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Collision-Free State Estimation

Lawson L.S. Wong, Leslie Pack Kaelbling, and Tomás Lozano-Pérez

Abstract— In state estimation, we often want the maximum
likelihood estimate of the current state. For the commonly used
joint multivariate Gaussian distribution over the state space,
this can be efficiently found using a Kalman filter. However,
in complex environments the state space is often highly con-
strained. For example, for objects within a refrigerator, they
cannot interpenetrate each other or the refrigerator walls. The
multivariate Gaussian is unconstrained over the state space
and cannot incorporate these constraints. In particular, the
state estimate returned by the unconstrained distribution may
itself be infeasible. Instead, we solve a related constrained
optimization problem to find a good feasible state estimate.
We illustrate this for estimating collision-free configurations
for objects resting stably on a 2-D surface, and demonstrate its
utility in a real robot perception domain.

I. INTRODUCTION

As robots interact with increasingly complex environ-
ments, the problem of state estimation, or filtering, becomes
much more complex. Consider the problem of a mobile-
manipulation robot, attempting to localize objects inside a
refrigerator before planning to pick one up. The state of the
problem is the positions and orientations of the objects within
the refrigerator; we need a representation of distributions
over states, which can be used for recursive estimation.
Both the mean and the (co)variance of the estimate will be
necessary for selecting motion and sensing actions.

It has been traditional in many localization problems to
use a joint multivariate Gaussian distribution over the state
space: it is compact and mathematically and computationally
convenient, but in our problem it is inappropriate, even as
an approximation, due to inherent physical constraints on the
configuration of multiple objects. The multivariate Gaussian
has infinite support, yet the space of object configurations is
highly constrained. Objects cannot overlap with other objects
in the refrigerator, or with the refrigerator walls.

In this paper, we explore the use of constrained distribu-
tions similar to truncated multivariate Gaussian distributions
for filtering the joint poses of multiple nearby physical ob-
jects. A truncated Gaussian is composed of a non-truncated
Gaussian distribution over the underlying space together with
lower and upper bounds on the support. In the resulting
distribution, points not in the domain have zero probability,
and the Gaussian density is renormalized so that it integrates
to one between the bounds. Our problem is more complicated
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because the allowed domain in general will have a complex
joint constraint structure instead of simple bounds. In the
case of objects in the refrigerator, the constraints are used to
rule out any configuration of the objects that would require
them to interpenetrate each other or the refrigerator walls.

Given this representation, the next question is, how we
can use it for estimation. Intuitively, it seems that it might
be difficult to maintain the state of a filter with such
constraints on the state. Fortunately, it has been shown that
a very simple approach works well: perform recursive state
estimation in the unconstrained space, and then when it is
necessary to generate a maximum a posteriori (MAP) or
mean estimate, solve a constrained optimization problem to
find the maximum of the constrained posterior.

In the following, we briefly discuss related work, illustrate
the problem of estimation in a very simple domain with
generalization to other domains, and then demonstrate its
utility in a real robot perception domain.

A. Related Work

There has been considerable interest in general constrained
state estimation, particularly in the context of Kalman filter-
ing ([1], [2], [3], [4]). These works mainly focus on linear
state equalities and inequalities; nonlinear constraints have
been considered with linearization techniques. A survey of
such techniques is given by Simon [5]. The main result from
many of these works is that constrained state estimation
can be performed reasonably well by filtering as in the
unconstrained case, and projecting the solution back to the
state constraint surface. We are therefore concerned with
how to perform this projection step. In previous work,
constraints in practice have been upper/lower bounds on
various physical state quantities, for example aircraft engine
health [6], odometry [7], road boundaries when tracking a car
[8], acceleration of a moving object [9]. Our current problem
constrains object configurations to be collision-free. To our
knowledge, this type of constraint has not been previously
considered within the context of Kalman filtering.

Particle filters provide a flexible alternative for tracking
complex, non-Gaussian states. However, they suffer from
the curse of dimensionality and become computationally
intractable in high dimensions. To mitigate this, Grundmann
et al. [10] used a particle filter that first updated object
states separately, then evaluated the joint estimates using
a rule set. The rule set encoded physical constraints such
as non-interpenetration and gravity, and was evaluated using
a physics simulator. States that violate physical constraints
become highly unlikely in the posterior and are effectively
eliminated from the particle representation. However, as we



will examine in section V, particle filtering may not produce
good estimates of the maximum likelihood estimate.

The modeling of joint state dependencies has been of
particular interest to the multi-target tracking and data associ-
ation community, where explicitly modeling correlations and
occlusions is useful. Recent methods such as [11] and [12]
typically derive a complex measurement model, then use par-
ticle methods to handle the otherwise intractable filter. Much
of the complexity in these techniques however is devoted to
data association problem, which we are not concerned with
in this work. The approach we explore is different in that
our measurement model is simple (Gaussian), yet complex
dependencies are supported using constraints.

II. MODEL AND NOTATION

We assume that there are M three-dimensional objects
with known shape models resting stably on a 2-D surface.
Each object is indexed by j and is characterized by its state
parameters s j = {x j,y j,θ j}. The collection of all object states
{s j}M

j=1 will be denoted by sss. The state parameters sss are
subject to boundary and collision constraints. We assume a
boundary box constraint: that the entirety of each object (not
just the centroid) is located within the space [xmin,xmax]×
[ymin,ymax]. For collision constraints, two objects i, j are in
collision if the shape models parametrized by their states
si,s j have non-zero volume in their intersection. We assume
that we have sufficient shape-model knowledge to compute
this. The subset of the joint parameter space for which these
constraints are satisfied will be denoted the feasible region,
and its complement the infeasible region. Our prior for sss is
uniform over the feasible region.

We obtain N j observations {s(i)j }
N j
i=1 of s j with zero-mean

Gaussian noise.1 The covariance matrix Σ of the noise is un-
known, but can be estimated by the sample covariance matrix
of the observations, or with an extended or unscented Kalman
filter. For simplicity of exposition, we assume that there are
no inter-object dependencies in the noise model. Specifically,
the covariance matrix Σ is block diagonal, and we denote
the object-specific covariances by {Σ j}M

j=1. Generalization
to arbitrary covariance matrices is straightforward. Note that
unlike our prior, this noise distribution is unconstrained, i.e.,
an observed sss(i) can lie in the infeasible region. This may
occur, for example, if the true sss is close to the constraint
boundary and observations are noisy. The joint distribution
on the observed data, parametrized by the true state sss, is:
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where s′ denotes the transpose of s.
Our objective is to get a MAP estimate ŝss of the parameters.

If our parameter space was unconstrained, this corresponds
to the sample mean of the observations. However, because

1Technically it is more accurate to use a circular distribution for θ , such
as the von Mises distribution. We use a wrapped Gaussian distribution
for simplicity, noting that the quadratic term in the Gaussian exponent
corresponds to the second-order Taylor expansion of the log von Mises
distribution, and hence a Gaussian serves as a good approximation.

our prior places zero density in the infeasible region, the
posterior density in this region will also be zero. When we
compose the Gaussian data likelihood given by Equation 1
with the uniform prior over the feasible region, the posterior
density will therefore have Gaussian shape over the feasible
region, and zero otherwise. This posterior distribution is
similar to a multivariate truncated Gaussian distribution [13],
in the sense that it has Gaussian shape over some constrained
region. However, truncated Gaussians only have upper and
lower bounds on their parameters, whereas in our case the
collision constraints may create ‘holes’ in the feasible region.
In particular, this shows that our feasible region is generally
not a convex set, a point we will return to later.

III. A SIMPLE CASE WITH CYLINDERS

We illustrate the solution method first for the simple case
of objects that are cylinders with known radii {r j}M

j=1. Using
cylinders allows us to ignore the orientation parameter; for
this section we assume that the state vectors are s j = {x j,y j}.
Because cylinders have uniform cross-section, we can restrict
our attention to a 2-D slice of the original problem. The
collision-free constraint reduces to a distance constraint
(where object centers must be at least some distance apart),
namely ‖si− s j‖2 ≥ (ri + r j).

In section II we showed that the posterior is proportional
to the observed data likelihood given by Equation 1 when sss
is in the feasible region, and zero otherwise. We can find the
MAP estimate by maximizing the log-posterior. For sss in the
infeasible region, the log-posterior is undefined, and cannot
be a maximizer. For sss in the feasible region, it is given by:
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M
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]
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where we have rewritten the inner sum in terms of the sample
means s̄ss = {s̄ j}M

j=1 and removed constants in the exponent.
This leads to the following constrained minimization prob-
lem, where we explicitly restrict ŝss to be in the feasible region:

ŝss =argmin
{s j}Mj=1

M

∑
j=1

N j

[
1
2

s j
′
Σ
−1
j s j− s̄ j

′
Σ
−1
j s j

]
(3)

subject to xmin + r j ≤ x j ≤ xmax− r j 1≤ j ≤M

ymin + r j ≤ y j ≤ ymax− r j 1≤ j ≤M

‖si− s j‖2 ≥ (ri + r j) 1≤ i, j ≤M

Without the final constraint, the optimization problem is
a standard quadratic programming (QP) problem. However,
the final constraint, expressed equivalently as a quadratic
by squaring both sides, makes the problem a (non-convex)
quadratically-constrained QP. The non-convexity arises due
to ordering issues; if we consider the 1-D analog of the
parameter constraint, |xi− x j| ≥ r, xi may be either to the
left or right of x j, but the solver will have to check both
cases. This fragmentation occurs for each parameter pair in
the constraints, creating a difficult combinatorial search space
for global optimization procedures.

If we assume that the initial values (state estimates) we
provide to the solver are sufficiently close to the true state,



(a) Infeasible sample mean (b) Optimization solution

Fig. 1. Demonstration of the simple case of circular objects with a synthetic
example. The sample mean in (a) corresponds to a configuration that is
infeasible, where two objects are in collision and one is out of bounds.
The optimization solution is shown in (b), superimposed on the original
infeasible estimate (dashed red).

we may be satisfied with local minima. Because the non-
convexity of the problem is related to the spatial ordering of
the objects, if we assume that the initial estimates satisfy the
correct ordering, then we are likely to find a local minimum
that is in fact the global one. Given reasonable observations,
we expect the sample means s̄ss to obtain the correct ordering,
so using s̄ss as initial values will likely give satisfactory
solutions. Starting from s̄ss, we solve the above problem with
sequential quadratic programming (SQP), which linearizes
the collision constraints, solves the subsequent QP, and
iterates until a feasible local minimum is found.

We use a synthetic example shown in figure 1 to highlight
some characteristics of the optimization problem. In this
example, we set the observation noise to be significantly
greater in the horizontal direction. Specifically, we set each
Σ j to be diagonal, with variance in x j to be 10 times that of
y j. Suppose we collected observations with sample means s̄ss
corresponding to the configuration in the left panel, where
two objects are in collision and one is out of bounds. The
right figure shows the infeasible configuration (dashed red)
and the optimization solution (solid black). The previously
violated constraints are now satisfied and tight. We also
see that the objects were corrected mostly in the horizontal
direction, the direction of greater variance. Recall that our
optimization objective is closely related to the (squared)
Mahalanobis distance between the parameter estimate and
the sample mean, i.e., a squared difference weighted by
the inverse covariance matrix Σ−1. Hence parameters with
larger precisions (smaller variances) will be relatively more
important in the objective, and deviations from the sample
mean will be penalized more. The relative sizes of variances
therefore naturally trade off correction costs. In our current
example, the greater horizontal variance led to a correction
that mostly shifted in the horizontal direction.

IV. GENERAL COLLISION-FREE STATE ESTIMATION

Returning to the original problem (s j = {x j,y j,θ j}), we
can formulate a similar optimization problem:

ŝss =argmin
{s j}Mj=1

M

∑
j=1

N j
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2

s j
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Σ
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j s j− s̄ j

′
Σ
−1
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]
(4)

subject to shape( j) ∈ [xmin,xmax]× [ymin,ymax],1≤ j ≤M

collision(i, j) == FALSE, 1≤ i, j ≤M

For general object shapes, the constraints become difficult
to express. For example, if all shapes are polygons given by a
finite list of vertices, checking the boundary constraint for an
object requires computing all its vertices given its state, and
checking that all of them lie within the given range. Collision
constraints will generally require geometric collision checks
to verify. When assuming we have known shape models,
we therefore mean that given a potential pose for an object,
we can efficiently compute whether it satisfies the boundary
constraints (e.g., by computing its vertices). We also assume
that these shape models can be given to a black-box collision
checker which checks the collision constraints.

In practice, the above formulation is difficult for iterative
optimization techniques such as SQP. Such techniques itera-
tively perform a quadratic approximation to the Lagrangian,
which in turn requires first- and second-derivative informa-
tion from the constraints. Derivatives inform algorithms of
the direction to optimize along. Although such information
is not always analytically available, finite difference methods
can approximate the derivatives. However, for the binary
constraint functions given above, there is no useful gradient
information, because local neighborhoods are either flat or
step functions. To fix this, we transform boundary constraints
to the difference between each (x j,y j) and each boundary
line (assuming the boundary is a convex region). These
linear differences reflect how far each variable is from its
constraint boundary. We approximate the degree of constraint
violation with the volume of collision (intersection) between
two objects when they collide, and zero otherwise. The SQP
solver can use this to approximate changes in constraint
violation and navigate to feasible solution regions.

SQP is an iterative optimization algorithm that has to ex-
plicitly check the constraints and approximate their gradient
at some given candidate solution sss′ during each iteration.
Collision checking is generally slower compared to the other
components of the optimization, and checking all

(M
2

)
object

pairs can be undesirable, especially if M is large. We use
a simple heuristic that ignores all object pairs that are
guaranteed to be collision-free at the current sss′. For example,
if we can enclose objects i and j with balls of radii ri and r j
respectively, and the distance between their centers exceeds
(ri + r j), then clearly they do not collide. Checking this is
more efficient than calling an (external) collision checker.
Under the mild assumption that for each object, all but a
small constant number of objects are sufficiently far away to
be ignored by this heuristic, the number of collision checks
needed grows linearly in M instead of quadratically, and em-
pirically provides significant computational improvements.

V. RESULTS

We demonstrate this method in robot perception prob-
lems where scenes may be cluttered and objects may be
placed very close together, as one may expect to find in
a common household environment. Using several simple
objects, we created scenes such as those in figure 3 where
the objects are near each other (gaps ≈ 1cm). The objects
have uniform cross-section so the collision-checking can



Fig. 2. In our experimental setup, objects are placed near each other
on a table, and the PR2 estimated their poses from multiple viewpoints.
When objects are consistently occluded in viewpoints, such as in the above
case where the two objects cannot be recognized together from the same
viewpoint, infeasible joint state estimates may arise.

be done efficiently in 2-D, and are modeled with simple
polygonal shapes. We used a Willow Garage PR2 robot
platform to perform perception tasks, and for pose estimation
we used the method in [14] (using stereo camera data only).
To solve the optimization problem (4), the SQP solver in
the MATLAB Optimization Toolbox was used. Collision
checking between object pairs was performed by computing
the cross-sectional area of overlap.

There are many situations in which robots do not simply
statically perceive scenes; they may receive observations
from different viewpoints. For example, when working in a
home, robots will likely have to move around both during and
between tasks. To simulate some of these effects, we moved
the PR2 around the table on which the objects were placed
and collected observations from different angles, as shown in
figure 2. At each new viewpoint, we adjusted the PR2 cam-
eras such that the objects were always near the middle of the
perceived point clouds to maximize detection performance.
The predicted object poses were then transformed to a fixed
reference frame in which we performed state estimation.

Two sources of error are predominant within our experi-
mental setup. On each observation, we estimate the object
poses from the point cloud. Pose estimation, in particular the
orientation, is difficult for many non-trivial objects. Errors in-
troduced in this process are inherited in our setup. As shown
in Table I, the variance in orientation is sometimes large and
may even fluctuate depending on the scene (compare the
two LBlock variances). A variance ≈ 0.3 corresponds to a θ

standard deviation of about half a radian, or 30◦. Moving
the PR2 around can be beneficial for perception because
objects may be occluded at some viewpoints or may be
difficult to perceive in some orientations. On the other hand,
moving around can introduce odometry errors, which have
magnitudes at least matching the inter-object gaps. Because
of this, odometry errors can have adverse effects on our task,
especially if certain objects are consistently occluded or too
far away (see figure 2). We will see both types of errors
come into play in our experiments.

Under the unconstrained Gaussian observation model, the
sample mean of the parameters will always be the mode
of the distribution and hence the maximum likelihood esti-
mate. In the second column of figure 3, we show scenarios
where this naı̈ve estimate results in an infeasible object
configuration. We provide the sample mean and covariance
matrix to our optimization procedure, which solves for a
feasible collision-free configuration that (locally) minimizes

TABLE I
PARAMETER CORRECTIONS AND VARIANCES FOR FIGURE 3 SCENARIOS

Object Parameter Correction Variance
x (m) -0.0043 0.0024

RectCup y (m) 0.0002 0.0019
θ (rad) 0.1684 1.2119
x (m) 0.0016 0.0011

LBlock y (m) -0.0003 0.0027
θ (rad) 0.0010 0.0067
x (m) -0.0014 0.0000

Mug y (m) 0.0000 0.0000
θ (rad) 0.0000 0.0006
x (m) 0.0289 0.0001

RectCup y (m) 0.0016 0.0001
θ (rad) -0.0001 0.0309
x (m) -0.0022 0.0004

Rectangle y (m) 0.0095 0.0022
θ (rad) 0.0621 0.3187
x (m) -0.0015 0.0028

LBlock y (m) 0.0018 0.0042
θ (rad) -0.0924 0.4233
x (m) 0.0025 0.0004

Mug y (m) -0.0072 0.0015
θ (rad) -0.0004 0.0233

the quadratic objective from the previous section, shown in
the third column of figure 3.

From the superimposed estimates in the fourth column
of the figure, we can identify some qualitative features of
each scenario. For example, in the first row, we see that the
L-shaped LBlock stays close to its sample mean, whereas
the RectCup is rotated away with a small translation. In
the second row, we might have expected the same thing to
happen for the Mug; however, instead of rotating away like
the RectCup, a translation was performed instead. Looking
at the variances of θ in Table I for these two objects explains
this qualitative difference. The θ parameter for RectCup has
a very high variance compared to other parameters in its
estimation problem, hence its rotational correction is favored.
RectCup was a difficult object for our pose estimator. In
contrast, Mug was very easy to estimate with its larger handle
and unique shape, hence has a significantly lower θ variance.
In light of this, translation was ultimately preferred.

Errors from odometry can also lead to infeasible estimates.
For the scenario shown in figure 2 and the second row of
figure 3, we limited the robot to two viewpoints, aligned
along the axis between the two objects, so that one object
was always occluded by the other. For example, when viewed
from the left of the image, only the circular Mug was visible.
At each viewpoint, the pose estimate was relatively accurate,
as shown in Table I. However, because each viewpoint
only gave an estimate for one object, the odometry error
incurred when moving between the two viewpoints could
not be removed based on the observations. The error in the
objects’ position is apparent for this scenario. Although our
solution did not recover the original configuration, it is at
least feasible and closer to the actual state.

We also compared our optimization approach to a baseline
method. Since we assumed a joint Gaussian observation
model, we can in principle perform rejection sampling on
the constrained parameter space, which has the same Gaus-
sian shape in the feasible regions. Specifically, we estimate



(a) Scene from above (b) Infeasible sample mean (c) Optimization solution (d) Superimposed image

Fig. 3. Scenarios where parameter sample means from pose estimates corresponded to infeasible configurations, shown in column (b). The optimization
solution estimates in column (c) are feasible, and previously violated constraints are now satisfied tightly. The superimposed images in column (d) illustrate
that large corrections are usually applied in parameters with high variance, as given in Table I. For reference, the true object configurations are shown in
column (a). Note that this view is not available to the robot; in practice, the PR2 receives angled, occluded views such as those in figure 2. Such viewpoints
make it difficult to get a joint state estimate of all objects. Instead, individual object estimates from multiple viewpoints must be combined with odometry
information to obtain a joint estimate. This process introduces additional error and uncertainty, and potentially leads to infeasible joint state estimates.

(a) Optimization solution (b) Sampled baseline estimates (c) (d)

Fig. 4. Random samples from the baseline method described in section V for two scenarios from figure 3. Column (a) is the optimization solution (solid
black), superimposed on the sample mean configuration (dashed red). Columns (b)-(d) show baseline estimates for each scenario from three independent
trials. Each estimate had the lowest objective value among the ≈ 500 random samples generated for each trial.



the observation model parameters with the sample mean
and covariance as before, but instead of performing local
optimization, we simply generate samples from this joint
Gaussian distribution and accept them if they are feasible.
This is similar to what a naı̈ve particle filter would do, where
the feasibility check performs a ‘hard’ version of the physics
simulation-based rule set in [10]. We then use the sample that
has the greatest likelihood as the revised state estimate (i.e.,
it performs the best out of all samples on the optimization
problem). Given sufficient samples, sampling can in principle
recover the estimate returned by optimization. Moreover,
because sampling is not affected by the non-convexity of
the feasible parameter space, it may even return a superior
estimate (although this did not happen in our trials). To
provide a fair comparison, we allowed the sampling scheme
the same amount of computation time the optimization
procedure took (this includes the constraint checking for
the rejection step, since this is the most time-consuming).
In practice, this allowed about 500 samples, of which the
acceptance ratio was usually between 1

3 and 1
2 .

Figure 4 show the best samples from three independent
trials of this baseline scheme on two of the scenarios
from figure 3. As expected, they are collision-free since
this was a requirement for acceptance, and the resulting
configurations are generally close to the original infeasible
estimates. However, there are two important features to note.
First, the baseline estimates have high variance and are not
consistent across multiple trials, whereas the optimization
approach gives a unique local minimum from the same
initial estimate. Second, the samples do not satisfy violated
constraints tightly; we see that the objects are not touching,
unlike the optimization solution. Although this appears fine
in the two-object scenario, in the three-object one, where
the LBlock is tightly squeezed between two other objects,
sampling has difficulty achieving this property. The LBlock
escapes to the top in the first two estimates and slips below
in the third. In contrast, the optimization solution satisfies
active constraints tightly and fits the LBlock in the gap.
Because the baseline scheme is similar to particle filtering as
mentioned above, particle filters will likely encounter similar
issues when finding the maximum likelihood state estimate.

VI. DISCUSSION AND FUTURE WORK

So far we have only considered objects that have uniform
cross-section, which allowed us to reduce the collision-
checking problem to a 2-D one, where the collision volume is
the area of overlap between two shapes. For 3-D shapes, the
generalization is straightforward, where we use 3-D volume
instead of area. For objects with complicated shape models
this may be difficult to compute. One compromise is to
compute the 2-D area of overlap between cross-sections
of objects at various discretized heights. Their sum, for
example, can then be used as an approximation to volume.

Despite the straightforward generalization of collision
volume to 3-D objects, there may be better alternatives to
smoothly approximate the collision constraint. We argued
that smooth approximations are necessary because SQP

needs to estimate derivatives of the constraints to navigate to
the feasible region. Collision volume is positive and smooth
when objects collide, but is zero and flat for objects not in
collision. Although informative derivatives are more essential
for the infeasible region (to escape and avoid such spaces),
empirically we found solution methods to be more efficient
when feasible region derivatives are informative as well. A
possible substitute for the collision volume is the collision
depth (when in collision), which smoothly transitions to the
closest distance between two objects (when not in collision).

VII. CONCLUSIONS

We have developed a constrained optimization approach
to solve the state estimation problem for object configura-
tions with boundary and collision constraints. Optimization
allows us to find good feasible maximum a posteriori state
estimates in a principled fashion. We demonstrated the utility
of this approach on real robot perception scenarios, where
object configurations corresponding to the sample mean of
the observed state were infeasible. Using our approach we
recovered close feasible state estimates that were superior to
a baseline sampling scheme.

The method developed in this paper can be used in a
broad variety of semantic mapping and object manipulation
tasks, providing an efficient and effective way to incorporate
collision constraints into a recursive state estimator, obtaining
optimal or near-optimal solutions.
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