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ABSTRACT
This paper presents a new approach to select events of interest to
a user in a social media setting where events are generated by the
activities of the user’s friends through their mobile devices. We ar-
gue that given the unique requirements of the social media setting,
the problem is best viewed as an inductive learning problem, where
the goal is to first generalize from the users’ expressed “likes” and
“dislikes” of specific events, then to produce a program that can be
manipulated by the system and distributed to the collection devices
to collect only data of interest.

The key contribution of this paper is a new algorithm that com-
bines existing machine learning techniques with new program syn-
thesis technology to learn users’ preferences. We show that when
compared with the more standard approaches, our new algorithm
provides up to order-of-magnitude reductions in model training time,
and significantly higher prediction accuracies for our target appli-
cation. The approach also improves on standard machine learning
techniques in that it produces clear programs that can be manipu-
lated to optimize data collection and filtering. 1

Categories and Subject Descriptors
H.2.8 [Database Applications]: Data Mining; I.2.2 [Automatic
Programming]: Program synthesis

Keywords
recommender systems, social networking applications, program syn-
thesis, support vector machines

1. INTRODUCTION
At a high level, the problem of selecting events or updates of

interest to a user in a social media setting appears similar to recom-
mendation problems in other environments, such as offering book
or movie recommendations on Amazon and Netflix. In each of
these, a user’s previously expressed preferences are used to infer
new items of interest; every time the user interacts with the site, the
system builds a more accurate picture of what she likes and dislikes
and uses it to improve recommendations. Social media, however,
poses some unique challenges which demand a different approach
from the standard collaborative filtering, where other users’ prefer-
ences are used to infer about what the user will like [12, 15].

To illustrate some of the new challenges that recommendation
systems face in this domain, we focus on an application called Life-
Join [5]. We designed this application to model the future of social
networking, where a person’s profile is continuously updated (mod-
ulo a privacy filter) by an automatically generated event stream
1A shorter version of this paper appeared in CIKM’12.

from the user’s mobile devices, including her location and activ-
ities (e.g., running, sitting on a bus, in a meeting, etc). The sys-
tem also attempts to discover interesting co-occurrences in friends’
event streams, such as a meeting of two of the user’s friends in a
nearby pub. In order to deal with the data deluge, the system gives
the user the ability to “like” and “dislike” both individual and com-
binations of events. LifeJoin uses the expressed likes and dislikes to
infer what kinds of events are of interest to the user, which can then
be used to auto-populate the user’s newsfeed or notify her of inter-
esting nearby social events. Collecting all sorts of events through a
mobile device can consume a lot of energy [7], so LifeJoin uses the
inferred user’s interest to drive subsequent event acquisition. For
instance, if LifeJoin infers that Mary’s friends are only interested
in the places she goes for a jog, then the system will save power on
Mary’s device by turning off data collection when she is not jog-
ging. Our initial experiments have shown that implementing the
data collection scheme in the scenario above can extend the phone
battery life by up to 40% [5]. Thus, the more accurate we can de-
tect the users’ real interests, the more energy we can save in data
collection as compared to a scheme that collects all data under all
circumstances.

More specifically, inferring interests in LifeJoin poses four unique
challenges:

1. Decomposable Models: For applications such as LifeJoin,
models must be decomposable into simple classifiers that can be
pushed down to the individual devices to drive event acquisition.
One simple way to ensure a model is decomposable is to limit it to
only contain boolean combinations of simple predicates over the in-
put features, which can be decomposed in a straightforward way to
indicate the required data from phones. Such models are also use-
ful because they allow users to give explicit feedback about whether
the system actually understands their true interests, and to manually
tune the models to better suit their preferences as discussed in [12].
By contrast, many existing preference learning algorithms produce
black box classifiers that are difficult to decompose and understand.

2. Active Learning: Given the large number of incoming events,
and the large number of ways in which they could be combined, it
is unreasonable to ask the user to rate any meaningful fraction of
them. Thus, the learner needs to intelligently choose a subset of
incoming events that can most improve the current model. In ad-
dition, the domain of users mentioned in the incoming events can
also change over time as the user’s friends network changes.

3. Noisy, Skewed Data: Since the ratings are produced by hu-
mans, they are bound to contain occasional errors. Users also change
their interests over time, so the same event might be given different
ratings depending on when it was shown to the user. At the same
time, each user’s definition of “interesting” is different, so it is dif-
ficult to make generalizations about the statistical properties such
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as the anticipated degree of skew in users preferences. In fact, this
is currently an active research topic on its own [3].

4. Personalized Events: Unlike typical recommendation sys-
tems such as those for books, movies, or online ads, where all users
rate a common set of items, the events in LifeJoin tend to be highly
personalized. For instance, a user might like an event because it
involves her best friend Peter, but the same event would be totally
meaningless if is shown to another user who does not know Peter.
Thus, we believe it is easier to learn a model for each user individu-
ally (i.e., event is of interest if it involves Peter, without needing to
know the relationship between Peter and the user) rather than try-
ing to discover the relationships between users and design a model
that is applicable to all.

These requirements preclude the use of collaborative filtering
(CF) techniques which have been successful in other recommenda-
tion systems—such as building neighborhood or latent factor mod-
els to predict user ratings. In particular, these techniques tend to
generate models that cannot be used to drive data acquisition and
generate an explainable model to the user to solicit further feedback
(req 1). For instance, a neighborhood model-based approach might
attribute a new rating based on a set of previously rated events that
are deemed similar, but it is unclear how the system can easily gen-
eralize from the set of similar events to determine what new events
to collect. Furthermore, CF techniques require a similarity measure
between users or events. It is unclear how that can be done in a set-
ting where events are highly personalized to a small set of users (req
4); this is an active research topic [13, 14], and the proposed solu-
tions require explicitly modeling all social relationships between
users, rather than simply learning a separate model for each user
individually, which does not require discovering the relationships
among the users.

We avoid the above issues by viewing the problem as an induc-
tive learning problem with an active learning component: given a
set of labeled examples, the goal is to learn a set of rules that rep-
resents an individual user’s preferences, and to choose new events
for the user to rate. Unfortunately, standard inductive learning al-
gorithms such as those based on entropy measures (e.g., decision
trees and inductive logic programming tools) are known have issues
with skewed data (req 3) [4], it is not clear how active learning can
be applied, and they also do not provide good generalization guar-
antees when compared to statistical-based learners such as support
vector machines (SVM).

Recently, the programming languages community has been ex-
ploring inductive learning problems in the context of software syn-
thesis in programming-by-example systems [9], where the goal is
to infer a program from a set of sample behaviors. Unfortunately,
the learning problem in Lifejoin is different enough that none of
the previous techniques from this community can be applied out
of the box. In particular, the active learning problem has not been
sufficiently addressed by previous research from this community.
Nevertheless, these techniques provide a new set of tools that can
be leveraged to attack the problem.

In this paper, we present a new algorithm to infer users’ interests;
the algorithm combines new techniques in program synthesis with
more traditional machine learning approaches to satisfy the unique
requirements illustrated by the LifeJoin application. Specifically,
we make the following contributions:

1. We show that both the classical machine learning approach
and an approach based purely on program synthesis do not ade-
quately address this problem.

2. We describe a hybrid approach that employs program synthe-
sis to generate a number of classifying functions, and subsequently
asks an SVM to assign weights to the features in each generated

functions. We show that, when compared to pure machine learn-
ing or synthesis approaches, this hybrid technique takes up to an
order of magnitude less time to encode the training data into a fea-
ture space representation, and improves upon traditional learning
algorithms by 30% in overall classification accuracy.

3. We show that we can use a program synthesizer to produce
more decomposable and human-understandable models than those
generated by traditional machine learning techniques, and provide
empirical evidence that the generated models are comparable to the
original intentions that the user has in her mind.

We have implemented the learning technique in the context of
the LifeJoin application. However, we believe that our approach is
applicable to other social networking applications as well, where
large amounts of data are collected from users, and labels provided
by users contain errors or interest drifts. In the next section we give
an overview of the various steps in the learning task in LifeJoin,
and illustrate our approach with an example.

2. OVERVIEW OF THE APPROACH
In this section, we illustrate the recommendation problem with a

concrete example and present an outline of our solution. To frame
the problem, consider the LifeJoin event stream, which contains
large numbers of events about the activities of a user’s friends and
family. Out of this event stream, suppose that the user is interested
in events where her friend Joe is away from home either late at
night or early in the morning:

(user = Joe) ∧ (location 6= Home) ∧ (time < 9am ∨ time > 9pm)

The goal of the system is to infer this interest function based on
events the user rates as having liked or disliked. We want the al-
gorithm to produce its interest function in the form of a predicate
like the one above because that helps ensure the decomposability
described earlier. When the interest function is expressed in this
form, it can be easily manipulated and decomposed into predicates
that can be pushed down to individual users’ phones to optimize
the data acquisition process as described. Such expressions are also
comprehensible by users, and can be manually adjusted to tune the
results the user sees. We are not aware of any statistically-based
methods (such as CF or SVM) that can directly generate models
like these.

In the absence of additional information about the expected dis-
tribution of the events, the most naïve approach to finding an in-
terest function is to exhaustively explore the space of all possible
predicates of the desired form until a set of predicates is found that
matches all the previously labeled events. The most obvious prob-
lem with such an approach is that the space of possible predicates is
enormous—on the order of 1040 in some of our experiments. How-
ever, as we will describe in Sec. 3, new technology from the field
of combinatorial synthesis [23] can find a matching interest func-
tion in this space in a few seconds. For example, Fig. 1 shows a
sample of labeled data and a few interest functions that were found
this way to match the data.

A deeper problem with the naïve approach is that predicates
found this way cannot be expected to have much generalization
power—that is, they are unlikely to correctly classify as yet unseen
data items. Individually, they will also not be of much use in opti-
mally determining the next data element to present to the user for
labeling. To address this problem, we rely on the idea of boosting
[20]. After the combinatorial synthesis algorithm has found K in-
terest functions fi, each of these functions can be treated as a weak
base learner, and the group forms an ensemble.

The standard way of forming the ensemble is to learn a linear
function F (e) = Σwi · fi(e), where an event is classified as inter-
esting if F (e) > 0. The ensemble allows us to follow a standard
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user location time preference
Joe Office 10am 7
Bill Home 3pm 7
Joe Office 11pm 3
Joe Bar 6am 3

Each line below denotes a potential classifier

(User = Joe) ∧ (location = Office ∨ location = Bar) ∧ (time < 7am ∨ time > 10pm)

(User 6= Bill) ∧ (time > 10pm ∨ location = Bar)

(User = Joe) ∧ (time < 9am ∨ time > 11am)

Figure 1: Learning example with labeled data (left) and candidate classifiers that are consistent with the labeled data (right)

approach for active learning, namely, to select those events that
are closest to the boundary where F (e) = 0 [26]. Normally, the
weights wi are selected based on the training data, but in our case,
since all the functions fi were selected to agree on all the train-
ing events, that leads to all functions having equal weight. That
means that the ensemble reduces to a majority vote, and the ac-
tive learning strategy reduces to selecting the event that causes the
maximum level of disagreement among all the candidate interest
functions. We refer to this pure synthesis based algorithm as the
“ensemble” approach. As we will see in Sec. 5, such an approach
already outperforms many standard learning techniques, but we can
do better.

When defining the space of candidate interest functions, we re-
quire the functions to be in disjunctive normal form. This means
that every function fi can be seen as a disjunction of individual
predicates pi,j . We exploit this structure when building the en-
semble; instead of an ensemble F (e) = Σwi · fi(e), we build an
ensemble of the form F ′(e) = Σwi,j ·pi,j(e). Finding weights for
each predicate is no longer trivial. We use an SVM to find a set of
weights for the function, which has the additional benefit that the
weights will be set in such a way that the resulting classifier will be
maximum-margin one. As we will see in Sec. 5, defining the en-
semble in this way significantly improves active learning, and we
call this combination of program synthesis and machine learning
techniques the “hybrid” approach.

As our experiments show, this approach also copes gracefully
with errors in the training data. We can improve its handling of
errors by selecting each of the fi functions to match only a ran-
domly chosen subset of the data. If the rate of errors is low, this
ensures that at least some of the fi will be selected to match only
uncorrupted data.

One issue that still has to be addressed is that the SVM may
find fractional values for the weights, so the function F ′(e) will
no longer be a well-formed boolean predicate. Once again, we use
combinatorial synthesis technology to find a well-formed predicate
P (e) that is closest to the linear function F ′(e). Such predicates
have the decomposability property we desire.

Now that we have described our basic approach and problem
setup, we describe the synthesis technology we use to solve the
problem in more detail in Sec. 3, as well as the details of our hybrid
approach in Sec. 4. Sec. 5 presents our experiments on a synthetic
data set derived from the LifeJoin scenario, showing substantial
performance gains for the hybrid approach. Finally, we discuss
related work in Sec. 6, and conclude in Sec. 7.

3. CONSTRAINT BASED SYNTHESIS
In recent years, there has been a lot of interest in the program-

ming languages community around constraint-based approaches to
program synthesis [23, 22, 10, 24]. At a high-level, this technol-
ogy provides an efficient mechanism to search a space of candidate
programs for one whose behavior satisfies a given specification.

The synthesis problem can be seen as a generalization of tra-
ditional curve fitting, where a space of possible curves—say, the
space of all polynomials of degree less than k—is explored in search

of one that satisfies a given set of requirements. Modern synthesis
systems go several steps beyond simple curve-fitting by providing
rich languages for describing requirements and spaces of candi-
date programs. The search for a correct solution in this space is
performed symbolically; i.e., the space of candidate programs is
described through a set of equations which are solved through a
combination of inductive and deductive methods by a specialized
solver. LifeJoin uses a synthesis system called SKETCH [23]. In
the reminder of this section, we give a brief overview of Sketch,
and show how our system uses it to generate candidate solutions to
the problem.

3.1 The Sketch Synthesis System at a Glance
Sketch extends a simple procedural language — think C or Pas-

cal — with new constructs that allow users to write programs with
holes, i.e., missing expressions that must be completed by the syn-
thesizer. The language allows programmers to use recursive defini-
tions to describe the space of expressions that can be used to fill a
hole. For example, consider the following program:

int foo(int x, int y) { return expr(x,y); }

generator int expr(int x, int y) {
return {| ?? | x | y | expr(x,y) + expr(x,y) |};

}

The program defines an expression expr to be either a constant, a
variable x or y, or a sum of similar sub-expressions. In essence, the
generator defines a grammar for the possible expressions that can
be returned.

Given the grammar, the user can constrain the behavior of the
desired expression by writing test harnesses. For example, the test
harness below ensures that the value returned by the function is
greater than twice the first parameter when the second parameter
is greater than zero, and ensures also that when x=5 and y=8 the
function produces 10.

harness void main(int px, int py) {
if (py > 0) { assert foo(px, py) > 2∗px; }
assert foo(5, 8) == 12;

}

Given such a program as input, the Sketch system discovers that a
plausible solution is for foo to return x+x+2.

To understand how the technology works, consider the generator
expr which describes a set of possible expressions. One way to
understand this generator is that every time it is called, the system
has to make a choice about what to return. In order to turn foo
into a concrete piece of code, the system needs a strategy to make
those choices; i.e., it needs to find a recipe for how to make the
choices in expr to ensure that the correct answer is produced every
time. Sketch encodes such a recipe as a vector of bits ĉ, so the test
harness can be seen as taking ĉ as an additional parameter. The
goal of finding a strategy that works every time reduces to finding
a value of ĉ that satisfies an equation of the form

∀px, py.Pmain(px, py, ĉ)
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The predicate Pmain is derived from the test harness main automat-
ically by a compiler, and is true if the strategy ĉ causes the function
to pass the assertions when run with inputs px and py. Sketch
translates the equation above into a series of boolean satisfiability
problems. Unlike traditional inductive learners such as decision
trees (which gives poor results as discussed in Sec. 1 and Sec. 5),
the core algorithm in Sketch works by forming an initial hypothesis
about the solution, then iteratively finds instances from the harness
that fails the hypothesis and incorporates them into the hypothesis
itself. The process repeats until the harness is satisfied. In prac-
tice, this tends to be quite fast in in terms of solution generation
time as our experiments show, and the details of the algorithm are
described in [23]. The algorithm itself is NP-complete as it uses a
SAT solver as the backend. However, in practice many of the prob-
lems, such as those in LifeJoin, can be solved in very short time as
our experiments show.

3.2 Encoding the Space of Interests using Sketch
Given the above, we now discuss how we use Sketch to aid in

feature selection in LifeJoin. One of the problems with feature
selection is that there is an exponentially large space of possible
features, so analyzing them one by one to identify those that bet-
ter predict the labels in the training data is prohibitively expensive.
By contrast, constraint-based synthesis allows us to represent the
entire space of possible interest functions as a compact sketch that
uses a grammar to describe the space of all possible solutions to the
classification problem.

As mentioned in Sec. 2, we would like to generate interest func-
tions that select data elements from the stream of events collected
from users’ phones by returning a boolean value given events from
the event streams. To generate the appropriate interest function,
we encode its grammar using Sketch similar to that of the exam-
ple above. LifeJoin currently collects two streams of events from
users’ phones: a stream that describes a user’s activity (walking,
running, etc), and another that describes a user’s location. Both
event streams come with timestamps that describe the start and end
time of each event along with the user involved and. Given that, we
encode the space of interest functions using a grammar with predi-
cates from the two event streams, as shown in Fig. 2. Each interest
function consists of a disjunction of interests and returns a boolean
value. Each interest takes in an activity and a location event, and
consists of a conjunction of event predicates. Each event predicate
is either one that restricts the set of events from either event stream,
or is a join predicate that links events from both data streams, for
instance the user from the location event has to be the same as the
user from the activity event. As an example, a user who is inter-
ested in events about Peter running along the Charles River can be
represented with the interest function:

a.user = Peter ∧ a.activity = running ∧
l.location = Charles River ∧ a.user = l.user

We formulated our grammar based on initial user studies, and
further predicates (such as average duration of events) can be incor-
porated as needed. In our experiments we also bound the maximum
number of disjuncts and conjuncts allowed in the interest functions
and interests during synthesis, along with the set of users, activities,
and locations.

Following the example above, with the grammar for interest func-
tions we use the previously-labeled events from the user as the har-
ness. We then ask the Sketch system to generate an interest function
that satisfies the labels on the training events. And each function
generated becomes a weak base learner as discussed in Sec. 2.

f(a, l) ∈ interest function ::=
_
k

ik(a, l)

i(a, l) ∈ interest ::=
^
k

(ap(a) | lp(l) | jp(a, l))

a ∈ activity ::= {user, activity, start, end}
l ∈ location ::= {user, location, start, end}

ap(a) ∈ activity pred ::= a.user op {Users}
| a.activity op {Activities}
| a.start op N | a.end op N
| (a.end − a.start) op N

lp(l) ∈ location pred ::= l.user op {Users}
| l.location op {Locations}
| l.start op N | l.end op N
| (l.end − l.start) op N

jp(a, l) ∈ join pred ::= a.user op l.user | a.start op l.start
| a.end op l.end | a.start op l.end
| a.end op l.start
| (a.end − a.start) op (l.end − l.start)

Figure 2: Grammar of Interests

1 learnModel (posEs, negEs) {
2 (posTrainEs, negTrainEs) = subsample(posEs, negEs);
3 baseFns = callSketch(harness, posTrainEs, negTrainEs);
4 preds = extractPredicates(baseFns);
5 m = createSVMModel(preds, posTrainEs, negTrainEs);
6 return model;
7 }
8

9 generateDecomposableModel (model) {
10 supportVectorEs = getSupportVectors(model);
11 decompModel = callSketch(supportVectorEs);
12 return decompModel;
13 }
14

15 activeLearningRound (posEs, negEs, unratedEs,
16 numSamples) {
17 model = learnModel(posEs, negEs);
18 for (e in unratedEs)
19 ratings[e] = computeRating(model, e);
20 sortedEvts = sortByAbsValue(ratings);
21 decompModel = generateDecomposableModel(model);
22 return (sortedEs[0:numSamples], decompModel);
23 } Figure 3: Hybrid Algorithm

With this in mind, we next discuss how the weak base learners
are combined in the ensemble and hybrid approaches.

4. THE HYBRID APPROACH
In this section we discuss in detail our ensemble and hybrid ap-

proaches, and provide insights into why the hybrid one performs
better than the ensemble one.

4.1 Hybrid Algorithm
As mentioned in Sec. 2, our classifier works by first generating a

number of functions that are capable of fully explaining the train-
ing data. Unfortunately, the ensemble approach does not provide
any generalization guarantees. However, as we later pointed out in
the same section, we can instead break the weak learners into their
predicate constituents and treat them as base features, and then use
them as features to train a SVM classifier. Classification is then
done using the SVM, with events classified as interesting if it re-
turns a value≥ 0, and is not interesting otherwise. Figure 3 outlines
this hybrid algorithm in pseudocode form.

Learning begins by giving the set of positively labeled (i.e., those
labeled as “interesting”), and negatively labeled events to learnModel
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on line 1, which first invokes the Sketch synthesizer to generate a
number of functions (the number to generate is a parameter to the
algorithm). The functions are then passed to extractPredicates on
line 4, which extracts and returns the set of base predicates from
each function (e.g., user = John). The base predicates are then
passed to the SVM to generate a model that returns a numerical
rating ranging from -1 to 1. The model is used in classification of
incoming events (not shown in Fig. 3), where the incoming event
is negatively labeled if the rating is less than 0, and is positively
labeled otherwise.

Then, during each round of active learning, activeLearningRound
on line 15 is called with the list of previously rated events, the list
of unrated events to choose from for subsequent user querying, and
the number of events to choose. It first constructs a model using
learnModel on line 17 with the list of previously rated events. Then,
for each unrated event, it asks the model to compute its (numeri-
cal) rating; events are then sorted according to the absolute values
of their ratings, and the ones that are closest to 0 (i.e., the ones that
are the most uncertain according to the current model) are chosen to
query the user for labels. At the same time, generateDecomposableModel
on line 21 is called to create a model representation to drive sub-
sequent data acquisition. In our experiments the time taken to con-
struct models is typically short.

Noisy data might prevent Sketch from generating any candidate
function since the ratings might be contradictory. The subsample
function on line 2 is used as a means to remove contradicting inputs
prior to model training. Even though more sophisticated methods
can be used, our experiments have shown that the simple sampling
method is good enough to give reasonable performance in presence
of noise.

In a sense, one can view the hybrid approach as using the Sketch
synthesizer as a feature selection mechanism, and feeding the se-
lected predicates into the SVM to build the resulting classifier. To
test that view, we have implemented other standard feature selec-
tion algorithms and provide comparisons in Sec. 5.

4.2 Generating Decomposable Models
The output learned by a linear SVM is a model consisting of a

linear function made up by a selected set of predicates, and a list
of the all the input predicates and weights for each of them. The
weights for each predicate are computed using standard method-
ology from the weights the SVM assigns to each input event in-
stance. Unfortunately such a model does not decompose well into
per-device filters usable for further data acquisition. On the other
hand, given the input training data, a program synthesizer is able
to generate a classifier that is decomposable, but unfortunately pro-
gram synthesizers do not provide any generalization guarantees.
Fortunately, SVM is able to help us in that respect, since it already
identifies the subset of the training data that is used to define the
separating hyperplane, otherwise known as the support vectors, and
in most cases, the number of support vectors is much smaller than
the size of the entire training set, thanks to the SVM’s regulariza-
tion feature. Thus, as a post-processing step, we feed the events
that are labeled as the support vectors to the synthesizer and ask it
to generate a decomposable model. Even though the resulting clas-
sifier generated by the synthesizer might not be exactly the same
as the one generated by the SVM (for instance, it might pick pred-
icates that have low weights as assigned by the SVM, but nonethe-
less can still classify the incoming events), in Sec. 5.5 we present
empirical evidence that our approach does indeed generate decom-
posable models that are similar to what the user originally has in
mind.

5. EXPERIMENTS
In this section we present our experimental results. The overall

goal of the experiments is to compare various aspects of the differ-
ent learners.

5.1 Methods Compared
We used the LifeJoin platform for experimental purposes. Life-

Join collects events from two different event streams. One of them
is about the location of users, with fields (user, location, start time,
end time), and the other one about users’ activities, with fields
(user, activity, start time, end time). As mentioned in Sec. 1, we are
interested in composite events where events from the two streams
can be combined in different ways, for instance joining them on
the user fields, and part of the learner’s goal is to learn how to com-
bine the two event streams to generate interesting events. In the
following we use locF as a shorthand for field F in the location
event (and similarly for actF for the activity event), and duration is
shorthand for the length of the corresponding event (i.e., end time -
start time). To simplify the description we represent users and ac-
tivities using numbers rather than actual names. We use the unary
features to describe those that involve only one comparison opera-
tion, such as locUser = 3, and conjunctive features for those that
involve multiple comparisons connected with conjunctions, such as
(locUser = 3 and activity = 4). In the rest of the section full refers
to the set of all unary and conjunctive features together.

For the evaluation we implemented eight different learners, as
shown in Fig. 4. The L1 and MI methods are both classical ma-
chine learning approaches based on an SVM classifier. Here the L1
approach uses the LASSO algorithm for feature selection, followed
by a linear SVM for classification. The MI approach performs fea-
ture selection by computing the mutual information between each
of the features and the output label, and picks the features with the
highest scores for subsequent classification using a linear SVM.
Both of these methods enumerate the full feature set on the train-
ing data before feature selection. The ensemble learner represents
the program synthesis approach described in Sec. 3, and hybrid
represents our new hybrid approach described in Sec. 4.

Tree is the learner created by first learning a decision tree using
the C4.5 [19] algorithm using the weka [1] toolkit, and then creat-
ing features by extracting the path(s) from the root node that leads
to the leaves that classify the event as interesting, as in [25]. In or-
der to avoid degenerate trees, we lowered the support for splitting
and did not prune the generated tree. We have also experimented
with random trees and the results are similar. The resulting features
are then used to train an SVM for classification.

Full is an SVM learner that uses no feature selection on the full
set of conjunctive features as mentioned above, unary is an SVM
learner that has no conjunctive features, poly uses the same set
of non-conjunctive features as unary except that the features are
passed through a polynomial kernel. We did not consider other
types of kernels such as radial basis kernel as they combine the in-
put features in a way that does not produce decomposable models
(req 1 from Sec. 1). For the learners that involve SVMs, we tuned
the parameters (e.g., amount of regularization) using crossfold val-
idation, and we set the degree of the polynomial kernel to be 6 after
trying all kernels of degree 2 to 8. We applied the polynomial ker-
nel to other learners (full, L1, MI, ensemble, tree) as well, but that
did not improve the results.

5.2 Experiment Setup
We generated a synthetic data set in which we modeled 5 users,

randomly and uniformly selecting one of 5 location to visit. Each
user remains at the location for a random period of time (ranging
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Learner Feature Selection Classification Active Learning
full none linear SVM linear SVM
unary drop all conjunctive

features from the full
feature set

linear SVM linear SVM

poly same as unary poly kernel
SVM

poly kernel SVM

L1 LASSO on full feature
set

linear SVM linear SVM

MI compute MI on full
feature set, and pick
features with score
above preset threshold

linear SVM linear SVM

hybrid 10 Sketch iterations on
the training set to gen-
erate features

linear SVM linear SVM

ensemble 10 Sketch iterations on
training set to generate
features

10 Sketch iter-
ations on test
set and major-
ity voting

events with
the most # of
disagreements
among the base
learners

tree same as unary, but use
decision tree to pick
features

linear SVM linear SVM

Figure 4: Description of the learners used

from 1 to 10 hours), and randomly and uniformly selects one of 5
activities to perform at the location. This is meant to model the type
of input data that LifeJoin produces. The experiments were run on
a server with 32 cores and 30GB of RAM. We try to execute the
experiments in parallel as much as we can. We choose to evaluate
our methods on synthetic data rather than actual data since no pub-
licly available large data set is available, and using synthetic data
decouples us from the potential errors in data collection or event
identification on the phones. The data set is generated randomly
and does not favor or disfavor any particular learner.

In addition to a data set, we need a way to generate user in-
terests (for labeling training data and to generate ground truth for
purposes of evaluating the performance of the different learners.)
To do this, we manually created 6 different interest functions of in-
creasing complexity and used numerical values to represent users,
locations, and activities, as shown below.

1. locUser = actUser
2. (locUser = 3 ∧ locDuration > 1 ∧ activity = 0) ∨ (locUser =

0 ∧ activity = 2)
3. (location = 3 ∧ locUser = actUser ∧ locDuration > 3) ∨ (lo-

cation = 2 ∧ activity = 1 ∧ actDuration > 2) or (locUser = 1 ∧
locDuration > 4)

4. same as 3. plus disjunct: (actUser = 3 ∧ activity = 2 ∧ actDu-
ration > 1)

5. same as 4. plus disjunct: (actUser = 1 ∧ actDuration > 1)
6. same as 5. plus disjunct: (locUser = actUser ∧ actUser = 2 ∧

locStartTime - actStartTime < 2)
Each of the interests above causes different amount of class im-

balance in the input training data. For instance, the first interest
function labels about 40% of the events to be positive, whereas the
last (most complicated) interest function labels only about 10% of
the events as positive. This is to model how class distribution can
vary drastically among different user interests.

For all the experiments we allow Sketch to learn a maximum of
14 different interests, and allow each interest to consist of a max-
imum of 7 different conjuncts. The numbers were picked from
initial sampling of 5 users. Obviously limiting to 7 conjuncts is
more than needed in order to learn the predicates listed above, but
we used that setting for two reasons. First, we believe this level
of interest complexity is a reasonable approximation of the max-

Learner Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Pred 6
full 100% 100% 85.5% 79.5% 77.5% 81%

unary 75% 75% 75% 75% 75% 75%
poly 76% 76.5% 76.5% 76% 75% 75%
L1 100% 100% 92.5% 88% 74.5% 81.5%
MI 100% 100% 83% 82.5% 78% 82%
tree 100% 100% 91.5% 89.5% 91% 81.5%

ensemble 100% 100% 98% 96.5% 93.5% 92.5%
hybrid 100% 100% 97.5% 95% 94% 93.5%

Figure 5: Cross validation accuracies on error-free training
data

Learner Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Pred 6
full 43k 43k 43k 43k 43k 43k

unary 344 344 344 344 344 344
L1 61.5 118.6 32.6 265.5 482.9 604.9
MI 6708.5 6906.5 6990 6696.7 6430.8 6650.8

ensemble 26.5 40.1 50.2 45.2 40.2 46.7
hybrid 27.9 43.8 43.2 39.4 39.5 41.8

Figure 6: Cross validation feature set sizes on error-free data
(poly and tree have the same # as unary)

imum complexity of interests a user might have. Second, for the
experiments below that contain errors in the training set, limiting
the number of interests to be too small could result in Sketch not
being able to find a satisfying model.

To generate training data (and validate the performance of our
learners), we labeled data points in our data set using each of these
interest functions, assigning a positive label to the event for a given
interest function if the interest function evaluates to true.

5.3 Cross Validation Experiments
In the first set of experiments, we evaluate the accuracies of the

different schemes using cross validation. The goal of this experi-
ment is to evaluate learner performance in the absence of any per-
formance anomalies the active learning methods may introduce.

For each of the predicates we first generated a dataset of 100
positively and 300 negatively labeled events. The events are uni-
formly sampled from a domain consisting of 5 users, 5 locations,
and 5 different types of activities. We ran 10-fold validation on the
dataset, where we divide the positive and negative events into 10
partitions. Figure 5 shows the average accuracies and Fig. 6 shows
the number of features that are actually used for classification.

The results show that our hybrid learner has similar accuracy as
compared to standard machine learning techniques. At the same
time, it does not require using the full feature set as in the other
learners such as LI or MI. This is particularly important when com-
paring the number of features that are used for classification. To
achieve the same overall accuracy, the number of features used by
the hybrid and ensemble learners are an order of magnitude smaller
as compared to others, as shown in Fig. 6.

Next, we repeated the same experiment, but this time we intro-
duced an 5% error into the training set. Here error refers to the
chance that a given event in the training set if mislabeled, i.e., an
event that is labeled as “interesting” is reversed to be “uninterest-
ing” and vice versa, but the test set is error-free. This is to model
human error or user interest drifts over time.

The results shown in Fig. 7 is similar to the case without errors,
except that the average accuracies of all the learners are lowered,
as expected. It also took longer for the experiments to complete
(about 1-2 hours per fold) due to the complexity introduced by the
erroneous events.

5.4 Active Learning Experiments
In the next set of experiments we evaluate the learners in the
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Learner Pred 1 Pred 2 Pred 3 Pred 4 Pred 5 Pred 6
full 94% 92% 81.3% 69% 70.2% 75%

unary 65% 64% 62% 70% 66.4% 70.2%
poly 75.5% 75% 75.5% 74.5% 74% 75%
L1 92.6% 93.7% 84% 82% 80.5% 74.3%
MI 93.4% 90% 88% 80% 78.4% 76%
tree 90% 90% 85.5% 77.5% 78.5% 74%

ensemble 95% 95% 82.5% 85% 84% 84.7%
hybrid 96% 91% 86% 84.2% 83% 86.5%

Figure 7: Cross validation accuracies on data with 5% error

actual usage setting, where the user is asked to label a few new
data points each time she visits her newsfeed. At the end of each
round the learner is given the newly rated events along with the
previously rated ones to refine its model about the user. The goal
of the learner is to select the list of events to present in each round
so as to maximize the accuracy of the model, and to do so with as
few rounds as possible.

5.4.1 Basic Setting
For evaluation purposes we generate 100 positive and 300 nega-

tive events as a training set to be presented during active learning.
The events are generated using the same settings as in the cross val-
idation experiments. We then generate an additional 10k events and
ratings (which are not given to the learners) to use as the test set.
The events in the test set are generated randomly without regards
to the ratio of positive and negative events (about 10% - 40% of the
test events are positive, depending on the interest function). Ini-
tially, the learners are given 1 positive and 1 negative event to learn
an initial model. Then, during each iteration, the learners choose
5 events from the training pool to query for their ratings to rebuild
the model. We measure the accuracy of the model at the end of
each round for 20 rounds. Figure 9(a) shows the results on predi-
cate 6, averaged over 10 runs. The results for the other predicates
are similar but the learning rates tend to be higher for less complex
predicates as explained next.

The focus of these results is the learning rate, i.e., the rate at
which the accuracy increases. As the results show, while the learn-
ers that use classical feature selection mechanisms (L1 and MI) do
have higher learning rates as compared to those that do not (full
and unary), our hybrid and ensemble learners have a significantly
higher learning rate than any of the others, due to the fact that they
are able to pick features with higher predictive power, as discussed
in Sec. 4.

Figure 8 shows the number of features that are used for classi-
fication in each round for the learners. While they all increase as
the number of rounds increases as expected, the growth rate for the
hybrid and ensemble learners that use Sketch for feature selection
is much slower than the others.

As a note, we also experimented with skewed data, where the
training and testing data are biased towards certain users and loca-
tions (to model popular events, and thus the class imbalance is less
severe), along with another experiment where we varied the num-
ber of events to add per round of active learning. The results are
similar to those from the basic setting.

5.4.2 Effect of Errors
Next, we introduce errors into the training events as in the cross

validation experiments and quantify the effect on accuracies. We
introduced K% error. We run two sets of experiments where we
introduced 5% and 10% error. Fig. 9(b) shows the results running
predicate 6, with 5% error, and Fig. 9(c) shows the results with 10%
error.

The average accuracy of all the learners is lowered versus the no
error case, as expected. Also as expected, the 10% error case is
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Figure 8: Average feature set sizes used by learners on error-
free data (poly and tree have the same # of features as unary)

worse than the 5% error case. However, in both cases, the hybrid
learner still performs better than the others. The number of features
used (no shown) exhibits a similar trend as in the no error case,
except that all learners end up using a larger number of features as
a result of the introduction of noise. This shows the power of our
approach — by not having an implicit assumption about the class
distribution of the training data, the hybrid learner performs better
than those that do.

5.4.3 Making Use of Extended Labels
One of the advantages of the hybrid learner over the ensemble

learner is that the SVM in the hybrid learner is able to make use
of extended labels. This is because extended labels simply change
the problem from classification to regression, where instead of a
binary label (e.g., “like” or “dislike”), the goal is to predict ratings
on continuous a scale from -1 to +1. In this experiment, we repeat
the same experiment as in the basic setting but with extended labels
for events. For events that are of interest, the label remains as +1
as before. For those that are not of interest, the label is negative,
but its value is computed in the following way. Given the user’s
interest expressed as N disjuncts ∨di, where each di is a conjunc-
tion of predicates, then if the event e fails all disjuncts, the value
of its label is computed as min(#failed(di, e)/#(di, e)), where
#failed(di, e) is the number of predicates that e has failed within
di, and #(di, e) is the total number of conjuncts in di. We chose
to pick the minimum since this represents the minimal number of
changes in e that would make the user happy. We present the ac-
curacy results in Fig. 10 for running on predicate 6, and they show
that the learning rate for the hybrid-regression learner is faster as
compared to the ensemble and original hybrid-binary learners. This
makes sense since the regression learner is able to make use of the
extended information that is embedded within the “near miss” cases
in selecting better samples during each round of active learning.

5.4.4 Large Domain
In the next experiment we increase the number of users and the

number of locations from 5 to 50, and the number of activities from
5 to 10. This is to model a user who has more friends and visits
more locations. We generated the 100 positive and 300 negative
training events from the new domain using uniform sampling as
before, and an additional 10k events for the test set. 2 We execute
2 Since we are learning a separate model for each user, we do not need to
scale up to, say 1M for the number of users or locations as it is unlikely that
a given user would have that many friends or locations traveled.
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Figure 9: Average accuracies of learners using (a) error-free, (b) 5% error, and (c) 10% error data.
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Figure 10: Extended label experiment results

the same active learning experiment as before. Figure 11 shows the
results.

On the outset, it seems that all learners achieve high overall ac-
curacies on the test data, but close examination proves that not to be
the case. In particular, unlike previous experiments where the ratio
of positively and negatively rated events is not heavily skewed, in
this case, due to the large domain size, only around 3% of the events
in the test set are positively rated, so the learners quickly learn to
assign negative to most test events in order to maximize overall ac-
curacy. The result is a model with high precision on the negatively
rated events and very low precision on the positively rated ones.
The decision tree based classifier, however, decided rather to gener-
alize on the positively labeled events and classifies almost all events
as interesting. As a result, it achieves high accuracy on the positive
events and poorly on the negative ones, resulting in low overall ac-
curacy. To illustrate this, Fig. 12 show the accuracy results on just
the positive events. The figures show that even though the overall
accuracies of the learners are comparable, the hybrid and ensemble
approaches actually perform much better than the other learners on
the positive events.

This experiment raises two important points when comparing
among the learners. First, all of the learners except for hybrid,
ensemble, poly, and tree require enumeration of the full feature set
for all events. In this large domain case, this takes a substantial
amount of time (2 hours for conversion into the feature represen-
tation) and disk space (300 MB needed to encode 10k events), as
compared to the synthesis-based feature selection approach used
in the hybrid and ensemble learners, which takes much less time
(10 min to finish the Sketch runs and seconds to convert the cho-
sen features into feature-space representation) and negligible disk
space (600 kB to encode 10k events). Secondly, the fact that the

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

a
v
e
ra

g
e
 a

c
c
u
ra

c
y
 (

%
)

round number

hybrid
unary

full
L1
MI

ensemble
tree
poly

Figure 11: Average accuracies of learners using data from large
domain
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int runs SV Interest function learned
1 1 21 locUser = actUser
2 4 157 (locUser = 3 ∧ locDuration 6= 4 ∧

locUser = actUser) ∨ (activity = 2)
3 6 120 (locDuration = 4 ∧ locUser = actUser) ∨

(location 6= 0) ∨
(locUser = 1 ∧ locDuration > 4)

4 6 146 (location 6= 2 ∧ locUser = actUser ∧
locDuration = 4) ∨
(location 6= 2 ∧ activity = 1) ∨
(locUser = 1 ∧ locDuration > 4) ∨
(actUser 6= 1 ∧ activity = 2)

5 10 183 (location 6= 2 ∧ locUser = actUser ∧
locDuration > 2) ∨
(location = 2 ∧ activity = 1 ∧ actUser 6= 4) ∨
(locUser = 1 ∧ locDuration 6= 2) ∨
(actUser 6= 2 ∧ activity = 2)

6 16 198 (location 6= 2 ∧ locUser = actUser ∧
locDuration > 2) ∨
(location = 2 ∧ activity = 1) ∨
(locUser = 1 ∧ locDuration > 4) ∨
(actUser = 3 ∧ actDuration 6= 5 ∧ locUser 6= 4) ∨
(actUser = 1)

Figure 13: Model explanations using Sketch

classical machine learning based learners assign negative labels to
most events means that they will very likely not be able to identify
any interesting events for the user, which is the ultimate goal.

5.5 Model Explanation Experiments
In these experiments we test the effectiveness of using a pro-

gram synthesizer at producing a decomposable model (which will
provide human readability and the ability to be pushed down onto
a phone for data acquisition purposes). As discussed in Sec. 4.2,
we took the support vectors after model generation and fed them
into Sketch. In an attempt to generate a minimal description of the
model, we ran Sketch iteratively, first assuming the user has only 1
interest and asking Sketch to generate a description of the model.
If that fails we increase the number of interests until Sketch is able
to find a description. We took the data from one of the cross valida-
tion experiments without error consisting of 400 events. Figure 13
lists the number of iterations needed for each of the predicates to
produce the model description, the number of support vectors used
as inputs, along with the actual description generated.

Although the learned predicates do not perfectly match with the
predicates used to generate the labels for the data, they are quite
similar, and are relatively easy to determine what data to subse-
quently collect on the phones. The results also show the power of
using SVM to reduce the number of input events that are needed to
feed into the synthesizer, where in the best case (interest 1) we only
need to give 5% of the original training events in order to generate a
decomposable description that also happens to perfectly match the
original interest function.

6. RELATED WORK
Recently, many probabilistic modeling approaches have been pro-

posed that can also be applied to the learning problem discussed in
this paper, including Bayesian networks [11], statistical relational
learning [8], and probabilistic logic [17]. There are also work in
building probabilistic models predicting user behavior [27, 12, 2,
15, 6]. However, as with SVMs, models learned using such tech-
niques tend not to generate decomposable models.

On the other hand, other inductive learning techniques, such as
inductive logic programming [18, 16], which aim to learn formulas
from the training data, can produce decomposable models. How-
ever, such tools still assume the input data to have certain class

distribution, and it is unclear how feature selection can be done for
such techniques.

There are many feature selection algorithms that have been pro-
posed in addition to mutual information and LASSO. However, our
synthesis-based approach differs from classification techniques in
that most feature selection techniques focus on the statistical prop-
erties of the training data, e.g., approximating the probability dis-
tribution of a feature based on the number of data points in the
training set in which it appears, as in the MI metric. Such schemes
perform well when fed with a sufficiently large amount of training
data, as evident in our cross validation experiments, but do not do
so well in cases when the training data size is small, as in our active
learning scenarios.

In recent years, the programming languages community has been
working on programming-by-example problems to synthesize dif-
ferent types of programs [21, 10, 9]. Our work differs from previ-
ous tools in that we require a feature selection mechanism in place
in order to provide reasonable results. The work of Gulwani in [9]
proposes querying the user to provide differentiating outputs when
the synthesizer cannot decide between multiple programs that sat-
isfy the same input constraints. Similar ideas appeared in [10]. We
generalize this concept and propose the ensemble learning scheme,
and further show that a hybrid scheme that combines synthesis-
based feature selection with an SVM for classification can provide
excellent performance for social networking applications like Life-
Join.

7. CONCLUSIONS
In this paper, we presented a learning algorithm that combines

the strengths of classical machine learning techniques with pro-
gram synthesis tools, focusing on personalized social recommen-
dation applications. We showed that a hybrid approach, which
first uses program synthesis to generate base learners, followed by
breaking down into individual features and weight assignment with
an SVM, significantly improves runtime and classification accu-
racy. Finally, we showed that using program synthesis on the out-
put of an SVM can yield much simpler, and more human readable
models, which help users understand system behavior and can drive
subsequent data collection.

The experiments show that the hybrid approach can significantly
outperform traditional classification schemes on synthetic data, but
an important next step is to validate the results on real-world data.
Similarly, more research is needed in analyzing the generalization
properties of the synthesis-based approach. Understanding its the-
oretical connections with classical machine learning-based tech-
niques with help develop further algorithms that leverage the ad-
vantages of the two in improving results.
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