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Optimization in the Now:
Dynamic Peephole Optimization for Hierarchical Planning

Dylan Hadfield-Menell, Leslie Pack Kaelbling and Tomás Lozano-Pérez∗

Abstract— For robots to effectively interact with the real
world, they will need to perform complex tasks over long time
horizons. This is a daunting challenge, but recent advances
using hierarchical planning [1] have been able to provide
leverage on this problem. Unfortunately, this approach makes
no effort to account for the execution cost of an abstract
plan and often arrives at poor quality plans. This paper
outlines a method for dynamically improving a hierarchical
plan during execution. We frame the underlying question as
one of evaluating the resource needs of an abstract operator
and propose a general way to approach estimating them. We ran
experiments in challenging domains and observed up to 30%
reduction in execution cost when compared with a standard
hierarchical planner.

I. INTRODUCTION

We want to design robots that can perform complex tasks
in real-world domains, such as households and hospitals,
over increasingly long time horizons. This involves solving
large instances of problems that are, in general, PSPACE-
complete. Inspired by human ability to cope with this seem-
ingly intractable problem, we believe that there is some
underlying structure or simplicity in these problems that
provides a mechanism for reducing complexity.

One way to reduce complexity in long-horizon problems
is to use temporal hierarchy to decompose the problem
into multiple shorter-horizon problems. A method that has
been shown to be effective in robotic mobile-manipulation
problems is the Hierarchical Planning in the Now (HPN)
architecture [1]. HPN provides an interleaved planning and
execution strategy that can be shown to be correct and com-
plete for a large class of hierarchical system specifications.

HPN makes no claims about the quality of the behavior
it produces, even when an optimizing algorithm (e.g. A*)
is used to solve the individual subproblems. The resulting
behavior can be short-sighted, with the robot achieving one
subgoal, only to have to undo it, fix something else, and then
re-achieve the original sub-goal.

The fundamental difficulty is that, at the upper levels of
the hierarchical planning process, the model does not specify
the cost of taking actions. Specifying the cost of abstract
operators can be very difficult: it may be highly variable
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depending on the situation in which the operator is executed,
and determining the cost is generally as difficult as finding
a fully grounded plan.

For example, consider delivering a package to some des-
tination in a distributed robotic transportation system. We
can consider operations of forklifts for loading, unloading,
and arranging packages within a truck or airplane, as well
as operations that drive and fly the transportation vehicles.
The cost of delivering that package depends on the initial
locations of trucks and planes, the arrangements of other
packages currently in their cargo holds, and the package of
interest’s current location. It also depends on which abstract
operations are sequenced before it. As a result, two plans
that look similar at the abstract level (i.e., the execution order
for two abstract operations is swapped) may result in large
differences in the quality of the behavior that the system can
generate.

We propose a strategy for tackling the problem of opti-
mization in hierarchical robotic planning that addresses plan
quality by dynamically reordering and grouping subgoals in
an abstract plan. We re-frame the cost estimation problem
as one in which, given two subgoals G1 and G2, we must
estimate which of the following strategies will be most
efficient: planning for and executing G1 first, planning for
and executing G2 first, or planning for them jointly and
interleaving their execution. Given the ability to answer that
query, we will be able to perform “peephole optimization”
of the plan at execution time, taking advantage of immediate
knowledge of the current state of the world to select the best
next action to take.

In addition, we propose general principles, based on con-
cepts of shared and constrained resource use, for the design
of heuristics to answer the ordering-preference queries. The
overall utility of this approach is demonstrated in very large
instances of a multi-robot transportation problem that cannot
be solved through classical non-hierarchical methods. We
show up to 30% improvement in plan quality over HPN.
Furthermore, on problems with little room for optimization,
we find that our approach results in only a negligible increase
in planning time.

II. BACKGROUND

We use a relatively standard symbolic representation for
planning operators, derived from STRIPS [2] but embedded
in Python to allow more freedom in specifying preconditions
and effects. In the domains considered in this paper, the
geometric aspects of loading trucks are discretized; it would



be possible to use real continuous representations of object
and robot poses instead [1].

A. Domain representation

A domain is characterized by:
• Entities: names of individual objects in the domain; for

example, trucks, packages, planes, forklifts, etc.
• Fluents: logical relationships between entities in the

world that can change over time; for example
In(package1 , truck3 ).

• Initial state: a conjunction of logical fluents known to
be true initially.

• Goal: a conjunction of logical fluents specifying a set of
desired world states.

• Operators: actions that are parameterized by objects
(e.g. PickUp(package2 )). Each operator, op, is char-
acterized by: preconditions, pre(op), a conjunction of
fluents that describes when this operator is applicable;
result, res(op, s), a conjunction of fluents whose value
changes as a result of applying op in state s; and cost, a
real valued cost of applying op.

A planning problem, Π, is a tuple; Π = 〈F,O, I,G〉 where
F is a set of fluents, O is set a operators, I is an initial state,
and G is a goal. A solution to Π is a sequence of operators
p = {op1, op2, . . . , opn} such that I ∈ pre(op1), res(opi) ∈
pre(opi+1), and res(opn) ∈ G. Each result function has
an implicit argument that is the state that resulted from the
application of the previous operator. To discuss the quality
of a solution we say that cost(p) =

∑n
i=1 cost(opi). In

realistic domains, fully specifying a truth value for each
possible fluent is usually difficult and, as in the case of
continuous domains, can even be impossible. We address
this problem by performing backward search from the goal
set and computing preimages of subgoals under operators
until we reach a subgoal that contains the initial state. This
method of chaining preimages is known as goal regression.
This approach allows us to avoid representing the initial state
completely in the language of fluents and instead provide a
function for each fluent that allows its truth to be tested in
the initial state.

B. Abstraction

An abstraction method is a function, f : 〈F,O, I,G〉 →
〈F ′, O′, I ′, G′〉 that maps a planning problem into a simpli-
fied version that is easier to solve. In this work, we will
focus on temporal abstractions, where the goal is to map
problems into abstract versions that have shorter solutions.
The central concept is to use a solution to the abstract
problem to help find a solution to the original, concrete,
problem. This process of converting an abstract plan into a
concrete one is known as refinement. An abstraction method
can be applied recursively in order to define a hierarchy of
abstraction spaces [3].

There are many strategies for constructing abstractions.
We demonstrate optimization methods in the context of
temporal abstraction hierarchies of the type used in HPN,

but the techniques are general and could be applied to other
types of hierarchies.

We construct a hierarchy of temporal abstractions by
assigning a criticality in the form of an integer to each
precondition of an operator, op. If the largest criticality
in op is n, then we have n abstract operators, denoted
abs(op, i), 0 ≤ i < n. The preconditions of abs(op, i) are the
preconditions of op which have criticality k > i. This defines
a hierarchy of abstractions for a particular operator, as more
abstract versions ignore more preconditions. An abstraction
level for the whole space is a mapping α : O → {1, . . . , n}
which specifies the abstraction level for each operator. Note
that this depends on the particular way an operator’s variables
are bound to entities. Place(package1, truck1) could map to
a different abstraction level than Place(package2, truck2).

C. Hierarchical planning in the now

Most hierarchical planning methods construct an entire
plan at the concrete level, prior to execution, using the
hierarchy to control the search process. The HPN method,
in contrast, performs an online interleaving of planning and
execution. This allows it to be robust to uncertainty: it avoids
planning for subgoals in the far future at a fine level of
detail because it is likely that those details may change. In
addition, it can choose to delay detailed planning because
the information necessary to support that planning has not
yet been acquired.

Algorithm 1 The HPN planning and execution algorithm
1: procedure HPN(s, γ, α, world)
2: p =Plan(s, γ, α)
3: for (opi, gi) in p do
4: if IsConcrete(opi) then
5: world.execute(opi, s)
6: else
7: HPN(s, gi, NextLevel(α, opi), world)
8: end if
9: end for

10: end procedure

The HPN algorithm is shown in Algorithm 1. It takes as
inputs the current state of the environment, s; the goal to be
achieved, γ; the current abstraction level, α; and the world,
which is generally an interface to a real or simulated robotic
actuation and perception system. Initially α is set to the most
abstract version of every operator.

HPN starts by calling the regression-based Plan procedure,
which returns a plan at the specified level of abstraction,

p = ((−, g0), (op1, g1), ..., (opn, gn)) ,

where the opi are operator instances, gn = γ, gi is the
preimage of gi+1 under opi, and s ∈ g0. The preimages,
gi, will serve as the goals for the planning problems at the
next level down in the hierarchy.

Then, HPN executes the plan steps, starting with action
op1, side-effecting s so that the resulting state will be



available when control is returned to the calling instance
of HPN. If an action is a primitive, then it is executed
in the world, which causes s to be changed; if not, then
HPN is called recursively, with a more concrete abstraction
level for that step. The procedure NextLevel takes a level of
abstraction α and an operator op, and returns a new level of
abstraction β that is more concrete than α.

The strategy of committing to the plan at the abstract level
and beginning to execute it is potentially dangerous. If it is
not, in fact, possible to make a plan for a subgoal at a more
concrete level of the hierarchy, then the entire process will
fail. In order to be complete, a general hierarchical planning
algorithm must be capable of backtracking across abstraction
levels if planning fails on a subgoal. An alternative is
to require hierarchical structures that have the downward
refinement property (DRP), which requires that any abstract
plan that reaches a goal has a valid refinement that reaches
that goal. Bacchus and Yang [4] describe several conditions
under which this assumption holds.

III. OPTIMIZING HIERARCHICAL PLANNING

A fundamental difficulty of hierarchical planning with
downward refinement is that the costs of abstract actions are
not available when planning at the high level, so that even if
completeness is guaranteed, the resulting trajectories through
the space can be very inefficient. Consider a robot that must
cause several objects to be placed in a room and cause the
door to that room to be closed. It is entirely possible to make
a plan at the abstract level that closes the door first and then
places the objects; or one that places several small objects
first, in the only space that a particularly large object can fit.
For hierarchies that possess the DRP, HPN will ultimately
achieve the goal, but at the cost of achieving, violating, and
re-achieving subgoals unnecessarily.

If a context-based cost of each abstract action were
available at planning time, these problems could be avoided.
Unfortunately, that is hard to achieve without, essentially,
solving all possible subproblems. Problems of this kind could
possibly be addressed on a case-by-case basis by rewriting
or reordering the preconditions in the operator descriptions.
However, there is a fundamental contradiction: abstract plan-
ning is efficient because it ignores details; adding those
details to make the resulting plans shorter will increase
planning time and negate the advantages of the hierarchy.

A. Optimization in the now

We propose a strategy that retains the efficiency of ag-
gressive hierarchical planning and execution while offering
the opportunity to arrange subgoals in an order that will
lead to shorter plans without significantly increasing planning
time. In many cases, abstract operators are independent of
one another: many orderings of them are equally valid with
respect to the abstract preconditions and there is no clear
reason to prefer one over another. To take advantage of
this, we propose to use information in the current state
of the world at plan execution time to perform peephole
optimization. We heuristically select the next subgoal to

achieve when there are several possible next abstract plan
steps that are components of valid plans. This process can
take advantage of more complex properties of the domain and
do more expensive computation because it is not a bottleneck
in the search for an abstract solution.

In the process of refining and executing an abstract plan,
each subgoal is achieved sequentially, which means that
the system is unable to take advantage of parallelism that
might exist in subtasks. For example, consider the previous
situation but with a robot that is able to carry multiple
objects simultaneously. Serializing the subtasks of putting
away each object might result in the robot making two long
trips when it could have made just one. An abstract planner
does not generally have enough information to determine
whether groups of subtasks should be addressed jointly at a
lower level of abstraction. Deciding this in a post-processing
step, however, fits naturally into our framework. Thus, in
addition to considering a reordering of an abstract plan, our
refinement process considers achieving some of the subgoals
jointly. This increases the computational difficulty of the
subsequent planning problem in the hope that it will generate
a better quality plan.

Algorithm 2 shows an extension of HPN, called RCHPN,
that dynamically considers re-ordering and re-grouping plan
steps. Before describing the crucial SelectGap and Select-
ParallelOps procedures, we describe the ordering preference
information they will rely on.

Algorithm 2 Reordering and combining hierarchical plan-
ning and execution algorithm

procedure RCHPN(s, γ, α, world)
2: p =Plan(s, γ, α)

while p 6= ∅ do
4: (op, g) = SelectGap(s, p, α)

if IsConcrete(op) then
6: world.execute(op, s)

else
8: sg = SelectParallelOps(s, op, g, p, α)

cur index = p.index(g)
10: sg index = p.index(sg)

for (op′, g′) in p[cur index : sg index] do
12: α = NextLevel(α, op′)

end for
14: RCHPN(s, sg, NextLevel(α, op), world)

end if
16: end while

end procedure

B. Context-sensitive ordering

RCHPN depends on the specification of a context-sensitive
comparison function, arrange(g1, g2, s), which takes as ar-
guments two subgoals and an initial state and returns 0 if
g1 should be serialized before g2, returns 1 if g2 should be
serialized before g1, and returns 2 if they should be combined
into a single subgoal and solved jointly. It might seem that
in order to be effective, arrange will have to perform some



sort of cost estimation for an abstract task; so, why do we
believe that it will be easier to specify than a traditional cost
function?
• Evaluation takes place “in the now”: the algorithm

knows the current state and does not need to consider
the large number of possible ways in which the precon-
ditions for an operator could have been realized.

• The task is simply to determine an ordering, not to
estimate the actual costs, which would generally be
much more difficult to do accurately.

• We only have to compute ordering preferences for the
operators that actually appear in the plan, rather than
computing a cost for every operator that is considered
during the search.

Of course, the risk remains that the particular plan chosen
has no room for improvement, but there is an alternative plan
with different subgoals that is much better. We know of no
way to solve large instances of such problems effectively.

Assuming the existence of the arrange function, we now
describe the peephole optimizations in RCHPN.

SelectGap, shown in Algorithm 3, takes a greedy approach
to plan reordering. To select the plan step to execute, it finds
the preimage gi with the highest index i such that s ∈ gi.
This is the plan step that is closest to the end of the plan such
that, were we to begin plan execution from that step, a state
satisfying the goal condition would hold. This strategy is
similar to idea of executing the “highest true kernel” from the
STRIPS system [2]. SelectGap iterates through the rest of the
plan calling arrange(gi, gj , s) for j ranging from i+1 to n. If
it returns 1, then we attempt to move gj to be directly before
gi. If the resulting plan is valid, we repeat this process with
the gj as the new “first” subgoal. This process terminates
when we have checked all the way through the plan without
moving any operators. As long as arrange does not have
cycles, the process will terminate. In the worst case, we have
to do O(n2) checks but this is negligible when compared to
the complexity of planning.

SelectParallelOps, shown in Algorithm 4, proceeds in a
similar fashion. It keeps track of a subgoal, sg, which is
initialized to be the result of SelectGap. It iterates through
the rest of the plan, calling arrange(sg, gi, s) for i ranging
from the index of sg to n. If arrange returns 2, then we
attempt to move gi to be directly after sg in the plan. If the
result is a valid plan we combine the gi with sg and set sg to
be the result. To ensure that planning problems considered
at the next level are not so large that we cannot solve them,
we terminate this process when we have checked through all
subgoals or reach a complexity limit on sg. This represents
the trade-off between the complexity of planning and quality
of the solutions we can hope to achieve.

C. Ordering-preference heuristics

Now we consider some principles that can guide the
specification of the arrange function for particular domains,
based on a concept of resource use. We can frame the
problem in terms of shared resource consumption. Recall
the robot that must put several objects in a room and close

Algorithm 3 Reordering an Abstract Plan
procedure SELECTGAP(s, p, α)

2: next subgoal =HighestApplicableSubgoal(p, s)
next index = p.index(next subgoal)

4: highest checked = next index
while highest checked < len(p) do

6: for (op, sg) in p[next index :] do
if arrange(next subgoal, sg, s) = 1 then

8: new p = p.move((op, sg), next index)
if IsValid(new p) then

10: p = new p
next subgoal = sg

12: highest checked = next index
break

14: end if
end if

16: highest checked = p.index(sg)
end for

18: end while
end procedure return sg

Algorithm 4 Combining Subgoals of an Abstract Plan
procedure SELECTPARALLELOPS(s, op, sg, p, α)

2: next sg = sg
next index = p.index(next sg) + 1

4: for (op, sg) in p[next index :] do
if arrange(next sg, sg, s) = 2 then

6: new p = p.move((op, sg), next index)
if IsValid(new p) then

8: p = new p
next sg = CombineGoals(next sg, sg)

10: next index = next index+ 1
if MaxComplexity(next sg) then

12: return next sg
end if

14: end if
end if

16: end for
end procedure return next sg

the door. In this case, the resource being used is free space.
Both the act of placing an object inside the room and the
act of closing the door consume the space in the doorway.
Our difficulty arises because closing the door does not free
up the resource after it is accomplished, but rather consumes
the resource in perpetuity. The combination of tasks can be
viewed in a similar light: moving each object needs to use
the robot. In this case, the resource in question is shareable
so combining these subgoals allows us to take advantage of
parallel structure in the sub-plans.

Generalizing from these examples, we can divide the
resource use associated with achieving a subgoal into three
categories: shareable, contained, and continual. A resource
is shareable with respect to a goal if, while it is being used
to accomplish that goal, it does not become unavailable. A



Fig. 1. Visualization of the Marsupial Logistics Domain. Circles are
locations and pink circles are airports. The additional windows represent
the loading and storage areas of the vehicles. The red squares represent a
marsupial robot which takes care of storing packages for transit. In order
for vehicles to move, all packages, as well as the loader, must be on one of
the beige squares. Package 2 is about to be unloaded at airport-1 so it can
be flown to a destination.

resource is contained with respect to a goal if it becomes
unavailable during the course of achieving that goal but
becomes available again after the goal has been achieved.
Finally, a resource is continual with respect to a goal if, so
long as that goal is true, that resource will be unavailable.
This now reduces arrange to two steps: computing an esti-
mate of the resources consumed by achieving each subgoal
and classifying the overlapping resource use as shareable,
contained, or continual. If two subgoals need the same
resource and it is shareable, then they should be combined
with the hope that this shared resource will result in parallel
structure of plans and the opportunity for cost savings. If the
common resource is continual for one goal and contained for
the other, the one with the contained use should be ordered
first. If tasks have contained use of all shared resources, then
any serialization is acceptable. Note that we should never
arrive at a situation where two subgoals require continual
use of the same resource as this implies that there is no
refinement of this plan and violates the DRP.

There are several strategies for estimating the resources
consumed by an operator at abstraction level i. The first
is simply to use the resources required by the associated
concrete operator. We will refer to this as the 0th order
estimate. In many situations this may be enough. However, if
we wish to make a more informed estimate, we can include
the resources required by the hidden preconditions. We can
compute a preimage of the preconditions for level i − 1
and include 0th order estimates of resources consumed by
operators used for that computation. This can be thought
of as a 1st order estimate. We can extend this by going

further back at level i− 1 and by considering preconditions
at level i − 2. Thus, a 2nd order estimate would use a 0th

order estimate for a preimage of preconditions at level i− 2
and a 1st and 0th order estimate for operators in the first
and second preimages, respectively, of preconditions at level
i− 1. Note that in calculating these estimates we are doing
a limited search for a plan. Trying to compute increasingly
complex preimages eventually boils down to solving the full
planning problem and will negate any computational savings
from hierarchy. We found that 2nd order estimates were
sufficient for our purposes.

IV. RELATED WORK

The notion of dropping preconditions to build hierarchies
was first introduced by Sacerdoti [3]. He proposed that
certain preconditions of operators could be considered details
and deferred to a later point in planning, defining a hierarchy
of abstraction spaces. Knoblock [5] provides a more formal
definition of a refinement and a system for automatically
generating hierarchies. His definition of refinement explicitly
states that ordering relations between operators must be pre-
served in the refinement of a plan, but he does not consider
the problem of reordering an abstract plan. Bacchus and
Yang [4] analyzed the effectiveness of hierarchical planning
with respect to the probability that abstract plans can be
refined. They find that the downward refinement property
(DRP) is a key factor in speedups from hierarchy.

Nau et al. [6] use a hierarchical task network (HTN) to
hierarchically solve planning problems. In their setting, the
goals are tasks, which have preconditions and effects, but
also specify the possible refinements. The components of
these refinements can themselves be abstract tasks. Nau et
al. attempt to deal with optimality in several ways. The
most prevalent of these does a branch and bound search
through the space of task refinements. However, the costs
used must be fully specified beforehand, which requires a
large amount of work on the part of the system designer.
They attempt to interleave abstract tasks, but do so in a blind,
non-deterministic way.

Marthi et al. [7] suggest a view of abstract actions centered
around upper and lower bounds on reachable sets of states.
They use angelic nondeterminism in addition to upper and
lower bounds on costs to find optimal plans. They do this
both in offline and realtime settings, providing hierarchical
versions of A* and LRTA*. These searches amount to
heuristic search through the possible refinements of a high
level action. Their most effective algorithm, Hierarchical
Satisficing Search, is similar to the approach taken in HPN
in that it commits to the best high level action which
can provably reach the goal within a cost bound. This is
beneficial in that execution will only begin if there is a proof
that the task can be accomplished within the bound. However,
if the abstract level is ambiguous between several plans (i.e.
different orderings of the same HLAs), then they may miss
an opportunity to reduce cost.

Factored planning generalizes hierarchical planning to
decompose a planning problem into several factors. Factors



Plan 1
At(package: 0, loc3)
At(package: 1, loc3)

A0:Unload(package: 1, truck, loc3) A0:Unload(package: 0, truck, loc3)

Plan 2
At(package: 0, loc3)
At(package: 1, loc3)

A1:Unload(package: 1, truck, loc3) A1:Unload(package: 0, truck, loc3)

Plan 3
At(package: 0, loc3)
At(package: 1, loc3)

A0:Load(package: 1, truck, loc2) A2:Unload(package: 1, truck, loc3) A0:Load(package: 0, truck, loc2) A2:Unload(package: 0, truck, loc3)

Plan 4
At(package: 0, loc2)
In(package: 1, truck)

Reorder

A1:Load(package: 1, truck, loc2)

Plan 5
At(package: 0, loc2)
In(package: 1, truck)

A2:Load(package: 1, truck, loc2)

A0:Load(package: 0, truck, loc2) A2:Unload(package: 1, truck, loc3) A2:Unload(package: 0, truck, loc3)

Plan 7
In(package: 0, truck)
In(package: 1, truck)

Reorder

A1:Load(package: 0, truck, loc2) A2:Unload(package: 0, truck, loc3) A2:Unload(package: 1, truck, loc3)

Fig. 2. The root of a planning tree for a simple problem that involves transporting two packages to another location within the same city. At the high level,
the Unload operators are recognized as overlapping on a shareable resource (truck) and are combined. In refining Plan 3, the Load operator is determined
to overlap on both the shareable resource of the truck and the contained resource of the truck’s location. It is reordered to be before the first Unload
because it is estimated, greedily, as being easier to achieve from the current state. If there was not enough space in the truck, then the truck would not be
considered shareable and the ordering would remain unchanged.

are solved on their own, treating the problems solvable by
the other factors as abstract actions. A solution for a problem
is frequently computed in a bottom-up manner, with factors
computing preconditions and effects that they publicize to
other factors [8]. These planners exhibit local optimality in
that plans within a factor are optimal with respect to that
factor but do not make any attempt at global optimality.
Furthermore, they have not been shown to scale up to
problems of the size necessary for a real robotics problem.

Srivastava and Kambhampati [9] decompose planning into
causal reasoning and resource scheduling. They plan initially
in an abstract space where similar entities are treated as
the same and are scheduled in a later phase. Minh and
Kambhampati [10] use post-processing and reordering to do
makespan optimization for temporal planning. Their system
uses a standard planner to find an initial, totally ordered,
plan and post-processes that into a partially ordered plan,
which is optimally scheduled. These approaches are similar
to ours in that our heuristics take advantage of similar
decomposition. However, our system uses the decomposition
to do online execution cost optimization while their system
uses this knowledge in order to scale up or optimize a
classical planner.

V. EXPERIMENTS
A. Transportation domain with marsupial robots

We tested the RCHPN approach in a complex transporta-
tion domain, which is an extension of a classical abstract
logistics domain [11]. The goal is to transport several pack-
ages to destination locations. The locations are grouped into
cities: trucks can move among locations within a city. Some
locations in a city are airports: planes can move among the
airports. Each truck has a geometrically constrained cargo
area and carries a “marsupial” robot. This robot can be

thought of as an idealized forklift that can move packages
within the cargo area and onto and off of the truck. A plan
for transporting a package to a goal location will typically
consist of transporting it (in a truck) to an airport, flying it to
the correct city, and then transporting it to the goal location.
Each time the package is loaded onto or removed from a
truck, there will be a detailed motion plan for a forklift,
which might include moving other packages within the truck
to accommodate the target package. Fig. 1 depicts a graphical
representation of this domain.

The HPN framework supports using real robot kinematics
and continuous geometry for managing objects inside the
trucks. For efficiency in these experiments, however, we use
a simplified version of the geometry in which the cargo hold
is discretized into a grid of locations; the robot occupies one
grid location and can move in the four cardinal directions.
Each “package” takes up multiple cells and is shaped like
a Tetris piece. This model retains the critical aspects of
reasoning about the details and order of operations within
the truck (even determining whether a set of objects can be
packed into a truck is, in general, NP-complete [12]). We can
also see it as an instance of the navigation among movable
obstacles (NAMO) problem in a discrete space [13]. To load
a package onto a truck, for example, it might be necessary
to move, or even unload and reload other packages that are
currently in the truck.

The domain is formalized with operators shown in the
appendix. In addition to results and preconditions, with
their associated criticalities, each operator declares its re-
source dependencies and cost. Vehicle operators (Load, Un-
load, Travel) have cost 10. Robot operators (LoaderMove,
LoaderPick, LoaderPlace) have cost 1. Inference operators
(SameCity, Pack) have cost 0.



B. Experiments and results

We designed experiments to compare a classical non-
hierarchical planner called FF [14], HPN, and RCHPN.
FF is a fast, easy-to-use classical planning algorithm. Even
small instances of the marsupial transportation domain are
intractable for FF. To demonstrate this, we ran FF on an
instance with 8 locations, 2 of which were airports; a single
truck per airport; one plane; and a single package which
had no shape (i.e. occupied a single location on the grid).
The package needed to be transported from a location to
the airport it was not connected to. Even on this problem,
FF took slightly less than 7.5 hours to find a solution
of length 62. There have been improvements in this class
of planners [15], but they cannot ultimately address the
fundamental problem that very long plans are required to
solve even the simplest problems in this domain.

We altered the basic HPN algorithm so that it solves easy
problems more quickly at the cost of a small increase in
computation time on other problems. Given a conjunctive
goal, we first check for the existence of a plan for a random
serialization of the fluents; this will succeed very quickly in
problems with many goals that are independent at the current
level of abstraction and usually fails quickly otherwise. If it
fails, we search for a monotonic plan (one that never causes
a goal fluent that is already true to be made false). Should we
fail to find a monotonic plan, we execute a standard backward
search. At the lowest levels of abstraction, we use a motion
planner to determine detailed placements of packages and
motions of the robot. The motion planner could be something
like an RRT in the continuous configuration space of robot
and packages; in this work, it is an implementation of A∗ in
the discretized geometry of a truck.

In designing the arrange function, we are tasked with de-
termining the resources used by abstract versions of operators
and categorizing those resources as shareable, contained, or
continual. Our implementation considers rearranging abstract
versions of Load, Unload, and SameCity. Other operators
only appear lower in the hierarchy and the plans they
appeared in were frequently quite constrained; the computa-
tional effort to reorder them is not worth it.

We estimated the abstract resource use of Load with a
0th order estimate. For SameCity, we used a 1st order
estimate. This allowed us to expose the resources used to
unload a package in this particular city. We used a 2nd order
estimate for abstract Unloads. We estimated the resource
use to include the implicit SameCity precondition. At lower
levels in the hierarchy, we consider the free space resource
used in placing a package in the load region. We do not
consider free space earlier because, unless we know where a
package is within the vehicle, it is hard to make any useful
assessment of this resource. This illustrates the utility of
optimizing in the now; we can postpone optimization as well
as planning.

We adopted the convention that a vehicle resource was
shareable for two goals if there was an arrangement of
packages in the vehicle, including packages mentioned in the
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Fig. 3. Average percent decrease in plan cost vs. problem size for RCHPN
vs. HPN

goal, such that the vehicle could be packed. We estimated
this with a greedy method that iteratively placed packages
as far towards the back of the vehicle as possible, preferring
placements towards the sides as a tiebreaker. An example
execution of a simple plan with reordering and combining
of subgoals is illustrated in Fig. 2.

We defined a distribution over planning problems within
this domain and tested on samples from that distribution.
Each instance had 5 airports, with 4 locations connected
to each airport. The layout of each airport and connected
locations was randomly selected from a class of layouts:
circular (roads between locations are connected in a circle),
radial (each location is directly connected to the airport, but
not to other locations), linear (the same as circular with
one connection dropped), and connected (each location was
connected to each other location). There was a single truck
to do the routing within each city and a single plane to route
between the airports. For the vehicles, the cargo area for
packages was randomly selected to be either small (3x6) or
large (4x8). Packages were randomly selected from a set of
6 shapes.

We ran experiments in four different regimes: maximal
parallel structure among tasks, parallel structure in the des-
tination of packages only, parallel structure in the origin of
packages only, and finally little to no parallel structure. To
do this, we varied the number of potential start locations and
destinations for packages from a single option to a uniform
selection from all locations in the domain. We collected data
for tasks with 3 to 10 packages and averaged results across
10 trials. For a particular problem we ran both HPN and
RCHPN and computed the ratio of the costs (the sum of the
costs of the all of the primitive operators executed during the
run) and averaged these ratios across 10 independent runs.

For problems with a single origin and destination, RCHPN
achieved an average of 30% improvement, roughly indepen-
dent of problem size. When either the origin or destination
was dispersed, the average improvement dropped to about
15%. In this case, smaller problems typically saw less
improvement than larger ones. This is because the more
packages, the more likely it is that there is some structure
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Fig. 4. Plot of percent decrease in execution cost vs. percent increase
in planning time. The positive correlation between the two highlights a
useful property of optimizing as a post-processing step: on problems where
there is little parallel structure, our modifications have little to no effect on
the planning time. As more parallel structure is introduced, more planning
time is spent utilizing that structure. In some cases planning time decreased
slightly. This is a result of non-determinism in the planner.

the planner will be able to take advantage of. Fig. 3 depicts
average decrease in execution cost vs. problem size for our
testing regimes.

Our heuristics only apply to packages going from and to
similar locations, so when both package origins and package
destinations are distributed widely we expect to see little
improvement. This was borne out in our results, as the
multiple origin, multiple destination experiments saw 5%
improvement. However, while we saw little to no improve-
ment in execution cost on those runs, we also saw little to
no increase in planning time. This illustrates the utility of
doing peephole optimization outside of the main planning
loop. Our solution will spend a small amount of time at
the abstract level looking for parallel structure, but if none
is found, it proceeds with planning as normal and incurs a
modest overhead. Fig. 4 depicts this relationship in detail.

APPENDIX
Operator Descriptions for the Marsupial Logistics Domain

• Load(package, vehicle, location):
result: In(package, vehicle,
PkgLoc(package, vehicle, vehicle.loadLoc)
preconditions: Reachable(location, vehicle), At(package, loca-
tion, At(vehicle, location),
Clear(vehicle, loadRegion)
consumes: vehicle, vehicle.loadRegion, vehicle.location

• Unload(package, vehicle, location):
result:At(package, location)
preconditions: Reachable(location, vehicle),
At(vehicle, location), In(package, vehicle),
In(package, vehicle), PkgLoc(package, vehicle, loadLoc)
consumes: vehicle, vehicle.loadRegion, vehicle.location

• Travel(vehicle, startLoc, resultLoc):
result:At(vehicle, resultLoc)
preconditions: At(vehicle, startLoc),
Connected(startLoc, resultLoc, vehicle), Packed(vehicle)
consumes: vehicle, vehicle.location

• LoaderGrasp(vehicle, package, grasp, gridLoc):
result: LoaderHolding(vehicle, package, grasp)

choose: loaderLoc ∈ GraspLocations(gridLoc, grasp)
preconditions:LegalGrasp(package, grasp, gridLoc), Loader-
Loc(vehicle, loaderLoc), LoaderHolding(vehicle, None, None),
PkgLoc(vehicle, package, gridLoc)
consumes: vehicle.loader, loaderLoc

• LoaderPlace(vehicle, package, gridLoc, grasp):
result: PkgLoc(package, gridLoc)
choose: loaderLoc ∈ GraspLocations(gridLoc, grasp)
preconditions: LegalGrasp(package, grasp, gridLoc), Load-
erLoc(vehicle, loaderLoc), LoaderHolding(vehicle, package,
grasp), LoaderHolding(vehicle, package, grasp)
consumes: vehicle.loader, gridLoc, loaderLoc

• LoaderMove(vehicle, targetLoc):
result: LoaderLoc(vehicle, targetLoc)
choose: p ∈ Paths(vehicle.loaderLoc, targetLoc)
preconditions: Clear(p)
consumes: vehicle.loader, p

• SameCity(package, vehicle):
result: SameCity(package, vehicle)
choose: loc ∈ ReachableLocs(vehicle)
preconditions: At(packge, loc)

• Pack(vehicle):
result: Packed(vehicle)
choose: loc[pkg] ∈ vehicle.storageRegion ∀ pkg s.t.
In(pkg, vehicle)
preconditions: PkgLoc(pkg, vehicle, loc[pkg]) ∀ pkg s.t.
In(pkg, vehicle)
consumes: vehicle, vehicle.storageRegion
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