
MITNE-
278
C. 1

NUCLEAR ENGINEERING

DERIVATION OF THE DIAGONAL @-WEIGHTING METHOD

MITNE-278

by
Michael L. Zerkle

September 1987

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

DERIVATION OF THE DIAGONAL @-WEIGHTING METHOD

MITNE-278

by
Michael L. Zerkle

September 1987

ABSTRACT

A new stiffness decoupled method for solving the point kinetics
equations, the Diagonal e-Weighting Method (DTM), is derived and
benchmarked against a traditional 6-weighting method using Crank-
Nickolson weighting. It is concluded that the traditional 6-weighting
method is superior to the DTM and other stiffness decoupled methods.

2

ACKNOWLEDGMENTS

The author would like to express his appreciation to Professor
Allan F. Henry for his suggestions and support during the course of this
work. Many of the original ideas contained in this report are his.

Support for this work was provided by the Sandia National
Laboratory.

3

Table of Contents

Page
Chapter 1. Introduction 6

Chapter 2. Theory 7
2.1 Derivation 7
2.2 Quadratic w(t) Approximation 9
2.3 0-Weighting Coefficient Selection 11
2.4 Algorithm 12

Chapter 3. Numerical Results 15

3.1 Ramp Reactivity Insertion 15

3.2 Positive Step Reactivity Insertions 16
3.3 Negative Step Reactivity Insertions 16

Chapter 4. Conclusions and Recommendations 23

Chapter 5. References 24

Appendix A. Derivation of the Traditional 0-Weighting Method 25

Appendix B. DTMTST Program 29
B.1 Input Description 29
B.2 Source Listing 30

4

List of Figures

2.1 Diagonal 8-Weighting Method Algorithm 13

A.1 Traditional 8-Weighting Method Algorithm 28

List of Tables

Page

2.1 Effects of DTM Algorithm Options on Accuracy and Speed: 14

0.1 P/s Ramp Reactivity Insertion

3.1 Comparison of DTM vs. 8-Weighting: 0.1 p/s Ramp Reactivity 17

Insertion, Amplitude Function

3.2 Comparison of DTM vs. 8-Weighting: 0.1 P/s Ramp Reactivity 18

Insertion, Inverse Period
3.3 Comparison of DTM vs. 8-Weighting: Positive Reactivity Steps, 19

Amplitude Function
3.4 Comparison of DTM vs. 8-Weightine: Positive Reactivity Steps, 20

Inverse Period
3.5 Comparison of DTM vs. 8-Weighting: Negative Reactivity Steps, 21

Amplitude Function
3.6 Comparison of DTM vs. 8-Weightine: Negative Reactivity Steps, 22

Inverse Period

4.1 Comparison of Traditional 8-Weighting vs. Stiffness Decoupling 23

Methods: 0.1 P/s Ramp Reactivity Insertion, At=0.1 s

5

Chapter 1

INTRODUCI'ION

The point kinetics equations, in general, are a stiff system of

nonlinear, ordinary differential equations. This "stiffness" is due to

the orders of magnitude difference between the prompt and delayed

neutron time constants. As a result, small time steps are required to

ensure the accuracy and stability of the numerical method used to solve

the point kinetics equations. Chao and Attard [1] observed that the

stiffness characteristic is present only in the time response of the

prompt neutron density and not in that of the delayed neutron

precursors. Their stiffness confinement method permits the use of large

time steps while maintaining accuracy and stablity. Several algorithms

using this idea have been developed at MIT by Parlos [2] and Tanker [3].

This report presents a new method for solving the point kinetics

equations based on the stiffness decoupling concept, the Diagonal

9-Weighting Method (DTM). The DTM is then benchmarked against a

traditional 9-weighting method for a wide range of transients.

6

Chapter 2

THEORY

2.1 Derivation

The goal of all point kinetics methods is to solve the following

initial value problem:

T(t) = A T(t) + X A Ci(t)

i=1

1 (t = -lT(t) - A C.(t)

T(0) =T

C (0) X.- 0
1

where,

, i = 1,2,...,I

(1)

(2)

(3)

(4)' = 1'2.....I

T(t) = the amplitude function.
C(t) = the effective delayed neutron precursor population of the

ith delayed group.
p(t) = the reactivity (assumed to be a known function of time).

P = the effective delayed neutron fraction.

P. = the effective delayed neutron fraction of the ith delayed
1

group.
A = the prompt neutron lifetime.
X. = the decay constant of the ith delayed group.
1

I = the number of delayed groups.

In order to decouple the stiffness from the I delayed neutron precursor

equations an auxiliary function w(t), the inverse period, is introduced

such that

T(t) = o(t)T(t). (5)

With equation (5) used to eliminate T(t) the precursor equations become

R I

C.(t) = X.C.(+ .C (t) ,i =1,2,...
1 , .t(t)A + A-p(t) L 1 1 2

j=1

(6)

7

Equation (6) can be expressed in more compact matrix notation as

C = Q'C - C (7)

where,

C Col{C 1,C2 ,. C1},

QE<fwA+P-p Co3 1'12'''I'

X T Row{X 1 ,X2'''

d Diag{AX, 2 ''''

An equivalent form of equation (7) is

e d t dt

M t
Multiplying (8) by e =d and integrating over An E [t ,t n+1] using a

diagonal 8-weighting matrix we get

eNt
ed n+l1 n+l1

X t XNt
S=d nC- d n+1 X TCn+1

+ A (I - d)edtn P, nTCn

d tn+
Then, multiplying by e ~

_ Tn 1T n+1l

and collecting terms we get,

= -n + A_(I d n T

= e =dAn + An(I - -T]Cn

where, because of its simple structure, the coefficient matrix on the

LHS of (10) can be inverted analytically. The resulting expression for

0_ is

A T

+1 I+ n-ld O+1- ~hdAn I I-9)'T C
- - T = i n(1 = =d) --

n- +d +1

In terms of the previous notation, +1 for i=1,2,..,I, is given by

8

(9)

(10)

-N. A

i+l =J e n-XiA n A(1- .)e 1 n

+ 1 1n~ + i+311 1 n+1 A + Ppn+1

A 8.3.
+ n i i

(Wn+1A+P-pn+1) n 0 j

j=1

A (1-9 .)e a n I~
+ n ()e j A .]

w nA + P - p n . i
J=1 j3=1

Finally, note that Tn+1 can be obtai

from equations (1) and (5):

I

Tn+l _ A +1-

'n+1A + P - n+1

-A.A 1
j=e JnCn

(12)

ned, without approximation,

(13)

Two items remain to be addressed: determination of w(t) and

selection of the 8-weighting coefficients. They will be discussed

individually in the next two sections.

2.2 Quadratic w(t) Approximation

Assume that over some time interval An E [tn tn+ 1] that w(t) can

be approximated by a quadratic function of time of the form

t-t t-t 2

w(t) = Wn + b n + c , tn < t tn+1
.n n

where w3 and the coefficients are given by,

p - I
S= n + .1n A Ti1 1

(14)

(15)

9

b = n A ,nfn

c = (on+1 n n n

From equation (14) we get

- - 2
n + n+1 = T$4n+i ~ n) .(16)

n

A formally exact expression for w(t) can be derived by

differentiating the point kinetics equation [4], the result being

W(t) = -W(t)2 [Xs(t) + A (t)

p(t) + X'(t)(p(t) - :E) + i.
+ A (17)

where an additional auxiliary function X'(t), the instantaneous,
e

effective multi-group decay parameter, is defined to be

I

X C i(t)

A .C.(t)

i=1

Combining equation (16) and (17) we get

-- 2
(n + l (n+1n)n+1 n

n

_2 .n W 2 , n+1
n e,n A -n n+1 e,n+1 + A n+1

Pn+ Pn+1+ e,nPn) + "en+(Pn+1 P) + 22AX~ .
+ solvigA fr(19)

Finally, solving for the most positive root of equation (19),

10

n+1 e,n+1 11
Wn+1 2A + 2 + -

n

n+ en+1+ Xe,n n-P A

+ [n+1 e,n+l
2A + 2 +

e,n+l ~n+l1-p) + 221I,

- 62 + , _ n]]
n A e, n A n

n
(20)

2.3 O-Weighting Coefficient Selection

Equation (11) will not hold steady state for an arbitrary choice of

d Therefore 0 must be defined such that it will hold steady state.=d' =d

Accordingly the weighting coefficient matrix _0 is define to be

d Diag{81 , 02' .'''.0I

where,

-N. A
i n

= -X. -N.A
n 1 in

I - e

(21)

Substitution of this expression into Equation (12) with p = w = 0 in

the definitions (7) of 1' and C taken as

i

C (0) = Q T0
1

yields Cn+ =C(0).

11

2.4 Algorithm

Figure 2.1 presents the DTM algorithm. Note that two options are

available. The first, IOMG, controls the method used for the initial

estimate of wn+1. The second, ITER, controls the number of iterations

used to converge the solution. The algorithm is discussed in detail

below.

The first order of business is bookkeeping. The kinetics

parameters from the previous time step are updated and pn is determined.

If reactivity is a known function of time pn+1 and n+1 are calculated.

If feedback is significant an initial estimate of pn+1 and pn+1 is

determined.

Next an estimate of on+1 must be determined. If IOMG = 0, wn+1 is

set equal to wn. If IOMG = 1, wn+1 is calculated using the quadratic

w(t) approximation, equation (20), assuming N, =

The last step is an iteration loop in which +1, Xn+' Wn+1, and

Tn+1 are determined. ITER iterations are performed to converge the

solution. Also, if significant feedback is present pn+1 and pn+1 could

be recalculated.

Table 2.1 shows the effects of the options on the algorithm

accuracy and speed for a simple problem. If IOMG=0, setting W n+1 =n'

2-3 iterations are required for convergence. However, for IOMG=1, using

the quadratic w(t) approximation, no iteration is required. In general,

the use of IOMG=1 and ITER=1 will provide the best combination of

accuracy and speed. The numerical results referenced in this report

were obtained using IOMG=1 and ITER=1.

The FORTRAN code for an implementation of the DTM algoritm, the

DTM1D and QOMGD routines, is given in Appendix B.

12

~2i~EEID

Figure 2.1 Diagonal @-Weighting Method Algorithm

13

Tn +1

cci+1

e,n e,n+1

n n+1

TABLE 2.1

Effects of DTM Algorithm Options on Accuracy and Speed:
0.1 P/s Ramp Reactivity Insertion

I Ia
0 T Amplitude Function, T(t) Exec.

At M E Time

(s) G R t=6 s t=8 s t=9 s t=10 s (s)

10-4 0 1 5.5821 4.2786E+1 4.8752E+2 4.5126E+5 565.6
2 5.5821 4.2786E+1 4.8752E+2 4.5116E+5 956.4

1 1 5.5821 4.2786E+1 4.8752E+2 4.5116E+5 658.5
2 5.5821 4.2786E+1 4.8752E+2 4.5116E+5 1049.2

10-2 0 1 5.5822 4.2793E+1 4.8801E+2 4.6377E+5 5.5

2 5.5821 4.2789E+1 4.8768E+2 4.5357E+5 9.4

1 1 5.5821 4.2789E+1 4.8767E+2 4.5354E+5 6.6

2 5.5821 4.2789E+1 4.8768E+2 4.5357E+5 10.5

10 0 1 5.5888 4.3131E+1 5.0836E+2 1.4837E+6 0.5
2 5.5884 4.3091E+1 5.0423E+2 8.4655E+5 0.8

1 1 5.5882 4.3083E+1 5.0390E+2 8.4172E+5 0.5
2 5.5884 4.3091E+1 5.0423E+2 8.4540E+5 1.0

aExecution times (cpu sec) for 8 MHz 8086/8087 PC.

14

Chapter 3

NUMERICAL RESULTS

The DTM has been tested with three types of problems and the

results compared against those obtained using the traditional

6-weighting method (see Appendix A for a derivation of the traditional

6-weighting method). The three types of problems examined were a ramp

reactivity insertion, positive step reactivity insertions, and negative

step reactivity insertions. For all three problems the following

kinetics parameters were used:

A = 2x10 5 s
P = 0.007
P. = 0.000266, 0.001491, 0.001316, 0.002849, 0.000896, 0.000182
1

X. = 0.0127, 0.0317, 0.115, 0.311, 1.4, 3.87 1/s.

All runs were made using a constant timestep to prevent ambiguity when

comparing the accuracy and speed of the numerical methods. The DTM runs

were made using the suggested option (IOMG=1 and ITER=1) and the

traditional 6-weighting method runs were made using Op = 0d = 0.5 (Crank-

Nickolson). The calculations were performed in double precision on a

8 MHz 8086/8087 PC using MS-DOS 3.1 and IBM Professional FORTRAN.

3.1 Ramp Reactivity Insertion

The first case tested was a 0.1 P/s ramp reactivity insertion

covering the range of reactivities from prompt subcritical to prompt

supercritical. Tables 3.1 and 3.2 present the amplitude function and

inverse period obtained using several timestep sizes. Table 3.1 shows

that the accuracy of the DTM is comparable to that of the traditional

6-weighting method, however it is approximately 30% slower. In

addition, it can be infered from Table 3.2 that the quadratic W(t)

approximation is both valid and accurate.

15

3.2 Positive Step Reactivity Insertions

Four positive step reactivity insertions were considered: two

prompt subcritical p=0.003 and p=0.0055, one prompt critical p=0.007,

and one prompt supercritical p=0.008. Tables 3.3 and 3.4 show the

amplitude function and inverse period obtained using various timesteps.

The DTM has difficulty modeling positive step reactivity insertions,

requiring and order of magnitude smaller timestep to provide accuracy

comparable to the 0-weighting method. This is due to the need to

accurately model rapid exponential decay of the inverse period during

the prompt jump. In addition, if a large timestep is used, the

quadratic w(t) approximation encounters a numerical instability during

the initial timestep. Since for the initial timestep

W0 = p(O)/A>>l,

it can clearly be seen from equation (20) that the square root term will

become imaginary unless a small timestep is used. For subsequent

timesteps this restriction is relaxed due to the rapid decay of w. Note

that this limitation is only present for positive step reactivity

insertions.

3.3 Negative Step Reactivity Insertion

Four negative step reactivity insertions were considered:

p=-0.003 , p=-0.0055, p=-0.007, and p=-0.014. Tables 3.5 and 3.6 give

the values of the amplitude function and inverse period for various

timesteps. In general, the accuracy of the DTM is comparable for the

smaller negative steps and superior for the larger negative steps. Note

that the use of 0 = 1 (a fully implicit prompt term) would have
p

eliminated the instability problem that appears at larger timesteps with

the traditional 0-weighting method.

16

TABLE 3.1

Comparison of DTM vs. 0-Weighting: 0.1 /s Ramp Reactivity Insertion, Amplitude Function

Amplitude Function, T(t)
Numerical t -4 -3 -2 -1
Method (s) At=10 s At=10 s At=10 s At=10 s

0-Weighting 2 1.3382 1.3382 1.3382 1.3382
4 2.2284 2.2284 2.2284 2.2286 (.01)a
6 5.5821 5.5821 5.5821 5.5837 (.03)
8 4.2786E+1 4.2786E+1 4.2788E+1 4.2914E+1 (.30)
9 4.8752E+2 4.8752E+2 4.8762E+2 (.02) 4.9723E+2 (1.99)
10 4.5116E+5 4.5119E+5 (.01) 4.5331E+5 (.48) 7.9076E+5 (75.27)
11 1.7922E+16 1.7954E+16 (.18) 2.1464E+16 (19.76) -5.8778E+14

DTM 2 1.3382 1.3382 1.3382 1.3384 (.01)
4 2.2284 2.2284 2.2284 2.2292 (.04)
6 5.5821 5.5821 5.5821 5.5882 (.11)
8 4.2786E+1 4.2786E+1 4.2789E+1 (.01) 4.3083E+1 (.71)
9 4.8752E+2 4.8752E+2 4.8767E+2 (.03) 5.0390E+2 (3.43)
10 4.5116E+5 4.5119E+5 (.01) 4.5354E+5 (.53) 8.4172E+5 (87.38)
11 1.7922E+16 1.7955E+16 (.18) 2.1534E+16 (20.15) -5.3993E+14

0-Weightingb 499.5 sec 49.9 sec 4.9 sec 0.4 see

DTM 658.5 sec 65.9 sec 6.6 sec 0.5 see

aValues in parentheses are % relative error using At=10 4s as reference.

bExecution times (cpu sec) for 8 MHz 8086/8087 PC.

I-.
-4

TABLE 3.2

Comparison of DTM vs. O-Weighting: 0.1 P/s Ramp Reactivity Insertion, Inverse Period

Inverse Period, w(t)
Numerical t -4 -3 -2 -1
Method (s) At=10 s At=10 s At=10 s At=10 s

O-Weighting 2 1.9261E-1 1.9261E-1 1.9261E-1 1.8676E-1 (-3.04)
4 3.3145E-1 3.3145E-1 3.3145E-1 3.3122E-1 (-.07)
6 6.3269E-1 6.3269E-1 6.3268E-1 6.3226E-1 (-.07)
8 1.6508E+0 1.6508E+0 1.6508E+0 1.6465E+0 (-.26)
9 3.6049E+0 3.6049E+0 3.6046E+1 (-.01) 3.5771E+0 (-.77)
10 1.2346E+1 1.2346E+1 1.2344E+1 (-.02) 1.2101E+1 (-1.98)
11 3.8852E+1 3.8851E+1 3.8849E+1 (-.01) 3.8579E+1 (-.70)

ID1M 2 1.9261E-1 1.9261E-1 1.9261E-1 1.8275E-1 (-5.12)
4 3.3145E-1 3.3145E-1 3.3145E-1 3.3071E-1 (-.22)
6 6.3269E-1 6.3269E-1 6.3269E-1 6.3203E-1 (-.10)
8 1.6508E+O 1.6508E+0 1.6508E+0 1.6483E+0 (-.15)
9 3.6049E+0 3.6049E+0 3.6049E+0 3.5984E+0 (-.18)
10 1.2346E+1 1.2346E+1 1.2346E+1 1.2330E+1 (-.13)
11 3.8852E+1 3.8852E+1 3.8851E+1 3.8841E+1 (-.03)

00

aValues in parentheses are % relative error using At=104 s as reference.

TABLE 3.3

Comparison of DTM vs. 6-Weighting:
Positive Reactivity Steps, Amplitude Function

19

p Method At Amplitude Function, T(t)

t=1 s t=10 s t=20 s

.003 @-Weighting .001 2.2098 8.0192 2.8297E+1
.01 2.2098 8.0192 2.8297E+1
.1 2.2091 8.0193 2.8298E+1

DTM .0001 2.2098 8.0192 2.8297E+1
.001 2.2099 8.0192 2.8298E+1
.01 2.2155 8.0332 2.8345E+1

t=.1 S t=1 S t=10 s

.0055 6-Weighting .001 5.2100 1.5183E+1 1.3886E+5
.01 5.2106 1.5183E+1 1.3887E+5
.1 7.2564 1.5180E+1 1.4005E+5

DTM .0001 5.2100 1.5183E+1 1.3886E+5
.001 5.2108 1.5184E+1 1.3888E+5

t=.01 s t=.5 s t=2 s

.007 6-Weighting .0001 4.5089 5.3459E+3 2.0592E+11
.001 4.5089 5.3462E+3 2.0597E+11
.01 4.5133 5.3813E+3 2.1142E+11

DTM .00005 4.5090 5.3459E+3 2.0592E+11
.0001 4.5093 5.3460E+3 2.0592E+11
.001 4.5582 5.3563E+3 2.0637E+11

t=.01 s t=.1 s t=1 s

.008 6-Weighting .00001 6.2029 1.4104E+3 6.1633E+23
.0001 6.2029 1.4104E+3 6.1641E+23
.001 6.2044 1.4122E+3 6.2394E+23
.01 6.3603 1.6038E+3 2.2187E+24

DTM .00001 6.2029 1.4104E+3 6.1633E+23
.0001 6.2038 1.4106E+3 6.1647E+23
.001 6.3052 1.4254E+3 6.3017E+23

TABLE 3.4

Comparison of DTM vs. 8-Weighting:
Positive Reactivity Steps, Inverse Period

20

p Method At Inverse Period, w(t)

t=1 s t=10 s t=20 s

.003 8-Weighting .001 1.9099E-1 1.2926E-1 1.2443E-1
.01 1.9099E-1 1.2926E-1 1.2443E-1
.1 9.7978E+0 1.2926E-1 1.2443E-1

DTM .0001 1.9099E-1 1.2926E-1 1.2443E-1
.001 1.9098E-1 1.2926E-1 1.2443E-1
.01 1.9035E-1 1.2925E-1 1.2443E-1

t=.1 s t=1 S t=10 s

.0055 @-Weighting .001 1.4692 1.0739 1.0085
.01 1.4612 1.0739 1.0085
.1 -2.0654E+1 1.1617 1.0085

DTM .0001 1.4693 1.0739 1.0085
.001 1.4688 1.0739 1.0085

t=.01 s t=.5 s t=2 s

.007 8-Weighting .0001 7.8214E+1 1.1648E+1 1.1644E+1
.001 7.8213E+1 1.1648E+1 1.1644E+1
.01 7.8137E+1 1.1648E+1 1.1644E+1

DTM .00005 7.8212E+1 1.1648E+1 1.1644E+1
.0001 7.8206E+1 1.1648E+1 1.1644E+1
.001 7.7380E+1 1.1648E+1 1.1644E+1

t=.01 s t=.1 S t=1 S

.008 8-Weighting .00001 1.0701E+2 5.2985E+1 5.2804E+1
.0001 1.0701E+2 5.2985E+1 5.2804E+1
.001 1.0699E+2 5.2985E+1 5.2804E+1
.01 1.0567E+2 5.2963E+1 5.2804E+1

DTM .00001 1.0701E+2 5.2985E+1 5.2804E+1
.0001 1.0700E+2 5.2985E+1 5.2804E+1
.001 1.0610E+2 5.2983E+1 5.2804E+1

TABLE 3.5

Comparison of DTM vs. 6-Weighting:
Negative Reactivity Steps, Amplitude Function

21

p Method At Amplitude Function, T(t)

t=1 s t=10 s t=20 s

-.003 6-Weighting .01 .63896 .43441 .33486
.1 .77358 .43451 .33486

DTM .001 .63896 .43441 .33486
.01 .63905 .43444 .33487
.1 .71754 .43646 .33596

t=.1 s t=2 s t=10 s

-.0055 6-Weighting .001 .55023 .44781 .28522
.01 .55081 .44781 .28522
.1 .13781 .57005 .28595

DTM .001 .55024 .44781 .28522
.01 .55063 .44792 . 28526
.1 .46533 .48706 .28722

t=.01 s t=.5 s t=2 s

-. 007 0-Weighting .0001 .49968 .45839 .38820
.001 .49956 .45839 .38820
.01 .22157 .45839 .38820

DTM .0001 .49968 .45839 .38820
.001 .49962 .45839 .38820
.01 .46316 .45860 .38831

t=.01 s t=.5 s t=2 s

-.014 6-Weighting .0001 .33257 .29687 .23871
.001 .33256 .29687 .23871
.01 -. 12068 .29687 .23871

DTM .0001 .33257 .29687 .23871
.001 .33257 .29688 .23871
.01 .30961 .29710 .23882

TABLE 3.6

Comparison of DTM vs. 8-Weighting:
Negative Reactivity Steps, Inverse Period

22

p Method At Inverse Period, w(t)

t=1 s t=10 s t=20 s

-.003 8-Weighting .01 -7.0854E-2 -3.1211E-2 -2.2480E-2

.1 -8.7137E+1 -1.4701E-1 -2.2530E-2
DTM .001 -7.0855E-2 -3.1211E-2 -2.2480E-2

.01 -7.0905E-2 -3.1214E-2 -2.2481E-2

.1 -5.0213E+1 -6.4822E-2 -2.2557E-2

t=.1 s t=2 s t=10 s

-.0055 6-Weighting .001 -1.7283E-1 -8.0956E-2 -4.2051E-2
.01 -8.3139E-1 -8.0956E-2 -4.2051E-2

.1 1.8704E+3 -1.3415E+2 -1.6397E+0

DTM .001 -1.7283E-1 -8.0957E-2 -4.2051E-2
.01 -3.0459E-1 -8.0997E-2 -4.2057E-2
.1 1.1863E+2 -4.2573E+1 -2.7811E-1

t=.01 s t=.5 s t=2 s

-.007 8-Weighting .0001 -8.5093E-1 -1.4503E-1 -9.1133E-2

.001 -6.8347E-1 -1.4503E-1 -9.1133E-2

.01 8.7699E+2 -1.4503E-1 -9.1133E-2
DTM .0001 -8.5171E-1 -1.4503E-1 -9.1133E-2

.001 -7.5026E-1 -1.4504E-1 -9.1134E-2

.01 5.4802E+1 -1.4530E-1 -9.1184E-2

t=.01 s t=.5 s t=2 s

-.014 8-Weighting .0001 -3.4479E-1 -1.9223E-1 -1.1832E-1
.001 -3.0554E-1 -1.9223E-1 -1.1832E-1
.01 -3.9433E+3 -1.9224E-1 -1.1832E-1

DTM .0001 -3.4500E-1 -1.9223E-1 -1.1832E-1
.001 -3.1581E-1 -1.9224E-1 -1.1832E-1
.01 7.8767E+1 -1.9268E-1 -1.1840E-1

Chapter 4

CONCLUSIONS AND RECOMMENDATIONS

Stiffness decoupling methods do not provide a significant

improvement in accuracy, speed or stability compared to the traditional

0-weighting method using Crank-Nickolson weighting. This can be clearly

seen in Table 4.1 where three stiffness decoupling methods developed at

MIT are compared to the traditional 0-weighting method. Even Parlos'

[2] implementation of the Stiffness Confinement Method (SCM) [3] is

outperformed by traditional 0-weighting (note that the SCM is 3 times

slower than traditional 0-weighting).

As a result, further development of stiffness decoupling methods

should be discontinued. Development of timestep selection rules for the

traditional 0-weighting method should be pursued instead.

TABLE 4.1

Comparison of Traditional 0-Weighting vs Stiffness Decoupling Methods:

0.1 /s Ramp Reactivity Insertion, At = 0.1 s

Amplitude Function, T(t)
tb

(s) 0-Weighting DTM Parlos' SDMa Parlos' SCM

2 1.3382 1.3384(.015 1.3386(.030) 1.3382
4 2.2286(.013) 2.2292(.036) 2.2311(.126) 2.2286(.013)
6 5.5837(.039) 5.5882(.120) 5.6157(.613) 5.5846(.056)
8 42.914 (.311) 43.083 (.706) 45.024 (5.24) 42.996 (.503)

d
CPU sec 0.036 0.045 0.045 0.11
Real sec __ I

aA stiffness decoupling method (Method #1) developed by Parlos [2].

bParlos' implementation of the Stiffness Confinement Method

(Method #2) [2].

cValues in parentheses are % relative error using At=10 s as reference.

dEquivalent execution time: double precision, 8 MHz 8086/8087.

23

Chapter 5

REFERENCES

1. Y. A. Chao and A. Attard, "A Resolution of the Stiffness Problem of

Reactor Kinetics," Nuclear Science and Engineering, 90, 40 (1985).

2. A. G. Parlos, "Non-Linear Control of the Power Overshoot and Steady

State Error for a Tightly Coupled Core with no Significant T-H

Feedback," Special Problem, MIT Course 22.902, August, 1985.

3. A. Z. Tanker, "Comparison of Three Non-Stiff Numerical Methods to

Solve Point Kinetics Equations," Special Problem, MIT Course

22.902, July, 1986.

4. J. A. Bernard, A. F. Henry and D. D. Lanning, "The Design and

Experimental Evaluation of a Closed-Loop Digital Controller Based

on an Alternate Formulation of the Dynamic Period Equation,"
Proceedings of the American Nuclear Society Topical Meeting on

Reactor Physics and Safety, Saratoga Springs, NY, September, 1986,

pp. 610-621.

5. Prof. Allan F. Henry, personal communications.

6. T. A. Porsching and A. F. Henry, "Some Numerical Methods for

Problems in Reactor Kinetics," WAPD-T-2130 (February 1968).

7. T. A. Porsching,"The Numerical Solution of the Reactor Kinetics

Equations by Difference Analogs: A Comparison of Methods,"

WAPD-TM-564 (March 1966).

24

Appendix A

DERIVATION OF THE TRADITIONAL @-WEIGHTING METHOD

The traditional or standard 6-weighting method is a single-step,

semi-implicit numerical method for solving the point kinetics equations

[5,6]. The O's are weighting coefficients used to specify the

contribution of the explicit and implicit terms to be used in the

solution. Two O's are used: one for the prompt response associated

with the amplitude function (P) and the second for the delayed response

associated with the delayed neutron precursors (0d). The value of the

O's range from zero, indicating a fully explicit solution, to unity,

indicating a fully implicit solution.

The derivation of the traditional 6-weighting method starts with

the point kinetics equations:

I

dT(t) p(t)-p T(t) + X.C.(t) (A-1)
dt A

i=1
dC.(t) #.

dt - -- T(t) - X.C.(t) ,i=1,2,...,I (A-2)
dt A 1

where the kinetics parameters are defined in section 2.1. The dynamic

behavior of the delayed neutron precursors is determined by

approximating equation (A-2) using the following difference analog over

some small time interval An (An = t n+1 tn)I

1 16

A d A -

n

+ (1-0d)[-Tn - AC , i=1,2,...,I . (A-3)
d Aor w

Solving for Cn1we get,

25

P- + (1-0)Tn + 1 - (1-6d)A A]. Cn
+1 _A n d jd n i .(A-4)

1 + 0 A n .

The dynamic behavior of the amplitude function is obtained using a

similar difference analog to approximate equation (A-1),

Tn+l - Tn pn+1 Tn+1 + A $+1
A n p A L 1 J

+ (1-0) n T}fn + X.C . (A-5)

n+I 1
i=1

The expression for Tn+1 is obtained by substituting equation (A-4) into

(A-5) and rearranging:

Tn+ = A + (1-0)A n + 0 A 1 d Tn

p p dn i.

[(1-9) .~.Cn
+ p A A d)An i i 1 + (1-0)AnA .C

p n 1+ d n i p -1
i=1 dni

0 0 dAn'i i(
- n n+1 p n 1+d . (A-6)

i=1 n1

Equations (A-6) and (A-4) form a complete system of equations assuming p

is a known function of time.

A flowchart for the traditional O-weighting method algorithm is

given in Figure A.1. One should immediately note the simple structure

of the algorithm. Following some simple bookkeeping the first order of

business is to determine the reactivity at the end of the timestep

(pn+1). Next the amplitude function is updated using equation (A-6).

Finally, the delayed neutron precursors are updated using equation (A-4)

and the calculation proceeds to the next timestep. An implementation of

26

the traditional 0-weighting algorithm is given by the THETAM routine in

Appendix B.

Finally, comment on 0-weighting coefficient selection would be

appropriate. In general three strategies are recommended:

1. 0 = 0.5, 0d = 0.5
pd

2. 0 = 1.0, 0 = 0.5
p d

3. 0P = f(Gp, At), 0d = (Wd, At)

In the first case both the prompt and delayed equations receive equal

contributions from their explicit and implicit terms (Crank-Nickolson

weighting). In the second case the amplitude function is determined

using a fully-implicit scheme, which has the benefit of being

unconditionally stable, however the accuracy of the scheme tends to be

inferior. In the final case the weighting coefficients are determined

using some complicated function, as Porsching [7] suggests in his XITE-4

code. Crank-Nickolson weighting (OP = 0d = 0.5) appears to provide the

best combination of accuracy, speed, and stability for positive

reactivity insertions.

27

Q~E~D

Figure A.1 Traditional 6-Weighting Method Algorithm

28

Appendix B

DTMTST PROGRAM

B.1 Input Description

The input for a DTMTST case consists of 1 Title Card and NSTEP Data
Cards. The Title Card (Card Type 1) consists of a integer variable,
which indicates the number of Data Cards in the case, and a descriptive
title. The Data Card (Card Type 2) contains the data needed to specify

the numerical method and reactivity profile during a portion of the
case. There are NSTEP Data Cards in a case, and cases may be stacked.

Execution will continue until the last case in the input deck is
executed (until a EOF is encountered).

Card Type 1: Title Card

Column Format
1 I1
2-80 19A4,A3

Description
Number of steps (Data Cards) in this case.
Descriptive case title.

Card Type 2: Data Card (Format Free Input)

Name
INOP(1)
INOP(2)
INOP(3)

INOP(4)

Item
1
2
3

4

INOP(5) 5
INOP(6) 6

INOP(7)
DELN
RAMP

THETAP

7
8
9

10

THETAD 11

Description

Number of neutronic timesteps per print edit (Q 1).
Number of print edits in this step (Q 1).
Method to be used.
=0 Theta Method (THETAM).
=1 Diagonal Theta Method, Version 1.0 (DTM1D).

w n+1 option in the DTM1D routine (IOMG).

n+1 =n'

=1 Wn+1 determined using the quadratic w(t)

approximation assuming N' ~ X,e,n+1 e,n
Number of iterations used in DTM1D (ITER).

Reactivity insertion mode flag.
=0 Ramp reactivity insertion.
=1 Step reactivity insertion.

Number of lines printed per page.
Neutronic timestep (sec].
Reactivity Insertion.
INOP(6) = 0 Ramp rate [1/sec].
INOP(6) = 1 Step (final value of reactivity after

step).
Prompt 0-weighting coefficient for THETAM routine
(0.0 < 0 < 1.0).

Delayed 0-weighting coefficient for THETAM routine.

(0.0 < 0 < 1.0).

29

Name
NSTEP
TITLE

B.2 Source Listing

This section lists the FORTRAN-77 source code for the DTMTST
program.

30

PROGRAM DTMTST

C
C TITLE:
C
C Diagonal Theta-weighting Method Test (DTMTST)
C
C Copyright (c) 1987 by Massachusetts Institute of Technology
C
C AUTHOR:
C
C Michael L. Zerkle
C MIT, Room 38-181
C (617)253-0945
C
C PURPOSE:
C
C The DTMTST program was developed to test the diagonal theta-weighting
C method algorithm, a new numerical method for solving the point kinetics
C equations, and benchmark it against a traditional theta-weighting method
C algorithm.
C
C INPUT DESCRIPTION:
C

A DTMTST case consists of:
Data Cards (Card Type 2). The
Several cases may be stacked.
encountered.

1 Title Card (Card Type 1) and NSTEP
contents of each card type are given below.
Execution will continue until an EOF is

CARD TYPE 1: Title Card

COLUMN FORMAT NAME

1 11 NSTEP
2-80 A79 TITLE

CARD TYPE 2: Data Card (Format Free Input)

NAME

INOP(1)
INOP(2)
INOP(3)
INOP(4)
INOP(5)
INOP(6)
INOP(7)
DELN
RAMP
THETAP
THETAD

NAME

D:DTMTST.DAT
D:DTMTST.OUT

VARIABLES:
T*L A

NOTE

If INOP(3)=1 enter any value.
If INOP(3)=1 enter any value.

[R/WJ USAGE

R System Input.
W System Output.

DESCRIPTION

R*8 25 Effective delayed neutron fraction of the
ith delayed group.

R*8 Total effective delayed neutron fraction.
R*8 25 Effective delayed neutron precursor population

at time n (beginning of timestep).
R*8 25 Effective delayed neutron precursor population.
R*8 Timestep size, DELN=t(n+1)-t(n) [s].
1*4 Delayed group index.
1*4 7 Input options.

INOP(1) # of neutronic timesteps per print
edit (>=1).

31

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C ITEM
C
C 1
C 2
C 3
C 4
C 5
C 6
C 7
C 8
C 9
C 10
C 11
C
C FILE(S):
C UNIT
C
C 5
C 6
C
C KEY LOCAL
C NAME
C
C B
C
C
C
C
C
C
C
C
C
C

BT
CN

CN1
DELN
I
I NOP

C INOP(2) # of print edits in this step (>=1).
C INOP(3) Point kinetics method to be used.
C =0 Theta Method (THETAM).
C =1 Diagonal Theta Method, (DTM1D).
C INOP(4) Omega option for DTM1D routine (IMG)
C =0 OMGN1 = OMGN.
C =1 OMGN1 determined using the quadratic
C omega approximation, assuming
C LEN1 = LEN.
C INOP(5) Number of iterations to be used in
C DTM1D, INOP(5)=ITER (>=1).
C INOP(6) Reactivity insertion mode flag.
C =0 Ramp reactivity insertion.
C =1 Step reactivity insertion.
C INOP(7) # lines/page, edit control option.
C 1OMG 1*4 10MG = INOP(4).
C ITER 1*4 ITER = INOP(5).
C J 1*4 Timestep index.
C K 1*4 Print edit index.
C L R*8 25 Decay constant of the ith delayed group [1/s].
C LEN R*8 Effective, multi-group decay parameter
C @ t(n) [1/s].
C LEN1 R*8 Effective, multi-group decay parameter
C @ t(n+1) [1/s].
C LP R*8 Prompt neutron Lifetime [s].
C N 1*4 Line counter.
C NDNPG 1*4 Number of delayed neutron precursor groups to
C be used in this calculation.
C NN 1*4 Step index.
C NSTEP 1*4 Number of steps (Data Cards to be read) in
C this case. Each step corresponds to a
C different reactivity profile.
C OMGN R*8 Inverse period a t(n).
C OMGN1 R*8 Inverse period 2 t(n+1).
C PN R*8 Amplitude function a t(n).
C PN1 R*8 Amplitude function @ t(n+1).
C RAMP R*8 Reactivity Insertion.
C INOP(6)=0 Ramp rate [1/s].
C INOP(6)=1 Step (final value of reactivity
C after step change).
C RHODN R*8 Differential reactivity @ t(n) [1/s].
C RHODNI R*8 Differential reactivity @ t(n+1) [1/s].
C RHON R*8 Reactivity @ t(n).
C RHON1 R*8 Reactivity @ t(n+1).
C SBL R*8 Sum B(i)*L(i), i=1,NDNPG [1/s].
C SL2CN R*8 Weighted delayed neutron source a t(n)
C [s**-2].
C SL2CN1 R*8 Weighted delayed neutron source @ t(n+1)
C [s**-23.
C SLCN R*8 Delayed neutron source a t(n) [1/s].
C SLCN1 R*8 Delayed neutron source @ t(n+1) [1/s].
C THETAD R*8 Delayed weighting coefficient used in THETAM.
C THETAD=O fully explicit. THETAD=1 fully
C implicit. (0 <= THETAD <= 1).
C THETAP R*8 Prompt weighting coefficient used in THETAM.
C THETAP=0 fully explicit. THETAP=1 fully
C implicit. (0 <= THETAP <= 1).
C THETD R*8 25 Diagonal theta-weighting matrix used in DTM1D.
C THETD(i)=0 fully explicit. THETD(i)=1 fully
C implicit. (0 <= THETD(i) <= 1).
C TIME R*8 Simulated time [s].
C TITLE C*79 Case title printed at top of each page.
C
C ROUTINES/FUNCTIONS CALLED:
C NAME DESCRIPTION
C
C DTM1D Solves the point kinetics equations using the Diagonal
C Theta-weighting Method, (DTM).
C THETAM Solves the point kinetics equations using the traditional
C theta-weighting method.
C TIMER Calculates and edits the execution time.
C

32

C COMMON BLOCKS REFERENCED:
C NAME USAGE
C
C DTMD Diagonal Theta-weighting Matrix and control options for the
C DTM1D routine.
C KINDAT Kinetics parameters.
C THETA Theta-weighting coefficients.
C
C RESTRICTIONS/SPECIAL CONSIDERATIONS:
C
C DTMTST is currently programmed to read and write the system input
C and system output files to.a RAMDISK. This was done to minimize I/0
C time since I/0 to a RAMDISK is considerablely faster than I/0 to a
C hard disk or floppy disk. If insufficient RAM or a RAMDISK is not
C available the user can easily change to fixed drive I/0 my modifing
C the drive specification in the OPEN statements.
C
C CHANGE HISTORY:
C DATE PROGRAMMER DESCRIPTION
C
C 9/25/87 M. L. Zerkle Initial Release
C

C
COMMON/KINDAT/TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,
1 LEN,LEN1,BT,LP,8(25),L(25),SBL,CN(25),CN1(25),SLCN,
2 SLCN1,SL2CN,SL2CN1,NDNPG
REAL*8 TIME,DELNPN,PN1,OMGN,0MGN1,RHON,RHON1,RHODN,RHODN1,LEN
REAL*8 LEN1,BT,LP,B,L,SBLCN,CN1,SLCN,SLCN1,SL2CN,SL2CN1
INTEGER*4 NDNPG
COMMON/DTMD/THETD(25),ITER,IOMG
REAL*8 THETD
INTEGER*4 ITER,IOMG
COMMON/THETA/THETAP,THETAD
REAL*8 THETAP,THETAD
CHARACTER*79 TITLE
INTEGER*4 I,J,K,N,NN,NSTEP,INOP(7)
REAL*8 RAMP

C
OPEN(5,FILE='D:DTMTST.DAT',STATUS='OLD')
OPEN(6,FILE='D:DTMTST.0UT',STATUS='UNKNOWN')

C
SBL = 0.000
DO 10 1=1,NDNPG

SBL = B(I)*L(I) + SBL
10 CONTINUE

C
C Start New Case.
C

20 READ(5,900,END=200) NSTEP,TITLE
TIME = 0.000
PN = 1.000
PN1 = 1.000
SLCN = O.ODO
SL2CN = 0.000
DO 30 I=1,NDNPG

CN(I) = PN*B(I)/(L(I)*LP)
CN1(I) = CN(I)
SLCN = CN(I)*L(I) + SLCN
SL2CN = CN(I)*L(I)**2 + SL2CN

30 CONTINUE
SLCN1 = SLCN
SL2CN1 = SL2CN
LEN = SL2CN/SLCN
LEN1 = LEN
RHON = 0.000
RHODN = 0.000
RHON1 = 0.000
RHODN1= 0.000

C
C Edit Title and Header.
C

33

N = 4
WRITE(6,901) TITLE
WRITE(6,902)
WRITE(6,903)
CALL TIMER(O)

C
C Start Step Loop.
C

DO 70 NN=1,NSTEP
READ(5,*,END=200) (INOP(I),1=1,7),DELN,RAMP,THETAP,THETAD
1OMG = INOP(4)
ITER = INOP(5)

C
C Initialize reactivity and omega.
C

IF (INOP(6) .EQ. 0) THEN
RHODN = RAMP
RHODN1 = RAMP

ELSE IF (INOP(6) .EQ. 1) THEN
RHON = RAMP
RHON1 = RAMP
RAMP = O.ODO
OMGN1 = (RHON1-BT)/LP + SLCN1/PN1

ENDIF
C
C If beginning of case edit initial condition.
C

IF (TIME .EQ. 0.000) THEN
N = N + 1
OMGN = (RHON-BT)/LP + SLCN/PN
OMGN1 = OMGN
WRITE(6,904) TIME,PN,RHON,OMGN,SLCN,LEN

ENDIF
C
C Begin Step Loop.
C Start Edit Loop.
C

DO 60 K=1,INOP(2)
C
C Neutronic Loop.
C

CALL TIMER(1)
C
C Bookkeeping.
C

DO 50 J=1,INOP(1)
PN = PN1
OMGN = OMGN1
RHON = RHON1
RHON1 = RHON + RAMP*DELN
RHODN = RHOON1
RHODNI = RAMP
LEN = LEN1
SLCN = SLCN1
SL2CN = SL2CN1
DO 40 -1=1,NDNPG

CN(I) = CN1(I)
40 CONTINUE

C
C Select solution method.
C

IF (INOP(3) .EQ. 0) THEN
CALL THETAM

ELSE IF (INOP(3) .EQ. 1) THEN
CALL DTM1D

ENDIF
C

50 CONTINUE
CALL TIMER(2)

C
C Edit results.
C

34

N = N + 1
IF (N .GT. INOP(7)) THEN
N = 5
WRITE(6,901) TITLE
WRITE(6,902)
WRITE(6,903)

ENDIF
WRITE(6,904) TIME,PN1,RHON1,OMGN1,SLCN1,LEN1

60 CONTINUE
70 CONTINUE

C
C Print case execution time, then start another case.

CALL TIMER(3)
GOTO 20

C
C Exit.
C

200 CONTINUE
CLOSE(5)
CLOSE(6)

C
900 FORMAT(11,A79)
901 FORMAT('1',5X,A79)
902 FORMAT('0',5X,' TIME',' AMPLITUDE','

1 ,' SUM(LC) ',' LE'' ')
903 FORMAT(' ')
904 FORMAT(' ',3X,F7.4,5(1PE12.4))

C
STOP
END

REACTIVITY',' OMEGA '

35

BLOCK DATA

C
C TITLE:
C
C Block Data
C
C AUTHOR:
C
C Michael L. Zerkle
C MIT, Room 38-181
C (617)253-0945
C
C PURPOSE:
C
C Initialization of kinetics parameters.
C
C KEY LOCAL VARIABLES:
C NAME T*L A DESCRIPTION
C
C B R*8 25 Effective delayed neutron fraction of the
C ith delayed group.
C BT R*8 Total effective delayed neutron fraction.
C L R*8 25 Decay constant of the ith delayed group [1/s].
C LP R*8 Prompt neutron lifetime [s].
C NDNPG 1*4 Number of delayed neutron precursor groups to
C
C COMMON BLOCKS REFERENCED:
C NAME USAGE
C
C KINDAT Kinetics parameters.
C
C CHANGE HISTORY:
C DATE PROGRAMMER DESCRIPTION
C
C 9/25/87 M. L. Zerkle Initial Release
C

C
COMMON/KINDAT/TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHOON1,
1 LEN,LEN1,BT,LP,B(25),L(25),SBL,CN(25),CN1(25),SLCN,
2 SLCN1,SL2CN,SL2CN1,NDNPG
REAL*8 TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,LEN
REAL*8 LEN1,BT,LP,B,L,SBL,CN,CN1,SLCN,SLCN1,SL2CN,SL2CN1
INTEGER*4 NDNPG
DATA BT,LP/7.0D-3,2.0D-5/
DATA 8/2.660-4,1.491D-3,1.316D-3,2.8490-3,8.960-4,1.82D-4,
1 19*0.ODO/
DATA L/1.27D-2,3.17D-2, 1.15D-1, 3.11D-1, 1.400+0,3.870+0,
1 19*0.ODO/
DATA NDNPG/6/
END

36

SUBROUTINE DTM1D

C
C TITLE:
C
C Diagonal Theta-weighting Method: Version 1.0, Double Precision (DTM1D)
C
C Copyright (c) 1987 by Massachusetts Institute of Technology
C
C AUTHOR:
C
C Michael L. Zerkle
C MIT, Room 38-181
C (617)253-0945
C
C PURPOSE:
C
C This routine is an implementation of the Diagonal Theta-weighting
C Method algorithm, a numerical method for solving the point kinetics
C equations. It is in a general, modular form where given the kinetics
C parameters at the beginning of the timestep it will calculate and return
C the kinetics parameteres at the end of the timestep. All floating point
C calculations are performed in Double Precision.
C
C METHOD:
C
C The Diagonal Theta-weighting Method is a stiffness decoupled
C numerical method for solving the point kinetics equations. It is based
C on the observation that the stiffness characteristic is present only in
C the time response of the amplitude function and not in that of the delayed
C neutron precursors. In order to decouple the stiffness from the delayed
C neutron precursor equations the inverse period is introduced, eliminating
C the amplitude function from the equation. The inverse period is determined
C by assuming that within a small time interval it is a quadratic function
C of time. The precursor equations are then solved using a difference
C analog with an inverse period determined using the quadratic omega
C approximation. The weighting coefficients used in the difference analog
C are selected such that they force the method to hold steady state.
C
C A general version of the algorithm, using a maximum of 25 delayed
C groups, is implemented here. The terms dependent upon the timestep size
C are recalculated only if the timestep size changes. Locations for adding
C feedback logic are identified.
C
C CALLING SEQUENCE:
C
C CALL DTM1D
C
C ARGUMENT(S):
C NAME I/0 T*L A DESCRIPTION
C
C NONE.
C
C KEY LOCAL VARIABLES:
C NAME T*L A DESCRIPTION
C
C B R*8 25 Effective delayed neutron fraction of the
C ith delayed group.
C BT R*8 Total effective delayed neutron fraction.
C CN R*8 25 Effective delayed neutron precursor population
C at time n (beginning of timestep).
C CN1 R*8 25 Effective delayed neutron precursor population.
C DELN R*8 Timestep size, DELN=t(n+1)-t(n) [s].
C DELT R*8 Previous timestep size [s].
C ELDN R*8 25 ith group decay term.
C ELDN2 R*8 25 ith group weighted decay term.
C ETBE R*8 25 Explicit ith group weighted decay term.
C I 1*4 Delayed group index.
C 1OMG 1*4 Option for initial estimate of OMGN1.
C =0 OMGN1 = OMGN.
C =1 OMGN1 determined using the quadratic
C omega approximation, assuming LEN1=LEN.

37

C ITS R*8 25 Implicit ith group production term.
C ITER 1*4 Number of iterations to be used (>=1).
C L R*8 25 Decay constant of the ith delayed group [1/s].
C LEN R*8 Effective, multi-group decay parameter
C 8 t(n) [1/s].
C LEN1 R*8 Effective, multi-group decay parameter
C a t(n+1) [1/s].
C LP R*8 Prompt neutron Lifetime [s].
C M 1*4 Iteration index.
C NDNPG 1*4 Number of delayed neutron precursor groups to
C be used in this calculation.
C OMGN R*8 Inverse period 8 t(n).
C OMGN1 R*8 Inverse period 8 t(n+1).
C PN R*8 Amplitude function @ t(n).
C PN1 R*8 Amplitude function @ t(n+1).
C PTN R*8 Prompt term @ t(n).
C PTN1 R*8 Prompt term @ t(n+1).
C RHODN R*8 Differential reactivity @ t(n) [1/s].
C RHODN1 R*8 Differential reactivity @ t(n+1) [1/s].
C RHON R*8 Reactivity @ t(n).
C RHON1 R*8 Reactivity @ t(n+1).
C SBL R*8 Sun B(i)*L(i), i=1,NDNPG [1/s].
C SETBL R*8 Sum of explicit terms.
C SITBL R*8 Sum of implicit terms.
C SL2CN R*8 Weighted delayed neutron source @ t(n)
C [s**-23.
C SL2CN1 R*8 Weighted delayed neutron source @ t(n+1)
C [s**21.
C SLCN R*8 Delayed neutron source @ t(n) [1/si.
C SLCN1 R*8 Delayed neutron source @ t(n+1) [1/si.
C SUM1 R*8 DTM source term.
C TEMP1 R*8 Temporary variable.
C TEMP2 R*8 Temporary variable.
C THETD R*8 25 Diagonal theta-weighting matrix used in DTM1D.
C THETD(i)=O fully explicit. THETD(i)=1 fully
C implicit. (0 <= THETD(i) <= 1).
C TIME R*8 Simulated time [s].
C
C ROUTINES/FUNCTIONS CALLED:
C NAME DESCRIPTION
C
C DEXP Double precision exponential function.
C QOMGD Estimates OMGN1 using the quadratic omega approximation.
C
C COMMON BLOCKS REFERENCED:
C NAME USAGE
C
C DTMD Diagonal Theta-weighting Matrix and control options for the
C DTM1D routine.
C KINDAT Kinetics parameters.
C
C CHANGE HISTORY:
C DATE PROGRAMMER DESCRIPTION
C
C 9/25/87 M. L. Zerkle Initial Release
C

C
REAL*8 ELDN(25),ELDN2(25),ETBE(25),ITB(25),SETBL,SITBL
REAL*8 DELT,PTN,PTN1,SUM1,TEMP1,TEMP2
INTEGER*4 I,M
COMMON/DTMD/THETD(25),ITER,I0MG
REAL*8 THETD
INTEGER*4 ITER,I0MG
COMMON/KINDAT/TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,
1 LEN,LEN1,BT,LP,B(25),L(25),SBL,CN(25),CN1(25),SLCN,
2 SLCN1,SL2CN,SL2CN1,NDNPG
REAL*8 TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,LEN
REAL*8 LEN1,BT,LP,B,L,SBL,CN,CN1,SLCN,SLCN1,SL2CN,SL2CN1
INTEGER*4 NDNPG

C
C Initialize if using different timestep.

38

C
IF (DELT .NE. DELN) THEN
DELT = DELN
SETBL = 0.000
SITBL = 0.ODO
DO 10 I=1,NDNPG

ELDN(I) DEXP(-L(I)*DELN)
THETD(I) 1.ODO/(DELN*L(I)) - ELDN(I)/(1.000-ELDN(I))
ELDN2(I) = L(I)*ELDN(I)
ETBE(I) = DELN*(1.000 - THETD(I))*B(I)*ELDN(I)
ITB(I) = DELN*THETD(I)*B(I)
SETBL = ETBE(I)*L(I) + SETBL
SITBL ITB(I)*L(l) + SITBL

10 CONTINUE
ENDIF

C
C Calc. omega at t(n+1)
C if 1OMG = 0 set Omega(n+1) = Omega(n)
C if = 1 calc. Omega(n+1) using quadratic omega method assuming
C LEN1 = LEN.
C

IF (IOMG .EQ. 1) CALL QOMGD
C
C Calc. Diagonal Theta Method Source Term.
C

SUM1 0.ODO
DO 20 I=1,NDNPG

SUM1 = ELDN2(I)*CN(I) + SUM1
20 CONTINUE

C
C
C This section is the guts of the Diagonal Theta Method.
C *
C
C Calc. prompt terms for t(n) and t(n+1) before iterating.
C

PTN = OMGN*LP + BT - RHON
PTN1 = OMGN1*LP + BT - RHON1

C
C Iterate ITER times to converge precursors and omega.
C

DO 40 M=1,ITER
SLCN1 = 0.ODO
SL2CN1 = 0.000

C
C Calc. precursor populations and delayed source for t(n+1).
C

DO 30 I=1,NDNPG
TEMP1 = ELDN(I)*CN(l) + SLCN*ETBE(I)/PTN
TEMP2 = (SUM1 + SETBL*SLCN/PTN)*ITB(I)/(PTN1-SITBL)
CN1(I) = TEMP1 + TEMP2
SLCN1 = L(I)*CN1(I) + SLCN1
SL2CN1 = (L(I)**2)*CN1(I) + SL2CN1

30 CONTINUE
C
C Update effective, muttigroup decay parameter for t(n+1).
C

LEN1 = SL2CN1/SLCN1
C
C Calc. omega for t(n+1).
C

CALL QOMGD
C
C Update prompt term and power for t(n+1).
C

PTN1 = OMGN1*LP + BT - RHON1
PN1 = LP*SLCN1/PTN1

C
C Insert CALL to feedback routine or feedback algorithm here.
C

40 CONTINUE
C

39

C Update time.
C

TIME = TIME + DELN
C

RETURN
END

40

SUBROUTINE 0OMGD

C
C TITLE:
C
C Quadratic Omega Approximation, Double Precision (QOMGD)
C
C Copyright (c) 1987 by Massachusetts Institute of Technology
C
C AUTHOR:
C
C Michael L. Zerkle
C MIT, Room 38-181
C (617)253-0945
C
C PURPOSE:
C
C This routine determines the inverse period, omega, at the end of a
C timestep assuming that the inverse period is a quadratic function of time.
C It requires the kinetics parameters at the beginning and end of the
C timestep.
C
C CALLING SEQUENCE:
C
C CALL QOMGD
C
C ARGUMENT(S):
C NAME I/0 T*L A DESCRIPTION
C
C NONE.
C
C KEY LOCAL VARIABLES:
C NAME T*L A DESCRIPTION
C
C BT R*8 Total effective delayed neutron fraction.
C DELN R*8 Timestep size, DELN=t(n+1)-t(n) [s].
C LEN R*8 Effective, multi-group decay parameter
C @ t(n) [1/s].
C LEN1 R*8 Effective, multi-group decay parameter
C @ t(n+1) [1/s].
C LP R*8 Prompt neutron lifetime [s].
C OMGN R*8 Inverse period & t(n).
C OMGN1 R*8 Inverse period @ t(n+1).
C RHODN R*8 Differential reactivity S t(n) [1/s].
C RHODN1 R*8 Differential reactivity @ t(n+1) [1/si.
C RHON R*8 Reactivity @ t(n).
C RHON1 R*8 Reactivity @ t(n+l).
C SBL R*8 Sum B(i)*L(i), i=l,NDNPG [1/s].
C TEMP1 R*8 Tenporary variable.
C TEMP2 R*8 Temporary variable.
C TEMP3 R*8 Temporary variable.
C TEMP4 R*8 Temporary variable.
C
C ROUTINES/FUNCTIONS CALLED:
C NAME DESCRIPTION
C
C DSQRT Double precision square root function, intrinsic.
C
C COMMON BLOCKS REFERENCED:
C NAME USAGE
C
C DTMD Diagonal Theta-weighting Matrix and control options for the

C DTM1D routine.
C KINDAT Kinetics parameters.
C THETA Theta-weighting coefficients.
C
C RESTRICTIONS/SPECIAL CONSIDERATIONS:
C
C During the first timestep following a step change in reactivity a

C small timestep size should be used to prevent the square root term from
C becoming imaginary.
C

41

C CHANGE HISTORY:
C DATE PROGRAMMER DESCRIPTION
C
C 9/25/87 M. L. Zerkte Initial Release
C

C
COMMON/KINDAT/TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,
1 LEN,LEN1,BT,LP,B(25),L(25),SBL,CN(25),CN1(25),SLCN,
2 SLCN1,SL2CN,SL2CN1,NDNPG
REAL*8 TIME,DELN,PN,PN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHODN1,LEN
REAL*8 LEN1,BTLP,B,L,SBLCNCN1,SLCN,SLCN1,SL2CN,SL2CN1
INTEGER*4 NDNPG
REAL*8 TEMP1,TEMP2,TEMP3,TEMP4

C
C Calc. omega @ t(n+1).
C

TEMP1 = (LEN1*LP + (BT-RHON1))*DELN + 2.ODO*LP
TEMP2 = RHODN1+RHODN+2.DO*SBL-LEN1*(BT-RHON1)-LEN*(BT-RHON)
TEMP3 = (((LEN+OMGN)*LP + 8T - RHON)*DELN - 2.ODO*LP)*OMGN
TEMP4 = -TEMP1 + DSQRT(TEMP1**2-4.ODO*DELN*LP*(TEMP3-TEMP2*DELN))
OMGN1 = TEMP4/(2.ODO*DELN*LP)

C
RETURN
END

42

SUBROUTINE THETAM

C
C TITLE:
C
C Theta-Weighting Method (THETAM)
C
C Copyright (c) 1987 by Massachusetts Institute of Technology

C
C AUTHOR:
C
C Michael L. Zerkle
C MIT, Room 38-181
C (617)253-0945
C
C PURPOSE:
C
C This routine solves the point kinetics equations using a general

C version of the traditional theta-weighting method.
C
C METHOD:
C
C The theta-weighting method is a difference analog in which the

C theta's are weighting coefficients used to specify the contribution of

C the explicit and implicit terms used in the solution. Two user defined
C weighting coefficients are used: one for the prompt response associated

C with the amplitude function (THETAP) and the other for the delayed
C response associated with the delayed neutron precursors (THETAD).

C
C The theta-weighting method is derived by substituting the precursor
C difference analog into the amplitude function analog. One can then
C solve for the amplitude function at the end of the timestep using the

C amplitude and precursor populations at the beginning of the timestep.
C The new amplitude function is then substituted into the precursor

C difference analog to determine the precursor populations at the end

C of the timestep.
C
C CALLING SEQUENCE:
C
C CALL THETAM
C
C ARGUMENT(S):
C NAME I/0 T*L A DESCRIPTION
C
C NONE.
C
C KEY LOCAL VARIABLES:
C NAME T*L A DESCRIPTION
C
C B R*8 25 Effective delayed neutron fraction of the

C ith delayed group.
C ST R*8 Total effective delayed neutron fraction.

C CN R*8 25 Effective delayed neutron precursor population

C at time n (beginning of timestep).

C CN1 R*8 25 Effective delayed neutron precursor population.

C DELN R*8 Timestep size, DELN=t(n+1)-t(n) [s].

C DELT R*8 Previous timestep size [s].

C I 1*4 Delayed group index.

C L R*8 25 Decay constant of the ith delayed group [1/s].

C LEN1 R*8 Effective, multi-group decay parameter

C & t(n+1) [1/s3.
C LP R*8 Prompt neutron lifetime [s].

C NDNPG 1*4 Number of delayed neutron precursor groups to

C be used in this calculation.

C OMGN1 R*8 Inverse period @ t(n+1).
C PN R*8 Amplitude function @ t(n).
C PN1 R*8 Amplitude function & t(n+1).

C RHON R*8 Reactivity @ t(n).
C RHON1 R*8 Reactivity & t(n+1).
C SBLE R*8 Sum of explicit B(i)L(i) terms.

C SBLI R*8 Sum of implicit B(i)L(i) terms.

C SL2CN1 R*8 weighted delayed neutron source @ t(n+1)

43

C [s**-23.
C SLCN R*8 Delayed neutron source @ t(n) [1/s].
C SLCN1 R*8 Delayed neutron source @ t(n+1) [1/s].
C SUM R*8 Sum of weighted delayed source terms.
C TDLE R*8 25 Explicit Delayed Theta*DELN*L(i) term.
C TDLI R*8 25 Implicit Delayed Theta*DELN*L(i) term.
C TEMP1 R*8 Tenporary storage variable.
C TEMP2 R*8 Temporary storage variable.
C TEMP3 R*8 Tenporary storage variable.
C THETAD R*8 Delayed weighting coefficient used in THETAM.
C THETAD=O fully explicit. THETAD=1 fully
C implicit. (0 <= THETAD <= 1).
C THETAP R*8 Prompt weighting coefficient used in THETAM.
C THETAP=O fully explicit. THETAP=1 fully
C implicit. (0 <= THETAP <= 1).
C TIME R*8 Simulated time [s].
C
C ROUTINES/FUNCTIONS CALLED:
C NAME DESCRIPTION
C
C NONE.
C
C COMMON BLOCKS REFERENCED:
C NAME USAGE
C
C KINDAT Kinetics parameters.
C THETA Theta-weighting coefficients.
C
C RESTRICTIONS/SPECIAL CONSIDERATIONS:
C
C NONE.
C
C CHANGE HISTORY:
C DATE PROGRAMMER DESCRIPTION
C
C 9/25/87 M. L. Zerkle Initial Release
C

C
COMMON/KINDAT/TIME,DELNPNPN1,OMGN,OMGN1,RHON,RHON1,RHODN,RHOON1,
1 LEN,LEN1,BT,LP,B(25),L(25),SBL,CN(25),CN1(25),SLCN,
2 SLCN1,SL2CN,SL2CN1,NDNPG
REAL*8 TIME,DELN,PN,PN1,OMGNOMGN1,RHONRHON1,RHODN,RHODN1,LEN
REAL*8 LEN1,BT,LP,B,L,SBL,CN,CN1,SLCN,SLCN1,SL2CN,SL2CN1
INTEGER*4 NDNPG
COMMON/THETA/THETAP,THETAD
REAL*8 THETAP,THETAD
REAL*8 DELT,SUM,TEMP1,TEMP2,TEMP3,TDLE(25),TDLI(25),SBLE,SBLI
INTEGER*4 I

C
C Initialize if using different timestep.
C

IF (DELT .NE. DELN) THEN
DELT = DELN
SBLE = 0.000
SBLI = 0.000
DO 10 I=1,NDNPG

TDLE(I) = 1.000 - (1.0D0-THETAD)*DELN*L(I)
TDLI(I) = 1.ODO + THETAD*DELN*L(I)
SBLE = B(I)*L(I)*(1.OO-THETAD)*DELN/TDLI(I) + SBLE
SBLI = B(I)*L(I)*THETAD*DELN/TDLI(I) + SBLI

10 CONTINUE
ENDIF

C
C Update Power
C

SUM = 0.000
DO 20 I=1,NDNPG

SUM = TDLE(I)*L(I)*CN(I)/TDLI(I) + SUM
20 CONTINUE

C
TEMP1 = LP + (1.ODO-THETAP)*DELN*(RHON-BT) + THETAP*DELN*SBLE

44

TEMP2
TEMP3
PN1

CC OMGN1
C

TEMP1*PN + DELN*LP*(THETAP*SUM+(l.ODO-THETAP)*SLCN)
LP - THETAP*DELN*((RHON1-BT) + SBLI)
TEMP2/TEMP3
(PN1-PN)/(DELN*PN1)

C Update Precursors

SLCN1 = O.ODO
SL2CN1 = 0.000
DO 30 I=1,NDNPG

TEMP1 = (B(I)*DELN*(THETAD*PN1 + (1.ODO-THETAD)*PN)/LP
1 + TDLE(I)*CN(I))/TDLI(I)

CN1(I) = TEMP1
SLCN1 = L(I)*TEMP1 + SLCN1
SL2CN1 = (L(I)**2)*TEMP1 + SL2CN1

30 CONTINUE
LEN1 = SL2CN1/SLCN1

C Update Omega and Time
C

OMGN1 = (RHON1-BT)/LP + SLCN1/PN1
TIME = TIME + DELN

C
RETURN
END

45

C

C

SUBROUTINE TIMER(MODE)
C** ******* *** ***

C
C TITLE:
C
C Execution timer (TIMER)
C
C Copyright (c) 1987 by Massachusetts Institute of Technology
C
C AUTHOR:
C
C Mic
C MIT
C (61
C
C PURPOSE:
C
C Thi

hael L. Zerkle

, Room 38-181
7)253-0945

s routine calculates and edits the total execution duration.

CALLING SEQUENCE:

CALL TIMER(MODE)

C ARGUMENT(
C NAME
C
C MODE
C
C
C
C
C
C FILE(S):
C UNIT
C
C 6
C
C KEY LOCAL
C NAME
C

IB
IE
ISEC
IT

I/0 T*L A DESCRIPTION

I 1*4

NAME

D:DTMTST.OUT

VARIABLES:
T*L

1*2
1*2
1*2
1*2
1*2

=0 Initialize.
=1 Get starting time.
=2 Get ending time and update

total execution time.
=3 Edit total execution time.

[R/W] USAGE

W System Output.

A DESCRIPTION

4
4

4

Do index and temporary variable.
Beginning time vector.
Ending time vector.
Total execution time [s].
Total execution time vector.

ROUTINES/FUNCTIONS CALLED:
NAME DESCRIPTION

GETTIM Gets the time vector from the system clock.
MOO Modulus function, intrinsic.

COMMON BLOCKS REFERENCED:
NAME USAGE

NONE.

RESTRICTIONS/SPECIAL CONSIDERATIONS:

NONE.

CHANGE HISTORY:
DATE PROGRAMMER DESCRIPTION

9/25/87 M. L. Zerkle Initial Release

INTEGER*4 MODE
INTEGER*2 I,IB(4),IE(4),IT(4),ISEC

C
C Initialize time arrays.

46

C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

S):

C
IF (MODE .EQ. 0) THEN
DO 10 1=1,4

IB(I) = 0
IE(I) = 0
IT(I) = 0

10 CONTINUE
C
C Get starting time.
C

ELSE IF (MODE .EQ. 1) THEN
CALL GETTIM(IB(1),IB(2),IB(3),IB(4))

C
C Get Ending time and update total time.
C

ELSE IF (MODE .EQ. 2) THEN
CALL GETTIM(IE(1),IE(2),IE(3),IE(4))
DO 20 I=1,4

IT(I) = IE(I)-IB(I) + IT(I)
20 CONTINUE

C
C Calc. and print total time.
C

ELSE IF (MODE .EQ. 3) THEN
IF (IT(4) .GE. 0) THEN

IT(3) = IT(3) + IT(4)/100
IT(4) = MO0(IT(4),100)

ELSE
I = -IT(4)/100 + 1
IT(3) = IT(3) - I
IT(4) = IT(4) + 100*1

ENDIF
C

IF (IT(3) .GE. 0) THEN
IT(2) = IT(2) + IT(3)/60
IT(3) = MO0(IT(3),60)

ELSE
I = -IT(3)/60 + 1
IT(2) = IT(2) - I
IT(3) = IT(3) + 60*1

ENDIF
C

IF (IT(2) .GE. 0) THEN
IT(1) = IT(1) + IT(2)/60
IT(2) = MOD(IT(2),60)

ELSE
I = -IT(2)/60 + 1
IT(1) = IT(1) - I
IT(2) = IT(2) + 60*1

ENDIF
C

IF (IT(1) .LT. 0) IT(1) = IT(1) + 24
ISEC = 3600*IT(1) + 60*IT(2) + IT(3)

C
WRITE(6,900) IT,ISEC,IT(4)

ELSE
ENDIF

C
900 FORMAT('0',5X,'EXECUTION TIME =

1 ' ',5X,' ',18,'.',12,' SEC')
C

RETURN
END

47

