
MIT Open Access Articles

The cost of radio network broadcast
for different models of unreliable links

The MIT Faculty has made this article openly available. Please share
how this access benefits you. Your story matters.

Citation: Ghaffari, Mohsen, Nancy Lynch, and Calvin Newport. “The Cost of Radio Network
Broadcast for Different Models of Unreliable Links.” Proceedings of the 2013 ACM Symposium
on Principles of Distributed Computing - PODC ’13 (2013), July 22–24, 2013, Montréal, Québec,
Canada. ACM New York, NY, USA, p. 345-354.

As Published: http://dx.doi.org/10.1145/2484239.2484259

Publisher: Association for Computing Machinery

Persistent URL: http://hdl.handle.net/1721.1/90369

Version: Author's final manuscript: final author's manuscript post peer review, without
publisher's formatting or copy editing

Terms of use: Creative Commons Attribution-Noncommercial-Share Alike

https://libraries.mit.edu/forms/dspace-oa-articles.html
http://hdl.handle.net/1721.1/90369
http://creativecommons.org/licenses/by-nc-sa/4.0/

The Cost of Radio Network Broadcast for
Different Models of Unreliable Links∗

Mohsen Ghaffari
MIT CSAIL

Cambridge, MA
ghaffari@csail.mit.edu

Nancy Lynch
MIT CSAIL

Cambridge, MA
lynch@csail.mit.edu

Calvin Newport
Georgetown University

Washington, DC
cnewport@cs.georgetown.edu

ABSTRACT
We study upper and lower bounds for the global and lo-
cal broadcast problems in the dual graph model combined
with different strength adversaries. The dual graph model
is a generalization of the standard graph-based radio net-
work model that includes unreliable links controlled by an
adversary. It is motivated by the ubiquity of unreliable links
in real wireless networks. Existing results in this model [11,
12, 3, 8] assume an offline adaptive adversary—the strongest
type of adversary considered in standard randomized anal-
ysis. In this paper, we study the two other standard types
of adversaries: online adaptive and oblivious. Our goal is
to find a model that captures the unpredictable behavior
of real networks while still allowing for efficient broadcast
solutions.

For the online adaptive dual graph model, we prove a
lower bound that shows the existence of constant-diameter
graphs in which both types of broadcast require Ω(n/ logn)
rounds, for network size n. This result is within log-factors
of the (near) tight upper bound for the offline adaptive
setting. For the oblivious dual graph model, we describe
a global broadcast algorithm that solves the problem in
O(D logn + log2 n) rounds for network diameter D, but
prove a lower bound of Ω(

√
n/ logn) rounds for local broad-

cast in this same setting. Finally, under the assumption of
geographic constraints on the network graph, we describe a
local broadcast algorithm that requires only O(log2 n log ∆)
rounds in the oblivious model, for maximum degree ∆. In
addition to the theoretical interest of these results, we argue
that the oblivious model (with geographic constraints) cap-
tures enough behavior of real networks to render our efficient
algorithms useful for real deployments.

∗Research supported in part by: Ford Motor Company Uni-
versity Research Program; AFOSR Contract No. FA9550-
13-1-0042; NSF Award No. CCF-1217506; NSF Award No.
0939370-CCF; NSF Award No. CCF-AF-0937274; AFOSR
Contract No. FA9550-08-1-0159; NSF Award No. CCF-
0726514.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
PODC’13, July 22–24, 2013, Montréal, Québec, Canada.
Copyright 2013 ACM 978-1-4503-2065-8/13/07 ...$15.00.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Com-
munication; G.2.2 [Discrete Mathematics]: Graph The-
ory—network problems

Keywords
radio network; broadcast; dual graph; unreliability

1. INTRODUCTION
Most models used to study algorithms for wireless net-

works assume static links between devices; i.e., the strength
of each link remains fixed throughout an execution. This as-
sumption is captured by these models’ use of deterministic
rules for determining when a message is received. Given a
set of transmitters, the receive behavior is fixed. This prop-
erty is true, for example, of the graph-based protocol model
(e.g., [4, 2]) and SINR-based physical model (e.g., [16]).1 In
real wireless networks, by contrast, links are rarely static.
Changes to the environment, interference from unrelated
protocols on overlapping spectrum, and even shifting weather
conditions can all cause links to exhibit dynamic fluctuations
in strength (e.g., [18]).

To succeed in establishing a mathematical foundation for
the design and analysis of practical wireless network algo-
rithms, the theory community needs to consider wireless
models that include dynamic links. A recent series of papers
takes up this challenge by studying global broadcast [11, 12],
local broadcast [8], and graph algorithms [3] in the context
of the dual graph model—a generalization of the graph-based
protocol model that includes both static and dynamic links.

A defining feature of the dual graph model is that an ad-
versary controls the behavior of the dynamic links (as pre-
viously argued [11, 12, 3, 8], simpler assumptions, such as
independent loss probabilities, do a poor job of capturing
the unpredictable and sometimes highly-correlated nature of
dynamic behavior in real networks). Applying the standard
terminology from randomized analysis, this existing work
on the dual graph model assumes an offline adaptive adver-
sary. This adversary type—sometimes also called strongly
adaptive—can use the execution history and the nodes’ ran-
dom choices for a given round before fixing the link behavior.
This definition is strong and therefore, perhaps not surpris-
ingly, most existing radio network results proved with re-

1SINR-based models include a noise parameter, N , which,
in theory could be determined on a per-link basis and po-
tentially change over time. In practice, however, it is almost
always treated as a fixed constant.

spect to this adversary type are negative. They show, for ex-
ample, that both global and local broadcast (defined below)
require Ω(n) rounds [11, 12] in constant-diameter graphs of
size n. This is exponentially worse than the Θ(log2 n) round
solution of the static protocol model [2, 8]. These lower
bounds are not entirely satisfying as they leverage adversary
behavior—such as basing link behavior on the outcome of
private random choices—that is unrealistically pessimistic.

In this paper, we take the natural next step and derive
new upper and lower bounds for global and local broadcast
in the dual graph model combined with the two successively
weaker adversary types typically considered in randomized
analysis: online adaptive and oblivious. Motivated by the
importance of these broadcast problems, our goal is to find
a model that can capture the unpredictable behavior of real
networks, yet still allow efficient broadcast solutions.

In more detail, the online adaptive adversary—sometimes
also called weakly adaptive—can use the execution history
when deciding the link behavior for a given round, but does
not know the nodes’ random choices for the round. The
oblivious adversary must make all decisions at the beginning
of the execution.

The global broadcast problem requires a designated source
node to disseminate a message to the entire network. This
is arguably the most studied problem in the radio model
(see [17]) due to its importance to both theory (it isolates
the fundamental difficulty of this setting—multihop con-
tention) and practice (solutions provide key synchronization
and search capabilities in real networks). Local broadcast
assumes a subset of nodes are provided broadcast messages
to deliver to their neighbors in the network graph. In this
paper, we focus only on the time for each receiver (i.e., node
neighboring a broadcaster) to receive some message.2 This
property proves crucial when analyzing local broadcast as a
subroutine (e.g., [9]). In addition, this form of the problem
reduces to most nontrivial problems in the radio setting as
most problems require some communication between nearby
nodes to break symmetry. Therefore, lower bounds on local
broadcast can extend to many other problems.

Results for the Online Adaptive Dual Graph Model: We
begin by proving that there exists a constant-diameter graph
of size n such that both global and local broadcast required
Ω(n/ logn) rounds in this graph in the online adaptive dual
graph model. Our lower bound uses a simulation-based re-
duction from an abstract game that leverages the adver-
sary’s knowledge of expected behavior.3

Results for the Oblivious Dual Graph Model: For the obliv-
ious setting, we first describe a global broadcast algorithm
that runs in O(D logn + log2 n) rounds, for network diam-
eter D, which essentially matches the best known results in
the static protocol model [2, 10, 7]. The core insight driv-
ing this algorithm is that the source can generate a set of
random bits after the execution begins (e.g., bits unknown
to the adversary) and then include them in the source mes-

2The other property studied with respect to these algo-
rithms is the time for a sender to successfully deliver its
message to all its receivers. We do not study that property
here because we recently proved a strong lower bound in the
static protocol model, leaving us no gap to close in our dual
graph variants [8].
3We note that a similar bound was independently discov-
ered, using a different method, by Cornejo, Ghaffari, and
Haeupler. Their version is unpublished.

sage. Nodes that have received the message can use the bits
to coordinate their probabilistic broadcast behavior. For lo-
cal broadcast, however, we establish a Ω(

√
n/ logn) lower

bound. This bound counters the coordination strategy of
global broadcast by using the graph topology to isolate key
nodes.

Results for the Oblivious Dual Graph Model with Geo-
graphic Constraints: Under the assumption of a geographic
constraint that generalizes the unit disk graph model (a nat-
ural assumption for wireless settings), we describe an algo-
rithm that solves local broadcast in O(log2 n log ∆) rounds,
for maximum degree ∆. This result is only a log-factor
slower than the optimal Θ(logn log ∆) result in the static
protocol model [2, 8]. The algorithm use a more involved
version of the coordination strategy from our global broad-
cast bound that leverages the geographic constraint to achieve
local coordination. In Figure 1, we summarize all the above
results and compare them to existing work.

Contributions.
From a theory perspective, these results provide a com-

plete characterization of broadcast in unreliable radio net-
works with respect to the classic adversary types—identifying
the key relationships between adversary power and the effi-
ciency of these important primitives. From a practical per-
spective, we argue that our efficient upper bounds for the
oblivious adversary are well-suited for real world deploy-
ment. The oblivious model can capture the unpredictable
behavior observed in real networks. At the same time, its
obliviousness to the algorithm’s ongoing execution is a tol-
erable concession, as the adversary is playing the role of
environmental forces that are independent of the protocols
running in the network. Our best algorithms, therefore, can
provide practitioners significantly more robustness without
sacrificing efficiency.

Related Work.
The static graph-based radio network model was intro-

duced by Chlamtac et al. [4], and has since been extensively
studied (see [17] for examples). In this paper, following
recent naming conventions, we call it the protocol model.
Bar-Yehuda et al. [2] described a randomized distributed
broadcast solution that runs in O(D log (n) + log2 n) rounds
in the protocol model. This result was later slightly im-
proved to O(D log (n/D) + log2 n) rounds [10, 7], which is
optimal [1, 15]. For local broadcast, a slight tweak to the
strategy of [2] provides a local broadcast solution the runs
in O(logn log ∆) rounds [8]. The dual graph model was
introduced by Clementi et al. [5], where it was called the
dynamic fault model. We independently reintroduced the
model in [11] with the dual graph name. In this model com-
bined with an offline adaptive adversary, global and local
broadcast now require Ω(n) rounds, even in constant diam-
eter graphs [11]. The closest matching upper bounds require
O(n log2 n) rounds for global broadcast [12], O(n) rounds for
local broadcast.4 See Figure 1 for a summary of these re-
sults and how they compare to the new results in this paper.
Other problems, including building graph structures [3] and
deterministic broadcast [13] have also been studied in the
dual graph model with this strong adversary. A related lit-

4Local broadcast can always be solved in O(n) rounds using
round robin broadcasting on the n node ids.

Global Broadcast Local Broadcast

DG + Offline Adaptive Ω(n) [11] / O(n log2 n) [13] Ω(n) [11] / O(n logn) [8]

DG + Online Adaptive Ω(n/ logn) Ω(n/ logn)

DG + Oblivious O(D logn+ log2 n)
General Graphs: Ω(

√
n/ logn)

Geo. Graphs: O(log2 n log ∆)

No Dynamic Links Θ(D log (n
D

) + log2 n) [10, 1, 15] Θ(logn log ∆) [2, 8]

Figure 1: All results in the second and third rows are new results proved in this paper. Existing results are
described in the first and last rows along with the relevant citations.

erature studies distributed algorithms in the dynamic net-
work model, in which the entire communication topology
can change from round to round under different constraints
(see [14] for a good survey). These results, however, assume
reliable communication among neighbors in each round. The
dynamic model studied in this paper, by contrast, assumes
concurrent communication yields collisions—making it well-
suited for describing radio networks. The exception is the
work of Clementi et al. [6], which studies a dynamic network
model that preserves the standard radio network collision
rules. In this model, they show a tight bound of Θ(n2/ logn)
rounds for solving broadcast with a strong adversary con-
strained only to keep the graph connected in a useful manner
in each round.

2. MODEL AND PROBLEMS
We define the dual graph model, which describes random-

ized algorithms executing in a synchronous multihop radio
network with both static and dynamic links. The model de-
scribes the network topology with two graphs on the same
vertex set: G = (V,E) and G′ = (V,E′), where E ⊆ E′,
and the n = |V | nodes in V correspond to the wireless de-
vices. An algorithm in this model consists of n randomized
processes. An execution of an algorithm in a given network
(G,G′) begins with an adversary assigning each process to
a node in the graph. This assignment is unknown to the
processes. To simplify notation, we use the terminology
node u, with respect to an execution, to refer to the pro-
cess assigned to node u in the graph in a given execution.
Executions then proceed in synchronous rounds. In each
round r, each node decides whether to transmit a message
or receive based on its randomized process definition. The
communication topology in r consists of the edges in E plus
some subset of the edges in E′ \ E. This subset, which can
change from round to round, is determined by an adversary
that we call a link process (see below). Once a topology is
fixed for a given round, we use the following communication
rules: a node u receives a message m from v in r, if and
only if: (1) u is receiving; (2) v is transmitting m; and (3)
v is the only node transmitting among the neighbors of u
in the communication topology fixed by the link process for
r. Notice, the dual graph model is a strict generalization
of the static protocol model. In more detail: for G = G′,
the model is the same as the protocol model described with
respect to topology G.

For a given G′ = (V,E′) and u ∈ V , we use NG′(u) to de-
scribe the neighbors of u inE′, and define ∆ = max{|NG′(u)| :
u ∈ V }. We assume n and ∆ are known to processes in ad-
vance. Some of our bounds require a geographic constraint
on the G and G′. In these cases, we assume the same con-
straint introduced in [3], which itself is a generalization of

the unit disk graph property. In more detail, our constraint
assumes the existence of a constant r ≥ 1, such that we can
embed the nodes in our graph in a Euclidean plane with dis-
tance function d, and, ∀u, v, u 6= v: if d(u, v) ≤ 1 then (u, v)
is in G, and if d(u, v) > r, (u, v) is not in G′. This constraint
says that close nodes can communicate, far away nodes can-
not, and for nodes in the grey zone in between, the behavior
is dynamic and unpredictable. We call a dual graph network
topology that satisfies this property a geographic graph.

Adversary Types.
In our model, the choice of which edges from E′ \ E to

include in the communication topology each round is deter-
mined by an adversary called a link process. In this paper,
we study the three classical definitions of such adversaries
from the randomized analysis literature: offline adaptive,
online adaptive, and oblivious. In more detail, the offline
adaptive link process, when making a decision on which links
to include in a given round r, can use knowledge of: the net-
work topology; the algorithm being executed; the execution
history through round r− 1; and the nodes’ random choices
for round r. The online adaptive link process weakens this
definition such that it no longer learns the nodes’ random
choices in r before it makes its link decisions for r. The
oblivious adversary, by contrast, must make all of its link
decisions at the beginning of the execution—though it can
still make use of the network topology and algorithm de-
scription in generating this behavior.

In this paper, when we refer to the “〈adversary type〉 dual
graph model”, we mean the dual graph model combined with
link processes that satisfy the 〈adversary type〉 constraints.

Global and Local Broadcast.
We study the global and local broadcast problems. The

global broadcast problem assumes a designated source node
is provided a message. The problem is solved when it has
disseminated the message to the entire network. The local
broadcast problem assumes some subset of nodes B ⊆ V
are provided a message. Let R be the set of nodes with
at least one neighbor in B by G. The problem is solved
when every node in R has received at least one message from
a neighbor in B. Both problems assume G is connected.
When we say a randomized algorithm solves one of these
problems, we require that it solves it with high probability
(i.e., probability at least 1− 1/n).

3. ONLINE ADAPTIVE DUAL GRAPH MODEL
Previous work proved the existence of constant-diameter

graphs where both global and local broadcast require Ω(n)
rounds in the offline adaptive dual graph model [11]. Here
we prove a similar bound holds when we weaken the adver-

sary to the online adaptive model. This result demonstrates
that the difficulty of broadcasting in an adaptive dual graph
model is not dependent on the strong assumption that the
link process knows random choices in advance. Formally:

Theorem 3.1. There exists a constant-diameter dual graph
network such that every algorithm requires Ω(n/ logn) rounds
to solve global and local broadcast in this network in the on-
line adaptive dual graph model.

The proof of our theorem reduces an abstract game, called
β-hitting, to broadcast. We show that an efficient broadcast
solution allows a player to efficiently win the β-hitting game
by simulating the solution in a specific type of constant-
diameter network we call dual clique. We then leverage an
existing bound on β-hitting to bound broadcast in the dual
clique network.

The β-Hitting Game: The game is defined for integer
β > 0. There is a player represented by a probabilistic
automaton P. At the beginning of the game, an adversary
chooses a target value, t ∈ [β], which it keeps secret from
the player. The P automaton executes in rounds. In each
round, it can output a guess from [β]. The player wins the
game when P outputs t. The only information it learns in
other rounds is that it has not yet won the game. In previous
work [11], we bound this game as follows:

Lemma 3.2 (Adapted from [11]). Fix some β > 3
and k, 1 ≤ k ≤ β − 2. There does not exist a player that
solves β-hitting in k rounds with probability greater than
k/(β − 1).

The Dual Clique Network: Partition the n nodes in V into
two equal sized sets, A and B. Connect the nodes in A (resp.
B) to form a clique in G. Connect a single node tA ∈ A
to a single node tB ∈ B, forming a bridge between the two
cliques. Let G′ be the complete graph over all nodes. Notice,
this graph has constant diameter. It is also a geographic
graph (which strengthens our lower bound).

We now proceed with the proof of our main theorem:

Proof of Theorem 3.1. Fix some broadcast algorithm
A. The bulk of our proof is dedicated to proving the fol-
lowing claim: if A solves either global or local broadcast
in f(n) rounds, then we can construct a player PA that
solves the β-hitting game in O(f(2β) log β) rounds, with
probability at least 1− 1/β. Once established, our theorem
statement follows directly from this claim and Lemma 3.2:
if f(n) = o(n/ logn), then PA would solve β-hitting in
o(β) rounds with probability at least 1 − 1/β—violating
Lemma 3.2 which established the necessity of Ω(β) rounds
to achieve this success probability.

We proceed argue the following claim. Our strategy is to
have PA simulate a collection of 2β nodes in a dual clique
network of size n = 2β. The player uses the behavior of the
simulated nodes to specify its guesses for the hitting game.
Below, we begin by describing the network it simulates, then
its rules for determining guesses, and finally we prove these
rules solve the game with the needed time complexity.

Simulated Network: To simulate nodes in the dual clique
network the player must assign the processes to nodes in the
graph. In more detail, let {1, ..., 2β} be the ids of the n = 2β
nodes we simulate. The player places nodes 1 to β in clique
A and β + 1 to 2β in clique B. Let t be the target for this
instance of the hitting game. The network the player will

simulate assigns node t to tA and t + β to tB . That is, the
nodes on either side of the bridge have their ids correspond
to the target for the hitting game. Of course, the player does
not know t in advance, but we will prove that its simulation
remains consistent with this particular instantiation of the
dual clique network. For the remainder of the proof, we call
this assignment of ids to the dual clique network our target
network.

Guess Generation Rules: We now describe how to con-
nect the player’s simulation of the target network with its
guesses or the β-hitting game. Fix some simulated round.
The player begins by simulating the broadcast behavior of
its simulated nodes in this round. If A is a global broadcast
algorithm, it assumes that node 1 ∈ A is the global broad-
cast message source; if it is local broadcast, it puts all nodes
in A in the broadcast set. Based on this broadcast behav-
ior, the player will generate a series of guesses for the hitting
game. If none of these guesses solve the game, it will then
finish its simulation of the round by simulating the receive
behavior, and then moving on to the next simulated round.
Therefore, every simulated round generates a variable num-
ber of hitting game guesses. Here we describe how it uses
the simulated broadcast behavior to generate its guesses. In
the next piece of the proof we will describe how it simulates
the receive behavior if its guesses fail.

Let XA be the nodes from A that broadcast in our simu-
lated round, and let XB be the nodes from B that broadcast
in the round. LetX = XA∪XB . Finally, let S be the state of
the nodes at the beginning of this round. This state includes
the execution history through r−1, but does not include the
random bits the nodes will use in round r. It captures the
information an online adaptive link process can use to make
link decisions in this round. We have our player calculate
the expected value of |X| given S. If E[|X| | S] > c log β,
for a constant c ≥ 1 which we will fix later, then the player
labels the round dense, otherwise it labels the round sparse.

Now we are ready to generate our guesses. If the round is
dense and, once the player simulates the broadcast behavior,
X = {i}: then the player guesses, one by one, all values from
1 to β (guaranteeing that it will win the hitting game). If
the round is dense and |X| 6= 1: then the player makes no
guesses. If the round is sparse: the player guesses the ids
in X, one by one, subtracting β from the ids in X ∩ XB
to transform them into values in [β]. In other words, the
player’s guesses are a combination of the expected and actual
broadcast behavior in the simulated round.

Simulating Receive Behavior: If none of the guesses gen-
erated with the above process win the hitting game, the
player must now conclude its simulated round by simulating
the receive behavior in a manner that is valid for our target
network and the online adaptive link process constraints. To
do so, the player must first decide which edges from G′ \G
to include in the communication topology (that is, it plays
the role of the link process). In our simulation, the player
uses the rule to determine this decision: if the rounds in
dense, it includes all G′ edges in the topology; if the round
is sparse, it includes no G′ edges between A and B. At this
point, we must be careful to confirm that these link pro-
cess decision made by the player satisfy the constraints of
an online adaptive link process. If, for example, the player
used more information than is allowed by an online adaptive
link process, it would be simulating a network more difficult
than what is expected by A and therefore A is not required

to work correctly. As mentioned above, however, an online
adaptive link process is able to determine if a round is dense
or sparse as this requires only the state at the beginning of
the round, not the random choices made during the round.

After fixing the G′ topology, the link process has almost
enough information to simulate the receive behavior. The
only piece of the graph topology it is missing is the edge be-
tween in G between t and t+β (as it does not know t, it does
not know the endpoints of this edge). Our approach is to
have the player simulate receive behavior under the assump-
tion that there is no edge in G between A and B. We will
later argue that the behavior it simulates in this incomplete
network is consistent with what would occur in our target
network that includes this edge between the cliques.

Proving the Validity of the Simulation: We now argue by
induction on the simulated round number that this simula-
tion remains a valid simulation of A in our target network
until the player wins the hitting game. For our hypothesis,
assume that the first r > 0 rounds of the simulation are
valid, and the player has not yet won the hitting game. For
our step, we will show that in simulated round r + 1, either
the player wins the hitting game or this round is also valid.

By our inductive hypothesis, we know the broadcast be-
havior simulated at the beginning of round r + 1 is valid.
If the corresponding guesses win the hitting game, we are
done. Assume, therefore, that the guesses do not win. We
consider the possible cases for the simulated receive behavior
and argue all case are valid for our target network.

If the round is dense, then we know |X| 6= 1 (if |X| =
1 then the player would have guesses all values and won
the game in the preceding guess phase). In this case, the
player would simulate no messages being received, as the G′

edges included in the topology make it a complete graph (if
multiple messages broadcast, all receive a collision). The
fact that the player did not know the edge between t and
t+ β does not matter here.

If the round is sparse, then the player simulates receive
behavior as if the two cliques are isolated in the communi-
cation topology. This receive behavior will be the same as
in our target network (which includes an edge between t and
t + β) if neither t nor t + β broadcast. On the other hand,
if t or t + β do broadcast, our simulated receive behavior
would no longer necessarily be valid. However, in this case,
we would have guessed t during the preceding guesses and
won the hitting game.

Proving that a Valid Simulation Wins the Hitting Game:
Having established that our simulation is valid, we must now
argue that a valid simulation of our broadcast algorithm will
lead our player to eventually win the game. By assumption,
A solves either local or global broadcast in the dual clique
network with any online adaptive link process. Because we
argued that our simulation of A is valid, it too will eventu-
ally solve broadcast (or win the hitting game before it gets
a chance to finish). Notice, if A solves broadcast, it follows
that at least one message must pass between A and B. (Re-
call from above: for global broadcast, we put the source in
A, and for local broadcast, we placed all nodes in A, includ-
ing the endpoint of the bridge, in the broadcast set.) Given
the link process behavior used in our simulation, there are
only two cases where this is possible: (1) a round in which
just a single node broadcasts; or (2) a sparse round in which
t or t + β broadcast. In both cases, when we get to such a
round, we will guess t and win the game.

Bounding the Number of Guesses Per Simulated Round:
Because A solves broadcast with high probability, we have
established that our player simulating A will also solve the
game with high probability. In particular, with probability
at least 1−1/(2β) (we are substituting 2β for n in the defini-
tion of high probability). Our final step is to bound how long
this takes. We know thatA finishes in f(2β) rounds. But be-
cause we can have multiple guesses per simulated round, the
number of rounds required by our player to win the hitting
game might be much longer. We will show that with suffi-
cient probability the player never need more than O(log β)
guesses per simulated round.

Returning to the guessing rules, we see that there are
two cases where the player might have to guess multiple
values for a given simulated round. The first case is occurs
when only a single node broadcasts during a dense round.
If this occurs, then the player guesses all β values. Recall,
however, that if a round is dense, then E[|X| | S] > c log β.
For a sufficiently large constant c, we can apply a Chernoff
bound to prove that the probability that there is 1 node
broadcasting is less than 1/(2β)4.

The second case with multiple guesses occurs when the
round is sparse. In this instance, all broadcasters are guessed.
For a sparse round, however, the expected number of broad-
casters is low; i.e., E[|X| | S] ≤ c log β. Plugging in the c
we used for case 1, there exists some other smaller constant
c′ such that the probability there are more than c′ log β)
broadcasters in a sparse round is also less than 1/(2β)4. By
a union bound, the probability we have to guess more than
c′ log β values in a given round is less than 1/(2β)3. We
can assume w.l.o.g. that our broadcast algorithm requires
no more than (2β)2 rounds,5 so by another union bound,
the probability that we have too many broadcasters in any
simulated round is bounded by 1/(2β).

We can now piece together our two failure probabilities.
We know that A solves global broadcast in f(n) rounds with
probability at least 1−1/n. Therefore, it will solve broadcast
in our target network in f(2β) rounds with probability at
least 1 − 1/(2β). It follows that it fails to solve broadcast
with probability no more than 1/(2β). As shown above, it
fails to bound its guesses per round to O(log β) also with
probability no more than 1/(2β). Therefore, the probability
that it solves the game in O(f(2β) log β) rounds, is at least
1−1/(2β)+1/(2β) = 1−1/β, as required by our claim.

4. OBLIVIOUS DUAL GRAPH MODEL
Having just proved that broadcast cannot be solved effi-

ciently in the online adaptive setting, we turn our attention
to the oblivious dual graph model. As argued in the intro-
duction, this model is important because the adversary is
powerful enough to replicate the unpredictable behavior of
real radio networks. Upper bounds proved in this model,
therefore, should still hold in real deployment.

4.1 Global Broadcast Upper Bound
We begin by describing an algorithm that solves global

broadcast in O(D logn+log2 n) rounds in the oblivious dual
graph model. Notice, this bound matches the well-known
solution of Bar-Yehuda et al. [2] in the protocol model. In
fact, our new upper bound is based on the classic result

5We can always solve broadcast among 2β nodes in (2β)2

rounds by doing round robin broadcast 2β times.

of [2]. This existing global broadcast algorithm is based on
a decay subroutine that has nodes with the message cycle
(in a coordinated manner) through the logn probabilities:
{1/2, 1/4, ..., 2/n, 1/n}. For each potential receiver, one of
these probabilities is appropriate for the number of broad-
casters it neighbors. This strategy works well for advancing
the message in the protocol model, but it can be attacked by
an oblivious adversary because the fixed schedule of broad-
cast probabilities allows it to calculate in advance the ex-
pected broadcast behavior, and choose dynamic link behav-
ior accordingly (as the online adaptive adversary did in our
bound from Section 3). In our new protocol, we sidestep
this attack by having the source generate random bits at
the beginning of the execution, and then append them to
the broadcast message. Nodes that have received the mes-
sage can use these bits to permute the order in which they
visit the decay probabilities. From the perspective of the
adversary, these permutations are random, thwarting his at-
tack. The formal description follows (to simplify notation,
we assume that log is base-2 and n is a power of 2):

Permuted Decay Subroutine.
The permuted decay subroutine, used by our global broad-

cast algorithm, is called with a broadcast message m, a
string S of γ logn log logn permutation bits, and an integer
parameter γ ≥ 1. The routine runs for γ logn rounds. Dur-
ing each round, it selects a value i ∈ [logn] using log logn
new bits from S. It then broadcasts m with probability 2−i.

Global Broadcast Algorithm.
Our global broadcast algorithm works as follows. The

source, provided message m′, creates a new message m =
〈m′, S〉, where S is a collection of 32 log2 n log logn bits gen-
erated with uniform and independent randomness after the
execution begins. In the first round, the source broadcasts
m to its neighbors. At this point, the source’s role in the
broadcast is finished. For every other node u, on first re-
ceiving a message 〈m′, S〉 in round r, it waits until the first
round r′ ≥ r, where r′ mode 16 logn = 0, and then calls
permuted-decay(m, 16, s), 2 logn times in a row, where each
time s includes 16 logn log logn new bits from S.

Theorem 4.1. The algorithm described above solves global
broadcast in O(D logn+ log2 n) rounds in the oblivious dual
graph model.

To prove our theorem, we note that our global broadcast
algorithm is the same as the algorithm in [2] with the ex-
ception that we replaced decay with permuted decay. For-
tunately, the existing proof from [2] treats the decay sub-
routine as a black box, requiring only that a node receives a
message from some broadcasting neighbor with probability
greater than 1/2 after each call to the subroutine. To prove
our above theorem, therefore, it is sufficient to prove that
the same property holds for permuted decay. We accomplish
this with the below lemma (which, technically, replaces part
ii of Theorem 1 of [2]):

Lemma 4.2. Fix some node u, constant γ ≥ 16, message
m, string s of 16 logn log logn bits generated with uniform
and independent randomness after the execution begins, and
sets IG and IG′ , where IG is a non-empty subset of u’s G
neighbors and IG′ is a subset of u’s G′ neighbors. Assume
the nodes in I = IG∪IG′ call permuted-decay(m, γ, s) during

the same round and all other neighbors of u remains silent.
Node u will receive m from a node in I during this instance
of permuted-decay with probability greater than 1/2.

Proof. Fix some round r during the decay instance. Let
Ir ⊆ I be the subset of nodes in I connected to u in the
topology selected by the oblivious link process for this round.
Notice, by definition IG ⊆ Ir, so Ir 6= ∅. If |Ir| > 1, then let
our target i′ = blog |Ir|c. Otherwise, let i′ = 1. All nodes
that called decay will select the same i as they all use the
same permutation bits from m to select i. By assumption,
the choice of i is random and, because the bits were gener-
ated after the execution begins, independent of I. Therefore,
with probability at least 1/ logn, i = i′.

In a round where i = i′, we can bound the probabil-
ity pu that u receives a message from I, as follows: pu =∑
v,∈Ir

1

2i
′ (1− 1

2i
′)|Ir\{v}| > |Ir|

2i
′ (1

4
)
|Ir|
2i

′ ≥ 1
16
.

For the final step of the reduction, we note that i′ ∈
(log |Ir|/2, log |Ir|], and used the largest possible value for
i′ for the first term and the smallest for the second, to en-
sure we end up with a lower bound.

Combining our two observations, we see that u receives
the message in any given round with probability greater
than 1/(16 logn) Therefore, the probability that it fails for
γ consecutive rounds of the subroutine is bounded as (1 −

1
16 logn

)γ logn < e−γ/16 < 1/2 as required by our lemma.

4.2 Local Broadcast Lower Bound
The strategy used by our global broadcast upper bound

in Section 4.1 does not directly apply to the local broadcast
setting, as we can no longer assume that all nodes need-
ing to broadcast are coordinated by a common broadcast
message. Here we show that no strategy can achieve effi-
cient local broadcast in the oblivious model, by proving a
Ω(
√
n/ logn) lower bound. This result establishes a strict

separation between these two problems in this model:

Theorem 4.3. There exists a dual graph network such
that every algorithm requires Ω(

√
n/ logn) to solve local broad-

cast in this network in the oblivious dual graph model.

We use the same proof structure (and much of the proof
argument) from our lower bound for the online adaptive
model in Section 3. That is, we reduce the β-hitting game
to solving local broadcast in a particular type of dual graph
network, by showing how solve β-hitting by simulating a lo-
cal broadcast algorithm in this network. Because we have
a weaker adversary, however, our task is complicated. We
are now required to use a different network type and more
involved simulation strategy.

The Bracelet Network: Select from among the n nodes
two non-intersecting subsets of

√
n/2 nodes each: A =

{a1, a2, .., a√n/2} and B = {b1, b2, .., b√n/2}. As in the dual

clique network, connect some at ∈ A to some bt ∈ B in
G. For each ai ∈ A, construct a line of length

√
n/2 that

contains ai, labeling the nodes as ai, ai,2, ai,3, ..., ai,
√
n/2

.

Connect each consecutive pair in the line in G. Do the same
for each bi in B (now labeling the nodes bi, bi,2, bi,3, and
so on). We call each such line a band. Because we require
our graphs to be connected in G, also connect the endpoints
of these bands (i.e., each node labelled a

i,
√
n/2

or b
i,
√
n/2

)

into a clique in G. Finally, add G′ edges between every pair

(ai, bj), ai ∈ A, bj ∈ B. Notice, this yields 2(
√
n/2)2 = n

total nodes. We call this network a bracelet network, as it is
defined by

√
n/2 bands in G edge, which are connected at

one end by a single G edge (between at and bt), forming a
clasp.

Isolated Broadcast Functions: Our reduction argument
leverages the following insight: nodes in A and B must be-
have independently of each other until common information
can reach both. Due to the length of their bands, this takes
a while. During this time, therefore, an oblivious adversary
can do a good job of estimating their broadcast behavior. To
formalize this strategy, we define a support sequence to be a
bit sequence of sufficient size to contain all the bits needed
for the nodes in a band in the bracelet network to resolve
their random choices for

√
n/2 rounds. We can represent

this information as a bit string of length (δn)/2, where δ is
the maximum number of random bits needed by a node in
a single round (δ bits per round for

√
n/2 rounds for

√
n/2

nodes in a band yields (δn)/2 total bits). We also say an
execution of an algorithm in the bracelet network is isolated
with respect to a node u ∈ A ∪ B through round r > 0, if
node u only receives messages from its neighbor in the band
through the first r rounds.

Leveraging these definitions, we prove the existence of a
useful formalism:

Lemma 4.4. Fix some algorithm A and node u ∈ A ∪ B
from the bracelet network. We can construct an isolated
broadcast function fA,u : {0, 1}(δn)/2 × {1, ...,

√
n/2} →

{0, 1} that satisfies the following property: for any support

sequence γ and round r ≤
√
n/2: fA,u(γ, r) = 1 if and only

if node u would broadcast in round r of an isolated execution
where u’s band uses the random bits described by γ.

Proof. We can construct fA,u by simulating node u in
the bracelet network as follows: For a given γ and r, we
can calculate fA,u(γ, r) by running an r round simulation
of nodes in u’s band, where: in the first round of the sim-
ulation, initialize all nodes in u’s band with the first round
bits from γ; in the second round, simulate nodes u, u2, u3, ...,
u√

n/2−1
; in the third, u, u2, u3, ..., u√n/2−2

; and so on, until

round r. The simulated behavior of u in round r determines
the output of the broadcast function for that round. This
approach drops each node from the simulation right before
its externally observable behavior (e.g., messages sent) could
possibly be influenced by a node from outside the band (re-
call that the definition of our network connects the endpoints
of the bands together in a clique). We can only maintain the

simulation for
√
n/2 rounds, because, at that point, infor-

mation from outside u’s band could have made it u, affecting
its behavior in a way we cannot capture in a simulation that
know only about the behavior of the band.

The key property regarding isolated broadcast functions
is that they are independent. That is, the behavior of one
function provided a randomly generated support sequence is
independent of the behavior of another function provided a
different randomly generated support sequence. This inde-
pendence is a direct consequence of the graph topology (and
would be impossible to achieve if we had to satisfy a geo-
graphic constraint). The following lemma proves, therefore,
that calling these functions multiple times with different ran-
dom bits should generate similar outcomes:

Lemma 4.5. Fix a constant x ≥ 1 and an array F of
k ≥ 1 isolated broadcast functions. Construct two arrays
S1 and S2, each consisting of k support sequences generated
with uniform and independent randomness. For r ∈ [

√
n/2],

let Y 1
r =

∑k
i F [i](S1[i], r) and Y 2

r =
∑k
i F [i](S2[i], r). The

following two properties hold with probability at least 1−n−x:
For every r ∈ [

√
n/2]: (1) if Y 1

r > 16(x+ 1) lnn then Y 2
r ≥

2; and (2) if Y 1
r ≤ 16(x+ 1) lnn then Y 2

r ≤ 64(x+ 1) lnn.

Proof. Consider some isolated broadcast function F [i]

and round r, i ∈ [k], r ∈ [
√
n/2]. Notice that for a randomly

generated support sequence γ, F [i](γ, r) behaves as an indi-
cator variable Xi where Pr[Xi = 1] = pi and Pr[Xi = 0] =
1−pi, for some probability pi we can determine based on the
definition of the broadcast function. Crucially, we note that
Xi and Xj , for i 6= j, defined with independent support se-

quences, are independent. Let Y =
∑k
i Xi; i.e., the outcome

of a trial where we call each function in F with a randomly
generated support seqeuence. Notice that Y 1

r and Y 2
r de-

scribe the value of Y for two different trials. To prove our
theorem statement, therefore, it is sufficient to show that it
is unlikely that Y will differ by too much between any pair of
trials. We turn to Chernoff to aid in this effort. To simplify
notation, in the following, let c = 16(x+ 1).

We begin by bounding the probability that property 1
fails to hold. Let µ = E[Y]. There are two cases to consider.
In the first case, µ is closer to Y 1

r then Y 2
r . It follows that

µ > (c/2) lnn and Y 2
r is less than half the expectation. A

Chernoff Bound tells us that: Pr[Y 2
r < (1/2)µ] ≤ e(−µ)/8 <

e(−c/16) lnn = n−(x+1).
The second case is where µ is closer to Y 2

r then Y 1
r . Here,

we know µ ≤ (c/2) lnn and Y 1
r is at least a factor of 2 greater

than the expectation. Applying a Chernoff Bound to this
direction tells us: Pr[Y 1

r ≥ 2µ] ≤ e(−µ)/3 < e(−c/6) lnn <

n−(x+1).
In other words, for any given round r, the probability that

we violate property 1 is no more than n−(x+1). A union
bound over

√
n/2 rounds gives us a final probability of fail-

ure in at least one round that is less than n−x, as needed.
The argument for property 2 proceeds symmetrically, ex-

cept now our µ is bounded around 2c lnn in our argument.
This only decreases the probability of violating the proper-
ties, so the final probability upper bound of n−x still holds.

Now we are ready to prove our main theorem:

Proof of Theorem 4.3. At a high-level, we apply the
same argument as in Theorem 3.1. IfA terminates quickly in
the bracelet network, then we can create a player PA that
simulates A in this network, to solve the β-hitting game
quickly. The bound on β-hitting from Lemma 3.2 provides
our bound for A. Instead of recreating the entire proof from
Theorem 3.1, we will focus here only where things differ.

In more detail, the player simulates in A in the bracelet
network with at and bt corresponding to the hitting game
guess. It will use the behavior of nodes in its simulation to
determine guesses for the hitting game. The player does not
know at and bt, but, as in the previous proof, we will show
that this lack of knowledge does not matter, as the player
will win the hitting game before this piece of the topology
can affect its simulation.

In simulating each round of A, the player must simu-
late the oblivious link process. To do so, it first constructs
the isolated broadcast functions corresponding to all 2

√
n/2

nodes in A∪B (as in Lemma 4.4). Let F be an array of these
functions. It then generates, with uniform and independent
randomness, a support sequence for each function. Let S
be the array consisting of these 2

√
n/2 support sequences,

one for each function in F . Using F and S, the player then
labels each of the first

√
n/2 rounds as dense or sparse as

follows: if the number of functions in F that output 1 in
the round, when called with the sequences in S, is greater
than c lnn (for some constant c we will define later), then
the round is dense, otherwise it is sparse.

Once these labels are determined the player chooses the
topology and generates as in the proof of Theorem 3.1. No-
tice, the simulation of the link process here satisfies the con-
straints of an oblivious adversary, as the isolated support
functions can be constructed and simulated for all rounds
before the execution begins. We are arguing, in other words,
that the behavior of these functions (which capture the broad-
cast behavior of nodes in A∪B) cannot change much based
on the random bits supplied as input (which correspond to
the random choices of nodes in a particular execution). This
allows an oblivious adversary to simulate the behavior of
these specific nodes, for a constrained number of rounds,
before the execution begins.

Applying Lemma 4.5, we can show that, with high prob-
ability, that for the first

√
n/2 rounds: if multiple nodes

in A ∪ B broadcast if the round was dense, and O(logn)
broadcast if the round was sparse. These are the key prop-
erties needed by the argument in Theorem 3.1 to prove that:
(a) the player never needs more than O(logn) hitting game
guesses per simulated round; and (b) the player’s lack of
knowledge of at and bt will not affect the validity of is simu-
lation in any round before it has won the hitting game. We
conclude the proof by selecting our constants carefully such
that, after the needed union bounds, we end up with suf-
ficiently high probability as success (see the full version of
the proof of Theorem 3.1 for an example of working through
these values).

4.3 Local Broadcast Upper Bound
In Section 4.2, we proved a negative result: Ω(

√
n/ logn)

rounds are necessary to solve local broadcast in the oblivi-
ous model. Notice, however, that this proof argument relied
on local neighborhoods with large independence numbers—a
property that is unlikely to occur in topologies generated by
omnidirectional wireless broadcast. With this in mind, we
assume in this section the geographic constraint defined in
Section 2. Under this constraint, we describe an algorithm
that solves the problem in O(log2 n log ∆) rounds, which is
within a log-factor of the optimal solution in the static pro-
tocol model.

Local Broadcast Algorithm.
Our algorithm executes in two stages: initialization and

broadcast. The initialization stage locally disseminates shared
randomness to coordinate nearby nodes. The broadcast
stage uses these shared bits to efficiently solve local broad-
cast.

In more detail, the initialization stage divides rounds into
log ∆ phases, each consisting of O(log2 n) rounds. All nodes
begin the stage active. During the first round of a given
phase i ∈ [log ∆], each node that is still active elect itself a

leader with probability 2−(log ∆−i+1) (i.e., we use the proba-
bilities: 1/∆, 2/∆, ..., 1/4, 1/2, as the phases advance). Each

leader then generates a seed consisting ofO(log3 n(log log n)2)
bits, selected with uniform and independent randomness. It
then commits to this seed. During the remaining O(logn)
rounds of the phase, each leader broadcasts its seed in each
round with probability 1/ logn. At the end of the phase,
the leaders become inactive. Any node that was active but
not a leader during the phase, and that received at least one
seed, will commit to the first seed it received and become in-
active as well. The only nodes remaining for the next phase,
therefore, are those that were active, not a leader, and did
not receive a seed message. If a node ends the initializa-
tion stage still active, it generates its own seed and commits
to it. Therefore, at the end of this stage, all nodes have
committed.

The broadcast stage has each node in B (e.g., node with
a message to broadcast to its neighbors) execute the per-
muted decay subroutine from Section 4.1, O(log2 n) times
in a row. We call each call to decay an iteration. For each
iteration, each node in B (i.e., node with a local broadcast
message) decides to participate in the iteration with prob-
ability 1/ logn. It use log logn bits from its seed to make
this random choice, so all nodes with the same seed make
the same participation decision for each iteration. If a node
decides to participate, it runs permuted decay providing it
the needed Θ(logn log logn) bits also from its seed. There-
fore, all nodes with same seed will run permuted decay with
the same permutation bits. If a node decides not to partici-
pate in an iteration, it does nothing until the next iteration
begins.

Theorem 4.6. The algorithm described above solves local
broadcast in O(log2 n log ∆) rounds in geographic graphs in
the oblivious dual graph model.

To prove our theorem, we first highlight a property of
the geographic graphs first established in [3]. Given such
a geographic dual graph, we can partition the nodes into
regionsR = {R1, R2, ..., Rn}, such that all nodes in the same
region are connected in G, and for any given region Ri, the
number of neighboring regions (i.e, regions that contain a
G′-neighbor of a node in Ri) is bounded by some constant
γr, dependent on the value of r. We will use this region
decomposition in the remainder of our analysis.

We begin our analysis by focusing on the initialization
stage. In the following, for a given phase j and region Ri ∈
R, let ai(j) describe the number of active nodes in Ri at
the beginning of phase j, and `i(j) describe the number of
leaders elected in Ri in the first round of j. We say Ri
is active in phase j if `i(j) > 0. We say a given phase j
is good if for all Ri ∈ R, `i(j) < c logn, where c is some
constant we fix later. We use pj , for phase j, to describe the
leader election probability associated with this phase. We
use Pi,j = ai(j)pj to describe the leader election probability
sum for Ri in j.

The following three lemmas establish that the initializa-
tion phase provides the needed density of seeds.

Lemma 4.7. With probability at least 1 − 1/n7, the fol-
lowing holds for every good phase j and region Ri ∈ R that
is active in j: At the end of phase j, every node in Ri has
committed to a seed and is inactive.

Proof. By assumption, the phase is good. It follows
that there are no more than γrc logn = O(logn) leaders

in this phase within range of nodes in Ri. We also assume
that Ri is active in this phase, so we know it includes at
least one node, u ∈ Ri, this is a leader. In each round, u
broadcasts with probability 1/ logn. In each such round, it
succeeds in delivering its message to all nodes that are still
active in Ri with probability p, bounded as: p ≥ 1/ logn(1−
1/ logn)γrc logn > 1/(4γrc logn) = Ω(1/ logn).

The phase lasts for c′ log2 n rounds. Therefore, the prob-
ability that u fails in every round of the phase is bounded

as (1 − p)c
′ log2 n < e−

c′
4γrc

logn, which, for sufficiently large
constant c′, is less than 1/n9. A union bound over all re-
gions (of which there can be no more than n) and all good
phases, provides us with a result that holds with probability
1/n7, as required by the lemma.

Next, we leverage this property to prove that good phases
are ubiquitous. The intuition behind the following result
is that before the leader election probabilities can get large
enough to elect more than c logn leaders in a region (elimi-
nating goodness in the network), that region passes through
a phase where the probability is just right for us to apply
the previous lemma and render all nodes inactive.

Lemma 4.8. With probability at least 1−1/n3, every ini-
tialization stage phase is good.

Proof. Fix some phase j. Let region Ri be the region
that maximizes Pi,j . Recall that c ≥ 1 is the constant used
in the definition of good. We begin the proof by establishing
the following claim: there exists a constant c′, 1 ≤ c′ < c,
such that if Pi,j ≤ c′ logn, then phase j is good.

To establish this claim, we first note that region i has
the largest expected value of ` for this phase. To bound
this expectation, let Ai be the active nodes in Ri at the
beginning of j, and let Xu, for each u ∈ Ai be the indicator
variable that is 1 if u elects itself leader in this phase, and
is otherwise 0. It follows:

E[`i(j)] = E[
∑
u∈Ai

Xu] =
∑
u∈Ai

E[Xu] = Pi,j ≤ c′ logn.

Chernoff tells us that if we fix constant c to be appropri-
ately large compared to c′, then the probability that `i(j) >
c logn is less than n−6. Notice, the expectation for the
other regions is no larger than the expectation for region
i, therefore this same bound applies for any region during
this phase. Finally, a union bound tells us that this holds
for every region and every phase, with probability at least
1− n−4. Moving forward, assume this property holds.

We are left to prove that the probability a leader election
sum ever exceeds c′ logn is small. To do so, let us consider
the first region to exceed this sum. Say, region Ri in phase
j + 1. Notice, the leader election sum in Ri can at most
double between j and j+1 (the election probability doubles
between phases but the number of active nodes can never
increase). For Ri to exceed c′ logn in some phase j + 1,
therefore, it must first spend phase j with c′/2 logn < Pi,j ≤
c′ logn. We will now show that the probability Ri survives
phase j without having all nodes become inactive is small.

In more detail, by our above assumption, we know j is a
good phase (as j+ 1 would be the first phase where a leader
election sum exceeded c′ logn). Given that Pi,j > c′/2 logn,
for a sufficiently large constant c′, a Chernoff bound tells
us that the probability `i(j) < 1 is small—say less than

n−7. (It is here that we can fix our constant value c′ which
allows us to fix constant c which we use in our definition
of goodness.) This implies that the region is active in this
phase. Our above assumption tells us that the phase is also
good. We can, therefore, apply Lemma 4.7, which tells us
that if the phase is active and good then all nodes in Ri
will become inactive during j with probability also at least
1 − n−7. If this event occurs, of course, then the leader
election sum is 0 for all future phases. By a union bound,
the probability that the sum exceeds c′ logn in j + 1 is less
than n−6. A union bound over all regions and phases tells
us that the probability that any region ever exceeds c′ logn
is bounded as n−4.

We are left to combine, with a union bound, two fail-
ure probabilities: (1) that our first claim—if the election
sums are small the phase is good—fails; (2) that our sec-
ond claim—the election sums are always small—fail. Both
these failure probabilities are less than n−4, so the proba-
bility that at least one fails is less than n−3. It follows that
the probability that all phases are good is at least 1− 1/n3,
as required.

If all phases are good, we can conclude by arguing that we
never generate more than O(logn) seeds per region, which,
in turn, restricts the total number of unique seeds neighbor-
ing any given node to be ≤ γr ·O(logn) = O(logn):

Lemma 4.9. With probability at least 1−1/n2, at the end
of the initialization phase, every node has committed to a
seed, and no node neighbors more than O(logn) unique seeds
in G′.

Proof. By the definition of the algorithm, every node
ends up with a unique seed (as it will generate its own seed
if it gets to the end of the stage without having commit-
ted). We turn our attention, therefore, to the bound on the
number of nearby seeds. Let us first consider the seeds gen-
erated during the stage (as oppose to the seeds generated at
the end of the stage). Lemma 4.8 tells us that every phase
is good, with probability at least 1−1/n3. It follows that no
more than c logn leaders are ever elected in a single region
in a single phase, with this same probability. Lemma 4.7,
however, tells us that the if a region is active during a good
phase, all nodes in this region are inactive for the remainder
of the stage, with probability at least 1 − 1/n6. Combin-
ing these two observations (and, with a union bound, their
respective probabilities), it follows that with probability at
least 1− 1/n2, the total number of leaders ever elected in a
region is bounded by c logn.

Now we consider the seeds generated by uncommitted
nodes at the end of the stage. Let Ri be a region that
contains one such uncommitted node. there cannot be more
than 2c′ logn nodes left uncommitted in Ri at the end of
the stage, where 1 ≤ c′ < c is the constant we defined in
the proof of Lemma 4.8. If there were more nodes left in Ri,
then the leader election sum in the final phase would have
been strictly more than c′ logn. If we dive into the proof
of Lemma 4.8, however, we see that it works, in part, by
establishing that the the leader election sum never exceeds
c′ logn. Therefore, if we assume this lemma holds, we can
assume no election sum ever exceeds this bound

Because each node can neighbor at most γr = O(1) re-
gions, and each region has max{c logn, 2c′ logn} = O(logn)
nodes, the needed bound on nearby unique seeds holds prob-
ability 1− 1/n2, as needed.

We conclude by proving our main theorem:

Proof of Theorem 4.6. The time complexity follows from
the definition of the algorithm, as both the initialization and
broadcast stages require O(log2 n log ∆) rounds. Lemma 4.9
tells us that every node ends the initialization stage with
a seed, and no node neighbors more than O(logn) unique
seeds in G′ (with probability at least 1 − 1/n2). Assume
this lemma holds. Next, consider some node u ∈ R. It fol-
lows that u has a neighbor v ∈ B in G such that v has a
broadcast message. Let S = {S1, S2, ..., Sk} be a partition
of the nodes in NG′(u) ∩ B such that all nodes in Si have
the same seed from the initialization stage. Notice, by our
above assumption, k = O(logn).

Let Si ∈ S be the partition that includes v. Consider a
particular decay iteration. The probability that u receives
a message from Si during this iteration is psolopsucc, where
psolo is the probability that Si is the only partition from
S to participate in this iteration, and psucc is the proba-
bility that u gets a message during an iteration precondi-
tioned on the assumption that only Si participates . We can
bound this quantity as: psolopsucc > (1/ logn)(1−1/ logn)k ·
(1/2) > 1/(2 logn)4−O(logn)/ logn = Ω(1/ logn), where we
get psucc > 1/2 from Lemma 4.2 in Section 4.1.

The broadcast stage consists of O(log2 n) = c′′ log2 n it-
erations of decay, for some constant c′′. We note that for a
sufficiently large constant c′′, the probability that u fails to
receive a message in all k iterations is less than n−3. A union
bound tells us that the probability that at least one node in
R fails to receive a message is less than n−2. Finally, using
another union bound, we combine this probability with the
probability that Lemma 4.9 fails to hold, which tells us that
local broadcast fails with probability less than 1/n.

5. CONCLUSION
In this paper, we proved upper and lower bounds for global

and local broadcast in unreliable radio networks where the
link behavior is controlled by either an online adaptive or
oblivious adversary. Existing results were proved with re-
spect to an offline adaptive adversary. This paper fills in the
gaps for these weaker adversary types—finding the thresh-
olds at which efficiency becomes possible. In terms of future
work, it remains an interesting open question to explore
other problems—such as rumor spreading, leader election,
or graph algorithms—under these weaker dual graph vari-
ants. It is also interesting to explore the impact of this style
of unreliable behavior in SINR-style radio network models.

6. REFERENCES
[1] N. Alon, A. Bar-Noy, N. Linial, and D. Pelegi. A

Lower Bound for Radio Broadcast. Journal of
Computer and System Sciences, 43(2):290–298, 1991.

[2] R. Bar-Yehuda, O. Goldreigch, and A. Itai. On the
Time-Complexity of Broadcast in Multi-Hop Radio
Networks: An Exponential Gap between Determinism
and Randomization. Journal of Computer and System
Sciences, 45(1):104–126, 1992.

[3] K. Censor-Hillel, S. Gilbert, F. Kuhn, N. Lynch, and
C. Newport. Structuring Unreliable Radio Networks.
In Proceedings of the ACM Conference on Distributed
Computing, 2011.

[4] I. Chlamtac and S. Kutten. On Broadcasting in Radio
Networks–Problem Analysis and Protocol Design.

IEEE Transactions on Communications,
33(12):1240–1246, 1985.

[5] A. Clementi, A. Monti, and R. Silvestri. Round Robin
is Optimal for Fault-Tolerant Broadcasting on
Wireless Networks. Journal of Parallel and Distributed
Computing, 64(1):89–96, 2004.

[6] A. E. Clementi, A. Monti, F. Pasquale, and
R. Silvestri. Broadcasting in Dynamic Radio
Networks. In Proceedings of the ACM Conference on
Distributed Computing, 2007.

[7] A. Czumaj and W. Rytter. Broadcasting algorithms in
radio networks with unknown topology. Journal of
Algorithms, 60:115–143, 2006.

[8] M. Ghaffari, B. Haeupler, N. Lynch, and C. Newport.
Bounds on Contention Management in Radio
Networks. In Proceedings of the International
Conference on Distributed Computing, 2012.

[9] M. Khabbazian, D. Kowalski, F. Kuhn, and N. Lynch.
Decomposing Broadcast Algorithms using Abstract
MAC Layers. In Proceedings of the International
Workshop on the Foundations of Mobile Computing,
2010.

[10] D. Kowalski and A. Pelc. Broadcasting in Undirected
Ad Hoc Radio Networks. Distributed Computing,
18(1):43–57, 2005.

[11] F. Kuhn, N. Lynch, and C. Newport. Brief
Announcement: Hardness of Broadcasting in Wireless
Networks with Unreliable Communication. In
Proceedings of the ACM Conference on Distributed
Computing, 2009.

[12] F. Kuhn, N. Lynch, C. Newport, R. Oshman, and
A. Richa. Broadcasting in Unreliable Radio Networks.
In Proceedings of the ACM Conference on Distributed
Computing, 2010.

[13] F. Kuhn, N. Lynch, and R. Oshman. Distributed
Computation in Dynamic Networks. In Proceedings of
the Symposium on Theory of Computing, 2010.

[14] F. Kuhn and R. Oshman. Dynamic Networks: Models
and Algorithms. ACM SIGACT News, 42(1):82–96,
2011.

[15] E. Kushilevitz and Y. Mansour. An Ω(D\log(N/D))
Lower Bound for Broadcast in Radio Networks. SIAM
Journal on Computing, 27(3):702–712, 1998.

[16] T. Moscibroda and R. Wattenhofer. The Complexity
of Connectivity in Wireless Networks. In Proceedings
of the IEEE International Conference on Computer
Communications, 2006.

[17] D. Peleg. Time-Efficient Broadcasting in Radio
Networks: a Review. Distributed Computing and
Internet Technology, pages 1–18, 2007.

[18] K. Srinivasan, M. Kazandjieva, S. Agarwal, and
P. Levis. The β-Factor: Measuring Wireless Link
Burstiness. In Proceedings of the Conference on
Embedded Networked Sensor System, 2008.

