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Symmetry is a powerful concept in physics, and its recent application to understand nonequilibrium behavior
is providing deep insights and groundbreaking exact results. Here we show how to harness symmetry to control
transport and statistics in open quantum systems. Such control is enabled by a first-order-type dynamic phase
transition in current statistics and the associated coexistence of different transport channels (or nonequilibrium
steady states) classified by symmetry. Microreversibility then ensues, via the Gallavotti-Cohen fluctuation
theorem, a twin dynamic phase transition for rare current fluctuations. Interestingly, the symmetry present
in the initial state is spontaneously broken at the fluctuating level, where the quantum system selects the
symmetry sector that maximally facilitates a given fluctuation. We illustrate these results in a qubit network
model motivated by the problem of coherent energy harvesting in photosynthetic complexes, and introduce the
concept of a symmetry-controlled quantum thermal switch, suggesting symmetry-based design strategies for
quantum devices with controllable transport properties.
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I. INTRODUCTION

The onset of modern nanotechnologies and the outstanding
experimental control of ultracold atoms and trapped ions have
just opened the possibility to engineer devices at mesoscopic
scales with novel properties and promising technological ap-
plications [1]. Hallmarks of these systems are the importance
of quantum effects to understand their dynamics, and the
unavoidable interaction with a decohering environment, so
the natural framework to describe their properties is the theory
of open quantum systems [2]. Due to their mesoscopic size,
their physics is typically dominated by large fluctuations
that determine their function and response. In addition, these
devices usually operate under nonequilibrium conditions, so a
full understanding of their physics is only possible by analyz-
ing their nonequilibrium fluctuating behavior, with particular
emphasis on the statistics of currents, a key observable out
of equilibrium. The natural language for this program is the
theory of large deviations or full-counting statistics [3,4],
recently extended to the realm of open quantum systems [5],
with the current large deviation function (LDF) measuring
the probability of current fluctuations as central object in the
theory. Advancing this line of research is both of fundamental
and practical importance. On one hand, the current LDF plays
in nonequilibrium a role equivalent to the equilibrium free
energy, governing the thermodynamics of currents and hence
the transport and collective behavior out of equilibrium [6–8].
On the other hand, as we show in this paper, a detailed
understanding of the transport and fluctuating properties of
open quantum systems and the role of symmetry is helpful
to devise optimal quantum control strategies in open systems
[9,10], dissipation-engineered state preparation [11–13], and
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dissipation-driven quantum computation [14], all important
for emerging technological applications.

Despite the increasing interest and efforts along these
lines, understanding the physics of nonequilibrium systems,
classical or quantum, is remarkably challenging. This is due
to the difficulty in combining statistics and dynamics, which
always plays a key role out of equilibrium [6]. Most prominent
among the few general results in nonequilibrium physics are
the different fluctuation theorems [4,15–19], which strongly
constrain the probability distributions of fluctuations far from
equilibrium. These theorems are different expressions of a
symmetry, the time reversibility of microscopic dynamics, at
the mesoscopic, irreversible level, illustrating the power of
symmetry as a tool to obtain new insights into nonequilibrium
behavior. Symmetry ideas [20] have already proved useful to
study transport in quantum systems. For instance, geometric
symmetries of the Hamiltonian trigger anomalous collective
quantum effects like superradiance (enhanced relaxation rate)
[21] and supertransfer (enhanced exciton transfer rate and
diffusion length) [22]. Another example concerns the strong
constraints imposed by symmetries of the reduced density
matrix on the nonequilibrium steady states of open quantum
systems [23], or the enhancement of quantum transport by
time-reversal symmetry breaking found in continuous-time
quantum walks [24]. In addition, symmetry principles have
been recently used to devise optimal quantum control strate-
gies [25].

Inspired by these illuminating results, we explore in this
paper the consequences of a symmetry for the transport
properties and the current statistics of open quantum systems
of the Lindblad form [2,26]. For these systems, it has been
recently shown that the existence of a symmetry implies the
emergence of multiple nonequilibrium steady states classified
via the symmetry spectrum [27] (see also [28]). As we
show below, this coexistence of different transport channels
is associated with a general first-order-type dynamic phase
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FIG. 1. (Color online) (a) Fully connected network of 6 qubits
(spheres) in contact with two thermal baths (boxes) and possibly
subject to dephasing noise (wavy arrows). Symmetries correspond
to permutations of bulk pairs. (b) Sketch of a symmetry-controlled
quantum thermal switch (see text).

transition in the statistics of current fluctuations, which shows
up as a kink in the cumulant generating function of the
current distribution, or equivalently as a nonconvex regime
in the current LDF, and can be used to control transport
and fluctuations in open quantum systems by tailoring the
symmetry-protected information present in the initial state.
Interestingly, the original symmetry of the open quantum
system is spontaneously broken at the fluctuating level,
where the system naturally selects a particular symmetry
subspace with maximal or minimal current to facilitate a given
current fluctuation. Using the time reversibility of microscopic
dynamics, we further prove that this instability is accompa-
nied by a twin dynamic phase transition for rare, reversed
current fluctuations. Remarkably, the twin dynamic phase
transitions are a purely nonequilibrium effect, disappearing
in equilibrium. As an example of the power of this method,
we study current statistics in fully connected open networks
of qubits, see Fig. 1(a), a model of coherent energy harvesting
where symmetry-controlled transport and twin dynamic phase
transitions are clearly demonstrated. The understanding of
transport in quantum networks is currently under intense inves-
tigation since recent experiments suggested coherent energy
transfer in the Fenna-Matthews-Olson complex of green sulfur
bacteria [29], even at room temperature. Our results show
how symmetry principles can be used to unveil exact and
general results in nonequilibrium open quantum systems, and
suggest novel design strategies based on symmetry ideas for
quantum devices with controllable transport properties. In
fact, using this approach we propose a novel design for a
symmetry-controlled quantum thermal switch, see Fig. 1(b),
i.e., a quantum qubit device where the heat current between a
hot and a cold reservoir can be completely blocked, modulated,
or turned on by preparing the symmetry of the initial state.

II. SYMMETRY AND THE THERMODYNAMICS
OF CURRENTS

We consider an open quantum system weakly coupled
to its environment. The state of such a system is described
at any time by a (reduced) density matrix ρ, a trace-one
operator in the space B(H) of bounded operators acting on
the system’s Hilbert space H, which we assume of finite
dimension D. The space B(H) is itself a Hilbert space

once supplemented with an appropriate inner product, the
Hilbert-Schmidt product (σ,ρ) ≡ Tr(σ †ρ), ∀σ, ρ ∈ B(H). For
Markovian open quantum systems, the density matrix evolves
according to the well-known Lindblad master equation [2,26]

ρ̇= − i[H,ρ] +
∑
m

(
LmρL†

m − 1
2 {L†

mLm,ρ}) ≡ Wρ, (1)

where H is the system Hamiltonian, [A,B] = AB − BA

and {A,B} = AB + BA, and Lm ∈ B(H) are the so-called
Lindblad operators [2]. Note also that we employ units of � =
1 throughout the paper. This equation defines the evolution
superoperator W − aD2 × D2 matrix acting on B(H)—and
describes the coherent evolution of an open quantum system
(as captured by the first term in the right-hand side), punc-
tuated by weak, decohering interactions with a fast-evolving
environment (modeled by the Lindblad operators). Equation
(1) is the most general dynamical law for the reduced density
matrix of an open Markovian quantum system which preserves
normalization and is completely positive [2]. We are interested
in Lindblad operators describing most common physical
situations, namely (i) coupling to different reservoirs (of
energy, magnetization, etc.), which locally inject and extract
excitations at constant rate, or (ii) the effect of environmental
dephasing noise which causes local decoherence and thus
classical behavior [2]. In this way, Eq. (1) describes all sorts
of nonequilibrium situations driven by external gradients and
noise sources. Steady states now correspond to the null fixed
points of the Lindblad superoperator, Wρst = 0. In a recent
theorem [27], Buča and Prosen have shown that an open
quantum system of this sort with a strong symmetry, i.e.,
a unitary operator S ∈ B(H) that simultaneously commutes
with the Hamiltonian and all Lindblad operators, [S,H ] =
0 = [S,Lm] ∀m, will necessarily have multiple, degenerate
(nonequilibrium) steady states, hereafter NESSs, which can
be indexed by the symmetry ns distinct eigenvalues. In
fact, using the symmetry spectrum defined via S|ψ (k)

α 〉 =
exp(iθα)|ψ (k)

α 〉, with eigenvectors |ψ (k)
α 〉 ∈ H, α ∈ [1,ns], k ∈

[1,dα] and dα the dimension of each eigenspace, we may
introduce spectral decompositions of both the Hilbert space
H = ⊕

α Hα , withHα = {|ψ (k)
α 〉,k ∈ [1,dα]}, and the operator

Hilbert space B(H) = ⊕
αβ Bαβ , with Bαβ = {|ψ (n)

α 〉〈ψ (m)
β | :

n ∈ [1,dα],m ∈ [1,dβ ]} and dimension dαβ = dαdβ . By defin-
ing the left and right adjoint symmetry superoperators SL,R

as SLη = Sη and SRη = ηS† ∀η ∈ B(H), it is clear that the
subspaces Bαβ are the joint eigenspaces of both SL and SR . It
is then an exercise to show, using the commutation relations
above defining the strong symmetry S, that the subspaces Bαβ

remain invariant under the flow W , i.e., WBαβ ⊂ Bαβ , and
hence each subspace contains at least one well-defined and
different fixed point of the dynamics [27,30,31]. By noting
that trace-one, physical density matrices can only live in
diagonal subspaces Bαα due to the orthogonality between the
different Hα , we obtain at least ns distinct NESSs, one for
each Bαα , which can be labeled according to the symmetry
eigenvalues, i.e., for any normalized ρα(0) ∈ Bαα we have
ρNESS

α ≡ limt→∞ exp (+tW)ρα(0) ∈ Bαα , and a continuum of
possible linear combinations of these NESSs. The different
NESSs ρNESS

α can be further degenerate according to the Evans
theorem [32], though we assume here for simplicity that ρNESS

α
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are unique for each α. Interestingly, one-dimensional symme-
try eigenspaces |ψα〉〈ψα| will be mapped onto themselves by
the dynamics W , thus defining decoherence-free, dark states
important, e.g., in quantum computing to protect quantum
states from relaxation [27,30,33].

Our aim now is to study the implications of such strong sym-
metry for the statistics of the current flowing through a given
reservoir, a main observable out of equilibrium [4,6–8,34–38].
For that, we first introduce the reduced density matrix ρQ(t),
which is the projection of the full density matrix to the space of
Q events, Q being the total (energy, spin, exciton, ...) current
flowing from a reservoir to the system in a time t . This current
can be appropriately defined in the quantum realm via the
unraveling of the master equation (1) [36]. The probability of
observing a given current fluctuation, typical or rare, is thus
Pt (Q) = Tr[ρQ(t)], and scales in a large deviation form for
long times, Pt (Q) 
 exp[+tG(Q/t)], where G(q) � 0 is the
current large deviation function [3–8]. This scaling shows that
the probability of observing a significant current fluctuation
away from its average is exponentially small in time. As
usual in statistical physics, it is difficult to work with a global
constraint (think for instance on the microcanonical ensemble),
and the problem becomes simpler after an appropriate change
of ensemble. With this idea in mind, we introduce the Laplace
transform ρλ(t) = ∑

Q ρQ(t) exp(−λQ) with λ a counting
field conjugated to the current, such that Zλ(t) ≡ Tr[ρλ(t)]
corresponds to the moment generating function of the current
distribution, which also obeys a large deviation principle of
the form Zλ(t) 
 exp[+tμ(λ)] for long times. Here μ(λ) =
maxq[G(q) − λq] is the Legendre transform of the current
LDF, in a way equivalent to the thermodynamic relation
between the canonical and microcanonical potentials [3–8].
Interestingly, ρQ(t) obeys a complex hierarchy of equations
which is however disentangled by the Laplace transform
[4,39], yielding a closed evolution equation for ρλ(t)

ρ̇λ(t) = −i[H,ρλ] + e−λL1ρλL1
† + e+λL2ρλL2

†

+
∑

m�=1,2

LmρλL
†
m − 1

2

∑
m

{L†
mLm,ρλ} ≡ Wλρλ, (2)

where we assume without loss of generality that L1 and L2

are respectively the Lindblad operators responsible for the
injection and extraction of excitations through the reservoir
of interest. This defines a deformed superoperator Wλ which
no longer preserves the trace, and whose spectral properties
determine the thermodynamics of currents in the system at
hand.

The existence of a strong symmetry implies that the symme-
try superoperators SL,R and Wλ all commute, so there exists a
complete biorthogonal set of common left [ω̃αβν(λ)] and right
[ωαβν(λ)] eigenfunctions in B(H), linking eigenvalues of Wλ

to particular symmetry eigenspaces, such that SLωαβν(λ) =
eiθαωαβν(λ), SRωαβν(λ) = e−iθβ ωαβν(λ), and Wλωαβν(λ) =
μν(λ)ωαβν(λ) (similar for left eigenfunctions). Note that,
due to orthogonality of symmetry eigenspaces, Tr[ωαβν(λ)] ∝
δαβ , and we introduce the normalization Tr[ωααν(λ)] = 1 for
simplicity. The solution to Eq. (2) can be formally written as
ρλ(t) = exp(+tWλ)ρ(0), so a spectral decomposition of the
initial density matrix in terms of the common biorthogonal
basis yields Zλ(t) = ∑

αν e+tμν (λ) [ω̃ααν(λ),ρ(0)]. For long

times

Zλ(t)
t→∞−−−→ e+tμ

(α0)
0 (λ)[ω̃α0α00(λ),ρ(0)], (3)

where μ
(α0)
0 (λ) is the eigenvalue ofWλ with largest real part and

symmetry index α0 among all symmetry diagonal eigenspaces
Bαα with nonzero projection on the initial ρ(0). In this way,
this eigenvalue defines the Legendre transform of the current
LDF, μ(λ) ≡ μ

(α0)
0 (λ); see above. Interestingly, the long time

limit in Eq. (3) selects a particular symmetry eigenspace α0

(assumed here unique in order not to clutter our notation; this
is however unimportant for our conclusions below), effectively
breaking at the fluctuating level the original symmetry of our
open quantum system. As we show below, distinct symmetry
eigenspaces may dominate different fluctuation regimes, sep-
arated by first-order-type dynamic phase transitions. Note that
a different type of spontaneous symmetry breaking scenario
at the fluctuating level has been recently reported in classical
diffusive systems [6,8,40–42] .

The previous arguments also show how it is possible to
control both the statistics of the current and the average
transport properties of an open quantum system by playing
with the symmetry decomposition of the initial state ρ(0),
which in turn controls the amplitude of the scaling in Eq. (3)
(for a discussion of this amplitude in a classical context, see
[37]). This is most evident by studying the average current,
defined as 〈q〉 = limt→∞ 1

t
∂λ ln Zλ(t)|λ=0. Using again the

previous spectral decomposition, it is easy to show that

〈q〉 =
∑

α〈qα〉(ρ̃NESS
α ,ρ(0)

)
∑

α

(
ρ̃NESS

α ,ρ(0)
) , (4)

where 〈qα〉 = −∂λμ
(α)
0 (λ)|λ=0 = Tr[L2ρ

NESS
α L

†
2] −

Tr[L1ρ
NESS
α L

†
1] is the average current of the NESS

ρNESS
α ∈ Bαα . To derive Eq. (4) we have used that Wλ=0 = W ,

whose largest eigenvalue within each symmetry eigenspace
Bαα is necessarily zero [30,31], with associated normalized
right eigenfunction ωαα0(λ = 0) = ρNESS

α and dual ρ̃NESS
α ;

see Appendix A. Nonequilibrium steady states ρNESS
α with

different α will typically have different average currents
〈qα〉, so the manipulation of the projections (ρ̃NESS

α ,ρ(0)) by
adequately preparing the symmetry of the initial state will
lead to symmetry-controlled transport properties. We show
below several examples of this control mechanism.

Remarkably, the existence of a symmetry under nonequi-
librium conditions implies nonanalyticities in the LDF μ(λ)
which can be interpreted as dynamical phase transitions sepa-
rating regimes where the original symmetry is spontaneously
broken in different ways. To show this, we first note that for
|λ| 
 1 the leading eigenvalue of Wλ with symmetry index
α can be expanded as μ

(α)
0 (λ) ≈ μ

(α)
0 (0) + λ(∂λμ

(α)
0 (λ))|λ=0 =

−λ〈qα〉. Therefore, by using that μ(λ) = maxα[μ(α)
0 (λ)], the

maximum taken over the symmetry eigenspaces with nonzero
overlap with ρ(0), we arrive at

μ(λ) =
|λ|
1

{+|λ|〈qαmax〉 for λ � 0,

−|λ|〈qαmin〉 for λ � 0,
(5)

where αmax (αmin) denotes the symmetry eigenspace with
maximal (minimal) average current 〈qαmax〉 (〈qαmin〉) among
those with nonzero overlap with ρ(0). Therefore, the LDF μ(λ)
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FIG. 2. (Color online) Sketch of the twin dynamic phase transitions in the current statistics of an open quantum system with a symmetry,
as appears for the current cumulant generating function μ(λ) (left), and the associated current large deviation function G(q) (right). Notice the
twin kinks in μ(λ) and the corresponding nonconvex regimes in G(q) [45].

exhibits a kink at λ = 0, characterized by a finite, discontin-
uous jump in the dynamic order parameter q(λ) ≡ −μ′(λ)
at λ = 0 of magnitude �q0 = 〈qαmax〉 − 〈qαmin〉, a behavior
reminiscent of first order phase transitions [5]. Furthermore, if
the original evolution superoperatorW is microreversible (i.e.,
obeys a detailed balance condition) [38,43,44], the system of
interest will obey the Gallavotti-Cohen fluctuation theorem for
currents, which links the probability of a current fluctuation
with its time-reversal event [15–19]. This fluctuation theorem
can be stated as μ(λ) = μ(ε − λ) for the Legendre transform
of the LDF, where ε is a constant related to the rate of
entropy production in the system. In this way, we see that
the kink in μ(λ) observed at λ = 0 is reproduced at λ = ε,
where a twin dynamic phase transition emerges; see Fig. 2. By
inverse Legendre transforming μ(λ) to obtain the current LDF
G(q) = maxλ[μ(λ) + qλ], it is straightforward to show [3]
that the twin kinks in μ(λ) correspond to two different current
intervals, |q| ∈ [|〈qαmin〉|,|〈qαmax〉|], related by time reversibility
or q ↔ −q, where G(q) is nonconvex; see Fig. 2. This
corresponds to a multimodal current distribution Pt (Q = qt),
with several peaks reflecting the coexistence of multiple
transport channels, each one associated with a different NESS
in our open quantum system with a strong symmetry [27].
Remarkably, the symmetry is broken at the fluctuating level,
where the quantum system selects a symmetry sector that
maximally facilitates a given current fluctuation: the statistics
during a current fluctuation with |q| > |〈qαmax〉| is dominated
by the symmetry eigenspace with maximal current (αmax),
whereas for |q| < |〈qαmin〉| the minimal current eigenspace
(αmin) prevails. This is best captured by the effective density
matrix ρeff

λ ≡ limt→∞ ρλ(t)/ Tr[ρλ(t)] = ωα0α00(λ), with α0 =
αmax (αmin) for |λ − ε

2 | > ε
2 (|λ − ε

2 | < ε
2 ).

Interestingly, the previous twin dynamic phase transitions in
current statistics only happen out of equilibrium, disappearing
in equilibrium. In the latter case, the average currents for
the multiple steady states are zero in all cases, 〈qα〉 = 0 ∀α,
so no symmetry-induced kink appears in μ(λ) at λ = 0
in equilibrium [46]. Moreover, an expansion for |λ| 
 1
of the leading eigenvalues yields to first order μ

(α)
0 (λ) ≈

λ2

2 (∂2
λμ

(α)
0 (λ))|λ=0 = λ2

2 σ 2
α , where σ 2

α is the variance of the
current distribution in each steady state, so for equilibrium
systems the overall current statistics is dominated by the
symmetry eigenspace with maximal variance among those
present in the initial ρ(0). Therefore, it is still possible to

control the statistics of current fluctuations in equilibrium by
an adequate preparation of ρ(0), though G(q) is convex around
〈q〉 = 0 and no dynamic phase transitions are expected.

III. APPLICATION TO OPEN QUANTUM NETWORKS

The study of energy transport in quantum networks has
recently attracted a lot of attention, since empirical evidences
of coherent transport at room temperature have been found
in the the Fenna-Matthews-Olson complex of green sulfur
bacteria [29]. This complex plays an important role during
the photosynthetic process by conducting energy from the
antenna through a heterogeneous chromophore network to
the reaction center, where the photosynthetic reaction takes
place. Motivated by this energy harvesting problem, we now
proceed to apply the general results of the previous section
to study transport in open quantum networks [47–49]. These
are oversimplified models of quantum transport which have
proven extremely useful to understanding the functional role
of noise and dephasing in enhancing coherent energy transfer.

We hence study homogeneous fully connected networks of
N quantum two-level systems, or qubits; see Fig. 1(a). We
focus here on N even for simplicity, though similar results
hold for odd N . The Hamiltonian is

H = h

N∑
i=1

σ+
i σ−

i + J

N∑
i,j = 1
j < i

(σ+
i σ−

j + σ−
i σ+

j ), (6)

where σ+
i and σ−

i are the raising and lowering operators
acting on qubit i, h is the on-site energy, and J represents the
coupling strength. The nonequilibrium, dissipative dynamics
of the system is triggered by two Markovian bosonic heat
baths that pump and extract excitations in an incoherent way
from qubits 1 and N . We will refer to these qubits as terminal,
while the remaining qubits form the bulk. The full system
dynamics, including the incoherent hopping from the baths,
can be described by a Markovian master equation (1) [2]
with four Lindblad operators, L1 = √

a1σ
+
1 and L2 = √

b1σ
−
1

for the first bath, and L3 = √
aNσ+

N and L4 = √
bNσ−

N for
the second. The bath constants ai and bi account for the
excitation pumping and extraction rates at qubit i, respectively,
and a temperature gradient sets in whenever a1b2 �= a2b1. In
fact, the external nonequilibrium drive can be quantified by
ε = ln[a1b2/(a2b1)].
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Similar qubit models, with dipole-dipole interactions, have
been also studied in order to analyze quantum Fourier’s law
[50,51] and energy transfer in quantum networks, both in the
transient [52] and steady state regimes [47]. The Hamiltonian
(6) is also related with that of the Lipkin-Meshkov-Glick
model, that was introduced in 1965 to describe phase tran-
sitions in nuclei [53]. For a closed system, with no coupling
to an external environment, an exact solution of this model
can be obtained starting from Bethe equations [54], though
analytical solutions in an open framework are still lacking.
We expect our results below on the effect of symmetry on the
thermodynamics of currents may help in this effort.

Remarkably, this model exhibits not just one, but multiple
strong symmetries in the sense of Ref. [27] for N � 4.
In fact, any permutation πij ∈ B(H) exchanging the state
of a pair of bulk qubits i,j ∈ [2,N − 1] leaves invariant
the Hamiltonian (6) [54], and obviously commutes with
the Lindblad operators Lm ∀m as they only affect terminal
qubits. Therefore, [πij ,H ] = 0 = [πij ,Lm], so we expect the
open quantum network to exhibit multiple NESSs classified
by the permutations spectrum (thus allowing for symmetry-
controlled transport), together with a pair of twin dynamic
phase transitions involving a symmetry-breaking event. To see
this, we analyzed the spectrum of the deformed superoperator
Wλ for this particular model, see Eq. (2), looking for the
leading eigenvalue which defines the current LDF μ(λ; N )
and the associated right eigenmatrix. For simplicity, we focus
hereafter on a particular set of parameters, namely h = 1 = J

and a1 = 2 = b2, b1 = 1 = a2, corresponding to ε ≈ 1.39.
Open symbols in Fig. 3 show results for μ(λ; N ) in this case as
obtained by numerically diagonalizing Wλ for N = 2, 4, and
6 qubits. Note that Wλ is a 4N × 4N matrix, an exponential

-1 0 1 2 3
λ

0

0.5

1

1.5

2

μ(
λ;

N
)

0.1 0.2 0.3 0.4

N
-1/2

0

0.5

1

μ(
λ;

N
)

λ=-1.00
λ=-0.64
λ=-0.24
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λ=0.96
λ=1.36
λ=1.76
λ=2.16
λ=2.56

N=2

N=4

N=6

N=8

N=40

...
...

..

FIG. 3. (Color online) Main: the current cumulant generating
function μ(λ; N ) as a function of λ for different N and parameters
a1 = 2 = b2, b1 = 1 = a2, and h = 1 = J . Open symbols correspond
to the numerical diagonalization of the full deformed Lindblad
superoperator Wλ, while lines show results after the symmetry-
induced dimensional reduction. The vertical dashed lines signal the
critical points λ = 0,ε. While no N dependence is observed for
0 < λ < ε, a rapid increase with size appears outside this interval,
suggesting the emergence of two kinks in μ(λ; N ) at λ = 0,ε. Inset:
N dependence of μ(λ; N ) for different fixed λ. A clear N−1/2 scaling
is evident.

size scaling which prevents us from reaching larger networks
with this method (see however below). Interestingly, the
measured μ(λ; N ) shows no dependence on N for 0 < λ < ε,
while a rapid increase with size appears outside this interval,
|λ − ε

2 | > ε
2 . This behavior suggests the presence of two

kinks in μ(λ; N ) at λ = 0,ε for N � 4, where ∂λμ(λ; N )
becomes discontinuous. The sharp change of behavior at
λ = 0,ε is most evident when studying the associated leading
eigenmatrix. Figure 4 plots the real part of the eigenmatrix in
the computational basis measured for N = 6 for two values of
λ across the kink at λ = 0. The qualitative difference of the two
eigenmatrices is confirmed when studying its behavior under
permutations of bulk qubits. In fact, the measured eigenmatrix
for λ < 0 (as well as for λ > ε) is completely symmetric under
any permutation of bulk qubits, see Figs. 4(a.1) and 4(a.2),
while for 0 < λ < ε the resulting eigenmatrix is antisymmetric
by pairs, i.e., with nonoverlapping pairs of bulk qubits in
antisymmetric, singlet state; see Figs. 4(b.1) and 4(b.2) (note
that this regime is degenerate for N > 4 as bulk qubits can
be partitioned by pairs in different ways). This confirms
the existence of a pair of twin symmetry-breaking dynamic
phase transitions happening at λ = 0,ε (equivalent results
hold for N = 4). For large current fluctuations such that
|λ − ε

2 | > ε
2 , the quantum network selects the symmetry sub-

space with maximal current, which corresponds to the totally
symmetric subspace. This sort of bosonic transport regime
can be understood phenomenologically by noting that a totally
symmetric bulk can absorb a maximal number of excitations
from the terminal qubit, hence leaving it free to receive further
excitations from the reservoir and thus maximizing the current
flowing through the system. On the other hand, the minimal
current symmetry subspace dominating current statistics for
|λ − ε

2 | < ε
2 is antisymmetric by pairs. This pair-fermionic

FIG. 4. (Color online) Real part of the N = 6 normalized right
eigenmatrix ωα0α00(λ) associated with the eigenvalue of Wλ with
largest real part, for (a) λ = −0.4 and (b) λ = 0.2. Panels (a.1),(b.1)
and (a.2),(b.2) show respectively the (i,j )-antisymmetrized and
-symmetrized eigenmatrices, with (i,j ) an arbitrary pair of bulk
qubits. For λ < 0 (and λ > ε) the leading eigenmatrix is completely
symmetric, while for 0 < λ < ε it is pair antisymmetric. System
parameters as in Fig. 3.
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transport regime is again easily understood by noting that
pairs of bulk qubits in singlet state are dark states of the
dynamics (decoherence-free subspaces) which remain frozen
in time and hence cannot accept excitations from the terminal
qubits, effectively reducing the size of bulk and thus leading
to a minimal current. In fact, this observation explains why
μ(λ; N ) does not depend on N for 0 < λ < ε, where the N = 2
result always emerges.

This severe dimensional reduction results from the sym-
metry of the 0 < λ < ε regime. In a similar way, we may
now use the symmetry of the bosonic transport regime to
strongly reduce the dimensionality of the total Hilbert space,
hence allowing us to reach much larger network sizes than
previously anticipated. In particular, a totally symmetric state
of bulk qubits is univocally described by the total number of
excitations in the bulk, K ∈ [0,N − 2], so the dimension of
the total Hilbert space drops dramatically from an exponential
2N to a linear 4(N − 1) (see Appendix B for a detailed
explanation and Refs. [53,54] for a similar dimensional
reduction in the related Lipkin-Meshkov-Glick model). Using
this dimensional reduction, we were able to compute the
LDF μ(λ; N ) for quantum networks of size N � 40, see
lines in Fig. 3, opening the door to a systematic study of
finite-size effects in current statistics. For the LDF, our data
strongly suggest a clear scaling μ(λ; N ) = μ(λ) + a(λ)N−1/2,
see inset to Fig. 3, with a(λ) some amplitude [note that
a(λ) = 0 for 0 < λ < ε]. This scaling yields an estimate
of the LDF μ(λ) in the thermodynamic limit, see Fig. 5,
confirming the presence of two clear kinks at λ = 0,ε. Notice
that this LDF, as well as all finite-size LDFs in Fig. 3, obey

FIG. 5. (Color online) Estimation of μ(λ) in the thermodynamic
limit as obtained from the N−1/2 scaling observed in the inset to
Fig. 3. Twin kinks at λ = 0,ε (signaled by thin vertical dashed lines)
are apparent, and the current distribution obeys the Gallavotti-Cohen
(GC) fluctuation theorem, μ(λ) = μ(ε − λ). Dashed thick lines show
μ(λ) measured for networks with dephasing noise (γ = 0.5). Curves
have been shifted downward for clarity [in all cases μ(0) = 0].
Dephasing destroys the permutation symmetry, and the twin dynamic
phase transitions disappear. Inset: asymptotic current LDF obtained
from the numerical inverse Legendre transform of μ(λ) in the main
panel. Dashed lines sketch the nonconvex regimes of G(q) for which
μ(λ) offers no information. Again, the GC fluctuation theorem is
clearly satisfied, G(q) − G(−q) = εq.

the Gallavotti-Cohen fluctuation theorem μ(λ) = μ(ε − λ)
as a result of microreversibility [15–19,38,43,44]. We also
performed numerically the inverse Legendre transform of μ(λ)
to obtain an estimate of the current LDF G(q) in the N → ∞
limit; see inset to Fig. 5. As expected, the kinks in μ(λ)
translate into two current regimes, |q| ∈ [|〈qαmin〉|,|〈qαmax〉|],
where G(q) is nonconvex [45] corresponding to a multimodal
current distribution due to coexistence of different transport
channels classified by symmetry.

To illustrate the symmetry control over transport properties
via initial state preparation, see Eq. (4), we plot in Fig. 6
the average current as a function of the size of the quantum
network for different initial states ρ(0), prepared in a direct
product configuration such that an even number (1 − φ)N
of bulk qubits are initialized in antisymmetric, singlet states
by pairs, while the complementary set of bulk qubits are
initially in a totally symmetric state. As explained above, the
antisymmetric pairs of qubits form dark states of the dynamics,
remaining dynamically decoupled from the rest of the system.
It is then easy to show (see Appendix B) that the resulting
eigenvalue problem for Wλ, and consequently the average
current and current statistics, thus correspond to those of a
quantum network with φN qubits and a totally symmetric
bulk. In this totally symmetric (maximal current) setting a
larger bulk means a larger current, so we expect the current to
increase both with N and φ, as confirmed in Fig. 6. In this way,
tuning the initialization parameter φ allows one to control the
average current for each N .

The previous discussion suggests a modification of the
network Hamiltonian in order to gain full control of the
heat current traversing the quantum system. In particular, by
removing the interaction between the terminal qubits, it is

FIG. 6. (Color online) Size dependence of the average current
〈q〉φ,N for a quantum network with an even number (1 − φ)N of bulk
qubits initialized in pair-antisymmetric states. The current increases
both with N and φ, demonstrating symmetry-controlled transport.
System parameters as in Fig. 3. Inset: average current for the sketched
four-qubit quantum thermal switch as a function of ϕ, the projection
of the initial density matrix on the subspace of B(H) corresponding
to a totally symmetric bulk, for different excitation pumping rates
a1 (the other parameters as in Fig. 3). This shows how the heat
current between hot and cold reservoirs can be completely blocked,
modulated, or turned on by preparing the symmetry of the initial state.
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possible to block completely the energy current which flows
from the hot to the cold reservoir by initializing the bulk qubits
in an antisymmetric-by-pairs state. This is most evident for
the case of N = 4 qubits; see Fig. 1(b). In fact, by initializing
the system in an (otherwise arbitrary) mixed state such that the
projection of the initial density matrix ρ(0) on the symmetry
eigenspace of B(H) corresponding to a totally symmetric bulk
is fixed and equal to ϕ ∈ [0,1], it is easy to show that the
average current in this case is simply 〈q〉 = ϕ〈q+〉, where
〈q+〉 is the average current of the completely symmetric NESS
ρNESS

+ ; see Eq. (4). Of course this is so because 〈q−〉 = 0 due to
the dynamical decoupling between terminal qubits produced
by the frozen, dark state of the antisymmetric bulk. As an
example, the inset in Fig. 6 shows the average current for the
4-qubit network in Fig. 1(b) as a function of ϕ for varying
excitation pumping rates a1. In this way, the combination of
the simple network topology of Fig. 1(b) with our symmetry
results allows one to design a symmetry-controlled quantum
thermal switch, where the heat current flowing between hot
and cold reservoirs can be completely blocked, modulated or
turned on by just preparing the symmetry of the initial state.
Note that a nonlinear control of the heat current can be also
implemented by introducing a weighted interaction between
terminal qubits.

To end this section, we now study the effect of dephasing
noise on the thermodynamics of currents, and in particular
on the dynamic phase transitions and spontaneous symmetry-
breaking phenomena discussed above. The interaction with
a dephasing environment, that reduces the quantum coherent
character of the system at hand, has been probed very important
for the energy transfer in different nonequilibrium quantum
networks, where noise-enhanced transport has been recently
reported [47]. In order to simulate such an environment we in-
troduce a new set of Lindblad (dephasing) operators L

(deph)
m =√

γ σ+
m σ−

m , with m ∈ [1,N ], in the master equation (1),
which reduce the quantum coherences inside the system and,
effectively, transform the quantum transport in a classical one
in a continuous way, depending on the dephasing parameter γ .
As the dephasing Lindblad operators act locally on each qubit,
they violate the bulk permutation symmetries of the original
master equation. The new evolution equation hence mixes the
original symmetry eigenspaces, thus leading to a unique NESS,
independent of the initial steady state. In addition, the violation
of the original strong symmetries immediately implies the
disappearance of the twin dynamic phase transitions and the
associated symmetry-breaking phenomenon at the fluctuating
level, thus leading to a differentiable μ(λ) and a convex
current LDF G(q). Dashed thick lines in Fig. 5 show μ(λ; N )
as measured for systems with N = 2, 4, and 6 qubits and
a dephasing parameter γ = 0.5. In all cases, as expected,
the LDF shows no kinks at λ = 0,ε, while obeying the
Gallavotti-Cohen theorem for all currents. This result proves
the essentially coherent character of the twin dynamic phase
transitions and related symmetry-breaking phenomena, as they
disappear whenever the bulk system dynamics is not purely
coherent. A similar change of regime due to a dephasing
channel has already been observed in lattices of qubits and
harmonic oscillators far from equilibrium, where an arbitrary
amount of dephasing makes the transport change from ballistic
to diffusive [51] (see also [55]).

IV. DISCUSSION

We have shown in this paper how to harness symmetry
to control transport and current statistics in open quantum
systems. The action of different dissipative processes in the
presence of a strong symmetry [27] drives quantum systems
to a degenerate steady state, which preserves part of the
information present in the initial density matrix [30]. By
tailoring this information via initial state preparation, we are
able to control both the average transport properties and the
statistics of the current flowing through an open quantum
system. Remarkably, the coexistence of different transport
channels at the heart of this control mechanism is associated
with a general dynamic phase transition in current statistics
between two different symmetry-broken phases (maximal vs
minimal current phases), which is accompanied by a twin
dynamic phase transition for rare, reversed current fluctuations
as a result of time reversibility. This is reflected in nonanalyt-
icities and nonconvex behavior in the current large deviation
functions, which play a central role in nonequilibrium physics.
Motivated by the problem of energy harvesting and coherent
transport in photosynthetic complexes, we have applied these
general results to study transport and current fluctuations in
open quantum networks, finding excellent agreement with
the predictions based on symmetry ideas. The experimental
observation of the effects here described is accessible and
desirable, as symmetry control of transport properties opens
new avenues of future research worth exploring. The recent
possibility of creating coherent cavity networks with complete
connectivity [56] opens the door to potential experimental
realizations of these phenomena. In addition, these results
call for symmetry-based design strategies for quantum devices
with controllable transport properties. In fact, our symmetry
approach to transport has allowed us to introduce a symmetry-
controlled quantum thermal switch, i.e., a quantum qubit
device where the heat current between hot and cold reservoirs
can be completely blocked, modulated, or turned on by playing
with the initial state symmetry. Note that a different transport
control setup has been recently introduced by coupling vibrons
to internal states of trapped ions in crystal lattices [57].

Dissipation has been typically considered negative for
quantum information processing as it tends to destroy the
coherent quantum effects which characterize the ultimate
power of quantum computation. However, in a recent series
of breakthroughs [10–14], the situation has been reversed by
carefully engineering the dissipation process to implement
universal quantum computation [14] or in order to drive the
open quantum system to desired (e.g., maximally entangled,
matrix-product, etc.) states [11–13]. Furthermore, controlled
dissipation has been also used to protect quantum states
by extending their lifetime [58]. By combining these novel
dissipation engineering techniques with design strategies
based on symmetry principles, one can for instance create
open quantum systems capable of storing at the same time
different coherent quantum states associated with the multiple,
symmetry-protected steady states. We expect this line of
research will trigger further advances in dissipative state
engineering and dissipative quantum computation.

From a general point of view, the results in this paper
demonstrate the power of symmetry as a tool to obtain deep
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insights into nonequilibrium physics. This idea has been
recently exploited to investigate nonequilibrium fluctuations
in classical diffusive systems [19]. By demanding invariance
of the optimal path responsible for a given fluctuation under
symmetry transformations, a remarkable and general isometric
fluctuation relation (IFR) for current statistics was derived [19]
which links in a simple way the probability of different but
isometric current fluctuations, and generalizes in this context
the Gallavotti-Cohen fluctuation theorem. This new symmetry
implies remarkable hierarchies of equations for the current
cumulants and the nonlinear response coefficients which go
far beyond Onsager’s reciprocity relations and Green-Kubo
formulas. The recent extension of large deviation formalism
to open quantum systems [5] allows one to explore the quantum
version of the IFR starting from the spectral properties of the
deformed superoperator Wλ and their behavior in the large
size limit. The extension of the IFR to the quantum realm
would open the door to further exact and general results valid
arbitrarily far from equilibrium in a quantum setting, based on
similar invariance principles.

Finally, in the open quantum network example studied
above we have explored the role of geometrical symmetries
of the Hamiltonian on quantum transport, although our results
apply to general symmetries. It would be interesting to find
examples with other types of symmetries and systematic ways
to implement symmetry control over transport properties.
Clues are to be found in the recent application of symmetry
principles to the problem of controllability and simulability of
open quantum systems [25].
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APPENDIX A: AVERAGE CURRENT IN A NESS

We are interested in the average current for a generic
Markovian open quantum system. As described in the main
text, this average can be obtained from the moment generating
function of the current distribution as

〈q〉 = lim
t→∞

1

t
[∂λ ln Zλ(t)]λ=0 ,

where Zλ(t) = Tr[ρλ(t)]. By differentiating the above expres-
sion taking into account the definition of Zλ(t), and noting that
ρλ(t) = exp(+tWλ)ρ(0), we have

〈q〉 = lim
t→∞

Tr[(∂λWλ)ρλ(t)]

Tr[ρλ(t)]

∣∣∣∣
λ=0

, (A1)

where the new superoperator ∂λWλ is defined via

(∂λWλ)η = e+λL2ηL2
† − e−λL1ηL1

†, ∀η ∈ B(H), (A2)

as derived from the definition of Wλ in Eq. (2) of the
main text. If we now restrict the initial density ma-
trix to a particular symmetry subspace, ρ(0) ∈ Bαα , we
have that limt→∞ ρλ(t)|λ=0 = ρNESS

α , which is normalized,

Tr[ρNESS
α ] = 1, and therefore

〈qα〉 = Tr
[
L2ρ

NESS
α L

†
2

] − Tr
[
L1ρ

NESS
α L

†
1

]
. (A3)

On the other hand, for a general ρ(0) ∈ B(H) we may use in
Eq. (A1) the spectral decomposition

ρλ(t) =
∑
αβν

e+tμν (λ)(ω̃αβν(λ),ρ(0))ωαβν(λ) ,

with μν(λ) and ωαβν(λ) the eigenvalues and associated
(right) eigenfunctions of Wλ; see main text. As for Wλ,
the new superoperator ∂λWλ leaves invariant the sym-
metry subspaces, (∂λWλ)Bαβ ⊂ Bαβ , so Tr[(∂λWλ)ρλ(t)] =∑

ααν e+tμν (λ) (ω̃ααν(λ),ρ(0)) Tr[(∂λWλ)ωααν(λ)]. By noting
that for λ = 0 the largest eigenvalue of Wλ within each
symmetry eigenspace Bαα is necessarily zero, with associated
normalized right eigenfunction ωαα0(λ = 0) = ρNESS

α and dual
ρ̃NESS

α , we hence obtain

〈q〉 =
∑

α〈qα〉(ρ̃NESS
α ,ρ(0)

)
∑

α

(
ρ̃NESS

α ,ρ(0)
) .

APPENDIX B: DIMENSIONAL REDUCTION OF THE
HILBERT SPACE FOR THE OPEN QUANTUM NETWORK

As briefly described in the main text, we may use the totally
symmetric nature of the maximal current fluctuating phase,
|q| > |qαmax |, to drastically reduce the dimension of the relevant
Hilbert space in this regime. In this way the dimension of the
problem for a network of N qubits can be reduced from an
exponential O(2N ) to a linear scaling O(N ). Such dimensional
reduction was already noted in previous studies of the related
Lipkin-Meshkov-Glick model [53,54]. Combining this result
with the size independence found for the pair-antisymmetric,
minimal current phase, |q| < |qαmin |, this technique allows us
to reach network sizes up to N = 40 qubits, much larger
than what any numerical method can handle with general
multipartite qubit states. This size range is enough to study
the dominant scaling for finite-size corrections, thus allowing
us to obtain estimates of the cumulant generating function of
the current distribution and the current large deviation function
in the thermodynamic limit; see Fig. 5 in the main text.

1. Totally symmetric regime (|q| > |qαmax |)
We start by noting that a completely symmetric state of

bulk qubits is univocally described by the total number of
excitations in the bulk. Let |n〉 ≡ ⊗N

i=1|ni〉 ∈ H, with |ni〉 =
|0〉 or |1〉 a state of the Hilbert space for our open quantum
network as expressed in the computational basis, and denote
as Nb ≡ N − 2 the number of bulk qubits. An arbitrary state
with a totally symmetric bulk can be thus written as

|K; n1,nN 〉 = 1√(
Nb

K

)
∑

n2...nN−1=0,1

|n〉δ
(

K −
N−1∑
i=2

ni

)
, (B1)

where K ∈ [0,Nb] is the total number of excitations in the
bulk in this symmetric state, and the (Nb

K ) in the normalization
constant counts the number of ways of distributing K excita-
tions among Nb bulk qubits. The dichotomy between bulk and
terminal qubits allows us to decompose the Hamiltonian (6)
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of the qubit network as H = H0 + Hb + HI, where

H0 ≡ h

N∑
i=1

σ+
i σ−

i , (B2)

Hb ≡ J

N−2∑
i = 2

i < j � N − 1

�ij , (B3)

with the definition �ij ≡ (σ+
i σ−

j + σ−
i σ+

j ), and

HI = J [(σ+
1 + σ+

N )�− + (σ−
1 + σ−

N )�+ + �1N ], (B4)

where we further define �± ≡ ∑N−1
i=2 σ±

i . It is then trivial to
show that the on-site contribution to the Hamiltonian, H0, is
diagonal in the lower-dimensional basis defined by the states
(B1), i.e., H0|K; n1,nN 〉 = h(K + n1 + nN )|K; n1,nN 〉, so we
can write

H0 = h

Nb∑
K = 0

n1,nN = 0,1

(K + n1 + nN )|K; n1,nN 〉〈K; n1,nN |.

(B5)

To understand the action of the bulk self-interaction part Hb on
states (B1), first notice that the operators �ij simply exchange
the states of qubits i and j whenever they are different, yielding
zero otherwise, i.e., �ij |n〉 = δni ,1−nj

|n〉ij , where |n〉ij is the
state in the computational basis resulting from exchanging
ni ↔ nj in |n〉. Using this expression when operating with
Hb on the bulk-symmetric states (B1), it is easy to show that
Hb is also diagonal in the basis defined by |K; n1,nN 〉, with
a prefactor counting the number of distinct pairs that we can
form with K |1〉’s and (Nb − K) |0〉’s, so

Hb=J

Nb∑
K=0

n1,nN =0,1

K(Nb − K)|K; n1,nN 〉〈K; n1,nN |. (B6)

It is now straightforward to show that the operators �±
move the state |K; n1,nN 〉 to |K ± 1; n1,nN 〉, with a prefactor
that counts the number of ways of distributing the pertinent
excitations among (Nb − 1) bulk sites and takes into account
the different normalizations. In particular, �±|K; n1,nN 〉 =
D±

K |K ± 1; n1,nN 〉, with

D+
K =

√
(K + 1)(Nb − K), (B7)

D−
K =

√
K(Nb − K + 1), (B8)

so we may write

�± =
Nb−(1−k±)∑

K = k±
n1,nN = 0,1

D±
K |K ± 1; n1,nN 〉〈K; n1,nN |, (B9)

with k± ≡ (1 ∓ 1)/2. In this way the Hamiltonian of the open
quantum network with a completely symmetric bulk can be
fully written in terms of the low-dimensional basis formed by
vectors (B1). As the Lindblad operators in the master equation
(1) only act on the network terminal qubits, the dimension

of the problem in the totally symmetric regime is reduced
spectacularly from the original 2N to a much lower dimension
4(N − 1), which scales linearly with the number of qubits.

2. Pair-antisymmetric regime (|q| < |qαmin |)
In this section we want to show that, for an open and fully

connected quantum network of size N with a pair of bulk
qubits in antisymmetric state, the associated deformed Lind-
blad superoperator (2)—and the corresponding eigenvalue
problem—is equivalent to the superoperator obtained for a
network with N − 2 qubits. This stems from the antisymmetric
pair of qubits forming a dark state of the dynamics, which
remains frozen in time and effectively decouples from the rest
of the system.

We hence start with a network with N qubits, such that the
pair formed by the (otherwise arbitrary) bulk qubits a and b is
in an antisymmetric state. This means that our initial density
matrix can be written as ρ− ≡ |−〉〈−|ab ⊗ ρN−2, where |−〉 =

1√
2
(|10〉 − |01〉) is the singlet, antisymmetric state, and ρN−2

is an arbitrary reduced density matrix for the remaining N − 2
qubits. To see how the deformed Lindblad superoperator (2)
acts on this pair-antisymmetric mixed state, we first decompose
the Hamiltonian (6) in three parts, H = Hab + HN−2 + Hint

with

Hab = h(σ+
a σ−

a +σ+
b σ−

b )+J�ab,

Hint = J

⎡
⎢⎢⎢⎣(σ+

a +σ+
b )

N∑
k = 1

k �= a,b

σ−
k + (σ−

a + σ−
b )

N∑
k = 1

k �= a,b

σ+
k

⎤
⎥⎥⎥⎦ ,

and HN−2 is the Hamiltonian (6) for N − 2 qubits excluding
qubits a and b. It is now a simple task to show that the
terms Hab and Hint of the Hamiltonian decomposition above
commute with any pair-antisymmetric density matrix of the
form ρ−, [Hab,ρ−] = 0 = [Hint,ρ−], and hence the eigenvalue
problem boils down to that of a network with (N − 2) qubits.
In particular,

ρ̇− = −i[H,ρ−] + L(λ)
1 ρ− + LNρ− = W (N)

λ ρ−

= |−〉〈−|ab ⊗ ( − i[HN−2,ρN−2]+L(λ)
1 ρN−2+LNρN−2

)
= |−〉〈−|ab ⊗ (

W (N−2)
λ ρN−2

) = |−〉〈−|ab ⊗ ρ̇N−2,

where L(λ)
1 and LN are the Lindblad superoperators which can

be defined from Eq. (2) above. Interestingly, using this method
in a recursive manner it can be proved that the eigenvalue
problem for any open quantum network of arbitrary size with
a pair-antisymmetric bulk (i.e., with nonoverlapping pairs of
bulk qubits in singlet state) can be reduced to the case N = 2,3,
depending on N being even or odd. This explains why the
pair-antisymmetric current fluctuation regime |q| < |qαmin | in
our quantum network is size independent, providing a dramatic
dimensional reduction of the relevant Hilbert space.
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