held. The domain description also contains a similar operator
description for placing the object. The fact that there are
some belief preconditions that must be satisfied before even
computing the rest of the preconditions fits naturally into the
hierarchical planning framework.

Pick(O, ObjPose):
pre: BVRelPose(O, robot, bigEps, planDelta)
exists: ObjPose in {modeObjPose(b0)} U generateParking(O)

P in generatePickPaths(ObjPose)
pre: PoseModeNear(O, Objpose, planDelta)

BClearX(sweptVol(P), [O], clearEps)
BHolding(None, holdingEps)
ConfModeNear(preGrasp(P), graspDelta)
BVRelPose(O, robot, eps, graspDelta)

result: BHolding(O, eps)

In our planning domain, the primitive operation of looking
at an object (by pointing the robot’s head so that the object



will be centered in the stereo camera frame) can be used to
achieve several belief conditions. The operator description
below characterizes how looking can be used to increase
certainty of the pose of object O relative to the robot. We
generate a configuration of the robot, RobotConf, which
includes the configuration of the head, that has the property
that if the robot is in that pose and O is at its mean pose,
then it is possible to view object O.

Additionally, ViewCone is a volume of space between
the robot’s camera and the object that must be free in order
for the view not to be occluded. The first precondition
is interesting: it is that in the most likely state, the view
cone is not known to be occluded (note that because of
the huge epsilon the “shadows” will simply be the objects
at their mean poses). This means that if it is most likely
that something is in the way, we will be required to move
it out. We rely on the replanning mechanisms of HPN: if,
upon looking, it is revealed that there is an object occluding
the view, then a new plan will be made that achieves the
BClearX condition by removing the occluding object(s).

Next, we require that the robot’s configuration be near
the one generated for viewing the object. The requirement is
currently only on the mean of the robot’s pose distribution,
so that it is in roughly the right place.

Finally, in order to have as a likely outcome BVRelPose
with probability 1 - Eps, we determine the pre-image
of that fluent by finding a value PNMRegress(eps,
Delta, obsVar), which is larger than Eps, such that
if an observation is made with variance obsVar and that
starting degree of uncertainty, the desired result will hold
(see section V-C). This operation can chain backwards,
determining a sequence of several Look operations in order
to guarantee the desired resulting confidence.
Look(O):
exists: (ViewConf, ViewCone) in generateViewPose(O)
pre: BClearX(ViewCone, [O], hugeEps)

ConfModeNear(ViewConf, lookDelta)
BVRelPose(O, robot,

PNMRegress(eps, Delta, obsVar), Delta)
result: BVRelPose(O, robot, Eps, Delta)

The next two operators don’t have actual primitives associ-
ated with them: they are essentially definitional, and compute
a set of conditions under which the resulting condition
will be true; applying the operator during planning simply
replaces the target condition with the preconditions at the
appropriate level of abstraction.

In order to achieve the condition that region R is known
to be clear with the exception of a list of objects, we must
first know the contents of R. Then, we require that each of
the objects that is overlapping R in the current belief state be
moved, with high probability, to a part of the domain called
the warehouse; in addition, we establish the requirement
that the region be clear of all other objects, as well. This
condition will cause the region to be cleared out again if
some exogenous process puts objects into it and will prevent
other object placements from being made into that region.
BClearX:

pre: BContents(R)
let: occluders = objectsOverlapping(R, b0) - Exceptions

pre: BClearX(R, Exceptions + occluders, Eps)
for o in occluders: BIn(o, ’warehouse’, placeEps)

result: BClearX(R, Exceptions, Eps):

Finally, to achieve the condition that the contents of a
region R are known, we depend on a recursive decomposition
of the region. If the region can be viewed in one look
operation, then we generate a configuration for the robot
and associated view cone for viewing the region and require
the view cone not to be known to be occluded and require
the robot configuration to be near the generated one; if the
region is too big for a single view, then we split it into
subregions, driven partly by the desire to aggregate space
that has already been viewed into the same subregion and
space that has not been viewed into different subregions.
For each of the subregions, we assert that the contents must
be known.
BContents:
if not viewable(R):

let: subRegions = split(R, b0)
pre: for s in subRegions: BContents(s)

else:
exists: (ViewConf, ViewCone) in generateViewPose(R)
pre: BClearX(ViewCone, [R], hugeEps)

ConfModeNear(ViewConf, lookDelta)

C. Regression of fluents

We defined fluents characterizing aspects of continuous
probability distributions, and we use them in operator de-
scriptions. It is necessary to be able to compute the pre-image
of a fluent in belief space. We will begin with a simple one-
dimensional case, and the describe how it is done for the
robot and object pose fluents described in section V-B.

For a planning goal of BV (X , ε, δ), that is, knowing the
amount of probability mass of random variable X that is
within δ of the mode is greater than 1− ε, we need to know
expressions for the regression of that condition under the
actions and observations in our domain. In the following, we
determine such expressions for the case where the underlying
belief distribution on state variable X is Gaussian and the
dynamics of X are stationary.

For a one-dimensional random variable X ∼ N (µ, σ2),

P (|X − µ| < δ) = Φ

(
δ

σ

)
− Φ

(
− δ
σ

)
= erf

(
δ√
2σ

)
,

where Φ is the Gaussian CDF.
Assume the action is to make an observation, and the

observation o is drawn from a Gaussian distribution with
mean X and variance σ2

o . To guarantee that

BV (X, ε, δ) = P (|X − µ| < δ) > 1− ε

holds after observing o, we must guarantee that BV (X, 1−
PNMObsRegress(1−ε, δ, σ2

o), δ) holds on the previous step,
where PNMObsRegress(θt+1, δ, σ

2
o) is

erf

(√
erf−1(θt+1)2 − δ2

2σ2
o

)
.

Assume that, instead of an observation, the action is
to change the random quantity X by an amount Y , then
generally there is some loss of certainty about the value



of X , characterized by process noise σY , which may be
dependent on the value of Y . To guarantee that BV (X, ε, δ)
holds after changing X , we must guarantee that BV (X, 1−
PNMChangeRegress(1− ε, δ, σ2

Y ), δ) holds on the previous
step, where PNMChangeRegress(ε, δ, σ2

Y ) is

1− erf

 δ erf−1(1− ε)√
δ2 − 2σ2

Y erf−1(1− ε)2

 .

If ε < 1 − erf
(

δ√
2σY

)
, then there is no degree of prior

certainty that will guarantee that, after the action, the BV
condition will be satisfied.

To compute regression conditions for BVRelPose for ex-
ample, we might need to compute the preimage of a set
of distributions on an entire pose. We are using four-
dimensional vectors of ε and δ values, however, so we simply
regress the epsilons individually for each dimension.

D. Generators
Because the symbolic planner is working in what is

essentially an infinite domain (the space of poses, paths,
volumes, etc.) it is impossible to create an a priori dis-
cretization or enumeration of the state space. Instead, we
employ heuristic generator procedures to generate candidate
values of variables, such as paths and poses, that have
infinite domains. We have previously described generators
(suggesters) for grasps and paths [1]; we now describe some
additional considerations for using generators in belief-space
planning.

Because we are planning to gain visual information, one
important question is where to place the robot in order to
get a good view of an object or a region of space that is
of interest to the system. The generator works by sampling
a set of collision-free robot placements and testing them to
see if they satisfy the visibility requirements for the object
or region to be viewed and if they can be reached safely by
the robot.

The third row of figure 1 shows example results of the
view generator. The robot is shown in cyan at the generated
pose. The cone emenating from the eye is the view cone,
which must be unoccluded in order for this pose to result
in a good view of the object. The generator prefers to find
poses with view cones that are unoccluded in the belief state
at the time of planning; however, if necessary, it will plan
to look ’through’ movable objects. In that case, the planning
operators will construct additional steps in the plan to move
the occluding object out of the way before looking. The third
frame shows the pose and view cone for looking at a small
object in the back of the cupboard; the other frames show
view cones for looking at regions of space (shown in green)
that had not yet been entirely observed.

Similarly, when the robot needs to move to a new base
pose or to pick up or place an object, the high-level planner
needs to guarantee that space will be available for that
operation. The actual primitive robot motion operations,
when they are executed, are planned using an RRT on a high-
fidelity model. However, while we are considering multiple

different high-level plans, it is not efficient to plan robot
motions completely accurately. So, the path generator also
uses a visibility-graph planner for an approximate robot, and
it only tries to guarantee a path to a ’home’ region. If, every
time the robot moves, there is guaranteed to be a free path to
the ’home’ region, then it can never block itself in. The fourth
row of figure 1 shows, in green, highly approximate, but
conservative swept volumes of the robot moving through the
generated paths. It is these volumes that must be determined
to be clear before the robot can execute the associated motion
or manipulation actions.

VI. EXAMPLE PLANNING AND EXECUTION

Figure 2 shows a sequence of images depicting the plan-
ning and execution process for an initial goal of placing the
small blue cup at one end of the table.

The robot starts with a known area around it, and the rest
of the room is unknown—as shown in the first oct-tree in
figure 1. To determine the contents of the swept regions of
generated motions (the large green regions in the bottom
row of figure 1), a series of look motions and view cones
are generated (the cyan robot and light blue cones in the
third row of figure 1). When these scans are executed (steps
2–7 in figure 2), new areas of the oct-tree become known as
illustrated in subsequent oct-trees in figure 1.

After the first two scans (steps 2 and 3 in figure 2), the
table has not been observed and so its pose distribution is
diffuse – as shown in the first pose distribution in figure 1.
Also, the big red object has not been seen; note that it is not
part of the initial model. After the table is scanned (in step 4
of figure 2), its pose distribution becomes tight but the blue
cup is still not visible (since it is occluded by the big red
object), so its pose distribution is still diffuse, as shown in
the second pose distribution of figure 1. In the scan of step 4,
the red object is also seen and added to the model (as seen in
the third pose distribution of figure 1). When going to look
at the warehouse region (in step 5 of figure 2), where the red
object is to be moved, the robot serendipitously “sees” the
blue cup and narrows its distribution, as seen in the fourth
pose distribution of of figure 1. If the blue cup had not been
seen at this point, a plan would have been constructed to
move the red object out of the way so as to enable looking
at the blue cup. Steps 6 and 7 of figure 2 are undertaken
to ensure that the space that the robots needs to traverse
while moving the red block and the blue cup are free of
obstructions.

After the required regions are known, the planning and
execution proceeds as usual, resulting in a sequence of
operations to move the red block to the warehouse, pick up
the blue block and take it to its goal location (steps 8-12 of
figure 2).

Conclusions. This paper has provided methods for extend-
ing belief-space planning techniques to mobile manipulation
problems, seamlessly integrating perception and manipula-
tion actions, performing goal-directed perception in service
of manipulation and goal-directed manipulation in service of
perception.



Fig. 2. The key steps in the execution of a plan to place the small blue cup in a target region at one end of the table. The red object is initially not in
the object’s model of the world. Scans with the head-mounted sensor are shown as dark blue points. Scans with the scanning laser are shown in cyan.
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