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ABSTRACT

Mobile application development is challenging for several reasons:
intermittent and limited network connectivity, tight power con-
straints, server-side scalability concerns, and a number of fault-
tolerance issues. Developers handcraft complex solutions that in-
clude client-side caching, conflict resolution, disconnection toler-
ance, and backend database sharding. To simplify mobile app de-
velopment, we present Mobius, a system that addresses the messag-
ing and data management challenges of mobile application devel-
opment. Mobius introduces MUD (Messaging Unified with Data).
MUD presents the programming abstraction of a logical table of
data that spans devices and clouds. Applications using Mobius can
asynchronously read from/write to MUD tables, and also receive
notifications when tables change via continuous queries on the ta-
bles. The system combines dynamic client-side caching (with intel-
ligent policies chosen on the server-side, based on usage patterns
across multiple applications), notification services, flexible query
processing, and a scalable and highly available cloud storage sys-
tem. We present an initial prototype to demonstrate the feasibility
of our design. Even in our initial prototype, remote read and write
latency overhead is less than 52% when compared to a hand-tuned
solution. Our dynamic caching reduces the number of messages
by a factor of 4 to 8.5 when compared to fixed strategies, thus re-
ducing latency, bandwidth, power, and server load costs, while also
reducing data staleness.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms

Design, Algorithms, Experimentation, Performance
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1. INTRODUCTION

Increasingly, applications for mobile devices create and publish
content that must be shared with other users in a timely fashion, or
retrieve data personalized to a user’s location or preferences from
a cloud. Examples include Yahoo! applications like Yahoo! News,
Sports, Finance, Messenger, Mail, Local, and Livestand, shop re-
view applications like Yelp, crowd-sourced traffic collection appli-
cations like Waze, and social networking applications like Face-
book, Foursquare and Twitter. Developing such applications atop
create/read/update/delete (CRUD) APIs is challenging for a num-
ber of reasons: 1) cellular networks have high and variable net-
work latencies and costly bandwidth, 2) mobile phones have lim-
ited battery-power, 3) network disconnections are common, and 4)
server-side scalability and fault-tolerance are a requirement.

This forces developers to implement complex networking and
data management functionality and optimizations, including: asyn-
chronous interactions (to hide the cost of remote operations), client-
side read caching (to reduce bandwidth and latency, while bound-
ing data staleness), batching of write operations (to reduce power
costs), protocols to arbitrate concurrent and disconnected opera-
tions on shared data, timeouts and reconnection strategies (to han-
dle network coverage issues), notification mechanisms (to allow
data to be pushed from the server side), and manual sharding of
data and replication (to guarantee server side scalability and fault-
tolerance).

We believe that developers should not have to worry about these
issues when writing mobile applications. Unfortunately, existing
frameworks provide limited support for addressing these challenges.
On the one hand, RESTful backend storage services focus on well-
connected hosts [16, 12] and provide scalability, but provide little
support for data sharing across users, caching, write batching, and
so on. For example, iCloud [5] only provides mechanisms for ap-
plications to backup a user’s private state on servers; developers
are left to implement the rest themselves. On the other hand, repli-
cation systems for mobile computing such as Coda, Ficus, Bayou,
PRACTI, and Cimbiosys [37, 34, 49, 22, 41] support replication
of data for sharing and disconnected operations, but they are not
designed to manage data and notifications for a large number of
users.
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Figure 1: Mobius architecture.

In this paper, we bridge this gap with Mobius, a reusable data
management and messaging platform that provides a simple, uni-
fied abstraction for mobile apps and addresses the challenges trans-
parently underneath the abstraction.

Mobius employs a number of features that are motivated by data
consumption, creation, sharing, and messaging requirements of Ya-
hoo! mobile applications/platforms, which can be applicable to a
broad set of applications. The requested features are:

e Reading/writing data and messaging

e Flexible predicate-specified real-time notification

e Writer’s control on the visibility of its data

e Disconnected operation handling for reading and writing
e Transparent, intelligent caching/prefetching

e Hosted, scalable backend service

The first novel feature of Mobius is the MUD programming ab-
straction, short for “Messaging Unified with Data”. MUD presents
a table-oriented interface that supports asynchronous, low-latency
access for messaging as well as for predicate-based lookups for
data-intensive applications. Applications can read/write data or
send/receive messages by reading and writing a shared logical table
through the unified read/write API. Mobius implements the fea-
tures that are needed by both networking and data stacks around
this abstraction: disconnection-tolerance, support for changing IP
addresses, caching, push notifications, and so on.

MUD tables are partitioned across mobile nodes and one or more
server back-ends. From the perspective of the mobile app devel-
oper, accesses are done to local tables. These accesses may cause
data to be fetched on an as-needed basis from servers, depending
on the application’s tolerance to stale data and the previous records
that have been fetched. We support several kinds of read operations
with a range of freshness guarantees.

The MUD API provides two less-conventional means for access-
ing data. First, it provides “writer predicates” where the visibility
of writes in the table is constrained to readers who satisfy a par-
ticular predicate. For example, a user’s writes may only be visible
to other users in his family, or to users in a certain geographical
region. This provides a form of predicate-based communication or
late binding, where the exact recipients of a message are not known
when the message is created. Second, the API provides a notifica-
tion interface that sends applications “push notifications” when a
particular record or range of a table is updated. This is useful both
for inter-device messaging and for providing continuous queries,
where the result of a query is updated as the records that satisfy it
change. Our design and implementation of Mobius unifies back-
end storage and processing for event notification and data serving,
which can scale to a large number of concurrent push clients.

The second novel aspect of Mobius is support for server-directed
caching and prefetching. To express preferences about what data
should be cached, and to enable prefetching of data the application
is likely to need in the future, the MUD API allows applications to
specify “utility functions” that expose to our system the tradeoffs
between various characteristics of a query answer, e.g., freshness,
completeness, latency, bandwidth cost, and power cost.

Using this preference information, and knowledge of workload
and system status, a server component can automatically devise
intelligent caching strategies that maximize utility for each user.
For example, knowing the frequency of updates, a caching policy
can reduce power costs by suggesting that when asking for traffic
data from the middle of the Nevada desert, it is best to serve data
from the local cache since the chance of missing an update is mini-
mal. Mobius provides several off-the-shelf utility functions that are
designed to make it easy for programmers to implement common
caching and prefetching values; e.g., programmers can provide a
simple freshness threshold to ensure that content is more recent
than the threshold.

We evaluate the performance of Mobius on several microbench-
marks to demonstrate that it does not incur substantial overhead
over conventional APIs for data access and messaging, and to il-
lustrate the potential for significant performance optimizations. In
our initial prototype, remote read and write latency overhead is less
than 52% when compared to a hand-tuned solution. We also show
that our server-controlled client-side caching, based on simple ma-
chine learning based strategies, can reduce the number of queries
pushed to the server by 4x to 8.5x for reads and 3x to 6x for
writes, on real-world user traces from an iPhone crowd-sourcing
application deployed to over 600 cars.

The rest of the paper is organized as follows. Section 2 presents
the Mobius system architecture. Section 3 introduces the MUD ab-
straction, API, and usage. Section 4 presents Mobius write/read
protocols, Section 5 presents Mobius continuous read/notification
protocols, and Section 6 discusses server-directed, dynamic, context-
based caching. We describe our implementation and experimental
evaluation of the prototype in Section 7. Finally, we survey related
work in Section 8, and conclude in Section 9.

2. MOBIUS ARCHITECTURE

Mobius is a unified messaging and data serving system for mo-
bile apps that addresses the challenges discussed in Section 1. Mo-
bius is motivated by data consumption, creation, sharing, and mes-
saging requirements of current and future mobile apps; in partic-
ular, our design is guided by discussions with Yahoo! mobile ap-
p/platform developers. Many of them use their own custom layer
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Figure 2: MUD usage scenarios.

to deal with caching, disconnection handling, push notification, or
messaging in a limited fashion. Mobius provides all these features
through the MUD abstraction.

Mobius consists of both client-side and back-end (cloud) infras-
tructure, as shown in Figure 1.

Client-side infrastructure: Services on the client include the
client-side storage system, the MUD Service and application-level
library code. The MUD Service is composed of a notification client
and a data client. The notification client receives push notifications
from the Mobius back-end infrastructure and forwards them to the
appropriate MUD Library instance. The data client is responsible
for sending data and queries to the back-end and for processing data
sent in response. It is also responsible for query and update pro-
cessing using client-side storage and as a runtime for the caching
and prefetching policies devised by the server.

Back-end infrastructure: Services on the back-end include the
back-end storage system, notification servers, gateways, MUD pro-
cessors and caching policy generators.! Each notification server
maintains a network connection to multiple client devices and is re-
sponsible for pushing notification messages to these clients. Device
identifiers are used to partition clients among notification servers.
The gateways accept client requests, forward them to MUD pro-
cessors, and relay responses back to the clients. The processor per-
forms query and update processing, including continuous queries,
which are maintained as soft-state. Continuous query results are
routed back to clients via the notification server. The back-end stor-
age system stores records and provides scan operations that enable
clients to re-sync when they connect. The storage system is parti-
tioned by primary key ranges; each partition is handled by a single
MUD processor, although each processor may be responsible for
multiple partitions. Furthermore, storage is geo-replicated across
multiple data-centers, each of which may run instances of notifica-
tion servers and gateways. Our prototype targets PNUTS [30] as
the back-end store, but other standalone storage systems may be
used. The caching policy generator creates caching and prefetch-
ing policies for each client by mining data access patterns of all
clients (this information is obtained from MUD processors). Clients
use these policies to decide what to cache or prefetch and when.
Next, we describe each component in detail, beginning with a de-
scription of the MUD data model and API.

"We also assume the existence of a naming service, which could
be implemented atop the underlying storage service, or be provided
using a pre-existing standalone system, such as ZooKeeper [17].

Key Value Predicate
Cl|C2 |C3 C4

k1 2 CA Fl ==

k2 |3 Red

k3 MI | Blue | 100 | FI> 100

Table 1: MUD table example.

3. THE MUD ABSTRACTION

MUD relieves mobile app developers from dealing with messag-
ing and data management issues by providing them with a unified
programming interface for both messaging and data. This inter-
face is based on the simple abstraction of shared logical tables that
can span devices and back-end clouds. Apps can read/write data
or send/receive messages by reading and writing a shared logical
table. In addition, apps can register continuous read operations and
get notified when relevant updates are made to a table. Figure 2
shows different MUD usage scenarios. We also mediate access to
tables stored solely on the device local storage, but this is trivial
and not discussed further in this paper.

In the MUD data model, each logical table is a collection of
records. Each record contains a (required) primary key, a sequence
of attribute and value pairs, a predicate, and metadata (such as the
record’s version). Each attribute corresponds to a column in the
logical table. Schemas are flexible: a record can have values for any
subset of table columns. Mobius supports dynamically adding and
removing columns from a table. An example of a table is shown in
Table 1.

A unique feature of the abstraction is the symmetric nature of
read and write operations. As usual, reads include a predicate spec-
ifying the attributes of records to be read. In addition, in MUD
a writer (or sender) includes a writer predicate with the data. A
reader (or receiver) includes reader data with its queries, such as
authentication tokens, current location, time, or other context in-
formation. Writer predicates are then evaluated against the reader
data. Hence, writers can control which readers may observe the
written data. For example, an advertiser can send special coupons
only to its premium users, and use user location and preferences to
filter out uninterested users.

In its simplest form, a writer predicate does not require the au-
thenticity of reader data. A writer predicate may be simply used
to limit which readers can receive the data as an optimization (e.g.,
discount coupons for users in a particular location). These context-
based predicates allow writers to late bind to readers that can see
their updates, such as when the list of users in a particular location
is not known at update time, or when adding a user to a group for
advertisements. In more complex cases, a writer predicate can be
an access control list (ACL) specifying clients that may read the
record (note that, as mentioned in Section 3.1, each table has an
ACL as well) when reader data’s authenticity is verifiable. For ex-
ample, only clients with proper identities can read the record (e.g.,
user messages in the writer’s friend list).

We provide simple and yet well-defined consistency semantics
(per-record sequential [39] and fork-sequential [40] consistency),
and let app developers choose the appropriate consistency for their
application. We achieve this by exposing read operations with dif-
ferent consistency levels. Applications can gracefully degrade con-
sistency whenever latency or service availability are more impor-
tant. Informally, our consistency guarantees define the order in
which clients see updates, while allowing clients to return cached
updates. In Section 4 we describe the different types of read and
write operations.



Table manipulation

create(th, properties)

drop(tb)

alter(tb, properties)

Table update

write(tb, key, type, data, predicate, utility)
delete(tb, key, type, utility)

Table query

read(tb, predicate, type, data, utility)

Table 2: MUD APL

Obviously, the back-end store must itself provide some level of
consistency so that the system as a whole may be consistent. In-
terestingly, for simple read and write operations the back-end store
need only guarantee eventual propagation of updates. That is, all
non-faulty back-end storage replicas should eventually receive all
record updates made to their partition, but the updates do not need
to be sequentially consistent. In practice, we use PNUTS, Yahoo!’s
geographically distributed data serving platform [30]. PNUTS pro-
vides timeline consistency: each PNUTS replica applies increas-
ingly newer updates. We note that other systems, such as Ama-
zon’s SimpleDB, also provide the required back-end store func-
tionality [12], while others, such as Microsoft’s SQL Azure provide
even stronger primitives, such as single-partition transactions [25].

3.1 MUD API

Operations in MUD are categorized into three groups: table ma-
nipulation, update, and query. Table 2 lists the supported operations
(for brevity, in a simplified form). All operations are asynchronous
and their results are returned through a provided callback interface.

Table manipulations include three methods: create, drop, and
alter. create makes a logical table rb with the supplied proper-
ties, which may include an access control list (ACL), an optional
schema, etc. An app that creates a table may later invoke drop to
delete it. Finally, alter is used to modify the table’s properties.

The ACL defines a security level of the MUD table, which can be
public, app, or user. Our authorization follows OAuth [9], a well-
known authorization protocol for publishing and interacting with
protected data. For a user to access the table, the user must be au-
thorized at the level of the table or higher. The public security level
does not require any authorization. The app security level requires
at least app authentication, and the user security level requires user
authentication.

The write and delete operations get as a parameter the table iden-
tifier tb, a primary key of the record to be written or deleted, the
type of the update operation (blind or conditional, described in Sec-
tion 4) and a utility function. (We discuss utility in Section 6.)
In addition, a write operation is passed the data to be written and
a writer (or sender) predicate, that constrains the visibility of the
written data to readers whose reader-data satisfies the predicate.
The predicate follows the same structural rules as a read’s predi-
cate discussed below. If no record exists in tb with the given pri-
mary key, the write inserts it and otherwise updates the record.

A read operation passes a predicate, which is a boolean expres-
sion over the rows of a logical table b, similar to a SQL. SELECT
statement. Specifically, the predicate may be a conjunction or a
disjunction of conditions. Each condition imposes a boolean con-
straint on record key and attributes using binary operators: =, #,
<, >, <, >, and a limited number of boolean functions and reg-
ular expressions on strings. In addition, a predicate may include
user-defined functions (UDFs), such as aggregation or limited joins

(for example, a UDF can summarize the values of a given attribute
for all matching records). Such functions help conserve network
bandwidth in cases where transferring records from back-end to
the client may be easily avoided. The language is similar to Yahoo!
Query Language (YQL) [16].

A read additionally takes data as parameter which typically con-
tains (but is not limited to) information about the end-user or de-
vice. For example, data may include the reader’s location, identi-
fier and so on. A read retrieves all tuples that match its predicate,
and whose write-predicate matches the read’s data. Similar to up-
dates, a read additionally includes a utility and a type. The read
utility is analogous to the write utility, and is used for caching.

We support three different “one-time” read types (committed_wio,
committed and uncommitted), described in Section 4, which guar-
antee different consistency semantics. A fourth type of read is the
continuous read, which sets up a continuous query. A continuous
read gets an optional sync-timestamp parameter (which does not
appear in Table 2), that instructs it to perform a one-time read re-
turning records no older than sync-timestamp, in addition to regis-
tering the continuous query. This may be used if currently stored
records are of interest in addition to future updates or to restablish
a continuous query after a failure or device disconnection. A con-
tinuous read always returns a handle, which may be later used to
unregister or modify the subscription. To this end, we provide two
auxiliary methods:

unregister(handle)
update-data(handle, data)

For example, consider a client interested in restaurants within 1
mile of its location. Such a client may register a continuous query,
including its current location in the data of the read. As it moves
and its location changes, the client invokes update-data to update
its subscription with its latest location (although a subscription may
be updated by unregistering and re-submitting it, this would require
more messages as well as querying for any updates missed in the
process).

For the convenience of app developers, higher level APIs are pro-
vided as a layer on top of the basic MUD API we presented above,
as indicated in Figure 1. For example, we provide blocking op-
eration APIs as well as a simple pub/sub APL. In the future, even
richer interfaces could be considered, such as an SQL-like declara-
tive query language.

3.2 Using MUD

To showcase the benefits of Mobius and illustrate how to use
the MUD API, we present three sample applications, social news
reading, experience sharing and continuous journal editing, that
combine messaging and data interactions and need late binding and
caching.

Social News Reading: This application is a social news-reader
application supporting instant social sharing and updates. The ap-
plication supports reading news articles of users’ interests, being
instantly notified of any urgent news, writing user-generated con-
tent, and exchanging interesting news articles and messages with
friends in real time. The social news-reader application can be eas-
ily implemented with the MUD API. The app developer first cre-
ates two tables, news (topic, article) and chat (group, msg), using
create. Suppose that Jane uses this app for sharing articles with
her friends. Jane’s application requests news articles on sports by
issuing read(news, topic=’sports’, committed, ...). It also regis-
ters Jane’s interest in art articles by invoking a continuous read
read(news, topic="arts’, continuous, ...). Whenever a new article
becomes available (e.g., when the application’s cloud service dis-



covers a new article online and makes it available to the app clients
by invoking write(news, unique article id, blind, [topic="arts’, ar-
ticle="new exhibition’], ...)), Jane’s application is instantly noti-
fied. When Jane requests to share an article with her friends,
the app performs write(chat, unique message id, blind, [group=
"Jane’s friends’ ,msg=article id], ...), assuming her friends have al-
ready registered continuous reads on the chat table. The same ta-
ble can be used for exchanging discussion messages. When Jane
wants to send a local event message to her friends located within
1 mile from her current location, the app can perform write(chat,
unique message id, blind, [group="Jane’s friends’, msg=event url],
|receiver.loc — this.loc| < 1 mile, ...) where this.loc is Jane’s lo-
cation and receiver.loc is the location of a friend who sets up a
continuous read to receive Jane’s messages.

Experience Sharing: This application is aimed at enhancing the
experience at large events, such as fairs or concerts. The first set of
data consists of map overlays, schedules and other information pro-
vided by the organizers. These are queried by the users and can be
cached, since their content is likely to be stable. This is achieved by
issuing reads such as: read(overlaymaps,lon>yl and lon<y2 and
lat>x1 and lat<x2, ..., freshness<24h, ...) where freshness<24h
represents a simple utility function that allows for heavy caching.
Organizers also push timely news about schedule changes, and
other unpredictable events to the users. They can do this by is-
suing simple writes. For example to notify every person over 21
years old of a free beer event one could write: write(flashnews,
pkl, blind, "free beer at south kiosk", receiver.age>21,...) to a table
over which user devices have posed subscriptions, i.e., continuous
reads. In this context predicates can be used to avoid broadcasting
to the entire crowd, and can be applied to user profiles and context.
Users contribute by messaging each other, observing friends loca-
tion, sharing comments, tweets and pictures. All these use cases
are easily supported with some combination of reads, writes and
continuous reads. Furthermore, “relive the event” user experiences
can be supported by issuing rich historical queries such as: “What
was the name of the band playing when I sent that comment?,” or,
upon reading a geo-tagged tweet: “Tell me if anyone uploaded pic-
tures taken at this time and place.” Users can operate seamlessly on
local data under disconnections, and the system syncs as soon as a
connection is available.

Continuous Journal Editing: This application supports keep-
ing context-tagged journals for the users. The application is imple-
mented on multiple platforms — smartphones, tablets, and desktop
machines. The users can update journals in any of the devices they
use. For example, a user edits a journal on a tablet disconnected
from the network. She then edits the journal with her smartphone
on the way home and writes it to the back-end. When the user
reads the journal at the tablet at home, she should be able to see
both changes; i.e., the edits made on the smartphone should not be
overwritten by the updates locally queued on the tablet when the
tablet comes back online. This is achieved by using conditional
writes such as: write(journal, pkl, conditional, [content="about
cafe A,..."], ...). Unlike blind writes, which simply overwrite the
content, a conditional write succeeds only if the version of the
record at the back-end is identical to the one locally stored on the
device at the time the update is performed. Thus, whenever two
conditional writes are made concurrently to the same shared jour-
nal, they conflict and one of the updates (in our case the one per-
formed on the tablet) fails. The application issuing the failed update
would then provide the user with information about the conflict so
that she can reconcile them.

Given this high-level description of Mobius and the MUD API,
we proceed to describe Mobius design in more detail. We start

with write/one-time read operations, and then discuss continuous
reads and caching. After that, we present the results of some initial
experiments with our Mobius prototype.

4. WRITE/READ PROTOCOLS

Mobius provides app developers with the freedom to choose the
appropriate consistency semantics for their application. The weak-
est consistency model our system provides is fork-sequential con-
sistency [40], which is the guarantee provided when mobile devices
execute operations without blocking under disconnection. As we
restrict the types of records the client can read, we support stricter
consistency semantics. Table 3 summarizes the consistency seman-
tics Mobius provides. In the following, we describe different types
of write and read operations, their consistency semantics, and pro-
tocols to implement them.

4.1 Operations and Consistency Semantics

Writes: Our system supports two record write operations: a
“blind” write, which simply overwrites a record, and a “condi-
tional” write, which requires the version of the record at the back-
end to match the version in the client’s local store. As demonstrated
by the Continuous Journal Editing application in Section 3.2, con-
ditional writes are especially useful for mobile applications.

Each record in Mobius has monotonically increasing versions, as
described in detail later in this section. If the record being updated
is not in the local store, a conditional write succeeds only if the
record does not exist at the back-end store. When the record is
written successfully at the back-end store, the record is committed.

The type of the write affects its liveness guarantee: A blind
write invoked by a non-faulty client (that eventually becomes con-
nected) is guaranteed to succeed regardless of the operations of
other clients. Conditional writes have weaker liveness; while
system-wide progress is guaranteed (some client’s write will suc-
ceed), progress is not guaranteed for each individual client, as other
clients may simultaneously update the same record causing a con-
ditional write to fail.

Reads: We support three different one-time read operations: un-
committed, committed, and committed_wio.

A committed read returns a “recently” committed update; the no-
tion of recent is briefly explained below. This read type provides
sequential consistency [39]. Sequential consistency is equivalent
to the concept of one-copy serializability found in database liter-
ature [23]. It guarantees that the real execution is equivalent to a
sequential one, where the program order of each client is preserved.

With sequential consistency, the view of each client must pre-
serve the precedence order of its own operations. However, as
clients may execute operations asynchronously, without waiting for
previous operations to complete, precedence order is only a partial
order. Hence, the definition of sequential consistency does not re-
strict the order in which writes executed concurrently by a client
may take effect.> We thus additionally support a slightly stronger
notion of consistency, which requires the invocation order of writes
to be respected. A committed_wio (committed with write invoca-
tion order) read thus requires that the returned committed record
reflects all non-failed writes previously invoked by the client (and
is therefore executed after all such writes complete, which may re-
quire blocking).

Intuitively, an uncommitted read is allowed to return uncommit-
ted writes, even writes that may later fail (if some global constraints
are not met). For example, a client reading and writing data while

?In fact, all definitions of sequential consistency we are aware of,
assume that each client executes one operation at a time.



Read type | Semantics

| Write visibility

uncommitted fork-sequential consistency

pending writes

committed sequential consistency

committed writes

committed_wio | sequential consistency

with write invocation order

committed writes,
blocks till client’s previously invoked writes complete

Table 3: Consistency semantics

disconnected, or a client accessing data for which it is the only
writer, may be fine with seeing data that it has previously written
before it has been committed. Clients may also use uncommitted
reads if they value latency more than consistency. This read type
provides fork-sequential consistency [40]. Fork-sequential consis-
tency allows client views to diverge when they execute operations
locally, and yet guarantees that clients see writes in the same order.
Specifically, it guarantees that if a client observes a write issued
by another client, then their views are identical up to the write.?
Formal definitions of the properties are presented in Appendix A.

All read types preserve the “timeline” of updates at the client,
that is, a client is never returned an old version of a record after
having seen a newer one. Note that this requires a client to maintain
the last version identifier of each record it has seen, even if the
record itself is deleted from its local store. This information may
be garbage-collected when the client is sure that older versions of
the record may not be returned by the back-end (for example, when
the back-end indicates that all replicas are up to date). We note
that while each read type returns increasingly newer versions of
each record, this is not guaranteed across read types (for example,
an uncommitted read may return a newer update than a subsequent
committed read).

Stronger semantics: As we have already mentioned, we target
PNUTS as the back-end store. PNUTS provides timeline consis-
tency [30] on a per-tuple basis. Timeline consistency is a weaker
variant of sequential consistency; it guarantees that each tuple will
undergo the same sequence of transformations at each back-end
store replica. With some additional support from the back-end,
it is possible to guarantee stronger consistency with only minor
changes to our protocols. Specifically, if the back-end supports
queries of the latest value of each record, the protocols guaran-
tee linearizability [35] instead of sequential-consistency and fork-
linearizability [24] instead of fork-sequential consistency. The only
change required on the client-side is that committed and commit-
ted_wio reads can no longer be served locally; linearizability re-
quires a read to return the latest complete update. Note that even if
the back-end supports querying for the latest update, such queries
usually require contacting the record master or multiple back-end
replicas, and are therefore more expensive than queries that do not
have to return the latest update.

4.2 Protocols

Next, we describe the protocol for executing reads and writes. In
the text below, we denote client C’s local store by DB¢.

3Originally, “forking” consistency conditions were used in the
Byzantine system model, where a malicious server may “fork” the
views of two clients. We are not aware of previous work that used
the conditions to model disconnected client operations in a non-
malicious setting.

*PNUTS does not guarantee that the “timeline” of updates is pre-
served at the client, as a client may connect to different back-end
replicas.

Werites: A write is executed in two stages at the client:

1. insert R = (key, data, predicate, ver, pver, ts, committed) to
table b in DB, where ver is a version of the update, pver is
the previous version of this record in DB¢ (if any), ts is the
local time of this update and committed is false. Once insert
completes, the operation returns.

2. send the record R to a MUD gateway. Upon receiving a re-
sponse callback is invoked and, if the update was success-
ful, R.committed is set to true, R.ts to the current local time,
which is used for local freshness checking, and R.ver is set
to the global version assigned to this update by the back-end
store.

When an update is submitted, ver is assigned a local version.
Committed updates have versions assigned by the back-end, which
we call global versions (for example, in PNUTS, global versions
are simply update counters). Note that a local version is itself
a triple (base, netid, seq), where base is a global version of the
last committed update to the record in DB¢ (or O if key is not in
DBc), netid is the client identifier, and seq is the number of pend-
ing (uncommitted) updates issued by the client. pver is the version
(whether global or local) of the previous update to the record in
DBc. pver of an update is ver of the preceding update to the same
record stored in DB¢ (0 if key is not in DBc—in this case the con-
ditional write is treated as a conditional insert).

For a conditional write to succeed, the writer must have the nec-
essary permissions,” and pver must be equal to the current version
of the record at the back-end. This check is performed atomically
and therefore requires back-end support for compare-and-swap up-
dates as provided, e.g., in SimpleDB, Windows Azure Storage or
PNUTS.

While a client is disconnected from the system, its updates are
stored locally and then sent to the back-end when the client recon-
nects. Sending updates to the back-end can be done for every up-
date separately, or periodically, batching multiple updates together.
Updates are sent to one of the MUD gateways, which forwards each
request to the appropriate MUD processor responsible for the par-
tition to which the updated record belongs. Each MUD processor
is responsible for many partitions. The MUD processor forwards
the write and read requests to the back-end store, maintaining any
ordering constraints required for the write and committed_wio read
requests. Once a write is executed against the store, the completion
status is sent back to the MUD gateway which in turn returns a
response to the invoking client.

In case a conditional write fails because of a conflicting update
(the current version of the record at the back-end is different than
pver), the client is given a chance to resolve the conflict. Specifi-
cally, the client is sent (a) the conflicting update found at the back-
end; (b) last update to the record in DB¢ and (c) the previously
committed update in DB¢ (base when the update was invoked).
Given this information the client can resolve the conflict and issue

SInteractions between conditional writes and writer predicates have
security implications, and must be handled with care.



a new update, or simply discard its local changes. This method is
akin to the conflict resolution employed by software revision con-
trol systems such as SVN. Note that when such conflicts occur, the
pending update is deleted from DB¢ and the conflicting update re-
turned from the back-end is stored locally.

Deletes are a special type of update. Locally, they are treated
just like any other write, except that the data being written is a
special rombstone, which marks the record for deletion. When such
updates are executed on the back-end, they are translated to blind
or conditional deletes.

Reads: Like updates, read operations involve two stages. First,
the client attempts to answer the read locally. It evaluates the query
against DB and identifies the primary keys of matching records.
If rules to decide local serving do not allow serving some of the
matching keys locally, or if it is possible that there are records
which may match the query but are not stored in DB, the query is
sent to a MUD gateway.

To illustrate the flow of read operations with the rules, we use a
maximal acceptable record age (expressed as a parameter max-age)
as a simple utility function (in Section 6 we discuss more general
utility functions). The following auxiliary procedure is used to de-
cide whether a record R in DB¢ is “fresh” enough (time is the
current local time):

1: procedure isFresh(R)

2 if R.committed=false or time—R.ts<max-age then
3: return true

4 else return false

As an extension, one can use utility functions such as the ones
employed in bounded inconsistency models (e.g., numerical error,
order error, staleness) to define what records are acceptable in an
application-specific fashion [51].

For each such key k£ of matching records, let R be the latest
update to k in DB (a pending update is always considered more
recent than a committed update for the choice of R) and Rpase the
last committed update to k in DB¢. For each of the read types, we
now specify the conditions for serving k locally:

e uncommitted: return R if isFresh(R).
o committed: return Ry if isFresh(Rpgse).

o committed_wio: return Ry if isFresh(Rpas.) and R= Rpuse.

When the MUD gateway receives the read, the gateway breaks
the read into multiple sub-queries, each corresponding to a differ-
ent partition, and forwards each sub-query to the MUD processor
responsible for that partition. The read type determines how the
processor handles the read: committed_wio reads are queued af-
ter writes and other committed_wio reads previously received by
the processor. Uncommitted and committed reads are maintained
separately—such reads may be executed right away without wait-
ing for writes to complete. When processing a client’s read, the
processor queries the back-end store and sends back all matching
records to the MUD gateway through which this read was submit-
ted. The gateway then forwards any returned data to the invoking
client. When all processors to which sub-queries corresponding to
a read have returned a response, the gateway sends a special com-
pletion message to the client.

Clients filter received records corresponding to updates older
than they have already seen. This check is performed using the
version ver of a record. If a newer record is received, it is both
returned to the application through the MUD Library, and stored in
DBc (in practice, if the data is large it does not have to be stored

locally—we may store just its version information). In addition to
any pending updates, at most one committed version of each record
is kept in DB (the one having the highest observed version).

S. CONTINUOUS READ PROTOCOL

In this section, we describe the processing of continuous reads
and push notifications sent to clients. The notification flow is exer-
cised when a registered continuous read for a logical table matches
changes to the table’s records.

As with a normal read, a continuous read is submitted to one of
the MUD gateways, which splits it into one or more sub-queries,
each of which corresponds to a different partition and is sent to the
corresponding MUD processor. A continuous read is first executed
against the back-end store just like any committed or uncommitted
read. A minor difference is that, unlike normal reads, a continuous
read includes an optional sync-timestamp parameter, which deter-
mines the maximal age of existing records which is of interest to
the client (if sync-timestamp is set to zero, no existing records are
queried). These records are returned through the response flow of
a normal read. Continuous reads are then maintained as soft state
at MUD processors.

When a write operation updates a record, the MUD processor of
the corresponding partition is notified. It then matches the updated
record and all relevant continuous reads. Finally, for each such con-
tinuous read, it looks up the notification server responsible for push
notifications to the client that registered the read, using a unique
client identifier. The MUD processor then forwards the updated
record to all relevant notification servers, including both the client
identifier, netid, and the registering app identifier, appid. Each no-
tification server in turn forwards the write to notification clients.
When a client is not reachable (e.g., it is turned off or disconnected
from the network), the notification is stored in a message queue for
a limited amount of time. Eventually, the continuous read is termi-
nated by the server. Upon reconnecting, the client detects this, and
re-submits the read if needed.

A netid is a unique and fixed client device identifier (unrelated
to a client’s IP address, which may change over time). Since multi-
ple apps may share the same device (and the notification channel),
the pair (netid, appid) is used to uniquely identify the origin of a
continuous read. We call such pair an endpoint. A notification
server exposes a low-level API to other servers, allowing them to
send messages to endpoints. Each server is responsible for a range
of netids. This mapping is maintained by the name service and
cached at each notification server.

Each client maintains a persistent connection to a notification
server for push-notification messaging. The client locates a notifi-
cation server by performing a DNS resolution of a publicly known
notification service domain name. It is possible that this server is
not responsible for the client’s netid, in which case the client is
redirected to the appropriate notification server. After establishing
a channel, the notification client sends periodic heartbeat messages
(e.g., once every 20 minutes). Such heartbeats are used by the no-
tification server to detect a client’s failure and garbage-collect its
registered continuous reads. Whenever the IP address of the client
device changes, the client re-establishes a persistent connection to
the notification server. When the notification server pushes a mes-
sage to the client, the notification client routes the message to the
appropriate MUD Library using the appid included in the message.

6. CACHING

Our consistency semantics restrict the allowed ordering of up-
dates seen by clients, and yet are amenable to caching, allowing



our system to choose when to serve a record using the device’s
local store and when to fetch a record from the back-end, and sim-
ilarly when to propagate writes to the server. Hence, appropriate
caching policies need to be devised to complement the consistency
semantics with proper control over the tradeoffs between perfor-
mance and answer quality.

We model this tradeoff as a utility maximization problem and
exploit a developer-provided utility function in order to choose the
appropriate execution plan for each query (e.g., whether to serve
from client-side storage or fetch remotely), in a way that maximizes
utility.

Given a query (), and an execution plan P, a utility function is
defined as: Utility(Q, P) = Value(Q, P) — Cost(Q, P) where
Value is a function that assigns a numerical value to various qual-
ity characteristics (e.g., freshness, completeness, bias) of the an-
swer to query @ as produced by plan P, and Cost is a function
assigning a numerical value to the costs (e.g., latency, bandwidth,
power) of executing query () according to plan P.

We aim to provide developers with a library of common utility
functions to choose from, while allowing advanced developers to
specify their own. An example of a common utility function is the
classic notion of cache freshness, where V alue is defined as a step
function—assuming value zero when @) is answered using locally
cached data older than some threshold time ¢ and a large constant
value otherwise—and Cost is defined as a linear function of query
latency. Under this utility function, answering from the client-side
store yields higher utility whenever locally stored data is “fresh
enough”, while fetching data remotely is only beneficial when the
required information does not exist locally or is too stale (other-
wise we incur unnecessary costs). More complex utility functions
accounting, for example, for battery and communication bandwidth
can be easily devised.

Caching policies are most often implemented as fixed heuristics,
hard-coded in the application logic at design time. Our system does
not follow this convention and instead supports dynamic, context-
aware, and globally-selected caching policies. Our architecture is
designed so that the client runtime (specifically, the caching deci-
sion logic in the MUD data client) is a simple executor of cache
policies that are determined at the server-side back-end. A server-
side caching policy generator has a unique vantage point to de-
termine the most efficient caching strategies since it has access to
the usage patterns of all users (and can potentially collect such in-
formation across applications). Usage or access patterns include
(but are not limited to) read/write ratios, temporal access correla-
tions, current system conditions (e.g., network congestion, band-
width cost, etc.), and user context (e.g., location). Taking such
information into account allows for more informed caching deci-
sions. For example, for a check-in application such as FourSquare,
the server-side policy generator can use the density of check-in
reads and updates in a certain area to determine how frequently
a user’s cache should expire and how often a user should push up-
dates to the back-end. For example, when traveling to a destination
where the user has no friends, a user’s device could push his check-
ins lazily and answer mostly from its local store, significantly re-
ducing battery and bandwidth costs with no significant impact on
utility.

Note that MUD notifications may be leveraged for pushing
caching policies dynamically to clients. For example, in a map/-
traffic application, traffic may increase dramatically following an
accident, in which case it is important that users increase their fre-
quency of traffic reports and get updated frequently on the develop-
ing conditions. A caching policy generator can react by increasing

the poll and update rate for all devices in the vicinity of the acci-
dent.

Dynamically and globally coordinated caching policies have the
potential to significantly outperform hard-coded heuristics (typi-
cally used today). In our current prototype, we cast the read cache
policy selection problem as a classification problem: the features
include the query predicates and user context, and the classification
labels indicate whether a query should be served from the local
cache or be sent to the server. In this initial implementation, the
utility function is provided in the form of a cost-matrix, that indi-
cates to the system the relative impact on utility of stale data versus
the cost of unnecessary queries sent to the server. In our experi-
ments, we use a real trace of user GPS locations and queries, de-
rived from the CarTel application [36], to train a cost-sensitive clas-
sifier based on a J48 decision tree, and demonstrate that even our
simple initial solution leads to up to a 4x reduction in the number
of queries sent to the server (providing a significant improvement
in read latency, and reducing bandwidth), and reduces by 3.5 the
number of queries serving stale data (thus increasing the perceived
data quality), when compared to a rather common baseline caching
strategy.

The output of the policy selector is a trained decision tree model
that is shipped to the client through our notification channel. For
each query the client-side runtime tests the decision tree, providing
the current user context (e.g., location and time) and the query pred-
icates (e.g., geographical area of interest and time window). The
decision tree determines whether to answer locally or remotely.

We applied similar techniques to automatically devise a write
caching strategy. The goal is to batch as many write operations as
possible in a single network message, reducing the cost of com-
munication [21], while trying to guarantee that most reads will ob-
serve all previously generated writes. Again, we can cast this as
a classification problem, using cost-sensitive decision tree classi-
fiers, where we try to estimate the maximum delay acceptable for
each write operation if it is to be delivered to the server in time
to be observed by the earliest subsequent read. The utility func-
tion provided here specifies the relative cost of delaying a write for
too long (thus impacting quality of reads) versus delaying it insuf-
ficiently, thus missing batching opportunities. Section 7.3 shows
experimentally that this leads to a 3x reduction of the number of
messages sent, while maintaining the number of queries receiving
partially stale answers unchanged.

The fact that these techniques do not require application-specific
models (e.g., we do not model user mobility), but instead use read-
/write ratios and their correlation to predicates and contextual vari-
ables suggests it is possible to build general purpose cache policy
selectors.

In future work, our architecture will allow us to explore many
other interesting optimization strategies, such as:

cross-app synchronization of recurring reads and writes
cross-app prefetching and piggybacking

dynamic cache eviction policies

gracefully degrading answer quality when disconnected
push-based cache maintenance

dynamically changing caching strategies

compaction of outstanding updates stored locally

Addressing such challenges at the platform level provides much
more than simple factoring of the functionalities in a common layer.
We have a vantage point that is unique, and allows us to exploit
machine learning and statistical techniques to improve the perfor-
mance of our system in a much more globally-optimal, context-
aware, and dynamic way. The simple strategies we implemented in



our prototype are only used to demonstrate some of the opportuni-
ties in this space, and a more complete investigation is part of our
future research agenda.

7. EVALUATION

In this section, we describe a series of experiments we ran to
evaluate our Mobius prototype. The goal is to demonstrate that:

1. The Mobius architecture and MUD API do not introduce sig-
nificant additional client-side latency when sending messages or
accessing local storage.

2. Utility-based caching using a server-generated caching policy
can offer substantial reductions in access latency and total amount
of network I/O versus simpler, local-only caching policies.

3. The Mobius back-end scales to large numbers of partitions,
allowing developers to finely partition (and, by extension, paral-
lelize) workloads.

7.1 Implementation and Experiment Setup

We implemented our prototype of Mobius using an event-driven,
asynchronous architecture. We built Android and Java MUD client
libraries and created an Android service that handles notification
and data serving, which is shared by multiple apps running on the
device. The app-side library talks to the service through Binder.
The service stores data locally in SQLite [14]. Requests are han-
dled by asynchronous Futures, and responses are returned by local
callbacks. Requests from clients to gateways are encoded as JSON
and are sent over HTTP. The MUD gateway, processor, and notifi-
cation server are all built on JBoss Netty [6]. The protocol between
notification client and server is a custom protocol optimized for this
purpose.

Our prototype stores application data in JSON format, and sup-
ports queries written in a subset of the MVEL [8] expression
language. We use a bLSM index for server-side storage [43].
Rather than attempting to optimize read queries using conventional
database optimization techniques, we assume the underlying data
(and associated queries) are finely partitioned, and chose an im-
plementation designed to scale well with the number of partitions.
This prototype comprises approximately 9,000 lines of Java code.

We ran end-to-end experiments by running servers on a machine
located at UC Berkeley. The machine is equipped with two Xeon
X5560 CPUs and 12GB RAM, running Ubuntu server 11.04. We
ran our mobile apps for benchmarks on a Samsung Galaxy Nexus
running Ice Cream Sandwich with a Verizon 4G LTE connection
and a Nexus S phone running Gingerbread with a T-mobile 3G
connection. We ran the storage backend experiments on a machine
with a single Intel Core i7 2600 (3.4GHz) CPU, 16GB of RAM, and
Ubuntu 11.04. This machine is equipped with a two-disk RAID-0
consisting of 10K RPM SATA disks.

7.2 Latency

To understand the latency overheads, we compared Mobius with
baseline systems that directly execute local or remote SQL state-
ments without considering consistency, scalability or fault toler-
ance. We ran microbenchmarks to measure latencies of local/re-
mote writes, and local/remote reads. The baseline system for local
writes/reads performs operations directly on local SQLite. For re-
mote writes/reads, the baseline system sends requests to an HTTP
server that executes the operations on a MySQL server at the back-
end. Note that the baseline systems are representative of typical
developer choices. In contrast, Mobius also maintains a local copy
of both read and written data. This allows local query serving.

Table 4 shows the latency overhead of Mobius relative to the
baseline systems. We measured the mean latency of 500 requests.

Mobius Baseline
Galaxy Nexus Latency (ms) | Latency (ms)
Local write 94.10 64.99
Local read (cache) 40.58 2.89
Remote write (4G) 281.74 202.66
Remote read (4G) 301.94 198.08
Nexus S
Local write 141.69 102.02
Local read (cache) 51.47 10.54
Remote write (3G) 540.07 1364.45
Remote read (3G) 364.02 1276.38

Table 4: Latency of MUD operations.

With a 4G connection, for remote writes, Mobius has up to 39%
overhead, whereas for remote reads, Mobius has up to 52% over-
head. While we plan to optimize our prototype to further reduce
latencies, we believe that even the current overhead is acceptable,
especially given that many applications are designed to deal with
much higher latencies, and higher variances of latencies that oc-
cur on wireless connections or as users move from one location to
another. Local writes and reads are slower with Mobius since Mo-
bius performs these operations with asynchronous Futures unlike
synchronous baseline SQLite systems. With the 3G connection,
Mobius’s remote writes and reads are much faster than the base-
line systems. This demonstrates that simple baseline systems are
hard to get right when environments change. The reason Mobius
does better is that it maintains persistent HTTP connections, but the
baseline system does not, re-establishing a connection each time a
request is made. On 3G the additional round-trips for connection
establishment incur more latency than the additional latency Mo-
bius itself adds.

7.3 Intelligent Server-directed Caching

In Section 6 we argued in favor of server-generated caching
strategies. We now present some initial results that demonstrate
the benefits that one can obtain from this approach—a simple ini-
tial solution based on decision tree classifiers. Exploring more so-
phisticated and robust machine-learning and statistical techniques
is part of our research agenda.

For these experiments, we use data traces from the CarTel [36]
iPhone application. The traces consist of vehicles location reports
and geo-spatial queries (in this case, for traffic data in a region).
Specifically, the data comprises

o Writes: GPS locations of about 600 cars, reported at regular
intervals (approximately 3.7M data points).

e Reads: User-initiated queries for data points within a bound-
ing box (20x20km) and a two hour window.

We first report experiments on read caching strategies. We com-
pare: 1) a baseline based on the actual policy implemented in
the CarTel application, which answers queries from the local store
(cache) whenever the query is no further than 1km from a previ-
ously cached query not older than 10 min, and 2) a decision-tree-
based policy, which analyzes the execution trace and devises a pol-
icy based on the current query and cache contents.

As input, the decision tree takes the timestamp and GPS coordi-
nates of the current and previous query. We generate the decision
tree using Weka’s cost-sensitive J48 implementation. The classifier
is trained to predict whether a query should be answered from the
local cache or sent to the server. In certain geographical regions
our data is very sparse, and the classifier learns that issuing a query
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to the server if the client is interested in sparse areas is inconse-
quential even if the local cache is empty. We use standard 10-fold
cross-validation in this experiment.

Figure 3 shows the results comparing the baseline described
above and the decision tree classifier, for two different utility func-
tions provided by the developer (one more sensitive to latency of
the answer, and the other more sensitive to freshness of the data).
In both cases, the decision tree significantly reduces the number
of remote queries, improving perceived latency, bandwidth usage,
power consumption and sever load, as well as result quality—fewer
queries return stale data to the end user.

The second experiment focuses on write caching (or write batch-
ing). We compare two baseline policies that delay writes up to
10min and 30min respectively, our decision-tree based approach
and a lower-bound computed a posteriori on the dataset.

We train the decision tree classifier to predict the maximum de-
lay we can accept for a write without impacting a query. The classi-
fier receives as input the GPS location (content of the write) and the
time at which the write was performed in the trace. During training,
we also include the time of the first subsequent read of the modified
data. We quantize the delay into 10min buckets from 0 to 120min,
and include an “infinite delay” bucket that accounts for unobserved
writes. During training, we heavily penalize overestimates of max-
imum delay (which cause queries to receive stale data), and lightly
penalize underestimates, increasing the cost progressively with in-
creased error. For this experiment, we sample 10% of the data for
training and use 90% for testing.

Figure 4 compares our approach with the baseline according to
three metrics: the percentage of messages sent, the percentage of
data points sent (this is to demonstrate the opportunity to not send
data if we are confident the data will never be read), and the per-
centage of queries impacted by at least one missing data point. We
show that our system’s query results are comparable to the 30min
fixed heuristic in exchange for a 7x reduction in the number data
points sent (this translates in bandwidth savings and server side
load reduction), and a 3 X reduction in number of messages (which
mostly translates into battery power reduction). When compared to
a more aggressive 10min baseline we produced more stale results
but up to 6 x fewer messages.

While the presented approach is not completely general, it is also
a somewhat naive use of classification. Even so, it is a significant
improvement over reasonable baselines, showing that cloud-based
caching policies can be very effective. In the context of the CarTel
application, the policy selector determined that in certain regions,
the density of writes is so low that pushing queries to the server
would return no new results. Thus, based on location and time of
the day the system is able to suggest that the client be more or less
eager at pushing queries to the server.
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7.4 Backend Scalability

For this experiment, we use the backend server to persist mes-
sages to disk and forward them to a single subscriber. The goal is
to show impact of partitioning for a one-to-one messaging appli-
cation. To stress test predicate evaluation, we group subscriptions
into partitions, forcing the query processor to evaluate multiple sub-
scription predicates for each incoming message. We focus on the
gateway and query processor performance here, notification server
scalability is well-studied, e.g., Google Thialfi [18].

The query processor processes subscriptions as it would in a real
deployment: it decides correct recipient(s) for each message, and
forwards the message to the notification server(s) for delivery. Each
time a new tuple arrives, it is evaluated against each active sub-
scription in its partition. Scenarios with only a few subscriptions
per partition perform a small number of such evaluations per pub-
lished tuple, while scenarios with many subscriptions per partition
must perform many predicate evaluations for each published tuple.

The results of our experiment are shown in Figure 5. In the ideal
case, each subscription is assigned to a separate partition and the
query processor forwards approximately 5,000 messages per sec-
ond. The cost of forwarding messages increases linearly as the
number of subscriptions per partition increases. In our simple ex-
periment, each message will be delivered to one subscriber; the
work performed by the other predicate evaluations is wasted. In-
creasing the number of predicate evaluations while holding the
other costs constant gives us a good idea of the performance of
predicate evaluation: our simple prototype can evaluate approxi-
mately 70,000 predicates per second.

The query evaluation strategy performs well when most predi-
cate evaluations succeed, but is unable to efficiently “prune” irrel-
evant queries as it processes incoming messages. We could avoid
this linear slowdown in the number of subscriptions by implement-
ing an index over query predicates, as in database continuous query
processing systems like NiagaraCQ [28] or the ARIEL trigger pro-
cessing system [29]. However, we observe that our architecture
presents an interesting tradeoff to application developers: In or-
der to improve performance, one can increase the sophistication
of the predicate evaluation system, or one can resort to increas-
ingly sophisticated partitioning schemes, reducing the number of
subscriptions that must be considered when a tuple arrives. On
the one hand, static partitioning schemes are unwieldy, but can be
trivially parallelized and have good (and predictable) worst case
performance. On the other hand, sophisticated query processing
schemes are complex, but automatically improve the performance
of a wide range of applications. We suspect that both techniques
will be useful in practice.

Regardless of the underlying query processing scheme, subscrip-
tion patterns that cause certain messages to be broadcast to large
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numbers of users are likely to lead to hotspots, overwhelming some
of the backend machines. Two common solutions to this problem
are replication of partitions and read caching. Both approaches
have the same effect: the computational and network load associ-
ated with hot partitions is spread across multiple backend servers.

Our simple prototype ignores such issues, and focuses on scal-
ing up to applications with large numbers of small subscription
groups. To this end, we ran the same publish / subscribe bench-
mark as above, holding the number of subscriptions per partition
constant (Figure 6). With ten subscriptions per partition, the pro-
totype is able to establish approximately one million subscriptions
before running out of RAM to store active subscriptions. Although
we suspect that other performance issues will manifest before we
hit this limitation in practice, it is worth noting that we could spill
the query cache to the backing bLSM index.

This design scales linearly by partitioning data and subscriptions
across multiple servers. Partitioning schemes can be provided by
application developers, but we also plan to further explore these
issues by adapting our previous work on automatic and fine-grained
partitioning [31, 46] to this context.

8. RELATED WORK

Mobius and MUD build on prior work from many fields, in-
cluding mobile systems, pub-sub systems, messaging, continuous
query processing and scalable “key-value” storage, but differ from
existing work in several ways. First, the MUD API unifies mes-
saging with data serving through the abstraction of a logical ta-
ble that spans devices and clouds. Another novel aspect of MUD
is that it introduces “writer predicates” to control writes, in addi-
tion to “reader predicates”, in contrast to conventional pub-sub sys-
tems and database continuous queries. Second, Mobius allows util-
ity functions to decide caching/prefetching decisions whose poli-
cies are derived by mining access patterns across clients at back-
end servers. Finally, Mobius’s design integrates multiple compo-
nents in a non-trivial way to provide app developers with a unified

messaging and data platform, and also provides cloud operators
with linear scaling in the number of applications, users and in the
amount of data.

Existing cloud services are exposed to mobile apps through
REST APIs or wrapper libraries of the APIs. Amazon Mobile
SDKs for Android and iPhone [1] provide a wrapper library over
the REST APIs of Amazon cloud services such as storage (S3),
database (SimpleDB), and simple notifications service (SNS). Sim-
pleDB is a non-relational data store that provides eventual or strong
consistency, and SNS is a topic-based pub/sub system. SQL Azure
database [13] and Google CloudSQL [3] provide cloud RDBMSs.
In contrast, Mobius provides an integrated messaging and data
serving platform that addresses challenges of mobile apps such as
disconnection, mobility and intelligent caching for mobile devices.

Much research has been done on replication protocols for mobile
computing [47]. The protocols can be categorized based on com-
munication topologies (client-server vs. peer-to-peer), partial or
full replication, and consistency guarantees. Coda and iCloud are
example systems with client-server replication protocols; clients
cannot directly share updates each other. Coda [37] is a distributed
file system with which clients can perform disconnected opera-
tions. Coda caches a set of files specified by a hoarding profile.
iCloud [5] provides synchronization of files among a set of apple
devices (iPhone and iPad) and clouds, which supports a narrow app
interface and semantics. Several projects have explored peer-to-
peer replication protocols. Ficus [34] is a peer-to-peer replicated
file system. Bayou [49] is a fully replicated database system that
provides eventual consistency with session guarantees for choice of
consistency [48]. PRACTI [22] supports topology independence,
partial replication, and arbitrary consistency. To support partial
replication, it separates invalidation messages from body messages
with updates. CouchDB [2] is a schema-free “document store”
with eventual consistency guarantees. Cimbiosys [41] and Per-
spective [42] use filters to selectively replicate content at mobile
devices. Cimbiosys supports eventual filter consistency. With re-
gard to data replication, Mobius has a client-server model since our
main applications consume data from cloud, write data to cloud,
and share data through cloud. Mobius provides partial replication
since its cache contains partial records of tables. By avoiding direct
peer-to-peer communications between devices, Mobius provides
stronger consistency guarantees, and requires a simpler architec-
ture. More importantly, it inherits all of the advantages of existing
cloud storage architectures, such as analytics, multi-tenancy, elas-
ticity, fault-tolerance, scalability, automatic application upgrades
(to avoid legacy support issues), and so on.

Cloud to device push notification services such as Apple
APNS [20], Google C2DM][4], Microsoft MPNS [11] provide a
network channel to send small messages from cloud to device
by maintaining a persistent connection between device and cloud.
Similarly, our notification client/server provides channels for push
notification. Thialfi [18] is a recent notification service that reliably
propagates object version changes from cloud to client. In contrast,
Mobius provides a high-level abstraction for data management and
messaging. Unlike Mobius, Thialfi, does not deal with client-side
caching, disconnected operations, consistency semantics, and so
on. In addition, Mobius supports writer predicates which allow late
binding of subscribers or readers to published content.

Communication service abstractions for mobile apps have also
been explored. Project Hawaii [10] provides a collection of services
and libraries, including a message relay service and a rendezvous
service. Contrail [44] is a communication platform for decentral-
ized social networks that uses the cloud to relay encrypted data.
Junction [7] provides a switchboard service with which devices talk



each other, especially in peer-to-peer settings. These services are
low-level communication services. Mobius provides higher-level
abstraction for messaging and data management.

Various systems provide asynchronous, distributed write/read
primitives. Pub/sub systems provide communication between pub-
lishers which produce information and subscribers which are in-
terested in receiving it. Depending on the expressive power of
subscriptions, pub/sub systems are classified into topic-based or
content-based ones [27, 32]. Continuous query databases such
as NiagaraCQ [28] and YFilter [33] evaluate queries when data
is written to databases. Tuplespaces such as Linda [26] and
TSpace [15] provide distributed associative memory spaces; ap-
plications write tuples to the tuple space and read tuples from the
tuple space based on a select predicate. Mobius’s write/continuous
read is built on the same principle, but Mobius has both reader and
writer predicates.

Caching/prefetching has been studied extensively in distributed
systems. We briefly describe a few relevant mobile computing
projects. SEER [38] provides automated, dynamic hoarding de-
cisions for distributed file systems that support disconnected oper-
ations. The system observes file access patterns, clusters files with
small semantic distances, and colocates them; this pattern mining
occurs in each client machine. WhereStore [45] is a device store
that uses filtered replication to create partial replicas based on de-
vice location histories. Mobius provides a generalization: arbitrary
caching/prefetching policies based on intelligent backend policy in-
ference from all clients. Cedar [50] uses content addressable stor-
age to reduce data transmission by detecting commonality between
client and server query results of relational databases. Query con-
tainment checking [19] extracts matching queries with ranges of
exiting tuples. Both approaches rewrite queries to exploit locally
available data. Mobius employs similar rewriting techniques at the
device. ICEDB [52] uses global feedback from the server in de-
ciding what tuples to upload. Mobius covers a wide variety of
push/pull primitives between device and server based on global and
local policies.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced MUD, a unified messaging and data
serving abstraction for mobile apps, and presented a system, Mo-
bius, that supports it. Mobius provides several key features: au-
tomated caching, writer-/reader-predicate based reads and notifica-
tions, server-directed caching policies, and protocols for handling
disconnected operation. In addition to simplifying mobile appli-
cation development, we believe that Mobius will ultimately make
more efficient use of hardware resources than is possible with ad-
hoc application storage and messaging stacks.

Early experiments with our prototype implementation of Mobius
are promising. Our MUD processing engine scales up to approx-
imately one million subscriptions per machine, and is designed
to linearly scale out to multiple back-end servers. Similarly, our
client-side caching policies significantly reduce network bandwidth
use. Finally, the overhead we impose upon client requests is rea-
sonable. In conclusion, we believe that the MUD API, combined
with our network and caching technologies, will significantly sim-
plify the lives of mobile application developers.
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APPENDIX
A. FORMAL CONSISTENCY SEMANTICS

We describe the consistency semantics that Mobius provides to
clients accessing its tables formally. As operations take time, they
are represented by two events occurring at the client, an invocation
and a response. A history is the sequence of invocations and re-
sponses that occurred in an execution. An operation o precedes an-
other operation o’ in the history if o completes before o’ is invoked.
Two operations are concurrent if neither one of them precedes the
other. Finally, we say that a sequence of events is sequential if it
does not contain concurrent operations.

Sequential views: We define consistency in terms of the possi-
ble views clients have of the execution (as previously mentioned,
each record is treated as a separate consistency domain). Intu-
itively, a view is a sequence of invocations and responses which is
sequential and equivalent (from the client’s point of view) to the ex-
ecution history. The view must contain the client’s own operations
in addition to any operation apparent from the client’s interaction
with the shared storage. The view must be legal according to the
“sequential specification” of the shared object (i.e., it could have
resulted from a sequential interaction with the storage). Finally, the
view must respect the operation precedence order of every client’s
program: for every two operations executed by the same client o
and o’ in a view, if o completes before o’ is invoked then it appears
before o’ in the view. Note that there are usually multiple views
possible at a client.

Sequential Consistency: The first consistency property pro-
vided by the system is sequential consistency [39]. Here, we for-
malize the definition using the notion of views:

DEFINITION 1  (SEQUENTIAL CONSISTENCY). A history o
is sequentially consistent if there exists a sequence of events m
which is a view of o for all clients.

Sequential consistency with write invocation order: We say
that a client’s view preserves write invocation order of a history o
if for every two operations o and o’ of the same client in the view, if
o is invoked before o’ in o and at least one of them is a write, then o
precedes o’ in the view. We call the resulting consistency condition
sequential consistency with WIO (write invocation order):

DEFINITION 2 (SEQUENTIAL CONSISTENCY WITH WIO).
A history o is sequentially consistent with WIO if there exists a
sequence of events m which is a view of o for all clients, and which
preserves the invocation order of writes in o.

Fork sequential consistency: We formalize the possibility
of view divergence using the notion of fork-sequential consis-
tency [40].

DEFINITION 3 (FORK-SEQUENTIAL CONSISTENCY). A his-
tory o is fork-sequentially consistent if for each client C; there ex-
ists a sequence of events m; such that (1) 7; is a view of o at C;;
and (2) For every client C; and every operation o in both m; and
mj, the prefix of m; up to o is identical to the prefix of m; up to o
(called the No-join property).



