An Application Service Provider
Infrastructure for Shared Workspaces
in Internet-Based Collaborativeﬁ%
Design s
By
Jaime Solari

Submitted to the Department of Civil and Environmental Engineering and the
Department of Architecture in Partial Fulfillment of the Requirements for the Degrees of

Master of Science in Civil and Environmental Engineering
and

Master of Science

at the MASSACHUSETTS INSTITUTE
Massachusetts Institute of Technology OF TECHNOLOGY
June 2000
JUN 1 2 2000
Copyright © Massachusetts Institute of Technology 2000.
A All Rights Reserved. LIBRARIES
Author e
_;[/[Teﬁmem of Civil and Environmental Engineering/Department of Architecture
v NMA 18, 2000
Certified by <~
William L. Porter
Professor of Architecture
- Thesis Supervisor
.« e /)
Certified by »)
Feniosky Pefia-Mora
Associate Professor of Civil and EnviroiNnental Engineering
esis Supervisor
Accepted by o Y
/7 7 f{oy Strickland
Chairman, Department Committee on Graduate Students
Department of Architecture
Accepted by)

e~ VIV ¢ . .
/ Daniele Veneziano

Chairman, Department Committee on Graduate Studies
Department of Civil and Environmental Engineering

Thesis Supervisor: Feniosky Pefia-Mora
Title: Associate Professor of Civil and Environmental Engineering

Thesis Supervisor: William L. Porter
Title: Professor of Architecture

Thesis Reader: Jerome J. Connor
Title: Professor of Civil and Environmental Engineering

Thesis Reader Daniel J. Greenwood
Title: Lecturer of Architecture

An Application Service Provider
Infrastructure for Shared Workspaces
in Internet-Based Collaborative
Design
By
Jaime Solari

Submitted to the Department of Civil and Environmental Engineering
and the Department of Architecture

June 2000

In Partial Fulfillment of the Requirements for the Degrees of
Master of Science and Master of Science in Civil and Environmental Engineering

Abstract

For architectural, engineering and construction projects involving transient
‘virtual organizations’ composed of non-collocated team-members, the adoption of
concurrent design principles is seen as vital. An important aspect of concurrent design is
the need for an effective communications infrastructure between team members.
Traditionally, such communication has been handled through person-to-person meetings,
however the complexity of modern projects has grown and as a result, reliance on new
information and communications technologies is becoming increasingly necessary.
Hence, within a concurrent design setting, there is the need for an integrated information
and collaboration environment that will create a persistent shared workspace to support
interaction between project personnel throughout all phases of the project. This research
explores computer-supported mechanisms for enhancing distributed design collaboration.
The goal of this thesis is to develop a set of requirements, system architecture and an
early system prototype to facilitate computer-supported collaboration among distributed
teams. The prototype will consist of a persistent shared workspace system built from the
integration of complementary collaborative applications. These applications are the
CAIRO system, developed at the Massachusetts Institute of Technology and the VNC
system developed at the Olivetti Research Laboratory.

Thesis Supervisor: Feniosky Pefia-Mora
Title: Associate Professor of Civil and Environmental Engineering

Thesis Supervisor: William L. Porter
Title: Professor of Architecture

ACKNOWLEDGMENT
May 24, 2000

I would like to thank Nancy Jones, who has made it possible for me to be here and to
Feniosky Pefia-Mora, who has made it possible for me to stay. Thanks to the faculty
members involved in this thesis: William Porter, Jerome Connor and Daniel Greenwood.
Special thanks to all the members of the team in its various incarnations from DISEL to
888 and beyond: Kiran Choudary, Gyanesh Dwivedi, Chang Kuang, Justin Mills, Sen
Sugata, Sanjeev Vadhavkar and Padmanabha Vedam without whom this project would
not have been half as much fun. Acknowledgements for the people that have provided
open source code and helped avoid ‘re-inventing the wheel’; John Wilson and the VNC
project deserve special mention. Finally, I would like to thank my friends and family for
their non-collocated support over the past years.

Para Lela y Dario

Contents

I INETOAUCTION ..ttt e e e e 9
Fo1 MOTIVALION ..ttt ettt et 11

1.2 ODJECHIVES ...t 12

1.3 HYPONESIS ..o 12

1.4 Benefits of This Research ..., 13

2 ApPlication Service PrOVIALTc.ccovieueuiiiiiiiiieieieieiciee ettt 14
2.1 The ASP Model: A Brief History of OutSOUICING........coveeirmiiiiiiniieniieeieeenns 15

2.2 What Is @an ASP7 ...ooiiii e 16

2.3 ASP Outsourcing Benefits and Drawbacks.............coccooiiiiiiiiiiiniiie, 16

2.4 ASP Technology ReqUIrEMENLScoceveriiiriiiiiiiie et 17

2.5 ASP APPLCALIONS ..cuviiiiiiiiiiieiit ettt 18

2.0 SUIMIMATY ©.eiiutieiiieiee ettt ettt sttt ettt sttt et et ee et e e e bee e sase s bt ebeesibneeeneeenan 21

3 REQUITEIMETIES ... ettt s s e e e 22
3.1 SCOMATIO .ttt ettt e e e s 22

3.2 REQUITEINEILSeeittiiiiiei ettt et s 27

3.2.1 Communication SUPPOTE ...ccvieruiiereiieriie et 29

3.2.2 CoOPEration SUPPOTLueeiriieriieerrieeireeaiiee ettt e e e 30

3.2.3 Coordination SUPPOTcouviieiiiieiiiieceeiie et 30

3.2.4 Architecture and IT-platformcccoociiiiiiiis 31

3.2.5 Group Dynamics-Aware Conferencing...........ccccecevvieininnnicnennn. 32

3.3 SUMITIATY ittt s s st enne s 34

4 Shared Workspaces fOr CSCW ...ttt 35
4.1 Shared APPICALIONS ...c.coviiiiiieiiiie et 36

4.1.1 Shared Whiteboard.......c..c.cooiiiiiiiii e, 37

5 MEthOAOIOZY ... 39
5.1 “High Level” SOIton.......ccccoviiiiiiiiiiiiiii i 40

5.1.1 Multi-user EXens1onoc.eeviiiiiiiiiiiiiiiiiiiiicicceecnececen 40

5.2 “General” SOIULION ...cc.oootiiiiie ittt e 43

5.2.1 Shared X .o oo e 44

5.2.1.1 Shared X Switch: XMXccccoiiiiiniiiiiiiincecen 45

5.2.1.2 SCO Tarantella.........ccooceeriiiiiiiiiii e, 48

5.2.1.3 JCraft WIredX ..c.oooviviieiieiieciecieeecc e 49

5.2 CONCIUSION. ...ttt et sttt ebee sttt sae et aebe e 50

6 Integration PErSPECTIVESoceiiiiiciiiiiiiic e 51
6.1 The CAIRO SYSIEIM ..ooiiriiieiiiitie ettt et 52

6.1.1 The ArchiteCturec.oieieuiiiiieiieeee e 53

6.1.1.1 Collaboration Manager..........cccoeeveeveeeeeriineerenieneeeeen, 53

-5-

6.1.1.1.1 Media DIIVETS. ..o it eeeae 54

6.1.1.1.2 MeSSAZE SEIVET ...ceveeruieiiirieeiicieciiee e 54

6.1.1.2 FOrum SeIrVer.......coooueiiiiiiieiiiiiciiieee e 55
6.1.1.2.1 Chairman Meeting.........c.ccccevvuererrcineeerincnneennn. 56

6.1.1.2.2 Freestyle Meeting.........ccoceevvvvieiiiiciiciiincinn, 56

6.1.1.2.3 Lecture Meetingcccooeevveiiiiiiiinniniiiieiens 56

6.1.1.3 NAME SEIVET .c.eetieiiiiieitieieeeietee et 56

6.1.2 The FEAUICSvvvveeeiiiiiiieeee e s 57
6.1.2.1 The INterfaceccocvveeviiiniiiiicciicei 57
6.1.2.2 The Agenda Tool.........cocoiimiiniiiin 60

6.1.2.4 Side-TalKoooorieeiieiiieeiice et e 61

6.1.2.3 The AZENL...iiiiiiiiieiiiieee e 61
6.1.2.4 The Social AZENt.....cooviiiiiiiiiiiiiiiee e 62
6.1.2.4.1 EXPIessIONS.......coceimiieiiiiiiieiiiiiec e 63

6.1.2.4.2 Casual Contact........cceeeeerniriieeiiieeaiiniiiiiiiiieeeae 63

6.1.2.4.3 Awareness DIiver.......ccocccccvviiiiiiiiiicciiicne, 64

6.1.2.4.3.1 Affective Bar ... 65

6.1.2.4.3.2 Affective ICONScooooviiiiiiieeeeeiec e 65

6.1.2.4.4 Three Dimensional Virtual Environment........... 66

6.1.3 CONCIUSIONS ..ottt 67
6.3 Virtual Network COmMPUtING.......ccoeviiiiiiiiiiiiiiie e 68
6.3.1 The VNC ProtoCol.....c.ooiciiiiiieieiieeeeiie e 70
6.3.2 The VINC VIEWET .couiiiiiiiiiieiiiiiieee e 72
6.3.3 The VINC SEIVET...ccomiiiiiiiiieiiiiitie e 73
6.3.4 CONCIUSION....cuiiiiieiiiiiiiiteee ettt e e st re s e e e e beeeee e 74
6.3.5 SUIMIMATY ..evieeiiieeiiieiiee ettt ettt s eene e e e e e na e e s anree s nns 75
7 Broadband Collaborative ASPooiiiiiiiiiie 76
7.1 Design Considerations..........ccuciiieiiiiiriieiiie e 77
7.1.1 Meeting Protocols ... 78
7.1.2 Cross-Platform Compatibilitycccooceeviiiiiiniiiiiii 80
7.2.2 Database INtegration..........ccocceieiiiiiiiiiiiiiiiiicciii e 81
7.2.3 ANNOLALIONeiiiiiiieiie e etie ettt et ee e e eeenee e 82
7.2.4 Standard COMPHANCEcoveeeuieriieieeieciceie e e 84
7.2.5 SECUIILY ...ttt 85
7.2.5.1 Application Security: Too Much Remote Contro] 86

7.2.5.2 Virtual Private NetWorks.........ccoveervieiniiieniiinn e 86

7.2.5.3 ENCTYPLON .coeviiiiiieceieecieeii et 87

7.2.5.4 Corporate Networks and Firewalls.................... 88

7.2.6 Concurrency COntrolcocueeeiiiiiniiiiiniceiccee e, 89
7.2.6.1 LOCKING ..ottt eeie ittt 90
7.2.6.1.1 Shared Lockingccocceeiimiiiinniiiiiiiiciee, 90

7.2.6.1.2 Fine-Grained Lockingccoccoiviiiinniiinnnn 90

7.2.6.1.3 Persistent Lockingccoccviviiiiniiiniiccnen, 90

7.2.6.2 Notification Controlccoocceeriiiiiniiiiiieeie e, 91
7.2.6.2.1 Fine Grained Notification...........cccocceeerieennnnnne. 91

7.2.6.2.2 Persistent Notificationccccoeeveeriiieninnnnnn. 91

T7.2.6.3 TTANSACTIONS .evvvvetieieireeiee et ettt e e et eearessesasessannsens 92

7.2.6.3.1 Short Transactions.........ccccceveevieereieinceneeeenn 92

7.2.6.3.2 Long Transactionscccccceuveeiiniiiicniiecieene. 92

7.2.6.4 Version Controlcococeeiiiiiiiiiiiiiicceecte e 93

7.3 SUIMIMATY ..eoeiiieiiiieiie ettt ee e st bt e e esbe e e esbe e et oo staeesbaeeabsaesaraasbeaenseeannes 93

B RESUILS 1.ttt e et h et e et e e bt e aaee e aneees 95
8.1 PRIOt STUAY .o e e 96

8.2 PEIfOIMANCEoeiviiiiiieeceetee et e st ee e 97

8.2.1 Desktop CHENLS ..ot 97

8.2.1 Personal Digital ASSISTANIS.......everuiieriiieeiiieiiee e e 97

8.2.1.1 Resource Limitations........coccoeeiriiinieeniniiiee e 98

8.2.1.1.1 Display Limitationsc.ccceevuvircveecvinseeenneenene 98

8.2.1.1.2 Memory and Computational Power Limitations 99

8.2.1.1.3 Network COonnectivitycccoeevveeeenueeenciienennneee. 99

8.3 SUIMIMATY ..ottt et e e e e saasaeeeseaans 100

O COMCIUSION ...eetiieteeeteeeiteee e e ettt e e e et e et e e e e et e e e e eeeaeeaeseeaeaeeaanenaaesn e e s raeaneeeeeaeseeannnnnns 101
Bibliographyoocuiiioi e 103

List of Figures

Figure 2-1. Which class of applications an ASP will most frequently deliver?................ 19
Figure 2-2. Heterogeneous Computing Environments [Citrix Systems Inc. 1999] 20
Figure 3-1. Query Results Page [Anumba and Duke 1999]........cccccoiiiiiniiinne 23
Figure 3-2. Personal Details and Availability Page [Anumba and Duke 1999]................ 24
Figure 3-3. Graphical Representation of Users clustered by disciplines, activities and
interests [Anumba and Duke 1999] ..., 25
Figure 3-4. The Conferencing Room [Anumba and Duke 1999] ... 26
Figure 4-2. Bipartite Use of Shared Application Tools [Fluckiger 1995]cccoocieiie. 36
Figure 4-3. Shared Application [Schefstrom 1999]coooiiiviiiiii e, 37
Figure 4-1. Bipartite Use of Shared Whiteboards [Fluckiger 1995]ccccceniiiniiininene. 37
Figure 5-1. Multi-User Extension Architecture [Schefstrom 19997cccceviiiiiinneen. 41
Figure 5-2. Synchronized Presentation Using Microsoft PowerPointc..cccoci.. 42
Figure 5-3. Application-access Module [Linar Ltd 1999]c..cocoiiiiiiinniieec e, 43
Figure 5-4. X Window System [Schefstrom 1999] ..., 44
Figure 5-5. Shared X Architecture [Schefstrom 1999]ccoiiiiiiiiie e, 45
Figure 5-6. XMX Virtual Root Window, a root-window-in-a-window.................cccee... 46
Figure 5-7. X Multiplexor Control (XMC) User Interface [Bazik 1999]c.ceceee. 47
Figure 5-8. SCO’s Tarantella X Emulator Applet Running XMXccoccooiiinniiinnnn. 49
Figure 5-9. JCraft WiredX X Emulator Applet Running XMX........coooocoiniinninne. 50
Figure 6-1. Current CAIRO Architecture [Hussein 1995]........cccooiiiiiiiiii 53
Figure 6-2. Forum Server INterfaceccccoocoiiiiiiiiiic e 55
Figure 6-3. Name Server INterface ..ot 57
Figure 6-4. CAIRO INEIface.cccooiiiiiiiiiiiiiiiiiic e 59
Figure 6-5. Hallway Of MEEUNGZSoooiiiiiiiiieiiiieecc e e 60
Figure 6-6. The Agenda ToOl........ccocuiiiiiiiiiiie e 61
Figure 6-7. The CAIRO AZENT.....ccoiiiiiiiiiiiie ettt 62
Figure 6-8. Snapshot of Expressions Tool ... 63
Figure 6-9. Casual CONTACE.........c.eeiiiiiiiiiiiiie ettt 64
Figure 6-10. Affective Barcocooiiiiiiii e 65
Figure 6-11. Affective ICONS «...ooouiiiiiiiiie e e 66
Figure 6-12. 3D Virtual Meeting ROOM ...t 67
Figure 6-13. Thin Client System [Richardson, Stafford-Fraser, Wood and Hopper 1998]
.. 71
Figure 6-14. Unix Desktop Within Internet Explorer and Windows Desktop Within
INELSCAPE ON UK. .eeiieiiiiitie ettt ettt et e e e enneeeens 73
Figure 7-1. Seven Dimensions of Design Considerationc..coccoociiiiiiiiicciinciinnnenn. 78
Figure 7-2. Implementation of Meeting Control Structure for Lecture Style 79
Figure 7-3. Multiple Client Devices: Windows, Unix, Windows CE and Palm............... 80
Figure 7-4. Database Query Interface ..., 82
Figure 7-5. Annotation Interface.................. i 84

Figure 7-6. SSH Authentication Panel

All illustrations by the author except those noted otherwise.

Chapter 1

1 Introduction

Construction projects usually involve transient ‘virtual organizations’ made up of
members of a project team working together on the design and construction of a facility.
Team members are often non-co-located, particularly at the early stages of the design
process, and tend to work independently while making decisions that affect others. For
these cases, the adoption of concurrent engineering principles by the construction
industry is increasingly being seen as vital for reducing the problems posed by the
industry’s fragmentation, and enhancing its competitiveness. An important aspect of
concurrent engineering in construction is the need for an effective communications
infrastructure able to transmit project information between members of the project team
and across all stages in the constructed facility’s lifecycle [Anumba and Duke, 1999].
Traditionally, such communication has been handled through person-to-person meetings,
however an increase on the reliance upon information and communications technologies

has shifted this project information online. Hence, within a concurrent engineering

setting, there is the need for an integrated information and collaboration environment that
will create a persistent workspace to support interaction between project personnel

throughout all phases of construction projects.

As these information and communication technologies move rapidly into the world
of networks and distributed environments, architecture engineering and construction
companies are looking forward to the wealth of opportunities that are being uncovered
with this new form of collaboration. By combining the computing power of today’s
processors with real-time data transmission, virtual collaboration forums over distributed

networks will become a powerful tool in tomorrow’s workplace.

This research focuses on creating those persistent workspaces using new models of
computing delivery in conjunction with an understanding of group meetings and
collaboration processes to facilitate computer-supported collaboration among distributed
team members. This initiative explores computer-supported mechanisms for enhancing
distributed engineering collaboration by using the Application Service Provider (ASP)

model to create a shared workspace for computer supported collaborative work.

This thesis starts by outlining in Chapter 2 the most important features of the ASP
model. In Chapter 3 a requirements analysis for a collaborative system is provided.
Following the requirements, Chapter 4 discusses the concepts behind shared workspaces
for CSCW. Chapter 5 explains the methodology behind this research and the two
strategies pursued. Chapter 6 outlines the most important features of the CAIRO system
developed at MIT and the Virtual Network Computing applications developed by the
Olivetti and Oracle Research Laboratory. Chapter 7 describes the design considerations
for a Collaborative ASP. Chapter 8 provides an overview of the benefits of an integrated
collaboration and shared workspace environment. Finally, Chapter 9 is the summary and

conclusions for this project.

-10 -

1.1 Motivation

Significant research efforts have been devoted to the area of sharing information
through computers and the Internet. However, limited attention has been devoted to the

basic communication mechanisms and the encoding of these mechanisms [Pefia-Mora et
al., 1997].

Therefore the objectives for the integrated system described in this thesis are three
fold. First, it aims to remove the same-place constraints that are characteristic of face-to-
face meetings. Elimination of same-place requirements allows for true global
collaboration without collocation, minimizing the overhead associated with collaboration

as well as reducing project expenses.

Second, in addition to the removal of the physical limitations of in-person
meetings, the integrated system also seeks to remove the temporal or same-time
constraints. Without same-time constraints, participants could contribute to the
collaboration process asynchronously, adding convenience to the entire collaboration

process.

Finally, the system seeks to model meeting control structures. Since limited
attention has been devoted to encoding these basic communication mechanisms, the
system described below implements many forms of meeting control structures, in order to

facilitate the flow of information.

Keeping in mind the motivations outlined above, the goal of this research is to
develop a set of requirements, a system design or architecture and an early system
prototype that will meet the requirements. The prototype will consist of a comprehensive
working collaborative system built from the integration of collaborative applications.

These applications are the CAIRO system, developed at the Massachusetts Institute of

-11 -

Technology and the VNC application developed at the Olivetti and Oracle Research
Laboratory.

1.2 Objectives

A working prototype is intended to demonstrate the collaboration enabling
capabilities of a meeting environment in combination with a persistent shared workspace
within the context of an architecture, engineering and construction (AEC) project. This
prototype will employ the meeting control structures, which is central to the original
CAIRO system in combination with a new model of application sharing deployment. A
sample scenario will be created to simulate the types of situations that may occur during a
design meeting. These sample scenarios are intended to provide insight to the various
kinds of interaction that need to be managed during collaborations. From this example,
an architecture that incorporates the new application sharing model and the underlying

database design is developed.

From the work described above, a robust collaboration system is shaped, allowing
for more effective shared workspaces to occur, both among distributed team members
and within independent isolated members. In other words, participants may choose to
work as part of a collaborative group or alone in their own private workspace. The
collaborative ASP model incorporates additional CAIRO features such as full
hierarchical group structuring, agenda building, and a detailed information policy to

facilitate this interaction process.

1.3 Hypothesis

The architecture for the new application collaboration system will incorporate
important concepts of the current CAIRO system. In particular, CAIRO possesses

concepts that relate interaction norms in a meeting to a virtual environment, such as the

12 -

control structures. However, the ability to share information beyond a whiteboard needs

to be incorporated to allow for comprehensive application and data collaboration.

By developing and using a application sharing prototype designed and deployed
with the ASP delivery model, experience can be obtained for generating a roadmap for
next generation systems. Based on the advantages and disadvantages of the prototype, a

new set of requirements can be developed that define needed changes.

1.4 Benefits of This Research

The successful development of this collaboration system will greatly enhance the
effectiveness of concurrent engineering teams where members of the design team,
suppliers and consultants cannot all physically meet at the same location. First of all, this
new system will enable team members to collaborate through a shared workspace from
multiple platforms and operating systems, which is currently not possible with most
collaborative tools. Second, through its thin-client architecture, the system will enable
designers to work on applications even when the application is not installed on the local
computer or belongs to another platform. Third, through its database connection, the
system will enable to designers to query the sessions for design process information or
conflict resolution. Fourth, by taking advantage of current developments in mobile
computing, the system enables team members to collaborate without the need of desktop
computers. Designers and other team members can work on common documents through
Palm Pilot and Windows CE devices. Team members will be able to collaborate with
each other from locations wherever their physical presence is most valuable (i.e. on-site
or at the design offices). Thus, dealing with unexpected issues from the construction site
or the design office will become easier. In addition, it will be feasible for associates to
participate in multiple meeting sessions simultaneously. This way, consultants and
experts can contribute their value to more organizations than they have in the past. Time,

monetary resources, and lack of involvement do not have to be compromised.

-13-

Chapter 2

2 Application Service Provider

Multi disciplinary teams working in a distributed environment are very often
working in a heterogeneous network, with different computing platforms, namely Unix
and Windows. Also, as wireless technology comes of age and mobile devices become
commonplace, the platform compatibility issue will be combined with the
hardware/interface compatibility issue. For example, as well as having a network with
Unix and Intel platforms, there will be handheld devices coexisting with mobile phones
and the software will need to take this into account. This compatibility problem is
inherent to traditional client/server architecture, which emphasizes client-side
computational power [Citrix, 1999]. One solution to this problem is server-side

computing which is used by the Application Service Provider model.

-14 -

2.1 The ASP Model: A Brief History of Outsourcing

In the early years of business computing, outsourcing was known as "time-sharing."”
Expensive and complex mainframe computers were beyond the reach of all but the
largest corporations. Consequently, many businesses shared the processor time of an off-
site mainframe that was managed by a third party. This time-sharing, or "bureau," service
typically rented the mainframe for relatively easy-to-manage tasks, such as payroll
processing or receivables billing. Mainframes were used mostly for number intensive
data processing rather than managing complete applications. When affordable
minicomputers and personal computers arrived on the scene, demand for time-sharing

dropped, and many processing tasks were brought in-house.

Time-sharing was not scaled back because it was a bad idea, but because PC
technology reduced the costs of processing tasks internally. The practice of outsourcing
tasks that are not part of an organization’s core competency remains a sound one.
However, today’s business environment calls for timely, interactive access to applications
and management information, something time-sharing lacked. Until the Internet came
along, there was no cheap, nonproprietary means for a desktop computer to communicate
with an off-site application host system and no standard client environment that could

interact with the remote application.

The Internet provides a publicly accessible infrastructure that connects users to off-
site application servers. Desktop Web-browser software provides a standard way to
interact with an application hosted on a Web server. And neither the Internet nor browser
software adds much cost to the outsourcing equation. Using this technology, software
vendors and Internet Service Providers (ISPs) are reviving outsourcing for information
management. Software vendors are providing "rent-an-application” services, and ISPs are
expanding their business models to differentiate themselves in what has become a highly

competitive environment.

-15 -

2.2 What Is an ASP?

Conventional ISPs manage Web servers and e-mail servers that are connected to the
Internet. These servers host Web pages for businesses and individuals and route e-mail
messages. An ASP simply extends this model to include software programs, from a
payroll or human resources module up to a full enterprise resource planning (ERP) suite.
In addition to hosting Web pages and e-mail, ASPs use servers connected to the Internet
to host applications. ASP customers can interact with a remotely managed application

module or suite of modules via Web-browser software on an anytime, anywhere basis.

Simply hosting the application software remotely is only part of the job of a full-
service ASP. The ASP has to perform a role that combines the responsibilities of an ISP,
a traditional outsource service provider and a value added reseller (VAR) from which you
might have purchased a non-customized software application. In the near future, more
ISPs will become ASPs; ISPs will partner with software vendors and VARs to offer ASP-
like services; and vendors and VARs will simply become ASPs. Buying prepackaged
applications for in-house use, rather than renting them over the Internet, may become a

thing of the past [McKie, 1999].

2.3 ASP Outsourcing Benefits and Drawbacks

Outsourcing something like an ERP application to an ASP has many benefits that
apply to any type and size of business. The ASP maintains the hardware server "farms"
(large facilities of servers) required to efficiently host complex applications and removes
the need for companies to buy, maintain and upgrade in-house hardware. The ASP can
make sure that the latest versions of applications are available to enterprise-wide users
without the need for costly site-by-site in-house upgrades. Using an ASP-based ERP
system also means that the only client software required on the user’s desktop is a Web

browser, which eliminates the need to manage client software on a desk-by-desk basis.

216 -

IS cost reductions are not the only reason why ASP outsourcing is attractive: ASP
customers can sign up new users or workgroups for an application at almost a moment’s
notice without the need for complex infrastructure and implementation-resource
planning. New users can access the application without expensive upgrades to the local
technology environment. This means businesses can get new applications, such as sales
force automation or customer relationship management software, up and running faster;
can bring on more users or users from remote offices more quickly; and can adapt more
easily to merger and acquisition activity. Small businesses and geographically dispersed

multinationals alike can capitalize on the benefits of application service providers.

However, there are some clear drawbacks to the ASP outsourcing model. Switching
from an internally managed and accessed local- or wide-area network (LAN or WAN) to
the publicly managed and accessible Internet means that access to outsourced
applications may be subject to influences beyond your control. For example, heavy
Internet traffic may slow application response times, and malicious hackers could get
hold of accounting, employee or customer data. Furthermore, not every application
available today has a complete or thoroughly field-tested Web interface, something that
could restrict its availability to users. Also, a complex system such as an ERP suite
requires considerable time to configure to a company’s specific business needs, and
integrating an ASP-managed ERP system with complementary in-house systems, such as

a customer relationship management system, could prove challenging.

2.4 ASP Technology Requirements

While the technology requirements for running an outsourced application over the
Internet are daunting for the ASP, they are relatively straightforward for the application
user. Depending on the design of the application being outsourced, your company should
need no in-house application servers or database servers to support the application.
Similarly, if the ASP is hosting a properly designed browser/server application, it should
demand nothing more than a Web browser on each device (PC, laptop, handheld, mobile

phone, etc.) that needs access to the application. Clearly, every user of the outsourced

-17 -

application requires secure access (via a firewall) to the Internet and, ideally, should have
a full-time, high-speed connection using a virtual private network (VPN) managed by the
ASP. Users also must have e-mail since this is how the outsourced application delivers
reports, documents and business alerts, facilitates workflow participation and maintains a
support dialogue with individual users. Given the fact that most businesses already have
access to the Internet and e-mail, they won’t require much new or even upgraded

technology to take advantage of an outsourced application [McKie, 1999].

2.5 ASP Applications

A recent survey of the ASP industry showed that communication and

collaboration applications would be most frequently deployed using this model:

Question. In the year 2000, which class of applications an ASP will most frequently

deliver?

33% - E-commerce

25% - Communications/Collaboration

15% - Customer Relationship Management
14% - Finance/Accounting

7% - Human Resources

6% - Education/Training

[Online survey, ASP Industry Consortium 1999]

-18 -

—
B E-commerce
B Communication/Collaboration
O Customer Relationship
Management

O Finance/Accounting

B Human Resources

Education/Training ‘

Figure 2-1. Which class of applications an ASP will most frequently deliver?

As it will be explained in the requirements, distributed design teams often use
different software components on heterogeneous platforms and networks [Figure 2-1],
therefore it is important that they are interoperable to allow collaboration and data
sharing. With server-based computing, applications are deployed, managed, supported,

and executed completely on the server.

Due to the inherent advantages of server-based computing and the distributed nature
of the virtual design teams, the deployment through an Application Service Provider
model would be of great benefit to enable collaborative applications. These benefits can

be summarized in the following three critical components:

A. A multi-user operating system that allows multiple concurrent users to log on and

run applications in joint as well as separate, protected sessions on a single server.

B. A remote presentation services architecture capable of separating the application’s
logic from its user interface, so that only keystrokes, mouse clicks, and screen updates

travel the network.

-19 -

C. Server-based computing does not require applications to be downloaded to client

devices. As a result, application performance is neither bandwidth- nor device-dependent.

/
- A
7 Frame Reisy N
ATH “\

[l & abin
R }
Thghigs /
retnroet ’/
/-../
7 // g
S R
Tebrcramembny

OO0 O

Terrns Termizaal Tetwired Teeznng

Figure 2-2. Heterogeneous Computing Environments [Citrix Systems Inc. 1999]

In summary this Application Service Provider model can be used for the
application sharing implementation within a shared workspace. Shared applications can
be easily deployed from a server instead of running on the local client machine and this
way avoiding a number of problems. This new model of deployment solves a diverse set
of challenges that will enable to fulfill the requirements explained in the following

chapter:

-20 -

A. LAN-Locked Applications. Applications based on two-tier client/server
architectures are designed for the LAN and are not optimized to run over high-latency

phone or WAN connections that run 100 to 1000 times slower than a local segment.

B. Heterogeneous Clients. Networks usually involve PCs as well as non-
Windows systems such as Linux, OS/2, UNIX, or Macintosh. Other networks could
include low-cost, fixed function devices, such as terminals or wireless devices such as

wireless tablets and personal digital assistants (PDAs).

C. Management. Managing access (security), version control (maintenance),
system configuration (moves, adds, deletes), and support (help desk) can be very costly

particularly for distant users.

D. Heterogeneous Software Packages. Each subgroup within a virtual team
typically uses a set of software packages that is specific to the group’s discipline.

Therefore compatibility becomes an issue for situations such as visualization.

2.6 Summary

The first part of this chapter described the typical components of the traditional ASP
deployment model that is currently being used in industry. The second part of this section
described the attributes of an ASP deployment that would be of benefit for a shared
workspace. The reasons why a shared workspace would benefit from an ASP model are

formalized in the following chapter under the requirements.

221 -

Chapter 3

3 Requirements

Before reviewing the requirements of the new shared workspace it is important to
outline a scenario of how this shared workspace would be used. This scenario describes
the behavior of a generic collaboration tool and within its features the shared workspace

is highlighted.

3.1 Scenario

The following description is a user session of an integrated collaborative system that
involves a building design problem [Pefia-Mora, Anumba, Solari, Duke 2000]. The
parties involved in the design are a project manager, an architect, a structural engineer, an
environmental engineer, a contractor and a geotechnical engineer. A member of the

design team wishes to alter the dimensions of a particular area of the building. They see

=22 -

that this impacts upon the available corridor space and feel they should check that no
safety regulations covering the size of corridors are contravened. They wish to contact an
individual in the virtual organization who will be able to help them with the issue. Not
knowing the name of such a person, they can look up in a project repository the person
that would be responsible for those aspects of the project. The project repository contains
all relevant information relating to the facility being developed including details of which

disciplines are interested in specific aspects of the facility.

|| Search: Query Results

Gethelp

i

Here are the people who match your guery.

| The estimated current availability is shown with a green, yellow,

|| red or grey spot. Green means available, yellow means may be

|| available, red means unavailable and grey means the person has
not loaded the availability software.

Click a name to get details.

Figure 3-1. Query Results Page [Anumba and Duke 1999]

Once the people affected by the decision have been determined, the system will
determine the current availability of each member involved. People in the result set might
have a colored dot next to their name to indicate the result of the availability look-up (For
example green means they are probably available, red means they are unavailable and
gray means that the system has no record of that person). The user can then see, at a
glance, which of the people are available and select them from the list. This selection
returns more detailed information from the database, such as images from a “Web cam’.

The image from a camera pointing at the desk area of the individual is periodically

0 T

written to a file. This is then added to the web page. If the required person is available,

communication can be launched automatically from within the system, with the project

model providing the context for the design discussions.

images of the
person’s desk
area using a

static camera

‘screen glance’ of
current display on
queried computer
screen

Figure 3-2. Personal Details and Availability Page [Anumba and Duke 1999]

At the same time that communication links have been established, a graphical
representation of users clustered by disciplines, activities, interests and projects in a
multi-layered environment can be provided. Close to the user’s avatar are other members
of the virtual team. However the user can navigate freely about the world, and
communicate with other people if desired. The user starts up a text chat conversation with
a member familiar with safety regulations but moves on to more important issues and
decides to upgrade the conversation to a voice chat. The two avatars are selected and
automatically entered into a phone call together. The other people in the space have a
visual indication that you are in an audio-chat, and can overhear some of the conversation
as it is 'streamed’ into the world. Another colleague moves into the 'audio zone' and is

automatically phoned-up to enter the conference. He has overheard talking about the

224 -

particular project in which he is involved and would like to discuss a certain aspect of it

[Anumba and Duke 1999].

Figure 3-3. Graphical Representation of Users clustered by disciplines, activities and interests
[Anumba and Duke 1999]

All three members decide to continue the discussion in private and perhaps take
some notes, so they choose to enter a more formal meeting space. While they continue
chatting, their avatars are moved up to the formal meeting plane and a meeting room
appears around the avatars. Various conferencing tools appear such as a table and
whiteboard and the avatars start to ‘act out’ the interactions between the team members.
The project manager initially selects a ‘freestyle’ forum style from the available choices.
The forum moderator then requests additional information regarding the meeting, these
include: media drivers used (text, audio, video and whiteboard); maximum number of
active speakers (2); and membership criterion (predetermined list). Additional invitations
to join the meeting can be sent by the members currently attending the session. The
members of the design meeting can setup a meeting agenda helped by a wizard and
discuss the issues related to project as they each formulate their evaluation of the
problem. Eventually, this meeting could become confusing as members continually
interrupt each other’s work. At this stage, the structural engineer may wish to revise the
meeting moderation scheme to a ‘chairman’ scheme. The structural engineer can do so by

entering the control parameters he/she wishes to enforce on the members and the meeting

<

would be reestablished with a chairman control scheme. The architect raises his/her hand
to present a design proposal to the other members and receive a critique from each, so the
architect 1s given the floor. Eventually through multiple cycles of discussion and
explanation the design would be formulated with acceptance from all participants of the
meeting. The negotiation would be facilitated by the social feedback provided by the

awareness driver as well as the expressions tool.

Figure 3-4. The Conferencing Room [Anumba and Duke 1999]

Next, the safety expert decides to present an overview documentation for the task
he/she wants to discuss. The safety expert enters the details of the CAD document on the
local desktop, and the document, which had been private until this point is shown as a
paper on the table in front of the other avatars, to represent its public accessibility, with
the CAD icon on top. Any meeting participant can now select the paper and the document
appears in a 2D window on the local screen, even if they don’t have the CAD package
installed on their computer and even if they don’t have the same operating system or
platform as the safety expert. As the discussion evolves the architect starts to draft some
corrections on the safety expert’s drawing. Once both authors are finished working on the
document in parallel mode, they are given the option of merging their modifications. This
will be possible by replaying the events stored in the database on the other author’s
modified file. Upon conflicts among data modifications between author (person who

started the application session) and users, the system will validate the author’s

- 26 -

modifications only. If the conflict is among equal peers (neither author nor chairman) the
modifications are prioritized according to their chronological order. The discussion
continues and the contractor decides to jot down some of the ideas that are being
generated. His avatar is then shown writing on the whiteboard in the 3-D environment.
When the whiteboard is selected on the local desktop a 2D window appears to show more
clearly what is being noted down. Once the session is over, the notes from the whiteboard
are saved in XML format and the conference environment is again replaced by the social

space.

3.2 Requirements

Much of the development of tools to support computer-mediated collaboration
focus on the general needs of people while they are holding group meetings, for purposes
such as: designing, taking a strategic decision, discussing a topic, finalizing a decision.
Therefore it is not surprising that computer supported collaborative work tools are

characterized according to two types of communication: synchronous and asynchronous.

Synchronous communication occurs when the participants are available at the
same time, information is exchanged and extended in real time and feedback is available
immediately. Examples of synchronous communication are groupware, audio and video

conferencing.

Asynchronous communication occurs when the participants are available at
different times, e.g., email, hyper mail, shared documents and World Wide Web
browsing. Asynchronous communication has the disadvantage of delayed feedback and
possible noise amplification. On the other hand, it has the advantage of leaving to the

participants the time management of the information sharing.

Keeping in mind the synchronous and asynchronous modes of communication,
the following set of requirements aim at enabling both types of communication as well as

the following three models of behavior in collaboration as proposed by Sharples [1993]:

_27 -

Parallel: all collaborators work simultaneously and send their work to each other

or to an editor;

Sequential: the collaborators divide up the task into stages such that the output

from one stage is handed on to the next collaborator in line;

Reciprocal: the group members work together to create the material, mutually

adjusting their activities to fit the evolving output.

Based on the two types of communication (synchronous and asynchronous) and
the three models of behavior in collaboration (parallel, sequential and reciprocal), the
requirements can be divided into three main categories: communication media,
information sharing and process management. This classification is related to previous
work done in describing the requirements needed for CSCW systems. Saad and Maher

[1995] proposed that CSCW tools must fulfill four high-level requirements:

Information sharing in which the representation of the design objects are shared

using a language that can be understood by all the participants,

Communication media in which the collaborative design participants can

communicate their intentions, planning and actions.

Process management where the participants can determine the stage of the

process and what is to be done next,
Exploration space in which alternatives can be proposed, tested and changed.

Regarding the third group of requirements, the process management, previous
work has determined that meetings require a control structure to facilitate interaction,
which must be taken into account as part of the requirements of a collaborative system.

Condon [1993] presents three models of control for the collaborative process in CSCW:

-28 -

Fascist: one chairperson is always in control, having the right to decide who can

use the keyboard at any one time.

Communist: the system is in control. Although it can only reflect the activities of

other users, the system becomes the ultimate authority.

Anarchist: is a "free-for-all". Each user has the capacity of controlling and

modifying the system.

Condon argues that the third model, anarchist, is "the only viable model for the
design of CSCW systems." He also argues that "the main problem of groupware from the
point of view of the system designer [is] the lack of a clear owner." However, the control
structure model described in this thesis supports a different view in which, depending on

the context, different controls are required.

Similar to Saad and Maher’s division of the requirements into four parts
(information sharing, communication media, process management and exploration
space), Johannsen et al. (1996) argue that CSCW requires support in four areas:

communication support, cooperation support, coordination support, and IT architectures.

3.2.1 Communication Support

Ubiquitous communications: It should be possible for distributed teams to
communicate as efficiently as in co-located situations. To this end, a range of
communication tools should be available for different work situations and locations

(synchronous and asynchronous).

Audio/video Communications: collaborative work requires communication
channels that are as “natural” as possible. For example, additional channels of non-verbal
communication, such as facial expressions, gestures and body movements, complement

spoken language. These aspects serve as additional cues in the communication process

-29 -

and play a special role in a decision-making situation. Thus, high quality audio/video is

needed.

Privacy and facilitating trust: Since people depend to a large extent on face-to-
face interaction to develop trust among each other, in a physically distributed
environment, information technology inherits the additional role of assisting the users in

the building of trust.

3.2.2 Cooperation Support

Support of heterogeneous cooperation styles: collaboration may range from a very
asynchronous style of remote cooperation to a highly interactive, meeting oriented style
of synchronous cooperation. Therefore, it must be possible to tailor the interface to the
actual needs of the distributed workgroup and to support the interaction between
distributed workgroups using different cooperation styles. The cooperation style should

not be fixed, as it should allow to be changed during a cooperation session.

Support of shared workspaces: cooperation requires the ability to share material
or even more general, to have persistent shared workspaces. For shared applications, the
protocols should allow to switch modes during a meeting. For example, cooperation may
require a tightly coupled mode including “what you see is what I see” (WYSIWIS) when
authors want to edit or discuss the same section of a CAD drawing or a loosely coupled
mode when two authors work on different sections of a model but want to be informed of

changes the other makes.

3.2.3 Coordination Support

Process coordination: An important function for the coordination of dispersed
groups is the integration of synchronous and asynchronous group-work phases and to
ensure continuous workflows though meeting control structures, provision of awareness
of other people’s activities and notification of important events. Regarding synchronous

and asynchronous group work, most of the current collaboration solutions are primarily

-30 -

designed for either “same time” support scenario or the “different time” scenario. This
generally stands in contrast with the process orientation and the notion of continuous

workflow in the office.

3.2.4 Architecture and IT-platform

Open systems architecture: Since members of a distributed team typically employ
large, heterogenecous information technology infrastructure, the different software
components of the member organizations must be interoperable. Due to rapid changes in
these environments, it must be possible to extend and reconfigure the IS infrastructure on

demand.

Application sharing: It is not sufficient for a distributed team “to be connected to
each other on a common IT platform”. Rather, different applications should be usable by

all team members, where needed under a shared, cooperative interface.

After reviewing previous work done in the requirements for CSCW systems and
looking at existing tools for collaboration, we found that there isn’t a comprehensive tool
that could address most of the requirements simultaneously. Current tools implemented
for CSCW environments, either support communication (i.e. audio, video and voice over
IP and limited data sharing), or support the work of a single-user, [Cicognani and Maher
1997]. A third group of existing tools are those solutions for organizations that work with
smaller or less complicated projects such as FTP sites or project-specific Web sites.
Drawing from the review of the current solutions, the confluence of tools for
communication, multi user application session and project repository combined with
meeting control structures will begin to provide an environment in which CSCW can be

enabled and studied.

23] -

3.2.5 Group Dynamics-Aware Conferencing

Previous work in design team interaction and group dynamics provide a greater
understanding of group interaction modes. It is obvious that certain elements of physical
interaction cannot be replicated with simple audio and video communication. To facilitate
the flow of conversation in group discussions, the elements of engagement and attention
are critical. This section discusses the mechanisms implemented in CAIRO to support the

Process Management requirement in an engineering problem-solving setting. They are

A Sense Of Place: The notion of place where members meet and share persistent
objects is of overbearing importance when we talk about a discussion. Therefore, it is
critical to include mechanisms in the system and its user interface that clearly portray
entrance and egress of individuals as well as their relative stance with respect to others in

the meeting.

Spatial Interaction: A groupware conferencing tool must support deictic
referencing in both gaze and pointing. Hence, the tool must have a pointing feature that
clearly distinguishes between hearers of conversation and those to whom the
conversation is addressed. Since groupware tools usually have large set of interaction
tools it can be distracting and so it is necessary that the focal tool should be distinctly

identifiable.

Degrees of Engagement: The tool should have flexibility in the design so that the
participant can have greater control in deciding his/her intent vis-a-vis degree of
engagement, addressed in the requirements summary as item (i) Parallel, Sequential or
Reciprocal collaboration behavior. Also, pending speaker queue should be prioritized in
order to allow for urgent commentary in an online meeting and the queue should allow
simple disengagement from the conversation. Finally, the status of every participant

should be visible to all participants in the meeting.

-32 -

Floor Control Strategy: The notion of floor control strategy (e.g., chairman
controlled, brainstorming, and lecture) is an important requirement listed as Process
Management. In regular meetings a floor strategy is usually adopted either explicitly or
implicitly. These strategies govern floor control and define a particular meeting style.
Effective choice of floor control strategy can improve the quality of the collaboration
effort. Also, a more complex floor control strategy is an option that can be exercised from

review of the interaction inputs provided [Sen 1999].

Drawing from this revision of previous work in requirements, an outline of the
functionality of the system has been made. The different types of communication
(synchronous and asynchronous), the models of behavior (parallel, sequential and
reciprocal), and the main categories of requirements (data sharing, communication and
process management) determine that the integrated system should posses the following

functionality:

(i) Parallel, Sequential or Reciprocal collaboration behavior: Ability to support
synchronous (parallel collaboration behavior) and asynchronous modes of
collaboration (sequential or reciprocal collaboration behavior) as well as the

transition between the two.

(ii) Hierarchically structured groups: ability to support groups in the various
stages of formation, i.e. the ability to have hierarchically structured groups that

are easily expandable.

(iii) Information Sharing: synchronous visualization and underlying object
manipulation as well as the transition to asynchronous shared workspaces. For
example: users working on the same file in parallel mode should be given the

option of merging their modifications.

(iv) Process Management: activity awareness, event notification and conference
control mechanism is required to provide efficient group interaction. The system

must be adaptable to different conference styles, from informal, unstructured

-33-

conversation (brainstorming) to a stringent and formal conversation control

mechanism (chaired meeting).

(v) Communication Media: multiple media channels are required for group

communication, generally audio, textual, and visual data.

(vi) Social Feedback and Trust Facilitating: to provide nonverbal behavior

information and privacy in order to foster trust and effective communications.

(vil) Open Architecture: since design teams often use different software
components on heterogeneous platforms and operating systems, it is important

that they are interoperable to allow collaboration and data sharing.

(viii) Group memory: ability to retain group memory to build corporate

experience as specified by the adjourning phase in the group life cycle.

(ix) Sense Of Place: The notion of place where members meet and share

persistent objects.

(x) Spatial Interaction: A groupware conferencing tool must support deictic

referencing in both gaze and pointing.

3.3 Summary

Different subsets of the requirements described in this section have already been
addressed by applications developed at MIT. These applications will be described in
more detail in Chapter 6. These requirements and an overview of the existing applications
will then lead to a design of a broad band Collaborative ASP shared workspace described
in Chapter 7. The following chapter will introduce the concepts behind generic shared

workspaces for CSCW and their applications.

-34 -

Chapter 4

4 Shared Workspaces for CSCW

A shared workspace for CSCW can be defined as the remote sharing of computer
display surfaces between people involved in common tasks and who collaborate without
leaving their regular workplace [Fluckiger 1995]. However a more general definition
could be: the computer mediated ability to allow distributed people to jointly refer,
display, and manipulate objects of common concern [Schefstrom 1999]. The purpose of a
Shared Workspace is the remote sharing of the "work entities" of concern to the task at
hand, such as programs, drawings and documents. For professional applications, such as
distributed architectural design projects, the ability to share work objects is more

important than audio and video [Maher, 2000].

-35-

4.1 Shared Applications

A shared application, sometimes called “Tele-operation”, is the ability to not only
share an application, but to be able to manipulate the underlying objects. A shared
application must allow two or more users to view and manipulate the same document or

data in what is usually called “What I See Is What You See” (WISIWYS).

r—

two
. «| shared
{ windows
belonging
to the
same
application

texct
N . \ /
- [shared application .
tool software
application f-. Server .= - .~ Client -
to be shared f "~ et * -~

Figure 4-2. Bipartite Use of Shared Application Tools [Fluckiger 1995]

In the case of shared applications, it is not only the sharing of the screen pixels, but
the underlying program and operations. The two implementation methods used in this
research were (a) the remote duplication of the input and output behavior of a tool as well
as (b) display remotely the presentation layer (GUI) of a tool. In this way, multiple users
can synchronously discuss while referring to the same executing program or stored
document. Input requires rather tight "floor control" to avoid chaos, as shown by an
experiment during this research when seven participants tried to work on a CAD drawing

simultaneously.

-36 -

Atlanta

R
i

Boston Sgp Seattle

@ OYOXT ehion

Figure 4-3. Shared Application [Schefsttom 1999]

4.1.1 Shared Whiteboard

The classic example of a shared workspace for CSCW would be the shared
whiteboard. A shared whiteboard allows distributed users to communicate by drawing
graphics on a shared canvas, either a white background or an “imported” document. The
joint viewing is obtained by the distribution of pixels to all the collaborators. Therefore

there is little involvement with the underlying “semantics”.

shared
whiteboard

*

shared whiteboard
program

Figure 4-1. Bipartite Use of Shared Whiteboards [Fluckiger 1995]

These shared whiteboards have been purposely built for collaboration, which in principle

allows for high quality collaboration support, as they can be made "Collaboration aware".

-37 -

The way these whiteboards work is by creating one instance of the shared whiteboard
program at each participant’s computer, distributing commands to the other instances.
Usually these applications have no Floor Control policy, so each participant can input to
the whiteboard without restrictions creating certain confusion, especially when there are
more than two people logged in. This input mode is called “implicit locking”, since
locking takes place automatically as a user takes action. In these cases granularity

(ownership over parts of a shared artifact) is an issue.

-38 -

Chapter 5

5 Methodology

The development of different strategies for the integration of a shared workspace
into the framework of a generic collaboration application consisted of two phases. The
first phase was the “High Level” Solution or Multi-User Extension. The second step was
to take the knowledge gained from the previous phase and apply it to the actual
integration of a shared workspace with a meeting environment using a “General”

Solution or Shared X. Both of these procedures are detailed in the following sections.

-39-

5.1 “High Level” Solution

A good alternative to building applications that directly support distributed and
shared usage is to add a multi-user extension to existing applications. The principle on
which this is strategy is based is: “If all involved applications receive the same input and
data in the same order, they will present the same behavior to all users”. Therefore in
order to convert applications from single-use to support multi-user shared usage, an
extension is added to the original application that can access the functionality of the
original application, so by catching input from each user and sending the information to
the other users, the output is recreated on the other users computers. One of the
advantages of this solution is that it can be less complex, and allow for tuning to the
circumstances, both with respect to user interface and communication characteristics. It

has a great potential, since it also allows for collaboration awareness.

5.1.1 Multi-user Extension

The objective of the multi-user extensions that were developed was to add
distributed and shared usage to existing application that had been designed for single
users. As explained previously, the principle on which the extensions are based is very
simple, by giving all the participants the same input; the output for all will be equal. Each
distributed application is listening for a specific set of events and once these events are
triggered, they are sent over the network to the other distributed applications, thus
obtaining synchronization. In other words, by catching input from each user and sending
the information to the others, the output on the other users computer is recreated (Figure
5-1). The following figure shows basic components of the multi-user extension with a

simple case of three users.

-40 -

Shared

Application

Shared User 2 g‘tﬁ E;I-'S;gr Shared
Application ension Application
Multiuser Sharing Multiuser
extension Protoco extension

/ Communication Platform

ol

User 1 User 3

Figure 5-1. Multi-User Extension Architecture [Schefstrom 1999]

For the prototype developed, simple proprietary message passing was used as the
Sharing Protocol. So each application for which the extension was built had a set of
messages that were mapped to the each event that was generated by the application. A
possibility is that future applications might include a Sharing Protocol as a standard
component. This protocol could be based on the T.120 standard defined by the

International Telecommunications Union [ITU 2000].

The applications that were targeted for the prototype developed of this research
were the office applications (Word, PowerPoint and Excel in Figure 5-2), a web browser
and a CAD tool. The extensions were developed using Java and consisted of two main

modules: the networking module and the application access module.

_41 -

Figure 5-2. Synchronized Presentation Using Microsoft PowerPoint

The networking module’s main responsibility is to listen to events that are being sent
from the other distributed applications as well as sending events that occur on the local
application. The application-access module is in charge of accessing the functionality
provided by the application. Each targeted application had an associated COM object that
provided an interface to the functionality of the application. By using a bi-directional
pure Java-COM bridge [Jintegra 2000] it is possible to make calls on the internal
functions of each application. J-Integra's pure Java runtime talks to COM components
using Distributed COM (DCOM) layered over Remote Procedure Calls (RPC), which are
themselves layered on TCP/IP. So at the lowest level J-Integra uses the totally standard
Java networking classes. Figure 5-3 explains the components of the application-access

module.

-42 -

Any JVM running on any platform

r Java Objects]
3

Pure Java proxies generated by Jintegra

Jintegra pure Java runtime

No native code

DCOM {over TCP/P)

COM Enterprise Business Objects running under Windows.

(Mo special software to install, since Jintegratalks standard DCOM
to the COM components.)

Figure 5-3. Application-access Module [Linar Ltd 1999]

One of the advantages of this solution is that it can be less complex to implement,
and because a multi-user extension must be developed for each application, it allows for
some customizing according to the circumstances. For example the user interface as well
as communication characteristics can be designed for each specific application. In this
sense it has a great potential, since the application is in a certain way is ‘aware’ that it is
used in a distributed fashion. And new collaboration-specific functionality can be added
to match the needs of the distributed team that is using the application. This is an
important difference with the Shared X solution explained in the next few sections, where

the application is deployed ‘as is’ with no possibility of modifying its functionality.

5.2 “General” Solution

At the other end of the spectrum of possible implementation techniques we find a

“general” solution, based on the X Window System. This is because X Window has an

-43 -

inherent element of distribution, the following image outlines the basic concepts and

illustrates the distributed nature of the X Window System.

X Client Communication Channel
“The X-protocol”
i Computer B, managing the
Computer A ti ,
then;gll)licraﬁ(,;xem ® User Interface basics.

X-Windows

Figure 5-4. X Window System [Schefstrém 1999]

A natural idea is then to allow applications to be shared by dropping or inserting
information on the X protocol channel, and distribute the information to more than one X
Server. The advantage of this solution is that all programs developed for X Window can
now, in principle, be shared in a multiple user context. The disadvantage of the solution is

that it seems to be rather complex to make it work in practice.

5.2.1 Shared X

This approach to the problem of adding distributed and shared usage to current
application by using shared X is a ‘general’ solution in the sense that there is no
application-specific software modules to implement. This solution is based on the X
Window System because its design is already inherently distributed. The presentation
layer (which includes the user interface) is separated by design from the applications
logic, allowing for remote displaying of the user interface. So the way to implement
shared applications is inserting information on the X protocol channel and distributing the

information to more than one X Server. Figure 5-5 explains the components needed with

~44 -

a case of three synchronized X servers and one X client. The only software module that
needs to be implemented is the Shared X Switch that acts as middleware in this 3-tier
architecture. The switch is in charge of receiving X protocol from the X client and

sending it to the X servers that want to join that particular application sharing session.

Shared X «— X Server
| Switch
User A, executing X-p ol
the (shared) application
X Server
X Server

Figure 5-5. Shared X Architecture [Schefstrém 1999]

5.2.1.1 Shared X Switch: XMX

A shared X switch was not developed for this research, however previous work in
the area allowed us to experiment with an implementation of a shared X switch. We
tested XMX, an X protocol multiplexor, implemented by John Bazik at Brown
University. XMX provides a WYSIWIS (What You See Is What I See) environment; it
paints the same graphics on all participating displays as explained in the previous section.
The shared client applications appear to each participant in a virtual root window that is
subject to local window management. In this way, the shared X session coexists with
each user’s private X session. The X client applications that are shared via XMX are

unaware that they are being viewed or controlled by more than one user.

Existing, single-user X client applications may be shared using XMX without

recompilation, re-linking or access to source code. XMX is designed as an application-

-45 -

sharing server. It provides both the switch mechanism for shared X and a way to control
the shared session from other programs. Like X, it leaves policy decisions to application
programs. In this way, XMX may be used as a component in any of a variety of systems
that require application sharing. Because XMX is interposed between X clients and X
servers, it cannot jump into an existing client-server session and begin sharing it. XMX

can only share X sessions it was involved in from the start [Jones, 1993].

Figure 5-6. XMX Virtual Root Window, a root-window-in-a-window

When sharing an X session like this, it is necessary to have participants (X servers)

join and leave the session and to control which participant(s) can interact with the X

=l =

clients while the others watch. In this sense, XMX includes the X Multiplexor Control
(XMC) client application where the X Protocol Switch functions can be visualized.
Figure 5-7 shows the user interface of XMC where the people icons represent participants
in the session. The figure shows two virtual root windows on a machine named "no". The
buttons named Floor, Seat and View allow to control which displays may provide

keyboard and mouse input to shared applications.

[G File|[@ select][E prefs | T4

ni no—a

Fioor
t

W
EI
® e
E!

Figure 5-7. X Multiplexor Control (XMC) User Interface [Bazik 1999}

XMX provides three input modes for participants. These input modes dictate what
happens when a user types or moves the mouse in a virtual root window. They are named
for the roles one might have in a formal meeting. When a participant has the Floor, the

keyboard and mouse inputs control the shared applications in the virtual X session.

View mode is the exact opposite of floor mode. When a display is in view mode, the
user may only watch passively what happens in the session. All mouse and keyboard

input is ignored.

Seat mode is between floor and view modes. When a display is in seat mode, the
user’s mouse and keyboard input is by default ignored by the X clients in the shared

session, just like in view mode. But an XMC client can choose to see input events from

-47 -

displays in seat mode. Seat mode gives the participant the right to be recognized and

participate, even though the participant is not running the session at the moment [Bazik,
1999].

The most visible advantage of this solution is that all programs developed for X
Window can be shared in a multiple user context without recompilation, re-linking or
access to source code, which in most cases is proprietary. However, there are several
disadvantages to this solution. The first one is that the implementation is rather complex
to make it work in practice. The second drawback is that since the idea builds on a single
central instance executing in a single X client, with displays at multiple places, scalability
is not obvious. The third disadvantage is that the coupling between users is very tight.
Users cannot make private "deviations", (such as temporarily looking at other objects or
documents). So this solution is strictly ‘I See What You See’, while the multi-user
extension allowed certain flexibility among participants. The fourth drawback is that
unlike the multi-user extension, this solution is not collaboration aware. The underlying
application does not "know" that it is shared, so it cannot by definition provide specific

collaboration support.

5.2.1.2 SCO Tarantella

However the most important disadvantage with Shared X solutions is that they can
only be used with applications that run on the X Window System, namely Unix.
Therefore none of the Microsoft applications can be made collaborative with this
approach and none of the clients can be devices other than X servers. So there is a server
hosting and a client access problem that would need to be solved if this approach were
adopted. The client access problem was solved during the testing phase by using SCO’s
Tarantella X emulator applet. By using Tarantella, users can access XMX from any
Java™ technology enabled client device, such as web browsers, without the need for
additional software to be installed. Tarantella uses a three-tier architecture that integrates

the application server that’s running XMX with diverse types of clients. XMX continued

- 48 -

to run on our initial Unix server, and now different client devices were able to access

XMX, such as PCs, UNIX® workstations, and Network Computers.

Figure 5-8. SCO’s Tarantella X Emulator Applet Running XMX

5.2.1.3 JCraft WiredX

SCO’s Tarantella product is not the only X emulator applet that is available on the
market. Another free software solution that was tested was JCraft’s WiredX applet
emulator, JCraft is dedicated to the Java platform, and one of its products is a fairly

advanced X emulator applet. A screen shot of the results is shown in Figure 5-9.

= D=

% WiredX Beta [0.9.348] - Netscape
i

WiredX Beta (0.9.348)

) JCrate

Copymight © 1996-2000 JCratt, Inc Al rights resernd.

[PET AT

Figure 5-9. JCraft WiredX X Emulator Applet Running XMX

The results of using JCraft’s WiredX X emulator applet are very similar to SCO’s
Tarantella product. The underlying concepts and functionality are similar. So, other than
some performance differences and initial color mapping difficulties, the results were

comparable to SCO’s

5.2 Summary

After giving an overview of the two main strategies pursued to create a shared
workspace, a description of CAIRO developed at Massachusetts Institute of Technology
and VNC developed at the Olivetti and Oracle Research Laboratory will be given. The
products of the development accomplished so far at MIT and ORL have addressed some
of the issues raised in the requirements of this paper. So, a better knowledge of the
functionality of these two separate applications<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>